
Chapter 8
Dynamic Combination of Movement and Force
for Softness Discrimination

Markus Rank and Sandra Hirche

8.1 Introduction

Softness is an important source of information when interacting with remote or
virtual environments (VE) via a haptic human-machine-interface. For example, in
telesurgery where the surgeon operates a human-machine interface transmitting
his/her actions to a robot performing actions inside the human body, tissue softness
can indicate a healthy or non-healthy condition (De Gersem 2005). Humans have
no dedicated sense for perceiving softness; instead, inferring an object’s compliance
haptically requires the combination and integration of information from different
sensory sources such as positional cues, force cues, and tactile information—see
Chap. 5 for a deeper analysis of mechanisms involved in this process. For many
technical systems, including above-mentioned telesurgery setups, tactile cues are
not conveyed to the human operator, limiting the information available to infer soft-
ness movement and force. In direct interaction with a physical object, the gain and
temporal relation of movement and force is determined by the object’s mechanical
impedance. A telepresence or VE system can alter the impedance by, e.g., time delay
in the communication channel (Rank et al. 2010a; Ohnishi and Mochizuki 2007;
Pressman et al. 2007; Nisky et al. 2008; Hirche and Buss 2007; Rank et al. 2010;
Hirche and Buss 2012) which is found to make participants underestimate stiffness
under various circumstances, see also Chaps. 9 and 5. Determining the limits for
distortions caused by the technical system that do not affect the operator’s percept is
crucial to ensure a realistic interaction experience.

M. Rank (B)

Research Centre for Computational Neuroscience and Cognitive Robotics (CNCR),
University of Birmingham, Edgbaston, UK
e-mail: m.rank@bham.ac.uk

S. Hirche
Institute for Information-Oriented Control, Technische Universität München,Munich, Germany
e-mail: hirche@tum.de

© Springer-Verlag London 2014
M. Di Luca (ed.), Multisensory Softness, Springer Series on Touch and Haptic Systems,
DOI 10.1007/978-1-4471-6533-0_8

147

http://dx.doi.org/10.1007/978-1-4471-6533-0_5
http://dx.doi.org/10.1007/978-1-4471-6533-0_9
http://dx.doi.org/10.1007/978-1-4471-6533-0_5


148 M. Rank and S. Hirche

In the past, perceptual discrimination limits have often been characterized using
psychophysical measures such as the just noticeable difference (JND) (Gescheider
1985; Weber 1834), allowing a distinction between perceivable and unperceivable
differences in a physical quantity such as a force, length, or impedance by mapping
each difference to a proportion in perceptual responses. By simplifying the charac-
terisation of the perceptual system to such a static mapping, valuable information
about the time-series characteristics of the environment interaction is lost. Temporal
features in the interaction force and movement have though been shown to signifi-
cantly influence our perception of haptic properties such as hardness (Lawrence et al.
2000) and mass (Baud-Bovy and Scocchia 2009). Perceptual phenomena such as the
haptic masking effects found in Rank et al. (2012) could presumably only be under-
stood by looking at the temporal characteristics over time. In softness perception,
the amplitude of probing movements was also found to influence human perceptual
performance (Tan et al. 1995), a factor that is not accounted for in a softness JND
measure. To the authors best knowledge, no conclusive mechanism capturing the
combination of movement and force to perceive softness has yet been established.

We propose the usage of dynamic haptic perception models, using differential
equations to combine movement and force information together instead of static
perception models, e.g., the JND. In this way, the impact of interaction character-
istics on the perceptual judgment can be explicitly modelled. Looking at softness
perception from a system theoretic point of view, we propose three plausible mech-
anisms which are capable of discriminating between different soft environments.
The detection thresholds predicted by these models vary with the specific interaction
movement with the environment. Based on the results from three psychophysical
experiments, a dynamic state observer model is identified as a superior prediction
model compared to a comparison of identified time delay values and an internal
inverse model validation of the body and environment.

Theoretical model candidates from system theory, predicting perception thresh-
olds for temporal misalignment between limb movement and force feedback are
introduced in Sect. 8.2. Experimental data from three psychophysical experiments
on the perception of time delay in soft, damped and inertial environments are pre-
sented in Sect. 8.4, and predictions from the parameterised models are discussed.
The chapter is ended with a conclusion on the impact of the results on the design of
telepresence and VE systems.

