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  Prefa ce      

 Being the most densely populated microbial ecosystem on earth, gut microbiota 
coevolved as a key component of human biology and physiology. Human beings 
share an intimate and mutualistic relationship with their gut microbiota, and recent 
fi ndings have demonstrated that the role of our gut microbial symbionts into health 
and disease has been so far underestimated. Increasingly, scientifi c evidence identi-
fi es gut microbiota as a key biological interface between human genetics and envi-
ronmental conditions encompassing nutrition. Microbiota dysbiosis or variation in 
metabolic activity has been associated to metabolic deregulation (e.g., obesity, 
infl ammatory bowel disease), disease risk factor (e.g., coronary heart disease), or 
even in the etiology of various pathologies (e.g., autism), although causal role into 
impaired metabolism still needs to be established. 

 The rise in multifactorial disorders, the lack of understanding of the molecular 
processes at play, and the needs for disease prediction in asymptomatic conditions 
are some of the many questions that systems biology approaches are well suited to 
address. Achieving this goal lies in our ability to model and understand the complex 
web of interactions between genetics, metabolism, environmental factors, and gut 
microbiota. The adaptation of systems biology to translational and clinical sciences 
has been termed network medicine and is changing the way we think about prevent-
ing, predicting, diagnosing, and treating complex human diseases. Through consoli-
dating knowledge across intermediate organizational levels of life such as the 
epigenome, transcriptome, proteome, metabolome or microbiome, and its integra-
tion with gene-disease traits, systems biology approaches are becoming highly rel-
evant for assessing the clinical characteristics of human health and disease. 

 The advent of metabonomics as a powerful systems biology approach opens new 
opportunities to deepen and model the complex web of molecular interactions 
between nutrition and health encompassing the understanding on how to modulate 
gut microbiota. While the study of the gut microbiota required the development of 
modern molecular biology techniques (many of the organisms present cannot be 
cultured and are only known as a result of their detection via ribosomal 16S DNA), 
we now know that these microbial populations are highly complex with many hun-
dreds of different species cohabiting in the gut and forming a complex ecology. 
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Its composition and activity coevolve with the host from birth and is subject to a 
 complex interplay that depends on the host genome, nutrition, and lifestyle. 

 Undoubtedly, the interplay between gut microbiome and host and its modulation 
by nutrition will benefi t from the integration of information on a systems biology- 
wide approach. Integration of gene sequence of the microbiome and metabolomics 
is currently envisioned to pave the way towards a better molecular understanding of 
the complex mammalian superorganism, which is a prerequisite for optimizing 
therapeutic strategies to manipulate the gut microbiota to combat disease and 
improve health. 

 The fi eld of endeavor is expanding rapidly, but we believe that now is a good 
time to review the achievements in the area of metabonomics and gut microbiota 
research. Therefore, this book will aim at providing state-of-the-art information on 
the key fi ndings and methodologies and point future directions towards understand-
ing how to benefi cially modulate our gut functional ecology for health and  nutritional 
benefi ts. 

 This book provides a comprehensive overview of metabonomics and gut micro-
biota research from molecular analysis to population-based global health consider-
ations. The topics include the discussion of the applications in relation to 
metabonomics and gut microbiota in nutritional research and in health and disease 
and a review of future therapeutical, nutraceutical, and clinical applications. It also 
examines the translatability of systems biology approaches into applied clinical 
research and to patient health and nutrition. 

 The book begins with a general introduction on major concepts and research 
directions with emphasis on core indicators of health and functions in infant, adult, 
and elderly populations (Chap.   1    ). The second and third chapters will provide some 
background information on the metabonomics technology and its implementation 
in clinical research and data modeling. 

 Chapters   4    ,   5    ,   6    ,   7    ,   8    ,   9    , and   10     describe extensively some key applications in 
nutritional research. These sections provide examples and expectations in the fi eld 
of personalized medicine and nutrition, including the study of infant-nutrition and 
healthy aging paradigms and studies of microbial and human metabolism of 
 macronutrients (protein, fat, carbohydrates, and fi ber) and specifi c non-nutrient 
food components (polyphenols, fl avonoids) and herbal medicine. 

 Chapters   11    ,   12    ,   13    , and   14     describe the applications and perspectives of com-
bining metabonomics and gut microbiota approaches in health and disease research. 
Chapter   11     covers the introduction of the fi eld of microbio-immuno-metabolism, 
based on the role of the environment, genetic background, and individual diversity 
in relation to the onset and development of metabolic diseases. Chapter   12     gives 
emphasis on the role of microbiota in modulating lipid metabolism and related dis-
ease risks, while Chap.   13     comprehensively describes the intimate relationship 
between gut microbiota metabolism and gastrointestinal disorders with emphasis on 
infl ammatory bowel diseases. Chapter   14     extends the discussion to the fi eld of the 
gut brain axis and its role in the etiology of several disorders with emphasis on 
autism. 
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 Chapters   15     and   16        review the applications towards future therapeutical, 
 nutraceutical, and clinical applications, with emphasis on two main examples, bar-
iatric surgery and drug effi cacy and toxicity. 

  Metabonomics and gut microbiota in nutrition and disease  serves as a hand-
book for postgraduate students, researchers in life sciences or health sciences, and 
scientists in academic and industrial environments working in application areas as 
diverse as health, disease, nutrition, microbial research, and human clinical 
medicine. 

 We would like to acknowledge the chapter authors for their efforts in creating 
this book. Even though they all have many demands on their time, they generously 
contributed towards this effort to publicize Metabonomics and gut microbiota 
research efforts towards deciphering human health and disease.  

  Lausanne, Switzerland     Sunil     Kochhar   
    François-Pierre     Martin    
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    Chapter 1   
 Introduction to Metabonomics in Systems 
Biology Research 

             François-Pierre         Martin      and     Sunil     Kochhar    

    Abstract     There is a growing interest to understand the paradigm of healthy aging 
since the aging population and longevity increases worldwide. However, chronic 
diseases cover a broad range of organ and biological functions, ranging from 
 metabolic to digestive health, as well as from mental to physical functions. In the 
meantime, rising evidence also point towards the critical and long-term involvement 
of prenatal and early nutrition on later health and disease risk predisposition. Dietary 
preferences and nutrient composition have been shown to infl uence human and gut 
microbial metabolism, which ultimately have specifi c effects on health and disease 
risk. Increasingly, results from molecular biology and microbiology demonstrate 
the key role of the gut microbiota metabolic interface to the overall mammalian 
host’s nutritional and disease status. 

 There is therefore raising interest in nutrition and disease research to character-
ize the molecular foundations of the gut microbial mammalian cross talk at both 
physiological and biochemical pathway levels. Tackling these challenges can be 
achieved through systems biology approaches, such as metabonomics, to underpin 
the highly complex metabolic exchanges between diverse biological compartments, 
including organs, systemic biofl uids, and microbial symbionts. The generalization 
of such approaches has opened new research areas to deepen our current under-
standing on many physiological processes as well as food functionalities in general 
and targeted populations. Such novel insights are envisioned for aiding strategies 
for a tailored therapeutic and nutritional program. By the development of specifi c 
biomarkers for prediction of health and disease, metabonomics is increasingly used 
in clinical applications as regard to disease etiology, diagnostic stratifi cation, and 
potentially mechanism of action for therapeutical and nutraceutical solutions. 
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 This chapter focuses on introducing major concepts and research directions with 
emphasis on core indicators of health and functions in infant, adult, and elderly 
populations. The different themes will be developed further under the related book 
sections.  

  Keywords     Disease   •   Gut microbiota   •   Health   •   Mass spectrometry   •   Metabonomics   
•   Metagenomics   •   Nuclear magnetic resonance spectroscopy   •   Nutrition   •   Systems 
biology  

1.1         Introduction 

 There is a growing interest to understand the paradigm of healthy aging since the 
aging population and longevity increases worldwide. Indeed, it has been estimated 
that by 2020 chronic disease in developing countries will account for almost three- 
quarters of all deaths worldwide with 75 % of death due to stroke and 70 % of death 
due to diabetes [ 1 ,  2 ]. Awareness about the role of nutrition and lifestyle for health 
and disease risk management has increased, with key emphasis on the prevention of 
metabolic disorders, including cardiometabolic diseases and type 2 diabetes [ 1 – 3 ]. 
In parallel, rising evidence pointed towards the critical and long-term involvement 
of early nutrition and lifestyle on later health and disease risk predisposition [ 4 ]. 
Thus, it becomes pertinent to look at metabolism throughout life, disease develop-
ment, and nutritional requirements to understand the onset of certain child and adult 
physiological conditions [ 3 ,  4 ]. 

 With the advent of the post-genomic era, nutrition research benefi ts from all 
state-of-the-art analytical strategies that could be used for understanding the com-
plex relationship between nutrition and health [ 5 ]. In the meantime, modern nutri-
tion has shifted its focus towards molecular biology, genetics, and metabolic 
pathways with the goal of preventing disease and enhancing the health and 
 well- being of individuals [ 6 ]. Since population and individual physiological fea-
tures are encoded at the different levels of biological compartments and organiza-
tion, there is growing interest in modeling gene expression, protein or metabolite 
concentrations, and their dynamic pathways in cells, tissues, and organs to generate 
biological system models. Recent revolution in omics technologies has generated 
various promising concepts aiming to generate a global systems view of physiologi-
cal and pathological processes [ 6 ,  7 ]. The concept of systems biology has then been 
developed and related to the integration of information at the different levels of 
genomic expression (mRNA, protein, metabolite). Thus, systems biology generates 
pathway information and provides the capacity to measure subtle perturbations of 
metabolic pathways resulting from various intrinsic and extrinsic effects, including 
disease or nutrition. Dietary preferences and nutrient composition have been shown 
to infl uence human and gut microbial metabolism, which ultimately impact health 
and disease risk. It is therefore envisioned that the integration of systems biology 

F.-P. Martin and S. Kochhar
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into nutritional and health research will provide novel perspectives [ 8 ,  9 ]. This has 
led to the development of nutrigenomics that tackles how diet infl uences gene tran-
scription, protein expression, and metabolism [ 6 ,  7 ,  10 ]. 

 Systems biology applications are rising and are envisioned to drive a change in 
clinical practice through generalizing large population-based studies, aiming at 
enhancing our understanding of the role of genetics, environmental factors, and 
their interactions on individual susceptibility to disease and health [ 11 ,  12 ]. 
Therefore, one of the most powerful strategies for deciphering gene-environment 
interactions and their role in individual variability, disease etiology, and nutritional 
outcomes lies in the ability to combine data from different omics technologies, 
establishing the way for systems biology approaches [ 13 ,  14 ]. In this, metabonom-
ics is able to generate multivariate information on a wide range of molecules and 
provide the ability to measure subtle changes in biological processes as a result of 
different nutritional effects [ 15 – 17 ]. Metabolic profi ling of biological fl uids by 
nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS) 
ensures a simultaneous analysis of a wide range of metabolites that are the end-
points of molecular regulatory processes, diet, and gut microbiota metabolism and 
infl uenced by other environmental factors (Fig.  1.1 ). Metabonomics therefore 
enables monitoring metabolite concentrations and dynamics in cells, tissues, and 
multi-compartmental biological systems [ 18 – 21 ]. By opening a direct biochemical 
window into the metabolome, metabonomics is uniquely suited to develop new gen-
erations of biomarkers that are capable of providing a better understanding of com-
plex metabolic phenomena as well as assessing intra- and interindividual differences. 
This feature makes metabonomics very effi cient for the generation of biomarker 
patterns for the comprehensive characterization of metabolic health, the prognostics 
and the diagnostics of diseases, and the generation of new insights in the under-
standing of the interactions of diet and metabolism and/or medical conditions. 
Therefore, the identifi cation of specifi c metabolic fi ngerprints vows strong poten-
tials for nutraceutical and therapeutical surveillance.

   To date, numerous successful applications of metabonomics are reported in tox-
icity screening, drug metabolism, and functional genomics, a major part of them 
involving animal models rather than human subjects due to the greater control of 
conditions to reduce extrinsic variability [ 22 – 27 ]. Metabonomics’ introduction in 
the fi eld of nutrition research, i.e., nutritional metabonomics, has already delivered 
interesting insights for the understanding of metabolic responses of human or ani-
mals in response to dietary interventions and for the defi nition of metabolic pheno-
types [ 5 ,  28 – 31 ]. Defi ning the metabolic phenotype or “metabotype” of human 
populations will offer a great opportunity to evaluate the metabolic response and the 
degree of this response to specifi c dietary modulations at the individual level, simi-
larly to the “pharmaco-metabonomic” concept [ 32 ]. 

 One particular feature that such an approach enables is rediscovering and revisit-
ing gut functional ecology and its role in the etiology of many metabolic disorders. 
Metabonomics has indeed offered an unprecedentedly new way to capture the com-
plex metabolic interactions of the host with its commensal microbial partners pro-
viding a new way to defi ne individual and population phenotypes [ 18 ,  33 ,  34 ]. This 
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feature offers a new perspective to study the role of mammalian gut microbial 
 metabolic interactions in individual susceptibility to health and disease outcomes, 
which is of increasing importance in many health research fi elds ranging from meta-
bolic to gastrointestinal health and even brain health [ 35 – 42 ]. The mammalian gut 
microbial relationship is a key determinant by performing multiple digestive, 
immune, and metabolic functions [ 43 – 45 ]. The gastrointestinal tract of adult 
humans contains around 1.5 k of biomass composed by gut microbial symbiotic and 
commensal organisms that are in intimate communication with the host, which is 
the result of a long period of coadaptation between the host genotype and the gut 
microbiome [ 46 ]. The gut microbiota provides to the host specifi c capacities rang-
ing from dietary energy recovery from nutrients, generating digestible carbohy-
drates and short-chain fatty acids (SCFAs) from otherwise nondigestible fi bers, 
amino acids, and vitamins to protect against infectious diseases [ 47 – 50 ]. Gut 
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and gut microbiota interactions. The relationship between host and gut microbiota, with the meta-
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of controls over multiple host cell metabolic functions       
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 microbial activities were shown to be extremely specifi c, as exemplifi ed via its 
essential role in the development and maintenance of the mucosal innate and adap-
tive immune system [ 51 ]. In parallel, there is increasing awareness that many health 
disorders involve a signifi cant perturbation of immune and energy metabolism 
which are intrinsically linked to the gut functional ecology [ 45 ,  52 ,  53 ]. The consor-
tium of symbiotic gut microorganisms can be viewed as a metabolically adaptable, 
rapidly renewable, and metabolically fl exible ecosystem varying in addition with 
the host’s age, diet, and health status. Consequently, the microbiome is a nutritional 
target today and might also become the foundation of future drug targeting and 
interventions [ 54 ]. 

 Undoubtedly, the interplay between gut microbiome and host and its modulation 
by nutrition will benefi t from the integration of information on a system’s biology- 
wide approach. Integration of gene sequence of the microbiome and metabolomics 
is currently envisioned to pave the way towards a better molecular understanding of 
the complex mammalian superorganism, which is a prerequisite for optimizing 
therapeutic strategies to manipulate the gut microbiota to combat disease and 
improve health. The fi eld of endeavor is expanding rapidly, but we believe that now 
is a good time to review the achievements in the area of metabonomics and gut 
microbiota research. Therefore, this book will aim at providing state-of-the-art 
information on the key fi ndings and methodologies and point future directions 
towards understanding how to benefi cially modulate our gut functional ecology for 
health and nutritional benefi ts.  

1.2     Metabonomics-Based Systems Approaches: 
Lessons Learnt and Highlights 

 Over the last three decades, the majority of metabonomic-based investigations in 
human populations have applied metabonomic analysis of biofl uids to screen and 
diagnose certain diseases and monitor physiological changes caused by toxic insults 
[ 23 – 25 ,  32 ,  55 – 58 ]. Metabonomics is being widely employed in the area of food 
research to investigate the mutual link among the fi elds of metabonomic and nutri-
tion research [ 5 ,  31 ]. Systems biology approaches employing systemic and com-
partmental metabonomics are therefore applied to assess the molecular processes 
refl ecting metabolic adaptation to disease etiology, development, or management 
with drugs. One key feature of such an approach lies in its ability to capture the 
individual status prior to intervention which encapsulates both intrinsic and extrin-
sic determinants of the individual. Increasingly, results from molecular biology and 
microbiology demonstrate the key role of the gut microbiota metabolic interface to 
the overall mammalian host’s health status. There is therefore raising interest in 
nutrition and disease research to characterize the molecular foundations of the gut 
microbial mammalian cross talk at both physiological and biochemical pathway 
levels. Tackling these challenges can be achieved through systems biology 
approaches, such as metabonomics, to underpin the highly complex metabolic 
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exchanges between diverse biological compartments, including organs, systemic 
biofl uids, and microbial symbionts. To explore how the changes in environmental 
conditions and lifestyle infl uence human physiology, a large-scale metabonomic 
study was conducted to investigate metabolic phenotype variation across and within 
four human population groups. Holmes et al. used metabonomics in the context of 
a large-scale epidemiological study to identify metabolic signatures across and 
within selected human populations in relation to geography, diet-related major risk 
factors, and cardiovascular diseases [ 59 ]. In this study, urinary metabolite excretion 
patterns differ between East Asian and Western populations, Japanese individuals 
living in Japan or in the USA, and Chinese participants living in the northern and 
southern parts of China. For example, urinary excretion of formate, a mammalian 
gut microbial co-metabolite, was shown for the fi rst time to be inversely correlated 
with blood pressure. 

 Overall, the increasing rate of metabolic syndrome is a worldwide challenge for 
both health and nutritional research [ 60 ,  61 ]. By 2015, the world health organization 
(WHO) projections predict 2.3 billion overweight adults and more than 700 million 
obesity cases [ 62 ]. This overweight and obesity pandemic continues to rise particu-
larly among children [ 63 ,  64 ]. This rapid pandemic, which cannot be explained on 
the sole basis of genetic heritability and susceptibility, has raised awareness on the 
critical role of changes in dietary habits and lifestyle in the metabolic etiology of the 
diseases. It is nowadays well admitted that a main obesity determinant is the energy 
imbalance between calorie intakes and expenditures which can be ascribed to a 
global dietary shift towards high energy density foods and sedentary behaviors. 
Existing therapeutic strategies to obesity lies in changing dietary habits and lifestyle 
or pharmacotherapies, yet, with only marginally benefi cial effects for morbidly 
obese patients. Nowadays, much interest is therefore given for a tailor-made weight 
management program and more recently to body composition rather than BMI- 
driven approaches. Body fat distribution, and visceral fat in particular, was demon-
strated as a key determinant of increased risk of cardiovascular disease [ 65 – 67 ], 
diabetes [ 68 ,  69 ], hypertension [ 70 ], nonalcoholic fatty liver disease [ 71 ], and a 
higher risk of mortality [ 72 ]. Over the last decades, genetic and environmental pro-
moters for obesity-related metabolic disorders were investigated, including genes 
and transcription factors associated with fat storage and obesity [ 73 ,  74 ], genetic 
inheritability [ 75 ], or even gut microbiota infl uence [ 76 ]. Nevertheless, the gener-
ated insights face the challenges of explaining why similar obesogenic and diabeto-
genic conditions do not necessarily lead to a universal response to insulin and 
adiposity-associated cardiometabolic risks [ 77 ,  78 ]. Individuals with normal weight 
(body mass index, BMI <25) are increasingly shown to also express cardiometa-
bolic abnormalities [ 77 ]. Increasing evidence pinpoints the key role of region- 
specifi c body composition and metabolism underpinning individual susceptibility 
to metabolic disease risks. In this search for expanding our knowledge on the 
 etiology of metabolic disorders, systems biology models may lead to new working 
hypotheses underlying one’s predisposition to develop specifi c disorders. For 
instance, in an elegant series of studies integrating metabolic, endocrine, infl amma-
tory, and physiologic differences between obese and lean subjects, a branched-chain 
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amino acid (BCAA)-related metabolic signature was highlighted as a robust 
 metabolic readout of insulin resistance (IR) [ 79 ], even present under subclinical 
conditions [ 80 ]. The catabolism of BCAAs was tightly intertwined with the IR lev-
els, while greater levels of BCAAs were detected in the obese and IR phenotype 
[ 81 – 83 ]. Further studies confi rmed the predictive values of these markers for the 
development of diabetes in prospective human studies [ 84 ,  85 ]. Five branched-chain 
and aromatic amino acids were indeed associated with IR, namely, isoleucine, leu-
cine, valine, tyrosine, and phenylalanine, and a combination of three amino acids 
(isoleucine, phenylalanine, tyrosine) could predict future diabetes (>5-fold higher 
risk for individuals in the top quartile) [ 85 ]. However, supplementation of BCAAs 
in a diet- induced obesity rat model did not result in any improvement of the meta-
bolic status and IR and only led to reduced food intake and weight gain. Together 
these key fi ndings demonstrate a critical role of BCAA metabolism in the early 
onset of IR and diabetes type 2 developments, but the understanding of the biologi-
cal specifi cities in certain organ still remains to be understood in order to better 
decipher how the modulation of BCAA and amino acid metabolism could help dis-
ease management. Recent report on obese Japanese subjects further demonstrated a 
physiological inference between IR; plasma levels of alanine, glycine, glutamate, 
tryptophan, tyrosine, and BCAA; and visceral fat metabolism [ 86 ]. Complementary 
fi ndings further described a complex relationship between dyslipidemia and IR 
development [ 84 ], while there is growing interest towards understanding the speci-
fi cities of fatty liver and visceral adiposity in the development of metabolic disor-
ders. For instance, a complex remodeling of triglycerides [ 84 ] and phospholipids 
[ 87 ] species were highlighted in relation to the distribution of visceral and subcuta-
neous fat within the body. These observations may result from a multifactorial ori-
gin, including dietary factors, gut functional ecology, intestinal absorption, as well 
as platelet-activating factor metabolic pathways [ 88 ,  89 ], which are modulated by 
obesity and insulin resistance [ 90 ,  91 ]. Another physiological peculiarity of the 
metabolic syndrome encompasses nonalcoholic fatty liver disease, ranging from 
steatosis to nonalcoholic steatohepatitis [ 92 ,  93 ]. For instance, using a parallel 
 animal model/human design, biochemical perturbations linked to liver dysfunction 
through increased concentrations in bile acids and eicosanoids were highlighted. 
Such fi ndings corroborate metabolic steatosis markers in liver tissues, including 
altered levels of bile acids, glutathione, and lipids. All together, these metabolic 
fi ndings provided further insight into specifi c metabolic contribution of liver 
 dysfunction in an overall metabolic syndrome context, as per specifi c cholesterol, 
lipid, and oxidative stress readouts. More recently, metabonomics was successfully 
employed to demonstrate a relationship between gut microbial metabolism of 
dietary phosphatidylcholine and cardiovascular pathogenesis in humans [ 94 ]. 

 Over the last two decades, gastrointestinal surgery has been revealed as a poten-
tial “holy grail” solution to treat diabetes in several obese populations, and its appli-
cations is envisioned to be increasingly applied worldwide [ 95 ]. Effective weight 
loss was achieved in morbidly obese patients after undergoing bariatric surgery. 
A substantial majority of patients with diabetes, hyperlipidemia, and hypertension 
generally experience complete resolution or improvement [ 95 ]. However, major 
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gaps still obscure proper understanding on the mechanisms at play for improving 
diabetes. In the meantime, clinicians and patients are also facing the challenge of 
understanding why a signifi cant percentage of the subjects do not respond post- 
surgery and reacquire insulin-dependent disorders and how to tackle all the subse-
quent adverse events, including micronutrient defi ciencies. Metabolic insights are 
envisioned to help generate reference data that will help further the understanding 
of the underlying biological deregulations, for instance, through better monitoring 
of the metabolic and nutritional requirements of patients who underwent various 
interventions (e.g., gastric banding, gastric bypass, gastroplasty, biliopancreatic 
diversion, or duodenal switch). Recent fi ndings in animal models reported how uri-
nary phenotyping may indicate weight loss-independent metabolic effects of Roux-
en- Y gastric bypass, which sets a fi rst step towards promising novel insights for 
human applications [ 96 ]. 

 Furthermore, the gastrointestinal tract (GIT) is one of the most essential inter-
faces of mammalian organisms interacting with nutrients, exogenous compounds, 
and gut microbiota, and its condition is infl uenced by the complex interplay between 
these environmental factors and host genetic elements. Along the GIT, the gut 
microbiota is a key determinant of the gut functional ecology and regulatory 
 processes involved in the absorption, digestion, metabolism, and excretion of dietary 
nutrients as well as barrier integrity, motility, and mucosal immunity [ 35 ,  97 ]. The 
evolution of nutrition, sanitary, and medical care conditions has led to rediscovering 
host-gut microbial metabolic interactions in health and disease [ 98 ]. Gut microbial 
activities can be extremely complex, such as in the etiology and development of 
several chronic infl ammatory disorders, including infl ammatory bowel disease 
(IBD) or irritable bowel syndrome (IBS) [ 99 ,  100 ]. Since    normal aging is associated 
with a number of signifi cant changes in GIT function and with the development and 
progression of chronic disease, such insights will be key for tailoring personal nutri-
tional intervention and monitoring patient response on an individual basis [ 101 ]. 
Advancing knowledge regarding the mechanisms of IBD has led, for instance, to the 
development of different therapeutic solutions based on surgery [ 102 ], cannabi-
noids [ 103 ], or immunosuppression [ 104 ]. Although prognostic and monitoring 
tools are currently lacking, the use of metabolic readouts in combination with state-
of- the-art clinical and medical readouts is to be a valuable tool to differentiate and 
follow-up disease evolution and respond to disease-modifying interventions. 
This is, for instance, exemplifi ed through the discovery of metabolic indicators of 
different IBD determinants, including mucosal healing, gut permeability, absorp-
tion, digestion, or infl ammatory states. As an example, Winterkamp et al. reported 
previously how N-methylhistamine, a key metabolite in mast cell metabolism 
involved in the pathogenesis of IBD, could be used as an indicator of disease activ-
ity in patients [ 105 ]. In this study, the urinary excretion of N-methylhistamine was 
associated with elevated histamine production and metabolism in IBD and could be 
used as a reliable diagnostic tool to monitor clinical and endoscopic disease activity 
in IBD. Additional animal studies may further substantiate proofs of concept on the 
feasibility to identify blood-related metabolic indicators of early onsets of chronic 
infl ammatory development for patient monitoring [ 106 ]. Finally, noninvasive stool 
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analysis was shown to be very promising for monitoring the remodeling of the gut 
functional ecology, concomitant to malabsorption and element of protein losing 
enteropathy [ 107 ,  108 ]. Other noninvasive approaches to monitor gut permeability 
functions may also be promising prospects for future translation to patient monitor-
ing [ 109 ]. 

 It can be forecasted that such integrative systems biology approaches would help 
to delineate different behavioral and response phenotypes, with which to personal-
ize the disease and nutritional management programs. For instance, benefi cial 
effects of exercise in patients with type 1 diabetes were assessed using such a meta-
bonomic approach [ 110 ], a concept that can be extended to a larger range of indi-
viduals under different age, nutritional, and health conditions. Nevertheless, the 
translation of this unprecedented source of metabolic knowledge which is now at 
hand into actionable clinical practices for healthcare requires addressing properly 
the dynamics of physiological and biological processes when defi ning metabolic 
phenotypes. This implies the development of analytical strategies based on the mea-
surement of metabolites to assess the effects of nutrition at both the organ-specifi c 
compartment and system levels [ 25 ,  26 ,  111 ]. Therefore, the understanding of regu-
latory metabolic processes of a complex living organism at the system level involves 
the assessment of spatiotemporal interorgan metabolic cross talks through the 
 analysis of biofl uids. Recently, Montoliu et al. applied unsupervised chemometric 
methods for integrating  1 H NMR metabolic profi les from mouse plasma, liver, pan-
creas, adrenal gland, and kidney cortex matrices in order to infer inter-compartment 
functional links [ 112 ]. The authors showed that integration of metabolic profi les 
using advanced mathematical modeling approaches provided an overview of func-
tional relationships across matrices and enabled the characterization of compartment- 
specifi c metabolite signatures, the spectrotypes. In particular, the methodology 
enables the modeling of biochemical signatures common to different biological 
matrices, which may highlight specifi c metabolic processes or cross talks shared by 
different organs or specifi c to a given biological tissue or biofl uid. In parallel, devel-
opments on computational modeling have established a global systems view of 
human metabolism. A global genome- and bibliome-wide reconstruction of the 
human metabolism was built using 3,311 reactions [ 113 ]. Metabolic activities at the 
tissue level were predicted by a constraint-based computational model, from inte-
gration a genome-scale model with tissue-specifi c gene and protein data. Results 
were obtained for ten human tissues (the brain, heart, kidney, ling, pancreas, pros-
tate, spleen, thymus, skeletal muscle, and liver) [ 114 ]. A genome-scale stoichiomet-
ric model of hepatic metabolism was obtained by combining literature-based 
knowledge, transcriptomic, proteomic, metabolomic, and phenotypic data [ 115 ]. 
Likewise, modeling of the gut ecosystem could be applied as a combinatory analy-
sis of individual genome-scale metabolic models of gut bacteria, taking into account 
their interactions [ 116 ]. System-wide computational approaches can be then useful 
in nutritional applications to test hypothesis in silico on whole systems, in order to 
study potential effects of diet or modulation of metabolic diseases. Such a combina-
torial approach could provide new research avenues to assess the role of gut micro-
biota and nutritional modulation of bacterial metabolic activities on host metabolism. 
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In the meantime, it is expected that analytical technologic developments will enable 
sustainable deployment of such tests into clinical routine setups thanks to improved 
automation, miniaturization, time to result, and cost per analysis. 

 The assessment of the inherent interindividual variability  especially as regards 
variable environmental conditions and genetic background will have to be properly 
considered through longitudinal studies of a large cohort of subjects. The existence 
of unique individual metabolic phenotypes has been hypothesized, but the experi-
mental evidence has been only recently collected [ 117 ,  118 ]. This was exemplifi ed 
by Bertini et al. through the analysis of individual phenotypes over the timescale of 
years, which shows that the metabolic phenotypes are largely invariant. Such reports 
also support the idea that the individual metabolic phenotype can also be considered 
a metagenomic entity that is strongly affected by both gut microbiome and host 
metabolic phenotype, the latter defi ned by both genetic and environmental contribu-
tions [ 117 ,  118 ]. Longitudinal metabolic profi ling (e.g., generating individual meta-
bolic trajectories) and metagenomics are therefore foreseen as phenotypic variables 
to stratify genetic backgrounds, offering an alternative to the averaging of genetic 
variability within study groups defi ned using clinical criteria currently available. 
One can foresee that such phenotypic-determined groups will aid in exploring the 
underlined causes of inherent individual response to clinical therapeutic and nutri-
tion schemes (e.g., responders and nonresponders). This is also a feature of key 
importance in the early life period for gastrointestinal and immune system matura-
tions and understanding metabolic and nutritional requirements for optimal growth 
and development and their inferred effects with later-life diseases. The applications 
of metabonomics have been so far very promising in the fi eld of neonatology, 
including intrauterine growth restriction, perinatal transition, asphyxia, brain injury 
and hypothermia, metabolic diseases, perinatal programming, as well as inborn 
error metabolism screening [ 3 ,  4 ,  119 ]. Such data will serve as reference to provide 
understanding at the cellular and molecular level of the relationships between early 
life nutritional status and the later disease risk predisposition and formulate future 
nutritional concepts.  

1.3     Gut Microbiota Metabolism in Nutrition, 
Health, and Disease 

 Recently   , an exhaustive gene catalogue containing virtually all of the prevalent gut 
microbial genes in large human cohort and reported to which extent many bacterial 
species are shared by different individuals [ 120 ]. Such an approach could be used 
for global characterization of the genetic potential of ecologically complex environ-
ments [ 120 ] but also to help understand how gut microbiota specifi cities could be 
exploited to develop new therapeutic and nutritional strategies. In particular, demo-
graphics have made aging and age-related chronic disease an enormous and grow-
ing biomedical and societal challenge [ 38 ]. The immune system undergoes profound 
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and multifaceted changes with aging. In particular, the homeostatic balance between 
the proinfl ammatory and the antiinfl ammatory arms of the immune system is 
skewed, resulting in a state of persistent low-grade systemic infl ammation. In this 
the origins and drivers of the “infl ammaging” process are still poorly understood 
[ 121 ], for instance, but intestinal dysbiosis appears a cornerstone in growth, devel-
opment, and aging. 

 The gastrointestinal tract is a complex ecosystem host to a diverse and highly 
evolved microbial community composed of hundreds of different microbial species. 
The human body contains circa 10 trillion parenchymal cells, but the gut contains 
approximately 100 trillion of microbial organisms, which vary in community 
 composition through life according to lifestyle and nutrition [ 48 ,  122 – 124 ]. On 
average, each individual harbors a unique combination of about 500–1,000 different 
bacterial species [ 48 ,  122 – 124 ]. In mammals, microbial communities differ in com-
position from the stomach to the colon, where the competition for space and nutri-
ents in the large bowel contributes to the microbial composition of this internal 
ecosystem. The main human intestinal bacteria coexist in a dynamic ecological 
equilibrium together with various yeasts and other microorganisms [ 125 ]. The 
members of the gut microbiota consortium are diverse and impart to the host-spe-
cifi c capacities ranging from dietary energy recovery from nutrient load, generating 
digestible carbohydrates, short-chain fatty acids, amino acids, and vitamins, to pro-
tection against infectious diseases [ 47 – 50 ]. Activities of the diverse gut microbiota 
can be highly specifi c, and it has been reported that the establishment of 
 Bifi dobacteria  is important for the development of the immune system and manage-
ment of gut functions [ 126 – 128 ]. As the microbiome    interacts strongly with the host 
to determine the metabolic phenotype [ 129 ,  130 ], and the metabolic phenotype 
infl uences the outcomes of drug interventions [ 18 ,  27 ], understanding these interac-
tions as part of personalized healthcare solutions is clearly an important role [ 26 ]. 
Advances in metabonomic applications are providing novel insights into the molec-
ular foundations of these host-microbial relationships and their infl uence onto 
health and disease risks [ 131 ,  132 ]. In particular, a series of investigations in humans 
[ 133 ], rats [ 134 ], and gnotobiotic mice [ 131 ,  135 ] have provided a set of reference 
metabolic profi les of gut intestinal biopsies that can be used to assess not only the 
compartment structure and function but also the gut microbial impact at the tissue 
level [ 135 ]. These studies therefore indicated that the type of gut microbiota may be 
a key factor in the determination of the intestinal homeostasis, osmo-protection, 
motility, and calorie recovery from the diet. For instance, the ileum is regarded as 
the major site for absorption of luminal bile acids and emulsifi ed dietary lipids, and 
the report of higher concentrations of glycerophospholipids, glutathione, taurine, 
and betaine in this tissue was consistent with its role in lipid and bile acid metabo-
lism. The jejunum of the mice harboring a nonadapted microbiota showed meta-
bolic similarities to the ileal profi le, marked by higher levels of glutathione and 
lower concentrations of its precursors in the γ-glutamyl cycle when compared to 
conventional animals. Such an observation illustrates the essential role of the gut 
microbiota to infl uence the surrounding tissue metabolic pathways, ultimately to 
shape a host environment that fosters their implantation and persistence. The 
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 investigations  illustrated how microbial-dependent variations along the upper 
 intestine, an element often underestimated due to low bacterial populations, may 
affect utilization effi ciency of dietary proteins and amino acids and their subsequent 
availability to extra- intestinal tissues. Moreover, some reference data were gener-
ated to investigate changes in gut functionality, such as gut permeability, using 
metabolic profi ling of biofl uids [ 109 ,  136 ]. Since growth and aging are associated 
with a number of signifi cant changes in GI function, which may impact the daily 
energy intake [ 101 ], such insights will be key for tailoring personal nutritional inter-
vention and monitoring patient response on an individual basis.  

1.4     System Biology Approaches: Applications with Specifi c 
Reference to Gut Microbial Metabolic Interactions 

 Recent fi ndings are describing the deep and fundamental role of gut microbiota in 
both positive and negative triggers of specifi c metabolic states of individuals and 
populations [ 37 ,  98 ]. In this the generation of novel and more specifi c metabolic 
readouts will help the deciphering of gut microbial infl uence on human health and 
nutritional status [ 31 ,  36 ,  119 ]. In particular, both system-wide and organ-specifi c 
metabolism may have components driven by gut microbial activities [ 137 ,  138 ], 
which suggests that the dynamics of the gut microbiome could help maintain or 
restore host metabolic homeostasis in disease and early onsets of metabolic 
deregulations. 

 Today, direct metabolic insights into gut microbiota metabolism remain limited 
due to the inaccessibility of the intestinal habitat and by the sheer complexity of the 
gut microbiota [ 139 ]. The measurement of the gut microbial metabolism is gener-
ally confi ned to fecal samples, which is generally limited due to the elevated colonic 
absorption of bacterial metabolites [ 36 ,  140 ]. However, such measurable outcomes 
provide some essential insights – yet limited – into a small range of microbial activi-
ties within the colon. In particular, fecal analysis provides essential information on 
the impact of microbial activities on specifi c biological processes, including the 
metabolism of bile acids, SCFAs, or heterocyclic amines [ 141 – 143 ]. The metabolic 
composition of fecal extracts provides therefore a window for elucidating the com-
plex metabolic interplay between mammals and their intestinal ecosystems, and 
these metabolic profi les can yield information on a range of gut diseases. Saric et al. 
employed  1 H NMR-based metabolic analysis of fecal water extracts to assess inher-
ent similarities and dissimilarities across different mammals, namely, humans, 
mice, and rats [ 144 ]. This study provided an important milestone as per character-
ization of many fecal metabolites common to the three species, such as SCFAs and 
branched-chain amino acids. The authors also described how not only the presence 
but also the proportion of the different biochemical compounds resulted in a species- 
specifi c profi le, encapsulating interindividual variations (i.e., the natural genetic and 
environmental diversity in human populations). Furthermore, NMR spectroscopy, 
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using high-resolution magic angle spinning NMR (HR-MAS) [ 145 ], offers a unique 
prospect by the holistic and simultaneous profi le of hundreds of metabolites in 
intact tissue biopsies. Therefore, HR-MAS presents the unique feature of ensuring 
the integrity and organizational compartmentation of the biological samples. 
Advanced data modeling strategies enabled the visualization of metabolic similari-
ties and differences along the gut tract that were induced by different gut microbial 
ecologies, namely, mice with a conventional mouse microbiota or inoculated with a 
simplifi ed model of human-derived microbiota [ 131 ,  132 ]. These studies indicated 
that the type of gut microbiota may be a key factor in the determination of intestinal 
homeostasis, osmo-protection, motility, and calorie recovery from the diet. Indeed, 
the symbiotic gut microbiome exerts a strong infl uence on the metabolic phenotype 
of the mammalian host and participates in extensive microbial-mammalian co- 
metabolism [ 26 ,  112 ,  146 ,  147 ]. The integrated metabolism of the bile acid pools in 
mammals is a good example of the complex transgenomic biochemical interactions 
between host and microbiome symbionts [ 33 ], which are crucial for the absorption 
of dietary fats and lipid-soluble vitamins in the intestine [ 148 ]. 

 Additional applications of top-down systems biology approaches revealed the 
depth and width of the long-range effects of gut microbiota modulation in complex 
organisms, resulting in modulation of host lipid, carbohydrate, and amino acid 
metabolism at a panorganismal scale [ 44 ,  137 ,  149 – 151 ]. Wikoff et al. provided 
additional evidence that the specifi c metabolic activities of a single gut bacterial 
species can provide the host with new biochemical compounds in suffi cient amount 
to be detected in the general blood circulation [ 152 ]. Martin et al. exemplifi ed how 
the gut microbial modulation of the gastrointestinal system [ 131 ] and extensive 
microbial-mammalian co-metabolism may fi ne-tune host metabolic processes and 
may induce metabolic deregulations [ 33 ]. In this case, gut bacteria exert modulation 
over the host metabolism via reprocessing of signaling molecules, i.e., bile acids. 
As such, bile acids may be an example of transgenomic mechanism of quorum sens-
ing [ 44 ] whereby microbial cells communicate with each other and disperse their 
metabolic functions, thus behaving like a multicellular organism [ 33 ]. Martin et al. 
evaluated the effects of the induction of a nonadapted microbiota in a murine model 
(human-derived microbiota) on the host metabolism by comparison with animals 
colonized with a natural gut microbiota (conventional), the result of a long period of 
coevolution [ 33 ]. The simplifi ed human microbiota was not adapted to mice, which 
modifi ed the physiology of the murine host towards a pre-pathologic state. While 
conventionalized mice evolve to normal gut fl ora from an ecological point of view, 
the simplifi ed human microbiota maintained the gut tract and the liver out of a sus-
tainable mouse ecological equilibrium, as denoted by increased lipid accumulation 
in the liver and lower concentrations of glutathione, which together are associated 
with a higher lipoperoxidation risk. In another study, Claus et al. described the 
determinant role of the gut microbiota on the metabolism of bile acids through the 
enterohepatic cycle, as noted by higher levels of phospholipids in the liver of germ-
free mice and higher levels of bile acids in gut tissues [ 153 ]. The presence of the gut 
microbiota was shown as a key regulator of the bile acids metabolism and some 
CYP family enzymes. 
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 In addition to the building awareness that specifi c environmental exposure 
(e.g., stress perception) may induce specifi c and chronic gut functional activities 
[ 109 ,  154 ], increasing evidence tends to show that long-term dietary habits may also 
have a signifi cant impact in determining chronically the gut functional ecology, 
which may have a long-term health consequence [ 24 ,  155 ,  156 ]. Therefore, the gut 
microbiota functionality remains to be further explored and understood, in order to 
assess how its nutritional modulation at individual and population level may be used 
for future nutritional management solutions. It is therefore crucial to decipher the 
foundations of the reciprocal metabolic infl uences between host and microbiota to 
better defi ne the role of gut microbes in determining gastrointestinal functional ecol-
ogy. The gut microbiota does not only determine absorption, digestion, metabolism, 
and excretion of dietary nutrients but may also determine the metabolic fate of both 
ingested nutrients and host cell molecular machinery, which nowadays become fun-
damental for developing individual disease and nutritional management solutions. 

 Recent evidence has shown that the infl uence of the gut microorganisms might 
be more important in the progression of human diseases than was previously sus-
pected [ 157 ] and is of main concern in the etiology and/or maintenance of gut dys-
functions, such as IBS [ 158 ] or IBD [ 159 ]. Metabonomics was successfully applied 
to characterize the metabolic response to the induction of intestinal ischemia reper-
fusion injury by portal vein outfl ow occlusion in rats [ 160 ]. This combinatorial 
approach provides novel insights into metabolic signatures associated with oxida-
tive stress, as noted by increased glycolysis and fatty acid and amino acid accumula-
tion. Metabonomics was proven to be a valuable diagnostic tool to differentiate 
active and quiescent ulcerative colitis, as per the analysis of intact gut biopsies and 
colonocytes [ 161 ]. This approach was also successfully employed to provide 
insights into the molecular processes associated with the development of ulcerative 
colitis, using blood plasma [ 162 ] or urine [ 163 ] analysis, the latter revealing a pos-
sible contribution of gut microbiota via methylamine metabolism. Bertini et al. also 
demonstrated that combinatorial metabonomic analysis of blood sera and urine 
could help further the understanding of Celiac disease [ 164 ]. The authors high-
lighted major urinary changes in gut microbial co-metabolites phenylacetylglycine, 
indoxylsulfate, and meta-hydroxy-phenylpropionate, which may be associated with 
aberrant microbiota previously characterized in the small bowel of subjects suffer-
ing from Celiac disease [ 165 ]. 

 More recently, metabonomics was successfully employed to demonstrate a 
 relationship between gut microbial metabolism of dietary phosphatidylcholine and 
cardiovascular pathogenesis in humans [ 94 ]. Intestinal microbiota metabolism of 
choline and phosphatidylcholine produces trimethylamine (TMA), which is further 
metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). Wang 
et al. described how the circulating levels of choline, trimethylamine-N-oxide, and 
betaine were shown to predict the risk for cardiovascular events, which offer novel 
perspectives for therapeutical and nutraceutical approaches, as demonstrated by 
their follow-up [ 166 ,  167 ]. They further demonstrated how metabolism by intestinal 
microbiota of dietary l-carnitine, a trimethylamine abundant in red meat, also pro-
duces TMAO and accelerates atherosclerosis in mice. In humans they reported how 
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the presence of specifi c bacterial taxa in human feces was associated with both 
plasma TMAO concentration and dietary status. More interestingly, they described 
that high plasma TMAO levels combined with plasma l-carnitine levels in subjects 
undergoing cardiac evaluation predicted increased risks for both prevalent cardio-
vascular disease and incident major adverse cardiac events (myocardial infarction, 
stroke, or death) [ 166 ]. In parallel, signifi cant scientifi c efforts were put in identify-
ing specifi c disease risk genotypes. But it is only recently that the incorporation of 
metabonomics in genome-wide association studies has offered novel opportunities 
for exploring disease-related metabolic deregulations and interactions between 
environmental exposure, lifestyle, genetic predisposition, and actual metabolic 
 phenotype at individual and population scale [ 28 ]. Such an approach has recently 
described an association between urinary trimethylamine and plasma dimethyl-
amine – two gut microbial metabolites – and the pyridine nucleotide-disulfi de oxi-
doreductase gene PYROXD2 [ 168 ]. The present association is of importance and 
suggests how the conversion rate TMAO/TMA can be related with key hepatic 
functions that are under genetic determinant and may predispose individuals to spe-
cifi c disease risks. Such approaches offer novel avenues to screen individuals with 
specifi c predisposition and determine candidate metabolic targets to be used to 
develop tailor-made nutritional management program.  

1.5     Novel Directions and Perspectives 

 Metabonomics is increasingly becoming popular in clinical research due to its 
unique attractiveness to generate functional and system readouts of individuals, 
building the elementary steps for future personalized nutraceutical and therapeutical 
care. Yet, the clinical translation of this unprecedented source of metabolic knowl-
edge, which is now at hand of clinical practices, requires properly addressing the 
dynamics of physiological and biological adaptations throughout lifetime, includ-
ing the various intrinsic and extrinsic infl uential factors. In addition, the develop-
ment of systems biology approaches and the new generation of biomarker patterns 
will provide the opportunity to associate complex metabolic regulations with key 
mammalian and gut microbial biological processes. The link between nutrition, 
host-microbe interactions, and metabolism is so tightly interlinked in mammalian 
systems that it is still diffi cult to understand and unravel causality and molecular 
mechanisms of action. In this the lessons learnt and to be learnt from epidemiologi-
cal metabonomic studies, including twin cohorts, will help in delineating the 
 interaction of nutrients, gene expression, and metabolism from environmental pres-
sures which ultimately determine the physiological and the disease risk status of 
individuals. Furthermore, metabolic phenotypes will need to capture these dynamics 
at the molecular and system levels, requiring longitudinal sampling and proper 
assessment of inherent interindividual variability. Therefore, advances in linking 
metabolite data to known and validated clinically relevant indices will have to be 
seriously considered in addition to consolidate metabonomics and metabolic mark-
ers in  clinical translation/applications. 
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 The generalization of systems biology approaches will subsequently lead to the 
development of system mechanistic hypotheses that could be targeted with new 
nutritional and therapeutic personalized concepts. As displayed above, both system- 
wide (i.e., whole organism) and organ-specifi c changes in metabolic profi les may 
have components driven by gut microbial activities which are of relevance in nutri-
tion, health, and disease research as exemplifi ed hereafter in the book. In particular, 
high-resolution metabonomics data combined with high-resolution microbial pro-
fi ling are envisioned as a way forward to demonstrate direct and indirect functional 
relationships of gut microbiota metabolic activities on host cell metabolic pathways 
in key organs and biofl uids. But we are far from the complete elucidation of the 
molecular processes linking bacteria, metabolic enzymes, and metabolites with 
their corresponding biological functions. There are indeed several diverting issues 
to be taken into account, such as the fact that abundant concentrations of either pro-
teins or metabolites may actually be mediated by a low-abundance microbe. Because 
all studies so far have relied on fecal samples as a mirror of the whole gut microbi-
ome, these might not accommodate local functionalities, as environments between 
distal, transverse, and proximal colon are known to be divergent [ 169 ]. Undoubtedly, 
the interplay between gut microbiome and host and its impact in nutrition will ben-
efi t from the integration of information on a systems biology-wide approach. Gene 
sequencing of the microbiome, metaproteomics, and metabolomics are starting 
points to understand the complex mammalian superorganism. 

 Such future scientifi c developments are foreseen as a promising step forward to 
study the spatiotemporal changes in interorgan metabolic cross talks and quantify 
the metabolic contribution of the gut microbiota to host cell machinery and physi-
ological states. Moreover, such novel concepts have great potential for advancing 
our mechanistic knowledge of how different environmental triggers, including 
nutrition, can impact metabolic health of complex mammalian organisms.     
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    Chapter 2   
 Metabonomics in Clinical Practice 

             Sebastiano     Collino     ,     François-Pierre     Martin     , and        Sofi a     Moco    

    Abstract     Metabonomics is recognized as a powerful top-down system biology 
approach to understand genetic-environment-health paradigm paving new avenues 
to identify clinically relevant biomarkers. It is nowadays commonly used in clinical 
applications shedding new light on physiological regulatory processes of complex 
mammalian systems as regards disease etiology, diagnostic stratifi cation, and poten-
tially mechanism of action of therapeutic solutions. It therefore offers opportunities 
to associate complex metabolic regulations to the etiology of multifactorial diseases 
and metabolic dysfunctions, which may subsequently lead to mechanistic hypotheses 
and targets for new nutritional concepts. This review aims at describing recent 
applications of metabonomics in clinical fi elds with insight into diseases diagnostics/
monitoring and improvement of homeostasis metabolic regulation.  

  Keywords     Aging   •   Biomarkers   •   Cancer   •   Metabonomics   •   Lipidomics   •   Metabolic 
syndrome   •   Mental health  

2.1         Introduction 

 Nutritional research has shifted from the measurements of a few, but key, physiolog-
ical descriptors to a large-scale screening of molecular processes at different levels 
of biological organization, from gene to mRNA, to proteins and enzymes, and to 
metabolic pathways [ 1 ]. Integration of this biological information is a vital factor 
for nutritional research, as population and individual physiological features are not 
only refl ected in protein concentrations and gene expression but also in metabolite 

        S.   Collino      (*) •    F.-P.   Martin      
  Molecular Biomarkers ,  Nestlé Institute of Health Sciences , 
  EPFL Innovation Park, bâtiment H ,  1015   Lausanne ,  Switzerland   
 e-mail: sebastiano.collino@rd.nestle.com; Francois-Pierre.Martin@rd.nestle.com   

    S.   Moco      
  Natural Bioactives and Screening ,  Nestlé Institute of Health Sciences , 
  EPFL Innovation Park, bâtiment H ,  1015   Lausanne ,  Switzerland   
 e-mail: sofi a.moco@rd.nestle.com  

mailto:sebastiano.collino@rd.nestle.com
mailto:Francois-Pierre.Martin@rd.nestle.com
mailto:sofia.moco@rd.nestle.com


26

concentrations and their kinetic changes in cells, tissues, and organs. However, 
studies at individual and population scale are often a complex task because biologi-
cal processes are under the infl uence of numerous intrinsic and extrinsic factors 
such as environmental agents, drugs, diet, lifestyle, stress, and microbiome modula-
tions [ 2 ,  3 ]. 

 Recent revolutions in omics technologies are promising today substantial capa-
bility in achieving a global systems view of physiological and pathological pro-
cesses [ 4 ]. Their application is driving a rapid shift from the clinic style investigations 
to much more large population-based studies, aiming at enhancing our understand-
ing of the role of genetics, environmental factors, and their interactions on individ-
ual susceptibility to disease and health [ 5 ,  6 ]. Therefore, one of the most powerful 
strategies for deciphering gene-environment interactions and their role in individual 
variability, to pathology and nutritional outcome, lies in the ability to combine data 
from different omics technologies, establishing the way for system biology 
approaches [ 7 ,  8 ].  

2.2     State-of-the-Art Metabonomics and Lipidomics 
Technologies 

 Metabonomics is able to generate multivariate information on a wide range of 
molecules and provides the ability to measure subtle changes in biological pro-
cesses as a result of different nutritional effects [ 2 ,  9 ,  10 ]. Based on the study of 
metabolic profi les of biofl uids from a complex biological system, over the past 
decade, metabonomics appeared rapidly as a powerful technology to diagnose and 
identify biomarkers for a medical condition. Metabonomics measures and moni-
tors metabolite concentrations and dynamics in cells, tissues, and multi- 
compartmental biological systems, revealing not only the end products of enzyme 
expression and activity but as well the ultimate information contained in the genetic 
code [ 11 – 13 ]. Because specifi c physiological states, gene expression, and environ-
mental stressors can cause changes in the steady state of a biological system, moni-
toring the resulting metabolic variations provides a unique insight into intra- and 
extra-cellular regulatory processes involved in maintaining homeostasis. Therefore, 
the identifi cation of specifi c metabolic fi ngerprints vows strong potentials for 
nutriceutical and therapeutic surveillance. Nowadays, metabonomics applications 
have evolved towards deciphering the cellular and molecular processes in response 
to different individual dietary modulations, predicting health and disease out-
comes. By the global study of low molecular weight compounds (<1,500 Da) in 
biofl uids (plasma/serum and urine), complex biological matrixes, and tissues, it 
assures the characterization of individual metabolic phenotypes, or metabotypes. 
Metabonomics employs mainly two analytical techniques based on  1 H nuclear 
magnetic resonance (NMR) and mass spectrometry coupled to gas/high perfor-
mance liquid chromatography (GC-MS and LC-MS) with lately the addition 
of ultrahigh performance liquid chromatography systems coupled to mass 
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spectrometry (UPLC/MS) (Fig.  2.1 ). Both methods are then comprehensively used 
to generate multivariate datasets which are then employed, in coordination with 
advance statistical tools, to recover meaningful biological information from the 
complex metabolic profi les.

   NMR-based metabonomics provides effi cient high-throughput analysis of bio-
logical samples, making it a relatively cost-effective approach. NMR spectroscopy 
offers the unique prospect to holistically profi le hundreds of metabolites with no a 
priori selection. In proton NMR spectroscopy ( 1 H NMR), all covalently attached 
protons from mobile molecules within a very high dynamic range of concentrations, 
i.e., from millimolar to nanomolar range, are simultaneously scanned, thus provid-
ing a biochemical fi ngerprint of biological sample.  1 H NMR-based metabonomics 
is generally preferred to other nuclei-like carbon-13 due to highest sensitivity and 
the relative short experimental time needed to acquire metabolic profi les. However, 
resonances of metabolites may be highly overlapped within the proton resonance 
window. In such case, ultrahigh magnetic fi eld and/or two-dimensional (2D) NMR 
spectroscopy can be used to resolve overlapped resonances. 

 Urine and blood plasma are the most commonly used biofl uids for metabonomics 
studies due to their intrinsic richness in metabolic information and their relatively 
easy and noninvasive access. Detailed procedures to collect, store, and prepare bio-
fl uids or tissue samples for NMR analysis have been provided as guidelines for 
metabonomics [ 14 ]. Urine, serum, and plasma usually require minimal pretreatment 
such as the addition of sodium azide to control bacterial growth, phosphate buffer to 
control pH-induced shift in resonance, and deuterated water to lock the magnetic fi eld, 
TSP (3-(trimethylsilyl)-propionate, sodium salt), and DSS (2,2-dimethyl-2- silapentane-
5-sulfonate, sodium salt) for chemical shift calibration. Recent introduction of 

  Fig. 2.1    Metabonomics as a tool to probe human metabolism and health. By using NMR- and 
MS-based metabonomics, biomarkers of disease, nutrition, and general development can be 
assessed in a qualitative and quantitative way       
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cryoprobes has strongly improved NMR sensitivity to generally a fourfold factor 
relatively to conventional room temperature probes [ 15 ]. Furthermore, NMR spec-
troscopy, using high-resolution magic angle spinning NMR (HR-MAS) [ 16 ], offers 
a unique prospect to generate metabolic profi les from intact tissues, ensuring thus 
the biological integrity of the investigated sample. One of the key features of NMR 
remains defi nitely the robustness as showed, i.e., reproducibility >98 % [ 17 ]. 

 Along with NMR, LC-MS is probably the most widely used technique in meta-
bonomics. Compared to NMR, LC-MS allows the detection of a wide range of 
metabolites, reaching higher sensitivity levels. Essentially two different 
approaches have been developed: the detection of all instrumentally possible 
metabolites and detection of specifi c classes of metabolites, named targeted and 
untargeted methods, respectively. The detection of metabolites by LC-MS is 
fi rstly obtained with optimization of the sample preparation, chromatographic 
separation, and ionization. The sample preparation in metabonomics is perhaps 
the most underestimated step and is crucial as the fi rst selection of the aimed 
metabolite classes is according to their chemical properties. Typically samples are 
quenched and then extracted, often by liquid extraction with organic solvents or 
solid-phase extraction, so that eventual enzymatic activity is stopped and the con-
servation of the metabolite pool is insured [ 18 ,  19 ]. The integrity and recovery of 
the metabonome is an important parameter, as well as repeatability, so that com-
parison between samples is made possible in a robust way. Sample preparation 
strategies have been described for biofl uids [ 19 ,  20 ]), tissues [ 21 ], and cells [ 22 , 
 23 ]. Similarly to GC-MS, the use of internal and external standards, such as non-
endogenous compounds or isotopically labeled species, is recommended when-
ever possible for better compensation of liabilities during sample preparation [ 24 , 
 25 ]. The ionization of analytes prior to MS analysis is a prerequisite for the detec-
tion of metabolites. Electrospray ionization (ESI) and atmospheric pressure 
chemical ionization (APCI), which are chemical ionization techniques, are the 
most used in LC-MS. The chemistry involved in ionization is complex and 
strongly depends on the characteristics of the solvents and additives (volatility, 
surface tension, viscosity, conductivity, ionic strength, dielectric constant, elec-
trolyte concentration, pH, and gas-phase ion-molecule reactions), analyte (acid 
dissociation constant, hydrophobicity, surface activity, ion salvation energy, pro-
ton affi nity), and operational parameters such as fl ow rate, temperature, and ESI 
voltage [ 26 ]. Nordström and co-workers [ 27 ] have applied a multiple ionization 
strategy, using ESI and APCI, in both positive and negative ionization modes, 
matrix-assisted laser desorption ionization (MALDI), and desorption ioniza-
tion on silicon (DIOS) for the analysis of human serum. The combination of 
ionization techniques maximizes the coverage of measured metabolite classes. 
The variety of hardwares in mass spectrometry offers a wide-range technical solu-
tion for metabonomics. Some of these include quadrupole (Q), time of fl ight 
(TOF), orbitrap, ion trap (IT), ion cyclotron resonance (ICR), and combinations 
(such as QQQ, QTOF, TOF-TOF, IT-orbitrap). Typically in targeted methods, 
QQQ-MS or QTrap-MS is used, allowing the optimization of parameters for each 
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selected ion pairs (typically molecular ion and abundant fragment) or transitions 
called selected reaction monitoring (SRM) or multiple reactions monitoring 
(MRM) can be used for quantitative purposes. IT allows the isolation of ions for 
fragmentation up to  n th time (with n being the number of collision events), while 
TOFs, ICRs, and orbitraps provide very high mass accuracy and resolution which 
can be useful for metabolite identifi cation purposes. Plasma has been analyzed by 
untargeted GC-TOF-MS [ 28 ] leading to the detection of 46 endogenous metabo-
lites. Using a 12T Fourier transform ICR-MS, about 570 distinct metabolite fea-
tures, represented by monoisotopic masses above signal-to-noise ratio 3 within 
the mass range m/z 90–570, were detected in murine plasma. 

 The central carbon metabolism, including glycolysis, pentose phosphate path-
way, tricarboxylic acid cycle (TCA cycle), and surrounding metabolic reactions, 
contains mostly polar compounds such as sugars, sugar phosphates, and organic and 
amino acids and has been covered by GC-MS after derivatization [ 28 ], ion pairing 
LC-MS [ 24 ], hydrophobic interaction LC-MS [ 29 ], and CE-MS [ 30 ]. 

 In addition, a comprehensive analysis of biological lipids can be performed 
using MS-based lipidomics. A number of analytical approaches can be deployed 
to access the lipid inventory of a given biological matrix [ 31 ]. Recent advances 
in LC-MS technologies make this fi eld a promising area of lipid biochemical 
research [ 32 ]. Although such approaches are reasonably well established for 
high-throughput analysis of the major lipid classes (phospholipids, sphingolip-
ids) [ 33 – 36 ], they still have to be fi ne-tuned for the quantifi cation of low abun-
dant signaling lipids such as sphingosine, sohingosine-1-phosphate, or 
lysophosphatidic acid [ 37 – 39 ]. Standardization of metabonomics practices has 
been proposed by the Chemical Analysis Working Group from the metabonomics 
standards initiative where a general consensus concerning the minimum report-
ing standards for metabonomics experiments has been described [ 40 ]. Such a 
position document sets the basis for better intra- and interlaboratory reproduc-
ibility. The comparison between LC-MS urinary profi les obtained in three differ-
ent labs has shown a reproducibility of over 0.95 (coeffi cient of determination) 
[ 41 ]. The compliance to quality controls, signal intensity checks, and post-anal-
ysis signal drift corrections is some of the solutions to warrant high-quality 
LC-MS datasets [ 42 ]. 

 Yet, one of the bottlenecks in metabonomics remains the identifi cation of metab-
olites in particular biological matrices. Traditionally, full identifi cation of molecules 
is a laborious procedure, including enrichment, isolation, purifi cation, and full char-
acterization by several analytical strategies, to reach unambiguous identifi cation. 
MS offers valuable pieces of information in the identifi cation of metabolites: molec-
ular mass and molecular fragmentation pattern, taken from MS and MS/MS frag-
mentation, respectively. In combination with LC, a relative polarity index can be 
obtained, according to the used stationary phase. Often, effi cient identifi cation relies 
with the use of a combination of analytic techniques such as NMR and MS and 
access to biochemical database and computational techniques (data preprocessing, 
statistical modeling, data mining) [ 43 – 49 ].  
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2.3     Metabonomics Flow Chart in Epidemiological Studies 

 Epidemiological studies aim to substantiate the causes, distribution, and control of 
health and diseases in populations. They integrate scientifi c information derived 
from complementary disciplines (e.g., microbiology, genetics) across a large-scale 
population to assess etiological hypotheses and provide the basis for developing and 
evaluating health management solutions [ 50 ]. Typically, epidemiological studies 
deal with a large number of subjects and observations, relying on statistics to estab-
lish validity levels and predict risk factors. Metabonomics has been recently used as 
an analytical tool in large epidemiological studies assessing several public health 
challenges, including cardiovascular disease [ 51 ], diabetes [ 52 ], schizophrenia [ 53 ], 
and aging [ 54 ]. On one hand, having access to a large number of samples is essential 
to validate health or disease trends, at a population level. On the other hand, the 
demand in organization, compliance to ethic procedures, bookkeeping, and stan-
dardized sampling procedures is imperative to carry out such a study. Therefore, 
this type of studies is undertaken under the control of dedicated study centers, where 
rigorous standardized procedures, under safety precautions, can be applied [ 52 ]. 
Epidemiological studies can produce thousands of samples and involve different 
centers, where different groups work as a consortium. In order to make sure all 
sample information is recorded, and traced, sample management becomes an impor-
tant part of the process, dealing with sample identifi cation, sample labeling, storage 
and access to analytical data, sample history, etc. Normally unique identifi ers should 
be given to each sample (e.g., sample barcodes), and all information should be 
stored in established databases [ 55 ]. 

 Preferably, samples are collected in dedicated centers under defi ned protocols 
and upon ethical approval. According to the type of sample to collect and analysis 
to follow, different procedures are applied [ 56 ]. Urine is obtained by noninvasive 
means which is an advantage, as subjects are more prone to participate in the study, 
and it allows the access to otherwise diffi cult/impossible studies. Typically, urine 
can be collected in random samples (any time of the day), timed samples (at a spe-
cifi c time in the day or at x hours after a specifi c intervention), and 24-h samples 
(pooling of urine during 24 h). The last allows compensating for large variability 
owed to short collection times. Obtaining blood plasma is more invasive, but remains 
largely applicable in the pediatric, child, and elderly fi elds, mainly through techno-
logical development requiring low sample volumes. For instance, successful analy-
ses can be conducted on blood serum, plasma, or even blood spot (collected using 
Gutri paper or capillaries in combination to fi nger prick). The analysis of stool 
samples is also widely generalized and provides information on digestive and gut 
microbial metabolism, but suffers of the individual acceptance in providing samples 
from children and adults. In the context of disease diagnostics requiring biopsies 
analyses, metabonomics is increasingly envisioned as a new way to investigate the 
physiological integrity of tissue and personalize healthcare. Under these conditions, 
the collection of tissue samples will be conducted according to best clinical practice 
and ensuring sample biochemical integrity prior to analysis. Finally, metabonomics 
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analysis is also applicable to food itself to identify major nutritional constituents 
and/or particular metabolites showing a signifi cant bioactivity, including milk, cere-
als, wine, fruits, vegetables, and meat. 

 Integrity of biological samples is of utmost importance when the aim of the analysis 
is to obtain a refl ex of the metabolism taking place. Alteration of integrity of sam-
ples due to long periods at room temperature is sample dependent and should be 
avoided, as potentially leading to an unreal representation of physiological status. 
Samples should be therefore stored at −80 °C whenever possible to allow a maxi-
mum storage time [ 57 ]. In fact, the cold chain from sample collection to sample 
storage should be preserved, especially when home collection is involved. Samples 
should be collected in sterile containers and sodium azide should be added to pre-
vent bacterial growth whenever possible. In conclusion, when dealing with a large 
number of samples, as in epidemiological studies, planning and automation of pro-
cedures is imperative, including study design, sample collection and storage, meta-
bonomics analysis, data analysis, and storage and retrieval of metadata (Fig.  2.2 ).

  Fig. 2.2    Flowchart for epidemiological metabonomics studies. Planning and automation of 
procedures is crucial, including study design, as sample collection and storage, data analysis, and 
retrieval of metadata       
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2.4        Clinical Applications of Metabonomics 
for Aging Biomarkers 

 Decades of research on aging have found hundreds of genes [ 58 ,  59 ] and many 
biological processes [ 60 – 62 ] that are associated to the aging process, but up to date, 
metabonomics applications covering aging as a multifactorial event are sparse [ 63 ]. 
In particular, the frailty syndrome is increasingly being considered as a risk indica-
tor of adverse health outcomes. Elderly may be also prone to be resistant to anabolic 
stimuli which is likely a key factor in the loss of skeletal muscle mass with aging. 
Vital to understand these biological processes is the development of biological 
markers, through system biology approaches, aiding at strategies for tailored thera-
peutic and personalized nutritional program. The overall aim is to prevent or attenu-
ate decline of key physiological functions required to live an active and independent 
life. Therefore, it is crucial to develop core indicators (biomarkers) of health and 
function in older adults, where nutrition and tailored personalized programs could 
exhibit preventive roles and where the aid of omics technologies is increasingly 
displaying potential in revealing key molecular mechanisms/targets linked to spe-
cifi c aging and/or healthy aging processes (Fig.  2.3 ). In one of the fi rst aging study, 
Lawton et al. analyzed the human plasma metabonome in 269 individuals (both men 
and women, 20–65 years old) identifying signifi cant changes in relative concentra-
tions of more than 100 metabolites [ 64 ]. Here changes in protein, energy, oxidative 
stress, and lipid metabolism were observed with increasing age. In addition, certain 
xenobiotics (i.e., caffeine) were higher in older subjects, displaying possibly 
decreased hepatic cytochrome P540 activity. Further, Nikkila and colleagues per-
formed a metabonomics study on early childhood, following 59 children from birth 
to an age of 4 years old and identifi ed that major developmental state differences 
between girls and boys are attributed to sphingolipids metabolism [ 65 ]. Moreover, 
comparison of longitudinal metabolic trajectories between boys and girls revealed 

  Fig. 2.3    Selected biomarker applications for aging and clinical research       
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higher levels of sphingomyelins in girls than in boys. More recently Zhonghao et al. 
characterized the metabolic profi le of a large group of subjects with a wide age 
range (32–81 years) and identifi ed metabolites related to chronological age, inde-
pendent of BMI [ 54 ]. Here, two population-based studies were used: a German 
aging population as a discovery cohort, with 1,038 female and 1,124 male partici-
pants (32–81 years), and a UK study as replication, with 724 female participants. 
Targeted metabonomics of fasting serum samples quantifi ed 131 metabolites. 
Among these, 71 out of 34 metabolites were signifi cantly associated with age in 
women/men refl ecting mostly incomplete mitochondrial fatty acid oxidation 
(elevated serum levels of acylcarnitines).

   Overall, while the identifi cation of biological markers specifi c of aging is still on 
its infancy, their characterization is crucial in providing insights into mechanisms or 
strategies that can prevent or reverse the decline in certain of the affected networks 
and as such could extend health span, preventing accelerated aging.  

2.5     Clinical Application of Metabonomics 
for Biomarkers of Metabolic Syndrome 

 The continuously increasing prevalence of obesity in many countries around the 
world is strongly linked to the projected pandemic of type 2 diabetes (T2D) and its 
cardiovascular complications [ 66 ,  67 ]. However, there are many individuals under 
the same obesogenic and diabetogenic environments who remain metabolically 
healthy. Newgard et al. have studied metabolic, endocrine, infl ammatory, and physi-
ologic differences between obese and lean subjects and reported a branched-chain 
amino acids (BCAAs)-related metabolic signature contributing to insulin resistance 
[ 68 ]. Suhre et al. recently reported the outcomes from a multiplatform metabonomics 
analysis of an epidemiological study on diabetes in which diabetes-related compli-
cations could be detected already under subclinical conditions in a general German 
population [ 52 ]. In addition to previously reported T2D biomarkers, including sugar 
metabolites, ketone bodies, and BCAA, metabolites resulting from perturbations of 
metabolic pathways linked to kidney dysfunction (3-indoxyl sulfate), lipid metabo-
lism (glycerophospholipids, free fatty acids), and bile acid metabolism. Additional 
metabonomics investigations suggested that the catabolism of BCAAs was tightly 
intertwined with the levels of insulin resistance, while greater levels of BCAAs 
were detected in the obese and IR phenotype [ 69 ,  70 ]. Several by-products of BCAA 
catabolism, such as glutamate, α-ketoglutarate, propionylcarnitine, and 2-methyl-
butyryl and isovalerylcarnitines, were showing a very strong contribution to the 
metabolic signature for obesity and insulin resistance (IR) phenotype. The authors 
further tested their hypothesis by supplementing BCAAs in a diet-induced obesity 
rat model. However, while having reduced food intake and weight gain, no improve-
ment of the IR levels was detected. Very recently, blood plasma profi ling was suc-
cessfully employed to provide predictive markers of the development of diabetes in 
prospective human studies [ 71 ,  72 ]. In a fi rst report, fi ve branched-chain and 
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aromatic amino acids were strongly associated with IR, namely, isoleucine, leucine, 
valine, tyrosine, and phenylalanine. The authors demonstrated that a combination of 
three amino acids (isoleucine, phenylalanine, tyrosine) could predict future diabetes 
(>5-fold higher risk for individuals in top quartile) [ 72 ]. Together these key fi ndings 
demonstrate a critical role of BCAA metabolism in the early onset of IR and T2D 
development. In a second report, specifi c interrelationships between dyslipidemia 
and IR development were evaluated [ 71 ]. Interestingly, this work reports how lipids 
of lower carbon number and double bond content were associated with an increased 
risk of T2D, unlike higher carbon number and double bond content lipids [ 71 ]. In 
particular, a combination of two triacylglycerols further improved diabetes predic-
tion and could aid in clinical risk assessment. Recently, a lipidomics approach was 
applied to reveal the molecular phenotype in prediction of type 1 diabetes (T1D) 
[ 73 ]. The authors found that T1D progressors are characterized by a distinct cord 
blood lipidomic profi le which includes reduced major choline- containing phospho-
lipids including sphingomyelins and phosphatidylcholines. A molecular signature 
was developed comprising seven lipids which predicted high risk for progression to 
T1D, with an odds ratio of 5.94 (95 % confi dence interval, 1.07–17.50). Reduction 
in choline-containing phospholipids in cord blood is therefore specifi cally associ-
ated with progression to T1D but not with development of β-cell autoimmunity in 
general. Several studies also investigated the interactions between lifestyle, 
diet, and metabolic disorders associated with IR. In particular, Huffman 
et al. explored the impact of exercise training on insulin sensitivity (IS) in combina-
tion with monitoring of circulating concentrations of metabolic intermediates, hor-
mones, and infl ammatory mediators. Improvement in IS was associated with 
reduced levels of fatty acid oxidation by-products and increased concentrations in 
glycine and proline [ 74 ]. Moreover, metabonomics was also employed to decipher 
indicators of early onsets of prediabetes status. Zhao et al. investigated the blood 
plasma composition in normal and impaired glucose-tolerant populations and dem-
onstrated that prediabetes was associated with alterations in fatty acid, tryptophan, 
uric acid, bile acid, and gut microbial metabolism. In parallel, a great amount of 
knowledge was also consolidated in the fi eld of T1D, with patients also showing a 
variety of metabolic abnormalities including hyperglycemia, ketogenesis, and mus-
cle proteolysis [ 75 ]. Lanza et al. analyzed plasma from T1D humans during insulin 
treatment and acute insulin deprivation [ 75 ] and provided additional evidence on the 
disease etiology including protein synthesis and breakdown, gluconeogenesis, keto-
genesis, amino acid oxidation, mitochondrial bioenergetics, and oxidative stress. 
There is increasing evidence that the specifi c metabolic disturbances preceding 
β-cell autoimmunity in humans are of relevance for preventive medicine and poten-
tial prognosis of children who subsequently progress to T1D [ 65 ,  76 ,  77 ]. In a series 
of studies, the specifi city of the pre-autoimmune metabolic changes was tested both 
in non-obese prediabetic mouse models and in prospective human cohorts [ 65 ,  76 , 
 77 ]. Of particular interest is the observation that autoimmune diabetes is preceded 
by a state of increased metabolic demands from the islets resulting in elevated insu-
lin secretion and suggest alternative  metabolic- related pathways as therapeutic tar-
gets to prevent diabetes. 

S. Collino et al.



35

 Nonalcoholic fatty liver disease (NAFLD) is increasingly considered as a main 
pathological determinant in various metabolic deregulations such as obesity, insulin 
resistance, hypertension, dyslipidemia, and cardiovascular disease (CVD) [ 78 ,  79 ]. 
NAFLD is characterized by fatty acid infi ltration in the liver in the absence of alco-
hol abuse [ 80 ]. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis 
(NASH), the latest being marked by increased infl ammation status [ 81 ,  82 ]. In the 
absence of validated biomarkers of NAFLD alternative to liver biopsy, metabonomics 
and lipidomics are foreseen promising to deliver both a new set of minimally inva-
sive clinical classifi ers, i.e., biomarkers and metabolic mechanistic insights into the 
disease etiology and progression. Recently, Vinaixa et al. reported the use of meta-
bonomics for quantitative profi ling of liver extracts from LDLr−/− mice [ 83 ]. NMR-
based metabonomics was used to investigate the metabolic effects and implications 
of the dietary cholesterol in the etiology of progression from hepatic steatosis to 
NASH. Dietary cholesterol increased the hepatic concentrations of cholesterol, tri-
glycerides, and oleic acid but also decreased the polyunsaturated fatty acids 
(PUFAs)/monounsaturated fatty acids ratio as well as the relative amount of long- 
chain PUFAs in the liver. Changes in hepatic concentration of taurine, glutathione, 
methionine, and carnitine were also observed. Likewise, Li et al. used a methionine- 
and choline-defi cient diet to describe metabolic changes associated to different 
stages of NAFLD in male C57BL/6 mice [ 84 ]. Four potential biomarkers including 
serum glucose, lactate, glutamate/glutamine, and taurine were selected and used to 
stratify NAFLD severity. In addition, using a parallel NAFLD animal model/human 
design, Barr et al. analyzed 42 serum samples collected from nondiabetic, morbidly 
obese, biopsy-proven NAFLD patients and 17 animals belonging to the glycine 
 N -methyltransferase knockout (GNMT-KO) NAFLD mouse model [ 85 ]. MS-based 
metabonomics revealed similarities in the GNMT-KO and human NAFLD patients 
with relevant biochemical perturbations linked to liver dysfunction through reduced 
levels of creatinine and increased concentrations in bile acids as well as in eico-
sanoids. Metabonomics was also employed by Kalhan et al. [ 86 ] to provide potential 
metabolic steatosis markers in biopsy confi rmed NASH subjects. While steatosis and 
NASH could not be distinguished, NASH metabolic signature was marked by altered 
levels of bile acids, glutathione, lipids, and amino acids. More recently, Feldstein 
et al. used a targeted isotope dilution MS-targeted technique to quantify 9- and 
13-HODEs and 9- and 13-oxoODEs as circulating biomarkers of NASH [ 87 ].  

2.6     Clinical Application for Neurological 
and Psychiatric Disorders 

 Diagnostic markers of clinical metabonomics can also fi nd applications in sociopsy-
chological and neurodevelopment disorders. Yap et al. displayed, by the use of 
NMR spectroscopy, biochemical signature of autistic individuals [ 88 ]. Urinary 
metabolic phenotypes of autistic individuals were marked by increased levels 
of  N -methyl-2-pyridone-5-carboxamide,  N -methyl nicotinic acid,  N -methyl 
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nicotinamide, taurine, and a lower concentration of glutamate. Abnormalities in gut 
microbiota metabolism were also suggested through lower levels of urinary dimeth-
ylamine, hippurate, and phenylacetylglutamine in autistic children. 

 Early detection, risk assessment, and therapeutic monitoring of Alzheimer’s dis-
ease (AD) were also studied with metabonomics [ 89 ]. Shotgun lipidomics indicated 
reductions of sphingomyelin and signifi cant increases in two ceramide species 
(N16:0 and N21:0) in plasma of AD patients. Lastly, Oresic et al. reported that 
serum metabolic profi les of persons with schizophrenia had signifi cantly higher 
metabolite levels in six lipid clusters encompassing saturated triglycerides and in 
two small-molecule clusters containing BCAAs, phenylalanine, tyrosine, proline, 
glutamate, lactate, and pyruvate [ 90 ]. A GC-MS-based metabonomics profi ling 
approach was used to detect potential biomarkers associated with schizophrenia and 
risperidone treatment [ 91 ]. Here, 22 marker metabolites provided separation of 
schizophrenic patients from matched healthy controls, with citrate, palmitic acid, 
myoinositol, and allantoin exhibiting the best combined classifi cation performance. 
Moreover, 20 markers displayed the complete separation between posttreatment 
and pretreatment patients, with myoinositol, uric acid, and tryptophan showing the 
maximum combined classifi cation performance. 

 A general comprehensive metabonomics population-based study in Finland was 
applied [ 90 ] to determine metabolic differences between persons included in three 
main psychotic disorders (schizophrenia,  n  = 45; other non-affective psychosis 
(ONAP),  n  = 57; affective psychosis,  n  = 37) and controls matched by age, sex, and 
regions. Here, global lipidomics displayed that compared to healthy controls, those 
with schizophrenia had signifi cantly higher metabolite levels in six lipid clusters 
containing mainly saturated triglycerides. In addition, a combined GC metabonom-
ics approach revealed, in persons with schizophrenia, two small-molecule clusters 
containing, among other metabolites, branched-chain amino acids, phenylalanine 
and tyrosine, and proline, glutamic, lactic, and pyruvic acids. Among these, serum 
glutamic acid was elevated in all psychoses ( p  = 0.0020) compared to controls, while 
proline upregulation ( p  = 0.000023) was specifi c to schizophrenia.  

2.7     Clinical Applications for Cancer Diagnosis 

 Metabonomics is nowadays foreseen as a promising high-throughput, automated 
approach in addition to functional genomics and proteomics for analyses of molecu-
lar changes in malignant tumors [ 92 – 95 ]. Metabolite profi ling approach was, for 
instance, successfully employed to characterize molecular changes in ovarian tumor 
tissues [ 95 ]. Sixty-six invasive ovarian carcinomas and nine borderline tumors of 
the ovary were analyzed by GC-MS. A total of 51 metabolites were signifi cantly 
different between borderline tumors and carcinomas, which encompassed glycero-
lipid, pyrimidine, purine, amino acid, propanoate, and free fatty acid metabolism 
[ 95 ]. In addition, the potential of applying metabonomics to explore metabolic path-
ways modulation specifi c to organ-confi ned disease or metastatic disease may lead 
to the identifi cation of new early disease biomarkers. MS-based metabonomics 
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analysis of prostate cancer patients based on tissue biopsies, urine, and plasma 
 samples was able to distinguish benign prostate, clinically localized prostate cancer, 
and metastatic disease [ 92 ]. Sarcosine, an N-methyl derivative of the amino acid 
glycine, was identifi ed as a differential metabolite that was highly increased during 
prostate cancer progression to metastasis and can be detected noninvasively in 
urine. Pasikant et al. displayed the potential and validity in the staging, grading, and 
diagnosis capabilities of urinary metabonomics in bladder cancer tumors [ 96 ]. Here, 
100 % sensitivity in detecting bladder cancer was observed using urinary metabo-
nomics versus 33 % sensitivity achieved by urinary cytology, the current standard 
for tumor detection and monitoring of recurrence or progression of bladder cancer. 
Using plasma-free amino acids profi ling, Miyag et al. described metabonomics 
applications for lung, gastric, colorectal, breast, and prostate cancer disease diagno-
sis [ 97 ]. Cancer patients and controls could be discriminated using multivariate 
analysis where signifi cant alterations in plasma-free amino acids profi les were 
observed in the disease cancer stage. Interestingly, tryptophan was identifi ed as a 
key amino acid associated with cancer progression. New breast cancer diagnostic 
measures had also been developed by high-resolution magic angle spinning 
(HR-MAS) NMR spectroscopy [ 98 ]. This technique provides a means to generate 
metabolic profi les of intact tissues. HR-MAS MR spectroscopic studies on breast 
tissue biopsies revealed elevated levels of taurine- and choline-containing com-
pounds, especially phosphocholine in the cancer samples. Moreover, metabolic pro-
fi ling allowed a clinical prediction with 69 % sensitivity and 94 % specifi city in a 
validation cohort. NMR and MS metabolic profi les were also used to develop a 
specifi c prediction model for early detection of recurrent breast cancer [ 99 ], dis-
playing capabilities of metabonomics in providing predictive biomarkers. 
Interestingly, 55 % of the patients could be correctly predicted to have recurrence 
13 months before the recurrence was clinically diagnosed. A MS-based    quantitative 
metabonomics method to analyze plasma samples from 55 breast cancer patients 
and 25 healthy controls was applied [ 100 ]. A number of 30 patients and 20 
age-matched healthy controls were used as a training dataset to establish a diagnos-
tic model and to identify potential biomarkers. Here, 39 differentiating metabolites 
were identifi ed, including signifi cantly lower levels of lysophosphatidylcholines 
and higher levels of sphingomyelins in the plasma samples obtained from breast 
cancer patients compared with healthy controls. Using logical regression, a diag-
nostic equation based on three metabolites (LPC16:0, PCae 42:5, and PCaa 34:2) 
successfully differentiated breast cancer patients from healthy controls, with a sen-
sitivity of 98.1 % and a specifi city of 96.0 %. 

 Recent technological advances facilitate automated analyses of biological 
samples, and installations of NMR equipment in close proximity to the surgical 
theaters are in a growing phase. Metabolic profi ling thus has the potential to 
become a method for rapid characterization of cancerous biopsies in the operation 
theater. Bathen et al. analyzed 328 tissue samples from 228 breast cancer patients 
using solid-state NMR [ 101 ]. Using double cross validation, high sensitivity, and 
specifi city of 91 % and 93 %, respectively, was achieved. Analysis of the loading 
profiles from both principal component analysis (PCA) and PLS-DA showed 
the choline- containing metabolites as main biomarkers for tumor content, with 
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phosphocholine being especially high in tumor tissue. Other indicative  metabolites 
include glycine, taurine, and glucose. 

 Being independent of prior assumptions, metabonomics approaches also allow 
hypothesis generation on how nutritional intervention might be benefi cial to malig-
nant cancers. NMR-based metabonomics was used to determine the effects of a diet 
rich in whole grain (WG) rye products on the profi le of metabolites in the plasma of 
prostate cancer (PC) patients [ 102 ]. Seventeen PC patients received 485 g rye bran 
product (RP) or refi ned white wheat product (WP) in a randomized, controlled, 
crossover design during a period of 6 week with a 2-week washout period. 
Metabonomics analysis of plasma showed an increase in 3-hydroxybutyric acid, 
acetone, betaine,  N,N -dimethylglycine, and dimethyl sulfone after RP. Plasma 
homocysteine concentration was lower ( p  = 0.017) and that of leptin tended to be 
lower ( p  = 0.07) after RP intake compared to WP intake.  

2.8     Conclusion 

 It has been estimated that by 2020 chronic disease in developing countries will 
account for almost three-quarters of all deaths worldwide with 75 % of death due to 
stroke and 70 % of death due to diabetes. In such a context, there is a clear need to 
develop new predictive approaches for preventive medicine and prognostic strate-
gies for personalized therapeutic management and monitoring (Fig.  2.3 ). The devel-
opment of systems biology approaches and the new generation of biomarker patterns 
will provide the opportunity to associate complex metabolic regulations with key 
biological processes. By opening a direct biochemical window into the metabo-
nome, metabonomics is a unique science perfectly suited for the identifi cation of 
biomarkers capable of providing better understanding of the complex metabolic 
phenomenon. Metabonomics is then foreseen to deliver in clinical settings a new 
generation of endpoints, e.g., biomarkers, to describe healthy and abnormal devel-
opmental metabolic trajectory such as in aging studies. This makes clinical metabo-
nomics a very effi cient approach for generation of metabolic patterns for the 
comprehensive characterization of metabolic health, the prognosis and diagnostic 
of diseases, and the generation of new insights in the understanding of the interac-
tions between diet and metabolism (Table  2.1 ).

   Table 2.1    Overview of metabolomics applications in selected human studies   

 Metabolomics applications  Methods  Reference 

 Aging  MS  [ 64 ,  65 ] 
 Diabetes  MS  [ 52 ,  68 ,  71 – 77 ] 
 Insulin resistance  MS  [ 69 ,  70 ] 
 Nonalcoholic fatty liver 
disease (NAFLD) 

 MS, NMR  [ 83 – 87 ] 

 Autism  NMR  [ 88 – 91 ] 
 Cancer-ovarian tumor  MS, NMR  [ 92 ,  95 – 102 ] 

S. Collino et al.



39

            References 

    1.    Tiret L. Gene-environment interaction: a central concept in multifactorial diseases. Proc Nutr 
Soc. 2002;61(4):457–63.  

     2.    Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics 
and the continuum of metabolism. Nat Rev Drug Discov. 2003;2(8):668–76.  

    3.    Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic 
responses of living systems to pathophysiological stimuli via multivariate statistical analysis 
of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9.  

    4.    Trujillo E, Davis C, Milner J. Nutrigenomics, proteomics, metabolomics, and the practice of 
dietetics. J Am Diet Assoc. 2006;106(3):403–13.  

    5.    Ordovas JM, Shen J. Gene-environment interactions and susceptibility to metabolic syn-
drome and other chronic diseases. J Periodontol. 2008;79(8 Suppl):1508–13.  

    6.    Ordovas JM. Integrating environment and disease into “omic” analysis. Rev Esp Cardiol. 
2009;62 Suppl 2:17–22.  

    7.    van der Greef J, Hankemeier T, McBurney RN. Metabolomics-based systems biology and 
personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics. 2006;7(7):
1087–94.  

    8.    van der Greef J. Systems biology, connectivity and the future of medicine. Syst Biol 
(Stevenage). 2005;152(4):174–8.  

    9.    Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455(7216):
1054–6.  

    10.    Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 
2008;134(5):714–7.  

    11.    Keurentjes JJ. Genetical metabolomics: closing in on phenotypes. Curr Opin Plant Biol. 
2009;12(2):223–30.  

   12.    Saito K, Matsuda F. Metabolomics for functional genomics, systems biology, and 
 biotechnology. Annu Rev Plant Biol. 2010;61:463–89.  

    13.    Weckwerth W. Metabolomics in systems biology. Annu Rev Plant Biol. 2003;54:669–89.  
    14.    Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson 

JK. Metabolic profi ling, metabolomic and metabonomic procedures for NMR spectroscopy 
of urine, plasma, serum and tissue extracts. Nat Protocol. 2007;2(11):2692–703.  

    15.    Keun HC, Beckonert O, Griffi n JL, Richter C, Moskau D, Lindon JC, Nicholson JK. Cryogenic 
probe 13C NMR spectroscopy of urine for metabonomic studies. Anal Chem. 
2002;74(17):4588–93.  

    16.    Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TM, Holmes E, Lindon JC, Nicholson 
JK. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profi ling of 
intact tissues. Nat Protoc. 2010;5(6):1019–32.  

    17.    Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC, Nicholson JK, Stamler 
J, Elliott P, Chan Q, Holmes E. Assessment of analytical reproducibility of 1H NMR spec-
troscopy based metabonomics for large-scale epidemiological research: the INTERMAP 
Study. Anal Chem. 2006;78(7):2199–208.  

    18.    Álvarez-Sánchez B, Priego-Capote F, Castro MDLD. Metabolomics analysis II. Preparation 
of biological samples prior to detection. TrAC Trends Anal Chem. 2010;29(2):120–7.  

     19.    Bojko B, Cudjoe E, Pawliszyn J, Wasowicz M. Solid-phase microextraction. How far are we 
from clinical practice? TrAC Trends Anal Chem. 2011;30(9):1505–12.  

    20.    Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood 
plasma sample preparation for performing metabolomics using ultrahigh performance liquid 
chromatography/mass spectrometry. Anal Chem. 2009;81(9):3285–96.  

    21.    Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue 
sample preparation and metabolite extraction for high-throughput targeted metabolomics. 
Metabolomics. 2011;8(1):133–42.  

2 Metabonomics in Clinical Practice



40

    22.    Sellick CA, Hansen R, Maqsood AR BW, Stephens GM, Goodacre R, Dickson AJ, Dunn 
WB. Effective quenching processes for physiologically valid metabolite profi ling of suspen-
sion cultured mammalian cells effective quenching processes for physiologically valid 
metabolite profi ling of suspension cultured mammalian cells. Anal Chem. 2009;81:174–83.  

    23.    Villas-Bôas SG, Højer-Pedersen J, Åkesson M, Smedsgaard J, Nielsen J. Global metabolite 
analysis of yeast: evaluation of sample preparation methods. Yeast. 2005;22(14):1155–69.  

     24.    Buescher JM, Moco S, Sauer U, Zamboni N. Ultrahigh performance liquid chromatography- 
tandem mass spectrometry method for fast and robust quantifi cation of anionic and aromatic 
metabolites. Anal Chem. 2010;82(11):4403–12.  

    25.    Wu L, Mashego MR, Van Dam JC, Proell AM, Vinke JL, Ras C, Van Winden WA, Van Gulik 
WM, Heijnen JJ. Quantitative analysis of the microbial metabolome by isotope dilution mass 
spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem. 
2005;336(2):164–71.  

    26.    Kostiainen R, Kauppila TJ. Effect of eluent on the ionization process in liquid chromatography 
mass spectrometry. J Chromatogr A. 2009;1216(4):685–99.  

    27.    Nordström A, Want E, Northen T, Lehtiö J, Siuzdak G. Multiple ionization mass spectrometry 
strategy used to reveal the complexity of metabolomics. Anal Chem. 2008;80(2):421–9.  

     28.    Bruce SJ, Breton I, Decombaz J, Boesch C, Scheurer E, Montoliu I, Rezzi S, Kochhar S, Guy 
PA. A plasma global metabolic profi ling approach applied to an exercise study monitoring the 
effects of glucose, galactose and fructose drinks during post-exercise recovery. J Chromatogr 
B. 2010;878(29):3015–23.  

    29.    Tolstikov VV, Fiehn O. Analysis of highly polar compounds of plant origin: combination of 
hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal 
Biochem. 2002;301(2):298–307.  

    30.    Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann HP, Tomita M. Metabolomic profi ling 
of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem. 
2009;81(15):6165–74.  

    31.    Griffi ths WJ, Ogundare M, Williams CM, Wang Y. On the future of “omics”: lipidomics. J 
Inherit Metab Dis. 2011;34(3):583–92.  

    32.    Wenk MR. The emerging fi eld of lipidomics. Nat Rev Drug Discov. 2005;4(7):594–610.  
    33.    Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput 

quantifi cation of cholesterol and cholesteryl ester by electrospray ionization tandem mass 
spectrometry (ESI-MS/MS). Biochim Biophys Acta. 2006;1761(1):121–8.  

   34.    Liebisch G, Drobnik W, Reil M, Trumbach B, Arnecke R, Olgemoller B, Roscher A, Schmitz 
G. Quantitative measurement of different ceramide species from crude cellular extracts by 
electrospray ionization tandem mass spectrometry (ESI-MS/MS). J Lipid Res. 
1999;40(8):1539–46.  

   35.    Liebisch G, Lieser B, Rathenberg J, Drobnik W, Schmitz G. High-throughput quantifi cation 
of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spec-
trometry coupled with isotope correction algorithm. Biochim Biophys Acta. 
2004;1686(1–2):108–17.  

    36.    Schuhmann K, Herzog R, Schwudke D, Metelmann-Strupat W, Bornstein SR, Shevchenko 
A. Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ Orbitrap 
mass spectrometers. Anal Chem. 2011;83(14):5480–7.  

    37.    Scherer M, Gnewuch C, Schmitz G, Liebisch G. Rapid quantifi cation of bile acids and their 
conjugates in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B 
Analyt Technol Biomed Life Sci. 2009;877(30):3920–5.  

   38.    Scherer M, Leuthauser-Jaschinski K, Ecker J, Schmitz G, Liebisch G. A rapid and quantita-
tive LC-MS/MS method to profi le sphingolipids. J Lipid Res. 2010;51(7):2001–11.  

    39.    Liebisch G, Schmitz G. Quantifi cation of lysophosphatidylcholine species by high- throughput 
electrospray ionization tandem mass spectrometry (ESI-MS/MS). Methods Mol Biol. 
2009;580:29–37.  

    40.    Sumner L, Amberg A, Barrett D, Beale M, Beger R, Daykin C, Fan T, Fiehn O, Goodacre R, 
Griffi n J, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane A, Lindon J, Marriott P, 

S. Collino et al.



41

Nicholls A, Reily M, Thaden J, Viant M. Proposed minimum reporting standards for chemical 
analysis. Metabolomics. 2007;3(3):211–21.  

    41.    Benton HP, Want E, Keun HC, Amberg A, Plumb RS, Goldfain-Blanc F, Walther B, Reily 
MD, Lindon JC, Holmes E, Nicholson JK, Ebbels TM. Intra- and interlaboratory reproduc-
ibility of ultra performance liquid chromatography-time-of-fl ight mass spectrometry for uri-
nary metabolic profi ling. Anal Chem. 2012;84(5):2424–32.  

    42.    Kamleh MA, Ebbels TM, Spagou K, Masson P, Want EJ. Optimizing the use of quality control 
samples for signal drift correction in large-scale urine metabolic profi ling studies. Anal 
Chem. 2012;84:2670–7.  

    43.    Brown M, Dunn WB, Dobson P, Patel Y, Winder CL, Francis-McIntyre S, Begley P, Carroll 
K, Broadhurst D, Tseng A, Swainston N, Spasic I, Goodacre R, Kell DB. Mass spectrometry 
tools and metabolite-specifi c databases for molecular identifi cation in metabolomics. Analyst. 
2009;134(7):1322–32.  

   44.    Exarchou V, Godejohann M, van Beek TA, Gerothanassis IP, Vervoort J. LC-UV-solid-phase 
extraction-NMR-MS combined with a cryogenic fl ow probe and its application to the identi-
fi cation of compounds present in Greek oregano. Anal Chem. 2003;75(22):6288–94.  

   45.    Lommen A, Gerssen A, Oosterink JE, Kools HJ, Ruiz-Aracama A, Peters RJ, Mol HG. Ultra- 
fast searching assists in evaluating sub-ppm mass accuracy enhancement in U-HPLC/
Orbitrap MS data. Metabolomics. 2011;7(1):15–24.  

   46.    Moco S, Bino RJ, De Vos RCH, Vervoort J. Metabolomics technologies and metabolite iden-
tifi cation. Trends Anal Chem. 2007;26:855–66.  

   47.    Moco S, Forshed J, De Vos RCH, Bino RJ, Vervoort J. Intra- and inter-metabolite correlation 
spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spec-
trometry and nuclear magnetic resonance. Metabolomics. 2008;4:202–15.  

   48.    Tautenhahn R, Bottcher C, Neumann S. Highly sensitive feature detection for high resolution 
LC/MS. BMC Bioinforma. 2008;9:504.  

    49.    Neumann S, Bocker S. Computational mass spectrometry for metabolomics: identifi cation of 
metabolites and small molecules. Anal Bioanal Chem. 2010;398(7–8):2779–88.  

    50.    Coughlin SS. Ethical issues in epidemiologic research and public health practice. Emerg 
Themes Epidemiol. 2006;3:16.  

    51.    Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, Ebbels T, De Iorio M, Brown IJ, 
Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao L, Nicholson JK, Elliott 
P. Human metabolic phenotype diversity and its association with diet and blood pressure. 
Nature. 2008;453(7193):396–400.  

       52.    Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, 
Gall WE, Weinberger KM, Mewes HW, Hrabe de Angelis M, Wichmann HE, Kronenberg F, 
Adamski J, Illig T. Metabolic footprint of diabetes: a multiplatform metabolomics study in an 
epidemiological setting. PLoS One. 2010;5(11):e13953.  

    53.    He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, 
Wang-Sattler R, Rujescu D. Schizophrenia shows a unique metabolomics signature in 
plasma. Transl Psychiatry. 2012;2:e149.  

     54.    Yu Z, Zhai G, Singmann P, He Y, Xu T, Prehn C, Römisch-Margl W, Lattka E, Gieger C, 
Soranzo N, Heinrich J, Standl M, Thiering E, Mittelstraß K, Wichmann H-E, Peters A, Suhre 
K, Li Y, Adamski J, Spector TD, Illig T, Wang-Sattler R. Human serum metabolic profi les are 
age dependent. Aging Cell. 2012;11(6):960–7.  

