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Series Editors’ Foreword

This is the 11th volume of Springer Series on Touch and Haptic Systems, which is
published in collaboration between Springer and the EuroHaptics Society.

Multisensory Softness is devoted to the perception of object deformation when
explored manually. Many research challenges revolve around the topic of multi-
sensory softness perception, such as the medical palpation of internal organs,
computational mechanisms of human softness perception or the artificial repro-
duction of compliant haptic interaction in Virtual Reality. The complexity of
haptic and multisensory stiffness perception is due to the interaction between
sensory information derived from the skin, the muscles and the tendons, among
others, all of which play an important role in properly perceiving material features
of objects through the sense of touch. Moreover, soft or hard object properties are
good examples of multimodal perception where vision as well as touch plays an
important role.

Twenty-six well-known researchers from the field of haptics have contributed
to this volume edited by Massimiliano Di Luca. The book is organized into
12 chapters that are grouped into three parts: Perceptual Softness, Sensorimotor
Softness, and Artificial Softness. This organization allows the reader to gradually
advance in the most relevant topics related to the human perception of softness and
to learn about the current state-of-the-art in this field.

June 2014 Manuel Ferre
Marc O. Ernst

Alan Wing
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Introduction

One, Few, Many Softnesses

Softness is the subjective impression of the physical compressibility and
deformability of objects. It is related to the way objects feel when we touch
them, it is a dimension that spans between two extremes: soft, compliant,
deformable on the one end and hard, stiff, rigid on the other.

Softness comes readily to mind when handling fabrics and touching pillows, but
the dimension soft versus hard does not apply only to objects whose surfaces are
deformable. Objects with rigid surfaces (i.e. that are inherently hard to the touch)
can be deformable as well—their shape can change when we apply a force to them.
For example, switches and buttons can be pressed and released giving the
impression of being more or less hard to push. This sensation is to some degree
independent of the softness of the material the button is made of.

In general, all objects that have some elastic properties can be defined as soft or
hard, but often the terms cannot be used interchangeably without affecting the
meaning. For example we could say that ‘‘the automatic door is not hard to push’’,
but it would have another meaning to say ‘‘the automatic door is soft to push’’. The
term ‘‘soft’’ often connotes the deformation of the object surfaces sensed through
the skin rather than changes in the overall shape of the object.

Most objects we interact with in everyday life exhibit some degree of
deformability and elasticity. Material compliance affects our comfort (think of
pillows and any other surface we rest on), improves our grip (e.g. tool handles and
automotive controls), and can even enhance our actions (e.g., when we jump on
trampolines or when we shoot arrows with a bow). Deformable objects can have
complex behaviours, but evidently our brain can deal with how such objects
respond to perturbation allowing us to interact effectively with them. Such
understanding is effortless, rapid, and comes natural; this might be at the core of
the reason why we have such a good naïve understanding of softness. It might also
be for this reason that we use expressions and wording relating to compressibility,
extrapolated from the original meaning, in everyday sentences: we ‘‘work very

xi



hard’’, ‘‘be hardly something’’, ‘‘have a hard time’’, ‘‘are a working stiff’’, ‘‘have a
soft spot’’, ‘‘comply with instructions’’ or could even be ‘‘soft in the head’’.

Because of this intuitive nature, one could be surprised to know that softness
and many other material properties are not ‘‘direct’’ properties; i.e. they cannot be
estimated using a sensory signal at one time point. The brain makes use of
numerous sources of sensory information that are related to material properties of
objects and in doing so it integrates sensory information over time. While some
signals are directly related to compressibility, most of the sensory signals carry
information either about the amount of resistive force or about the amount of
indentation. Our brain has specialised mechanisms to deal with all this dynamic
information so to create a coherent perceptual representation of the material
properties of objects and adjust motor actions accordingly.

The mechanism that allows the perception of the material properties of
deformable objects has recently received much scientific attention. Propriocep-
tively sensed position and force, visual deformation, skin stretching, skin vibration
and contact sounds all contribute to perception, but the question is how these
multiple signals are combined into a unique softness sensation. Understanding the
perceptual aspects of interactions with deformable objects could be beneficial for
an appropriate rendering of those interactions in virtual reality. Rendering, for
example, can be enhanced by correctly employing sensory information across
several sense modalities such as touch, proprioception, vision and audition.

This book focuses on the cognitive mechanisms underlying the use of multiple
sources of information in softness perception. It comprises an overview of several
aspects of haptic softness with contributions that have been grouped into three
parts: the sensory aspect of softness and its multiple signals, the coupling between
perception and action, and finally the design, improvement and use of haptic
interfaces for softness rendering.

Part I of the book deals with the sensory components and computational
requirements of softness perception. Chapter 1 identifies the physical quantities
that are used to measure softness, the psychophysical methods to measure how
softness is perceived, and finally the modalities involved in sensing softness.
Chapter 2 analyses the experimental evidence and proposes a model of how a
softness percept is obtained when information from vision and touch is concur-
rently present. Chapter 3 analyses what type of vibrotactile information is avail-
able when interacting with deformable materials and how humans make use of
such information to obtain a softness percept. Chapter 4 reviews the relation
between material properties and sounds generated during the interaction and it also
includes an analysis of the exploitability of such information in recognizing the
object’s material. Chapter 5 proposes a time-dependent Bayesian model that can
account for the way the brain integrates multiple sensory signals with previous
knowledge of what the material of the object is.

Material properties modulate impedance, whose effect can only be sensed
dynamically, i.e., while indenting and perturbing the objects. Motor actions are
therefore important components in the perception of material properties. In
compliance perception, the type of exploratory procedures employed and the
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pattern of movement performed are very important in determining the precision of
the estimate. Hence, Part II of the book deals with these motor components of the
interaction with soft objects. Here, Chap. 6 investigates how the acquisition of
sensory information can be improved through the use of different contact areas and
different movement parameters. Chapter 7 presents experimental data about the
errors involved in finding the centre of a force field generated by a force-feedback
device. Chapter 8 proposes a dynamic state model of interaction with a haptic
interface for the detection of delay in force generated in response to participant
movement. Chapter 9 covers the experimental findings on how softness perception
is affected by the manipulation of the time delay between movement and force
feedback, considering the prediction of several perceptual models.

Part III of the book focuses on the identification of exploitable guidelines to
help replicate softness in artificial environment. Chapter 10 investigates methods
to provide artificial sensory signals to enhance or substitute the sensory feedback
obtained during the interaction with compliant objects. Chapter 11 describes a
display that can mimic the direct tactile contact with objects of different com-
pliances by modulating the tension of a stretchable fabric. Chapter 12 introduces a
technique to change the perceived softness of physical objects by using a haptic
device that overlays forces to the resistive force generated by the object during
interaction.

The three parts of the book cover how sensory signals are used to perceive
softness, how humans interact with compliant objects and how to reproduce
interaction with soft virtual objects. Overall, the book offers a multidisciplinary
analysis of how sensory signals from different modalities (skin pressure,
proprioception, tactile vibration, vision and audition) are combined so to lead to
the impression of material compliance—the perception of softness.
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Part I
Perceptual Softness



Chapter 1
Physical Aspects of Softness Perception

Wouter M. Bergmann Tiest and Astrid M.L. Kappers

1.1 Introduction

This chapter discusses the relationship between physical and perceived softness and
hardness. In order to properly study softness perception, it is important to specify
what softness is, and how it is measured. Section 1.2 of this chapter deals with physi-
cal, objective scales for softness and hardness. Methods are then outlined in Sect. 1.3
to accurately characterise the human ability for perceiving softness. Section 1.4 dis-
cusses what cues are available for softness perception, and how they are used. Finally,
this chapter describes how the different cues work together in various situations.

1.2 Physical Measures of Softness

A material’s softness relates to its ability to deform under pressure. Deformation can
be elastic, viscous, or otherwise; however in this book, we will be mostly concerned
with elastic deformation. In physics and engineering, several measures are available
to describe the material’s softness. The most basic measure is an object’s stiffness,
which is the ratio of the force applied to the object and the amount of resulting
deformation in the direction of the applied force. It is equivalent to the spring constant
of a linear spring, which is usually indicated by the symbol k:

F = k · �l, (1.1)

W.M. Bergmann Tiest (B) · A.M.L. Kappers
Faculty of Human Movement Sciences, VU University Amsterdam,
Amsterdam, The Netherlands
e-mail: W.M.BergmannTiest@vu.nl

© Springer-Verlag London 2014
M. Di Luca (ed.), Multisensory Softness, Springer Series on Touch and Haptic Systems,
DOI 10.1007/978-1-4471-6533-0_1

3



4 W.M. Bergmann Tiest and A.M.L. Kappers

where F is the force and �l is the change in length. This relation is known as
Hooke’s law. The unit of stiffness is N/m. The same measure can also be expressed
as a compliance, which is the inverse of stiffness, with units of m/N.

A careful distinction should be made between an idealised, zero-length,
one-dimensional linear spring, and a real compliant object. The former can be used
conveniently to model simple elastic behaviour, but is often not representative of a
real-life situation. It should be noted that a real object’s compliance (or stiffness)
need not be a single value, and can depend on the direction or magnitude of the
force. Furthermore, the stiffness will depend on the object’s dimensions: the thicker
the object, the larger the deformation will be for a given force. The wider the object,
with the force spread out over a larger area, the smaller the deformation will be. A
measure that takes these aspects into account, at least for so-called ‘linear materials’
that behave according to Hooke’s law, is the elastic modulus or Young’s modulus.
This is defined as the ratio of stress and strain. Referring to Fig. 1.1, stress is the
applied force per unit area F/A, while strain is the relative change in length in one
direction: �l/ l. For the elastic modulus we therefore obtain

E = F/A

�l/ l
= Fl

A�l
, (1.2)

in units of N/m2 or Pa. Because it is based on relative deformation and force density
(i.e., pressure), it is less dependent on the object’s dimensions. In that respect, it can
be said that stiffness is a property of a specific object, whereas the elastic modulus
is a property of the material.

Another physical measure for hardness is the Shore durometer scale. This measure
is based on the indentation a probe makes when pressed into the material with a given
force, and can be measured using a durometer. The Shore system includes a set of
scales corresponding to different probe sizes and shapes (e.g. conical or spherical)
and indentation forces. The hardness is then expressed as a number between 0 and
100 on that specific scale, corresponding to an indentation between 100 and 0 mil

Fig. 1.1 Quantities involved
in the deformation of an
object: F is the applied force;
A is the area over which it
is applied; l is the original
thickness of the object; �l is
the change in thickness due to
the application of the force

l

A

Δ

F

l



1 Physical Aspects of Softness Perception 5

(1/1,000th of an inch), respectively. Similar systems include the Vickers hardness
test and the Rockwell hardness test. These scales are mainly intended for testing
relatively hard materials such as steel, and for this reason they are not used very
often in the context of human perception.

1.3 Psychophysical Measurement of Softness Perception

Several psychophysical techniques are available for characterising softness percep-
tion. The most important ones are magnitude estimation, discrimination measure-
ments, matching, and identification. These will be discussed in this section.

1.3.1 Magnitude Estimation

Using magnitude estimation, the physical magnitude of a stimulus can be linked to
its perceived magnitude. In general, participants are presented with a stimulus and
asked to express their perception of its magnitude as a number (e.g. on a scale from 0
to 100) or as a position on a line (visual analogue scale, VAS). Sometimes a standard
is used, to which a fixed number is assigned. When a test stimulus is presented that
feels twice as hard as the standard, the participant should respond with a number
that is twice as high, and so on. In other situations, the participant is completely free
to choose any scale. When used with a wide range of compliant stimuli, magnitude
estimation can provide insight into the functional relationship between physical and
perceived softness.

In an experiment where participants squeezed different types of rubber, it was
found that this relationship was nonlinear (Harper and Stevens 1964). The curve
relating physical stiffness to subjective hardness ratings could be fitted by a power
law with an exponent of 0.8. This value being less than 1 indicates that the steepness of
the curve levels off at greater hardness. The inverse relationship, with an exponent of
–0.8, was found for perceived softness ratings, indicating that hardness and softness
are perceptual opposites. Later research, however, showed that the exponent can
vary substantially across participants (Nicholson et al. 2000). In this experiment,
participants pressed down with both hands on a mechanical device and had to rate its
stiffness. Fitted exponents ranged from 0.92 to 2.56, but were quite consistent within
participants between two sessions that were at least two weeks apart (correlation
coefficient R = 0.84). Furthermore, an experiment with rendered virtual springs
found a power law exponent of 0.93 (Varadharajan et al. 2008). Note that in these
experiments, there was no direct skin contact with a compliant material. It has been
shown that this has an effect on the perceived magnitude of softness (Friedman et al.
2008). In that experiment, participants judged the softness of silicone rubber disks in
various conditions, with or without direct skin contact. In particular the stimuli at the
harder end of the range were judged to be softer when touched using a tool, compared
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to direct skin contact. Also, hard stimuli that were touched passively (pressed down
on the skin) were judged to be softer than the same stimuli touched actively. In short,
magnitude estimation of softness varies from person to person, and also with the
availability of direct skin contact and with the mode of touch (active or passive).

1.3.2 Discrimination

In perceptual discrimination experiments, participants are repeatedly presented with
two stimuli that differ in magnitude. They then have to indicate which stimulus has
the higher magnitude (two-alternative forced-choice task, 2AFC). There are different
ways of obtaining a discrimination threshold through a 2AFC task. The method of
constant stimuli defines a set of test stimulus magnitudes beforehand, usually spread
around a fixed reference stimulus (for example 8 test magnitudes; 4 below and 4
above the reference magnitude). Each pair of stimuli is presented a number of times
(e.g. 10) in random order. When the fraction of times each test stimulus is chosen
as the one with the higher magnitude is plotted against the test stimulus magnitude,
a psychometric curve is created. A suitable function can be fitted to this curve, for
instance one based on the cumulative Gaussian distribution:

f (x) = 1
2 + 1

2 erf

(
x − xref√

2σ

)
(1.3)

Here, x is the magnitude of the test stimuli, xref is the magnitude of the reference
stimulus, and the fit parameter σ is a measure for the steepness of the curve, and
corresponds to the difference between the 0.84 level and the 0.5 (chance) level of the
curve. This threshold σ is termed the Just Noticeable Difference (JND). The lower
this value, the more precise the stimulus continuum can be perceived. An example
of a psychometric curve with fitted function is shown in Fig. 1.2.

Other expressions for psychometric curves have been suggested, such as the cumu-
lative logistic distribution or the Weibull distribution. Furthermore, these functions
can be modified to include other parameters to account for the guess rate (the frac-
tion of correct responses that can be expected purely by chance) and the lapse rate
(the fraction of incorrect responses present even at a stimulus magnitude far above
threshold level, due to lapses in the participant’s concentration) (Wichmann and Hill
2001).

Alternatively, a staircase procedure can be used to estimate the JND. This pro-
cedure also uses a 2AFC task, consisting of presenting a pair of test and reference
stimuli on each trial, and asking the participant to indicate the one with the higher
magnitude. The test stimulus in the next trial is then determined by the participant’s
answer: one step more intense when the reference stimulus was chosen a certain
number of times in a row, or one step less intense when the test stimulus was chosen.
After a certain number of trials or a certain number of reversals of the direction
of the staircase, the procedure is terminated. Then, the difference between the test
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Fig. 1.2 Data from a hardness discrimination experiment. The dots indicate the fraction of times
that a test stimulus was found to be harder than the reference stimulus, which is indicated by the
vertical line. The solid curve is a fit to the data. The dashed line indicates the 0.84 level. The
difference between the corresponding stiffness value and the reference value is the discrimination
threshold σ, as indicated

and reference stimulus, averaged over the last, say, 20 trials, is representative for
the JND. The exact proportion on the psychometric curve to which this difference
corresponds, depends on the details of the staircase procedure. For instance, moving
one step forward after three correct responses in a row, and one step back after a sin-
gle incorrect response (a 3-up-1-down staircase) will converge at the 0.79 level. In
general, the staircase procedure requires considerably fewer trials than the constant
stimuli method, but can be less precise and might not always converge.

In addition to the threshold value σ, discrimination performance can also be
expressed as the ratio of threshold and reference magnitude, which is called the
Weber fraction, W = σ/xref . By determining such thresholds for a range of reference
magnitudes, and under various perceptual conditions, the relative importance of
different sources of information can be assessed. Often, the Weber fraction is more
or less constant over a considerable range of stimulus magnitudes. This phenomenon
is known as the Weber-Fechner law, which states that the Just Noticeable Difference
(JND) is a constant fraction of the stimulus magnitude.

One of the earliest softness discrimination measurements yielded a Weber fraction
of about 0.13 (Scott and Coppen 1939). This was based on a comparison of different
rubber cylinders with elastic moduli of around 1.5 MPa. Later, using a mechanical
device, where participants did not touch a deformable surface, Weber fractions for
stiffness discrimination were found to be around 0.22 (Tan et al. 1995). This illus-
trates the importance of the information from the surface deformation, which will be
discussed below. When participants were allowed to base their judgement on the force
at the end of the displacement, the average Weber fraction was as low as 0.08, but this
can be attributed to force discrimination rather than stiffness discrimination. Weber
fraction values for stiffness discrimination have been found to be replicable, with an
average difference between test and re-test of less than 2 % (Nicholson et al. 1997).
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Table 1.1 Weber fraction (WF) values from a number of psychophysical experiments

stimuli Stiffness range WF References

Rubber cylinders ∼1.5 MPa 0.13 Scott and Coppen (1939)

Electric motors connected to arms 0–6.3 N/mm 0.23 Jones and Hunter (1990)

Silicon rubber disks 2.5 N/mm <0.4a Srinivasan and LaMotte
(1995)

Rigid plates, fixed displacement 0.25 N/mm 0.08 Tan et al. (1995)

Rigid plates, roving displacement 0.25 N/mm 0.22 Tan et al. (1995)

Single rigid plate 12 N/mm 0.077 Nicholson et al. (1997)

Silicon rubber disks pressed with
stylus

2.5 N/mm <0.4a LaMotte (2000)

Silicon rubber blocks 1.2–55 N/mm 0.25–0.29 Freyberger and Färber
(2006b)

Silicon rubber cylinders 4.8–24 N/mm 0.15 Bergmann Tiest and
Kappers (2009)

Rigid plates 10–36 N/mm 0.5 Bergmann Tiest and
Kappers (2009)

Virtual cube explored with rigid
probes

0.63 N/mm 0.29 Kuschel et al. (2010)

aEstimate; no discrimination threshold is reported, only % correct

Turning back to deformable materials, it has been found that softness discrimination
sensitivity was better when participants pressed down on the stimuli than when they
pinched them between thumb and index finger (Freyberger and Färber 2006a). With
participants pinching the stimuli, there was no difference found in discrimination
performance between 20-mm-thick and 40-mm-thick stimuli, when their hardness
was expressed as a stiffness value (Weber fractions around 0.15) (Bergmann Tiest and
Kappers 2009). To conclude, softness discrimination is possible with a precision of
around 13–15 %, and depends on how the stimulus is touched. These discrimination
thresholds are summarised in Table 1.1.

1.3.3 Matching

In order to compare perception under different conditions, a matching experiment
can be performed. In such an experiment, the magnitudes that are perceived to be
equal are determined between two different types of stimuli. This is called the Point
of Subjective Equality (PSE). This is done by allowing the participant to adjust
the magnitude of a test stimulus until it perceptually matches that of the reference
stimulus.

Another method to determine this point is through a discrimination experiment,
as described above. Using the method of constant stimuli and a 2AFC task, a
psychometric curve can be measured. To this curve, a function of the same form
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as Eq. (1.3) can be fitted, but with xref as a free parameter. This fit parameter then
corresponds to the PSE.

Similarly, a 1-up-1-down staircase procedure with a 2AFC task can be used
effectively to estimate the PSE. After a number of trials, this procedure converges at
the point where the test and reference stimulus are of equal perceived magnitude. In
order to avoid a bias, it is recommended to use two interleaved staircase procedures:
one starting from above and one from below the reference magnitude. In this way,
the experiment ‘zooms in’ on the PSE.

An experiment involving matching between the two hands using electrical motors
yielded a linear relationship between reference stiffness and matching stiffness, with
R = 0.97 (Jones and Hunter 1990). From the spread in the participant’s responses
in repeated trials, a discrimination threshold could also be calculated, which corre-
sponded to a Weber fraction of 0.23. This is very similar to the value of 0.22 found
using a discrimination experiment (Tan et al. 1995), showing that different methods
yield very comparable results.

The main point of such matching experiments, however, is to compare perception
under different circumstances. For example, a study investigated the influence of
stimulus location on stiffness perception using a discrimination experiment with
virtual springs (Wu et al. 1999). In the haptics-only condition, the spring furthest
away from the participant was perceived to be about 10 % softer than the spring
closest to the participant. This bias disappeared when visual feedback was provided,
and also the discrimination threshold improved somewhat. This indicates that haptic
perception is dependent on location, but visual feedback can be used to compensate
for biases that arise as a result.

Matching experiments can also be used with different stimulus types. In a soft-
ness matching experiment between thick (40 mm) and thin (20 mm) silicon rubber
stimuli, it was found that the matched stimuli did not differ significantly in terms of
Young’s modulus, but the difference was significant when expressed as a stiffness
value (Bergmann Tiest and Kappers 2009). This suggests that people either use stiff-
ness information and compensate for differences in object geometry, or disregard the
stiffness altogether and only pay attention to the surface deformation.

1.3.4 Identification

Lastly, absolute identification of softness values is of importance for doctors and
veterinarians in the practice of palpation. This involves judging the softness of body
parts, for example for the diagnosis of breast cancer or determining the state of
pregnancy of cows. To determine human performance in absolute identification of
softness, a number of different softness values are presented and the participant
is asked to categorise them. In a study using virtual stiffness, it was found that
trained veterinarians were almost twice as good in identifying five different values
of stiffness than novice veterinary students (Forrest et al. 2011). This indicates that
stiffness identification can be learned.
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1.4 Cues for the Perception of Softness

This section focuses on the different types of information that are available for basing
a softness judgement on, and how these are combined to form a single percept.
Important sources of information are (1) the ratio between force and displacement,
and (2) the shape and size of the deformation of the surface. Although softness is
primarily a haptic property, visual as well as tactual cues can be used to obtain this
information.

1.4.1 Visual Cues

Visual cues can convey information about the displacement, which can be used in
combination with haptic force cues for softness perception. The importance of this
role of visual information was shown in an experiment where participants performed
a stiffness discrimination task using an apparatus that presented virtual springs
(Srinivasan et al. 1996). At the same time, they were shown the deformation of the
springs on a computer screen. The results showed that when there was a mismatch
between the visual and haptic information, participants based their judgement, for the
most part, on the visual information. They felt a physically stiffer spring as less stiff
when it showed a greater deformation on the screen. This illusion was used to simulate
haptic feedback in a situation where participants pushed against a passive handle, and
were shown the deformation of a spring on a screen (Lécuyer et al. 2000). The actual
displacement was very small, and the physical force/displacement relationship was
the same for all stimuli, so displacement information could only be obtained visually.
Even so, participants reported feeling differences between the different springs and
could discriminate stiffness with a Weber fraction of 6 %. When they had to per-
form stiffness discrimination between a virtual spring (with only visual displacement
and haptic force information) and a real spring (with haptic force and displacement
information), the Weber fraction was found to be 13 %. Although the illusion is
very compelling, there is a limitation to the amount of mismatch between haptic
and visual information. It was found that when the discrepancy becomes greater
than 55 %, a difference between haptic and visual information becomes perceivable
(Kuschel et al. 2008).

When both visual and tactual cues are present, one would expect discrimination
to always be better than when either cue is available by itself. In a study involving
discrimination based on either visual, proprioceptive, or combined cues, however, it
was found that some participants did better in one condition, and others in another
(Gurari et al. 2009). On average, discrimination in the combined condition, with
a Weber fraction (WF) of 0.039, was worse than in the proprioceptive-only con-
dition (WF 0.036), but better than in the visual-only condition (WF 0.056). The
findings suggest that some people are more visually oriented, whereas others are
more touch-oriented.
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The studies cited above involved visuohaptic perception of the stiffness of springs.
In that case, only the displacement of the spring can be perceived visually and the
force can only be perceived haptically. When a deformable object is used, how-
ever, instead of a spring, the surface deformation cue becomes available, which can
be perceived visually. This was demonstrated in an experiment where participants
performed magnitude estimation of softness of silicon rubber cylinders in haptic,
visual, and visuohaptic conditions (Drewing et al. 2009). In the haptic and visuo-
haptic conditions, they explored the stimuli with or without a blindfold, whereas in
the visual condition, they watched another person explore the stimuli. In all con-
ditions, participants were able to distinguish between the stimuli, but in the haptic
condition, they were judged somewhat harder than in the visual condition, with the
visuohaptic judgements in between (on average a little closer to the visual than to the
haptic judgement). From this experiment, it can be concluded that visual cues alone
are sufficient for softness perception, and that when both visual and haptic cues are
available, the judgement is based for 55 % on visual and 45 % on haptic information.

Kuschel et al. (2010) carried out an experiment to study whether a judgement is
arrived at by either first combining position and force information in each modality
separately and then integrating the softness information from both modalities, or by
first integrating the haptic and visual position information separately from the haptic
and visual force information, and then combining the two. In one condition both
force and position information was available to both modalities, and in another con-
dition only visual position and haptic force information was available. The authors’
assumption was that if information is first integrated and then combined, the pre-
cision of perception would be about the same in both conditions, since the haptic
position and visual force information are considered relatively unreliable and do not
contribute much to discrimination performance. On the other hand, if information
is first combined and then integrated, essential information is missing and discrim-
ination performance is much worse in the second condition. Since discrimination
in the first condition was found to be much better than in the second, the authors
concluded that a softness percept is first formed in each modality separately, and only
then integrated. Furthermore, based on a second experiment, they concluded that the
weight factors attributed to the two modalities are close to optimal when haptic and
visual information is congruent, but they remain the same when the information is
incongruent, and therefore are not optimal in that situation. Further discussion and
experimental results about visuohaptic perception of softness are covered in Chap. 2.
Chapter 5 analyses the computational requirements involved in integrating force and
position information.

1.4.2 Tactual Cues

Tactual sources of information include the ratio between force and displacement of
the fingers, and the force distribution over the contact area, as well as its shape and
size; see Fig. 1.3. The possible contribution of vibrotactile information is analysed

http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_5
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Fig. 1.3 Sources of information about an object’s softness. Left Amount of linear displacement of
the fingers when a force is applied. Right Shape and size of the contact area, and force distribution
over this area

in Chap. 3. Tactual cues can be further subdivided into kinaesthetic cues (relating
to the perception of forces on, and movement of, limbs or fingers) and cutaneous
cues (relating to the perception of pressure on the skin). Displacement of the fingers
is mostly a kinaesthetic sensation, whereas force information can be sensed both
kinaesthetically and cutaneously. On the other hand, the force distribution and the
contact area can only be sensed cutaneously. Using local anaesthesia, it has been
shown that cutaneous information is both necessary and sufficient for accurate soft-
ness perception (Srinivasan and LaMotte 1995). Thus, with only kinaesthetic infor-
mation, participants could not discriminate between rubber disks that differed by a
factor of 1.9 in stiffness (recall the Weber fraction of about 0.15 for normal softness
perception, corresponding to a difference of a factor of 1.15). In another experiment
from the same article, passive touch was used, which involved pressing the stimuli
down onto the participants’ fingers. Here only cutaneous information was available
and participants were able to use the cutaneous force information and the surface
deformation to discriminate between the disks. However, with spring cells having
rigid surfaces, this was not possible, and the addition of kinaesthetic displacement
information was necessary for discrimination. Furthermore, experiments have shown
that softness discrimination is possible using a tool (a stylus), which conducts only
force and displacement information (LaMotte 2000). Also with the tool, cutaneous
cues are sufficient for force sensation, but kinaesthetic cues are necessary for the
displacement.

The available cutaneous cues include the contact area spread rate (CASR)
(Bicchi et al. 2000). This is the slope of the function relating the normal force and
the size of the contact area. With this cue present in a mechanical softness display
(see Chap. 11), participants were 30 % more precise in softness discrimination com-
pared to a force/displacement display without the CASR cue. When these two cue
types are combined, discrimination is even better, but still not as precise as direct
interaction with a real deformable surface (Scilingo et al. 2010). To precisely pin-
point the importance of this direct interaction, Weber fractions from a discrimination

http://dx.doi.org/10.1007/978-1-4471-6533-0_3
http://dx.doi.org/10.1007/978-1-4471-6533-0_11
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experiment with silicon rubber cylinders were compared to those obtained with the
same cylinders, but with rigid steel disks interposed between the objects’ surfaces
and the participants’ fingers (Bergmann Tiest and Kappers 2009). In the latter case,
participants could still use cutaneous cues but only for force information, since there
was no deformation of the surface. Weber fractions went up to 0.5, highlighting
the importance of the surface deformation cue. Under the assumption that stiffness
cues and surface deformation cues are combined in a statistically optimal fashion, this
suggests that about 90 % of the information is obtained from the surface deformation.

In order to further study the role of these cues, an experiment was set up in
which the stiffness and surface deformation cues were decoupled (Bergmann Tiest
and Kappers 2009). This was done by means of a stimulus set with a sandwich
configuration: Between the top and bottom silicon rubber layers, an incompressible
part was inserted, while keeping the total thickness of the stimuli the same as that
of the stimuli consisting of silicon rubber all the way through. In this way, the
surface characteristics and finger span were kept the same, but the relation between
stiffness and Young’s modulus differed between the two stimulus sets. A matching
experiment determined which values were required for participants to feel the two
stimulus types to be equal in softness (PSE). The results are shown in Fig. 1.4, where
the relationship between Young’s modulus and stiffness is plotted for the two types
of stimuli (dashed for the homogeneous type and dotted for the sandwich type). In
the figure, arrows indicate the average softness matches made between the two types
of stimuli. The grey lines are a fit to the direction of these arrows, showing possible
curves of equal perceived softness. As can be seen, the lines for the softer stimuli
(close to the bottom left of the graph) are oriented much more towards the horizontal
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Fig. 1.4 Relationship between the object stiffness and the material’s Young’s modulus for two
types of stimuli (dashed and dotted curves). The arrows indicate the matches made between these
stimulus types. The grey lines illustrate possible curves of equal perceived softness, based on the
matches. Based on data from Bergmann Tiest and Kappers (2009)
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than for the harder stimuli (top right of the graph). This suggests that participants’
attention shifts towards stiffness for softer stimuli, and more towards the Young’s
modulus for harder stimuli. Since the Young’s modulus is a property of the material,
whereas stiffness is a property of the object, we can say that for softer stimuli, the
determining factor is how the whole object can be compressed, whereas for harder
stimuli, it is how the material in contact with the fingers deforms under pressure.

1.5 Conclusions

In conclusion, it can be said that the relationship between physical and perceived
softness has been studied quite extensively. Physical softness is captured by the stiff-
ness (or compliance) and the elastic modulus. Since the stiffness can be perceived
both haptically and visually by using available force and displacement components,
it is of greater importance when the modalities are used together. However, when
only haptic information is used, and especially for stiffer objects, the elastic modu-
lus becomes the most important factor. Since this component of softness is sensed
through the cutaneous channel within the haptic modality, it is of the utmost impor-
tance to appropriately stimulate this channel when attempting to artificially display
the sensation of softness.
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Chapter 2
Visual-Haptic Compliance Perception

Roberta L. Klatzky and Bing Wu

2.1 Analysis of Softness as a Higher-Order Property

Traditional psychophysical methods are so-called because some physical dimension
is carefully manipulated while people make judgments of its psychological impact
(see Chap. 1). Typical psychophysical measures are: the detection threshold (mini-
mum stimulus intensity required for conscious perception), the discrimination thresh-
old or Just Noticeable Difference (JND; minimum difference in intensity required
for discrimination), and parameters of the function relating perceived intensity to
physical intensity across a range of values on the target dimension. Early attempts
to measure these psychophysical variables tended to focus on univariate quantities.
Thus, for example, one can find values for the threshold intensity of physical dimen-
sions such as length, brightness, or weight, as well as other quantitative dimensions
with less obvious physical interpretations such as salt dilution or voltage of a current
applied to the skin (see Woodworth and Schlossberg 1960). One can also find, from
so-called magnitude estimation tasks, that perceived stimulus magnitude tends to be
related to physical signal intensity in the form of a logarithmic function (Fechner
1860) or a power function, the exponent of which provides a summary measure of
the perceptual transduction output for a given dimension (Stevens 1975).

The present chapter focuses on stiffness, the mathematical inverse of compliance.
Stiffness is inherently a higher-order property, in the sense that it is computed from
the relation between two underlying quantities. By Hooke’s Law, stiffness (denoted
k) is the relation between displacement (d, change in position or length) and the
force that produces that displacement (F), as specified by the equation, F = kd.
Given that stiffness is defined by the ratio of two physical variables, force and posi-

R.L. Klatzky (B)

Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: klatzky@cmu.edu

B. Wu
College of Technology & Innovation, Arizona State University, Mesa, AZ, USA

© Springer-Verlag London 2014
M. Di Luca (ed.), Multisensory Softness, Springer Series on Touch and Haptic Systems,
DOI 10.1007/978-1-4471-6533-0_2

17

http://dx.doi.org/10.1007/978-1-4471-6533-0_1


18 R.L. Klatzky and B. Wu

Fig. 2.1 Judging stiffness (k)
from perceived force (F) and
displacement (d)

tion, a psychophysical characterisation means examining first how the individual
variables and the ratio are perceived. This chapter is concerned with an additional
source of complexity, namely, the contributions of vision and haptic perception to
the perception of stiffness, as illustrated in Fig. 2.1.

2.1.1 The Components of Stiffness Through Vision and Haptics

In this section we briefly consider how displacement and force are perceived through
vision and haptic perception in isolation. There are, then, four cases to consider,
resulting from the combination of two properties and two modalities.

The first case is the perception of displacement by the visual modality. Some
experiments have shown that visual judgments of length in near space are proportional
to physical length, as indicated by power-function exponents of 1.0 (Seizova-Cajic
1998; Teghtsoonian and Teghtsoonian 1965). Linear relations, however, can still
show bias; for example, the slope relating judged length to physical length was shown
in one experiment to be on the order of 0.9, introducing systematic under-estimation
bias (Keyson 2000).

Next, consider the perception of displacement by touch. For haptic judgments
of length of a line, power-function exponents extracted from magnitude estimation
vary between 0.8 and 1.2, suggesting greater distortion than is generally found for
vision. The exponent depends on the stimulus range (a usual phenomenon in scaling
experiments), orientation of the stimulus (Lanca and Bryant 1995), and circumstances
of exploration. For example, tracing the length of the line with the fingertip leads to
relatively low error (Stanley 1966), but the length of a stimulus felt through a pinch
grasp is overestimated (Seizova-Cajic 1998; Teghtsoonian and Teghtsoonian 1965,
1970).
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Force, the second component of stiffness, is sensed haptically through cutaneous
deformation and mechanoreceptors in muscles, tendons, and joints. Characterizations
of haptic force perception have been widely variable (see Jones 1986, for review),
depending on the range of forces tested and the experimental procedures. For exam-
ple, an exponent has been reported of 1.7 for hand-gripping forces (Stevens and Mack
1959), 0.8 for lifted weights (Curtis et al. 1968—in which case force is derived from
the relation to mass and gravitational acceleration), and 1.0 for tangential forces
applied to the fingertip (Paré et al. 2002).

Visual cues to force are minimal and essentially heuristic. Surface deformation
patterns offer cues to compressive force (Wang et al. 2001), although generally
without metric scaling. An interesting approach was offered by Sun et al. (2008),
who analysed camera images of the fingernail and nail bed, then used changes in
colour to predict the applied force. Beyond these direct cues, people may exhibit what
Bayesian modeling refers to as “priors”—expectations based on past experience (see
Chap. 5 for a discussion about Bayesian models). Visually based priors come into play
because our experiences of force generally occur in the context of visual experience.
It has been suggested that the sensation of force through mechanical interaction and
the corresponding displacements perceived by vision become associated in long-term
memory, and thus kinematic features in a visual percept can be matched to stored
haptic experiences to infer force (White 2012). Michaels and De Vries (1998) asked
their participants to judge the force exerted by a videotaped puller who gripped a
handle and made pulls to specified target forces without moving their feet. Their
results showed high correlations between visual judgments and target forces.