8.2 Perception Model Representations

Perceiving softness generally requires a combination of force and movement cues
into a unified percept. Accounting for human perception characteristics in the design,
control and evaluationof systems for human-machine interaction such as telepresence
or VE systems requires the formulation of quantitative perception models capturing
haptic discrimination abilities. The models proposed here are built upon the assump-
tion of an existing decision criterion δ. This measure is used to determine which of
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two response alternatives to choose and can be found in well-established perceptual
modelling techniques, e.g. signal detection theory (Macmillan and Creelman 2005)
and diffusion models (Ratcliff 1978; Pleskac and Busemeyer 2010).

The perceptual output yp at a given response time tr is determined by

yp(tr ) =
{
“different” if ∃t ∈ [0, tr ] : |δ(·)| > ε,

“same” otherwise,
(8.1)

where ε is referred to as a decision threshold and the stimulus onset time is set
to t = 0.

Remark 1 This formulation of the perceptual process accounts for the fact that in
the context of human-robot interaction such as telerobotics, a perceptual decisionmay
be held back and not responded to as soon as the decision has been made. Contrary
to Ratcliff (1978), Pleskac and Busemeyer (2010), the formulation of perception
models in Eq. (8.1) thus accounts for all decisions made between the stimulus onset
up to time tr .

Inmost existing computational haptic perceptionmodels, δ(·) is a static function of
the sensory input. As an example from softness perception, a static perception model
for discriminating two environments with stiffness coefficients k1 and k2 could be
formulated by setting δ(·) = k1 − k2 and setting the threshold value to the JND for
stiffness ε = JNDk . As a consequence, temporal aspects of the interaction such as
movement speed, frequency, or interaction duration remain unmodelled. Instead, we
use a dynamic modelling approach to capture the decision criterion. We will limit
our considerations to ordinary differential equations.

In the following, three perception modelling candidates for the decision crite-
rion δ(·) in (8.1) are proposed. The main inspiration for these models is drawn from
considerations how one would approach the detection of differences in a haptic envi-
ronment from a system theoretic point of view. Support for themechanism candidates
in terms of neurophysiological and psychophysical evidence is also reported.

8.2.1 Sensorimotor Control Model

The different modelling approaches are discussed using a simplified dynamic model
of the human motor apparatus considering only one arm, which is a common simpli-
fication throughout the literature (Gil et al. 2004; Yokokohji and Yoshikawa 1994).
The state vector xh consists of the hand position xh and velocity ẋh . A block diagram
of the arm, controlled to follow a specific state trajectory, is depicted in Fig. 8.1.
Note that we make the modelling variables’ dependency on time only implicit in
favour of a clear presentation. The control mechanism �con(xh, xdes) determines the
forces which must be applied to the limb to follow a desired state trajectory xdes. The
arm with its mechanical properties �body(xh, ẋh, fres), linearly approximated by a
mass-damper system
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Fig. 8.1 The human arm is abstracted as a state-controlled single joint

ẍh = − 1

mh
( fres − dh ẋh)

with human-like parameters (mh = 2 kg, dh = 2 Ns/m from Yokokohji and
Yoshikawa (1994)) is in contact with the environment. The environment dynam-
ics are contained in �env(xh, ẋh) and react to the state xh with a force fh . This
feedback acts back on the limb and influences the force moving the limb.

Physiologically, humans are equipped with multiple haptic sensors (Hale and
Stanney 2004), and we will focus on sensors for the muscle force fm , limb position
xh and velocity ẋh . Dynamics and noise in the sensory estimates are not considered
explicitly, but implicitly respected in the choice of perceptual thresholds ε �= 0.

8.2.2 Feature Comparison

A straightforward way of discriminating between two soft haptic environments is
comparing their characteristic parameters θ . Such parameters include the stiffness
coefficient, or, in case a telepresence system including delayed communication is
involved, the time delay between movement and force feedback. To be able to com-
pare the two environments on a parameter basis, a system identification technique
suitable to capture this specific property must be used, leading to estimates θ̂1, θ̂2.
Time delay between movement and force could well be identified using an estimate
of the covariance between a position input and a force output signal (Ljung 1999).
Acknowledging the fundamental assumption of a decision criterion and threshold
for perceptual mechanisms in Eq. (8.1), we propose

yp(tr ) =
{
“different” if |θ̂1 − θ̂2| > θthresh

“same” otherwise.
(8.2)

In studies on monkeys, correlation techniques as a normalised form of covariance
methods have been found to be good at explaining brain activity in specific brain
regions associated with perception, if the animal attends to a certain visual stimu-
lus (Niebur and Koch 1994). This could be taken as evidence for the existence of
a neural substrate for performing correlations efficiently in the brain. Correlation
mechanisms can furthermore explain humans’ performance in detecting temporal
differences in audio-visual signals (Fujisaki and Nishida 2005).
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Remark 2 The classical JND measure is defined in the dimension of the physical
quantity under consideration, that means the haptic environment property θ (Weber
1834; Jones and Hunter 1990). In that sense, classical perception models are con-
tained in the feature comparison model proposed here and the predictions from the
feature comparison model are seen as a baseline for the other dynamic prediction
models.