    55.   Haquin S, Oeuillet E, Pajon A, Harris M, Jones A, Tilbeurgh H, Markley J, Zolnai Z, Poupon 
A. Data management in structural genomics: an overview. In: Kobe B, Guss M, Huber T, editors. 
Structural proteomics, vol 426. Methods in Molecular Biology™. Humana Press; 2008. 
pp 49 – 79. doi:  10.1007/978-1-60327-058-8_4    .  

    56.    Holland NT, Smith MT, Eskenazi B, Bastaki M. Biological sample collection and processing 
for molecular epidemiological studies. Mutat Res. 2003;543(3):217–34.  

    57.    Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C. Human urine as test material in  1 H 
NMR-based metabonomics: recommendations for sample preparation and storage. Anal 
Chem. 2007;79(3):1181–6.  

2 Metabonomics in Clinical Practice

http://dx.doi.org/10.1007/978-1-60327-058-8_4


42

    58.    Singh R, Kolvraa S, Rattan SI. Genetics of human longevity with emphasis on the relevance 
of HSP70 as candidate genes. Front Biosci. 2007;12:4504–13.  

    59.    De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Cavalcanti S, 
Corsonello F, Feraco E, Baggio G, Bertolini S, Mari D, Mattace R, Yashin AI, Bonafe M, 
Franceschi C. Gene/longevity association studies at four autosomal loci (REN, THO, PARP, 
SOD2). Eur J Hum Genet. 1998;6(6):534–41.  

    60.    Schmitt K, Grimm A, Kazmierczak A, Strosznajder JB, Gotz J, Eckert A. Insights into mito-
chondrial dysfunction: aging, amyloid-beta and tau – a deleterious trio. Antioxid Redox 
Signal. 2011;16:1456.  

   61.    Castro MD, Suarez E, Kraiselburd E, Isidro A, Paz J, Ferder L, Ayala-Torres S. Aging 
increases mitochondrial DNA damage and oxidative stress in liver of rhesus monkeys. Exp 
Gerontol. 2011;47:29–32.  

    62.    Radak Z, Zhao Z, Goto S, Koltai E. Age-associated neurodegeneration and oxidative damage 
to lipids, proteins and DNA. Mol Asp Med. 2011;32(4–6):305–15.  

    63.    Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han JD. 
A modular network model of aging. Mol Syst Biol. 2007;3:147.  

     64.    Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan 
SC, Ryals JA, Milburn MV. Analysis of the adult human plasma metabolome. 
Pharmacogenomics. 2008;9(4):383–97.  

       65.    Nikkila J, Sysi-Aho M, Ermolov A, Seppanen-Laakso T, Simell O, Kaski S, Oresic 
M. Gender-dependent progression of systemic metabolic states in early childhood. Mol Syst 
Biol. 2008;4:197.  

    66.    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, 
Krauss RM, Savage PJ, Smith Jr SC, Spertus JA, Costa F. Diagnosis and management of the 
metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood 
Institute Scientifi c Statement. Executive summary. Cardiol Rev. 2005;13(6):322–7.  

    67.    Wirfalt E, Hedblad B, Gullberg B, Mattisson I, Andren C, Rosander U, Janzon L, Berglund 
G. Food patterns and components of the metabolic syndrome in men and women: a cross- 
sectional study within the Malmo Diet and Cancer cohort. Am J Epidemiol. 
2001;154(12):1150–9.  

     68.    Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, 
Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy Jr WS, Eisenson 
H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino 
acid-related metabolic signature that differentiates obese and lean humans and contributes to 
insulin resistance. Cell Metab. 2009;9(4):311–26.  

     69.    Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, 
Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating 
metabolic intermediates and insulin action in overweight to obese, inactive men and women. 
Diabetes Care. 2009;32(9):1678–83.  

     70.    Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic 
profi les refl ective of glucose homeostasis in non-diabetic and type 2 diabetic obese African- 
American women. PLoS ONE. 2010;5(12):e15234.  

       71.    Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, Yang E, Farrell L, Fox 
CS, O’Donnell CJ, Carr SA, Vasan RS, Florez JC, Clish CB, Wang TJ, Gerszten RE. Lipid 
profi ling identifi es a triacylglycerol signature of insulin resistance and improves diabetes 
prediction in humans. J Clin Invest. 2011;121(4):1402–11.  

     72.    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques 
PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, 
Clish CB, Gerszten RE. Metabolite profi les and the risk of developing diabetes. Nat Med. 
2011;17(4):448–53.  

    73.    Oresic M, Gopalacharyulu P, Mykkanen J, Lietzen N, Makinen M, Nygren H, Simell S, 
Simell V, Hyoty H, Veijola R, Ilonen J, Sysi-Aho M, Knip M, Hyotylainen T, Simell O. Cord 
serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes. 
2013;62:3268–74.  

S. Collino et al.



43

    74.    Huffman KM, Slentz CA, Bateman LA, Thompson D, Muehlbauer MJ, Bain JR, Stevens RD, 
Wenner BR, Kraus VB, Newgard CB, Kraus WE. Exercise-induced changes in metabolic 
intermediates, hormones, and infl ammatory markers associated with improvements in insulin 
sensitivity. Diabetes Care. 2011;34(1):174–6.  

     75.    Lanza IR, Zhang S, Ward LE, Karakelides H, Raftery D, Nair KS. Quantitative metabolomics 
by H-NMR and LC-MS/MS confi rms altered metabolic pathways in diabetes. PLoS ONE. 
2010;5(5):e10538.  

     76.    Sysi-Aho M, Ermolov A, Gopalacharyulu PV, Tripathi A, Seppanen-Laakso T, Maukonen J, 
Mattila I, Ruohonen ST, Vahatalo L, Yetukuri L, Harkonen T, Lindfors E, Nikkila J, Ilonen J, 
Simell O, Saarela M, Knip M, Kaski S, Savontaus E, Oresic M. Metabolic regulation in pro-
gression to autoimmune diabetes. PLoS Comput Biol. 2011;7(10):e1002257.  

      77.    Oresic M, Simell S, Sysi-Aho M, Nanto-Salonen K, Seppanen-Laakso T, Parikka V, 
Katajamaa M, Hekkala A, Mattila I, Keskinen P, Yetukuri L, Reinikainen A, Lahde J, Suortti 
T, Hakalax J, Simell T, Hyoty H, Veijola R, Ilonen J, Lahesmaa R, Knip M, Simell 
O. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children 
who later progress to type 1 diabetes. J Exp Med. 2008;205(13):2975–84.  

    78.    Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, 
metabolic, and clinical implications. Hepatology. 2010;51(2):679–89.  

    79.    Johnson NA, Walton DW, Sachinwalla T, Thompson CH, Smith K, Ruell PA, Stannard SR, 
George J. Noninvasive assessment of hepatic lipid composition: advancing understanding 
and management of fatty liver disorders. Hepatology. 2008;47(5):1513–23.  

    80.    Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. 
Annu Rev Pathol. 2010;5:145–71.  

    81.    James OF, Day CP. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and 
importance. J Hepatol. 1998;29(3):495–501.  

    82.    Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 
1998;114(4):842–5.  

     83.    Rull A, Vinaixa M, Angel RM, Beltran R, Brezmes J, Canellas N, Correig X, Joven 
J. Metabolic phenotyping of genetically modifi ed mice: an NMR metabonomic approach. 
Biochimie. 2009;91(8):1053–7.  

    84.    Li H, Wang L, Yan X, Liu Q, Yu C, Wei H, Li Y, Zhang X, He F, Jiang Y. A proton nuclear 
magnetic resonance metabonomics approach for biomarker discovery in nonalcoholic fatty 
liver disease. J Proteome Res. 2011;10(6):2797–806.  

    85.    Barr J, Vazquez-Chantada M, Alonso C, Perez-Cormenzana M, Mayo R, Galan A, Caballeria 
J, Martin-Duce A, Tran A, Wagner C, Luka Z, Lu SC, Castro A, Le Marchand-Brustel Y, 
Martinez-Chantar ML, Veyrie N, Clement K, Tordjman J, Gual P, Mato JM. Liquid 
chromatography- mass spectrometry-based parallel metabolic profi ling of human and mouse 
model serum reveals putative biomarkers associated with the progression of nonalcoholic 
fatty liver disease. J Proteome Res. 2010;9(9):4501–12.  

    86.    Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, Milburn M. Plasma 
metabolomic profi le in nonalcoholic fatty liver disease. Metabolism. 2011;60(3):404–13.  

     87.    Feldstein AE, Lopez R, Tamimi TA, Yerian L, Chung YM, Berk M, Zhang R, McIntyre TM, 
Hazen SL. Mass spectrometric profi ling of oxidized lipid products in human nonalcoholic 
fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res. 2010;51(10):3046–54.  

     88.    Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary metabolic 
phenotyping differentiates children with autism from their unaffected siblings and age- 
matched controls. J Proteome Res. 2010;9(6):2996–3004.  

    89.    Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, Welsh-Bohmer KA, 
Doraiswamy PM, Kaddurah-Daouk R. Metabolomics in early Alzheimer’s disease: identifi -
cation of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 
2011;6(7):e21643.  

     90.    Oresic M, Tang J, Seppanen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lonnqvist J, Sysi-Aho 
M, Hyotylainen T, Perala J, Suvisaari J. Metabolome in schizophrenia and other psychotic 
disorders: a general population-based study. Genome Med. 2011;3(3):19.  

2 Metabonomics in Clinical Practice



44

     91.    Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He 
L. Metabolomic profi ling to identify potential serum biomarkers for schizophrenia and ris-
peridone action. J Proteome Res. 2011;10(12):5433–43.  

      92.    Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, 
Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn 
GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, 
Beecher C, Chinnaiyan AM. Metabolomic profi les delineate potential role for sarcosine in 
prostate cancer progression. Nature. 2009;457(7231):910–4.  

   93.    Sawyers CL. The cancer biomarker problem. Nature. 2008;452(7187):548–52.  
   94.    Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for 

identifying kidney cancer. Anal Biochem. 2007;363(2):185–95.  
       95.    Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D, 

Dietel M, Fiehn O. Mass spectrometry-based metabolic profi ling reveals different metabolite 
patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 
2006;66(22):10795–804.  

    96.    Pasikanti KK, Esuvaranathan K, Ho PC, Mahendran R, Kamaraj R, Wu QH, Chiong E, Chan 
EC. Noninvasive urinary metabonomic diagnosis of human bladder cancer. J Proteome Res. 
2010;9(6):2988–95.  

    97.    Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, Saruki N, Bando E, 
Kimura H, Imamura F, Moriyama M, Ikeda I, Chiba A, Oshita F, Imaizumi A, Yamamoto H, 
Miyano H, Horimoto K, Tochikubo O, Mitsushima T, Yamakado M, Okamoto N. Plasma free 
amino acid profi ling of fi ve types of cancer patients and its application for early detection. 
PLoS ONE. 2011;6(9):e24143.  

    98.    Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A, Kim H, Park S, Moon WK. An HR-MAS 
MR metabolomics study on breast tissues obtained with core needle biopsy. PLoS ONE. 
2011;6(10):e25563.  

    99.    Gu H, Pan Z, Xi B, Asiago V, Musselman B, Raftery D. Principal component directed partial 
least squares analysis for combining nuclear magnetic resonance and mass spectrometry data 
in metabolomics: application to the detection of breast cancer. Anal Chim Acta. 
2011;686(1–2):57–63.  

    100.    Qiu Y, Zhou B, Su M, Baxter S, Zheng X, Zhao X, Yen Y, Jia W. Mass spectrometry-based 
quantitative metabolomics revealed a distinct lipid profi le in breast cancer patients. Int J Mol 
Sci. 2013;14(4):8047–61.  

    101.    Bathen TF, Geurts B, Sitter B, Fjosne HE, Lundgren S, Buydens LM, Gribbestad IS, Postma 
G, Giskeodegard GF. Feasibility of MR metabolomics for immediate analysis of resection 
margins during breast cancer surgery. PLoS ONE. 2013;8(4):e61578.  

     102.    Moazzami AA, Zhang JX, Kamal-Eldin A, Aman P, Hallmans G, Johansson JE, Andersson 
SO. Nuclear magnetic resonance-based metabolomics enable detection of the effects of a 
whole grain rye and rye bran diet on the metabolic profi le of plasma in prostate cancer 
patients. J Nutr. 2011;141(12):2126–32.    

S. Collino et al.



45© Springer-Verlag London 2015 
S. Kochhar, F.-P. Martin (eds.), Metabonomics and Gut Microbiota  
in Nutrition and Disease, Molecular and Integrative Toxicology, 
DOI 10.1007/978-1-4471-6539-2_3

Chapter 3
Adopting Multivariate Nonparametric  
Tools to Determine Genotype-Phenotype 
Interactions in Health and Disease

Ivan Montoliu

Abstract This chapter describes the role of machine learning approaches such as 
random forests in holistic discovery applications and provides a background for its 
better understanding. Their suitability for feature selection, data integration, and 
network modelling are also evaluated through recent examples in the literature. 
These examples cover a variety of fields, ranging from ecology to metabolomics.

Keywords Random forests • Chemometrics • Classification and regression trees  
• Data integration • Network modelling • Metabolomics

3.1  Metabolomics: Introducing the Paradigm Shift  
in Data Analysis

The arrival of “-omics” into the scientific scene resulted in a breakthrough for the 
data analysis community. The generalization of sequencing methodologies, with the 
introduction of gene expression microarray technology, contributed to the genera-
tion of huge datasets covering many aspects related to phenotypic changes present 
in biological samples. This avenue facilitated a renovation of the bioinformatics 
concept known so far, moving from the general concept of studying information 
processes in biological systems to a more complex one: the storing, retrieving, orga-
nization, and analysis of biological data. Elements such as control, system, and 
information theory and statistics were widely introduced in the field to tackle new 
challenges. In particular, factors such as the dimensionality of datasets and the low 
number of available samples hardly challenged the established concepts in data 
analysis. For some applications, such as the analysis of differential gene expression 
readouts, traditional univariate statistics remained prevalent, being widely used in 
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large-scale calculations. In this way, they became, by default, the core of data 
 analysis techniques in the fields of biomarker discovery research. This led to several 
issues due to the high number of tests performed and the need to address the statisti-
cal significance of the results. Research in univariate statistics concepts addressed 
this point with the introduction of suitable preprocessing methods and concepts 
such as false discovery rate and multiplicity testing corrections [1, 2].

Metabolomics [3–5] was a late comer to the “-omics” party. Committed to 
address the metabolic changes associated to a specific phenotype due to interven-
tion, environment, or genetic predisposition showed soon the constraints of the 
field. The use of advanced analytical chemistry tools, based on MS and NMR tech-
nologies, introduced higher complexity in the data structure and higher covariance 
between variables. Moreover, it became a mandatory step the development of 
 specific tools for preprocessing, in particular for MS holistic approaches [3]. Factors 
such as analysis time and cost per sample contributed hardly to keep the issue of the 
curse of dimensionality (low n-to-p ratio), also present in differential gene expres-
sion analyses. Furthermore, the indeterminacy on the p-value, strongly dependent 
on the preprocessing used, questioned the suitability of the established analysis 
methodologies standardly used in differential gene expression.

Other intrinsic biogenic elements, such as reduced fold changes, created in many 
cases a more complex framework for biomarker discovery. Being at the lower level 
of the biochemical expression chain (genome > proteome > metabolome), the inter-
individual variability was expected to be high and dependent on cofactors such as 
the environment. In fact, metabolomics seems to combine environmental and 
genetic variability, as partially showed by the genetic origin of metabolic respon-
siveness of human subjects challenged to an intervention [6].

All these elements, data and biology driven, soon faced serious hurdles in 
 providing relevant results using a standard approach rooted in univariate analysis 
plus multiplicity testing correction. In a univariate approach, chances were that the 
low number of objects, associated to low fold of changes, would be the source of an 
eventual high proportion of type II errors (false negatives). As a counterpart, the use 
of multivariate analysis started providing a summarized view of the simultaneous 
changes throughout the experiment, disregarding its univariate significance. These 
characteristics did not help in biomarker discovery by itself, but contributed 
 positively to the understanding of coordinated biochemical changes in complex 
 biological systems.

Chemometrics provide a descriptive or predictive assessment of chemical sys-
tems in experimental life sciences using data analysis techniques [7]. It is focused 
on the analysis of analytical data, and it is rooted in an ensemble of tools coming 
from different fields such as multivariate statistics, applied mathematics, and com-
puter science. With all those values at hand, chemometrics has become the preferred 
partner for analyzing metabolomics data.

From the set of techniques driven by a pure chemometrics approach, principal 
component analysis (PCA) [8], partial least squares regression (PLS) [9, 10], and 
their derivates, such as orthogonal projection on latent structures (OPLS) [11, 12], 
soon became the main workhorses of metabolomics data analysis. These are both 
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soft modelling methods which perform well in low n, high p datasets through the 
projection of multivariate data onto a reduced subspace, even with highly covarying 
variables. Moreover, in spite of being linear, PLS models handle acceptably well 
soft nonlinearities. However, because both methods are designed with predictive 
purposes, a strict validation process is needed to assess its generalization ability 
(minimize overfit risk) [13].

Most of the metabolomics studies where the PLS methodology was applied 
were typical case-control studies. In this case, classifier variants based both on PLS 
and OPLS were used, converting both regression models into classifiers through 
binary class encoding. From this moment on, partial least squares discriminant 
analysis (PLS-DA) [14] and orthogonal projection on latent structures discriminant 
analysis (OPLS-DA) [15] became preferred tools for most of the metabolomics 
studies handling spectroscopic data [16]. To better cover metabolomics goals, both 
regression methods were supported with interesting contributions that improved 
somehow the simplicity of interpretation of its parameters for feature extraction 
[17]. Both PLS- related techniques were recognized as good performers in the 
metabolomics area, and its use was generalized to other types of data (semiquanti-
tative and MS data). This generalization was also supported by the availability of 
chemometrics data analysis packages that implemented, in a convenient way, a 
variety of algorithms including the most common data pretreatments.

One of the key points of the success of PLS is its utility in providing feature 
highlighting through the analysis of its parameters. This strong asset imposes 
 constraints when selecting alternatives to this model. Even if it highlights metabolic 
profiles responding to the design, several aspects, often overlooked, need to be 
recall in PLS analysis: PLS has an assumption on the variable distribution and 
 linearity of the model and needs of a careful validation.

3.2  Expanding the View: Machine Learning

In the last years, an increasing number of new classification algorithms have been 
proposed, many of them focused on solving low n-to-p ratio issues. It is hard to 
determine which of them have the best performance, and on which conditions. This 
difficulty in the assessment hinders a lack of consensus for the best one, being likely 
that the best classifier/regressor does not exist for all conditions. Moreover, chances 
are the best methodology might be probably problem specific.

In some cases, proposed models are complex, with several parameters to tune, 
and each model needs to be tailored at hand to be more on target. In situations as 
nowadays, when huge amounts of data need of feature selection, there is a strong 
request for models that use few parameters, minimal human input and low compu-
tational cost with simple parallelization.

In search of more suitable algorithms for data analysis and interpretation in 
metabolomics, machine learning provides a wealth of tools highly performing for 
data representation and generalization (classification and regression). Despite most 
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of them offer properties of interest, not all provide relevant information for feature 
extraction. Support vector machines (SVM) [18] and multilayer perceptrons 
( ANN- MLP) [19] are two examples, where the use of kernels and weight connec-
tion layers removes any traceability of the role of the individual variables in the 
model. There have been other alternatives proposed to find this variable relevance, 
but they are mostly linked to the application of recursive feature elimination  patterns 
[20] that make the procedure computer intensive for long datasets.

3.3  Data Structure and Inference: Classification 
and Regression Trees (CART)

When dealing with metabolomics multivariate datasets (typically low number of 
objects, high intragroup variance, unknown individual variable distribution), the use 
of decision tree learning appears to be a good option to tackle these issues, still 
keeping some of the advantages of bilinear methods such PLS. Thus, this family of 
methods can describe the structure of multivariate datasets while providing predic-
tive models of the outputs given. They are built following certain simple rules that 
create multiple linear boundaries in the multivariate space. According to their main 
goal, they are known as classification (categorical output) and regression (quantita-
tive output) trees [21].

Decision tree learning [22, 23] has several advantages and limitations. Trees are 
simple to interpret, and they need simple or no preprocessing, handle well both 
numerical and categorical data, are possible to validate (act as predictors of external 
objects), are robust, and perform well with large datasets. In addition, CARTs are 
able to handle missing attributes. These methods offer also advantages in visualiz-
ing the structure of data: how clusters are built and the distribution of the samples 
within each cluster. Different data types: categorical, (un-)ordered, and continuous, 
can be handled and can be related nonlinearly to a response.

Their main limitation comes from how the decisions are taken at each branch of 
the tree, being usually locally optimal. This point does not warrant the global opti-
mality of the tree. Due to its greedy nature during growth, they are also very depen-
dent on the composition of the training set, which makes them naturally instable. 
Moreover, they have the risk of overcomplexity in defining the boundaries, even for 
easy discrimination cases. In such cases, using linear bound classifiers can lead to 
better performance. At the end, a “pruning” step is needed, where the generalization 
error is minimized to decrease the risk of overfit.

Briefly, CART algorithm splits the overall group of subjects (so-called main 
node) in several groups or nodes according to the variable that minimizes a prese-
lected criterion of impurity, which in turn accounts for degree of matching with the 
target pattern. In principle, each split can be performed in n sub-nodes, but the most 
frequent are binary splits due to its easiness of computation when optimizing a tree. 
At each node, there is an impurity factor that needs to be calculated for each variable 
xi to perform the right selection.
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For numerical data, this step is relatively easy, as hyperplane decision boundaries 
can be calculated in the form: Is xi ≤ xi split?. The driving criteria throughout all the 
tree buildup is to keep the model as sparse (with fewer nodes) as possible. With this 
purpose, at each node CART looks out for the query that makes the subsequent 
descending node as pure as possible (minimize impurity).

The calculation of node impurity in regression trees is basically driven by the 
mean standard error (MSE). Alternatively, in classification of trees, several mea-
sures are available:

• Entropy impurity (also called information impurity), which is defined through 
the following expression: I(N) = − ∑ jp(ωj)log2 p(ωj), where p(ωj) accounts for 
fraction of patterns at node N that are in category ωj. If all patterns are the same 
(i.e., the node is pure), then I(N) = 0.

• Variance impurity, defined in the two-category case as I(N) = p(ω1)p(ω2), which 
gives I(N) = 0 when all patterns belong to the same class, either ω1 or ω2.

• Gini impurity, which consists in the extension of variance impurity to more than 
two classes: I(N) = ∑ i ≠ jp(ωi)p(ωj). When compositions between ωi and ωj are 
unbalanced, it is necessary to weight I(N) with a weight matrix with γij elements, 
thus giving I(N) = Σi ≠ jγijp(ωi)p(ωj).

• Misclassification impurity, measuring the minimum probability that a training 
pattern must be misclassified.

As stated above, the achievement of the minimum node impurity is the driver of 
the tree optimization. To select the best split, the decrease of impurity after the split 
is calculated for each variable, and the variable that maximizes this drop is the one 
selected.

From all the impurity measurements available, the Gini index and entropy impu-
rity are often preferred due to its computational simplicity. However, in spite of the 
diversity of measures, very often the choice if the impurity functions does not affect 
excessively the accuracy of the final classifier. This leaves the stopping criterion and 
the pruning method as main drivers of the model accuracy.

The stopping criterion controls predictive performance, limiting the excessive 
growth of the tree and thus controlling the overfit risk. It may be determined by 
using standard validation procedures such as cross-validation and test set. An alter-
native way to limit the tree growth implies setting up a threshold β, which has the 
obvious advantage that all samples can be used for training the classifier. This 
approach often leads to an unbalanced tree, where the leaf nodes lay at different 
levels. However, finding optimal β is not an easy task, as it has little to say with 
model performance. An alternative, simpler in concept, is to set a minimum node 
size of a fixed number or percentage of objects. This procedure has the advantage 
that it adapts the partition size to the density of objects in that region of the multi-
variate space. Complexity of the tree can also be used as an alternative to stop the 
growth of the tree, using a balance between the number of nodes present in the tree 
and the uncertainty of the tree on the training data. Alternatively, the splitting can be 
stopped using hypothesis testing on the increase of node impurity between the tree 
layers (usually a χ2 test).
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Using the stopping criterion directly has important drawbacks. Often it leads to 
biased trees, because the biggest decreases of impurity are achieved in the nodes 
closer to the root node. Consequently, tree growth stops too early, ignoring further 
splits. For this reason, growing full trees and posterior pruning has gained accep-
tance. In this approach, all pairs of leaf (terminal) nodes connected to the same 
ancestor (one level above) are considered for elimination. Each pair providing a 
small increase in node impurity is selected for elimination. At this point, the ances-
tor becomes a leaf. This is basically the inverse of the splitting process described 
previously, and commonly delivers unbalanced trees. Its main drawback is that it is 
computationally intensive, which in turn limits its application in very big datasets.

3.4  Ensemble Classifiers: From Single Trees  
to Random Forests

If they are grown deep enough, trees are learners with low bias and high variance 
that reflect the data structure quite well. These characteristics make them suitable 
for performance improvement using general methodologies such as bootstrap 
aggregation (bagging) [24]. The main idea of bagging is to reduce the variance of 
the prediction through averaging (regression) or aggregated voting (classification) 
among several classifiers. This is achieved through the average of many noisy (and 
approximately unbiased) models. Models are built taking a bootstrap sample with 
replacement of the hold out data. This strategy gives a trade-off solution, as this 
averaging provides a decrease in the variance, but with a little increase in bias. 
Another positive effect of aggregation and majority voting is the decrease in chances 
of overfit.

Targets of boosting [25] are weak learning algorithms (as trees). The approach 
generates m different individual classifiers to create an ensemble classifier G(X). 
In such approach, weight is given to the individual classifiers Gm(x) according to 
their accuracy. This weighting is used to provide a final result, weighting accord-
ingly the output of the different classifiers G(X) = sign[Σ 

M
m = 1αmGm(x)]. In this way, 

misclassified observations are scaled by an exponential factor that increases the 
importance of this pattern in the next Gm + 1(x) model. One popular version of boosting, 
with good performance, is ADABOOST [26].

The concept of ensemble classifiers is in the deep roots of the random forests 
(RF) algorithm [27]. Random forests are an ensemble of classification (regression) 
trees that are trained using bootstrapped (with replacement) samples of the training 
data. Trees are fully grown and posteriorly pruned to a certain node level (specified) 
and the remaining patterns (“out-of-bag,” OOB samples) are predicted after passing 
them through the whole ensemble (forest). As in bagged classifiers, majority voting 
is used to assign the target class. When used in regression, averaging is used instead. 
One of the novel points introduced in the approach is the application of a secondary 
randomization scheme, taking a bootstrap sample of the variables at each splitting 
node, to infer variable relevance (feature extraction). In this way, RF reduces the 
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variance through bagging, but simultaneously de-correlating the variables. This 
dual randomization scheme has other interesting properties, such as the reduction of 
the dependence between trees and the suitability of the OOB error rate of an estima-
tor of the generalization ability (Table 3.1).

Number of parameters to be tuned in RF is relatively small: number of variables 
selected in the node variable subsampling (np), total number of trees (nt), and tree 
depth (td). Indeed, its sensitivity to them is reduced. Furthermore, the literature on 
the topic provides good practice recommendations [28]. Thus, a good value of np 

should be around p  for RF in classification and p/3 in regression mode. Once set 
to this suggested values (or around), RF models usually provide a good predictive 
performance. This parameter may become critical when the dimensionality of the 
set (p) is small. In this very particular case, it is necessary to consider which the 
expected ratio between informative and noninformative variables is. Low values of 
the number of selected variables can lead to a big decrease in predictive perfor-
mance of the RF, as some of the important variables can be ignored. Even if this 
ratio is very hard to know at the very beginning of the analysis, it is rarely the case 
in metabolomics datasets (usually highly p dimensional).

One of the main claims of RF is that they do not overfit [27]. In general, this is a 
true assumption, but with some remarks. Number of trees (nt) can be determined 
with relative simplicity, just plotting the evolution of the OOB error rate according 
to the number of trees included in the forest. If nt increases too much, chances are 
that all variance (relevant or not) is contained in the forest. In these conditions, the 
model may become too rich and too close to the training data, the right conditions 
for an overfitted model [23].

Table 3.1 Algorithm: random forests for regression and classification

In training

For b = 1 to B:
 Draw a bootstrap sample Z* of size N from training data
  Grow a tree Tb to the bootstrapped data, by recursively repeating the following steps (I–III) 

for each terminal node of the tree, until minimum node size nmin is reached
 I. Select m variables at random from the p variables
 II. Pick the best variable/split point among the m
 III. Split the node into two daughter nodes
Output the ensemble of trees {Tb}1

B

In prediction

 To make a prediction of the pattern x|x ∉ Z (out-of-bag samples)

  Regression: f x
B

T xrf

B

b=
B

b
 ( ) = ( )1

1Σ

   Classification: Let C xb
 ( )  be the class prediction of pattern x at bth tree of the RF. Obtain 

the prediction for the overall forest through C majority vote C xrf

B

b

B
 = ( ){ }

1

Table modified from Hastie et al. [23], Copyright 2009, with permission from Springer-Verlag 
New York
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Similarly to np, proposed tree depths are 1 and 5 depending on the RF mode 
 (classification and regression, respectively). This is a parameter that makes little sense 
to optimize, as the little gains in predictive performance described in the  literature do 
not justify optimizing one more parameter.

The ensemble nature of the RF limits one of the nice features of trees, which is the 
convenient representation of the data structure. The average of bnt trees makes rather 
complex to determine the relevant structure common to the different bootstrapped 
samples of the main dataset. However, RF provides key parameters to identify the 
importance of the variables and to visualize the similarities among samples.

Variable importance measures allow the identification of their role in the struc-
ture of the dataset. The two most used in available RF implementations are based on:

 I. Changes in node impurity. At each split, the improvement criterion (impurity 
decrease) is stored and cumulated individually for each variable. The procedure 
is applied to each of the bnt trees of the forest and averaged. This estimator is 
mostly used in classification, using the Gini index as improvement criterion.

 II. Changes in the accuracy of the model. In this estimator, the importance of the 
variable is linked to its predictive strength. For its calculation, there are used the 
samples in the OOB, using the following scheme:

 (a) At each b tree, OOB samples are passed down to the tree to get the model 
accuracy.

 (b) The values of the jth variable are permuted randomly in the OOB samples. 
Accuracy is recalculated accordingly.

 (c) Decreases of accuracy due to permutation are averaged over all the b trees 
of the random forest B. This gives an estimation of the importance of the 
variable j. Importance is then converted to percentage.

In general, this approach provides more gradual variable importance estimations 
than the changes in node impurity. It is mostly used in regression, estimating the 

accuracy as mean standard error MSE
b

yOOB

b

i i
OOB= −{ }∑1

1

2
ŷ  (MSE).

On the other side, proximities can be calculated while building the forest with the 
aim of visualizing similitude patterns between objects. To construct such proximity 
matrix, for each tree b(x; θb), any pair of observations in the OOB set sharing a leaf 
(terminal node) have their proximity increased by one. To visualize these proximi-
ties between patterns, a multidimensionality scaling (MDS) plot is used. In brief, 
this approach consists in an eigenvalue decomposition of the distance matrix and is 
key in approaches such principal coordinate analysis [29].

The interpretation of these plots in RF is often controversial, as their utility is 
often questioned by some authors. Often they show a similar star shape, with each 
arm corresponding to an individual subclass. The more pronounced is the separation 
between groups, the better the performance of the RF is expected. Some numerical 
experiments show how the classifier boundaries are usually in the center of the star- 
shaped cloud, while better separated samples lay in the edges. This point makes 
sense, as similar patterns have more chances to end up in the same terminal node. 
On the opposite, more dissimilar patterns have much less chances of sharing those 
kinds of nodes (Fig. 3.1).
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Other visualizations of the role of the objects in the model can be achieved using the 
information contained in the proximity matrix. Thus, proximity information may also 
be used to evaluate the outlier character of the samples in RF. To determine this feature, 
the reciprocal of the sum of squared proximities is calculated between that observation 
and the remaining ones within each class. Extreme values will point out those objects 
with high influence in the overall performance of the model. Often, they correspond to 
patterns that have been incorrectly classified or with high standard errors.

In principle, RF can handle continuous and categorical discrete variables. 
However, in these cases, there has been detected possible bias in the assignment of 
variable importance [30]. There have been identified two major sources for this 
behavior, mainly the important changes in the measurement scale and the oscillation 
in the number of categories. Two explanations on the mechanism underlying those 

Fig. 3.1 Analysis of transcriptomics data from seven mice strains [73]. Graphical evaluation of 
Random Forests results based in sample proximities: multidimensional scaling (a) shows  differences 
between groups of samples (b) Highlighting samples with extreme behavior (outliers). (c) Variable 
importance measure (classification) based in the mean Gini index decrease (scaled) after variable 
permutation. Expression levels at position expressing a highest mean decrease in the Gini index (d)
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deficiencies are the biased variable selection in each individual classification tree 
and the side effects of a bootstrapping with replacement (as used in RF).

RF can be also used in unsupervised mode to describe the structure of the dataset 
[28] alike in principal component analysis (PCA) [8]. The key point is to create a 
two-class case, where one class is the real dataset and the other class is generated 
synthetically to be as close as possible as the original dataset. Both sets are com-
bined, and a RF model is built to predict both classes. As an outcome, objects that 
are similar will lay in the same terminal nodes. This information is recorded in the 
proximity matrix and can be visualized using the MDS plot (Fig. 3.2).

Summarizing, RF can be used in the buildup of supervised models of classifica-
tion or regression, since they are models with good performance, even in highly 
complex real data. They are tolerant with missing data and can be easily trans-
formed in an unsupervised model, if used smartly, to describe the structure of the 
data. They provide efficient tools for variable selection for homogeneous data sets, 
even if the validity of the approach for heterogeneous datasets (continuous and 
discrete data) can be argued. Moreover, the implementation of outlier detection 
features enables their use for event detection.
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Fig. 3.2 Analysis of transcriptomics data from seven mice strains [73]. Graphical evaluation of 
unsupervised random forests results based in sample proximities: multidimensional scaling shows 
the differences between groups of samples on the first three dimensions
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3.5  Recent Contributions from RF in the Metabolome- 
Microbiome Arena

Since the publication of the initial algorithm in 2001 [27], the interest in RF has 
undergone an exponential growth. The amount of publications has increased from 
less than 10 in 2002 to more than 500 in 2012 (www.scopus.com), covering a wide 
spectrum of areas of interest in science. From the very beginning, computer science 
and biochemistry, genetics, and molecular biology publications have been maintain-
ing a sustained lead, partially due to the strong interaction they have through multi-
disciplinary fields such as bioinformatics. The progressive growth in interest in RF 
has been especially relevant in the medical community, wide-spreading applications 
that have gone from support to diagnostics to biomedical signal processing (imag-
ing and multiparametrical monitoring). Other fields such as engineering, agriculture 
sciences, environmental science, and chemistry have also devoted a remarkable 
interest in RF as a partner tool for their applications in several fields, such as remote 
sensing, prediction of environmental parameters, and quantitative structure activity 
relationships in chemistry. In parallel to the exponential increase in publications 
using the RF approach, it is also remarkable a qualitative aspect: the progressive 
increase of heterogeneity of fields of application. This growth that can be considered 
normal in a new coming procedure has stabilized at a high number of fields. One 
possible interpretation of this fact is the awareness of the global scientific community 
on the performance of the algorithm, which is in the process of its consolidation as a 
standard tool of machine learning.

3.6  Integration Between Information Sources: RF 
and Networks

Data fusion using RF has been performed mostly in engineering on several domains, 
from medical to environmental applications. The approach is often used in high- 
dimensional datasets coming from imaging, multisensorial applications and even 
microarrays. A medical application example of this integration can be found in the 
integration between transcriptomics and dermatoscopy in cutaneous melanoma 
patients, which has led to improved classifications using RF [31], or eventually in 
their key role in handling structural and functional imaging for prostate cancer 
 diagnosis [32]. Environmental sciences have also benefited of the approach, applying 
RF regression models onto datasets fusing Lidar, Radar, and multispectral remote 
sensing to predict multiyear bird detections (migratory activity) of eight bird species 
[33] and structural forest attributes [34].

The integration of random forests as a preliminary feature extraction step in 
 network analysis has become a relevant procedure in several areas such as pathway 
analysis and data integration and in describing the relationship between chemical 
structure and interactions. Pathway analysis has benefited from the generalization of 
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the use of random forests as feature extraction method in microarray data to rank 
important pathways from externally available databases [35]. The feature extraction 
properties of RF have been also exploited in feeding networks integrating several 
“-omics” datasets (metabolomics, gene expression) and phenotypic traits [36–38].

Moreover, RF have demonstrated to be useful, and even better performing than 
other methods, in describing protein-protein interactions [39, 40], the prediction of 
long disordered regions within proteins [41], the identification of protein complexes 
using topological structure from local subgraphs [42], and even predicting binding sites 
by using structural information [43]. RNA-protein interactions using sequence infor-
mation were tested with success with two classifiers based in RF and SVM as a basis 
to further create RNA-protein interaction networks [44]. Still in this area, the integra-
tive analysis of co-expression modules (gene ontology, protein-protein interaction data 
and literature) using RF enabled finding interesting gene-phenotype associations [45].

In general, the use of structural information is important to understand the interac-
tion mechanisms but can also be relevant to facilitate drug design. A good example 
of the application with success of RF into this setup can be found in the prediction of 
sulfotyrosine binding sites, where the RF are winning option to SVM, ANN, and 
hidden Markov models (HMM) [46]. Their performance was still highly scored in 
the integration of chemical, genomic [47], and pharmacological information to deter-
mine drug-target interactions [48], where they can be compared to other methods 
such SVM [49], to help in the assessment of the reliability of the results.

Furthermore, a two-stage-based RF analysis was performed to characterize the 
functional effects of single amino acid variants (SAV) combining sequence, struc-
ture, and residue-contact network features [50]. RF models showed their utility not 
only in highlighting functional regions but also in scoring protein interactions from 
one organism model into another to be used in protein interaction networks [51]. The 
antioxidant biological activity of proteins associated to star graph topographical indi-
ces was better highlighted with RF, when compared with other methods [52].

Classifier performance is one of the main points of interest in all applications 
where those models are the working horse to provide insight on data, or they are 
even the main outcome to be achieved. RF has been explored in combination with 
other classifiers to provide better overall predictions through using consensual out-
puts. In these setups, it is necessary to find a precision index measure that summa-
rizes individual performances, incorporating concepts such as maximum posterior 
probability [53]. Patient treatment strategies can also benefit from this multi- 
classifier strategy, for instance, the prediction of the coreceptor usage in HIV-1 
patients using translated V3 genotypes as input [54].

3.7  Application-Driven Improvements to RF Scheme

The standard RF method based in the routines proposed initially by Breiman is still 
actual, very performing and widely applied into different fields. Notwithstanding, 
there have appear modifications to the original algorithm, with the aim of adapting 
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it better for the purpose of the application [55]. GWAS analyses are a very particular 
setup, with a very unbalanced n-to-p ratio. Analyzing them using a RF approach 
should have advantages over other strategies, in particular for the detection of inter-
actions between single nucleotide polymorphisms (SNPs). Despite this, careful 
evaluation of the RF performance in such huge p, low n analyses has detected limi-
tations in the utilization of RF to detect interactions [56]. Thus, GWAS analysis 
with RF is an example of special request that needs to be addressed with “ad hoc” 
customizations, for instance, the modification of the sampling scheme introducing a 
stratified sampling of the SNPs [57]. The aim of the approach is dual: avoiding 
highly computational costs derived from an exhaustive analysis and keeping enough 
informative SNPs at the same time. A similar example of a modification of the RF 
scheme to limit the number of variables in GWAS analyses is the application of 
search algorithms based on simulated annealing and genetic programming, basis of 
the random forests fishing (RFF) model. In this approach, the dimensionality is 
reduced updating repeatedly a limited set of variables obtained by RF tests to find 
groups of variables predictive of the target phenotype.

Not only variable subset selection, but also choosing the number of trees to be 
included in the classifier has received attention. In this way, there has been proposed 
a dynamic determination of the number of trees during the growing of the forest 
[58]. This approach goes in the opposite direction to growing an excess of trees and 
select afterwards their optimal number checking the model performance. 
Furthermore, changes in the voting mechanism based on weighting [59], feature 
selection, clustering, nearest neighbors, and optimization techniques have been pro-
posed [60].

In this process of revisiting some of the key aspects of RF, variable importance 
measures were also reevaluated focusing in their performance on extreme cases of 
recognized limited performance of RF, such in highly unbalanced datasets [61]. 
With this aim, a more robust variable importance indicator was proposed, now using 
a variant at the variable permutation step based in the area under the curve (AUC) 
[30]. The application of clustering techniques (partition around medoids, PAM) to 
the RF proximity matrix also enabled the identification of regulatory cliques in tran-
scriptomics data from yeast [62]. When assessing the performance of variable 
importance measures in feature ranking, RF showed a limited performance in some 
cases. With this purpose, average gain measure and the similarity-weighted estimate 
were introduced with success to replace information gain and maximum likelihood 
estimates [63].

More from an algorithmically point of view, improvements in predictive perfor-
mance have been achieved by proven variable selection schemes, such backward 
variable elimination, and introducing changes in the tree induction procedure that 
attempt to complement the trees in the ensemble [64]. The application of backward 
variable elimination outperforms both single classification trees and standard RF 
and provides similarity measures that successfully cluster samples per molecular 
pattern [65]. Moreover, some of the algorithm basics implemented in RF methodol-
ogy (bagging and model aggregation) have been also a source for inspiring new 
modelling approaches, such the stabilization of recursive partitioning models [66] 
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and the adaptation of RF into semi-supervised learning [67]. In a kind of loop-back, 
boosting approaches have also benefited from RF, through their use as weak learn-
ers in ADABOOST to decrease chances in over fit [68].

3.8  New Challenges to RF: Network Inference

The possibilities of random forests have been extensively tested in many environ-
ments in biology, even as part of complex strategies comprising ensembles of data, 
models, and methodologies. Aside from those cases in which the predictive step is 
key for the application, their properties in feature extraction have become extremely 
relevant with a strong impact in the field, feeding networks for further graph-based 
modelling. Even if useful, this kind of approach reduces RF to a filtering step to 
select the relevant variables from a set of measurements. Then, the challenge now is 
to determine if RF could be directly incorporated into a model to benefit from their 
statistical properties for network inference.

One possible approach of network inference using RF goes through the decom-
position of the regulatory network of p variables onto p regression problems and its 
posterior evaluation with RF in regression [69]. Edge’s estimation is performed 
building a RF model of pi ≠ k variables to predict pk and using the variable importance 
measure to estimate the importance of the link. These putative link strengths are 
further used to build the network model. Using this setup, properties from RF are 
inherited into the network: no assumptions on the nature of the variable (both linear 
and nonlinear interactions are allowed), and they provide directed graphs, are fast to 
compute, and are relatively easy to scale up. Furthermore, this is an approach able 
to generalize easily up to many types of data and even capable to integrate data from 
different sources (microbiome-metabolome).

Pathway analysis is a powerful approach to add interesting insights to the out-
come of genome-wide association study (GWAS) analyses. Most of the pathway 
methods are based in testing the cumulative main effects associated to a phenotype 
(disease). However, gene-gene interactions are also expected to have relevance on 
the etiology of disease. To tackle this information, a two-stage RF-based algorithm 
has been proposed, which is a restricted variant of a previously published one [70]. 
In this algorithm, RF is performed twice in the set of SNPs to reduce the variable 
size and thus increase the power in classification. In a first round, all SNPs corre-
sponding to a user-specified pathway are modelled according to the target stratifica-
tion, and SNPs above a certain threshold in their variable importance are kept to be 
used in a second round. During this step, the dataset is reanalyzed using just the 
relevant SNPs, and the prediction error rate of the model is used to generate a score 
of the pathway. The significance of the score is assessed empirically using a permu-
tation test [71].

Integrating pathway information to identify similarities among them has been 
also explored using RF [72]. In this setup, RF is used to build pathway clusters 
using tight clustering, which are supposed to agglomerate pathways sharing similar 
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functions (even if they do not share specific variables). The approach models the 
phenotype using sets of variables from different pathways, and their prediction 
errors are used for further clustering. In some way, the approach is linking s imilitude 
between RF models with pathway similitude. To sustain these proximities, OOB 
errors rate the performance of the pathway to describe a specific phenotype, thus 
giving an idea of RF model – pathway potential interest. In this approach, the 
handling of the OOB errors is quite interesting, as it uses class votes to define 
pathway distances that can be clustered, later on. These class votes are defined 
using the proportion of votes of each class, for a specific subject, along all trees in 
the forest. An interesting point of the approach is that enables the comparison 
between pathways, even if they do not share variables (genes, metabolites). This 
is an interesting point for data integration, as it enables the comparisons between 
pathways of different organisms (host, microbiome) sharing same phenotype.

3.9  Conclusions and Perspective

Since their introduction, RF has become an alternative for all those cases in which 
reliability of other models are compromised. Their nonparametric character, its 
capability in handling low n, high p datasets, its predictive performance, and its 
low tendency to over fit have been largely in favor of its consolidation as a general 
purpose tool.

This consolidation does not imply this is a completely frozen approach. New 
application-driven developments, improvements in the internals of the algorithm, 
and changes in the mechanisms for feature selection reflect the research area is fully 
active and still under development. Moreover, the validity of the approach is 
 sustained by proposed enhancements to tailor other analysis setups, as network 
modelling or data integration. These ongoing proposals make integration between 
data from different organisms/compartments and their association with phenotype 
highly susceptible to benefit from RF approach.
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    Chapter 4   
 Metabonomics in Translational Research 
for Personalized Medicine and Nutrition 

             Guoxiang     Xie      and     Wei     Jia     

    Abstract     Personalized medicine promises prediction, prevention, and treatment of 
illness that is targeted to individuals’ needs. New technologies for detailed biologi-
cal profi ling of individuals at the molecular level have been crucial in initiating the 
move to personalized medicine. Metabonomics is promising to contribute signifi -
cantly to the characterization of various disease phenotypes and to the identifi cation 
of personal metabolic features that can predict response to therapies. Based on ana-
lytical platforms such as mass spectrometry or nuclear magnetic resonance spec-
troscopy, the metabonomic approach enables a comprehensive overview of the 
metabolites, leading to the characterization of the metabolic profi les of a given 
sample. These metabolic profi les can then be used to distinguish between different 
disease phenotypes and to predict a drug’s effectiveness and/or toxicity. 
Metabonomics has tremendous potential to advance our understanding of human 
health and disease and to inform the development of personalized approaches to 
disease prevention, diagnosis, and treatment.  

  Keywords     Gut microbiota   •   Metabonomics   •   Personalized medicine   •   Personalized 
nutrition   •   Pharmacometabonomics   •   Pharmacogenetics   •   Biomarkers   •   Mass 
 spectrometry   •   Nuclear magnetic resonance  

4.1         Metabolomics and Metabonomics 

 The “-omics” sciences (Fig.  4.1 ), including genomics, transcriptomics, proteomics, 
and metabonomics, have emerged over the last two decades as a systems biology 
approach to obtain important insights into the role of host–gut microbial metabolic 
interactions in an individual’s susceptibility to disease and treatment outcomes [ 1 ]. 
In particular, metabonomics will have a particular role with respect to other “-omics” 
sciences because of its ability to detect, in real time, the adaptive multiparametric 
responses of an organism to pathophysiological stimuli or genetic modifi cations [ 2 ]. 
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Metabolomics [ 3 ], or metabonomics [ 4 ], which is the quantitative measurement of 
dynamic metabolic changes of living systems using nuclear magnetic resonance 
(NMR) spectroscopy and/or mass spectrometry (MS), offers new opportunities to 
explore individual needs, foods, and nutrients functionalities and to formulate 
 tangible biological hypotheses that can be tested at the individual and population 
scales. Monitoring the metabolic variations provides a unique insight into intra- and 
extracellular regulatory processes involved in our metabolic regulation and homeo-
stasis. Application of metabonomics to diagnostics, drug research, and nutrition 
might be integral to improved health and personalized medicine [ 5 ]. To date, numer-
ous metabolic profi ling studies involving both animal models and human subjects 
have been reported in the fi eld of personalized medicine or nutrition [ 6 – 9 ]. For more 
details, see Chaps.   1     and   2    .

   Metabonomics has been applied in clinical studies in two major areas. First area 
is the early diagnosis and characterization of disease phenotypes, where metabo-
nomic analysis can detect a panel of metabolites that discriminate between groups 
of subjects, enabling the metabolic characterization of a disease, or of a disease 
phenotype. This is an exploratory process, since unexpected or even unknown 
metabolites may turn out to be important in this discrimination, paving the way to 
the formulation of new pathophysiological hypotheses [ 10 ,  11 ]. The second area of 
application is the identifi cation of individual metabonomic characteristics able to 
predict drug effectiveness and/or toxicity – an approach termed as “pharmacometa-
bonomics.” The pharmacometabonomics is believed as a promising metabonomic 
approach for screening human populations, leading to a concrete possibility of a 
genuinely individualized approach to treatment [ 12 ,  13 ].  

  Fig. 4.1    The fl ow of the “omics” sciences: genomics, transcriptomics proteomics, and metabo-
nomics  technologies in individualized medicine       
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4.2     Metabonomics: The Link Between 
Genotypes and Phenotypes 

    Generally, the phenotype is not necessarily predicted by the genotype. The gap 
between the genotype and the phenotype is spanned by many biochemical  processes, 
each with individual dependencies on various infl uences, including drugs, nutrition, 
and environmental factors. In this chain of biomolecules from the genes to the phe-
notype, metabolites are the quantifi able molecules with the closest link to the phe-
notype [ 14 ]. Many phenotypic and genotypic states, such as a toxic response to a 
drug, are predicted by differences in the concentrations of functionally relevant 
metabolites in biological fl uids and tissues. Personalized medicine is currently 
based on the concept of pharmacogenomics that studies the infl uence of an indi-
vidual’s genotype and/or single-nucleotide polymorphisms (SNPs) on their response 
to a drug or medical treatment. Despite enormous efforts, pharmacogenomics has 
had limited success in clinical pharmacology to predict drug response with absolute 
certainty using single or multiple SNPs as biomarkers [ 15 – 18 ]. The main reason for 
the limitations is that the response is dependent upon the phenotype of an individ-
ual, which is determined by both genotype and the complex interactions between 
genes and other environmental factors [ 19 ,  20 ]. These environmental factors include 
diet, lifestyle, gut microbiota, nutrition, medications, age, and exposures to toxins 
or dietary supplements, as well as the individual physical and pathological condi-
tions (e.g., type 2 diabetes and obesity). Therefore, it is critical to be able to assess 
an individual’s metabolic phenotype, which will provide useful information for 
determining the correct drug and dose treatment and predicting the individual 
response following a therapeutic intervention. 

 The metabolic phenotype (metabotype) is a result of the overall infl uences of the 
patient’s physiological status, gut microbiome status, and chemical, genetic, and 
other environmental factors. Changes in the metabotype refl ected in the biofl uid or 
tissue evaluated occur downstream of alterations in gene and protein expression. 
As such, the metabotype, which comprises the genotype and phenotype, represents 
the ultimate biological endpoint and can provide useful information about an indi-
vidual’s current physiological status that can be used for predicting the outcome 
prior to a therapeutic intervention. 

 The “-omics” technologies have been used to obtain a more holistic view of how 
biological systems work and underpin the base of functional genomics and systems 
biology. They are also widely employed to identify biomarkers for use in the 
 diagnosis and monitoring of human disease. While “-omics” technologies such as 
transcriptomics and proteomics are now well established and widely used across the 
biological sciences, each has limitations and only provides part of the picture. 
Metabonomics is clearly complementary to other “-omics” approaches but may 
have a special role in bridging the phenotype–genotype gap, since metabonomics 
provides the capability to analyze large arrays of metabolites for extracting bio-
chemical information that refl ects true functional endpoints of overt biological 
events, whereas other functional genomics technologies such as transcriptomics and 
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proteomics merely indicate the potential cause for phenotypic response. 
Metabonomics bridges this information gap by depicting, in particular, such func-
tional information because metabolite differences in biological fl uids and tissues 
provide the closest link to the various phenotypic responses. Such changes in the 
biochemical phenotype are of direct interest to pharmaceutical, biotech, and health 
industries once appropriate technology allows the cost-effi cient mining and integra-
tion of this information. Metabonomic approaches can also provide unique insights 
into metabolic dynamics. Specifi cally, analysis of metabolite changes over time, 
and stable isotope labeling experiments can be used to infer metabolic fl uxes that 
cannot be deduced by any of the other “-omics” methods. Therefore, they can 
 necessarily predict drug effects, toxicological response, or disease states at the phe-
notype level unless functional validation is added. 

 Over the last few years, genome-wide association studies (GWAS) have been 
carried out and reported an extraordinary harvest of new genetic associations with 
metabolic traits as phenotypic traits [ 21 ]. GWAS technology has been particularly 
productive in the area of human autoimmune disorders, where over 100 confi rmed 
associations have been reported in diseases including type 1 diabetes [ 22 ], depres-
sion [ 23 ], infl ammatory bowel disease [ 24 ,  25 ], and rheumatoid arthritis [ 26 ].    The 
metabotypes of individuals result from gene, environment, lifestyle, food, and host–
gut microbial interactions have been identifi ed by simultaneous measurements of 
SNP and blood concentrations of endogenous metabolites in human population 
[ 27 ]. Individuals with polymorphisms in genes coding for well-characterized 
enzymes of the lipid metabolism have signifi cantly different metabolic capacities 
with respect to the synthesis of some polyunsaturated fatty acids, the beta-oxidation 
of short- and medium-chain fatty acids, and the breakdown of triglycerides [ 21 ]. 
Thus, the concept of “genetically determined metabotype” as an intermediate phe-
notype provides a measurable quantity in the framework of GWAS with metabo-
nomics and might help to better understand the pathogenesis of common diseases 
and gene–environment interactions. The metabotypes, in interactions with environ-
mental factors such as nutrition and lifestyle, may infl uence the susceptibility of an 
individual for certain phenotypes. For example, there are potential links between 
long-chain fatty acid metabolism and attention-defi cit hyperactivity syndrome [ 28 ]. 
Understanding these connections, in turn, may eventually lead to more targeted 
nutrition or therapies and more refi ned disease risk stratifi cation. These could result 
in a critical step towards personalized health care and nutrition based on a combina-
tion of genotyping and metabolic characterization. 

 Personalized medicine promises prediction, prevention, and treatment of illness 
that is targeted to individuals’ needs. A primary goal of personalized medicine is to 
provide the best medical treatment for each individual patient by determining which 
drug will have the best effi cacy with the least toxicity and/or adverse effects [ 29 ]. 
Figure  4.2  describes the different fl ows from clinical presentation through treatment 
for standard clinical practice and a personalized medicine approach. Moving for-
ward, the use of a combination of “-omics” technologies aiming to develop bio-
markers tailored for individual responses will provide a more personalized approach 
to patient treatment with a more positive outcome by diagnosing not only the  disease 
but also the disease phenotype [ 29 ].
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4.3        Role of Pharmacometabonomics 
in Personalized Medicine 

 In order to choose the right therapy for the right patient at the right time, more 
 accurate tests that can diagnose and classify a patient’s disease and their response to 
medical treatment are needed. Pharmacometabonomics, focusing on small mole-
cule metabolite profi les and concerning the inherent different metabotypes, is an 
emerging approach that combines metabolic profi ling and bioinformatics to link the 
inherent variation of a metabotype to the prediction of drug effi cacy or toxicity in 
patients [ 30 ]. Nicholson [ 30 ,  31 ] described the potential for pharmacometabonom-
ics in clinical trials and in longitudinal studies of individual patients or groups of 
patients prescribed with particular therapies. 

 The main potential application for pharmacometabonomics is in personalized 
health care. The advantages of pharmacometabonomics over the other targeted 

  Fig. 4.2    Differences between standard clinical practice and a personalized medicine approach to 
diagnosis and treatment of disease (Adapted from Ref. [ 30 ])       
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“-omics” technologies are its unbiased opportunity for fi nding nonpreselected, 
and hence unexpected, biomarkers and biomarker combinations, as multiple 
analytes are quantifi ed simultaneously from biofl uids. The metabolic profi le 
represents the phenotype of the organism and refl ects the overall biological 
infl uences, including interactions between multiple genomes (e.g., genomes 
from animals or humans and their gut microbiome). Pharmacometabonomics 
uses the pre-dose metabolite profi ling in the biofl uids or fecal extracts to predict 
the responses of an individual to a drug/nutritional intervention and to identify 
surrogate markers for subsequent drug administration. Furthermore, pharmaco-
metabonomics is capable of providing useful drug pharmacokinetic and drug 
metabolite information for an individual, which can provide a mechanistic 
understanding of varied responses between individuals to the effi cacy, side 
effects, and toxicity of a drug. Thus, it needs not be limited by prior biological 
understanding or hypotheses and can indeed be a powerful hypothesis- generating 
scenario (Fig.  4.3 ) [ 3 ].

  Fig. 4.3    An illustration of how pharmacometabonomics could be incorporated into clinical opera-
tions after suitable validation. In addition, metagenomic data on the gut microbiota can be included, 
as shown by the  dotted arrows  (Adapted from Ref. [ 31 ])       
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4.4        Methodologies Used in Metabonomics 

 Analysis of the metabolome is challenging, not only because of the chemical 
 diversity and dynamic range of cellular metabolites, but also the redundancy of 
 cellular metabolic pathways that complicate data interpretation. However, recent 
advances in analytical platforms, particularly MS, as well as bioinformatic and com-
putational tools, have made metabonomics much more accessible to researchers. 

 In view of the chemical and physical diversity of small biological molecules, the 
challenge remains in developing protocols to gather the whole “metabolome.” It is 
generally accepted that no single analytical technique such as NMR, gas chroma-
tography–MS (GC–MS), and liquid chromatography–MS (LC–MS) could capture 
the entire composition of endogenous metabolites, and therefore, multiple comple-
mentary analytical platforms for global metabolic profi ling are needed for an 
enhanced metabolic measurement and visualization. 

 In general, analytical techniques such as NMR spectroscopy or MS are the 
 primary analytical methods employed in metabolite profi ling. NMR metabonomics 
is characterized by a higher throughput potential and more reliable determination of 
metabolite concentrations: the intensities of the peaks in NMR spectra are propor-
tional to the metabolite concentrations, making it a true quantitative technique [ 11 ]. 
The basic workfl ow for NMR-based as well as MS-based studies is as follows: 
quenching/extraction of metabolites → data collection → data processing/analysis 
[ 32 – 34 ]. Metabonomics is usually carried out on samples that are available either 
noninvasively (e.g., urine, feces, saliva, sweat, or exhaled breath condensate) or 
minimally invasively (e.g., serum or plasma from blood). Tissues, intact cells, or 
extracts thereof can also be analyzed. 

 NMR spectroscopy [ 34 ,  35 ] is a nondestructive technique that is highly effective 
for structural elucidation. Compared to MS, it is less sensitive, but recent develop-
ment in operating methods and technology has increased its sensitivity and spectral 
dispersion considerably. NMR data acquisition on intact tissue samples using a 
high-resolution  1 H magic angle spinning NMR spectroscopy is also possible. All of 
the metabonomic datasets generated from different instruments can be, and should 
be, combined if possible so that an integrated metabonomic approach across differ-
ent types of samples is possible. 

 MS is an effective analytical technique for the identifi cation of metabolic 
 biomarkers [ 32 ]. It is inherently more sensitive than NMR spectroscopy but, to 
ensure maximal metabolome coverage and minimize technical problems associated 
with ion suppression, it requires a separation technique prior to MS. Both GC and 
LC directly coupled to MS have been employed for metabolic profi ling, but in most 
studies MS has been coupled to HPLC or UPLC for metabonomic studies on biofl u-
ids and tissue extracts [ 36 ]. UPLC, which employs sub-2-μm particle columns, pro-
vides superior sensitivity and resolution compared to conventional LC [ 37 ,  38 ]. 
Moreover, the coupling of this technique to tandem MS (MS/MS) further enhances 
specifi city, provides an improved signal-to-noise ratio compared to single-stage 
MS, and has radically improved the ability to obtain robust and comprehensive 
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metabolite profi les such as bile acids [ 39 – 41 ]. The combination of NMR and MS 
data may improve the identifi cation of unknown metabolites [ 42 ]. 

 Both NMR and MS spectra are highly complex, and the biological information 
can only be extracted by applying bioinformatic or computational tools, such as 
pattern recognition methods. Simple methods such as principal component analysis 
(PCA) allow visualization of clustering of similar samples and the determination of 
aberrant or outlier samples. The supervised methods, such as partial least squares 
(PLS), use a training set of samples (of known classifi cation) to create a mathemati-
cal model that is then used to test an independent dataset, which enables us to pre-
dict to which group a new sample belongs on the strength of the characteristics of 
its spectra [ 43 ]. 

 Later, new methods for improving the structural identifi cation of metabolites 
from NMR data have been established. Statistical total correlation spectroscopy 
(STOCSY) takes advantage of the colinearity of the intensity variables for the mul-
tiple peaks of a metabolite in a set of NMR spectra, so that correlations from NMR 
peaks belonging to the same molecule can be identifi ed [ 44 ]. This is particularly 
useful for biomarker identifi cation from complex biofl uid analysis. An extension of 
STOCSY, statistical heterospectroscopy, allows for the coanalysis of datasets 
obtained by both NMR spectroscopy and MS [ 45 ]. Moreover, the principles of this 
approach have the potential to correlate data from any two spectroscopic techniques 
or, by extension, to correlate such data with that from other “-omics” fi elds such as 
proteomics. These two tools, and various extensions of the methods that have been 
published recently, may become major approaches for biomarker identifi cation and 
biochemical pathway information in “-omics” sciences and systems biology. Other 
metabonomic and lipidomics strategies are being discussed in Chap.   2    .  

4.5     Metabonomic Technologies for Toxicology Studies 

 Metabonomics evaluation is nontargeted, enabling users to gain a comprehensive 
evaluation of the systemic response of the subject (preclinical or clinical) to patho-
physiological stimuli or genetic modifi cation [ 2 ]. Metabonomics studies demon-
strate its potential impact on the drug discovery process by enabling the incorporation 
of safety endpoints much earlier in the drug discovery process, reducing the likeli-
hood (and cost) of later stage attrition [ 14 ].    The advantage of metabonomics to 
convey phenotype and to be obtained from peripheral samples makes it very attrac-
tive from a translation standpoint for rapid throughput in vivo toxicity screening 
particularly within the pharmaceutical industry [ 46 ]. To maximize the information 
obtainable from multivariate datasets, a high-throughput technology is desirable so 
that the data matrices produced can fully defi ne both the variations associated with 
a disorder and the innate variations associated with the biological system, while 
minimizing false positives associated with such global multivariate analyses. 
A metabolic profi le needs not be a comprehensive survey of composition, nor needs 
it be completely resolved and assigned, although these are all desirable attributes. 
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For the profi le to be useful across a range of problems, however, it must be amena-
ble to quantitative interpretation, and it should be relatively unbiased in its scope. 
A further requirement for the analytical platforms used to generate profi les is that 
the analytical variations introduced after collection be less than the typical variation 
in the normal population of interest, so as not to reduce signifi cantly the opportunity 
to detect treatment/group-related differences. Fulfi lling this condition is dependent 
on the actual system and questions to be addressed, in addition to the means of qual-
ity control used in the analytical methods. 

 In a study conducted by Clayton et al., NMR-based metabonomics was applied 
to profi le pre- and post-dose urine samples from 65 rats given a single toxic dose of 
acetaminophen [ 13 ]. The metabolic profi le of the pre-dose urine samples can pre-
dict both individual susceptibility to acetaminophen-induced toxicity and liver 
injury and also can predict the relative excretion levels of acetaminophen metabo-
lites in the forms of glucuronide and sulfate conjugates. Later, the same group pro-
vided the fi rst demonstration of pharmacometabonomics in humans by demonstrating 
a clear connection between an individual’s basal urinary metabolic phenotype and 
the metabolic fate of a standard dose of the widely used analgesic acetaminophen 
[ 47 ]. NMR-based metabonomics approaches were employed to profi le pre- and 
post-dose urinary metabolites and discovered that human subjects with high 
 pre- dose levels of  p -cresol (one of the metabolites related to an individual’s gut 
microbiome) had lower concentrations of acetaminophen metabolites. From post-
dose urine samples, it was possible to determine the proportions of the various drug 
metabolites excreted by each subject, which was known to show considerable inter- 
subject variation. The fi ndings indicate that each individual, colonized by a unique 
assortment of trillions of microbes, responds to a drug differently, either benefi cially 
or adversely. It provides the information of how a particular drug is metabolized and 
excreted by each individual. Such information may have a major infl uence on the 
drug safety and effi cacy. This study demonstrates that evaluation of a metabolic 
phenotype by metabolic profi ling could play an important role in drug metabolism 
and toxicity, as well as in personalized health care. 

 One other study in animals reported by Li et al., who used two established 
 experimental models, the streptozotocin-induced diabetic model and a high-energy, 
diet- induced obesity model, both in rats, demonstrated that the different outcomes 
of streptozotocin-induced diabetes or dietary intervention could be correlated to 
variations in pre-dose urinary metabolites of the rats, mainly those from gut micro-
biota [ 48 ]. It appears that these predispose the animals to different pathophysiologi-
cal outcomes upon diet alteration or chemical stimulus. They also surmised that, 
based on their animal model observations, for obese/diabetic human subjects, subtle 
variations in metabolic phenotype may predetermine their responses to xenobiotic 
perturbation, ultimately leading to variability in pathophysiological processes. 

 Cisplatin has been one of the most widely used anticancer agents, but its nephro-
toxicity remains a dose-limiting complication. The idiopathic nature and the 
 pre- dose prediction of cisplatin-induced nephrotoxicity were evaluated using a 
NMR-based pharmacometabonomic approach [ 49 ].    Signifi cant individual differ-
ence was observed that cisplatin produced serious toxic responses in some animals 
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(toxic group) but had little effect in others (nontoxic group). The individual 
 metabolic profi les, assessed by urine NMR spectra, showed large differences 
between the post-administration profi les of the two groups. Importantly, multivari-
ate analysis of the NMR data showed that the toxic and nontoxic groups can be 
differentiated based on the pretreatment metabolite profi les. This study provides a 
working model that can predict the idiopathic toxicity outcome based on metabolite 
markers found by metabonomics approach. Thus, a pharmacometabonomic 
approach using pretreatment metabolite profi les may help expedite personalized 
chemotherapy of anticancer drugs. 

 In both preclinical screening and mechanistic exploration, metabolic profi ling 
can offer rapid, noninvasive toxicological information that is robust and reproduc-
ible, with little or no added technical resources to existing studies in drug  metabolism 
and toxicity. Metabonomics is an integral component of the pharmacogenomics 
toolbox, especially as its ultimate goal is personalized health. The metabolic profi le 
contains information about the metabotype in addition to the genotype. The infor-
mation obtained from genotyping and metabotyping will allow a specifi c course of 
treatment to be defi ned that will have the potential for a successful outcome, thus 
making personalized health care a reality.  

4.6     Metabonomics and Personalized Nutrition 

 The metabolome, or the complete metabolite composition of a system such as a cell 
or organism, is the end product not only of the genetic blueprint of an organism but 
also all infl uential factors to which the organism is exposed, such as nutrition, 
 environmental factors, or treatments. Changes in an individual’s metabolome occur 
immediately or on a more gradual basis, partially due to the constancy of an indi-
vidual’s genetic makeup and lifestyle/environment. Holmes et al. suggest that com-
mon diets, gut microbes, medicinal practices, genetics, and other lifestyle and 
environmental factors give rise to regional metabonomic phenotypes [ 50 ]. It has 
long been understood that nutrition plays a role in human health. However, many of 
the links between an individual’s diet and specifi c health outcomes are still not com-
pletely understood, for example, why one person easily develops obesity and 
another, with the same diet, does not (responders and nonresponders). Metabonomics, 
generating profi les of metabolites in biofl uids, including urine, plasma, and fecal 
water, provides a systems approach to understanding global metabolic regulation of 
an organism and its commensal and symbiotic microbiota. In particular, it focuses 
on the measurements of metabolite concentrations, fl uxes, and secretions in cells 
and tissues in which there is a direct connection between gene expression, protein 
activity, and metabolic activity [ 4 ]. Metabonomic strategies together with advanced 
chemometric and bioinformatic tools [ 44 ,  51 ,  52 ] can help track the interaction 
between nutrients and human metabolism, as well as the involvement of the genome 
and the gut microbiome, in overall human health, and can be considered critical 
measures of function or phenotype [ 53 ]. This makes it possible to assess the 
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metabolic component of nutritional phenotypes and will enable individualized 
dietary recommendations. The relation between diet and metabonomic profi les as 
well as between those profi les and health and disease needs to be established. In the 
past three decades, nutritional research has undergone an important shift in the 
focus from physiology and epidemiology to genetics and molecular biology. Many 
progresses are made through a systematic inventory of all relevant parameters by 
using different “-omics” technologies and application of new bioinformatics tools 
together with extensive data warehousing to unravel disease mechanisms, defi ne 
biomarkers, or apply personalized medication (Fig.  4.4 ).

   Personalized nutrition is the outcome for individuals who will adapt their diet 
and lifestyle according to the knowledge about their current or future healthy status, 
and their subsequent nutritional requirements [ 54 ]. The knowledge could be built 
around the characterization of different metabolic phenotypes in human population. 
The pharmacometabonomics, discussed in this chapter, is sensitive to both genetic 
and environmental infl uences, and addresses the metabolic response at the individ-
ual level. This concept could be alternatively applied to nutritional research as a 
means of assessing individual response to diets or phytochemicals. In the future, 
researchers could use such metabolic profi ling to measure, predict, and optimize the 
metabolic response of individual response to dietary interventions or modulations 
[ 55 ]. Likely, in cases of impairment of human homeostasis, the patients would thus 
develop a coordinated approach to reestablish a metabolic trajectory for the 
 individual consistent with their metabolic phenotype. 

 A depletion–repletion study of choline conducted by Zeisel et al. showed that an 
individual’s metabonomics profi le at baseline could predict whether or not the 

  Fig. 4.4    Application of nutrigenomics and systems biology together with new bioinformatics 
tools to unravel disease mechanisms, defi ne biomarkers, or apply personalized nutrition. The 
nutrigenomics approach extracts relevant differences, which become leads for further mechanistic 
research, while the nutritional systems biology approach aims at a complete description of the 
physiologic response by exploiting the complete data sets, thus targeting a new concept of 
 biomarker (Adapted from Ref. [ 55 ])       
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 individual would develop liver dysfunction as a result of inadequate choline intake 
[ 56 ]. A study funded through the European Nutrigenomics Organisation (NuGO) 
found that it is possible to characterize individual responses to fasting and to take a 
“snapshot” of small metabolic changes after 36 h of fasting [ 57 ]. A number of 
metabolites and hormones not previously associated with fasting were identifi ed 
and high variability between individuals for certain markers, including leptin, the 
satiety hormone, which shows how it is possible to use metabonomics to character-
ize the different responses of individuals to nutritional or physiological stress. 

 A metabonomics study by Wang et al. [ 58 ] was performed to investigate the 
human metabolic response to nutritional intervention with chamomile, an important 
alternative and functional food. The results showed a clear clustering of the subjects 
as a function of chamomile tea intake characterized by a decreased urinary creati-
nine level and an increase in glycine and hippurate. Samples are obtained 2 weeks 
after daily chamomile intake deviating from the samples collected before chamo-
mile intervention, which was partially ascribed to chamomile-induced changes in 
gut microbial metabolism. The results of this study highlight the diversity of physi-
ological variations of human metabolism and emphasize the effect of nutritional 
phytochemicals in modulating human metabolism and maintaining homeostasis of 
human gut eco-system. 

 Xie et al. [ 59 ] performed a study on 20 volunteers to investigate the human meta-
bolic response to drinking Pu-erh tea over a 6-week period, using a UPLC-
QTOFMS- based metabonomics approach. The fi nal metabolic profi le was greatly 
altered by Pu-erh tea consumption. The trajectory of the PCA scores plot based on 
urine data revealed a clear separation tendency of samples obtained before (days 1 
and 7), during (days 16, 21, and 28), and after tea ingestion (washout period; days 
30, 36, 42). Interestingly, the metabolic patterns of samples obtained 2 weeks after 
tea intake are still distinct from the pre-dose pattern, probably due to the possibility 
that Pu-erh tea may change the structure of the resident gut microbiota. 

 This was followed by a more in-depth study of Pu-erh tea in human subjects [ 60 ]. 
Urine samples were collected at 0, 1, 3, 6, 9, 12, and 24 h within the fi rst 24 h of tea 
intake and once a day during a 2-week daily Pu-erh tea ingestion phase and a 2-week 
“washout” phase. The dynamic concentration profi le of bioavailable plant mole-
cules (due to in vivo absorption and the hepatic and gut bacterial metabolism) and 
the human metabolic response profi le were identifi ed and correlated with each 
other, highlighting the great potential of metabonomic strategy to unravel the com-
plex interactions between multicomponent nutraceuticals and human metabolic sys-
tem in nutritional studies. 

 A metabonomics study by Rezzi et al. [ 61 ] demonstrated that metabonomics can 
be used to predict whether an individual will respond to a certain dietary treatment. 
Twenty-two healthy male volunteers selected from 75 volunteers based on their 
chocolate preferences (chocolate loving or chocolate hating) underwent a 1-week 
double-cross-over study in which they consumed either chocolate or a bread  placebo 
on the two test days and followed a standardized diet throughout the study. NMR 
analysis of 24 h blood and urine samples revealed that the chocolate preference of 
the individual could be predicted from both biofl uid samples even in the absence of 
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the chocolate stimulus. Such a prediction of the dietary preference of the individual 
indicates that the metabolic profi le may indeed contain a wealth of information 
relating to the diet of an individual, and it may be possible to predict dietary 
response, thus proposing a role for metabonomics in personalized nutrition [ 62 ].  

4.7     Gut Microbiota and Phytochemical Profi ling 
in Nutrition Science 

 It is widely accepted that many major human diseases have signifi cant genetic and 
environmental factors and that the impairment of human homeostasis in an indi-
vidual or population is a complex result of the conditional probabilities of certain 
genes interacting with a variety of environmental triggers. 

 Diet (nutrients) has a major infl uence on many diseases and modulates the com-
plex intercommunity of gut microbiota [ 63 ]. Understanding the relationships 
between the host genome, nutrient (phytochemicals) intervention, and the highly 
variable gut microbiota with their genomes is a sophisticated challenge in modern 
nutritional science. In the search for new natural bioactive phytochemicals (drugs) 
and therapies, most consideration in toxicology and effi cacy is given to the genetic 
components of the host (animal model or human). Little attention, however, is 
directed to the individual microbiome or species variation in the microbiome that 
might contribute to the interaction of the potent phytochemicals or drugs within the 
human global system. Although the application of some “functional foods” and 
“nutraceuticals” has been promoted by food companies, and probiotics are specifi -
cally designed to nourish gut microbiota, the identifi cation and function of many gut 
microbial species remain largely unknown. There is an urgent need to understand 
the global function of these gut organisms in terms of their impact on human health, 
taking into account host–gut microbiota interactions at gene, protein, and metabo-
lite expression levels. Bioanalytical profi ling, such as metabonomics, of human 
 urinary or fecal samples can be utilized to provide holistic and dynamic information 
to assist dietary and medical researchers on disease diagnosis, stratifi cation, and 
 personalized gut microbiota targeted treatment. On the other hand, elucidating the 
molecular mechanisms underlying host–gut microbial interactions during both 
healthy and pathological conditions should be pursued in order to obtain a deeper 
understanding to aid nutritional intervention and drug development. 

 The goal of nutrition has extended beyond just ameliorating or curing diseases 
and now aims to achieve an overall objective in preventing diseases and improving 
health. Therefore, the pivotal scientifi c objective has become understanding the 
relationship between diet (both macro- and micronutrients) and health/diseases. 
The comprehensive analysis of the metabolome via metabonomics will serve as the 
 bioinformational base for modern nutritional science. Biomarkers and/or patterns of 
expression will undoubtedly have the potential to be used for human health assess-
ment (Fig.  4.5 ). Together this indicates that the future goal of nutritional research 
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will be to predict the likelihood of future diseases within the context of an individ-
ual’s overall heath and identify causal risk factors, leading to recommendations for 
appropriate intervention, such as to change dietary habits or to avoid homeostasis 
loss and maintain healthy status.

4.8        The Importance of the Gut Microbiota 
on Metabolic Profi les 

 Symbiotic relationships between microbes and the mammalian and plant hosts 
shape our world. The symbiotic microbiome tremendously increases the diversity of 
metabolic pathways accessible to mammalian hosts, enabling them to metabolize 
many things that they otherwise could not. As a result, gut microbes have been 
associated with various essential biological functions in humans through a “net-
work” of microbial–host co-metabolism to process nutrients and drugs and modu-
late the activities of multiple pathways in a variety of organ systems [ 64 – 66 ]. The 
studies by Nicholson et al. [ 64 – 67 ] demonstrate that the metabolic variations in GI 
compartments such as duodenum, jejunum, and ileum, mammalian tissues such as 

  Fig. 4.5    Conceptualization of nutritional metabonomics/nutrimetabonomics for health and risk 
management. Integration of nutritional metabonomics/nutrimetabonomics and systems biology at 
the population scale may lead to enhanced use of nutrients to prevent or delay the onset of disease 
and to optimize human health at an extensive scale. The metabotypes of individuals result from 
gene, environment, lifestyle, food, and host–gut microbiota interactions. Different metabotypes 
(represented by  green ,  blue,  and  red lines/ellipse ) are under homeostasis that aims to maintain 
metabolic fl uctuations within a healthy range ( green ellipse ). Metabonomics-generated prognostic 
biomarkers can be used to assess homeostasis loss and likelihood for future diseases. Nutritional 
metabonomics/nutrimetabonomics aims at optimizing nutrition for health maintenance and to 
restore homeostasis as illustrated by the  blue line/ellipse  (Adapted from Refs. [ 54 ,  55 ,  73 ])       
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kidney and liver, and biofl uids such as blood and urine are directly related to the 
activities of various microorganisms that coexist in the gut. Perhaps most impor-
tantly, gut microbes enable us to digest cellulose, the single largest nutritional 
energy source on the planet, and to survive on diets with low levels of particular 
nutrients and high levels of particular toxins. For example, gut microbes metabolize 
unabsorbed carbohydrates to short-chain fatty acids (SCFA), CO 2,  and H 2  in the 
colon. SCFAs are monocarboxylic acids with a chain length up to six carbon atoms, 
i.e., acetic, propionic, butyric, iso-valeric, valeric, iso-caproic, and caproic acids. 
SCFAs function both as an energy source and as a signaling molecule, and their 
abundance and type (e.g., butyric, propionic, acetic acids) are directly related to the 
speciation of the microbiota and their syntrophic interactions. Other signaling path-
ways (e.g., such as through the SCFA receptor GPR43) are similarly involved in 
host energy balance, and different microbial communities interact differently with 
these molecules [ 68 ]. Most mammals can obtain essential amino acids, such as 
lysine, from their diet, but there is evidence that they also obtain them from their gut 
microbes [ 69 ]. Many amino acids and perhaps other nitrogen-containing com-
pounds may be cycling between humans and their microbiota, a process that could 
reduce dietary requirements for those nutrients [ 69 ]. However, whether the fl uxes of 
those amino acids or other essential nutrients between microbes and humans are 
suffi cient in quantity and diversity to meet the nutritional requirements is yet to be 
resolved. 

 Diversity in gut microbial communities and function creates differences in nutri-
ent milieu, digesta retention times, and temperatures that create diverse microbial 
niches and inhabitants. With the recent advances in the new molecular profi ling 
technologies such as metagenomics and metabonomics [ 69 ,  70 ], the direct correla-
tion of global metabolic changes with gut microbiome becomes increasingly impor-
tant to decipher the host–microbe relationships and to gain mechanistic understanding 
of nutritional and drug intervention in the “gateway” of host–microbe co- metabolism. 
Scientists from different disciplines are working together and beginning to deter-
mine the details of gut microbial diversity and manipulate the complex interactions 
between the host metabolism and its symbionts for improved nutrition and disease 
treatment [ 9 ,  70 ,  71 ].  

4.9     Conclusion and Future Perspectives 

 Metabonomics is a novel approach that promises to enable the detection of states of 
disease, to stratify patients based on metabolic profi les and to monitor disease pro-
gression. Metabonomic analysis may also be able to orient the choice of therapy, 
identify responders, and predict toxicity (pharmacometabonomics), paving the way 
to a personalized therapy. 

 Whereas the human genome is the set of all genes in a human being, the human 
metabolome is the set of all metabolites in a human being. Metabonomics bridges 
the gap between the genotype and the phenotype and is an important basis of 
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 personalized medicine. Metabonomics has been used to identify biomarkers for 
 disease and the effects of drugs. Various metabonomic technologies including NMR 
and MS have been intensively applied to metabonomics study. Pharmacometabonomic 
approach to personalizing drug treatment uses a combination of pre-dose metabolite 
profi ling and chemometrics to model and predict the responses of individual sub-
jects. Metabonomics also has a role to play in assessing drug toxicity and in guiding 
nutrition. 

 The advantage of the personalized medicine approach includes the fact that the 
“-omics”-derived biomarkers will potentially provide better, earlier diagnosis of 
disease and disease phenotype, leading to a better clinical outcome for the patient 
[ 29 ]. Recent efforts that have correlated GWAS data with downstream metabolite 
concentrations or ratios [ 21 ] will further drive these technologies towards personal-
ized medicine. Such associations provide a unique approach to stratify an individu-
al’s genotype and phenotype. On a population basis, such associations will also 
provide more descriptive information about a gene’s function as well as pathway- 
specifi c information about various diseases that will ultimately lead to the develop-
ment of more targeted therapies. An example of how the “-omics” datasets may 
move forward the fi eld of personalized medicine has been reported by the group of 
Chen et al. [ 72 ]. An approach referred to as integrative personal “-omics” profi le 
evaluated genomic, transcriptomic, proteomic, metabonomic, and antibody profi les 
from a single individual over a 14-month period. The study revealed changes in the 
“-omics” profi les between healthy and viral states and between nondiabetic and 
diabetic states throughout the study period. Furthermore, it was noted that disease 
risk could be assessed from the individual and maternal genome sequences. This 
study demonstrated that the integration of genomics data with other dynamic 
“-omics” datasets can be used to predict various medical risks and the health status 
of an individual. Such datasets for many individuals may provide a database that can 
be used for enhancing diagnostics, monitoring, and treatment in the future with 
metabonomics playing a critical role.     
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    Chapter 5   
 Can We Use Metabolomics to Understand 
Changes to Gut Microbiota Populations 
and Function? A Nutritional Perspective 

                Sofi a     Moco      and     Alastair     B.     Ross   

    Abstract     Food is an integral part of human life, and the composition of our diet is 
an important determinant of our health and well-being. Food is also the main source 
of energy and nutrients for the gut microbiota, the 100 trillion cells that coexist 
inside us. The impact of macronutrients (protein, fat, carbohydrates, and fi ber) and 
specifi c non-nutrient food components (polyphenols) will be reviewed in the con-
text of gut microbial function and interaction with the host. Colonic microbiota 
provides diverse enzymatic activities differing from our own, which lead to the 
production of metabolites essential for key metabolic functions, including carbohy-
drate and amino acid metabolism. Certain gut metabolites are specifi c to microbial 
activity and confer functionalities beyond energy production, such as signalling cas-
cades across cells, tissues, and organs. Metabolomics has proven to be a useful tool 
to measure the effects of food on the gut microbiota and its interaction with host 
metabolism.  
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5.1         Introduction 

 The sum of all small molecules in a system (i.e. the metabolome) not only refl ects 
the metabolic response of the subject of interest but also the organisms living in 
symbiosis with the subject – in the case of humans, the gut microbiota is an  example. 
The gut microbiota produces thousands of metabolites through their reproduction, 
interaction with other microorganisms, the host and with partially digested food. 
Many of these metabolites are specifi c for microbial metabolism, and cannot be 
synthesized by mammalian enzymes. These specifi c microbial metabolites can be 
absorbed from the gut, adding to the diversity of the metabolome, and at the same 
time providing a window into the interaction between host, food and gut microbiota. 
In this chapter, we examine what dietary components are known to have an impact 
on gut microbial metabolism, which biochemical classes of gut metabolites are pro-
duced from different diets, and how metabolomics can be a powerful tool to mea-
sure the effect of food on the gut microbiota, and its interaction with mammalian 
metabolism.  

5.2     Colonic Digestion 

 The large intestine is a digestive organ where dietary substrates not absorbed in the 
small intestine, are further broken down by anaerobic bacteria (Fig.     5.1 ). The major 
substrates for colonic fermentation include carbohydrates that have escaped diges-
tion in the upper gut (mainly dietary fi bers: resistant starch and non-starch polysac-
charide such as celluloses, pectins and gums, and non-digestible oligosaccharides). 
The main products of carbohydrate fermentation are short-chain fatty acids (SCFAs), 
such as butyrate, propionate, and acetate, which are then absorbed and used as an 
energy source. In Western diets, SCFAs contribute less than 10 % to the total energy 
obtained from food, although in some cases this value can be up to 30 % [ 1 ]. Bacteria 
well adapted for fermenting carbohydrate come from the Prevotella and Xylanibacter 
genuses [ 2 ,  3 ].

   In addition, residual amounts of protein (such as elastin, collagen and albumin), 
peptides and amino acids can also reach the colon. Proteolytic bacteria in human 
feces are predominantly Bacteroides and Propionibacterium, with lesser numbers of 
the genera Streptococcus, Clostridium, Bacillus and Staphylococcus [ 4 ]. Low levels 
of the amino acid fermentation products ammonia and branched-chain fatty acids 
(BCFA) are found in ileal contents indicating that little amino acid fermentation 
occurs in the small intestine, underlining the importance of the gut microbiota for 
producing these compounds. Protein fermentation leads not only to the production 
of BCFAs but also to relatively low amounts of a variety of products, such as 
branched-chain amino acids (BCAAs), phenols, and amines which are both absorbed 
into the host as well as excreted. 

 The proportion of carbohydrates to protein in the colon has been estimated as 
3–4:1. Regional differences occur in the gut, where the right (proximal) gut has a 
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higher saccharolytic activity while the left (distal) is more proteolytic. These fer-
mentation processes provide the nutrients required for gut microbiota biomass 
growth while at the same time producing waste products hydrogen, carbon dioxide, 
ammonia, and methane which are excreted via fl atus. More complex chemical 
 structures such as polyphenols or alkaloids, mostly from plant foods, are also 
degraded during colonic fermentation [ 1 ]. 

 Beyond its role in digestion and absorption, the large intestine contributes to 
health in a variety of ways: as a physical barrier preventing invasion of pathogenic 
bacteria and stimulating immune function and as a site for biosynthesis of vitamins 
and metabolism of xenobiotics.  

5.3     Gut Modulation by Foods and Diet 

5.3.1     How Do Different Foods Alter Gut Microbiota 
and Their Metabolism? 

 There is little controversy in the idea of using food or food ingredients to alter both gut 
microbiota populations and gut microbiota metabolism. Directly or indirectly, food is 
the main source of energy and nutrients for the gut microbiota and evolutionary pres-
sure to adapt to the gastrointestinal environment and a major determinant of which 

  Fig. 5.1    Fermentation in the large bowel (size of compounds’ font indicate approximate relative 
concentration)       

 

5 Can We Use Metabolomics to Understand Changes to Gut Microbiota Populations…



86

microbial genes are upregulated. Technological developments over the past two 
decades in the areas of genetic sequencing, to determine the gut microbiome from 
fecal samples without the need for culture techniques, have led to a rapid explosion of 
our understanding of the importance of the gut microbiota and how it changes with 
changing diet.    An example of this are pre- and probiotics, where fermentable fi ber 
sources or live bacterial cultures (often in dairy products), are given with the aim to 
positively alter the gut microbiota. 

 There is still discussion about what constitutes an “ideal” gut microbiota popula-
tion, though favorable changes to gut microbiota are generally described towards 
bacterial genus or species that succeed when carbohydrate is the abundant energy 
source, while “negative” bacterial species are those that are well adapted to ferment-
ing protein. Arguably, quantifying the population of different bacterial families or 
species provides little direct information about actual gut bacterial metabolism: 
many can switch between proteolytic and saccharolytic metabolism. It may be that 
the end products of microbial metabolism are able to help build the best possible 
picture of how gut microbiota are collectively responding to different diets or condi-
tions. Some metabolites of dietary substrates are well known and are summarized in 
Table     5.1 .

5.3.2        Microbial Metabolism and a Carbohydrate-Rich Diet 

 Carbohydrates are an important energy source for both humans and our gut micro-
biota. They are found in foods in several different forms, including monosaccha-
rides (e.g., glucose), disaccharides (e.g., sucrose or lactose), starch, and a range of 
different types of dietary fi ber, carbohydrates not broken down by human digestive 
enzymes, but are often fermentable by gut microbiota. While traditional diets are 
generally rich in complex carbohydrates (e.g., starch) and high in diverse forms of 
fi ber, in “Western” pattern diets, simple sugars (e.g., glucose and sucrose) dominate 
the carbohydrate fraction of the diet, with low diversity in the small amount of fi ber 
present [ 2 ]. It is likely that the difference between traditional and Western dietary 
patterns also leads to an impact on the gut microbiota and intestinal milieu leading 
to an increased risk of gastrointestinal disorders including large bowel cancer, gall 
stones, and Crohn’s disease. Diet intervention studies high in refi ned sugar have 
found an altered gut metabolism, increased mouth-to-cecum transit time, and 
increased production of secondary bile acids [ 5 ]. 

 One of the main sources of dietary fi bers is cereal-based foods. Cereal grains that 
have the bran and germ fractions removed (refi ned or “white” fl our) are also largely 
depleted in dietary fi ber. Whole grains are cereal grains that still have all the three 
grain components in their correct proportions (bran, germ, and endosperm) and are 
generally rich in both insoluble and soluble fi bers [ 6 ]. Soluble dietary fi bers are by 
defi nition water soluble and tend to be highly fermentable by the gut microbiota, 
producing SCFAs. SCFAs appear to have a wide range of roles, including as an 
energy source and for reducing gut infl ammation [ 2 ]. Diets high in fi ber such as 
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   Table 5.1    Common gut microbial metabolites of dietary substrates detected using metabolomics 
(urine, feces, blood). oxidation is typical of phase i metabolism and glycine, glutamine and sulfate 
conjugations are typical of phase ii metabolism occurring in the liver. glycine or glutamine 
conjugation is pathway- and species-specifi c (differences may occur between mice, rats and humans)   

 Microbial metabolite  Dietary precursors  Specifi c bacterial species  References 

  Phenolic, benzoyl, and phenyl 
derivatives  

 Phenolic 
compounds; 
fl avonoids; protein 
(phenylalanine, 
tyrosine) 

  Lactobacillus   [ 34 ,  43 , 
 44 ,  75 – 77 ] 

 Hippurate   Clostridium diffi cile  
 Cinnamoyl (glycine)   Clostridium scatologenes  

  Proteus vulgaris  
 Phenol (sulfate)   E. coli   [ 77 ] 

  Clostridium bifermentans  
  Clostridium specticum  
  Bacteroids fragilis  
  Bifi dobacterium longum  

  p -Hydroxyphenylacetate   Clostridium diffi cile   [ 77 ] 
  Bacteroides ovatus  
  Bifi dobacterium bifi dum  
  Bifi dobacterium 
adolescentis  
  Bifi dobacterium infantis  
  Bifi dobacterium longum  
  Bifi dobacterium 
pseudolongum  

  p -Hydroxyphenylpropionate   Clostridium bifermentans   [ 77 ] 
  Clostridium 
paraputrifi cum  
  Clostridium specticum  
  Bacteroides 
thetaiotaomicron  
  Bifi dobacterium infantis  

  p -Cresol (sulfate)   Clostridium diffi cile   [ 77 ] 
  Clostridium 
paraputrifi cum  
  Clostridium perfringens  
  Bacteroids fragilis  
  Bacteroides 
thetaiotaomicron  
  Bifi dobacterium bifi dum  
  Bifi dobacterium 
adolescentis  
  Bifi dobacterium infantis  
  Bifi dobacterium 
pseudolongum  
  Bacteroides 
thetaiotaomicron  

(continued)
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Table 5.1 (continued)

 Microbial metabolite  Dietary precursors  Specifi c bacterial species  References 

 Phenylacetate (glycine)   Clostridium bifermentans   [ 77 ] 
  Clostridium diffi cile  
  Bacteroids fragilis  
  Bacteroides ovatus  

 Phenylpropionate (glycine)   Clostridium diffi cile   [ 77 ] 
  Peptostreptococcus 
asaccharolyticus  
  Bacteroides ovatus  

 Phenyllactate (glycine)   Clostridium perfringens   [ 77 ] 
  Bacteroides ovatus  
  Bifi dobacterium longum  

  Indole derivatives   Protein 
(tryptophan) 

  E. coli   [ 43 ,  44 , 
 65 ,  78 ]  Tryptamine   Clostridium bifermentans 

Proteus vulgaris  
 Serotonin   Paracolobactrum 

coliforme  
  Achromobacter 
liquefaciens  
  Bacteroides  spp 
  Clostridia  

 Indole (sulfate)   E. coli   [ 77 ] 
  Bacteroides ovatus  

 Indole pyruvate   E. coli   [ 77 ] 
  Clostridium perfringens  
  Peptostreptococcus 
asaccharolyticus  
  Bacteroides ovatus  
  Bifi dobacterium bifi dum  
  Bifi dobacterium 
adolescentis  
  Bifi dobacterium infantis  
  Bifi dobacterium 
pseudolongum  

 Indole lactate   E. coli   [ 77 ] 
  Clostridium perfringens  
  Peptostreptococcus 
asaccharolyticus  
  Bacteroides ovatus  
  Bacteroides 
thetaiotaomicron  
  Bifi dobacterium bifi dum  
  Bifi dobacterium 
adolescentis  
  Bifi dobacterium infantis  
  Bifi dobacterium longum  
  Bifi dobacterium 
pseudolongum  

(continued)
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Table 5.1 (continued)

 Microbial metabolite  Dietary precursors  Specifi c bacterial species  References 

 Indole-3-acetate (glutamine)   E. coli   [ 77 ] 
  Clostridium diffi cile  
  Clostridium 
paraputrifi cum  
  Clostridium perfringens  
  Peptostreptococcus 
asaccharolyticus  
  Bacteroides fragilis  
  Bacteroides 
thetaiotaomicron  
  Bifi dobacterium 
pseudolongum  
  Bifi dobacterium longum  

 Indole-3-propionate   Clostridium 
paraputrifi cum  

 [ 77 ] 

  Peptostreptococcus 
asaccharolyticus  
  Bacteroides fragilis  
  Bifi dobacterium longum  
  Bifi dobacterium bifi dum  
  Bifi dobacterium 
adolescentis  
  Bifi dobacterium infantis  
  Bifi dobacterium 
pseudolongum  

  Choline metabolites   Choline   Bacteroides fragilis   [ 15 ,  79 ] 
 Methylamine  Carnitine   Clostridium perfringens  
 Dimethylamine   Faecalibacterium 

prausnitzii   Trimethylamine (- N -oxide) 
  Flavones    Lactobacillus mucosae   [ 43 ,  80 ] 
 Equol (sulfate)  Flavonoids   Enterococcus faecium  
 Methyl equol (sulfate)   Finegoldia magna  
  Short-chain fatty acids    Bifi dobacterium   [ 81 ] 
 Acetate  Glucose and starch   Propionibacterium  
 Propionate  Polysaccharides   Lactobacilllus  
 Butyrate  Fiber   Clostridium  
  Branched-chain fatty acids   Protein (branched- 

chain amino acids: 
leucine, isoleucine, 
valine) 

  Bacteroides ruminicola   [ 82 ] 
 Isobutyrate   Megasphaera elsdenii  
 Isovalerate 
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those rich in whole grains can alter gut microbiota populations [ 7 – 9 ] and gut 
 microbiota metabolism [ 10 ,  11 ]. Of the few metabolomics studies that compared 
intake of whole grains with refi ned grains, one rat study found that urinary hippu-
rate was increased on a whole grain diet, along with the aromatic amino acids phe-
nylalanine, tryptophan, and tyrosine [ 12 ]. This fi nding was not replicated in human 
urine samples after a whole grain intervention, though other biomarkers of gut 
microbiota activity were decreased on a whole grain diet, including 4-hydroxyphen-
ylacetate, a microbial metabolic product of aromatic amino acid metabolism and 
trimethylamine, a microbial metabolic product of choline and carnitine [ 11 ]. As in 
many areas of nutritional science, results on the impact of whole grains on gut 
microbiota are variable, with some studies not fi nding any changes to gut microbial 
species measured [ 13 ]. This variation in gut microbial response to an admittedly 
broad and heterogeneous food group may explain in part some of the variation in 
results between intervention studies, an area that will be further explored as more 
advanced microbial sequencing techniques become routine [ 9 ].  

5.3.3     Fat-Rich Diet Interactions with Gut Microbiota 

 High-fat diets are frequently used in metabolic studies for testing diet-induced 
 metabolic syndrome (increased risk of developing cardiovascular disease and diabe-
tes), especially in rodent models. A direct relationship has been established between 
high-fat feeding and metabolic disorders, where altered gut fl ora is causal in induc-
ing gut permeability, increasing lipopolysaccharide (LPS) absorption, and infl am-
mation [ 14 ,  15 ]. Given this association between diet and gut microfl ora, specifi c 
strategies for modifying gut microbiota may be a useful means to reduce the impact 
of high-fat feeding on the occurrence of metabolic diseases. However, as these 
results mainly stem from rodent models, where high-fat diets represent a far greater 
proportion of energy intake than would normally be found among humans, caution 
is required until defi nitive clinical studies are performed.  