2.1.2 Multi-Modal Perception of Stiffness Components

Even if we were to know, for each modality, the psychophysical functions relating
perceived force and displacement to their physical values, we would not necessarily
be able to quantitatively predict the perceived stiffness. For one thing, internalized
quantities may not behave like ratio scales, so the simplicity of Hooke’s Law is
questionable here. More importantly, the presence of two modalities tends to lead
to perceptual outcomes that differ from the simple effects of either component in
isolation. Here we consider interactions between vision and haptics in the estimate
of the component properties of stiffness, displacement and force.

Consider first the multisensory integration of spatial cues in displacement per-
ception. Relative displacement might be computed from comparing successive rep-
resentations of the effector location. In relevant work, it has been found that when
a person’s hand is localized in space using proprioceptive and visual information,
the two type of cues are averaged in a weighted linear manner, so that the reciprocal
of the bimodal variance is equal to the sum of the reciprocals of the two unimodal
variances (van Beers et al. 1999). Relative displacement can also be computed by
comparing simultaneous positions of effectors. In a classic study, Ernst and Banks
(2002) demonstrated that the integration of visual and haptic information concerning

http://dx.doi.org/10.1007/978-1-4471-6533-0_5
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distance between the fingers follows a Maximum-Likelihood Estimation model
(MLE). The perceptual outcome was a weighted linear combination of estimates
from each modality, where the weights were inversely related to the estimates’ vari-
ability. That is, the more reliable estimates received more weight.

Another way to compute displacement is to compare the position of a surface
indented by an effector to a surrounding surface. One of our studies found that visual
and haptic cues combine in a linear fashion in the perception of surface displacement
(Wu et al. 2008). Participants were asked to indent a probe into a soft surface until
it “bottomed out” against a barrier; they then attempted to estimate the extent of
the indentation. Visual cues were present from the indentation per se and also from
deformation of a grid pattern painted on the surface. Haptic feedback was experimen-
tally manipulated by varying stiffness of an underlying membrane. We found that
resisting forces arising from surface indentation heightened the perception of defor-
mation. For a constant physical indentation, higher force led to greater perceived
surface indentation. A regression analysis found that the data could be described by
a weighted linear combination of visual and haptic cues, although the optimality of
the weighting was not tested.

We next turn from multi-modal perception of displacement to multi-modal per-
ception of force. The haptic perception of force direction, for example, can be sig-
nificantly enhanced with congruent visual cues. Bargagli et al. (2006) found that the
threshold of force-direction discrimination was reduced from 25.6◦ in the haptic-
only condition to 18.4◦ when congruent visual cues were introduced, but increased
to 31.9◦ when the haptic and visual inputs were incongruent. The size/weight illu-
sion (large objects are perceived as lighter than smaller objects of equal weight)
might be the most extensively studied phenomenon with respect to visual influence
on the perception of force magnitude. Ellis and Lederman (1993) showed that visual
cues alone could yield the illusion, but with a lower magnitude than that observed
in haptic-only or bimodal conditions. Valdez and Amazeen (2008) suggested that
vision could augment the basic haptic illusion by virtue of visual facilitation of size
perception.

Multi-modal interactions occur for higher-order dimensions as well as their uni-
tary components. We have argued that stiffness perception cannot be directly pre-
dicted from force and displacement in a single modality, and the same is true for
multi-modal stiffness perception, considered next.

2.2 Visual-Haptic Stiffness Perception

In this section we turn from multi-modal interactions affecting the perception of the
components of stiffness, to the higher-order percept itself, which requires combining
the components of force and position.
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2.2.1 Integration of Visual and Haptic Cues in Stiffness Perception

Multi-modal contributions to stiffness perception were examined by Varadharajan
et al. (2008). Using a high-fidelity haptic force-feedback device along with a visual
display, they created a simulation of 3D virtual springs that can buckle and tilt
in any direction as force is applied. In a stiffness magnitude-estimation experiment,
participants freely explored a set of 12 randomly ordered springs with rigidity ranging
from 12.0 to 48.0 N/mm. After having interacted with a spring, participants rated
perceived stiffness using any number, with the rule that higher numbers meant that
the spring felt stiffer. A monotonic relationship between the judged and rendered
stiffness was evident. More importantly for present purposes, participants were tested
in haptic-only and haptic-visual conditions, and no significant contribution of vision
to the perception of stiffness magnitude was found.

In contrast, the same authors found that stiffness discrimination performance was
improved by adding visual rendering of the interaction. When vision was excluded
in the haptic-only condition, the JND increased by over 20 % relative to the haptic-
visual condition, as shown in Fig. 2.2. Thus while vision failed to change the relation
between perceived and physical stiffness magnitude, it did provide greater sensitivity
in the discrimination of stiffness. Presumably this arose from the kinematics of
interaction and changes in size and shape of the spring, although the quantitative
weight given to visual versus haptic cues cannot be determined from this study.

The MLE model suggests that the relative weight given to each modality in a
multi-modal situation should depend on the relative reliability of the estimates (i.e.
inverse variance). In this way, there will be always an advantage for integrated esti-
mates in terms of reliability. This prediction does not appear to be confirmed in a

Fig. 2.2 Differential thresh-
old for discriminating spring
stiffness was reduced with
visual feedback (adapted from
Varadharajan et al. 2008)
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study by Srinivasan et al. (1996). They investigated the impact of visual information
over kinaesthetic information in a comparison of two springs rendered in a virtual
environment with a 3 DOF haptic interface. The relationship between visual and
haptic stiffness ranged from consistent to reversed (i.e. visual deformation for a hard
spring at a particular force level was depicted in conjunction with a haptic rendering
of a soft spring at that force level). They found that visual cues essentially dominated
kinaesthetic cues. Another effect of vision may be to mitigate biases induced under
haptic perception. Along these lines, Wu et al. (1999) found that vision reduced a
haptic bias to feel more distant objects as softer.

2.2.2 Models of Visual-Haptic Integration in Stiffness Perception

Higher-order properties require multiple component properties to be combined. In the
case of stiffness, a ratio is computed between force and displacement. Multi-modal
inputs add to the processing burden by imposing the need to integrate informa-
tion from the multiple modalities. This raises an interesting question: When does
cue combination occur in relation to integration, or correspondingly, what is inte-
grated/combined? Are individual unidimensional properties (force, displacement)
estimated by each modality, integrated across modalities, and then combined? Or
does each modality independently combine the components into a higher-order prop-
erty (stiffness), followed by integration of the multiple estimates of the higher-order
that ensue? The models are illustrated in Fig. 2.3.

This question was addressed by Kuschel et al. (2010) using a visual-haptic stiffness
display. Participants pinched a virtual spring between two fingers, each attached
to a robot, while viewing the consequences in the form of a deformable virtual
cube. As the thumb moved toward the index finger, the robots produced resisting
forces depending on the spring model, and the cube’s shape was visibly deformed
by two spheres representing the squeezing digits. Thus in the normal active mode,
sufficient visual and haptic cues were provided to participants for estimating force
and deformation. Visually, deformation could be judged from the distance between
spheres, and force from the cube’s curvature. By touch, finger displacement could be
felt through kinaesthetic sensing, and force through both cutaneous and kinaesthetic
sensing.

The test of which operation occurs first, combination or integration, was con-
ducted by implementing a reduced-cue condition that eliminated the weaker of the
two sources for each component property—the visual force cue and the haptic dis-
placement cue. To eliminate visual force, the curvature deformation was eliminated,
and the cube only grew thinner as it was indented. To eliminate haptic displacement,
the fingers were held apart, and a force from the robot, representing resistance from
the spring, was pressed into the passive thumb. Thus, in the reduced-cue condition,
the subject saw one side of the cube moving in and out along a sinusoidal trajectory,
while feeling corresponding forces on the fixed thumb.
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Fig. 2.3 Two processing models have been proposed to explain the visual-haptic integration in
stiffness perception (Kuschel et al. 2010). Model (a) suggests that individual properties (i.e., force
and deformation) are estimated multimodally and then used in the estimation of stiffness. In contrast,
Model (b) suggests cross-modal integration follows the process of cue combination within each
modality. That is, stiffness is estimated from unimodal information obtained through vision or
touch, followed by a process of cross-modal integration

The reasoning behind such a test is as follows: If combination within each modality
into a higher-order property precedes integration, the reduced-cue condition should
essentially preclude stiffness from being perceived. That is because both displace-
ment and force are needed to compute the within-modality stiffness estimate; lacking
even the weaker cue, the task cannot be done: In the reduced-cue condition, visual
cues are available for deformation but not for force, while haptic feedback provides
only information of force but no finger displacement. In contrast, if integration pre-
cedes combination, the reduced-cue condition should have little negative impact on
performance. The weaker cue of each modality can be discarded and the stronger
ones (visual displacement and haptic force) can be combined to produce a stiffness
estimate. Essentially, there is no integration in this case, because each component
property is computed by a single modality, using its stronger cue.

The results of the study supported combination before integration: When the JND
was computed from a standard psychophysical task, the value was 0.29 in the active
condition and 0.83 in the reduced-cue condition; nearly a 300 % increase. Thus it
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appears that each modality combines cues to arrive at an estimate of stiffness, and
an integration process transforms those estimates into a multi-modal value.

Given that unimodal stiffness estimates are integrated, a natural question to follow
is: Does the integration process follow the MLE rule? To answer this question,
Kuschel et al. (2010) distorted the visual display in relation to the haptic, so that the
relative ratio of visual:haptic displacement was 2:1, 1:1, or 0.5:1. Under the MLE
rule, the perceived estimate should move toward the visual value. For example, if the
visual display is seen to move twice as much for a given haptic value, the perceived
stiffness should become less. These patterns were observed and were quantitatively
consistent with the model.

Another prediction of the MLE model however, failed. The prediction was that
the standard deviation for every visual-haptic condition should be less than that of the
haptic alone, and this was violated for the 2:1 visual:haptic distortion. Quantitative
analysis of the data showed that the weights observed in the no-distortion condition,
which were optimal only for that condition, did not change even when the visual
input was distorted. Drewing et al. (2009) reported a similar phenomenon. When
estimating the compliance of soft rubber specimens under a visual-haptic condition,
participants’ judgments were shifted halfway from haptic-only estimates towards
vision-only estimates. However, the reliability of judgments, as measured by the
standard deviations of individual’s estimates, was not improved by the addition of
visual information. Further evidence for non-optimal integration of visual and haptic
softness was found by Cellini et al. (2013). These studies collectively suggest that
visual and haptic softness cues may not be integrated optimally, particularly when
the two inputs are not in congruence.

2.3 Applications of Research on Visual-Haptic Stiffness
Perception

A practical problem, particularly in medicine, is how to help people better perceive
stiffness through effective augmentation of visual and haptic cues. For example,
when performing ultrasound examinations for breast cancer, radiologists compress
the target area with the ultrasound probe, observe the ultrasound video, and feel the
resisting force to detect possible tumours as changes in tissue stiffness. Research has
shown that the human ability to distinguish stiffness is limited. Jones and Hunter
(1990) reported an average JND of 23 % for participants haptically comparing the
stiffness of simulated springs using a contralateral limb matching procedure. Tan et al.
(1995) found a low JND of 8 % for compliance discrimination in a fixed-displacement
condition and a significantly higher JND (22 %) when the displacement was varied
across the stimuli. For visual discrimination of stiffness, Wu et al. (2012) presented
to their participants simulated ultrasound with different levels of speckle noise and
structural regularity, and reported JNDs ranging from 12 % to 17 %. In clinical
practice, such perceptual limits are reflected in the limited sensitivity of palpation
screening. The reported detection rate is only 39–59 % for breast cancer examination
(Shen and Zelen 2001).
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Engineering platforms have been developed to enhance stiffness perception by the
augmentation of visual, haptic, or both types of cues. Based on the results of Kuschel
et al. (2010), one approach to augmentation is to facilitate the within-modality per-
ception of stiffness, for example, to augment visual force cues for improved visual
perception of stiffness. In an effort toward this goal, Bethea et al. (2004) evaluated a
visual force feedback system developed for the da Vinci Surgical System, in which
the intensity of the force at the tip of the surgical instrument was indicated using a
colour bar varying from green to yellow to red. Their results showed that with such
visual force feedback, surgeons could perform robot-assisted surgical knot tying with
more consistency, precision, and greater tension to suture materials without break-
age. Similarly, Horeman et al. (2012) augmented the display of their laparoscopic
training platform with an arrow that continuously informed the trainee about the mag-
nitude and direction of applied force. Their experimental results demonstrated that
such a visual representation led to significant improvements in the control of tissue-
handling force, not only during the training sessions but also in the post-training
tests. Although these studies did not directly assess the perception of stiffness, one
would expect that more precise control of force might be associated with enhanced
perception of tissue mechanical properties, including stiffness.

Alternatively, haptic cues can be augmented (for an in-depth discussion of hap-
tic augmentation, see Chap. 12). Many tasks require a steady hand, particularly in
delicate surgical procedures like microsurgical operations, and therefore the goal of
engineering intervention is often to reduce, rather than enhance, the haptic force cues
arising from action. The opposite situation also arises, however, when the interaction
forces of surgery are imperceptible, and access to force information could be useful
to the surgeon. Accordingly, considerable engineering effort has been devoted to
developing devices to augment force, in order to help the user better perceive it and
hence the inherent stiffness of the interaction. One such example is a hand-held force
magnification device developed by Stetten et al. (2011), as shown in Fig. 2.4. The
device includes a handle held by the user, a sensor and an actuator placed at two
ends of the handle, a brace for mounting the device on the user’s hand, and a control
system. A sensor is mounted on the tip of the handle to measure the pushing/pulling
force of the interaction. At the other end, a stack of permanent rare-earth magnets
are placed inside the handle and inserted into a custom solenoid. The solenoid is
powered by an electrical current from the control box, inducing a Lorentz force on
the magnets/handle that is proportional to and in the same direction as the input force.
The entire device is mounted to the back of the user’s right hand for high portability
and manipulation capacities. After careful calibration, the device could amplify the
sensed force up to 5.8 times. Jeon and Choi (2009) developed a stiffness-modulation
system with a similar goal. Their system could alter the subjective stiffness of soft
objects to a specific value by measuring the deformation and then accordingly apply-
ing additional forces to the user’s hand.

In contrast to the amount of research on design and implementation of aug-
mentation devices, relatively little research has examined the perceptual effective-
ness of such augmentation and investigated the factors that may influence the util-
ity of augmented haptic and visual feedback. Consider first the augmentation of

http://dx.doi.org/10.1007/978-1-4471-6533-0_12
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Fig. 2.4 An example of a
force augmentation device.
The Hand-Held Force Mag-
nifier (Stetten et al. 2011)
uses a sensor to measure force
F at the tip of the handle,
which is amplified to pro-
duce F∗ = gF in the same
direction on the handle using
a solenoid mounted on the
back of the hand. The total
force felt by the user is then
(F + F∗) with an amplifica-
tion of (1 + g). (Adapted from
Stetten et al. 2011)

force cues by visual feedback. While it is technically easy to use colour scales
or arrows to present force information, the perceptual effectiveness of such feed-
back is limited, because interpretation requires cognitive mediation. Furthermore,
given humans’ poor ability to make absolute judgments of colour and length, colour
scales or arrows provide the user with little more than a heuristic to estimate the
force intensity. An additional consideration is that in order to avoid occlusion of
the field of surgery, visual force feedback is often shown at a displaced location,
and such spatial displacement could hinder the integration of visual and haptic cues
(Gepshtein et al. 2005; Klatzky et al. 2010).

Haptic augmentation of force has the advantage that the augmented signal occurs
in the natural perceptual modality, but it is also limited by the sensory and perceptual
capacities inherent in the sense of touch. Stetten et al. (2011) characterized their hap-
tic AR system and assessed its effectiveness in judgments of stiffness. Their results
showed that the force augmentation induced by the device was well perceived by
their participants, leading to significantly higher subjective estimation of stiffness,
as shown in Fig. 2.5a. The augmentation effectiveness, however, was found to be
greatest for the softest stimuli and to decline gradually with stiffness. The subjec-
tive estimates, if related to an up-scaling of the stiffness stimuli by the magnifier’s
actual power, fell below the control curve and diverged more from it as the stimuli
increased (Fig. 2.5b). The change in the augmentation effectiveness may be partly
accounted for by a shift in utilization of haptic cues. Small forces are sensed mostly
through the deformation of the skin, whereas the perception of large forces relies
more on the information from receptors in muscles, tendons, and joints that have
relatively lower sensitivity. Jeon and Choi (2009) also conducted an experiment to
evaluate the perceptual performance of their stiffness modulation system and found
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the modulation was felt to be stiffer than the desired value. The authors attributed
such error to a lag in haptic rendering. Although these results necessarily reflect
the limitations of the devices used, they provide data more generally relevant to the
mechanisms underlying stiffness perception.

Fig. 2.5 Perceptual effectiveness of the Hand-Held Force Magnifier (Stetten et al. 2011) in stiffness
estimation. a Mean estimates of perceived stiffness without the device (the control condition) or
with the device turned on or off. b Re-plot of the magnifier-on data versus the prediction given by
the augmented force feedback. The magnifier-on curve fell below the control curve and diverged
more from it as the stimuli increased, indicating a gradual declination in effectiveness
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2.4 Conclusion

Stiffness, or its inverse compliance, is one of a number of properties that can be
called “higher-order”, in the sense that it is computed from more than one physically
independent component. Not only does stiffness perception require the combination
of these components, but when signals arise from multiple sense modalities, it also
requires integration across channels with very different specializations. Here we have
briefly reviewed research directed at understanding how visual and haptic cues to the
component properties are conveyed and how they are integrated or combined into
the percept of stiffness. Many issues remain to be addressed.

One of the least understood issues is whether and how humans make use of
all the available sensory channels, including the ones that provide unreliable or
biased cues to component properties, as is the case of visual cues to convey force
information. An understanding of how prior experience shapes the visual perception
of force would inform the design of virtual and augmented reality environments
that support stiffness perception with multimodal cues. Given the importance of
application domains involving interaction with compliant objects, it is clear that
further research in this direction would have both basic and applied value.
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Chapter 3
Vibrotactile Sensation and Softness
Perception

Yon Visell and Shogo Okamoto

3.1 Introduction

This chapter describes how mechanical vibrations can affect the perception of several
material and surface properties, with an emphasis on the perception of compliance.
Vibrations are fluctuations of force or displacement. They are generated by interac-
tions with objects and as such they are produced during numerous human activities.
They accompany, for example, frictional sliding of surfaces, tapping, rolling move-
ments, displacement and compression of granular and aggregate materials, fracturing
and breakage processes.

Prior research has demonstrated that the haptic channel is sensitive to vibrations,
known as the vibrotactile sense, and can be used to discriminate touched surfaces of
objects to extract properties such as roughness or surface regularity, and to identify
events, such as contact onset and contact slip. Despite its importance, the vibro-
tactile sense has received little attention to date as a potential cue for compliance
perception, especially when compared to other haptic perceptual channels or cues,
such as cutaneous contact area, proprioception, and kinesthesia. One reason can be
traced to the contact mechanical origin of vibromechanical signals which consist
of high-frequency fluctuations in force or displacement. In many of the mechanical
interactions listed above, vibration energy is produced through impacts between the
surfaces of objects at a macroscopic scale or through interaction between surface
microgeometry (asperities) as it happens during sliding friction (Akay 2002). In
such cases, materials with high stiffness yield wide frequency bandwidth transient
or sustained signal elements. In contrast, for compliant objects the effective stiffness
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of the impacting structures is low and the material may also be more damped. These
properties yields only low energy at high frequencies during interaction.

Nevertheless, several studies have suggested that vibromechanical signals can
influence perception during object palpation for a wide range of object compliances
(Giordano et al. 2012; Kobayashi et al. 2008; Ben Porquis et al. 2011; Takahiro
et al. 2010; Okamoto 2010; Ikeda et al. 2013; Rust et al. 1994; Okamura et al. 2001;
Kuchenbecker et al. 2006; Kildal 2010, 2012; Visell et al. 2011). It is well estab-
lished that high-frequency mechanical vibrations generated during manually tapping,
scraping with a probe, or scanning with a finger can influence the perception of prop-
erties such as hardness (as reviewed below) and roughness (Klatzky and Lederman
1999; Hollins and Risner 2000; Bensmaia and Hollins 2003, 2005; Klatzky et al.
2003; Okamura et al. 1998). For example, amplifying vibrations generated during
manual surface scanning, or imposing sinusoidal vibrations, increases perceived sur-
face roughness (Hollins et al. 2000). Thus, it is reasonable to ask whether there exist
high-frequency cues that are capable of influencing compliance judgements.

3.1.1 Vibrotactile Sensory Information

Vibromechanical stimulation of the skin affects both cutaneous receptors and recep-
tors embedded in deep tissues, including muscles and tendons (Ribot-Ciscar et al.
1989; Freeman and Johnson 1982; Johnson 2001; Vedel and Roll 1982). The for-
mer stimulation include fast-adapting (FA) mechanoreceptors sensitive to phasic
signals, in the form of Meissner and Pacinian corpuscles. These mechanoreceptive
channels respond to transient or high-frequency mechanical stimuli. Also present
are slower adapting (SA) mechanoreceptors that respond primarily to tonic signals
produced by sustained or slowly-varying mechanical stimuli. In previous studies, the
vibrotactile sense has been particularly associated with FA receptors. Mechanore-
ceptive afferents, which communicate the neural result of mechanical stimuli to the
central nervous system, have been associated with receptive fields near to recep-
tors that they terminate on. The size of the respective receptive fields for FA or SA
mechanoreceptive afferents can range from a few square millimeters to several square
centimeters, depending on the receptor type, innervation density, and biomechanical
factors. Among physiologically identified FA receptors, Meissner corpuscles have
small receptive fields, while Pacinian corpuscles lie deeper in the skin and possess
larger receptive fields. The skin is sensitive to vibrotactile stimuli over a broad range
of frequencies, up to nearly 1,000 Hz. Meissner corpuscles respond preferentially
to vibrotactile signals in the range from 10 to 100 Hz, while Pacinian corpuscles
respond to higher frequencies, but neither type exhibits narrow frequency-selective
tuning like that present in the auditory system. In glabrous skin, which is found on
the volar surface of the hand and feet, FA afferents comprise about 70 % of the
cutaneous population. Vibrotactile sensitivity, measured in terms of the absolute or
difference threshold for detection, varies as a function of body location and stimulus
properties including contact conditions and frequency. Surveys of tactile sensitivity
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at different body locations and for different stimulus parameters, including frequency
and amplitude of stimulation, can be found in the following reviews (Morioka et al.
2008; Morioka and Griffin 2002; Verrillo 1966).

3.2 Contact Mechanics and Softness Cues

Haptic compliance perception involves discerning the deformability of objects
touched with the hand or foot, or even objects felt using a tool. As discussed in
Chap. 1, compliance C = 1/k can be quantified in terms of mechanical stiffness k,
which in turn depends on the Young’s modulus and geometry of the material. In the
simplest case, the deformation x of a material can be described via a linear, quasi-
static relation between force F = −kx and displacement x , or between continuum
mechanical quantities of stress σ = −Eε and strain ε.

The problem of softness perception consists of using haptic sensations to percep-
tually recover the compliance or material elasticity of an object. Thus, the notion
of softness involves the extraction of object properties from stresses and strains, or
forces and displacements, that are felt during exploration. Most prior research has
investigated compliance perception via manual touch (Harper and Stevens 1964;
Scott-Blair and Coppen 1940; Freyberger and Färber 2006; Tan et al. 1995; Srini-
vasan and LaMotte 1995; LaMotte 2000; Friedman et al. 2008; Bergmann Tiest
and Kappers 2009). However, the haptic perceptual system is able to discriminate
objects of different compliance in a multitude of ways, including touching with a
tool (LaMotte 2000) or with the hand or foot (Giordano et al. 2012; Kobayashi et al.
2008).

The perceptual system is capable of judging softness in different ways depending
on the information that is available. The contributions from different sources depend
upon the actions, tasks, or exploratory procedures being performed, the properties
of the objects (their material composition, geometry, and microgeometry), and the
contact mechanical setting involved. Their integration thus must account for such
sources of variability and should proceed accordingly (see Chap. 5 for a model). The
same can be said about what kind of vibrations are available during different types
of interactions and thus how vibrotactual information could be used for softness
perception.

It is useful to consider four basic interaction patterns, which are represented
in Fig. 3.1. They consist of direct skin contact with a compressed elastic object,
indirect skin contact with such an object, transient contact with a touched object, and
frictional sliding. Through these, it is possible to gain some insight into potential roles
of vibrotaction in softness perception. In the next four sections we will analyse the
vibrotactile information available in each of these interactions and what experimental
results are available about the perception of softness.

http://dx.doi.org/10.1007/978-1-4471-6533-0_1
http://dx.doi.org/10.1007/978-1-4471-6533-0_5
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Direct
Contact

Indirect
Contact

Transient
Contact

Frictional
Sliding

Fig. 3.1 Four prototypical scenarios where vibrotactile information is available and can potentially
specify object softness: a Compressing a soft object with direct finger contact; b Compressing such
an object via a rigid intermediary; c Producing a short, ransient contact through tapping; d Sliding
the finger across the object surface

3.2.1 Direct Skin Contact

The first interaction type we consider involves direct contact between the skin and
an elastic, compressed object, as shown in Figure 3.1a. This setting can be mod-
elled using the Hertzian theory of non-adhesive linear elastic contact between two
compressible bodies (Johnson 1995). One body consists of the skin and pulp of the
finger, and the other constitutes the touched object. As the total normal force applied
by the finger increases, the area of contact between the bodies grows. Simultane-
ously, the skin and underlying tissues deform, as can be quantified by an increase in
strain energy density near the contact region. This gives rise to at least two potential
perceptual cues (Bicchi et al. 2000; Scilingo et al. 2010) (see Chap. 11):

1. The rate of increase of contact area between finger and object surface with the
normal force between finger and object surface

2. The rate of increase in strain energy in the volume of the finger near the contact
region with normal force

The rate of increase in normal force can often be assumed to be slow, and the accom-
panying dynamics to be damped, due to the highly viscoelastic nature of the materials
involved. Often the mechanics can be modelled as quasi-static. In such cases, tran-
sient mechanical signals can be presumed to be insignificant. Commensurate with
this assumption, it could be hypothesized that, at a physiological level, the neural
input from slowly-adapting (SA) afferents from the finger provide most sensory
information, while inputs from fast-adapting (FA) afferent channels are less impor-
tant. One could argue that vibromechanical cues contribute to softness perception by
simulating transient strain patterns over the skin like those produced when touching
an object, but there is little evidence to suggest that such cues contribute signif-
icantly to softness perception during direct skin contact, perhaps because contact
area itself is so highly weighted, when available: As noted in Chaps. 1, 2, and 5,
physiological and psychophysical studies have shown that haptic perceptual sensi-
tivity to softness is highest when there is direct skin contact with a deformable surface.

http://dx.doi.org/10.1007/978-1-4471-6533-0_11
http://dx.doi.org/10.1007/978-1-4471-6533-0_1
http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_5
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An alternative possibility, discussed further in Sect. 3.3, is that vibration feedback
could bias estimates of applied force during object compression.

3.2.2 Indirect Skin Contact

When touch is mediated by a rigid link, such as a handheld stylus or rigid mecha-
nism, the cutaneous perceptual cues (1,2) noted above do not provide information
about compliance, since contact area and skin strain reflect the force between the
finger and a rigid surface but do not independently evidence the displacement of
the surface. Adding a rigid link to the interaction with an object having deformable
surfaces makes the interaction equivalent to the one obtained with an object with
rigid surfaces. In such cases where cutaneous information is not directly informative
about compliance, discrimination performance is significantly reduced (Srinivasan
and LaMotte 1995). With rigid surfaces compliance estimation requires the com-
bination of force and displacement information (see Chaps. 1 and 5). To estimate
object compliance during indirect touch, cutaneous force cues could be combined
with displacement information obtained from visual and proprioceptive sense data
(see Chaps. 1, 2, and 5 for more information).

Several studies have demonstrated that individuals are able to estimate compli-
ance under such settings (for example, estimating the compliance of a spring-loaded
mechanism) (Srinivasan and LaMotte 1995; Tan et al. 1995; Bergmann Tiest and
Kappers 2009; Jones and Hunter 1990). The results generally demonstrate reduced
sensitivity when compared to the case of direct skin contact with a deformable object
is available.

What does this suggest about possible roles of vibrotactile sensation in compliance
estimation via indirect touch? It could be hypothesized that in such a setting, vibration
could affect compliance estimates in one of two ways: by either biasing estimated
displacements �x or estimated forces �F (Fig. 3.2). As noted in Chap. 5, both types
of bias are possible.

As vibrations are normally produced during object deformation, amplifying these
vibrations could lead to a change in perceived compliance. This is partly supported
in the literature (Visell et al. 2011; Kildal 2012, 2010).

Fig. 3.2 Vibration stimuli
may bias compliance
estimates by altering perceived
force F or displacement x

http://dx.doi.org/10.1007/978-1-4471-6533-0_1
http://dx.doi.org/10.1007/978-1-4471-6533-0_5
http://dx.doi.org/10.1007/978-1-4471-6533-0_1
http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_5
http://dx.doi.org/10.1007/978-1-4471-6533-0_5
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3.2.3 Transient Contact

So far we have discussed potential increases in perceived compliance due to vibration.
In principle, however, vibrotactile cues could have the opposite effect namely they
could decrease perceived compliance. Tapping on a hard surface elicits characteristic
vibrations, in the form of transient mechanical signals, with broad frequency content,
due to the rapid changes in contact forces. During such an interaction, a stiffer object
may yield a more perceptually prominent vibrotactile signal. A model of the forces
involved can be given by the Hertz theory of viscoelastic contact. A simplified version
of the Hertz model that is suitable for the analysis of transient contact forces during
impact with a viscoelastic object is due to Hunt and Crossley (1975), and can be
written as

fimpact = K (z) − D(z)ż, (3.1)

where z represents the depth of penetration beyond the undeformed surface of the
object, K models the growth rate of contact surfaces, and D captures the dissipation.
The tapping force excites vibrations in the object that can often be described by a
source-filter model, consisting of an impulse response h(t) equal to the response to an
impulsive force, so that the net displacement is given by y(t) = z(t) ∗ h(t), where ∗
denotes convolution in time. For a stiff object this response combines contributions of
broadly distributed frequency content arising from the contact force and contributions
of high-frequency resonant modal frequencies. Either source may lie within the range
of frequencies humans are sensible to, hence they could provide a potential perceptual
cue to contact and to object compliance. Indeed, the notion that tapping on a surface is
a suitable action for exploring surface hardness is familiar from everyday experience,
and has further been explored experimentally (Lederman and Klatzky 1987).

The transient forces that are generated during tapping can yield vibromechanical
signals that can be readily reproduced via a haptic interface using sufficiently wide
bandwidth motors or actuators. Among the earliest work exploring the use of contact-
generated vibration cues to communicate information about touched objects are
robotic teleoperation studies in which a human operator of a master robot uses a slave
robot to manipulate objects in a remote environment. The operator is provided with
vibrotactile feedback that reproduces accelerations measured near the end effector
of the slave device (Massimino and Sheridan 1993; Kontarinis and Howe 1995). The
goal of such an arrangement, which can be described as a form of sensory substitution
(Visell 2009), is to reproduce transient accelerations experienced at the end effector,
simulating a setting in which the master and slave device were coupled via a rigid
link capable of transmitting high-frequency vibrations, in the frequency range of
several hundred Hz. The research investigated the extent to which feedback of this
type could improve operator performance on basic tasks, such as peg insertion, but
the results were mixed.

Later, researchers sought to enhance force or contact information in computer
simulated virtual environments with vibrations that were designed to mimic the
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physical response of real objects, either by means of a physical model (for example,
the Hunt-Crossley impact model mentioned above) or based on the measured
response of tapped materials (Kontarinis and Howe 1995; Okamura et al. 2001;
Kuchenbecker et al. 2006). Studies have shown that by superimposing transient
vibrations on contact forces, perceived surface hardness can be increased and mater-
ial identity can be modified or enhanced (Kuchenbecker et al. 2006). Similar results
have been observed with transient audio feedback, in the form of tapping sounds (see
Chap. 4 for a comprehensive review). In general these methods of rendering, which
employ a signal delivered through the auditory, visual, or tactile sense modalities
which are triggered by the movement of the participant, have collectively been given
the name of “event-based haptics”.

3.2.4 Frictional Sliding

Friction involves tangential forces produced during the sliding of objects. Texture
refers to small-scale modifications of mechanical interaction responses during slid-
ing or during indentation. The forces involved comprise both slowly-varying nominal
or constitutive responses and fluctuating components generated by surface or mate-
rial imperfections. The latter signal components relate relative displacement of the
objects concerned to high-frequency frictional force components (Ibrahim 1994;
Akay 2002), whose frequency bandwidth can overlap that of the vibrotactile sense.
In principle, perceptual information about interaction parameters, such as applied
force or displacement, and material properties, such as surface hardness, are avail-
able through such signals. In everyday terms, even for objects with very soft surfaces,
such as textiles like velvet or silk, texture-like force components can provide infor-
mation about material properties. Additionally, as demonstrated in the well-known
parchment skin illusion (Jousmäki and Hari 1998), amplifying the sound of frictional
rubbing can create a perceptual experience that the sliding surface is dryer, rougher,
or harder than is nominally the case.

In contrast to softness sensations elicited by pressing on a surface, softness cues
produced by stroking with the finger are more difficult to interpret, since it is more
challenging to analyze the physical interactions between the finger (or a probe) and
the surface, and thus to relate softness perception to surface parameters. Nonethe-
less, it is plausible that individuals may use information acquired by stroking or
scanning with a finger in order to estimate object compliance. First, because the
sliding dynamics may directly depend on bulk material properties such as elasticity.
Second, because surface properties may elicit prior expectations for object softness.

Textile softness is often perceived via rubbing with the fingers, as has been exten-
sively studied in areas of the literature on applied perception and ergonomics (Pense-
Lheritier et al. 2006; Chen et al. 2009). In order to obtain objective measures of fabric
softness, several researchers have investigated the relation between reported textile
softness and vibromechanical cues. Rust et al. (1994) were able to predict textile
softness ratings using vibromechanical measurements obtained from a novel engi-
neering instrument. Lang and Andrews (2011) observed a connection between the

http://dx.doi.org/10.1007/978-1-4471-6533-0_4
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object rigidity and sliding-produced vibrations in a probe . These studies were moti-
vated by the idea that stroking a harder material can lead to a larger microscopic
movements of a rigid probe as it comes in contact with the microscale defects of the
surface upon which it slides. The magnitude and frequency of the vibrations caused
by these contacts depend on the surface hardness—i.e., the microscale defects of
the surface of a compliant materials would deform rather than making the probe.
When the probe is mechanically coupled with a hard surface, their collective rigidity
relatively increases, which leads to a larger resonance frequency and vibratory accel-
erations. When the probe is coupled with a soft surface, their comprehensive rigidity
decreases, which leads to a smaller resonance frequency and significant damping
ratio. Hence, the mean acceleration values depending on contact forces approxi-
mately reflect the compliance of surfaces. What is still unclear is whether humans
can judge softness based on the cues generated by stroking alone as it is the case
instead of perceived softness by tapping.

3.3 Effects of Low-Frequency Vibration on Softness

Prior literature has indicated that low-frequency vibrotactile stimuli, in the fre-
quency range from 3 to 5 Hz, can evoke the perceptual sense of material softness
(Ben Porquis et al. 2011; Takahiro et al. 2010). The softness experience that is evoked
by such stimuli grows slowly, with a percept of vaguely defined onset. This slow but
still noticeable softness sensation could be of practical interest, because it holds the
potential to provide any handheld or grounded devices having vibrotactile chan-
nels with added value, namely the distinctive ability to produce artificial softness
sensations.