8.2.3 Inverse Model Verification

An alternative approach to judge whether two soft environments have the same or
different properties is the use of a model verification technique. In system identi-
fication, verification is a standard procedure to check whether an identified system
has good generalisation capabilities (Åström and Eykhoff 1971). At first, a haptic
environment model is built by exploring one stimulus and identifying its parameters
by using, e.g., a covariance method as proposed in Sect. 8.2.2. Secondly, during the
exploration of another haptic environment, sensory information is compared to a pre-
diction of the sensory output, given the previously built internal representation of the
environment dynamics. If prediction and sensory evidence match, the environments
are considered the same. If there is a mismatch between the prediction and feedback,
the two environments are classified as different. Diverse verification methods are
utilised in various technical applications, differing in the criterion which is taken
into consideration for classification.

One possibility for a perception model as proposed in Eq. (8.1) can be formulated
based on the force required to move along a specific trajectory. The model

yp(tr ) =
{
“different” if ∃t ∈ [0, tr ] : � fm(t) > � fthresh

“same” otherwise,
(8.3)

is based on the force difference� fm(t) = | f̂m(t)− fm(t)|with fm(t) being the effec-
tive force from all muscles acting on the limb and f̂m is an estimation of the expected
force given the previously identified haptic environment. The decision threshold is
denoted� fthresh in this model. Themain difference to the feature comparisonmodel
proposed in Sect. 8.2.2 is the fact that the dissociation between a target and a ref-
erence environment is not the experimentally varied variable, e.g. stiffness or the
communication time delay in a teleoperation system, but the deviant force between
the two conditions.

In addition to Eq. (8.3), a perception model based on Weber’s Law is proposed,
respecting the fact that force discrimination levels have been found to depend linearly
on the force level (Tan et al. 1994). A difference between two soft environments can
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be perceived if the fraction of force error and force magnitude exceeds the Weber
fraction w:

yp(tr ) =
{
“different” if ∃t ∈ [0, tr ] : � fm(t)/ fm(t) > w

“same” otherwise
(8.4)

Reconstructing the motor action from a measurement of the state xh(t) requires
a dynamic model containing the body and the environment impedance. In motor
control literature, a model predicting motor actions (force) from an observation of
the body state xh (movement and position) is referred to as an inverse model. There
is experimental evidence for the usage of inverse dynamic models in sensorimotor
control by predicting the motor actions from the sensed state of the body (Kawato
1999; Shidara et al. 1993). Similarly, an inverse model f̂m,res = �inv(xh) capturing
dynamics of the arm, sensors and the environment can potentially play a role in
perception as well. A stiffness estimation method on the basis of maximum force
comparisons between conditions (Tan et al. 1995; Pressman et al. 2007) can be seen as
a representative of a perception model using inverse dynamics. Model verifications
are closely related to the prediction error method (PEM) which utilises the error
betweenmodel predictions and sensory information to enhance identification results.
This is a well-established technique in system identification (Ljung 1999) and a PEM
algorithm has been found to explain the anticipatory perception of sensory events in
a plausible way (Szirtes et al. 2005).

8.2.4 State Observer Model Verification

Alternatively to the exerted muscle force fm(t) as a decision criterion for distin-
guishing two soft haptic environments, perceptual judgments can be based on the
body state xh(t). In the proposed model of the arm in Fig. 8.1, consisting of one limb
performing a unidirectional movement, xh(t) consists of the limb position xh(t) and
velocity ẋh(t). The resulting haptic perception model is given by

yp(tr ) =
{
“different” if ∃t ∈ [0, tr ] : |x̂h(t) − xh(t)| > �xthresh

“same” otherwise,
(8.5)

where x̂h(t) is a prediction of the body state, given a previously experienced envi-
ronment dynamics.