5.3.4     Choline Metabolism: An Interaction 
Node Between Diet, Host, and Gut Microbiota? 

 Recent studies from a cohort of non-Caucasians based in Cleveland, United States, 
have highlighted that gut microbial metabolism of specifi c dietary components may 
result in toxic metabolites that lead to cardiovascular disease. Using LC-MS metabo-
lomics, Wang et al. found that high plasma concentrations of a microbial metabolite 
of choline, trimethylamine (TMA), was related to cardiovascular disease risk, con-
cluding that whether the gut microbiota converted choline into TMA or not was a key 
modifi able risk factor for development of cardiovascular disease [ 16 ]. The active mol-
ecule mediating increased disease risk was identifi ed as trimethylamine oxide 
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(TMAO), a toxic metabolite of liver metabolism of TMA.    Choline, and its related 
metabolite, TMA, and betaine (a downstream mammalian metabolite of choline) 
were related to cardiovascular disease in this cohort. These metabolomics results 
were cross validated, and biomarkers confi rmed in mouse models of cardiovascular 
disease, though do not fully explain other fi ndings with the same biomarkers. For 
example, a comprehensive study on the sources of TMA in humans found that very 
little choline was converted into TMA [ 17 ]. While this could be explained by differ-
ences in gut microbiota, the intake of fi sh and shellfi sh led to extremely high produc-
tion of TMA [ 17 ], with some fi sh species leading to an excretion of over 4,000 μmol 
of TMA and TMAO in urine over 8 h. Meat, eggs, and dairy products conversely did 
not lead to more TMA and TMAO excretion compared to a control diet [ 17 ]. If these 
results in urine are refl ected in plasma, any increase in TMA due to nonoptimal gut 
microbiota metabolism of choline from fatty foods would be “drowned” out by that 
due to fi sh intake. Thus, TMAO being a biomarker for cardiovascular disease risk 
would be at odds with a high intake of fi sh being associated with a decrease in cardio-
vascular disease risk [ 18 – 20 ], which would suggest that TMAO is not a good bio-
marker of cardiovascular disease in populations where fi sh intake is common. 
Similarly, the fi nding that elevated betaine may be associated with cardiovascular 
disease risk goes against other work fi nding that betaine is substantially associated 
with a decreased risk of cardiovascular disease risk factors [ 21 ]. The same study how-
ever also found that plasma choline was associated with risk factors for cardiovascu-
lar disease [ 21 ]. Betaine is one of the main phytochemicals present in whole grain 
wheat [ 22 ], and fasting betaine concentrations can be increased on a whole grain-rich 
diet [ 8 ], and both oral choline and betaine lead to decreased circulating homocysteine 
[ 23 ,  24 ], a cholesterol-independent risk factor for cardiovascular disease. In the con-
text of these other fi ndings, it is possible that elevated choline and TMAO are bio-
markers of cardiovascular disease risk in this population, if fi sh intake is low. 

 In a follow-up study using stable isotope-labelled phosphatidylcholine, the role 
of gut microbiota in the formation of TMAO from choline was clearly established, 
along with choline being the main source of circulating betaine [ 25 ]. So in this 
population, elevated betaine probably comes from a high intake of choline, rather 
than a high intake of betaine-containing foods.    The complementary analysis of food 
records and use of dietary biomarkers of intake (e.g., alkylresorcinols for whole 
grains [ 26 ] or omega-3 fatty acids for fi sh intake [ 27 ,  28 ]) along with gut microbiota 
measurements and metabolomics may be instructive for determining if elevated 
concentrations of these biomarkers are related to disease risk or diet. 

 A second study by the same group hypothesized that another TMA, L-carnitine, 
may also be a risk factor for cardiovascular disease as it can also be metabolized by 
gut microbiota to TMAO [ 29 ].    Carnitine, which is a major component of red meat 
and is conditionally essential for fatty acid transport for mitochondria, was found to 
lead to increased TMAO production that depended on gut microbiota. Of interest 
for metabolomic methodology is that in the initial screening of the same cohort 
where choline was suggested to be a risk factor for CVD [ 16 ], carnitine was only 
found to be a signifi cant risk factor if correction for multiplicity was not used in the 
statistical analysis. While statistical considerations are important, the possibility 
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that associations of interest may be lost when using stringent tests should not be 
overlooked. A recent study comparing a whole grain diet to a refi ned grain diet 
found that urinary excretion of carnitine and acetylcarnitine was reduced when con-
suming whole grains, along with a decrease in the TMAO precursor TMA [ 11 ], in a 
study where gut microbial populations were also altered due to the whole grain 
intervention [ 8 ].    It is clear from this work on precursors of TMAO that while there 
may be several complexities in assigning biomarkers to disease risk that are also 
derived from diet, the one carbon metabolism pathway and phospholipid metabo-
lism are likely key areas of interaction between diet, physiology, gut microbiota, 
and cardiovascular disease.  

5.3.5     Protein-Rich Diets and Gut Microbiota 

 While human protein digestion and amino acid absorption are effi cient, some 
 proteins and free amino acids still reach the colon and are associated to increased 
production of potentially toxic substances such as volatile sulfur compounds, 
ammonia, and  p -cresol [ 30 ,  31 ]. Experimental evidence from animal models and 
in vitro data shows that dietary proteins can infl uence cancer expression. Increased 
dietary protein consumption can cause increased colonic DNA damage and thinning 
of the colonic mucosal barrier [ 32 ]. Production of microbial metabolites from amino 
acids can be reduced by dietary fi ber (via increasing the proportion of carbohydrate 
reaching the colon), as carbohydrate appears to be a preferred substrate for most gut 
microbiota species [ 32 ]. 

 The molar ratios of the BCFAs isovalerate and isobutyrate, compounds resulting 
from the bacterial fermentation of valine and leucine, were found to be increased 
relative to total fecal SCFAs with high-protein diets. A marked increase in fecal 
nitrogenous organic compounds (NOC) amounts was also found when subjects con-
sumed high-protein diets. NOCs are carcinogens in vitro; although the toxicological 
signifi cance of increased fecal NOCs is uncertain, NOCs, at concentrations present 
in the colonic lumen, contribute to DNA damage in the colon and rectum and pos-
sibly to increased risk of human cancer [ 33 ]. Broadly speaking, much evidence 
suggests that interaction between protein and amino acids is negative for the host, 
though secondary roles of these metabolites on gene signalling and immune func-
tion have not been researched.  

5.3.6     Interaction of a Polyphenol-Rich Diet 
with the Gut Microbiota 

 While not a nutrient in the strict sense, polyphenols, or at least polyphenol-rich 
foods may also lead to a change in gut microbiota metabolism, notable examples 
being coffee and chocolate [ 34 ]. This metabolic interaction may lead to many 
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downstream effects and it has even been suggested that there is a link between 
 preference for chocolate and gut microbiota, depending on how cocoa polyphenols 
are metabolized [ 35 ]. While conceptually it makes sense that people who regularly 
consume chocolates have gut microbiota more readily adapted to metabolizing 
cocoa polyphenols compared to those who avoid chocolate, it remains an intriguing 
question as to whether there are wider effects beyond gut microbial metabolism and 
into the realm of “gut-host interactions.” Certainly recent studies in both humans 
[ 36 ] and rodents [ 37 ] clearly demonstrate that cocoa polyphenols can alter gut 
microbiota populations. In vitro colon model studies fi nd that cocoa polyphenols 
increase butyric acid production and formation of 3-hydroxyphenylpropionic acid 
from cocoa fl avanols [ 38 ]. Consumption of dark chocolates also increases 
3-hydroxyphenylpropionic acid and hippurate excretion in urine [ 35 ]. As will be 
addressed below, phenolic compounds may also be metabolized into hippuric acid 
[ 39 ], and this convergence with amino acid metabolism may lead to some problems 
in interpreting metabolomics data relating to polyphenols and amino acid intake. 
To be confi dent of identifying changes in gut microbial metabolism, several related 
changes may need to be identifi ed, preferably with concurrent changes to gut micro-
biota populations. 

 While it is clear that there is a relationship between diet, gut microbiota, and 
certain metabolites resulting from gut microbial metabolism, the link between gut 
microbial metabolites and systemic effects remains largely unclear. Are they simply 
markers, or also mediators?    A number of dietary phenolic compounds act as signal-
ling molecules for regulating various metabolic cascades [ 40 ], though no data exists 
on whether of the common aromatic metabolites identifi ed as being produced by gut 
microbiota have any role in infl uencing gene expression. 

 There is much that remains to be studied in terms of the diet and gut microbiota – 
protein-rich or sulfur-rich diets have received relatively little attention compared to 
high-fat diets or different sources of carbohydrates and prebiotics. Beyond specifi c 
pre- and probiotics, several different food groups are also known to have an effect 
on the gut microbiota, with consequent possible effects on gut microbial metabo-
lism, though to date whether these effects have long-term effects on the host is less 
clear. This is further complicated by the apparent resistance of gut microbial popu-
lations to long-term change, as demonstrated by fecal transplantation studies, where 
host populations frequently revert towards pretransplantation levels [ 41 ].   

5.4     Nutritional Metabolomics: A Methodology Well Suited 
for Understanding the Effects of Food on Gut Microbiota 

 Metabolomics is the study of multiple metabolites (small molecules, generally 
<1,500 Da) in response to different stimuli or conditions and generally involves 
the measuring of several to hundreds of metabolites or thousands of features in a 
metabolic profi le [ 42 ]. This is followed by multivariate analysis to determine 
what metabolite(s) best explain(s) the research question. Metabolomics is 
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complementary to other omics such as genomics and proteomics. So while genetics 
is often seen as a “blueprint,” genetic disposition is often not refl ected in phenotype. 
As metabolites are the end product of genotype differences, they refl ect how a sys-
tem is responding to different stimuli. Simplistically, metabolites can be seen as the 
result of genotype + epigenetic modifi cation + posttranslational modifi cation of 
proteins + interaction with the environment. Chapters   2     and   3     elaborate on general 
metabolomics methodologies and data modelling. 

5.4.1     Metabolomics Methods to Study Gut Activity 
Effects on Metabolism 

 Metabolomics is mainly based on two technologies: nuclear magnetic resonance 
(NMR) and mass spectrometry (MS). Among a wide variety of applications, it has 
been used in characterizing the metabolic fi ngerprint of mammalian hosts under 
conditions designed to alter the microbial communities in the gastrointestinal tract. 
While a wealth of studies have found associations between metabolic patterns and 
diseases to (deregulated) gut microbiota, the full biochemical characterization of 
the gut microbial activity is yet to be defi ned. To defi ne the metabolome of the gut 
microbiome, Wikoff et al. [ 43 ] used an untargeted MS-based strategy to compare 
plasma extracts of germ-free mice to conventional mice. Indole-containing metabo-
lites, phenylated-organic acids, and phase II metabolites of these (sulfated and gluc-
uronidated species) were found in conventional mice and either absent or poorly 
represented in germ-free animals. The absence of phase II metabolites in germ-free 
mice suggests a direct impact of the gut microfl ora on the drug metabolism capacity 
of the host, where interplay between gut (microbes) and liver (mammal) takes place. 

 Other strategies to investigate the function of the metabolite infl uenced by the 
gut microbiota have included urinary and fecal MS-based profi ling of metabolites 
from Wistar rats exposed to a broad-spectrum β-lactam antibiotic (imipenem/cilas-
tatin sodium) and were compared before and after exposure [ 44 ]. An apparent meta-
bolic switchover is observed within 24 h of antibiotic exposure and affecting a wide 
range of central metabolic pathways (mainly amino acid metabolism, but also 
organic acid metabolism, oligopeptides, carbohydrate metabolism, purine and 
pyrimidine metabolism, and the TCA cycle). Benzene- and indole-containing sub-
stances, including tryptophan and hippuric acid, were dramatically reduced by the 
antibiotic treatment. 

 These two studies [ 43 ,  44 ], using different strategies to remove the infl uence of 
the gut microbiota, lead to consistent results on the chemical nature of metabolites 
produced by gut microbiota activity. The fact that different biological matrices were 
used for metabolomics analysis (plasma [ 43 ] and urine and feces [ 44 ]) suggests 
comparable effects in all systemic biofl uids, at least in rodents. 

 While most metabolomics studies have focused on metabolite analysis of plasma, 
urine, and fecal water, there are other potential methods for understanding gut 
microbiotal metabolism that to date have not had widespread use. These include 
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headspace GC-MS analysis of volatile organic compounds from feces [ 45 ], which 
can measure up to 90 compounds present in the fecal headspace. Breath analysis 
may also be a fruitful area for understanding gut microbiota activity; several breath 
analyses are already used in nutrition to measure gut microbiota activity including 
breath hydrogen to monitor gut fermentation and the urea breath test for  Helicobacter 
pylori  infection [ 46 ]. Gasses produced by gut bacterial fermentation not only exit 
via fl atus but can also be measured in breath – especially those that are active in the 
stomach, as is the case with  H. pylori . The lactose breath test is another practical 
example, where lactose tolerant people can break down lactose before reaching the 
intestine, while in lactose-intolerant people, lactose reaches the intestine and is rap-
idly fermented, leading to the production of hydrogen gas. Hydrogen is normally 
present in low concentrations in breath, so any spike in breath hydrogen is clearly 
linked to lactose intolerance. The same concept is also used for measuring the 
 fermentation of dietary fi bers by gut microbiota in clinical trials [ 47 ].   

5.5     Metabolites of Gut Activity 

 The ensemble of bacterial species in the gut can modulate metabolic reactions 
essential to the host’s metabolism and health. There are a set of metabolites that 
consistently directly or indirectly stand out in association studies on diseases such 
as obesity, insulin resistance, type II diabetes, cancer, cardiovascular disease, 
chronic systemic infl ammation, and autism and related neurological conditions 
[ 15 ]. These metabolites include SCFAs, bile acids, choline metabolites, phenolic, 
benzoyl, and phenyl derivatives and indole derivatives (Figs.  5.1  and  5.2 ). Given the 
range of conditions where these metabolites may be involved, there is now little 
doubt about the contribution of the gut microbiota to host metabolism and 
maintenance.

5.5.1       Short-Chain Fatty Acids 

 Possibly the best known examples of gut microbiota metabolites are the SCFAs ace-
tate, propionate, and butyrate, which result from bacterial fermentation of carbohy-
drates. These are water-soluble and readily absorbed respiratory fuels used by the 
colonic epithelial cells (colonocytes) produced by anaerobic bacteria. Luminal fatty 
acids are the preferred fuels of colonocytes and the order of preference is SCFAs > 
ketone bodies > amino acid > glucose [ 48 ]. Butyrate is the preferred source of energy 
for colonic epithelial cells. Butyrate is transported into colonocytes, enters the mito-
chondria, and undergoes β oxidation to acetyl-CoA, which enters the TCA cycle 
resulting in the reduction of NAD +  to NADH. NADH enters the electron transport 
chain culminating in ATP production with CO 2  as a by-product [ 49 ]. Butyrate is 
associated with a decreased risk of colon cancer proliferation, modulation of 
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infl ammation, and an increase in satiety [ 50 – 54 ]. Absorbed acetate and propionate 
are delivered to hepatocytes, which consume most of the propionate for gluconeo-
genesis. Although acetate can be used for lipogenesis in colonocytes, hepatocytes 
and adipocytes are the principal sites for de novo lipogenesis, at least in rodents. 
SCFAs also act as signalling molecules. Propionate, acetate, and to a lesser extent 
butyrate and pentanoate are ligands for at least two G protein-coupled receptors 
(GPCRs), Gpr41 and Gpr43. Both GPCRs are broadly expressed, including in the 
distal small intestine, colon, and adipocytes. SCFAs (C1–C6), which are ligands for 
Gpr41, stimulate expression of leptin in mouse-cultured adipocytes [ 55 ]. Leptin is a 
polypeptide hormone with pleiotropic effects on appetite and energy metabolism. 
This possible link between fi ber intake, gut microbiota, and satiety has opened up a 
new area of possibilities for nutrition research. Clostridia are saccharolytic and amino 
acid fermenting species and are able to produce the three main SCFAs in the colon. 
Many other bacteria such as Bacteroides, Eubacteria, and Propionibacteria are known 
for producing specifi c SCFA from various substrate sources [ 4 ,  49 ]. Most SCFAs are 
produced from the fermentation of carbohydrates, with smaller amounts by microbial 
protein degradation in the large intestine. In addition to providing energy for the 
colon, SCFAs are important energy sources for muscle, kidneys, heart, and brain.  

  Fig. 5.2    Proposed indole signalling and metabolism in the intestine (inspired by [ 43 ,  44 ,  65 ])       
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5.5.2     Phenolic and Phenyl Metabolites 

 Hippuric acid is a conjugate of glycine with benzoic acid and is a common end 
 product of metabolism excreted in urine. Dietary sources of protein and polyphenols 
(fruits, vegetables, coffee, tea, chocolate) ultimately lead to the degradation into 
quinic acid and benzoic acid by colonic microfl ora which are then oxidized to hip-
purate by hepatic mitochondrial function, in a CoA-dependent fashion [ 34 ,  39 ,  56 ]. 
Therefore, diets rich in protein and polyphenols lead to increased excretion of hip-
purate and other phenol-related metabolites such as  p -cresol, phenol,  p - hydroxybenzoic  
acid, and  p -hydroxyphenylacetic acid [ 34 ,  57 ].  p - Hydroxyphenylacetic  acid has 
been identifi ed as an intermediate of  p -cresol production from tyrosine and is ele-
vated in a variety of conditions [ 34 ,  57 ]. Hippurate is possibly the most recognized 
gut microbial co-metabolite and has been associated with a variety of conditions or 
disease status, such as obesity, high blood pressure, Crohn’s disease and ulcerative 
colitis, autism (decreased excretion), type I and II diabetes, and anxiety (increased 
excretion) [ 39 ]. As an example of the relative amount of hippurate precursors, 
Table  5.2  summarizes different foods and their potential to form hippurate. The 
amount of potential hippurate from coffee and tea is far greater than the other types 
of food listed, most notably dark chocolate, also considered a major source of 
 polyphenols in the diet. Aromatic amino acids are also potential sources of hippu-
rate, though the amount of these actually reaching the large intestine is potentially 
lower than for polyphenols. Caution is needed with the interpretation that elevated 
hippuric acid is mainly due to polyphenol-rich foods in the diet, as aromatic amino 
acid-rich foods such as meat and fi sh could lead to elevated levels in cases of protein 
malabsorption.

    p -Cresol-sulfate is an abundant compound in urine that is obtained from protein 
fermentation in the human gut, derived from tyrosine and phenylalanine metabo-
lism. Gut bacteria [ 57 ,  58 ] such as the pathogen  Clostridium diffi cile  [ 59 ] are able 
to convert tyrosine into  p -cresol. In humans,  p -cresol is almost completely  sulfonated 
into  p -cresol sulfate by SULT1A1 (human cytosolic sulfotransferase) which is an 
enzyme able to sulfonate various substrates, including xenobiotics [ 60 ]. High 
amounts of  p -cresol in urine are found in adult celiac disease patients [ 57 ].  p -Cresol 
can exert a variety of effects such as activation of leukocyte free radical production 
[ 61 ] and blocking the conversion of dopamine into noradrenaline [ 62 ]. It is argued 
that given the high amount of  p -cresol produced in the body, depending on the diet 
and eventual modulation of gut bacterial composition, impaired sulfation and events 
thereof (drug metabolism) might take place, depending on the individual [ 60 ]. 
In addition to  p -cresol, phenol is also produced in the gut, mostly attributed to aero-
bic bacteria ( E. coli ,  Proteus  sp,  S. faecalis ,  Staphylococcus albus ), while  p -cresol 
is produced by anaerobic bacteria [ 58 ]. As anaerobic bacteria outnumber aerobic 
bacteria in the gastrointestinal tract, it is expected that there is greater excretion of 
 p -cresol than phenol. 

 Phenylacetylglutamine is derived from β-phenylethylamine formed in the large 
bowel by decarboxylation of phenylalanine released by bacterial proteolysis of 
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unabsorbed protein residues [ 63 ]. Indoxyl sulfate and phenylacetylglutamine have 
been found in higher concentrations in the plasma of diabetic individuals compared 
to nondiabetics. Abnormal urinary excretion of phenylacetylglutamine, hippurate, 
and hydroxyhippurates has been reported in autistic children [ 64 ] (see Chap.   16    ).  

5.5.3     Indole Metabolites 

 Copious amounts of indole are produced by the human body and ultimately excreted 
in urine, in the form of indoxyl sulfate. Indole has been thus associated to gut micro-
bial activity and is produced by tryptophanase (TnA) that reversibly converts 
 tryptophan into indole, pyruvate, and ammonia [ 65 ]. The elimination of tryptophan, 
instead of indole, in urine can be associated to altered microbial activity in the gut. 
Over 85 bacterial species are known as indole-producing bacteria [ 65 ] and in the 
gut, indole is a signalling molecule recognized by intestinal epithelial cells and is 
used to strengthen the host cell barrier, maintain controlled infl ammation, and 
increase resistance to pathogen colonization [ 66 ]. It is not known if  E. coli  is able to 
degrade indole, but many non-indole-producing bacteria encode various oxygen-
ases that can modify or degrade indole, producing indole derivatives, such as indi-
goid compounds [ 43 ,  65 ]. Independent from gut microbial activity, indole can be 
further modifi ed into sulfated, glucuronidated, and fatty acid-conjugated species, 
such as indoxyl sulfate, indoxyl glucuronide, and indole-3-propionic acid (IPA) and 
indole-2-acetic acid (IAA) [ 43 ] (Fig.  5.2 ). Indole has been compared to the known 
autoinducer-2 (AI-2), a furanosyl borate diester, from the family of signalling mol-
ecules used in quorum sensing, although it is still unclear how the roles of two 
molecules are connected to each other [ 65 ]. 

 Tryptamine is another metabolite in the tryptophan metabolism that is decarbox-
ylated by mammalian L-tryptophan decarboxylyase from tryptophan, as well as 
degraded into indole-3-acetaldehyde by gut bacteria. Low tryptamine levels in urine 
have been detected in patients with severe depression [ 67 ], while high levels of this 
molecule in urine and feces have been found in antibiotic-treated subjects [ 44 ]. 
Abnormal tryptophan metabolism is indicated in cognitive disorders, such as 
depression, and 5-hydroxy-L-tryptophan has been used clinically for decades to 
increase serotonin production in the brain [ 68 ]. 

 IAA is a known phytohormone, which belongs to the auxin class of compounds 
that regulates cell growth and development. Diverse bacterial strains produce IAA, 
especially endophytes, which signal biofi lm formation. In the gut, indoles have been 
described to lead to biofi lm formation [ 65 ] and regulation of virulence in vitro and 
in vivo [ 69 ] and specifi cally IAA has been identifi ed as a marker of gut activity [ 44 ] 
and enhancer of cellular defense [ 70 ]. Thus, it could be speculated that the indole 
class of compounds may act as inter-kingdom signalling molecules regulating mam-
malian, bacterial, and plant signalling. 

 IPA is a potent antioxidant and neuroprotective molecule. IPA completely 
 protected primary neurons and neuroblastoma cells against oxidative damage and 
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death caused by exposure to Alzheimer β-amyloid protein, by inhibition of 
 superoxide dismutase, or by treatment with hydrogen peroxide [ 71 ]. The capacity of 
IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine con-
sidered to be the most potent naturally occurring scavenger of free radicals [ 71 ]. 

 In addition, 6-hydroxymelatonin, an oxidation product of melatonin was also 
identifi ed as a marker of gut activity, as well as other known neurotransmitters such 
as DOPA, dopamine, norepinephrine, and epinephrine which play important roles in 
the brain [ 44 ]. Several stress mechanisms have been correlated to alteration of bac-
terial composition of the gastrointestinal tract (GI), altering epithelial cell function, 
motility, and mucus secretion. Upon stress, norepinephrine is released into the GI 
tract, potentially altering gut microbial composition and function [ 72 ]. These fi nd-
ings are evidence of the strong association of microbial-mammalian metabolism to 
the gut-brain axis.  

5.5.4     Choline Metabolites 

 Eggs, milk, liver, red meat, poultry, shell fi sh, and fi sh are natural sources of phos-
phatidylcholine and choline. As described earlier, microbial conversion of dietary 
phosphatidylcholine and choline (or betaine) leads to the production of TMA in the 
gut which is oxidized in the liver to TMAO by the hepatic fl avin monooxygenase 
(FMO) family of enzymes, FMO3. A study on mice has shown that dietary supple-
mentation with choline, TMAO, or betaine was found to promote upregulation of 
multiple receptors linked to atherosclerosis [ 16 ]. Increased levels of TMAO were 
also associated with nonalcoholic fatty liver disease [ 73 ].   

5.6     Gut-Liver Interplay 

 A portion of the products of colonic fermentation are absorbed by the colonocytes 
and via specifi c pathways lead to the production of ATP, while others undergo bio-
transformation in the liver entering phase I and phase II types of metabolism 
(Fig.  5.3 ). Especially for phenyl, phenol, and indole derivatives, sulfation, gluc-
uronidation, and glycine conjugation occur and have been described [ 43 ]. Most 
commonly these metabolites are more water soluble and increased polarity of con-
jugates may limit passive partitioning into cells, thus increasing excretion.

   Biotransformation capability of the host is dependent on several factors, includ-
ing age, gender, genetic variability, nutrition, disease, exposure to other chemicals 
that can inhibit or induce enzymes, and dose levels. For instance, the elderly shows 
decreased biotransformation capabilities and gender may also infl uence the effi -
ciency of biotransformation for specifi c metabolites or xenobiotics, as this is usually 
limited to hormone-related differences in the oxidizing cytochrome P-450 enzymes. 
This area is especially deserving of attention as we seek to further our  understanding 
of what role a dynamic gut microbiota may play in the host aging process.  
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5.7     Future Directions 

 Gut microbiota has relevance for human health and disease beyond the gastrointes-
tinal tract, appearing to have a systemic impact on human metabolism, through 
interaction with multiple organs. The gut microfl ora has proven causality in the 
induction of some metabolic disorders (see Chap.   12    ), and therapies that target the 
gut microbiota are at the forefront of nutrition research. Modulation of the gut 
microbiota is potentially attainable by altering dietary habits; however, we are still 
far away from understanding either general effects of macronutrients or specifi c 
effects of ingredients on gut microbiotal metabolism. There are cautionary tales 
too – while it is tempting to propose a role for gut microbiota in all observed health 
benefi ts related to food, this is not always the case. In one study, cereal fi ber changed 

  Fig. 5.3    Overview of the interaction between host organs and gut microbiota       
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gut microbiota composition, but there was no association between these changes 
and an observed improvement in insulin sensitivity [ 74 ]. It is possible that more 
focus is needed on microbial metabolism, rather than population shifts, an area 
where metabolomics may be a particularly useful methodology for helping to fi nd 
answers. 

 While metabolomics has been instrumental as an exploratory tool to fuel ideas 
and propose novel hypotheses, we believe that strategies to monitor the gut micro-
bial metabolome will be crucial to defi ne gut activity and its impact on metabolism. 
To achieve this, targeted metabolomics methods should be implemented to follow 
the different classes of gut microbial metabolites in health and disease. The quanti-
tation of metabolites will becoming increasingly important to defi ne the kinetics of 
metabolic fl uxes, and to determine mechanisms of action and their association with 
functionality. 

 Studying the potential activity of the gut cannot be deduced by solely looking at 
fecal samples, as fecal transit can vary considerably (12–120 h) and bacterial gradi-
ents in the colon exist and thus fecal samples may only be a poor approximation of 
metabolism along the colon. Gut microbiota metabolites seem to be not only prod-
ucts of digestion, and therefore simpler molecules to be either taken up as energy or 
discarded by the host, but also signalling functions are being unraveled that prospect 
a more complex interplay between microbiota and host. It is clear that in terms of 
our knowledge on the relationship between the diet and nutrition of the host, and our 
gut microbiota, we are at the beginning of an area that will have a profound impact 
on our current understanding of human nutrition.     
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    Chapter 6   
 Automated Annotation of Microbial 
and Human Flavonoid-Derived Metabolites 

                Velitchka     V.     Mihaleva    ,     Fatma     Yelda     Ünlü    ,     Jacques     Vervoort     , and     Lars     Ridder   

    Abstract     Flavonoids are a class of natural compounds essentially produced by 
plants that are part of animal and human diets and have assumed health-promoting 
benefi ts. Upon human consumption, these fl avonoids are to a modest extent absorbed 
in the small intestines. The major part arrives in the colon where the microfl ora 
utilises and converts the fl avonoids to a wide range of products. Many of these prod-
ucts are absorbed in the major intestines and subsequently metabolised by the host. 
To understand the impact of the microfl ora on the metabolism and possible effects 
on human health, complete (and quantitative) identifi cation of the microbial as well 
as human metabolic conversion products of fl avonoids is required. This is a chal-
lenging task, as these bioconversion products are often present in relatively small 
amounts, making classical identifi cation strategies based on (accurate) mass infor-
mation or nuclear magnetic resonance, not straightforward. In the absence of refer-
ence compounds, annotation of a component may be achieved by detailed expert 
evaluation, e.g. by searching for similar fragmentation patterns in spectral databases 
of known compounds. However, such manual analysis is a tedious task, and in 
advanced metabolite profi ling experiments, with large numbers of unknown metab-
olites, this is a major bottleneck. Therefore, new strategies are needed for quick and 
reliable identifi cation of the diverse range of molecules in complex matrices (faeces, 
blood, urine). Intelligent software for annotation and identifi cation of unknowns is 
crucial to fully exploit complex datasets. We developed a new software tool 
(MAGMA) for (sub)structure-based annotation of LC-MSn datasets which, 
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 combined with a newly established database for phenolic molecules (MetIDB), 
enables semiautomated identifi cation of fl avonoid derivatives.  

  Keywords     Flavonoids   •   Identifi cation   •   Automation   •   LC-MS   •   NMR   •   Microfl ora   
•   MAGMA   •   PERCH NMR Software   •   Microbiota   •   MetIDB   •   Profi ling   •   Metabolites   
•   Glucuronide   •   Sulphate   •   Valerolactone   •   Hippuric acid   •   Epicatechin   •   Beta oxida-
tion   •   Alpha oxidation   •   Lactone hydrolysis   •   Gallocatechins   •   Urolithin  

6.1         Introduction 

 Flavonoids are a class of compounds with diverse biological functions in plants and 
animals. They are almost exclusively biosynthesised in plants and are involved in 
many biologically relevant functions [ 1 ]. Flavonoids are probably most commonly 
known for their antioxidant activity and assumed health-promoting benefi ts such as 
anti-proliferative and antitumour behaviour. The consumption of fl avonoid- 
containing food products (e.g. vegetables, fruit, soybean, olive oil) and drinks (e.g. 
tea, wine) has been subject of numerous refl ections about the link between dietary 
habits and health effects [ 2 ]. Although fl avonoids are usually considered to have 
positive health effects, they have also been assigned potential negative properties. 
For example, isofl avones were shown to interfere with estradiol binding to the estro-
gen receptor, and catechins and fl avonols were shown to be able to bind to DNA and 
RNA [ 3 ,  4 ]. 

 About 6,000 fl avonoids have been identifi ed from natural sources [ 5 ,  6 ], but due 
to the known diversity in the plant kingdom, many more are bound to exist. In addi-
tion, a large range of fl avonoids metabolites are formed by microbial, animal and 
human biotransformation. There have been numerous nutritional, mechanistic and 
physiological studies of fl avonoids, with large differences in biological outcomes. 
This diversity in results is probably a consequence of the many (biochemical) modi-
fi cations fl avonoids can be subject to. Flavonoids can be methylated, acylated, sul-
phated, glycosidated or glucuronidated by humans, but fl avonoids are also 
extensively metabolised by the microbial intestinal fl ora. These modifi cations and/
or conjugations have impact on the physicochemical characteristics of the fl avo-
noids, such as solubility, receptor-binding abilities and antioxidant or prooxidant 
behaviour. It is therefore diffi cult to predict a priori what the effect of fl avonoids in 
a diet for a human individual will be, as the kinetics of modifi cations and conjuga-
tion reactions can be different for each person. 

 Upon consumption, fl avonoids are only to a small extend absorbed in the small 
intestines [ 7 ]. Most of the fl avonoids present in the diet are converted by the micro-
bial fl ora in the colon. In the microbial breakdown pathway of fl avonoids, C-ring 
fi ssion of aglycones is usually observed. This results in hydroxylated aromatic mol-
ecules that can be further metabolised to smaller phenylic acids and alcohols, 
including valerolactones, valeric acids and phenyl-acetic acids [ 8 ]. Figure  6.1  shows 
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the microbial metabolic pathways of quercetin and epicatechin. Microbial conversion 
of anthocyanins occurs also via C-ring fi ssion, resulting in many different aromatic 
compounds with hydroxyl, carboxy, methoxy or acetaldehyde functional groups. 
The products formed refl ect the substitution pattern of the original anthocyanins [ 9 ]. 
Flavan-3-ols, like epicatechin in Fig.  6.1 , are converted into different valerolactone, 
valeric acid and aromatic ring structures. The substitution pattern of these products 
refl ects the substitution pattern of the original fl avan-3-ols. Ellagitannins are large 

Quercetin Epicatechin

5-(3’,4’ -dihydroxyphenyl)-g-valerolactone

4-hydroxy-5-(3’,4’ -dihydroxyphenyl)-valeric acid

3-(3-hydroxy-phenyl)-propionic acid

3,4-dihydroxyphenyl-acetic acid

3-hydroxyphenyl-acetic acid

3-hydroxybenzoic acid

hippuric acid

beta oxidation

dehydroxylation

alpha oxidation

dehydroxylation
glycination

lactone hydrolysis

C-ring fission

A C
B

  Fig. 6.1    Examples of microbial conversion of fl avonoids       
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polyphenolic molecules which are not absorbed by the intestines but are converted 
by the microfl ora into a series of lactones, urolithins [ 9 ]. Ellagitannins are abun-
dantly present in different kinds of nuts (walnut, chestnut, pecan nut) and berries 
(strawberry, raspberry, blueberry) but also in pomegranate, grapes and tea [ 9 ]. Due 
to intra- and interindividual variation in human microbial composition of the colon, 
major differences are expected to occur in the microbial breakdown pathways of 
fl avonoid molecules [ 10 ].

   Upon absorption, a large part of the microbiotic conversion products are metabo-
lised by human biotransformation enzymes predominantly present in the gut epithe-
lial cells and in the liver. Xenobiotic metabolism is generally classifi ed into two 
phases. Phase 1 biotransformation involves a range of oxidation reactions, catalysed 
primarily by cytochrome P450 enzymes as well as by fl avinmonooxygenases, 
resulting in hydroxylation, epoxidation, heteroatom dealkylation, heteroatom oxi-
dation, alcohol oxidation, oxidative deamination, dehydrogenations, hydrolysis, 
etc. These reactions generally lead to less lipophilic molecules, which are more 
susceptible to phase 2 biotransformations. The latter consist of conjugation of a 
range of (solubilising) moieties mostly to hydroxyl groups, including sulfation, 
glucuronidation, acetylation, glycination and methylation. Glutathione conjugation 
has an important role in detoxifying reactive electrophilic species. As these detoxi-
fi cation processes must operate on wide ranges of xenobiotics, they are generally 
catalyzed by families of enzymes, whose members have different, but broad and 
partly overlapping, substrate specifi cities. 

 While it is thought that the main function of human biotransformation is to solu-
bilise foreign lipophilic compounds, in order to detoxify and excrete them from the 
body, the same types of reactions occur with common dietary phytochemicals and 
their microbiotic conversion products. As most polyphenols and phenolic acids dis-
cussed in previous paragraphs are only moderately lipophilic and comprising mul-
tiple hydroxylic and carboxylic moieties, they are more typical substrates for phase 
2 than for phase 1 biotransformation enzymes. Indeed polyphenols and phenolic 
acids undergo predominantly phase 2 conjugations with glucuronyl, sulphate, gly-
cine and methyl groups. Nevertheless, several studies suggest, mainly on the basis 
of in vitro experiments, that phase 1 reactions are also involved in hydroxylation of 
isofl avones and fl avonoids [ 11 ,  12 ]. 

 The combination of the variety of metabolic conversions of dietary compounds 
by the microbiota in the intestinal tract with the large range of human biotransfor-
mations reactions results in a vast number of possible metabolites. The actual range 
and relative quantities of metabolites circulating in blood, and excreted in urine, can 
vary signifi cantly in time but also between individuals due to differences in compo-
sition of the microbiota and the activities of the human biotransformation enzymes. 
For example, the microbiotic conversion of the isofl avone daidzein to the isofl avan 
equol was shown to differ signifi cantly between individuals as determined from 
urine excretion [ 13 ]. Equol has an inhibitory effect on topoisomerase [ 14 ] which has 
been associated with preventive effects towards hormone-related cancers [ 15 ]. The 
difference in equol formation was suggested to be a consequence of differences in 
gut microfl ora induced by habitual fat versus carbohydrate consumption [ 16 ]. 
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Differences in human biotransformation may be caused by genetic polymorphisms. 
A well-studied example is the effect of glutathione S-transferase polymorphism on 
the pharmacokinetics of isothiocyanates. Similarly, genetic polymorphisms, espe-
cially phase 2 biotransformation enzymes, are indicated to infl uence the fate of 
phytochemicals in mammals [ 12 ]. While phase 2 conjugation is mainly considered 
to be important for rapid excretion of xenobiotics, some glucuronyl conjugates have 
been suggested to have biological activities that can potentially contribute to in vivo 
effects on health [ 17 ].  

6.2     Profi ling of Metabolites 

 To understand the impact of diet and the role of the microfl ora, the full range of 
metabolites including human biotransformation products need to be identifi ed and 
quantifi ed [ 18 ]. Hitherto the systematic study of the intra- and interindividual varia-
tion of fl avonoid metabolism has been hampered by the large diversity of products 
formed and the low amounts of metabolites present in the complex matrices under 
study. Continuous developments in the area of metabolomics enable comprehensive 
profi ling of metabolites in complex matrices like blood plasma and urine. Mass 
spectrometry, coupled to gas (GC-MS) or liquid (LC-MS) chromatography, and 
NMR are the major platforms for metabolite profi ling and identifi cation. Due to its 
sensitivity, mass spectrometry is the principle technology for large-scale metabolite 
profi ling. However, with MS-based platforms, chemical structure elucidation is 
often only possible on the basis of comparison to reference compounds. As a result, 
in practice, large fractions of detected features in LC-MS-based metabolomics 
remain “unknown.” This is also the case of fl avonoid metabolic products for which 
reference molecules are not available. Fragmentation can help to go one step further 
and to (partially) annotate the detected molecules. Characteristic fragmentations 
may be recognised by comparison to literature reports or databases. GC-MS is com-
monly based on relatively reproducible “hard” electron impact ionisation, which 
allows successful searching in available databases for similar spectra of known 
compounds. Fragmentation data from tandem MS or ion trap-based MSn experi-
ments, based on collision-induced dissociation, are more instrument-specifi c. 

 Many fl avonoids and their metabolic products occur as different positional and 
stereochemical isomers, which can usually not be differentiated with mass spec-
trometry. For example, conjugation with glycosyl groups can occur at different 
positions on the fl avonoid backbone, yielding different molecules with identical 
mass. NMR can help in the identifi cation of the large number of positional and ste-
reochemical isomers. However, direct  1 H-NMR analysis of crude extracts can result 
in spectral data that are diffi cult to interpret, due to overlapping NMR signals of 
different metabolites as well as dominating NMR signals of highly abundant metab-
olites. For example, hippuric acid [ 19 ] which is abundantly present in urine samples 
can give rise to strong aromatic proton signals which hinder identifi cation of the 
lower abundant intact phenol conjugates in urine. Therefore, full structure 
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 elucidation by NMR often requires purifi cation of the metabolites using, for exam-
ple, MS-based SPE trapping procedure, where LC-MS is coupled to NMR [ 20 ]. 
Structure elucidation of purifi ed components is mostly achieved by a combination 
of mass spectrometry and NMR, preferentially one-dimensional  1 H-NMR measure-
ments combined with two-dimensional (or multidimensional) spectra. However, for 
mass- limited samples, one-dimensional  1 H-NMR measurements can easily be 
achieved if the amount is 1 μm of compound, but two-dimensional NMR spectra are 
with the current state of technology not feasible for 1 μm of compound. For homo-
nuclear 2D NMR, 10 μm of compound (or more) is requested, for hetero-nuclear 2D 
NMR, 30 μm of compound (or more) is needed. In addition, extensive purifi cation 
is often needed, as background signals can obscure the molecule of interest in the 
NMR spectrum.  1 H-NMR spectra combined with MS data on molecular mass, MS/
MS fragments and expected molecular formula can be used for structure elucidation 
and identifi cation of metabolites isolated from complex mixtures [ 8 ,  21 ].  

6.3     Automated Structure Elucidation 

 MS/MS measurements using soft ionisation techniques, such as electro-spray, pro-
vide information about the mass of parent molecular ions as well as their fragments, 
which provide the possibility to interpret the data in the absence of reference spec-
tra. In the case of high-accuracy MS data, the molecular m/z value can be used to 
derive the likely elemental composition of the molecule. Computational approaches 
allow automatic retrieval of candidate molecules with matching monoisotopic mass, 
or elemental formula, from large chemical databases and subsequent assessment of 
the chemical structures in comparison of the observed fragmentation patterns. A 
number of methods have been developed that annotate m/z values in a fragmenta-
tion spectrum with in silico generated substructures of possible candidate mole-
cules. Methods based on the concept include EPIC [ 22 ] (available as MassFragment 
software from Waters), Mass-Frontier [ 23 ], FiD [ 24 ], MetFrag [ 25 ] and Mass- 
MetaSite [ 26 ]. We recently described an extended algorithm that can handle multi-
stage spectral trees, obtained from LC-MSn experiments, where  n  > 2 [ 27 ]. This 
algorithm results in a hierarchical tree of substructures, where substructure assign-
ments at each MS level take the assignments of the precursor as well as subsequent 
fragmentations into account. The substructure annotation results in a matching 
score that can be used to rank different candidate structures for an unknown metabo-
lite, to support its identifi cation. This method has been applied to a complete 
LC-MSn metabolite profi le of a green tea extract, demonstrating that the majority of 
compounds that had been assigned by rigorous expert analysis [ 8 ] were successfully 
ranked among extensive sets of candidate structures retrieved from the largest pub-
lic chemical database, PubChem [ 28 ]. In addition, the computational annotation of 
the complex LC-MSn profi le resulted in the additional putative annotation of a 
diverse set of components, some of which had not been reported in tea before. 
Reliable annotation of metabolites is of great help in subsequent identifi cation 
efforts, which are commonly based on NMR measurements. 
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 Identifi cation of unknown metabolites based on NMR is facilitated by databases 
of (already assigned and characterised)  1 H-NMR spectra of known molecules, 
which can be queried for the observed spectral features. The Human Metabolome 
Database (  http://www.hmdb.ca/    ), the Spectral Database for Organic Compounds 
SDBS (  http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi    ), the NMRShiftDB 
(  http://nmrshiftdb.ice.mpg.de/    ) and the Biological Magnetic Resonance Bank 
(  http://www.bmrb.wisc.edu/    ) are publicly available databases that contain NMR 
spectra of metabolites. A major limitation of existing NMR databases is that their 
content is mostly limited to primary metabolites. Recently we developed a new 
database, systematically including  1 H-NMR spectra of all known glycoside, gluc-
uronide, sulphate and methyl conjugates of the phenolic molecules, supporting 
more reliable and complete identifi cation (MetIDB,   www.metidb.org    ). The advan-
tage of using  1 H-NMR spectra for phenolic compounds is the availability of signals 
in the 9.0–5.5 ppm range of the aromatic and sp2 photons. These signals are usually 
well resolved and the chemical shift positions can be easily extracted and used for 
querying the MetIDB database. The majority of the  1 H-NMR spectra in MetIDB are 
predicted spectra from 3D structure of the molecules with correct stereochemistry 
and conformation of the molecule and especially of the glycosyl and the glucuronyl 
fragments. These predicted spectra provide good starting values for structure verifi -
cation by iterative fi t of the predicted and experimental spectrum as we will 
demonstrate.  

6.4     Examples 

 Tea contains a diverse set of fl avonoids, which upon consumption are extensively 
metabolised by microbiota in the colon and via human biotransformation subse-
quently are excreted in the urine. Many of these metabolites are not yet present in 
databases. Therefore, in order to perform automatic annotation to LC-MS profi les 
of such urine samples, we applied in silico metabolic reaction rules to generate rel-
evant candidate molecule structures, starting from the compounds present in green 
tea. The reaction rules included basic hydrolysis reactions as catalysed by protease, 
esterase and glycosidase digestive enzymes, a number of well-studied conversions 
of fl avonoids by microfl ora resulting in valerolactones and valeric acids, as well as 
alpha and beta oxidations, para-dehydroxylation and decarboxylation (see Fig.  6.1  
for examples). Large molecules with a molecular mass above 600 Da., which are 
less likely to be absorbed directly from the intestinal tract [ 29 ], were removed from 
the resulting library. To account for human metabolism after uptake, a number of 
phase 2 biotransformations [ 30 ] were applied, resulting in a total set of almost 5,000 
compounds. Figure  6.2  illustrates the in silico generation metabolites for (epi)gal-
locatechin gallate. After formation of 5-(3′,4′,5′-trihydroxyphenyl)-γ-valerolactone 
systematically, all possible conjugates are generated, of which a subset of confi rmed 
metabolites is shown. The in silico generated metabolites were automatically 
matched against LC-MS  n   datasets obtained with urine samples after tea consump-
tion, and fragmentation spectra were annotated by in silico substructures as 
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described in the previous section. As an example, Fig.  6.3  shows the automatic 
substructure annotation of the spectral data obtained with 3′,4′-dihydroxyphenyl-
valerolactone- O-glucuronide. The fragment annotation confi rms that the structure is 
a dihydroxyphenyl-valerolactone that is O-glucuronidated. Ninety percent of the 
expert assignments that had been made prior to the analysis, for over 60 conjugated 
(poly)phenolic components in urine, were reproduced by this automated in silico 

Trihydroxyphenyl 
valerolactone

Gallocatechins

2x

2x

2x

2x

4x

2x

Trihydroxyphenyl 
valerolactone conjugates

  Fig. 6.2    Overview of the in silico metabolite generation process, including the example of gallo-
catechin. For each type of conjugate, only one positional isomer is shown. In the urine samples, 
often multiple stereo- or positional isomers are detected. These different isomers can usually not 
be uniquely assigned on the basis van MS fragmentation       
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workfl ow. Furthermore, the in silico analysis helped to make several additional 
annotations. It illustrates how MAGMa facilitates annotation of the LC-MSn data at 
suffi cient chemical detail to provide a general biochemical interpretation. However, 
the precise chemical rearrangement of the structure, e.g. which positional isomer, 
cannot be determined from the MS fragmentation data. Additional structural infor-
mation from nuclear magnetic resonance spectroscopy (NMR) is then needed to 
elucidate the complete structure [ 20 ].

     1 H-NMR structure confi rmation can be done based on predicted  1 H-NMR spec-
tra. These spectra provide good starting values for querying the public databases of 
known compounds or performing structure verifi cation by iterative fi tting of the 
experimental spectrum. A crucial step in the  1 H-NMR spectra prediction is the gen-
eration of a reliable 3D structure of the molecule. We have developed an algorithm 
for 3D structure generation of fl avonoids and their glycosylated secondary metabo-
lites. Briefl y the procedure is as follows. The glycosyl, glucuronide, sulphate or 
methoxyl fragments are detected in the molecule together with all hydroxyl groups. 
Then a set of compounds is generated representing all possible combinations for 
positioning these fragments in the molecule. In case of glucopyranosyl and glucuro-
nyl fragments, the structures are generated with the correct stereochemistry and 
chair conformation with as many as possible hydroxyl groups at equatorial position 
using the CORINA software (  http://www.molecular-networks.com    ). Then the 3D 
structure is used for  1 H-NMR spectra predictions in a specifi ed deuterated solvent 
using the PERCH NMR Software (  www.perchsolutions.com    ) following a similar 
procedure as described by [ 31 ]. The structures are optimised in three-dimensional 
space; a statistical set of conformers is generated using Monte-Carlo/molecular 
dynamic analysis. Solvent effects are taken into account by a dielectric continuum 
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  Fig. 6.3    MSn fragmentation of dihydroxyphenyl-valerolactone-glucuronide       
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model. By taking into account the stereochemistry, intramolecular interactions and 
solvent effects, chemical shifts and couplings are predicted accurately. The root 
mean square error (RMSE) of prediction of the chemical shifts of the sp3 and the 
aromatic protons was lower than 0.14 ppm, and those of the geminal couplings 
( 2 J H,H ) and the vicinal couplings ( 3 J H,H ) were lower than 0.84 and 0.30 Hz, respec-
tively. The predicted chemical shifts can be used for querying databases of NMR 
spectra of known compounds, and when experimental spectra with good signal-to- 
noise ratio are available, these can be fi tted using the predicted spectrum as a start-
ing point. It is not always possible to obtain clean  1 H-NMR spectra that allow 
iterative fi tting. In such cases, it might still be possible to extract the chemical shifts 
and compare these to the predicted ones. For example, the aromatic region of com-
pounds matching the exact mass of 3′,4′-dihydroxyphenyl)-γ-valerolactone gluc-
uronides contained additional signals which made the fi t of the spectra diffi cult. The 
MS/MS analysis limited possible structures to four: two positions for the glucuronyl 
moiety and R and S chirality of the C4 atom (see the scheme in Table  6.1 ). It is not 
possible to resolve the stereochemistry of the C4 atom on the basis of  1 H-NMR 
spectra only. Therefore, in the analysis, only the R isomer was included which 
reduced the problem to resolving the position of the glucuronyl fragment. When one 
of the hydroxyl groups is replaced by a glucuronyl moiety, major changes in the 
 1 H-NMR spectra are observed for the protons adjacent to the glucuronyl moiety 
while retaining the splitting pattern. In Table  6.1  the extracted experimental chemi-
cal shifts of the aromatic protons of the aglycone (compound 1) and the two possi-
ble glucuronide conjugates are listed. The three aromatic protons have very distinct 
splitting patterns: H2′ and H5′ are doublets with coupling constants of 2.1 and 
8.1 Hz, respectively, whereas H6′ is a double doublet coupled to H2′ and H5′. In the 
3′-O-glucuronide, the H2′ position was increased by 0.32 ppm when compared to 
the aglycone. In the 4′-O-glucuronide, the adjacent H5′ proton was the most affected 

    Table 6.1    NMR shifts (in ppm) of aromatic protons of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone 
and the 3′- and 4′- O-glucuronides. The induced chemical shift of the glucuronide fragment is 
given in  parenthesis    

 ID  OH   O -Glc  H2′  H5′  H6′ 
 1  3′,4′  6.75  6.76  6.69 
 2  3′,4′  3′  7.07 (0.32)  6.80 (0.04)  6.84 (0.15) 
 3  3′,4′  4′  6.81 (0.06)  7.01 (0.25)  6.72 (0.03) 
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and the chemical shift was increased by 0.25 ppm. The predicted chemical shifts for 
the aromatic protons of the correctly assigned isomer were within 0.15 ppm from 
the extracted experimental values. The prediction error was clearly much smaller 
than the induced change in the chemical shift which allowed the assignment of the 
correct structure. Such specifi c differences predicted for the 3′-O-glucuronide and 
4′-O-glucuronide isomers resulted in more reliable identifi cation of these structures 
from their experimental NMR spectra.

   Another example of effi cient structure identifi cation is the identifi cation/distinc-
tion of the different forms of conjugated urolithins. Urolithins are known to be 
microbial breakdown products of ellagic acid, a compound that has been reported to 
be present in strawberries, raspberries, pomegranates, walnuts and tea [ 32 ]. We were 
able to obtain good quality  1 H-NMR spectra of glucuronidated conjugates (Fig.  6.4 ) 
of urolithin-A and urolithin-B, purifi ed from urine samples. There were two uro-
lithin-A glucuronides that co-eluted and showed similar fragmentation patterns. The 
extracted chemical shifts of the aromatic protons are shown in Table  6.2  together 
with the literature data of the aglycones [ 33 ,  34 ]. The structure of urolithin (see 
scheme Table  6.2 ) can be considered as built of a chromene (H1–H4 protons) and a 
benzyl (H7–H10 protons) fragments. The identifi cation of  urolithin-B-3-O-glucuronide 
was straightforward based on the observed changes in the chemical shifts when com-
pared to the aglycone as the largest change in the chemical shifts was observed for 

6.877.27.47.67.888.2 5.055.15.15 4.05 3.53.6

6.877.27.47.67.888.2
chemical shift, ppm

5.055.15.15 4.05 3.53.6

experimental

a b

Urolithin-A-3-O-glucuronide

Urolithin-A-8-O-glucuronide

  Fig. 6.4    Experimental ( black ) and fi tted ( red  and  green ) spectra of urolithin-B-3-O-glucuronide 
( upper ) and a mixture of urolithin-A-3-O-glucuronide (in  red ) and 8-O-glucuronide (in  green ) 
( lower ). The aromatic region is shown on the  left  and the signals of the glucuronide moiety on the 
 right . The strong signal at 8.081 ppm is residual formic acid which was included in the fi t in the 
mixture of urolithin-A-3-O-glucuronides so that the overlapping signals could be resolved       
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the H2 and H4 protons. In urolithin-A there is an additional hydroxyl group in the 
benzene fragment. Two isomers are known in the literature [ 9 ,  32 ] in which the 
hydroxyl group is at position 8 (urolithin-A) and position 9 (isourolithin- A). These 
two isomers have the same splitting pattern of the benzene fragment. We have stud-
ied all four possible positions for the hydroxyl group, namely, hydroxyl at position 
3 in the chromen fragment and positions 8 and 9 in the benzyl fragment. The best 
agreement between the predicted and experimental chemical shifts was found for the 
urolithin-A-3-O-glucuronide and urolithin-A-8-3-O- glucuronide. Although the two 
urolithin-A glucuronides were co-eluting, the aromatic signals were well resolved in 
the  1 H NMR spectra, whereas the signals of the glucuronide moiety were heavily 
overlapped (see Fig.  6.4 ). The samples obtained by SPE extraction always contain 
residual amounts of formic acid which gives a singlet at 8.081 ppm. This singlet 
overlapped with the two doublets (H1 and H10) of urolithin-A-3-O-glucuronide. The 
fi nal fi t was performed using the predicted spectra of the two urolithin-A glucuro-
nides and formic acid. In the iterative procedure, the concentrations were optimised 
together with the chemical shifts, couplings and line widths.

    Intramolecular interactions can induce changes in the chemical shift positions of 
the substituent protons and sometimes also second-order effects which result in 
modifi ed splitting pattern. We observed these effects in the spectra of the glucuronyl 
fragment in all three urolithin conjugates. The strong overlap of the H2′ and H3′ 

    Table 6.2    NMR shifts (in ppm) of the aromatic protons of urolithin-B ( ID 1 ) and urolithin-A ( ID 
3 ) and their glucuronide conjugates. The induced chemical shift of the glucuronide fragment is 
given in  parenthesis    

 ID  OH   O -Glc  H1  H2  H4  H7  H8  H9  H10 

 1  3  8.15  6.85  6.75  8.25  7.57  7.88  8.18 
 2  3  8.204 

(0.054) 
 7.158 
(0.308) 

 7.113 
(0.363) 

 8.31 
(0.060) 

 7.598 
(0.011) 

 7.891 
(0.072) 

 8.252 

 3  3,8  7.98  6.86  6.76  7.64  7.36  8.06 
 4  8  3  8.104 

(0.124) 
 7.12 
(0.260) 

 7.081 
(0.321) 

 7.638 
(−0.002) 

 7.351 
(−0.004) 

 8.077 
(0.017) 

 5  3  8  8.008 
(0.028) 

 6.849 
(−0.011) 

 6.748 
(−0.012) 

 7.91 
(0.270) 

 7.608 
(0.248) 

 8.147 
(0.087) 
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protons of the glucuronyl fragment (difference in chemical shifts of 0.006, 0.009 
and 0.015 ppm for the urolithin-A-3-O-glucuronide, urolithin-B-3-O-glucuronide 
and urolithin-A-9-O-glucuronide, respectively) results in a complex splitting pat-
tern of the H1′ and the H4′ protons (see Fig.  6.4 ). Despite this heavy overlap, we 
were able to extract the chemical shifts for the H2′ and H3′ protons for all urolithin 
glucuronides which would not be possible by manual analysis of  1 H-NMR data 
only. These examples illustrate that predicted changes of the chemical shift of the 
protons adjacent to the substituents when compared to the aglycone can guide the 
assignment of the position of the substituent.  

6.5     Discussion 

 There is increasing awareness of the importance of the microbiota in the intestinal 
tract for the digestion of food and for the health of the host organism. Furthermore, 
evidence accumulates that functional differences exist in the microbiotic composi-
tion between individuals, which may have consequences in terms of effects of diet 
on various aspects of human health. To obtain a more detailed understanding, 
metabolomics is an essential tool, with the prerequisite that the large range of the 
metabolites involved in digestion still need be elucidated at the biochemical detail. 
Such large-scale metabolite profi ling experiments will be crucial to increase our 
knowledge of the bioactivities of specifi c components of the human diet, of which 
fl avonoids are currently the most well-known example, as well as their bioactive 
metabolites upon conversion by the microbiota and human biotransformation 
enzymes. Insight into differences in digestion between individuals is needed at a 
biochemical level to identify reliable biomarkers for the actual intake of bioactive 
dietary constituents and for the personal consequences of the diet. 

 Advancement in analytical mass spectrometry instrumentation (UPLC coupled 
to Orbitrap, TOF-based or FT mass spectrometry systems) has boosted the output 
obtained in metabolomics studies, yielding up to terabytes of information for a sin-
gle scientifi c study. Data analysis of many mass directed metabolomics studies 
relies on an untargeted analysis of the large datasets obtained with subsequent or 
concomitant statistical analysis hoping to fi nd biomarkers which are often not 
clearly defi ned nature. It is evident that a big leap forward can be obtained in these 
studies if components observed in the mass directed metabolomics studies could be 
annotated in an automated fashion, enabling a more holistic approach of the 
subject(s) under study. Several software approaches have been tried in the recent 
past to facilitate a better annotation of mass spectrometry studies by automatically 
retrieving candidate molecules with matching monoisotopic mass (which can be 
converted into elemental formula) from chemical databases and subsequent 
 assessment of the possible structures of the observed fragments. We recently 
described a new extended algorithm, MAGMA, which enables to apply such 
approach to multistage MSn data [ 27 ]. Since the automated approaches rely on 
matching candidate molecules, methods are needed to extend chemical databases 
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with new structures covering potential metabolites not yet observed or described. 
One possibility is to use in silico reaction rules to predict relevant molecules. The 
value of such an approach was demonstrated in a workfl ow for the automatic anno-
tation of metabolites of polyphenols present in urine data after consumption of tea 
(in press). To support the identifi cation of unknown metabolites with NMR, MetiDB 
(  www.metidb.org    ) was recently created, which contains 6,000 phenolic molecules 
and their calculated NMR spectra. This database will be extended with phase 2 
biotransformation molecules of these phenolic molecules, which is of great impor-
tance for the quick and reliable identifi cation of the components purifi ed from urine. 
The tight integration of in silico generation of biochemically relevant molecules and 
their annotation and identifi cation in LS/MS- and NMR-based metabolite profi ling 
data have great potential to accelerate the profi ling of novel metabolites and assess 
their potential biochemical source.  

6.6     Conclusions 

 Computational approaches are essential for the effi cient annotation and identifi cation 
of the large range of metabolites of dietary constituents, produced by microbiota in 
the human intestinal tract and by human biotransformation upon absorption. 
Systematic identifi cation will help to understand the role of the microbiota in diges-
tion and human health.     
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    Chapter 7   
 Metabonomics in Neonatal and Paediatric 
Research: Studying and Modulating Gut 
Functional Ecology for Optimal Growth 
and Development 

             Vassilios     Fanos      and     Laura     Cuzzolin   

    Abstract     Gut microbiota play a fundamental role in human health by promoting 
intestinal homeostasis, stimulating development of the immune system, and provid-
ing protection against pathogens. Relatively little is known about the acquisition 
and development of this complex microbial community during infancy. However, 
emerging ‘omics’ technologies are now being applied to the study of the gut micro-
bial ecology, generating new opportunities to deepen the functions of the gut micro-
biota in human health. All the published literature on paediatric and neonatal 
nutrimetabonomics is presented in a synthetic way, including studies on maternal 
milk and formula. The role of the disruption of the gut microbiota in various gastro-
intestinal diseases is considered, focusing the metabonomics approach in gut isch-
emia, chronic infl ammatory diseases, cystic fi brosis, diabetes, and obesity. As a 
general rule, the best biofl uid to study nutrition or to identify food-specifi c biomark-
ers is urine. In food consumption monitoring, the same concepts behind drug testing 
and drug monitoring can be used. In the opinion of the authors, in the near future, 
improved tools for the analysis of the metabolic profi le (simplifi ed like ‘dipsticks’ 
for urine) and its integration with the other ‘omics’ data will move metabonomics 
beside the child, from top research to bedside.  
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7.1         Introduction 

 The human host-microbe symbiosis is initiated in early life and its establishment is 
an important biological process. 

 Gut microbiota enhances the host’s metabolic capacity to process nutrients and 
drugs and modulate the activities of multiple pathways in different organ systems [ 1 ]. 
So, gut microbiota play a fundamental role in human health by promoting intestinal 
homeostasis, stimulating development of the immune system, and providing protec-
tion against pathogens [ 2 ,  3 ]. The disruption of the gut microbiota has been linked 
to an increasing number of diseases such as necrotizing enterocolitis, infl ammatory 
bowel disease, obesity, cancer, diabetes, and allergies [ 3 ]. 

 Despite this evidence, relatively little is known about the acquisition and devel-
opment of this complex microbial community during infancy [ 4 ]. However, emerg-
ing ‘omics’ technologies are now being applied to the study of the gut microbial 
ecology, generating new opportunities to deepen the functions of the gut microbiota 
in human health.  

7.2     Microbiota Composition and Activity 

 The human intestinal tract harbours a complex microbial ecosystem of 100 trillion 
bacteria [ 5 ], consisting of many more types of bacteria than originally thought [ 6 ], 
that undergoes dynamic changes during development. 

 Infants are born with an essentially sterile gut, but colonization starts immedi-
ately during and after delivery: the initial inoculation of the intestinal microbiota is 
a key step, because this initial phase will probably infl uence the composition of the 
human microbiota throughout life [ 5 ,  7 ]. In general, the fi rst settlers that initially 
colonize infants are facultative anaerobic bacteria (mainly  E. coli  and  Streptococci  spp.), 
followed by  Staphylococcus  spp.,  Enterococcus  spp., and  Lactobacillus  spp. that 
contribute to provide a favourable condition for anaerobic bacteria [ 8 ,  9 ]. After the 
fi rst week of life,  Bifi dobacterium  spp.,  Bacteroides  spp., and  Clostridium  spp. are 
present and  Bifi dobacterium  spp. species become predominant in human milk- fed 
infants [ 10 ]. 

 This dynamic microbial ecosystem stabilizes during the fi rst 2–3 years [ 5 ] and 
reaches the highest complexity in the human adult [ 11 ].  

7.3     Factors Affecting Intestinal Microbiota Composition 
and Activity 

 The connection between both hereditary and environmental factors plays an impor-
tant role in every stage, from conception to the early postnatal period [ 12 ] (Fig.  7.1 ). 
The human microbiota is established after birth and starts out as a dynamic 
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ecosystem, dominated by bifi dobacteria, that stabilizes during the fi rst 2–3 days [ 5 ,  13 ], 
reaching a homeostatic climax composition that remains relatively stable during 
most of adult’s life [ 14 ]. Infl uenced by a variety of early-life exposures, the infant 
gut microbiota plays a crucial role in life-long health. The composition and activity 
of the microbiota is affected by the genetic background of the host and by the diet. 
Moreover, the mode of delivery (natural birth, caesarean section) and the gestational 
age (preterm, late preterm, and term newborns) together with health status and anti-
biotic treatments could affect human microbiota composition.

7.3.1       Genetic Background 

 Host genotype is among the factors that infl uence the composition of gut microbiota 
[ 15 ]. A single gene difference in the host can affect the population structure of gut 
microbiota. The genotype of the host may infl uence its microbiota composition 
either directly (secretions into the gut, control of gut motility, modifi cation of epi-
thelial cell surfaces) or indirectly, through food and lifestyle preferences [ 16 ]. Some 
authors [ 17 ] studied the degree of similarity in the predominant faecal microfl ora of 
identical twin pairs, fraternal twin pairs, and unrelated controls: the highest levels of 
similarity were found in genetically identical twins.  

7.3.2     Mode of Delivery 

 The type of delivery strongly affects the composition of the microbiota. In the case 
of caesarean section (CS) delivery, instead of faecal bacteria derived from the 
mother, other environmental bacteria could affect the microbiota composition. 

  Fig 7.1    Factors infl uencing the development and composition of microbiota in the newborn 
and child       
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In particular, the microbiota of CS newborns is similar to the skin communities of 
the mothers and thus dominated by  Staphylococcus  spp.,  Corynebacterium  spp., 
and  Propionibacterium  spp. [ 18 ]. Instead, vaginally delivered infants acquire bacteria 
resembling the vaginal microbiota of their mothers dominated by  Lactobacillus  
spp.,  Prevotella  spp., and  Sneathia  spp. [ 18 ]. Moreover, CS newborns are colonized 
later and less frequently by bifi dobacteria [ 19 ]: this delay in the bifi dobacteria colo-
nization has been shown to sustain until the fi rst month of life, while in vaginally 
delivered infants, it occurs at 10 days [ 20 ]. These differences could be due not only 
to the CS itself but also to the prophylactic use of antibiotics frequently applied dur-
ing a CS [ 21 ]. 

 As regard other bacterial groups, it has been reported that newborns born by CS 
are more frequently colonized by  Clostridium  spp. and less by  Bacteroides  spp. [ 19 ,  22 ], 
even if these data are more controversial. The observed differences can still remain 
months after birth and perhaps even longer [ 20 ,  22 ]. 

 Some authors [ 23 ] studied the composition of the intestinal microfl ora in 46 term 
infants, 23 CS delivered and 23 spontaneously delivered using two PCR different 
techniques: during the fi rst 3 days of life, intestinal bacteria resulted strongly infl u-
enced by mode of delivery, with marked differences among the two groups. PCR- 
denaturating gradient gel electrophoresis (DGGE) analysis carried out with 
 Bifi dobacterium -specifi c primers revealed the presence of this genus in 13 of 23 
(56.5 %) faecal samples obtained from vaginally delivered newborns, while this 
genus was absent in all samples obtained from subjects delivered by CS. Moreover, 
some differences were found as regard  E. coli , found in 9 of 23 (39.1 %) spontane-
ously delivered newborns and in only 2 of 23 (8.7 %) CS-delivered infants. PCR- 
temperature gradient gel electrophoresis (TGGE) analysis showed greater variations 
among the two groups. Finally, in all infants enrolled,  Ruminococcus  spp. were 
absent and  Bacteroides  spp. were found only in 8.7 % of vaginally delivered 
newborns. 

 Other authors [ 24 ] examined the intestinal microfl ora of term infants and found 
a high variability in the profi les of faecal microbiota among the studied subjects, 
according to previous reports [ 25 – 27 ]. Compared with vaginally delivered new-
borns, infants born by CS had particularly low bacterial richness and diversity, with 
signifi cantly lower abundance of  Escherichia  spp.- Shigella  spp. and an absence of 
 Bacteroides  spp. These results are consistent with a previous work that reported a 
delayed colonization by  E. coli  and the phylum Bacteroidetes undetectable in 
infants born by CS [ 19 ].  

7.3.3     Gestational Age 

 A consequence of premature birth appears to be a delayed colonization of the gut 
with a limited number of bacterial species [ 28 ,  29 ]. These differences in timing and 
diversity are mainly due to the aseptic neonatal intensive care environment and the 
extensive use of antibiotics shortly after birth [ 30 ]. 
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 The observed bacterial diversity has been associated with recurrent  C. diffi cile  
infections and other disease states [ 31 ]. In fact, compared to term infants, the colo-
nization dynamics is different in preterm newborns, often colonized by potentially 
pathogenic species such as  Klebsiella  spp.,  Enterobacter  spp., and  Clostridium  spp., 
instead of normal commensal microbiota such as  Bifi dobacterium  spp. and 
 Lactobacillus  spp. [ 32 ,  33 ]. 

 Some authors [ 30 ] showed a positive correlation between diversity of intestinal 
microbiota and digestive tolerance and weight gain. Moreover, the delayed coloni-
zation and reduced diversity observed in preterm newborns render these subjects 
more susceptible to bacterial disturbances and therefore at higher risk of necrotizing 
enterocolitis and sepsis [ 28 ,  34 ]. Recently, stools of 32 preterm infants exposed to 
current NICU practices were analyzed for assessment of the total and viable bacte-
rial communities in the gut. Among the studied population, 7 and 13 preterm infants 
developed, respectively, NEC and sepsis. Total bacterial profi les of infants with 
NEC and total and viable profi les of infants with sepsis signifi cantly differed from 
those of healthy infants, supporting a role for bacterial colonization in the patho-
physiology of these diseases. Importantly,  Sphingomonas  spp. colonization was sig-
nifi cantly associated with NEC [ 34 ].  

7.3.4     Infant Diet 

 The composition of the intestinal microbiota can be modulated as a result of dietary 
exposure (human milk, formulas) as well as of intentional diet supplementations 
(prebiotics or probiotics). 

 Human milk is normally the fi rst dietary exposure in infancy and is considered 
the best nutrition for growth and healthy development of the newborn, containing a 
wide range of health-promoting constituents [ 5 ,  35 ]. In particular, oligosaccharides 
present in human milk have prebiotic effects, fermenting in the colon and stimulat-
ing the growth of specifi c bacteria [ 36 ]. The metabolic profi le of infants receiving 
human milk is characterized by a relatively high presence of acetate, a lower content 
of propionate, and the absence of butyrate [ 37 ]. Human milk has also been shown to 
a be a source of live bacteria, including staphylococci, streptococci, and bifi dobac-
teria [ 38 ]. In particular, breast-fed infants contain a high abundance of  Bifi dobacterium 
breve  [ 39 ]. The origin of bacteria present in human milk remains controversial, even 
if it is generally accepted that the newborn acquires the mother’s microbiota during 
delivery and then transfers these bacteria to the breast skin [ 5 ] or to the mammary 
gland through an endogenous route [ 40 ]. 

 Bovine milk, the most common base for infant formulas, contains insignifi -
cant levels of prebiotic oligosaccharides and this partly explains the differences 
observed between human milk-fed and formula-fed babies. Some authors [ 24 ] 
detected signifi cant effects of diet on the several bacterial taxa, characterized by 
lower bacterial richness and diversity in infants who were breastfed. In detail, 
infants receiving formula had bacterial communities with signifi cantly higher 
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abundance of the families Peptostreptococcaceae and Verrucomicrobiaceae and a 
signifi cantly higher prevalence of  C. diffi cile , a pathogen associated with enteric 
and atopic diseases [ 22 ]. 

 The supplementation of infant formulas with prebiotics has been recently 
reviewed [ 41 ] and a mixture of short chain galacto-oligosaccharides and long chain 
fructo-oligosaccharides has been shown to selectively stimulate the growth of bifi -
dobacteria and lactobacilli, generating metabolic profi les similar to those observed 
in human milk-fed infants [ 37 ,  42 ]. An alternative approach regards the oral admin-
istration of viable bacteria (probiotics) [ 43 ]: a few probiotics supplemented to 
formula- fed infants may be associated with some clinical benefi ts, such as a reduc-
tion in the risk of non-specifi c gastrointestinal infections [ 44 ] and necrotizing 
enterocolitis [ 45 ]. An updated meta-analysis of all relevant controlled trials per-
formed to assess the benefi ts of probiotic supplementation for preterm newborns 
underlined a signifi cant decreased risk of necrotizing enterocolitis and mortality, 
while no difference in the risk of sepsis was observed [ 45 ]. The effects of live bac-
teria and combinations of prebiotics and probiotics are gaining interest, but need 
further exploration particularly as regard long-term effects.  

7.3.5     Antibiotic Treatments 

 The early exposure to antibiotics has signifi cant immediate effects and probably also 
sustainable effects on the gut microbiota composition. Variables associated to antibiotic 
use (dose, length of treatment, route of administration) make diffi cult to draw strong 
conclusions on the exact impact on the microbiota. However, an antibiotic treatment 
surely causes disturbances in the early colonization by  Bifi dobacterium  species, predis-
posing to an overgrowth of  Enterococcus  and  Enterobacteriaceae  species [ 46 – 48 ]. 

 Recently, some authors underlined that antibiotic administration not only alters 
the total counts of  Bifi dobacterium  but can also has an impact at the species level, 
with a reduction of  Bifi dobacterium bifi dum  and  Bifi dobacterium adolescentis  [ 47 , 
 48 ]. Despite the conviction that an early antibiotic treatment does not seem to have 
major long-term effects on the faecal intestinal microbiota, a complete recovery of 
initial bacterial community composition is rarely achieved [ 49 ]. Therefore, it has 
been hypothesized that exposure to antibiotic in early life may trigger the subse-
quent development of immune disorders, such as asthma, wheezing, and other aller-
gic manifestations [ 50 ,  51 ].   

7.4     Nutrimetabonomics: A Revolutionary Tool 
in Neonatology and Paediatrics 

 The metabonome is the sum of all endogenous and exogenous metabolites. The 
intrinsic factors are body composition, tissue turnover, resting metabolic rate, age, 
genotype, health status, reproductive status, and diurnal cycle, and the extrinsic 
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factors are diet (nutrients and nonnutrients), drugs, physical activity, colonic fl ora, 
pollution, lifestyle, and stress [ 52 ]. All these factors contribute to the metabolic 
genotype-phenotype relationship [ 53 ]. 

 Metabotype is the whole set of metabolites which can be detected in body fl uids 
and which characterizes the metabolic phenotype of an individual. 

    Gone are the days when one is constrained to study only a single gene or gene 
product in a biologically out-of-context situation’. 

 The term nutrimetabonomics illustrates the mutual link among nutrition and 
metabonomics. More practically, it describes how a biological system varies following 
a nutritional stimulus. The research in this fi eld studies the effects of specifi c ingre-
dients and food components elucidating the effects of specifi c ingredients behind 
individual responses. Thus, the emerging faces of nutrition is to achieve the ambitious 
goal of optimizing an individual’s health via nutritional intervention [ 54 ]. 

 It has been underlined that metabonomics is the logical approach to assess 
dysfunction and metabolic imbalances caused by dietary components [ 55 ]. This 
new approach will surely infl uence public health practice in the future [ 56 ]. 

 Many years ago, Thomas Edison predicted that doctors of the future would no 
longer treat the human frame with drugs, but rather would cure and prevent diseases 
with nutrition. 

 Now, deciphering the complex interactions between nutrients and the human 
organism constitutes a considerable challenge for the twenty fi rst century [ 57 ,  58 ]. 
We can add the microbiome to the previous sentence. 

 However, despite this background, while the number of systems biology publica-
tions has risen rapidly in the last decade, the percentage of these related to nutri-
tional sciences research has remained constant at 3–4 % of the total [ 59 ]. 

 Very recently, a review described recent applications of metabonomics in pre-
clinical and clinical fi elds anticipating novel therapeutic and nutrition advances in 
paediatric research [ 60 ]. 

 The diet has a key role in the gut microbiota modulation and shaping and in a 
metabolic signalling network construction. Metabolic profi ling has a wide potential 
for the following goals: (a) understanding the complex interactions between compo-
nents of the gut microbiota, (b) elucidating the cause/effect relationships associated 
with specifi c nutritional choices, and (c) evaluating the related shifts in the micro-
biota composition. The symbiosis between mammalians and the microbial system 
can play a role in the aetiology and development of several diseases, e.g. insulin 
resistance, Crohn’s disease, irritable bowel syndrome (IBS), food allergies, gastritis 
and peptic ulcers, obesity, cardiovascular disease, and gastrointestinal tract.    In 
particular gut, microbiome, and nutrients strongly interact with the host genetic 
 elements to determine the metabotype. The knowledge of these complex interac-
tions can provide personalized plans of treatment and prevention [ 61 ]. 

 This is true also for long-term outcomes. In fact, since ‘physiological’ ageing is 
associated with a number of signifi cant changes in gastrointestinal function, the 
development and progression of chronic diseases could be prevented, minimized, or 
better managed monitoring patient response on an individual basis [ 62 ]. 

 In healthy humans, urine represented a sensitive metabolic profi le that refl ected 
acute dietary intake, whereas plasma and saliva did not [ 63 ]. 
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 As a general rule, the best biofl uid to study nutrition or to identify food-specifi c 
biomarkers is urine. Urine is essentially the body’s liquid repository and any nutri-
ent or nonnutrient that is not needed or present in excess in the body will fi nd its way 
in urine food-specifi c biomarkers that are present in the blood or urine for 5–10 h, 
with some persisting as long as 48 h. Thus, in food consumption monitoring, the 
same concepts behind drug testing and drug monitoring can be used [ 64 ]. 

 This assumption has been recently confi rmed: although both plasma and urine 
can be analyzed for the presence of food-derived biomarkers, with the present state 
of development of nutritional metabonomics, urine appears to be the preferred bio-
fl uid because (1) a greater diversity of metabolites derived from the food metabo-
nome is observed in the urine, (2) collecting urine samples is relatively easy and 
noninvasive, and (3) spot urine samples collected at particular times in relation to 
meals and sleep period (‘behavioural phase’ urines) can be informative, and collec-
tion of 24 h urine samples may not be required [ 65 ,  66 ]. 

 For example, it was possible to identify urinary metabolite profi les that discrimi-
nate between high and low intake of dietary protein during a dietary intervention 
[ 67 ]. The proposed dietary biomarkers have been recently reviewed [ 68 ]. 

 In paediatrics, a special problem is represented that age    infl uences metabonom-
ics results. Age-related metabolic changes in children aged 12 years and below 
were investigated by Gu et al. [ 69 ] using  1 H NMR-based metabonomic analysis of 
urine. Unsupervised PCA analysis showed a distinct age-dependent clustering, 
indicating the effect of age on the urinary metabolite profi le. Further statistical 
analysis led to the identifi cation of age-related metabolic profi les. Among the 
metabolites that were found to correlate with age, creatinine increased with age, 
while creatine, glycine, betaine/TMAO, citrate, succinate, and acetone decreased. 
This investigation has shown that metabonomic approach has the potential to be 
useful in assessing the biological age of young humans as well as in providing 
more information about the confounding factors in the clinical application of meta-
bonomics [ 69 ]. 

 In neonatology, metabonomics has been extensively studied. The latest papers 
are related to intrauterine growth-restricted and small for gestational age neonates, 
prematurity, mode of delivery, hypoxic-ischemic encephalopathy, persistent ductus 
arteriosus, respiratory syndrome and surfactant therapy, cytomegalovirus infection, 
nephrouropathy, inborn errors of metabolism, pharmacometabonomics, and 
nutrimetabonomics (including study of maternal milk and formula). Also numerous 
papers have been presented in experimental neonatology. In particular, the fl uids 
most frequently used were as follows: urine (by far the most used fl uid), cord blood 
plasma, but also milk and stools [ 70 – 80 ]. 

 Finally, we want to stress that intestinal microbiota highly infl uences the colonic 
luminal metabonome, and a comprehensive understanding of intestinal luminal 
metabonome is critical for clarifying host-intestinal bacterial interactions. Thus, 
low-molecular-weight metabolites produced by intestinal microbiota play a direct 
role in health and disease. Matsumoto et al. analyzed in germ-free (GF) mice and 
Ex-GF mice the colonic luminal metabonome using capillary electrophoresis mass 
spectrometry with time of fl ight (CE-TOFMS). CE-TOFMS identifi ed 179 metabolites 
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from the colonic luminal metabonome and 48 metabolites were present in signifi cantly 
higher concentrations and/or incidence in the germ-free (GF) mice than in the 
Ex-GF mice ( p   < 0.05), 77 metabolites were present in signifi cantly lower concen-
trations and/or incidence in the GF mice than in the Ex-GF mice ( p   < 0.05   ), and 56 
metabolites showed no differences in the concentration or incidence between GF 
and Ex-GF mice [ 81 ]. 

7.4.1     Maternal Milk, Formula, Metabonome, and Microbiome 

 The studies published in this fi eld are very few. 
 In an earlier study, the choline content of human breast milk in the fi rst 3 weeks 

after birth was compared with bovine milk and infant formula by use of  1 H NMR 
spectroscopy [ 82 ]. The observed choline species included free choline, phospho-
choline, glycerophosphocholine, phosphatidylcholine, and sphingomyelin. Holmes 
et al. identifi ed that total choline content in human colostrum at birth is lower than 
in mature milk 7 days post-partum, which correlates well with the acceleration in 
growth that the neonate experiences at this time point [ 82 ]. Moreover, it was specu-
lated that for preterm infants, the choline content available in human milk is not 
enough for their rapid growth, as their metabolic activity is higher compared with 
full-term infants [ 82 ]. 

 Some preliminary results of the authors of this chapter provide information on 
the biochemical variability of preterm HBM and on the potentiality of the metabo-
nomic approach in nutrition and health [ 83 ]. 

 The metabolic profi le of preterm human breast milk (HBM) was investigated by 
using a metabonomics approach. To this aim, NMR spectroscopy and GC/MS, in 
combination with multivariate statistical analysis, were used to analyze the water- 
soluble and lipid fractions extracted from human milk samples, respectively, com-
pared with preterm formula milk (FM), commonly prescribed. HBM contains 
relatively higher contents of this sugar with respect to FM samples. By contrary, the 
commercial products were suggested to be richer in maltose. Furthermore, other 
bins, belonging to unidentifi ed metabolites, not present in HBM (‘aliens’ metabo-
lites) were found to be important for the sample clustering.    A deep examination of 
the score plot showed that milk samples of term and late preterm infants were 
located at the opposite side with respect those expressed by mothers at the lowest 
GA under investigation (i.e. 26 weeks). 

 Considering the lipidic part, the level of oleic and linoleic acids appeared to be 
higher in the artifi cial formulas than in HBM [ 83 ]. Finally, we observed a progres-
sive change of the metabolic profi le of milk from the right to the left part of the plot 
over the fi rst month of lactation, suggesting a temporal variation in the carbohydrate 
composition. In particular, an    increase of the lactose level was observed during the 
lactation period, in good agreement with the literature data [ 84 ]. 

 In another experience, complimentary animal and human studies were con-
ducted on young piglets and premature infants (34–36 weeks). Breast milk-fed vs. 
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formula- fed groups were analyzed by GC/MS. Metabonomics clearly was able to 
identify differences between breast milk-fed and formula-fed groups in the gut 
environment of piglets and humans. Among the most important discriminating 
metabolites between breast milk-fed and formula-fed groups, the authors found 
sugars, amino- sugars, fatty acids (namely, unsaturated fatty acids), and sterols. 
Thus, metabonomics and microbiota pinpointed specifi c sets of metabolites associ-
ated with the dominant bacterial taxa [ 85 ]. 

 In conclusion, according with a very recent review on this topic, milk metabo-
nomics represents a very promising fi eld of study and with a potential to impact 
primary producers, industry, and consumers. Evidence has been obtained that the 
milk metabolites detected by NMR-based metabonomics are of importance in rela-
tion to milk nutritional quality, technological properties, quality control, and bioac-
tivity [ 86 ].   

7.5     The Complex Partnership of Disease and Nutrition: 
The Role of Metabonomics 

7.5.1     Metabonomics, Gut Ischemia, and Necrotizing 
Enterocolitis 

 Intestinal ischemia/reperfusion (I/R) injury initiates a systemic infl ammatory 
response syndrome with a high associated mortality rate. Early diagnosis is essen-
tial for reducing surgical mortality, yet current clinical biomarkers are insuffi cient    is 
a novel strategy for studying intestinal I/R, which metabonomics has the potential 
for personalized risk stratifi cation in patients exposed to intestinal I/R and may be 
used as part of a systems approach for quantitatively analysing the intestinal micro-
biome during gut injury [ 87 ]. 

 In a mouse model for intestinal ischemia, sera were analyzed 4 h after mesenteric 
artery ligation by gas chromatography–mass spectrometry for 40 small molecules 
as their trimethylsilyl and  O -methyloxime derivatives.    The following molecular sig-
natures were found: three highly signifi cantly upregulated (fold-change) serum 
molecules in intestinal ischemia were inorganic phosphate (2.4), probably due to 
exit from the gut fi lter; urea (4.3), likely related to a reduction in glomerular fi ltra-
tion rate; and threonic acid (2.9). Threonic acid, which is a vit. C metabolite and is 
related to oxidative stress, seems to be the most specifi c metabolite. Five highly 
signifi cantly downregulated (fold-change) serum molecules were stearic acid (1.7), 
arabinose (2.7), xylose (1.6), glucose (1.4), and ribose (2.2). Lactic acid, differently 
from other reports, remained unchanged in intestinal ischemia. Stearic acid seems 
to be of nutritional origin and is a precursor of oleic acid in the liver, very reduced 
in intestinal ischemia. The four monosaccharides (arabinose, xylose, glucose, and 
ribose) are produced by the microbiome and are the prove of its involvement in 
intestinal ischemia. 
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 Taken all together, these data reveal alterations of gut microbiota metabolism, 
intestinal absorption, and renal function, together with increased oxidative stress 
[ 88 ]. 

 Matching metabonomics and necrotizing enterocolitis (NEC), no results can be 
found. Although diet composition has been implicated as a major factor in the aeti-
ology of various gastrointestinal diseases, such as NEC, conclusive evidence 
remains elusive. What is known on this topic is that breast milk, as opposed to 
commercial formula, appears to confer a ‘protective effect’ to the ‘immature gut’. 
Yet the mechanism by which this occurs continues to remain speculative.  

7.5.2     Metabonomics in Chronic Infl ammatory Diseases 

 Gut microbial activities can be extremely important in the aetiology and develop-
ment of several chronic infl ammatory disorders, including infl ammatory bowel disease 
(IBD) or irritable bowel syndrome (IBS). This topic will be covered in Chap.   14    . 
Here we will underline only few concepts related to this section. 

 Urinary metabolite profi ling was carried out on a mouse model of Crohn’s dis-
ease suggesting alterations of tryptophan metabolism, fucosylation and fatty acid 
metabolism in Crohn’s disease fucose, and xanthurenic acid could be useful markers 
of gut infl ammation [ 89 ]. 

 A mouse model of infl ammatory bowel disease (IBD) was used to investigate 
urinary metabolites using NMR; it was found that there was an increase in trimeth-
ylamine (TMA) and fucose compared to controls. The increase in TMA was parallel 
to the progression of IBD [ 90 ]. 

 Metabonomic analysis of faecal extracts of patients with both infl ammatory dis-
eases showed reduced levels of butyrate, acetate, methylamine, and TMA compared 
to control [ 91 ]. 

 Urinary metabolites have also been used to distinguish CD and UC in humans. 
Hippurate was lowest in CD and differed signifi cantly between CD, UC, and con-
trols. Hippurate has been shown to be modulated according to gut microbes and this 
difference is likely to refl ect changes in intestinal microbes [ 92 ]. 

 By a practical point of view, urine and stools can be used as useful monitoring 
tools [ 93 ]. Attempt was made to study IBS with a combination of microbial and 
metabonomic outcomes using stool analysis. Using a GC–MS methodology, the 
authors highlighted higher levels of specifi c amino acids (alanine and pyrogluta-
mate) and phenolic compounds (hydroxyphenylacetate and hydroxyphenylpropio-
nate) with IBS, alterations possibly associated with specifi c gut microbial 
populations, including the abundance of lactobacilli and  Clostridium  [ 58 ,  94 ]. 

 Celiac disease (CeD) is a unique autoimmune multifactorial gastrointestinal 
disorder in which the genetic factors (DQ2/DQ8) and the environmental trigger 
(gluten) are known and necessary but not suffi cient for its development. Bertini 
et al. [ 95 ] highlighted changes in gut microbial cometabolites may be associated to 
aberrant microbiota in the small bowel of patients with CeD [ 96 ]. 
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 Sellitto et al. [ 97 ] characterized the longitudinal changes in the microbial 
communities that colonize infants from birth to 24 months and the impact of two 
patterns of gluten introduction (early vs. late) on the gut microbiota and metabo-
nome, and the switch from gluten tolerance to immune response, including onset of 
CeD autoimmunity. CD is probably associated with intestinal and faecal dysbiosis, 
which is related to certain bacterial species. As shown by, the gluten-free diet lasting 
at least 2 years did not completely restore the microbiota and, consequently, the 
metabonome of CD children. 

 Some molecules (e.g. ethyl-acetate and octyl-acetate, some short chain fatty 
acids and free amino acids, and glutamine) together with microbial indices 
(e.g. ratio between faecal cell density of lactic acid bacteria-Bifi dobacterium vs. 
Bacteroides-Enterobacteria) seem to be metabolic signatures of CD patients [ 98 ]. 
These data confi rm results published in previous papers [ 95 ].  

7.5.3     Cystic Fibrosis 

 In cystic fi brosis (CF), airway infl ammation leads to an increased production of 
reactive oxygen species, resulting in the degradation of cell membranes and the 
generation of volatile organic compounds (VOCs). The study by Wolak et al. [ 99 ] 
demonstrated that metabonomic analysis of bronchoalveolar fl uid can differentiate 
between different degrees of infl ammation in children affected by cystic fi brosis and 
has the potential to identify new biomarkers of infl ammation. 

 A more recent study was carried out with the aim of investigating whether mass 
spectrometry-based metabonomic analysis of volatile organic compounds (VOCs) 
in exhaled breath was able to discriminate between CF subjects and controls and 
between CF subjects with and without Pseudomonas colonization. Samples from 48 
children with CF and 57 controls were examined. Analysis revealed that 1099 VOCs 
exhibited a prevalence of at least 7 %. A 100 % correct identifi cation of CF subjects 
and controls was possible by using 22 VOCs. Therefore, metabonomic analysis of 
VOCs in exhaled breath appears to be a reproducible technique and is able to dis-
criminate not only between CF subjects and controls but also between CF subjects 
with or without Pseudomonas colonization [ 100 ].  

7.5.4     Diabetes 

 This part will be covered by Chap.   12    . Different studies suggest that branched-chain 
amino acids (BCAAs) related to metabolic signature is a robust metabolic readout 
of insulin resistance (IR) [ 101 ]: high levels of BCAAs were detected in the obese 
and IR phenotype [ 102 – 104 ]. 

 In particular, fi ve branched-chain and aromatic amino acids were indeed associ-
ated with IR, namely, isoleucine, leucine, valine, tyrosine, and phenylalanine, and a 
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combination of three amino acids (isoleucine, phenylalanine, tyrosine) could 
predict future diabetes (>fi vefold higher risk for individuals in top quartile) [ 105 ]. 

 During the last decade, the rapidly growing research fi eld of metabonomics has 
introduced new insights into the pathology of diabetes as well as methods to predict 
disease onset and has revealed new biomarkers [ 106 ]. 

 In the adult, Wang–Sattler identifi ed three metabolites (glycine, lysophosphati-
dylcholine (LPC) (18:2), and acetylcarnitine) that had signifi cantly altered levels. 
The most important results of this study are that metabonomics is enough and it is 
not necessary to perform other ‘omics’ and that those who have that three metabo-
lites altered will develop surely diabetes [ 107 ]. 

 A recent review summarizes the current fi ndings of metabolic research regarding 
diabetes in animal models and human investigations [ 106 ]. 

 Finally, very recently it has been stressed that systems biology methodologies 
can identify disease biomarkers and uncover potential therapeutic targets from a 
combination of ‘omics’ datasets. Relevant examples are diabetes and obesity [ 107 ].  

7.5.5     Obesity 

 Metabonomics has been widely studied in adult obese [ 108 ]. 
 For example, a recent study on obese Japanese subjects reported a physiological 

inference between insulin resistance (IR), plasma levels of alanine, glycine, glutamate, 
tryptophan, tyrosine and BCAAs, and visceral fat metabolism [ 109 ]. Again, a complex 
relationship between dyslipidemia and IR development has been described [ 110 ]. 

 Differently from the adults, only few studies have been dedicated to childhood 
obesity. In a study by Walsh et al., serum metabolite concentration profi les of obese 
children could be distinguished from those of normal-weight children. The identifi ed 
metabolite markers are indicative of oxidative stress and of changes in sphingomy-
elin metabolism, in β-oxidation, and in pathways associated with energy expendi-
ture. The altered metabolites might be considered as potential biomarkers in the 
generation of new hypotheses on the biological mechanisms behind obesity [ 111 ]. 
Mihalic et al. compared acylcarnitine (AcylCN) species, common amino acid and fat 
oxidation (FOX) by-products, and plasma amino acids in normal weight (NW; 
 n  = 39), obese (OB;  n  = 64), and type 2 diabetic ( n  = 17) adolescents. The observations 
of the authors are consistent with early adaptive metabolic plasticity in youth, which 
over time—with continued obesity and ageing—may become dysfunctional, as 
observed in adults [ 112 ]. An experimental paper has been published on piglets by He 
et al. [ 113 ]. All the papers on paediatric obesity are presented in Table  7.1  [ 114 ].

   What is becoming increasingly important is the role of perinatal programming in 
the development of paediatric and adult obesity. This could involve either newborns 
with ‘not enough’ or newborns with ‘too much’ birth weight. The common sign of 
hypoglycemia at birth and common pathways such us some metabolites like myo- 
inositol can be responsible for later appearance of metabolic syndrome and obesity 
later in life [ 79 ,  115 – 118 ].   
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7.6     Conclusions 

 The human host-microbe symbiosis is initiated in early life and it is an important 
biological process. 

 Gut microbiota enhances the host’s metabolic capacity to process nutrients and 
drugs and modulate the activities of multiple pathways in different organ systems. 
The disruption of the gut microbiota has been linked to an increasing number of 
diseases such as necrotizing enterocolitis, infl ammatory bowel disease, obesity, 
cancer, diabetes, and allergies. 

 Now, deciphering the complex interactions between nutrients and the human 
organism constitutes a considerable challenge for the twenty fi st century. The role 
of microbiome in this setting is of increasing importance. Metabolic profi ling has a 
wide potential in deciphering for the following goals: (a) understanding the com-
plex interactions between components of the gut microbiota, (b) elucidating the 
cause/effect relationships associated with specifi c nutritional choices, and (c) evalu-
ating the related shifts in the microbiota composition. 

 As a general rule, the best biofl uid to study nutrition or to identify food-specifi c 
biomarkers is urine. In food consumption monitoring, the same concepts behind 
drug testing and drug monitoring can be used. 

 The way to clinical implementation of metabonomics is still hampered by many 
of the problems that had to be solved for genomics and proteomics in the past, as 
well as new ones that require the creation of new analytic, computational, and inter-
pretative techniques. 

 Some problems are similar with those observed for pharmacometabonomics: 
signifi cant individual variability, issues surrounding methods for metabolite detec-
tion (NMR, MS); extremely complex datasets; possible over-interpretation of data; 
necessity for skilled and experienced technicians and well-trained practitioners, 
time-consuming processing and analysis of patient samples, resulting in delayed 
treatment; and high cost of the processing and analytical platforms [ 119 ,  120 ]. 

 In the opinion of the authors, in the near future, improved tools for the analysis 
of the metabolic profi le (simplifi ed like ‘dipsticks’ for urine) and its integration with 
the other ‘omics’ data will move metabonomics beside the child [ 121 ]. 

 The greatest challenge, however, will be the integration of information from 
different ‘omics’, for example, in the form of new, superior ‘meta-markers’ [ 122 ].     
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    Chapter 8   
 Metabolomics and Milk: The Development 
of the Microbiota in Breastfed Infants 

             J.     Bruce     German     ,     Jennifer     T.     Smilowitz     ,     Carlito     B.     Lebrilla     ,     David     A.     Mills     , 
and     Samara     L.     Freeman    

    Abstract     Metabolomics provides a valuable strategy for describing and annotating 
the structures, compositions, and functions of mammalian milk. Detailed analyses 
of the complex components of milk have revealed an unexpected diversity of 
 glycans consisting of oligosaccharides, glycoproteins, and glycolipids, all of which 
help shape the intestinal environment and in particular the intestinal microbiome of 
breastfed babies. Using complete and partial ensembles of glycan mixtures, the 
holistic principles of metabolomics analytics were leveraged for microbial screen-
ing studies. The complex glycans of human milk proved to be highly selective in 
their ability to support the growth of only a very rare group of enteric bacteria. 
These studies led to the conclusion that a signature achievement of breast milk is the 
development of a unique milk-oriented intestinal microbiota that results from a 
functional overlap of stereospecifi c glycan biosynthesis in maternal mammary epi-
thelia with equally stereospecifi c glycosidase enzymes encoded within the genome 
of the commensal bacteria. Clinical evidence in support of that hypothesis has now 
been generated by the simultaneous administration and quantitation of the entire 
repertoire of glycans in the milk going in and the feces coming out of human infants. 
These platforms of systems biology combining separation technologies coupled to 
highly accurate and sensitive mass spectrometry with exhaustive library develop-
ment and computational tools provide a model for success in understanding biologi-
cal processes. Metabolomics is now extending that understanding of the infant 
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microbiota and its phenotype to the role of complex glycans in the microbiota of all 
ages. The relentless selective pressure on the process of lactation within the 
 mammary epithelial cell over millennia of evolution has been to nourish, protect, 
and support the survival of the mother infant pair. The principles that have emerged 
to nourish infants provide a guiding model for diet and health of all humans. The 
tools of metabolomics are proving successful in revealing the mechanisms behind 
milk’s “genius.”  

  Keywords     Milk   •   Glycobiology   •   Microbiota   •   Infant   •   Oligosaccharides   • 
  Glycosidase   •   Glycan   •   Glycomics   •   Evolution   •   Lactation  

8.1         Introduction 

 The mother and breastfed infant dyad provides a model to understand diet in its 
larger context. The scientifi c opportunities afforded by this model are transforma-
tive. Mechanistic insights to the targets of dietary inputs can be revealed by studying 
milk genomics, chemical composition, biological properties, and its diversity across 
mammals and temporally across lactation. The clinical comparison of exclusive 
breastfeeding against various formulas provides a powerful framework to study 
structurally defi ned diets and monitor the consequences of those structures on health 
and disease. In this respect, studies on milk and the lactating mammary gland pro-
vide unique insights into the mechanisms by which diet can act in protection and 
prevention. The mammary epithelial cell is a bioreactor for bioengineering complex 
structures and activities that act upon virtually all of the infant’s processes: immu-
nity, growth and development, metabolism, physiology, neurological development, 
and microbiota colonization and maturation. The components of milk execute on 
this biological blueprint using integrative and pleiotropic mechanisms that are dif-
fi cult if not impossible to identify using the reductionist strategies of traditional 
biological chemistry. The comprehensive nature of the omic sciences and in particu-
lar metabolomics is changing the way milk is studied. Milk is the functional output 
of mammary metabolism, and it’s a biofl uid representing maternal genetics, health 
status, and environments. 