3.3.1 Prospective Mechanism

Skin-mediated softness percepts are produced by the spatial distribution of pressure
on the skin. Intensive pressure on a small area results in an experience of the contact
with hard object, whereas widely extensive pressure is perceived as that with soft
material, as shown in Fig. 3.3. According to the Hertzian contact theory (Johnson
1995), the radius a of a circular contact area made by two spherical bodies, here
representing the finger pad and a soft object, is

a =
(

3w

4

R

E

)1/3

, (3.2)

where w, R, and E are the contact force, composite radius and Young’s modulus of
the two bodies. The composite variables are
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1

R
= 1

R f
+ 1

Rs
(3.3)

and

1

E
= 1 − ν2

f

E f
+ 1 − ν2

s

Es
, (3.4)

where Ri , Ei , and νi are the radius, Young’s modulus, and Poisson ratio of body
i . The suffixes f and s describe the finger and surface to be touched by the finger,
respectively. The values of R f , E f , and ν f are assumed to be known. This can be
justified by the assumption that a human observer should be roughly familiar with
their own finger pad’s size and softness. In case the soft object is a flat surface,
Rs = ∞ and R ≈ R1. In this case, the two softness parameters νs and Es may be
estimated from a and w. Note that the value range of Poisson ratio is narrow and
typically near 0.3. The effect of ν2

s can therefore be viewed as insignificant compared
to Es . The cutaneous and kinesthetic receptors of the human finger are capable of
estimating both contact area and applied force. Humans can make use of slowly
adapting type I (SA I) mechanoreceptive units and pressure-sensitive nocireceptors
distributed beneath skin to estimate the pressure distribution and applied force caused
by contact with soft surfaces. Receptors in the muscles and tendons of the finger and
wrist are also sensitive to forces applied to finger pad.

At least three different engineering interfaces have been designed around the
aforementioned principles, albeit by means of very different devices (see Chap. 14).
Bicchi et al. (2000) and Scilingo et al. (2010) fabricated a finger pad contactor con-
sisting of several concentric actuated cylinders with different radii. This device made
it possible to control the pressure and contact area between a finger pad for testing
the hypothesis that contact area plays a key role in softness percepts. In contrast,
Fujita and Ohmori (2001) and Kimura et al. (2010) used balloon and sheet-based
tactile displays, respectively, to elucidate and demonstrate the effects of contact area
on softness percepts. The results of these studies affirmed the primary contribution
of contact area to softness perception, although the explanatory hypotheses that each
proposed have not been completely unanimous. Nonetheless, changes in the contact
area can be said to effectively influence softness perception.

It is evident that the pressure distribution in the contact area has a strong connec-
tion with softness perception whereas its specific role leaves room for discussion.
As described above, SA I units and some nociceptors are sensitive to pressure or
sustained indentation. There is a distinct possibility that the activation of SA I units
by vibrotactile stimuli induces softness percepts. For the low-frequency band or sta-
tic mechanical stimuli, SA I units have the lowest thresholds, i.e., they are more
sensitive than other units.

As described in the following section, larger low-frequency vibratory amplitudes
are associated with softer percepts. The changes in the indentation can result in
changes in deformed skin area, as shown in Fig. 3.3. With large skin indentation,
large populations of SA I units are expected to be activated. Additionally, the size of

http://dx.doi.org/10.1007/978-1-4471-6533-0_14
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Large indentation and 

large activated area
Small indentation and 

small activated area

Vibrotactile

contactor

Contact with soft object with 

broad but small pressure

Contact with hard object 

with intense pressure

Fig. 3.3 Top Pressure distribution caused by contacts with objects. Down Finger pad deformation
via vibrotactile indentation

population of activated SA I units is more predictive than the impulse rate of single
unit about the area of the contact (Suzuki et al. 1999).

3.3.2 Low-Frequency Softness Rendering

Fig. 3.4 shows a schematic view of an experiment that evaluated effects of low-
frequency on softness perception (Okamoto 2010; Takahiro et al. 2010). The
experiment was based on the method of constant stimuli. In it, participants com-
pared a low-frequency (5 Hz) vibrotactile stimulus and a physically soft sample and
judged which stimulus was felt softer. Vibrations were generated using a voice coil

Tactile display Weight Weight Softness 
sample 

Balances 

Fig. 3.4 Comparison between low-frequency vibrotactile stimuli and softness specimen
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Fig. 3.5 Low-frequency vibrotactile stimuli versus softness of specimen

motor with a contactor consisting of a plastic plate. The vibrotactile amplitudes were
0–1.6 mm under a sustained load of 0.5 N. The physically soft specimens were cylin-
drical silicone rubber samples whose spring coefficient ranged 4.7–22.3 N/mm. Two
balances were used to ensure equal loads were applied to the two stimuli. Fig. 3.5
shows the compliance of the silicone perceived to be matching the one of vibrating
device. The perceived hardness decreased as a function of the vibration amplitude. In
this experiment, the true contact area between the vibrotactile contactor and finger pad
varied with stimulus amplitude in such a way larger amplitudes led to larger contact
areas. In a subsequent investigation, the contact area was held constant, and the same
effects of the amplitudes on the softness percepts were observed (Ben Porquis et al.
2011). Furthermore, there is evidence that low-pass-filtered white-noise vibrations
can have a similar impact on softness percepts (Ikeda et al. 2013).

3.4 Volumetric Softness

During direct and indirect object contact (Fig. 3.1), vibration can accompany the
compression when the displacement of the volume releases energy. Such vibration
can be a potential cue to softness, but vibration can be released during a variety
of other inelastic processes. It is thus not surprising that vibromechanical energy
alone, when is not correlated with action, is unlikely to affect perceived softness. For
example, when touching a washing machine, one is seldom left with the impression
of owning a “soft” appliance.

A haptic interface that provides similar vibration feedback to what is felt dur-
ing such situations might be expected to yield increased sensations of softness. A
schematic illustration is shown in Fig. 3.6. Several published demonstrations and
perceptual studies have provided evidence that vibrotactile feedback can modu-
late volumetric softness (Visell et al. 2011; Kildal 2010, 2012). Other perceptual
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Fig. 3.6 The compression of a surface accompanied by suitable vibration feedback can yield
increased sensations of volumetric softness, due to a straightforward sensorimotor contingency
between the generation of internal vibromechanical energy during object compression

effects, including force-to-visual displacement gain modulation [or “pseudo-haptics”
(Lecuyer et al. 2000)] are also known to affect volumetric softness perception.

In one study of effects of vibration feedback on volumetric compliance perception,
Kildal demonstrated that a rigid box pressed with the finger or a stylus could feel
as though it compressed in height (Kildal 2010, 2012). This sensation was evoked
by vibration feedback that was coupled to applied force. The stimuli consisted of
vibrations supplied by a resonant vibrotactile actuator driven by a voltage (amplitude)
signal. The stimulus design was motivated by a mechanical model consisting of a
spring loaded mechanism moving over a corrigated surface. A vibration transient
was supplied whenever the normal force on the device changed by a quantity �F .
Averaging over vibration transients yields a stimulus s(t) with RMS amplitude given
by

srms(t) = S0
d F

dt
= S0k

dx

dt
, (3.5)

where S0 is a constant amplitude factor, F is normal force, t is time. The parameters
k and x are the virtual stiffness and displacement of the simulated mechanical model
responsible for producing the feedback.

Visell et al. (2011) investigated whether action-synchronized vibromechanical
stimuli felt when pressing on a surface could yield influence the perceived com-
pliance of a walking surface. The vibration feedback they presented to participants
depended on the force that was applied to the walking surface. These signals were
comparable to those experienced when stepping on a natural material that produces
acoustic energy when compressed (e.g., snow, gravel, leaves, soil), or displacing a
foot operated mechanism that generates friction noise (e.g., a pedal or slider). Vibro-
mechanical results of stepping onto a walking surface have been found to be related
for the identification of the type of material that natural and man-made walking sur-
face are composed of (Giordano et al. 2012). The authors’ investigation was based on
a pair of experiments. The first sought to ascertain the dependence of perceived com-
pliance on on the vibration stimulus waveform, and on the relation between applied
force and feedback amplitude. The stimuli consisted of vibration feedback that varied
in two respects: the driving waveform (sinusoidal, white noise, or poisson noise) or
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Fig. 3.7 In one experment, Visell et al. (2011) found that nine different types of vibration feedback
were all able to elicit a significantly increased percept of compliance when compared with the “no
vibration” case. Image from Visell et al. (2011)

and the temporal dependence on force (proportional, time-derivative, or constant).
Results indicate that vibrotactile feedback could elicit an increase in perceived com-
pliance and that the effect grew in proportion to the feedback amplitude (Fig. 3.7).
In a second experiment, the authors manipulated the compliance of the walking sur-
face that users stepped on, using a novel haptic interface (Fig. 3.8). The goal was to
determine whether compliance and vibration are perceptually integrated in an orga-
nized way, and to calibrate the perceptual effect in physical units, yielding a quantity
of change in physical compliance that could be achieved with a given vibrotactile
feedback amplitude. Results point out that vibrotactile feedback provides a percep-
tual cue for compliance (Fig. 3.9). The vibration amplitudes required to produce an
appreciable bias in perceived compliance were very low, near to the absolute thresh-
old at which subjects could detect the vibrotactile stimuli when stepping. Thus, the
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Fig. 3.8 Effects of vibration on volumetric softness. Image from Visell et al. (2011)
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Fig. 3.9 Effects of vibration on volumetric softness

amplitudes used were considerably smaller than the ones experienced during normal
walking on natural granular materials, such as gravel, as humans are well aware of
the vibrations present there. It is not entirely clear why the stimuli were so effective
in this experiment, which did not involve training and did not require awareness that
vibration feedback was being provided. The compliance estimation task adopted in
this study resembles prior experiments in which subjects used their hands to estimate
the haptic compliance of spring mechanisms or other objects with non-deformable
surfaces (LaMotte 2000; Tiest and Kappers 2009; Jones and Hunter 1990). Based
on those results, and on considerations of contact mechanics, it was expected that
subjects in the experiments described here required both force and displacement
information in order to judge compliance. In this light, it appears that added vibra-
tion feedback results in a modification of force and/or displacement information
that increases compliance estimates. Prior research has shown that localized vibra-
tion stimulation of the foot sole can increase perceived force at the same location
(Kavounoudias et al. 1999, 1998), which could be thought to influence compliance
judgments. However, an increase of force estimates would tend to reduce compliance
estimates, whereas the aforementioned results reviewed show an opposite tendency.
Thus, a more likely explanation, which is also consistent with the results of Kildal
(2010, 2012), seems to be that vibration elicited an increased sensation of displace-
ment, as if an object or material was compressed or displaced. If so, an observer
could be presumed to infer an increase in compliance that grows linearly with the
increased sensation of displacement. The results of (Visell et al. 2011) were consis-
tent with relative increases in estimated displacement of 25.0 and 33.5 % in low- and
high-amplitude vibration conditions (amplitude 0.43 and 0.86 m/s2) as tested in the
study, suggesting a monotonically increasing relation between vibration amplitude
and compliance perception. The model proposed in Chap. 5 suggest that the increase
in sensed displacement may be related to a biased detection of the unperturbed posi-
tion of the object. The first contact with a vibrating object is obtained earlier than
the resting state position. This should increase the amount of displacement sensed
afterwards. But on this basis one could ask: Why indeed is the washing machine not
perceived to be “soft”?

http://dx.doi.org/10.1007/978-1-4471-6533-0_5
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3.5 Conclusions

A wide variety of mechanical signals arise during haptic interaction with struc-
tured surfaces and objects. Among these, there are several sources of high-frequency
mechanical vibration that might influence haptic softness perception. They range
from transient vibrations induced during tapping on a surface, to subtle fluctuat-
ing forces during frictional sliding, to vibrations resulting from inelastic processes
accompanying the compression of solid objects. The heterogeneous nature of the
contact mechanical interactions involved precludes, to some extent, a unified expla-
nation of all such effects. However, several studies reviewed above have provided
evidence for such effects. Together, they indicate that vibrotactile cues can influence
the perception of object compliance. This is notable because in standard accounts of
haptic perception, such cues are not normally considered to be relevant to softness
perception. Rather, compliance is often described as being primarily mediated via
proprioceptors in the muscles and joints, and via cutaneous receptors for force or
contact deformation.

In most cases, vibrotactile cues have a comparatively weaker influence on per-
ceived softness than can be achieved by manipulating the material properties of the
objects themselves or by manipulating force-displacement relations reproduced by
a haptic interface. Nonetheless, the notion that a hard surface can be rendered more
or less compliant through mechanical vibrations alone is powerful and compelling.
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Chapter 4
Perception and Synthesis of Sound-Generating
Materials

Bruno L. Giordano and Federico Avanzini

4.1 Introduction

The mechanical properties of sound-generating objects and events in our environment
determine lawfully the acoustical structure of the signals they radiate (e.g. Fletcher
and Rossing 1991). The ability of listeners to estimate the mechanical properties of
everyday non-vocal, non-music sound sources based on acoustical information alone
has been the object of empirical research for more than three decades (Vanderveer
1979). Given the lawful specification of the mechanics of the sound source in the
acoustical structure, and the adaptive tendency to interpret sensory information in
terms of the properties of objects and events in the environment, it is thus not surpris-
ing that source-perception abilities are often remarkably accurate (see Lutfi 2007,
for a review).

The concept of material is central to the study of source perception from both
a theoretical and empirical point of view. The theoretical relevance of this concept
originates from the work of Gaver, who outlined a widely influential taxonomy of
everyday sound events (Gaver 1993). Accordingly, non-vocal sound sources offer
perceptual systems with information about “materials in interaction”, and, at the
most general level of the taxonomy, can be classified into three categories depending
on the state of matter of the vibrating sound-generating substance: (i) solid sound
sources (e.g. clapping); (ii) liquid sound sources (e.g. pouring coffee); (iii) aero-
dynamic/gaseous sound sources (e.g. wind; explosions). For a variety of reasons
(e.g. easiness in manipulation of source mechanics; ecological pervasiveness), the
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empirical study of the perception of source mechanics has favoured solid sound
sources, and investigated the audition of three different attributes: (i) geometry (e.g.
shape of a struck bar; Lakatos et al. 1997); (ii) material (e.g. hardness of a mallet strik-
ing a pan; Freed 1990); (iii) properties of the interaction between sound-generating
objects (e.g. bouncing vs. breaking of objects; Warren and Verbrugge 1984). The
empirical centrality of materials then originates quite simply from the fact that among
these three perceptual abilities, material perception has been by far the most studied.

In the first part of this chapter, we will review studies on the perception of material
properties from sound. We will initially describe the available empirical evidence on
the perception of the state of matter, and then detail the psychophysics literature on
the recognition of the material properties of stiff solid objects. Importantly, this last
group of studies did not investigate highly compressible solid materials such as soft
rubbers, most likely because of the often perceptually negligible acoustical energy
they radiate when set into vibration. A subsequent section will detail studies of two
classes of deformable materials: fabrics and liquids. Although these investigations
addressed the perception of material-independent properties such as texture or liquid
amounts, they are summarized here because of the potential interest to future research
in the field. The last portion of this part ends with a presentation of studies on the
perception and motor-behaviour effects of stiff materials in audio-haptic contexts
(see Chap. 2 for visual-haptic contexts).

Studies in ecological perception are the starting point for the development of
interactive sound synthesis techniques that are able to render the main perceptual
correlates of material properties, based on physical models of the involved mechani-
cal interactions. In the second part of this chapter we will then review recent literature
dealing with contact sound synthesis in such fields as sonic interaction design and vir-
tual reality. Special emphasis will be given to softness/hardness correlates in impact
sounds, associated to solid object resonances excited through impulsive contact, and
rendered using modal synthesis techniques. We will also summarize recent advances
in terms of optimization and automation of analysis-synthesis schemes. Two final
sections will address less developed literature on the sound synthesis and rendering
of deformable objects (notably textiles), aggregate objects (e.g. sand, snow, gravel,
and so on), and liquids.

4.2 Perception

4.2.1 State of Matter

The first study that gave some indication of the perceptual relevance of the state of
matter was carried out by Ballas (1993). Participants in this study were asked to
rate a set of 41 environmental sounds that included liquid, aerodynamic (gases), and
solid sounds along a variety of scales meant to assess their perceptual representation
(e.g. dull vs. sharp timbre) but also aspects of their cognitive processing (e.g. sound

http://dx.doi.org/10.1007/978-1-4471-6533-0_2
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familiarity; similarity of sound to a mental stereotype). Principal component analysis
of the rating data outlined three orthogonal judgment dimensions, interpreted as mea-
suring: (i) the identifiability of the sound event (e.g. familiarity scale); (ii) the sound
timbre (e.g. dull vs. sharp rating scale); (iii) attributes of the categorical represen-
tation (number of similar sounds). A cluster analysis of these principal components
revealed one cluster of liquid sounds, which however also included sounds produced
in a water context (e.g. boat whistle). The other three clusters included both solid and
aerodynamic sources, and grouped together either signals with similar functions (e.g.
cluster of signalling sounds, and cluster of door sounds), or highly transient sounds
independently of whether they were generated by aerodynamic or solid events (clus-
ter of transient sounds such as a stapler). Overall, this initial study lent some support
to the hypothesis that listeners are capable of differentiating between states of matter,
although the clustering structure was most likely influenced by a number of factors
related to the cognitive processing and higher-order information about the sound
signal such as the context where it is generated.

Gygi et al. (2007) investigated the dissimilarity ratings and free sorting of a set
of 100 sounds that included living human and non-human sounds (both vocaliza-
tions and non-vocalizations), and non-living sounds generated by solid, liquid and
aerodynamic sources. In the dissimilarity-ratings experiment participants were pre-
sented with all of the possible pairs of stimuli, one pair at a time, and were asked
to rate how dissimilar they were. In the free-sorting experiment, participants were
presented with all of the stimuli and were asked to create groups of similar sounds.
Dissimilarity ratings were analysed with a multidimensional scaling (MDS) algo-
rithm (Borg and Groenen 1997). In general, MDS models the input dissimilarities as
the between-stimulus distance within an Euclidean space in which dissimilar stim-
uli are located further apart. The tendency of stimuli to cluster, i.e., to form tight
groups within the MDS space, can thus give an indication of the ability of listen-
ers to differentiate between different-group stimuli (see Ashby 1992, for the rela-
tionship between dissimilarity, categorization and discrimination). Overall, both the
dissimilarity-ratings and free-sorting data revealed a tendency to group stimuli based
on source attributes and, importantly, to differentiate between solid, liquid and aero-
dynamic events. The tendency to group together sounds generated with substances
in the same state was more evident in the free-sorting than in the dissimilarity-
ratings data. Indeed, clustering in the dissimilarity-ratings MDS space appeared to
be more driven by acoustical attributes that are not always differentiated between
diverse sound-generating mechanical systems (e.g. gunshots and footstep sounds
were clustered together because they both comprised sequences of transient impact-
like sounds). This discrepancy can be explained by the fact that dissimilarity-ratings
data are more sensitive to differences in acoustical structure than free sorting data
(Giordano et al. 2011).

Further support for the hypothesis of a perceptual relevance of the state of matter
was obtained by Houix in an experiment on the free sorting of 60 sounds encoun-
tered in a kitchen context (Houix et al. 2012). Vocal sounds were not included in
order to eliminate possible distortions in the sorting data independent of the state of
matter arising from the likely strong perceptual and attentional salience of the vocal/
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non-vocal distinction (Belin et al. 2000; Lewis et al. 2005; Gygi et al. 2007) and
from differences between the cognitive processing of living and non-living sounds
(Giordano et al. 2010). Consistently with Gygi et al. (2007), participants appeared
to group together sounds based on the mechanics of the sound source even when not
explicitly required to do so, and created isolated clusters of solid objects, machine
and electric device sounds, liquid sounds, and aerodynamic sounds.

Overall, the studies summarized up to this point reveal that the state of matter
is likely to structure the cognitive organization of everyday sound sources. These
studies, however, do not give evidence concerning the actual ability to recognize
the state of matter of a sound-generating substance. A number of sound-generating
human-made solid objects have indeed been designed to create “state of matter”
illusions (e.g. rainsticks; wind and thunder machines used for centuries in theatres).
A recent study by Lemaitre and Heller (2013) addressed this point rigorously. A
set of 54 sounds were generated with three different types of interaction for each
state of matter (solid: friction, deformation and impact; liquid: splashing, dripping
and pouring; gases: whooshes, wind and explosions). Sound duration was gated
at different levels. Overall, untrained listeners were able to recognize the state of
matter at above-than-chance levels across gating durations and interaction types
(75 % correct). Figure 4.1 shows the spectrogram of a set of sound stimuli used in
their study.

4.2.2 Perception of Stiff Solid Materials

Except for the recent study by Lemaitre and Heller (2012), investigations into the
auditory perception of stiff solid materials were all carried out with isolated impact
sounds. In particular, real or simulated impact sounds were generated by the inter-
action between two objects: the hammer and the sounding object, the former being
much more damped than the latter (e.g. when a drum stick strikes a cymbal, the
impact sets into vibration the drum stick for a much shorter time than the cymbal).
Given the high damping of the former, the sound signal presented to the listeners in
these studies contains little or no acoustical energy radiating directly from the ham-
mer, and can be assumed to be the product of acoustical radiation from the sounding
object alone. Notably, however, the material properties of the hammer still influence
the acoustical structure of the radiated sound signal (Fletcher and Rossing 1991). For
example, stiffer hammer materials produce a decrease in the duration of the contact
between the hammer and sounding object during the impact, resulting in a more
efficient excitation of the high-frequency vibrational modes of the sounding object
and, consequently, in an increase in the high-frequency energy of the radiated sound.

Impact sounds can be modeled as the sum of sinusoids whose amplitude decays
exponentially starting from the onset of the sound signal. Ignoring perceptually neg-
ligible delays, the temporal location of the sound onset essentially corresponds to the
time of contact between the hammer and the sounding object. The material proper-
ties of the sounding object (elastic coefficients; density), together with its geometry,
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Fig. 4.1 Spectrum of the sound stimuli generated with solid, liquid, and gaseous substances. The
left panels group impulse-like sounds, generated as a consequence of a temporally localized input
of energy in the sound-generating system. The right panels show continuous sounds, generated
through a temporally distributed input of energy into the sound-generating system. Level from
black (low) to white (high). Data courtesy of Lemaitre and Heller (2013)

determine the frequency of the exponentially decaying spectral components: stiffer
and denser materials (and smaller object sizes) produce higher frequency spectral
components. The material properties of the hammer, together with the geometry
of the hammer and the properties of the hammer-sounding object interaction (e.g.
striking force; duration of the hammer/sounding object contact) determine the initial
amplitude of the spectral components, and the overall spectral distribution of energy.
Stiffer hammers determine higher energy levels in the high-frequency regions. Impor-
tantly, the material properties of the sounding object also determine the decay times
of the spectral components. Overall, stiffer materials produce spectral components
characterised by a slower decay. The velocity of the decay of the spectral compo-
nents is, however, not constant across all of the spectral components: to a rough
approximation, higher-frequency components decay faster than low-frequency com-
ponents. Wildes and Richards (1988) outlined a simplified yet widely influential
model of the relationship between spectral frequency and energy decay. In their
model, an increase in spectral frequency produces a linear increase in the decay time
of the spectral components. In particular, for stiffer materials the increase in spectral
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Fig. 4.2 Detail of the spectrotemporal structure of impact sounds generated by striking a 450 cm2

square plates (P) made of oak or aluminium with an aluminium or oak hammer (H). Level from
low (black) to high (white). Data from Giordano et al. (2010)

frequency produces a less pronounced decrease in decay time, whereas the contrary
is true for more flexible sounding object materials. Within this formulation, the slope
of the linear relation between spectral frequencies and decay time is assumed to be a
reliable acoustical measure of the stiffness of the sounding object. This variable takes
the name of tan φ, and has been assumed to measure a geometry-invariant acousti-
cal correlate of the sounding-object material. Figure 4.2 displays the time-varying
spectrum of the sounds generated by striking an aluminium and oak square plate
(area = 450 cm2; thickness = 1 cm) with a semi-spherical aluminium or oak hammer.
Note: (i) the longer duration, i.e., lower decay time of the spectral components in the
aluminium plate; (ii) the steeper decrease of decay times with frequency for the oak
plate; (iii) the higher energy of high-frequency components for the sounds generated
with the aluminium hammer.

Two of the earliest studies on the identification of the material of a sounding object
were carried out with real sounds, and were primarily concerned with ascertaining
identification performance rather than the acoustical factors involved in the identi-
fication process. Gaver (1988) struck wood and steel bars of different lengths with
a rubber hammer. The vibration of the bars was externally damped with a carpet,
on top of which they rested while being struck. Participants were presented with
recorded impact sounds, and reached nearly perfect material-identification perfor-
mance. Kunkler-Peck and Turvey (2000) investigated the ability to identify simulta-
neously the material and shape of a freely-vibrating plate (sounding object) struck
with a steel pendulum (hammer). All of the plates had the same area, but differed in
both shape (circle, triangle, rectangle) and material (steel, wood, Plexiglas). Sounds
were generated live by the experimenter, while being occluded from the view of
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the experiment participant. The identification of material was virtually perfect (only
one misidentification was recorded) and was more accurate than the identification of
shape which, however, was significantly better than chance.

Another set of early studies on the perception of the material properties of sound-
ing object focused on synthetic sounds (Avanzini and Rocchesso 2001; Lutfi and Oh
1997; Klatzky et al. 2000). Stimuli in these studies were synthesized as the sum of
exponentially decaying sinusoids. In the studies by Avanzini and Rocchesso (2001)
and by Klatzky et al. (2000), material properties were controlled by manipulating
tan φ. Participants in these studies were either asked to identify sounding-object
materials (Avanzini and Rocchesso 2001; Klatzky et al. 2000), or to discriminate
the change in material between two subsequently presented sounds (Lutfi and Oh
1997). Based on the work by Wildes and Richards (1988), participants’ responses
were hypothesized to focus on the acoustical information contained in the decay
of the spectral components, because it would specify materials more reliably than
their frequency. In practice, however, participants’ responses were influenced by both
decay and frequency information. In the study by Lutfi and Oh (1997) the reliance
of the responses of some participants on frequency information was so strong that it
effectively overshadowed the perceptual effect of decay.

The empirical observation that the auditory perception of materials can be strongly
influenced by sound frequency was problematic because it contradicted the theo-
retical framework that dominated the field, the ecological approach to perception
(Gibson 1966, 1979; Michaels and Carello 1981). Accordingly, it was thought that
source perception would rely on the detection of invariants, i.e., parameters of the
acoustical structure that specify reliably the source property under judgment inde-
pendently of variations in non-target source properties (e.g. an invariant for sounding
object material specifies this property reliably and independently of changes in non-
material properties such as size). Since acoustical parameters such as tan φ were
thought to constitute invariant information about materials, it was surprising that the
identification of material was also influenced by sound frequency, a variable that is
influenced by both the material and geometry of the sounding object (Fletcher and
Rossing 1991). Carello et al. (2003) argued that the focus of listeners on frequency
information was an artefactual product of the synthetic nature of the sound signals
which provided participants with impoverished material-related information. Gior-
dano and McAdams (2006; Giordano 2003) addressed this issue within a material-
identification study conducted with real sounds recorded by striking wood, plastic,
metal and glass plates of different sizes. Importantly, an analysis of the acoustical
structure revealed that sounds were rich in information that differentiated between
materials independently of variations in size. Among them was a psychoacoustically
plausible derivation of the tan φ coefficient. When asked to identify materials, how-
ever, participants did not appear to fully exploit this invariant acoustical information.
Indeed, when it came to differentiating between gross material categories, i.e., wood
and plastic on the one hand, and metal and glass on the other, identification per-
formance was perfect and could be accounted for by a focus on various acoustical
features among which tan φ. However, identification performance within each of
these two categories was virtually at chance level because participants differentiated
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between metal and glass or between wood and plastic by relying exclusively on the
size of the plate or, from the acoustical point of view, on the lowest spectral com-
ponent. Identification confusions between wood and plastic were also observed by
Tucker and Brown (2003) in a study on real sounds, and were instead inconsistent
with the results by Kunkler-Peck and Turvey (2000) obtained with sounds generated
live. It is unclear whether participants in the latter study were exposed to additional
material-related information through eventual uncontrolled sounds generated while
the experimenter hung the plates on the apparatus used to strike them.

The effect of frequency information on identification responses in the study by
Giordano and McAdams (2006) was consistent with previous studies of synthetic
sounds, and, together with the observation of the availability of acoustical information
for the size-independent identification of material, disconfirmed the impoverished
information hypothesis for the perceptual focus on sound frequency. Various hypothe-
ses can be advanced to explain the influence of object size and sound frequency on
the identification of the material of an object. It might be for example argued that
participants in the study by Giordano and McAdams erroneously interpreted all of
the available acoustical information in terms of object material because they were not
informed of the variation in the size of the plates. This hypothesis would, however,
not explain why participants in this study identified small glass and metal plates,
which generated higher-frequency sounds, as being made of glass because metal is
denser and stiffer than glass (Waterman and Ashby 1997) and should thus generate
higher-frequency sounds. Another possible interpretation for the reliance of mate-
rial identification on sound frequency is more subtle. Studies on the perception of
musical timbre show that the influence of pitch on judgments of the dissimilarity of
musical timbres grows with the range of variation of pitch within the experimen-
tal set and, in particular, becomes relevant at the expense of a focus on non-pitch
acoustical information when participants are exposed to pitch variations larger than
one octave (Handel and Erickson 2001; Marozeau et al. 2003; Steele and Williams
2006). Accordingly, the reliance of material identification on frequency observed in
previous studies was determined by the comparatively large variation of this pitch-
related acoustical variable (e.g. six octaves in Giordano and McAdams 2006). Con-
sistently with this interpretation, a subsequent material-identification experiment by
McAdams et al. (2010), carried out with a sound set that included a much smaller
frequency variation (less than half an octave) revealed no effect of this variable on
identification responses (see McAdams et al. 2004; Giordano 2005; McAdams et al.
2010 for dissimilarity-ratings studies of impacted sound sources). A final plausible
explanation of the effect of frequency on identification responses is that it is the
product of the internalization of a statistical regularity in the acoustical environment.
Accordingly, listeners identified the high-pitched sound of a small metal plate as
being made of glass because of the small size of everyday freely vibrating glass
objects (e.g. clinking glasses).

Overall, studies on the identification of the material of impacted sounding objects
reveal a nearly perfect ability to differentiate between gross categories of materials
(wood or plastic vs. metals or glass), and a number of frequency-dependent biases
in the identification of materials within these categories. From the acoustical point
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of view, the ability to differentiate between these gross categories appears to be well
explained by the perceptual processing of an acoustical measure of the damping of
vibrations, tan φ (Giordano and McAdams 2006; McAdams et al. 2010; Avanzini
and Rocchesso 2001; Klatzky et al. 2000). Notably, however, this acoustical variable
might not account well for the differentiation of gross material categories in non-
impact interaction types (Lemaitre and Heller 2012). From the mechanical point
of view, the ability to differentiate between gross material categories appears to be
robust to variations in the geometry of the struck object (see also Ren et al. 2013), and
vulnerable only to the external damping of the vibration of the sounding object, either
when it is submerged underwater (cf., identification of material in sounds recorded
under water; Tucker and Brown 2003), or when it is attached to a dampening soft-
plastic surface (Giordano 2003).

The studies reviewed up to this point investigated the identification or discrimi-
nation of material categories, but did not assess the ability to estimate quantitative
material attributes such as their hardness/softness. Giordano et al. (2010) assessed
the ability of participants to discriminate and rate the hardness of sounding objects
in the presence or absence of training. Sounds were generated by striking variable
size plates of different materials with hammers of different materials. In an initial
experiment, listeners received correctness feedback when asked to discriminate the
hardness of sounding objects. Within a limited number of blocks trials they were
able to quickly learn to discriminate the hardness of sounding objects independently
of variations in its size, and independently of variations in the hardness of the ham-
mer. The training received in the discrimination experiment generalized to a second
hardness-rating experiment where they did not receive correctness feedback. Also in
this experiment they were able to accurately rate the hardness of sounding objects
independently of variations in their size and of variations in the material of the ham-
mer. Importantly, another group of participants who did not receive prior discrimi-
nation training appeared to estimate the hardness of sounding objects by focusing on
the target mechanical properties, but did not ignore the hardness of the hammer and
the size of the sounding object which still influenced their rating responses although
to a lesser extent. Similar effects were obtained with another group of untrained
listeners who rated the hardness of sounding objects when presented with synthetic
impact sounds. Again, their estimates were most strongly influenced by the synthetic
parameter modeling the hardness of the sounding object, but they were influenced, to
a lesser extent, by the frequency of the sounds, and by the acoustical parameters that
in real sounds were most strongly influenced by the impact properties. Overall, the
study by Giordano et al. (2010) confirms the tendency of untrained listeners to esti-
mate the material properties of the sounding object by considering also non-material
parameters such as the size of the sounding objects. The fact that trained listeners are
able to estimate the hardness of sounding objects independently of their size confirms
the presence of perceptually available yet not completely exploited information for
accurate material perception.

Only three studies investigated the ability to perceive the material properties of
the hammer (Freed 1990; Lutfi and Liu 2007; Giordano et al. 2010). In the study by
Freed (1990), participants were presented with the sound of variable-sized metallic
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pans struck with mallets of different hardness and were asked to estimate the hard-
ness of the hammer. Hardness estimates appeared to be accurate, and independent
of the size of the sounding object. Lutfi and Liu (2007) investigated the weighting
of the amplitude information of the spectral components of synthetic impact sounds
within a hammer-hardness discrimination task, and assessed the extent to which the
weighting strategies are reliable across different days. Although different individ-
uals were characterized by largely diverse patterns of information weighting, the
weighting strategies of each single individual were highly replicable.

The study by Freed lent support to the hypothesis that participants are extremely
accurate at perceiving the material properties of hammers. Combined with the results
concerning the often imperfect identification of the material of sounding objects, it
would thus appear, paradoxically, that the auditory system is better equipped at detect-
ing the properties of an object that only indirectly structures the acoustical signal
through its effects on the sounding object vibration—the hammer—rather than at
detecting the material properties of the sound-radiating sounding object. However,
it should be noted that in Freed (1990) the material of the hammer varied while that
of the sounding object was kept constant. As such, this study offered only a rather
limited test of the extent to which the auditory perception of hammer materials is
truly invariant. In a follow-up study carried out with both real and synthetic sounds,
Giordano et al. (2010) asked participants to estimate the hardness of hammers that
struck plates of different size and material. Across multiple conditions, participants
were able to estimate accurately the hardness of the hammer only when receiving
trial-by-trial feedback on discrimination performance. In the absence of such a feed-
back, they appeared instead to estimate hammer hardness based on properties of
the hammer-sounding object impact, such as the duration of their contact. Impor-
tantly, impact properties are influenced by both the material of the hammer and of
the sounding object, i.e., perception of the hammer material relied on a less-than
optimal mechanical variable.

Overall, studies on the perception of solid materials have revealed that in the
absence of explicit training or feedback on the correctness of their responses, the
perceptual abilities that listeners bring into the experimental context are often less
than perfect, and are influenced by non-target mechanical properties of the sound
source. These results make it rather unlikely that naive listeners rely on acoustical
invariants that specify accurately a target source property. In line with this interpreta-
tion, it has been frequently observed that listeners perceive sound source properties
by relying on multiple attributes of the acoustical signal:

• the perception of the geometrical properties of the sounding object is influenced by
the frequency of the spectral components (Lakatos et al. 1997; Lutfi 2001; Houix
2003), by the properties of the sound decay (Lutfi 2001; Houix 2003), and by the
distribution of energy across the spectrum, as measured by the spectral centroid,
the amplitude-weighted average of the spectral frequencies (Lakatos et al. 1997);

• the perception of the material properties of the sounding object is influenced by the
properties of the sound decay (Lutfi and Oh 1997; Klatzky et al. 2000; Avanzini and
Rocchesso 2001; Giordano and McAdams 2006; McAdams et al. 2010), but also
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by sound frequency (Klatzky et al. 2000; Avanzini and Rocchesso 2001; Giordano
and McAdams 2006);

• the perception of the material and mass of the hammer is influenced by both
loudness and spectral centroid (Freed 1990; Grassi 2005).