A state observer can predict the body state from observations of the motor input
and sensory measurements, utilising a forward model of the body and environment
dynamics. A state observer with a linear dynamic model is depicted in Fig. 8.2.
The estimated dynamics of the limb and environment are contained in the state
function �̂body/env(x̂h, ˙̂xh, fm). Generally, an output function is required to trans-
form states into measurable outputs; however, since humans possess sensors for both
position and velocity, no transformation is required here. Comparing the predictions
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Fig. 8.2 A block diagram of
a state observer

observer

physical system

to the actual sensory observations leads to a prediction error which is weighted with
a matrix function K (xh − x̂h) and used to correct future estimates of the body states.
In the following, we only consider linear body and environment models and sim-
plify K (·) to a linear matrix multiplication K (·) = K . In case �̂body/env(x̂h, fm)

captures the body and environment characteristics exactly and the initial state esti-
mate x̂h(0) is correct, the state estimate over time x̂h(t) equals the real state xh(t).
If the internal prediction model deviates from the real dynamics because the envi-
ronment in the second stimulus differs from the comparison condition, the estimated
state differs from the real state.

In the case of white noise affecting the output measurement and states, the noise-
optimal choice for K is the Kalman Gain. This choice turns the observer into a
stationary Kalman filter. Kalman filters have been found to describe sensorimotor
control processes well in various situations such as the estimation of hand posi-
tion (Beers et al. 1999) or posture (Kuo 1995). This is a motivation to consider such
a structure as a candidate for perceptual processes as well.

8.3 Model-Guided Experimental Design

A percept of a soft environment can be corrupted in various ways: On the one hand,
differences in the stiffness coefficient alter the force feedback magnitude under con-
stant exploration movement; on the other hand, temporal distortions such as time
delay between movement and force feedback is capable of completely changing the
impression of the environment. Although time delay in haptic feedback is not a nat-
ural phenomenon in everyday-life haptic interactions, it is a problem in the operation
of telepresence systems over large distances (Peer et al. 2008), e.g., space (Sheridan
1993). We will focus on the investigation of distortions in the haptic combination
process due to temporal faults for two reasons: While it is known that time delay
between movement and force has a direct impact on the displayed softness (Hirche
et al. 2005; Hirche and Buss 2012), the perception of time delay in haptic interaction
with an environment is not yet sufficiently understood. However, such knowledge
is helpful to provide guidelines and specifications for haptic telepresence systems.
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As a second motivation, time delays are well-suited to dissociate between the three
perception model candidates, as will be detailed out in the following.

Experimental data from three published experiments on time delay detection in
force feedback is used to evaluate the prediction capabilities of the proposed per-
ception model candidates: In Rank et al. (2010), soft environments are explored
with sinusoidal exploration movements. Amplitude and frequency as well as the
stiffness coefficient are varied. The applicability of the models to environments dif-
ferent from softness is also examined to determine their capability to predict per-
ceptual thresholds in damped and inertial environments as well, using data from
Rank et al. (2010a).

8.3.1 Model-Guided Stimulus Selection

The prediction of perceptual thresholds based on the models introduced in Sects.
8.2.2–8.2.4 depends on a multitude of factors, e.g., the interaction movement speed,
frequency, and amplitude. Given this high-dimensional parameter space, a fully
crossed experimental design with conditions sampled over a range of stimuli is
inappropriate. Instead, we choose a model-based selection of experimental stimuli
based on predictions for the discrimination threshold of time delay in force feedback
from the environment using a linear spring with spring constant ke. Without loss
of generality, the equilibrium point of the spring is set to the position xh = 0. The
predicted perception limits of time delay on the basis of the matched filter model and
the state observer model depend on the interaction movement xh(t) with the haptic
environment. A sinusoidal movement

xh(t) = A sin(ωt) (8.6)

with amplitude A and frequency ω is chosen as the interaction pattern since it is
easy to understand and perform for participants in a psychophysical experiment. The
predictions following from the choice of environment and interaction movement are
discussed below.

The force feedback from a soft environment with time delay Td is expressed as

fh(t) = kexh(t − Td). (8.7)

Respecting the dynamical model of the human arm in contact with the environment
illustrated in Fig. 8.1, the overall motor action that is required to move the limb in
contact with the environment is

fm(t) = mh ẍh(t) + dh ẋh(t) + kexh(t − Td). (8.8)

Without loss of generality,we consider the case that the non-delayed soft environment
is explored first. The delayed feedback is perceived second and the sensory evidence
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from this exploration is compared to predictions from the undelayed stiffness. In
addition, we assume that humans have good knowledge of their body dynamics (iner-
tia mh and damping dh), and the estimate k̂e of the environment stiffness coefficient
ke is sufficiently accurate from the non-delayed stimulus exploration.