 A striking example of the principles and technologies of metabolomics applied 
to breast milk is in the area of glycomics; glycomics has revealed the diversity and 
abundance of glycans notably the free human milk oligosaccharides (HMOs) that 
are relatively unique to lactation and the glycosylated proteins, peptides, and lipids. 
Interestingly, glycans reach the large intestine and can ultimately be excreted and 
measured in the stool in healthy infants. This is a paradox if milk is considered a 
source of digestible nutrients for the infant. The resolution of this paradox is found 
in the fact that in most breastfed infants, these glycans disappear from stool, coinci-
dent with the appearance of a group of bacteria capable of digesting and utilizing 
them as growth substrates. The value of this relationship between maternal milk and 
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intestinal bacteria to shape infant postnatal development is still being revealed, 
ranging from protection from pathogenic bacteria, viruses, and toxins, to promoting 
neurological and immune systems and enhancing barrier function of intestinal epi-
thelia. The highly selective digestibility of milk glycans act to shape the intestinal 
microbiome orchestrating its transition from the sterile uterus through the chaotic 
introduction of environmental bacteria at birth to a stable milk-oriented microbiome 
(MOM). This convergence of an entire metabolite class, glycans with the selective 
metabolism of bacteria and their interaction with the human host, is an opportunity 
to defi ne metabolism as a dietary variable and study the structure-function relation-
ships between diet, metabolism, and intestinal bacteria development. These studies 
provide broader principles for nourishing complex microbiota throughout life. 
At the core, comprehensive and accurate measurement of the structures and compo-
sition of milk’s glycan metabolome is required. 

 Analytical chemistry has only recently brought the tools needed to measure 
 glycobiology, the free oligosaccharides and glycans bound to proteins, peptides, 
and lipids in milk. Instrumentation is not suffi cient; mass spectrometry must be 
coupled to separation technologies, enzyme biotechnologies, and bioinformatics 
tools to assemble all of the information into computationally accessible libraries. 
These technological advancements have led to the discovery that glycans are a cen-
tral component of all mammalian milks, are variable across lactation and among 
women, and provide a wide diversity of structures to diverse functions [ 1 – 6 ].  

8.2     Metabolomics and Human Milk 

 The simplifying elegance of the linear encoding of protein structure from DNA, 
RNA to protein sequence that is so empowering to biology from evolution to func-
tion is equally enabling to scientifi c research. Scientists have been wonderfully 
 successful in annotating DNA-dependent biological processes because of the sim-
plicity of linear sequence. Metabolism does not possess this simplicity. The dizzy-
ing complexity of metabolism must now be studied the old fashioned way, by 
measuring it. Scientists are beginning to assemble the technologies to measure 
metabolites in the accuracy, sensitivity, and comprehensiveness that refl ect actual 
biology. A broad goal of food research is to build a linear understanding from the 
genetics of agricultural commodities, through their metabolism and thence compo-
sition as foods to the specifi c actions of those components on the metabolism and 
ultimately health of individual consumers (Fig.  8.1 ). Step one is to defi ne the genetic 
and phenotypic basis of food composition through commodity growth and process-
ing. The next step is to understand the principles by which human metabolism is 
controlled via these exogenous dietary components. This challenge will be particu-
larly daunting in higher organisms due to the importance of structure to function. In 
higher organisms metabolites are distributed according to the cells, tissues, organs, 
and whole bodies. This structural dimension will demand that metabolites are mea-
sured as a function of the 3-dimensional structures of their immediate environment, 
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techniques for which are only beginning to emerge. We have taken the approach of 
using the interaction between milk and microorganisms as a model for dietary 
metabolomics (Fig.  8.2 ). The principles emerging from this research provide scien-
tists with examples of the interactions between diet and metabolism that may be 
instructive for higher animals.

8.3         Milk Glycomics 

 Glycans are the biopolymer class that has been largely ignored in spite of their 
abundance across the phylogenetic tree and through evolution [ 7 ]. Despite their 
importance in health and disease, they are not sequence encoded but rather the prod-
ucts of enzymatic metabolism. As a result of metabolic synthesis, the number of 
potential structures is massive contributing to the structural diversity seen in milk. 

  Fig. 8.2    The tripartite evolutionary relationship for mothers, infants, and their microbiota. The 
importance of the infant microbiota to its survival and genetic success is implied by the substantial 
investment of lactation in the control of this ecosystem. Understanding how and why lactation con-
trols the infant microbiota provides scientifi c insights to microbial ecosystems in human intestine and 
beyond to all complex ecosystems in which food is a selective and discriminating input variable       
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 The complexity of a glycan is the result of a number of factors including 
 branching, the number of different sugars, the stereospecifi c linkages of those sug-
ars all leading to multiple isomers even for a single net mass to which must be added 
the dimension of conjugation: they are free or bound to proteins, peptides, or lipids 
again in a heterogeneous but stereospecifi c manner. Biology has apparently 
employed the combination of metabolism and structural diversity to leverage glyco-
biology into a variety of functions and most notably recognition. Perhaps not 
 surprisingly, throughout evolution, the glycans on surfaces of cells are distinct both 
to “self” and to “foreign” organisms as the molecular basis for individuality. This 
dimension of diversity that is clearly of value to biological organisms is instead to 
scientists a nightmare precisely because there is no corresponding genetic template; 
every glycan must be explicitly analyzed to be identifi ed. Research into the tech-
nologies and methodologies to routinely and comprehensively measure the glycans 
in biological and clinical samples is only now emerging, and as a result, a quantita-
tive, metabolomics approach to glycobiology is becoming possible. Glycomics is 
defi ned as the systematic study of the total complement of sugars present in an 
organism in their free or protein and lipid-bound states [ 8 ,  9 ]. Researchers are now 
using glycomics to understand diet and health in the context of lactation, milk, and 
the role of complex glycans in various aspects of the development of the mamma-
lian neonate. 

8.3.1     Milk Oligosaccharides 

 The fi eld of milk glycobiology is not new, and in fact many of the presumed roles of 
glycans throughout biology have been fi rst discovered by examining milk. 
Nonetheless, the complexity of glycan structures has been a major hurdle to under-
standing specifi c structure – function relationships beyond binding assays. 
The  oligosaccharides of human milk have become of particular interest in large part 
because they are an abundant (1–2 % w/v) and yet indigestible by the neonate. The 
biological challenges posed by this apparent paradox propelled a few key laborato-
ries to pursue the analytical challenges of identifying and quantifying them. The 
revolution that they are bringing to analytical glycomics has been the result of inno-
vations in separation science, enzyme biotechnology, mass spectrometry, automated 
library development, and computational toolsets.  

8.3.2     Separation Science for Oligosaccharides 

 Liquid chromatography has been applied to glycan separation, yet neither normal 
nor reverse stationary phases provide suffi cient separation power to successfully 
resolve glycan diversity in structure. Porous graphitized carbon (PGC) has been 
used as a uniquely selective stationary phase for bulk purifi cation of glycans for 
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many years. Only recently has it been possible to formulate PGC as an HPLC 
 stationary phase for the analysis of native oligosaccharides [ 10 ]. This combination 
of high-effi ciency, high reproducibility, and stationary phase selectivity in an HPLC 
system has provided the fi rst generation of separation platforms capable of the 
extensive separation of glycan isomers [ 11 ]. The future of oligosaccharide and gly-
can analyses will be extending this selectivity and effi ciency to stereospecifi city, 
quantitation, and throughput.  

8.3.3     Stereospecifi city of Glycan Structures 

 Glycans are nothing if not a forest of stereospecifi city. The total number of possible 
structures imaginable is astronomical, yet because these glycan polymers are all the 
results of stereospecifi c enzymatic reactions, the actual number of structures found 
in biology is manageably fi nite and approachable by modern analytics and library 
systems. Nonetheless, precise oligosaccharide structures cannot be unequivocally 
identifi ed on chiral separation phases and instead must still be determined the old 
fashioned way, by cleaving with stereospecifi c enzymes as an explicit step in the 
analysis [ 12 ]. The use of stereospecifi c enzymes will likely remain the most  effi cient 
means of assigning precise structures to oligosaccharides precisely because once a 
biological source is accurately described, it is not necessary to perform stereospe-
cifi c analyses every subsequent analysis. The pragmatic proof of this principle has 
been demonstrated for the various milk oligosaccharides that have been analyzed 
for their stereospecifi city [ 13 ]. 

 The establishment of accurate metabolomics today cannot be achieved with 
online identifi cation systems due to the complexity of the possible glycan structures 
relative to the separation platforms and mass spectrometry accuracy available. 
Instead effective methods for the structural identifi cation of HMOs requires the 
 construction of detailed libraries that map structures into analytical platforms taking 
advantage of the combinations of MS, tandem MS, and exoglycosidase digestion 
[ 12 ]. Neutral [ 14 ] and anionic milk oligosaccharides from humans [ 15 ] totaling 75 
structural isomers have been annotated in this approach (Figs.  8.3 ,  8.4 , and  8.5 ). 
Once begun, the library strategy has been extended to milks from other mammals to 
over 200 complete structures. This basic strategy is appropriate for the vast majority 
of applications to human milk biology since 50 structures represent 99 % of the total 
abundances of oligosaccharides in human milks [ 14 – 16 ].

     Metabolomics is of relatively little utility if it only identifi es structures and 
 cannot quantify the absolute amounts of metabolites within biological samples. 
As a subset of the metabolome, glycan quantitation remains a major obstacle to 
metabolomics of glycobiology. Oligosaccharides lack discriminating chromophores 
for spectral detectors. As a result, oligosaccharides are often derivatized with 
absorbing labels including anthranilic acid (AA) or 2-aminobenzamide (AB) for 
quantitation [ 17 ]. To date the varying ionization effi ciencies of glycans compromise 
the use of mass spectrometry of oligosaccharides. The alternative, using isotopically 
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enriched internal standards, while making MS highly accurate [ 18 ], requires the 
synthesis of the entire library of potential structures which is not currently available. 
Quantitation of metabolites remains the great challenge for the applications of 
metabolomics to its most relevant applications in health. 

 The presence of oligosaccharides has been confi rmed in very early mammals and 
marsupials [ 19 ]. Thus, indigestible carbohydrate biopolymers provided a selective 
advantage throughout mammalian lactation. This advantage has apparently contin-
ued up to humans. Human milk contains greater concentration and diversity of sol-
uble oligosaccharides than other mammalian milks [ 20 ] ranging from on average 
7 g/L mature to 23 g/L in colostrum [ 21 ,  22 ]. These soluble oligosaccharides are 
composed of glucose (Glc), galactose (Gal), N-acetylglucosamine (GlcNAc), 
fucose (Fuc), and sialic acid (NeuAc) monosaccharides. The basic biochemistry of 
oligosaccharide synthesis in the mammary gland is initiated by a lactose core of Gal 
and Glc catalyzed by β-galactotransferase in the presence of α-lactalbumin. The 
vast majority of HMO structures are based on this lactose core [ 23 ]. Lactose is then 
decorated by β1–3 linkage to lacto-N-biose (GlcNAc linked to Gal by β1–3 linkage) 
or by β1–6 linkage to N-acetyllactosamine (GlcNAc linked to Gal by β1–4 linkage). 

  Fig. 8.3    Basic oligosaccharide structures in milk. The structural core of oligosaccharides is illus-
trated, the key sugar monomers that make up the oligosaccharide compositions and the possible 
stereospecifi c glycosidic bonds that are possible.  Bifi dobacteria longum  subspecies  infantis  con-
tains the genetic capability to synthesize ostensibly all of the enzymes necessary to cleave this 
array of complex glycans       
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This growing chain structure can be further elongated with lacto-N-biose and 
N-acetyllactosamine by β1–3 and β1–6 linkages; Fuc connected with α1–2, α1–3, 
or α1–4 linkages and/or NeuAc residues attached by α2–3 or α2–6 linkages at the 
terminal positions (Fig.  8.3 ). The terminal sugars are particularly diagnostic of dif-
ferent mammalian milks, 60–80 % of HMOs are fucosylated, and 10–15 % of 
HMOs are sialylated in human milk [ 24 ].   
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8.4     Annotating the Functions of Human Milk Glycans 

 The structures of milk oligosaccharides have been selected for an unusual biological 
value: not to be consumed by infants. This selective pressure on lactation has been 
particularly intense since milk is the sole source of nourishment for mammalian 
infants. The genetics, synthesis, and structures of oligosaccharides in milk are 
unequivocally discoverable. However, the functions of oligosaccharides that were 
the basis for their emergence and persistence through evolution are not as easily 
discovered. The process of understanding their actions must fi rst identify their 
actions, and then each of these actions must then be tested mechanistically as an 
actual valuable function in vivo. The most extensive approach to evaluating the 
actions and potential functions of oligosaccharides in human milk has been to estab-
lish the detailed support of the growth of specifi c strains of bacteria notably bifi do-
bacteria [ 25 ,  26 ]. While the mechanisms and extent of microbial diversity in 
breastfed infants are still being actively documented, the basic observation that 
 bifi dobacterial species dominate the microbiota of breastfed infants around the 
world compared with formula-fed infants has been well established [ 27 ]. How an 
intestinal microbial ecosystem maintains a dominant and consistent bacterial popu-
lation in the face of repeated and diverse inoculations with environmental microor-
ganisms has been largely speculative until recently. Research has revealed the 
remarkable interaction between the stereospecifi c linkages defi ning the structures of 
milk oligosaccharides and the genetic repertoire of stereospecifi c glycosidases and 
solute- binding proteins that provide these bacteria a distinct competitive growth 
advantage within the intestine of the breastfed infant. 

8.4.1     Screening Bacteria for Growth on Oligosaccharides 

 In an ongoing search for biological activities of these molecules to justify their 
abundance and diversity in milk, a prevailing hypothesis was that they are sub-
strates for bacterial growth. However, no studies had yet documented that fact nor 
whether growth was selective among bacteria. Initial growth experiments in fact 
failed to demonstrate signifi cant growth of bacteria when human milk oligosac-
charides were the sole source of carbon in an otherwise supportive medium [ 25 ]. 
A series of subsequent experiments revealed that among gut-related bacteria 
tested (including  Lactobacillus ,  Clostridium ,  Eubacterium E. coli ,  Veillonella , 
 Enterococcus  isolates), only  Bifi dobacterium  and  Bacteriodes  species grew to high 
cell densities [ 28 ]. Growth on HMO was found in a select group of  B. bifi dum  and 
 B. longum  subsp.  infantis  strains. In these same isolated growth conditions, even 
isolates of  B. longum  subsp.  longum  and  B. breve  showed poor growth, and other 
strains of  B. adolescentis  and  B. animales  were ostensibly unable to grow on HMO 
[ 29 ] (Fig.  8.6 ).

8 Metabolomics and Milk: The Development of the Microbiota in Breastfed Infants



158

   The complex mechanisms by which milk oligosaccharides guide bacterial 
growth within the ecosystem of the infant intestine have been elaborated in a series 
of microbial studies. Among the bifi dobacteria that are able to consume HMO, dif-
ferent strategies are present to use HMO as a substrate. In isolated growth studies of 
HMO consumption,  B. longum  subsp.  infantis  ATCC15697 most effi ciently con-
sumed oligosaccharides seven sugars (DP) or below [ 25 ]. Oligosaccharides below 
ten sugars are the majority of species human milk [ 10 ]. Other bifi dobacteria includ-
ing  B. longum  subsp.  longum  DJO10A and  B. breve  ATCC15700 that grew slowly 
on pooled HMO were found to be consuming mostly a single, nonfucosylated/non-
sialylated species, LNnT. LNnT is present in breast milk yet a small portion of the 
overall HMOs.  B. breve  did grow in culture on all the monomer constituents of 
HMO and thus if present within the gastrointestinal tract could grow on liberated 
monosaccharides. 

 The bacteria that were found to be capable of growing on HMO were analyzed 
for the presence of metabolic activities towards complex oligosaccharides including 
the key sialidase and fucosidase activities required to deconstruct complex glycan 
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structures. Among the strains examined, fucosidase activity was present in  B. 
longum  subsp.  infantis  and was only detected upon growth on HMO [ 25 ]. 

 Distinct strategies for catalytic activity on complex biopolymer destruction are 
known among intestinal bacteria. The majority of intestinal bacteria secrete extra-
cellular glycosidase enzymes that liberate free sugars that are then subsequently 
taken up by bacteria and metabolized. Select bifi dobacteria use lacto-N-biosidase 
activity to break down oligosaccharides [ 30 ]. LNB is transported into  B. bifi dum  via 
an ABC transporter and an associated LNB-specifi c solute-binding lipoprotein 
whereby it is further processed and fed into the central metabolic pathway [ 31 ]. 

 The discovery that  B. longum  subsp.  infantis  ATCC15697 was uniquely capable 
of growing on human milk oligosaccharides led to an immediate project to sequence 
its genome. No prior experience prepared the investigators for the elegance of the 
genetic repertoire of this organism’s sequence.  B. longum  subsp.  infantis  ATCC15697 
has become the blueprint for understanding the genetic basis of glycan-specifi c 
growth and phenotype [ 32 ]. This specifi c strain possesses clusters of genes associ-
ated with its unique phenotype distributed in the genome into four loci. The most 
informative, HMO cluster 1 (Fig.  8.7 ), contains all the necessary glycosidases (siali-
dase, fucosidase, galactosidase, and hexosaminidase) and transporters necessary for 
importing and metabolizing HMO. Sequencing more isolates for HMO-related 
genomic architecture among  B. longum  subsp.  infantis  isolates provides a detailed 
genetic map of the mechanisms behind the vigorous growth of this clade on HMO.

   The bacterial model of metabolomics illustrates the complexity of structure 
within metabolic pathways. Within the large HMO cluster (Fig.  8.7 ) are genes 
encoding an interesting group of extracellular solute-binding proteins (SBP; pfam 
01547) demonstrated to bind oligosaccharides. These proteins provide two func-
tions for the bacteria in their ecological niche of the breastfed infant intestine. These 
solute-binding proteins would tether the bacteria to glycans on the luminal side of 
the infant intestine and provide a net coverage of microbial binding sites thus block-
ing potential pathogens from the infant. Of more direct value to the bacterium, these 
solute-binding proteins would internalize free oligosaccharides directly infusing 
substrate into its endogenous metabolism. This substrate sequestering mechanism 
provides the  B. longum  subsp.  infantis  a unique foraging advantage in the overall 
microbial community. These solute-binding proteins also appear to be of singular 
advantage to the mammalian infant gut. A subset of these genes shows a pronounced 
evolutionary divergence from other SBP family 1 proteins in bifi dobacteria [ 32 ]. 
The emergence of these genes is consistent with their functions as a mechanistic 
basis of symbiosis with humans through their interaction with milk oligosaccha-
rides. The  B. longum  subsp.  infantis  genome has been shown to contain 21 family 1 
SBP, more than most bifi dobacteria. 

 The results of genomic analyses of bifi dobacteria illustrate that HMO-related 
clusters are shared among all  B. longum  subsp.  infantis  isolates that have been 
examined to date, yet they are notably absent in other sequenced bifi dobacteria, 
such as  B. longum  subsp.  longum  DJO10A [ 33 ] and  B. adolescentis  ATCC15703 
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(GenBank AP009256), which grow weakly or not all (respectively) on HMO [ 29 ]. 
The elegance of microbial genetics is illustrated by the HMO-related gene set shared 
between ATCC15697 and DJO10A. This seven-gene operon is responsible for LNB 
metabolism further evidence of evolution selecting for metabolic substrate utiliza-
tion [ 34 ]. Given that DJO10A is able to weakly grow on HMO and glycoprofi ling 
indicated a small consumption of LNnT, it is tempting to speculate that this operon 
is linked to consumption of that particular HMO moiety. 

 While it is very hard to generalize the mechanisms of HMO catabolism across 
bifi dobacteria because of strain heterogeneity and taxonomic confusion [ 35 ] within 
the genera, several important trends have emerged. The most common infant-borne 
bifi dobacteria,  B. bifi dum ,  B. longum  subsp.  infantis ,  B. longum  subsp.  longum , and 
 B. breve , possess different modes for consumption of HMO (Fig.  8.6 ).  B. longum  
subsp.  infantis  likely imports the lower molecular weight oligosaccharides via an 
army of dedicated ABC transporters. Once inside the cell, these oligosaccharides 
are catabolized by a complement of glycosidases prior to entry of the monosaccha-
rides into central metabolic pathways. In contrast,  B. bifi dum  exports fucosidases 
and lacto-N-biosidase to remove LNB from the HMO structure (leaving the free 
fucose and sialic acid behind) [ 48 ], internalize the free LNB and catabolize it intra-
cellularly. Both  B. breve  and  B. longum  subsp.  longum  are able to consume free 
LNnT from an HMO pool, whereas  B. breve  can also grow on the various monomer 
constituents of HMO [ 48 ]. These different strategies suggest a possible mechanism 
for niche partitioning among the different bifi dobacterial species within the devel-
oping infant gastrointestinal tract microbiota. Taken together this data provides a 
mechanism of action for glycan structures.  
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  Fig. 8.7    Gene cluster 4 from the complete genome of  B. infantis  illustrating the location of the 
genes encoding glycosidases and oligosaccharide transporters [ 32 ]. The putative glycosidic 
 linkages on which the glycosidic enzymes react are shown below left and the model of the cell 
membrane- bound solute-binding protein complex is shown  below right        
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8.4.2     Prebiotics for Infant Gut Bifi dobacteria 

 Breastfed infants that are colonized by protective strains of bifi dobacteria benefi t 
from the microbial activities within their developing intestine [ 36 ], which supports 
a valuable function in vivo for the emergence and persistence of glycans. Henry 
Tissier observed by microscopic analysis and culture techniques that the feces of 
breastfed infants were unique in containing a bacterial isolate he termed “ Bacillus 
bifi dus communis ” [ 37 ]. For the 100 years since that initial identifi cation, method-
ological techniques have wrestled to accurately type much less understand the spe-
cifi c bacteria within breastfed infants largely due to technical problems [ 38 – 40 ]. 
The challenges have become understandable in retrospect. Initial, culture-based 
studies failed to isolate signifi cant proportions of bifi dobacteria from infants, but 
these culture techniques failed to appreciate the oxygen sensitivity of infant bifi do-
bacteria and were omitted. The major breakthroughs in DNA-based culture- 
independent methods should have identifi ed bifi dobacteria, yet unfortunately the 
16s rDNA primers that are the basis of detection in these methods were not designed 
to effectively amplify bifi dobacteria. Finally, both 16s rDNA surveys and metage-
nomic techniques that ostensibly sequence all DNA and again should have unequiv-
ocably identifi ed bifi dobacteria failed to appreciate the physical integrity of the 
double cell wall of bifi dobacteria and the need to selectively handle the disruption 
of these barriers to DNA release for sequencing. These technical diffi culties are now 
being resolved, and accurate measures of infant fecal microbiota are now available. 
With these techniques in place, studies are demonstrating very high proportions of 
specifi c strains of bifi dobacteria in breastfed infants prior to transition to an adult 
microbiota [ 41 ]. The analyses of the breastfed intestinal track have revealed 
 Bifi dobacterium longum  and  B. breve  with  B. bifi dum  and  B. pseudocatenulatum  
and  B. catenulatum  also present [ 42 ]. 

 The basic concept that milk itself was infl uencing the microbial population was 
proposed by Gorgy and colleagues [ 43 ] on the basis of observations that  B. bifi dum  
(then termed  Lactobacillus bifi dus ) grew on human milk fractions. The concept 
however implied that there was a single component responsible, the so-called 
 Bifi dus  factor. Various studies since have demonstrated that human milk does indeed 
contain indigestible matter that since humans cannot break them down into digest-
ible monomers would invariably reach the intestine [ 44 – 46 ]. The selectivity of 
growth promotion by bifi dobacterial species growing on human milk oligosaccha-
rides was fi rst demonstrated in vitro by Ward et al. [ 47 ,  48 ]. A series of detailed 
studies have extended this initial observation demonstrating that only certain bifi do-
bacterial species consume the majority of the stereospecifi c oligosaccharides of 
human milk [ 1 ,  25 ,  42 ]. Within specifi c strains, growth on oligosaccharides differed 
leading to the conclusion that  B. infantis  and select  B. breve  preferentially consume 
fucosylated and sialylated HMOs. These results indicate that bifi dobacterial strains 
that grow well on specifi c glycan structures possess genetic adaptations for select 
growth on human milk in the infant intestine [ 32 ,  49 ]. 
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 The interaction between human milk oligosaccharides and bifi dobacteria 
 provides a unique opportunity to map the continuum of metabolites from a food, 
through the genetics of their disassembly by a “consumer” through the metabolic 
pathways that utilize them for growth. The genes in bifi dobacteria that specifi cally 
bind and catabolize HMOs for energy have been identifi ed, expressed, and verifi ed 
for enzymatic activity [ 25 ,  28 ,  50 – 53 ]. The process of annotating these genes has 
demonstrated that different bifi dobacterial species grow on HMO by distinct cata-
lytic mechanisms.  B. infantis  possess a 43-kb gene cluster (termed HMO cluster I), 
encode for glycosyl hydrolases, and transport systems using a unique and highly 
effi cient pathway to internalize and metabolize milk oligosaccharides [ 54 ,  55 ]. In 
contrast,  B. bifi dum  is equipped with genes encoding a different set of catalytic 
activities toward HMO consumption. This strain exports fucosidases and a lacto-N- 
biosidase to hydrolyze lacto-N-biose from HMO structures which is in turn trans-
ported into the bacterium and metabolized [ 56 ]. 

 The process of annotating the detailed mechanisms of the metabolism of human 
milk oligosaccharides by bifi dobacteria has revealed consequences of that metabo-
lism that were unanticipated. This group of metabolites causes a fundamental shift 
in the phenotype of the bacterium itself. Milk oligosaccharides trigger a specifi c 
HMO phenotype to  B. infantis . In effect the bacterium shifts to a phenotypic state 
that is linked to its competitive success in establishing itself within the microbial 
ecosystem. The phenotype is also associated with interactions between the bacte-
rium and the infant host. Chichlowski et al. [ 57 ] reported that the HMO-specifi c 
phenotype of  B. infantis  ATCC15697 on HMOs increases binding to intestinal epi-
thelial cells in vitro. These studies suggest that the specifi c phenotype of bifi dobac-
terial populations grown on human milk oligosaccharides as metabolites provides 
mechanisms to the organism supporting greater growth, microbiota persistence 
interactions with the host epithelium. This model of a metabolically distinct bacte-
rial population induced by its “food” source is supported by in vivo administration 
of  B. infantis  to premature infants fed either formula or breast milk. The    human 
breast milk-fed infants, when supplemented with  B. infantis , had increases in fecal 
bifi dobacteria and decreases in  γ - Proteobacteria  compared with the formula-fed 
group [ 58 ]. The ability of these specifi c bacteria to deconstruct HMOs that is 
encoded in their genome suggests the co-evolution of human lactation and specifi c 
commensal organisms. Thus, mothers are shaping the protective milk-oriented 
microbiota (MOM) of their infants through breast milk (Fig.  8.8 ) [ 53 ,  59 ]. This is 
one example of how milk glycans are being annotated.

8.5         A Vision for Metabolomics in the Future 

 The science of nutrition is faced with a daunting challenge: improving human 
health. The enabling principles of reductionist chemistry that were so effective in 
identifying essential nutrients are failing to address the more complex problems of 
non-communicative but diet-dependent diseases that are epidemic around the world. 
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Single molecules delivered to everyone in the population will not solve these 
 problems. Nutrition as a fi eld must lead the world into more integrative, biology- 
driven strategies that are not only quantitatively precise and mechanistically com-
plete but mapped to actual foods and deployable as individual solutions. The fi rst 
proofs of principle of such strategies are emerging from the, admittedly more nar-
rowly defi ned, nourishment of breastfed infants. The toolsets of systems biology 
including genomics, metabolomics, proteomics, and glycomics have shown their 
power to interrogate the complexity of milk and reveal how it accomplishes an 
astonishingly successful biological feat, the colonization and development of the 
infant microbiota. Evolution clearly identifi ed this to be an important target for 
mammalian health. Human mothers are nourishing the bacteria within their infants 
almost as enthusiastically as their infants. Yet, the strategy of nourishing the infant 
microbiota is a lesson for all of nutrition research. Rather than a single, simple mol-
ecule, the mammary gland produces an entire metabolome that includes: a spectrum 
of complex oligosaccharides and glycans that evade digestion by the infant and 
continue through to the infant’s lower intestine. The complexity of glycans provides 
an intense selectivity that rewards only those bacteria genetically capable digesting 
the glycans and accessing their sugars. The combination of glycan complexity as 
available substrate and genetic capability as enzymatic specifi city is a model for 
nutrition’s microbiota research going forward. The knowledge assembled to date 
has begun the process of mapping the detailed mechanistic understanding of the 
functions of different microbial ecosystems in the infant. Key questions remain: 
How does a particular microbiota protect infants from pathogens and what are its 
weaknesses? How does a particular microbiota educate immunity in the face of the 
bewildering array of both pathogenic insults and completely benign passersby, and 
what are the causes of its failures? How does the microbiota prevent the massive 
activation of immunity and the anticipated increase in infl ammation that would be 
expected from dropping a naïve, ostensibly sterile infant in the “real world,” and can 
we apply these same principles to adults? How does a particular infl uence whole 
body metabolism and ensure appropriate food intake and suitable direction of fuels 
to peripheral tissues, and could these same mechanisms take visceral fat out of 
adults and put back “baby fat”? The successes of the fi rst generation of metabolo-
mics research tools applied to understand the interactions between mammary- 
produced oligosaccharides, and the infant microbiota are a glimpse of what this new 
fi eld of biology can achieve.     
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    Chapter 9   
 Metabonomics and Gut Microbial Paradigm 
in Healthy Aging 

             Elena     Biagi    ,     Marco     Candela    ,     François-Pierre     Martin    ,     Sebastiano     Collino    , 
    Claudio     Franceschi    , and     Patrizia     Brigidi    

    Abstract     Metabonomics, aiming to characterize the pattern of low molecular 
weight metabolites participating in metabolic pathways, is a valuable tool to 
detect changes in metabolic regulation and subsequently link them to the health 
outcome, emerging as a powerful technology to capture the complexity of human 
aging. The growing interest of the research community in this fi eld is demon-
strated by a large number of recently published researches, here summarized, that 
aim to associate complex metabolic regulations with age-related biological pro-
cesses. The involvement of the gut microbiota, our “forgotten organ” with its 
impressive metabolic capability, is a natural extension of this interest, even if still 
largely unexplored. In this chapter, we aim to summarize the potential of metabo-
nomics in exploring the impact of the combined metabolism of human host and 
gut microbiota on aging, as well as on the health outcome of age-related processes 
and the probability to attain longevity.  
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9.1         Metabonomics in Healthy Aging and Brain 
Aging Research 

 The increase in the aging population and incidences of chronic diseases raises new 
challenges for global public healthcare in which preventive medicine approaches, 
particularly by the means of optimal nutrition, will be crucial. Aging can commonly 
be characterized as a progressive, generalized impairment of biological functions 
resulting in an increased vulnerability to environmental challenge and a higher risk 
of disease and death [ 1 ]. Cross talk can occur between multiple physiological sys-
tems, i.e., cognitive, metabolic, and gut systems, which infl uence the immune 
system [ 2 ]. Environmental factors such as lifestyle choices as well as genetic factors 
all contribute to healthy aging. Among these factors, the environment is the most 
easily modifi able. Understanding the physiology of aging is of tremendous impor-
tance to allow populations to grow old disease-free and with a good quality of life. 
In this respect, it is important to understand the natural aging process and to 
elucidate where lifestyle and/or dietary interventions can have an impact. Despite 
the enormous complexity of the aging process, a small number of basic molecular 
mechanisms underpin the aging process, including a set of highly conserved mecha-
nisms. One of the key mechanisms is infl ammation as a typical feature of the aging 
process is the development of a chronic, low-grade infl ammatory status named 
“infl amm- aging” [ 3 – 5 ], and this condition has emerged as critical in the pathogen-
esis of major age-related chronic diseases such as atherosclerosis, type 2 diabetes, 
and neurodegeneration. Infl amm-aging plays a pivotal role in the most important 
geriatric conditions, such as sarcopenia, frailty, and disability, thus contributing to 
elderly mortality [ 5 ]. Interestingly, a variety of tissues (adipose tissue, muscle), 
organs (brain, liver), systems (immune system), and ecosystems (gut microbiota) of 
the body can contribute to the onset and progression of such a systemic infl amma-
tory state [ 6 ], by increasing the production of a number of proinfl ammatory mediators 
or lowering that of the anti-infl ammatory ones, thus tilting the equilibrium toward 
infl ammation [ 7 ]. 

 Physiological, genetic, and environmental changes can cause modifi cations in 
existing homeostatic conditions, which are ultimately refl ected in the metabolic 
composition of the different biological compartments. Metabonomics attempts 
therefore to quantitatively profi le small molecules endogenously and exogenously 
present in a complex biological system, relying on the analysis of fl uids (blood, 
urine), tissue biopsies, or stools. Metabonomics is therefore a very powerful tool 
for capturing the complexity of the aging process. Mass spectrometry (MS) and 
nuclear magnetic resonance ( 1 H-NMR) spectroscopy are the most commonly used 
analytical tools to obtain profi les. Imaging techniques and fl ux analysis using sta-
ble isotopes are parallel technologies to obtain metabolite information. Multivariate 
statistical and bioinformatics techniques are ultimately used for data mining the 
complex metabolic profi les which encapsulate information on genetics, environ-
mental factors, gut microbiota activity, and lifestyle and food habits. This com-
bined strategy sustains the complex process of identifying emerging biomarkers 
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indicative of the individual response to specifi c physiological factors and/or 
 nutritional/physical interventions. 

 The age-related chronic infl ammation is believed to be pathogenic, especially 
with regard to its contribution to frailty and degenerative disorders. In particular, 
the frailty syndrome is increasingly being considered as a key risk indicator of 
adverse health outcomes [ 8 ]. Frailty is characterized by a decline in the functional 
reserve with several alterations in diverse physiological systems, including altered 
energy metabolism, skeletal muscle mass and strength (also termed sarcopenia), 
and hormonal and infl ammatory functions [ 8 ]. A disturbance of the balance between 
the synthesis and breakdown of muscle proteins can lead to the loss of muscle mass. 
In addition, elderly may be also prone to be resistant to anabolic stimuli which is 
likely a key factor in the loss of skeletal muscle mass with aging. Such a perturba-
tion of muscle metabolism with aging has been proposed to play a role in the devel-
opment of sarcopenia [ 9 ], which ultimately alters walking performance and physical 
endurance and results in a perception of exhaustion and fatigue. It has been there-
fore foreseen that well-adapted exercise training and nutritional management pro-
grams should be an effective means of counteracting muscle weakness and physical 
frailty in elderly [ 10 ]. In particular, combining resistance exercise with essential 
amino acid supplementation restores the muscle protein anabolic response in older 
men [ 8 ]. Future research is needed to determine whether these novel interventions 
will be successful in preventing sarcopenia and improving muscle strength and 
function in older adults, and in this system, biology approaches will help not only 
personalize the management program but may also help understand specifi c require-
ments for nonresponders. For instance, metabolic profi ling was successfully applied 
to blood profi ling in the frame of a human exercise study focused on the effects of 
beverages containing glucose, galactose, or fructose taken after exercise and 
throughout a recovery period [ 11 ]. Others have shown novel perspectives in moni-
toring the metabolic signifi cance of long-term strength and endurance training [ 12 ]. 
These applications showed how we could further our understanding on individual 
predisposition and inferences on nutritional/exercise response by monitoring energy 
(glucose, lipid, amino acid) and oxidative stress metabolism [ 12 ]. 

 Very recently, a series of metabonomics studies were expanded to report for the 
fi rst time the metabolic phenotype of longevity. Plasma metabolic phenotype of 
three long-lived murine models was characterized by NMR metabonomics. Here a 
panel of metabolic differences were generated for each model, 30 % dietary 
restricted, insulin receptor substrate 1 null (Irs1−/−), and Ames dwarf (Prop1df/df), 
relative to their controls, and, subsequently, the three long-lived models were 
compared to one another. Concentrations of mobile very low-density lipoproteins, 
trimethylamine, and choline were signifi cantly decreased in the plasma of all three 
models. Such comparative approach suggests that the metabolic networks underly-
ing lifespan extension are not exactly the same for each model of longevity and are 
consistent with multifactorial control of the aging process [ 13 ]. 

 As centenarians well represent the model of successful and healthy aging [ 14 ], 
there are many important implications in revealing the underlying molecular mech-
anisms behind such acquired longevity. Centenarians avoid or delayed the major 
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infl ammation-driven age-related diseases, such as cardiovascular diseases, diabetes 
mellitus, Alzheimer disease (AD), and cancer [ 4 ,  7 ]. A NMR-/MS-based metabo-
nomics and targeted lipidomics approaches were applied in a representative aging 
cohort of centenarians (mean age 100.9 years), elderly (mean age 70 years, includ-
ing offspring of centenarians and their age-matched controls), and young indi-
viduals (mean age 31 years) to reveal the molecular footprints of aging and longevity. 
With increasing age, targeted MS profi ling of blood serum displayed a marked 
decrease in tryptophan concentration, while unique alterations in specifi c glycero-
phospholipids and sphingolipids were seen in the longevity phenotype. Untargeted 
metabonomics profi ling of urine revealed that the longevity process is marked by 
changes in gut microbial metabolites, as displayed by increase urinary excretions of 
phenylacetylglutamine, p-cresol sulfate, and 2-hydroxybenzoate. Moreover, cente-
narian offsprings, who are reported to have delay in age-related diseases, have a 
distinct serum metabolic phenotype from siblings of non-long-living parents, with 
changes in amino acids (serine, phenylalanine) and lysophosphatidylcholines. 
Overall, these results describe different biological processes associated to aging and 
longevity, including differential lipid mediator networks and increased gut micro-
biota dysbiosis [ 15 ]. Additionally, an investigation on specifi c lipids associated with 
familial longevity in females was explored by Gonzalez-Covarrubias et al. in the 
plasma lipidome by measuring 128 lipid species in 1,526 offspring of nonagenari-
ans (59 years ± 6.6) and 675 (59 years ± 7.4) controls from the Leiden Longevity 
Study [ 16 ]. Here in women 19 lipid species associated with familial longevity with 
ether phosphocholine and sphingomyelin species are identifi ed as candidate longev-
ity markers. While this population refl ects a different cohort with plausible differ-
ences in lifestyle and dietary habits, common to the previous study, the authors 
postulated that lipid signatures in plasma lipidome of female individuals could sug-
gest a better antioxidant capacity and lower lipid peroxidation capabilities with 
probable effects on the longevity process. The contrast between offspring of nona-
genarian siblings that express the propensity for longevity and their partners was 
also found to be refl ected by cellular characteristics in vitro. In dermal fi broblast 
strains from offspring, oxidative stress induced less reactive oxygen species, less 
senescence, more apoptosis, and slower growth speed when compared to strains 
from the partners of the offspring [ 17 ]. Aiming to fi nd differences in cellular metab-
olism in vitro between these fi broblast strains, cell culture supernatants collected at 
24 h and 5 days were analyzed using  1 H nuclear magnetic resonance [ 18 ]. Between 
24 h and 5 days of incubation, supernatants of all fi broblast strains showed decreased 
levels of glucose, pyruvate, alanine–glutamine, valine, leucine, isoleucine, serine, 
and lysine and increased levels of glutamine, alanine, lactate, and pyroglutamic 
acid. The alanine–glutamine and glucose consumption were higher for fi broblast 
strains derived from offspring when compared to strains of their partners. Also, the 
production of glutamine, alanine, lactate, and pyroglutamate was found to be higher 
for fi broblast strains derived from offspring. 

 Aging is characterized by a common development of physical and mental disor-
ders that implies metabolic decline with loss of hepatic, renal, coronary, or cardiac 
function, with increased risk of suffering cancer, infl ammatory, cardiovascular, and 
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neurodegenerative diseases. Among these factors, AD is the most common  dementia 
among all the clinically recognized dementias in the aging population. Although the 
cause is not known, there are profound biochemical alterations in multiple pathways 
in the AD brain including changes in amyloid beta-protein metabolism, tau phos-
phorylation, membrane lipid deregulation, and synaptic neurotransmission [ 19 ]. 
Lipids are key regulators of brain function and have been increasingly implicated in 
neurodegenerative disorders including AD. Han et al. analyzed plasma from 26 AD 
patients and 26 cognitively normal controls in a nontargeted approach using multidi-
mensional mass spectrometry-based shotgun lipidomics [ 20 ]. Here a signifi cant dis-
ruption of plasma sphingolipidome was detected in AD, with long aliphatic chains 
sphingomyelin species, 22 and 24 carbon atoms, signifi cantly lower in AD, com-
pared to controls, and ceramide species (N16:0 and N21:0) signifi cantly higher in 
AD. Sato et al. [ 21 ] applied lipidomics to focus on steroid- related compounds to 
identify novel AD plasma biomarkers with signifi cant correlation with mini-mental 
state examination scores. A systems-based approach was also employed to determine 
the lipidome changes in brain tissues affected by AD. Using liquid chromatography–
mass spectrometry, the profi le extracts from the prefrontal cortex, entorhinal cortex, 
and cerebellum of late-onset AD were generated by Chan et al. [ 22 ]. Here 26  different 
lipid subclasses including lysophospholipids, glycerophospholipids, sphingolipids, 
glycerolipids, and sterols were studied. While the cerebellum lacked major altera-
tions in lipid composition, an elevation of a signaling pool of diacylglycerols as well 
as sphingolipids in the prefrontal cortex of AD patients was found. Furthermore, the 
diseased entorhinal cortex showed specifi c enrichment of lysobisphosphatidic acid, 
sphingomyelin, the ganglioside GM3, and cholesterol esters, suggesting common 
pathogenic mechanisms associated with endolysosomal storage disorders. 

 The development of systems biology approaches and the new generation of 
biomarker patterns will provide the opportunity to associate complex metabolic 
regulations with key aging biological processes. This will subsequently lead to the 
development of systems mechanistic hypotheses that could be targeted with new 
nutritional and therapeutic personalized concepts aimed at healthy aging.  

9.2     The Gut Microbiota in Human Aging 

 The gastrointestinal tract (GIT) is one of the most essential interfaces of mam-
malian organism interacting with nutrients, exogenous compounds, and gut 
microbiota, and its condition is infl uenced by the complex interplay between these 
environmental factors and host genetic elements. Along the GIT, the gut micro-
biota is a key determinant of the gut functional ecology and metabolic homeosta-
sis, through fi ne interactions with regulatory processes involved in the absorption, 
digestion, metabolism, and excretion of dietary nutrients as well as barrier integ-
rity, motility, and mucosal immunity [ 23 ,  24 ]. The GIT ecosystem hosts a diverse 
and highly evolved microbial community composed of hundreds of different 
microbial species [ 25 ,  26 ], which can be viewed as a metabolically adaptable, 
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rapidly renewable, and metabolically fl exible ecosystem varying in addition with 
the host’s age, diet, and health status [ 27 ]. For instance, bacterial colonization of 
the gut by commensal bacteria has been shown to alter intestinal physiology of the 
host by modulation of genes and metabolic processes implicated in nutrient 
absorption, mucosal defenses, and xenobiotic metabolism. 

 Age-related physiological changes in the GIT, as well as modifi cation in life-
style, nutritional behavior, and functionality of the host immune system, inevitably 
affect the gut microbiota (Fig.  9.1a ).

   The most informative studies about the age-related modifi cations of the gut 
microbiota structure and composition have been conducted over the last 10 years, 
since when 16S rRNA gene-based molecular characterization technologies have 
been made available [ 28 – 30 ]. Briefl y, studies are in general agreement in reporting 
a large interindividual variability, as well as a reduced biodiversity, and compro-
mised stability of the intestinal microbiota in older subjects with respect to younger 
individuals [ 31 – 35 ]. An age-related increase in facultative anaerobes, including 
streptococci, staphylococci, enterococci, and enterobacteria has also been com-
monly reported in elderly [ 32 ,  33 ,  36 – 38 ]. 

 A certain country specifi city in how the aging process impacts on the intestinal 
microbiota, possibly related to differences in lifestyle and dietary habits, has been 
reported [ 36 ,  39 ], particularly in relation to the dominant components of the gut 
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  Fig. 9.1    Aging and gut microbiota. ( a ) Dietary habits usually change during the aging process, 
because of several age-related physiological and environmental factors; the resulting low-fi ber diet 
is among the causes of reduction of gut microbiota diversity and changes in its phylogenetic com-
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( b ) Immunosenescence and infl amm-aging nurture the overgrowth of pathobionts in the gut eco-
system to the detriment of immunomodulatory bacterial groups; the resulting gut microbiota dys-
biosis promotes infl ammation itself in a sort of self-sustaining loop       
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microbiota,  Firmicutes  and  Bacteroidetes . For what concerns  Firmicutes , members 
of the  Clostridium  cluster XIVa were found to decrease in Japanese, Finnish, and 
Italian elderly and centenarians, whereas an inverse trend was found in German old 
adults [ 32 ,  33 ,  36 ,  40 ]. The species  Faecalibacterium prausnitzii  ( Clostridium  clus-
ter IV), known for its anti-infl ammatory properties and ability to produce short 
chain fatty acids (SCFAs), markedly decreased in Italian elderly and centenarians 
[ 32 ,  36 ], as well as in frail, hospitalized, and antibiotic- and anti-infl ammatory- 
treated elderly [ 41 – 44 ]. Conversely, an age-related increase in  Bacteroidetes  was 
found in German, Austrian, Finnish, and Irish elderly [ 33 ,  34 ,  36 ,  44 ], but this was 
not confi rmed in Italian elderly and centenarians [ 32 ,  36 ]. In the case of Irish elderly, 
 Bacteroidetes  were found to be the dominant phylum instead of  Firmicutes , which 
has always been regarded as the most abundant in healthy adults [ 34 ]. 

 Similarly to what is observed in infl ammatory bowel diseases and obesity [ 45 –
 47 ], the age-related changes in gut microbiota composition summarized above may 
concur to the complex process that both sustains and nurtures infl amm-aging. 
Indeed, several bacterial groups known to increase in the elderly (e.g., enterococci 
and  Enterobacteriaceae ) are often classifi ed as “pathobionts,” defi ned as bacteria 
present in the healthy gut microbiota in low concentration, which are able to thrive 
in infl amed conditions, promoting the infl ammation itself [ 31 ]. 

 The age-related changes in the phylogenetic architecture of the gut microbiota 
impact on those metabolic and physiological functions for which the human meta-
organism depends on its microbial counterpart, with consequences at the functional 
level and possibly affecting the risk of elderly people to develop some types of 
diseases. For instance, the production of SCFAs, i.e., butyrate, acetate, and propio-
nate, is an essential feature of a healthy gut ecosystem, because SCFAs, especially 
butyrate, have nutritive, anti-infl ammatory, antineoplastic properties and exert a 
protective role for the intestinal epithelium, increasing its resistance [ 48 – 50 ]. The 
lower capacity to produce butyrate in the elderly gut microbiome [ 32 ,  51 ], corre-
lated with decreased amounts of  F. prausnitzii ,  Eubacterium hallii , and bacteria 
belonging to the  Eubacterium rectale/Roseburia  group, together with the increase 
in proinfl ammatory pathobionts (i.e., bacteria present in the healthy gut microbiota 
in low concentration, which are able to thrive in infl amed conditions, sustaining 
infl ammation itself), may nurture the infl amm-aging process in the GIT (Fig.  9.1b ) 
[ 31 ]. Moreover, the declined butyrate-producing capacity may contribute to the 
development of degenerative diseases and anorexia [ 52 ,  53 ]. 

 SCFAs are also a fundamental component of the microbiota–host bio-network to 
maintain the GI epithelial integrity, by stimulating the release of mucins, the gel- 
forming protein component of the colonic mucus layer that contributes to the physi-
cal separation between microbiota and enterocytes [ 54 ], and enhancing transepithelial 
resistance [ 55 ]. The age-related microbiota depletion in SCFA producers may con-
cur in weakening gut epithelium, allowing the passage of whole bacterial cells and 
their products, ending up in an abnormal infl ammatory response [ 56 ]. 

 Moreover, a proinfl ammatory dysbiosis, together with the decreased butyrate 
production in the intestine, has also been linked to an increased risk of colorectal 
cancer [ 57 ,  58 ], whose incidence is augmented in aged people [ 59 ]. 
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 Finally, changes in the gut microbiota composition may be rated as one of the 
age-related physiological processes that, all together, are linked to “how healthily” 
a human being will age. It has recently been demonstrated by Claesson et al. that the 
healthiest elderly, living in community setting and having a high-quality diet, pos-
sess a distinct gut microbiota from less healthy elderly living in residential care 
[ 60 ]. However, whether these changes are simply a biomarker of the aging process 
or could be counted among its driver cannot yet be decided based on the available 
data. Certainly, the aging gut microbiota possesses features that can actively affect 
the health status of old people, i.e., contributing to the onset of pathological condi-
tions known to affect the elderly with a higher incidence than the young adults, such 
as  C. diffi cile -associated diarrhea and colon cancer, as well as their eventual respon-
siveness to therapies [ 30 ]. Considering the aging human being as a metaorganism, 
composed by both human and bacterial cells that together answer to the changing 
metabolic requests of the human body, could be the right approach for promoting 
healthy aging and longevity.  

9.3     Variation of Microbiota–Host Co-metabolism in Aging 

 Age-related variations in microbiota–host transgenomic metabolism can impact dif-
ferent ecological services provided by our symbiotic gut microbial community. 
Indeed, the microbiota–host co-metabolism has been reported as strategic for sev-
eral host physiological functions – such as regulation of extraction and storage of 
food energy, epigenome modulation, and brain function – and its impairment can be 
detrimental for health and longevity (Table  9.1 ).

   As an end product of the gut microbiota fermentation processes, gut butyrate 
shows a multifactorial role in host nutrition, and its reduction as a consequence 
of the age-related microbiota deterioration can provide several consequences for 
the host nutritional state. For instance, microbial butyrate is essential to enhance 
the effi ciency of food energy extraction, representing the primary energy source 
for colonic epithelium and providing the 15 % of the total energy request [ 46 , 
 61 ]. On the other hand, supporting insulin secretion, microbial butyrate is also 
involved in the regulation of the host energy storage. Finally, butyrate has been 
reported to be a key regulator of appetite, enhancing the production of leptin and 
inducing  pyy  expression [ 23 ]. Beside butyrate, also the age-related decrease of 
microbial propionate and acetate can concur in weakening of the host nutritional 
state. In particular, these metabolites have a role in the regulation of food energy 
storage; acetate is involved in hepatic liponeogenesis, while propionate regulates 
gluconeogenesis [ 61 ]. 

 SCFAs, in particular butyrate, have also been recently shown to be involved in 
the modulation of the host epigenome by means of the inhibition of the histone 
deacetylase. Acting as regulators of the epithelial cell transcriptome, the decrease of 
microbial SCFA along aging can infl uence different physiological aspects of the 
host biology, such as digestion, immunity, gut–brain function, and hormone 
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 secretion [ 62 ]. Interestingly, recent fi ndings demonstrated that neurotransmitters or 
neuroactive metabolites of microbial origin, such as SCFA and 5-hydroxytryptamine, 
are effective in the stimulation of the sympathetic nervous system and gut motility 
[ 23 ]. The reduction of these neuroactive microbial metabolites along aging can 
result in changing in brain function and behavior, supporting cognitive defi ciencies 
and depression which are typical of the frail elderly [ 63 ]. Finally, the impairment of 
microbiota–host mutualism in the elderly can drive to modifi cations of the choline 

   Table 9.1    End products of microbial metabolism in the gut and their activities with respect to the 
human host physiology   

 Metabolite  Origin  Functions/activities 

 Butyrate  Carbohydrate 
fermentation by gut 
microorganisms 

 Energy source; stimulates leptin 
production; regulates neutrophils; 
inhibits infl ammatory cytokines; 
increase TJ expression; histone 
deacetylase inhibitor; binding to 
G-protein-coupled receptors: improves 
of insulin secretion; induction of  Pyy  
expression, supports fat deposition; 
antimicrobial activity; modulation of 
the sympathetic nervous system and 
gut motility 

 Acetate  Supports lipid synthesis; supports 
energy metabolisms; binding to 
G-protein-coupled receptors; 
antimicrobial activity; modulation of 
the sympathetic nervous system and 
gut motility 

 Propionate  Supports gluconeogenesis; binding to 
G-protein-coupled receptors; 
antimicrobial activity; modulation of 
the sympathetic nervous system and 
gut motility 

 Methylamine  Metabolism of choline 
by gut microorganisms 

 Altered product of choline 
metabolisms; has been associated with 
obesity, diabetes and cardiovascular 
disease, liver steatosis 

 Dimethylamine 
 Trimethylamine 
 Trimethylamine-N-oxide 
 4-Cresyl sulfate  Tyrosine putrefaction 

by gut microorganisms 
 Association with cancer; diabetes; 
autism; depression  4-Cresil glucuronide 

 5-Hydroxytryptamine  Bacterial metabolism of 
tryptophan 

 Infl uences brain and behavior 

 GABA  Neurotransmitters of 
bacterial origin 

 Infl uences behavior 
 Noradrenaline 
 Dopamine 
 Acetylcholine 
 LPS  Gram – surface 

component 
 Metabolic endotoxemia 
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metabolism by gut microorganism, resulting in an increase risk to develop diabetes 
and cardiovascular diseases [ 64 ]. Analogously, an increase of tyrosine putrefaction 
by gut microorganism in an aged-type microbiota can eventually result in the 
increased risk of developing cancer and depression.  

9.4     Metabonomics Potential in Aging and Gut 
Microbiota Research 

 Increasing scientifi c evidence has been reported on the fundamental role of gut 
microbiota in both positive and negative triggers of specifi c metabolic states of indi-
viduals and populations [ 61 ,  65 ]. Therefore, it is today critical to understand the 
molecular foundations of the impact of the gut microbial activity on human health 
and nutritional status [ 66 – 68 ]. 

 The current omics revolution offers an unprecedented opportunity to explore how 
our gut symbionts contribute to our physiology and human health. Future systems 
biology approaches combining state-of-the-art microbial and metabolic modeling 
and discovery approaches, including metagenomics and metabonomics, will help in 
deciphering the molecular foundations of these transgenomics interactions. Recently, 
an exhaustive gene catalogue has been published containing virtually all of the preva-
lent gut microbial genes in large human cohort, and reporting to which extent many 
bacterial species are shared by different individuals [ 69 ]. Such an approach could be 
used for global characterization of the genetic potential of ecologically complex 
environments [ 69 ] but also to help understand how gut microbiota specifi cities could 
be exploited to develop new therapeutic and nutritional strategies. Systems biology 
approaches, including metabonomics, have emerged over the last two decades as a 
novel way forward to provide insights into the role of mammalian gut microbial 
metabolic interactions in individual susceptibility to health and disease outcomes. 
Since it is more likely that gut microbiome required for proper functioning of the gut 
ecosystem in the elderly is different from that of the young subjects, knowledge and 
systems models will help in assessing earlier deviations that lead to unhealthy aging 
and development of chronic infl ammatory conditions. In particular, both system- 
wide (i.e., whole organism) and organ-specifi c metabolism may have components 
driven by gut microbial activities [ 70 ,  71 ], which suggests that the dynamics of the 
gut microbiome could help to maintain or reestablish host metabolic homeostasis in 
disease and early onsets of metabolic deregulations. Gut microbial activities can be 
extremely specifi c, as for the development and maintenance of the mucosal innate 
and adaptive immune system [ 52 ], but also very complex, such as in the etiology and 
development of several chronic infl ammatory disorders, including infl ammatory 
bowel diseases (IBD), irritable bowel syndrome (IBS), and gastrointestinal cancers 
[ 72 ,  73 ]. A series of investigations in human [ 74 ] and animal models [ 75 – 77 ] have 
provided a set of reference metabolic profi les of gut intestinal biopsies that can be 
used to assess not only compartment structure and function but also the gut microbial 
impact at the tissue level [ 78 ]. Such applications will help in  identifying main 
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 metabolic processes conserved across species on which gut microbiota modulates to 
shape the microenvironment. For instance, the investigations illustrated how micro-
bial-dependent variations along the upper intestine, an element often underestimated 
due to low bacterial populations, may affect utilization effi ciency of dietary proteins 
and amino acids and their subsequent availability to extra- intestinal tissues. Moreover, 
some reference data were generated to investigate changes in gut functionality, such 
as gut permeability, using metabolic profi ling of biofl uids [ 79 ,  80 ], since normal age-
ing is associated with a number of signifi cant changes in intestinal function, which 
may impact on daily energy intake [ 81 ]. Since under-nutrition is common in older 
people and has been implicated in the development and progression of chronic dis-
ease commonly affecting the elderly, such insights will be key for tailoring personal 
nutritional intervention and monitoring patient response on an individual basis. 
Furthermore, indirect and minimally invasive metabolic indicators of specifi c intes-
tinal structural or functional states (e.g., digestion, mobility, permeability) will be 
crucial for patient risk assessment and monitoring. For instance, such applications 
seem promising in the fi eld of chronic intestinal infl ammatory conditions. Both man-
ifestations of IBD, ulcerative colitis (UC) and Crohn’s disease (CD), are mediated by 
common and distinct mechanisms infl uenced by multiple environmental factors and 
specifi c genetic predispositions, including gut microbiota. Advancing knowledge 
regarding the mechanisms of IBD has led to the development of different therapeutic 
solutions based on  surgery [ 82 ], cannabinoids [ 83 ], immunosuppression [ 84 ], and 
alternatively probiotic supplementation [ 85 ]. Although prognostic and monitoring 
tools are currently lacking, metabolic profi ling in combination with state-of-the-art 
clinical and medical readouts is foreseen to be a valuable tool to differentiate and 
follow-up IBD evolution and response to disease-modifying interventions. This is, 
for instance, exemplifi ed through the discovery of metabolic indicators of different 
IBD determinants, including mucosal healing, gut permeability, absorption, diges-
tion, or infl ammatory states. As an example, Winterkamp et al. reported previously 
how N-methylhistamine, a key metabolite in mast cell metabolism involved in the 
pathogenesis of IBD, could be used as an indicator of disease activity in patients 
[ 86 ]. In this study, the urinary excretion of N-methylhistamine was associated with 
elevated histamine production and metabolism in CD and UC and could be used as a 
reliable diagnostic tool to monitor clinical and endoscopic disease activity in 
IBD. Additional proofs of concept on the feasibility to identify some metabolic indi-
cators of early onsets of chronic infl ammatory development offer also novel promis-
ing directions for patient monitoring and early patient stratifi cation [ 87 ]. Additional 
applications of noninvasive profi ling of stool from patients provided novel insights 
into the remodeling of the gut microbial communities and activities, concomitant to 
malabsorption and element of protein-losing enteropathy [ 88 ,  89 ]. Another severe 
GIT disorder for which the pandemic is affecting mainly the elderly is colorectal 
cancer (CRC) [ 90 ]. Effective screening methods have signifi cantly improved the 
treatment modalities and effectiveness in the geriatric population. Nowadays, screen-
ing  methods are mainly based on fecal assays for detecting blood presence or altered 
DNA and endoscopic and computerized radiologic  techniques. Therefore, CRC early 
 diagnosis still suffers from the absence of noninvasive or minimally invasive 
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 diagnostics for early detection. Numerous studies reported that the general popula-
tion of intestinal bacteria is associated with initiation of colon cancer via the produc-
tion of carcinogens, cocarcinogens, or pro-carcinogen substances [ 91 ]. Recently, 
metabonomics applications identifi ed novel lipid markers of early CRC in American 
and Japanese populations using MS analyses of serum samples [ 92 ,  93 ]. Moreover, 
the application of NMR metabolic profi ling to fecal water extracts has interesting 
potential as a diagnostic tool for detecting CRC [ 94 ]. NMR metabolic profi les of 
fecal water extracts from CRC patients were markedly distinct from controls with 
lower concentrations of SCFA (acetate and butyrate) and higher levels of proline and 
cysteine, the latter being two major components of most colonic epithelium mucus 
glycoproteins. Conventional tumor markers are relatively unsuitable for detecting 
carcinoma at an early stage and such novel insights may become critical in the devel-
opment of tailored approaches to reduce disease burden.  

9.5     Conclusions 

 The gut microbiota infl uences human health status throughout the whole lifespan, from 
birth to aging. It is generally accepted that the disruption of the fi nely balanced interac-
tion between host and microbiota can contribute to the progression of diseases and/or 
predispose the human host to develop age-related disorders later in life. Yet, recent 
advances in systems biology approaches including metabonomics and microbial ecol-
ogy have shown that the contribution of the intestinal microbiota to the overall health 
status of the host has been so far underestimated. It is therefore of crucial importance 
for nutrition and health to understand and to metabolically characterize the interactive 
molecular processes between the host and its microbiome. By opening a direct bio-
chemical window into the metabonome, metabonomics is a unique science perfectly 
suited for the identifi cation of biomarkers capable of providing better understanding of 
the complex metabolic phenomenon. This makes metabonomics a very effi cient 
approach for generation of metabolic patterns for the comprehensive characterization 
of metabolic health, including healthy aging, and in the generation of new insights in 
the understanding of the interactions between diet and metabolism. By understanding 
the mechanisms by which diet and lifestyle infl uence metabolism, also by means of 
infl uencing the microbiota composition and functionality, it will be possible to develop 
personalized strategies to maintain a reasonable health status during aging and possibly 
to attain longevity, maintaining a high quality of life as long as possible.     
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    Chapter 10   
 Roles of Herbal Medicine in Modulating Gut 
Microbiota Associated with Health 
and Diseases 

             Yulan     Wang      and     Huiru     Tang   

    Abstract     The perturbation of gut microbiota is increasingly recognized to be 
 associated with human health and diseases. The modulation of the gut microbiotal 
community as a means to alleviate disease conditions provides a unique opportunity 
for herbal medicine, due to the two-way interaction between gut microbiota and 
herbal medicine. Herbal medicine contains a range of polyphenols that require 
action from gut microbiota to effectively perform their biological function. The gut 
microbiota are subsequently stimulated through this action. In this chapter, we out-
line the associations between gut microbiota and disease (particularly infl ammatory 
bowel disease (IBD), diabetes, and cancer), and the roles of herbal medicine in 
alleviating disease conditions through modulating gut microbiota. In addition, we 
discuss the functional uses and challenges of herbal medicine, which include the 
quality control and elucidating mechanisms of action. Finally, we describe how a 
metabonomics technique can provide a means for the quality control of herbal med-
icines and can be an effi cient tool for elucidating the molecular mechanisms of dif-
ferent herbal treatments. Future research on herbal medicine should be focused on 
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directly measuring altered gut microbiota and integrating this with a mechanistic 
metabonomics evaluation.  

  Keywords     Gut microbiota   •   Diseases   •   Metabonomics   •   Herbal medicine  

10.1         Introduction 

 Humans have a large number of microbiota resident in the gut. Interactions between 
host metabolism and gut microbiota, between gut microbiota themselves, and 
between food/medicine ingested and gut microbiota make the human gut a very 
complex system. There are approximately about 1,000 microbial species present in 
the mammalian gut, which codevelop with the host throughout the host’s lifetime. 
Microbes play an important role in host nutrition and health by supplying and digest-
ing nutrients, preventing pathogen colonization, and maintaining balanced mucosal 
immunity, which is vital for our health. A shift in the gut microbial composition can 
stimulate a specifi c disease-prone (dysbiosis) or disease-protective activity (probio-
sis). For example,  Lactobacillus reuteri  strains can produce thiamine to benefi t the 
host [ 1 ], whereas  Bifi dobacteria  may inhibit the colonization of potential pathogens 
by competing with the nutrients and the binding site on the mucosa [ 2 ]. The gut 
microbial community is very complex and dynamic [ 3 ], which can be affected by 
the host’s genome, birth, age [ 4 ], nutrition [ 5 ], lifestyle, disease [ 6 ], and therapeutic 
interventions (e.g., antibiotics [ 7 ], herbal medicines [ 8 ], and surgery treatments [ 9 ]). 
In turn, the unbalanced microbial colonies may disturb the physiological homeosta-
sis, leading to various diseases such as colon cancer, infl ammatory bowel disease 
(IBD) [ 10 ], irritable bowel syndrome (IBS) [ 11 ], obesity [ 12 – 14 ], diabetes [ 15 ], 
cardiovascular disease [ 16 ], autism [ 17 ], and allergic asthma [ 18 ]. The close asso-
ciations between the gut microbiotal community and disease status give a unique 
opportunity for treatment by using traditional herbal medicine, via restoring the bal-
ance of the gut microbiotal community. Shaping the balance of the gut microbiotal 
community by herbal medicine involves a two-way interaction. The active biologi-
cal ingredients of the herbal material are largely polyphenolic compounds, which 
often cannot be absorbed directly by humans. Fortunately, however, enzymes 
secreted by gut microbiota can metabolize these non-bioavailable phytochemicals, 
facilitating their utilization. The enzyme-producing bacteria in return are selectively 
stimulated, thereby modifying the balance of the gut microbiota [ 8 ,  19 ] (Fig.  10.1 ).

   The benefi cial effects of herbal medicine have gained growing interest in herbal 
remedies, leading to a strong growth in consumer demand in plant-based products. 
The current global market for plant-based health products is estimated to hit 93.15 
billion dollars by 2015 (  http://www.nutraingredients-usa.com    ). Prominent concerns 
regarding the quality of phytomedicines are that they contain mixtures of many com-
pounds, which are often derived from plants or animal origins. Traditionally, the qual-
ity of these herbs is assessed by the experiences of herbal practitioners, who sometimes 
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refer to “active” molecules or arbitrarily chosen “marker” compounds in complex 
plant extracts. The lack of scientifi cally accepted standards for herbal medicine has 
long been an obstacle preventing herbal medicine from being recognized and inte-
grated into the standard healthcare system in Western countries. Therefore, one of the 
challenges that phytomedicinal practitioners have encountered is the quality control of 
herbal medicine. As a consequence of the lack of effi cient quality control tools, large 
variations of phytomedical products are encountered. For example, an analysis of 14 
commercially available feverfew samples showed that each batch generated a unique 
and characteristic spectra profi le, with two of the batches being markedly different 
from the other 12 [ 20 ]. The development of new quality control methods based on the 
entire biochemical composition of the preparation without reference to “active” 
 molecules will help improve the quality and will make it more acceptable. Modern 
metabonomics techniques appear to be well suited for this purpose. Metabonomics 
involves the study of multivariate metabolic responses of complex organisms to 
 physiological and/or pathological stressors, including the consequent disruption of 
systems regulation [ 21 – 24 ]. Metabonomics involves multivariate analysis of data 
from Nuclear magnetic resonance (NMR) and mass spectrometry (MS) spectroscopy. 
The commonly used multivariate data analysis tool includes a range of pattern recog-
nition techniques and random forest method as detailed in Chaps.   2     and   3    . Using  1 H 
NMR spectroscopy, a wide range of plant metabolites can be detected including 
 sugars, amino acids, organic acids, and polyphenols. In such cases, all the chemical 
components present in a single plant extract can be viewed simultaneously as a 

IBD
Cancer

Metabolic Diseases

Quality
control

Metabolic 
consequence

Herbal Medicine

Gut microbiota

Metabonomics

  Fig. 10.1    A summary of the key roles of metabonomics in herbal medicine and the herbal medi-
cine alleviating disease conditions via modifi cations of gut microbiota       
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 “metabolic fi ngerprint.” The holistic nature of metabonomics can overcome the draw-
back of considering “active components” (Table  10.1 ).

   A single-component drug is the major characteristic of many Western medicines, 
and the metabolism of the drug and the molecular target are often clearly defi ned. 
However, herbal medicine consists of multiple components in nature, with mixtures 
of various herbs; thus, the identifi cation of molecular mechanisms and acting targets 
is hindered by the complexity of the herbal medicine. Traditional drug discovery 
routes are unsuitable for evaluating the mechanism of action of herbal medicines. 
Metabonomics, on the other hand, measures the endpoint metabolic perturbations of 
an intervention, including the multiple components of the herb. Therefore, the meta-
bonomics technique can also be adopted to evaluate mechanisms of a given com-
plex herbal medicine. The advantage of utilizing such a technique is its holistic 
nature, which can provide important clues as to how herbal medicine really works. 

 In this chapter, we discuss the roles of gut microbiota in diseases and the ways in 
which herbal medicine could alleviate disease conditions via modifi cation of the gut 
microbiotal community. In addition, the challenges encountered in herbal medicine 
will be discussed and examples of possible solutions are shown.  

10.2     Herbal Medicine Affects the Association 
Between Disease State and Gut Microbiota 

 Many diseases are closely associated with an imbalanced gut microbiota, and herbal 
medicines are capable of alleviating these disease conditions by offsetting 
the imbalance of the microbiotal community. Infl ammatory bowel disease (IBD) is 

   Table 10.1    Summary of alternations of gut microbiota associated with diseases and corresponding 
herbal medicine treatment   

 Diseases  Gut microbiota  Herbal medicine 

 IBD   Bacteroides fragilis , 
 enterococci ,  lactobacilli , 
 bifi dobacteria  [ 34 ] 

 Quercetin [ 26 ,  27 ] 
 Curcumin [ 28 ] 
 Prebiotics [ 32 ,  33 ] 
  Echinacea purpurea  [ 34 ] 

 Metabolic 
diseases 

  Lactobacillus ,  Clostridium  
[ 38 ] 

  Jiangtang Xiaozhi  [ 39 ,  40 ] 

  Enterococcus faecalis  [ 42 ]   Mimosa pudica ,  Emblica offi cinalis ,  Azadirachta 
indica  [ 42 ] 
  Huangguaxiang  [ 43 ] 

 Cancer   H. pylori    Juzentaihoto  [ 45 – 48 ] 
  Pelargonium sidoides  [ 49 ,  50 ] 
  Calophyllum brasiliense  Camb. ( Clusiaceae ), 
 Mouriri elliptica  Martius ( Melastomataceae ), 
and  Hancornia speciosa  Gomez ( Mangaba ) 
[ 51 – 53 ] 
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one such disease. IBD primarily includes ulcerative colitis (UC) and Crohn’s  disease 
(CD) and is a signifi cant public health burden. The pathogenesis of IBD has not yet 
been identifi ed, but it has been widely accepted that the combination and  interaction 
of genetics, environmental infl uences, and immunologic abnormalities contribute to 
the occurrence and perpetuation of this disease [ 25 ]. Aminosalicylates, antibiotics, 
and a range of immunomodulation drugs are used to manage IBD conditions. 
Complementary improvement of IBD conditions using nondigestible food ingredi-
ents has also gained increased recognition. Quercetin is a fl avonoid commonly pres-
ent in food and other plant materials. Reports have shown that quercetin has antiviral, 
antioxidant, and anti-infl ammatory properties [ 26 ]. Quercetin-containing microcap-
sules have been given to mice with acetic acid-induced colitis, which have demon-
strated that quercetin treatment is able to decrease neutrophil recruitment, attenuate 
histological alterations, and reduce macroscopical damage. In addition, quercetin- 
containing microcapsules can also prevent the reduction of the anti-infl ammatory 
cytokine IL-10 and provide antioxidant properties [ 27 ]. Curcumin is another compo-
nent abundant in plant foods that possesses anti-infl ammatory and antioxidant activ-
ity and has been demonstrated to be a therapeutic agent for IBD [ 28 ]. These 
phytochemicals are known to be metabolized by gut microbiota [ 29 ]; hence, despite 
the anti-infl ammatory and antioxidant actions of these phytochemicals, the ameliora-
tion of IBD conditions via modifi cation of gut ecosystems could be one of the under-
lying mechanisms. This is because the bioavailability and bioactivity of these 
phytochemicals depend on enzymes of the gut microbiota [ 30 ]. The gut ecosystem 
could in turn be modifi ed by the phytochemical ingested. Indeed, probiotics supple-
mentations have been suggested to be benefi cial in IBD [ 31 ], and long-term ingestion 
of prebiotics can selectively stimulate or limit the growth and/or activity of bacteria in 
the colon, and thus provides a more sustainable effect on colonic bacteria, which 
improves host health [ 32 ]. Nondigestible dietary fi bers can act as prebiotics, and it 
has been reported that ingesting a number of different dietary fi bers seems to be ben-
efi cial in IBD [ 33 ]. They also demonstrated that children with CD who achieved 
remission by either complete or partial enteral feeding displayed signifi cant modifi ca-
tions to their fecal microbiota. The profi les of fecal microbiota were stable over time 
for healthy children, which suggested that targeting enteral microbiota using phyto-
chemicals or prebiotics can help achieve remission for IBD patients. Many herbal-
based materials have shown antimicrobial effects against certain pathogenic bacteria 
in vitro; hence, there is an expectation for signifi cant changes in gut microbiota 
in vivo. A study was performed on the effects of the dietary supplement of  Echinacea 
purpurea  on aerobic and anaerobic bacteria common to the human gastrointestinal 
tract. They found that human subjects who consumed 1,000 mg of standardized 
 E. purpurea  for 10 days had signifi cantly increased total aerobic bacteria, particularly 
 Bacteroides fragilis . Supplementation did not signifi cantly alter the number of enteric 
bacteria, enterococci, lactobacilli, bifi dobacteria, or total anaerobic bacteria [ 34 ]. 

 Similar to IBD, type 2 diabetes is believed to be a result of complex 
 gene- environmental interactions. Recent evidence points to the importance of gut 
microbiota as an environmental factor in metabolic diseases, including obesity 
[ 14 ,  35 ] and diabetes [ 36 ]. Diabetic patients showed clear dysfunction of choline 
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metabolism, indicating a close association between gut microbiota and diabetes [ 37 ]. 
It was further suggested that the presence of  Lactobacillus  species correlated 
 positively with the levels of fasting glucose and glycosylated hemoglobin, whereas 
the presence of  Clostridium  species correlated negatively with the levels of fasting 
glucose, glycosylated hemoglobin, insulin, C peptide, and plasma triglycerides 
[ 38 ]. Metformin is the fi rst line of drug in delaying the onset of diabetic condition, 
and the low-risk alternative herbal medicines are often used to improve glucose 
tolerance. The  Jiangtang Xiaozhi  capsule is a traditional Chinese herbal formula-
tion, consisting of  radix astragali  and  rehmannia  root,  radix pseudostellariae  and 
 Mongolian snakegourd  root. There have been animal studies and a small clinical 
trial, along with studies of the effects of the individual herbs, which showed that the 
formula has a great potential to improve diabetic condition [ 39 ]. Recently, a large 
clinical trial, including 71 participants treated with  Jiangtang Xiaozhi  capsules for 
16 weeks, showed a signifi cant difference in the levels of fasting insulin between the 
treatment group and the placebo group. Patients taking  Jiangtang Xiaozhi  had a 
signifi cant improvement in high-density lipoprotein (HDL) level compared to the 
placebo group [ 40 ]. Although attention has not yet been paid to scrutinizing changes 
of gut microbiota after treating the diabetic patients on this particular case, many of 
the diabetes-alleviating drugs possess strong antimicrobial properties [ 41 ]. Other 
studies have shown that antidiabetic herbal plants have antibacterial activity, which 
is not surprising given the fact that most of the phytochemicals become bioavailable 
after interacting with gut microbiota. Some Indian herbal medicines, which have 
been known for their hypoglycemic activities, were screened for four Gram-negative 
and three Gram-positive bacteria. The results showed that the extract of  Mimosa 
pudica  has a strong antibacterial activity against Gram-positive bacteria such as 
 Enterococcus faecalis  and  Proteus vulgaris . Authors have also demonstrated that 
extracts of  Emblica offi cinalis  have a broad spectrum of antimicrobial activity fol-
lowed by  Syzygium cumunii  and  Azadirachta indica  [ 42 ].  Huangguaxiang  
( Matteuccia struthiopteris ) was investigated on the hypoglycemic activities of 
streptozotocin-induced diabetic rats. The results showed that treatment with 
 Huangguaxiang  for 8 weeks signifi cantly reduced the levels of triglycerides, low- 
density lipoprotein, and cholesterol, while levels of bifi dobacterium and lactobacil-
lus were also altered following  Huangguaxiang  treatment [ 43 ]. 

 The potential roles of herbal medicine in treating cancer or preventing cancer 
metastasis mainly lie in the possible synergic effects of phytochemicals with che-
motherapies and/or the promotion of the immunologic response of the host via 
interactions with enteric microbiota [ 44 ]. The traditional Japanese medicine  juzen-
taihoto , containing ten different herbal plants, has been widely used for the preven-
tion of various types of cancer metastasis [ 45 ,  46 ]. Antifungal effects have also been 
shown for  juzentaihoto  in preventing Candida infection [ 47 ,  48 ]. The most direct 
evidence for herbal medicine as a treatment for cancer via targeting microbiota is 
their use in treating  Helicobacter pylori  ( H. pylori )-induced gastric cancer. 
 H. pylori , a Gram-negative bacterium, is commonly found in the human stomach 
and can cause various diseases including gastritis, peptic ulcer, and gastric cancer. 
In addition to antibiotics treatment against  H. pylori , treatments using alternative 
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herbal medicine are common worldwide. The mode of action could be antibacterial 
activity, inhibition of adhesion of  H. pylori  to gastric mucus, or both in combina-
tion. The extract of  Pelargonium sidoides  roots, a South African herbal medicine, 
has been shown to inhibit  H. pylori  growth and has a strong adhesion to AGS cells 
and to intact gastric tissues from  H. pylori -infected humans [ 49 ,  50 ]. A range of 
plants native to Brazil, including  Calophyllum brasiliense  Camb. ( Clusiaceae ), 
 Mouriri elliptica  Martius ( Melastomataceae ), and  Hancornia speciosa  Gomez 
( Mangaba ), have also displayed anti- H. pylori  activity among others [ 51 – 53 ]. 

 Phytomedicine has been commonly used for treating many conditions, apart 
from the aforementioned cases, due to the fact that phytomedicines are normally 
comprised of many plant extracts with perhaps thousands of metabolites. In most 
cases, the molecular mode of action of the active ingredients of these herbal extracts 
is unknown [ 54 ]. In addition, the origins of the plant, time of harvest, and prepara-
tion methods will affect the effi cacy of the phytomedicine. Therefore, authenticat-
ing the medicinal plant and elucidating the mechanism of action using an objective 
tool, such as metabonomics, would be a way forward to tackle the many research 
challenges in this area.  

10.3     Challenges and Solutions in Herbal Medicine 

10.3.1     Assessing the Quality of Phytomedicine 

 Currently, the quality control of phytomedicines is carried out based on the active 
ingredients present in a plant. A drawback of this method is that some of the 
unknown ingredients may have potential synergic interactions with each other and 
may have certain biological functions. As a consequence, the mechanism of action 
of these products becomes an impossible task. Thus, the quality control of both raw 
and fi nal products in a holistic manner is necessary to ensure the consistency of 
these products and to provide a fundamental ground for further understanding the 
molecular mechanisms of these products. 

 Metabonomics that employs  1 H NMR spectroscopy facilitates the simultaneous 
detection of chemical components present in a plant extract as a “metabolic fi nger-
print” and can meet the requirements for the quality control of an herbal medicine 
in a holistic manner. Multiple-component analysis, based on the combination of 
high-resolution NMR spectroscopy with pattern recognition, has been employed to 
investigate the effects of origin on the chemical compositions of chamomile 
( Matricaria recutita ). Clear differences between chamomiles from Northern Africa 
(Egypt) and Eastern Europe (Hungary and Slovak Republic) can be seen. 
Chamomiles also have distinguished profi les from Hungary and Slovak Republic 
based on their metabolomic compositions, despite being close in terms of geo-
graphic location. Furthermore, this method is effective for monitoring the “purity” 
of chamomile samples, such as the percentage of stalks mixed with fl owers, 
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 suggesting that this is an excellent method for authenticity and quality control [ 55 ]. 
From a processing point of view, NMR-based metabonomics methods have also 
been extremely powerful in distinguishing samples extracted with different methods 
and samples collected at different seasons and dried with different procedures [ 56 ]. 
Metabonomics studies have also been carried out on the extracts of  Artemisia annua  
to discriminate samples from different sources and classify them according to their 
antiplasmodial activity, without preknowledge of this activity [ 57 ]. The use of par-
tial least squares analysis also allows the predictions of actual values of such activi-
ties for independent samples not used in the model construction. Another study was 
conducted on the complex pharmaceutical preparations, such as  St. John ’ s wort , 
using multivariate analysis of full-resolution  1 H NMR spectral data [ 58 ]. The results 
showed that ten preparations from markets were compositionally diverse, and such 
diversity resulted from plant extract preparation rather than post-extraction pro-
cesses. The combination of NMR technique and LC-DAD-MS method has been 
used to investigate the differences between three  Salvia miltiorrhiza  Bunge (SMB) 
cultivars. The study demonstrated that the combinational use of these methods was 
effective for plant metabonomics phenotype analysis [ 59 ]. These examples are only 
a refl ection on the developments in this area and are by no means exhaustive. In fact, 
many studies have also been carried out in terms of phytomedicines and authentic-
ity, and it is conceivable that such applications of metabonomics technology will be 
extended much further in the near future.  

10.3.2     Elucidating the Mechanisms of Phytomedicine 

 Since herbal medicine is a mixture of many plant materials with many chemical 
components, it is almost impossible to conduct classic pharmacological assays to 
clearly demonstrate metabolisms of each chemical or unravel specifi c drug target in 
an herbal-based drug. These diffi culties have restricted their use worldwide. 
Metabonomics simplifi es the complexity by measuring the endpoints of an inter-
vention or a drug effect and hence could provide an alternative strategy for the 
assessment of herbal medicine. The utilization of a metabonomic approach to evalu-
ate the metabolic action of an herbal medicine has been demonstrated in the human 
ingestion of chamomile tea [ 60 ]. A total of 14 participants were given chamomile 
tea every morning, and urine samples were collected after one and a half hours after 
drinking the tea. The metabonomics analysis of urine samples was able to show that 
chamomile ingestion is a mild intervention to the human body in general, and it 
causes a reduction in oxidative stress and alters the state of gut microbiota, which 
was refl ected by alternations in the levels of hippurate. The effects of chamomile 
ingestion on human metabolism were not completely recoverable within a succes-
sive week after ingestion. It could suggest that the recovery of gut microbiota is a 
long process. Metabonomics was also used to evaluate the mechanism of  Xia Yu Xue  
decoction, which is a traditional Chinese medicine used for treating liver diseases. 
Metabolic trajectory showed the trend of renormalization of the  Xia Yu Xue  
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decoction to CCl 4 -induced liver dysfunction. In addition, changed metabolites 
 indicated modulations of energy metabolism, microfl ora metabolism, amino acid 
and fatty acid metabolism, which are found to be associated with  Xia Yu Xue  decoc-
tion ingestion [ 61 ]. The traditional medical treatment targets on the balances of  yin  
and  yang . “Kidney-yang defi ciency syndrome” is one of the conditions that relate to 
functional disorders associated with the hypothalamic-pituitary-gland axis [ 62 ]. 
 Epimedium  (Berberidaceae) is known in Chinese medicine as able to strengthen 
“yang” and is often used to treat “kidney-yang defi ciency.” The metabonomics tech-
nique was applied to investigate the capability of  Epimedium koreanum  to restore 
metabolic disorder in animals with “kidney-yang defi ciency.” After 15 days of 
orally administering  Epimedium koreanum  extract, metabolic disorders associated 
with “kidney-yang defi ciency” returned to normal. These disordered metabolic 
pathways included amino acid metabolism, lipid metabolism, and energy metabo-
lism. Importantly,  Epimedium koreanum  ingestion possessed effects on balancing 
gut microbiota [ 63 ]. Most herbal medicines contain a range of polyphenolic 
 compounds, which often act as active ingredients. Gallic acid is one of these poly-
phenolic compounds, which has been shown to inhibit xanthine oxidase [ 64 ,  65 ], 
ribonucleotide reductase [ 66 ,  67 ], and histamine release in mast cells [ 68 ]. 
Systematically analyzing the metabolic effects of gallic acid to the metabonomes of 
rat plasma, liver, urine, and feces showed that gallic acid promoted oxidative stress 
and resulted insignifi cant metabolic changes involving glycogenolysis, glycolysis, 
tricarboxylic acid cycle (TCA), and the metabolism of amino acids, purines, and 
pyrimidines, together with gut microbiota functions [ 69 ].   

10.4     Concluding Remarks 

 In this chapter, we have shown examples of the close associations between human 
diseases and the gut microbiota living within us, and we have exemplifi ed how 
herbal medicine could treat disease and maintain health by modifying gut microbi-
ota. In addition, we have emphasized the advantages and challenges of herbal medi-
cine. The literature has shown that there is a potential for future research on the 
effi cacies of herbal medicine and the requirement for international standards for 
herbal medicine to be established. We have shown that metabolomics can facilitate 
the understanding of the intrinsic quality of herbal medicine and the evaluation of 
the therapeutic effects of the complex herbal formulas. This technique should be 
equally effective for evaluating mineral treatment and acupuncture, which have not 
been discussed in this chapter. Understanding the mechanisms of action is a neces-
sary step for herbal medicine to be more adoptable worldwide, which should cer-
tainly be warranted some attention. It is with no doubt that further development of 
the metabonomics technique, such as high-sensitivity and high-specifi city detection 
of metabolites, as well as advances in effective molecular identifi cation, would pro-
mote the process of evaluation and acceptance of herbal medicine. Although meta-
bonomics can provide a great understanding of the molecular mechanisms of herbal 
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medicine, direct measurement of alterations in gut microbiota associated with 
herbal treatment using microbiological assays is still lacking. Biological assays 
evaluating changes in gut microbiotia should be concurrently joined with a metabo-
nomics evaluation of the mechanisms of specifi c herbal formulas to provide a com-
prehensive view on the action of herbal medicine.     
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    Chapter 11   
 Gut Microbiota and Metabolic Diseases: 
From Pathogenesis to Therapeutic Perspective 
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    Abstract     Intestinal microbiota is now considered as a “new organ” which, over 
and above their genetic origin, de-orphans the pandemic development of metabolic 
diseases. The trillions of bacteria and their corresponding million genes which 
inhabit our gut provide a unique source of molecular hypotheses to explain the wide 
diversity of metabolic diseases and hence form a basis to reach the important objec-
tive of personalized medicine. The gut and more recently the tissue microbiome 
could be the source of: (1) new biomarkers predicting and classifying metabolic 
diseases to help the clinician to propose the best therapeutic strategy, and (2) new 
pharmacological and nutritional strategies to treat the cause rather than the conse-
quence of diabetes and obesity. The fi eld of immunometabolism should be extended 
to microbio-immunometabolism, thus reconciling the role of the environment, the 
genetic background, and individual diversity in relation to the onset and develop-
ment of metabolic diseases.  
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11.1         Introduction 

    Evidence now shows that the pandemic progression of diabetes and obesity, as well 
as their numerous complications (cardiovascular, hepatic, renal, neuronal), is caused 
by lifestyle factors including sedentarity and fat-enriched diet which has replaced 
fi ber-enriched diet (Fig.  11.1 ). A dramatic outcome of this epidemic is the increas-
ing number of cardiovascular events leading to mortality [ 1 – 4 ] – the mechanisms at 
play need to be delineated in order to defi ne new therapeutic strategies. Over the last 
decade lethal cardiovascular events associated with diabetes have progressed by 
62 % [ 5 ,  6 ]. This is much higher than the risk linked to cholesterol levels or hyper-
tension. The incidence of type 2 diabetes is 4–5 % in Europe, 8–10 % in the USA, 
and higher in South Asia [ 7 ]. These numbers have more than doubled over the last 
20 years. Therefore, one can suggest that even if genetic analyses provide the basis 
for such an epidemic, changes in our genome cannot be solely responsible. One 
interpretation is that our genome is no longer adapted to environmental factors. 
Numerous environmental hypotheses have been proposed. First, epigenetic non-
coded functions that are independent of genomic factors could have an impact. 
Second, perhaps more realistically, the impact of changes in feeding habits and 

Metabolic diseases: the pandemic origin
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  Fig. 11.1    The pandemic origin of metabolic diseases. The impact of genetics, diet, and other fac-
tors on the incidence and the development of metabolic disease pandemic could have a change in 
gut microbiota as an origin. Gut microbiota would also favor the development of complications of 
metabolic diseases such as cardiovascular, liver, eye, and skin complications       
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social behavior is likely to be an important cause of the growing incidence of 
 metabolic diseases. This phenomenon could be linked to the microbiota, our  “second 
genome” harboring almost ten times more prokaryotic cells than eukaryotic cells in 
our body [ 8 ]. All mammalian organisms are born sterile, without any microbiota 
which is inherited at birth. During the fi rst hours, days, and weeks of life,  microbiota 
from the mother and the environment colonize the body of the newborn in a specifi c 
order [ 9 ]. The microbiota colonizes the intestine during the fi rst 3–5 years of life 
and is species-, age-, and sex-dependent [ 10 ]. The initial infant gut microbiota is a 
simple structure usually dominated by bifi dobacteria, and through a series of suc-
cessions and replacements, it shifts to a more complex adult pattern [ 11 – 15 ]. The 
microbiota also undergoes substantial changes at the extremes of life, in infants and 
older people, the ramifi cations of which are still being explored [ 16 ]. Then, through-
out life the bacterial ecology tends to vary mostly according to the environment 
[ 17 ]. Each individual has at least 160 shared species and a number of well- balanced 
host-microbial molecular relationships that defi ne groups of individuals [ 18 ,  19 ]. 
This second genome is the metagenome. The importance of this metagenome 
resides in its gene repertoire, 100 times superior to the eukaryotic nuclear genome 
[ 18 ,  19 ], thus providing a huge genetic diversity susceptible to convey a plethora of 
functions [ 18 ,  19 ]. Indeed, the tremendous efforts that have been made in bioinfor-
matic analyses have allowed the encoding and the deciphering of all sequences. 
Humans host different metagenomes from multiple locations such as the skin, lungs, 
vagina, and the mouth in addition to the intestine [ 8 ,  20 ]. The human gut hosts 100 
trillion microorganisms, encompassing up to thousands of species at an average 
concentration of 10 14  per ml and weighing in average 1.5 kg [ 21 ]. A major observa-
tion is that the metagenomic diversity is extremely large and represents a signature 
of each individual. Its plasticity is signifi cant and depends on numerous environ-
mental and genetic factors that can evolve over time and could explain the rapid 
development of metabolic diseases. The adult intestinal microbiota has been shown 
to be relatively stable over time [ 22 ] and is suffi ciently similar between individuals 
to allow identifi cation of a core microbiome comprising 66 dominant operational 
taxonomic units (OTUs) that correspond to 38 % of sequence reads from 17 indi-
viduals [ 18 ,  19 ]. The core microbiota changes to become distinct in elderly subjects 
from that observed for younger adults with a greater proportion of  Bacteroides  spp. 
and typical abundance patterns of  Clostridium  groups. Interestingly, the onset of 
metabolic diseases increases with age and is associated with a change in intestinal 
microbiota as observed during aging [ 16 ,  23 ,  24 ]. Similarly, it was shown that 
changes in gut microbiota characterize obesity and diabetes [ 18 ,  19 ]. This suggests 
that each member can interact in a perfect mutual symbiosis defi ning a steady 
microbiota [ 8 ,  20 ,  25 ]. Hence, a new concept has emerged with an important infl u-
ence on our understanding of these pathologies. Major advances have been made 
over the course of the last decade, thanks to the development of high- throughput 
sequencing of the microbiota and to the use of germ-free mice. These have allowed 
the demonstration of the causality of the microbiota from the gut [ 26 ], from the oral 
cavity, and more recently from the tissue [ 27 ] on the development of metabolic 
diseases. The following decades will be dedicated to the identifi cation of the 
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molecular crosstalk between the microbiota and the host to understanding 
 mechanisms controlling diabetes and obesity. The intestinal immune system appears 
to be a major player in the fi eld since at birth bacterial colonization of the intestine 
represents an outbreak of antigens that can educate the immune system, as well 
other major functions such as the vascular and the nervous systems. The latter 
through its connection with the brain could participate in the maturation of the cen-
tral nervous system over the course of a lifetime [ 28 ]. Consequently, beyond the key 
physiological role of the intestinal microbiota in normal development, numerous 
pathological issues could be the consequence of an impaired microbiota. In addition 
to the fi rst described role of the microbiota on the development of intestinal bowel 
diseases, there is now evidence that a change in the intestinal bacterial ecology 
could affect metabolic, vascular, liver, heart, oral, and neurodegenerative diseases. 
More evidence is required to confi rm a role in arthritis and skin immunological 
diseases. The recent increase in the use of bariatric surgery for the treatment of 
 massive obesity and incidental diabetes has generated further evidence reinforcing 
the role of intestinal microbiota in the control of metabolic diseases.

   New clinical approaches for prevention and therapy are now being planned. 
Functional food and pharmaceutical strategies, based on the targeting of the 
 microbiota to host interactions, can be initiated. In the face of the large diversity of 
metabolic phenotypes, i.e., a large spectrum of fasted and postprandial glycemia 
and different fat mass distribution, “intelligent and directed” food complements can 
be proposed. They should not prevent or treat massively the populations but will 
focus on subgroups of patients with similar microbiota-related diseases. The rele-
vance of treating the impact of gut microbiota on the diseases requires the develop-
ment of companion biomarkers. They should fi rst defi ne subgroups of patients with 
similar microbiota profi les and should be able to follow up the effi cacy of the micro-
biota change in correlation with the metabolic phenotype treated. Hence, they 
will drive the therapeutic approach toward appropriate subgroups of patients to 
improve the effi cacy of the treatment and reduced secondary effects. Pharmaceutical 
approaches targeting a mechanism central to the molecular crosstalk between 
microbiota and the host, such as metabolic infl ammation, have currently been devel-
oped by means of fecal transplant and immunomodulation. Therefore, it is now time 
to consider the intestinal microbiota as a new organ controlling metabolism. This 
organ is characterized by a high level of plasticity so that it can adapt to a change in 
the host behavior in a reciprocal manner for the control of broad host physiological 
functions. The understanding of its molecular components will lead to a totally new 
way of interpreting physiological, clinical, and therapeutic data. Therefore, the limit 
between nutritional and pharmacological strategies is vanishing. Intelligent food 
supplements and cause-based pharmacological approaches will be the treatments of 
tomorrow that still have to be identifi ed. 

 Pharmaceutical strategies will benefi t from the gain of knowledge generated 
based on the intestinal microbiota to host relationship. The corresponding molecu-
lar crosstalk is currently being assessed and will be reviewed below. It includes 
mechanisms controlling immunomodulation, bile acid conjugation, the intestinal 
barrier, energy harvesting, and entero-endocrine hormone secretion. The bacterial 
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factors, i.e., the metafactors controlling these eukaryotic functions, are of infl ammatory 
origin such as the lipopolysaccharides, peptidoglycan fragments, fl agellin, or 
derived from fermentation products. Hence, pharmacological strategies should 
emerge from these concepts and target subgroups of patients with these new drugs 
acting on the host to microbiota relationship. 

 An important matter relates to the identifi cation of subgroups of patients sensi-
tive to these new approaches, most likely characterized by a specifi c dysbiosis and 
impaired gut and tissue microbiota. Hence, microbiota-based biomarkers precisely 
identifying these subgroups will help the clinician to treat the patients with the 
appropriate pharmaceutical strategy.  

11.2     From the Main Features of the Pathophysiology 
of Metabolic Diseases to Microbiota 

 Metabolic diseases are all characterized by alterations in energy balance which 
explains, at least in part, the occurrence of obesity. The disease is the consequence 
of either an increased energy uptake or a reduced energy expenditure demonstrating 
that different mechanisms are responsible for increased body weight. Furthermore, 
the accumulation of fat in the body is compartmentalized, i.e., abdominal, subcuta-
neous. or intratissular such as in the liver, the heart, or the pancreatic islets with 
different consequences on overall health. The incidence of diabetes is much 
increased in patients with normal body weight but with abdominal fat accumulation 
which is considered the most deleterious for health [ 29 ]. Similarly, the accumula-
tion of triglycerides within the Langerhans islets impairs insulin secretion [ 30 ] that 
can be restored by leptin treatment [ 31 ] activating uncoupling proteins such as 
UCP2 [ 32 ]. At the onset of obesity, the storage of energy is associated with hyper-
trophy of the adipocytes and their hyperplasia to ensure a suffi cient number of cells 
[ 33 – 35 ]. The signals favoring adipose depot development could be linked to 
increased adipocyte metabolism leading to a local hypoxia [ 36 ] and the recruitment 
of adipocyte precursors [ 37 ,  38 ]. The maintenance of the adipose depot architecture 
is ensured by a concomitant proliferation of endothelial precursors [ 39 ,  40 ], 
 increasing the adipose tissue capillaries and hence blood and energy supply [ 40 ]. 
Hyperphagia, supplying large amounts of energy, and hyperinsulinemia, although 
associated with normal blood glucose profi les, also suggest a neuroendocrine origin 
of the disease notably, the gut to brain axis which is recruited in response to an oral 
glucose load [ 41 ] or food intake [ 42 ,  43 ]. A key enteroendocrine factor, glucagon- 
like peptide 1 (GLP-1), triggers the gut–brain axis [ 42 ,  44 ,  45 ] which is impaired 
during high-fat-diet-induced metabolic diseases [ 46 ]. The brain is also sensitive to 
hormones from the periphery such as insulin and leptin which no longer effi ciently 
control food intake and energy partitioning. Altogether, impaired gut and peripheral 
nutrients and hormone sensing systems, as well as signaling effectors toward the 
adipose depot via the brain, are impaired during obesity. The increase of brain to 
adipose depot signals then enhances the capacity of the adipose depot to store 
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energy (Fig.  11.1 ). However, it should be noted that increasing food intake and 
 activating the storage of energy in fat depots cannot be considered as a pathological 
mechanism since it is a normal behavior of the body following a fasting period to 
replenish the fat stores. The pathology starts when this process is no longer down-
regulated. Different levels of deregulation occur involving either early control of 
food intake and energy distribution or processes that control each step of the obesity 
process. The intestinal microbiota has been proposed to interfere with hyperphagia 
and to some extent with energy storage – this will be reviewed below. The emerging 
role of gut microbiota in the gut to brain axis for the control of neural development, 
behavior, and food intake will certainly generate new molecular hypotheses regard-
ing the development of obesity [ 28 ,  47 – 49 ]. 