The empirical observation of the reliance of perceptual judgment on multiple
features of the sound signal opens up the question of how listeners establish their
perceptual weight, i.e., the strength of their influence on the perceptual estimation
of the source property. Giordano et al. (2010) investigated the extent to which the
perceptual weight of an acoustical feature could be accounted for by two differ-
ent principles. Firstly, the accuracy of the acoustical information, i.e., the extent
to which an acoustical feature specifies accurately the mechanical property. Sec-
ondly, the “exploitability” of the acoustical information, i.e., the extent to which the
perceptual system can use the available acoustical information given limitations in
discrimination, learning and memory.

The information-accuracy principle is a quantitative extension of the invariant-
information hypothesis originating within the ecological approach to perception.
Accordingly, an ideal observer that carries out a source-perception task (e.g. rat-
ings of the hardness of sounding objects) can achieve a different performance level
when focusing on different acoustical features. A given acoustical feature is thus
characterized by a specific task-dependent accuracy score, i.e., it affords a given per-
formance level that ranges from chance level to perfect (e.g. zero to perfect correlation
between hardness ratings and actual hardness levels). Giordano et al. (2010) measured
such task-dependent information-accuracy scores by analysing a large database of
impacted sounds, and hypothesized an increase of perceptual weight with an increase
in their value. The information-exploitability principle states instead that, indepen-
dently of the task at hand, the perceptual response will be more strongly influenced
by acoustical features that, in general terms, are processed more efficiently by the
observer. For example, acoustical features that are better discriminated will have
a stronger influence on the estimation of a given source property (e.g. Ernst and
Banks 2002). Similarly, perceptual weights will be higher for acoustical features
that observers learn more quickly to associate with a given source property, or whose
association with a source property is stored in memory more stably. In Giordano et al.
(2010), information exploitability was measured by the ability of listeners to retain
and generalize the perceptual focus on a given acoustical features from a condition
where they received trial-by-trial feedback on response correctness to a subsequent
condition where such feedback was not available.

In an initial discrimination experiment, Giordano et al. (2010) observed that lis-
teners learn quickly to discriminate the hardness of sounding objects, whereas they
require a longer training to reach the same target performance level when discriminat-
ing the hardness of hammers. When they received trial-by-trial performance feedback
participants focused on the most accurate acoustical features for the discrimination of
the hardness of both objects. However, in the absence of such a feedback the same par-
ticipants in a second hardness-rating experiment were able to retain the focus on the
most accurate information only when it came to estimating the hardness of sounding
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objects, but not of hammers. As such, the perceptual focus on accurate information
appeared to be strongly limited by the ability of participants to learn and retain in
memory perceptual criteria acquired while carrying out the initial discrimination
task. Overall, this study thus shows that the weighting of acoustical information for
the perception of sound sources is not always dominated by the accuracy of acoustical
information, but is also determined by task-independent limitations in the processing
abilities of the perceptual system. This view is consistent with the observation by
Lutfi and Stoelinga (2010) that performance in the perception of the properties of a
struck bar can be accounted for by the ability of listeners to discriminate the features
of the sound signal.

4.2.3 Comparison of Material and Interaction Perception

Everyday non-vocal sound sources can be differentiated based on both the sound-
generating materials and the type of interaction that sets them into vibration: solid
materials can be set into vibration by plastic deformations (e.g. crumpling paper),
impacts, scraping and rolling; liquid interactions include dripping, pouring, and
splashing; interactions for aerodynamic/gaseous sound sources include explosions,
gusts, and wind-like turbulence (Gaver 1993). Given the centrality of the construct of
interaction to the organization of everyday sound sources, and the strong effects they
have on the structure of the acoustical signal (see Figs. 4.1 and 4.3), it is thus nat-
ural to ask which, among materials and interactions, are central to the cognitive
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organization of everyday non-vocal sounds, and which our auditory system can
process better. Lemaitre and Heller addressed these questions in two recent stud-
ies (Lemaitre and Heller 2012, 2013).

In Lemaitre and Heller (2013), participants were presented with sounds generated
by setting into vibration various substances (solids, gases and liquids) with different
types of actions. They carried out a label-verification experiment, i.e., they had to
decide whether a given label was an appropriate description of the sound-generating
event. Labels could belong to one of five categories: (i) state of matter; (ii) interaction
type (e.g. friction for scraping and squeaking or deformation for tearing and crum-
pling); (iii) specific interaction (e.g. scraping); (iv) manner of action (e.g. scraping
rapidly); (v) object of the action (e.g. scraping a board). Labels belonging to the
specific-interaction category were verified more quickly and accurately than labels
from any other category, suggesting a central role of this description level in the
cognitive organization of the sound stimuli. The same conclusion was supported by
the results of a second priming experiment where sounds primed a lexical decision
task carried out on subsequently presented labels belonging to either the interaction
type or specific interaction category. Responses were faster and more accurate for
specific-interaction labels.

In Lemaitre and Heller (2012), sounds were generated by applying different inter-
action types (rolling, scraping, hitting and bouncing) to hollow cylinders made of
four different materials (plastic, wood, metal and glass). In an initial experiment,
participants rated how well the sound conveyed either a specific interaction type or a
specific material. Performance measures derived from the ratings data were signifi-
cantly better when participants judged the interaction type. In a second experiment,
participants were asked whether a target sound had been generated with a given
interaction type or material described by a label presented before the sound onset.
Reaction times were faster for the identification of the interaction type.

Overall, the studies by Lemaitre and Heller support the hypothesis that the manner
in which substances and objects are set into vibration play a more central role in
the cognitive organization of non-vocal everyday sounds. Further, interaction types
appear to be associated with acoustical fingerprints that are processed more quickly
by the auditory system than those that characterize materials and states of matter.

4.2.4 Perception of Deformable Materials

Sounds produced by fabrics are the result of complex interactions that include sliding
friction but also crumpling sounds due to buckling of the fabric on itself. The fric-
tional component of these sounds is largely influenced by the texture of the fabric,
a parameter mostly related to the fine-grained geometry of the object rather than to
geometry-independent material properties. The reader is referred to the work by Led-
erman and co-workers on the audio-haptic perception of texture (Lederman 1979;
Lederman and Klatzky 2004).
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In the scientific literature there appears to be a lack of studies on the auditory
perception of material-related properties of fabrics and textiles. On the other hand,
the definition of objectively measurable properties of fabrics (the term Fabric Objec-
tive Measurement—FOM—is often used) is a central issue in the field of textile
and apparel industry. For this reason, the perception of fabrics and textiles has been
studied in the context of the evaluation of fabric “hand”, quality, and related perfor-
mance attributes. Judgments of hand feel properties of fabric are traditionally given
by panels of experts, and sets of hand feel properties and corresponding scales have
been defined (Civille and Dus 1990), most of which are related to the tactile sense.
Among them, surface softness (on a subjective scale soft → hard) and, interestingly,
two auditory properties: “noise intensity” (soft → loud), and “noise pitch” (low/bass
→ high/sharp). The Kawabata evaluation system (KES) (Kawabata 1980) has been
developed under the assumption that the main characteristics of fabric responsible
for hand feel depend on many physical properties, including dimensional changes at
small forces (tensile, shear, compression, bending), surface properties (roughness and
friction), and surface thermal insulation. KES testing instruments estimate various
mechanical properties of fabric, which are then related to sensory signals acquired
through hand-contact.

Within this research area, the role of auditory information in the subjective eval-
uation of fabrics has been assessed in a series of studies on the effects of sound
on hand-feel properties (Cho et al. 2001, 2005). In Cho et al. (2001), a set of psy-
chophysical experiments was presented concerning the characteristics of frictional
sounds produced by interaction with fabrics, and their effect on the perceived quality
of fabrics. Among various fabric-sound features, the sound “level range” �L was
found to exhibit a positive correlation with perceived softness and pleasantness. In
Cho et al. (2005), the reaction of observers to frictional sounds of warp-knitted fab-
rics was measured in terms of physiological responses (EEG, respiration rate, skin
conductance level, etc.). In this study, the psychoacoustical measures of roughness
and fluctuation strength were strongly correlated with the perceived pleasantness of
fabric sounds.

Although liquid sound sources have been investigated in a number of studies, few
of them assessed the ability of listeners to perceive a mechanical property of the sound
source. The most active area of research on liquid sounds is indeed of an applied
nature, and aims for example to assess how they can be used to mask road-traffic
noise (e.g. De Coensel et al. 2011; Jeon et al. 2012). Overall, this research field shows
promising potentials of water sounds for the improvement of the perceptual quality
of urban soundscapes. Consistently, a semantic-differential study of environmental
sounds carried out by Kidd and Watson (2003), revealed that across a large set of
environmental sounds, liquid sounds are among the least harsh (e.g. splashing vs.
breaking light bulb sound) and the most appealing (e.g. waterfall vs. scraping wood
sounds).

Although not directly related to the auditory perception of the mechanics of the
sound source, the study carried out by Geffen et al. (2011) gives interesting indica-
tions on how liquid sounds might be encoded in the auditory system. It is known that
the acoustical structure of natural sounds exhibit scale-invariant or self-similarity
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traits, as measured by the 1/ f distribution of the power spectrum of amplitude fluc-
tuations across different frequencies f (Voss and Clarke 1975; Attias and Schreiner
1997). Confirming these earlier studies, Geffen et al. (2011) observed that natural
water sounds exhibit the same scale-invariant 1/ f spectrum. More importantly, they
observed that natural water sounds whose scale was modified simply by altering
their playback speed were still perceived as natural and water like and that synthetic
stimuli given by the overlap of temporally and spectrally distributed chirps were still
perceived as natural and water like only when they exhibited the same scale-invariant
structure and a 1/ f spectrum.

Four studies examined the perceptual estimation of the mechanical properties of
liquid sound sources. Jansson (Jansson 1993; Jansson et al. 2006), carried out a series
of experiments to assess the estimation of the amount of liquids inside a shaken ves-
sel. In Jansson (1993), participants estimated the amount of liquid in a shaken opaque
container in haptic, auditory or visual conditions. Although auditory and visual esti-
mates of the amount of liquid scaled to the actual amount in all conditions, the most
accurate estimates were given when haptic information was available. Interestingly,
accuracy in all of these conditions improved dramatically after participants were
exposed to a prior multisensory condition where information from all of the three
modalities was available, revealing a rapid calibration of the processing of informa-
tion within each of the modalities. In Jansson et al. (2006), participants estimated the
amount of liquid or of a solid substance held within a shaken vessel in various haptic
conditions, each characterized by a different constraint on the exploratory movement
that participants could execute, and in a trimodal visual-auditory-haptic condition.
Consistent with the previous study, accuracy was higher in the trimodal condition
and in the haptic condition where participants were allowed to shake the vessel, as
opposed to only lift it. Cabe and Pittenger (2000), investigated the ability to perceive
the filling level in water container. An initial auditory-only experiment revealed that
listeners can accurately differentiate between liquid-pouring events where the over-
all level of water decreases, increases or remains constant. In a second experiment,
participants were asked to fill a container up to a specified level. Accuracy was higher
when participants had access to haptic, visual and auditory information as compared
to when they had access to auditory information only. In a final experiment, inspired
by studies on the visual estimation of time to contact, listeners were found able to
predict accurately the time it would have taken for a vessel to fill completely after
having heard the sound generated by filling it at various below-brim levels. Finally,
Velasco et al. (2014) investigated the perception of the temperature of poured liquids.
In an initial experiment, sounds were generated by pouring cold or hot water in one
of four different containers (glass, plastic, ceramic and paper). Participants were very
accurate at identifying whether the poured water was cold or hot for all containers.
Good recognition abilities were confirmed in a second experiment that measured
the implicit association between cold and hot sounds, and the “cold drink” and “hot
drink” verbal labels. In a final experiment, participants rated the temperature of one
cold and one hot liquid pouring sound, and of a manipulated version of the cold
sound that increased high-frequency energy, and of the hot sound that increased low-
frequency energy. Temperature ratings increased from the manipulated cold to the
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original cold to the original hot to the manipulated hot sound, suggesting an increase
in perceived liquid temperature with a decrease in the low-frequency energy of the
sound signal.

4.2.5 Audio-haptic Perception of Materials

The studies reviewed up to this point on the perception of stiff impacted materi-
als reveal that geometry-independent material information is highly relevant to the
auditory perception of objects and events. In contrast, it is a largely open ques-
tion whether auditory material-related information is perceptually relevant when
presented in a multisensory context because relatively few studies addressed this
question. Chapter 2 by Klatzky and Wu in this volume reviews studies on the inte-
gration of audio-visual information about materials. Here, we review studies on the
audio-haptic processing of material information. They can be divided in two groups
according to the exploratory gesture used by observers to generate the sound signals:
hitting and walking.

The audio-haptic perception of struck materials was investigated in three studies
(DiFranco et al. 1997; Avanzini and Crosato 2006b; Giordano et al. 2010). DiFranco
et al. (1997) investigated the ranking of the stiffness of simulated haptic surface
when presented along with recorded sounds generated by striking materials of dif-
ferent stiffness. Stiffness rankings increased with the actual stiffness of the auditory
or haptic objects when they were presented along with a constant haptic stiffness
or when presented alone, respectively. Two groups of observers participated in the
main experiment. They had either taken part in a previous experiment on the rank-
ing of haptic stiffness (expert observers) or not (naive observers). Naive observers
appeared to be more strongly influenced by auditory stiffness than expert observers
(accuracy in ranking of haptic stiffness across sound-stiffness levels = 44 and 73 %
correct, respectively). Notably, however, also the expert observers appeared to take
into account auditory stiffness to some extent because their performance in the rank-
ing of haptic stiffness appeared to decrease relative to what was observed when they
were not exposed to simultaneous sound stimuli (83 % correct in the haptic-only
condition). Avanzini and Crosato (2006b) investigated the perceptual effectiveness
of a haptic-synthesis engine coupled with a real-time engine for the synthesis of
impact sounds. The sound-synthesis engine in this study allowed the manipulation
of the force-stiffness coefficient, a mechanical parameter influenced by the stiffness
of both the hammer and sounding object that influences primarily the perceived
hardness of the hammer but also of the sounding object (Giordano et al. 2010).
Variable-stiffness sounds were presented along with a simulated haptic surface of
constant stiffness. Consistently with what observed by DiFranco et al. (1997) with
real sounds, the ratings for the stiffness of these audio-haptic events increased with
the auditory stiffness.

The same model investigated in Avanzini and Crosato (2006b) was adopted by
Giordano et al. (2010) in a study on the effects of audio-haptic stiffness on the motor

http://dx.doi.org/10.1007/978-1-4471-6533-0_2
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control of striking velocity. During the initial phase of each trial, participants received
continuous feedback on whether their striking velocity was within a target range.
After they reached a given performance criterion, feedback was removed during a
subsequent adaptation phase. During a final change phase, the audio or haptic stiffness
was modified from the baseline value. Three groups of individuals (non-musicians,
non-percussionist musicians and percussionists) participated in four experimental
conditions: (i) auditory only; (ii) haptic only; (iii) audio-haptic congruent, where
the audio and haptic stiffness was changed in the same direction (e.g. increase in
both); (iv) audio-haptic incongruent. Overall, an increase in audio-haptic stiffness
led to a decrease in the striking velocity during the change phase of each trial.
Notably, however, whereas both non-musicians and musicians decreased striking
velocity for an increase in haptic stiffness, percussionists had the exact opposite
weighting of this variable, and struck stiffer haptic objects faster. In the audio-haptic
condition, the control of striking velocity appeared to be dominated by changes in
haptic stiffness. Also, congruency modulated the motor effect of audio stiffness,
which had a significant effect only during the audio-haptic congruent condition,
whereas it did not modulate the motor effects of haptic stiffness.

Three recent studies investigated the perceptual and motor effects of the prop-
erties of walked-upon materials (Giordano et al. 2012; Turchet et al. 2014; Turchet
and Serafin 2014). Giordano et al. (2012) carried out an experiment on the non-
visual identification of real walking grounds in audio-haptic, haptic, kinaesthetic
and auditory conditions. Eight ground materials were investigated: four solid mate-
rials (vinyl, wood, ceramic and marble) and four aggregate materials (gravels of
four different sizes; see Fig. 4.4 for example waveforms and spectrograms of the
sound stimuli in these studies). Three of the experimental conditions were interac-
tive, i.e., participants carried out the identification task after walking blindfolded
on the ground material. In the audio-haptic condition, they had access to all of the
available non-visual information. In the haptic and kinaesthetic conditions, auditory
information was suppressed by means of a masking noise reproduced over wireless
headphones. In the kinaesthetic condition, tactile information about ground materi-
als was suppressed by reproducing a tactile masker through a recoil-type actuator
installed in an outer sole strapped under the shoe. In the auditory condition partici-
pants did not walk on the ground materials, and heard the walking sounds they had
generated during the audio-haptic condition. Given the large differences between
the vibratory signals generated while walking on solid vs. aggregate materials (see
Fig. 4.4), it is not surprising that in all sensory conditions participants almost per-
fectly discriminated between these two classes of walking grounds. Within each of
these categories, identification performance varied across experimental conditions,
and was maximized when participants had access to tactile information in the haptic
and audio-haptic conditions. In particular, tactile information appeared to be critical
for the identification of solid materials because when it was suppressed during the
kinaesthetic condition identification was at chance level. More interesting were the
results of the analysis of the dominance of the different sensory modalities during
the audio-haptic condition. For solid materials, some evidence emerged concern-
ing the dominance of haptic information, i.e., the sensory modality that allowed the
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Fig. 4.4 Waveform (top panels) and spectrum (bottom panels) of a footstep sound generated while
walking on wood or on large gravel, an aggregate material. Level from low (black) to high (white).
Time from impact estimated approximately based on waveform. Amplitude scaled to maximum for
display purposes. Data from Giordano et al. (2012)

best identification performance appeared to dominate the audio-haptic identification
of solid grounds. Surprisingly, the identification of aggregate materials during the
audio-haptic conditions appeared instead to be dominated by kinaesthetic informa-
tion, i.e., participants focused on the worst performing sensory modality. This result
was interpreted as revealing a bias in the weighting of modality-specific informa-
tion: when walking on unstable grounds, such as a gravel, participants were likely
not concerned with discriminating accurately the size of the gravel, but were instead
concerned with keeping a stable posture by focusing on the sensory modality that
would have most promptly signalled a potentially unstable posture, kinaesthesia.

Turchet and Serafin (2014) carried out a study on the congruence of simulated
auditory and haptic walking ground. Participants rated the congruence of auditory
and haptic materials presented simultaneously either in an active-walking condition
or in a passive conditions during which they experienced the audio-haptic display
while sitting on a chair. Audio-haptic congruence appeared to be maximized when
both materials belonged to either the solids or aggregate category, thus confirming
the perceptual relevance of the same distinction observed by Giordano et al. with
real grounds. Turchet et al. (2014) finally assessed the extent to which auditory infor-
mation about ground materials influences the kinematics of locomotion. Participants
were instructed to walk using their normal pace on an asphalt ground. Importantly,
participants could hear either the sounds they generated while walking on asphalt, or
synthetic walking sounds generated in real time with a model meant to simulate wood,
gravel, and snow-covered grounds. Auditory information about materials appeared
to affect a number of variables related to the pace. For example, pace appeared to be
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slower on aggregate than on solid materials (synthetic snow and gravel vs. synthetic
wood and real asphalt ground).

Overall, auditory material-related information influences both the perception of
materials in audio-haptic contexts and the kinematics of sound-generating move-
ments (see also Castiello et al. (2010), for effects of sound information on the kine-
matics of grasping). The available experimental evidence appears however to show
that within an audio-haptic context auditory materials have weaker effects than haptic
materials on both perceptual judgment and motor behaviour.

4.3 Synthesis

In light of the discussion developed in the first part of this chapter, it can be stated
that appropriate sound synthesis techniques for the rendering of auditory correlates
of material-related sound source properties must possess two main qualities: (i) they
have to provide access to sound control parameters that can be related to ecological
properties of the simulated sound-generating phenomena, and (ii) they have to be
usable in real-time interactive settings, responding naturally to user actions.

Recent literature in virtual reality and sonic interaction design (Rocchesso 2011;
Franinović and Serafin 2013) has explored the use of “physically based sound mod-
eling” techniques to develop interactive sound synthesis schemes. This term refers
to a set of synthesis algorithms that are based on a description of the physical phe-
nomena involved in sound generation, whereas earlier techniques are based on a
description of the sound signal (e.g. in terms of its waveform or its spectrum) and
make no assumptions on the sound generation mechanisms.

Since physically based models generate sound from computational structures
that respond to physical input parameters, they automatically incorporate complex
responsive acoustic behaviours. A second advantage is interactivity and ease in asso-
ciating motion to sound control. As an example, the parameters needed to characterize
impact sounds (e.g. relative normal velocity), are computed in a VR physical simula-
tion engine and can be directly mapped into control parameters, producing a natural
response of the auditory feedback to user gestures and actions. Finally, physically
based sound models can in principle allow the creation of dynamic virtual environ-
ments in which sound-rendering attributes are incorporated into data structures that
provide multimodal encoding of object properties (shape, material, elasticity, texture,
mass, etc.). In this way, a unified description of the physical properties of an object
can be used to control the visual, haptic, and audio rendering (Avanzini and Crosato
2006b; Sreng et al. 2007).

4.3.1 Modal Sound Synthesis

Various physically based modeling techniques exist in the literature, particularly
for musical instruments (see e.g. Smith 2004; Välimäki et al. 2006, for extensive
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reviews). A full physical simulation entails the numerical resolution of a set of
partial differential equations describing mechanical and/or fluid-dynamic oscilla-
tions, as well as sound radiation in space. Finite-difference and finite-element models
have been used to simulate musical instruments using this approach (Bilbao 2009).
In particular, Chaigne and co-workers have developed accurate models for sound-
producing mechanisms involving impacted resonators (strings, bars, plates) (Doutaut
et al. 1998; Lambourg et al. 2001). A similar approach has been proposed also in the
context of non-musical sound synthesis (O’Brien et al. 2002): finite-element simu-
lations are employed for the generation of both animated video and audio. Complex
audio-visual scenes can be simulated, but heavy computational loads still prevent
real-time rendering and the use of these methods in interactive applications.

A more efficient technique is modal sound synthesis (Adrien 1991). Starting with
the studies by van den Doel and co-workers (van den Doel and Pai 1998; van den
Doel et al. 2001), this has become the most used approach for the simulation of
non-musical sounds produced by mechanical contact of solid objects. Consider a
resonating object described as a network of N masses connected with linear springs:

M ÿ(t) + K y(t) = fext(t), (4.1)

where y is a vector containing the displacements of the N points of the network, the
mass matrix M is typically diagonal, while the stiffness matrix K is in general not
diagonal because the points are coupled through springs. The homogeneous equation
( fext ≡ 0) has in general N modal solutions of the form y(t) = s · sin(ωt + φ),
where the vector s of the modal shapes is an eigenvector of the matrix M−1 K with
associated eigenvalue ω2. The eigenvectors are orthogonal with respect to the mass
and the stiffness matrix, and their associated matrix S = [s1|s2| . . . |sN ] defines a
change of spatial coordinates that transforms system (4.1) into a set of N uncoupled
oscillators:

Mqq̈ + Kqq = ST fext(t), with Mq = ST M S, Kq = ST K S. (4.2)

Due to orthogonality, the matrices Mq = diag{mn}N
n=1 and Kq = diag{kn}N

i=n are
diagonal. Therefore the modal displacements {qn}N

n=1 obey a second-order linear
oscillator equation with frequencies ω2

n = kn/mn , where mn and kn represent the
modal masses and stiffnesses, and where the transposed matrix ST defines how a
driving force fext acts on the modes. The oscillation yl(t) at the lth spatial point is the
sum of the modal oscillations weighed by the modal shapes: yl(t) = ∑N

n=1 sn,lqn(t).
Equivalently, modal decomposition can be obtained from the partial differential

equation that describes a distributed object, in which the displacement y(x, t) is a
continuous function of space and time. In this case, a normal mode is a factorized
solution y(x, t) = s(x)q(t). As an example, for a string with length L and fixed
ends, the D’Alembert equation with fixed boundary conditions admits the factorized
solutions yn(x, t) = sn(x)qn(t) = √

2/L sin(ωn t +φn) sin(kn x), with kn = nπ
L and

ωn = ckn (c is the wave speed). If a force density fext(x, t) is acting on the string,
the equation is



4 Perception and Synthesis of Sound-Generating Materials 69

μ
∂2 y

∂t2 (x, t) − T
∂2 y

∂x2 (x, t) = fext(x, t), (4.3)

where T , μ are the string tension and density, respectively. Substituting the factorized
solutions yn(x, t) and integrating over the string length yields

⎡
⎣μ

L∫
0

s2
n (x)dx

⎤
⎦ q̈n(t) +

⎡
⎣T

L∫
0

[s′
n(x)]2dx

⎤
⎦ qn(t) =

L∫
0

sn(x) fext(x, t)dx . (4.4)

Therefore the equation for the nth mode is that of a second-order oscillator with
mass mn = μ

∫ L
0 s2

n (x)dx and stiffness kn = T
∫ L

0 [s′
n(x)]2dx . The modal shape

defines how the external force acts on the mode, and the oscillation y(xout , t) of the
system at a given spatial point xout is the sum of the modal oscillations weighed by
the modal shapes: y(xout , t) = ∑+∞

n=1 sn(xout )qn(t).
The two (discrete and continuous) modal representations of oscillating systems

have strict analogies, reflecting the fact that continuous systems can be seen as the
limit of discrete systems when the number of masses becomes infinite. As an example,
a string can be approximated with the discrete network of Fig. 4.5, with N masses.
The discrete system has N modes, whose shapes resemble more and more closely
those of the continuous system, as N increases.

The modal formalism can be extended to systems that include damping, i.e. where
a term Rẏ is added in Eq. 4.1, or the terms d1∂y/∂t +d2∂/∂t (∂2 y/∂x2) are added on
the left-hand side of Eq. 4.3. However, certain hypotheses about the damping matrix
must hold.

Given the modal decomposition for a certain resonating object, sound synthe-
sis can be obtained from a parallel structure of second-order numerical oscillators,
each representing a particular mode. Despite the comparatively low computational
costs with respect to other techniques, mode-based numerical schemes can become
expensive when many objects, each with many modes, are impacted simultane-
ously. Therefore recent studies deal with optimization of modal synthesis schemes.
Bonneel et al. (2008) proposed an approach based on short-time Fourier Transform,
that exploits the inherent sparsity of modal sounds in the frequency domain. Other

Mode: 1 2 10543
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Fig. 4.5 Analogies between continuous and discrete systems. Left Approximation of an ideal string
with a mass-spring network. Right Modes of the discrete system for various numbers N of masses
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research has used perceptual criteria to perform mode compression and truncation, so
as to reduce the computational load (Raghuvanshi and Lin 2007; Lloyd et al. 2011).
The use of variable time-steps in the integration of the numerical equation has also
been explored (Zheng and James 2011).

Another current area of research concerns improvements to the basic modal syn-
thesis scheme, with the aim of increasing the realism and quality of the resulting
sounds. One of the key challenges is the development of automatic modal analy-
sis and determination of material parameters that recreate realistic audio. Ren et al.
(2013) presented a method that analyses pre-recorded target audio clips to estimate
perceptually salient modal parameters that capture the inherent quality of recorded
sounding materials. A different approach was proposed by Picard et al. (2010), in
which automatic voxelization of a surface model is performed, and automatic tun-
ing of the corresponding finite element method parameters is obtained based on the
distribution of material in each cell.

4.3.2 Impact Forces

If the external force applied to the resonating object is an ideal impulse, the oscillation
is a weighed sum of damped sinusoids. More in general, energy is injected into the
system through some kind of excitation mechanism. The amount and the rate at
which energy enters the system depends on the nature of the interaction. Impact
is a relatively simple interaction, as it occurs in a quasi-impulsive manner, rather
than entailing continuous exchange of energy (as it happens for rolling, scraping,
stick-slip friction, and so on). At the simplest level, a feed-forward scheme can be
used in which the resonator is set into oscillation by driving forces that are externally
computed or recorded. As an example, the contact force describing an impact onto a
resonating object may be modeled with the following signal (van den Doel and Pai
2004):

f (t) =
{

fmax
2

[
1 − cos( 2π t

τ
)
]
, 0 ≤ t ≤ τ,

0, t > τ.
(4.5)

Here, the time-dependent force signal has a cosinusoidal shape in which the dura-
tion of the force (i.e., the contact time) is determined by the parameter τ , while its
maximum value is set using the parameter fmax.

As opposed to feed-forward schemes, a more accurate approach to the simulation
of contact forces amounts to embedding their computation directly into the model
(Avanzini et al. 2003). Despite the complications that arise in the synthesis algo-
rithms, this approach provides some advantages, including improved quality due
to accurate audio-rate computation of contact forces, and better interactivity and
responsiveness of sound to user actions.

A model for the impact force between two objects, originally proposed by Hunt
and Crossley (1975), is the following:
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Fig. 4.6 Non-linear
force (4.6) generated dur-
ing impact of a point mass
on a hard surface, for various
impact velocities
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f (x(t), v(t)) =
{

kx(t)α + λx(t)α · v(t) x > 0,

0 x ≤ 0,
(4.6)

where the time-dependent function x(t) is the interpenetration of the two colliding
objects (representing the overall surface deformation of the two objects during con-
tact), and v = ẋ is the corresponding velocity. In this case the dynamics of the contact
force is not pre-determined as in Eq. 4.5, but is itself dependent on the states and the
oscillations of the objects. The parameters k, λ control the stiffness of the impact and
the involved dissipation, while the exponent α is related to the local geometry around
contact [in particular, α = 3/2 in the classic Hertz model of collision between two
spheres (Flores et al. 2008)]. Figure 4.6 depicts the simulation of a point mass hitting
a rigid surface with the impact model of Eq. 4.6: it can be noted that the impact
force has a non-linear characteristics that depends on the exponent α, and exhibits a
hysteresis effect that is associated to the dissipative component.

Several refinements to these models have been proposed in order to improve the
sound quality. Other relevant phenomena occurring during the impact need to be sim-
ulated, particularly the acceleration noise produced as a consequence of large rigid-
body accelerations over a short time scale, which results in a perceivable acoustic
pressure disturbance at the attack transient (Chadwick et al. 2012).

4.3.3 Rendering of Materials and Hardness in Impact Sounds

As discussed previously, material properties of objects can be perceived auditorily
from impact sounds. In particular, object hardness/softness correlates strongly with
material identification and impact stiffness.

The modal representation of a resonating object is naturally linked to many ecolog-
ical dimensions of the corresponding sounds. The possibility of linking the physical
model parameters to sound parameters related to the perception of material was
first demonstrated by Klatzky et al. (2000). In this work, the modal representation
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proposed by van den Doel and Pai (1998) was applied to the synthesis of impact
sounds with material information.

The impact force model of Eq. 4.6 was used (Avanzini and Rocchesso 2001;
Rocchesso et al. 2003) to produce synthetic auditory stimuli for the investigation of
material identification through listening tests. While results from perceptual exper-
iments have already been discussed, here the sound synthesis approach is briefly
summarized. In order to minimize the number of model parameters, the modal res-
onator in the synthesis algorithm was parameterised to have only one mode (i.e.,
N = 1 in Eq. 4.2): as a result, only two acoustic parameters controlled the sound
synthesis, namely the centre frequency and the quality factor of the single mode. As a
consequence of using a realistic force model, the stimuli maintained the characteris-
tics of impact sounds, despite the “cartoon-like" oversimplification of the resonator.

Ren et al. (2013) investigated the use of the Rayleigh damping model in modal
sound synthesis. As discussed in the previous section, modal decoupling is only
feasible under certain assumptions for the damping matrix. Rayleigh damping is a
commonly adopted approximation model that enables such decoupling, and assumes
the damping matrix to be a linear combination of the mass and stiffness matrices. With
the goal of investigating whether auditory material perception under the Rayleigh
damping assumption is geometry-invariant (i.e., whether this approximation is trans-
ferable across different shapes and sizes), Ren et al. (2013) used both real-world audio
recordings and (modal) synthesized sounds to perform objective and subjective analy-
sis of the validity of the Rayleigh damping model across different object shapes and
sizes. Statistical analysis showed that this is the case for homogeneous materials,
whereas the Rayleigh damping model does not provide equally good approxima-
tion for materials with heterogeneous micro-structures, such as wood. This study
therefore points to some often overlooked limitations of modal sound synthesis.

Aramaki et al. (2011) proposed a modal-based synthesizer of impact sounds,
controlled through high-level verbal descriptors referring to material categories (i.e.,
wood, metal and glass). Analysis was conducted on a set of acoustical descriptors
(namely, attack time, spectral bandwidth, roughness, and normalized sound decay),
together with electrophysiological measurements (in particular, analysis of changes
in brain electrical activity using event related potentials). Based on acoustic and
electrophysiological results, a three-layer control architecture providing the synthesis
of impact sounds directly from the material label was proposed.

In a study on material perception in a bimodal virtual environment, specifically
on the mutual interaction of audio and graphics, Bonneel et al. (2010) also used
the modal approach proposed by van den Doel et al. (2001). An experiment similar
to the one reported by Klatzky et al. (2000) was conducted. Results showed that
the proposed bimodal rendering resulted in better perceived quality for both audio
and graphics, and that there was a mutual influence of the two modalities on the
perception of material similarity.

Recent research has addressed the issue of auditory rendering of materials from the
point of view of walking interactions (Steinicke et al. 2013). Fontana and co-workers
(Visell et al. 2009; Marchal et al. 2013) published many results about footstep sound
design, including the rendering of floor surface material, as well as multimodal
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issues and the integration of vibrotactile display. All sounds were designed using
the Sound Design Toolkit (SDT), a software package providing a palette of virtual
lutheries and foley pits, targeted at sonic interaction design research and education
(Delle Monache et al. 2010). Real-time synthesis of footstep sounds for various
materials was also investigated by Nordahl et al. (2010), using modal synthesis and
the impact model of Eq. 4.6. A perceptual study was conducted with three groups
of subjects: the first group listened to recorded footstep sounds, the second one
generated synthetic footstep sounds interactively by walking on shoes augmented
with sensors, and the third one listened to pre-recorded footstep sounds synthesized
with the same synthesis engine. Results showed that subjects of the second group
were able to identify synthesized floor materials at a comparable accuracy with real-
world recordings, while the performance of the third group was significantly worse.

Overall, the studies reviewed up to this point show that modal sound synthesis is
the most commonly used approach in current literature to render auditorily differ-
ent materials in impact sounds. There is a trend toward the definition of higher-level
control parameters, that refer to ecological categories and hide low-level modal para-
meters in the background (Aramaki et al. 2011; Delle Monache et al. 2010). Some
limitations of this approach have also been highlighted (Ren et al. 2013).

The proportion of studies devoted to the auditory rendering of object hard-
ness/softness is comparatively low with respect to those devoted to material iden-
tification. In a modal synthesizer, contact hardness should be rendered by properly
adjusting the parameters of the contact force in order to control the hardness-related
auditory parameters discussed in the previous sections.

If a physical model such as the one in Eq. 4.6 is used to describe the contact force,
an analytical expression for the contact time can be derived (Avanzini and Rocchesso
2004; Papetti et al. 2011):

τ =
(m

k

) 1
α+1 ·

(
μ2

α + 1

) α
α+1

·
vin∫

vout

1

(1 + μv)
[
−μ(v − vin) + log

∣∣∣ 1+μv
1+μvin

∣∣∣]
α

α+1
,

(4.7)

where m is the hammer mass, while the remaining parameters are part of Eq. 4.6.
This equation states that the contact time τ depends only on μ, the exponent α and
the ratio m/k, in addition to the impact velocity vin . Since neither m nor k affect
the value of the integral, it follows that, for a given value of vin , the dependence
τ ∼ (m/k)1/(α+1) holds.