The inverse model verification model founds on a comparison between sensory
observation of the resulting muscular force fm(t) and the predicted force feed-
back f̂m(t). Consequently, f̂m(t) is determined by

f̂m(t) = mh ẍh(t) + dh ẋh(t) + k̂exh(t). (8.9)

Setting k̂e ≈ ke and substituting x(t) with Eq. (8.6), the error between model pre-
diction and sensory feedback is calculated in agreement with (8.3) to

� fm(t) = |ke A(sin(ωt) − sin(ω(t − Td)))|. (8.10)

Model verification using a state observer relies on a prediction of the body state

x̂h(t) = [
x̂h(t) ˙̂xh(t)

]T
, (8.11)

utilising a forward model of body and non-delayed environment dynamics. The state
prediction is the solution of the set of differential equations, expressed inmatrix form
as

[ ˆ̇xh(t)
ˆ̈xh(t)

]
=

[
0 1

− dh
mh

− ke
mh

] [
x̂h(t)
ˆ̇xh(t)

]
+

[
0
1

mh

]
fm,res(t)+

[
k11 k12
k21 k22

]([
xh(t)
ẋh(t)

]
−

[
x̂h(t)
ˆ̇xh(t)

])
.

(8.12)

In order to be detectable, the discrepancy in the decision variable must be larger
than a threshold variable. In order to determine the amount of time delay between
movement and force feedback, the maximum deviance between prediction and sen-
sory observation is to be computed. For the inverse model, the discrepancy is at its
maximum at time 1

2Td after the zero-crossings of the predicted (non-delayed) force
reference, which is expressed by

� fm,max = � fm(t)|t= 1
2 Td

= ke A2 sin(
1

2
ωTd) ≈ ke AωTd . (8.13)

The last step in the calculation holds for small values ofωTd , which is a valid assump-
tion for the practically relevant range of time delays in telepresence applications and
the movement frequencies considered in the experiments.

Similarly, the state observation error can be computed by solving Eq. (8.12) for
the specific interaction movement from Eq. (8.6) and the motor action from (8.8). In
contrast to the solution for the maximum force error in Eq. (8.13), the maximum state
error depends on the entries of the feedback matrix K . These values are unknown.
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Fig. 8.3 Six pairs of
movement amplitudes and
frequencies were chosen in
such a way that ω, A and
their product Aω have three
different levels respectively

Thus, the experimental conditions are optimized for the inverse model, and the
prediction capabilities of the state observermodel are tested post-hocwith a feedback
matrix K that is identified based on experimental data.

Keeping the time delay Td at a constant level, the maximum force error as the
prediction criterion for time delay detection is higher with a greater amplitude A,
and/or higher movement frequency ω. This means in return, that time delay needed
to exceed a hypothesized perception threshold on force error is smaller with larger
A and/or higher ω. Notably, the maximum force error as introduced in Eq. (8.13)
depends on the product of A and ω, predicting that choosing values of A and ω such
that their product is constant (Aω = const.) results in the same detection threshold.
For testing the influence of movement amplitude, frequency and their product, a
systematic experimental design with three levels for A, three levels for ω and three
levels of Aω as depicted in Fig. 8.3 is chosen.

Another factor in the computation of the maximum force error according to
Eq. (8.13) is the stiffness coefficient ke. The perception model predicts a lower time
delay detection threshold in the case where stiffness is higher.

In addition to a soft environment, the prediction capabilities of these models in
damping and inertia are explored in order to test a generalisation to other experimental
conditions as well. Stimuli with a damping de, and an inertia me satisfy

� fm,max

fm(t)|� fm(t)=� fm,max

∣∣∣∣
de

= � fm,max

fm(t)|� fm(t)=� fm,max

∣∣∣∣
me

,

such that the Weber fraction is equal in both conditions, resulting in a constant time
delay detection threshold in the case of a perception criterion based onWeber’s Law.

8.4 Experimental Investigations

Experimental data from three studies is analysed here. FromRank et al. (2010a), time
delay detection thresholds for sinusoidal movements with parameters as depicted in
Fig. 8.3 is taken. In addition, detection thresholds for three levels of stiffness under
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Table 8.1 Meandetection thresholds (DT ) and standard error (SE) of timedelay-induced alterations
of soft environments depend on the specific interaction movement and the composition of the
environment

Condition Movement variation Stiffness variation Environment
variation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ke [N/m] 65 65 65 65 65 65 65 65 65 65 65 65 65 0 0

de [Ns/m] 0 0 0 0 0 0 0 0 0 0 0 0 0 65
2π

43
2π

me [kg] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22
(2π)2

Â [cm] 8.9 10.5 13.2 8.6 10.7 8.74 14.8 14.8 14.4 18.5 18.4 18.7 11.1 11.3 11.2
ω̂
2π 0.71 0.70 0.68 0.93 0.92 1.24 1.06 1.08 1.12 0.84 0.85 0.84 1.03 1.05 1.08