 Type 2 diabetes arises due to impaired secretion and action of insulin which 
evolve either simultaneously or independently according to numerous infl uencing 
factors (Fig.  11.2 ). An increased glucose intolerance with glycemic profi les higher 
than controls is a common feature at the onset of the disease [ 50 ,  51 ]. This is associ-
ated with hepatic insulin resistance where insulin does not effi ciently reduce hepatic 
glucose production following a meal [ 50 – 52 ]. Liver insulin resistance is hence 
involved in glucose intolerance and type 2 diabetes and explains fasting glycemia 
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[ 53 – 56 ]. Simultaneously, insulin-stimulated glucose uptake is reduced which is 
most likely a consequence of an impaired cellular lipid metabolism [ 57 ]. Numerous 
hypotheses could explain insulin resistance and among those the role played by a 
low-grade infl ammation, called metabolic infl ammation since it is chronic and not 
related to infection or cancer [ 58 ]. Briefl y, metabolic infl ammation is characterized 
by an increased infi ltration of immune cells within organs involved in the glycemic 
control such as the adipose tissue, the liver, and muscles [ 59 ,  60 ]. Cells from the 
innate and adaptive immune systems secrete cytokines such as TNFa and IL1-b that 
impair insulin signaling, thus affecting both glucose and lipid metabolism (Fig.  11.2 ) 
[ 59 ,  60 ]. Infl ammation is increasingly regarded as a key process underlying meta-
bolic diseases [ 59 – 64 ]. In the adipose tissue of individuals with metabolic diseases, 
this mechanism includes features characteristic of active local infl ammation [ 63 ,  65 , 
 66 ]. The cytokines released impair insulin signaling [ 67 – 69 ], thus leading to 
cytokine- mediated insulin resistance [ 70 ,  71 ]. Macrophage infi ltration of adipose 
tissue has been described in both mice and humans [ 64 – 66 ,  72 – 74 ]. It is suggested 
that these cells express TNF-alpha and iNOS that are characteristic of M1-type 
macrophages which are responsible for almost all adipose tissue TNF-alpha expres-
sion and signifi cant amounts of iNOS and IL-6 expression [ 73 ,  75 ,  76 ]. In addition, 
using functional analyses and microarray technology, it has been demonstrated that 
adipocyte progenitors and macrophages are characterized by a closed genome and 
phenotypome [ 77 ,  78 ]. Based on measurements of phagocytic activity and gene 
profi ling analysis of different progenitor cells, we revealed that the origin of infl am-
mation could also be attributed to cells initially present in adipose fat pads such as 
preadipocytes [ 77 ,  78 ]. Therefore, both infi ltrating and resident cells are most likely 
involved in the processes characterizing adipose tissue infl ammation. Similarly, 
lymphocytes are associated with adipose tissue infl ammation [ 64 ,  79 ,  80 ]. CD8 T 
cells are present in obese mouse adipose tissue even before the infi ltration of the 
tissue by macrophages. The results also showed that the immunological and genetic 
depletion of CD8 +  T cells lowered macrophage infi ltration and adipose tissue 
infl ammation and improved systemic insulin resistance. Conversely, adaptive trans-
fer of CD8 +  T cells to CD8-defi cient mice aggravated adipose infl ammation. 
Co-culture and other in vitro experiments revealed a cycle of interactions between 
CD8 +  T cells, macrophages, and adipose tissue. Moreover, CD4 +  regulatory T lym-
phocytes (Treg) (CD4 + FoxP3 + ), inhibitory cells of the immune system, decrease in 
obese adipose tissue [ 80 ]. Increases in Treg by antibody treatment (IL-2/anti-IL- 2-
induced Treg proliferation) improve HFD-induced insulin resistance [ 80 ]. 
Furthermore, transfer of CD4 +  T lymphocytes with anti-infl ammatory properties 
decreases HFD-induced glucose intolerance and insulin resistance [ 79 ]. The rea-
sons for adipose tissue T lymphocyte and macrophage infi ltration are unknown, but 
it was suggested that the corresponding antigens could be related to intestinal 
microbiota [ 6 ,  27 ,  81 ].

   Altogether, little is known about the sequence of events which lead to an 
increased number of macrophages and lymphocytes in metabolic tissues. The 
 origin of this cascade of events could be related to a change in intestinal microbiota 
and, as detailed below, to a change in tissue microbiota [ 27 ]. This is linked to a 
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translocation of bacteria and bacterial components from the intestine to tissues 
establishing a tissue microbiota leading to metabolic infl ammation. Hence, the role 
of gut microbiota could be related to its direct role on molecular targets controlling 
insulin secretion and action, hepatic glucose production, adipose tissue develop-
ment, and therefore, the incidence of diabetes. These hypotheses will be detailed 
below. 

 Although more than 150 genetic loci are associated with the monogenic or 
 multifactorial forms of obesity and type 2 diabetes, their impact on the incidence of 
the disease is rather low (5–10 % and 2 %, respectively) [ 82 ]. In genetically identi-
cal twins the incidence of type 2 diabetes is 20–60 % [ 83 ,  84 ]. Even in type 1 dia-
betes, genetically identical twins develop the disease with an incidence of no more 
than 50 %. A major impact of the environment has recently been attributed to the 
role of intestinal microbiota where genes involved in the recognition of bacterial 
patterns were involved [ 85 ,  86 ]. The innate immunity to microbiota relationship was 
causally implied. It was shown that the commensal microbial community alters sex 
hormone levels and regulates autoimmune disease fate in individuals with high 
genetic risk [ 87 ]. On the other hand, environmental factors such as stress, a seden-
tary lifestyle, and nutritional habit could explain the pandemic progression of meta-
bolic impairment. Humans could be considered as “super-organisms” as a result of 
their symbiotic association with the gut microbiota [ 88 ].  

11.3     Lessons from the Gut Microbiota to Metabolic 
Diseases Relationship 

 Complex microbial ecosystems occupy the skin, mucosa, and alimentary tract of all 
mammals, including humans [ 8 ].    The species that make up these communities vary 
between hosts as a result of restricted migration of microorganisms between weak 
and strong ecological interactions within hosts. Furthermore, diet, genotype, and 
colonization history also infl uence this ecology [ 20 ]. Hence, a mutual relationship 
characterizes the host to microbiota crosstalk by which each partner has its own 
interest and informs the other of the environmental and metabolic situation. The 
microbiota is now considered as a symbiont that shares with its host the infl uence of 
the environment, diet, stress, and the physiological state. Specifi c communities 
inhabit the different epithelia according to the physical and biochemical characteris-
tics of each location. With regard to the gastrointestinal tract, it is colonized by a vast 
community of symbionts and commensals that have important effects on immune 
function, nutrient processing, and a broad range of other host activities [ 89 ]. 

 The precise role of intestinal microbiota on the control of metabolic diseases 
emerged in 2004 with the discovery that germ-free mice resist high-fat-diet-induced 
obesity [ 90 ]. It was shown that germ-free mice colonized with microbiota harvested 
from the cecum of a healthy mouse gain 60 % body fat content and became insulin 
resistant within 14 days despite reduced food intake. The mechanism was due to an 
increased production of monosaccharides. These molecules are generated from the 
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metabolism of polysaccharides by the cecal microbiota, thus providing an additional 
source of carbohydrate to the body. However, a rate-limiting factor was that a large 
part of the microbiota cannot be identifi ed since it is highly diffi cult to culture. This 
major problem has been overcome by the use of very-high-throughput sequencing 
techniques coupled with new bioinformatics approaches. This strategy allowed the 
identifi cation of the taxons within the microbiota from human and animal intestinal 
content [ 91 ,  92 ] as well as the overall catalog of bacterial genes [ 18 ,  19 ]. This has 
allowed the correlation of metabolic diseases to specifi c bacteria or groups of 
bacterial genes [ 93 ]. An increased  Firmicutes -to- Bacteroidetes  ratio seems to be a 
signature of metabolic diseases infl uencing processes related to energy harvesting, 
intestinal permeability, bile acid metabolism, brain functions related to metabolism, 
and immunomodulation. 

11.3.1     The Gut Microbiota as a Signature 
of Metabolic Diseases 

 An altered gut microbiota has been linked to metabolic diseases including obesity 
[ 26 ,  94 ], diabetes [ 19 ], and cardiovascular diseases [ 95 ]. A core microbiome can be 
found at the gene level, despite large variations in community membership, and that 
variations from the core are associated with obesity [ 25 ,  94 ,  96 – 98 ]. Using a proto-
col for a metagenome-wide association study (MGWAS) based on deep shotgun 
sequencing of the gut microbial DNA from 345 Chinese individuals, approximately 
60,000 type 2 diabetes-associated markers have been identifi ed and validated, thus 
establishing the concept of a metagenomic linkage group [ 19 ]. This MGWAS analy-
sis showed that patients with type 2 diabetes were characterized by a moderate 
degree of gut microbial dysbiosis, a decrease in the abundance of some universal 
butyrate-producing bacteria, and an increase in various opportunistic pathogens, as 
well as an enrichment of other microbial functions conferring sulfate reduction and 
oxidative stress resistance. Three enterotypes could be identifi ed from the Chinese 
samples which were primarily made up of several highly abundant genera, includ-
ing  Bacteroides ,  Prevotella ,  Bifi dobacterium , and  Ruminococcus . However, no 
 signifi cant relationship between enterotype and type 2 diabetes status was found. 
However, when using the gene reference (KEGG orthologue genes and eggNOG 
group profi les) rather than the phylogenic profi les, a total of 1,345 biomarkers were 
identifi ed. Type 2 diabetes-associated biomarkers were mostly involved in mem-
brane transport systems. By contrast, control-enriched markers were frequently 
involved in cell motility and metabolism of cofactors and vitamins. When studying 
pathway levels, the gut microbiota of type 2 diabetic patients showed enrichment in 
membrane transport of sugars, branched-chain amino acid (BCAA) transport, meth-
ane metabolism, xenobiotics degradation and metabolism, and sulfate reduction. 
By contrast, there was a decrease in the level of bacterial chemotaxis, fl agellar 
assembly, butyrate biosynthesis, and metabolism of cofactors and vitamins. Seven 
of the markers were also related to oxidative stress resistance suggesting that the gut 
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environment of type 2 diabetic patients stimulates bacterial defense mechanisms 
against oxidative stress [ 19 ]. A further specifi c mathematical model for biomarker 
identifi cation has been developed and showed compositional and functional altera-
tions in the metagenomes of a specifi c cohort of 145 women with type 2 diabetes 
[ 99 ]. Type 2 diabetic women were characterized by an increased abundance of four 
 Lactobacillus  species and decreases in the abundance of fi ve  Clostridium  species. 
The total  Lactobacillus  species correlated positively with fasting glucose and 
HbA1c (glycosylated hemoglobin), whereas the  Clostridium  species correlated 
negatively with fasting glucose, HbA1c, insulin, C-peptide, and plasma triglycer-
ides. Importantly, impaired glucose tolerance could be identifi ed on the basis of this 
mathematical modeling. The impact of medication and hyperglycemia on the 
metagenome was not considered as major confounding factors. Comparisons with a 
Chinese cohort demonstrated that the biomarkers identifying type 2 diabetes were 
different from the European population suggesting that the metagenome analysis to 
predict type 2 diabetes should be specifi c for the age and geographical location of 
the populations studied. It should be further noted that the mechanisms at the origin 
of this observation are numerous and hence will most likely depend upon each 
individual. 

11.3.1.1     Impacts of Diet on Microbiota-Related Metabolic Diseases 

 Socio-demographic and environmental factors have a great infl uence on the 
 incidence of metabolic [ 100 ] and cardiovascular diseases [ 101 ], introducing the 
possibility of identifying functional metagenomic factors under the control of envi-
ronmental factors such as stress, food habits, and sedentarity. Diet and nutritional 
status are among the most important modifi able determinants of human health, and 
gut bacteria feed on the nutrients absorbed during a meal leading to changes in 
metabolism, the overall intestinal ecology, and the way bacteria interact with the 
host. The fi rst analyses of metagenomic sequencing have been performed on obese 
patients followed up during 1 year of a restricted calorie diet [ 97 ,  98 ,  102 ]. A clear 
metagenomic signature was identifi ed in obese patients characterized by a reduction 
in the relative abundance of the  Bacteroidetes- to- Firmicutes  ratio which represents 
more than 80 % of the overall bacterial population in feces [ 97 ,  98 ] (Fig.  11.3 ). This 
ratio evolved toward that of lean patients during weight loss showing that the micro-
biota can evolve according to the environmental factors. It is clear that dietary 
manipulation, including HF feeding, profoundly alters the profi le of the gut micro-
biota [ 27 ,  81 ,  103 – 107 ]. An enrichment in gram-negative to gram-positive bacteria 
appeared to be associated with the early onset of high-fat-diet-induced diabetes [ 81 ]. 
An elegant validation of the role of diet on human microbiota has been  performed 
in germ-free mice colonized with human microbiota and fed with a fat- enriched 
diet [ 104 ]. A single day of fat-enriched diet was suffi cient to change the overall 
ecological homeostasis within the gut microbiome, the corresponding metabolic 
pathways, and hence the microbiome gene expression. The infl uence of high- fat diet 
on gut microbiota has been validated in other species such as the pig [ 108 ,  109 ] 
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which is highly infl uenced by pre- and probiotics [ 110 ] and sucrose [ 111 ]. Defi ned 
lipids such as oleic-acid-derived molecules and a combination of n-3 fatty acids 
markedly increased total bacterial density and restored the proportions of clostridial 
cluster,  Enterobacteriales  and  Bifi dobacterium  that were changed during HFD 
 feeding [ 112 ] along with the metabolic status. Conversely saturated fat increased 
the  Firmicutes -to- Bacteroidetes  ratio [ 113 ,  114 ]. In addition to the tremendous 
impact of dietary fi bers, other molecules such as polyphenols infl uence gut micro-
biota and further control metabolism [ 115 ,  116 ]. Type 2 diabetes has also its own 
metagenomic signature, and type 2 diabetes-associated markers have been associ-
ated with the disease and can be useful to classify the different subgroups of type 2 
diabetic patients [ 19 ]. Among these  Akkermansia muciniphila  seems to be a good 
candidate with a recently identifi ed role in the control of the intestinal barrier [ 107 ]. 
A reduction of  Akkermansia muciniphila , which is involved in mucus degradation, 
has also been observed [ 107 ]. These bacteria, when used as a probiotic, control 
body weight gain [ 107 ] and its prevalence increased in response to prebiotics [ 117 ] 
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     Fig. 11.3    Intestinal functions and microbiota interplay. Upon a change in diet or a specifi c genetic 
background, the gut microbiota changes. A modifi cation of the  Firmicutes- to- Bacteroidetes  ratio 
leading to a change in polysaccharide fermentation, bile acid metabolism, an accumulation of 
 Proteobacteria  (gram negative; releasing LPS, peptidoglycans, and other antigens), a reduced in 
 Faecalibacterium - and  Clostridium -producing butyrate, a reduced in  Akkermansia muciniphila , 
and segmented fi lamentous bacteria (at least in rodents, SFB) would alter intestinal functions. 
Intestinal permeability, defenses (mucin and defensin production), innate ( APC , antigen- presenting 
cells) and adaptive ( T lymphocytes , TL) immunity, and lipid metabolism could lead to bacterial 
translocation and tissue microbiota dysbiosis, metabolic endotoxemia, and metabolic infl amma-
tion of the targeted tissues. Altogether, the tissue biology would be impaired and be considered as 
a risk factor for the development of cardiometabolic diseases       
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accompanying metabolic control through a mechanism that could involve gut 
 peptide secretion [ 118 ]. Insulin action also has a metagenomic signature in humans 
[ 119 ]. Furthermore, hypotheses regarding the functional role of gut microbiota can 
be generated by studying the genes characterizing the microbiome. A decrease in 
the abundance of some universal butyrate-producing bacteria and an increase in 
various opportunistic pathogens, as well as an enrichment of other microbial 
 functions conferring sulfate reduction and oxidative stress resistance, were also 
characterized. A change in intestinal microbiota has also been characterized in non-
alcoholic fatty liver diseases (NAFLD) where the incidence is between 16 % and 
30 % of the general population [ 120 ] and further rises toward 80 % in patients with 
obesity and type 2 diabetes [ 121 ]. Some biomarkers have been identifi ed such as a 
reduction of  Faecalibacterium  and  Anaerosporobacter  and a higher abundance of 
 Parabacteroides ,  Allisonella , certain  Lactobacillus  species, and selected members 
of the phylum  Firmicutes  ( Lachnospiraceae ; genera,  Dorea ,  Robinsoniella , and 
 Roseburia ) [ 122 ]. The causal role of gut microbiota on NAFLD has been shown by 
microbiota transfer in the mice. The colonization of germ-free mice with the gut 
microbiota from a high-fat-diet-induced NAFLD mouse induced the disease. 
Sequencing of the 16S ribosomal RNA revealed differences at the phylum, genera, 
and species levels [ 123 ]. Some mechanisms have been proposed that implicate 
intestinal permeability, low-grade infl ammation and immune balance in the devel-
opment of hepatosteatosis [ 124 ], the modulation of dietary choline and bile acid 
metabolism, and the production of endogenous ethanol [ 125 ] that will be discussed 
below. Another important feature of the change in intestinal microbiota is that in 
addition to the change of phylum ratio obesity is associated with phylum- level 
changes in the microbiota and reduced bacterial diversity [ 97 ,  98 ,  126 ].

11.3.1.2        Impact of the Host Genome 

 In addition to the role of the environment on the shaping of gut microbiota during 
metabolic diseases, the impact of the host genome cannot be totally ruled out. The 
concordance of type 2 diabetes within the homozygote population is higher than 
between heterozygote twins [ 83 ,  84 ,  127 ] or in response to overfeeding [ 128 ,  129 ] 
suggesting the important role of the genetic background. The results reveal that the 
human gut microbiome is shared among family members but that each individual’s 
gut microbial community varies in the specifi c bacterial lineages present, with a 
comparable degree of covariation between adult monozygotic and dizygotic twin 
pairs [ 126 ]. These results demonstrate that a diversity of organismal assemblages 
can however yield a core microbiome at a gene level and that deviations from this 
core are associated with different physiological states, for example, obese versus 
lean. However, the concordance of the metabolic phenotype is not absolute between 
twins – this could be linked to differences in gut microbiota since the adult mono-
zygotic twins are no more similar to one another in terms of their gut bacterial com-
munity structure than are adult dizygotic twins [ 126 ,  130 ]. However, the impact of 
the host genome on the microbiota seems to depend on the microbiota location 
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considered. In the saliva twins resemble each other more closely than the whole 
population at all time points but become less similar to each other when they age 
and no longer cohabit [ 131 ]. The sequencing of gut microbiota from the general 
population and across countries and ethnic origin showed that shared features of the 
functional maturation of the gut microbiome are identifi ed during the fi rst 3 years of 
life [ 24 ], suggesting an imprinting from the mother which remains but is not abso-
lute. Hence, room is available for the impact of environmental changes throughout 
life. Numerous studies now report that the infl uence of the genetic background is due 
to the impact of the immune system that shapes the microbial community [ 132 – 135 ]. 
Hence, the immunogenetic traits of an individual appear to be major regulators of 
gut microbiota. Mutations in the receptors to bacterial determinants such as TLRs 
which are pathogen-associated molecular pattern recognition receptors that recog-
nize highly conserved microbial molecules (PAMPs) notably TLR2 [ 136 ], TLR4 
[ 137 ], and TLR5 [ 132 ] and NLRs notably NOD2 [ 138 – 140 ] shape the microbiota 
although some controversies do exist [ 141 ].  

11.3.1.3     Impact of Birth 

 Importantly, the host immune system to microbiota relationship continues to be 
educated throughout life since the immune system matures along with the micro-
biota at birth. The gastrointestinal tract of a normal fetus is sterile. During the birth 
process and rapidly thereafter, microbes from the mother and surrounding environ-
ment colonize the gastrointestinal tract of the infant until a dense, complex micro-
biota develops [ 9 ]. It is now clear that the composition and temporal patterns of the 
microbial communities vary widely from baby to baby [ 142 ]. The distinct features 
of each baby’s microbial community are recognizable for intervals of weeks to 
months which show that each baby’s microbiota, until the fi rst year of life, follows 
an idiosyncratic law. However, it then converges toward a profi le characteristic of 
the adult gastrointestinal tract. Therefore, during the fi rst year of life, while the 
microbial ecology is not yet set up, the inheritance of gut microbiota could also be 
infl uenced during pregnancy and at delivery according to the infl uence of the moth-
er’s microbiota. Furthermore, the mode of delivery infl uences the infant’s microbi-
ota since it was shown that vaginally delivered infants acquire bacterial communities 
resembling their mother’s vaginal microbiota, dominated by  Lactobacillus , 
 Prevotella , or  Sneathia  spp., whereas C-section infants harbored bacterial commu-
nities similar to those found on the skin surface, dominated by  Staphylococcus , 
 Corynebacterium , and  Propionibacterium  spp. [ 11 ,  143 ]. However, the delivery 
mode did not infl uence the prevalence of obesity in children [ 144 ]. Conversely, 
antibiotic treatment during the fi rst 6 months of life increased the risk of overweight 
in children with normal-weight mothers but reduced the risk of obesity in children 
with overweight mothers. Hence, at birth and during the fi rst year of life, the early 
colonization of the gut by microbiota can infl uence the incidence of metabolic dis-
eases [ 93 ]. Alterations in the microbiota composition of mothers may be transferred 
to infants and lead to an increased risk of weight gain. During pregnancy, gut 
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microbiota changes dramatically between the fi rst and third trimesters, with a vast 
expansion of diversity among mothers, an overall increase in  Proteobacteria  and 
 Actinobacteria , and reduced richness [ 145 ]. This change in gut microbiota during 
pregnancy was functional since colonization of germ-free mice with the microbiota 
from the third trimester induced greater adiposity and insulin resistance when com-
pared to mice colonized with the microbiota from the fi rst trimester [ 145 ]. This 
original observation could suggest that the change in gut microbiota during preg-
nancy programs infant body weight. It has also been suggested that the microbiota 
from obese mothers could infl uence the prevalence of obesity in children. This was 
further supported by the fact that the infants’ fecal microbial composition was 
related to the weight and weight gain of their mothers during pregnancy [ 146 ]. The 
fecal  Bacteroides  and  Staphylococcus  concentrations were signifi cantly higher in 
infants of overweight mothers, whereas the prevalences of  Akkermansia muciniph-
ila ,  Staphylococcus , and  Clostridium diffi cile  groups were lower in infants of 
normal- weight mothers and of mothers with normal weight gain during pregnancy. 
This was confi rmed in that the concentration of the gram-negative family 
 Enterobacteriaceae  was signifi cantly higher in obese/overweight children and the 
levels of  Desulfovibrio  and  Akkermansia muciniphila -like bacteria were signifi -
cantly lower when compared to lean controls [ 147 ]. Chapter   8     “Metabonomics in 
neonatal and pediatric research: Studying and modulating gut functional ecology 
for optimal growth and development” provides a comprehensive overview of the 
state of the art of metabonomics and gut microbiota studies in neonatal and pediatric 
research.   

11.3.2     Molecular Crosstalk Between Gut Microbiota 
and the Host for the Control of Metabolic Diseases 

11.3.2.1     The Lipopolysaccharides Hypothesis and Metabolic 
Infl ammation 

 Whereas extensive analyses demonstrate the important impact of gut microbiota on 
host biology, the mechanisms of the crosstalk between the host and the microbiota 
remain to be delineated. As mentioned above, metabolic infl ammation is a leading 
mechanism responsible for the impairment of glycemia and body weight regulation. 
One hypothesis involves bacterial factors from the gut, such as lipopolysaccharides 
(LPS). Lipopolysaccharides are components of the wall from gram-negative bacte-
ria [ 1 ]. They are potent endotoxins, involved in the acute-phase response to bacterial 
infection, inducing a cytokine-mediated systemic infl ammatory response that can 
cause shock and severe multiple organ failure [ 2 ,  3 ]. These bacterial antigens bind 
to their receptors TLR4 and CD14 on numerous cells types notably those of the 
immune system, i.e., macrophages and dendritic cells. Adipocytes also express 
TLR4 and can bind LPS and could be involved directly in the activation of intracel-
lular infl ammatory pathways [ 148 ,  149 ]. 

R. Burcelin et al.

http://dx.doi.org/10.1007/978-1-4471-6539-2_8


213

   Mechanisms of High-Fat-Diet-Induced Blood Bacterial Molecular Patterns 

 LPS accumulates in blood and contributes to infl ammation and insulin intolerance 
[ 6 ,  81 ]. A 1-month high-fat feeding in humans increased endotoxemia by 71 % 
[ 150 ], suggesting that therapeutic agents that reduce intestinal LPS permeability 
could control metabolic endotoxemia and hence systemic infl ammation in patients 
with metabolic syndrome. Similarly, in type 1 diabetic patients, metabolic endotox-
emia was associated with dyslipidemia, insulin resistance, obesity, and chronic 
infl ammation [ 151 ]. The mechanism is associated with an increase of the gram- 
negative to gram-positive ratio within the intestinal microbiota [ 81 ]. LPS need to be 
transported across the intestinal epithelial barrier to reach the blood. A mechanism 
involving the synthesis and production of chylomicron is required [ 152 ]. The uptake 
of LPS is observed within hours of lipid absorption in human [ 153 ] and could hence 
be considered as a blood nutritional signal informing the body of a change in feed-
ing behavior and in microbiota ecology. The accumulation of LPS in the blood is 
also linked to an increased intestinal permeability where tight junctions become 
leaky due to a reduction of the expression of specifi c proteins such as zonula 
occludens [ 81 ,  106 ] and the putative role of endocannabinoids [ 154 ] that could con-
trol intestinal permeability through a GLP-2-dependent mechanism [ 155 ]. This is 
reversed upon treatment with prebiotics [ 156 ,  157 ] or probiotics [ 107 ]. The increase 
of plasma LPS concentration is called metabolic endotoxemia. Lipoproteins bind 
LPS to attenuate the biological infl ammatory response of this bacterial factor [ 158 , 
 159 ] through all classes of lipoprotein (chylomicrons, VLDL, LDL, and HDL) [ 9 ]. 
Chylomicrons and VLDL have been shown to reduce LPS-induced toxicity in mice 
[ 10 ]. Similarly, the binding of LPS to LDL reduced endothelial cell activity [ 9 ,  11 ]. 
In one study performed in 10 individuals, HDL has been shown to be the main LPS 
carrier holding 60 % of the LPS, with LDL and VLDL carrying, respectively, 25 % 
and 12 % [ 14 ]. Among three ex vivo studies, two have indicated that LPS, in 
humans, was mainly located in VLDL and LDL [ 15 ,  16 ] and one has more precisely 
indicated that LDL was the major carrier for LPS [ 9 ]. Therefore, it is now evident 
that nutritional and lipid metabolism are tightly linked to the intestinal absorption of 
gut bacterial factors including LPS for the triggering of metabolic infl ammation. 
The pharmacological control of intestinal LPS absorption could be of importance 
for the prevention or treatment of metabolic diseases. A change in nutrition involv-
ing an increase in fat content is a risk factor for metabolic endotoxemia as demon-
strated in epidemiological studies in humans [ 151 ,  160 ,  161 ]. In the mouse the 
ablation of various pattern recognition receptors (PRRs) such as TLR4, CD14, and 
NLRP3 protects mice from diet-/obesity-induced infl ammation and insulin resis-
tance [ 6 ,  162 – 164 ]. In human myotubes, LPS increased JNK phosphorylation and 
MCP-1 and IL-6 gene expression [ 165 ] and could play a role in the pathogenesis of 
insulin resistance. Therefore, antagonists of CD14/TLR4 may improve insulin 
action in type 2 diabetic patients. In the mouse the chronic subcutaneous infusion of 
LPS at low rates favors liver, adipose tissue, and muscle cytokine production and 
macrophage accumulation showing that in vivo metabolic endotoxemia is an impor-
tant risk factor of insulin resistance and hence metabolic diseases. Direct evidence 
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shows that the LPS to ligand crosstalk controls adipose tissue infl ammation [ 6 ,  162 , 
 164 ,  166 ], insulin sensitivity [ 148 ,  167 ], and obesity [ 6 ,  168 ] through molecular 
mechanisms most likely linked to the activation of NFkB and the transcription of 
genes coding for cytokines. The latter, such as TNFα, will then interfere with the 
insulin receptor leading to insulin resistance [ 169 ]. LPS are also involved in the 
reduction of adipogenesis [ 170 ], as well as hepatic steatosis [ 171 ,  172 ] again 
through mechanisms involving TNFα production or SREBP-1 activation [ 173 ]. 
Other bacterial components are involved in the infl ammatory process characterizing 
metabolic infl ammation. The peptidoglycan is a complex structure of the bacterial 
wall found mostly in gram-positive bacteria but also found, to a lower extent, in 
gram-negative bacteria. Its polysaccharide component is different between the two 
types of bacteria and binds to pattern recognition receptors such the nucleotide 
oligomerization domain (NOD)1 and NOD2. NOD1 and NOD2 are currently the 
only known sensors of bacterial cell wall peptidoglycan (PGN) that elicit infl amma-
tion by increasing cytokine production, defensin expression by Paneth cells [ 174 –
 177 ], and stress kinase responses [ 178 ]. In addition to LPS, PGN could be positioned 
as a component of metabolic endotoxemia that contributes to infl ammation and 
metabolic defects [ 27 ,  179 ]. This is important because gut-derived LPS alone 
appears to be insuffi cient for establishing glucose/insulin tolerance in poorly 
immune-responding germ-free mice [ 180 ]. Furthermore, PGN containing meso- 
DAP motifs (generally dominant in gram-negative bacteria) caused profound insu-
lin resistance through actions on NOD1 directly in metabolic cells, including 
adipocytes [ 179 ]. The NOD2 activation with the minimal bioactive PGN motif, 
muramyl dipeptide (MDP), mostly present in gram-positive bacteria, elicited cell 
autonomous infl ammation and impaired insulin action directly in muscle cells [ 181 ] 
and caused acute, peripheral insulin resistance in vivo [ 179 ]. Mice lacking NOD2 
have improved insulin sensitivity during obesity illustrating the protective role of 
NOD2 as a sensor of bacterial motifs derived from the gut microbiota on the control 
of metabolic diseases [ 27 ,  179 ]. However, defects in NOD2 immunity have been 
associated with promoting other chronic proinfl ammatory pathologies, and human 
NOD2 variants have the highest risk associated with Crohn’s disease [ 182 – 184 ]. 
NOD2 immunity is known to contribute to homeostasis of the gut microbiota dem-
onstrating that the microbiota is in a tight relationship with the immune system that 
secondarily controls the metabolism [ 138 ].  

   Metabolic Endotoxemia and Gut Microbiota Induced Hepatic Steatosis 

 Possible mechanisms leading to hepatosteatosis in obese and type 2 diabetic patients 
that involve gut microbiota implicate intestinal permeability, low-grade infl amma-
tion and immune balance [ 124 ], the modulation of dietary choline and bile acid 
metabolism, and the production of endogenous ethanol [ 125 ]. A fi rst hypothesis is 
proposed regarding the key role of the intestinal epithelium as a barrier between the 
environment, i.e., the luminal side of the intestine and the body. A leaky gut has 
been described in patients with NAFLD [ 185 ] and linked to a change in intestinal 
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microbiota [ 122 ,  186 ]. A second hypothesis is linked to the role of choline which is 
a major phospholipid component of the cell membrane involved in signal transduc-
tion and the control of lipoprotein metabolism, notably the very-low-lipoprotein 
assembly [ 187 – 189 ]. Therefore, a choline-defi cient diet promotes liver steatosis. 
Such depletion could be induced by the gut microbiota that would convert dietary 
choline into toxic methylamines [ 190 ,  191 ]. It was shown that circulating levels of 
plasma phosphatidylcholine were low, whereas urinary excretion rates of methyl-
amines dimethylamine, trimethylamine, and trimethylamine-N-oxide were high and 
were coprocessed by symbiotic gut microbiota and mammalian enzyme systems. 
An infl ammatory feature is required to qualify hepatic steatosis (NASH) from a 
NAFLD phenotype. It could originate from the gut microbiota since it interacts with 
the overall immunity of the host via PAMPs TLRs and NLRs [ 175 ]. Similarly, the 
role of components from the infl ammasome such as NLRP6 and NLRP3 has been 
demonstrated [ 124 ]. These infl ammation sensors could modulate the gut microbiota 
and hence the crosstalk of host immunity and gut microbiota leading to the develop-
ment of the pathology. Altogether, the triggering of innate immunity could lead to 
the production of cytokines which contribute to the infl ammatory phenotype of 
NASH through a mechanism similar to that suggested for the development of type 
2 diabetes and obesity.   

11.3.2.2     The Energy Harvesting, Expenditure, and Short-Chain Fatty 
Acid Hypotheses 

 The change in intestinal microbiota (increased  Firmicutes  and decreased 
 Bacteroidetes ), observed during obesity, was associated with an increased effi ciency 
of energy harvest in human and mouse [ 26 ,  105 ]. The fecal content in energy was 
lower in obese mice than in controls by about 150 kCal/day, suggesting that the 
energy was better absorbed by the gut. This observation was attributed to the exces-
sive hydrolysis of polysaccharides into monosaccharides indispensable to the body 
as well as to the production of short-chain fatty acids (SCFA) [ 26 ]. However, it 
seems that the production of SCFA diminished over time during long-term high-fat 
feeding or aging in  ob / ob  mice [ 105 ]. The role of gut microbiota in the production 
of SCFA is however strongly supported since it was shown that germ-free mice are 
devoid of SCFAs [ 192 ] and could control AMP-activated protein kinase activity and 
macrophage infi ltration in adipose tissue [ 193 ]. Human colonic butyrate producers 
are phylogenetically diverse, with the two most abundant groups related to  E. 
rectale / Roseburia  species and to  Faecalibacterium prausnitzii . The precise SCFA 
responsible for the control of metabolism seems to be multiple with a signifi cant 
role for acetate. In addition, SCFAs such as propionate can be used for de novo 
glucose or lipid synthesis and serve as an energy source for the host. It has also been 
demonstrated that butyrate lowers fatty acid content in liver and plasma, reduces 
food intake, exerts immunosuppressive actions, and probably improves tissue insu-
lin sensitivity [ 194 ,  195 ]. The mechanism could involve notably the promotion of 
glucagon-like peptide 1 (GLP-1) secretion via the binding of SCFA to 
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G-protein- coupled receptors such as GPR41/43 at the surface of the enteroendocrine 
cells [ 195 ]. Cascades of events such as the control of glucagon and insulin secretion, 
gastric emptying, and satiety would secondary to GLP-1 secretion control glucose 
homeostasis. Butyrate is also involved in the improvement of the overall glucose 
metabolism as demonstrated by its supplementation to a high-fat diet [ 196 ]. Other 
experiments show that by high-pressure liquid chromatography analysis, authors 
identifi ed signifi cantly higher concentrations of butyrate and propionate in feces 
from obese versus normal-weight children [ 197 ]. Signifi cantly lower concentrations 
of intermediate metabolites were detected in obese children suggesting exhaustive 
substrate utilization by obese gut microbiota [ 197 ]. Despite this evidence, the role 
of SCFA on metabolism still remains unclear. Recent data demonstrate that the 
activation of GPR43 by SCFA at the surface of adipocytes reduced insulin signaling 
[ 198 ]. This could certainly reduce insulin-induced lipid accumulation, and hence 
body weight gain, but could also be considered as a factor inducing adipose tissue 
insulin resistance which could prevent glucose to be taken up by adipocytes and 
hence accumulate in the blood or the liver to induce hyperglycemia and hepatic 
steatosis. Thus, data relating to the production of SCFA most likely cover other 
unidentifi ed mechanisms that need to be identifi ed to fully understand the benefi t of 
polysaccharide fermentation. 

 The role of gut microbiota could also be on energy expenditure since germ-free 
mice are leaner despite a dramatically increased food intake [ 90 ]. The lean pheno-
type of these mice is associated with increased skeletal muscle and liver levels of 
phosphorylated AMP-activated protein kinase (AMPK) and its downstream targets 
involved in fatty acid oxidation such as acetylCoA carboxylase and carnitine palmi-
toyltransferase [ 199 ]. AMPk is a master switch considered to be a molecule recruited 
in case of stress and energy deprivation [ 200 ,  201 ]. Bacterial factors could activate 
this enzyme in muscles and the liver to increase energy expenditure. Conversely, 
the microbiota inhibits fasting-induced adipose factor (Fiaf) which downregulates 
circulating lipoprotein lipase. Hence, free fatty acids are stored in the liver of con-
ventional mice which is not the case in germ-free animals [ 199 ]. 

 Altogether, numerous eukaryotic targets are currently being identifi ed using 
germ-free mice. An important matter will be to validate them in physiological con-
ditions such as in conventional mice and in humans.   

11.3.3     Gut Microbiota During Obesity Surgery 

 The last 40 years has seen the emergence of the treatment of obesity by surgery. 
Several types of surgery involving the stomach and the intestine are used. The 
Roux-en-Y gastric bypass (RYGB) surgery which is to date the major bariatric 
intervention to treat morbid obesity involves the direct connection of the jejunum to 
the stomach so that nutrients are no longer in contact with the duodenum. In addi-
tion, 90 % of the stomach is removed. The sleeve gastrectomy involves the removal 
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of a major part of the stomach so that food directly reaches the duodenum. Other 
types of surgery such as the ileal bypass transposition are being developed. All sur-
gical procedures dramatically affect gut microbiota [ 202 ,  203 ]. A fi rst set of experi-
ments demonstrated that before surgery,  Firmicutes  were dominant in normal-weight 
and obese individuals but signifi cantly decreased in post-gastric bypass [ 204 ]. 
Interestingly, the gut microbiota from patients after surgery was not similar to that 
of lean individuals since it was enriched in  Gammaproteobacteria  which are H(2)-
producing  Prevotellaceae  [ 204 ]. These changes were independent of weight change 
and caloric restriction, were detectable throughout the length of the gastrointestinal 
tract, and were most evident in the distal gut, downstream of the surgical manipula-
tion site [ 205 ]. A precise study identifi ed 14 discriminant bacterial genera (7 were 
dominant and 7 were subdominant) and 202 genes changed in the white adipose 
tissue that correlated with RYGB as well as with both clinical phenotypes [ 206 ]. 
    Faecalibacterium prausnitzii  species was lower in patients with metabolic diseases 
but associated negatively with infl ammatory markers even throughout the follow-up 
after surgery and independently with changes in food intake suggesting an imprint-
ing of the microbiota that cannot be easily changed [ 207 ]. 

11.3.3.1    The Bile Acids to Microbiota Hypothesis 

 Intestinal microbiota also has a role in the metabolism of bile acids, which, with 
other sterols [ 208 ], are important regulators of metabolic diseases, as also described 
in Chaps.   13     and   14    . Bile acid can control insulin secretion [ 209 ], GLP-1 secretion 
[ 210 ], energy expenditure [ 211 ], as well as atherosclerosis [ 212 ]. The role of bile 
acid is also suspected during bariatric surgery and could be the molecular link 
between the change in intestinal microbiota [ 213 ] and the improvement of metabo-
lism [ 214 ] notably through the TGR5 receptor [ 215 ]. Bile acids are secreted into 
the duodenum and work to emulsify liposoluble dietary nutrients to facilitate their 
digestion and absorption. Studies have demonstrated that bile acid composition 
and secretion in response to fat intake modifi es markedly gut microbiota thereby 
inducing a dysbiosis [ 216 ]. The dietary fat can alter the gut microbiota of mice 
indirectly by changing the animals’ pool of bile acids and steroids that are pro-
duced by the liver and secreted into the intestine [ 216 ]. Bile acids are synthesized 
from cholesterol in the liver and further metabolized by the gut microbiota into 
secondary bile acids [ 217 ] which can change the metabolism by acting on the 
farnesoid X receptor to exert some negative feedback control. When compared to 
germ-free mice, the conventionally raised mice are characterized by a dramatic 
reduction in muricholic acid, but not cholic acid levels [ 218 ]. The microbiota con-
trols fi broblast growth factor 15 in the ileum and cholesterol 7α-hydroxylase 
(CYP7A1) in the liver by FXR- dependent mechanisms thereby infl uencing the 
metabolism and secretion of bile acids. 

 Hence, a new ecology is expected from the host and the microbiota through bile 
acid metabolism.  
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11.3.3.2    The Immunomicrobiota Crosstalk and Metabolic Diseases 

 Metabolic diseases are now considered as low-grade immunomodulatory diseases 
[ 58 – 60 ].    The origin of the antigen is unknown but has been suspected to be from 
autoantigens, which notably form the adipose tissue [ 219 – 221 ]. The discovery of 
intestinal microbiota opens new avenues regarding the origin of the metabolic 
infl ammation. This hypothesis stemmed from the observation that intestinal perme-
ability was increased in high-fat-diet-fed mice, leading to accumulation in the blood 
of bacterial fragments such as LPS [ 6 ,  160 ]. Whereas, during diabetes and obesity, 
LPS and peptidoglycan were shown to be transported from the intestinal lumen to 
the blood through the intestinal epithelium, it was initially thought that whole com-
mensal bacteria would be arrested by the mucosal layer and the immune system 
within Peyer’s patches or the lamina propria [ 222 ,  223 ], thus preventing transloca-
tion across the intestinal epithelial layer [ 224 ,  225 ]. 

 A defi ciency in host immune defenses and increased permeability and damage to 
the intestinal mucosal barrier represent mechanisms through which bacteria of 
intestinal origin accumulate into the tissues. In the healthy situation macrophages, 
dendritic cells, and antibodies within the lumen restrain, along with the mucus layer, 
the bacteria within the luminal side of the gut to ensure a tight intestinal permeabil-
ity. In the proximal intestinal segments where the microbiota is sparse and the 
mucus layer is thin or absent, commensal bacteria are in close contact with the 
epithelial cells, and host immunosuppression synergistically promotes bacterial 
translocation from the gastrointestinal tract resulting in accumulation of bacteria 
within the mesenteric lymph node [ 225 ]. Therefore, lymphocytes from mesenteric 
lymph nodes, Peyer’s patches, intraepithelial cells, and the lamina propria are spe-
cifi cally educated to recognize commensal bacteria, which are therefore considered 
as self-antigens. The change of intestinal microbiota that occurs during a fat- 
enriched diet [ 81 ,  104 ] leads to the production of new antigens that are no longer 
recognized as self by the intestinal immune cells [ 134 ]. This change in gut micro-
biota can also be controlled by natural antibiotics such as defensins secreted by 
Paneth cells [ 226 ,  227 ].  

11.3.3.3    Intestinal Bacterial Translocation and Metabolic Diseases 

 Bacterial translocation is defi ned as the passage of viable indigenous bacteria from 
the gastrointestinal tract to extra intestinal sites, such as the mesenteric-lymph-node 
complex, liver, spleen, and bloodstream [ 224 ]. This mechanism is largely observed 
during intestinal bacteria overgrowth leading to cirrhosis [ 228 ] or sepsis [ 229 ]. 
Although it is intuitively considered as deleterious for the organism, it could be sug-
gested that the bacterial translocation helps the immune system to be prepared 
against infections. Another pathological situation of increased bacterial transloca-
tion is AIDS where, due to impaired intestinal immunosuppression, bacteria trans-
locate toward tissues and could lead to infl ammation and increased mortality [ 230 ]. 
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The immune inhibitory receptor programmed death-1 (PD-1) regulates the function 
of CD8+ cells and the translocation of bacteria [ 230 ]. Importantly AIDS is  associated 
with a dramatic increase in the incidence of diabetes and lipodystrophy [ 231 ,  232 ]. 
The CD4 T helper and Th17 cells appear to be critical for regulating gut mucosal 
immune responses to extracellular microbial pathogens and therefore could be 
involved in bacterial translocation [ 233 ]. Hence, an impaired intestinal immune sys-
tem could lead to bacterial translocation and therefore to metabolic diseases. This 
hypothesis has been validated during high-fat diet-induced metabolic diseases [ 27 ]. 
First it was observed that a rapid augmentation of bacterial adherence to the intesti-
nal epithelium layer occurred suggesting an impaired mucosal defense. Then CD11c 
positive phagocytes harvested the transepithelial bacteria and translocated with the 
live bacteria to adipose tissue. The bacteria were co-localized within the adipose 
depot with CD11c positive cells and most likely were intracellular. Importantly, the 
bacterial accumulation was considered as a predictive biomarker of type 2 diabetes 
[ 234 ]. The translocated bacteria were also detected in the blood in humans and con-
versely to the adipose tissue. The Proteobacteria phylum represented more than 
80 % of the blood microbiota as assessed by 16S RNA DNA. Interestingly, other 
bacterial DNA fragments could predict the onset of cardiovascular events in a large 
cohort of type 2 diabetic patients [ 235 ]. The processes involved in bacterial translo-
cation at the onset of type 2 diabetes could be related to molecular determinants 
involved in bacterial recognition. The NOD1 and LPS-CD14 bacterial receptors 
were involved in this translocation mechanism since their deletion dramatically 
reduced the amount of bacterial DNA present within the adipose tissue under high-
fat diet [ 27 ]. Interestingly, both deletions were associated with improved insulin 
sensitivity and reduced glycemia suggesting that the tight control of bacterial trans-
location could be a master regulator of the onset of insulin resistance and diabetes. 
Conversely, the deletion of NOD2 induced over-accumulation of bacterial DNA 
within the tissues suggesting a protective effect. This was also observed in mice 
treated with NOD2 ligands [ 179 ]. The importance of the immune system in the 
translocation mechanism was also illustrated in mice carrying a deleted MyD88 
gene and which were prone to diabetes [ 236 ]. These mice also displayed a dramatic 
accumulation of bacteria in the mesenteric lymph nodes and adipose tissue. 
Therefore, metabolic regulators of bacterial translocation could be linked to hor-
mones controlling the immune system such as estrogens [ 237 ] or leptin [ 238 ]. This 
shift in the paradigm is supported by data which show that cardiovascular disease is 
associated with the role of microbiota in the control of lipid metabolism leading to 
the development of atherosclerosis [ 95 ,  239 ,  240 ]. Surprisingly, microbes associ-
ated with periodontitis were at the origin of the bacteria present in the plaques of 
atherosclerotic patients [ 240 ]. Studies in animals have revealed a mechanistic link 
between intestinal microbial metabolism of the choline moiety in dietary phospha-
tidylcholine (lecithin) and coronary artery disease through the production of a pro-
atherosclerotic metabolite, trimethylamine-N-oxide (TMAO) [ 241 ,  242 ]. This has 
been confi rmed in humans [ 243 ]. Importantly, antibiotic administration reduced the 
TMAO concentration suggesting that the microbiota was indeed the source of this 
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proatherogenic molecule. Furthermore, in addition to bacterial factors, whole bac-
teria have been identifi ed within the atherosclerotic plaques. The taxa have been 
linked to periodontal diseases [ 240 ]. This fi nding bridges the gap between  metabolic 
and cardiovascular diseases by means of opportunistic bacteria from the oral cavity. 
Its proportion increases in response to a change of diet [ 244 ]. In addition, genes 
closely involved in the regulation of cardiovascular diseases such as angiotensin 
I-converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regu-
latory enzyme of the renin-angiotensin system, also have an impact on gut micro-
biota leading to infl ammation [ 245 ]. Furthermore, statins, classical anti-dyslipidemic 
agents prescribed to reduce the incidence of cardiovascular events, have been shown 
to be associated with microbial-derived agents that could be responsible for the 
cholesterol-lowering effect, explaining the effi cacy of the treatment [ 246 ]. 
Cholesterol metabolism is indeed regulated by gut microbiota since there is a dra-
matic reduction of muricholic acid, a farnesoid X receptor (FXR) antagonist in the 
ileum, in conventional mice when compared with germ-free mice. Therefore, a 
given microbiota could be important for the effi cacy of a drug treatment as well as 
for the susceptibility of developing cardiometabolic diseases, thus reconciling met-
abolic and cardiovascular diseases under the paradigm of the gut to tissue microbi-
ota crosstalk.   

11.3.4     Tissue Microbiota and Metabolic Diseases: 
The Paradigm Shift of Bacteria Translocation 

 Bacterial factors such as LPS, peptidoglycans, and bacterial DNA can be absorbed 
by the gut and found within the blood. These metafactors could serve as biomark-
ers and also as regulators since they can then activate cells from the immune 
system to generate infl ammation. Pyrosequencing of the 16S RNA DNA from the 
stroma vascular fraction of human adipose tissue from lean, overweight, and 
obese patients showed that the diversity of the tissue microbiota was mainly 
related to  Firmicutes  and  Proteobacteria  ( in press ). Interestingly, although no 
changes were observed among the  Firmicutes  phylum, a major dysbiosis was 
detected within the  Proteobacteria  phylum and specifi cally the  Ralstonia  genus. 
 Ralstonia  was dramatically overrepresented within the family and, furthermore, 
its presence was proportional to increased BMI. This suggested that this bacterial 
genus might be causal. The bacterial translocation process also leads to the accu-
mulation of bacterial DNA in the blood fraction [ 234 ], suggesting that either bac-
teria migrate through the blood to reach the tissues or are released by the tissues 
into the blood. 

 The role of this tissue microbiota is not known; similarly the proportion of live 
bacteria compared to dead bacteria or fragments is not perfectly identifi ed and 
will most likely depend on diet, age, and other genetic and environmental factors. 
This paradigm shift is promising but will require much work to determine its 
physiological role. 
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11.3.4.1     Tissue Microbiota as Biomarkers of Metabolic 
and Cardiovascular Diseases 

 The blood tissue microbiota has been recently described in humans and mice [ 27 , 
 234 ,  235 ]. The presence of bacterial DNA has been revealed by qPCR from human 
cohorts from the general population [ 234 ] and from diabetic patients [ 235 ]. It could 
be shown that the increased 16S RNA DNA concentration in blood predicts the 
onset of diabetes 6–9 years later [ 234 ], whereas the quantifi cation of other bacterial 
factors could predict the onset of cardiovascular events in a population of type 2 
diabetics [ 235 ]. In both cases it is suggested that the bacterial fragments which 
accumulate in the blood could be causal of the disease. Since the bacteria are inher-
ited at birth, the accumulation of bacterial DNA initiates at a very early stage, link-
ing the environment with the host genome. In risk situations, such as when feeding 
on a fat-enriched diet, the bacterial DNA increases refl ecting the new nutritional 
situation and could be involved in the triggering of metabolic adaptation. Adipose 
tissue is targeted [ 6 ,  27 ,  137 ] and adipogenesis is induced [ 170 ]. Hence, these 
 bacteria can be considered as nutrient sensors informing the tissues.    

11.4     Therapeutic Perspectives 

 The therapeutic perspectives are huge but so far at their infancy, as presented and 
discussed in Chap.   19    . One should separate the nutritional approaches aiming at 
maintaining health in the general population. This would fi rst involve phenotyping 
of the human microbiome [ 21 ] and second performing studies to demonstrate the 
prevention of the risk of disease development. A second strategy would involve 
preventing the disease in patients at risk to develop metabolic diseases. In these 
patients subpopulations should be defi ned and studied in order to perfectly adapt the 
nutritional strategy. This should be a precisely directed strategy to treat patients for 
the prevention of developing a metabolic disease. This would involve overweight 
individuals, smokers, sedentary individuals, and hypertensive patients. With this 
aim pre- and probiotics selected for their capacity to infl uence all the above physi-
ological mechanisms at the cross road of microbiota and the host should be delin-
eated. Other nutritional approaches could be pursued aiming to target intestinal 
functions [ 115 ] by using antioxidants like polyphenols such as resveratrol. From a 
therapeutic point of view, pharmacological strategies can be envisaged that involve 
small molecules to target molecular mechanisms such as the immune system, muco-
sal defense, bile acid synthesis, incretin secretion, or the production of short-chain 
fatty acids. Again, they should address well-defi ned subgroups of patients charac-
terized by their specifi c microbiota or blood biomarkers. Companion blood bacte-
rial biomarkers could be used to monitor the impact of the intervention over a 
long-term treatment. This reasoned strategy should help to control metabolic 
 diseases and associated cardiovascular events. The advent of next-generation 
sequencing strategies along with the development of bioinformatics and biostatistical 
skills are now available to set up these programs.  

11 Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic…

http://dx.doi.org/10.1007/978-1-4471-6539-2_19


222

11.5     Conclusions 

 In the quest of a mechanism explaining the pandemic development of metabolic 
diseases, the consequent cardiovascular events, and further reconciling the key role 
of the adaptive and innate immune system, the role of the intestinal microbiota has 
emerged as a very promising candidate. The diversity and huge complexity of the 
microbiome precludes a rapid and clear identifi cation of the molecular mechanisms 
at the crosstalk between the host and the microbiota. The molecular hypotheses for 
the explanation of the metabolic phenotype are numerous and probably related to the 
large number of molecular origins of the disease. This suggests that patients should 
be screened for their microbiota to host crosstalk. Thus, therapeutic strategies or 
preventive programs could be successful. We have entered a new era and one can no 
longer disregard the microbiome from the gut or other locations since it is now 
clearly involved at the onset and during the development of metabolic disease.     
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    Chapter 12   
 Role of Microbiota in Regulating Host Lipid 
Metabolism and Disease Risk 

             Isabel     Bondia-Pons    ,     Tuulia     Hyötyläinen    , and     Matej     Orešič    

    Abstract     The gut microbiota is an environmental factor which affects host metabolism 
and correspondingly contributes to obesity and its cardiometabolic comorbidities. 
However, the mechanisms behind the regulation of host lipid metabolism by gut 
microbiota are poorly understood. The mechanistic in vivo studies over the past 
decade combining gnotobiotic animal models, metagenomics, and metabolomics 
have begun to decipher the role of the gut microbiota in the regulation of host physi-
ology. However, since the animal studies cannot be easily extrapolated to humans, 
it still remains unclear if an altered microbiota associated with a specifi c disease in 
humans is a causative factor or merely a consequence of the disease state or both. 
Cheaper and more comprehensive sequencing tools for the analysis of gut micro-
biota, together with the recent advances in mass spectrometry-based analysis of 
molecular lipids, are expected to contribute to our understanding of the mechanisms 
linking gut microbiota, host lipid metabolism, and how they together contribute to 
metabolic comorbidities of obesity.  

  Keywords     Analytics   •   Bile acids   •   Bioinformatics tools   •   Gnotobiotics   •   Lipid 
characterization   •   Lipid metabolism   •   Lipidomics   •   Mass spectrometry   • 
  Metabolomics   •   Metagenomics   •   Metataxonomics   •   Microbiota   •   Signaling mole-
cules   •   Systems biology  

12.1         The Link Between Lipids and Gut Microbiota 

    Advances in the study of microbiomes by culture-independent molecular methods 
based on the ribosomal 16S sequence have revolutionized the analysis of gut microbi-
ota. Metagenomic sequencing has confi rmed that the human gut microbiota is a very 
complex community of about 100 trillion archaeal and bacterial cells corresponding to 
over more than 1,000 species [ 1 ]. The community is  dominated by bacteria belonging 
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to three major groups (phyla), Firmicutes, Bacteroidetes, and Actinobacteria, that 
together represent >95 % of the total microbiota [ 2 ]. 

 Diet, genetic background, and immune system status are among the factors 
affecting the composition of gut microbiota [ 3 ,  4 ], justifying the high interindivid-
ual variation observed in human microbiota. However, it is believed that at least a 
common core gut microbiota, and core microbiome, shared among individuals [ 3 , 
 5 ] is needed for a correct functioning of the gut. Recent research shows that micro-
bial community has indeed a benefi cial role during normal homeostasis, modulating 
the host’s immune system as well as infl uencing host development, physiology, and 
metabolism [ 6 ], but the underlying mechanisms remain largely unknown. By apply-
ing the “omics” approach, molecular snapshots of biological systems can be gener-
ated, allowing the study of comprehensive molecular profi les in time as dependent 
on genetic or environmental variation. Systems biology approach, as discussed in 
Chap.   1    , is therefore essential in order to deal with the “omics data,” thus shifting 
the research emphasis from single molecular components to how they together 
contribute as parts of a complex network to a specifi c phenotype or biological 
function [ 7 ]. In this context, changes in the concentration of specifi c groups of 
metabolites are sensitive and specifi c to pathogenically relevant factors including 
gut microbiota. As discussed from a nutritional perspective in Chap.   5    , metabolo-
mics is expected to help in understanding changes to gut microbiota populations and 
function. How do gut microbiota and other environmental factors affect the 

  Fig. 12.1    Main functions of lipids in the human body. Lipids function as energy source, partici-
pate in essential signaling pathways, and constitute the cellular structural building blocks in cell 
and organelle membranes       
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lipidome and the underlying pathways is indeed one of the research questions to 
address in current and future studies in the nutrigenomics fi eld. 

 Lipid homeostasis is fundamental to the maintenance of health. Lipids are a 
diverse group of compounds with many biological functions. The structural diver-
sity of lipids is due to many combinatorial possibilities of how the lipid building 
blocks are put together, so that hundreds of thousands of distinct lipid species are 
theoretically possible [ 8 ,  9 ]. Lipids function as energy storage sources, participate 
in essential signaling pathways, and constitute the cellular structural building blocks 
in both cell and organelle membranes [ 10 ,  11 ] (Fig.  12.1 ). Lipids are thus directly 
involved in membrane traffi cking, regulating membrane proteins, creating specifi c 
subcompartments in membranes that contribute to cellular function [ 12 ,  13 ], and in 
providing dynamic highly specialized molecular scaffolds for the construction of 
microscopic and macroscopic chemical assemblies needed for life processes [ 14 ]. 
Structurally, lipids are classifi ed into eight main groups, namely, fatty acyls, glyc-
erolipids, glycerophospholipids, sphingolipids, saccharolipids and polyketides 
(derived from condensation of ketoacyl subunits), and sterol lipids and prenol lipids 
(derived from condensation of isoprene subunits) [ 15 ] (Fig.  12.2 ).

Category Abbreviation Sub-category

Fatty acyls FA Fatty acids and conjugates
Octadecanoids
Eicosanoids
Docosanoids
Fatty alcohols
Fatty aldehydes
Fatty esters

Glycerolipids GL Monoradylglycerols
Diradylglycerols
Triradylglycerols

Glycerophospholipids GP Phosphatidic acids
Phosphatidylcholines
Phosphatidylserines
Phosphatidylglycerols
Phosphatidylethanolamines
Phosphatidylinositols
Phosphatidylinositides
Cardiolipins

Sphingolipids SP Sphingoid bases
Ceramides
Phosphosphingolipids
Phosphonosphingolipids
Neutral glycosphingolipids
Acidic glycosphingolipids

Sterol lipids ST Sterols
Steroids
Secosteroids
Bile acids and derivatives

Prenol lipids PR Isoprenoids
Quinones and hydroquinones
Polyphenols

Saccharolipids SL Acylaminosugars
Acylaminosugar glycans
Acyltrehaloses
Acyltrehalose glycans

Polyketides PK Macrolide polyketides
Aromatic polyketides
Non-ribosomal 
peptide/polyketide hybrids

  Fig. 12.2    Structural classifi cation of lipids       
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12.2         Lipidomics 

 Lipidomics, a subdiscipline of metabonomics focused on the global study of molec-
ular lipids, including pathways and networks of cellular lipids in biological systems 
[ 16 ], has been progressing rapidly over the past decade due to the advances in mass 
spectrometry (MS) [ 17 ,  18 ], computational methods [ 19 ,  20 ], and systems biology 
approaches [ 21 ]. These recent advances have highly infl uenced the evolution of 
lipidomics, together with the recognition of the major role that lipids play in health 
maintenance and in many metabolic diseases and their comorbidities. Lipidomic 
studies play indeed an essential role in defi ning the biochemical mechanisms of 
lipid-related diseases through identifying alterations in cellular lipid metabolism, 
traffi cking, and homeostasis. Lipidomics is therefore envisaged to valuably contrib-
ute in a systems biology approach to understand the role that microbiota plays in the 
complex lipid host metabolism and, consequently, in human health and disease. 

 Increasing evidence has showed that lipid profi ling might powerfully aid in clinical 
risk assessment. A simple example can be found in the study of triglycerides (TG). 
Owing to many possible combinations of acyl chains esterifi ed to a glycerol backbone, 
many different molecular species of TG can be found in the human body. However, the 
current standard clinical measurement of TG relies on the  measurement of total glyc-
erol after acyl chain hydrolysis [ 22 ], obscuring this underlying diversity. Discriminating 
plasma lipids at a molecular level might shed insight on the intersection between dys-
lipidemia and metabolic risk in several metabolic diseases. For instance, the application 
of LC–MS-based lipidomic profi ling has shown that specifi c TG containing FAs with 
lower carbon number and double bond content are associated with insulin resistance 
[ 23 ]. In agreement with the previous study, Rhee and colleagues found that the same 
TG signature was also predictive of type 2 diabetes in subjects who were followed up 
for over 12 years in the Framingham Heart Study [ 24 ]. 

 The gut microbiota is one of the many environmental factors infl uencing the host 
lipid metabolism, but detailed lipid characterization is needed in future studies if we 
want to elucidate the complete mechanisms behind the regulation of the lipid host 
metabolism by the gut microbiota. Advances in this fi eld can only be understood 
thanks to the recent (and future) advances in both analytical and computational meth-
ods and to its mandatory integration in a systems biology approach with other “omics” 
technologies such as metagenomics. The purpose of this section is to familiarize the 
reader with the core tools needed in lipidomics, by briefl y overviewing the state-of-
the-art and recent advances in the lipidomic fi eld from an analytical perspective. 

12.2.1     Analytical Lipidomics 

 Comprehensive analysis of molecular lipids requires specifi c analytical proce-
dures [ 25 ] (Fig.  12.3 ). Generally, two types of analytical strategies are applied in 
lipidomic analysis: (a) the hypothesis-driven targeted selective analysis and, 
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more comprehensive, (b) the hypothesis-generating nontargeted profi ling analysis. 
In the targeted analysis, only preselected lipids are analyzed. This approach 
allows very sensitive and robust determination of the selected metabolites, but it 
gives only limited information about the global lipidome. The nontargeted 
approaches aim to cover as many lipids as possible in a single analysis, across 
several lipid classes. As a drawback, the nontargeted approaches are typically 
only semiquantitative [ 26 ,  27 ].

   Mass spectrometry has a central role in lipidomics [ 28 ]. Lipids are commonly 
analyzed either by direct infusion into the MS instrument (the so-called shotgun 
MS) or with MS in combination with a chromatographic separation method liquid 
chromatography (LC) or gas chromatography (GC). The LC–MS approaches are 
well suited for targeted as well as nontargeted analysis of lipids. While most of the 
complex lipids are too nonvolatile for the analysis by GC–MS, this approach is 
commonly applied for the analysis of FAs and sterols. Tandem or hybrid mass 
 spectrometry (MS/MS) is used both for nontargeted analyses and for increasing the 
sensitivity and selectivity of quantitative analysis. In MS/MS experiments, the fi rst 
analyzer is used to select a precursor ion which is fragmented in a collision cell. 
The product ions, i.e., the fragments of the precursor ion (collision-induced disso-
ciation (CID)), are then detected in the second mass analyzer. For further identifi -
cation, this MS/MS process can be iteratively repeated with sequential selection of 
resultant ions for fragmentation in MSn experiments. Suitable MS systems for CID 
include both quadruple-based tandem in-space instruments (e.g., triple quadrupole 
(QqQ) or quadrupole time-of-fl ight (QTOF)) and ion trap-based tandem in-time 
instruments (e.g., quadrupole-ion trap (QIT), linear trap quadrupole (LTQ)-Orbitrap, 

  Fig. 12.3    Typical workfl ow used in lipidomics, starting from sampling, followed by sample prep-
aration, analysis, data preprocessing, statistical analysis, and bioinformatics       
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or linear trap quadrupole Fourier-transform ion cyclotron resonance (LTQ-FTICR)). 
Among these, the QqQ is typically used for targeted quantitative analysis and the 
high-resolution systems for global lipid profi ling as well as for the identifi cation 
of lipids. 

 Novel hybrid high-resolution instruments, such as combination of ion mobility 
and TOFMS (IM–TOFMS), have recently been launched. They are promising tools 
to assist in the still great challenge of identifi cation and quantifi cation of all poten-
tial enantiomeric, stereoisomeric, and regioisomeric lipid species that can be found 
in biological systems. The main advantages and limitations of the recent analytical 

   Table 12.1    Main advantages and limitations of the recent analytical approaches used in lipidomics   

 Analytical approach  Main advantages  Main limitations  References 

 Shotgun lipidomics  Simple and fast approach  Ion suppression causes 
that compounds present 
in trace amounts are 
often not detected 
 Its applicability to the 
search of novel, 
previously unknown 
lipids is relatively 
restricted 

 Gross and Han 
[ 29 ]; Isaac [ 30 ]  Use of high-resolution 

mass spectrometers 
(QTOF-MS, FT-MS) 
 Novel hybrid high- 
resolution instruments, 
such as a combination of 
ion mobility (IM) and 
TOFMS, are suitable for 
the shotgun approach 

 Lipidomics by 
ultrahigh 
performance liquid 
chromatography 
coupled to mass 
spectrometry 
(UHPLC–MS) 

 Versatile (widely used for 
both targeted and 
nontargeted analyses, 
using various types of 
mass spectrometers) 
 Typically high sensitivity 
(especially when used in 
targeted approaches 
(picomoles)) 

 Matrix effects (although 
less than in shotgun 
methods), as it is not 
possible to use labelled 
standards for all 
compounds 

 Nygren et al. [ 31 ] 

 Memory effects due to, 
e.g., sample carryover 

 High-throughput analyses 
with high separation 
effi ciency in a short 
analysis time 
 Identifi cation of novel 
lipids is possible 

 Lipidomics by 
structurally selective 
ion mobility 
coupled to mass 
spectrometry 
(IM-MS) 

 Ion mobility analysis has 
the ability to differentiate 
analytes which are 
isobaric in mass but differ 
in structure 

 Expensive 
instrumentation 

 Kliman et al. [ 32 ] 

 Promising role for 
fundamental lipid 
characterization in future 
applications 

(continued)
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 Analytical approach  Main advantages  Main limitations  References 

 Comprehensive 
multidimensional 
approach 

 Combination of the 
advantages of both 
high-resolution 
instrumentation (i.e., 
Orbitrap MS, FT ion 
cyclotron resonance) 
and a two-dimensional 
chromatographic 
separation 
 High resolving power 
 Separation of isomers, 
conformers, and 
enantiomers 

    Ideally, comprehensive 
multidimensional 
approaches are expected 
to inherit the advantages 
of the existing 
methodologies and 
overcome the 
limitations of any 
individual, which 
further develop in the 
future 

 Guo and 
Lankmayr [ 33 ]; 
Han et al. [ 34 ] 

 Complicated 
instrumentation not well 
suited for routine 
analysis 

 Nuclear magnetic 
resonance (NMR) 
spectroscopy 

 Quantitative, 
nondestructive technique 
 Useful in elucidation of 
molecular structures of 
purifi ed lipids and 
structural analysis 
 High-resolution 
magic-angle-spinning 
(HR-MAS) NMR 
spectroscopy potential use 
for metabolic profi ling of 
intact tissues 

 Rather modest 
sensitivity 
 The similarity of the 
spectra of lipids with 
respect to the limited 
structural carbon chain 
information is 
challenging 
 NMR interpretation is 
complicated by the 
considerable number of 
spin-coupled multiplets 
that result in spectral 
crowding 

 Lindon and 
Nicholson [ 35 ]; 
Maher et al. [ 36 ] 

Table 12.1 (continued)

approaches used in lipidomics are summarized in Table  12.1    . The application of 
sophisticated histochemical, cytochemical, and physical imaging techniques [ 37 ] is 
also expected to contribute by adding valuable information in lipid localization in 
different cells and tissues.

   As in other “omics” disciplines, data analysis plays a key role in lipidomics. 
Particularly in the global profi ling approaches, the amount of data is large and it is 
challenging to interpret the data without proper bioinformatics. Advanced statistical 
analysis tools and strict quality assurance regimens are a must to provide reliable 
and meaningful lipidomic results. Before any statistical analysis can even be per-
formed, data preprocessing is required, including signal processing, data normaliza-
tion, and transformation, so that the raw data signals are transformed into the format 
which can be used for the statistical data analysis. Some techniques utilized in 
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lipidomics include artifi cial neural networks, self-organizing maps, and linear 
discriminant analysis, among many others [ 38 – 40 ].   

12.3     Gut Microbiota and Host Lipid Metabolism 

 Research over the past decade has accumulated a large body of evidence linking 
alterations in the gut microbiota composition to several diseases [ 5 ,  6 ]. The gut 
microbiota is indeed currently accepted as an environmental factor that affects host 
metabolism and contributes to major disorders burdening the healthcare systems 
today, such as metabolic syndrome, cardiovascular diseases, and type 2 diabetes. 
Recent applications in relation to metabonomics and gut microbiota in diabetes are, 
for instance, discussed in detail in Chap.   12    . From a mechanistic point of view, only 
a few recent studies have identifi ed some key signaling pathways of the cross- 
species homeostatic regulation between the gut microbiota and its host [ 5 ]. In this 
section, the impact of the gut microbiota in lipid host metabolism is addressed from 
evidence accumulated in both animal and human studies. 

12.3.1     In Vivo Studies 

 In the last decade, the combination of gnotobiotics (the study of animals living in a 
microbiologically defi ned environment, either germ-free or colonized with known 
bacteria) and metagenomics (the study of the metagenome, i.e., the collective 
genomic content of a microbiota) has elegantly begun to decipher the role of the gut 
microbiota in host metabolism and host physiology. 

 Bäckhed and colleagues [ 41 ] were the fi rst to suggest that gut microbiota is an 
environmental factor affecting adiposity. The authors used normal and genetically 
engineered gnotobiotic mice (germ-free (GF), conventionally raised (CONV-R), 
and conventionalized (CONV-D) mice) to test the hypothesis that the microbiota 
acts through host signaling pathways to regulate energy storage in the host. GF mice 
are raised in the absence of any microbiota, while CONV-D mice are initially germ- 
free but then colonized with the microbiota from CONV-R donors. The convention-
alization of adult germ-free (GF) mice with a normal microbiota harvested from the 
distal intestine of CONV-R mice resulted in 60 % increase in body fat content 
despite reduced food intake [ 41 ]. Conventionalization was accompanied by a 
signifi cant increase in two liver mRNAs encoding key enzymes in the de novo fatty 
acid biosynthetic pathway, acetyl-CoA carboxylase (Acc1), and fatty acid synthase 
(Fas). Both enzymes are known targets of the two transcriptor factors, SREBP-1 
(sterol response element binding protein 1) and ChREBP (carbohydrate response 
element binding protein), which mediate hepatocyte lipogenous responses to insulin 
and glucose [ 42 ]. Conventionalization clearly increased liver ChREBP mRNA and 
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to a lesser extent also SREBP-1 mRNA levels. Additionally, the presence of the 
microbiota promoted increased monosaccharide uptake from the gut, their increased 
delivery to the liver, and a resulting induction of de novo hepatic lipogenesis. 

 Lipoprotein lipase (LPL) is a key regulator of fatty acid release from 
triglyceride- rich lipoproteins in fat and muscle. Increased adipocyte LPL activity 
leads to increased cellular uptake of fatty acids and adipocyte TG accumulation. 
Fasting- induced adipocyte factor (Fiaf), a member of the angiopoietin-like family 
of proteins, is produced by brown and white fat, liver, and intestine [ 43 ]. 
Interestingly, Fiaf was selectively suppressed in the intestine epithelium of con-
ventionalized mice. By using normal and Fiaf knockout mice, Fiaf was estab-
lished as a circulating LPL inhibitor, highlighting that its suppression is essential 
for the microbiota- induced deposition of triglycerides in adipocytes [ 41 ]. The 
relevance of Fiaf expression, which is selectively suppressed in the gut epithelium 
by the microbiota, was established when Fiaf-defi cient mice fed a Western diet 
gained signifi cantly more weight and had signifi cantly greater epididymal fat pads 
than their wild-type littermates [ 44 ]. 

 The levels of leptin, which is an adipocyte-derived hormone known to reduce 
food intake and increase energy expenditure, were increased upon colonization and 
were proportional to the observed increase in body fat in [ 41 ]. The ob/ob mouse 
model, characterized by increased food consumption due to leptin defi ciency, was 
then fi rstly used to provide evidence that the obesity-associated gut microbiome has 
an increased capacity for energy harvest from the diet [ 45 ]. The same group had 
shortly before revealed that the two most abundant bacterial divisions in mice were 
the phyla Firmicutes and Bacteroidetes and that their proportions were increased 
and reduced, respectively, in obese mice relative to their lean counterparts [ 46 ] in a 
study that can be considered the fi rst approach of DNA sequencing focused on the 
16S rRNA gene in the context of obesity. The next step was to apply shotgun pyro-
sequencing technology in the same mouse model [ 45 ]. In addition, in order to 
confi rm the increased ratio of Firmicutes to Bacteroidetes in the obese mice, the 
predicted increased capacity for dietary energy harvest by the ob/ob microbiome 
was validated using biochemical assays and by transplantation of lean and obese 
cecal microbiotas into GF wild-type mouse recipients. 

 Interestingly, the persistently lean phenotype in GF animals, which are protected 
against the obesity that develops after consuming a Western-style, high-fat, sugar- 
rich diet, was associated with increased skeletal muscle and liver levels of phos-
phorylated AMP-activated protein kinase (AMPK) and its downstream targets 
involved in fatty acid oxidation, acetyl-CoA carboxylase, and carnitine palmitoyl-
transferase (Cpt1) [ 44 ]. AMPK is a heterotrimeric enzyme that functions as a “fuel 
gauge” monitoring cellular energy status, which is activated in response to meta-
bolic stresses that result in an increased intracellular ratio of AMP to ATP, such as 
exercise, hypoxia, and glucose deprivation [ 47 ] and adipocyte-derived leptin levels 
[ 48 ]. All together, the fi ndings reported by Gordon’s group indicated that gut 
microbes can affect both sides of the energy balance equation, as a factor that infl u-
ences the harvest of energy from components of the diet and as a factor that affects 
host genes that regulate how energy is expended and stored. 
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 Wikoff and colleagues [ 49 ] were among the fi rst demonstrating the large effect 
of the microbiome on mammalian plasma metabolic profi le. The untargeted 
MS-based profi ling of serum from GF and CONV-R mice showed that concentra-
tions of many circulating metabolites are affected by the presence of the microbi-
ome. Several pathways including the metabolic processing of indole-containing 
molecules were seen to particularly interact with the microbiome. Multiple organic 
acids containing phenyl groups were also greatly increased in the presence of gut 
microbes, and a broad, drug-like phase II metabolic response of the host to metabo-
lites generated by the microbiome suggested that the gut microbiota has also a 
direct impact on the drug metabolism capacity of the host [ 49 ]. In another study, 
global analysis of polar metabolites and molecular lipids in serum, white adipose 
tissue, and liver of GF and CONV-R mice was applied to delineate how the gut 
microbiota affects host energy and lipid metabolism [ 50 ]. Analysis of the serum 
metabolome showed that energy metabolites were increased in CONV-R mice, 
which was consistent with higher-energy metabolism in the presence of gut micro-
biota [ 51 ]. Notably, lipidomic analysis highlighted systemic effects of gut micro-
biota on host lipid metabolism, especially in a large number of individual TG 
species and in several phosphatidylcholine species. TG levels were lower in serum 
but higher in adipose tissue and liver of CONV-R mice, consistently with increased 
lipid clearance. Thus, the study demonstrated that gut microbiota affects both 
energy-storing and signaling lipids. 

 The investigation of the microbial communities from both wild-type and 
resistin- like molecule (RELM) β knockout mice fed a standard chow diet and a 
high-fat diet [ 52 ] demonstrated the importance of diet as a determinant of gut 
microbiome composition and suggests the need to control for dietary variation 
when evaluating the composition of the human gut microbiome. The expression of 
the RELMβ gene has been shown to be dependent on the gut microbiome and can 
be induced by a high- fat diet [ 53 ]. In Hilderbrant et al. study [ 52 ], the RELMβ 
knockout mice consuming the HFD remained lean, whereas the corresponding 
wild-type mice became obese. Higher levels of RELMβ expression were observed 
in HFD mice when compared with mice fed a standard chow diet. Further analysis 
also revealed that the  expression of a collection of genes encoding ABC transport-
ers was increased in wild-type mice fed the HFD when compared with expression 
of the same genes in wild-type mice on a standard chow diet. The corresponding 
proteins are responsible for the transport of lipids, sugars, and peptides. Altogether 
and because the general changes in the composition of the gut microbiota were 
similar in both types of mice, the authors concluded that the HFD, and not the 
obese state, accounted for the alteration in the gut microbial communities, high-
lighting therefore the dominant effect of diet. 

 Research in Nicholson’s group added further knowledge to understand the 
bidirectional interaction between the host metabolism and its symbionts. Firstly, 
the metabolic phenotypes of GF and conventional C3H mice were characterized 
by applying an NMR-based metabolic profi ling, providing evidence that the 
microbiota status affects the systemic metabolism of host modulating the metabolic 
fi ngerprint of topographically remote organs such as the liver and the kidney [ 54 ]. 
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In a second study, the adaptive mechanisms of gut colonization by microbiota 
using a similar systems biology approach in the same mouse strain were explored 
by combining NMR-based profi ling to gut microbial monitoring by 16SrRNA 
gene pyrosequencing [ 55 ]. This kind of approach allows the simultaneous study 
of the composition of the microbial ecosystem with the modifi cations of the host 
metabolism induced by the colonization process. In particular, the study focused 
on the evolution of liver metabolism, but similar research in other tissue-specifi c 
metabolism would highly benefi t the global understanding of the complex lipid 
host metabolism. 

 Claus et al. study [ 55 ] fi ndings can be considered as the fi rst evidence of an 
in vivo association between a family of bacteria and hepatic lipid metabolism. 
Acquisition of the gut microbiota was associated with rapid increase in body weight 
over the fi rst days of colonization with parallel changes in multiple pathways in all 
compartments analyzed (liver, kidney, colon, urine, and plasma). The colonization 
process stimulated glycogenesis in the liver prior to triggering TG increases in 
hepatic TG synthesis. These changes were associated with modifi cations of the 
expression of hepatic Cyp8b1 (sterol 12α-hydroxylase), and the subsequent altera-
tion of bile acid metabolites, which are essential regulators of lipid absorption, and 
will be further discussed later in this chapter. Statistical regression OPLS-based 
models between hepatic metabolic profi les and microbial composition revealed 
strong associations of the Coriobacteriaceae family with hepatic TG, glucose, and 
glycogen levels. Two bacterial phyla (Actinobacteria and Tenericutes) were signifi -
cantly predicted by the liver metabolic profi les and were both associated with high 
hepatic levels of TG and low hepatic levels of glycogen and glucose. A complemen-
tary study performed on hamsters [ 56 ] previously reported a strong correlation 
between unidentifi ed bacteria of the same Coriobacteriaceae family and non-HDL 
plasma cholesterol when the metabolism was challenged using grain sorghum lipid 
extract to improve the HDL/non-HDL ratio. 

 Brown adipose tissue (BAT) is a central organ involved in the regulation of 
energy expenditure in mice. BAT is increasingly considered as a new target in the 
battle against obesity after recent discovery of BAT in humans [ 57 ,  58 ]. BAT and 
its specifi c uncoupling protein UCP1 have been linked to the development of obe-
sity in C57B1/6J mice ablated for the UCP1 [ 59 ]; and interestingly, the regulator 
role that BAT plays for TG-rich lipoprotein clearance and for the control of blood 
lipid abundance has been recently demonstrated [ 60 ], highlighting the potential 
role of BAT, with its main depots localized in the supraclavicular and neck regions, 
for reducing the risk of metabolic syndrome [ 61 ]. In this context, an NMR 
spectroscopy- based metabolic profi ling approach was applied in order to investi-
gate the infl uence of GF state and gender on energy metabolism in urine, plasma, 
liver, and BAT of C3H mouse [ 62 ]. Interestingly, conventional male mice had a 
signifi cantly higher total body fat content compared to conventional female mice, 
whereas this sexual dimorphism disappeared in GF animals. Among the metabolite 
changes, choline, phosphocholine, and glycerophosphocholine were observed in 
higher levels in GF males’ BAT metabolic profi les when compared to their conven-
tional counterparts. As it is well known, these metabolites are involved in the 
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formation and maintenance of cellular membranes through structural lipids, and 
according to [ 62 ], their observed increased levels may indicate a variation of brown 
adipocyte sizes between GF and conventional male animals. It is then likely that 
conventional BAT contains larger mature adipocytes and GF display a higher 
number of small undifferentiated preadipocytes. 

 Higher levels of (D)-3-hydroxybutyrate and lower levels of lactate were also 
observed in GF mice compared to their conventional counterparts. On one hand, a 
strong elevation of (D)-3-hydroxybutyrate was also observed in plasma and liver of 
the GF mice. 3-hydroxybutyrate is the major ketone body produced in the mitochon-
dria of adipocytes and hepatocytes, initiated by the condensation of two molecules of 
acetyl-CoA derived from the beta-oxidation of lipids. This ketone body plays an 
important role in the host energy metabolism, acting on noradrenaline receptors to 
inhibit BAT thermogenesis and to regulate appetite in mice [ 63 ]. On the other hand, 
adipose tissue is a major site of glucose conversion to lactate, and lactate overproduction 
could be associated with metabolic abnormalities related to obesity development. In 
addition, decreased circulating VLDL levels in GF mice suggested hepatic inhibition 
of lipogenesis. Altogether, the fi ndings in [ 62 ] indicate that GF BAT overactivated 
the catabolism of lipids compared to conventional animals. 

 Recently, fatty liver showed to accompany an increase in  Lactobacillus  species 
in the hindgut of C57BL/6 mice fed an HFD [ 64 ]. The C57BL/6 mouse model of 
obesity uses a diet high in total fat, and particularly n-6 FA, to produce outcomes 
similar to those observed in obese humans, namely, increased adiposity, production 
of proinfl ammatory cytokines, and fatty infi ltration of the liver. Emerging evidence 
suggests that hindgut microbiota may contribute to liver pathology [ 65 ,  66 ]. It is 
well known that HF feeding increases the secretion of bile acids, which are impor-
tant regulators of hepatic lipid metabolism that are believed to be a determinant of 
the gut microbiota in response to HFD [ 67 ]. The obesity-related infl ammatory fatty 
liver caused by the HFD in the previously mentioned model was interestingly 
accompanied by a large increase in hindgut L. gasseri and/or L. taiwanensis, both of 
which are part of L. acidophilus species group of bacteria. Both bacteria have been 
recently suggested to play a role in body weight control [ 68 ]. Further studies with 
GF mice are therefore needed to determine the mechanistic role of these bacteria in 
the development of infl ammatory liver fat due to HF feeding. 

 These last 10 years of gnotobiotics research have highly contributed in the under-
standing of the interactions of microbiota and host lipid metabolism (Fig.  12.4 ). 
Nevertheless, it is important to point out that the results obtained in gnotobiotics- 
based studies cannot be automatically extrapolated to humans, and it still remains 
unclear if an altered microbiota associated with a disease in humans is causing, 
contributing, or merely a consequence of the disease state. Cheaper sequencing and 
improved bioinformatics tools for the analysis of the gut microbiota, together with 
the recent advances in detailed lipid characterization, are expected to contribute to 
the future studies that are still needed to elucidate the complete mechanisms con-
necting microbiota and human metabolism.
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12.3.2        Human Studies 

 Accumulating evidence indicates that the gut microbiota may be a future target for 
treating metabolic diseases [ 69 ]. Supplementing the diet with nondigestible foods, or 
prebiotics, that stimulate the expansion of specifi c microbes to improve metabolic 
regulation can be a nutritional therapy for overweight and obesity management [ 70 ]. 
However, to determine the effects of these therapies, appropriate human intervention 
studies are still required. Human studies are helping to show what effect the gut 
microbiota has on host metabolism by improving energy yield from food and modu-
lating dietary or the host-derived metabolites that alter host metabolic pathways. Due 
to the heterogeneous etiology of lipid metabolism-related diseases, such as obesity 
and diabetes, the role of gut microbiota in the development of these disorders is still 
unclear. Many studies so far are underpowered, include participants with diverse 
ethnic origin and dietary habits, and have used different methods with specifi c biases 
to profi le the microbiota. In addition, studies in humans tend to be associative, so the 
mechanistic role of the microbiota in obesity and its comorbidities in humans remains 
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  Fig. 12.4    Effect of microbiota in lipid metabolism of germ-free mice ( GF ) vs. conventionally 
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to be proven. Relevant human studies in the fi eld are briefl y discussed in this section. 
Results from bariatric surgery studies are not included as they are discussed in detail 
in another chapter of this book. 

 Gut microbiota composition is altered in people who are obese, and it can 
respond to changes in body weight. Ley and colleagues [ 71 ] revealed that the 
Bacteroidetes and Firmicutes divisions dominate the human microbiota, with obese 
subjects having lower levels of Bacteroidetes and higher levels of Firmicutes than 
lean subjects. Later on, a study with monozygotic and dizygotic twins and their 
mothers showed that the composition of the gut microbiota is more similar between 
family members than unrelated individuals [ 3 ]. Each individual’s gut microbiota 
was thought distinct, and a similar degree of covariation existed between adult 
monozygotic and dizygotic twin pairs. The previously reported lower levels of 
Bacteroidetes in obese than lean subjects were confi rmed, but no signifi cant differ-
ences in Firmicutes levels were detected. Remarkably, the microbial population was 
in general less diverse in obese individuals. 

 Some other studies have shown discrepancies in the Firmicutes and Bacteroidetes 
proportions with respect to obesity in humans [ 72 ,  73 ]. The different clinical 
criteria, such as the level of obesity, degree of weight loss, and duration of caloric 
restriction, together with different geographical locations, ages, population sizes, 
and microbiota-profi ling methodologies, can be responsible of the differences 
observed between studies. A low-cost clinical method for monitoring the variations 
of bacterial phyla of the gut using real-time PCR assay was able to confi rm a reduc-
tion in the Bacteroidetes community in obese subjects and found an increase in 
 Lactobacillus  species in obese subjects and an increase in methanogens (M. smithii) 
in anorexic patients [ 74 ]. This preliminary data    that links  Lactobacillus  levels with 
obesity needs further study with other advanced methodologies. 

 Consumption of lactic acid bacteria marketed as probiotics is indeed a common 
approach to maintain health [ 75 ].  Lactobacillus rhamnosus  GG is one of the most 
widely used probiotic bacteria that is assumed to interact with the host via binding 
to human mucus via its extracellular pili [ 76 ]. However, further molecular details of 
probiotics signaling are not yet understood. In a recent study, high-throughput 
screening of the intestinal microbiota was performed using a phylogenetic HITChip 
microarray and qPCR methodology and integrated with serum lipidomic profi ling 
data to study the impact of probiotic intervention on the intestinal ecosystem and to 
explore the associations between the intestinal bacteria and serum lipids [ 77 ]. 
Healthy subjects received either L. rhamnosus GG or placebo for a 3-week period 
following a randomized, double-bind intervention design. While a specifi c increase 
in the L. rhamnosus-related bacteria was observed during the intervention, no other 
changes in the composition or stability of the microbiota were detected. The most 
prevailing association between the gut microbiota and lipid profi les was a strong 
positive correlation between uncultured phylotypes of  Ruminococcus gnavus  group 
and polyunsaturated serum TG species of dietary origin. Actinomycetaceae corre-
lated negatively with TG of highly unsaturated FA while a set of Proteobacteria 
showed negative correlation with ether PCs. Altogether, these results suggest that 
several members of the Firmicutes, Actinobacteria, and Proteobacteria may be 
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involved in the metabolism of dietary and endogenous lipids. This data supports the 
concept that the overall lipid content in human serum is a composite of host and 
microbial metabolic activity, and the intestinal commensals are implicated in the 
metabolism of various lipid species that the human body uses for membranes, 
energy storage, and signaling. Considering that a single gene in an intestinal bacte-
rium could alter host FA composition [ 78 ], the potential metabolic capacity and the 
functional consequences from the million genes in the intestinal microbiome are 
overwhelming. Future studies combining metagenomics and lipidomics, involving 
controlled diet and dyslipidemic subjects, are indeed needed to provide further 
insights on the role of intestinal microbiota on human lipid metabolism. 

 The human intestinal microbiota is immensely complex and includes thousands 
of species that have a collective genome of close to fi ve million genes. High through-
put of this metagenome is increasingly replacing the characterization of individual 
microbes [ 79 ]. Notably, the MetaHIT Consortium was the fi rst in addressing the 
feasibility of comparative metagenomics of the human gut across cohorts and pro-
tocols and in obtaining fi rst insights into commonalities and differences between 
gut microbiomes across different populations [ 80 ]. They sequenced 22 European 
metagenomes from Danish, French, Italian, and Spanish subjects and combined 
them to existing Japanese [ 81 ] and American [ 3 ,  82 ] datasets. Three enterotypes 
were identifi ed on the basis of variations in the relative levels of Bacteroidetes, 
 Prevotella , and  Ruminococcus , which were not nation or content specifi c. 
Interestingly, the Enterotype 1 is enriched in  Bacteroides  and the co-occurring 
 Parabacteroides , which derived energy mainly from carbohydrates and proteins by 
fermentation [ 83 ]. Enterotypes appear complex, but there are functional markers 
such as genes or modules that correlate remarkably well with individual features. 
This might potentially be used for diagnostic and prognostic tools for numerous 
human disorders, including those related to lipid metabolism. 

 The combination of metagenomic analysis with clinical data is the base of the 
recently emerging metagenome-wide association studies (MGWAS), which are 
important contributions to reveal the associations of gut microbiota with health and 
disease. To date, the metagenomes of relatively few individuals have been sequenced. 

 Recently, Karlsson and colleagues [ 84 ] applied shotgun sequencing to character-
ize the fecal metagenome of 145 European 70-year-old women with normal, 
impaired, or diabetic glucose control. Interestingly, the study reported composi-
tional and functional alterations in the metagenomes of women with type 2 diabetes, 
such as increases in the abundance of four  Lactobacillus  species and decreases in 
the abundance of fi ve Clostridium species. In the total cohort,  Lactobacillus  species 
correlated positively with fasting glucose and glycosylated hemoglobin (HbA1c), 
which is a long-term measure of blood glucose control. By contrast,  Clostridium  
species correlated negatively with fasting glucose, HbA1c, insulin, C-peptide, and 
plasma TG and positively with adiponectin and HDL. These correlations are relevant 
for T2D because high TG and low HDL levels are components of the dyslipidemia 
typically found in T2D, and reduced levels of adiponectin have been reported in 
people at risk of T2D [ 85 ]. Interestingly, the authors developed a mathematical 
model based on metagenomic clusters (MGC) to test whether the microbiota 
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composition can identify diabetes status. MGC identifi ed T2D more accurately than 
species, indicating that several important gut species still need to be characterized. 
L. gasseri had the highest score for the identifi cation of T2D women in the model. 
Notably, the model identifi ed  Roseburia  and  Faecalibacterium prausnitzii  as highly 
discriminant for T2D. These bacteria are known human gut colonizers and butyrate 
producers [ 86 ] and have been linked to improved insulin sensitivity and diabetes 
amelioration in studies of the human fecal microbiota [ 87 ,  88 ]. Gut microbiota 
transplantations from lean donors to recipients with metabolic syndrome have 
indeed been shown to increase  Roseburia  and butyrate levels together with improved 
insulin sensitivity [ 87 ]. 

 The pathways that showed the highest scores for enrichment in T2D metage-
nomes included KEGG orthologues for starch and glucose metabolism, fructose 
and mannose metabolism, and ABC transporters for amino acids, ions, and simple 
sugars. These fi ndings agree with previous studies showing an increase in microbial 
functions for energy metabolism and harvest in the obese microbiome [ 45 ]. Other 
metabolic pathways containing KEGG orthologues enriched in women with T2D 
included glycerolipid metabolism and fatty acid biosynthesis [ 84 ]. When applying 
the model to a recently described Chinese cohort [ 89 ], the authors observed that the 
most discriminatory MCG differed between the European and Chinese T2D cohorts. 
This observation underscores the need to sample human populations and perform 
parallel studies in different continents. 

 Given that the cost for sequencing is rapidly declining, the major challenge in 
metagenome studies will be data analysis rather than data generation [ 90 ]. 
Detailed studies on the metagenome early in life as well as regional metagenomes 
will be needed in the future to determine whether or not it can be programmed. 
In addition, future studies might benefi t from the use of tracers to look at lipid 
metabolic functions in order to have a readout to investigate host-bacterial co-
metabolism and signaling.   

12.4     Microbiota and Host Lipid Metabolism: Potential Role 
of Signaling Molecules 

 Animal and in vitro studies have shown that the intestinal microbiota can regulate 
host lipid metabolism via numerous microbial activities [ 91 ]. So far, short-chain 
fatty acids (SCFA) have shown to be key microbial products with multiple effects 
on host metabolism, while the best characterized mechanism of microbiota and host 
lipid metabolism is through the biotransformation of bile acids [ 92 ]. Combination 
of metagenomics and metataxonomics with comprehensive metabolomics of biofl u-
ids and stool samples has a potential to identify novel metabolites associated with 
specifi c microbes. These could be functionally studied in vitro and in vivo for their 
potential role in the regulation of host metabolism. 
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12.4.1     Microbiota and Short-Chain Fatty Acids 

 Short-chain fatty acids are clearly one of the most important microbial products and 
have shown to affect a range of host processes, including energy utilization, host- 
microbiome signaling, and control of colonic pH [ 93 ]. Complex carbohydrates can 
be digested and subsequently fermented in the colon by gut microbes into SCFA, 
such as acetate, propionate, and butyrate. Their profi le in the gut refl ects the meta-
bolic cooperation between different microbial types because no genus of bacteria 
can hydrolyze all substrates and none produce all four SCFA upon carbohydrate 
fermentation [ 94 ]. SCFA have different metabolic features. Among them, butyrate 
is used as an energy substrate for colonocytes, whereas acetate is potentially used as 
a cholesterol or fatty acid precursor [ 95 ]. Propionate is a gluconeogenetic substrate 
in the liver, but it may also counteract de novo lipogenesis from acetate or glucose 
in the same tissue [ 96 ] (Fig.  12.5 ).

   More recently, SCFA have been identifi ed as the physiological ligands of two 
receptors for fatty acids, the G protein-coupled receptors GPR41 and GPR43, which 
are expressed in several cell types (immune cells, endocrine cells, and adipocytes) 
and in a wide variety of host tissues [ 97 ]. Both receptors show differences in SCFA 
specifi city, intracellular signaling, and tissue localization [ 98 ]. GPR41 knockout 
mice colonized with a specifi c fermentative microbial community have shown to 
resist fat mass gain compared to their wild-type littermates [ 99 ]. By using GPR45 
knockout animals, it was shown that the activation of GPR43 in adipocytes leads to 
inhibition of lipolysis and results in the reduction of plasma FFA levels in vivo [ 100 ]. 
These fi ndings therefore suggest a potential role for GPR43 in regulation of plasma 
lipid profi les, but its use as a potential target for the treatment of dyslipidemia 
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requires further research. By using GPR43-defi cient mice fed an HFD, the activa-
tion of GPR43 by the acetate and propionate has also shown to contribute to adipo-
cyte differentiation [ 101 ], thereby promoting the expansion of adipose tissue, which 
is in agreement with a gnotobiotics studies performed by Bäckhed et al. [ 41 ]. 

 Interestingly, studies adding fermentable carbohydrates with prebiotic proper-
ties, such as insulin-type fructans, into the diet did not increase but even lessened fat 
mass development in obese mice and humans [ 102 ,  103 ]. Notably, the supplementa-
tion with those prebiotics blunted the overexpression of GPR43 occurring in HFD- 
fed animals, a phenomenon that contributes to lower adiposity [ 104 ]. It is well 
known that specifi c changes in the gut microbiota composition by using prebiotics 
strongly promote SCFA production [ 105 ]. Studies related to the potential of 
metabonomics and metagenomics to promote health via prebiotics are discussed in 
Chap.   9    . Altogether the previous studies support the idea that SCFA coming from the 
gut act not only as energy substrates but also as important metabolic regulators.  

12.4.2     Microbiota and Bile Acid Metabolism 

 The interaction between bile acids and gut microbiota is complex. However, recent 
studies have added novel insights into the regulation of BA metabolism by gut 
microbiota. Bile acids (BA) play an important role in lipid metabolism. They func-
tion as detergents by forming micelles that facilitate solubilization, digestion, and 
absorption of dietary lipids and lipid-soluble vitamins and represent the major route 
of cholesterol excretion, which is critical in whole body sterol metabolism [ 106 ]. 
Remarkably, recent research has highlighted the role of BA as signaling molecules. 
The discovery that specifi c BA differentially activates three nuclear receptors, 
namely, farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D 
receptor (VDR), and one G protein-coupled receptor (TGR5) identifi ed BA as 
hormones that alter multiple metabolic pathways [ 107 ]. The activation of these 
receptors alters gene expression in multiple tissues, leading to changes not only in 
BA metabolism but also in glucose homeostasis, lipid and lipoprotein metabolism, 
energy expenditure, infl ammation, and liver regeneration processes. 

 Bile acids are produced in hepatocytes, stored in the gallbladder, and released 
into the duodenum upon ingestion of food. After having traveled through the small 
intestine, >95 % of all liver-secreted BA are reabsorbed in the ileum to be taken up 
by the liver in a process known as enterohepatic circulation [ 108 ]. Only a small part 
of the BA pool escapes the enterohepatic cycle and travels toward the large intestine 
to be excreted in the feces. This excretion is accompanied by microbial deconjuga-
tion of glycine(predominant in humans)- and taurine(predominant in mice)-conju-
gated bile acids [ 54 ]. Intestinal microbiota readily deconjugate and 7-α-dehydroxylate 
the primary BA (cholic acid (CA) and chenodeoxycholic acid (CDCA) in humans, 
and CA and β-muricholic acid (βMCA) in mice [ 109 ], converting them into secondary 
BA (mainly DCA, UDCA, and LCA in humans) [ 109 ] (Fig.  12.6 ).
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   Recent animal studies have shown that the microbiome affects not only the 
composition of the BA pool but also the expression of genes controlled by the 
BA-activated nuclear receptor FXR [ 110 ]. Bile acid synthesis is indeed under 
negative feedback control through activation of FXR in the ileum and liver [ 111 ]. 
At least 14 liver enzymes have been reported to be required in the BA synthesis 
from cholesterol. Briefl y, the rate-limiting enzyme cholesterol 7α-hydroxylase 
(CYP7A1) initiates the classic pathway for BA synthesis, while CYP27A1 initiates 
the alternative pathway [ 112 ]. Sterol 12α-hydroxylase (CYP8B1) is needed for 
CA synthesis, and the hepatic expression of both, CYP7A1 and CYP8B1, is 
regulated by FXR [ 113 ]. 