Based on this analytical property, a relation between the contact time and the
time-varying spectral centroid of the impact sound was discussed by Avanzini and
Rocchesso (2004). As a result, a mapping between the physical parameters of the
impact force and the hardness-related auditory parameters was proposed. Avanzini
and Crosato (2006a) tested this relation in a bimodal (audio-haptic) setting. A subjec-
tive test was conducted in which subjects had to tap on virtual audio-haptic surfaces.
In each condition the haptic stiffness had the same value while the acoustic stiff-
ness k was varied. Perceived hardness/softness was determined using an absolute
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magnitude-estimation procedure. Results showed that subjects consistently ranked
the surfaces according to the values of k in the auditory stimuli. If the impact force
is not described physically but rather with a signal model, similar control can be
achieved. As an example, the cosinusoidal impact force model in Eq. 4.5 includes
the contact time τ among its parameters.

As a conclusion to this section, it may be argued that other features of an
impact model should be adjusted to properly render the perception of object
hardness/softness. As an example, the amount of acceleration noise at the attack
(Chadwick et al. 2012) is related to the contact stiffness. Moreover, more complex
impact force models (e.g. distributed models taking into account the contact area)
may be needed for a more accurate rendering of the attack transient.

4.3.4 Rendering of Deformable and Aggregate Objects

It should be no surprise that the particular topic of rendering sounds produced by
interaction with deformable objects, like textiles, tissues, and so on, has seen very
little work. In fact, as already noted previously in this chapter, softness-related audi-
tory information is less accessible when interacting with soft objects than with hard
ones.

A few studies deal with the topic of textile sounds synthesis, although the relation
between the sound rendering and the perceived softness is not investigated. Existing
studies have an applicative focus, in which multimodal rendering of textiles is used
for high-quality animation and possibly for enhanced active exploration of virtual
fabrics (e.g. for e-commerce applications).

Huang et al. (2003) proposed an audio-haptic interface for simulating interaction
with a fabric surface through a stylus. The exploratory procedure considered in this
work was mainly rubbing of the stylus over a cloth patch. Sound was synthesized
using a modal model driven by measured roughness profiles. While appropriate
for the particular haptic application considered in this work, the model is hardly
generalizable to more complex cloth animations.

It has already been mentioned previously that sliding friction due to textile rubbing
against itself or other surfaces is an important component of textile sound but is not
the only one. Moreover, frictional sounds are related to surface geometry properties of
the object, rather than material properties. In addition to frictional sounds, textiles can
also buckle and produce crumpling sounds, in the form of small audible pops. Woven
garments produce audible crumpling sounds, while stiff synthetic clothes (e.g. nylon
windbreakers), exhibit characteristically loud crumpling sounds. An et al. (2012)
proposed a data-driven method for automatically synthesizing sound in physics-based
cloth animations. Given a cloth animation, analysis of the deformation was used to
drive crumpling and friction sound models estimated from cloth measurements and
to synthesize low-quality audio. This was then used as a target signal for a sound
synthesis process, which selected best-match short segments from a database of
recorded cloth sounds.



4 Perception and Synthesis of Sound-Generating Materials 75

Crumpling sounds, such as those used by An et al. (2012) as a component of
cloth sound synthesis, are another interesting category of sounds related to soft-
ness/hardness perception. An example are the sounds produced by crumpling paper,
which can be modeled in terms of (i) the probabilistic distribution of the energies
of the short transients, and (ii) a model of the temporal density of transients as a
stationary Poisson process (Houle and Sethna 1996). This approach has inspired
the development of geometry-independent stochastic models of crumpling, which
were used to design sounds produced by deformations of aggregate materials, such
as sand, snow, or gravel (Fontana and Bresin 2003). Such sounds belie a common
temporal process originating with the transition toward a minimum-energy config-
uration of an ensemble of microscopic systems, by way of a sequence of transient
events. Models of this type have been used in particular to mimic the sound of a
footstep onto aggregate grounds (Fontana and Bresin 2003; Marchal et al. 2013;
Nordahl et al. 2010; Visell et al. 2009).

This brief overview shows that there is wide space for novel research on the syn-
thesis of sounds of aggregate and deformable materials. The remainder of this section
reviews a few studies in which auditory information related to object softness is ren-
dered using different, non-ecological forms of auditory feedback, mostly through
some kind of sonification of haptic signals. It may be argued that the adoption of
such non-ecological approaches is due to the scarce availability and exploitability of
auditory information in the interaction with very soft materials.

Yao et al. (2005) developed a probe to enhance tactile sensations experienced
during surgery, specifically during tissue examination with minimally invasive pro-
cedures. The probe detects and magnifies the acceleration signal resulting from the
interaction of its tool tip with the tissue surfaces. Since the acceleration signal is
highly structured and spectrally rich, auditory feedback was obtained through direct
conversion of this signal into audio. In the literature of auditory display, this particular
approach to sonification is known as “audification” (Dombois and Eckel 2011). Sub-
jective experiments under various conditions (with no amplification, with enhanced
tactile feedback, with sound feedback, and with passive touch) showed significant
improvements in the recognition of tissue features in the case of tactile and auditory
feedbacks.

Kitagawa et al. (2005) performed subjective tests on the sensory substitution of
force feedback with sound, in the context of a robotic surgical system. The sound
design is not explained in detail: the authors write about a “single tone” (possibly
a sinusoid or other waveform) to be played back when the tension applied by the
operator exceeded a target value. It was reported that this type of sensory substitu-
tion provided statistically significant improvements in applied force accuracy and
consistency during the performance of a simple surgical task.

An attempt to formalize a unified approach to study the relationship between
physical parameters and coding parameters used to convey control information
through the auditory modality was provided by Csapo and Baranyi (2010). The
proposed sonification formalism was demonstrated through an application in which
the physical properties of a surface are conveyed to a remote teleoperator through
sound. Softness/hardness properties, in particular, were continuously sonified using
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frequency-modulated or amplitude-modulated signals. However, no subjective tests
were conducted to assess the effectiveness of the proposed sonification.

4.3.5 Rendering of Liquid Sounds

Compared to the amount of studies devoted to the sound synthesis and rendering of
mechanical interactions between solid objects, those dealing with liquid sounds are
a small proportion.

Given the great variety of possible liquid sounds (ranging from stochastic sounds
such as that of streaming river, to deterministic ones such as dripping), their synthesis
remains a complicated task. Existing research has focused on simulating some of the
specific mechanisms responsible for sound generation in liquids, particularly bubble
formation. After being formed in a liquid, a bubble emits a decaying sinusoidal
sound. If bubble formation occurs close enough to the liquid-air interface, the pitch
rises as it approaches the surface. The physical mechanism responsible for these
sounds is the pulsation of the bubble volume (Minnaert 1933): any bubble being a
small compressible air region surrounded by incompressible fluid, it oscillates like
a spring amid a liquid domain.

A few recent studies have dealt with bubble sound synthesis. The first model
was proposed in van den Doel’s seminal work (van den Doel 2004, 2005). Starting
from the physical description provided by Minnaert (1933), a simple algorithm was
developed to synthesize single bubbles, using such physical control parameters as
bubble radius, loss coefficient, and velocity. Being the model extremely efficient, a
real-time bubble simulator was realized, which allowed simulation of more complex
liquid sounds (from dripping to heavy rain or waterfalls) through synthesis of a
large population of bubbles. The realism of the model was preliminary tested with
subjects in a listening experiment. Results suggested that bubbles with radii in the
range 2 − 7 mm are most readily associated with the sound of a water drop, and that
the rising pitch increases the realism of larger (>4 mm) rather than smaller bubbles,
consistently with the fact that these have very high pitch and decay very rapidly. Very
large bubbles sounded unnatural, consistently with the fact that they do not occur in
isolation in nature.

Zheng and James (2009) proposed a similar approach to acoustic bubble simu-
lation, with the aim of augmenting existing numerical solvers for incompressible
liquid simulations that are commonly adopted in the computer graphics literature.
The proposed model included bubble advection, time-dependent pitch, and a sim-
plified description of the bubble entrainment process. Sound radiation was modeled
through a time-varying sum of bubble oscillators, weighted by their acoustic trans-
fer function modeled as a discrete Green’s function of the Helmholtz equation. A
fast numerical solver was proposed, which allowed simulation of large numbers
of bubbles. Examples for various liquid sounds were proposed (including pouring,
babbling, and splashing phenomena), although no psychophysical validation was
presented.
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Moss et al. (2010) also proposed a simplified, physically inspired model for bubble
creation, designed specifically for real-time applications. The model used the fluid
surface curvature and velocity as parameters for bubble creation and a stochastic
model for bubble sound synthesis based on van den Doel’s work (van den Doel 2004,
2005). A user study was conducted to assess the realism of various types of liquid
sounds synthesized using the proposed approach. Results suggested that the perceived
realism is comparable to recorded sounds in similar settings. However, the model
was designed for a shallow water simulator, which reduces interaction possibilities
by allowing only surface waves, precluding splashes and object penetration.

In order to bridge the complexity of fluid-dynamic simulations with the needs of
interactive sonification, Drioli and Rocchesso (2012) proposed a multi-rate approach
to the sound synthesis of liquid phenomena, in which smoothed particle motion
simulated at low-rate is used to model liquids in motion and to control audio-rate
sound synthesis algorithms of basic acoustic events. Two such basic events were
simulated, namely bubbles and surface impacts. In this way, a larger family of sounds
can be rendered, including liquid-liquid and liquid-solid interactions. The approach
was illustrated through two configurations: the falling of a liquid volume into a
container, and the falling of a solid object into a container filled with liquid at rest.

More recently, Cirio et al. (2013) introduced the use of vibrotactile feedback
as a rendering modality for solid-fluid interaction, based on the associated sound
generating physical processes. Similarly to earlier works, sound was generated from
bubble simulation inspired by Moss et al. (2010) and based on a particle-based fluid
model (Monaghan 1992). A novel vibrotactile model was then introduced, which
received events from the physical simulation and synthesized a signal through three
different components: a high-frequency component produced by initial impact of
an object onto the liquid, components due to oscillations of smaller bubbles, and
the main cavity oscillation. A pilot study was conducted to assess the perceived
interaction qualitatively.

As a conclusion to this section, it should be noted that, apart from preliminary user
tests aimed at assessing the perceived realism of the proposed simulations, none of
the above studies included more extensive psychophysical experiments on the ability
of listeners to estimate specific properties of synthesized liquid sound sources.

4.4 Conclusion

Material properties have a front-row seat in the theoretical and empirical study of
non-vocal everyday sound sources. Source-perception research has revealed a great
deal about the strengths and weaknesses of the auditory estimation of material prop-
erties, about how material properties interact perceptually with other mechanical
properties of sound-generating events, and about the acoustical factors that under-
lie perceptual judgments. Most of the research up to this point has focused on stiff
solid objects, and has largely disregarded deformable materials such as fabrics or liq-
uids. For both of these, it is thus still unclear the extent to which source-perception
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processes might actually rely on material properties rather than material-independent
properties such as the texture-defining geometry of fabrics, or the temporally variable
geometry of sound-generating bubbles in a liquid. The study of auditory materials has
witnessed a number of interesting recent developments that show promising poten-
tials for future research. Research on auditory contexts has begun to unravel the
factors involved in the more general ability to differentiate between states of mat-
ter of sound-generating substances, and to benchmark the perception of materials
against that of the properties of sound-generating interactions. Research on audio-
haptic contexts has begun to address the interactions between material information
presented in different modalities from both the perceptual and motor-control points
of view. Further, promising directions of research are also represented by the study
of the cortical processes involved in the processing of material-related information
(Arnott et al. 2008; Aramaki et al. 2010; Micoulaud-Franchi et al. 2011).

Studies in ecological acoustic have been re-discovered in the late 1990’s in the
light of sound design and sound rendering for virtual reality, and have been a major
driver for research on the synthesis non-vocal everyday sounds. Techniques for modal
synthesis of sounds produced by stiff objects in impulsive or continuous contact are
now well established. It can be expected that upcoming research will continue to
focus on the development of more refined and realistic models of the interaction.
Due to the impulsive and highly non-linear nature of impact forces, one current
open issue concerns the definition of specialized numerical techniques for the accu-
rate simulation of such forces (Papetti et al. 2011; Chatziioannou and van Walstijn
2013). Further improvements in realism will be achieved through the simulation
of secondary physical mechanisms involved in the interaction, such as acceleration
noise and its relation to the contact stiffness (Chadwick et al. 2012), as well as the
effects of distributed and possibly time-varying contact areas.

In the mid to long term, it can be expected that other physical modeling techniques,
such as time-domain finite differences (FDTD) and finite element methods (FEM)
will gain popularity and become competitive with modal synthesis. Being “brute
force” approaches, they possess the advantage of generality since a great variety
of systems can be approached without the need for making simplifying hypothe-
ses or adding intermediate levels of representation. Material properties in particular
are completely controllable, since all low-level material-related parameters (Young
and shear modulus, Poisson coefficient, density, etc.) are directly embedded into the
models. On the other hand, such methods are numerically intensive: future research
will therefore be devoted to looking at efficient implementations particularly in par-
allel architectures (multicore processors and general purpose graphics processing
units, see e.g. Bilbao et al. 2013). Improvements in sound quality promise to be
striking, however only very recently has computational power grown to the extent
that sound can be synthesized in a reasonable amount of time with these techniques,
and real-time is still a long way off.

While impacts between stiff objects have been thoroughly studied, there is wide
space for novel research on the synthesis of other categories of sounds. Our review
has shown that there is a handful of research on the synthesis of sounds produced
by deformable objects. In particular, the most recent studies on textile and cloth
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sounds illustrate the many issues involved in the synthesis of such complex sounds,
and at the same time demonstrate the potential for research in this direction. Similar
considerations apply to liquid sound synthesis, although in this case the number of
existing studies is marginally larger. In both cases, there is a lack of validation of
the proposed approaches in terms of their ability to convey specific sound source
properties to the listener.

Acknowledgments This work was partially supported by the Marie Curie Intra-European Fellow-
ships program (FP7 PEOPLE-2011-IEF-30153, project BrainInNaturalSound to Bruno L. Gior-
dano). The authors wish to thank Laurie Heller and Guillaume Lemaitre for sharing the sound stim-
uli used to prepare Figs. 4.1 and 4.3, and Laurie Heller, Federico Fontana and Stephen McAdams
for providing helpful feedback about earlier versions of this chapter.

References

Adrien J-M (1991) The missing link: modal synthesis. In: De Poli G, Piccialli A, Roads C (eds)
Representations of musical signals. MIT Press, Cambridge, pp 269–297

An SS, James DL, Marschner S (2012) Motion-driven concatenative synthesis of cloth sounds.
ACM Trans Graph (TOG) 31(4) (Article No. 102)

Aramaki M, Marie C, Kronland-Martinet R, Ystad S, Besson M (2010) Sound categorization and
conceptual priming for nonlinguistic and linguistic sounds. J Cognit Neurosci 22:2555–2569

Aramaki M, Besson M, Kronland-Martinet R, Ystad S (2011) Controlling the perceived material
in an impact sound synthesizer. IEEE Trans Audio Speech Lang Process 19(2):301–314

Arnott SR, Cant JS, Dutton GN, Goodale MA (2008) Crinkling and crumpling: an auditory fmri
study of material properties. Neuroimage 43:368–378

Ashby FG (1992) Multidimensional models of perception and cognition. Lawrence Erlbaum Asso-
ciates, Hills-dale

Attias H, Schreiner CE (1997) Temporal low-order statistics of natural sounds. In: Mozer MC,
Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press,
Cambridge, pp 27–33

Avanzini F, Rath M, Rocchesso D, Ottaviani L (2003) Low-level sound models: resonators, interac-
tions, surface textures. In: Rocchesso D, Fontana F (eds) The sounding object. Mondo Estremo,
Firenze, pp 137–172

Avanzini F, Crosato P (2006b) Integrating physically-based sound models in a multimodal rendering
architecture. Comput Anim Virtual Worlds 17(3–4):411–419. doi:10.1002/cav.v17:3/4

Avanzini F, Crosato P (2006a) Haptic-auditory rendering and perception of contact stiffness. In:
McGookin D, Brewster S (eds) Haptic and audio interaction design. Lecture Notes in Computer
Science 4129/2006, Springer, Berlin. pp 24–35

Avanzini F, Rocchesso D (2001) Controlling material properties in physical models of sounding
objects. In: Proceedings of the international computer music conference (ICMC’01). La Habana,
pp 91–94 (Available at http://www.soundobject.org)

Avanzini F, Rocchesso D (2004) Physical modeling of impacts: theory and experiments on con-
tact time and spectral centroid. In: Proceedings of the sound and music computing conference
(SMC2004), Paris, pp 287–293

Ballas JA (1993) Common factors in the identification of an assortment of brief everyday sounds.
J Exp Psychol Hum Percept Perform 19:250–267

Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B (2000) Voice-selective areas in human auditory
cortex. Nature 403:309–312

http://dx.doi.org/10.1002/cav.v17:3/4
http://www.soundobject.org


80 B.L. Giordano and F. Avanzini

Bilbao S (2009) Numerical sound synthesis—finite difference schemes and simulation in musical
acoustics. Wiley, Chichester

Bilbao S, Hamilton B, Torin A, Webb C, Graham P, Gray A, Perry J (2013) Large scale phys-
ical modeling sound synthesis. In: Proceedings of the Stockholm music acoustic conference
(SMAC2013), Stockholm, pp 593–600

Bonneel N, Drettakis G, Tsingos N, Viaud-Delmon I, James D (2008) Fast modal sounds with
scalable frequency-domain synthesis. ACM Trans Graph (TOG) 27(3) (Article no. 24)

Bonneel N, Suied C, Viaud-Delmon I, Drettakis G (2010) Bimodal perception of audio-visual
material properties for virtual environments. ACM Trans Appl Percept 7(1) (Article No. 1)

Borg I, Groenen P (1997) Modern multidimensional scaling. Springer, New York
Cabe PA, Pittenger JB (2000) Human sensitivity to acoustic information from vessel filling. J Exp

Psychol Hum Percept Perform 26:313–324
Carello C, Wagman JB, Turvey MT (2003) Acoustical specification of object properties. In: Ander-

son J, Anderson B (eds) Moving image theory: ecological considerations. Southern Illinois Uni-
versity Press, Carbondale

Castiello U, Giordano BL, Begliomini C, Ansuini C, Grassi M (2010) When ears drive hands: the
influence of contact sound on reaching to grasp. PLoS ONE 5:e12240

Chadwick JN, Zheng C, James DL (2012) Precomputed acceleration noise for improved rigid-body
sound. ACM Trans Graph (TOG)31(4) (Article No. 103)

Chatziioannou V, van Walstijn M (2013) An energy conserving finite difference scheme for simu-
lation of collisions. In: Proceedings of the sound and music computing conference (SMC2013),
Stockholm, pp 584–591

Cho G, Casali JG, Yi E (2001) December). Effect of fabric sound and touch on human subjective
sensation. Fibers Polym 2(4):196–202

Cho G, Kim C, Cho J, Ha J (2005) March). Physiological signal analyses of frictional sound by
structural parameters of warp knitted fabrics. Fibers Polym 6(1):89–94

Cirio G, Marchal M, Lécuyer A, Cooperstock J (2013) Vibrotactile rendering of splashing fluids.
ACM Trans Haptics 6(1):117–122

Civille GV, Dus CA (1990) Development of terminology to describe the handfeel properties of
paper and fabrics. J Sen Stud 5(1):19–32

Csapo AB, Baranyi P (2010) An interaction-based model for auditory substitution of tactile percepts.
In: Proceedings of IEEE international conference on intelligent engineering systems (INES 2010),
Las Palmas of Gran Canaria, pp 248–253

De Coensel B, Vanwetswinkel S, Botteldooren D (2011) Effects of natural sounds on the perception
of road traffic noise. J Acoust Soc Am 129:EL148–EL153

Delle Monache, S., Polotti, P., & Rocchesso, D. (2010, September). A toolkit for explorations in
sonic interaction design. In: Proceedings of audio mostly conference (AM’10). Piteå (Article
no. 1)

DiFranco DE, Beauregard GL, Srinivasan MA (1997) The effect of auditory cues on the haptic
perception of stiffness in virtual environments. In: Proceedings of the ASME dynamic systems
and control division, DSC, vol 61, pp 17–22

Dombois F, Eckel G (2011) Audification. In: Hermann T, Hunt A, Neuhoff JG (eds) The sonification
handbook. Logos Verlag, Berlin, pp 301–324

Doutaut V, Matignon D, Chaigne A (1998) Numerical simulations of xylophones. II. Time-domain
modeling of the resonator and of the radiated sound pressure. J Acoust Soc Am 104(3):1633–1647

Drioli C, Rocchesso D (2012) Acoustic rendering of particle-based simulation of liquids in motion.
J Multimodal User Interfaces 5(3–4):187–195

Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically
optimal fashion. Nature 415:429–433

Fletcher NH, Rossing TD (1991) The physics of musical instruments. Springer, New York
Flores P, Claro JP, Lankarani HM (2008) Kinematics and dynamics of multibody systems with

imperfect joints: Models and case studies. Springer, Berlin



4 Perception and Synthesis of Sound-Generating Materials 81

Fontana F, Bresin R (2003) Physics-based sound synthesis and control: crushing, walking and
running by crumpling sounds. In: Proceedings of the colloquium on music informatics (CIM
2003), Firenze, pp 109–114
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Chapter 5
Computational Aspects of Softness Perception

Massimiliano Di Luca and Marc O. Ernst

5.1 Sensory Information About Softness

How do we choose a ripe avocado in a box of seemingly identical ones? How do we
test a pillow in a shop to assess whether it will be comfortable once at home? How
do we handle a container made of thin plastic, such as an open PET water bottle, that
bends in as soon as we put our hand around it? The human brain is able to integrate
the unique structural, motor, and sensory properties of our hands and body in order
to effortlessly estimate the material properties of deformable objects.

Humans obtain information about material properties through several types of
stereotypical manipulations, termed exploratory procedures (Lederman and Klatzky
1996). During these interactions, sensory information about softness is obtained
primarily from the tactile and proprioceptive sensory modalities (Tan et al. 1995;
Srinivasan and LaMotte 1995). Signals from other sense modalities are also avail-
able and can contribute to softness perception. Consider, for example, the vibration
produced by aggregate materials when perturbed (i.e., gravel), or the sound produced
by the snow, or even the visual change in shape of a pillow when compressed. The
vibrotactile, auditory and visual signals can provide information about compliance,
at least to some extent. In this chapter, we will analyse the computational princi-
ples underlying the combination of multisensory signals during the interaction with
deformable objects. Such an analysis facilitates the identification of the information
processing mechanism that leads to softness perception.

Deformable objects can have a uniform material or be composed of several parts.
In particular, the deformability of the object can differ between its surface and its
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Fig. 5.1 Compliance information with objects having a Rigid and b Deformable surfaces. a
Compliance estimates obtained through the combination of position and force information accord-
ing to Eq. (5.1). The difference in position is divided by the difference in force (see Tan et al.
1995). b The compliance of objects with deformable surfaces could be obtained from the pressure
map, spread of the contact area and deformation pattern at the contact point, even when position
information about indentation position is not available (Srinivasan and LaMotte 1995; Bicchi et al.
2000). That is, tactile information about compliance is obtained in addition to the combination of
force and position

interior volume. Springs, for example, are deformable objects that have rigid surfaces
(see Chap. 1) so that there is no deformation of local shape at the contact point of the
finger, but they are deformable as the external shape changes when force is applied.
Such objects are not uncommon: we interact with such spring-like objects with rigid
surfaces when we type on a keyboard. In a similar way, force feedback devices can
render such spring-like objects, but such devices do not render tactile deformations
that are typical of most everyday objects that we interact with. On the other hand, the
surface of most compliant objects we encounter is deformable rather than rigid (i.e.,
pillows, beds, chairs, padded tools, driving wheels). This distinction is paramount as
objects with deformable surfaces provide an additional source of information about
their compliance, namely the local skin deformation of the finger (Srinivasan and
LaMotte 1995). There have been several attempts to create a haptic display that
can render tactile information (Chap. 11), and some have even combined tactile and
force-feedback displays (Scilingo et al. 2010).

Tactile information for objects with rigid surfaces specifies that the object is not
compliant. This information is in conflict with force and position information that,
when combined, leads to a different estimate of compliance (Fig. 5.1). The informa-
tion available during the interaction with objects that have deformable surfaces can
be made similar to the case of rigid surfaces, by either providing local anesthesia to
the skin area in contact (Srinivasan and LaMotte 1995), or by mediating the contact

http://dx.doi.org/10.1007/978-1-4471-6533-0_1
http://dx.doi.org/10.1007/978-1-4471-6533-0_11
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through a tool (e.g. a pair of pliers). Note that if the perceptual system has access only
to force and position information, the brain has no choice but to estimate compliance
by combining the force and position signals in the way shown by the formulas below.

Object softness can be quantified for the two types of objects by identifying the
amount of stress and the amount of object strain (see Chap. 1). Young’s modulus (the
ratio between force per unit area and strain) is a measure of stiffness (the inverse
of compliance) of objects with soft surfaces. Young’s modulus is a property of the
material, whereas the stiffness changes with the width of the object. In the case of
objects with rigid surfaces, the Young’s modulus can be simplified to Hooke’s law.
Hooke’s law states that the change in force (Δ f ) divided by the displacement Δp
is the constant k defined as the object stiffness. The inverse of stiffness k is called
compliance C, corresponding toposition difference divided by force change:

C = 1/k = Δp/Δ f. (5.1)

Compliance is the preferred term in this chapter as it is related to softness.
Several materials obey Hooke’s law—i.e., compliance is constant throughout the

interaction–as long as the force conditions do not exceed the material’s elastic limits
(Fig. 5.2a). With non-Hookean materials, instead, force can change as a function of
velocity and position, so it is necessary to update the relation between applied force
and the change in indentation position in small increments during the exploration of
the object (Fig. 5.2b–d). As sensory information for softness perception is available at
every instant during interaction, the brain needs to update the perceptual estimate of
compliance from the sensory signals available at each time point. As we will discuss
below, the time course of sensory signals is important in the perception of material
properties as it carries information beyond compliance, e.g., about the rigidity of the
object surfaces, about whether the object material is Hookean, or about whether the
object is uniform.

5.2 A Bayesian Model of Softness Perception

Different time-varying sensory signals specify the same value of compliance only
within some error margin due to noise in the sensory system. That is, the multiple
estimates do not necessarily agreeand because of these precision limitations, the
observer is faced with the task of inferring environmental properties from imperfect
signals. The observer thereby makes a best guess to act upon and will then correct
and update the estimate, as well as the action, as soon as more information becomes
available. A solution to improve such a process is to combine information obtained
from multiple sensory signals and from previous experience in order to predict the
state of the world. It is particularly useful to use and combine signals from multiple
sense modalities. For the manipulation of objects, useful sources of information can
be derived not only from haptics (i.e., proprioception and active touch), but also from
other sensory modalities such as passive touch, vision, and audition.

http://dx.doi.org/10.1007/978-1-4471-6533-0_1
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Fig. 5.2 Interaction with different types of objects that can lead to non-Hookean force-position
relationships that become evident as deviations from linearity. a Complete indentation of an object.
b Interaction with rubber or silicon specimen, where indentation velocity is low. c Composite
object (Di Luca 2011) where the more compliant part is indented completely before the stiffer
part. d Material comprising a damping component where the force during loading and unloading
movement does not match

There is an increasing amount of empirical evidence supporting the idea that the
brain processes sensory information in a way consistent with Bayesian Decision
Theory (Knill and Richards 1996). A Bayesian ‘ideal observer’ is a mathematical
formulation of how perceptual estimates about a property of the world should be
obtained and how these estimates should be used to optimally perform a decision (or
action) given some cost function.

Bayesian Decision Theory offers a normative way to describe how observers
should use information in order to form the most precise and accurate representation
of the world, as all processes should be statistically optimal. In other words, the goal
of the perceptual system should be to reduce uncertainty and,as such, this theory
offers a benchmark against which human performance can be compared (Knill and
Richards 1996; Mamassian et al. 2002; Ernst 2006). The key for this is the application
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of Bayes’ theorem that uses probability distributions of a physical property in the
environment, in this case object compliance.

To use statistically optimal computations like the Bayes’ theorem, the brain should
combine sensory signals that when taken alone do not carry information about the
property of the environment in analysis. Furthermore, the brain should use all avail-
able sources of information to obtain a unique estimate of the physical property. Note
that following Ernst and Bülthoff (2004), here we define the following terms:

• Combination indicates the processing of complementary sensory signals, where
every component is necessary for an estimate of compliance. Combination of
information leads to the likelihood component of the Bayes’ formula (see Eq. 5.2).
Position and force information, for example, are both necessary in obtaining an
estimate of compliance with an object having rigid surfaces (Fig. 5.1a). Combi-
nation of information does not lead to an increase in precision of the sensory
estimate, as the noise of each of the two variables contributes to the noise of the
final estimate.

• Integration indicates the use of two or more sensory signals that carry information
about the same physical property. In Bayesian terms, each signal can specify a
likelihood component of the Bayes’ formula (see Eq. 5.2). When interacting with
objects that have deformable surfaces, information estimates of compliance can
be obtained independently from haptic (using force and position, Fig. 5.1a) and
tactile information (Fig. 5.1b). Assuming a relation between the global and the
local deformation of the object, the two estimates are redundant and the brain can
integrate them into one estimate (Fig. 5.3c). This generally will lead to an increase
in the precision of the sensory estimate.
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Fig. 5.3 Probabilistic representation of prior, likelihood, and posterior probabilities. a Hypothetical
conditional prior for the class of objects “avocado”. Our experience of finding a hard avocado
in a box exposed at the vegetable stand is higher than finding a soft one. Note that priors that
convey little information (i.e., they tend to be flat) have less influence on perception. b Hypothetical
statistical prior that represents our overall experience with objects in our surroundings representing
the fact that is unlikely that we could come in contact with objects with very high or very low
compliance, but very low compliance (i.e. hard objects made of metal or wood) is relatively more
probable. c Maximum Likelihood Estimation with two Gaussian-shaped likelihoods deriving from
independent redundant estimates of compliance where prior knowledge is non-influential (i.e. flat,
not represented)
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With these specifications, the Bayes’ theorem states that the probability of a
property “a posteriori” is proportional to the likelihood probability multiplied by the
“a priori” probability, or:

p(property|evidence)αp(evidence|property) × p(property) (5.2)

When these values are expressed for every value of the environmental property, they
can be represented as in Fig. 5.3. Below, we analyze the components involved in this
theorem when applied to compliance.

The first component we analyze is the function relating the probability of
each possible sensory signal given a value of compliance, which is defined as
the likelihood function. This is the probability that a state of the world could
have generated the sensory signal that is available at the end of an interaction
p(sensory evidence|environmental property). In softness perception, the like-
lihood function is either obtained from information that directly specifies the com-
pliance of the object (e.g., tactile information for objects with deformable surfaces),
or by combining complementary signals (e.g., position and force information for
objects with rigid surfaces).

According to the Bayesian theorem above, the likelihood function is combined
with prior knowledge about the state of the world p(environmental property),
which is called the a priori probability distribution. The prior represents the statistics
of the world with which we interact. For compliance, it represents the probability of
encountering a compliance value even before any sensory information is available.
In softness perception the prior could either represent the compliance experienced
in prior interactions with a category of objects that can be identified visually (i.e.
prior to touching it), or it could represent the frequency of compliances encountered
during an individual’s lifetime. We define the conditional prior to be the probability
of a compliance based on the recognition of the object class, and we instead call the
statistical prior what represents indistinguishably the compliances of all past objects
encountered (see Fig. 5.3a–b). Note that the shape of the priors can greatly depart
from a Gaussian distribution as it is determined by the statistics of the experienced
environment, rather than the noise in the sensory processing, which is often Gaussian
distributed.

The combination of likelihood function and prior distribution is proportional to the
posterior distribution, p(environmental property|sensory evidence). How does
perception comes about? From the values of probability expressedat each level of the
environmental property to be estimated (Fig. 5.3), the sensation of softness is usually
thought to be determined from the maximum of this distribution. Because it is the
Maximum of the A Posteriori distribution, this is also called the MAP estimate. A
desirable result of combining the likelihood with the prior probability is that actions
and perception will become more precise and also likely more accurate.

In many cases the prior probability of encountering some property of the world
is equally distributed, and thus has little or no influence on the perceptual estimation
process. Often, however, we encounter more than one source of sensory information
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about a particular world property, providing input to the estimation process. Under the
assumption of a common cause, likelihood functions obtained from these different
sensory signals should be combined into one final estimate of the probability of
the state of the world. The application of the Bayesian framework has been very
successful in describing how humans integrate redundant sensory information to
obtain a more precise percept of the environment. When a priori knowledge can be
assumed not to exert an influence on perception (i.e., when the range of compliance
tested is small and each stimulus is presented an equal amount of times), the prior
probability is “flat” and thus it is possible to consider the final estimate as being
obtained through the integration of only the likelihood functions.

When the percept is assumed to be determined from the maximum of the com-
bined likelihood function, we call it the maximum likelihood estimate (MLE). In
many instances it has been shown that human performance to integrate multisen-
sory signals is close to the statistical optimum according to MLE (Ernst and Banks
2002). With the assumption that the noises of such functions are all Gaussian in
shapeand independent, the integrated MLE estimate is a weighted average of the
individual uni-sensory estimates, with weights proportional to the inverse variance
of the unisensory distributions (the inverse of the variance is the precision and in the
cue integration literature is also often termed reliability, Backus and Banks 1999).

The result of MLE is that the integrated estimate is more reliable than either of
the two components (Fig. 5.3c). Such a scheme has been applied to the perception
of compliance with visual and haptic information about the position of the fingers
(Kuschel et al. 2010; Di Luca et al. 2011) and for multiple contact points with
the object (Di Luca 2011; Plaisier and Ernst 2012). The perceptual consequences
of integration are evident based on the magnitude of the perceptual estimatewhen
information in the different modalities contains a small conflict, i.e., when visual and
haptic information indicates a different amount of indentation (Kuschel et al. 2010)
and when fingers are in contact with an object which has different compliances at
the two contact points (Di Luca 2011).

An important outcome of the integration of redundant sources of sensory infor-
mation is that the uncertainty of the perceptual estimate will be reduced. In order to
prove that for compliance perception there is indeed such a reduction in uncertainty,
researchers have been comparing performance in discriminating material proper-
ties with one and two sources of sensory signals available. If performance with two
sources of information is higher than the best single-source, the brain must be tak-
ing advantage of the redundancy in the sensory estimates (the signature of sensory
integration, Ernst 2006). For compliance perception, the outcome of multimodal
integration has been shown to be close to the statistical optimum (maximal reduction
in sensory noise) in some cases (Di Luca 2011), but not in others (Kuschel et al.
2010; Cellini et al. 2013). Deviation from optimality seems to occur when conflicts
are introduced by the experimental manipulation.

One conflict between redundant sensory signals that can lead to an overweight of
information, and can also be ascribed to the detection of discrepancy, is with objects
composed of different materials (Bergmann Tiest and Kappers 2009). Information
from the deformable surface (sensed through touch) and the overall indentation of the
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object (sensed by combining force and position) can be made unrelated. With such
objects, there is a discrepancy in the compliance estimate sensed from two sensory
channels.

A second type of conflict that can lead to non-integration, which does not follow
the MLE scheme, is when the visual information about the amount of indentation
is manipulated (Kuschel et al. 2010; Cellini et al. 2013). This situation is discussed
in detail in Chap. 2. Results suggest that integration uses a fixed set of weights and
optimality is limited to the “natural” interaction. Such an outcome could be explained
by hypothesising that the conflict is detected, thus increasing the chance that signals
are not actually coming from the same external event.