DT [ms] 46 47 37 41 37 36 24 25 28 34 31 37 36 15 72

SE [ms] 4.5 7.3 6.3 5.0 4.2 5.8 4.5 6.5 9.3 9.3 4.5 9.5 5.7 2.6 6.1

two different movement patterns are taken from Rank et al. (2010a). Third, the time
delay detection thresholds obtained for stiffness are compared to those in damping
and inertia environments while keeping the interactionmovement constant. This data
is reported in Rank et al. (2010). A summary of all experimental conditions and the
detection thresholds found in the experiments is provided in Table 8.1. Notably, we
also report measurements of participants’ mean amplitude Â and frequency ω̂ of their
interaction movement since these have been found to differ from the experimental
instructions.

8.4.1 Results

Four substantial findings can be concluded from the experimental findings in
Rank et al. (2010a):

1. The detection thresholds for time delay-induced environment alterations are neg-
atively correlated with movement frequency and movement amplitude.

2. Movement amplitude and frequency influence the detection threshold separately.
3. Within the range of experimental conditions, stiffness does not affect perceptual

discrimination abilities of time delay in force feedback.
4. A change in the environment due to time delay can be detected easiest in force

feedback from a damper, followed by time delay in force feedback from softness.
Inertia exhibits the largest detection thresholds.

In order to investigate which perception model candidate is most suited modelling
this observed behaviour, parameters for each model are identified and predictions
for the detection thresholds are obtained.
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8.4.2 Model Predictions

Since experimental methods and the group of participants are not homogenous over
the different experiments, we fit mean detection thresholds individually for each
experiment. To compare the prediction quality between models, the mean squared
error (MSE) is computed. In the following, the individual identification procedures
and the prediction results are discussed in detail.

8.4.2.1 Feature Comparison Model

Humans may perceive time delay in a haptic environment per se and compare indi-
vidual estimates obtained from haptic exploration of the standard and comparison
environment. The correlation techniques discussed in Sect. 8.2.2 are indeed well-
suited to infer a time delay between movement and force feedback. While an uncer-
tainty in time delay detection performance due to noise in the biological system could
lead to a detection threshold different from zero, there is no apparent reason why
the uncertainty about the time delay should change with input amplitude, frequency,
magnitude, or the type of environment. The predicted time delay detection threshold
based on this method is thus constant over conditions. Identification of the only free
parameter in this model is achieved by solving

arg min
DT θ

1

Ncond

Ncond∑
i=1

(DTi − DT θ )2 (8.14)

where Ncond is the number of conditions in the respective experiment, and DT θ is the
(constant) time delay detection threshold. The solution to this optimisation problem
is the mean time delay over all conditions within one experiment. Predictions from
this perception model result in a MSE of 127.34 ms2.

8.4.2.2 Inverse Model Verification

The parameterisation of this model, given the experimental results in Table 8.1 is the
result of a nonlinear constrained optimisation problem

arg min
DT f

i ,� fthresh

1

Ncond

Ncond∑
i=1

(DTi − DT f
i )2 (8.15)

s.t.max� fm,i (t) = max | fm,i (t) − f̂m,i (t)| = � fthresh ∀i ∈ [1, Ncond ]

where � fthresh is the (constant) detection threshold for the difference between the
delayed and non-delayed exerted force and DT f

i the corresponding time delay
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value causing � fthresh . The predicted motor action on the basis of the measured
state xh(t) is computed for each individual experimental condition, indexed by i ,
and denoted f̂m,i (t). A numeric optimisation algorithm based on the interior-point
method is used to find the optimal parameterisation fitting all experimental condi-
tions (Byrd et al. 1999). Using the dynamic inverse model to explain average detec-
tion thresholds for time delay perception results in lower prediction errors (96.7 ms2)
compared to the feature comparison model prediction. The mean force difference
thresholds for the experiments are 1.4 N for the first, 1.2 N for the second, and 1.7 N
for the third experiment.

Force difference perception for experimentswith slowly-changing forces is known
to follow Weber’s Law (Tan et al. 1994). The Weber fraction of � fh(t) could thus
be an good model to explain the detection thresholds of time delay as well. The
optimisation problem to be solved is similar to Eq. (8.15), namely

arg min
DT w

i ,w

Ncond∑
i=1

(DTi − DT w
i )2 (8.16)

s.t.max
� fm,i (t)

fm,i (t)
= w ∀i ∈ [1, Ncond ]

with w the Weber fraction. Indeed, the model fit for the experiment with different
stiffness levels is admittedly good, with a MSE of only 4.5 ms2, but the model
performs poorly for all other conditions, yielding a total MSE of 127.7 ms2. Thus,
this model performs not better as the feature comparison model being the baseline
predictor.