 Already 40 years ago, Wostmann et al. showed that the BA concentration in bile 
was three times increased and cholesterol absorption was 25 % greater in the 
absence of gut microbiota in GF rats when compared to their conventionally raised 
counterparts [ 114 ]. The cholesterol accumulation was thought to be due to an 
increase in intestinal BA reabsorption. Follow-up studies    supported Weismann’s 
hypothesis by showing that GF animals have elevated levels of conjugated BA 
throughout the intestine with no deconjugation and strongly decreased fecal excretion 
[ 115 ]; and later it was also confi rmed in studies with mice treated with antibiotics 
[ 116 ]. Those previous studies showed that the gut microbiota reduces the bile acid 
pool size with its greatest effect on βMCA rather than CA levels. However, the 
molecular mechanisms for how the gut microbiota suppresses BA synthesis are 
currently unknown. A comprehensive profi le of the BA composition of CONV-R 
and GF mice through the enterohepatic system and in serum identifi ed a profound 
role of the gut microbiota not only on secondary BA but also as regulator of hepatic 
BA synthesis [ 108 ]. In addition to confi rm a dramatic reduction in MCA, but not CA, 
levels in CONV-R mice, rederivatization of FXR-defi cient mice as GF demonstrated 
that the gut microbiota regulated expression of fi broblast growth factor 15 (Fgf15) 
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  Fig. 12.6    Conversion of primary bile acids to secondary bile acids by the action of gut microbiota. 
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in the ileum and CYP7A1 in the liver, by FXR-dependent mechanisms. Remarkably, 
tauro-conjugated beta- and alpha-MCA were identifi ed as potent FXR antagonist, 
proposing that the higher levels of MCA in GF mice at least partially account for the 
lower expression of FXR-dependent genes in the ileum of GF mice [ 117 ]. 

 In addition to FXR-based studies, TGR5 is the only G protein-coupled receptor 
that has been reported to respond to BAs by the production of cAMP and the subse-
quent activation of PKA signaling pathways [ 118 ]. By treating brown adipocytes 
and human skeletal myocytes with BA, Watanabe et al. [ 119 ] showed an increase in 
type 2 iodothyronine deiodinase (D2) activity and oxygen consumption, highlight-
ing that bile acids can induce energy expenditure by promoting intracellular thyroid 
hormone activation. Since then, the BA–TGR5–cAMP–D2 signaling pathway has 
been considered as a key mechanism for fi ne-tuning energy homeostasis that can be 
targeted to improve metabolic control. 

 Interestingly, a recent study in which treatment of primary rodent hepatocytes 
with conjugated BA led to activation of extracellular regulated kinase (ERK) 1/2 
and protein kinase B (AKT), in a sphingosine-1-phosphate receptor-dependent 
pathway [ 120 ], suggests that other BA receptors remain to be identifi ed. The 
generation of new knockout mice lacking potential BA receptors is therefore 
needed. Nevertheless, accumulating evidence has proved that the modulation of 
FXR and TGR5 activity either directly by BA or pharmacological compounds or 
indirectly by intestinal BA sequestration has helped to unravel the function of 
these BA receptors in metabolic control. Consequently, both receptors might be 
promising targets for the treatment of metabolic disorders associated with the 
metabolic syndrome as recently reviewed by Porez et al. [ 121 ]. Although some 
clinical trials in phases I–III have been already performed by using synthetic 
FXR agonists, large-scale clinical trials will be needed to objectively assess their 
therapeutic possibilities in the treatment of type 2 diabetes, metabolic syndrome, 
or nonalcoholic steatohepatitis. 

 The understanding of    the role of BA plays in human health and disease will 
also likely benefi t from recent advances in technology that enables genome-wide 
association studies. Some infl ammatory genes has been, for instance, identifi ed 
in the GWAS for primary biliary cirrhosis [ 122 ,  123 ], and some genes involved 
in BA metabolism have been associated with other traits such as the association 
of CYP7A1 with total and LDL cholesterol [ 124 ]. Further studies will probably 
open up new insights for discovery of novel genes involved in BA metabolism. 
Similar scientifi c strategies may also be applied to study the role of other bioac-
tive lipids in the regulation of host lipid metabolism. Comprehensive metabolo-
mics of biofl uids and stool samples, associated with genomic and metagenomic 
strategies, may help identify the microbes as well as genes associated with the 
specifi c lipids. These lipids may then be studied in the context of their role in 
health and disease, and mechanistic studies similarly as described above may 
contribute to the elucidation of the mechanisms behind their regulation of host 
metabolism.   
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12.5     Future Directions 

 In order to account for the enormous functional and structural diversity of lipids and 
their complex regulation at multiple spatial and temporal scales, a systems biology 
approach is needed for the study of lipids. Lipid signaling pathways are complex 
and the therapeutic potential of modulation of intracellular and systemic lipid 
metabolism is well recognized [ 10 ,  125 ]. Understanding the integrated lipidomic 
networks and decoding the coordinately regulated pathways will therefore consti-
tute major goals for the following years in applied lipidomic research. 

 A better understanding of the lipidome at the physiological level lipids does not 
only have to include lipid modelling at the level of biological pathways, but also at 
the level of the biophysical systems the lipids are part of, such as cellular mem-
branes and lipoproteins particles [ 20 ]. Rapidly accumulating information about the 
importance of gut microbiota in many lipid-related disorders together with the 
advances in lipid analytical technologies and modelling approaches are likely to 
contribute to better understanding of the role gut microbiota plays in the regulation 
of cellular and systemic lipid metabolism, and vice versa, and how the dysregula-
tion of these physiological systems may contribute to many devastating diseases. 

 Future studies should rely on a systems medicine approach, where instead of 
focusing on each disease individually, the aim is to account for the complex 
gene–environment, socioeconomic interactions and comorbidities that lead to 
individual- specifi c complex phenotypes. An in-depth understanding of the meta-
bolic phenotypes in health and disease is crucial if one is to implement personalized 
medicine and nutrition. How different metabolic phenotypes can be implemented as 
diagnostic tools in clinic needs therefore to be addressed at a clinical translational 
research level, as pointed out in the last chapter of this book.     
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    Chapter 13   
 Role of the Gut Microbiota in Maintaining 
GI Health: Highlights on Infl ammatory 
Bowel Disease 

                Lisa     Gruber     and     Dirk     Haller    

    Abstract     The human gut harbors trillions of microbes, with an area of at least 
300 m 2  intestinal tissue in constant contact with this microbial ecological sys-
tem (Artis, Nat Rev Immunol 8(6):411–420, 2008, Ley et al. Cell 124(4):837–
848, 2006). The intestinal epithelium with a number of different cell types 
shapes the frontier between microbes and the host. Intestinal epithelial cells 
(IECs) as well as cells of the immune system guard the local interface of 
microbes and host and actively tolerate selected commensal microbiota while 
mounting an adequate infl ammatory response toward pathogens in the context 
of infection or disease. Although there is no clear defi nition of a “normal” intes-
tinal microbiota as such, it is apparent that perturbations of a certain homeo-
static system may lead to a dysregulated interaction between microbes and the 
host intestinal mucosal immune system, resulting in aberrant or disproportion-
ate infl ammatory conditions. 

 The following chapter gives a general introduction to the role of the microbiota 
in gut health, focuses on aberrations in microbe-host mutualism that are implicated 
in the etiopathology of infl ammatory bowel diseases, and then briefl y addresses the 
possibilities of dietary modulation of intestinal microbiota in the context of infl am-
matory bowel diseases.  
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•   Intestinal health   •   Iron   •   Metabonomics   •   Metagenomics   •   Metaproteomics   • 
  Metatranscriptomics   •   Microbiota   •   Mouse models   •   Nutrigenetics   •   Nutrition   • 
  Pathobionts   •   Permeability   •   Phylogeny   •   Prebiotics   •   Probiotics   •   Short-chain fatty 
acids   •   Ulcerative colitis  

13.1         Host-Microbe Mutualism in Gut Health 

 Microbial organisms and the host mucosal immune system have established fi ne- 
balanced interactions during coevolution. In the last decades, the use of gnotobiol-
ogy has brought forward the studies of host-microbe interactions to a substantial 
extent. These experiments in rodents manipulate the microbiota by introducing 
selected bacteria. Comparative studies allow the investigation of factors directing 
the establishment and maintenance of bacterial communities in the intestine, as well 
as investigating the impact of microbial factors on gastrointestinal functions. It is 
now known that the presence and composition of microbiota affect gut morphology; 
metabolic, absorptive, nerval, and endocrine functions; as well as mucosal and sys-
temic immune functions. 

 However, the specifi c microbial and host factors that regulate the aspects of 
mutualism in a complex and changing environment are poorly understood. The 
most important and best studied host-microbe metabolic interactions will be pre-
sented in the following chapters. 

13.1.1     Colonization: A Matter of Interaction 

 Besides major time-dependent variation of the intestinal microbiome and its spatial 
distribution along the intestinal tract, there are also major differences between 
mucosa-associated resident bacteria and fecal bacteria [ 3 ], deriving from different 
abilities of the microbiota to persist in and attach to a given host environment. While 
there exist at least 55 divisions of bacteria, the human gut microbial community is 
dominated by members of only four phyla, namely, Bacteroidetes, Firmicutes, 
Actinobacteria, and Proteobacteria. It is suggested that a few early colonizers of the 
human intestine have established an exclusive population and then diversifi ed into a 
high variety of species and strains [ 2 ,  4 ]. 

 From the viewpoint of bacteria, colonization is driven mainly by the availabil-
ity of nutrients and the ability to attach to surfaces for building up residency. 
Many species possess large numbers of genes encoding for carbohydrate metabo-
lism enzymes and can switch between different energy sources depending on their 
availability, also including protein sources [ 5 ]. Some strains are capable of turn-
ing to host- derived mucus when dietary saccharides are rare, as can  Akkermansia 
muciniphila  [ 6 ,  7 ],  Bacteroides acidifaciens  [ 7 ], or  Bacteroides thetaiotaomicron  
[ 8 ,  9 ]. Although microbial organisms benefi t differentially from components of 
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host-secreted compounds, the activity of host foragers was shown to depend on 
other community members [ 7 ]. The mucus layer also serves as a major source of 
attachment sites [ 10 – 12 ]. Given the high variability among mucins and glycopro-
tein structures on the host cell surface and the spatial distribution of the different 
forms, this suggests a mechanism of host-microbe interaction for the regulation of 
microbial composition. 

 At a second stage, the ability of a bacterial strain to persist in the gut ecosystem 
also depends on its power to compete with other strains. Microbes can compete 
with bacteria or parasites by the competition for nutrients (“exploitation competi-
tion”); by direct inhibition, for example, via toxic substances (“interference com-
petition”); or by the induction of immune responses that target competitors 
(“apparent competition”) [ 13 ]. Apparently, a driving force for successful coloniza-
tion is to keep the own vulnerability toward host-derived defense mechanisms low 
(also see    Sect.  13.1.3 ) while promoting immune responses toward competitors.  

13.1.2      Immune Maturation Processes upon Microbial 
Stimulation 

 Microbial organisms derive clear advantage from ensuring tolerance of the mucosal 
immune system toward them and therefore have evolved to infl uence the host 
immune system development profoundly. Studies in germfree animals show dis-
rupted organization of mesenteric lymph nodes and Peyer’s patches and reduced 
numbers of dendritic cells (DCs), T cells, and B cells in the lamina propria [ 14 – 20 ]. 
These fi ndings implicate that stimulation from microbes and/or microbial structures 
or metabolites is needed for functional development of the immune system. 

 Antigen-presenting cells such as DCs constantly sample and process luminal 
compounds and can be regarded as major directors of subsequent modulation of 
immune response. Reduced numbers of intestinal DCs are observed in germfree 
animals, whereas microbial stimulation by mono-colonization with  Escherichia 
coli  was suffi cient to recruit DCs to the intestine [ 20 ]. Different subsets of DCs are 
thought to exert specialized functions during antigen sampling and information 
dissemination, as visualized for the murine system in Fig.  13.1a . Murine intestinal 
CX3CR1+ antigen-presenting cells extend protrusions into the lumen for uptake of 
dietary and microbial antigens [ 21 ,  22 ]. Signals from the intestinal epithelium 
shape the properties of DCs [ 23 ]. Conditioned antigen-presenting cells then pass 
on information to T cells which, depending on co-stimulatory factors, differentiate 
into one of the major phenotypes upon this stimulation: T helper cell type (Th) 1 
and Th17, both implicated in infl ammation; Th2, implicated in allergic reactions; 
as well as Treg, regulating infl ammatory responses. Other types of Th cells such as 
Th9 or Th22 are less well described today. Specialized CD103+ DCs develop a 
tolerogenic phenotype after antigen sampling and upon stimulation by IEC-derived 
factors such as retinoic acid or transforming growth factor-β (TGF-β). In contrast 
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  Fig. 13.1    ( a ) Antigen    sampling and information dissemination by murine lamina propria antigen- 
presenting cell subsets. CD103−CX3CR1+ cells sample bacteria and induce Th17 and probably also 
Th1 cell differentiation, without migration to lymph nodes. In the presence of RA, TGF-β, and TSLP 
released by IEC, CD103+ DCs develop a tolerogenic phenotype and induce Treg cell differentiation 
after their migration to the mesenteric lymph nodes. ( b ) Microbes and microbial compounds can 
induce T-cell differentiation into one of the major T helper cell types: Th1, Th17, Th2, and Treg. 
Differentiation requires the induction of transcription factors – the most important are outlined in the 
fi gure. The bacteria or bacteria-derived factors that have been shown to promote the induction of a 
particular Th subtype are indicated in the fi gure. Each Th subset then has a specifi c function as indi-
cated.  IEC  intestinal epithelial cell,  Th  T helper cell,  Treg  regulatory T cell,  MLN  mesenteric lymph 
node,  ATP  adenosine 5′-triphosphate,  SFB  segmented fi lamentous bacteria,  PSA  polysaccharide A       
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to CX3CR1+ cells, these CD103+ DCs then migrate to the mesenteric lymph nodes 
and generate Tregs, inducing tolerance to constantly sampled, harmless antigens 
[ 24 ,  25 ]. Far less is known about subsets of human specialized antigen-presenting 
cells. While CD103+SIRPα+ DCs correspond to murine CD103+CD11b+ DCs 
and account for the majority of small intestinal dendritic cells [ 26 ,  27 ], CD103-
SIRPα+ DCs, likely derived from blood monocytes, are more abundant in the large 
intestine and  accumulate during infl ammation [ 27 ]. CD141+CD103+ SIRPα- with 
a repertoire of expressed proteins involved in the induction of cytotoxic T-cell 
response have been described in the human small intestine and likely correspond 
to murine CD103+CD11b- DCs [ 27 ].

   In general, germfree mice display reduced total numbers of T cells, bias toward 
Th2 response [ 28 ], and especially low numbers of Th17 cells [ 29 ,  30 ]. Specifi c 
microbes and microbial compounds have been shown to profoundly shape the bal-
ances of T-cell subsets, presumably via conditioning of both IECs and antigen-pre-
senting cells (Fig.  13.1b ). Segmented fi lamentous bacteria (SFB) promote Th17 
response [ 30 ,  31 ]. Colonization with SFB confers resistance to  Citrobacter roden-
tium  infection, indicating that Th17-cell induction by SFB is responsible for this 
protective immune response. Bacteria-derived fl agellin triggers the differentiation 
of Th1 and Th17 cells after stimulation of DCs [ 32 ]. Also commensal bacteria-
derived adenosine 5′-triphosphate has been found to activate a unique subset of 
lamina propria DCs, resulting in differentiation of Th17 cells [ 29 ].  Clostridia , par-
ticularly of clusters IV and XIVa, are capable of inducing Tregs [ 33 ]. Polysaccharide 
A, derived from the commensal  Bacteroides fragilis , also mediates Treg cell 
responses and suppresses Th17, resulting in protection from infl ammation [ 28 ,  34 ]. 
However, a Th1-/Th17-driven pro-infl ammatory response is induced upon the sys-
temic presence of  Bacteroides fragilis  [ 35 ,  36 ]. This example highlights the plastic-
ity of immune responses toward microbial antigens and the fi ne regulation of 
tolerogenic and infl ammatory mechanisms. 

 The induction of B-cell maturation and recruitment is also mediated by the micro-
biota. The organized structures in lymphoid organs where differentiation and matura-
tion of B cells occur are disrupted in germfree animals [ 17 ,  37 ], and they exhibit 
reduced plasma cell numbers and decreased levels of secretory immunoglobulin A 
(sIgA) [ 38 ]. In contrast, allergy-associated IgE is increased in germfree rats [ 39 ]. 

 As another aspect of microbial infl uence on the host immune system, microbial 
metabolites, especially short-chain fatty acids (SCFA), exert anti-infl ammatory 
actions on the intestinal immune system. SCFA are produced by microbes upon 
fermentation of polysaccharides. Butyrate, propionate, and acetate are the most 
abundant and described SCFA, with almost all the produced amount absorbed in the 
colon. Butyrate is regarded as the primary energy source for colonic IEC but also 
displays anti-infl ammatory effects such as decreasing cytokine production [ 40 ,  41 ]. 
Indeed, treatment with acetate or butyrate resulted in the amelioration of infl amma-
tion in rodents [ 40 ,  42 ] and humans [ 43 ]. 

 Interestingly, the immune maturation processes depend on the presence of 
coevolved host-specifi c microbiota, as cross-species colonization cannot induce full 
expansion of lymphocytes in mice and also fails to protect against  Salmonella  infec-
tion compared to self-species colonization [ 44 ].  
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13.1.3      Shaping and Confi ning the Gut Microbiota 

 Despite the benefi cial mutual effects, the host has to keep the microbiota at bay and 
therefore has developed a broad range of innate protection mechanisms. Besides the 
selection of colonizing strains, the host also actively shapes the resident community 
by strategies related to innate immune response – probably in part as a result of 
bacteria modulating the host. 

 Antimicrobial peptides (AMPs) form a barrier with maximal activity in the intes-
tinal crypts as well as in the mucus layer, preventing contact or penetration of the 
host epithelium [ 45 ,  46 ]. AMPs are a diverse group of compounds, including defen-
sins, cathelicidins, lectins, and angiogenins, exerting their effect on bacteria by 
destructing bacterial cell wall integrity. AMPs are secreted by Paneth cells upon 
stimulation by live bacteria, bacterial components, or metabolites [ 46 – 50 ]. 
Especially Ang4 and REGIIIγ expression is induced by mono-colonization of 
germfree mice [ 48 ] or during weaning [ 51 ,  52 ]. Both of them exclusively target 
Gram-positive bacteria while sparing Gram negatives, thus infl uencing microbial 
composition and presumably contributing to the shift observed during weaning. 
Mice expressing a human α-defensin gene show a loss of SFB and fewer IL17- 
producing T cells [ 53 ], providing a clear example for the bidirectional effects of 
host immune system and microbial community. 

 Bacteria also induce the production and secretion of sIgA by B cells [ 17 ,  38 ]. 
SIgA translocates into the lumen, binding bacteria or antigens of other origin, and 
therefore prevents attachment on IEC and regulates colonization [ 54 ]. IgA can also 
bind to bacteria that have gained access to the serosal side and translocate them back 
to the lumen. Bound to bacteria, sIgA induces the clearance of the bacteria by DCs, 
phagocytes, or neutrophils [ 55 ]. DCs then can retain bacteria and selectively induce 
the secretion of IgA. These activated DCs are restricted to the mucosal immune 
compartment by the mesenteric lymph nodes, ensuring a local immune response 
[ 56 ]. Taking into consideration that IgA defi ciency results in intestinal dysbiosis 
[ 57 ] and that bacterial species are differentially capable of inducing IgA [ 58 ], IgA 
secretion is a means of both confi ning bacteria and shaping the intestinal ecology. 

 Cells of the innate immune system constantly recognize conserved microbe- 
associated molecular patterns, mainly via Toll-like receptors (TLRs) or nucleotide- 
binding oligomerization domain (NOD)-like receptors. In a healthy host, commensal 
bacteria thereby direct a tolerogenic immune response. On the other hand, the bind-
ing of bacteria-derived fl agellin or lipopolysaccharides induces TRL5 and TLR4 
signaling in DCs, respectively, alerting the immune system [ 59 ]. NODs initiate 
innate immune responses upon intracellular sensing of bacterial cell wall compo-
nents, which results in elimination of intruded bacteria. Although the targeted struc-
ture muramyl dipeptide is highly conserved throughout bacterial phyla, NOD2 has 
been found to shape the intestinal microbiota in mice [ 60 – 62 ] and IBD patients 
(also see Fig.  13.7 ) [ 63 ,  64 ]. In this context, it has been reported that a colitogenic 
microbial ecology shaped by a certain host physiology is even transferring disease 
from this host into another: the dysbiosis reported for NOD2 −/−  mice results in 
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enhanced disease risk in wild-type mice [ 65 ]. In other examples for host genotype 
shaping microbial composition, multidrug resistance gene-defi cient mice exhibit 
altered microbiota independent of their intestinal infl ammation (also see Fig.  13.7 ) 
[ 66 ]. Furthermore, a defi ciency of T-bet, implicated in directing host innate immu-
nity, resulted in colitis that was antibiotic sensitive and communicable to wild-type 
mice [ 67 ]. 

 It thus becomes evident that the microbiota plays a critical role in inducing host 
mechanisms for the defense against pathogens and that at the same time host 
responses toward microbiota shape the intestinal ecology. The host genetic back-
ground associated with the function of Paneth cells which secrete antimicrobial 
compounds into the lumen is considered especially critical in infl uencing the intes-
tinal microbial composition [ 68 ]. In conclusion, the physiology and genetic back-
ground of the host determine the ecology of the intestinal tract (though with scope 
for modulation by environmental factors), and the microbiota is under control in a 
healthy individual [ 69 ].  

13.1.4     Infl ammatory Bowel Disease: Loss of Homeostasis 

 A loss of homeostasis concerning microbiota and host mucosal immune system is 
the basis for the pathogenesis of infl ammatory conditions of the gastrointestinal 
tract, including the complex etiology of infl ammatory bowel disease (IBD). IBD, 
with its two main idiopathic pathologies, ulcerative colitis (UC) and Crohn’s dis-
ease (CD), is regarded as a multifactorial disease in which a certain host susceptibil-
ity regarding perturbations of barrier or microbe-host interactions combined with 
microbial aggressiveness leads to inappropriate host immune response toward the 
microbiota. The microbiota is affected in composition and functionality by both 
environmental triggers and host genetic background at the same time. Environmental 
triggers such as diet, drugs, or infectious agents can also affect the host condition 
and thereby impact on disease development. Figure  13.2  gives an overview of all 
these aspects in the current paradigm of IBD development. Alternating phases of 
active disease (relapse) and freeness of symptoms (remission) are characteristics 
of IBD.

   Although described by the collective term IBD, UC and CD are two diseases 
with different symptoms and distinct pathogenesis. CD potentially extends to the 
submucosa and may occur anywhere along the gastrointestinal tract – with a pre-
dominantly ileal phenotype referred to as ICD and a colonic phenotype as CCD. In 
UC, infl ammation involves mucosa only and is restricted to the large intestine. 
Interestingly, the infl ammatory profi les of UC and CD are very distinct. UC displays 
predominantly Th2 phenotype, associated with IL5 and TGF-β as predominant 
cytokines, whereas CD is associated with type Th1 and Th17 immune responses 
dominated by IL12, IL23, IFNγ, and TNF. 

 The prevalence of CD and UC has risen considerably over the last decades. In the 
1990s and 2000s, reported incidence rates for CD in Western countries were 4 [ 70 ] 
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to 8 cases [ 71 ] per 100,000 person-years with a tendency of higher rates in women 
and an incidence peak among 15- to 30-year-olds [ 70 ,  72 – 75 ]. UC is more prevalent 
than CD, with North America and northern Europe showing the highest incidence 
rates varying from 9 [ 71 ] to 20 cases [ 76 ] per 100,000 person-years, showing a simi-
lar age distribution to CD without sex differences. 

 Despite the lack of data for many areas (especially Africa), there seems to be a 
north-south axis of IBD prevalence within continents or even countries [ 77 – 79 ]. In 
Asia, incidence rates of IBD have been low in the past but are now rising as well 
[ 80 ,  81 ]. The fact that genetic factors are critical in IBD pathogenesis is stressed by 
the discrepancies in data sets of Caucasian versus Asian populations (see Sect.  13.2 ) 
[ 82 ,  83 ]. Most importantly, concordance rates for CD in monozygotic twins are 
20–50 % in northern Europe, meaning that the relative risk is at least 40-fold higher 
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for individuals with an affected twin compared to the general population [ 84 – 88 ]. 
According to these studies, concordance rates are lower for UC. Indeed, the disease 
variance that can be explained by genetic variations is higher in CD than UC [ 89 ], 
implicating that genetic factors might contribute less signifi cantly than in CD or that 
environmental and lifestyle triggers overwrite genetics. 

 Irrespective of the differences in pathophysiology and genetic contribution, there 
is remarkable evidence for a role of the intestinal microbiota and loss of host toler-
ance toward it during the pathogenesis of both IBD etiologies [ 90 ,  91 ]. Surgical 
bypass of the ileum prevents infl ammation in patients with active CD, and infl am-
mation reoccurs rapidly after the reinfusion of the bypassed segments [ 92 ]. IBD 
patients develop serological responses toward their microbiota [ 93 ,  94 ], and much 
higher rates of colonic bacteria are coated with immunoglobulin in patients with 
active CD compared to controls or patients in remission [ 95 ]. In addition, antibiotic 
treatment may result in the amelioration or even abrogation of infl ammation in CD 
patients [ 96 – 98 ]. Finally, as listed in Table  13.1 , treatment with broad-spectrum 
antibiotics as well as housing under germfree conditions ameliorates or abrogates 
infl ammation in genetically engineered rodent models of intestinal infl ammation. 
These studies provide substantial evidence for the role of microbiota and the devel-
opment of chronic intestinal infl ammatory diseases and in addition suggest a crucial 
role for the host genetic background in modeling susceptibility.

13.2          IBD Susceptibility Genes: Mucosal Immunology 
and Microbial Defense 

 According to the current paradigm, IBD results from a disturbed host-microbe 
interaction and loss of tolerance to nonpathogenic microbiota, leading to a chronic 
infl ammatory response. The concept of homeostasis in this context not necessarily 
means the absence of infl ammatory responses, but the ability of the host to mount 
an appropriate response toward any changes of the microbial community. The nec-
essary fi ne-balanced interaction of microbe and host physiology can be perturbed 
by primary alterations on both sides. In the following chapter, possible disturbances 
of this homeostasis on host side will be highlighted, with a focus on genes that have 
been assigned as susceptibility factors for the development of IBD. 

 More than 160 genetic loci have been revealed implicated in IBD by genome- 
wide association studies (GWAS) up to date [ 89 ]. In CD 13.6 % of the disease vari-
ance can be explained by the means of variations in these genes and 7.5 % in UC 
[ 89 ]. It is noteworthy that the ethnicity of the study population has to be kept in 
mind when looking at the data sets: along with differences in IBD prevalence, the 
identifi cation of relevant susceptibility genes varies in Asians versus Caucasians 
[ 82 ,  83 ,  99 ] and in Jewish versus non-Jewish populations [ 100 – 102 ]. 

 GWAS highlight the impact of microbiota and microbial components in IBD 
pathogenesis. A substantial number of genes are implicated in both CD and UC, 
many of which involved in barrier function, primary defense mechanisms such as 
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   Table 13.1    Rodent models of infl ammatory intestinal diseases and the effect of manipulation of 
their microbiota   

 Animal model  Phenotype 
 Manipulation 
of microbiota  Effect 

 IL10 −/−   Colitis  GF  No disease [ 132 ] 
 GF +  E. faecalis   Recurrence of 

disease [ 230 ,  313 ] 
 AB †  (before onset 
of disease) 

 No disease 
[ 314 – 316 ] 

 IL2 −/−   Colitis  GF  Decreased 
severity [ 317 ] 

 HLA-B27 (rat)  Colitis  GF  No disease [ 177 , 
 318 ] 

 Tcrα −/−   Colitis 
(Th2 phenotype) 

 GF  No disease [ 319 ] 

 Colitis 
(Th2 phenotype) 

 GF +  L. plantarum , 
 S. faecalis ,  S. 
faecium ,  E. coli  

 No disease [ 319 ] 

 SAMP1/Yit  CD-like ileitis  GF  Decreased 
severity [ 320 ] 

 AB *   Decreased 
severity [ 321 ] 

 TRUC  Colitis  AB ‡   No disease [ 67 ] 
 K8 –/–   Colitis  AB ‖   No disease [ 322 ] 
 Mdr1a −/−   Colitis  AB #   No disease [ 323 ] 
 dnTGFβRII x IL10R2 −/−   Colitis  AB *   No disease [ 324 ] 

 AB *  +  B. 
thetaiotaomicron  

 Recovery of 
disease [ 168 ] 

 AB *  +  E. coli   No disease [ 168 ] 
 NOD2 −/−  + AOM  Colitis and 

infl ammation- 
associated 
colorectal cancer 

 AB ○   Reduced 
severity [ 65 ] 

 STAT3-IKO  Colitis and 
infl ammation- 
associated 
colorectal cancer 

 AB ‡   Decreased 
severity, no tumor 
formation [ 325 ] 

 SCID + CD44RB high   Lymphoid cell 
accumulation 
and hyperplasia 

 AB  Decreased 
severity [ 326 ] 

   GF  germfree conditions,  AB  antibiotic treatment; antibiotics used are indicated with the following 
symbols, if described 
  * Ciprofl oxacin and metronidazole 
  ○ Streptomycin, gentamicin, ciprofl oxacin, and bacitracin 
  ‖ Vancomycin and imipenem 
  # Streptomycin, neomycin, bacitracin, and amphotericin 
  ‡ Vancomycin, neomycin, metronidazole, and ampicillin 
  † The following combinations: ciprofl oxacin, neomycin and metronidazole, metronidazole alone, 
vancomycin and imipenem, and roxithromycin 
 Note that this list may not be complete and not every reference applicable for a certain example 
may be indicated  

L. Gruber and D. Haller



271

sensing and processing of bacteria, cytokine signaling, and adaptive immunity [ 90 , 
 103 ]. The stratifi cation of these processes and tasks in the intestinal cell network is 
depicted in Fig.  13.3 . A selection of susceptibility genes is introduced in the follow-
ing sections, focusing on the just mentioned functions.

13.2.1       Decreased Barrier Function 

 The mucosal barrier is built up by different components: commensal microbiota 
blocking niches for pathogens, IgA and AMPs secreted to the lumen, mucins above 
the epithelial layer, and barrier proteins sealing the IEC layer. Several IBD- 
associated loci suggest a critical role for barrier integrity in IBD susceptibility. 

 GWAS report signifi cant association of mutation of CDH1, resulting in truncated 
forms of E-cadherin, with CD [ 104 ]. Intestinal biopsies of patients carrying mutated 
alleles show defective E-cadherin localization [ 104 ]. MUC19, encoding for a 
secreted protein forming a chemical barrier together with other mucins and 
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T cellB cell
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innate mucosal defense
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and functionality
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intestinal microbiota

  Fig. 13.3    GWAS reveal a critical role of microbe-host interactions on several levels. A compro-
mised barrier function of the host, whether resulting from impaired AMP production (e.g., due to 
Paneth cell dysfunction), mucus layer aberrations, inadequate IgA production, loss of cell junction 
proteins, or disorganized basal membrane structure, may lead to intestinal infl ammation as 
observed in IBD. Inadequate innate mucosal defense mechanisms involving autophagy and patho-
gen sensing can lead to inappropriate responses of the host immune system. Immune cell recruit-
ment and lymphocyte regulation and functionality are regulated by a complex network of cytokines, 
chemokines, and differentiation processes, and a perturbation of these interactions can result in 
IBD.  AMPs  antimicrobial peptides,  IgA  immunoglobulin A,  DC  dendritic cell,  IEC  intestinal epi-
thelial cell,  P  Paneth cell       
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 embedded AMPs, is also implicated in IBD [ 105 – 107 ]. Further, Paneth cell function 
is critical in maintaining barrier integrity, as they are the producers of AMPs. Paneth 
cell dysfunction is a common consequence of mutations of IBD susceptibility 
genes, such as NOD2, ATG16L1, or XBP1 [ 108 ] (also see Sect.  13.2.2 ). Extracellular 
matrix proteins ECM1 and LAMB1 are also implicated in IBD, predominantly in 
UC [ 89 ,  103 ]. As laminins are the major non-collagenous constituent of basement 
membranes, defective variants could allow the penetration of microbes [ 109 ]. UC 
patients exhibited abrogation of laminin in the epithelial basement membranes 
 surrounding the crypts in affected tissues [ 110 ].  

13.2.2      Impaired Pathogen Sensing and Processing/Cellular 
Innate Immunity 

 Bacteria that have penetrated the epithelial barrier have to be sensed and pro-
cessed for the induction of defense mechanisms. Upon intruding into the cell, 
bacteria undergo lysis in autophagolysosomes, and their structures are sensed by 
NOD-like receptors. NODs contain caspase recruitment domains (CARD) which 
mediate downstream signaling pathways such as nuclear factor κB (NFκB) and by 
this activate an appropriate immune response, resulting in the clearance of the 
infection [ 111 ]. 

 GWAS identifi ed various polymorphisms of NOD2/CARD15 as more prevalent 
in Caucasian CD patients compared to healthy controls [ 112 – 114 ]. NOD2 malfunc-
tioning leads to ineffi cient clearance of intruded bacteria, likely in part mediated by 
reduced expression of Paneth cell-derived defensins. Paneth cell dysfunction and 
reduced AMP production have also been reported for CD patients with NOD2 
mutations [ 115 ,  116 ]. Although NOD2-defi cient mice do not spontaneously develop 
IBD, studies reveal increased susceptibility toward  Listeria monocytogenes  and 
 Helicobacter hepaticus  infection [ 62 ,  117 ]. 

 Other CARD structures are implicated as susceptibility genes: variants of 
CARD11 are signifi cantly associated with UC and variants of CARD9 with both 
IBD etiologies [ 89 ,  106 ]. Besides NOD2, ATG16L is regarded as one of the stron-
gest genetic contributors to CD [ 107 ]. ATG16L1 is critical for the formation of 
autophagosomes and thus for the degradation and processing of microbial proteins 
[ 118 ]. Patients with either NOD2 or ATG16L1 mutations show ineffective induc-
tion of autophagy and bacterial processing [ 119 ,  120 ]. Indeed, bacterial killing is 
abrogated in IEC with disease-associated ATG16L mutation after stimulation with 
muramyl dipeptide [ 121 ], affi rming a functional link of NOD2 and ATG16L1. In 
addition, other factors mediating autophagy, such as T-cell protein tyrosine phos-
phatase (PTPN2) [ 122 – 124 ] and interferon-inducible protein 1 (IRGM) [ 89 ,  114 , 
 124 ,  125 ], are implicated in IBD. IRGM-defi cient mice exhibit decreased bacterial 
killing in macrophages and are more susceptible to infections [ 126 ], whereas 
PTPN2 −/−  mice exhibit compromised T-cell functions [ 127 ,  128 ], systemic infl am-
mation [ 127 ], and increased susceptibility to chemically induced colitis [ 129 ]. 
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 This convergence of several strong genetic risk factors highlights the importance 
of pattern recognition and autophagic processes in the clearance of bacteria and thus 
maintenance of intestinal health.  

13.2.3     Aberrant T Helper Cell Immune Response 

 Upon sensing and processing of bacteria by innate mechanisms, a complex network 
of signals leads to the induction of tolerance or immune response toward the respec-
tive organisms. Of note, it was found that human IECs promote the differentiation 
of tolerogenic DCs driving the development of adaptive Foxp3+ Treg cells, as men-
tioned above, and that this mechanism is lost in patients with CD, with concomi-
tantly reduced expression of tolerogenic factors by IECs [ 23 ]. 

 Chemokines recruit immune cells and cytokines regulate infl ammatory activity 
of adaptive immune cells. In general, the regulation of cytokine production seems to 
be the most overrepresented functionality in IBD GWAS (Fig.  13.4 ), especially for 
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  Fig. 13.4    GWAS reveal a critical role of the induction of T-cell differentiation and responses in 
IBD development. Antigen-presenting cells can induce T-cell differentiation into one of the major 
T helper cell types: Th1, Th17, Th2, and Treg. Differentiation depends on co-stimulatory factors of 
the antigen-presenting cell surface or by the network of cytokines present that are sensed by recep-
tors on the T-cell surface. Lineage commitment then requires the induction of transcription fac-
tors – the most important of them are outlined in  bold  in the fi gure. The different T-cell subsets are 
characterized by cytokine profi les. Reported susceptibility genes for the development of CD or UC 
are printed in  red . Association of a gene with both etiologies is indicated by *. If there are func-
tional studies available for a gene, this is indicated by #.  IEC  intestinal epithelial cell,  Th  T helper 
cell,  Treg  regulatory T cell,  UC  ulcerative colitis,  CD  Crohn’s disease       
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IFNγ, IL12, TNF, and IL10 signaling [ 89 ]. IFNγ, IL12, and TNF are the  predominant 
cytokines in Th1 immune response, whereas IL10 is a major anti-infl ammatory 
cytokine. IL10 signaling is required for the generation of regulatory T-cell responses 
via FoxP3 [ 130 ]. The impact of IL10 functionality on intestinal health is further 
emphasized by the fact that IL10-defi cient mice develop colitis when colonized and 
have become a widely used model of IBD [ 131 ,  132 ].

   Genes annotated to the ontology term “regulation of interleukin-17 produc-
tion” are strongly enriched in GWAS data sets (Fig.  13.4 ). Among these are 
genes driving lineage commitment toward Th17 (RORγt, STAT3, IL23R, IL12B, 
IL6ST) and genes related to Th17 signaling (IL21) and chemotaxis (CCR6) [ 89 , 
 103 ,  105 ,  114 ,  133 ]. A subunit of IL12, a cytokine driving Th1 differentiation, 
also serves as a subunit of IL23 and therefore can be regarded as interface 
between Th1- and Th17- directed cell commitment [ 134 ], as can TYK2, process-
ing both signaling from IFNγ/IL12 and IL23. Further, Th1-associated genes 
identifi ed as susceptibility loci include genes encoding for factors driving Th1 
differentiation (STAT1) and mediating Th1 signaling such as IL2, IFNG with 
respective receptor forms, and a broad range of receptor and signaling proteins 
associated with TNF [ 89 ,  103 ]. 

 Most of these genes are implicated in both etiologies of IBD, although only CD 
displays Th17 and Th1 immune response, whereas UC is Th2 dominated. These 
genetic observations support the view that the chronic infl ammation in IBD is a 
consequence of innate immune dysfunction toward microbial stimuli, with environ-
mental risk factors shaping the relationship between microbiota and the immune 
system. A substantial number of the susceptibility genes for IBD mentioned here 
overlap with other diseases, such as Coeliac disease, atopic dermatitis and psoriasis 
[ 89 ,  103 ], all of which result from faulty response of the immune system toward 
nonpathogenic microbiota or antigens. 

 Together with subsequent functional analyses, the results of GWAS have contrib-
uted to a great extent to the understanding of IBD pathogenesis, although they have 
not revealed potential for diagnostics as the predictive power is low, even at combi-
nation of all genetic susceptibility loci known today.   

13.3     Microbial Diversity, Composition, and Function 
in Health and IBD 

 The comparison between health and diseased state helps to better understand the 
aspects of the host-microbe mutualism that sustain health, and the studies on micro-
bial ecology performed in IBD patients offer a broad range of indications for mech-
anisms involved in health maintenance versus pathogenesis. 

 Despite the obvious contribution of microbiota and microbe-host interactions 
to the development of IBD, there is no specifi c microorganism described which 
can be consistently isolated in each IBD case and is absent in healthy hosts. 
Hypotheses that a particular bacterial agent causes IBD can therefore not be 
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supported. Several bacterial species are reported to correlate with the disease, 
although no evidence exists for any of them to be the causative factor of human 
IBD. Adherent-invasive  E. coli  (AIEC), for example, are found in abnormal 
numbers in ileal mucosa of CD patients, presumably due to enhanced expression 
of adherence factors [ 135 ,  136 ]. Besides this example of one defi ned species, 
IBD may in general be caused by overall changes in the composition and func-
tionality of the intestinal microbiota, termed dysbiosis. A change of phenotypic 
features of the microbiota has been observed in IBD patients. Also the functional 
activity of these organisms has major impact on host-microbe signaling and is 
studied using global approaches such as metagenomics, metatranscriptomics, 
metaproteomics, and metabonomics. The phenomena observed so far on differ-
ent levels are summarized in the following sections. 

13.3.1     Gut Microbial Phenotyping: Alterations in Microbial 
Composition in IBD 

 There are many studies addressing the mucosa-associated microbial diversity in 
IBD patients but with major discrepancies concerning the study specimen and the 
way of data analysis. First, while some studies do not see differences between CD 
and UC samples and therefore regard them as one sample set, others demonstrate 
shifts in certain phyla specifi c for one of the etiologies. Second, the localization of 
the biopsy sample taken is critical and differs depending on the etiology studied. 
The defi nition of the control group is critical and may vary from unaffected people 
to unaffected relatives to samples from an unaffected site of an IBD patient. In con-
clusion, only the fi ndings that have so far been reproduced in different experiments 
can be addressed here. 

 As a high-throughput method, 16SrDNA-based sequencing allows the rapid and 
parallel processing of many samples under the same conditions and is therefore 
commonly used in studies focusing on the microbial environment associated with 
IBD. Regarding the total numbers of bacterial population, no differences have been 
observed for fecal samples. Recently, studies have focused on mucosa-associated 
microbiota as the population with proximal contact to the host. This is important as 
luminal and mucosal communities have been shown to be distinct [ 3 ]. There are 
discrepancies in the data for the total numbers of mucosa-associated bacteria [ 137 , 
 138 ], but dysbiosis and reduced diversity are a common feature of this compartment 
in the context of IBD. 

 Several studies have demonstrated reduced diversity of the intestinal ecology in 
CD [ 138 – 141 ] and UC [ 140 ] compared to unaffected control patients. This reduc-
tion in diversity is connected to reduced abundance of the dominant members of the 
human gut microbiota in IBD patients. In general, a decrease of Firmicutes [ 138 , 
 140 ,  142 ,  143 ], and often Bacteroidetes [ 140 ,  142 ,  144 ], with concomitant increase 
of Proteobacteria [ 141 – 143 ,  145 ], and Actinobacteria [ 141 ,  142 ], was reported for 
mucosal biopsy samples or feces of IBD patients.   
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13.3.1.1     Firmicutes and Bacteroidetes 

 For the Firmicutes phylum, there is in particular substantial evidence for decreased 
abundance of populations belonging to  Clostridia IXa  and  IV  [ 139 ,  142 ,  146 – 148 ]. 
The depletion of  Faecalibacteria , especially  F. prausnitzii , seems to be a common 
feature in IBD patients, especially in CD [ 142 ,  145 ,  149 – 152 ]. With  F. prausnitzii  
being a member of the Firmicutes< Clostridia , this could therefore contribute to the 
relative loss of this class observed in IBD. Supplementation of live  F. prausnitzii  or 
its supernatant ameliorated chemically induced colitis in animal studies and tended 
to correct the connected dysbiosis [ 151 ]. 

 Regarding Bacteroidetes abundance, fi ndings are not as consistent as for 
Firmicutes. While some comparisons fi nd Bacteroidetes depleted in IBD [ 140 ,  142 , 
 144 ], others do not observe signifi cant alterations [ 64 ] or even report increased 
abundance [ 138 ].  

13.3.1.2     Actinobacteria and Proteobacteria 

 Despite an overall tendency to relative increase in members of the Actinobacteria 
phylum, a reduction in populations of  Bifi dobacteria  has been reported for UC 
patients [ 153 ]. It has been observed that the abundance of  Bifi dobacteria  inversely 
correlates with abdominal pain in healthy subjects [ 154 ]. Probiotic approaches 
therefore consider  Bifi dobacteria  as potential candidate for therapeutic use in IBD 
(see Sect.  13.13.2 ). 

 The growth of sulfate-reducing bacteria (SRB) seems increased in IBD, espe-
cially UC, along with the rate of sulfi dogenesis [ 155 – 157 ]. With about 23 genera, the 
largest group of SRB is found among the Deltaproteobacteria, for example, within 
the orders Desulfovibrionales and Desulfobacterales [ 158 ]. An increase in relative 
amounts of SRB could thus contribute to the often observed increases in Proteobacteria 
abundance. SRB can metabolize sulfate via dissimilatory reduction and use it as the 
terminal electron acceptor in the electron transport chain. Sulfate or elemental sulfur 
is also converted into hydrogen sulfi de, which can act on IECs by inhibiting butyrate 
utilization [ 159 ], as well as proliferation [ 160 ]. Desulfovibrionales member  Bilophila 
wadsworthia  utilizes taurine for energy generation [ 161 ] and is involved in high-fat 
diet-associated colitis in IL10 −/−  mice [ 162 ]. There is another important aspect of the 
possible involvement of SRB in colitis: dextran sodium sulfate (DSS) is used to 
chemically induce colitis in rodent models. Indeed, colonotoxic effects of sulfur 
compounds were initially reported with the observation that DSS treatment induces 
colitis and colorectal tumors [ 163 ,  164 ]. The microbial reduction of sulfate in the 
DSS molecule to the infl ammatory, barrier-breaking hydrogen sulfi de may be an 
initial trigger for the development of colitis [ 165 ]. DSS alters the microbial commu-
nity already before the onset of intestinal pathology [ 166 ], possibly by the selection 
of bacteria that can degrade DSS or metabolize sulfur, such as  Proteus mirabilis  
[ 167 ] or  Akkermansia muciniphila  (Verrucomicrobiae) – the latter is only detectable 
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in mice treated with DSS [ 166 ]. These fi ndings emphasize the role of SRB in the 
induction of infl ammation. 

 Concerning the increase in relative abundance of Proteobacteria in IBD, there is 
also particular evidence for the overgrowth of facultative anaerobe Enterobacteriaceae 
[ 138 ,  141 ,  143 ,  144 ,  147 ]. However, this family does not seem to be associated with 
disease in a causative way, as Enterobacteriaceae ( E. coli ) isolates did not induce 
colitis in antibiotic-pretreated susceptible mice despite robust colonization [ 168 ]. 
This example emphasizes that IBD-associated alterations in microbial composition 
do not necessarily refl ect a causative relation.  

13.3.1.3     Conclusions on Phylogenic Approaches 

 Many of the studies investigating dysbiosis in IBD revealed ICD as very distinct 
from healthy and UC state, whereas CCD and UC were often not distinguishable 
from each other or from healthy state. It is noteworthy that the donor patients of 
specimen used to study the microbiota often have different backgrounds, as ICD is 
more likely to be treated with immunosuppressant therapy and less likely to be 
treated with mesalamine or antibiotics than colonic phenotypes [ 169 ,  170 ]. These 
confounders might strongly affect the correlations seen between microbial compo-
sition and disease state. Basically, only fi ndings for increased abundance in 
Enterobacteriaceae for CD,  Faecalibacterium  for ICD specifi cally, and  Clostridia  in 
both etiologies could be upheld after correction for all available covariates [ 169 ]. 

 So far, all reported fi ndings are correlations only and it therefore cannot be ruled 
out that dysbiosis may simply be a consequence of infl ammation, with microbiota 
adapting to a changing environment. Related to the abovementioned example, the 
growth of Enterobacteriaceae can be enhanced by an infl ammatory state per se or by 
genetic predisposition of the host in animal models [ 66 ,  171 ]. The overgrowth of an 
introduced species of  Salmonella enterica  ( S. typhimurium ) was also observed in an 
adoptive transfer model of colitis, in which cytotoxic T cells destroy the epithelium 
[ 172 ]. This highlights the fact that there is a clear impact of host genotypes and 
phenotypic conditions on microbial composition. Strikingly, genotypic effects on 
bacterial ecology have also been reported for humans since unaffected twins from 
UC patients also showed lower bacterial diversity than healthy, unrelated individu-
als and the same tendencies concerning relative increase of Actinobacteria [ 144 ]. 
This again implicates that a certain host genetic background may select pathogenic 
microbiota, comparable to the observations associated with NOD2 polymorphisms 
mentioned above. 

 Another drawback of using phylogenic characterization of the microbiota as a 
tool to study host-microbe interactions in health versus disease are the substantial 
intra- and interindividual variances in microbial composition, often outranging 
the differences between the study groups [ 138 ]. Defi ning alterations in relative 
abundance of certain bacteria and their possible relation to disease is therefore 
diffi cult. Still, the characterization of the intestinal microbial composition may be 
a promising tool to aid in diagnostics of IBD. A noninvasive method applying 
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16S-based sequencing and mapping to a database of healthy and IBD samples was 
successful in identifying pediatric patients with IBD (in contrast to patients with 
other gastrointestinal symptoms) and could even distinguish between ICD and UC 
both with reasonable sensitivity and specifi city [ 173 ]. 

13.3.2     Metagenomics, Transcriptomics, and Proteomics: 
Microbial Gene Repertoire and Activity in IBD 

 Compositional analyses refl ect the abundance of different microbial communities, 
but cannot give information on their activity or functionality. When aiming to eluci-
date the possible impact of the microbiota on gut health, the logical consequence is 
to study the functionality of the present populations. A higher transcriptional activ-
ity suggests higher cell replication rate or increased protein expression. Using this 
approach, it was observed that the prevalence of Enterobacteriaceae and in particu-
lar  E. coli  also translated to a high transcriptional activity [ 143 ,  174 ]. 

 Metagenomic approaches study the whole repertoire of genes present in the 
microbiome. In the next steps, metatranscriptomics can give a picture of what genes 
are expressed, and fi nally, metaboproteomics reveal the resultant protein expres-
sion. However, in comparison to compositional analysis, metagenomics as well as 
metatranscriptomics and metaproteomics have rarely been applied in the study of 
microbial contribution to IBD until now. 

 The human intestinal microbiome contains an estimated number of 3.3 million 
genes, referred to as the metagenome [ 175 ]. Considering that there are about 150- 
fold more microbial genes present than human genes, it seems plausible to study 
the prospective functional activity assigned to the intestinal microbiota when aim-
ing to elucidate host-microbe interactions. Indeed, microbial function might be 
more consistently perturbed than composition in IBD [ 169 ]. Generally speaking, 
metagenomic approaches have shown topological shifts of the microbiome associ-
ated with IBD [ 176 ]. The enzymes correlating with the host state were related to 
metabolic processes likely to use or produce metabolites that build an interface 
between bacterial and host metabolism, therefore probably affecting microbe-host 
interaction in the gut environment. Interestingly, similar changes were observed 
for IBD and obesity. 

 Chip-based metatranscriptomics have been applied in studying the transcrip-
tional profi les of bacteria when present in different hosts, thereby substantiating the 
concept that microbes are affected by host genotype and the created intestinal envi-
ronment. For example, the gene expression profi le of  Bacteroides thetaiotaomicron  
varied depending on whether it was mono-associated into transgenic, infl amed 
HLA-B27, or non-infl amed wild-type rats, with a downregulation of pathways 
involved in bacterial growth and metabolism in transgenic rats with colitis [ 177 ]. In 
contrast, bacterial genes in the ontology of the molecular function “receptor activity,” 
mostly encoding nutrient binding proteins, were signifi cantly upregulated in this 
colitis model. In another approach, nonpathogenic  E. coli  exhibited upregulated 
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expression of stress-response-associated genes upon mono-association into infl amed 
IL10 −/−  compared to healthy wild-type mice [ 178 ]. 

 First attempts in applying untargeted shotgun proteomics to the microbiome 
could show a common core metaproteome, enriched in proteins related to transla-
tion, energy production, and carbohydrate metabolism in comparison to what could 
be predicted from metagenomics [ 179 ,  180 ]. Furthermore, the metaproteome of an 
individual proved to be reasonably stable throughout time [ 180 ]. Metagenomic and 
metaproteomic analyses of stool samples of a cohort of twin pairs, for which data 
on bacterial diversity were available, have reported a consistency in the fi ndings of 
these three approaches regarding microbial alterations in IBD [ 141 ,  181 ]. The 
metagenomic reads of  F. prausnitzii  were signifi cantly reduced in ICD, and in ten-
dency also the reads of  Roseburia , in accord with reduced abundance of these spe-
cies confi rmed by phylogenic sequencing. In addition to the metagenomic data, also 
proteome analysis indicated the depletion of proteins derived from these species. 
Especially bacterial proteins assigned to processes of replication, recombination, 
and repair were enriched in CD, whereas those related to energy production and 
nutrient transport and metabolism were depleted. In particular, in metagenomic as 
well as proteomic approach, SCFA production pathways were underrepresented in 
ICD. In total, there were signifi cantly less microbial genes expressed and translated 
to proteins in CD compared to healthy state (2 % vs. 8 %). This is consistent with 
the fi nding that the richness of the metagenome is reduced in CD.  

13.3.3     Metabonomics: Microbial Metabolic Products in IBD 

 In contrast to limited data from metatranscriptomics and metaproteomics, metabo-
nomics have been more frequently used to study the role of microbiota in maintain-
ing gut health and also in addressing differences between healthy state and 
infl ammatory situation. Despite sophisticated approaches [ 182 ], no early IBD bio-
markers could be established by the means of metabonomics up to now, but the 
applications of metabonomics certainly helped to describe molecular patterns. Fecal 
water, intestinal tissue, urine, or plasma is often used as specimen. As not all metab-
olites originating from bacteria will translocate or are absorbed and can be found in 
the plasma or urine, the type of specimen infl uences the outcome of analysis. In the 
following chapters, metabolites implicated in IBD are therefore discussed as 
grouped according to the respective compartment in which they have been described 
as regulated, with emphasis on the potential contribution of the microbiota to the 
metabonome profi les. An overview of the fi ndings discussed in the following is 
given in Fig.  13.5 . Sample specimens obtained by invasive methods (plasma and 
intestinal tissue) have been used less frequently in IBD studies, probably explaining 
a certain lack of described regulations for these compartments. Regardless of the 
sample type, all the differences described can either stem from metabolic profi les 
assigned to the host system or from bacteria if their metabolites are absorbed unless 
the respective metabolite is uniquely produced by only one of the involved parties. 
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  Fig. 13.5    Samples of different origins are used for metabonomic approaches studying IBD-related 
changes, describing the regulation of both host-derived ( blue ) and microbiota-derived ( red ) metab-
olites. Bacteria-derived metabolites may penetrate the intestinal barrier, depending on their size, 
chemical properties, and the intestinal permeability. Their abundance and the extent to which they 
are found regulated decreases in the subsequent compartments of the intestinal tissue, plasma, and 
urine compared to fecal water. Host metabolites implicated in IBD in the respective sample types 
are written in  blue , bacteria-derived metabolites in  red , and metabolites of unidentifi ed origin in 
 black. TMA  trimethylamine,  AA  amino acids,  SCFA  short-chain fatty acids       

If conclusions shall be deduced for IBD etiopathology, it is therefore necessary to 
validate any correlations by targeted approaches and in regard to the origin of the 
metabolite.

13.3.3.1         Fecal Water 

 The analysis of metabolites in fecal water seems a direct approach to link the com-
position of bacteria to their activity refl ected by their metabolites and to draw con-
clusions on how this might affect host intestinal health. Studies on the fecal 
microbiota in twin cohorts have revealed that the respective metabonomes of fecal 
water cluster in the same way as data for phylogenic composition and metapro-
teomics for the same samples do [ 182 ]. All these approaches highlight the fact that 
CD samples are distinct from healthy samples but also that CCD samples differ 
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from ICD. Differences between CCD and healthy samples were not reported by 
other -omics approaches in the same samples, indicating that the groups were more 
distinct in metabolite profi les than other microbe-associated profi les. This suggests 
that the fecal water metabonome might be a good means of studying potential 
mechanisms in IBD etiopathology. 

    Amino Acids 

    The abundance of amino acids in fecal water is increased in IBD patients [ 183 ]. 
This might be due to reduced absorption of dietary amino acids or due to cata-
bolic actions of the host epithelium, but also an alteration of microbial metabo-
lism could result in changes in amino acids. Besides this ambivalent fi nding, also 
clearly bacteria- derived metabolites are reportedly regulated in fecal water of 
IBD patients.  

    Bile Acids 

 Metabolites related to bile acid (BA) synthesis and metabolism are often described 
as differentially regulated between healthy and IBD samples and even between ICD 
and CCD. Especially in ICD but also in irritable bowel syndrome or mouse models 
of colitis, luminal contents of total BA are signifi cantly elevated [ 182 ,  184 ,  185 ]. 
This increase in the total luminal BA concentration in ICD might refl ect a loss of 
transport activity as most of the BA should be reabsorbed in the ileum and undergo 
enterohepatic circulation. Associations of specifi c microbial populations with the 
respective metabolic profi le of the feces were successfully established, with bacteria 
of higher abundance in ICD correlating to BA and fatty acid metabolites. As bacte-
ria are differentially prone to antimicrobial effects exerted by BA and are differen-
tially able to metabolize BA species, alterations in BA concentration or composition 
presumably result in concomitant shifts in microbial composition. Indeed, feeding 
of BA-enriched diets altered microbial composition in rodents profoundly [ 162 , 
 186 ]. Targeted quantifi cations have revealed particular implication of tauroconju-
gated (-SO 3 H) BA species in the lumen of UC patients [ 187 ]. Studies on animal 
models of colitis have reported that higher abundance of taurocholic acid [ 162 ] 
promotes the growth of SRB pathobionts that aggravate disease. Interestingly, cer-
tain luminal BA also decrease barrier function [ 188 – 190 ], probably via epidermal 
growth factor receptor and/or modulation of the nuclear farnesoid X receptor in IEC 
[ 191 ]. One study reported that the anti-infl ammatory effect potentially exerted by 
secondary BA is abolished upon sulfation of the respective species [ 187 ]. As 
impaired barrier integrity and inept infl ammatory response are the main features of 
IBD, BA may trigger disease progression double-tracked – via direct action on IEC 
and indirectly via modulation of the microbiota.  
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    SCFA 

 The amount of SCFA, in particular butyrate, was markedly reduced in the fecal 
water of CD patients, and to a lesser extent UC patients, compared to healthy con-
trols [ 183 ,  192 ]. The importance of butyrate for IEC functionality is described in 
Sect.  13.1.2 . The depletion of these bacteria-derived metabolites may refl ect altera-
tions in microbial composition. In general, butyrate-producing bacteria have been 
reported as diminished in IBD [ 142 ]. Especially  Faecalibacterium prausnitzii  is 
regarded as an important butyrate producer and as outlined above is depleted in 
IBD-affected mucosa. Also metagenomic and metaproteomic approaches have 
revealed a depletion of butyrate and other SCFA production pathways in IBD [ 181 ] 
and concomitant reduction of  Faecalibacterium prausnitzii  abundance. Decreased 
SCFA production in IBD, especially CD, can thus be substantiated throughout the 
levels of -omics approaches (also see Fig.  13.6 ). Indeed, enemas of butyrate have 
been successfully used in UC treatment [ 43 ].

  Fig. 13.6    IBD-related phenomena observed are partly interrelated across the different approaches 
of assessing total microbial functionality.  Dashed lines  indicate the approach used,  continuous 
lines  indicate the level of microbial functionality, and  dotted lines  indicate interrelations of fi nd-
ings on these different levels       
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       Arachidonic Acid Metabolites 

 Metabonomic analyses on fecal samples also revealed arachidonic acid (AA) and its 
metabolites as implicated in IBD [ 182 ]. AA is converted by host enzymes into eico-
sanoids, mediators of infl ammation. A regulation of eicosanoids was not convincingly 
refl ected in fecal water, but this might be attributed to the spatial resolution, as these 
molecules exert their functions not in the lumen but at the basolateral side of the epithe-
lium. This highlights the restriction of metabonomics using fecal water: it may be 
applied to study microbial metabolites but is limited to luminally secreted metabolites 
on the host side, or those low amounts of metabolites shed with epithelial cells.   

13.3.3.2     Intestinal Tissue 

 In contrast to abundance in fecal water samples, tissue levels of both AA and eico-
sanoids were reportedly elevated in animal models [ 193 ,  194 ] and IBD patients 
[ 194 ], emphasizing the importance of metabolite compartmentalization. Untargeted 
metabonomic studies on intestinal biopsy tissues were effective in distinguishing 
healthy from UC [ 195 ] or CD samples [ 196 ] and also could discriminate between 
CD and UC [ 196 ]. Differences described within the metabolite profi les of healthy 
versus infl amed intestine lie especially within the group of glycerophospholipids, 
with decreases in glycerophosphocholine [ 195 ,  197 ] and lysophosphatidylcholines 
[ 193 ]. These fi ndings are likely associated with the generation of infl ammatory lipid 
mediators and altered tissue morphology, such as the infi ltration of immune cells 
and changes in membrane fl uidity. Tissue concentrations of myoinositol are 
decreased in UC patients [ 195 ,  197 ]. As myoinositol could be food or host derived 
[ 198 ], the meaning of this fi nding is not yet clear. It either refl ects impaired absorp-
tion or could be related to alterations in membrane-incorporated phosphatidylinosi-
tol [ 199 ]. Lactate concentrations in intestinal tissue seem to be reduced in both UC 
and CD patients [ 197 ]. Despite the mechanistic inexplicability of this fi nding, this 
might serve as justifi cation for the use of lactate-producing bacterial strains as pro-
biotics in IBD therapy (see Sect.  13.13.2 ). 

 Although metabonomic studies of intestinal tissue have not revealed further 
microbiota-related alterations, these studies have elucidated molecular mechanisms 
during microbiota-driven pathogenesis.  

13.3.3.3     Plasma 

 Up to now, there is no convincing description of IBD-associated alterations of micro-
bial metabolites in human plasma samples. This may also be due to a limited number 
of studies analyzing plasma metabolites in IBD patients compared to fecal water or 
urinary metabolites. Infl ammatory mediators including cytokines, eicosanoids, and 
prostaglandins are elevated in the plasma of IBD patients. In addition, many of the 
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plasma metabolites found implicated in murine IBD-like pathologies refl ect changes 
in host energy homeostasis, such as lipoproteins, glycerophospholipids, lipids, or 
amino acids [ 200 ]. These changes probably result from infl ammation- associated 
symptoms such as malabsorption, wasting, and protein catabolism.  

13.3.3.4     Urine 

 As it is easy to collect and to process, urine seems a useful reservoir to apply metabo-
nomic approaches. Indeed, several studies demonstrate that metabonomics can be 
applied on urinary metabolite profi les for the discrimination of healthy state from coli-
tis in mice [ 201 ] and IBD in humans [ 170 ,  202 ]. Increased levels of amino acids prob-
ably refl ect a catabolic state of the host. N-Methylhistamine, presumably deriving from 
mast cells, was found elevated in the urine of IBD patients [ 203 ]. The majority of the 
regulated metabolites described for urinary samples are host derived. It can be specu-
lated that urinary samples may refl ect the absorbed and excreted part of the microbial 
metabonome. Trimethylamine, a metabolite uniquely produced by the microbiota, was 
signifi cantly elevated in the urine of colitic mice and correlated to disease progression 
[ 201 ]. But as IBD is also characterized by impaired barrier integrity, increased abun-
dance of microbial metabolites could simply be an artifact of increased translocation 
and is not necessarily directly associated with IBD etiopathology.  

13.3.4     Integration of Meta-omics Approaches Regarding 
Bacterial Functionality in IBD 

 In summary, -omics approaches allow the deduction of aspects of microbe-host 
interactions that can contribute major knowledge to the fi eld of IBD research. The 
fact that metagenomics, metatranscriptomics, metaproteomics, and metabonomics 
(on fecal water at least) are able to similarly refl ect changes in microbial functional-
ity, as described above and summarized in Fig.  13.6 , is auspicious. Nevertheless, 
these techniques need extensive data mining and are limited by the availability of 
the characterization of genes, transcripts, proteins, and metabolites, respectively.  

13.3.5     Integrating Microbial and Host -Omics 
in Regard to IBD 

 An appealing approach to gain better insight into microbe-host interactions is the 
integration of data sets of both microbial composition or functionality and host 
molecular processes. Using microbe compositional data and host transcriptional 
profi les, it was described that there are correlations between colitis-associated 
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 intestinal bacteria and potentially disease-relevant transcripts in the colonic mucosa 
[ 144 ]. In this context, reduced overall correlations and thus a loss of microbe-host 
cross talk in UC patients and unaffected twins of the same genotypic background as 
compared to unaffected healthy donors have been reported. 

 Furthermore, using metaproteomics on fecal samples gives the opportunity to 
detect both bacterial and human proteins, respectively. Unlike metabonomics, meta-
proteomic analyses can discriminate between bacterial and host sources. Using the 
fecal samples from a cohort of twins with healthy, concordant, or disconcordant 
status for CD, for which bacterial -omics data are available, and then characterizing 
the host proteome allowed drawing conclusions about the relationship between host 
status and observed microbial differences. The host proteome in stool of CD 
patients, predominantly ICD, was enriched in proteins associated with infl amma-
tory response and host defense (e.g., α-defensin), as well as wound healing [ 181 ]. 
Proteins associated with barrier integrity were depleted in ICD patients (e.g., proto-
cadherin). These fi ndings go along with the notion that IBD patients suffer from a 
defective epithelial barrier and a compromised defense toward microbiota at the 
epithelial interface. Furthermore, there were high amounts of pancreatic enzymes 
found in ICD feces [ 181 ], indicating impaired absorption and correlating to the fi nd-
ing that luminal BA metabolites are increased in the same CD patients [ 182 ].  

13.4     Dietary Manipulation of Intestinal Microbiota 
in the Context of IBD 

 The intestinal microbiota is not only a key driver of infl ammation in the context of IBD 
[ 90 ] but also represents an interface between environment (diet) and host. The manipu-
lation of the bacterial composition of the microbiota via diet might be a promising 
means of IBD treatment, especially in pediatrics where aggressive therapies are 
eschewed. It is crucial to discriminate between preventive and therapeutic strategies, as 
well as applications that intend to prolong phases of remission. Some alimentary strate-
gies and food components have been reportedly successful regarding the latter. However, 
the effects of some approaches differ between the etiopathologies of CD, UC, and pou-
chitis, an IBD-like infl ammation of an artifi cial rectum surgically formed out of ileal 
tissue during colectomy. Besides the nutritional therapies, research also focuses on the 
identifi cation of dietary components that may affect the risk of IBD development. 

13.4.1     Prebiotics 

 Given the potential of diet to modulate intestinal microbial composition and func-
tionality, there are many approaches to implement nutritional intervention in IBD 
treatment strategies, in particular in the context of prebiotics. The concept of 
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prebiotics is the indirect modulation of microbial composition via the selective 
enhancement of favorable strains. When indigestible dietary fi bers reach the 
colon, they are fermented by anaerobic bacteria, resulting in the production of 
SCFA. Importantly, SCFA not only serve as energy substrates for bacteria and thus 
enhance growth but can also alter intestinal microbial composition via a drop of the 
luminal pH and selective fostering of certain bacteria [ 204 ]. In humans, the prebi-
otic compounds inulin, lactulose, and fructo- and galacto-oligosaccharides have 
been shown to promote the growth of  Bifi dobacteria ,  Eubacteria , and  Lactobacilli  
[ 205 – 209 ], which are considered to exhibit health benefi ts [ 210 ]. Randomized con-
trolled trials using prebiotics in IBD patients are scarce, but small trials indicate 
reduced disease activity with concomitant alterations of bacterial composition upon 
inulin or fructo- oligosaccharide ingestion in the condition of CD [ 211 ] and of pou-
chitis [ 212 ]. Positive effects of prebiotics were also shown in animal studies on 
chemically induced colitis [ 213 – 216 ] and transgenic rodent models [ 217 ,  218 ], with 
increased amounts of  Lactobacilli  and  Bifi dobacteria  and decreased macroscopic 
infl ammation. Some of these studies in both humans and mouse models also report 
increased levels of butyrate [ 212 – 214 ].  

13.4.2       Probiotics 

 Probiotics aim to actively alter microbial composition by introducing live bacteria. The 
prerequisite for a successful probiotic action therefore is the survival and sustaining of 
the bacteria in the complex and competitive microbial network. Originally derived 
from fermented food, especially dairy products, probiotic strains studied in regard to 
IBD include above all  Lactobacilli ,  Bifi dobacteria , and nonpathogenic  E. coli  Nissle 
1917, as well as mixtures of these strains and a handful of other species. Human studies 
are limited in patient numbers and are focused on a variety of probiotic strains or com-
binations, different outcomes, and diverse kinds of cohorts. Meta- analyses try to esti-
mate the overall benefi cial effect of probiotics and indicated that in summary probiotics 
might be applicable in patients with colonic phenotype for the maintenance of remis-
sion rather than induction of remission or treatment of active disease [ 219 ]. 

 The use of  Lactobacilli  has been studied in several mouse model experiments as 
well as clinical trials. Different strains ( GG ,  paracasei ,  plantarum ,  salivarius ) were 
found to exert a variety of effects on host immune response, such as induction of 
mucin expression [ 220 ] or suppression of cytokine production [ 221 ,  222 ] and T-cell 
proliferation [ 223 ]. Although there is a lack of trials in IBD patients that convinc-
ingly show a benefi cial effect regarding disease activity or remission maintenance 
[ 224 ,  225 ], there is evidence for the amelioration of colitis in different mouse mod-
els in the case of  Lactobacilli  [ 221 ,  222 ,  226 – 228 ]. It became apparent that the 
probiotic strains tested for effects on IBD have to be chosen carefully, and also in 
regard to the experimental setup, when a study found  L. plantarum  and  LGG  to 
aggravate DSS-induced colitis, whereas  L. paracasei  exhibited protective effects 
[ 229 ]. In addition,  E. faecalis , a member of the core gut microbiome historically 
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applied as probiotic strain, has been shown to compromise the intestinal barrier via 
the matrix metalloprotease GelE and to thus contribute to IBD pathogenesis in sus-
ceptible mouse models [ 230 ]. 

 Probiotic  Bifi dobacteria  of various strains ( infantis ,  breve ,  bifi dum ) resulted in 
reduced infl ammation in mouse models of colitis [ 221 ,  227 ,  231 – 234 ], and 
 Bifi dobacterium -fermented milk was found to ameliorate disease in UC patients 
[ 235 ,  236 ]. The mechanisms observed are similar to those reported for  Lactobacilli , 
such as alterations of cytokine levels [ 231 ,  233 ]. As in the case of  Lactobacilli , 
randomized placebo-controlled studies successfully using  Bifi dobacteria  in IBD 
patients are scarce. 

  E. coli  Nissle, a nonpathogenic  E. coli  strain, was effective in attaining as well as 
maintaining remission in UC patients [ 237 – 239 ]. This strain might exert benefi cial 
effects by strengthening the intestinal barrier [ 240 ], similarly to the barrier-related 
effects of both  Lactobacilli  and  Bifi dobacteria  [ 222 ,  241 – 243 ]. 

 Also mixtures of probiotics are commonly used. The formula VSL#3 combines 
eight different probiotic lactic acid bacteria: four strains of  Lactobacilli  ( acidophi-
lus ,  bulgaricus ,  casei ,  plantarum ), three strains of  Bifi dobacteria  ( breve ,  infantis , 
 longum ), and  Streptococcus thermophilus , all of which are usually present in the 
human intestinal microbiota. This mixture has been shown to induce or maintain 
remission in pouchitis [ 244 ,  245 ], mild to moderate UC [ 246 ,  247 ], and pediatric 
UC patients [ 248 ]. In contrast to these promising results in pouchitis and UC, pro-
biotic therapies failed to show effects in CD patients [ 249 ,  250 ]. The mechanism of 
action is poorly understood and the combination of the different strains impedes the 
study of molecular mechanisms. Animal models have been used to study the effects 
of VSL#3 concerning immune stimulation and regulation, some of which have 
reported a DNA-dependent effect of the probiotic mixture [ 251 ,  252 ]. One secreted 
component of VSL#3, the  L. paracasei -derived prtP-encoded lactocepin, was 
shown to reduce infl ammation in a murine colitis model [ 253 ], due to anti- 
infl ammatory effects via the degradation of chemokines [ 254 ]. 

 Noteworthy are also the effects observed for the use of synbiotics. The idea 
behind synbiotic approaches is to promote the survival and growth of the applied 
probiotics by simultaneous ingestion of prebiotics. Indeed, clinical trials revealed 
benefi cial effects of synbiotics in UC patients [ 255 ,  256 ]. 

 In summary, there is a need for more randomized, double-blind clinical trials focus-
ing on the feasibility of probiotics in IBD therapy. In many cases, it is not clear if live 
bacteria, bacterial surface compounds, or secreted bacterial compounds are needed for 
the effects observed. Evidence for benefi cial effects of probiotics, mainly in the case of 
 E. coli  Nissle and VSL#3, in both animal models and clinical trials is promising, though 
for colitis and pouchitis only and not for infl ammation of the small intestine. The dif-
ferent etiologies of CD and UC might be responsible for this discrepancy. Recent stud-
ies indicate that eukaryotes such as  Saccharomyces boulardii  [ 257 ,  258 ] or helminths 
[ 259 ] might be effective in prolonging remission phases in CD, probably due to selec-
tive attenuation of Th1 antigenic responses (implicated in IBD) [ 260 ], and shift to Th2 
(directed against parasites; also see Fig.  13.4 ) [ 261 ,  262 ]. However, the research on the 
use of these organisms in IBD is still in its infancy.  
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13.4.3     Enteral Nutrition and Elemental Diet 

 Enteral nutrition has been applied successfully in the treatment of IBD [ 263 ], espe-
cially in children with CD [ 264 – 266 ]. As IBD is characterized by a reduced bacte-
rial diversity, it might appear contradictory that enteral nutrition seems to reduce 
bacterial diversity by depriving the microbiota of nutrients [ 267 ]. The reduction of 
diversity might correlate to a reduced antigenic load of the microbiota in this case. 
But a reduction of mucosal antigen exposure could also result from the nature of the 
feed, as semisynthetic enteral nutrition formulas are very low in bacterial antigens. 
In addition, a liquid diet results in faster intestinal transit, reducing the time of expo-
sure to ingested putative antigens. Alternatively, enteral nutrition might also be able 
to modulate the metabolic activity of the microbiota [ 268 ]. 

 A reduction of microbial diversity is also observed with the therapeutic use of 
elemental diets in IBD [ 269 ]. The term elemental diet describes easily digestible 
and peptide- or amino acid-based formulas. Some clinical trials support the effi ca-
ciousness of commercially available formulas in decreasing disease activity indices 
and relapse frequency comparably to steroid treatments [ 270 – 273 ]. 

 The use of enteral nutrition or also certain elemental diets in IBD therapy seems 
promising, but still these treatment approaches do not always produce equally ben-
efi cial results as standard therapies using medication [ 274 ]. In addition, the mecha-
nisms behind the amelioration of disease are not clearly understood. In general, as 
both nutritional approaches involve only easily digestible formulas, usually contain-
ing low amounts of fat, a general relief of the digestive systems in terms of enzyme 
production, chylomicron formation, and possibly mechanical stimulation is induced. 
In addition, non-polymeric diets are free of gluten: mouse studies indicated a poten-
tial aggravation of disease by gluten-containing diets [ 275 ], and gastrointestinal 
symptoms of non-celiac disease patients are ameliorated by gluten-free diet [ 276 ]. 

 These possibly affected digestive processes concern the small intestine rather 
than the colon, which goes along with the fi nding that enteral and elemental diets 
are more effective in ileal than colonic IBD phenotypes [ 277 ]. Together with pre-
sumably altered composition or functionality of microbiota, there are numerous 
effects of these approaches on the intestinal tract, hampering the elucidation of 
molecular mechanisms.  

13.4.4     Indications for Nutrients as Selection Factors 
for Pathobionts 

 In the search of dietary factors contributing to IBD development, various nutritional 
compounds and their putative molecular functions have been thoroughly discussed 
[ 278 – 280 ]. Attempts to link pre-illness diet to IBD risk did not provide consistent 
results [ 281 – 284 ]. 

 Among the dietary factors suspected to trigger IBD are mainly carbohydrates 
and fat, in particular refi ned sugar, saturated fatty acids, and omega-6 fatty acids, 
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whereas dietary fi bers and food groups such as fruit and vegetables may be 
 protective [ 280 ]. The lack of unequivocal evidence from epidemiological studies 
for the implication of specifi c dietary factors might result from the complex etiol-
ogy of IBD and also indicates that diet probably only affects IBD development in 
combination with host genetics and other environmental factors. However, there 
are accumulating indications for a role of dietary fat in IBD pathogenesis. A sys-
tematic literature review of retrospective epidemiologic data concluded that a high 
dietary intake of fat, adjusted for total energy intake and behavioral confounders, 
increases risk of IBD [ 280 ]. In contrast, body mass index or total energy intake did 
not correlate to the development of incident IBD in a prospective cohort study 
[ 285 ]. This indicates a specifi c role for dietary lipids in the pathogenesis of 
IBD. Indeed, high- fat diets (HFD) have been shown to impair intestinal health in 
chemical and genetic animal models of colitis [ 162 ,  286 ,  287 ] and CD-like ileitis 
[ 288 ]. There are  indications from animal studies that HFD promotes intestinal 
infl ammatory processes [ 287 ,  289 ,  290 ] and perturbs barrier function [ 189 ,  288 , 
 291 ], but the mechanisms underlying the facilitation of disease onset or its aggra-
vation remain not fully elucidated. HFD modulates the composition of the intesti-
nal microbiota [ 287 ,  292 ]. The modulation of the bacterial composition by HFD 
ingestion can result in increased pathogenicity of the intestinal microbiota, espe-
cially by fostering the growth of pathobionts that induce inappropriate infl amma-
tory response in a susceptible host [ 162 ]. There are indications that HFD exerts this 
modulation of the microbial ecosystem via shifts in BA composition [ 162 ,  186 , 
 189 ]. Only 1 day after facing a diet high in animal fat, the microbial community 
starts to shape accordingly, with increased abundance of bile acid-tolerant species 
and reduction of plant carbohydrate- metabolizing species [ 293 ]. HFD-associated 
modifi cation of the microbial composition, reduction of barrier function, and 
aggravation of pathology are reportedly independent of an obese phenotype [ 189 , 
 288 ,  292 ]. In summary, diets rich in fat may aggravate IBD via the modulation of 
intestinal luminal factors. This mechanism could also contribute to the benefi cial 
effects reported for enteral and elemental nutrition, as these forms of alimentation 
generally lead to decreased fat consumption compared to a typical Western diet. 

 Likewise, there is evidence for iron playing a crucial role in IBD pathogenesis from 
a mouse model with CD-like phenotype: dietary but not systemic iron aggravated dis-
ease compared to a low-iron diet, probably via the modulation of intestinal microbial 
composition, and in combination with increased cellular stress in IECs [ 294 ]. These 
fi ndings might particularly impact on IBD treatment in the future, considering the fact 
that IBD patients are often anemic and treated with iron supplements.  

13.4.5     Nutrients: Nutrigenetics in IBD 

 Besides the effects of diet on intestinal microbial composition and function, diet 
may also impact on IBD in a more direct way. Nutrigenetics in the context of IBD 
aims at identifying nutrient-gene interactions associated with disease-conditioning 
and disease-modulating situation. Thereby, two main aspects have come into 
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play: (1) the general regulation of cellular energy demand and (2) transcription fac-
tors activated by nutrients as the closest interface of diet and regulation of gene 
expression. Major fi ndings are summarized in Fig.  13.7 .

13.4.5.1         Cellular Energy Demand 

 Meeting the cellular energy demand might be of particular importance in IECs 
that are challenged by energy-consuming inflammatory processes. Besides 
impaired β-oxidation resulting from polymorphisms in the carnitine trans-
porter OCTN2 [ 105 ], there are reports of decreased butyrate oxidation in the 
inflamed mucosa of UC patients [ 295 ,  296 ] and in animal models of experi-
mental colitis [ 297 ]. Additionally, the monocarboxylate transporter MCT1, 
responsible for butyrate uptake in colonocytes [ 298 ], is reportedly downregu-
lated in IBD [ 299 ]. Beneficial modulation of the microbial composition could 
enhance butyrate supply and attenuate energy deficiency in IEC. Notably, 

  Fig. 13.7    Nutrigenetics    in the context of IBD investigate nutrient-gene interactions associated 
with disease-conditioning and disease-modulating situation. The regulation of cellular energy 
demand, for example, via butyrate import, and the effect of transcription factors activated by nutri-
ents are critical in IBD.  MCT1  monocarboxylate transporter 1,  ATP  adenosine triphosphate,  PepT1  
peptide transporter 1,  MDP  muramyl dipeptide,  NOD2  nucleotide-binding oligomerization domain 
2,  NFκB  nuclear factor κB,  MDR1  multidrug resistance protein 1,  AhR  aryl hydrocarbon receptor, 
 Vit A  vitamin A,  XRE  xenobiotic response element,  RXR  retinoid X receptor,  RARE  retinoic acid 
response element,  Vit D  vitamin D,  VDR  vitamin D receptor,  VDRE VDR  responsive element.  FA  
fatty acid,  PPAR  peroxisome proliferator-activated receptor,  PRE  PPAR responsive element, * IBD 
susceptibility gene, ** regulated in IBD       
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luminal levels of acetate and butyrate were reported to decrease rapidly with 
ingestion of diets high in fat [ 293 ].  

13.4.5.2     Nutrient-Induced Signaling 

 Diet- and microbiota-derived xenobiotics are actively removed from IEC via the 
multidrug resistance protein (MDR1). Variants of MDR1 are associated with UC 
[ 300 ,  301 ]. Xenobiotic substances remaining in the host cell may activate the tran-
scription factor aryl hydrocarbon receptor (Ahr) [ 302 ]. Derivatives of diet-derived 
vitamins A and D bind to transcription factors retinoid X receptor (RXR) and vita-
min D receptor (VDR), respectively, whereas fatty acids activate peroxisome 
proliferator- activated receptors (PPARs). VDR polymorphisms are associated with 
IBD [ 303 ], and also contribution of PPARs is under debate [ 302 ,  304 ]. PepT1, a 
major brush border peptide transporter, is also implicated as IBD susceptibility gene 
[ 305 ]. It allows uptake of muramyl dipeptide which activates NOD2 and thus 
infl ammatory response pathways via NFκB [ 306 ,  307 ]. Activated transcription fac-
tors such as NFκB, Ahr, RXR, VDR, or PPAR modulate immune response down-
stream and thus in turn also potentially impact on microbiota, emphasizing the close 
interrelations of host, dietary factors, and microbiota. 

 In summary, it seems likely that dietary components or alimentary strategies 
impact on IBD directly or through alterations of the composition or metabolic activ-
ity of the microbiota. Therefore, personalized nutrition strategies might profoundly 
improve disease activity or remission maintenance in the future.  

13.5     Conclusions and Perspective 

 While the human intestinal microbiota is needed to build up and maintain an 
 adequate immune system, a loss of homeostasis regarding the interactions between 
microbes and the host intestinal mucosal immune system can result in aberrant or 
disproportionate infl ammatory responses, with IBD as an example with numerous 
cases. Given that the microbial ecology is a major modulator of gastrointestinal 
health, the manipulation of its composition and functionality seems a promising 
therapeutic strategy for acute infections as well as chronic diseases such as 
IBD. Metabonomics as well as other -omics techniques will be useful monitoring 
the degree of modulation and may help reveal functional interactions. 

 While dietary manipulation via nutrients, probiotics, or prebiotics is a rather 
mild way of interference, more dramatic changes can be achieved using antibiotics 
or fecal microbial transplantation (FMT). Transplanting donor microbiota has been 
successfully performed in cases of  Clostridium diffi cile  infections [ 308 ], but its 
application in IBD is still rather new and controversial. Mainly, case reports are 
available so far regarding the management of IBD by FMT, with many of them 
 suggesting a benefi cial effect as reviewed/summarized in [ 309 ,  310 ]. A pilot trial 
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reported the alleviation of symptoms in pediatric UC patients [ 311 ]. No serious 
adverse effects were reported in this study, whereas fever and an increase in plasma 
infl ammatory markers were observed in a study involving fi ve adult UC patients, 
while only one patient showed symptom improvement [ 312 ]. 

 It is believed that FMT can restore antibiotic-related disruption intestinal of the 
microbial diversity [ 308 ]. However, not much is known about the mechanisms that 
render one microbial community of a certain shape harmless while another turns out 
deleterious. The research for defi ning optimal donor microbiota characteristics, 
donor-recipient match parameters, and pre-FMT conditioning is crucial for FMT to 
be further adapted and developed into an approved therapy and might at the same 
time provide more insight into mechanisms of microbe-host cross talk during intes-
tinal health and disease.     

   References 

   1.    Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune 
homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–20. Epub 2008/05/13.  

    2.    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial 
diversity in the human intestine. Cell. 2006;124(4):837–48. Epub 2006/02/25.  

     3.    Zoetendal EG, von Wright A, Vilpponen-Salmela T, Ben-Amor K, Akkermans AD, de Vos 
WM. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distrib-
uted along the colon and differ from the community recovered from feces. Appl Environ 
Microbiol. 2002;68(7):3401–7. Epub 2002/06/29.  

    4.    Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective 
on human-microbe mutualism and disease. Nature. 2007;449(7164):811–8. Epub 
2007/10/19.  

    5.    Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The infl uence of diet on the gut 
microbiota. Pharmacol Res: Off J Ital Pharmacol Soc. 2013;69(1):52–60. Epub 
2012/11/14.  

    6.    Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. 
nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 
2004;54(Pt 5):1469–76.  

      7.    Berry D, Stecher B, Schintlmeister A, Reichert J, Brugiroux S, Wild B, et al. Host-compound 
foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc Natl 
Acad Sci U S A. 2013;110(12):4720–5. Epub 2013/03/15.  

    8.    Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex glycan catabolism by the human 
gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem. 2009;284(37):24673–7. 
Epub 2009/06/26.  

    9.    Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, et al. Glycan foraging 
in vivo by an intestine-adapted bacterial symbiont. Science. 2005;307(5717):1955–9. Epub 
2005/03/26.  

    10.    Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE. Cell 
surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii 
NCC533 (La1) to human intestinal cells and mucins. Infect Immun. 2004;72(4):2160–9. 
Epub 2004/03/25.  

   11.    Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter 
jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosac-
charides of human milk inhibit its binding and infection. J Biol Chem. 2003;278(16):14112–20. 
Epub 2003/02/04.  

L. Gruber and D. Haller



293

    12.    Clavel T, Charrier C, Braune A, Wenning M, Blaut M, Haller D. Isolation of bacteria from the 
ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., 
sp. nov. Int J Syst Evol Microbiol. 2009;59(Pt 7):1805–12.  

    13.      Begon M, Harper JL, Townsend CR. Ecology. Individuals, populations and communities. 3rd 
ed. Wiley-Blackwell; 1996. Oxford.  

    14.    Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the 
immune system. Nat Rev Immunol. 2004;4(6):478–85. Epub 2004/06/03.  

   15.    Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue 
genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 
2008;456(7221):507–10. Epub 2008/11/07.  

   16.    Tlaskalova-Hogenova H, Sterzl J, Stepankova R, Dlabac V, Veticka V, Rossmann P, et al. 
Development of immunological capacity under germfree and conventional conditions. Ann N 
Y Acad Sci. 1983;409:96–113. Epub 1983/06/30.  

     17.    Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC. Increase in the population of duodenal 
immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacte-
rial strains of intestinal origin. Infect Immun. 1978;21(2):532–9. Epub 1978/08/01.  

   18.    Umesaki Y, Setoyama H, Matsumoto S, Okada Y. Expansion of alpha beta T-cell receptor- 
bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice 
and its independence from thymus. Immunology. 1993;79(1):32–7. Epub 1993/05/01.  

   19.    Duan J, Chung H, Troy E, Kasper DL. Microbial colonization drives expansion of IL-1 
receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe. 
2010;7(2):140–50. Epub 2010/02/18.  

     20.    Williams AM, Probert CS, Stepankova R, Tlaskalova-Hogenova H, Phillips A, Bland 
PW. Effects of microfl ora on the neonatal development of gut mucosal T cells and myeloid 
cells in the mouse. Immunology. 2006;119(4):470–8. Epub 2006/09/26.  

    21.    Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, et al. CX3CR1-mediated den-
dritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307(5707):254–8. 
Epub 2005/01/18.  

    22.    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, et al. Dendritic cells 
express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. 
Nat Immunol. 2001;2(4):361–7. Epub 2001/03/29.  

     23.    Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M. Intestinal epithelial cells promote 
colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. 
Mucosal Immunol. 2009;2(4):340–50. Epub 2009/04/24.  

    24.    Siddiqui KR, Powrie F. CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal 
Immunol. 2008;1 Suppl 1:S34–8. Epub 2008/12/23.  

    25.    Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, et al. Intestinal CD103+, but 
not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell 
functions. J Exp Med. 2009;206(13):3101–14. Epub 2009/12/17.  

    26.    Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, et al. IRF4 transcription 
factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cyto-
kine responses. Immunity. 2013;38(5):970–83. Epub 2013/05/28.  

      27.    Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative tran-
scriptional and functional profi ling defi nes conserved programs of intestinal DC differentia-
tion in humans and mice. Nat Immunol. 2013;8:22. Epub 2013/12/03.  

     28.    Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal 
infl ammatory disease. Nature. 2008;453(7195):620–5. Epub 2008/05/30.  

     29.    Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, et al. ATP drives lam-
ina propria T(H)17 cell differentiation. Nature. 2008;455(7214):808–12. Epub 2008/08/22.  

     30.    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal 
Th17 cells by segmented fi lamentous bacteria. Cell. 2009;139(3):485–98. Epub 2009/10/20.  

    31.    Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key 
role of segmented fi lamentous bacteria in the coordinated maturation of gut helper T cell 
responses. Immunity. 2009;31(4):677–89. Epub 2009/10/17.  

13 Role of the Gut Microbiota in Maintaining GI Health…



294

    32.    Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of 
humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like 
receptor 5. Nat Immunol. 2008;9(7):769–76. Epub 2008/06/03.  

    33.    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic 
regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41. 
Epub 2011/01/06.  

    34.    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 path-
way establishes colonization by a commensal of the human microbiota. Science. 
2011;332(6032):974–7. Epub 2011/04/23.  

    35.    Chung DR, Kasper DL, Panzo RJ, Chitnis T, Grusby MJ, Sayegh MH, et al. CD4+ T cells 
mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J 
Immunol. 2003;170(4):1958–63. Epub 2003/02/08.  

    36.    Gibson 3rd FC, Onderdonk AB, Kasper DL, Tzianabos AO. Cellular mechanism of intraab-
dominal abscess formation by Bacteroides fragilis. J Immunol. 1998;160(10):5000–6. Epub 
1998/05/20.  

    37.    Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the 
microbial fl ora. Studies on germfree mice. Am J Pathol. 1963;42:471–83. Epub 1963/04/01.  

     38.    Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible 
microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. 
Science. 2010;328(5986):1705–9. Epub 2010/06/26.  

    39.    Durkin HG, Chice SM, Gaetjens E, Bazin H, Tarcsay L, Dukor P. Origin and fate of IgE- 
bearing lymphocytes. II Modulation of IgE isotype expression on Peyer’s patch cells by feed-
ing with certain bacteria and bacterial cell wall components or by thymectomy. J Immunol. 
1989;143(6):1777–83. Epub 1989/09/15.  

     40.    Segain JP, Raingeard, de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, et al. 
Butyrate inhibits infl ammatory responses through NFkappaB inhibition: implications for 
Crohn’s disease. Gut. 2000;47(3):397–403. Epub 2000/08/15.  

    41.    Saemann MD, Bohmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, et al. Anti- 
infl ammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and 
up-regulation of IL-10 production. FASEB J: Off Pub Fed Am Soc Experi Biol. 
2000;14(15):2380–2. Epub 2000/10/12.  

    42.    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of infl ammatory 
responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–
6. Epub 2009/10/30.  

     43.    Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, et al. Effect of 
butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology. 
1992;103(1):51–6. Epub 1992/07/01.  

    44.    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. Gut immune matura-
tion depends on colonization with a host-specifi c microbiota. Cell. 2012;149(7):1578–93. 
Epub 2012/06/26.  

    45.    Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Putsep K, 
et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut. 
2008;57(6):764–71. Epub 2008/02/06.  

     46.    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut 
commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl 
Acad Sci U S A. 2008;105(52):20858–63. Epub 2008/12/17.  

   47.    Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of micro-
bicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol. 
2000;1(2):113–8. Epub 2001/03/15.  

    48.    Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an 
intestinal bactericidal lectin. Science. 2006;313(5790):1126–30. Epub 2006/08/26.  

   49.    Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal 
proteins involved in innate immunity. Nat Immunol. 2003;4(3):269–73. Epub 2003/01/28.  

L. Gruber and D. Haller



295

    50.    Kida Y, Shimizu T, Kuwano K. Sodium butyrate up-regulates cathelicidin gene expression via 
activator protein-1 and histone acetylation at the promoter region in a human lung epithelial 
cell line, EBC-1. Mol Immunol. 2006;43(12):1972–81. Epub 2006/01/21.  

    51.    Burger-van Paassen N, Loonen LM, Witte-Bouma J, Korteland-van Male AM, de Bruijn AC, 
van der Sluis M, et al. Mucin Muc2 defi ciency and weaning infl uences the expression of the 
innate defense genes Reg3beta, Reg3gamma and angiogenin-4. PLoS ONE. 2012;7(6):e38798. 
Epub 2012/06/23.  

    52.    Menard S, Forster V, Lotz M, Gutle D, Duerr CU, Gallo RL, et al. Developmental switch of 
intestinal antimicrobial peptide expression. J Exp Med. 2008;205(1):183–93. Epub 
2008/01/09.  

    53.    Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, et al. Enteric defen-
sins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76–83. 
Epub 2009/10/27.  

    54.    Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a 
mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39. Epub 2007/11/17.  

    55.    Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfi rsch S, Ruffi e C, et al. Identifi cation of 
FcalphaRI as an inhibitory receptor that controls infl ammation: dual role of FcRgamma 
ITAM. Immunity. 2005;22(1):31–42. Epub 2005/01/25.  

    56.    Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying com-
mensal bacteria. Science. 2004;303(5664):1662–5. Epub 2004/03/16.  

    57.    Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. Aberrant expansion of 
segmented fi lamentous bacteria in IgA-defi cient gut. Proc Natl Acad Sci U S A. 
2004;101(7):1981–6. Epub 2004/02/10.  

    58.    Yanagibashi T, Hosono A, Oyama A, Tsuda M, Hachimura S, Takahashi Y, et al. Bacteroides 
induce higher IgA production than Lactobacillus by increasing activation-induced cytidine 
deaminase expression in B cells in murine Peyer’s patches. Biosci Biotechnol Biochem. 
2009;73(2):372–7. Epub 2009/02/10.  

    59.    Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat 
Rev Immunol. 2007;7(3):179–90. Epub 2007/02/24.  

    60.    Rehman A, Sina C, Gavrilova O, Hasler R, Ott S, Baines JF, et al. Nod2 is essential for tem-
poral development of intestinal microbial communities. Gut. 2011;60(10):1354–62. Epub 
2011/03/23.  

   61.    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a 
general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 
2003;278(11):8869–72. Epub 2003/01/16.  

     62.    Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, et al. 
Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad 
Sci U S A. 2009;106(37):15813–8. Epub 2009/10/07.  

    63.    Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, et al. Infl ammatory bowel diseases 
phenotype, C. diffi cile and NOD2 genotype are associated with shifts in human ileum associ-
ated microbial composition. PLoS ONE. 2012;7(6):e26284.  

     64.    Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype 
and genotype are associated with shifts in intestinal-associated microbiota in infl ammatory 
bowel diseases. Infl amm Bowel Dis. 2011;17(1):179–84. Epub 2010/09/15.  

     65.    Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, et al. 
NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J 
Clin Invest. 2013;3(4):384–7. Epub 2013/01/03.  

     66.    Nones K, Knoch B, Dommels YE, Paturi G, Butts C, McNabb WC, et al. Multidrug resis-
tance gene defi cient (mdr1a-/-) mice have an altered caecal microbiota that precedes the onset 
of intestinal infl ammation. J Appl Microbiol. 2009;107(2):557–66. Epub 2009/03/24.  

     67.    Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, et al. 
Communicable ulcerative colitis induced by T-bet defi ciency in the innate immune sys-
tem. Cell. 2007;131(1):33–45. Epub 2007/10/10.  

13 Role of the Gut Microbiota in Maintaining GI Health…



296

    68.    Gulati AS, Shanahan MT, Arthur JC, Grossniklaus E, von Furstenberg RJ, Kreuk L, et al. 
Mouse background strain profoundly infl uences Paneth cell function and intestinal microbial 
composition. PLoS ONE. 2012;7(2):e32403. Epub 2012/03/03.  

    69.    Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from 
zebrafi sh and mice to germ-free recipients reveal host habitat selection. Cell. 
2006;127(2):423–33. Epub 2006/10/24.  

     70.    Fonager K, Sorensen HT, Olsen J. Change in incidence of Crohn’s disease and ulcerative 
colitis in Denmark. A study based on the National Registry of Patients, 1981–1992. Int J 
Epidemiol. 1997;26(5):1003–8.  

     71.    Loftus CG, Loftus Jr EV, Harmsen WS, Zinsmeister AR, Tremaine WJ, Melton 3rd LJ, 
et al. Update on the incidence and prevalence of Crohn’s disease and ulcerative colitis in 
Olmsted County, Minnesota, 1940–2000. Infl amm Bowel Dis. 2007;13(3):254–61. Epub 
2007/01/09.  

    72.    Bernstein CN, Blanchard JF, Rawsthorne P, Wajda A. Epidemiology of Crohn’s disease and 
ulcerative colitis in a central Canadian province: a population-based study. Am J Epidemiol. 
1999;149(10):916–24. Epub 1999/05/26.  

   73.    Loftus Jr EV, Silverstein MD, Sandborn WJ, Tremaine WJ, Harmsen WS, Zinsmeister 
AR. Crohn’s disease in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and 
survival. Gastroenterology. 1998;114(6):1161–8. Epub 1998/06/03.  

   74.    Moum B, Vatn MH, Ekbom A, Aadland E, Fausa O, Lygren I, et al. Incidence of Crohn’s 
disease in four counties in southeastern Norway, 1990–93. A prospective population-based 
study. The Infl ammatory Bowel South-Eastern Norway (IBSEN) Study Group of 
Gastroenterologists. Scand J Gastroenterol. 1996;31(4):355–61.  

    75.    Vind I, Riis L, Jess T, Knudsen E, Pedersen N, Elkjaer M, et al. Increasing incidences of 
infl ammatory bowel disease and decreasing surgery rates in Copenhagen City and County, 
2003–2005: a population-based study from the Danish Crohn colitis database. Am J 
Gastroenterol. 2006;101(6):1274–82. Epub 2006/06/15.  

    76.    Manninen P, Karvonen AL, Huhtala H, Rasmussen M, Collin P. The epidemiology of 
infl ammatory bowel diseases in Finland. Scand J Gastroenterol. 2010;45(9):1063–7. Epub 
2010/05/07.  