In both cases of conflict (tactile-haptic and visual-haptic), information processing
would have to balance the costs of loosing access to the individual estimates against
the benefits of improving perceptual precision. Such balance depends on whether
the conflict is present at the level of the final sensory estimate of compliance (tactile-
haptic) or at the level of the individual complementary force and position components
(visual-haptic). In the following section we will evaluate what these two possibilities
entail.

5.3 Redundancy in Softness Cues

Integrating sensory information is only beneficial if the estimates are related to the
same environmental aspect. Wrongly integrating sensory information leads to inher-
ently erroneous estimates due to conflation. For this reason, integration should occur
automatically only once the perceptual system has established the correspondence
between estimates (Roskies 1999; Ernst and Bülthoff 2004). It has been shown that
temporal and spatial coincidence (Thurlow and Jack 1973), as well as structural
similarity between the signals (Parise et al. 2011), is used as an indicator for the
perceptual system to consider multimodal information as being related to the same
source. Spatial and temporal offset between multisensory signals can, in fact, prevent
integration (Witkin et al. 1952; Bresciani et al. 2005). In more complex situations,
however, such as during manipulation of deformable objects, spatial and tempo-
ral coincidence can be overridden by an inference-like process (Duda et al. 2000)
that determines whether sensory signals carry information about the same physical
property (Helbig and Ernst 2007).

In the perception of softness there are several ways in which sensory information
could be redundant. With the notable exception of touch signal about objects with
deformable surfaces (Srinivasan and LaMotte 1995; Bicchi et al. 2000; Fig. 5.1), most
sensory signals carry information only related to the indentationor to the force—they
do not specify compliance directly. For example, information about the amount of
finger movement is carried redundantly by visual and kinesthetic information, but
auditory and tactile signals (vibrations and spread of the contact area) also pro-
vide some information (contributions of sound is discussed in Chap. 4, vibration in
Chap. 3, area spread in Chap. 11). Information about resistive force is carried by touch

http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_4
http://dx.doi.org/10.1007/978-1-4471-6533-0_3
http://dx.doi.org/10.1007/978-1-4471-6533-0_11
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and proprioception modalities and again other modalities could provide information
about force (i.e., vision see Chap. 2 and Cellini et al. 2013). Thus, integration could
occur at the level of position and force information, even before a compliance esti-
mate is obtained. The brain could obtain a perceptual estimate of compliance in two
ways (see Kuschel et al. 2010):

• Integration of force and/or position estimates (integration before combination).
The brain proceeds by first integrating all the position signals into a unique position
estimate, and all force signals into one force estimate. Only in a second step are
position and force combined to obtain a compliance estimate (Figs. 2.2a, 5.4a, c).

• Integration of compliance estimates (combination before integration). The brain
obtains separate estimates of compliance for pairs of signals providing force and
position information. In a second step, the various compliance estimates are inte-
grated into a coherent one (Figs. 2.2b, 5.4b, d).

It is still not entirely clear which strategy the brain adopts, and if so, whether
it adopts the same strategy under all circumstances. It is possible that the selection
depends on which integration strategy is more advantageous in terms of the reliability
of the final estimate (see equations below). In an attempt to answer this question
we will focus on two examples of interaction with rigid surfaces: First, we will
consider the case of proprioceptive and tactile information, where force information
is available in each modality (Fig. 5.4a, b), and then we will consider the case of visual
and haptic information, where position information is available in both modalities
(Fig. 5.4c, d—see Chap. 2 for an in-depth analysis of the visual-haptic case). In the
analyses we will assume that the non-indented position of the object and an unloaded
null force are used as references for compliance estimates. In such cases, position
p and force f could be used in the formulas instead of Δp and Δ f . This might not
be the case as additional information is available, for example when the distance
between the object and the hand is manipulated or when object is made to vibrate
orthogonally to the contact point (i.e., Visell et al. 2011). If no other information is
available about the location of the first contact, because of the vibration the boundary
of the object should be sensed outside the object (i.e., earlier when approaching the
object). The sensed indentation difference between null force and peak force should
thus appear to be larger. Following this logic, vibration should have the effect of
making object appear softer if the boundary is sensed before the interaction takes
place (see Chap. 3 for a discussion about vibrotactile information and Chap. 9 for
more information about boundary crossing).

5.3.1 Touch and Proprioception

When force information about the indentation of an object with rigid surfaces is
conveyed by both proprioceptive and tactile modalities ( f p and ft ), and vision is
precluded, the reliability of force (and consequently of compliance), sensed through
proprioception, depends on the mechanical configuration and properties of the arm

http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_3
http://dx.doi.org/10.1007/978-1-4471-6533-0_9
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Fig. 5.4 Probabilistic representation of how integration and combination processes could be
ordered to obtain a coherent estimate of compliance of objects with rigid surfaces from multiple
sensory signals. a Integration of force information provided by tactile and proprioceptive modali-
ties (integration before combination). The integration is followed by combination of the posterior
estimate of force to obtain a compliance estimate. b Combination of force signals with propriocep-
tive position into separate estimates of compliance (combination before integration). In a second
step, the two estimates of compliance are integrated into a coherent one. c Integration of position
information provided by vision and proprioceptive modalities (integration before combination; here
tactile information about force is not represented). The next computation step is the combination
of the force and position to obtain a compliance estimate. d Combination of force with position
information, provided by proprioception and vision, to obtain two compliance estimates which are
subsequently integrated (combination before integration)
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and hand. Chapter 9 discusses how the reliance on position or force information
depends on the distance of the contact point between the participant and the object.
Similarly, the results of Di Luca et al. (2011) suggest that the reliability of proprio-
ceptive information can be lowered by making participants use only their shoulder
joint to press down on an object rather than using the wrist and elbow. For such
reasons, here we will assume that the reliability of proprioceptive information about
force r f p can be either higher or lower than the reliability of tactile information r f t .
Figure 5.4a shows the condition where the final estimate of compliance is obtained
using displacement information and an integrated force difference estimate. In such a
case where integration of force according to MLE precedes combination of position
and force signal (integration before combination), the final estimate of compliance
can be expressed as such:

Ci_c = p/ f = p/(w fp + (1 − w)f1), (5.3)

where the weight is calculated according to reliability of the force estimate r f p and
r f t as such

w = r f p/(r f p + r f t ). (5.4)

The alternative (combination before integration) illustrated in Fig. 5.4b shows
two estimates of compliance obtained using a unique proprioceptive position signal.
The two compliance estimates are redundant and they can be integrated according
to their reliability rcp and rct . The result can thus be expressed as:

Cc_i = wC p + (1 − w)Ct = w(p/ f p) + (1 − w)(p/ ft ). (5.5)

Here the weight w should be calculated according to reliability of the compliance
estimates, not the reliability of the force estimates as in the previous case. The
difference with this procedure is that both estimates of compliance use the same
position information. In this case, the noise affecting the two compliance estimates
is not independent. Thus, instead of using the simple formula

w = rcp/(rcp + rct ), (5.6)

the weighting scheme should be modified to account for the correlation between
noises. The weight needs to be calculated according to the following formula (see
Oruç et al. 2003):

w = r′cp/(r
′
cp + r′ct). (5.7)

Here r ′ is the corrected reliability that accounts for the correlation ρ between the
noise in the two compliance estimates and it corresponds to

r′cp = rcp − ρ rcprct (5.8)

http://dx.doi.org/10.1007/978-1-4471-6533-0_9
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Fig. 5.5 Numerical simulation comparing the reliability of the compliance estimate obtained in
10,000 samples with the two methods in the two scenarios described in Fig. 5.4. Weber Fraction
values between 0.1 and 0.5 have been employed for each of the signals involved. Darker color
indicates more frequent results. Positive values of the ordinate indicate a more reliable result with
a scheme that first combines the signals and then integrates the redundant compliance estimates. If
the two methods were mathematically equivalent, we would expect a flat line at 0. a Force can be
obtained through tactile and proprioceptive modalities, while position is estimated through propri-
oception. The shaded area below the zero line indicates cases where integration before combination
(Eq. 5.3) can produce higher overall reliabilitythan what is obtained with combination before inte-
gration (Eq. 5.5). b Force is obtained through proprioception and position is obtained redundantly
through vision and proprioception. There are very few cases where the reliability is different for the
two types of estimates, where the combination before integration (Eq. 5.10) leads to a better result
than Eq. (5.12)

and
r′ct = rct − ρ rcprct. (5.9)

We performed numerical simulations to evaluate the reliability of the compli-
ance estimate obtained following Eqs. (5.3) and (5.5). The frequency of the obtained
difference in reliability for the two methods is summarized in Fig. 5.5a. Results
indicate that there is a demarcated difference between the two methods. At interme-
diate compliance levels, estimating compliance by firstly integrating redundant force
information and only then combining position and force could have higher reliability
than the one obtained by firstly combining and then integrating. This is most likely
because force estimates obtained with the two modalities have been simulated to
differ only moderately. In such cases, the correlation of the noise in the compliance
estimates makes the weighting deviate from optimality (Fig. 5.4b) decreasing the
reliability of the posterior (Oruç et al. 2003).
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5.3.2 Proprioception and Vision

Let us now analyze the case of a compliance estimate obtained with redundant
position information provided by vision and proprioception (pv. and pp, respec-
tively). Again, this is a case where tactile information does not contribute to com-
pliance estimate directly because contact points are rigid. In such a condition, the
visual sense is much more precise than proprioception for estimating object indenta-
tion. Redundant position information is integrated before combining it with force to
obtain a compliance estimate as shown in Fig. 5.4c. The final estimate of compliance
can be expressed by:

Ci _c = (w pv + (1 − w)pp)/ f, (5.10)

where the weight w is calculated according to reliability of the two position estimates
rpv and rpp and thus it is expected to be high for vision:

w = rpv/(rpv + rpp). (5.11)

On the other hand, integrating redundant estimates of compliance after position and
force have been combined as shown in Fig. 5.4c would lead to a compliant estimate
equal to

Cc_i = w Cv + (1 − w)Cp = w (pv/f) + (1 − w)(pp/f), (5.12)

but again the weight is not calculated according to the simple reliabilities

w = rcv/(rcv + rcp), (5.13)

It is computed according to the corrected reliability values shown above, which
consider that noise is not independent

w = r′cv/(r
′
cv + r′cp), (5.14)

thereby taking into account the correlation between the noise of the estimates due to
the use of the same force signal. The results of the numerical simulation displayed
in Fig. 5.5b show the difference in reliability between compliance obtained follow-
ing Eqs. (5.10) and (5.12). By accounting for the correlation between variances of
the estimates, there are small differences in the reliability attainable with the two
methods, with a modest improvement in performance by first combining informa-
tion in separate compliance estimate, and then integrating them. This is the result of
improvement in precision due to the presence of two estimates of compliance. Such
improvement is lost when integrating position information because of the extreme
weight that should be assigned to the visual estimate of position.

Results of the simulation suggest that integrating force information to obtain a
unique force estimate to be combined with position information might lead to a
more precise overall compliance estimate. On the other hand, integrating position
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information available through proprioception and vision leads instead to a slightly
worse final estimate of compliance than first obtaining two separate estimates of
compliance to be integrated.

The finding that the brain is better off by combining force and position signals
when visual and proprioceptive modalities are available is consistent with the finding
of Kuschel et al. (2010). The researchers found that compliance reliability is very low
when only visual position information and haptic force information are available.
Such combination of sensory information is not sufficient to estimate compliance
if the brain first computes a compliance estimate and then integrates the various
estimates available (see Chap. 2 for an in depth discussion). It would be interesting to
perform a similar test with touch and proprioceptive information (force information
available through touch, but not through proprioception), as for this case the best
performance can be achieved by first integrating force signals and only then combine
with position (Fig. 5.5a).

To summarize, integrating compliance information, rather than position or force
information, should depend on the correlation between the noise sources affecting
the sensory signals involved in the process. One could ask whether such a difference
is also present when multiple spatially-separated sensors are available (i.e., when
interaction with an object is performed with multiple fingers). Such a case will be
considered in the next section.

5.4 Multiple Contact Points

Our perception of the compliance seems to depend on the way we interact with of
objects (Di Luca 2011; Kaim and Drewing 2009). The overall judgment of the quality
of the fruit depends on the active exploration and the pattern of movement of the
fingers. So how much movement do we plan to apply to begin with? Chap. 6 shows
how, for example, the amount of force depends on the difficulty of the anticipated
discrimination, and on the compliance of the object that is expected, as using the
appropriate force would increase the discrimination sensitivity. Moreover, with very
compliant objects better performance can be achieved using 3 fingers rather than only
1 (see Chap. 6). Another question that has not been addressed is whether participants
choose whether to use one or multiple fingers in the interaction and when do they
decide to switch. Finally, it is not clear whether using multiple fingers in contact with
compliant objects leads to a specialized role of each finger. Some contacts might be
used predominantly for stabilisation while other might be used for active exploration.
In extreme cases when one presses down on an object with just one finger there would
be only one contact point that provides information about compliance. Another way
to assess the softness of the object would be to grasp it with two fingers in a “pinch”
grip. Employing such a precision grasp could gather information about material
properties from both contact points. Each contact point is one sensor that collects
sensory information that needs to be integrated appropriately. But the information
they collect could vary for example if the grip is horizontal or vertical.

http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_6
http://dx.doi.org/10.1007/978-1-4471-6533-0_6
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There are also cases when compliance information is obtained with a full hand
grasp, or even two hands. Here, the information from each finger and contact point
can be used as a separate estimate of the overall compliance of the object. In such
cases of multiple contacts, we need to consider that compliance is not constant across
the object, i.e., fruit might have some areas where the material is soft because it starts
to rot. Thus, with multiple contact points, the spatially separated estimates need to
be integrated into one percept of the object compliance, assuming an object with
compliance properties that are similar throughout its surface.

Many studies investigating compliance perception with objects having rigid sur-
faces mostly analyzed single contact-point interactions (Srinivasan and LaMotte
1995; Di Luca et al. 2011). The few cases that analyzed more than one contact point,
as it happens in the case of object holding (Chen and Srinivasan 1998) or grasping
(Roland and Ladegaard-Pedersen 1977; Tan et al. 1995; Freyberger and Färber 2006;
Kuschel et al. 2010; Di Luca 2011), considered the sensory information as the sum
of the two forces and deformations. If the object is squeezed between fingers, i.e.,
contact points are producing forces in opposite directions, one could assume that
forces and deformations at the two ends should be simply summed up. Such assump-
tion, however, is not always fulfilled, for example, as in the case where objects are
pressed down with two fingers. Moreover, by considering that with pinch grasps it
is possible to generate independent finger movements (Schieber 1996; Smeets and
Brenner 2001), it becomes apparent that the fingers can act as separate sensors to
collect information about resistive force and deformation. A simple sum of the two
sources of information would not be statistically optimal in all situations (it would
not lead to the most precise estimate of compliance). To obtain an optimal estimate of
compliance from two sensory sources, each source should be weighted according to
its reliability, consistent with Bayesian inference (Knill and Richards 1996). Indeed it
has been shown that in many instances the perceptual system is, in principle, capable
of obtaining close to optimal performance in compliance judgments obtained with
multiple contact points (Di Luca 2011; Plaisier and Ernst 2012). The weighting of
each contact estimate changes as a function of the exploratory movement reflecting
the reliability of the estimate (Di Luca 2011). This weighting scheme is consistent
with the relative reliability of compliance estimates when the object is composed of a
uniform material. Performance obtained in this case is close to optimal. Others have
found a close to optimal performance in the case of consistent sources of compliance
information (Kuschel et al. 2010; Di Luca et al. 2010).

The perceptual system should only integrate information that comes from the
same distal source and should behave in a robust way otherwise. That is, when
conflicts or evidence about the origin of sensory information indicate the presence
of separate sources, integration should simply not occur. For example, weighted
averaging should not occur mandatorily when large conflicts are present between
different sources of information (i.e., van Ee et al. 2002). Di Luca (2011) also finds
that perceived compliance is mostly dictated by one source of information when the
conflict is large, however the source chosen to drive the percept is not the one that
provides more reliable information. Different results show, in fact, that there is a
lawful relation between reliability and overall compliance (Jones and Hunter 1990;
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Tan et al. 1995). If only compliance judgment reliability was at stake, there should
be a consistent weighting according to the reliability difference. Instead, results by
Di Luca (2011) suggest that when using a precision grip, it is the information coming
from the finger that moves the most that drives the percept. Work in other domains
also showed that the source of sensory information chosen to drive the percept was not
necessarily the more reliable one (Girshick and Banks 2009; Gori et al. 2008). Overall
these results are in line with a scheme of integration that can lead to near-optimal
perception, but beyond the limit of fusion progressively increases the weighting of
one source of information. It does not, however do this based on reliability alone.

5.5 Temporal Aspects of Softness Perception

Whether the computation proceeds by first integrating and then combining, or by
first combining and then integrating; either way, force and position information are
necessary to obtain a softness percept of objects with rigid surfaces (Fig. 5.1a).
Several studies investigating compliance perception of objects with rigid surfaces
make two major assumptions:

• First, that the objects to be manipulated are in “unloaded” resting state, so
that even infinitesimal forces can create an indentation albeit infinitesimal. See
Tan et al. (1995) for an exception.

• The second premise is that one of the two indentation positions considered for the
estimate of compliance is the resting state of the object (the non-indented position)
and thus, only one position is analysed (often the one at the maximum indentation).

These simplifications offer the advantage of reducing the problem of estimat-
ing compliance to the estimate of a single force and a single position, seemingly
obtained at the point where force reaches the maximum (see Tan et al. 1995 for an
investigation). These premises, however, are not always fulfilled and create compu-
tational problems when dealing with non-Hookean materials. For example, if force
and position are related to the starting point of indentation (i.e., the point at which the
first contact is made with the objects surface), then the non-indented position of the
object should have a paramount influence on perception (see Nisky and Mussa-Ivaldi
2008). Pressman et al. (2011) indeed showed that the unnoticed movement of the
object could cause a misperception of compliance that can be ascribed to the observer
using previous estimates of the non-indented position. This information would act
as a prior for position to be integrated at the force/position level. Interestingly, small
force gradients of very compliant objects could lead to biases in the estimation of
the perceived location of the non-indented position. Namely, the perceived location
of the non-indented surface is biased inwards due to sensory thresholds for force
(Chap. 7 includes a detailed analysis of the influence of the perceived location of the
boundary of a force field). In other words, if compliance is estimated only through
the haptic modality, and information using the non-indented position of the object
is used as a reference, perceived softness with very compliant objects should be

http://dx.doi.org/10.1007/978-1-4471-6533-0_7
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lower than veridical (i.e., very compliant objects should be perceived less compliant
than they are). Chapter 9 analyses the case of the interaction with haptic interfaces
where force rendering is delayed with respect to position. With a delay in the force
generated by the device, the perceived position of the non-indented object should
be biased to a position further inside the object (Fig. 5.3d). Consequently, the slope
used to estimate compliance (Fig. 5.1a) should be higher, leading to a less compli-
ant percept. Interestingly, there is an indication that with haptic-only interaction, a
delay in the rendering of force leads to underestimation of compliance–objects are
perceived to be harder when a force delay is present (Pressman et al. 2007). On
the contrary, adding visual information about the indentation, in particular about
the position of the non-indented surface of the object, reverses the effect making
force-delayed objects appear more compliant than non-delayed ones (Ohnishi and
Mochizuki 2007; Di Luca et al. 2011).

It is important to note that integration of compliance information allows the use
of multiple estimates, which has the advantage of improving reliability. A positive
correlation between the noises corrupting the sensory information, however, leads to
a reduction of the overall reliability of the final, integrated estimate of compliance
(i.e. Oruç et al. 2003). Moreover, integrating redundant compliance information,
rather than redundant position or force, allows the brain to use prior knowledge about
compliance in the final estimate. Prior knowledge about compliance is independent of
the actual force and position values. It is known that knowledge about the regularities
of the world can help to reduce uncertainty and ambiguity in perception by creating
an a priori expectation of what the most probable state of the world is (Knill and
Richards 1996). The knowledge acquired from past experience interacting with the
object,e.g., about its compliance, can be expressed using a probability distribution
across all possible compliances. A priori information has a strong effect on perception
in everyday situations. Namely, priors actually influence many of the properties of
the perceptual world and have a substantial impact on the dynamics of sensory
processing. In particular, priors act as a predictor for the state of the world for which
motor actions are initially planned. When approaching an object in order to sense
its softness, the brain needs to have an approximate idea of what the softness of
said object is, so that actions after contact are executed accordingly. Actions are
planned on the basis of a priori expectations about the material properties. Such
internal models based on previous interactions (Kawato et al. 1987) are triggered
from the view of the object before contact. In other words, recognizing an object
will activate the internal model and create an expectation of what it will feel like
when in contact. This expectation should be used for both perception and action. We
discussed the influence of priors on perception, but what happens on action could
be resumed by considering the example situation where we expect the object to be
very soft. Here we should NOT approach the object by applying a large force (i.e.,
a strong grip force), as this will compress the object entirely. We should instead
approach the object using a low force to perturb it, so as to increase the precision
of force and position signals used to estimate compliance. In other words, the best

http://dx.doi.org/10.1007/978-1-4471-6533-0_9
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strategy to improve the precision of a perceptual judgment is to base the movement
on prior knowledge about how the object will react, so to detect any discrepancy in
compliance from the initial guess.

Another problem to overcome is that there is a delay between the motor command
and the physical changes in the environment that will generate sensory information.
This constitutes a computational problem that could be solved using a forward model
about the motor action (Miall and Wolpert 1996). This model should also be updated
if it is not accurate when new sensory information comes about. In other words, as
sensory signals become available after contact, the influence of the internal model
of the material (prior knowledge) should decrease and discrepancies between the
forward models and the actual state of the world should be used to update the estimate,
as well as to change the movement parameters.

What complicates things even further is that the estimate of compliance of objects
having rigid surfaces requires an active indentation of the object (i.e., a change in
the global deformation of the object through the application of a different force).
Because of this, the estimate of compliance undergoes continuous updating as more
sensory information becomes available over time. The Kalman filter is a statistically
optimal method that can update estimates over time. Human performance has been
hypothesized to employ computational mechanisms similar to the Kalman filter in
sensorimotor integration (Wolpert 1997) and in perception (Rao 1999), but it is not
clear whether such a statistically optimal update happens to the internal model of
compliance.

Notably, as the estimate of compliance is dynamic, it is not possible to know exper-
imentally what the perception of softness is at any one moment during the interaction.
Experiments have usually employed the task of judging the object compliance after
the interaction has been completed. Similarly, the concept of minimizing uncertainty
over the course of the exploration cannot be extended directly to every time point
during the interaction. The series of movements needed to first reach, grasp and then
probe a deformable object involves specific cost functions, and each has an accumu-
lation of sensory information with a different goal. For example, parts of the task,like
reaching and grasping, might involve minimizing energy consumption or execution
time, while other components of the task could consider the chances of hitting other
objects. In such cases, looking at overall performance and characterising it as noise
reduction in the response to an experimental task might not be the best way. Infor-
mation accumulation could be better characterized with an analysis of information
available and movement performed at different time points over the course of the
interaction (Fig. 5.6). For example, when estimating the size of a bar using touch and
vision we accumulate tactile information over the first second, while the time course
is much faster for vision (see Ernst 2001). Thus, longer trial durations would result
in a more precise size estimate through the haptic information, but no comparable
increase should be present for visual information. In the same way, during interac-
tions with compliant objects the quality of haptic sensory information can increase
with more prolonged interactions.The situation is further complicated as compliance
perception requires movement (i.e., information is gathered through motion, whether
this is planned and self-generated, or not).
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Fig. 5.6 Representation of the interaction with a soft object over time. a Force and position sampling
distributions. b The reliability of the compliance estimate increases as more sampling points become
available

Di Luca et al. (2011) have shown that the phases of the indenting action (load-
ing the object with a force and unloading it) are differently informative regarding
compliance. Namely, unloading actions are not as informative about compliance as
loading ones. You could demonstrate this for yourself by comparing the availability
and strength of a softness percept while pushing against an object and releasing the
applied force. This means that when an object is pushed against, there can be many
sensory signals on which the movement planning can be optimized upon (amount
of deformation over time with correspondingly resistive force values, vibratory and
auditory patterns, skin pressure distribution, stretching dynamics, etc.). Movements
can thus change after each repetition so to increase the reliability of the final estimated
property.
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Integration of multiple sources of sensory information has been shown tobe close
to optimal when stimuli are presented simultaneously,they have short duration and
the specified property doesn’t change over time (see Ernst and Banks 2002; Ernst
and Bülthoff 2004). This leads to a normative solution for any discrepancies and to
an increase in the precision of perceptual estimates. The question here is whether
such an increase in reliability happens also when the stimulation is accumulated
over time (i.e. sequentially, Fig. 5.6) and how perceptual performance is affected.
In compliance perception we expect integration to lead to some increase in per-
formance, but not as much as with perceptual situations with multiple indepen-
dent estimates because of the high temporal correlation at subsequent time points
(Oruç et al. 2003; Juni et al. 2012).

5.6 Conclusions

In this chapter we presented some of the computational properties of the mechanisms
involved in compliance perception. In particular, we proposed a model of human per-
ception of compliance based on Bayesian Decision Theory. The model indicates how
complementary and redundant information should be treated. First of all, the brain
should make use of sensory information obtained during the interaction, as well as
knowledge about the object properties obtained from previous interactions. More-
over, the model shows how sensory information obtained from different modalities
should be treated to obtain a compliance estimate. In some conditions it might be
profitable to obtain redundant estimates of compliance, whereas in other situations
precision would be improved by using a unique position and force estimates from all
signals available. The adaptability of the process leading to a compliance estimate
is also underlined by considering the dynamic nature of information about compli-
ance, how the information is accumulated over time, and how it is combined across
multiple contact points. Results of this analysis suggest that one reason that com-
pliance is normally perceived through multiple sensory signals, across several sense
modalities, and over time is that such a range of signals leads to an improvement of
the quality of the final compliance estimate. Such improvement is most important if
direct contact with the object does not provide direct information about its softness,
as is the case when interacting with objects having rigid surfaces.

Acknowledgments The authors are grateful to Markus Rank and Darren Rhodes for help in prepar-
ing the manuscript.

References

Backus BT, Banks MS (1999) Estimator reliability and distance scaling in stereoscopic slant per-
ception. Perception 28:217–242

Bergmann Tiest WM, Kappers AML (2009) Cues for haptic perception of compliance. IEEE Trans
Haptics 2(4):189–199



5 Computational Aspects of Softness Perception 105

Bicchi A, Scilingo EP, De Rossi D (2000) Haptic discrimination of softness in teleoperation: the
role of the contact area spread rate. IEEE Trans Robot Autom 16(5):496–504

Bresciani J-P, Ernst MO, Drewing K, Bouyer G, Maury V, Kheddar A (2005) Feeling what you
hear: auditory signals can modulate tactile taps perception. Exp Brain Res 162(2):172–180

Cellini C, Kaim L, Drewing K (2013) Visual and haptic integration in the estimation of softness of
deformable objects. I-Perception 4(8):516–531

Chen JS, Srinivasan MA (1998) Human haptic interaction with soft objects: discriminability, force
control, and contact visualization. MIT, RLE technical report 619 (pp 1–208)

Di Luca M (2011) Perceived compliance in a pinch. Vis Res 51(8):961–967
Di Luca M, Knorlein B, Ernst MO, Harders M (2011) Effects of visual-haptic asynchronies and

loading-unloading movements on compliance perception. Brain Res Bull 85(5):245–259
Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley, New York
Ernst MO (2001) Psychophysikalische Untersuchungen zur visuomotorischen Integration beim

Menschen: visuelle und haptische Wahrnehmung virtueller und realer Objekte. Eberhard-Karls-
Universität Tübingen

Ernst MO (2006) A Bayesian view on multimodal cue integration. In: Knoblich G, Thornton IM,
Grosjean M, Shiffrar M (eds) Human body perception from the inside out. Oxford University
Press, NY, pp 105–131

Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically
optimal fashion. Nature 415(6870):429–33

Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8(4):
162–169

Freyberger FKB, Färber B (2006) Compliance discrimination of deformable objects by squeezing
with one and two fingers. Proc EuroHaptics 06:271–276

Girshick AR, Banks MS (2009) Probabilistic combination of slant information: weighted averaging
and robustness as optimal percepts. J Vis 9(9):1–20

Gori M, Del Viva M, Sandini G, Burr DC (2008) Young children do not integrate visual and haptic
form information. Curr Biol 18(9):694–698

Helbig HB, Ernst MO (2007) Knowledge about a common source can promote visual haptic inte-
gration. Perception 36:1523–1533

Jones LA, Hunter IW (1990) A perceptual analysis of stiffness. Exp Brain Res 79:150–156
Juni MZ, Gureckis TM, Maloney LT (2012) Effective integration of serially presented stochastic

cues. J Vis 12(8):12–12
Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and

learning of voluntary movement. Biol Cybern 57(3):169–185
Kaim L, Drewing K (2009) Finger force of exploratory movements is adapted to the compliance of

deformable objects. In: Proceedings world haptics 2009, third joint EuroHaptics conference and
symposium on haptic interfaces for virtual environment and teleoperator systems. The Institute
of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, pp 565–569

Knill DC, Richards W (1996) Perception as Bayesian inference. Cambridge University Press, Cam-
bridge

Kuschel M, Di Luca M, Buss M, Klatzky RL (2010) Combination and integration in the perception
of visual-haptic compliance information. IEEE Trans Haptics 3(4):234–244

Mamassian P, Landy MS, Maloney LT (2002) Bayesian modelling of visual perception. In: Rao
R, Olshausen BA, Lewicki MS (eds) Probabilistic models of the brain: perception and neural
function. MIT Press, Cambridge, pp 13–36

Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw
9(8):1265–1279

Nisky I, Mussa-Ivaldi FA (2008) A regression and boundary-crossing-based model for the percep-
tion of delayed stiffness. IEEE Trans Haptics 1(2):73–83

Ohnishi H, Mochizuki K (2007) Effect of delay of feedback force on perception of elastic force: a
psychophysical approach. IEICE Trans Commun E90-B(1):12–20



106 M. Di Luca and M.O. Ernst
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Part II
Sensorimotor Softness



Chapter 6
Exploratory Movement Strategies
in Softness Perception

Knut Drewing

6.1 Introduction

Perception is an active process during which humans purposively gather sensory
information in order to obtain a representation of their environment. Haptic per-
ception is a prime example of this principle (Gibson 1962). When humans aim to
perceive their environment by touch, for example when they aim to haptically per-
ceive an object’s softness, they first need to appropriately explore the object with
the fingers. It is this exploratory movement that generates the relevant sensory infor-
mation. This chapter deals with the exploratory movements that humans execute
when they aim to judge an object’s compliance. Compliance is a physical correlate
of perceived softness that is defined as the inverse of stiffness and can be considered
a surface’s “resistance” to deformation. In the simplest case (cf. Chap. 1) it can be
measured as an object’s deformation in response to an applied force, e.g. in (milli)
meters per Newton.

6.2 Exploratory Procedures in Softness Perception

6.2.1 Pressure

In active touch, humans systematically use different movement schemes or pat-
terns of contact to perceive different haptic properties: the so-called Exploratory
Procedures (EPs, see Klatzky and Lederman 1999; Klatzky et al. 1989; Leder-
man and Klatzky 1987). For example, to perceive texture humans typically produce
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Fig. 6.1 Exploratory Procedure pressure as typically executed (left side) by pressing with a single
finger into an object that is supported by a table and (right side) by a pinch grip using thumb and
index finger

shear forces between an object and the skin (EP: lateral motion), or to perceive
temperature humans maximize the contact area between skin and object without
moving (EP: static contact). Humans stereotypically and habitually use specific EPs
in association with specific properties. The EP used during compliance judgments
has been called pressure:

Pressure: associated with encoding of compliance; characterized by application of forces to
object (usually, normal to surface), while counterforces are exerted (by person or external
support) to maintain its position; (Klatzky and Lederman 1999; p. 172)

Humans, typically, execute this EP by pressing the finger pad into the surface
or by lifting the object in a pinch grip and squeezing it between thumb and index
finger (Fig. 6.1). However, poking, tapping, or twisting movements can also occur
(Lederman and Klatzky 1990). Often, the explored objects are pressed a number of
times in succession. That is, when the fingers are in contact with the object, normal
forces applied to the surface follow a pattern of increases and decreases over time
(Kaim and Drewing 2011; Lederman and Klatzky 1987). Figure 6.2 shows part of the
typical variation in finger forces while exploring a deformable rubber stimulus for
the purpose of compliance discrimination, where only the index finger is used. In the
depicted trial, after the first finger-stimulus contact, the force recorded remained at a
moderate level for the following 90 ms. After this, the force increased and the finger
started to deform the stimulus. In this example, there were two force maxima (ramping
forces that peak) at 370 ms after first contact (maximum initial force) and 690 ms
after first contact. Individuals will often make multiple indentation movements and
in this experiment, another 1–2 further force maxima followed (Kaim and Drewing
2011; Exp. 1).

The stereotypical association of the EP pressure with compliance judgments, as
well as the stereotypical associations between other EPs and haptic properties, has
been demonstrated in several tasks. For instance, when participants have to match
or sort objects according to perceived softness, they use the EP pressure, whereas
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Fig. 6.2 Part of a typical finger force variation while exploring a deformable rubber stimulus.
Depicted are the force applied by the index finger to the stimulus (solid line, left ordinate) and the
corresponding vertical finger position (dashed line, right ordinate). Position 0 corresponds to the
stimulus surface; negative values of position represent an indentation of the stimulus. In the depicted
trial, the finger contacted the stimulus ca. 1,070 ms after trial initiation. Roughly 90 ms after first
contact, the force increased with time as the finger indents the stimulus. Depicted is a trial where
two indentation movements have been executed with peaks at 1,400 and 1,760 ms (data from Kaim
and Drewing 2011)

they will use static contact for temperature judgments, lateral motion for texture
judgments, and so on (Klatzky et al. 1989; Lederman and Klatzky 1987). Similarly,
in haptic object identification, after having lifted the object, participants use the EP
associated with the property that is diagnostic for the specific task; for instance,
for the specific question “Is this bread a stale bread?”, compliance is diagnostic
and the EP pressure is used (Lederman and Klatzky 1990). Additionally, it has
been shown that the stereotypical EPs are superior to other EPs in perceiving the
associated haptic property: Participants who were constrained to use a specific EP
when matching objects according to a specific haptic property performed best with
the EP that is stereotypically used for this property (Lederman and Klatzky 1987,
Exp. 2; Lederman and Klatzky 1993). In these experiments, compliance matches
obtained with the EP pressure turned out to be significantly more accurate than when
using any other of the six tested EPs (pressure, static contact, lateral motion, contour
following, enclosure, unsupported holding). Some information on compliance was
also available using the other EPs, but the EP pressure itself tends to be highly
specialized for compliance.
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It is an interesting side note that the target property of a haptic exploration not only
determines the executed EP, but can also be closely linked to the interpretation of
the gathered sensory input. For example, when participants explore the topography
of a relief-like virtual surface with the instruction to discriminate surface height in
different parts of the surface, they tend to use a lateral contour following exploration
combined with a constant penetration force. This has been observed to result in a
misinterpretation of different compliance levels. With constant force, the transition
between two areas of different compliances leads to a change in the finger’s position
in the stimulus and is misreported as a height change of the surface. For instance, a
transition from a harder to softer surface, while keeping indentation force constant
results in deeper surface penetration, and participants report a region with a lowered
surface level instead (Choi et al. 2005).