8.4.2.3 State Observer Model Verification

In contrast to the matched filter perception model, the state observer model utilizes
an estimation of the body state for the decision about the environment time delay. The
difference between the observed state and actual state heavily depends on the choice
of the feedback matrix K , as discussed in Sect. 8.2.4. The model predicts perception
limits based on a threshold in the state estimation error. The state xh(t) consists of
two components, namely the limb position xh(t) and velocity ẋh(t).While deviations
between the observed state and the measured state could be principally based on a
generic threshold both on position and velocity, individual models considering a
threshold on xh and ẋh are considered here:

arg min
DT

x1
i ,�xh,thresh ,K

1

Ncond

Ncond∑
i=1

(DTi − DT x1
i )2 (8.17)

s.t.max�xh(t) = max |xh(t) − x̂h(t)| = �xh,thresh ∀i ∈ [1, Ncond ]
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and

arg min
DT

x2
i ,�ẋh,thresh ,K

1

Ncond

Ncond∑
i=1

(DTi − DT x2
i )2 (8.18)

s.t.max�ẋh(t) = max |ẋh(t) − ˆ̇xh(t)| = �ẋh,thresh ∀i ∈ [1, Ncond ].

The problems formulated in (8.17) and (8.18) have five free parameters to be opti-
mised. Due to the comparably low number of experimental conditions which are
available for model fitting and the fact that the optimisation problem may indeed
be non-convex, the solution can depend on the chosen initial values. Suitable values
are found from an initial grid search procedure, meaning a simulation of the state
space observer model for different feedback matrices K . Observation errors �xh(t)
and �ẋh(t) are computed for every candidate of K and the values resulting in the
lowest variance for the state error between all conditions of each experiment is taken
as initial values for the optimisation problems stated in Eqs. (8.17) and (8.18). Only
one feedback matrix K for all experiments is fit to keep the number of variables
computationally tractable and reduce the problem of overfitting. However, we do
allow for different threshold values xh,thresh , ẋh,thresh in the three experiment to
account for the differences in experimental methods. As a result, the state observers
with feedback matrices

Kxh =
[
11.8 36.3
33.3 31.1

]
, and Kẋh =

[
0 9.8
9.4 11.4

]
(8.19)

for predictions based on xh and ẋh , respectively, give predictions with the lowest
mean squared error. Threshold values for the position-based observer are 0.10, 0.02,
and 0.07 m. Velocity thresholds are 0.15, 0.04 and 0.07 m

s . The MSE values
are 98.3 ms2 for the state observer using the position error as decision variable,
and 85.7 ms2 for the velocity-based threshold. Predictions from all models in all
experimental conditions are compared in Fig. 8.4.

8.4.3 Discussion

Comparing the predictions from all models introduced in Sects. 8.2.2–8.2.4 leads
to the conclusion that the state observer model with a detection mechanism on the
observation error in limbvelocity ismost successful in capturing the observed percep-
tual behaviour. While in the first experiment, conditions with comparable maximum
force errors would lead to similar detection thresholds, the inverse model verification
method would predict a decreasing detection threshold for an increase in stiffness.
However, the second experiment fails to show such behaviour. In general, all dynamic
perception models except the model verification model using a threshold based on
Weber’s Law outperform the static feature comparison model.
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Fig. 8.4 Prediction errors, grouped by experimental condition (1–15, see Table 8.1). Prediction
errors are high in environments different than softness (14–15)

The state observer verification model is most successful in predicting detection
thresholds for time-delay induced changes in the environmental characteristics, but it
also hasmost degrees of freedom.Claiming the superiority of thismodel over its alter-
natives is thus admittedly difficult. Statistical tests such as the Akaike information
criterion fail here due to the inhomogeneity of the dataset with respect to participants
and methods. However, considering the technical application motivating the percep-
tual modelling, valuable predictions can still be drawn for the practically relevant set
of movement stimuli and haptic environments presented here.

An analysis of the prediction errors in the individual experimental conditions
reveals that all proposed models capture the time delay detection thresholds with a
significantly lower MSE for the soft environments compared to inertia and damping
(Welch’s t-test, t (0.14) = 15.7, p < 0.001). One reason for this lack of generality
could be our implicit assumption of an internal representation of the environment that
can generate a noise-free and temporally accurate prediction of the reference to the
actual sensory feedback. It is known that time perception can be easily disturbed by
many factors including attention to the stimulus, the frequency of events occurring
etc (Grondin 2010). The difference between the soft, damped and inertial stimuli
used in the studies described lies in the relative phase between the position and force
signals, thus in their inherent characteristic temporal relation to each other.Modelling
temporal uncertainties and noise on the perceptual signals during the explorationmay
bring further insights into the mechanisms involved in the combination of movement
and force into a coherent percept of haptic environments.