    77.    Jussila A, Virta LJ, Salomaa V, Maki J, Jula A, Farkkila MA. High and increasing prevalence 
of infl ammatory bowel disease in Finland with a clear North-South difference. J Crohns 
Colitis. 2012;42(3):482–9. Epub 2012/11/13.  

   78.    Nerich V, Monnet E, Etienne A, Louafi  S, Ramee C, Rican S, et al. Geographical variations 
of infl ammatory bowel disease in France: a study based on national health insurance data. 
Infl amm Bowel Dis. 2006;12(3):218–26. Epub 2006/03/15.  

    79.    Shivananda S, Lennard-Jones J, Logan R, Fear N, Price A, Carpenter L, et al. Incidence of 
infl ammatory bowel disease across Europe: is there a difference between north and south? 
Results of the European Collaborative Study on Infl ammatory Bowel Disease (EC-IBD). 
Gut. 1996;39(5):690–7. Epub 1996/11/01.  

    80.    Ahuja V, Tandon RK. Infl ammatory bowel disease in the Asia-Pacifi c area: a comparison 
with developed countries and regional differences. J Dig Dis. 2010;11(3):134–47. Epub 
2010/06/29.  

    81.    Thia KT, Loftus Jr EV, Sandborn WJ, Yang SK. An update on the epidemiology of infl amma-
tory bowel disease in Asia. Am J Gastroenterol. 2008;103(12):3167–82. Epub 2008/12/18.  

     82.    Probert CS, Jayanthi V, Hughes AO, Thompson JR, Wicks AC, Mayberry JF. Prevalence 
and family risk of ulcerative colitis and Crohn’s disease: an epidemiological study 
among Europeans and south Asians in Leicestershire. Gut. 1993;34(11):1547–51. Epub 
1993/11/01.  

     83.    Cheon JH. Genetics of infl ammatory bowel diseases: a comparison between Western and 
Eastern perspectives. J Gastroenterol Hepatol. 2012;27:919–27. Epub 2012/11/30.  

    84.    Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Farkkila M, Kontula K. Family and twin 
studies in infl ammatory bowel disease. World J Gastroenterol: WJG. 2006;12(23):3668–72. 
Epub 2006/06/15.  

L. Gruber and D. Haller



297

   85.    Halfvarson J, Bodin L, Tysk C, Lindberg E, Jarnerot G. Infl ammatory bowel disease in a 
Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. 
Gastroenterology. 2003;124(7):1767–73. Epub 2003/06/14.  

   86.    Orholm M, Binder V, Sorensen TI, Rasmussen LP, Kyvik KO. Concordance of infl amma-
tory bowel disease among Danish twins. Results of a nationwide study. Scandinavian J 
Gastroenterol. 2000;35(10):1075–81. Epub 2000/12/01.  

   87.    Thompson NP, Driscoll R, Pounder RE, Wakefi eld AJ. Genetics versus environment in 
infl ammatory bowel disease: results of a British twin study. BMJ. 1996;312(7023):95–6. 
Epub 1996/01/13.  

    88.    Tysk C, Lindberg E, Jarnerot G, Floderus-Myrhed B. Ulcerative colitis and Crohn’s disease 
in an unselected population of monozygotic and dizygotic twins. A study of heritability and 
the infl uence of smoking. Gut. 1988;29(7):990–6. Epub 1988/07/01.  

             89.    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe 
interactions have shaped the genetic architecture of infl ammatory bowel disease. Nature. 
2012;491(7422):119–24. Epub 2012/11/07.  

      90.    Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. 
Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390–407. Epub 2006/07/05.  

    91.    Clavel T, Haller D. Bacteria- and host-derived mechanisms to control intestinal epithelial cell 
homeostasis: implications for chronic infl ammation. Infl amm Bowel Dis. 2007;13(9):1153–64. 
Epub 2007/05/04.  

    92.    D’Haens GR, Geboes K, Peeters M, Baert F, Penninckx F, Rutgeerts P. Early lesions of 
recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. 
Gastroenterology. 1998;114(2):262–7. Epub 1998/02/07.  

    93.    Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K. Meyer zum Buschenfelde KH. Tolerance 
exists towards resident intestinal fl ora but is broken in active infl ammatory bowel disease 
(IBD). Clin Exp Immunol. 1995;102(3):448–55.  

    94.    Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I. Mucosal antibodies in 
infl ammatory bowel disease are directed against intestinal bacteria. Gut. 1996;38(3):365–75. 
Epub 1996/03/01.  

    95.    van der Waaij LA, Kroese FG, Visser A, Nelis GF, Westerveld BD, Jansen PL, et al. 
Immunoglobulin coating of faecal bacteria in infl ammatory bowel disease. Eur J Gastroenterol 
Hepatol. 2004;16(7):669–74. Epub 2004/06/18.  

    96.    Greenbloom SL, Steinhart AH, Greenberg GR. Combination ciprofl oxacin and metronidazole 
for active Crohn’s disease. Can J Gastroenterol = J canadien de gastroenterologie. 
1998;12(1):53–6.  

   97.    Rutgeerts P, Van Assche G, Vermeire S, D’Haens G, Baert F, Noman M, et al. Ornidazole for 
prophylaxis of postoperative Crohn’s disease recurrence: a randomized, double-blind, 
placebo- controlled trial. Gastroenterology. 2005;128(4):856–61. Epub 2005/04/13.  

    98.    Arnold GL, Beaves MR, Pryjdun VO, Mook WJ. Preliminary study of ciprofl oxacin in active 
Crohn’s disease. Infl amm Bowel Dis. 2002;8(1):10–5. Epub 2002/02/12.  

    99.    Yang SK, Jung Y, Hong M, Kim H, Ye BD, Lee I, et al. No association between TNFSF15 and 
IL23R with ulcerative colitis in Koreans. J Hum Genet. 2011;56(3):200–4. Epub 2011/01/14.  

    100.    Silverberg MS, Duerr RH, Brant SR, Bromfi eld G, Datta LW, Jani N, et al. Refi ned genomic 
localization and ethnic differences observed for the IBD5 association with Crohn’s disease. 
EJHG. 2007;15(3):328–35. Epub 2007/01/11.  

   101.    Picornell Y, Mei L, Taylor K, Yang H, Targan SR, Rotter JI. TNFSF15 is an ethnic-specifi c 
IBD gene. Infl amm Bowel Dis. 2007;13(11):1333–8. Epub 2007/08/01.  

    102.    Kenny EE, Pe’er I, Karban A, Ozelius L, Mitchell AA, Ng SM, et al. A genome-wide scan of 
Ashkenazi Jewish Crohn’s disease suggests novel susceptibility loci. PLoS Genet. 
2012;8(3):e1002559. Epub 2012/03/14.  

        103.    Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other 
diseases. Gut. 2011;60(12):1739–53. Epub 2011/02/09.  

13 Role of the Gut Microbiota in Maintaining GI Health…



298

     104.    Muise AM, Walters TD, Glowacka WK, Griffi ths AM, Ngan BY, Lan H, et al. Polymorphisms 
in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with 
Crohn’s disease. Gut. 2009;58(8):1121–7. Epub 2009/04/29.  

      105.    Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide asso-
ciation defi nes more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 
2008;40(8):955–62. Epub 2008/07/01.  

    106.    Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, et al. Deep resequencing 
of GWAS loci identifi es independent rare variants associated with infl ammatory bowel dis-
ease. Nat Genet. 2011;43(11):1066–73. Epub 2011/10/11.  

     107.    Umeno J, Asano K, Matsushita T, Matsumoto T, Kiyohara Y, Iida M, et al. Meta-
analysis of published studies identifi ed eight additional common susceptibility loci for 
Crohn’s disease and ulcerative colitis. Infl amm Bowel Dis. 2011;17(12):2407–15. Epub 
2011/02/26.  

    108.    Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, et al. XBP1 links ER stress to 
intestinal infl ammation and confers genetic risk for human infl ammatory bowel disease. Cell. 
2008;134(5):743–56. Epub 2008/09/09.  

    109.    Spenle C, Hussenet T, Lacroute J, Lefebvre O, Kedinger M, Orend G, et al. Dysregulation of 
laminins in intestinal infl ammation. Pathol Biol. 2012;60(1):41–7. Epub 2011/11/22.  

    110.    Schmehl K, Florian S, Jacobasch G, Salomon A, Korber J. Defi ciency of epithelial basement 
membrane laminin in ulcerative colitis affected human colonic mucosa. Int J Colorectal Dis. 
2000;15(1):39–48. Epub 2000/04/15.  

    111.    Bertin J, Wang L, Guo Y, Jacobson MD, Poyet JL, Srinivasula SM, et al. CARD11 and 
CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate 
kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol 
Chem. 2001;276(15):11877–82. Epub 2001/03/30.  

    112.    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association 
of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 
2001;411(6837):599–603. Epub 2001/06/01.  

   113.    Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S, et al. CARD15/NOD2 
mutational analysis and genotype-phenotype correlation in 612 patients with infl ammatory 
bowel disease. Am J Hum Genet. 2002;70(4):845–57. Epub 2002/03/05.  

      114.    Consortium TWTCC. Genome-wide association study of 14,000 cases of seven common 
diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. Epub 2007/06/08.  

    115.    Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, et al. NOD2 
(CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha- 
defensin expression. Gut. 2004;53(11):1658–64. Epub 2004/10/14.  

    116.    Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, et al. Nod2- 
dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 
2005;307(5710):731–4. Epub 2005/02/05.  

    117.    Biswas A, Liu YJ, Hao L, Mizoguchi A, Salzman NH, Bevins CL, et al. Induction and rescue 
of Nod2-dependent Th1-driven granulomatous infl ammation of the ileum. Proc Natl Acad 
Sci U S A. 2010;107(33):14739–44. Epub 2010/08/04.  

    118.    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy pro-
tein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456(7219):264–
8. Epub 2008/10/14.  

    119.    Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, et al. Nod1 and 
Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of  bacterial 
entry. Nat Immunol. 2010;11(1):55–62. Epub 2009/11/10.  

    120.    Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, et al. Reduced 
Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A. 
2005;102(50):18129–34. Epub 2005/12/07.  

    121.    Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 inter-
act in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogen-
esis. Gastroenterology. 2010;139(5):1630–41. 41 e1-2. Epub 2010/07/20.  

L. Gruber and D. Haller



299

    122.    Glas J, Wagner J, Seiderer J, Olszak T, Wetzke M, Beigel F, et al. PTPN2 gene variants are 
associated with susceptibility to both Crohn’s disease and ulcerative colitis supporting a 
common genetic disease background. PLoS ONE. 2012;7(3):e33682. Epub 2012/03/30.  

   123.    Scharl M, Mwinyi J, Fischbeck A, Leucht K, Eloranta JJ, Arikkat J, et al. Crohn’s disease- 
associated polymorphism within the PTPN2 gene affects muramyl-dipeptide-induced cyto-
kine secretion and autophagy. Infl amm Bowel Dis. 2012;18(5):900–12. Epub 2011/10/25.  

     124.    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence 
variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s 
disease susceptibility. Nat Genet. 2007;39(7):830–2. Epub 2007/06/08.  

    125.    McGovern DP, Gardet A, Torkvist L, Goyette P, Essers J, Taylor KD, et al. Genome-wide asso-
ciation identifi es multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42(4):332–7. 
Epub 2010/03/17.  

    126.    MacMicking JD, Taylor GA, McKinney JD. Immune control of tuberculosis by IFN-gamma- 
inducible LRG-47. Science. 2003;302(5645):654–9. Epub 2003/10/25.  

     127.    Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, et al. T cell protein 
tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest. 
2011;121(12):4758–74. Epub 2011/11/15.  

    128.    You-Ten KE, Muise ES, Itie A, Michaliszyn E, Wagner J, Jothy S, et al. Impaired bone mar-
row microenvironment and immune function in T cell protein tyrosine phosphatase-defi cient 
mice. J Exp Med. 1997;186(5):683–93. Epub 1997/08/29.  

    129.    Hassan SW, Doody KM, Hardy S, Uetani N, Cournoyer D, Tremblay ML. Increased suscep-
tibility to dextran sulfate sodium induced colitis in the T cell protein tyrosine phosphatase 
heterozygous mouse. PLoS ONE. 2010;5(1):e8868. Epub 2010/01/30.  

    130.    Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts 
on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive 
function in mice with colitis. Nat Immunol. 2009;10(11):1178–84. Epub 2009/09/29.  

    131.    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-defi cient mice develop 
chronic enterocolitis. Cell. 1993;75(2):263–74. Epub 1993/10/22.  

     132.    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident 
enteric bacteria are necessary for development of spontaneous colitis and immune system acti-
vation in interleukin-10-defi cient mice. Infect Immun. 1998;66(11):5224–31. Epub 1998/10/24.  

    133.    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide 
association study identifi es IL23R as an infl ammatory bowel disease gene. Science. 
2006;314(5804):1461–3. Epub 2006/10/28.  

    134.    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages 
IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from 
IL-12. Immunity. 2000;13(5):715–25. Epub 2000/12/15.  

    135.    Barnich N, Darfeuille-Michaud A. Abnormal CEACAM6 expression in Crohn disease 
patients favors gut colonization and infl ammation by adherent-invasive E. coli. Virulence. 
2010;1(4):281–2. Epub 2010/12/24.  

    136.    Carvalho FA, Barnich N, Sivignon A, Darcha C, Chan CH, Stanners CP, et al. Crohn’s 
disease adherent-invasive Escherichia coli colonize and induce strong gut infl ammation in 
transgenic mice expressing human CEACAM. J Exp Med. 2009;206(10):2179–89. Epub 
2009/09/10.  

    137.    Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, et al. 
Mucosal fl ora in infl ammatory bowel disease. Gastroenterology. 2002;122(1):44–54. Epub 
2002/01/10.  

         138.    Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High- 
throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and 
differences between infl amed and non-infl amed regions of the intestine in infl ammatory 
bowel disease. BMC Microbiol. 2011;11:7. Epub 2011/01/12.  

    139.    Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced 
diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 
2006;55(2):205–11. Epub 2005/09/29.  

13 Role of the Gut Microbiota in Maintaining GI Health…



300

       140.    Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, et al. Reduction in diver-
sity of the colonic mucosa associated bacterial microfl ora in patients with active infl amma-
tory bowel disease. Gut. 2004;53(5):685–93. Epub 2004/04/15.  

        141.    Willing BP, Dicksved J, Halfvarson J, Andersson AF, Lucio M, Zheng Z, et al. A pyrose-
quencing study in twins shows that gastrointestinal microbial profi les vary with infl ammatory 
bowel disease phenotypes. Gastroenterology. 2010;139(6):1844–54. e1. Epub 2010/09/08.  

          142.    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular- 
phylogenetic characterization of microbial community imbalances in human infl ammatory 
bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5. Epub 2007/08/19.  

       143.    Rehman A, Lepage P, Nolte A, Hellmig S, Schreiber S, Ott SJ. Transcriptional activity of the 
dominant gut mucosal microbiota in chronic infl ammatory bowel disease patients. J Med 
Microbiol. 2010;59(Pt 9):1114–22. Epub 2010/06/05.  

        144.    Lepage P, Hasler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin study 
indicates loss of interaction between microbiota and mucosa of patients with ulcerative coli-
tis. Gastroenterology. 2011;141(1):227–36. Epub 2011/05/31.  

     145.    Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L, et al. Twin stud-
ies reveal specifi c imbalances in the mucosa-associated microbiota of patients with ileal 
Crohn’s disease. Infl amm Bowel Dis. 2009;15(5):653–60. Epub 2008/11/22.  

    146.    Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen, van Zanten SJ. Differences 
between tissue-associated intestinal microfl oras of patients with Crohn’s disease and ulcer-
ative colitis. J Clin Micro. 2006;44(11):4136–41. Epub 2006/09/22.  

    147.    Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et al. Culture inde-
pendent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of 
novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. 
ISME J. 2007;1(5):403–18. Epub 2007/11/29.  

    148.    Mylonaki M, Rayment NB, Rampton DS, Hudspith BN, Brostoff J. Molecular characteriza-
tion of rectal mucosa-associated bacterial fl ora in infl ammatory bowel disease. Infl amm 
Bowel Dis. 2005;11(5):481–7. Epub 2005/05/04.  

    149.   Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, et al. Decreased abun-
dance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J Gastroenterol 
Hepatol. 2012. Epub 2012/12/12.  

   150.    Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of 
Faecalibacterium prausnitzii in colitis microbiota. Infl amm Bowel Dis. 2009;15(8):1183–9. 
Epub 2009/02/25.  

    151.    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. 
Faecalibacterium prausnitzii is an anti-infl ammatory commensal bacterium identifi ed by gut 
microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–
6. Epub 2008/10/22.  

    152.    Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ. Abnormal 
microbiota composition in the ileocolonic mucosa of Crohn’s disease patients as revealed by 
polymerase chain reaction-denaturing gradient gel electrophoresis. Infl amm Bowel Dis. 
2006;12(12):1136–45. Epub 2006/11/23.  

    153.    Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. Chemotaxonomic analysis of bacte-
rial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect 
Dis: Off Pub Infect Dis Soc Am. 2004;38(12):1690–9. Epub 2004/07/01.  

    154.    Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, Lahti L, et al. Intestinal 
microbiota in healthy adults: temporal analysis reveals individual and common core and rela-
tion to intestinal symptoms. PLoS ONE. 2011;6(7):e23035. Epub 2011/08/11.  

    155.    Loubinoux J, Bronowicki JP, Pereira IA, Mougenel JL, Faou AE. Sulfate-reducing bacteria in 
human feces and their association with infl ammatory bowel diseases. FEMS Microbiol Ecol. 
2002;40(2):107–12. Epub 2002/05/01.  

   156.    Gibson GR, Macfarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metab-
olism in the human large intestine. Gut. 1993;34(4):437–9. Epub 1993/04/01.  

L. Gruber and D. Haller



301

    157.    Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 
5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 
2000;46(1):64–72. Epub 1999/12/22.  

    158.    Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev 
Microbiol. 2008;6(6):441–54. Epub 2008/05/08.  

    159.    Roediger WE, Duncan A, Kapaniris O, Millard S. Reducing sulfur compounds of the 
colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 
1993;104(3):802–9. Epub 1993/03/01.  

    160.    Wu YC, Wang XJ, Yu L, Chan FK, Cheng AS, Yu J, et al. Hydrogen sulfi de lowers prolifera-
tion and induces protective autophagy in colon epithelial cells. PLoS ONE. 2012;7(5):e37572. 
Epub 2012/06/09.  

    161.    Laue H, Denger K, Cook AM. Taurine reduction in anaerobic respiration of Bilophila wad-
sworthia RZATAU. Appl Environ Microbiol. 1997;63(5):2016–21. Epub 1997/05/01.  

         162.    Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, et al. Dietary-fat- 
induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 
2012;487(7405):104–8. Epub 2012/06/23.  

    163.    Ishioka T, Kuwabara N, Oohashi Y, Wakabayashi K. Induction of colorectal tumors in rats by 
sulfated polysaccharides. Crit Rev Toxicol. 1987;17(3):215–44. Epub 1987/01/01.  

    164.    Ohkusa T. Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium 
and changes in intestinal microfl ora. Nihon Shokakibyo Gakkai zasshi: Japan J Gastroenterol. 
1985;82(5):1327–36. Epub 1985/05/01.  

    165.    Fava F, Danese S. Intestinal microbiota in infl ammatory bowel disease: friend of foe? World 
J Gastroenterol: WJG. 2011;17(5):557–66. Epub 2011/02/26.  

     166.    Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the 
development of dextran sodium sulfate-induced colitis. Infl amm Bowel Dis. 2011;17(4):917–
26. Epub 2011/03/11.  

    167.    Araki Y, Mukaisho K, Sugihara H, Fujiyama Y, Hattori T. Proteus mirabilis sp intestinal micro-
fl ora grow in a dextran sulfate sodium-rich environment. Int J Mol Med. 2010;25(2):203–8. 
Epub 2010/01/01.  

      168.    Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, et al. Commensal 
Bacteroides species induce colitis in host-genotype-specifi c fashion in a mouse model of 
infl ammatory bowel disease. Cell Host Microbe. 2011;9(5):390–403. Epub 2011/05/18.  

      169.    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the 
intestinal microbiome in infl ammatory bowel disease and treatment. Genome Biol. 
2012;13(9):R79. Epub 2012/09/28.  

     170.    Stephens NS, Siffl edeen J, Su X, Murdoch TB, Fedorak RN, Slupsky CM. Urinary NMR 
metabolomic profi les discriminate infl ammatory bowel disease from healthy. J Crohns 
Colitis. 2013;7(2):e42–8. Epub 2012/05/26.  

    171.    Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, et al. Host- 
mediated infl ammation disrupts the intestinal microbiota and promotes the overgrowth of 
Enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–29. Epub 2007/11/17.  

    172.    Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, et al. Salmonella 
enterica serovar typhimurium exploits infl ammation to compete with the intestinal microbi-
ota. PLoS Biol. 2007;5(10):2177–89. Epub 2007/09/01.  

    173.    Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, et al. Non-invasive mapping 
of the gastrointestinal microbiota identifi es children with infl ammatory bowel disease. PLoS 
ONE. 2012;7(6):e39242. Epub 2012/07/07.  

    174.    Sokol H, Lepage P, Seksik P, Dore J, Marteau P. Temperature gradient gel electrophoresis of 
fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative 
colitis. J Clin Microbiol. 2006;44(9):3172–7. Epub 2006/09/07.  

    175.    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial 
gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. 
Epub 2010/03/06.  

13 Role of the Gut Microbiota in Maintaining GI Health…



302

    176.    Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut 
microbiome reveals topological shifts associated with obesity and infl ammatory bowel dis-
ease. Proc Natl Acad Sci U S A. 2012;109(2):594–9. Epub 2011/12/21.  

     177.    Hansen JJ, Huang Y, Peterson DA, Goeser L, Fan TJ, Chang EB, et al. The colitis-associated 
transcriptional profi le of commensal Bacteroides thetaiotaomicron enhances adaptive 
immune responses to a bacterial antigen. PLoS ONE. 2012;7(8):e42645. Epub 2012/08/11.  

    178.    Patwa LG, Fan TJ, Tchaptchet S, Liu Y, Lussier YA, Sartor RB, et al. Chronic intestinal 
infl ammation induces stress-response genes in commensal Escherichia coli. Gastroenterology. 
2011;141(5):1842–51. e1-10. Epub 2011/07/06.  

    179.    Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, et al. Shotgun 
metaproteomics of the human distal gut microbiota. ISME J. 2009;3(2):179–89. Epub 
2008/10/31.  

     180.    Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, Valmu L, et al. Comparative meta-
proteomics and diversity analysis of human intestinal microbiota testifi es for its temporal 
stability and expression of core functions. PLoS ONE. 2012;7(1):e29913. Epub 2012/01/27.  

       181.    Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al. Integrated 
metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. 
PLoS ONE. 2012;7(11):e49138. Epub 2012/12/05.  

        182.    Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, et al. Metabolomics reveals 
metabolic biomarkers of Crohn’s disease. PLoS ONE. 2009;4(7):e6386. Epub 2009/07/29.  

     183.    Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. Rapid and non-
invasive metabonomic characterization of infl ammatory bowel disease. J Proteome Res. 
2007;6(2):546–51. Epub 2007/02/03.  

    184.    Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, et al. Increase in fecal 
primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syn-
drome. Neurogastroenterol Motil: Off J Eur Gastrointestin Motility Soc. 2012;24(6):513–20. 
e246-7. Epub 2012/02/24.  

    185.    Wohlgemuth S, Keller S, Kertscher R, Stadion M, Haller D, Kisling S, et al. Intestinal steroid 
profi les and microbiota composition in colitic mice. Gut Microbes. 2011;2(3):159–66. Epub 
2011/08/27.  

     186.    Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, et al. Bile acid is a host factor 
that regulates the composition of the cecal microbiota in rats. Gastroenterology. 
2011;141(5):1773–81. Epub 2011/08/16.  

     187.    Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al. Connecting 
dysbiosis, bile-acid dysmetabolism and gut infl ammation in infl ammatory bowel diseases. 
Gut. 2012;40(18):9308–18. Epub 2012/09/21.  

    188.    Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction 
associated with altered fecal bile acids. World J Gastroenterol: WJG. 2012;18(9):923–9. 
Epub 2012/03/13.  

      189.    Suzuki T, Hara H. Dietary fat and bile juice, but not obesity, are responsible for the increase 
in small intestinal permeability induced through the suppression of tight junction protein 
expression in LETO and OLETF rats. Nutr Metab. 2010;7:19. Epub 2010/03/13.  

    190.    Raimondi F, Santoro P, Barone MV, Pappacoda S, Barretta ML, Nanayakkara M, et al. Bile 
acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR 
activation. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G906–13. Epub 2008/02/02.  

    191.    Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, et al. 
Farnesoid X receptor activation inhibits infl ammation and preserves the intestinal barrier in 
infl ammatory bowel disease. Gut. 2011;60(4):463–72. Epub 2011/01/19.  

    192.    Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, et al. Imbalance in 
 intestinal microfl ora constitution could be involved in the pathogenesis of infl ammatory 
bowel disease. IJMM. 2008;298(5–6):463–72. Epub 2007/09/28.  

     193.    Baur P, Martin FP, Gruber L, Bosco N, Brahmbhatt V, Collino S, et al. Metabolic phenotyping 
of the Crohn’s disease-like IBD etiopathology in the TNF(DeltaARE/WT) mouse model. J 
Proteome Res. 2011;10(12):5523–35. Epub 2011/10/28.  

L. Gruber and D. Haller



303

     194.    Fernandez-Banares F, Esteve-Comas M, Mane J, Navarro E, Bertran X, Cabre E, et al. Changes 
in mucosal fatty acid profi le in infl ammatorybowel disease and in experimental colitis: a com-
mon response to bowel infl ammation. Clin Nutr. 1997;16(4):177–83. Epub 1997/08/01.  

      195.    Bjerrum JT, Nielsen OH, Hao F, Tang H, Nicholson JK, Wang Y, et al. Metabonomics in 
ulcerative colitis: diagnostics, biomarker identifi cation, and insight into the pathophysiology. 
J Proteome Res. 2010;9(2):954–62. Epub 2009/10/29.  

     196.    Bezabeh T, Somorjai RL, Smith IC, Nikulin AE, Dolenko B, Bernstein CN. The use of 
1H magnetic resonance spectroscopy in infl ammatory bowel diseases: distinguishing 
ulcerative colitis from Crohn’s disease. Am J Gastroenterol. 2001;96(2):442–8. Epub 
2001/03/10.  

      197.    Balasubramanian K, Kumar S, Singh RR, Sharma U, Ahuja V, Makharia GK, et al. Metabolism 
of the colonic mucosa in patients with infl ammatory bowel diseases: an in vitro proton 
 magnetic resonance spectroscopy study. Magn Reson Imaging. 2009;27(1):79–86. Epub 
2008/07/05.  

    198.    Holub BJ. The nutritional signifi cance, metabolism, and function of myo-inositol and phos-
phatidylinositol in health and disease. Adv Nutr Res. 1982;4:107–41. Epub 1982/01/01.  

    199.    Holub BJ. Metabolism and function of myo-inositol and inositol phospholipids. Annu Rev 
Nutr. 1986;6:563–97. Epub 1986/01/01.  

    200.    Martin FP, Rezzi S, Philippe D, Tornier L, Messlik A, Holzlwimmer G, et al. Metabolic 
assessment of gradual development of moderate experimental colitis in IL-10 defi cient mice. 
J Proteome Res. 2009;8(5):2376–87. Epub 2009/03/28.  

     201.    Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic 
profi les of infl ammatory bowel disease in interleukin-10 gene-defi cient mice. Anal Chem. 
2008;80(14):5524–31. Epub 2008/06/19.  

    202.    Williams HR, Cox IJ, Walker DG, North BV, Patel VM, Marshall SE, et al. Characterization 
of infl ammatory bowel disease with urinary metabolic profi ling. Am J Gastroenterol. 
2009;104(6):1435–44. Epub 2009/06/06.  

    203.    Winterkamp S, Weidenhiller M, Otte P, Stolper J, Schwab D, Hahn EG, et al. Urinary excre-
tion of N-methylhistamine as a marker of disease activity in infl ammatory bowel disease. Am 
J Gastroenterol. 2002;97(12):3071–7. Epub 2002/12/21.  

    204.    Macfarlane S, Macfarlane GT, Cummings JH. Review article: prebiotics in the gastrointesti-
nal tract. Aliment Pharmacol Ther. 2006;24(5):701–14. Epub 2006/08/22.  

    205.    Langlands SJ, Hopkins MJ, Coleman N, Cummings JH. Prebiotic carbohydrates modify the 
mucosa associated microfl ora of the human large bowel. Gut. 2004;53(11):1610–6. Epub 
2004/10/14.  

   206.    Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifi dobacteria in the 
human colon by oligofructose and inulin. Gastroenterology. 1995;108(4):975–82. Epub 
1995/04/01.  

   207.    Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the 
human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17(2):259–
75. Epub 2004/12/01.  

   208.    Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR. Modulation of the fecal 
microfl ora profi le and immune function by a novel trans-galactooligosaccharide mixture 
(B-GOS) in healthy elderly volunteers. Am J Clin Nutr. 2008;88(5):1438–46. Epub 
2008/11/11.  

    209.    Depeint F, Tzortzis G, Vulevic J, I’Anson K, Gibson GR. Prebiotic evaluation of a novel 
galactooligosaccharide mixture produced by the enzymatic activity of Bifi dobacterium bifi -
dum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo- 
controlled intervention study. Am J Clin Nutr. 2008;87(3):785–91. Epub 2008/03/11.  

    210.    Hormannsperger G, Clavel T, Haller D. Gut matters: Microbe-host interactions in allergic 
diseases. J Allergy Clin Immunol. 2012;129(6):1452–9. Epub 2012/02/11.  

    211.    Lindsay JO, Whelan K, Stagg AJ, Gobin P, Al-Hassi HO, Rayment N, et al. Clinical, micro-
biological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s dis-
ease. Gut. 2006;55(3):348–55. Epub 2005/09/16.  

13 Role of the Gut Microbiota in Maintaining GI Health…



304

     212.    Welters CF, Heineman E, Thunnissen FB, van den Bogaard AE, Soeters PB, Baeten 
CG. Effect of dietary inulin supplementation on infl ammation of pouch mucosa in 
patients with an ileal pouch-anal anastomosis. Dis Colon Rectum. 2002;45(5):621–7. 
Epub 2002/05/11.  

    213.    Lara-Villoslada F, de Haro O, Camuesco D, Comalada M, Velasco J, Zarzuelo A, et al. 
Short- chain fructooligosaccharides, in spite of being fermented in the upper part of the 
large intestine, have anti-infl ammatory activity in the TNBS model of colitis. Eur J Nutr. 
2006;45(7):418–25. Epub 2006/07/28.  

    214.    Cherbut C, Michel C, Lecannu G. The prebiotic characteristics of fructooligosaccharides are 
necessary for reduction of TNBS-induced colitis in rats. J Nutr. 2003;133(1):21–7. Epub 
2003/01/07.  

   215.    Camuesco D, Peran L, Comalada M, Nieto A, Di Stasi LC, Rodriguez-Cabezas ME, et al. 
Preventative effects of lactulose in the trinitrobenzenesulphonic acid model of rat colitis. 
Infl amm Bowel Dis. 2005;11(3):265–71. Epub 2005/03/01.  

    216.    Rumi G, Tsubouchi R, Okayama M, Kato S, Mozsik G, Takeuchi K. Protective effect of 
lactulose on dextran sulfate sodium-induced colonic infl ammation in rats. Dig Dis Sci. 
2004;49(9):1466–72. Epub 2004/10/16.  

    217.    Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW, et al. Reduction of 
colitis by prebiotics in HLA-B27 transgenic rats is associated with microfl ora changes and 
immunomodulation. Infl amm Bowel Dis. 2005;11(11):977–85. Epub 2005/10/22.  

    218.    Gopalakrishnan A, Clinthorne JF, Rondini EA, McCaskey SJ, Gurzell EA, Langohr IM, et al. 
Supplementation with galacto-oligosaccharides increases the percentage of NK cells and reduces 
colitis severity in Smad3-defi cient mice. J Nutr. 2012;142(7):1336–42. Epub 2012/04/13.  

    219.    Sang LX, Chang B, Zhang WL, Wu XM, Li XH, Jiang M. Remission induction and mainte-
nance effect of probiotics on ulcerative colitis: a meta-analysis. World J Gastroenterol: WJG. 
2010;16(15):1908–15. Epub 2010/04/17.  

    220.    Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion 
follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 
2003;52(6):827–33. Epub 2003/05/13.  

      221.    Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, et al. Probiotic 
Lactobacillus-induced improvement in murine chronic infl ammatory bowel disease is associ-
ated with the down-regulation of pro-infl ammatory cytokines in lamina propria mononuclear 
cells. Clin Exp Immunol. 2005;140(3):417–26. Epub 2005/06/04.  

      222.    Liu Z, Zhang P, Ma Y, Chen H, Zhou Y, Zhang M, et al. Lactobacillus plantarum prevents the 
development of colitis in IL-10-defi cient mouse by reducing the intestinal permeability. Mol 
Biol Rep. 2011;38(2):1353–61. Epub 2010/06/24.  

    223.    Peluso I, Fina D, Caruso R, Stolfi  C, Caprioli F, Fantini MC, et al. Lactobacillus paraca-
sei subsp. paracasei B21060 suppresses human T-cell proliferation. Infect Immun. 
2007;75(4):1730–7. Epub 2007/01/24.  

    224.    Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. Randomised clinical trial: 
the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active 
distal ulcerative colitis. Aliment Pharmacol Ther. 2012;35(3):327–34. Epub 2011/12/14.  

    225.    Zocco MA, Dal Verme LZ, Cremonini F, Piscaglia AC, Nista EC, Candelli M, et al. Effi cacy 
of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 
2006;23(11):1567–74. Epub 2006/05/16.  

    226.    Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. Lactobacillus 
GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut. 
2003;52(3):370–6. Epub 2003/02/14.  

    227.    Osman N, Adawi D, Ahrne S, Jeppsson B, Molin G. Modulation of the effect of dextran sul-
fate sodium-induced acute colitis by the administration of different probiotic strains of 
Lactobacillus and Bifi dobacterium. Dig Dis Sci. 2004;49(2):320–7. Epub 2004/04/24.  

    228.    Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, et al. 
Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in 
interleukin- 10-defi cient mice. Infl amm Bowel Dis. 2002;8(2):71–80. Epub 2002/02/21.  

L. Gruber and D. Haller



305

    229.    Mileti E, Matteoli G, Iliev ID, Rescigno M. Comparison of the immunomodulatory proper-
ties of three probiotic strains of Lactobacilli using complex culture systems: prediction for 
in vivo effi cacy. PLoS ONE. 2009;4(9):e7056. Epub 2009/09/17.  

     230.    Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H, Tonkonogy SL, et al. Enterococcus fae-
calis metalloprotease compromises epithelial barrier and contributes to intestinal infl amma-
tion. Gastroenterology. 2011;141(3):959–71. Epub 2011/06/28.  

     231.    McCarthy J, O’Mahony L, O’Callaghan L, Sheil B, Vaughan EE, Fitzsimons N, et al. Double 
blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and 
mechanistic link with cytokine balance. Gut. 2003;52(7):975–80. Epub 2003/06/13.  

   232.    Setoyama H, Imaoka A, Ishikawa H, Umesaki Y. Prevention of gut infl ammation by 
Bifi dobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides 
strains isolated from ulcerative colitis patients. Micro Infect/ Institut Pasteur. 2003;5(2):115–
22. Epub 2003/03/26.  

    233.    Kim N, Kunisawa J, Kweon MN, Eog Ji G, Kiyono H. Oral feeding of Bifi dobacterium bifi -
dum (BGN4) prevents CD4(+) CD45RB(high) T cell-mediated infl ammatory bowel disease 
by inhibition of disordered T cell activation. Clin Immunol. 2007;123(1):30–9. Epub 
2007/01/16.  

    234.    Philippe D, Favre L, Foata F, Adolfsson O, Perruisseau-Carrier G, Vidal K, et al. 
Bifi dobacterium lactis attenuates onset of infl ammation in a murine model of colitis. World J 
Gastroenterol: WJG. 2011;17(4):459–69. Epub 2011/01/29.  

    235.    Ishikawa H, Akedo I, Umesaki Y, Tanaka R, Imaoka A, Otani T. Randomized controlled trial 
of the effect of bifi dobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr. 
2003;22(1):56–63. Epub 2003/02/06.  

    236.    Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, et al. Randomized placebo- 
controlled trial assessing the effect of bifi dobacteria-fermented milk on active ulcerative coli-
tis. Aliment Pharmacol Ther. 2004;20(10):1133–41. Epub 2004/12/01.  

    237.    Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT. Non-pathogenic 
Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. 
Lancet. 1999;354(9179):635–9. Epub 1999/08/31.  

   238.    Kruis W, Fric P, Pokrotnieks J, Lukas M, Fixa B, Kascak M, et al. Maintaining remission of 
ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with stan-
dard mesalazine. Gut. 2004;53(11):1617–23. Epub 2004/10/14.  

    239.    Henker J, Muller S, Laass MW, Schreiner A, Schulze J. Probiotic Escherichia coli Nissle 
1917 (EcN) for successful remission maintenance of ulcerative colitis in children 
and adolescents: an open-label pilot study. Z Gastroenterol. 2008;46(9):874–5. Epub 
2008/09/24.  

    240.    Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al. Probiotic 
Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE. 
2007;2(12):e1308. Epub 2007/12/13.  

    241.    Gotteland M, Cruchet S, Verbeke S. Effect of Lactobacillus ingestion on the gastrointestinal 
mucosal barrier alterations induced by indometacin in humans. Aliment Pharmacol Ther. 
2001;15(1):11–7. Epub 2001/01/03.  

   242.    Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut 
microbiota control infl ammation in obese mice through a mechanism involving GLP-2- 
driven improvement of gut permeability. Gut. 2009;58(8):1091–103. Epub 2009/02/26.  

    243.    Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA. Differential targeting of the 
E-Cadherin/beta-Catenin complex by gram-positive probiotic lactobacilli improves epithelial 
barrier function. Appl Environ Microbiol. 2012;78(4):1140–7. Epub 2011/12/20.  

    244.    Mimura T, Rizzello F, Helwig U, Poggioli G, Schreiber S, Talbot IC, et al. Once daily high 
dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchi-
tis. Gut. 2004;53(1):108–14. Epub 2003/12/20.  

    245.    Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D, Bazzocchi G, et al. Oral bacterio-
therapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo- 
controlled trial. Gastroenterology. 2000;119(2):305–9. Epub 2000/08/10.  

13 Role of the Gut Microbiota in Maintaining GI Health…



306

    246.    Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, et al. VSL#3 
probiotic-mixture induces remission in patients with active ulcerative colitis. Am J 
Gastroenterol. 2005;100(7):1539–46. Epub 2005/06/30.  

    247.    Sood A, Midha V, Makharia GK, Ahuja V, Singal D, Goswami P, et al. The probiotic prepara-
tion, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. 
Clin Gastroenterol Hepatol: Off Clin Prac J Am Gastroenterol Assoc. 2009;7(11):1202–9. 9 
e1. Epub 2009/07/28.  

    248.    Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A. Effect of a pro-
biotic preparation (VSL#3) on induction and maintenance of remission in children with 
ulcerative colitis. Am J Gastroenterol. 2009;104(2):437–43. Epub 2009/01/29.  

    249.    Malchow HA. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain 
remission of colonic Crohn’s disease? J Clin Gastroenterol. 1997;25(4):653–8.  

    250.    Chermesh I, Tamir A, Reshef R, Chowers Y, Suissa A, Katz D, et al. Failure of Synbiotic 2000 
to prevent postoperative recurrence of Crohn’s disease. Dig Dis Sci. 2007;52(2):385–9. Epub 
2007/01/11.  

    251.    Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, et al. Toll-like 
receptor 9 signaling mediates the anti-infl ammatory effects of probiotics in murine experi-
mental colitis. Gastroenterology. 2004;126(2):520–8. Epub 2004/02/06.  

    252.    Jijon H, Backer J, Diaz H, Yeung H, Thiel D, McKaigney C, et al. DNA from probiotic bac-
teria modulates murine and human epithelial and immune function. Gastroenterology. 
2004;126(5):1358–73. Epub 2004/05/08.  

    253.    Hoermannsperger G, Clavel T, Hoffmann M, Reiff C, Kelly D, Loh G, et al. Post-translational 
inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic infl ammation. 
PLoS ONE. 2009;4(2):e4365. Epub 2009/02/07.  

    254.    von Schillde MA, Hormannsperger G, Weiher M, Alpert CA, Hahne H, Bauerl C, et al. 
Lactocepin secreted by Lactobacillus exerts anti-infl ammatory effects by selectively 
degrading proinfl ammatory chemokines. Cell Host Microbe. 2012;11(4):387–96. Epub 
2012/04/24.  

    255.    Ishikawa H, Matsumoto S, Ohashi Y, Imaoka A, Setoyama H, Umesaki Y, et al. Benefi cial 
effects of probiotic bifi dobacterium and galacto-oligosaccharide in patients with ulcerative 
colitis: a randomized controlled study. Digestion. 2011;84(2):128–33. Epub 2011/04/29.  

    256.    Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O’Neil DA, et al. Synbiotic 
therapy (Bifi dobacterium longum/Synergy 1) initiates resolution of infl ammation in patients 
with active ulcerative colitis: a randomised controlled pilot trial. Gut. 2005;54(2):242–9. 
Epub 2005/01/14.  

    257.    Guslandi M. Treatment of irritable bowel syndrome with Saccharomyces boulardii. J Clin 
Gastroenterol. 2011;45(8):740–1. author reply 1-2. Epub 2011/05/11.  

    258.    Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treat-
ment of Crohn’s disease. Dig Dis Sci. 2000;45(7):1462–4. Epub 2000/08/29.  

    259.    Summers RW, Elliott DE, Urban Jr JF, Thompson RA, Weinstock JV. Trichuris suis therapy 
for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128(4):825–
32. Epub 2005/04/13.  

    260.    Dalmasso G, Cottrez F, Imbert V, Lagadec P, Peyron JF, Rampal P, et al. Saccharomyces 
boulardii inhibits infl ammatory bowel disease by trapping T cells in mesenteric lymph nodes. 
Gastroenterology. 2006;131(6):1812–25. Epub 2006/11/08.  

    261.    Kullberg MC, Pearce EJ, Hieny SE, Sher A, Berzofsky JA. Infection with Schistosoma 
 mansoni alters Th1/Th2 cytokine responses to a non-parasite antigen. J Immunol. 
1992;148(10):3264–70. Epub 1992/05/15.  

    262.    Pearlman E, Kazura JW, Hazlett Jr FE, Boom WH. Modulation of murine cytokine responses 
to mycobacterial antigens by helminth-induced T helper 2 cell responses. J Immunol. 
1993;151(9):4857–64. Epub 1993/11/01.  

    263.    Watanabe O, Ando T, Ishiguro K, Takahashi H, Ishikawa D, Miyake N, et al. Enteral nutrition 
decreases hospitalization rate in patients with Crohn’s disease. J Gastroenterol Hepatol. 
2010;25 Suppl 1:S134–7. Epub 2010/07/14.  

L. Gruber and D. Haller



307

    264.    Yamamoto T, Nakahigashi M, Saniabadi AR. Review article: diet and infl ammatory bowel 
disease–epidemiology and treatment. Aliment Pharmacol Ther. 2009;30(2):99–112. Epub 
2009/05/15.  

   265.    Yamamoto T, Shiraki M, Nakahigashi M, Umegae S, Matsumoto K. Enteral nutrition to sup-
press postoperative Crohn’s disease recurrence: a fi ve-year prospective cohort study. Int J 
Colorectal Dis. 2012;65(10):866–73. Epub 2012/09/28.  

    266.    Day AS, Whitten KE, Lemberg DA, Clarkson C, Vitug-Sales M, Jackson R, et al. Exclusive 
enteral feeding as primary therapy for Crohn’s disease in Australian children and adolescents: 
a feasible and effective approach. J Gastroenterol Hepatol. 2006;21(10):1609–14. Epub 
2006/08/25.  

    267.    Leach ST, Mitchell HM, Eng WR, Zhang L, Day AS. Sustained modulation of intestinal 
bacteria by exclusive enteral nutrition used to treat children with Crohn’s disease. Aliment 
Pharmacol Ther. 2008;28(6):724–33. Epub 2009/01/16.  

    268.    Hunter JO. Is diet a factor in the pathogenesis of IBD? Infl amm Bowel Dis. 2008;14 Suppl 
2:S35–6. Epub 2008/09/26.  

    269.    Kajiura T, Takeda T, Sakata S, Sakamoto M, Hashimoto M, Suzuki H, et al. Change of intes-
tinal microbiota with elemental diet and its impact on therapeutic effects in a murine model 
of chronic colitis. Dig Dis Sci. 2009;54(9):1892–900. Epub 2008/12/06.  

    270.    Pereira SP, Cassell TB, Engelman JL, Sladen GE, Murphy GM, Dowling RH. Plasma arachi-
donic acid-rich phospholipids in Crohn’s disease: response to treatment. Clin Sci (Lond). 
1996;91(4):509–12. Epub 1996/10/01.  

   271.    Zoli G, Care M, Parazza M, Spano C, Biagi PL, Bernardi M, et al. A randomized controlled 
study comparing elemental diet and steroid treatment in Crohn’s disease. Aliment Pharmacol 
Ther. 1997;11(4):735–40. Epub 1997/08/01.  

   272.    Hanai H, Iida T, Takeuchi K, Arai H, Arai O, Abe J, et al. Nutritional therapy versus 
6- mercaptopurine as maintenance therapy in patients with Crohn’s disease. Digest Liver Dis: 
Off J Ital Soc Gastroenterol Ital Assoc Stud Liver. 2012;44(8):649–54. Epub 2012/05/01.  

    273.    Gorard DA, Hunt JB, Payne-James JJ, Palmer KR, Rees RG, Clark ML, et al. Initial response 
and subsequent course of Crohn’s disease treated with elemental diet or prednisolone. Gut. 
1993;34(9):1198–202. Epub 1993/09/01.  

    274.   Zachos M, Tondeur M, Griffi ths AM. Enteral nutritional therapy for induction of remission in 
Crohn's disease. Cochrane Database Syst Rev. 2007(1):CD000542. Epub 2007/01/27.  

    275.    Wagner SJ, Schmidt A, Effenberger MJ, Gruber L, Danier J, Haller D. Semisynthetic diet ame-
liorates Crohn’s disease-like ileitis in TNFDeltaARE/WT mice through antigen- independent 
mechanisms of gluten. Infl amm Bowel Dis. 2013;19(6):1285–94. Epub 2013/04/10.  

    276.    Newnham ED. Does gluten cause gastrointestinal symptoms in subjects without coeliac dis-
ease? J Gastroenterol Hepatol. 2011;26 Suppl 3:132–4. Epub 2011/04/02.  

    277.    Esaki M, Matsumoto T, Nakamura S, Yada S, Fujisawa K, Jo Y, et al. Factors affecting 
 recurrence in patients with Crohn’s disease under nutritional therapy. Dis Colon Rectum. 
2006;49(10 Suppl):S68–74. Epub 2006/11/16.  

    278.    Gentschew L, Ferguson LR. Role of nutrition and microbiota in susceptibility to infl amma-
tory bowel diseases. Mol Nutr Food Res. 2012;56(4):524–35. Epub 2012/04/13.  

   279.    Gruber L, Lichti P, Rath E, Haller D. Nutrigenomics and nutrigenetics in infl ammatory bowel 
diseases. J Clin Gastroenterol. 2012;46(9):735–47. Epub 2012/09/04.  

      280.    Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing infl ammatory bowel 
disease: a systematic review of the literature. Am J Gastroenterol. 2011;106(4):563–73. Epub 
2011/04/07.  

    281.   Miller B, Fervers F, Rohbeck R, Strohmeyer G. [Sugar consumption in patients with Crohn’s 
disease]. Verhandlungen der Deutschen Gesellschaft fur Innere Medizin. 1976;82 Pt 1:922–4. 
Epub 1976/01/01. Zuckerkonsum bei Patienten mit Morbus Crohn.  

   282.    Mayberry JF, Rhodes J, Newcombe RG. Increased sugar consumption in Crohn’s disease. 
Digestion. 1980;20(5):323–6. Epub 1980/01/01.  

   283.    Sonnenberg A. Geographic and temporal variations of sugar and margarine consumption in 
relation to Crohn’s disease. Digestion. 1988;41(3):161–71. Epub 1988/01/01.  

13 Role of the Gut Microbiota in Maintaining GI Health…



308

    284.    Shoda R, Matsueda K, Yamato S, Umeda N. Epidemiologic analysis of Crohn disease in 
Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates 
to the increased incidence of Crohn disease in Japan. Am J Clin Nutr. 1996;63(5):741–5. 
Epub 1996/05/01.  

    285.    Chan SS, Luben R, Olsen A, Tjonneland A, Kaaks R, Teucher B, et al. Body mass index and 
the risk for Crohn’s disease and ulcerative colitis: data from a European prospective cohort 
study (The IBD in EPIC Study). Am J Gastroenterol. 2013;108(4):575–82. Epub 2013/01/16.  

    286.    Teixeira LG, Leonel AJ, Aguilar EC, Batista NV, Alves AC, Coimbra CC, et al. The combina-
tion of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates 
adipose tissue and colon infl ammation. Lipids Health Dis. 2011;10:204. Epub 2011/11/15.  

      287.    Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates 
infl ammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE. 
2012;7(10):e47713. Epub 2012/10/24.  

      288.    Gruber L, Kisling S, Lichti P, Martin FP, May S, Klingenspor M, et al. High fat diet acceler-
ates pathogenesis of murine Crohn’s disease-like ileitis independently of obesity. PLoS ONE. 
2013;8(8):e71661. Epub 2013/08/27.  

    289.    Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, et al. High-fat diet: 
bacteria interactions promote intestinal infl ammation which precedes and correlates with 
obesity and insulin resistance in mouse. PLoS ONE. 2010;5(8):e12191. Epub 2010/09/03.  

    290.    Erdelyi I, Levenkova N, Lin EY, Pinto JT, Lipkin M, Quimby FW, et al. Western-style diets 
induce oxidative stress and dysregulate immune responses in the colon in a mouse model of 
sporadic colon cancer. J Nutr. 2009;139(11):2072–8. Epub 2009/09/18.  

    291.    Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased 
gut permeability and microbiota change associate with mesenteric fat infl ammation and 
metabolic dysfunction in diet-induced obese mice. PLoS ONE. 2012;7(3):e34233. Epub 
2012/03/30.  

     292.    Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. 
High-fat diet determines the composition of the murine gut microbiome independently of 
obesity. Gastroenterology. 2009;137(5):1716–24. e1-2. Epub 2009/08/27.  

     293.    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet 
rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. 
Epub 2013/12/18.  

    294.    Werner T, Wagner SJ, Martinez I, Walter J, Chang JS, Clavel T, et al. Depletion of lumi-
nal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut. 
2011;60(3):325–33. Epub 2010/11/16.  

    295.    Den Hond E, Hiele M, Evenepoel P, Peeters M, Ghoos Y, Rutgeerts P. In vivo butyrate 
metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology. 
1998;115(3):584–90. Epub 1998/08/28.  

    296.    Roediger WE. The colonic epithelium in ulcerative colitis: an energy-defi ciency disease? 
Lancet. 1980;2(8197):712–5. Epub 1980/10/04.  

    297.    Ahmad MS, Krishnan S, Ramakrishna BS, Mathan M, Pulimood AB, Murthy SN. Butyrate 
and glucose metabolism by colonocytes in experimental colitis in mice. Gut. 
2000;46(4):493–9. Epub 2000/03/15.  

    298.    Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. Identifi cation and characterization 
of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport 
L-lactate as well as butyrate. J Physiol. 1998;513(Pt 3):719–32. Epub 1998/11/24.  

    299.    Thibault R, De Coppet P, Daly K, Bourreille A, Cuff M, Bonnet C, et al. Down-regulation of 
the monocarboxylate transporter 1 is involved in butyrate defi ciency during intestinal infl am-
mation. Gastroenterology. 2007;133(6):1916–27. Epub 2007/12/07.  

    300.    Annese V, Valvano MR, Palmieri O, Latiano A, Bossa F, Andriulli A. Multidrug resistance 
1 gene in infl ammatory bowel disease: a meta-analysis. World J Gastroenterol: WJG. 
2006;12(23):3636–44. Epub 2006/06/15.  

    301.    Onnie CM, Fisher SA, Pattni R, Sanderson J, Forbes A, Lewis CM, et al. Associations of 
allelic variants of the multidrug resistance gene (ABCB1 or MDR1) and infl ammatory bowel 

L. Gruber and D. Haller



309

disease and their effects on disease behavior: a case-control and meta-analysis study. Infl amm 
Bowel Dis. 2006;12(4):263–71. Epub 2006/04/25.  

     302.    Annese V, Rogai F, Settesoldi A, Bagnoli S. PPARgamma in infl ammatory bowel disease. 
PPAR Res. 2012;2012:620839. Epub 2012/09/22.  

    303.    Simmons JD, Mullighan C, Welsh KI, Jewell DP. Vitamin D receptor gene polymorphism: 
association with Crohn’s disease susceptibility. Gut. 2000;47(2):211–4. Epub 2000/07/18.  

    304.    Wu GD. Is there a role for PPAR gamma in IBD? Yes, no, maybe. Gastroenterology. 
2003;124(5):1538–42. Epub 2003/05/06.  

    305.    Zucchelli M, Torkvist L, Bresso F, Halfvarson J, Hellquist A, Anedda F, et al. PepT1 oligo-
peptide transporter (SLC15A1) gene polymorphism in infl ammatory bowel disease. Infl amm 
Bowel Dis. 2009;15(10):1562–9. Epub 2009/05/23.  

    306.    Dalmasso G, Nguyen HT, Ingersoll SA, Ayyadurai S, Laroui H, Charania MA, et al. The 
PepT1-NOD2 signaling pathway aggravates induced colitis in mice. Gastroenterology. 
2011;141(4):1334–45. Epub 2011/07/19.  

    307.    Merlin D, Si-Tahar M, Sitaraman SV, Eastburn K, Williams I, Liu X, et al. Colonic epithelial 
hPepT1 expression occurs in infl ammatory bowel disease: transport of bacterial peptides 
infl uences expression of MHC class 1 molecules. Gastroenterology. 2001;120(7):1666–79. 
Epub 2001/05/29.  

     308.    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal 
infusion of donor feces for recurrent Clostridium diffi cile. N Engl J Med. 2013;368(5):407–15. 
Epub 2013/01/18.  

    309.    Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in 
the management of infl ammatory bowel disease. Aliment Pharmacol Ther. 2012;36(6):503–
16. Epub 2012/07/26.  

    310.    Damman CJ, Miller SI, Surawicz CM, Zisman TL. The microbiome and infl ammatory bowel 
disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol. 
2012;107(10):1452–9. Epub 2012/10/05.  

    311.    Kunde S, Pham A, Bonczyk S, Crumb T, Duba M, Conrad Jr H, et al. Safety, tolerability, and 
clinical response after fecal transplantation in children and young adults with ulcerative coli-
tis. J Pediatr Gastroenterol Nutr. 2013;56(6):597–601. Epub 2013/04/02.  

    312.    Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, Dejaco C, Papay P, et al. 
Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal 
microbiota transplantation. Am J Gastroenterol. 2013;108(10):1620–30. Epub 2013/09/26.  

    313.    Balish E, Warner T. Enterococcus faecalis induces infl ammatory bowel disease in interleu-
kin- 10 knockout mice. Am J Pathol. 2002;160(6):2253–7. Epub 2002/06/12.  

    314.    Madsen KL, Doyle JS, Tavernini MM, Jewell LD, Rennie RP, Fedorak RN. Antibiotic  therapy 
attenuates colitis in interleukin 10 gene-defi cient mice. Gastroenterology. 2000;118(6):1094–
105. Epub 2000/06/02.  

   315.    Hoentjen F, Harmsen HJ, Braat H, Torrice CD, Mann BA, Sartor RB, et al. Antibiotics with a 
selective aerobic or anaerobic spectrum have different therapeutic activities in various regions 
of the colon in interleukin 10 gene defi cient mice. Gut. 2003;52(12):1721–7. Epub 2003/11/25.  

    316.    Tamagawa H, Hiroi T, Mizushima T, Ito T, Matsuda H, Kiyono H. Therapeutic effects of 
roxithromycin in interleukin-10-defi cient colitis. Infl amm Bowel Dis. 2007;13(5):547–56. 
Epub 2007/01/25.  

    317.    Schultz M, Tonkonogy SL, Sellon RK, Veltkamp C, Godfrey VL, Kwon J, et al. IL-2-defi cient 
mice raised under germfree conditions develop delayed mild focal intestinal infl ammation. 
Am J Physiol. 1999;276(6 Pt 1):G1461–72. Epub 1999/06/11.  

    318.    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The 
germfree state prevents development of gut and joint infl ammatory disease in HLA-B27 
transgenic rats. J Exp Med. 1994;180(6):2359–64. Epub 1994/12/01.  

     319.    Dianda L, Hanby AM, Wright NA, Sebesteny A, Hayday AC, Owen MJ. T cell receptor- alpha 
beta-defi cient mice fail to develop colitis in the absence of a microbial environment. Am J 
Pathol. 1997;150(1):91–7. Epub 1997/01/01.  

13 Role of the Gut Microbiota in Maintaining GI Health…



310

    320.    Bamias G, Okazawa A, Rivera-Nieves J, Arseneau KO, De La Rue SA, Pizarro TT, et al. 
Commensal bacteria exacerbate intestinal infl ammation but are not essential for the develop-
ment of murine ileitis. J Immunol. 2007;178(3):1809–18. Epub 2007/01/24.  

    321.    Bamias G, Marini M, Moskaluk CA, Odashima M, Ross WG, Rivera-Nieves J, et al. Down- 
regulation of intestinal lymphocyte activation and Th1 cytokine production by antibiotic 
therapy in a murine model of Crohn’s disease. J Immunol. 2002;169(9):5308–14. Epub 
2002/10/23.  

    322.    Habtezion A, Toivola DM, Butcher EC, Omary MB. Keratin-8-defi cient mice 
develop chronic spontaneous Th2 colitis amenable to antibiotic treatment. J Cell Sci. 
2005;118(Pt 9):1971–80. Epub 2005/04/21.  

    323.    Panwala CM, Jones JC, Viney JL. A novel model of infl ammatory bowel disease: mice defi -
cient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol. 
1998;161(10):5733–44. Epub 1998/11/20.  

    324.    Kang SS, Bloom SM, Norian LA, Geske MJ, Flavell RA, Stappenbeck TS, et al. An antibiotic- 
responsive mouse model of fulminant ulcerative colitis. PLoS Med. 2008;5(3):e41. Epub 
2008/03/06.  

    325.    Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y, et al. A novel mouse model of 
infl ammatory bowel disease links mammalian target of rapamycin-dependent hyperprolifera-
tion of colonic epithelium to infl ammation-associated tumorigenesis. Am J Pathol. 
2010;176(2):952–67. Epub 2010/01/01.  

    326.    Morrissey PJ, Charrier K. Induction of wasting disease in SCID mice by the transfer of nor-
mal CD4+/CD45RBhi T cells and the regulation of this autoreactivity by CD4+/CD45RBlo 
T cells. Res Immunol. 1994;145(5):357–62. Epub 1994/06/01.    

L. Gruber and D. Haller



311© Springer-Verlag London 2015 
S. Kochhar, F.-P. Martin (eds.), Metabonomics and Gut Microbiota 
in Nutrition and Disease, Molecular and Integrative Toxicology, 
DOI 10.1007/978-1-4471-6539-2_14

    Chapter 14   
 Deciphering the Gut Microbial Contribution 
to the Etiology of Autism Development 

             Ivan     K.    S.     Yap      and     François-Pierre     Martin   

    Abstract     Autistic spectrum disorder (ASD) is a spectrum of early-onset lifelong 
neurodevelopmental disorders that severely impact social and behavioral functioning. 
It is a debilitating disorder that affects 1 % of the global children population with 
increasing prevalence and presented huge economic burden to the family and the 
nation. Current diagnosis for ASD is very subjective mainly because of the multi-
factorial nature of the disorders. The etiology of ASD is highly complex and multi-
faceted involving the gene, environment, and diet and is associated with various 
abnormalities that include immunologic, metabolic, and, more recently, the host–
gut microbiome stability (Fig.  14.1 ). The gut microbiota is a consortium of bacteria 
that coexisted and coevolved with the host from the time of birth. As such the gut 
microbiome–mammalian “superorganism” represents a level of biological evolu-
tionary development where true symbiosis is characterized by extensive “transge-
nomic” modulation of metabolism and functions between the two entities. The gut 
microbiota is involved in various mammalian biological processes including defense 
against pathogens, immunity, intestinal microvilli development, and recovery of 
metabolic energy through fermentation of otherwise nondigestible dietary fi ber. In 
addition, the gut microbiota has been shown to communicate with the brain via the 
gut–brain axis to modulate brain development, function, and behavior. Recent evi-
dence indicated that the gut microbiota infl uenced central nervous system develop-
ment and responses to stress. Current understanding on the potential and extend of 
gut microbe involvement in brain development and host metabolic signaling is still 
in its infancy. Coupled with ever-increasing awareness on the importance of the gut 
microbiome in health and disease particularly autism, understanding the fundamen-
tal mechanistic interaction between host brain development and gut microbiota is 
crucial for unraveling the mystery behind the etiopathology of autism.  
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14.1         Gut–Brain Axis in Health and Disease 

 The term “gut–brain” or “brain–gut” axis is increasingly employed to defi ne a bidi-
rectional neurohumoral communication system. It comprised of neural pathways 
and humoral pathways, which include cytokines, hormones, and neuropeptides as 
signaling molecules [ 1 ]. The brain–gut–enteric microbiota axis includes the central 
nervous system, the neuroendocrine and neuroimmune systems, the sympathetic 
and parasympathetic arms of the autonomic nervous system, the enteric nervous 
system, and the intestinal microbiota [ 2 ]. Through this bidirectional communication 
network, signals from the brain can infl uence the motor, sensory, and secretory 
modalities of the GIT, and reciprocally, visceral messages from the GIT can infl u-
ence brain function [ 2 ]. Recent evidences showed that gut microbiota communi-
cates with the brain via the gut–brain axis to modulate brain development and 
behavioral phenotypes. In particular, this system provides the intestinal microbiota 
and its metabolites with a potential route towards the brain. Consequently, the gut 
microbiota could associate with brain functions as well as neurological diseases via 
the gut–brain axis [ 3 ], and further insights would require a better characterization of 
the composition and the metabolic activities of the gut microbiota. However, 
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  Fig. 14.1    Scheme summarizing the main factors related to gut–brain axis associated with brain 
development and autism       
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identifi cation of microbes constituting gut microbiota has been the main technological 
challenge currently due to massive amount of intestinal microbes and the diffi culties 
in culture of gut microbes [ 3 ]. In parallel, many challenges remain to better assess, 
understand, and modulate gut microbial metabolic activities and their infl uence at 
panorganismal scale [ 4 ]. 

 If recent studies have highlighted the depth of microbiota infl uence on the devel-
opment and function of the host brain, one of the fi rst observations resulted from the 
benefi cial impact of orally administered antibiotics in reversing encephalopathy in 
patients with decompensated liver disease [ 5 ]. In addition, accumulating evidence 
further describes a relationship between psychiatric and gastrointestinal tract (GIT) 
disorders, such as irritable bowel syndrome (IBS) or infl ammatory bowel disease 
(IBD), that are also associated with disturbances of the intestinal microbiota [ 6 ]. As 
highlighted in Chap.   14     of this book, there is compelling evidence that the brain 
may infl uence gastrointestinal functions (such as motility, secretion, and mucin pro-
duction) as well as immune functions, and therefore being a direct vehicle for medi-
ating the effects of emotional factors such as stress or depression infl uence [ 7 – 10 ]. 

 These GIT disorders are also intimately related with gut dysbiosis [ 11 ], illustrat-
ing the potential brain infl uences on the microbial composition and activity along 
the GIT and reciprocally for the microbiota to modulate host metabolism [ 1 ]. 
Moreover, the gut microbiota, the intestinal mucosa, and the intestinal immune sys-
tem issue multiple signals from the gut to the brain carried by sensory neurons, 
immune mediators, gut hormones, and microbiota-derived signaling molecules 
[ 12 ]. For instance, the infl uence of the gut microbiota on the development of the 
central nervous systems and stress responses was recently documented [ 13 ]. In this, 
two specifi c interactive systems are being highlighted, namely, the hypothalamus–
pituitary–adrenal axis and the vagus nerve, as important means of communicating 
signals from gut microbes to the central nervous systems. Furthermore, recent 
efforts focused on the members of the neuropeptide Y (NPY) family of biologically 
active peptides, NPY, peptide YY (PYY), and pancreatic polypeptide (PP) [ 12 ]. 
PYY and PP are exclusively expressed by endocrine cells of the digestive system, 
whereas NPY is found at all levels of the gut–brain and brain–gut axis. Recent studies 
have extensively described how PYY is infl uenced by the intestinal microbiota, with 
particular interest in appetite regulation in the context of obesity pandemic. Due to 
its multilevel homeostatic mechanism, pharmacological manipulation of NPY–Y 
receptor system may have considerable therapeutic effi cacy in many common meta-
bolic and GIT disease in addition to psychiatric disorders. 

 Several lessons learned so far are mainly based and limited to preclinical studies 
[ 7 ], especially using gnotobiotic and germfree animal models. Such systems models 
have enabled rediscovering the multiple and complex facet of the interaction with 
the gut microbiota at multi-compartmental levels [ 4 ,  14 – 16 ]. The infl uence of the 
gut microbiota on the nervous system, brain development, and behavior, in particu-
lar during microbial colonization of the host, has recently been receiving profound 
interest [ 17 ]. In particular, the metabolic modulation of metabolites infl uencing 
functions of the nervous system, such as tryptophan and kynurenine levels, further illus-
trates the functional microbiota–neurohumoral relationship during gut  colonization. 
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Moreover, novel evidence describes how gut microbiota type and presence can 
impact the cerebral biochemical profi les [ 18 ], including cerebral glycolytic 
metabolism.  

14.2     Brain–Gut–Microbe Communication in Health 
and Disease 

 Autistic spectrum disorder (ASD) is a spectrum of neurological disorders character-
ized by a complex lifelong neurodevelopmental and sociological disorder with 
poorly defi ned etiology. ASDs are associated with an array of disabilities such as 
social withdrawal, speech impairment, and repetitive behavior [ 19 ] (Fig.  14.1 ). 
According to a recent estimate from the Centers for Disease Control and Prevention 
(CDC)’s Autism and Developmental Disabilities Monitoring (ADDM) Network, 
about 1 in 88 children, from the 14 communities of the network within the United 
States, have been identifi ed with an ASD [ 20 ]. A recent global estimate by Elsabbagh 
 and coworkers  puts the global prevalence estimate to be about 62 in 10,000 [ 21 ] or 
1 % of the global children population had an ASD [ 20 ]. More alarmingly, there has 
been a signifi cant increase in incidence of ASD worldwide, and within the United 
States, between 2002 and 2008, there has been a 57 % increase in incidence of ASD 
[ 20 ]. ASD places a large economic burden on society with the cost of the disorder 
on the UK economy estimated to be £2.7 billion [ 22 ]. The lifetime cost for someone 
with ASD and intellectual disability is estimated at approximately £1.23 million 
and for someone with ASD without intellectual disability is approximately £0.80 
million [ 22 ]. It has been reported that the ASDs affect all racial, ethnic, and socio-
economic group and that boys are fi ve times more likely to have ASDs as compared 
to girls [ 20 ]. Studies have shown that among identical twins, if one child has an 
ASD, then the other will be affected about 36–95 % of the time. In nonidentical 
twins, if one child has an ASD, then the other is affected about 0–31 % of the time 
[ 23 – 25 ]. Parents who have a child with an ASD have a 2–18 % chance of having a 
second child who is also affected [ 26 ,  27 ]. ASDs tend to occur more often in people 
who have certain genetic or chromosomal conditions. About 10 % of children with 
autism are also identifi ed as having Down syndrome, fragile X syndrome, tuberous 
sclerosis, and other genetic and chromosomal disorders [ 28 – 31 ]. A number of 
known disorders such as phenylketonuria and Smith–Lemli–Opitz syndrome have 
been shown to be associated with the ASD behavioral traits in children. These meta-
bolic disorders are mainly autosomal recessive genetic disorders that present within 
the fi rst 3 years of life. Current diagnosis for ASD is through a set of criteria defi ned 
in the Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DSM-
IV- TR) and behavioral observations made by clinician thus making diagnosis very 
subjective. The ongoing controversy about the precise defi nition of ASD stems from 
the current lack of understanding of the underlying causes of ASD and its multifac-
torial nature.
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14.3        Gut Microbiota and ASD 

 Gastrointestinal dysfunction has been reported in ASD children [ 32 ], and studies 
have suggested that the condition may be associated with abnormal gut microbiota. 
Given the importance of the microbiome in mammalian metabolism, e.g., bile 
acid metabolism, there is a possibility of previously unrecognized etiologic con-
nections between microbiome disorders and childhood developmental problems. 
Individuals with ASD are commonly exposed to repeated courses of multiple anti-
biotic therapies, and this may contribute to the complex relationships between 
gastrointestinal symbiosis and ASD by altering the composition or stability of 
their gut microbiota. 

 One of the very fi rst suggestions of the potential involvement of bacteria in ASD 
was the publication by Bolte et al. where it was hypothesized that ASD may be 
linked to low-grade intestinal infection with  Clostridium tetani  [ 33 ]. It is well 
known that majority of children with ASD undergo extensive antibiotic therapy. 
Oral antibiotics can disrupt the stability and integrity of the “normal” gut microbiota 
thus resulting in an environment for opportunistic pathogens to colonize. One of this 
opportunistic pathogen is  C. tetani. Clostridium  belongs to the phylum of  Firmicutes . 
They are rod-shaped obligate anaerobes that produce endospores [ 34 ]. Some of the 
most important biological pathogens belong to this genus of bacteria, namely,  C. 
botulinum ,  C. diffi cile , and  C. tetani , associated with botulism, antibiotic-associated 
diarrhea, and tetanus, respectively.  Clostridium  species such as  C. botulinum  and  C. 
tetani  are known to produce neurotoxins, which trigger the very clinical pathologi-
cal manifestation that they are associated with. It has been shown that toxin pro-
duced by  C. tetani  in the intestine of experimental animals can be transported to the 
central nervous system via the vagus nerve resulting in the disruption of neurotrans-
mitters release [ 35 ,  36 ]. It was suggested that such inhibition may lead to the myri-
ads of behavioral defi cits observed in children with ASD. 

 Sandler and colleagues conducted a small cohort study of oral vancomycin in 
autistic children which subsequently proved the hypotheses [ 37 ]. It was reported in 
the study that children receiving vancomycin treatment showed improvement in 
gastrointestinal problems such as abdominal pain, constipation, and/or diarrhea. 
In addition, behavioral improvements were observed with signifi cant reduction in 
aggressive behavior, increased eye contact, and signifi cant improvement in lan-
guage and speech. However, such changes were dependent on vancomycin treat-
ment and all children relapsed after discontinuation of the antibiotic. The work by 
Sandler et al. presented one of the fi rst clear scientifi c evidences on the link between 
gut–brain axis and ASD. Several studies had subsequently indicated that children 
with ASD have perturbed gut microbiota as compared to typically developing children. 
To investigate further the potential involvement of  Clostridium  species (spp.) in 
ASD, Finegold et al. studied the feces of children with ASD and compared with 
healthy controls. It was found that children with ASD have higher levels of 
 Clostridium  spp. as well as greater species variation [ 38 ]. A subsequent study by the 
same group showed that children with ASD have elevated C.  bolteae  and  Clostridium  
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clusters I and XI [ 39 ]. Around the same time, a study conducted by Parracho et al. 
comparing feces of children with ASD versus healthy siblings and healthy unrelated 
controls showed that children with ASD has higher levels of certain  Clostridium  
spp. and, more interestingly, the healthy siblings had an intermediate level between 
their siblings with ASD and those of the healthy unrelated controls [ 40 ]. Further, a 
recent pyrosequencing study on fecal microbiota composition between typically 
developing controls versus ASD children and their normal functioning siblings 
showed that children with ASD had higher level of  Bacteroidetes  and lower level of 
 Firmicutes  as compared to the controls [ 41 ]. In addition, children with ASD also 
had lower level of several  Bifi dobacterium  species while  Desulfovibrio  was higher 
[ 32 ,  41 ]. A study by Wang et al. also showed lower level of  Bifi dobacterium  and 
 Akkermansia muciniphila  in ASD children [ 42 ]. 

 In fact, the study by Finegold et al. showed that  Desulfovibrio  was present in half 
of the autistic subjects and in some siblings. More interestingly, none of the control 
subjects had  Desulfovibrio  [ 32 ]. Children with ASD are known to be sulfur defi -
cient. Aldred et al. showed that individuals with autism have lower levels of plasma 
sulfate but considerably elevated levels of urinary sulfate as compared to normal 
individuals [ 43 ,  44 ]. These data suggest that autistic individuals may have impaired 
detoxifi cation potential involving sulfation as evidenced by their inability to sulfate 
acetaminophen [ 44 ]. The presence of sulfate-reducing bacteria such as  Desulfovibrio  
in ASD children could be one of the reasons behind the abnormality observed in 
sulfur metabolism. Moreover, the severity of ASD behavior is positively correlated 
with increased  Desulfovibrio  species [ 32 ].  

14.4     Metabonomics in ASD 

 Finding the cause of ASD has proved challenging due to the multifactorial nature of 
the disorder, which also means that fi nding biochemical markers for ASD has 
remained elusive thus far. However, successful discovery of a set of specifi c and 
accurate biomarkers for ASD would not only help in understanding the pathophysi-
ology of the condition but would, together with behavioral assessment, immensely 
help in the diagnosis of ASD thus allowing the possibility of early detection and 
thereby allowing early targeted intervention, which could possibly reduce severity 
of ASD [ 19 ]. Metabonomics or metabolic profi ling approach is becoming increas-
ingly important in identifying biomarkers of disease progression and drug interven-
tion and can provide additional information to support or aid the interpretation of 
genomic and proteomic data. Since metabolic phenotypes are the results from the 
interaction between host genome [ 45 ] and the environment including diet and host 
microbiome [ 46 ,  47 ], perturbation in such complex interactions will lead to altered 
metabolic profi les, which can be studied using metabonomic approaches [ 48 – 52 ]. 

 One of the earlier works on urinary phenotyping of autistic children was car-
ried out by Lis et al. [ 53 ], where urine samples from autistic ( n  = 19) and normal 
( n  = unknown) children were analyzed using anion exchange chromatography. 

I.K.S. Yap and F.-P. Martin



317

The study showed that autistic children have abnormal levels of urinary hippurate, 
4-hydroxyhippurate, and  N -methyl-2-pyridone-5-carboxamide (2PY) as com-
pared to normal controls. It was postulated in the study that such observation in 
the urinary profi les could be due to several factors including involvement of gut 
microbiota and potential perturbation in endogenous metabolism. Hippurate is 
predominantly formed by hepatic glycine conjugation of dietary and gut microbial-
derived benzoate, which is derived from plant phenolics [ 54 ]. Decreased urinary 
levels of hippurate could be an indication of reduced benzoic acid synthesis by the 
gut microbiota. The work by Lis et al. highlighted the potential of urine as a bio-
chemical window into understanding ASD and a viable biomatrix for biomarker 
discovery and potentially diagnosis. The fi rst metabonomic study on ASD was 
conducted by Yap et al. utilizing proton nuclear magnetic resonance ( 1 H NMR) 
spectroscopy-based metabonomic approach [ 55 ]. The study looked at the meta-
bolic profi les of children diagnosed with ASD together with their non-autistic 
siblings and age-matched healthy volunteers. The main fi ndings from the study 
showed alterations in nicotinic acid metabolism and gut microbe metabolism with 
increased urinary levels of 2PY,  N -methyl nicotinic acid, and  N -methyl nicotin-
amide and decreased levels of urinary gut microbe co-metabolites such as hippu-
rate, phenylacetylglutamine, and 4-cresol sulfate. These observations were in 
agreement with the fi ndings from Lis et al. [ 53 ] implicating the involvement of 
gut microbe in ASD and proved that metabonomic is an effective tool to aid 
understanding of the etiology of ASD and biomarker discovery. The study by Yap 
et al. also revealed differences in urinary amino acid levels such as glutamate, 
alanine, glycine, and taurine [ 55 ]. More intriguingly, the study also showed that 
the metabolic profi les of non-autistic siblings were quite different from their 
autistic siblings as well as the age-matched healthy volunteers. Such pattern was 
also observed by Parracho et al. when comparing the levels of  Clostridium  spp. 
between children with ASD versus healthy siblings and healthy unrelated con-
trols, which showed that the healthy siblings had an intermediate level between 
their ASD siblings and the healthy unrelated controls. Such observation could 
indicate that the presence and levels of certain gut microbe could trigger the onset 
of ASD, which could lead to perturbation in the metabolic profi les and warrant 
further investigation. 

 Ming et al. utilized mass spectrometry-based metabonomic approach to further 
investigate metabolic perturbations in ASD children versus controls with the aim 
of identifying more specifi c biochemical disturbances linked to the pathogenesis of 
ASD [ 56 ]. The study showed that individuals with ASD showed differences in 
urinary amino acids such as glycine, alanine, and taurine as well as gut microbe 
co- metabolites such as propionic acid derivatives and bile acids. Results from this 
study validated the fi ndings by Yap et al. [ 55 ], which showed perturbation in gut 
microbial co-metabolism. Furthermore, the study by Ming et al. also showed lower 
levels of urinary antioxidants carnosine and urate indicating potential increase 
in oxidative stress. More recently, Emond et al. evaluated the use of gas 
chromatography- coupled mass spectrometry metabonomic approach to study the 
urinary biochemical profi les of autistic versus healthy children [ 57 ]. The study 
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successfully differentiated autistic from healthy children, and several metabolites 
were identifi ed to be signifi cantly contributing the differences. Urinary metabolites 
succinate and glycolate were found to be higher in autistic children, whereas 
metabolites such as hippurate, 3-hydroxyphenylacetate, 3-hydroxyhippurate, and 
several other metabolites were found to be lower in autistic children. Interestingly, 
the urinary metabolites that were lower in autistic children were largely gut microbe 
co-metabolites. 

 Results from all four studies indicated a common factor that is the perturbation 
of gut microbe co-metabolites in ASD individuals [ 53 ,  55 – 57 ]. The later three studies 
[ 55 – 57 ] also demonstrated the potential of metabonomic as a noninvasive tool to 
study and understand the etiopathophysiology of ASD. In addition, the biochemical 
changes observed from these studies may provide novel biomarker information 
applicable for diagnostic and monitoring therapeutic interactions in the condition. 
The key fi ndings on the role of the microbiome in brain development and the etiology 
and development of autism were summarized in Table  14.1 .

   Table 14.1    Role of the microbiome and microbial–host co-metabolites associated with brain 
development and autism: overview of key references   

 Biological 
compartment  Main fi ndings  Refs 

 Microbiome  Certain bacteria produce neurotoxin that can be transported to the 
central nervous system via the vagus nerve. Bacteria implicated: 
 Clostridium  species;  Clostridium tetani  

 [ 35 , 
 36 ] 

 Vancomycin-treatment leads to short-term improvement in 
gastrointestinal problems and behavioral improvements 

 [ 37 ] 

 Higher levels and greater variation of  Clostridium  species were 
found in children with ASD, and normal functioning siblings of 
autistic children have intermediate level of  Clostridium  species 
between ASD and healthy unrelated controls. Bacteria implicated: 
 Clostridium  species 

 [ 38 –
 40 ] 

 Children with ASD were reported to have higher level of 
 Bacteroidetes  and lower level of  Firmicutes . Bacteria implicated: 
 Bacteroidetes ;  Firmicutes  

 [ 41 ] 

 Metabolome  Abnormal levels of urinary hippurate, 4-hydroxyhippurate, and 
 N -methyl-2-pyridone-5-carboxamide (2PY) found in ASD children 

 [ 53 ] 

 First metabonomics study on ASD. Reported increased urinary 
levels of 2PY,  N -methyl nicotinic acid, and  N -methyl nicotinamide 
and decreased levels of urinary gut microbe co-metabolites such as 
hippurate, phenylacetylglutamine, and 4-cresol sulfate in ASD 
children 

 [ 55 ] 

 Metabolic profi ling showed differences in urinary amino acids, i.e., 
glycine, alanine, and taurine, as well as gut microbe co-metabolites, 
i.e., propionic acid derivatives and bile acids, between normal and 
ASD children 

 [ 56 ] 

 Found levels of urinary succinate and glycolate higher in ASD 
children and levels of urinary hippurate, 3-hydroxyphenylacetate, 
3-hydroxyhippurate lower in ASD children 

 [ 57 ] 
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   The growing ASD incidence attracts interest in better defi ning the role of recent 
changes in food intake and exposure in the etiology of the disease. For instance, 
essential fatty acids taken in diets mediate brain functions and structures during 
development and are involved in many brain-related disorders like autism [ 58 ]. 
Among the various lipid species, cell membrane components, including mainly 
phospholipids, are very rich in PUFAs in brain tissue, with AA and DHA represent-
ing up to 20 % of the dry brain weight [ 58 ]. Abnormalities in the fatty acid composi-
tions of phospholipids have been implicated in several neurodevelopmental 
disorders that manifest with psychiatric symptoms. In particular, alteration in fatty 
acids and phospholipids, including not only reduced levels of n-3 PUFAs but also 
increased levels of saturated fatty acids in the red blood cell membrane [ 59 ] or in 
plasma [ 21 ], was described in autistic subjects. In particular, blood plasma of autistic 
patients showed an increase in most of the saturated fatty acids except for propionic 
acid and a decrease in most of polyunsaturated fatty acids, which could relate to 
multifactorial processes ranging from oxidative stress to mitochondrial dysfunction 
and lead to induced metabolic alterations in Saudi autistic patients [ 60 ]. The 
concomitant alteration in phospholipase activity associated with decreased levels of 
AA, docosatetraenoic acid, and DHA in red blood cell membranes from autistic 
subjects further supports a fundamental role of the phospholipid metabolic regula-
tion in autism and the potential role of nutritional intervention for future prevention 
strategies [ 61 ]. This was recently exemplifi ed by El-Ansary et al. [ 58 ] in a study 
comparing the relative concentrations of essential fatty acids (linoleic and alpha- 
linolenic), their long chain polyunsaturated fatty acids, and phospholipids in plasma 
of autistic patients from Saudi Arabia with age-matching controls.    They reported a 
signifi cant modulation of the metabolism of fatty acids, as assessed via an alteration 
of the ratio between essential fatty acids/long chain polyunsaturated fatty acids and 
omega-3/omega-6 fatty acids, and a decrease in circulating levels of phospholipids. 
The authors provide particular emphasis on phosphatidylethanolamine, phosphati-
dylserine, and phosphatidylcholine lipid species which could be used as potential 
biomarkers for future treatment or prevention strategies.  

14.5     Therapeutic Perspectives 

 The potentiality of using metabolic and gut microbial metabolic markers for future 
therapeutic perspectives is signifi cant but so far at their infancy, due to the yet limited 
defi nition and understanding of the processes leading to the gut–brain axis dysfunc-
tion in ASD. One should separate the nutritional approaches aiming at prevention 
from management of specifi c conditions or disease stages. Once additional and more 
consolidated phenotype characterizations of the human host–microbiome are avail-
able, more studies should be dedicated to investigate metabolic features associated 
with the gradual development of the ASD dysfunction. In particular, family at-risk 
subpopulations should be defi ned and studied in order to generate further hypotheses 
on environmental and nutritional strategies for prevention and management.  
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14.6     Conclusions 

 Comprehensive and long-term phenotyping of populations at risk is envisioned to 
provide some key and still missing insights into understanding mechanisms involved 
into the pandemic development of ASD. In this, novel methodologies, enabling to 
rediscover the intimate relationships with the gut functional ecology and interac-
tions along the gut–brain axis, are foreseen as a fundamental cornerstone of the 
molecular mechanisms at play. The molecular hypotheses about etiology of the 
metabolic phenotype are still highly debated, but they suggest that patients should 
be screened for their microbiota for therapeutic strategies or preventive programs, 
which could benefi t from novel and minimally invasive systems biology approaches.     
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    Chapter 15   
 The Modulation of Drug Effi cacy 
and Toxicity by the Gut Microbiome 

             Ian     D.     Wilson      and     Jeremy     K.     Nicholson   

    Abstract     The gut microbiota have been shown to have an important infl uence, 
direct and indirect, on the metabolism and toxicity of a wide range of drugs and 
xenobiotics. The major drug-metabolizing capability of the gut microbiota is reduc-
tive metabolism, but demethylation, dehydroxylation, deacylation, decarboxylation, 
and hydrolysis reactions have also been demonstrated as well as acetylation. 
Microbiome-driven drug metabolism can result positively in the activation of pro-
drugs to their pharmacologically active forms or alternatively result in adverse con-
sequences such as toxicity. In addition, the gut microbiota can affect drug metabolism 
and toxicity indirectly via, e.g., competition of bacterial-derived metabolites for 
xenobiotic metabolism pathways or the modulation of host metabolic systems.  

  Keywords     Deconjugation   •   Drug metabolism   •   Drugs   •   Gut bacteria   •   Metabolism   
•   Microbiome   •   Prodrug activation   •   Toxicity   •   Xenobiotics  

15.1         Introduction 

    With our expanding knowledge of the composition and role of the gut microbiota in 
human health and disease, interest has once more focused on the role of this impor-
tant “external” organ in modifying the pharmacological effects of drugs, or their 
toxicity, and it currently forms an area of active research. In addition there is the 
interesting question of the modifi cation of the microbiome using pharmaceuticals. 
This can be either intentional, in order to modify some of the activities of the gut 
microbiota benefi cially, or unintentional, as a result of “collateral damage” caused 
by, e.g., exposure of the host to antibiotics, and cytotoxics etc. The latter poses the 
further question of how far one should go to mitigate this unintended damage to the 
gut ecosystem in the light of our increasing understanding of the importance of the 
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gut microbiome to the host. It is now clearer than ever that these organisms are not 
merely  passengers in the hosts digestive system, but important members of the crew.

   As is now well accepted, in the adult human, the gut contains up to ca. a kilogram 
of bacteria, the bulk of which comprise species of obligate anaerobes from the gen-
era  Bacteroides ,  Clostridium ,  Lactobacillus ,  Escherichia ,  Bifi dobacteria , and 
 others, together with a variety of yeasts and other microorganisms. This results in a 
complex and still incompletely characterized ecology comprising ca. 1,000 species 
that coexist in a dynamic equilibrium. For the host the microbiome provides benefi ts 
via enhanced energy recovery from food, defense against pathogens, and interac-
tions with the immune and nervous systems through a number of signaling mole-
cules and metabolites. The composition of the gut microbiome is different between 
individuals and depends on many factors such as whether birth was conventional or 
by Cesarean section, diet, antibiotic treatment, environment, etc. 

 However, for the drug metabolism and toxicology communities, despite many 
early studies showing its importance in some instances of xenobiotic biotransforma-
tion, it is arguable that gut microbiota of animals and man has (at least until recently) 
become a “forgotten organ” for modulating drug metabolism, disposition, and tox-
icity (this is despite an early focus in vitro studies employing gut microbiota incuba-
tions where their infl uence of drug metabolism was investigated in depth (e.g., see 
Refs. [ 1 ,  2 ]). This lack of current awareness is potentially a serious oversight as the 
microbiota are not only capable of a very wide range of biotransformations but are 
also a source of physiological variability between individuals with clear potential to 
affect the disposition, and toxicity, of drugs and metabolites via secondary interac-
tions mediated through, e.g., the metabolic exchange and the  co- metabolism and 
processing of many diverse substrates [ 3 ]. Indeed, thanks to the gut microbiota, the 
host is continually exposed to bacterially derived metabolites and waste products 
that not only require processing and elimination but that may also modulate, to a 
greater or lesser extent, the host’s drug-metabolizing systems via, e.g., the induction 
of drug-metabolizing enzymes (or their inhibition) or by the production of second-
ary metabolites that compete for particular drug-metabolizing pathways to give, in 
an analogous way to drug-drug interactions (DDIs), drug- microbiome interactions 
(DMIs). That this should be the case is unsurprising as undoubtedly an important 
driver for the development of the, so-called, phase I and II drug-metabolizing sys-
tems was the need to eliminate unwanted microbiota- derived metabolites such as, 
e.g., ethanol and benzoic acid. Such factors may be important in both personalized 
medicine and so-called idiosyncratic drug toxicity.  

15.2     Drug-Metabolizing Capabilities of the Gut Microbiota 

 The metabolic capacity of the gut microbiota is large and is capable of undertaking a 
wide number of biotransformations on drugs and other xenobiotics. These metabolic 
capabilities include reductive and hydrolytic reactions as well as decarboxylation, 
dehydroxylation, dealkylation, de-halogenation, deamination, etc. (Fig.     15.1 ). 
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Another important set of reactions includes the modifi cation of xenobiotic  metabolites 
produced by the host but excreted into the gut (generally via the bile) such as 
 glucuronides, sulfates, and glutathione conjugates. Examples, and potential conse-
quences, of these types of drug metabolism are given below.  

15.3     Microbiome-Based Metabolism of Drugs 
and Other Bioactive Compounds 

15.3.1     Reductive Metabolism 

 The environment of the gut is well suited to non-oxidative metabolism, and the 
microbiome therefore provides the host with a metabolic organ of considerable 
capacity for the reductive biotransformation of drugs, and drug-like compounds, 
such as the polar azo dyes prontosil ( p- (2,4-diaminophenylazo)benzenesulfon-
amide) [ 4 ] and neoprontosil (sodium 2-( p- sulphamyl-phenylazo)-7-acetamido- 1-
hydroxynaphthalene-3,6-disulfonate) [ 5 ]. These compounds are both prodrugs of 
sulfanilamide. Such reductions can therefore have important consequences result-
ing in the conversion of “prodrugs” into their active forms, the inactivation of com-
pounds, or the toxifi cation of otherwise innocuous compounds. Rafi i and Cerniglia 
[ 6 ] demonstrated that a number of anaerobic species of bacteria present in the GI 
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  Fig. 15.1    A schematic highlighting the major metabolic reactions that are undertaken by the gut 
microbiota and illustrating the metabolic linkage with the host liver where biliary excretion and 
enterohepatic cycling of metabolites can result in host-microbiome co-metabolism       
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tract of humans could reductively metabolize a range of azo dyes and  nitropolycyclic 
aromatic hydrocarbons to aromatic amines. This activity resided in species of the 
genera  Clostridium  and  Eubacterium . They studied the azo- and nitroreductases 
from three  Clostridium  strains and one  Eubacterium  strain, noting that these 
enzymes were produced constitutively in each of the bacteria, with the enzymes 
exhibiting different electrophoretic mobilities depending upon the bacteria from 
which they had been isolated. However, based on comparison of their electropho-
retic mobilities, antibody affi nity, and the fact that nitroaromatic compounds could 
act as competitive inhibitors against azoreductase activity, they considered that both 
azo- and nitroreductase activities resided in a single enzyme. 

 As well as prontosil and neoprontosil, important reductive bioactivations include 
those of, e.g., the 5-aminosalicylic acid prodrugs sulfasalazine (salicyl-azo- sulfapyridine) 
[ 7 ,  8 ], olsalazine [ 9 ], ipsalazide (5-Carboxymethylcarbamoyl-4- phenylazo)-salicylic 
acid), and balsalazide (5-(carboxy ethtyl carbamoyl-4-phenylazo)-salicylic acid) [ 10 ] 
used in ulcerative colitis and infl ammatory bowel conditions. Reductive metabolism of 
these compounds by the gut microbiota is essential to obtain the desired pharmacological 
activity in the gut via the release of the anti-infl ammatory aminosalicylic acid moiety. 

 The consequences of reductive metabolism by the mictobiota can however, in 
addition to benefi cial drug activation, potentially be quite serious. Thus the toxifi -
cation of drugs via reductive metabolism has been implicated in the case of 
nitrazepam- induced teratogenicity in rats. In studies in the rat, Takeno and Sakai 
[ 11 ] found that incubation of nitrazepam in caecal content-derived bacterial sus-
pensions resulted in extensive nitroreduction of the drug reduction to 7-aminoni-
trazepam (rat liver homogenates could also perform this biotransformation but 
only under anaerobic conditions). At an oral dose of 300 mg/kg nitrazepam, to 
pregnant rats, the nitro- reduced metabolites 7-aminonitrazepam and 7-acetylami-
nonitrazepam accounted for ca. 30 % of the drug-related material recovered in the 
excreta, falling to only 2 % following pretreatment with antibiotics. A direct rela-
tionship with antibiotic treatment and the decline in nitroreduction was confi rmed 
when the nitroreductase activity of caecal contents was found to be almost com-
pletely eliminated by the antibiotic pretreatment (the activity in the liver homoge-
nates was unaffected). In addition antibiotic pretreatment was observed to reduce 
the teratogenic effects of the drug. The combination of these experiments led the 
authors to conclude that the intestinal microbiota not only played an important role 
in the reductive metabolism of nitrazepam but that the teratogenic effects of the 
drug were not unrelated to this. 

 Similarly, when the in vitro and in vivo metabolism of clonazepam was investi-
gated using germfree and ex-germfree rats, signifi cant amounts of reduction of the 
drug clonazepam to 7-aminoclonazepam were seen that appeared to be related to the 
gut microbiota [ 12 ]. As with nitrazepam hepatic microsomes were also capable of 
this biotransformation but only under anaerobic conditions. When [ 14 C]-clonazepam 
was dosed orally to germfree rats, the reduced metabolites of the drug accounted for 
only 15 % of the radioactivity in the urine, with over 70 % of the dose as a phenolic 
metabolite. However, following colonization with an intestinal fl ora, some 77 % of 
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the metabolites observed resulted from nitroreduction with the major product 
 identifi ed as 7-acetamidoclonazepam. 

 The reductive cleavage of hydrazone linkages in drugs has also been observed. 
Thus, when the drug levosimendan was administered to dogs, Antila et al .  [ 13 ] 
found evidence that the hydrazone linkage was cleaved by microbial action in the 
lower gastrointestinal tract. It was subsequently observed in humans that the 
 cleavage product, (R)-6-(4-aminophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-
one (OR-1855), was then absorbed from the gut and subjected to further biotrans-
formation to a pharmacologically active metabolite [ 14 ]. Similarly, following oral 
dosing to man, the drug eltrombopag was found to undergo extensive cleavage of its 
hydrazine linkage due to metabolism by gut microbiota [ 15 ]. This was evidenced by 
the production of the cleavage products following anaerobic incubation with rodent 
caecal contents or human fecal homogenate that was suppressed by antibiotics in 
both in vitro and in vivo experiments. However, on the basis of further in vivo stud-
ies, the authors concluded that concomitant antibiotic treatment in patients was 
unlikely to affect the pharmacokinetics of the drug in humans. 

 Reduction is, however, not limited to nitrogen-containing functional groups. 
Strong et al .  [ 16 ] demonstrated the microbiota-driven reduction of the sulfoxide- 
containing drugs sulfi npyrazone and sulindac when these were incubated with 
human or rabbit feces. Sulfi npyrazone was reduced to a greater extent under 
anaerobic compared to aerobic conditions and it was noted that the reduction of 
sulindac was more extensive than that of sulfi npyrazone in human-derived feces. 
The presence of the antibiotics metronidazole and lincomycin in the growth 
medium markedly inhibited the reduction of sulfi npyrazone in human feces 
while tetracycline reduced sulfi de production in rabbit feces/caecal contents. 
The formation of the sulfi des of both sulindac and sulfi npyrazone ex vivo was 
found to be reduced for feces obtained from patients treated with metronida-
zole, and this antibiotic also decreased the in vivo reduction of sulfi npyrazone 
by the rabbit. More recently the H+/K+ATPase inhibitor omeprazole has also 
been shown in vitro to be reduced to its sulfi de metabolite by the intestinal 
microbiota [ 17 ]. 

 A particularly interesting example of reductive drug metabolism by the micro-
biota relates to the clinically important cardiac drug digoxin which is subject to 
quite extensive reductive metabolism to less pharmacologically active metabolites 
such as dihydrodigoxin and related compounds. Thus Lindenbaum et al .  [ 18 ] deter-
mined the urinary excretion of the relatively cardioinactive reduced metabolites of 
digoxin (dihydrodigoxin and related compounds) in 131 normal subjects during 
studies of digoxin bioavailability. They found that in one-third of the subjects, 
reduced metabolites of the drug accounted for more than 5 % of the excretion of 
digoxin and its metabolites (after either single or multiple doses). This result was 
stable such that volunteers continued to excrete the same proportion of the reduced 
metabolites on repeated exposure to the drug digoxin. However, the exposure of 
some subjects to erythromycin resulted in a failure to excrete further quantities of 
the reduced metabolites following subsequent doses. In addition the presence of the 
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reduced metabolites in urine was lower if the drug was administered via the intrave-
nous route (with oral  administration the excretion of the reduced metabolites of 
digoxin was seen to vary inversely with bioavailability). On the basis of these fi nd-
ings, the authors  hypothesized that this metabolic reduction was the result “of the 
activity of a  variable  component of the intestinal fl ora.” Further studies [ 19 ,  20 ] 
implicated  Eubacterium lentum  as the sole organism forming these cardioinactive 
reduced metabolites of digoxin. However, the authors noted that the presence of this 
bacterium in the stools did not automatically mean that the host would excrete the 
reduced metabolite and further noted that there was an inverse relationship between 
the presence of increasing amounts of arginine in the growth medium and produc-
tion of the reduced metabolites (observations that have only recently been explained 
as described below). Subsequently stool samples acquired from a group of 77 nurs-
ing home residents were analyzed to determine if there was a relationship between 
colonization with digoxin-reducing strains of  E. lentum  and infection with 
 Clostridium diffi cile  and the effects of previous antibiotic treatment, enteral feeding, 
and bowel movement habits [ 21 ]. This investigation found that colonization with 
the digoxin-reducing  E. lentum  was less prevalent in patients infected with  C. diffi -
cile , previously treated with either antibiotics or enteral feedings. In addition nor-
mal bowel habits were more commonly associated with subjects who were not 
colonized with  C. diffi cile .  