When a participant’s aim is to judge compliance, they are most successful using
the EP pressure. But why does pressure enable good judgments on compliance? It
has been speculated that exploratory movements are executed in a way that ‘opti-
mizes’ the intake of the relevant sensory information and, thus, the computation of
the associated property (Gibson 1962; Klatzky and Lederman 1999). Remember that
compliance can be defined as an object’s deformation in response to an applied force.
Pressure means that humans apply normal forces to an object while counterforces
are exerted and the object is deformed. Kinaesthetic signals from muscles, tendons,
and perhaps joints provide information about the finger position and finger force,
while tactile signals are obtained from the mechanoreceptors in the skin of the fin-
ger pad and can provide information about the deformation of the finger-stimulus
contact area (e.g., Bicchi et al. 2005). With the EP pressure, an object’s compliance
can be judged from the relation between the applied or sensed forces and the sensed
object deformation. That is, the EP pressure enables good judgments on compliance,
because it generates crucial sensory signals and also because it generates redun-
dant tactile and kinaesthetic signals which humans can integrate in order to assess
compliance (Bergmann Tiest and Kappers 2008; Srinivasan and LaMotte 1995).

6.2.2 Tapping as an Instance of Pressure

So far, this section has dealt with the typical execution of the EP pressure,which
is performed by pressing one or two bare fingers several times relatively slowly
into an object. Humans are also able to use tapping movements in order to estimate
softness (LaMotte 2000). Tapping movements are another example of the EP pres-
sure. Tapping movements are, however, faster, briefer and less forceful than pressing
movements and can be performed with the bare finger or with a tool, i.e. a stylus
(Fig. 6.3).

LaMotte (2000) investigated how well humans discriminate two objects of dif-
ferent compliances (range: 0.2–2.2 mm/N) with tapping as compared to pressing
movements, both in bare-finger and stylus conditions. They found slightly better
discrimination performance with tapping than with the slower pressing movements.
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Fig. 6.3 Tapping with a stylus. Here, the stylus or tool is held with two fingers and quickly tapped
onto the stimulus. Tapping movements can also be executed with the bare finger. In both cases they
allow for highly successful judgments of stimulus compliance

Friedman and colleagues (2008) asked participants to estimate the softness of a broad
range of objects (compliances: 0.2–7.5 mm/N) using the method of magnitude esti-
mation (cf. Chap. 1) and their participants’ softness estimates were comparable for
bare-finger pressing and bare-finger tapping. Overall, judgments on softness are sim-
ilar, independent of whether humans used tapping or pressing movements to explore
the objects.

LaMotte (2000), however, also showed that different sensory signals are crucial for
judging compliance when using tapping as compared to the use of pressing move-
ments. He compared compliance discrimination when using tapping and pressing
movements in active touch versus passive touch. In active conditions, participants
actively moved a stylus with the finger in order to judge compliance. In contrast,
in passive conditions the finger was stationary and did not move, while it received
similar stimulation from the stylus as in the active conditions. As already mentioned,
compliance discrimination was similar for both active tapping and active pressing. In
passive conditions, however, tapping movements allowed for compliance discrimi-
nation, while pressing movements did not. This finding demonstrates that both active
and passive tapping movements generate sensory signals that are not available from
pressing movements. In particular, LaMotte (2000) suggested that in the fast tapping
movement, the high speed contact with an object provides important information on
compliance. Other authors also emphasize a potential role for these “impact tactile
cues” in softness perception (Friedman et al. 2008; Lawrence et al. 2000). For a
review of such findings and a discussion of the contribution of vibrotactile informa-
tion see Chap. 3.

http://dx.doi.org/10.1007/978-1-4471-6533-0_1
http://dx.doi.org/10.1007/978-1-4471-6533-0_3
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6.3 Parametric Variation of Exploratory Procedures
and the Influence on Softness Perception

The previous section illustrates that humans typically use the EP pressure to judge
an object’s compliance, and that there are different instances of this EP, namely
pressing, squeezing, and tapping. There are, however, more subtle ways in which
EPs differ. In particular, several studies show that participants execute the same EP
with different movement parameters depending on, for example, stimulus properties
or the perceptual aims of the exploratory movements (Gamzu and Ahissar 2001;
Kaim and Drewing 2008; Nefs et al. 2002; Riley et al. 2002). This section deals with
variations of the parameters of pressureand their influences on softness perception.

In the case of the EP pressure, participants might vary how many fingers they use,
how often they indent the object, how much force they apply to the object, how fast
they build-up the force, how they orient their fingers relative to the object, and so
on. Also, the distinctions between the instances of the EP pressure can be described
by their movement variations. Tapping and pressing movements, for example, differ
in the rate of force change over time, with force changing faster in tapping than in
pressing. Tapping and pressing further differ in the peak forces, which are lower in
tapping (Friedman et al. 2008; LaMotte 2000).

Differences in movement parameters may affect how well humans perceive soft-
ness (i.e., applying pressure to the object leads to better softness discrimination per-
formance than releasing it, Di Luca et al. 2011). Additionally, the relation between
movement parameters and perception may be modified by characteristics of the to-
be-explored stimulus, such as its compliance or the type of its surface (which can be
deformable like rubber or rigid like a piano key; Srinivasan and LaMotte 1995). This
section will specifically focus on movement parameters that are likely to be directly
controlled for by the participant, and thus are motor parameters in a proper sense.
These include force-related parameters, because the motor system directly controls
the force output of the muscles (cf. Kaim and Drewing 2011) and the number of
fingers being used. Note that other EP parameters, such as the finger position, are
therefore better regarded as a result of controlled motor parameters and potentially
provide sensory cues to an object’s compliance. For example, in softness perception,
if participants have direct control of the forces exerted (which would be the case in
active-touch paradigms), then the finger’s position in the object will be a function of
both force and object compliance, and thus, provide a sensory cue to compliance. It
is also possible that particular constrained task situations can effectively modify the
roles of different EP parameters as motor parameters or sensory cues.

6.3.1 Peak Forces

Several studies considered how the use of different maximal or peak forces dur-
ing stimulus deformation affects softness perception (cf. Fig. 6.2; Friedman et al.
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2008; Tan et al. 1993). Srinivasan and LaMotte (1995) were among the first who
investigated the influence of applied peak force on compliance discrimination (com-
pliance range of stimuli: 0.2–2.2 mm/N). Participants were allowed to explore the
stimuli unconstrained using their middle finger, ensuring only a single indentation,
and the authors observed the use of peak forces around 1 N. Using alarm sounds,
the authors constrained the participants’ peak forces to within 0.25, 0.49, 0.74 or
0.88 N. The authors observed that for stimuli with rigid surfaces (spring cells) dis-
crimination performance clearly suffered from limiting the peak forces. Performance
was also attenuated for stimuli with deformable surfaces, both when the deformable
stimuli were actively explored and when they were passively pressed against the
participant’s finger. Other studies add evidence to the assumption that the use of
lower peak forces can result in diminished compliance discrimination for objects
with deformable surfaces. Kaim and Drewing (2011) observed for less compliant
rubber stimuli (0.15 mm/N), that “low” peak forces (∼8 N) resulted in worse dis-
crimination performance than higher forces (∼15 N or higher). For more compliant
stimuli however (1.5 mm/N), discrimination performance did not vary within the
investigated range of peak forces. Nicholson et al. (1998) assessed individual Weber
fractions (see Chap. 1) for objects that were even less compliant (0.08 mm/N). Par-
ticipants considerably differed in their Weber fractions (range 20–6 %) and also in
the peak forces that they used to judge compliance (range 80–400 N). Individuals
that used lower forces had higher Weber fractions—i.e. compliance discrimination
performance was worse. The influence of peak force differences on discrimination
performance was smaller the higher the peak forces (Fig. 6.4). Together, the findings
from the different studies show that compliance discrimination can benefit from the
use of higher peak forces. They also demonstrate that the benefit decreases when
peak forces increase (Kaim and Drewing 2011; Nicholson et al. 1998). A compari-
son across studies (Fig. 6.4) finally suggests that the more compliant the objects are,
the less discrimination benefits from the use of higher peak forces.

The suggested relation between peak force, discrimination performance, and
object compliance level fits with observations on how participants adjust peak forces
to the compliance. Studies regularly show that in unconstrained exploration, humans
use higher peak forces the lower the object’s compliance (e.g. Freyberger and Färber
2006; Friedman et al. 2008; Fujita and Oyama 1999; Kaim and Drewing 2008). If
the peak force that is required in order to achieve good discrimination performance
increases with decreasing compliance, the use of higher peak force for less compliant
objects represents a useful strategy.

The influences of peak forces and compliance level on discrimination performance
can also be well explained by the generated sensory signals. It can be assumed that
the deformation of an object comes along with crucial sensory signals for softness
judgments. The amount of stimulus deformation caused by an applied force primar-
ily depends on the object’s compliance: the less compliant an object is, the higher
the force required to effectively deform the surface. As a consequence, in order to
discriminate the softness of two less compliant objects, participants have to execute
higher forces to produce the required sensory signals—i.e. to effectively and differ-
ently deform the two objects—as compared to two more compliant objects. Some

http://dx.doi.org/10.1007/978-1-4471-6533-0_1
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Fig. 6.4 Weber fractions as a function of compliance and peak force based on the data in Kaim and
Drewing (2011); Nicholson et al. (1998) and Srinivasan and LaMotte (1995). The lines represent the
best fit of curvilinear equations of the form Weber Fraction = a + b / Force, suggested by Nicholson
et al. (1998). Srinivasan and LaMotte (1995) originally report percentages of correct discrimina-
tions between a standard and four comparison stimuli, which were fit to a cumulative Gaussian
function using MLE methods (Wichmann and Hill 2001). All Weber fractions were standardized to
correspond to 75 % discrimination thresholds. Values represent different experimental conditions
(Kaim and Drewing 2011; Srinivasan and LaMotte 1995) or different individuals (Nicholson et al.
1998)

authors (Fujita and Oyama 1999; Nicholson et al. 1998) further linked the sens-
ing of an object’s deformation to the area of the deformed finger-stimulus contact
region. This area increases with the applied force (Ambrosi et al. 1999; Srinivasan
and LaMotte 1995), but the effect is presumably negligible with sufficiently high
forces (cf. data in Nicholson et al. 1998). If, indeed, the magnitude of the contact
area determines compliance discrimination, it could be expected that compliance
discrimination improves with peak force up to a limit. And that the limit is lower for
more compliant objects, because a maximal area of contact is achieved with lower
force for more compliant objects.

For objects with rigid surfaces, Tan et al. (1995) further showed that participants
discriminate compliances using “heuristic” cues that are typically correlated with
compliance differences, such as the work executed during exploratory movement
(=integral of force over surface displacement), rather than by precisely calculating
compliance cues from the ratio between surface displacement and force. Importantly,
the value of such correlates depends on the exploratory movements being executed.
For example, work increases both with the applied peak force and the compliance of
the object, because the surface displacement is larger for more compliant objects. As
a consequence, if the compliance of two objects is discriminated using work cues,
the differentiation can be successful only if the two objects are explored with similar
peak forces, or if the differences in peak force are discounted. Another consequence
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is that higher peak forces are required to achieve work cues of similar magnitude
for objects with low compliance, as compared to objects of high compliance. That
is, the use of work cues is able to explain why participants apply and require higher
peak forces for the discrimination of less compliant objects with rigid surfaces.

6.3.2 Rate of Force Change

Another movement parameter that has been occasionally discussed in the context of
softness perception is the rate of force change (force/time) during object exploration.
A literature review shows that the rate of force change and the peak forces that
participants aim to achieve are not coupled in a consistent manner. For example, when
comparing pressing to tapping movements (Friedman et al. 2008; LaMotte 2000), the
higher peak forces used in pressing movements come along with decreased rates of
force changes, as compared to the less forceful tapping movements. In contrast, higher
peak forces applied to less compliant objects come along with increases or no reliable
effect on the rate of force change (LaMotte 2000; compliances 0.19–0.78 mm/N;
Friedman et al. 2008; compliances 0.21–7.59 mm/N; deformable objects).

Participants are able to deliberately choose whether they tap or press a stimulus
in order to judge its compliance (Friedman et al. 2008; LaMotte 2000), which sug-
gests that they exercise intentional control over the rate of force change. Kaim and
Drewing (2008) investigations addressed whether participants intentionally adapt the
rate of force change. We measured how rapidly humans approach objects in com-
pliance discrimination (at the moment of finger-stimulus contact) when exploring
virtual stimuli modeled with rigid surfaces. Finger velocity can be regarded as a
correlate of the rate of force change, if it is measured before the finger deforms the
object (cf. LaMotte 2000). We used stimuli of different compliance values (around
4, 10 and 21 mm/N), which were rendered with a force-feedback device. We further
manipulated the predictability of the approximate compliance value: Stimuli with
different compliance values were presented in different blocks (high predictability)
or in random order (low predictability). When participants were able to predict the
approximate compliance of the upcoming stimulus, they approached the more com-
pliant stimuli faster than the less compliant ones. When compliance could not be
predicted, approach velocity was similar for all compliance values. These results
show that participants will adapt their approach velocities (and probably the rate of
force change) to the expected compliance of a to-be-explored stimulus. Note that
approach velocity has a link to the generation of the so-called “impact tactile cues”
to softness (Friedman et al. 2008; Lawrence et al. 2000); cues that are generated
during the initial surface contact.

Not much is known about how rate of force change influences discrimination
performance. Friedman et al. (2008) reported that free magnitude estimates for the
softness of rubber stimuli, with compliances between 0.2 and 7.5 mm/N are similar
for individuals that explore with moderately different rates of force change.
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6.3.3 Number of Fingers Used

A few studies also investigated how the number of fingers used for exploration
affects compliance discrimination. Freyberger and Färber (2006) compared how well
humans can discriminate compliances depending on whether they press with the
index finger into an object that lies on a fixed support, versus squeezing it between
the thumb and index finger while holding it with a pinch grip. They used a number
of rubber stimuli of compliances ranging between 0.009 and 2.3 mm/N. Partici-
pants judged whether two stimuli felt similarly compliant. The authors report Weber
fractions and differential sensitivities (d’) for compliance. Theresults are, however,
ambiguous. Whereas differential sensitivities tend to indicate a better discrimination
performance for the group of participants that pressed using only the index finger as
compared to the group squeezing the stimuli between thumb and index finger, the
results in the Weber fractions do not corroborate this interpretation.

Kaim and Drewing (2014) varied the number of fingers that were pressed into
compliant objects laying on a fixed support. The objects had deformable surfaces.
In the 1-finger-condition, participants were instructed to use only their index fin-
ger, in the 3-finger condition they simultaneously used the index, middle, and ring
fingers and were instructed to press equally strong with each finger. Interestingly,
at the beginning of the experiment, participants reported that the exploration with
three finger felt “unfamiliar”, suggesting that this exploration strategy was unusual.
We measured Weber fractions for lower and higher compliance rubber stimuli (0.16
and 1.3 mm/N, respectively) by combining the method of constant stimuli with a
2-interval forced-choice procedure (N = 8 participants, 196 data points per indi-
vidual Weber fraction; details as in Kaim and Drewing 2011; Exp. 3). In each trial
participants explored a standard and a comparison stimulus, starting with the stimu-
lus on the left side, and decided whether the left or the right stimulus was softer. They
were allowed to explore each stimulus only once. There were no further constraints
on the exploratory behavior.

Participants adapted their exploratory strategy to the instructed contact mode
(1 or 3 fingers), as they did for the compliance level: They applied higher peak forces
in the 3-finger condition than in the 1-finger condition, and as observed previously,
peak forces were higher for the less compliant as compared to the more compliant
stimuli (Fig. 6.5). Due to the larger area of stimulus contact the higher forces in
the 3-finger condition still resulted in less object deformation (hard: 3.9 mm, soft:
7.9 mm) compared to the lower applied forces in the 1-finger condition (hard: 5.1
mm, soft: 10.8 mm). Weber fractions were lower, i.e., discrimination performance
was better for 3- finger as compared to 1-finger exploration, but only for the more
compliant objects. Given that the variation of peak forces in a similar range has
been previously shown to have no effect on discrimination performance for the more
compliant objects (Kaim and Drewing 2011), this improvement can be explained as
being due to a benefit from the additional sensory signals in the 3-finger condition.
Overall, the results show that depending on the exact conditions, more fingers can
lead to better compliance discrimination.
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Fig. 6.5 Average Weber fractions (a) and average peak forces (b) measured while participants
explore pairs of more compliant rubber stimuli (soft) or pairs of less compliant ones (hard) with
one or three fingers. Error bars are standard errors. Weber fractions for the more compliant stimuli
were lower for the 3-finger condition than for the 1-finger condition, F(1, 7) = 14.0, p < .01, but
they did not significantly vary for the less compliant stimuli; the normal peak force was always higher
for the 3-finger condition than for the 1-finger condition (Contact Mode, F(1, 7) = 68.4, p < .001,
Compliance Value, F(1, 7) = 5.9, p < .05, no interaction)

Taken together, the studies presented in this section suggest that movement para-
meters (e.g., peak forces, number of fingers) can influence softness perception and
that humans sometimes adapt the parameters to the specific stimulus or softness task
(e.g., peak force, approach velocity).

6.4 Strategic Adjustment of Exploratory Peak Force

Given that movement parameters appear to influence softness perception and that
humans sometimes adjust these parameters to the specific stimuli, Kaim and Drewing
(2011) asked whether adjustments of movement parameters are strategically used to
improve softness perception. This question leads back to the claim that exploratory
movements are executed in a way that optimizes the intake of the relevant sensory
information (Gibson 1962; Klatzky and Lederman 1999).

Kaim and Drewing (2011) studied adjustments of peak forces in compliance dis-
crimination and the effects of the applied peak force on discrimination performance
in combination, using similar objects and tasks in three experiments. We used sil-
icone rubber stimuli with deformable surfaces that participants explored using a
bare finger, pressing their index finger downwards against the surface. The partici-
pant’s task was always to decide which of the two stimuli felt “softer”. The first two
experiments focused on expectancy-driven adjustments of peak force, which can be
well separated from other influences on exploratory movements. We measured the
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peak force for the initial indentation (cf. Fig. 6.2) of the first explored stimulus in a
to-be-discriminated stimulus pair, and compared the peak forces used in predictable
(expected) versus unpredictable perceptual situations.

In detail, Exp. 1 investigated whether participants adjusted their initial peak forces
depending on the expected stimulus compliance. Participants either discriminated
between two less compliant stimuli (0.15 vs. 0.17 mm/N) or between two more
compliant stimuli (1.24 vs. 1.46 mm/N; 15 % compliance difference). Less and
more compliant stimulus pairs were presented intermixed in random order (low
predictability) or in separate blocks (high predictability). In blocked presentation,
participants expected a particular softness of the next stimulus pair (hard or soft)
and were potentially able to plan and adjust for their initial indentation movement
(expectancy-driven adjustment). Such adjustment of the first movement was not pos-
sible in random presentation, in which the compliance of the next stimulus pair was
not known. In this session, only feedback-based online-adjustment was possible. It
turned out that participants applied higher initial peak forces to the less compliant
stimuli than to the more compliant ones (Fig. 6.6, left). Peak forces, however, dif-
fered significantly only in the high-predictability conditions, in which participants
were able to adjust the peak force already for the first indentation movement. An

Fig. 6.6 Initial average peak forces while exploring the first object in a compliance discrimination
task (Kaim and Drewing 2011; Exp. 1 and 2). Forces were higher for less compliant (hard) than
for more compliant (soft) stimuli, in particular when participants were able to predict the stimulus’
approximate compliance. In addition, participants applied lower initial forces in the conditions
with large compliance differences than in the conditions with small compliance differences, in the
high-predictability conditions
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initial force difference was not significant in the low-predictability condition. Partic-
ipants appeared to strategically adjust their initial exploratory forces to the expected
compliance value, when possible.

In Exp. 2, we tested whether participants would also adjust their peak forces to
the expected compliance difference between a pair of stimuli. Again, less and more
compliant stimulus pairs were presented in low- and high-predictability conditions.In
different sessions pairs with small (∼15 %) and with large compliance differences
were used (∼75 %). The results (Fig. 6.6, right), essentially confirm that participants
strategically adjust their initial exploratory forces to the expected softness. In addi-
tion, participants applied lower initial forces in the conditions with large compliance
differences than in the conditions with small compliance differences. This effect was
only observed in the high-predictability conditions. In the low-predictability con-
ditions force did not significantly depend on compliance difference. These results
suggest that participants also strategically adjust their initial exploratory forces to
the expected compliance difference, if they can expect a certain level of compliance.

Experiment 3 assessed how the peak forces chosen in the previous experiments
affected discrimination performance. It measured Weber fractions for the less and
more compliant stimuli using a 2-interval-forced choice task combined with the
method of constant stimuli. The targeted peak forces varied in three conditions:
“lower-force”, “spontaneous-force”, and “higher-force”. At the beginning of the
experiment, the “spontaneous” peak force adjustments were assessed individually for
each participant using the two stimulus pairs with a small compliance difference from
Exp. 1. The “lower-force” was then defined as 50 % lower than the spontaneous-force,
and the “higher-force” was 50 % higher. Participants were constrained to indent each
stimulus once with the prescribed force. For each indentation movement, auditory
feedback signaled when participants had achieved the prescribed force.

Measured forces were slightly higher than the prescribed forces (on average by
11 %), but they differed between the force conditions as intended. Figure 6.7 depicts
the Weber fractions as a function of the average peak forces in the three force condi-
tions. For the less compliant stimuli, the Weber fractions varied with applied force.
They were higher for the lower-force condition than for the other two conditions, but
did not significantly differ between the “spontaneous” and the “higher-force” condi-
tion. For the more compliant stimuli, there was no distinct relationship between the
applied force and the Weber fractions.

Overall, the results of the three experiments show that participants apply a higher
peak force if they expect a less compliant object than if they expect a more compliant
one.In addition, the applied force is adjusted to account for the compliance difference
between the stimuli that are to be discriminated. Participants apply a higher force in
order to discriminate between stimuli with a small, as compared to a large, compli-
ance difference, if they expect a specific compliance value. These force adjustments
relate to the differential sensitivity for compliance (assessed by the Weber fractions).
Participants achieved maximal differential sensitivity for the less compliant stimuli
only when applying the spontaneous or higher forces, whereas force did not matter for
the more compliant stimuli. This result corroborates a perceptual explanation of the
peak force adjustments to stimulus compliance. The participants’ high spontaneous
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Fig. 6.7 Weber fractions and standard errors as a function of applied peak force (spontaneous,
lower, higher) and stimulus compliance (hard vs. soft; Kaim and Drewing 2011; Exp. 3). Note that
these data are also part of Fig. 5.4

forces for the less compliant stimuli represent a strategy that almost maximizes dif-
ferential sensitivity for hard stimuli (relative to other forces), whereas applying high
forces to the less compliant stimuli would not result in higher sensitivity, and thus,
is not required. Strategically adjusting to compliance differences, however, qualifies
this explanation. When expecting large compliance differences, participants lowered
their peak forces, which resulted in less than the maximal differential sensitivity for
the less compliant stimuli. The reduced forces, however, still allowed them to suc-
cessfully discriminate the two stimuli of the pair. Kaim and Drewing (2011) estimated
the probabilities of correct discriminations from the Weber fractions and found that
for the large compliance difference, the probability was always >99 % for each of
the three forces. For the small compliance difference and the less compliant stimuli,
probabilities of correct responses were 71, 78 and 80 % (“lower-force”, “sponta-
neous”, and “higher-force” conditions); for the more compliant stimuli they were
86–87 %. These estimates corroborate the assumption that lower forces suffice for
successful discrimination of the large compliance differences (>99 %), whereas they
considerably worsen discrimination performance for the low compliance differences
and less compliant stimuli. Taken together, these findings suggest that peak forces
are indeed strategically adjusted to improve softness perception.

http://dx.doi.org/10.1007/978-1-4471-6533-0_5
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6.5 Conclusion

In order to perceive an object’s softness, humans use the specific exploratory move-
ment procedure of pressure. This procedure is well suited for the intake of stimulus
information that is relevant for softness perception. In addition, the procedure’s move-
ment parameters can be strategically adjusted to a particular perceptual situation in
order to improve performance.

Such strategic adjustment has at least been show for the parameter ‘peak force’.
It is an important question for future research which other strategic adjustments are
used in softness perception and how they interact. Other movement parameters have
been shown to affect performance, such as the type of motion performed (Di Luca
et al. 2011) and the number of fingers used in softness perception (Freyberger and
Färber 2006), or they have been observed to be adapted by the participants, such as the
rate of force change. It is less clear whether participants indeed vary the parameters to
maximally improve perception. Moreover, some of these suggested relations between
movement parameters and softness perception need better empirical support and
only a small section of movement strategies has been studied. Kaim and Drewing
(2011) have informally observed that participants prefer to lift the forearm while
they explored the stimuli and that some participants hold the finger steeper against
the surface of the less compliant stimuli. One may wonder whether such behavior
is linked to a need for high exploratory forces for a sufficient stimulus deformation.
Likewise, Drewing et al. (2011) observed that a higher number of strokes across a
grating stimulus improves discrimination performance for grating parameters. One
may wonder whether an analogous relation holds for the number of indentations
in softness perception. So, there are still a number of open questions regarding the
specific control and adaptation of the EP pressure.

Findings from haptic tasks, other than softness discrimination, corroborate the
general assumption that participants are able to strategically adjust their movement
parameters in order to improve haptic perception: several studies demonstrate that
there are mutual dependencies between the ways in which humans explore and the
precision and value of the haptic perceptual estimates (Arzamarski et al. 2010; Debats
et al. 2010; Drewing 2012). Some studies directly demonstrate the link between spon-
taneously preferred exploratory movement parameters and good perceptual perfor-
mance (Arzamarski et al. 2010; Drewing 2012; Drewing and Kaim 2009; Gamzu and
Ahissar 2001). Gamzu and Ahissar (2001), for example, observed that during spon-
taneous exploration of haptic gratings, some of their participants reduced exploratory
velocity after a few trials, and that the reduced velocity allowed for better discrimina-
tion performance than the initial higher velocity. Our own studies demonstrated that
the exploratory directions relative to the body affect discrimination performance for
small virtual bumps, and that participants preferred to explore along directions that
were associated with superior discrimination performance (Drewing and Kaim 2009).
In addition, if the exploratory direction that yields optimal performance was manip-
ulated, participants changed their strategic preferences accordingly (Drewing 2012).
It is noteworthy that all studies that demonstrate successful exploratory adjustments
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(Arzamarski et al. 2010; Drewing 2012; Gamzu and Ahissar 2001) also show that
these adjustments require sufficient experience with the perceptual situation.

Optimal adjustments might sometimes represent a costly strategy. In the case of
the high peak forces used to improve softness discrimination, the study of Kaim
and Drewing (2011) showed that this exhausting strategy is only used if a high
level of differential sensitivity is required. Strategic adaptations of exploratory forces
aimed for high levels of performance in the discrimination task, rather than for
perceptual optimization. Similarly, in the study showing that a higher number of
strokes improved grating discrimination up to a maximum performance for 6–7
strokes (Drewing et al. 2011), the spontaneously preferred number of strokes was
slightly below 6, resulting in close-to-optimal performance while keeping motor
costs low. A recent study (Saig et al. 2012) investigated a simplified haptic task,
in which participants discriminated object positions using a whisker in either hand,
and presents a model on how sensory information is accumulated over time while
motor costs are minimized. An interesting question for future research is how motor
costs and perceptual benefits of haptic optimization strategies are balanced in natural
haptic tasks.
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Chapter 7
The Perception of the Centre of Elastic Force
Fields: A Model of Integration of the Force
and Position Signals

Gabriel Baud-Bovy

7.1 Introduction

As was noted by Charles Bell in 1833, softness and hardness perception relies on
the capacity of the haptic system to simultaneously produce and sense force and
movement:

“Without a sense of muscular action or a consciousness of the degree of effort made, the
proper sense of touch could hardly be an inlet to knowledge at all. . . The property of the
hand of ascertaining the distance, the size, the weight, the form, the hardness and softness,
the roughness or smoothness of objects results from the combined perception—through the
sensibility of the proper organ of touch and motion of the arm, hand and fingers.” Charles
Bell (1833) Bridgewater Treatise on the Hand (I, 2), 193,202–203.

While scholars of the sense of touch have always been aware of the importance
of movement in this sensory modality (e.g., Sherrington 1900; Gibson 1962), the
experimental study of this contribution started in earnest much later. Klatzky and
Lederman conducted a series of landmark studies during the 80s and 90s about
the manner in which people recognize objects and their physical attributes hapti-
cally (Lederman and Klatsky 1987). They found that people used specialized hand
movements—which they called exploratory procedures—to extract different types
of information from the objects (e.g. shape, weight or softness). They also found that
people could identify objects very quickly so long as their hand movements were
unrestricted (Klatzky and Lederman 1995). While early studies on the sensitivity of
the haptic system focused on vibro-tactile stimuli that were applied on the skin and
passively experienced, researchers have since started to measure the sensory thresh-
olds for physical attributes, which require an active movement to be perceived such
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as stiffness (e.g., Tan et al. 1995), viscosity (e.g., Beauregard et al. 1995; Jones and
Hunter 1993) and mass (e.g., Baud-Bovy and Schochia 2009; Brodie and Ross 1984;
Ross and Brodie 1987).

At the physical level, the resistance to deformation of soft materials is often mod-
eled by a spring that produces an elastic force when one pushes against the surface.
In this simple model, the main parameter that characterizes the deformable object is
its stiffness, which expresses the force generated by the spring as a function of the
depth of the penetration. In a seminal study of stiffness perception, Tan et al. (1995)
have shown that the discrimination threshold for stiffness perception is contingent
on whether the same or different movements are used to feel the stiffness (see also
Chap. 6). More recent studies of softness perception have shown that softness per-
ception, like that of stiffness, is influenced not only by the modality of exploration
of the force field, but also by other sensory modalities (see Chaps. 2–4).

Models of stiffness perception might be classified according to the type of infor-
mation provided by the sensory apparatus and the manner these signals are integrated.
In some models of softness perception, stiffness is directly sensed by the peripheral
apparatus. For example, when touching deformable objects, the rate of change of
average pressure might be used to estimate stiffness because it is invariant with
respect to indentation velocity (Srinivasan and LaMotte 1995). These authors have
proposed that this variable might be directly encoded in the population response of
SAIs (Srinivisan and LaMotte 1996).

In other models of stiffness perception, separate position and force signals must be
integrated to yield stiffness. Some of these models assume that the time-derivatives of
these signals is available. For example, when touching compliant objects with a rigid
probe, Srinivasan and LaMotte (1995) have proposed that stiffness might be esti-
mated from information about the rate of force and indentation velocity provided by
tactile and kinesthetic inputs respectively. Other models do not assume that the time-
derivatives are available. Of these, some posit that perceived stiffness corresponds to
the ratio between maximum interaction force and perceived penetration (Pressman
et al. 2007, 2011). Other assume that the whole trajectory is taken into consider-
ation and that stiffness is obtained by regressing position on force or the opposite
depending on whether they cross the boundary (Nisky et al. 2008). Finally, it has
also been proposed that the information acquired during the loading and unloading
phases should be weighted differently (Di Luca et al. 2011). While all these models
assume that positional and force information are combined in stiffness perception,
there is no consensus on the manner in which such integration occurs (see Chap. 9
for a detailed discussion of these models).

This chapter investigates the accuracy and precision with which the centre of
an elastic force field can be identified. In this study, the force field was rendered
in the lateral direction by a haptic device (see Fig. 7.1). To report their answer,
participants were told to bring their hand to the position where the force felt the
smallest and/or changed direction (both formulations were used to explain the task).
The task becomes challenging when the stiffness of the force field is small. In this
case, participants cannot perceive any force in an extended region around the centre
of the force field because the force is below their perceptual threshold.

http://dx.doi.org/10.1007/978-1-4471-6533-0_6
http://dx.doi.org/10.1007/978-1-4471-6533-0_2
http://dx.doi.org/10.1007/978-1-4471-6533-0_4
http://dx.doi.org/10.1007/978-1-4471-6533-0_9
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Fig. 7.1 Left The experimental setup. Right Outwardly oriented asymmetric elastic force field with
a stiffness of kL = 4 [N/m] on the left side and kR = 8 [N/m] on the right side. The shaded area
indicates the region defined by the limits L and R around the central position C where the force is
not perceived because it is below the force absolute threshold (FAL ). The total workspace extended
over 20 cm and the maximum force was limited to 1 N (only the central part of the workspace is
represented) [adapted with permission from Bocca and Baud-Bovy (2009)]

The main contribution of this chapter is to propose a model of how force and
positional information might be integrated in this task. A priori, estimating the stiff-
ness of the force field may help in identifying its central position because stiffness
combined with the force perceived at the current position could be used to infer the
distance between the current and central positions. Alternatively, this task could be
performed by simply sensing the position where the force becomes imperceptible or
changes direction.

This chapter is organized as follows. Section 7.2 describes the experimental appa-
ratus and task in more detail and Sect. 7.3 presents briefly the results of two previous
experiments, reported in Bocca and Baud-Bovy (2009). Section 7.4 describes a model
of how the participants might estimate the central position of an elastic force field
from the information they can sense while they try to identify the central position. The
predictive accuracy of the model parameters and predictions of the model are fully
worked out. Unlike the model described in Bocca and Baud-Bovy (2009), this model
is able to predict both the systematic and variable error patterns observed in the two
experiments. The assumptions and limitations of this model are discussed in Sect. 7.5.

7.2 Methods

7.2.1 Participants

14 participants (4 males) aged 19–38 years (mean 23.7) took part in the first
experiment. 30 participants (12 males) aged 19–50 (mean 24.46) took part in the
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second experiment. Most participants were undergraduate or graduate students at
San Raffaele University, Italy. All participants were right-handed, had no known
problems of haptic perception or motor control, and gave their informed consent
prior to the start of the experiment.

7.2.2 Experimental Setup

A haptic device (Omega.3, Force Dimension, Switzerland) was used to display the
elastic force fields. To measure the interaction force, the device was outfitted with a
force-torque (FT) transducer (Nano 17, ATI Industrial Automation, USA) that was
mounted between the custom-made triangular plate connecting the three parallel
robot arms and the spherical handle (diameter ∼1.5 cm) grasped by the participant.

The haptic device was controlled by a program running on an AMD Sempron
Processor computer with a Windows XP operating system. The computer was
equipped with a 16-bit PCI DAQ card (6034 E, National Instruments) to acquire
and digitize signals from the FT sensor. The C/C++ program controlling the device
used Force Dimension DHD API to control the haptic device and National Instrument
NIDAQmx API to control the DAQ card.

The device produced a strong visco-elastic force field (stiffness = 1,200 N/m,
damping = 50 N/m/s) that constrained the movements of the end-effector along a
horizontal laterally oriented line. The device displayed the elastic force field along
the line direction where the end-effector movements were not constrained. The length
of the workspace along this direction was 20 cm.

To improve the force-rendering performance of the device, the program imple-
mented a closed-loop force control law: ’

fcmd = fd + k f ( fs − fd) (7.1)

where fcmd is the force command sent to the device, fd is the desired force that
corresponds to the elastic force field, fs is the interaction force measured by the
force/torque sensor and k f = 7.5 is the gain of the force-error feedback. The program
polled the handle position (x) and the actual force ( fs), and computed the force
command ( fcmd ) at 1 kHz.

In Experiment 1, the sensed force was passed through an exponential filter
(time constant = 0.002 s). Adjustments were made in Experiment 2 to the con-
trol law to avoid instabilities that sometimes occurred at the limit of the workspace.
In particular, to reduce sensory noise, the force was sampled continuously at 33 kHz
and the last 33 samples were used haptic loop to estimate the current force [see
Baud-Bovy and Gatti (2010a, b), for more details].

Force Dimension DHD antigravity compensation scheme was activated through-
out the experiment (end-effector mass parameter = 0.08 kg). The current time, end-
effector position, desired and sensed forces were saved at 50 Hz for off-line analyses.
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7.2.3 Experimental Procedure and Stimuli

Participants grasped the spherical handle of the device with the thumb and index
finger of the right hand using a key grasp. The height of the seat was adjusted so
that the elbow was flexed at 90◦ (Fig. 7.1). The centre of the device workspace was
aligned with the body midline in the first experiment and with the shoulder in the
second experiment because the position felt more comfortable.