So far, all found effects had been attributed to the time delay introduced between
position and force feedback. However, using a regular exploration strategy with
fixed frequency makes time delay indissociable to a non-linear spring, similar to
Leib et al. (2010). The detection could thus as well be a measure of non-linearity in
the environment characteristics rather than actual delay. Further studies are required
to actually dissociate between these possibilities.
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8.5 Implications for Telepresence Systems

Time delay is a critical issue for haptic telepresence systems operating over long
distances (Peer et al. 2008; Hirche and Buss 2012; Sheridan 1993). Challenges to
be dealt with include technical issues such as system instability and, on the side
of the human operator, impaired perception of the environment’s haptic properties,
especially softness (Hirche andBuss 2007, 2012).High-fidelity telepresence systems
must aim for a high degree of transparency, that means, that the operator can not
distinguish whether he/she directly interacts with the environment or bymeans of the
technical system. Towards this ultimate goal, our findings provide valuable insights
for the design and control of telepresence system that allow an unaltered perception
of a remotely explored softness. First of all, the operator’s movement must be taken
into consideration to evaluate whether a time delay in the communication channel
affects softness perception or not. A haptic task which requires only slowmovements
can tolerate longer delays in the feedback than a highly dynamic task requiring
movements with a high frequency. Not only the task can limit the amplitude and
movement frequency, but also the haptic interface. A smaller workspace on the one
hand, and high friction or uncompensated inertia on the other hand can influence
the detection thresholds. The workspace dimensions of the local haptic interface
determine the maximum movement amplitude, and detection thresholds increase.
With larger inertia and damping of the local haptic interface, the achievable human
movement frequency decreases, resulting in a higher detection threshold for time
delay.

The finding that a scaling of the stiffness coefficient within the investigated range
does not influence the sensitivity of temporal perception is interesting for the applica-
tion in a specific teleoperation application, namely micromanipulation. In this area,
small forces arising in a micro-scale environment must be augmented for the user to
provide a perceptible haptic impression (Ando et al. 2001). For the case of delayed
haptic feedback, our finding suggests that the scaling factor can be chosen irrespec-
tive of haptic latency. Note, however, that we only validated this hypothesis for a
limited range of stiffnesses. In extreme scenarios, such as stiff contact with a rigid
object, an infinitesimally small time delay may result in an unstable system, which
completely changes the characteristics of the system. The human operator may then
be able to infer the time delay from increasing oscillations in the force feedback.

Although none of the current model candidates are capable of entirely predicting
thresholds for time delay detection in force feedback, the finding of such a dynamic
model would have direct application for the design of communication algorithms,
or haptic rendering systems as well: The greatest benefit of these models lies in
the possibility to consider the influence of interaction movements on the perceptual
threshold explicitly. In this way, more accurate predictions whether a time delay in
the haptic feedback is perceivable or not can be utilised during the execution of a
task, and appropriate measures can be taken, for example in communication Quality-
of-Service control algorithms. We take this as a motivation to work further towards
this ultimate goal.
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8.6 Conclusions and Open Problems

Humans do not possess a dedicated sensor for haptic environment properties such
as stiffness, damping, or inertia. Instead, temporal and magnitude information from
movement and force feedback must be combined together to infer such measures.
System theoretic perception models capable of combining these information sources
have been proposed in this chapter. We tested the ability of all model candidates to
predict time delay detection thresholds in force feedback. Taking together the results
of six psychophysical experiments on time delay perception thresholds, a dynamic
state observermodel has been identified as themodel capturing human discrimination
performance best when movement and force feedback are temporally misaligned.

Although all model candidates have been tested for a number of different move-
ments, the pattern was so far restricted to sinusoids of different amplitudes and
frequencies. For a more general applicability to haptic telepresence systems, other
movements must be considered as well. Ultimately, perceptual responses for time-
delayed feedback from arbitrary voluntary explorations shall be predictable. Further-
more, the modelling performance in the third experiment, considering time delay
perception levels in stiff, damped and inertial environments have not been captured
well by either model proposed so far. Alternative models with other decision cri-
teria could further improve the prediction performance. Together with a dynamic
perception model for the influence of magnitude information on the combination of
movement and force, conclusions about perception mechanisms for abstract envi-
ronments containing arbitrary combinations of stiffness, damping and inertia could
be eventually drawn.
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