 As well as the factors described above, the same group also demonstrated that 
age was also important in the development of the ability of the gut microbiota to 
inactivate digoxin [ 22 ]. Studies in children showed that none of those less than 
8 months of age produced reduced digoxin metabolites. A more adult pattern of 
digoxin metabolism was seen with age with one-third of the subjects studied pro-
ducing reduced metabolites of the drug after 16 months of age. However, the levels 
of reductive digoxin metabolism seen in ca. 10 % of the adult populations were not 
observed in patients that were under 9 years of age. Bacterial cultures prepared from 
feces obtained from 73 babies aged less than 8 months were, however, shown to 
contain the appropriate digoxin-reducing bacteria, leading the authors to conclude 
that “maturation of the gut microbiota with respect to digoxin metabolism appears 
to be a protracted process. The relative digoxin resistance of infants and children is 
not due to bacterial inactivation” [ 22 ]. 

 Differences in the production of reduced digoxin metabolites between  populations 
have also been noted with one investigation showing that the drug was converted to 
reduced metabolites to a much greater extent by North American subjects (36 %) 
compared with a South Indian population (13.7 %). This difference was maintained 
when subjects from India went to live in the USA [ 23 ]. Within the 
Indian population there were also signifi cant differences with the rural village popu-
lation observed to produce ca. 5 % of the reduced metabolites as opposed to 23 % 
by urban dwellers. 

 Most recently Haiser et al .  [ 24 ] have reinvestigated the reductive metabolism of 
digoxin using modern methods of molecular biology. Using a combination of tran-
scriptional profi ling, comparative genomics, and culture-based assays, they found a 
cytochrome-encoding operon that was upregulated by digoxin and inhibited by 
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arginine. This was not present in strains of  E. lenta  that did not metabolize the drug 
and was predictive of digoxin inactivation by the human gut microbiome. In vivo 
studies in gnotobiotic mice colonized with the digoxin-reducing strain of  E. lenta  
revealed that dietary protein reduced the microbial metabolism of digoxin, resulting 
in changes in serum pharmacokinetics and urinary excretion (there was no such 
effect in mice colonized with the nonreducing strain of these bacteria). What then 
emerges from this most recent study is a more comprehensive picture of a microbi-
ome-drug interaction that requires an appropriate strain of the bacteria involved to 
be present, with the resulting activity observed possibly also modulated by diet. 

 The gut reductive microbiota metabolism of metronidazole via the ring nitro 
group to its amino metabolite 1-(2-aminoimidazol-1-yl)-3 methoxypropanol-2-ol 
and acetamide (a known rat carcinogen) has been demonstrated both in vitro and 
in vivo in the rat [ 25 ,  26 ]. The suggested mechanism involved nucleophilic attack 
at carbons 2 and 4 of a partially reduced nitroimidazole ring, which was subse-
quently cleaved between positions 1 and 2 and 3 and 4 to yield both acetamide and 
 N -(2- hydroxyethyl)-oxamic acid [ 27 ]. In vitro studies on cultures of rat caecal con-
tents or  Clostridium perfringens  gave yields of 8–15 % of the metabolite (much 
higher than that of the oxamic acid metabolite). In vivo studies employing oral 
administration (200 mg/kg) of [ 14 C]-labeled metronidazole to rats resulted in 1.3–
1.8 % of the dose being excreted in urine as acetamide with a further 0.9–2.4 % 
eliminated via the feces. However, no such excretion of acetamide was obtained 
with germfree rats. 

 A more recent example of the reductive metabolism of drugs involves the 
 anticonvulsant zonisamide (1,2-benzisoxazole-3-methanesulfonamide)    [ 28 ]. This 
drug has been shown to be mainly converted to 2-sulphamoylacetylphenol via the 
reduction of the benzisoxazole ring. While mammalian liver enzymes can perform 
this biotransformation, the role of the intestinal microbiota was also evaluated 
in vivo in the rat. In this study it was shown that antibiotic treatment signifi cantly 
reduced the urinary and fecal excretion of the reduced metabolite following oral 
dosing with the drug. When the animals were recolonized, the presence of the 
microbiota restored the excretion of the metabolite. Further studies showed that the 
caecal contents obtained from control rats possessed zonisamide reductase activity 
that was absent from that of the antibiotic-treated rats. A number of strains of intes-
tinal bacteria were tested for the ability to reduce zonisamide with  Clostridium spo-
rogenes  showing the highest activity. On the basis of these studies, the authors 
concluded that, in vivo, the gut microbiota played a major role in the production of 
2-sulphamoylacetylphenol. These studies contrasted with the conclusions of earlier 
in vitro studies that suggested that bacterial involvement in this metabolism, while 
it did occur, was not particularly important quantitatively compared to that observed 
in hepatic microsomes [ 29 ]. 

 The in vitro reduction of the prodrug loperamide N-oxide to loperamide (used 
for the symptomatic treatment of diarrhea) was investigated using gut microbiota, 
gut contents, intestinal cells, and hepatocytes [ 30 ]. Effi cient reduction was seen in 
the caecal contents from rat, dog, and human, and this activity was greatly reduced 
in the germfree rat. 

15 The Modulation of Drug Effi cacy and Toxicity by the Gut Microbiome



330

 Other losses of oxygen have been noted for the H 2  receptor antagonists ranitidine 
[ 31 ] and nitazidine [ 32 ], but not cimetidine or famotidine, as a result of the action 
of the gut microbiota in vitro [ 32 ]. 

 As well as the toxicity associated with the reduction of nitrazepam described 
above, the reductive metabolism of the antibiotic chloramphenicol by the gut micro-
biota has been associated with often fatal, idiosyncratic, bone marrow aplasia [ 33 ]. 
The metabolite responsible was suggested as  p -aminophenyl-2-amino-1,3- 
propanediol [ 34 ]. This metabolite is only generated by a small percentage of patients 
who take the drug orally and have a high percentage of the coliform bacteria that are 
capable of metabolizing chloramphenicol to this metabolite. However, other metab-
olites responsible for this toxicity have been proposed [ 32 ,  34 ] including 
 p -nitrophenyl - 2 -dicloroacetamido-1,3-propanediol and 2-dichloroacetamid-3-
hydroxypropio-p - nitrophenone [ 35 ].   

15.4     Demethylations, Dehydroxylations, 
Deacylations, and Decarboxylations 

 Another well-known set of biotransformations of the gut microbiota is its ability to 
undertake metabolic demethylations, decarboxylations, and dehydroxylations. The 
demethylation of methamphetamine and 4′-hydroxymethamphetamine by the gut 
microbiota was shown by Caldwell and Hawksworth in the guinea pig [ 36 ]. The 
O- and N-demethylation of a range of compounds were explored by Smith and 
Griffi ths for a range of compounds, incubated with rat-derived microbiota, who 
found that N-dealkylation did not occur for any of the drug molecules studied while 
O-dealkylation occurred only for relatively simple aromatic compounds [ 37 ]. A 
recent example of O-dealkylation is provided by studies in man on the metabolic 
fate of  N 4-(2,2-dimethyl-3-oxo-4-pyrid[1, 4]oxazin-6-yl)-5-fl uoro- N 2-(3,4,5- 
trimethyoxyphenyl)-2,4-pyrimidinediamine (R406) and its oral prodrug  N 4-(2,2-
dimethyl- 4-[(dihydrogenphosphonoxy)methyl]-3-oxo-5-pyrid[1, 4] oxazin-6-yl)-5-
fl uoro- N 2-(3,4,5-trimethyoxyphenyl)-2,4-pyrimidinediamine disodium  hexahydrate 
(fostamatinib), a spleen tyrosine kinase inhibitor [ 38 ]. Metabolic studies performed 
in vitro showed the prodrug to be rapidly converted to the active compound by 
human intestinal microsomes. The active species was also the major drug-related 
compound detected in human plasma following oral dosing. The bulk (ca. 80 %) of 
a [ 14 C]-dose of the drug was eliminated via the feces (with the remainder in urine) 
where the drug and a unique 3,5-benzene diol metabolite were detected. This 
3,5-benzene diol metabolite appeared to result from the  O -demethylation and dehy-
droxylation of one of the systemic metabolites of the drug (designated as R529) 
undertaken by anaerobic gut bacteria. This conclusion was based on the observation 
that R529 was converted to the 3,5-benzene diol on the in vitro incubation of this 
metabolite with human-derived feces. The experiments performed to investigate the 
overall metabolism of the drug suggested that production of the 3,5-benzene diol 
metabolite in man resulted from an initial hepatic cytochrome P450-mediated 

I.D. Wilson and J.K. Nicholson



331

 p - O -demethylation of the drug followed by further gut microbiota  O -demethylations 
and dehydroxylation. 

 As well as their studies on O- and N-dealkylations described above, Smith and 
Griffi ths also investigated, in the same study [ 37 ], the in vitro gut microbial metabo-
lism of N-acetylated compounds and found that phenacetin, acetanilide, and 
paracetamol, amongst others, all underwent signifi cant amounts of N-deacylation. 
Such reactions, which unmask the aniline (phenetidine and p-aminophenol in the 
case of phenacetin and paracetamol, respectively), are clearly of interest with 
respect to potential toxicity. 

 Another interesting example    of dehydroxylation/decarboxylation concerns 
L-DOPA (levodopa,  L -3,4-dihydroxyphenylalanine) which is administered orally to 
treat Parkinson’s disease. That the gut microbiota might be involved in the metabo-
lism of the drug was fi rst suggested by studies by Sandler et al. [ 39 ,  40 ] who noted, 
when treating patients suffering from Parkinson’s disease with L-DOPA, that the 
urinary excretion of 3-hydroxyphenylacetic acid was increased. However, they also 
observed that concentrations this metabolite were signifi cantly reduced in quantity 
by administration of neomycin suggesting that some microbial dehydroxylation of 
dopamine or  L -DOPA occurs in man. Studies in rats [ 41 ] showed that 3-hydroxy-
phenylacetic acid was only seen in the urine of conventional, but not germfree, 
animals administered  L -DOPA or dopamine. Both germfree and conventional ani-
mals were capable of converting  m -tyramine to 3-hydroyphenylacetic acid suggest-
ing that the conversion of dopamine to  m - tyramine is bacterial in origin. In another 
study the microbial degradation of  L -DOPA,  14 C-DL-DOPA (and potential phenolic 
metabolites) was investigated by means of incubations with rat caecal contents [ 42 ]. 
This work suggested that the biotransformation of DOPA was by way of 3,4-dihy-
droxyphenylacetic acid and decarboxylation or dehydroxylation to 4-methylcate-
chol or 3-hydroxyphenylacetic acid, respectively. In some incubations 
3-hydroxyphenylacetic acid was further metabolized via decarboxylation to  m - 
cresol. 3-Hydroxy-phenylpropionic acid was also detected as a metabolite. This is 
interesting as, to be effective, DOPA is decarboxylated following its passage across 
the blood-brain barrier to give dopamine, and Peppercorn and Goldman [ 43 ] sug-
gested that this reaction could also be catalyzed by the gut microbiota which reduces 
the amount of dopamine reaching the brain. Results obtained by examining drug 
bioavailability after administration of  L -DOPA to the dog gave average AUCs after 
hepatoportal and IV administration that were essentially the same [ 44 ]. However, 
when dosed duodenally, the AUC for  L -DOPA was reduced, and this was combined 
with an increase in that of dopamine. When paromomycin and kanamycin were 
administered to suppress the gut microbiota, similar plasma and urinary excretion 
profi les were observed between control and antibiotic-treated animals. Further 
investigations of this decarboxylation determined the distribution of the decarboxyl-
ase activity of homogenates prepared from segments of the intestine. These showed 
that the jejunum had the highest enzyme activity, followed by the ileum and duode-
num, leading the authors to conclude that, in the dog, the reduced bioavailability of 
orally administered levodopa occurred as a consequence  L -DOPA decarboxylation 
in the gut wall rather than gut microbiota.  
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15.5     Effects of Bacterial Hydrolases 
on Drug Action and Toxicity 

 One of the more obvious and widely known effects that the gut microbiota exert on 
drug and xenobiotic metabolism, disposition, and toxicity relates to the effects of 
the hydrolytic enzymes responsible for the deconjugation of glucuronides, gluco-
sides, etc. on both dietary pharmacologically active compounds and xenobiotic 
metabolites. Investigations have shown that the activities of the β-glucosidase 
and β-glucuronidase enzymes (as well as nitrate reductase and nitroreductase) 
 determined in  Escherichia coli ,  Clostridium  sp.,  Streptococcus  sp.,  Bacteroides  sp., 
and  Lactobacillus salivarius  differ between strains of gut bacteria. Thus,  Clostridium  
sp. showed the greatest enzymatic activity for β-glucosidase and β-glucuronidase 
(and nitroreductase, with  E. coli  the most active for nitrate reductase). The study 
was conducted both in vitro and in vivo and the authors found that, in general, the 
in vivo activity of the enzymes in was highest (although there were instances when 
this relationship was reversed) [ 45 ]. 

 Effects on the bioavailability of natural products such as the fl avone glucuronide 
baicalin (present in  Scutellariae radix ), where prior hydrolysis to the aglycone 
baicalein is followed by reconjugation following absorption [ 46 ], or effects on soy 
isofl avones to produce phytoestrogens such as equol are well known [ 47 ,  48 ]. In a 
similar way the effect of these gut microbiota-derived hydrolytic enzymes on the 
disposition of drugs and their metabolites is readily apparent in the case of conju-
gated metabolites (e.g., glucosides, glucuronides, and sulfates) that, following their 
production in the liver, are excreted in the bile. Hydrolysis by microbial enzymes 
results in their being resorbed, and this enterohepatic recycling can result in the 
modulation of the pharmacokinetic properties of the drug. In fact hydrolysis of 
glucuronide metabolites by bacterial enzymes can be responsible for considerable 
unwanted drug toxicity, and this has provided the impetus for the synthesis of  specifi c 
inhibitors of bacterial glucuronidase to prevent this from occurring. The fi rst use of 
this approach was applied to the DNA topoisomerase I inhibiting anticancer 
drug irinotecan by Wallace et al. [ 49 ]. The dose-limiting side effect of the drug, 
which is commonly used in the treatment of colon cancer, is the severe diarrhea that 
results from the hydrolysis of an inactive glucuronide metabolite by bacterial 
B-glucuronidases thereby reactivating the drug in the gut. By designing specifi c 
bacterial B-glucuronidase inhibitors, that had no effect on the mammalian 
B-glucuronidase, with crystal structures establishing that this selectivity was due to 
interaction with a bacterial B-glucuronidase-specifi c loop on the enzyme, the authors 
were able to eliminate irinotecan-induced toxicity in mice also orally administered 
the inhibitor. More recently the same approach was demonstrated to have similar 
effects on the small intestinal injury resulting from nonsteroidal anti-infl ammatory 
drug (NSAID)-induced toxicity [ 50 ,  51 ]. Many of these NSAIDs contain a carboxylic 
acid and this represents a common site for glucuronidation, followed by excretion 
via the bile. In the first example of this approach [ 52 ], the bacteria-specific 
glucuronidase inhibitor (1-(   (6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-
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(4-ethoxyphenyl)-1- (2- hydroxyethyl))thiourea) used with irinotecan was shown to 
inhibit the hydrolysis of diclofenac acyl glucuronide. Control or inhibitor-pretreated 
mice were administered an ulcerogenic dose of diclofenac and the effects noted. As 
expected, without pretreatment with the inhibitor, numerous large ulcers were 
detected in the small intestine while treated animals showed much reduced mucosal 
injury and enteropathy. This suggests that it is the liberation of the drug (and ulcero-
genic metabolites) rather than the glucuronides themselves that is responsible for 
gut toxicity. Perhaps surprisingly, given the potential to reduce enterohepatic recy-
cling, measurement of the pharmacokinetics of the drug with and without inhibitor 
 pretreatment showed no differences in systemic drug exposure to diclofenac. 

 Subsequently the same authors showed that the inhibitor was equally effective at 
preventing NSAID-related damage when used when indomethacin, ketoprofen, and 
diclofenac were also administered to mice. Interestingly they demonstrated that the 
protective effects were maintained to some extent even if the inhibitor was adminis-
tered several hours after the drug diclofenac [ 53 ], which undergoes extensive 
enterohepatic recirculation, had been dosed. These data are compatible with the 
hypothesis that pharmacological inhibition of bacterial β-glucuronidase-mediated 
cleavage of NSAID glucuronides in the small intestinal lumen can protect against 
NSAID-induced enteropathy caused by locally high concentrations of NSAID 
aglycones. 

 Another example of the potential of microbiome-driven hydrolysis to result in 
serious consequences for patients is provided by the antiviral drug sorivudine 
(1-β- D -arabinofuranosyl-5-(E)-(2-bromovinyl)uracil) used to combat infections 
by varicella-zoster virus and herpes simplex virus type 1 [ 54 ]. Recent studies 
have indicated that the drug should not be combined with anticancer drugs 
such as 5- fl uorouracil (5-FU) or prodrugs such as tegafur because a metabolite, 
(E)-5-(2- bromovinyl)uracil (BVU), has been shown to cause the accumulation of 
5-FU in the systemic circulation by inhibiting its degradation, resulting in 
enhanced, sometimes fatal, toxicity. The mechanism behind this toxicity seems to 
result from the inactivation of the hepatic dihydropyrimidine dehydrogenase 
(DPD) enzyme by BVU. The production of BVU from sorivudine was ascribed to 
bacterial phosphorolytic enzymes with high enzymatic activity detected in the caecal 
and large intestinal contents of the rat [ 54 ]. The measurement of phosphorylase 
activity performed on the cell-free extracts obtained from some 40 species of 
microbes showed that high activity to convert sorivudine to BVU was present in 
the  Bacteroides  species  B. vulgatus ,  B. thetaiotaomicron ,  B. fragilis ,  B. uniformis , 
and  B. eggerthii . Further studies showed that in rats treated with ampicillin or a 
mixture of bacitracin, neomycin and streptomycin, or metronidazole, only low 
concentrations of BVU were detectable in serum. In contrast when the amounts of 
BVU in serum were determined after the administration of kanamycin (used to 
selectively decrease the number of aerobes, rather than anaerobes), they were 
found to be higher in untreated animals. From these results the authors concluded 
that BVU is produced in vivo from sorivudine by intestinal anaerobic bacteria 
especially  Bacteroides  species.  
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15.6     Bacterial Acetylation 

 While many microbiome-driven biotransformations result in reduction or  hydrolysis 
of drugs and their metabolites, an interesting exception is bacterial acetylation via 
bacterial N-acetyl transferases (NATs). Both N- and O-acetylation reactions have 
been shown to occur, and these reactions have been highlighted as being important 
in the bioactivation of genotoxic aromatic amines [ 55 ,  56 ]. In addition they are 
involved in the metabolism of drugs such as 5- aminosalyclic acid. Thus following 
oral dosing of 5-aminosalyclic acid, signifi cant amounts of N-acetylated 5-amino-
salycylic acid are excreted via the feces. When the drug was incubated with feces, 
using both aerobic and anaerobic conditions, this conjugation reaction was evident 
and this activity was demonstrated in a number of species [ 57 ]. Indeed, the acetyla-
tion of the aminosalicylate isomers 5-aminosalicylic acid (5-ASA) and 4-aminosali-
cylic acid (4-ASA), together with that of  p -aminobenzoic acid, has been investigated 
in some detail, examining steady-state kinetics, time-dependent inhibition, and 
DNA hybridization in some 40 bacterial species, mostly from the human intestinal 
microbiota. This study showed  N -acetyltransferase activity in 11 species of 
 Proteobacteriaceae  from seven genera (the  Citrobacter amalonaticus ,  Citrobacter 
farmeri ,  Citrobacter freundii ,  Klebsiella ozaenae ,  Klebsiella oxytoca ,  Klebsiella 
rhinoscleromatis ,  Morganella morganii ,  Serratia marcescens ,  Shigella fl exneri , 
 Plesiomonas shigelloides , and  Vibrio cholerae ). The authors found that 5-amino-
salicylic acid was acetylated much more effi ciently than the 4-amino isomer (27–645 
times), while  p -aminobenzoic acid was only poorly acetylated.  Pseudomonas aeru-
ginosa  was    found to be the best acetylator with regard to both substrate spectrum 
and catalytic effi ciency [ 57 ]. 

 There have been suggestions that the adverse side effects of drugs that form 
5-aminosalyclic acid such as olsalazine and sulfasalazine, which can result in 
 pancreatitis in children, may be a result of the toxicity of the acetylated metabolite 
[ 58 ].  

15.7     Microbial Metabolism of Glutathione Conjugates 

 While not direct metabolism of the xenobiotics themselves, the role of the micro-
biota in further processing glutathione conjugates formed in the liver from reactive 
metabolites, and then excreted in the bile, should be noted. Extensive metabolism 
of such conjugates, of a range of agrochemicals, was reviewed by Bakke and 
Gustafsson [ 59 ]. These studies showed the production of a large number of further 
metabolites via the degradation of the glutathione moiety for the conjugates of, e.g., 
2-chloro- N -isopropylacetanilide (propachlor) and naphthalene, phenanthrene, etc., 
involving the bacterial C-S-lyases. Such metabolism has been shown to have the 
potential to result in the almost complete removal of the glutathione part of the con-
jugate to produce a free thiol group. This type of reaction has also been shown for 
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drugs such as paracetamol with the thiol subsequently further metabolized to give 
the methylthio metabolite of the drug [ 60 ]. The complete removal of the glutathione 
conjugate to regenerate the parent compound has also been observed [ 59 ].  

15.8     Miscellaneous Biotransformations 

 The microbiota have demonstrated a range of other biotransformation capabilities, 
ether in vivo or in vitro, with regard to drug metabolism. For example, in the case of 
levamisole, used extensively as an anthelmintic drug, in both animals and humans, 
in vitro incubations under anaerobic conditions produced a number of ring-opened 
metabolites of the thiazole ring system [ 61 ]. The metabolites were mainly produced 
by the  Bacteroides  and  Clostridia , and one of them, levametabol I, has been 
 proposed as active for anti-colon tumor activity [ 61 ]. Another example of ring open-
ing has been seen for the antipsychotic drug risperidone where cleavage of the 
benzisoxazole ring, in both parent compound and various hydroxylated metabolites, 
has been demonstrated both in vitro (caecal contents) and in vivo in the rat and 
in vivo in the dog [ 62 ].  

15.9     Microbiome-Conditional Effects and Consequences 

 In the preceding text we have summarized the direct effects that the bacteria that 
comprise the gut microbiota can exert on the metabolism and toxicity of drugs, their 
metabolites, and related xenobiotics. In all likelihood these reported effects repre-
sent the tip of the iceberg as gut microbiota metabolism of drugs is not routinely 
assessed. However, the gut microbiota is not limited to direct effects and there are a 
number of indirect mechanisms whereby the microbiome can affect the metabolism, 
disposition, and toxicity of xenobiotics. Such effects include the modulation of host 
metabolic enzymes/transporters, competition for metabolism via particular host 
metabolic routes/enzymes, and enhancement of toxicity as a result of other effects 
on host biochemistry. 

 So, effects on the complement of the various xenobiotic metabolizing capabili-
ties of important detoxifi cation organs such as the gut and liver have been noted 
with the modulation of the levels of both cytochrome P450s and conjugating enzyme 
systems (e.g., [ 63 – 66 ]). 

 This includes the induction of P450s involved in the bioactivation of mutagens 
including the heterocyclic aromatic amine [ 63 ] 2-amino-3-methylimidazo[4,5-f] 
quinolone, amongst others. To date much of the information that we have on the 
effects of the microbiome on drug-metabolizing systems comes from a comparison 
of germfree animals with microbiome-competent controls. In a study    examining 
the effects of the colonization of germfree mice with either individual strains of 
bacteria or complete ileal/caecal microbiota from conventionally raised mice, 
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DNA microarray analysis was used to determine the response of the intestine [ 64 ] 
revealing a number of effects on xenobiotic metabolizing capabilities. Thus colo-
nization with  Bacteroides thetaiotaomicron  resulted in, amongst a range of other 
changes, decreases in glutathione  S -transferase (GST), CYP2D2 (also known as 
debrisoquine hydroxylase), and the transporter “multidrug resistance protein 1a” 
(Mdr 1a). However, colonization with other species of gut-dwelling microbes, such 
as  Escherichia coli  and  Bifi dobacterium infantis , or indeed complete microbiota 
resulted in different outcomes with either no change (conventional gut microbiota) 
or increased expression of these enzymes. The authors concluded that these com-
mensal bacteria were capable of modulating the expression of a range of host genes 
involved in a variety of “diverse and fundamental physiological functions” with the 
selective effects seen as a result of the type of bacteria used for colonization reveal-
ing how changes in the composition of the gut microbiome could have signifi cant 
physiological effects. 

 In another study [ 65 ] the amounts of a number of enzymes involved in the Phase II 
conjugation of drugs and other xenobiotics were determined in livers and the small 
intestine, caecum, and colon of both germfree rats and those inoculated with micro-
biota from normal rats. Effects were noted on enzymes involved in glutathione 
metabolism such as GST glutathione peroxidase (GPX2). In addition differences in 
the amounts of epoxide hydrolases (EPHXs) and N-acetyltransferases (NAT) 1 and 
sulfotransferases (SULTs) were seen. Some of these enzymes were expressed in 
both liver and gut, while others showed regional differences (e.g., the SULTs were 
found in liver and large, but not the small intestine) and, in addition, gender effects 
were noted for the liver, but not gut, for a number of conjugating enzymes. Thus 
hepatic SULT1A1, SULT1C1, and SULT1C2 were seen to be elevated in germfree 
animals in both male and females (1.5- to 2.6-fold) while hepatic EPHX2 was 
1.6-fold higher in female rats. The colonic germfree rats showed large differences 
compared to normal animals with GSTA1/2 4.0- and 5.0-fold higher in males and 
females, respectively, GSTA4 between 1.5 and 1.9-fold higher, and GSTM1 
elevated by 1.1/1.5-fold. The epoxide hydrolases, EPHX1 and EPHX2, were 
3.5/2.4- and 1.4/2.1-fold higher in male and female germfree rats, respectively. In 
the case of the sulfotransferases SULT1B1 and SULT1C2, the increases were 
0.4/0.6- and 1.3/1.6-fold and for NAT2 amounted to 1.4/1.5-fold for male and 
female germfree rats, respectively. 

 When human gut microbiota was used for recolonization, the effects on the 
expression of such enzymes in the colon were smaller than those seen for recoloni-
zation with rat gut microbiota. 

 Further literature examples also show that germfree rats, and those inoculated 
with human gut microbiota, can exhibit differences in glucuronidating (UGT) and 
GST enzymes when dosed with (+)-catechin or (-)-epicatechin. In addition, animals 
with human gut microbiota had reduced CYP2C11 induction compared to the 
germfree animals [ 66 ]. 

 Other gut microbial-conditional effects resulting from exposure to soy-derived 
phytoestrogens on host endogenous steroid (and thereby potentially xenobiotic) 
metabolism via a reduction in the excretion of 4-hydroxyestrogen and increased 
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2-hydroxyestrogen have been noted in postmenopausal women [ 67 ]. The authors 
suggested but did not actually demonstrate that this might result from changes in the 
expression of the CYPs involved in estrogen hydroxylation. Were this the case it 
would also be expected that there would also be knock on effects on the metabolism 
of drugs and other xenobiotics as well drug transporters. 

 Other indirect effects could easily result from competition between xenobiotics 
and microbial metabolites for metabolic pathways such as sulfation, often preferen-
tially used for the conjugation of phenolic hydroxyls, but where capacity is limited. 
This appears to be the case for metabolism of compounds such as paracetamol [ 68 ]. 
For example, a study in human subjects administered 1 g of paracetamol indicated 
that the ratio of glucuronide to sulfate metabolites excreted in the urine, which var-
ies considerably between individuals, was affected by competition for sulfation by 
microbially generated  p -cresol (produced by bacterial metabolism of tyrosine and 
phenylalanine). If large amounts of  p -cresol are present that compete with 
paracetamol for sulfation, there is the potential to reduce the ability of the host to 
detoxify the drug with potentially adverse consequences by directing metabolism 
toward the pathways that result in the production of the reactive quinone imine. 
Effects on the pharmacokinetics of orally administered paracetamol have been 
noted in a recent study in animals treated with antibiotics to eliminate the gut micro-
biota using a cocktail of bacitracin, streptomycin, and neomycin [ 69 ]. Paracetamol 
was dosed to both control and antibiotic-treated rats, with plasma concentrations of 
paracetamol and six metabolites determined via LC-MS/MS. The authors noted that 
the  AUC s of the drug and its glutathione conjugate were higher in the antibiotic- 
treated animals while the metabolic effi ciency of sulfate conjugation, as indicated 
by the ratio of the  AUCs  of paracetamol sulfate to paracetamol, was lower in 
antibiotic- treated compared to control rats (surprising given the induction of SULTs 
seen in the germfree animals described above)    [ 65 ]. Irrespective of the reasons for 
the decreased sulfation seen in these pseudo-germfree animals, this study provides 
another example of the gut microbiota, or its absence, affecting drug conjugation. 

 Effects on toxicity have also been noted between normal and germfree rats, even 
when metabolism seems relatively unaffected, for the model hepatotoxin hydrazine. 
Thus, when administered to germfree rats at what was effectively a no effect dose 
level in controls, hydrazine resulted in profound effects, with some of the test animals 
becoming moribund [ 70 ]. Clearly, although an extreme example, this study demon-
strates the value of a functional gut microbiome with respect to toxicity and suggests 
that different microbiomes might provide more subtle modulations of toxicity. 

 Such effects have obvious implications for drug toxicity testing, where differences 
in outcome may refl ect not only strain but microbiome. Clearly, such effects also 
have the potential to produce unexpected, and potentially unwelcome, variability in 
response to the administration of drugs and exposure to toxins between individual 
patients and populations (and indeed some limited evidence suggests    that there are 
microbially driven differences in drug metabolism between populations e.g., [ 23 ]). 

 However, despite a resurgence in interest in this “forgotten organ” (evidenced by 
a number of recent reviews, e.g., [ 71 – 76 ]) there is currently little, if any, real con-
sideration of the potential of this to affect the various phases of drug absorption, 
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disposition, metabolism, excretion, pharmacology, or toxicity in either discovery or 
drug development programs. Similarly there is little evidence that regulatory bodies 
are aware of the potential importance of the gut microbiome. This is, potentially, a 
serious oversight and in our view a better understanding of these complex interac-
tions could provide novel insights for drug discovery and development, and signifi -
cant  benefi ts for personalized medicine. The microbiome undoubtedly represents a 
“druggable target,” and there is no doubt that it is possible to modulate both its 
composition and metabolic activity. It clearly deserves more attention from the drug 
metabolism community.     
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    Chapter 16   
 Understanding the Benefi ts of Bariatric 
Surgery on Gut Physiology: Implications 
for Obesity, Type 2 Diabetes, 
and Cardiovascular Disease 

             Steven     K.     Malin     and     John     P.     Kirwan     

    Abstract     Seminal discoveries in the bariatric surgery fi eld have revealed a remarkable 
link between gastrointestinal physiology and obesity, a link that extends to remission 
of many metabolic diseases including type 2 diabetes and to risk of cardiovascular 
disease. Much of the benefi cial health effects of bariatric surgery can be ascribed to 
weight loss. However, in the case of type 2 diabetes, resolution is so acute that it 
appears to be independent of the weight loss. These observations have created 
the intriguing scenario whereby altering gastrointestinal anatomy creates rapid 
physiological adaptations that manifest in normalization of glucose homeostasis. 
The cellular and molecular mechanisms that produce these favorable health changes 
are an area of intense scientifi c investigation. One leading hypothesis suggests that 
rerouting nutrient fl ow to the gut alters enteroendocrine signals and bile acid 
secretion that favors appetite suppression; increased energy expenditure and insulin 
action; and decreased infl ammation, blood lipids, and hypertension. In addition, the gut 
microbiome has emerged as an area of particular interest with a focus on bacteria 
and metabolites that interact to infl uence weight regulation and metabolic health. 
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The collective evidence presented herein provides strong support for an essential 
role for the gastrointestinal tract as a modulator of obesity-related disease. The gut 
is now considered a novel endocrine organ and a therapeutic target for prevention 
and treatment strategies that will benefi t human health.  

     Keywords     Appetite-hormones   •   Bariatric surgery   •   Bile acids   •   Cardiovascular 
disease   •   Diabetes   •   Glucose   •   Gut microbiome   •   Incretins   •   Infl ammation   •   Insulin 
resistance   •   Microbiome   •   Nutrition   •   Obesity   •   Weight loss  

16.1         Overview of Obesity 

 Obesity is a major public health concern because it is associated with increased 
morbidity and mortality. The World Health Organization defi nes overweight as a 
body mass index (BMI) of 25 kg/m 2  or more and obesity as a BMI of >30 kg/m 2 . 
Obese patients are further characterized into class I (BMI 30–34.9 kg/m 2 ), class II 
(BMI 35–39.9 kg/m 2 ), and class III (BMI >40 kg/m 2 ). These subcategories are 
particularly important when considering disease risk, since chronic metabolic disease 
risk increases progressively from a BMI >20 kg/m 2  [ 1 ]. 

 According to the National Health and Nutrition Examination Surveys (NHANES) 
in the United States, nearly 78 million (or 35.7 %) adults and 12.5 million (16.9 %) 
children/adolescents are obese. Although the prevalence of obesity in adults aged 
20–74 years has more than doubled over the last 40 years (13.4 % in 1960–1962 vs. 
35.1 % in 2005–2006), it appears to have plateaued in the last several years [ 2 ]. 
Unfortunately, it has become clear that the distribution among obesity status in 
adults has shifted, such that a change in prevalence of superobesity (>50 BMI kg/m 2  
or class IV) has occurred from 0.9 % in 1960–1962 to 6.2 % in 2005–2006 [ 3 ]. 

 Obesity is responsible for more than 2.8 million deaths worldwide per year, 
owing to an increased prevalence of related comorbidities, including hypertension, 
heart disease, stroke, back and lower extremity weight-bearing degenerative 
problems, cancer, and type 2 diabetes [ 4 ]. Moreover, obesity is an independent risk 
factor for death, and some reports indicate that there is a 20–40 % increase in 
mortality in those who are overweight and upward of 300 % increased risk among 
those who are obese [ 5 ]. Lifestyle modifi cation, consisting of a combination of 
nutrition, physical activity, and behavioral modifi cation, is the fi rst-line approach to 
promote weight loss. Although these weight loss interventions typically show initial 
promise, the long-term ability to maintain the desired weight benefi t is typically 
lost even with use of pharmacotherapy. In fact, most patients who lose weight via 
behavioral changes and anti-obesity drugs tend to gain the weight back. The only 
known medical treatment for severe obesity that produces durable effects on body 
weight is bariatric surgery. In 1991, the National Institutes of Health established 
guidelines for surgical therapy for morbid obesity (BMI >40 kg/m 2  or BMI >35 kg/m 2  
in the presence of two or more comorbidities) [ 6 ]. In fact, bariatric surgery has 
proven effi cacy in not only ameliorating type 2 diabetes and cardiovascular disease 
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risk factors but also mitigates non-alcoholic fatty liver disease, sleep apnea, and    
gastroesophageal refl ux disorder (GERD) as well as reducing mortality (Fig.  16.1 ). 
These effects on multiple clinical conditions make bariatric surgery an important 
treatment option for many obese individuals.

  Fig. 16.1    Effects of bariatric surgery on physiological systems and disease states in obesity       
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   This chapter examines the impact of bariatric surgery on gut physiology. There is 
increasing evidence that alterations in the gut after bariatric surgery not only con-
tribute to the long-term weight loss maintenance but also to the treatment of type 2 
diabetes and cardiovascular disease risk factors in patients with a BMI >35 kg/m 2 . 
Central to the improvement in body weight is the increase in gut hormones known 
to suppress appetite. Special attention is also given to gut microbiome-related 
mechanisms that appear to be altered by bariatric surgery and may contribute to 
weight loss. The chapter also discusses effi cacy of the bariatric surgery as a thera-
peutic modality to improve glycemic control and cardiometabolic health in relation 
to altered gut physiology and low surgical risk.  

16.2     Bariatric Surgery Overview 

 Bariatric surgery is an effective therapy improving weight loss and metabolic health 
and is currently recommended for adults with a BMI of at least 40 kg/m 2  or 35 kg/m 2  
with comorbidities. Although bariatric procedures are commonly referred to as 
restrictive and/or malabsorptive (Fig.  16.2 ) based on the presumed mechanism of 
weight loss [ 7 ], it is worth noting that not all bariatric surgeries produce the same 
effect on body weight, diabetes remission, and cardiometabolic resolution (Table  16.1 ).

  Fig. 16.2    Conventional bariatric surgery operations. ( a ) Laparoscopic adjustable gastric banding. 
( b ) Sleeve Gastrectomy. ( c ) Roux-en-Y gastric bypass       
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    Restrictive procedures decrease the functional volume of the stomach, thereby 
increasing satiety due to limiting the intake of calories. These procedures often 
involve some form of material or “band” (i.e., laparoscopic adjustable gastric banding 
(LAGB)) and/or surgically resizing of the stomach with a stapler to create a small 
pouch (i.e., vertical gastroplasty (VBG) or sleeve gastrectomy (SG)) [ 8 ]. In LAGB, 
an adjustable plastic and silicone band is placed around the upper stomach to reduce 
the size of the channel between the proximal and distal stomach to reduce food 
consumption [ 9 ]. In VBG, a procedure not performed routinely any longer, part of the 
stomach is permanently stapled to create a smaller pouch along the lesser curvature 
of the stomach. Although the risk of death and major morbidity is low following 
LAGB or VBG, the amount of excess weight loss obtained is inferior compared to 
SG or malabsorptive procedures. After LAGB or VGB, patients lose nearly 46 % of 
their excess body weight, while over half experience type 2 diabetes remission. 

 Alternatively, SG is a relatively new surgical approach for obesity management. 
This nonreversible procedure involves resection of the greater curvature of the 
stomach by stapling it over a sizing tube 11–20 mm in diameter [ 10 ]. Although the 
effectiveness of SG with respect to weight loss and resolution of comorbidities is 
less than that of Roux-en-Y gastric bypass (RYGB), but greater than LAGB, SG is 
being used with increasing frequency due to fewer complications and reduced risk 
(SG accounted for 7.8 % of primary bariatric operations in 2010) [ 11 ]. Current 
advancements in restrictive procedures performed endoscopically have also the 
potential to expand bariatric intervention for weight loss management. In fact, 
endoluminal sleeves and intragastric balloons have demonstrated short-term benefi t 
for weight loss and comorbidity improvements, although long-term, randomized 
trials are lacking [ 12 ]. 

 Malabsorptive procedures are designed to reduce the area of intestinal mucosa 
available for nutrient absorption and restrict caloric intake similar to LAGB or 
SG. However, because the small intestine is shortened, they have added the compo-
nent of malabsorption of fat and nutrients. Afterward, more patients experience 
remission of type 2 diabetes (82–99 %) compared with restrictive operations, even 
in patients with longer duration of disease, including those treated with insulin 
(Table  16.1 ). In biliopancreatic diversion with duodenal switch (BPD-DS), part of 
the stomach is resected, and the duodenum is cut just distal to the pylorus and 

    Table 16.1    Metabolic effects of conventional bariatric techniques [ 19 ]   

 Rates of improvement after surgery (%) 

 Improvement  LAGB  RYGB  BPD 

 Excess weight loss  46.2  59.5  63.3 
 Resolution of type 2 diabetes  56.7  80.3  95.1 
 Remission of dyslipidemia  59  97  99 
 Resolution of hypertension  43  68  83 
 Operative mortality  0.1  0.5  1.1 

   LAGB  laparoscopic adjustable gastric banding,  RYGB  Roux-en-Y gastric bypass,  BPD  biliopan-
creatic diversion  
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reattached to the ileum, bypassing the duodenum and jejunum (i.e., digestive limb) [ 8 ]. 
The bypassed duodenum and jejunum (i.e., biliopancreatic limb) only pass bile 
and pancreatic juices. These loops converge at a common channel at the end of the 
small intestine, and the contents then pass normally through the large intestine. 
Theoretically, although BPD provides a more physiologic digestive behavior and 
diminishes the risk of dumping syndrome, ulcerogenicity, and hypocalcaemia, the 
procedure is labor intensive and places the patient at high risk [ 13 ]. On the other 
hand, RYGB is considered the gold standard for bariatric surgery and is the most 
commonly performed operation [ 7 ,  13 ]. The procedure involves creating a gastric 
pouch, Roux limb (jejunum and ileum), and biliary limb. The small gastric pouch is 
connected to the mid-jejunum, bypassing the majority of the stomach, the entire 
duodenum, and part of the proximal jejunum. Similar to the BPD-DS, the biliary 
limb is reconnected approximately 150 cm distal relative to the pylorus so that 
bilo- pancreatic juices can facilitate digestion. After RYGB, the size of the pouch 
greatly limits the amount of food that can be eaten [ 7 ,  13 ]. 

 Collectively, the effi cacy of weight loss will differ depending upon the type of 
surgery. Further, the speed at which type 2 diabetes remits also varies with restrictive 
versus malabsorptive procedures (Table  16.2 ). For instance, after RYGB and BPD-DS, 
diabetes remits within days, even before the patients have lost much weight, while 
this does not occur after restrictive procedures [ 14 ]. Subsequently, newer restrictive 
techniques are currently under investigation to improve personalized approaches 
that best fi t patients’ weight loss and comorbidity resolution needs. The current 
short-term research in assessing endoluminal sleeves and intragastric balloons on 
weight regulation and metabolic health improvements appears promising, although 
longer-term follow-up data are needed [ 15 ].

16.2.1       Effects of Bariatric Surgery on Obesity 

 Weight loss success following bariatric surgery has been described by 50–75 % 
excess weight loss (EWL), 20–30 % initial weight loss, and achieving a BMI 
<35 kg/m 2  [ 16 ]. The largest, prospective interventional-based trial that examined 

    Table 16.2    Changes in digestive and gut physiology after bariatric surgery [ 73 ]   

 LAGB  SG  RYGB 

 Masticating time  Higher  Higher  Higher 
 Food intake amount  Lower  Lower  Lower 
 Food transit time  Slowed  No change  Faster 
 Food preferences  More pureed/

less fi ber 
 No change  Decrease high 

fat/sugary food 
 Acid production  No change  Lower  Decreased 
 Ghrelin  No change  Lower  Lower 
 GLP-1 and PYY  No change  No change  Increased 

   LAGB  laparoscopic adjustable gastric banding,  RYGB  Roux-en-Y gastric bypass,  SG  sleeve 
gastrectomy  
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the effects of bariatric surgery (i.e., LAGB vs. VBG vs. RYGB) was on 4,047 obese 
patients with healthy matched treated control and is known as the Swedish Obesity 
Study [ 17 ]. The results demonstrated that, while the control group gained weight 
over time, the surgical groups lost on average 23 %, 17 %, and 18 % body weight 
at 2, 10, and 20 years, respectively [ 18 ]. Buchwald and colleagues conducted a 
meta- analysis on the effects of bariatric surgery-induced weight loss and obesity-
related comorbidities. It was reported that at 2 years post-surgery, the overall excess 
weight loss for 10,172 patients was 61.2 % [ 19 ]. Patients typically lose less weight 
after LAGB than RYGB, and the peak excess weight loss typically occurs at 
2–3 years with LAGB compared with 1–1.5 years with RYGB. The success of 
LAGB at inducing weight loss, however, at 4 years is comparable to RYGB [ 20 ]. 
Further, superobese (BMI >50 kg/m 2 ) individuals have less excess weight loss than 
patients with lower BMIs after RYGB, suggesting that bariatric surgery is success-
ful at inducing weight loss, but the magnitude of this response varies among patients 
depending on surgical type and preoperative BMI [ 21 ]. 

 It is important to recognize that while many patients experience successful weight 
loss, up to 20–25 % of patients experience weight regain [ 16 ]. These statistics do 
not negate the benefi t of surgery, but rather suggest the need for all individuals to 
modify behavior to focus on food tolerance, proper energy requirements, eating 
triggers, beverage selection, and patient nutritional knowledge in conjunction with 
appropriate amounts of exercise.  

16.2.2     Effects of Bariatric Surgery on Blood Glucose 

 Obesity is a major risk factor for type 2 diabetes and contributes to its development 
by inducing insulin resistance and infl ammation, which in turn reduce beta-cell 
function [ 22 – 24 ]. The notion that bariatric surgery “cures” diabetes was recognized 
over 20 years ago. Pories et al. [ 25 ] demonstrated in 141 patients with type 2 
diabetes or impaired glucose tolerance that all but two individuals had normalized 
glucose tolerance within 10 days after RYGB. At 7.6 years after surgery, 83 % of the 
diabetic patients were off their antidiabetic drugs, and 99 % of those with impaired 
glucose tolerance were normoglycemic with a normal fasting glucose and hemoglo-
bin A1c [ 26 ]. In the Swedish Obesity Study, at 2 years post-surgery with an average 
weight loss of nearly 28 kg, 72 % of patients had complete resolution of type 2 
diabetes compared with 21 % of controls [ 17 ]. Many of these patients had been able 
to stop taking oral hypoglycemic drugs or insulin, which is in contrast to the control 
group who had an increased need for these agents. These results are similar to those 
of Scopinaro et al. [ 27 ,  28 ] who reported long-term follow-up data on 312 patients 
with type 2 diabetes undergoing BPD and indicated that 99 % of patients achieved 
normal glucose concentrations by 1 year after surgery. At 10 years after surgery, 
98 % of the patients were still in complete remission of diabetes (i.e., normal 
blood glucose without antidiabetic medication use). However, not all surgical 
approaches induce comparable glycemic benefi t. Diabetes resolution was observed 
in approximately 98 % of patients who underwent BPD (with or without DS), 
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84 % who underwent RYGB, 72 % who underwent VBG, and 48 % who underwent 
adjustable gastric banding [ 19 ]. In addition, it is also worth considering that more 
recent guidelines for diabetes remission have been established, and current work 
suggests that approximately 50–70 % of individuals undergoing RYGB or SG may 
not meet remission criteria at 5 years post-operation [ 29 ]. This would suggest that 
biological factors, such as weight regain or insulin resistance, may contribute to 
diabetes relapse. Indeed, resolution of type 2 diabetes is likely to occur in those 
with the shortest duration of diabetes (<5 years) or milder forms of diabetes (diet-
controlled), lower central obesity, and/or the greatest weight loss after surgery [ 30 ]. 
Conversely, patients who do not resolve diabetes post-surgery are usually older or 
have a more prolonged surgical disease course [ 25 ,  31 ,  32 ]. Thus, further work 
understanding how to optimize diabetes remission rates is needed following surgery. 
Nevertheless, the majority of these observational studies have been supported by 
randomized control trials (RCTs) in obese cohorts with type 2 diabetes [ 33 – 35 ]. 
For instance, the Surgical Treatment and Medications Potentially Eradicate Diabetes 
Effi ciently (STAMPEDE) trial recently demonstrated the effects of bariatric surgery 
on controlling glycemia in obese individuals with type 2 diabetes. In the STAMPEDE 
trial, Schauer et al. [ 36 ] compared the effects of RYGB and SG versus intensive 
medical therapy in 150 obese patients with uncontrolled type 2 diabetes at 1 year 
post- operation. People were randomly assigned to surgical or medical therapy 
groups, and the primary end point was an HbA1c <6.0 %. The results indicated that 
RYGB and SG each produced signifi cant improvements in HbA1c in 42 % and 
37 % of patients, respectively, meeting glycemic control criteria. Taken together, 
bariatric surgery appears to result in dramatic glycemic control and weight loss 
improvements in obese patients with type 2 diabetes.  

16.2.3     Effects of Bariatric Surgery on Cardiovascular Disease 

 In addition to glycemic control benefi ts, bariatric surgery reduces cardiovascular 
disease risk by, in part, improving dyslipidemia and hypertension. Obesity is strongly 
associated with atherogenic dyslipidemia, which is often defi ned as elevated triglyc-
erides, high apolipoprotein B, small low-density lipoprotein (LDL) particles, and 
low high-density lipoprotein (HDL) cholesterol. Results of a meta- analysis showed 
marked decreases in levels of total cholesterol, LDL, and triglycerides after bariatric 
procedures [ 37 ]. In fact, approximately 70 % of patients experience an improve-
ment in hyperlipidemia with optimal improvements typically derived after BPD and 
RYGB [ 19 ]. In the Swedish Obesity Study, signifi cant improvements were observed 
in triglyceride and HDL concentrations at 2 and 10 years in the surgical versus 
the control group [ 17 ]. In recent RCTs, including the Diabetes Surgery Study and 
STAMPEDE, bariatric surgery decreased plasma triglycerides and increased 
circulating HDL more than medical therapy alone [ 34 – 36 ]. Collectively, these data 
demonstrate that bariatric surgery is not only effective at regulating blood glucose 
levels and sustaining weight loss but also an effective treatment option for improving 
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blood lipid profi les in obese people. These fi ndings are likely to contribute to the 
overall reduction in cardiovascular disease events seen 20 years post-surgery [ 18 ]. 

 Hypertension is also highly associated with obesity, and there is good evidence 
that weight loss reduces blood pressure [ 38 ]. In general, a decrease of 1 % body 
weight leads to a 1 mmHg decrease in systolic blood pressure and a 2 mmHg 
decrease in diastolic blood pressure [ 39 ,  40 ]. Similar to effects on dyslipidemia, 
hyperglycemia, and weight loss, bariatric surgery across all procedures has good 
effects on reducing blood pressure. In particular, approximately 61 and 79 % of the 
total population with hypertension had it either resolved or improved for up to 
2 years post-surgery [ 19 ]. The Swedish Obesity Study examined the effect of obesity 
on hypertension by investigating the 8-year incidence of hypertension in obese 
patients treated with bariatric surgery (VGB, GB, and RYGB) versus matched obese 
controls [ 41 ]. Although there was no overall difference in systolic blood pressure 
and an increase in diastolic blood pressure at 8 years compared to the control group, 
it is worth noting that RYGB did appear to be the more favorable surgical procedure 
for decreasing systolic and diastolic blood pressure at 10 years (by 4.7 and 10.4 %, 
respectively,  P  < 0.10) [ 17 ]. To understand why systolic blood pressure was unchanged, 
an examination of weight loss and age was analyzed [ 41 ]. Despite rapid improvements 
in body weight and blood pressure by 1 year, the slight increase in systolic and 
diastolic blood pressure over subsequent years was linked to the rate of weight 
gain and age. In fact, in the surgical group, the effect of blood pressure of 1 year 
(time between baseline and last observation in the study) was up to four times greater 
than the effect of 1 kg regained. Together, these results suggest that the direction of 
weight change is more closely linked to blood pressure than the initial weight loss, 
but age is an important factor. Bariatric surgery did not decrease diastolic blood 
pressure. In fact, diastolic blood pressure increased post-surgery. Given that pulse 
pressure is associated with increased risk for coronary artery disease [ 42 ], Sjostrom 
et al. examined whether surgery could lower pulse pressure compared to a control 
group [ 41 ]. The results indicated that the weight reduction post-surgery lowered the 
rate of increase in pulse pressure seen in obese patients. Taken together, the result of 
bariatric surgery on blood pressure is not a simple relationship, but there does seem 
to be some protective effects on risk for future coronary heart disease.   

16.3     Role of Bariatric Surgery Linking Gut Physiology 
to Obesity-Related Disease 

 Although weight loss is likely important for gains in insulin sensitivity and beta-cell 
function following bariatric surgery [ 43 ], restrictive procedures do not induce 
comparable diabetes resolution rates as compared to BPD or RYGB. Moreover, 
despite malabsorption explaining to some extent reductions in reactive oxygen 
species and infl ammation derived from excess glucose and lipid digestion in obese 
individuals, nutrient malabsorption does not occur after standard RYGB [ 44 ], 
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implying that additional factors likely drive the improvements in glycemic control 
post bariatric surgery [ 45 ]. Altered gut physiology is currently the leading candidate 
as the major mechanism to explain improved weight regulation, type 2 diabetes 
remission, and reduced risk of cardiovascular disease following bariatric surgery 
(Table  16.2 ). 

 Rubino and colleagues have hypothesized that overeating causes excessive 
stimulation of the gastrointestinal tract leading to metabolic disturbances that 
promote hyperglycemia, whereas restricting food contact with the gastrointestinal 
tract improves these conditions [ 43 ] (Fig.  16.3 ). Thus, rerouting of food through the 
gut may provide a way to alter the secretion of enteroendocrine factors that regulate 
insulin sensitivity and/or beta-cell function [ 46 ]. Surgical exclusion of the duode-
num in the RYGB procedure and exclusion of the duodenum and jejunum in BPD 
result in altered sites – or at least altered relative distribution – of carbohydrate and 
fat absorption. This in turn is associated with an increase in anorectic hormones that 
induce satiety (e.g., GLP-1, PYY, OXY) and a decrease in the orexigenic hormone 
ghrelin that promotes hunger. These observations have led to the establishment 
of overlapping and discrete mechanisms that have been termed the “hindgut,” 
“midgut,” and “foregut” hypothesis. The hindgut hypothesis suggests that diabetes 
remission occurs because of accelerated delivery of nutrients to the distal intestine, 
which then augments an insulinotropic signal (e.g., GLP-1) that improves glucose 
homeostasis via enhanced insulin action [ 47 ]. Indeed, augmentation of GLP-1 
secretion increases the insulin response to nutrient intake and, at least in animal 

  Fig. 16.3    Hypothetical model of nutrient-stimulated gastrointestinal dysfunction in type 2 diabetes       
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models, induces beta-cell proliferation [ 48 ], which together contribute to lowering 
blood glucose to normal levels. In addition to a rapid delivery of nutrients to the 
distal intestine and increased GLP-1 secretion, the “midgut” hypothesis suggests 
increased intestinal gluconeogenesis activating a neuro-hepato-portal sensor that 
regulates food intake and lowers hepatic glucose production [ 49 ]. In contrast, the 
“foregut hypothesis” suggests that nutrient interactions in the duodenum and proxi-
mal jejunum are diabetogenic and, hence, bypassing the duodenum, alleviate the 
intestinal factor that induces insulin resistance and beta-cell dysfunction [ 50 ,  51 ]. 
However, this later hypothesis has been questioned because a diabetic intestinal 
factor has not been identifi ed and SG, which does not bypass the duodenum, also 
improves glycemic control. It is important to note that although the “hindgut,” 
“midgut,” and “foregut” hypotheses are often explained in terms of hormonal 
changes, they are not exclusive of altered nutrient fl ow that affects neural signaling. 
Interestingly, patients following surgery often report a reduction in snack numbers 
and/or portion size as well as food preference. In fact, these individuals often have 
reduced preference for sweet and fat-tasting foods [ 52 ]. In addition, although the 
gut hypotheses are often presented as mutually exclusive theories, no data actually 
exist excluding portions of the upper or lower intestine. Moreover, the exact molec-
ular mechanism underlying the improvement in metabolism following RYGB is 
unknown, and it is likely that a number of gut hormones and neural signals produced 
at various sites of the gastrointestinal tract elicit unique mechanisms of action. 
Indeed, RYGB was reported to enhance intestinal glucose uptake and utilization, 
leading to overall improvements in systemic glucose control [ 53 ].

16.3.1       Modulation of Diabetes Remission via Altered 
Gut Hormones 

 Gastrointestinal hormones that augment insulin secretion following meal intake are 
known as incretins. Note, this effect is only observed when glucose or nutrients are 
ingested, not when they are given by an intravenous route [ 54 ]. GLP-1 (glucagon- 
like polypeptide 1) and GIP (glucose-dependent insulinotropic peptide) account 
for approximately 60 % of nutrient-related insulin secretion. In addition, GLP-1 
suppresses glucagon and ghrelin and delays gastric emptying, which delays digestion 
and reduces postprandial hyperglycemia [ 55 ]. GLP-1 also acts on the brain to induce 
satiety, although the mechanism(s) remains largely unknown. Laferrere et al. [ 56 ] 
and others reported an increase in postprandial GLP-1 within 4 weeks following 
RYGB, whereas levels of GLP-1 did not rise with comparable weight loss induced 
by diet. These fi ndings are consistent with data in patients with type 2 diabetes 
1 year following RYGB in which elevated GLP-1 was signifi cantly associated with 
insulin action [ 57 ]. Moreover, in the STAMPEDE trial, RYGB was shown to augment 
GLP-1 stimulation and acylated ghrelin suppression in association with beta- cell 
function to a greater extent than either SG or intensive medical therapy 2 years 
post-surgery [ 58 ,  59 ]. In general, RYGB is reported to enhance insulin secretion, 
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whereas gastric restrictive procedures reduce the need to secrete insulin [ 60 ]. On the 
other hand, GIP is secreted in the K cells located mainly in the duodenum and 
proximal jejunum and released in response to nutrients (mainly lipid). Unlike, GLP-
1, GIP is more involved in lipid metabolism (storage) and is thus thought to play a 
more direct role in the pathogenesis of obesity. The effect of bariatric surgery on 
GIP is more controversial than the fi ndings on GLP-1 such that the role of GIP is 
less clear in the regulation of lower fat mass and/or weight maintenance [ 52 ]. 

 Non-insulinotropic gut hormones are altered after RYGB and include polypeptide 
tyrosine-tyrosine (PYY), oxyntomodulin (OXY), ghrelin, and cholecystokinin (CCK). 
Like GLP-1, PYY and OXY are co-secreted by the L cells of the distal small intes-
tine and are responsible for reducing hunger, decreasing food intake, and delaying 
gastric emptying after meals. Moreover, while both OXY and PYY inhibit gastric acid 
secretion, only PYY reduces pancreatic and intestinal secretions [ 61 ]. While several 
studies have consistently documented increases in postprandial PYY and GLP-1 
after gastric bypass [ 62 – 64 ], with some also reporting enhanced OXY [ 65 ], SG and 
BPD have also been shown to elevate PYY and GLP-1 [ 61 ]. Fewer studies have 
examined the role of CCK following bariatric surgery, but in general, CCK levels 
increase following RYGB, SG, and LAGB [ 61 ]. Ghrelin is a gastric hormone 
produced primarily in the stomach with secondary secretion emanating from the 
proximal small intestine. Ghrelin is best known as an appetite-stimulating hormone, 
but it also has additional effects on impairing insulin sensitivity and reducing 
glucose-stimulated insulin secretion [ 66 ]. Ghrelin suppression is usually improved 
following RYGB or SG, suggesting that suppression of hunger signals helps sustain 
weight loss. In contrast, ghrelin levels typically rise following diet- induced weight 
loss [ 67 ]. It is important to recognize, however, that the effect of bariatric surgery on 
ghrelin is controversial [ 57 ,  68 ].   

16.4     Link Between Gut Microbiota, Excess Body Weight, 
and Metabolic Disease Risk 

 The gut microbiome has emerged as an important regulator of obesity, metabolism, 
and infl ammation (Fig.  16.4 ). In the human intestine, approximately 400 bacterial 
species are present and together resemble a multicellular organ that has evolved to 
provide complex nutrient signaling and metabolic functions [ 69 ]. The vast majority 
of these microorganisms belong to three main groups  Firmicutes ,  Bacteroidetes , 
and  Actinobacteria  (comprising ~95 % of total intestinal bacteria) and reside in the 
distal portions of the intestine. The gut microbiome is a dynamic organ that changes 
in response to the environment. In animals provided a high-fat diet, the gut microbiota 
resulted in increased levels of  Firmicutes  prior to the development of obesity [ 70 ]. 
This renders the microbiota to be more obesogenic and may result in increased 
energy harvest from the diet. In line with this observation, Ley et al. demonstrated 
that food restriction, not macronutrient content per se (low-carbohydrate vs. low- fat), 
was linked to decreased levels of  Firmicutes  and elevated levels of  Bacteroidetes  [ 71 ], 
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suggesting that nutrient overload is important for gut bacteria modifications. 
For instance, altered gut microbiome by high-fat feeding has been linked to intestinal 
infl ammation and systemic insulin resistance [ 72 ]. Further evidence for the role of 
the gut microbiome in metabolic health is apparent using germfree rodents, which 
are protected from developing diet-induced obesity. In fact, germfree mice have 
lower adiposity and have higher food consumption when compared with control 
mice. But when germfree mice are colonized with cecal content from control mice, 
weight is rapidly gained and food consumption decreases, suggesting that the gut 
microbiome regulates fat mass and energy stores [ 73 ]. Further, genetically identical 
mice fed high-fat diets differ in their metabolic phenotype due to variation in gut 
microbiota composition [ 69 ], indicating that the cause of metabolic disease may be 
due to a complex interaction of environmental factors as well as gut microbiota 
profi les. In either event, germfree mice have reduced expression of SGLT-1 and 
CD36, which are important for fatty acid and glucose transport in the intestine [ 74 ]. 
These data together highlight gut bacteria as important modulators of nutrient 
absorption and suggest that at least two mechanisms are likely involved in explain-
ing the link between obesity and gut microbiome: fi rst, increased capacity to 
process otherwise indigestible polysaccharides, leading to subsequent rises in 
nutrients, and second, increased gene expression promoting fat storage in adipose 

  Fig. 16.4    Summary of the effects of the gut microbiome on weight regulation and energy metabolism       
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tissue [ 73 ]. Thus, the current working hypothesis is that obese animals are better 
able to extract energy from dietary intake and store those calories as fat. Indeed, 
there are similar observations from obese human studies [ 75 ].

16.4.1       Role of Bariatric Surgery on the Gut Microbiota 

 Bariatric surgery changes gut microbiota to refl ect more of a lean phenotype. 
Zhang et al. [ 76 ] showed that microbiota functional differences occurred in obese 
individuals post-RYGB surgery. In fact, RYGB markedly altered  Gammaproteobacteria  
(member of  Enterobacteriaceae ), decreased  Firmicutes , and lowered methanogens 
(key for energy harvest). Similarly, Furet et al. [ 77 ] reported that gut microbiota 
adapted to RYGB surgery by increasing the  Bacteroides/Prevotella  ratio, which was 
correlated with reduced body fat. Moreover, the rise in  Escherichia coli  species 
also increased in individuals undergoing RYGB, and this change was signifi cantly 
correlated with fat mass and leptin, independent of caloric intake restriction. Changes 
in adipose tissue mass are strongly linked to systemic infl ammation, and consistent 
with weight loss following RYGB, the rise in  Faecalibacterium prausnitzii  species 
in type 2 diabetes was related to lower infl ammation (hs-CRP and IL-6). Together, 
these fi ndings strengthen the view that obesity and gut microbiota are intimately 
involved in the regulation of metabolic health. In fact, Kong et al. [ 78 ] demonstrated 
that RYGB increased gut microbiota richness, and this change in gut microbiota 
was directly correlated with genes encoding white adipose tissue mass, metabolism, 
and infl ammation. Interestingly, approximately 50 % of these relationships were 
independent of caloric intake, suggesting that RYGB uniquely alters gut physiology in 
favor of weight reduction maintenance. Although distal portions of the small intestine 
contribute to the majority of nutrient absorption and gut microbiome in humans, 
the upper portions include gut bacteria that have metabolic function. Indeed, when 
microbiota from lean individuals are administered into the duodenum of humans 
with metabolic syndrome, insulin resistance declines independent of weight loss [ 79 ], 
suggesting that exclusion of the duodenum contributes to the regulation of glucose 
metabolism. 

 The cause for this altered gut fl ora milieu is presently an area of intense research, 
and several proposed mechanisms are currently being investigated. First, as demon-
strated in rodent studies, the surgically induced restriction in food intake and/or 
change in food preference, including lower sugary foods and dietary fat, may 
explain modifi cations in the gut microbiome composition because of the smaller 
stomach size and shorter intestinal length [ 73 ]. Next, by diverting nutrients away 
from the proximal intestine, gut microbiota are exposed to more rapid food delivery 
and adapt accordingly. For instance, intestinal cells are exposed to more oxygen 
than usual due to the shorter intestinal lengths, and facultative anaerobes develop. 
Lastly, from an anatomical perspective, pH levels rise after RYGB surgery in the 
stomach and upper intestine. Although a pH <4 is potentially “deadly” for many 
microorganisms, some reports suggest that pH modifi cation affects the overall gut 
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microbiota composition. Further, modifi cation of acid secretion following RYGB not 
only lowers distal small intestine pH and infl uences the production of deconjugated 
primary bile acids but also increases acidifi cation in the distal small intestine thereby 
increasing secondary bile acid levels via gut bacteria. Indeed, elevated secondary bile 
acid levels are reported to decrease hepatic fatty acid uptake, which may contribute 
to improvements in hepatic triglyceride metabolism and hepatic steatosis [ 80 ]. 
Alterations in gut microbiome in the colon have also been linked to lower pH, and 
these altered gut bacteria favor the rise in short-chain fatty acid production, which 
may help regulate lipid metabolism (see below:  Infl ammation and Innate Immune 
Response Related to Gut Physiology ) [ 81 ]. Taken together, these fi ndings following 
RYGB surgery support the gut microbiome as a key physiologic player involved in 
fostering nutrient sensing for both weight regulation and glucose homeostasis [ 78 ].  

16.4.2     Infl ammation and Innate Immune Response 
Related to Gut Physiology 

 Low-grade infl ammation is a common comorbidity of type 2 diabetes and cardio-
vascular disease. Locally, the gut microbiome is directly linked to intestinal infl am-
mation via changes in bacterial fragments and/or metabolites known to increase 
innate immune system responses. Subsequently, these bacterial components and 
metabolites have implicated the gut microbiome as a key factor in the development 
of obesity and metabolic disease [ 82 ] (Fig.  16.5 ). The innate immune system has the 
capacity to sense various bacterial components via pattern recognition receptors 
(PRRs). In general, there are two types of PRRs: Toll-like receptors (TLRs) and 
Nod-like receptors (NLRs). Although NLRs have important physiologic roles in gut 
health [ 83 ], TLRs have been well characterized and are the focus of the bacterial 
components discussed in this chapter.

16.4.2.1       Role of Lipopolysaccharides 

 Lipopolysaccharide (LPS) originating from Gram-negative bacteria in the gut 
induces low-grade infl ammation and insulin resistance, thereby contributing to 
disturbances in energy metabolism that promote metabolic disease. LPS is sensed 
by TLR4, which is also recognized by nonmicrobial compounds such as saturated 
fatty acids [ 83 ]. LPS entry into the general circulation is elevated following high-fat 
diets (via a “leaky gut” phenomena or chylomicron transport mechanism) [ 84 ], and 
treatment with prebiotics signifi cantly mitigates the development of glucose intoler-
ance and infl ammation derived from the liver and adipose of mice [ 84 ]. The mechanism 
by which prebiotics reduce LPS is unclear, but animal work suggests intestinal 
permeability improves via glucagon-like peptide-2 and cannabinoid-receptor-1 
receptor-mediated pathways [ 85 ,  86 ]. These observations may be of particular 
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relevance for humans, as obesity is linked to elevated circulating LPS levels when 
compared with healthy controls [ 87 ]. Human work also supports the LPS linkage to 
hyperglycemia, as treatment with insulin-sensitizing agents in individuals with type 
2 diabetes lowered LPS in line with greater rises in insulin action [ 88 ]. Further, 
elevated LPS in type 1 diabetic and vascular kidney disease was highly associated 
with serum triglycerides, diastolic blood pressure, and infl ammation markers 
(e.g., MCP-1) [ 89 ], suggesting that metabolic LPS is linked to cardiovascular disease. 
Indeed, LPS levels are elevated in individuals with acute heart failure as compared 
to stable heart failure or controls, although clinical trials showing that reduced 
LPS leads to lower cardiovascular disease are lacking. Given that bariatric surgery 

  Fig. 16.5    Mechanisms that underpin the effects of RYGB on gut physiology       
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alters gut microbiome composition, it would seem reasonable to suspect changes 
in LPS. The limited evidence suggests that not only does bariatric surgery reduce 
LPS but that this reduction is also directly linked to lower adipose mass and 
improved HbA1c levels [ 87 ]. Taken together, alterations in gut microbiome appear 
to contribute to reductions in LPS that reduce metabolic disease risk.  

16.4.2.2     Role of Short-Chain Fatty Acids 

 Short-chain fatty acids (SCFAs) are produced in the colon by gut microbes that 
ferment nondigestible polysaccharides (e.g., inulin) [ 85 ,  86 ]. The rise in SCFA 
(i.e., acetate, butyrate, and propionate) levels is important for weight regulation as 
they are implicated in satiety and decreased food intake, although SCFAs may act 
as substrate for lipogenesis. As mentioned previously (see above:  Modulation of 
Diabetes Remission  via  Altered Gut Physiology ), improved appetite regulation is in 
part related to elevated GLP-1 and PYY as well as lower ghrelin, which collectively 
contribute to reduced hunger and food intake. The effects of bariatric surgery on gut 
hormones and the gut microbiome would by inference suggest that the changes in 
SCFA contribute to the overall regulation of appetite. In fact, SCFAs have been 
shown to infl uence gut peptides, appetite, and energy expenditure [ 84 ]. For example, 
intracolonic and ileum infusion of mixed SCFA increased PYY secretion in rats 
and pigs, and supplementation of rat diets with acetate or butyrate lowered body 
weight [ 90 ]. Although studies in humans are limited, Arora et al. [ 91 ] suggested that 
propionate may reduce appetite. In addition to the effects on gut peptides, butyrate and 
propionate may increase leptin secretion from adipocytes [ 92 ]. This later mechanism 
may provide an alternative by which the gut directly communicates with adipose 
tissue to regulate body weight and feeding behavior. Interestingly, RYGB surgery 
enhanced propionate and lowered acetate levels in rodents, and this alteration in 
SCFA levels was attributed to the compositional change in gut microbiota. Increased 
propionate levels could contribute to improved weight regulation by blocking the 
conversion of acetate to triglyceride synthesis in the liver and blood, thereby reducing 
ectopic lipid depots. These fi ndings are consistent with germfree animal work 
showing that transferring gut microbiota increases insulin and glucose-stimulated 
hepatic triglyceride synthesis via sterol response element binding protein (SREBP-1) 
and carbohydrate response element binding protein (ChREBP), respectively [ 90 ]. 
Moreover, decreased acetate levels per se may contribute to lower central and 
peripheral adiposity following bariatric surgery by reducing substrate availability 
for lipogenesis [ 93 ]. Concomitantly, bariatric surgery is reported to increase energy 
expenditure, and this change in thermogenesis may be attributable to gut microbial-
derived changes in SCFA production. Interestingly, AMPK phosphorylation in the 
skeletal muscle and liver is increased in germfree mice on a Western diet [ 84 ]. 
Therefore, the gut microbiota through an unknown mechanism appear capable of 
altering peripheral and hepatic fatty acid oxidation and hepatic insulin sensitivity [ 94 ], 
an observation that is further strengthened by the fact that RYGB in rats increases 
hepatic AMPK activity [ 95 ]. In addition, the overall change in energy status of 
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adipose, hepatic, and skeletal muscle following surgery may be partially related 
to changes in fasting-induced adipose factor (FIAF). Indeed, colonization of germ-
free mice is characterized by downregulation of FIAF expression, which in turn leads 
to increased lipoprotein lipase activity, enhanced lipid storage in adipocytes, and 
downregulation of PGC-1 α-related genes in peripheral tissue [ 90 ]. These later fi nd-
ings are consistent with evidence suggesting that propionate activates sympathetic 
nerve activity and has high binding affi nity for GPR41 (G protein- coupled receptor), 
which is important for overall energy expenditure [ 93 ]. In fact, the effect of SCFA 
on GPR41 (as well as GPR43) may be relevant for modulating lipolysis, as infusion 
of acetate reduced circulating free fatty acids. Moreover, GPR43 is expressed in 
PYY containing L cells of the small intestine. Since L cells are also responsible for 
GLP-1 secretion, it is reasonable that SCFA may infl uence insulin secretion, and this 
is supported by rodent work [ 96 ]. Overall, these data highlight SCFA as an impor-
tant factor that reduces appetite and/or increases energy metabolism to promote 
weight regulation.  

16.4.2.3     Role of Trimethylamine-N-Oxide 

 Gut microbiota release choline from dietary phosphatidylcholine to form trimethyl-
amine (TMA). TMA is transported to the liver via the portal vein and is oxidized to 
trimethylamine-N-oxide (TMAO). Elevated levels of plasma TMAO, choline, and 
betaine have dose-dependent associations with the presence of cardiovascular disease 
independent of conventional risk factors (e.g., blood pressure, triglycerides, etc.) 
and medication use [ 97 ]. Rats fed high choline diets or TMAO diets had elevated 
circulating TMAO levels and greater aortic root atherosclerotic plaque without 
alterations in plasma glucose or blood lipids. Although obesity may infl uence circu-
lating TMAO levels, dietary manipulation appears important for modulating TMAO, 
such that high-fat and increased meat consumption lead to greater elevated TMAO 
compared with low-fat and vegetarian style meals. Data on TMAO following bariatric 
surgery is sparse. There are some urinary data to suggest that trimethylamine is 
elevated in rodents following bariatric surgery [ 98 ]. However, more work is needed 
to determine if the use of gut microbiota therapies (prebiotics and/or bariatric surgery) 
infl uences TMAO since this metabolite appears to be independently associated with 
cardiovascular disease risk [ 99 ].  

16.4.2.4     Role of Hippurate 

 Intestinal bacteria metabolize low-weight aromatic compounds and polyphenols 
from the diet resulting in benzoic acid. In the liver, benzoic acid is conjugated with 
glycine to form hippurate, which is excreted in the urine [ 100 ]. Hippurate levels are 
lower in obese insulin-resistant rodents compared with wild-type controls [ 101 ]. 
In comparison to lean humans, morbidly obese individuals have low levels of 
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hippurate, which may be clinically relevant since low hippurate is linked with elevated 
blood pressure [ 102 ]. In animals, bariatric surgery increases urinary hippurate in 
parallel with weight loss [ 98 ], strengthening the notion that RYGB alters various 
aspects of gut microbiota in relation to obesity and metabolic health.    

16.5     Bile Acids as Regulators of Energy Metabolism 
and Body Weight 

 Bile acids are produced in the liver, stored in the gall bladder, and secreted into the 
duodenum upon meal consumption. Bile acid levels nearly triple following meal 
consumption as they are important in not only the facilitation of micelle formation, 
which promotes the processing/digestion of dietary fat and fat-soluble vitamins, but 
also energy metabolism. Although fasting bile acids do not differ between lean and 
obese individuals, obesity appears to blunt the rise in some circulating postprandial 
bile acids, while other circulating glycemic conjugated forms preferentially decrease 
[ 103 ,  104 ]. The rise in postprandial bile acids is particularly relevant to energy 
metabolism and weight regulation as their hormonal effects include stimulating 
FGF19, GLP-1, and brown adipose activity. Interestingly, fasting total serum bile acids 
and individual levels of taurodeoxycholic, glycocholic, glycochenodeoxycholic, and 
glycodeoxycholic acids are elevated after RYGB surgery compared to preoperatively 
and when compared with weight-matched nonsurgical controls [ 103 ,  105 ]. The exact 
mechanism responsible for elevated bile acids following bariatric surgery is unclear, 
but animal work suggests that increased nutrient delivery to the ileum leads to 
increased satiety hormone levels and weight loss [ 106 ]. This suggests that nutrient 
fl ow to the distal small intestine is a potentially important mechanism linking altered 
bile acid levels seen following RYGB with changes in gut hormone secretion. 
However, despite immediate elevations in bile acids following RYGB, the rise in 
bile acids appears even greater several months post-operation. As such, it is likely 
that intestinal adaptation, including genes that synthesize and regulate transporters 
important for bile acid uptake, plays a key role in explaining elevated postprandial 
bile acid levels [ 103 ]. RYGB also alters intestinal gut microbiota, which are key 
regulators of bile acid conjugation and secondary bile acid formation [ 77 ,  93 ]. 
Interestingly, germfree mice also have low bile acid levels and diversity compared 
with wild-type controls, highlighting that gut microbiota may contribute to bile 
acid diversity and impact not only GLP-1 secretion but also energy expenditure. 
Concomitantly, it is important to note that conjugated bile acids entering the duodenum 
from the enterohepatic cycle circulate to the ileum where they are deconjugated, 
and the portion of these later bile acids might directly affect the composition of the 
microbiota [ 73 ]. 

 Bile acids have been implicated in the improvement in weight and glucose 
metabolism following bariatric surgery. Pournaras et al. [ 106 ] demonstrated that 
fasting total serum bile acids are elevated within days following RYGB, but not 
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LAGB, suggesting that bile acids may contribute to weight-independent improvements 
in glucose homeostasis. Indeed, fasting total bile acids are inversely correlated with 
postprandial glucose and positively correlated with peak GLP-1 levels [ 107 ]. In line 
with this observation, bile acids are known to act on TGR5 receptors located on 
enteroendocrine cells and promote the secretion of GLP-1 release [ 108 ], which may 
contribute to satiety and beta-cell insulin secretion. In addition, farnesoid X receptor 
(FXR) in pancreatic beta-cells may directly respond to the rise in bile acids, thereby 
increasing insulin release [ 109 ]. In parallel, through an FXR-mediated pathway in 
the intestine, bile acids stimulate the secretion of FGF19, a protein that contributes to 
improved peripheral glucose disposal and lipid homeostasis [ 110 ,  111 ]. Thus, the 
physiologic effects of bile acids likely extend beyond that of gut-pancreas “cross-
talk,” since TGR5 receptors are also located on the skeletal muscle. TGR5 receptors 
are also present in brown adipose tissue, and the binding of bile acids to TGR5 in 
the skeletal muscle and brown adipose tissue may contribute to enhanced action 
of thyroid hormones to foster weight loss by increasing energy expenditure. 
Watanabe et al. [ 112 ] have reported that bile acids increase energy expenditure in 
both skeletal muscle and brown adipose tissue, and Ockenga et al. [ 113 ] found that 
postprandial levels of circulating bile acids are strongly associated with postpran-
dial energy expenditure in lean individuals. Collectively, these fi ndings suggest that 
restoration of elevated bile acids in obese individuals after bariatric surgery may 
facilitate weight loss.  

16.6     Risks of Bariatric Surgery and Nutrient Defi ciencies 

 A misconception about bariatric surgery is that it is highly related with risk of 
postsurgical complications and mortality. However, the prospective Longitudinal 
Assessment of Bariatric Surgery study [ 113 ] reported that the 30-day death rate of 
adults undergoing bariatric surgery (RYGB or LAGB) was 0.3 % [ 114 ]. Thus, there is 
little evidence for higher risk of mortality than standard operation (e.g., cardiovascular), 
and if anything, data suggest that bariatric surgery increases life expectancy [ 5 ,  115 ] 
due to reductions in obesity-induced cardiovascular risk factors such as diabetes. 
Although in rare cases, symptomatic hypoglycemia has been documented after 
RYGB and is associated with postprandial hyperinsulinemia due to elevated GLP-1 
levels [ 116 ], the incidence of neuroglycopenia and seizures is rare. The conventional 
treatment of hypoglycemia in these patients involves carbohydrate restriction to 
minimize hypoglycemic-related episodes [ 117 ]. Despite little evidence for higher 
death rates after bariatric surgery, it is important to consider these risks against the 
long-term cardiovascular risk of continued obesity. 

 LAGB is viewed as the safest of the current bariatric procedures. It does not 
involve bowel anastomosis, and the risk of major hemorrhage, gastric perforation, 
and pulmonary embolism is less than 1 %. Late complications requiring reoperation 
include band slippage or prolapse (5–10 %) and band erosion (1–3 %). The entire 
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intestinal tract is left intact, so subsequent nutritional defi ciencies are rare [ 118 ]. 
RYGB, on the other hand, carries an overall risk of major complication of 10–15 %. 
Anastomotic leak (1–5 %), pulmonary embolism (<1 %), and hemorrhage (1–4 %) 
can be life-threatening but are rare. Late complications such as ulcer or stricture 
formation at the gastrojejunostomy site occur in 5–10 % of cases and are managed 
nonoperatively [ 46 ]. 

 Nutritional defi ciencies occur in 30–70 % of patients. Patients at high risk of 
developing severe nutritional defi ciencies include those who have lost more than 
10 % of their body weight by 1 month and those with: anastomotic stenosis, surgical 
revision requirements, and persistent vomiting [ 119 ]. Protein calorie malnutrition is 
also a concern and can be recognized by signs such as edema, hypoalbuminemia, 
anemia, and hair loss. To minimize these effects, it is generally recommended 
that patients consume between 60 and 80 g/day of protein and approximately 
800 kcal/day. Vitamin defi ciencies can lead to peripheral neuropathy (B 12 ), Wernicke 
encephalopathy (B 1 ), and metabolic bone disease (Vitamin D). Subsequently, in 
addition to multivitamin supplementation, monitoring nutrient and vitamin levels 
after bariatric surgery is recommended at least every 6 months [ 119 – 121 ].  

16.7     Implications for Gut Physiology Following Bariatric 
Surgery in Metabolic Disease 

 Bariatric surgery has proven valuable in identifying the gut as a critical organ 
regulating energy balance and glucose homeostasis (Fig.  16.5 ). The resulting weight 
loss from bariatric surgery is persistent in most patients, and the durability in weight 
loss is considered an underlying mechanism responsible for the majority of long- 
term glycemic control benefi t and cardiovascular risk reduction. However, it is clear 
that alterations in gut physiology have distinct effects on not only appetite but also 
on insulin resistance, beta-cell function, hypertension, and blood lipids. Specifi cally, 
the prevailing view at this point in time is that alterations in enteroendocrine cells 
following bariatric surgery induce elevations in gut hormones (e.g., GLP-1, GIP, 
PYY, etc.) that promote satiety and improve insulin action, whereas the changes in 
gut microbiome and bile acids are new physiologic mechanisms contributing to the 
overall improvement in body fat and cardiovascular benefi ts following bariatric 
surgery. Taken together, the interaction between the gut and metabolic improvements 
seen following bariatric surgery warrants consideration of obesity-induced type 2 
diabetes and cardiometabolic risk as “intestinal-related diseases.” Thus, there is 
an opportunity going forward to stratify patients prior to bariatric surgery from a 
metabolic and gut microbial point of view, and this may impact the success of surgery 
on obesity-related disease. Further understanding of mechanisms related to gut 
metabolism following bariatric surgery, with or without lifestyle modifi cation, will 
likely promote new medical strategies that will improve treatment and resolution of 
obesity, type 2 diabetes, and cardiovascular disease.     
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 “Therefore, it is critical to be able to assess an individual’s metabolic phenotype, 
which will provide useful information for determining the correct drug and dose 
treatment and predicting the individual response following a therapeutic 
intervention.” 
 “The metabolic phenotype (metabotype) is a result of the overall infl uences of the 
patient’s physiological status, gut microbiome status, and chemical, genetic, and 
other environmental factors. Changes in the metabotype refl ected in the biofl uid or 
tissue evaluated occur downstream of alterations in gene and protein expression. As 
such, the metabotype, which comprises the genotype and phenotype, represents the 
ultimate biological endpoint and can provide useful information about an individu-
al’s current physiological status that can be used for predicting the outcome prior to 
a therapeutic intervention” [29]. 
 The previous reference was: [none]. 

 “metabonomics provides the capability to analyze large arrays of metabolites for 
extracting biochemical information that refl ects true functional endpoints of overt 
biological events, whereas other functional genomics technologies such as tran-
scriptomics and proteomics merely indicate the potential cause for phenotypic 
response”. “Metabonomics bridges this information gap by depicting, in particular, 
such functional information because metabolite differences in biological fl uids and 
tissues provide the closest link to the various phenotypic responses. Such changes 
in the biochemical phenotype are of direct interest to pharmaceutical, biotech, and 
health industries once appropriate technology allows the cost-effi cient mining and 
integration of this information” [14]. 
 The previous reference was: [none]. 

 “necessarily predict drug effects, toxicological response, or disease states at the 
phenotype level unless functional validation is added” [14]. 
 The previous reference was: [none]. 

 “Understanding these connections, in turn, may eventually lead to more targeted 
nutrition or therapies and more refi ned disease risk stratifi cation. These could result 
in a critical step towards personalized health care and nutrition based on a combina-
tion of genotyping and metabolic characterization” [14]. 
 The previous reference was: [none]. 

 “will provide a more personalized approach to patient treatment with a more posi-
tive outcome by diagnosing not only the disease but also the disease phenotype” 
[29]. 
 The previous reference was: [none]. 

 “The metabolic profi le represents the phenotype of the organism and refl ects 
the overall biological infl uences, including interactions between multiple 
genomes (e.g., genomes from animals or humans and their gut microbiome)”. 
“Pharmacometabonomics uses the pre-dose metabolite profi ling in the biofl uids or 
fecal extracts to predict the responses of an individual to a drug/nutritional interven-
tion and to identify surrogate markers for subsequent drug administration. 
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Furthermore, pharmacometabonomics is capable of providing useful drug pharma-
cokinetic and drug metabolite information for an individual, which can provide a 
mechanistic understanding of varied responses between individuals to the effi cacy, 
side effects, and toxicity of a drug” [29]. 
 The previous reference was: [none]. 

 “In view of the chemical and physical diversity of small biological molecules, the 
challenge remains in developing protocols to gather the whole “metabolome”” [14]. 
 The previous reference was: [none]. 

 “Metabonomics studies demonstrate its potential impact on the drug discovery pro-
cess by enabling the incorporation of safety endpoints much earlier in the drug 
discovery process, reducing the likelihood (and cost) of later stage attrition” [14]. 
 The previous reference was: [none]. 

 “The metabolic profi le of the pre-dose urine samples can predict both individual 
susceptibility to acetaminophen-induced toxicity and liver injury and also can 
 predict the relative excretion levels of acetaminophen metabolites in the forms of 
glucuronide and sulfate conjugates” [29]. 
 The previous reference was: [none]. 

 “NMR-based metabonomics approaches were employed to profi le pre- and post- 
dose urinary metabolites and discovered that human subjects with high pre-dose 
levels of  p -cresol (one of the metabolites related to an individual’s gut microbiome) 
had lower concentrations of acetaminophen metabolites” [29]. From postdose urine 
samples, it was possible to determine the proportions of the various drug metabo-
lites excreted by each subject, which was known to show considerable intersubject 
variation. The fi ndings indicate that each individual, colonized by a unique assort-
ment of trillions of microbes, responds to a drug differently, either benefi cially or 
adversely. It provides the information of how a particular drug is metabolized and 
excreted by each individual. Such information may have a major infl uence on the 
drug safety and effi cacy. “This study demonstrates that evaluation of a metabolic 
phenotype by metabolic profi ling could play an important role in drug metabolism 
and toxicity, as well as in personalized health care” [29]. 
 The previous reference was: [none]. 

 “In both preclinical screening and mechanistic exploration, metabolic profi ling can 
offer rapid, noninvasive toxicological information that is robust and reproducible, 
with little or no added technical resources to existing studies in drug metabolism 
and toxicity” [14]. 
 The previous reference was: [none]. 

 “The metabolome, or the complete metabolite composition of a system such as a 
cell or organism, is the end product not only of the genetic blueprint of an organism 
but also all infl uential factors to which the organism is exposed, such as nutrition, 
environmental factors, or treatments” [55]. 
 The previous reference was: [none]. 
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 “Metabonomic strategies together with advanced chemometric and bioinformatic 
tools [44, 51, 52] can help track the interaction between nutrients and human metab-
olism, as well as the involvement of the genome and the gut microbiome, in overall 
human health, and can be considered critical measures of function or phenotype” 
[53] [55]. 
 The previous reference was: [53]. 

 “component of nutritional phenotypes and will enable individualized dietary recom-
mendations. The relation between diet and metabonomic profi les as well as between 
those profi les and health and disease needs to be established” [14]. 
 The previous reference was: [none]. 

 “Many progresses are made through a systematic inventory of all relevant parame-
ters by using different “-omics” technologies and application of new bioinformatics 
tools together with extensive data warehousing to unravel disease mechanisms, 
defi ne biomarkers, or apply personalized medication” (Fig. 4.4) [55]. 
 The previous reference was: [none]. 

 “Likely, in cases of impairment of human homeostasis, the patients would thus 
develop a coordinated approach to reestablish a metabolic trajectory for the indi-
vidual consistent with their metabolic phenotype” [55]. 
 The previous reference was: [none]. 

 “The results of this study highlight the diversity of physiological variations of human 
metabolism and emphasize the effect of nutritional phytochemicals in modulating 
human metabolism and maintaining homeostasis of human gut eco-system” [55]. 
 The previous reference was: [none]. 

 “Xie et al. [59] performed a study on 20 volunteers to investigate the human meta-
bolic response to drinking Pu-erh tea over a 6-week period, using a UPLCQTOFMS-
based metabonomics approach. The fi nal metabolic profi le was greatly altered by 
Pu-erh tea consumption. The trajectory of the PCA scores plot based on urine data 
revealed a clear separation tendency of samples obtained before (days 1 and 7), dur-
ing (days 16, 21, and 28), and after tea ingestion (washout period; days 30, 36, 42). 
Interestingly, the metabolic patterns of samples obtained 2 weeks after tea intake are 
still distinct from the pre-dose pattern, probably due to the possibility that Pu-erh 
tea may change the structure of the resident gut microbiota” [55]. 
 The previous reference was: [none]. 

 This was followed by a more in-depth study of Pu-erh tea in human subjects [60]. 
“Urine samples were collected at 0, 1, 3, 6, 9, 12, and 24 h within the fi rst 24 h of 
tea intake and once a day during a 2-week daily Pu-erh tea ingestion phase and a 
2-week “washout” phase. The dynamic concentration profi le of bioavailable plant 
molecules (due to in vivo absorption and the hepatic and gut bacterial metabolism) 
and the human metabolic response profi le were identifi ed and correlated with each 
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other, highlighting the great potential of metabonomic strategy to unravel the com-
plex interactions between multicomponent nutraceuticals and human metabolic sys-
tem in nutritional studies” [55]. 
 The previous reference was: [none]. 

 “The goal of nutrition has extended beyond just ameliorating or curing diseases and 
now aims to achieve an overall objective in preventing diseases and improving 
health. Therefore, the pivotal scientifi c objective has become understanding the 
relationship between diet (both macroand micronutrients) and health/diseases. The 
comprehensive analysis of the metabolome via metabonomics will serve as the bio-
informational base for modern nutritional science. Biomarkers and/or patterns of 
expression will undoubtedly have the potential to be used for human health assess-
ment (Fig. 4.5). Together this indicates that the future goal of nutritional research 
will be to predict the likelihood of future diseases within the context of an individ-
ual’s overall heath and identify causal risk factors, leading to recommendations for 
appropriate intervention, such as to change dietary habits or to avoid homeostasis 
loss and maintain healthy status” [55]. 
 The previous reference was: [none]. 

 “Whereas the human genome is the set of all genes in a human being, the human 
metabolome is the set of all metabolites in a human being. Metabonomics bridges 
the gap between the genotype and the phenotype and is an important basis of per-
sonalized medicine. Metabonomics has been used to identify biomarkers for disease 
and the effects of drugs” [14]. Various metabonomic technologies including NMR 
and MS have been intensively applied to metabonomics study. “Pharmacometabonomic 
approach to personalizing drug treatment uses a combination of pre-dose metabolite 
profi ling and chemometrics to model and predict the responses of individual sub-
jects. Metabonomics also has a role to play in assessing drug toxicity and in guiding 
nutrition” [14]. 
 The previous reference was: [none]. 

 “An approach referred to as integrative personal “-omics” profi le evaluated genomic, 
transcriptomic, proteomic, metabonomic, and antibody profi les from a single indi-
vidual over a 14-month period. The study revealed changes in the “-omics” profi les 
between healthy and viral states and between nondiabetic and diabetic states 
throughout the study period. Furthermore, it was noted that disease risk could be 
assessed from the individual and maternal genome sequences. This study demon-
strated that the integration of genomics data with other dynamic “-omics” datasets 
can be used to predict various medical risks and the health status of an individual. 
Such datasets for many individuals may provide a database that can be used for 
enhancing diagnostics, monitoring, and treatment in the future with metabonomics 
playing a critical role” [29]. 
 The previous reference was: [none].  

Erratum



E6

    Chapter 9 

 The aim of this erratum is to acknowledge the original sources used in this book. 
The authors omitted a reference from the list and apologize for this oversight. 

 The following reference is missing from the list: 
 95. S Collino, FP Martin, LG Karagounis, et al. Musculoskeletal system in the old 
age and the demand for healthy ageing biomarkers. Mech.Ageing Dev. 2013; 134: 
541-7. 

 All excerpts from this reference are with kind permission from Elsevier. 

 The corrected citations: 
 “Aging can commonly be characterized as a progressive, generalized impairment of 
biological functions resulting in an increased vulnerability to environmental chal-
lenge and a higher risk of disease and death” [1, 95]. 
 The previous reference was: [1]. 

 “Understanding the physiology of aging is of tremendous importance to allow pop-
ulations to grow old disease-free and with a good quality of life. In this respect, it is 
important to understand the natural aging process and to elucidate where lifestyle 
and/or dietary interventions can have an impact” [95]. 
 The previous reference was: [none]. 

 “Imaging techniques and fl ux analysis using stable isotopes are parallel technolo-
gies to obtain metabolite information. Multivariate statistical and bioinformatics 
techniques are ultimately used for data mining the complex metabolic profi les 
which encapsulate information on genetics, environmental factors, gut microbiota 
activity, and lifestyle and food habits. This combined strategy sustains the complex 
process of identifying emerging biomarkers indicative of the individual response to 
specifi c physiological factors and/or nutritional/physical interventions” [95]. 
 The previous reference was: [none]. 

 “In addition, elderly may be also prone to be resistant to anabolic stimuli which is 
likely a key factor in the loss of skeletal muscle mass with aging [95]”. 
 The previous reference was: [none]. 

 “As centenarians well represent the model of successful and healthy aging [14], 
there are many important implications in revealing the underlying molecular mech-
anisms behind such acquired longevity” [95]. 
 The previous reference was: [none]. 

 “Untargeted metabonomics profi ling of urine revealed that the longevity process is 
marked by changes in gut microbial metabolites, as displayed by increase urinary 
excretions of phenylacetylglutamine, p-cresol sulfate, and 2-hydroxybenzoate. 
Moreover, centenarian offsprings, who are reported to have delay in age-related 
diseases, have a distinct serum metabolic phenotype from siblings of non-long- 
living parents, with changes in amino acids (serine, phenylalanine) and lysophos-
phatidylcholines” [95]. 
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 The previous reference was: [none]. 

 “Additionally, an investigation on specifi c lipids associated with familial longevity 
in females was explored by Gonzalez-Covarrubias et al. in the plasma lipidome by 
measuring 128 lipid species in 1,526 offspring of nonagenarians (59 years±6.6) and 
675 (59 years±7.4) controls from the Leiden Longevity Study” [16,95]. 
 The previous reference was: [16]. 

 “Here in women 19 lipid species associated with familial longevity with ether phos-
phocholine and sphingomyelin species are identifi ed as candidate longevity mark-
ers. While this population refl ects a different cohort with plausible differences in 
lifestyle and dietary habits, common to the previous study, the authors postulated 
that lipid signatures in plasma lipidome of female individuals could suggest a better 
antioxidant capacity and lower lipid peroxidation capabilities with probable effects 
on the longevity process” [95] 
 The previous reference was: [none]. 

 “The development of systems biology approaches and the new generation of bio-
marker patterns will provide the opportunity to associate complex metabolic regula-
tions with key aging biological processes” [95]. 
 The previous reference was: [none]. 

 “The gastrointestinal tract (GIT) is one of the most essential interfaces of mamma-
lian organism interacting with nutrients, exogenous compounds, and gut microbi-
ota, and its condition is infl uenced by the complex interplay between these 
environmental factors and host genetic elements. Along the GIT, the gut microbiota 
is a key determinant of the gut functional ecology and metabolic homeostasis, 
through fi ne interactions with regulatory processes involved in the absorption, 
digestion, metabolism, and excretion of dietary nutrients as well as barrier integrity, 
motility, and mucosal immunity” [23, 24, 95]. 
 The previous reference was: [23,24]. 

 “Increasing scientifi c evidence has been reported on the fundamental role of gut 
microbiota in both positive and negative triggers of specifi c metabolic states of indi-
viduals and populations” [61, 65, 95]. 
 The previous reference was: [61,65]. 

 “Systems biology approaches, including metabonomics, have emerged over the last 
two decades as a novel way forward to provide insights into the role of mammalian 
gut microbial metabolic interactions in individual susceptibility to health and dis-
ease outcomes” [95]. 
 The previous reference was: [none]. 

 “A series of investigations in human [74] and animal models [75–77] have provided 
a set of reference metabolic profi les of gut intestinal biopsies that can be used to 
assess not only compartment structure and function but also the gut microbial 
impact at the tissue level” [78, 95]. 
 The previous reference was: [78]. 
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 “Such applications will help in identifying main metabolic processes conserved 
across species on which gut microbiota modulates to shape the microenvironment. 
For instance, the investigations illustrated how microbial-dependent variations 
along the upper intestine, an element often underestimated due to low bacterial 
populations, may affect utilization effi ciency of dietary proteins and amino acids 
and their subsequent availability to extra-intestinal tissues. Moreover, some refer-
ence data were generated to investigate changes in gut functionality, such as gut 
permeability, using metabolic profi ling of biofl uids” [79, 80, 95]. 
 The previous reference was: [78, 80]. 

 “Both manifestations of IBD, ulcerative colitis (UC) and Crohn’s disease (CD), are 
mediated by common and distinct mechanisms infl uenced by multiple environmen-
tal factors and specifi c genetic predispositions, including gut microbiota. Advancing 
knowledge regarding the mechanisms of IBD has led to the development of differ-
ent therapeutic solutions based on surgery [82], cannabinoids [83], immunosup-
pression [84], and alternatively probiotic supplementation [85]. Although prognostic 
and monitoring tools are currently lacking, metabolic profi ling in combination with 
state-of-the-art clinical and medical readouts is foreseen to be a valuable tool to dif-
ferentiate and follow-up IBD evolution and response to disease-modifying interven-
tions” [95] 
 The previous reference was: [none]. 

 “Winterkamp et al. reported previously how N-methylhistamine, a key metabolite in 
mast cell metabolism involved in the pathogenesis of IBD, could be used as an indi-
cator of disease activity in patients [86]. In this study, the urinary excretion of 
N-methylhistamine was associated with elevated histamine production and metabo-
lism in CD and UC and could be used as a reliable diagnostic tool to monitor clini-
cal and endoscopic disease activity in IBD. Additional proofs of concept on the 
feasibility to identify some metabolic indicators of early onsets of chronic 
 infl ammatory development offer also novel promising directions for patient moni-
toring and early patient stratifi cation [87]. Additional applications of noninvasive 
profi ling of stool from patients provided novel insights into the remodeling of the 
gut microbial communities and activities, concomitant to malabsorption and ele-
ment of protein- losing enteropathy” [88, 89, 95]. 
 The previous reference was: [88, 89].    
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