The stimulus consisted of a one-dimensional elastic force field that pushed the
handle laterally, away from a central position:

fd =
{

kL(x − xc) if x ≤ xc

kR(x − xc) otherwise
(7.2)

where fd is the desired force, and kL and kR are the stiffnesses on the left and right side
of the central position xc respectively. The force was oriented outwardly rather than
inwardly to avoid the possibility of the force moving the participant’s hand toward the
centre (this possibility is in any case remote given the fact that the force is too low—
typically less than 0.5 — put the participant’s hand/arm in motion). Participants were
told to maintain a firm grasp throughout the trial. The force magnitude was limited
to ±1 N.

A brief familiarization period was offered at the beginning of the experiment to
teach the structure of the trial to the participant. Each trial started with a 4 s long
positioning period during which the device brought the hand to a starting position.
Then, the computer produced a “beep” indicating that the subject could start to
explore the force field by moving the end-effector laterally along the unconstrained
direction. Participants were instructed to find the point along the line where they did
not feel any force and to press a button held in their left hand once they had found
it. They were also told that the force changed direction at this point. The exploration
time was not constrained but the experimenter encouraged the subject to respond
faster if he or she took more than 15–20 s to respond. At the end of the trial, the
experimenter had the option to repeat the trial (which was exercised in a few instances
where the participant did not perform as expected).

In Experiment 1, the force field was always symmetric, i.e. the stiffness on either
side of the central position was equal (k = kL = kR). Each possible stiffness value
(k = 4, 8, 16, 32, or 64 N/m) was presented once with a different combination of
starting and central positions. There were 12 such combinations, each obtained by
selecting one of four possible positions placed at ±1.5 or ±4.5 cm relative to the
workspace as the central position and one of the remaining three positions as starting
position. Altogether, the experiment included 60 trials.

In Experiment 2, the stiffness of the force field could be different on the left and
right sides of the central position. The force field was obtained by combining three
stiffness values (i.e. 4, 8 and 16 N/m) pairwise, thus obtaining six asymmetric force
fields and three symmetric ones. To vary the central position of the force field, we
randomly generated a central position inside three different regions (left region: from
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−3.5 to −1.5 cm, centre region: from −1 to 1 cm, and right region: from −1.5 to
3.5 cm). The two starting positions were spaced on either side, at an equal but random
distance which varied between 1 and 3 cm. The total number of trials per subject
was 54 (9 stiffness conditions ×3 regions ×2 starting positions, no replication).

In the two experiments, the order of presentation of the stimuli was randomized
for each participant and the duration of the experimental session never exceeded
40 min.

7.2.4 Data Analysis

The positioning error was the main performance measure. For each stiffness con-
dition and subject, we computed the average and standard deviation of the posi-
tioning error between the participant’s response and the actual centre of the force
field. Then, we computed the between-subject and within-subject variable errors
for each experimental condition. The between-subject variable error corresponded
to the standard deviation of the average positioning errors for each subject while
the within-subject variable error corresponded to the across-subject average of the
standard deviations of the positioning error computed for each subject and con-
dition separately. In both experiments, we identified a few outlier responses and
replaced them by the corresponding condition average. In all, less than 2 % of the
trials were considered outliers [see Bocca and Baud-Bovy (2009) for a more detailed
description].

Before presenting the results of the experiments, it is important to say a few
words about the use of haptic devices in perceptual studies. While simulating
an elastic force field with a haptic device is in principle very simple since the
desired force is proportional to the position, it can be challenging to render a
force with high accuracy in practice because the device is not perfectly “trans-
parent” (Lawrence 1993; Parietti et al. 2011). The problem is that haptic devices
are mechanical devices and, as such, endowed with physical properties (e.g. mass,
Coulomb friction, etc.) that introduce a difference between the desired force set in
the program and the actual force rendered by the device (Salisbury et al. 2009).
In order to address this issue, a force sensor was mounted near the handle that
was grasped by the participant to measure the actual force. Then this information
was used in a quick feedback loop to render the force as described previously (see
Sect. 7.2.2).

To assess the quality of the stimulus in this study [for a more detailed analysis
of the setup, see Gurari and Baud-Bovy (2014)], we computed for each trial the
average, standard deviation and root mean square (RMS) of the force error, i.e.,
the difference between the desired and measured force ( fe = fs − fd). We also
identified the zero-force points, i.e. the points in the scanning movement where the
force measured by the sensor was zero (Fig. 7.2, inset). For each trial, we computed
the average and standard deviation of the zero-force points.
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Fig. 7.2 Top Force measured during the trial. Inset Zoom of the measured force around the central
position. The standard deviation of position of the zero-force points (small empty circles) is 2 mm
in this trial. Bottom Scanning movements during a trial (stiffness k = 32 N/m). The force field
central position and the trajectory final position are denoted by solid and dashed lines respectively
[adapted with permission from Bocca and Baud-Bovy (2009)]

7.3 Results

The direction of the force field was clearly identifiable away from the centre,
where it reached a maximum value of 1 N (see Fig. 7.2). As participants moved the
handle closer to the centre, the intensity of this sensation decreased until it became
imperceptible. For the force fields used in this study, the region of uncertainty about
the direction of the force could extend over several centimeters.

As expected, participants moved their hand sideways to identify the centre of
the elastic force field in the two experiments. In Experiment 1, the duration of the
exploration period varied from 6 to 28 s (5 and 95 % quantiles, median = 12 s).
During the exploration, participants produced on average 15 ± 3.5 (average ± SD)
movements. The average length of these exploratory movements was 5.1 ± 4.6 cm.
In experiment 2, the median exploration time was 15.0 s, the average number of
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exploratory movements was 19, and the average length of exploratory movements
was 3.5 cm. At this level of description, the exploration trajectories were similar in
the two experiments despite the difference in symmetry/asymmetry.

At the individual level, the exploratory movements were highly idiosyncratic
(high between-subject variability, low within-subject variability) but some general
tendencies could be observed in both experiments. In particular, visual inspection
of the trajectories showed that all participants tended to execute larger exploratory
movements at the beginning of the trial than at its end (Fig. 7.2). Moreover, the length
of the exploratory movement was in general longer in the low stiffness conditions
than in the high ones.

In the first experiment with symmetric force fields (Fig. 7.3a), participants cen-
treed their response near the central position of the force field. The average systematic
error was very small in all stiffness conditions (<0.2 cm for all stiffness condition).
The response variability was inversely related to the stiffness showing that the cen-
tre of the force field was identified less reliably when the stiffness was small (the
standard deviation of the localization error reached 2.5 cm for the smallest stiffness
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Fig. 7.3 Bias and variability of the estimated force field centres. Top panels Average positioning
error (solid squares) and average position of the zero-force points (empty circles) for each stiffness
condition. Vertical bars denote standard error of the mean. Bottom panels Pooled estimate of the
standard deviation of the positioning error (solid squares) and the average value of the within-trial
standard deviation of zero-force points (empty circles) for each stiffness condition. a Symmetric
force field (Exp. 1). Note the log scale of the X axis. b Asymmetric force field (Exp. 2). In the
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kR < kL and toward the left (negative value) when kL<kR [adapted with permission from Bocca
and Baud-Bovy (2009)]
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condition). A repeated-measure ANOVA confirmed that the stiffness factor had a
statistically significant effect on the within-subject standard deviation of the position
error (F(4, 52) = 24.702, P < 0.001).

The main finding of the second experiment was the observation of a systematic
bias toward the side of the weakest force field (Fig. 7.3b, top panel). In addition,
we found a general bias toward the left (−0.4 ± 1.2 cm) that increased when the
stiffness was small. The variable error was smaller in the second experiment relative
to the first experiment. The reason for this discrepancy is not clear but it is possible
that the improvement in the control law of the haptic device in the second experiment
might have contributed to a decrease in the response variability at low stiffness. That
being said, the error pattern in the second experiment was qualitatively similar to the
one observed in the first experiment. In both experiments, the response variability
increased when stiffness decreased but did not tend toward zero when the stiffness
increased (Fig. 7.3, bottom panels).

For both experiments, the position of the force field’s centre and the hand position
was randomized at the beginning of each trial. In both experiments, we found a
bias toward the centre of the workspace (range effect) and a weak bias toward the
starting position. A more detailed analysis of these effects can be found in Bocca
and Baud-Bovy (2009).

7.3.1 Force Rendering Accuracy

The main measure of the rendering performance is the RMS of force error. In the first
experiment, the average RMS force error was 0.027 N. The force error never exceeded
0.03 N and was on average well centreed. The mean force error was 0.002 N and the
average of the within-trial standard deviation was 0.025 N. In the second experiment,
the average RMS force error was 0.021 N which indicates that the changes in the
control law in the second experiment slightly improved the quality of the stimulus. In
any case, these results constitute a 10-fold improvement of similar measures obtained
with an open-loop control of the haptic interface (data not shown).

Although the force error was small, it could not be completely ignored. At low
stiffness in particular, the variation of the measured force during the exploratory
movement lead to a dispersion of the points where the force was zero (Fig. 7.2,
inset panel). In the first experiment, the zero-force points were near the central
position (average systematic error was −0.2 mm). Their dispersion (SD) increased
from 0.4 mm in the stiffest condition to 5.8 mm in the least stiff condition (see
Fig. 7.3). In the second experiment, the dispersion of the zero-force points was
4.5 mm when kR = kL = 4 N/m, which constitutes a small improvement rel-
ative to the first experiment. Note that the variability of the zero-points approxi-
mately matches the variability of the force error divided by the stiffness (see also
Fig. 7.5).
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7.4 The Bisection Model

In this section, the model is progressively built up, starting from the basic assumptions
that the participants cannot sense force below some minimal value. We first present
the model in relation to the results of the first experiment. The same model is then
used to account for the results of second experiment. In both cases, the model is
expected to predict the systematic and variable errors of both experiments.

7.4.1 Initial Assumptions

According to Hooke’s Law, the force in a linear elastic field is

F = k �x (7.3)

where �x is the distance from the centre of the force field and k is the stiffness
(see Chap. 1). Assuming that there is a threshold below which a person does not
perceive any force, then no force will be perceived in the neighborhood of the force
field centre. The limits of this interval are

L = − FAL

kL
R = FAL

kR
(7.4)

where FAL is the force threshold and kR and kL denote the respective stiffness of the
force field at the two sides. Note that the size of the interval can always be increased
experimentally by decreasing the stiffness if the force threshold differs from zero
(FAL > 0).

As the observer is unable to perceive any force in this interval, he or she must
estimate the central position of the force field from cues coming from outside this
interval. In other words, the observer must explore the force field by moving their
hand and integrating the information acquired during this exploration to estimate the
central position of the force field.

The bisection model presented here assumes that the observer detects the two
limits of the interval and identifies a middle position as the central the position of
the force field. Mathematically, the model posits that the response corresponds to the
weighted average between the left and right limits:

Xw = (1 − w) L + wR (7.5)

where 0 ≤ w ≤ 1 is the weight of the right limit. A true bisection is obtained when
the two limits are weighted equally (w = 0.5). Values of w deviating from 0.5 reflect
a systematic bias toward one or the other limit.

http://dx.doi.org/10.1007/978-1-4471-6533-0_1
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7.4.2 Sensory Noise and Response Variability

In Psychophysics, the absolute threshold is operationally defined as the intensity of
the stimulus that is detected in 50 % of the presentations. As implied by this definition,
any model of the process yielding the response must be formulated in probabilistic
terms to account for the variability of the response. In fact, a primary assumption
of classical threshold theory is that the threshold varies over time (Gescheider 1997,
p. 75). Moreover, it is customary to model the threshold as a normally-distributed
random variable.1 In a detection experiment, the mean of this random variable
corresponds to the absolute threshold, while the variance indicates the degree of
fluctuations of the threshold due to uncontrolled experimental, biological and/or
psychological factors.

In the context of this study, the sensory threshold FAL is represented by a random
variable with expected value μF > 0 and standard deviation σF . The variance σ2

x of
the response can be obtained by substituting the definitions of the limits (Eq. 7.4) in
the model of the response (Eq. 7.5) and by applying the mathematical properties of
the variance:

σ2
X = var [Xw] = var [(1 − w)L + wR] = (1 − w)2var [L] + w2var [R]

=
(

1 − w

kL

)2

var [FAL ] +
(

w

kR

)2

var [FAL ] = σ2
F

{(
1 − w

kL

)2

+
(

w

kR

)2
}

(7.6)

The estimated positions of the two limits, L and R, of the interval below the perceptual
threshold are assumed to be uncorrelated. This assumption is reasonable because the
two limits are assessed at different times during the exploration of the force field.

When the force field is symmetric (kR = kL), this equation becomes

σ2
X = (2w(w − 1) + 1)

σ2
F

k2 = W 2 σ2
F

k2 . (7.7)

where the factor W = √
2w(w − 1) + 1 depends only on the weight w. Note that

this model predicts an inverse and proportional relationship between the stiffness
and the standard deviation of the response since, by definition, the variability of the
force threshold is constant and the weight w is also assumed to be fixed:

WσF = kσX ≡ constant. (7.8)

1 An alternative view is to conceptualize the processes yielding a sensation as intrinsically noisy
(Thurstone 1927). In this case, the sensation elicited by the stimulus is modeled as a random variable
while the threshold is assumed to be fixed. Moreover, the response variability arises from the fluc-
tuations of the sensation instead of the threshold. The two threshold models are not distinguishable
empirically without making additional assumptions. Depending on the view, the response variabil-
ity can therefore be interpreted either as quantifying the variability of the threshold or the amount
of noise in the sensory channel (Gescheider 1997; Macmillan and Creelman 2005).
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Fig. 7.4 Modeling of the response variability in Experiment 1. The solid squares indicate the
average within-subject standard deviations of the localization errors while the empty circles represent
the standard deviations of the zero-force points. Left Both standard deviation are expressed in
Newton by scaling the positional standard deviation with the corresponding stiffness. Note the
increase as a function of the stiffness. Right The solid line represents the prediction of the model as
a function of the stiffness (see Eq. 7.11) while the dashed horizontal line represents the estimated
value of the positional noise

√
0.5σP (i.e., the intercept of Eq. 7.11). Note that the panel shows the

same data as in the bottom panel of Fig. 7.3a with a linear scale on the X axis

To test this prediction, we multiplied the standard deviation of the response by the
stiffness to transform it in force units. Figure 7.4 (left panel) shows that the variability
of the positioning error expressed in Newton increases as a function of the stiffness,
contrary to what is predicted by the model (Eq. 7.8) since W is constant. A repeated-
measure ANOVA confirmed that the stiffness had an effect on the variability of
the response expressed in Newton (F(4, 52) = 11.03, P < 0.001). This variability
increase cannot be explained by a decrease in the force rendering quality for higher
stiffness. As a matter of fact, the standard deviation of the zero-force points multiplied
by the stiffness remained constant once expressed in Newton. The average standard
deviation of the zero-force points expressed in Newton was 0.023 N, which more
or less corresponds to standard deviation of the force error reported in Sect. 7.3.1
(0.025 N).

This negative result clearly implies that something is wrong or lacking in the initial
model. In fact, going back to the definition of the model, another of its implications is
that the force field centre should be localized without variable error when the stiffness
is infinite (force threshold variability is divided by the stiffness in Eqs. 7.6 and 7.7).
In other words, the model assumes a noiseless position sense. However, the plot of
the response variability as a function of the stiffness clearly suggests the presence of
an asymptotic floor value for the variability of the response (see Fig. 7.3a). The origin
of this flaw in the model is that the variability of the response is entirely attributed
to the variability of the force threshold, which is then propagated according to the
mathematical specification of the model.
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A more realistic formulation of the model is to assume a second source of error
with respect to the perceived position of the force threshold. This can be modeled
mathematically by introducing a second random variable P with a mean equal to
zero and standard deviation σP in the definition of the perceived limit of the interval
without force

L = − FAL

kL
+ P R = FAL

kR
+ P (7.9)

The random variable P represents an additional source of noise and uncertainty
related to the position in space of the point where the force threshold is reached. The
variance of the responses predicted by the model is now

σ2
X = (1 − w)2 var [L] + w2var [R]

= (1 − w)2 var

[
− FAL

kL
+ P

]
+ w2var

[
FAL

kR
+ P

]

= (1 − w)2

(
σ2

F

k2
L

+ σ2
P

)
+ w2

(
σ2

F

k2
R

+ σ2
P

)
(7.10)

If one assumes that the estimated position of the two limits, L and R, are uncorrelated
as before, and that the two random variables FAL and P are also uncorrelated. This
latter assumption makes sense because these two random variables model noise in
two different sensory channels.

When the force field is symmetric, the standard deviation of the responses corre-
sponds to

σX = W
(σF

k
+ σP

)
(7.11)

where W is defined as in Eqs. 7.7 and 7.8. In other words, the model predicts that the
standard deviation of the responses divided by W is linearly related to the inverse of
stiffness and bottoms up at some asymptotic value. The intercept and slope of this
relationship can be interpreted as the standard deviations of P and FAL respectively.
Assuming that both limits are weighted equally (w = 0.5 or W = √

0.5) and
regressing the standard deviation of the responses observed in the first experiment
divided by W on the inverse of the stiffness yielded estimates for the force threshold
standard deviation of 0.11 N and 8.4 mm for the positional precision. Figure 7.4
(right panel) shows that this model fits the data well.

7.4.3 Force Threshold and Response Bias

The systematic error or bias predicted by the model corresponds to the expected
value of the response (Eq. 7.5):
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μX = E[Xw] = E

[
(1 − w)

−FAL

kL
+ w

FAL

kR
+ 2P

]

= μF

(
− (1 − w)

kL
+ w

kR

)
(7.12)

.
Interestingly, the bias depends on the force threshold expected value μF . In other

words, it is in principle possible to estimate the force threshold from the systematic
errors.

One caveat is that estimating this parameter is problematic in the first experiment
because the force field is symmetric (kL = kR). In this case, Eq. 7.12 becomes

μX = μF (2w − 1)
1

k
(7.13)

and it is impossible to univocally identify the value of the two parameters w and μF

because there is an infinite number of pairs of values satisfying this equation. The
problem with symmetric force fields persists if one assumes the true bisection model,
i.e. w = 0.5. In this case, the expected value is

μX = μF 0

k
= 0 (7.14)

and the solution μX = 0 is independent from μF . However, if w �= 0.5, it is possible
to estimate the force threshold value for symmetric force fields by fitting together
the systematic and variable errors since w is constrained by the variability of the
response (see Eq. 7.11).

For asymmetric force fields, the true bisection model predicts a bias toward the
weaker force field as shown by the fact that the bias takes a negative value when kR

is larger than kL :

E[X0.5] = μF

kLkR

(
−1

2
kR + 1

2
kL

)
= − μF

2kLkR
(kR − kL) . (7.15)

This equation also shows that the bias depends not only on the stiffness difference
(kR − kL ) between the two sides of the force field but also on the magnitude of the
two stiffnesses.

7.4.4 Model Parameters

The free parameters θ of the model consist in the expected value μF and standard
deviation σF of the force threshold, the standard deviation of the positional error
σP and the weight w of the right limit (1 − w corresponds to the weight of the left
limit). The free parameters of the model were fitted separately to the results of both
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Fig. 7.5 Actual (empty squares) and predicted (crosses) values for the response bias (top panels)
and response variability (bottom panels). a Symmetric force fields (Exp. 1). b Asymmetric force
fields (Exp. 2)

experiments by minimizing the Mean Square Error (MSE):

M SE(θ) =
n∑

i=1

(xi − μX (kLi , kRi |θ))2 + (si − σX (kLi , kRi |θ))2, (7.16)

where xi and μX correspond to the actual and predicted position of the force field
centre (Eq. 7.12), si and σX correspond to the actual and predicted standard deviation,
and σX the values predicted by the model (Eqs. 7.10 and 7.12), kLi and kRi correspond
to the stiffness in the ith condition of each experiment, and θ the free parameters of
the model. The parameters were fitted separately for each experiment. Figure 7.5
shows that the model fits the results of both experiments well.

Table 7.1 reports the parameter values that best fitted the results of both exper-
iments. For Exp. 1, Table 7.1 also reports the estimate for the force and position
noises obtained by fitting only the variable error (Eq. 7.11) and by assuming the
true bisection model (w = 0.5). There were some differences between the val-
ues of some parameters which reflected the differences between the results of the
two experiments. The most conspicuous difference between the two experiments
was the leftward bias of the responses observed in the second experiment. This
difference might be associated to a change of position of the device relative to
the body midline. In the first experiment, the device was aligned with the body
midline while the device was aligned with the shoulder in the second experiment
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Table 7.1 Model parameter
estimates

w μF (N) σF (N) σP (cm)

Exp. 1 (bisection
model)

(0.5) – 0.111 0.847

Exp. 1 0.503 0.070 0.141 1.110

Exp. 2 0.302 0.073 0.038 0.781

because it felt more comfortable. To account for this difference in the model, we
hypothesized that the participant might weigh the left and right sides of the inter-
val differentially (see Eq. 7.5). The value obtained for the weight w of the right
limit was about 0.3 in the second experiment, which indicates that the weight of
the left limit increased when the device was shifted toward the right side. It would
be worthwhile to confirm this observation by comparing the response biases of the
same group of subjects when the device position relative to the body is changed
rather than the responses of two different groups of subjects as was the case in this
study.

Table 7.1 also shows that the estimated standard deviation of the noise associated
with the force signal (σF ) was about 0.14 N in the first experiment and 0.04 N in the
second experiment. In contrast, the estimated standard deviation of the noise in the
position signal (σP ) was in the same range (0.8–1.1 mm) in the two experiments.
As it can be seen from Eq. 7.11, the position noise reflects the asymptotic response
variability when the stiffness is large while the force noise reflects the increase of the
response variability when the stiffness decreases. The parameter values reflect the
data: First, the response variability increased less in the second than in the first exper-
iment when the stiffness decreased. Second, the asymptotic values of the response
variability were similar in the two experiments when the stiffness increased (see
Fig. 7.3).

Finally, fitting the full model to the results of the second experiment yielded an
estimate of the minimum force that can be detected by the haptic system. Inter-
estingly, the value of the force threshold was 0.072 N (about 7 g), which is quite
close to the results of another study measuring the value of this force threshold
directly on the same experimental setup (Baud-Bovy and Gatti 2010a). In this lat-
ter study, the haptic device rendered a constant force toward the left or right and
the task was to identify the direction of the force transmitted by the handle. The
direction of the force was randomly selected while its amplitude varied from 0 to
0.2N (approximately 20 g) The magnitude of the force that was needed to correctly
identify its direction in 75 % of the trials ranged from 0.05 to 0.1 N depending
on the experimental condition. The order of magnitude of these thresholds is also
in line with the results of another study that measured the minimum amount of
assistive or resistive force that could be detected during a movement (Zadeh et al.
2008).
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7.5 General Discussion

Despite considerable progress in the field of haptic perception [see Lederman and
Klatzky (2009), for a recent review], a proper framework to apprehend how sensory
signals occurring during the active exploration of an object are integrated and/or
combined within the haptic modality is still lacking. In particular, as noted in the
Introduction, a consensus has yet to emerge about how position and force signals are
processed to yield the percept of stiffness.

The main contribution of this chapter is to present a model of how participants
might identify the central position of an elastic force field from the information they
can sense in the absence of vision. This model makes specific hypotheses about
the underlying sensory and integrative processes (see Fig. 7.6a). With respect to the
sensory processing stage, this model does not require an estimate of the stiffness to
identify the position of the hand when the force threshold is crossed. Instead, the
model is based on the idea that the internal state of the sensory system changes when
the force threshold is crossed [see Macmillan and Creelman (2005), p. 81–111, for
a presentation of Threshold Theory along these lines] and that the hand position is
sampled when this event occurs. In Fig. 7.6b, this mechanism is represented by a
box that generates a unit impulse when a change in the internal state is detected.
The impulse is then multiplied with the hand position signal to yield the position of
the hand when the force threshold is crossed. In addition, the sensory stage includes

Fig. 7.6 a processing stages of the bisection model. The free parameters of the models are indicated
above the blocks. b Schematic representation of the sensory processing stage. The two blocks with
the letter N represent noise source. The block with the force threshold represents the force detection
process that determines the internal state � of the sensory system. The last block detects when the
internal state has changed. The output of this block indicates the left or right limit of the region of
the elastic force field where the force is not perceived
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two noise sources (N). The first noise source affects the force signal. It has also an
effect on the perceived position of the interval limits because the force threshold will
be crossed at different positions depending on fluctuations of the perceived force.
The second source of variability affects directly the hand position signal. Finally,
the second processing stage corresponds to the spatio-temporal integration of the
information acquired during the haptic exploration of the environment. In this model,
this stage consists simply in the weighted average of the left and right limits of the
interval where the force is not perceived.

The scope of this model is limited. First, this model does not aim at explaining the
origin of the force and position signals and how they are processed and integrated at
the neuronal level. While it is common to associate position and force signals with
the spindles and Golgi tendon organs respectively, it is also known that tactile inputs
play an important role in the perception of weak forces [see Srinivisan and LaMotte
(1996), Bergmann and Kappers (2008), Baud-Bovy and Gatti (2010b), for some
considerations about the possible contribution of tactile and proprioceptive systems
in softness, stiffness and weak force perception respectively]. Second, it is not clear
how to extend this model to other perceptual tasks, even in the haptic modality. For
example, the model does not include signals such as the local deformation of the
finger pad that is known to play an important role in haptic shape perception (e.g.,
Wijntjes et al. 2009). Moreover, the integration stage of this model is extremely
simple and does not provide much guidance about how sensory signals might be
integrated in another task.

Still, despite its limitations, the model yields some interesting results. First, the
analysis of the resp onse biases in the second experiment led to an estimate of the
absolute threshold for the perception of a force, i.e., the minimum force that can be
detected by the haptic system, that corresponds to 0.7 N or 7–8 gwt ( μF ). While force
and weight perception have a long history in Psychophysics, starting from the seminal
work of Weber (1834), most studies have aimed at measuring differential thresholds
between the weights of hand-held objects [Weber fractions typically range between
5 and 15 % depending on the experimental condition, review in Jones (1986)]. Very
few studies have aimed at measuring the absolute threshold for force perception and
little is known, for example, about the lightest hand-held weight that can be detected.
The estimated value of this threshold is well in line with the results of the few studies
that have tried to estimate it in a more direct way (Baud-Bovy and Gatti 2010a, b).

Second, the model was able to predict the variability of the response in the different
conditions by assuming constant sensory noises in the force and position signals.
While the results of the two Experiments differed slightly, the estimated values of
the noise for the force and position signals are plausible (σF ≈ 0.1 N and σP ≈8–
10 mm respectively). For example, Ross and Brodie (1987) report a Weber ratio
equal to 0.12 for a reference weight of 50 gwt (0.49 N), which corresponds to a
correct discrimination threshold of 6 gwt (0.059 N). The threshold was obtained
with an adaptive procedure that identified the stimulus intensity that elicited 71 % of
correct responses. For a normally-shaped psychometric function, the sensory noise
that corresponds to such a threshold is σF = DL0.71/�−1(0.71) = 0.059/0.553 ≈
0.1 N where � is the cumulative normal distribution (Gescheider 1997). For smaller
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weights or forces, the difference threshold and the sensory noise might not decrease
much because it is known that the Weber ratio increases with small forces (Jones
1986). Interestingly, the theoretical analysis of this model revealed that the two noise
sources are necessary to predict the results of these experiments. As a matter of fact,
it was not possible to predict the response variability if one assumed that it derived
solely from fluctuations of the force threshold. This analysis tells us something
about the information processes operating in this task. In particular, it confirms that
participants rely on both position and force signals to identify the central position of
an elastic force field.

Finally, this model has some implications for softness perception. As noted in the
Introduction, various model of stiffness perception have been proposed. Interestingly,
most models don’t assume that stiffness is directly perceived. As noted by Srinivasan
and LaMotte (1995), tactile cues cannot give direct information about stiffness when
exploring the stiffness of a force field by means of a rigid probe because the rate of
force change depends on the movement velocity, which must be sensed kinesthet-
ically. In fact, most models of force perception posit that position and force cues
must be somehow integrated. In this respect, this model suggests that the perceived
stiffness of very compliant objects might be overestimated because the depth of pen-
etration might be underestimated due to an inward shift of the perceived position of
the force field boundary. While the implication of this study for stiffness perception
is most obvious for models of stiffness perception that rely on the identification of
the force field boundary and/or penetration depth in the object, further research is
needed to find out the impact of the sensing or perceptual limits of the haptic system
on the perception of the stiffness of very compliant objects.
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Chapter 8
Dynamic Combination of Movement and Force
for Softness Discrimination

Markus Rank and Sandra Hirche

8.1 Introduction

Softness is an important source of information when interacting with remote or
virtual environments (VE) via a haptic human-machine-interface. For example, in
telesurgery where the surgeon operates a human-machine interface transmitting
his/her actions to a robot performing actions inside the human body, tissue softness
can indicate a healthy or non-healthy condition (De Gersem 2005). Humans have
no dedicated sense for perceiving softness; instead, inferring an object’s compliance
haptically requires the combination and integration of information from different
sensory sources such as positional cues, force cues, and tactile information—see
Chap. 5 for a deeper analysis of mechanisms involved in this process. For many
technical systems, including above-mentioned telesurgery setups, tactile cues are
not conveyed to the human operator, limiting the information available to infer soft-
ness movement and force. In direct interaction with a physical object, the gain and
temporal relation of movement and force is determined by the object’s mechanical
impedance. A telepresence or VE system can alter the impedance by, e.g., time delay
in the communication channel (Rank et al. 2010a; Ohnishi and Mochizuki 2007;
Pressman et al. 2007; Nisky et al. 2008; Hirche and Buss 2007; Rank et al. 2010;
Hirche and Buss 2012) which is found to make participants underestimate stiffness
under various circumstances, see also Chaps. 9 and 5. Determining the limits for
distortions caused by the technical system that do not affect the operator’s percept is
crucial to ensure a realistic interaction experience.
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In the past, perceptual discrimination limits have often been characterized using
psychophysical measures such as the just noticeable difference (JND) (Gescheider
1985; Weber 1834), allowing a distinction between perceivable and unperceivable
differences in a physical quantity such as a force, length, or impedance by mapping
each difference to a proportion in perceptual responses. By simplifying the charac-
terisation of the perceptual system to such a static mapping, valuable information
about the time-series characteristics of the environment interaction is lost. Temporal
features in the interaction force and movement have though been shown to signifi-
cantly influence our perception of haptic properties such as hardness (Lawrence et al.
2000) and mass (Baud-Bovy and Scocchia 2009). Perceptual phenomena such as the
haptic masking effects found in Rank et al. (2012) could presumably only be under-
stood by looking at the temporal characteristics over time. In softness perception,
the amplitude of probing movements was also found to influence human perceptual
performance (Tan et al. 1995), a factor that is not accounted for in a softness JND
measure. To the authors best knowledge, no conclusive mechanism capturing the
combination of movement and force to perceive softness has yet been established.

We propose the usage of dynamic haptic perception models, using differential
equations to combine movement and force information together instead of static
perception models, e.g., the JND. In this way, the impact of interaction character-
istics on the perceptual judgment can be explicitly modelled. Looking at softness
perception from a system theoretic point of view, we propose three plausible mech-
anisms which are capable of discriminating between different soft environments.
The detection thresholds predicted by these models vary with the specific interaction
movement with the environment. Based on the results from three psychophysical
experiments, a dynamic state observer model is identified as a superior prediction
model compared to a comparison of identified time delay values and an internal
inverse model validation of the body and environment.

Theoretical model candidates from system theory, predicting perception thresh-
olds for temporal misalignment between limb movement and force feedback are
introduced in Sect. 8.2. Experimental data from three psychophysical experiments
on the perception of time delay in soft, damped and inertial environments are pre-
sented in Sect. 8.4, and predictions from the parameterised models are discussed.
The chapter is ended with a conclusion on the impact of the results on the design of
telepresence and VE systems.

8.2 Perception Model Representations

Perceiving softness generally requires a combination of force and movement cues
into a unified percept. Accounting for human perception characteristics in the design,
control and evaluation of systems for human-machine interaction such as telepresence
or VE systems requires the formulation of quantitative perception models capturing
haptic discrimination abilities. The models proposed here are built upon the assump-
tion of an existing decision criterion δ. This measure is used to determine which of
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two response alternatives to choose and can be found in well-established perceptual
modelling techniques, e.g. signal detection theory (Macmillan and Creelman 2005)
and diffusion models (Ratcliff 1978; Pleskac and Busemeyer 2010).

The perceptual output yp at a given response time tr is determined by

yp(tr ) =
{

“different” if ∃t ∈ [0, tr ] : |δ(·)| > ε,

“same” otherwise,
(8.1)

where ε is referred to as a decision threshold and the stimulus onset time is set
to t = 0.

Remark 1 This formulation of the perceptual process accounts for the fact that in
the context of human-robot interaction such as telerobotics, a perceptual decision may
be held back and not responded to as soon as the decision has been made. Contrary
to Ratcliff (1978), Pleskac and Busemeyer (2010), the formulation of perception
models in Eq. (8.1) thus accounts for all decisions made between the stimulus onset
up to time tr .

In most existing computational haptic perception models, δ(·) is a static function of
the sensory input. As an example from softness perception, a static perception model
for discriminating two environments with stiffness coefficients k1 and k2 could be
formulated by setting δ(·) = k1 − k2 and setting the threshold value to the JND for
stiffness ε = JNDk . As a consequence, temporal aspects of the interaction such as
movement speed, frequency, or interaction duration remain unmodelled. Instead, we
use a dynamic modelling approach to capture the decision criterion. We will limit
our considerations to ordinary differential equations.

In the following, three perception modelling candidates for the decision crite-
rion δ(·) in (8.1) are proposed. The main inspiration for these models is drawn from
considerations how one would approach the detection of differences in a haptic envi-
ronment from a system theoretic point of view. Support for the mechanism candidates
in terms of neurophysiological and psychophysical evidence is also reported.

8.2.1 Sensorimotor Control Model

The different modelling approaches are discussed using a simplified dynamic model
of the human motor apparatus considering only one arm, which is a common simpli-
fication throughout the literature (Gil et al. 2004; Yokokohji and Yoshikawa 1994).
The state vector xh consists of the hand position xh and velocity ẋh . A block diagram
of the arm, controlled to follow a specific state trajectory, is depicted in Fig. 8.1.
Note that we make the modelling variables’ dependency on time only implicit in
favour of a clear presentation. The control mechanism �con(xh, xdes) determines the
forces which must be applied to the limb to follow a desired state trajectory xdes. The
arm with its mechanical properties �body(xh, ẋh, fres), linearly approximated by a
mass-damper system
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Fig. 8.1 The human arm is abstracted as a state-controlled single joint

ẍh = − 1

mh
( fres − dh ẋh)

with human-like parameters (mh = 2 kg, dh = 2 Ns/m from Yokokohji and
Yoshikawa (1994)) is in contact with the environment. The environment dynam-
ics are contained in �env(xh, ẋh) and react to the state xh with a force fh . This
feedback acts back on the limb and influences the force moving the limb.

Physiologically, humans are equipped with multiple haptic sensors (Hale and
Stanney 2004), and we will focus on sensors for the muscle force fm , limb position
xh and velocity ẋh . Dynamics and noise in the sensory estimates are not considered
explicitly, but implicitly respected in the choice of perceptual thresholds ε �= 0.

8.2.2 Feature Comparison

A straightforward way of discriminating between two soft haptic environments is
comparing their characteristic parameters θ . Such parameters include the stiffness
coefficient, or, in case a telepresence system including delayed communication is
involved, the time delay between movement and force feedback. To be able to com-
pare the two environments on a parameter basis, a system identification technique
suitable to capture this specific property must be used, leading to estimates θ̂1, θ̂2.
Time delay between movement and force could well be identified using an estimate
of the covariance between a position input and a force output signal (Ljung 1999).
Acknowledging the fundamental assumption of a decision criterion and threshold
for perceptual mechanisms in Eq. (8.1), we propose

yp(tr ) =
{

“different” if |θ̂1 − θ̂2| > θthresh

“same” otherwise.
(8.2)

In studies on monkeys, correlation techniques as a normalised form of covariance
methods have been found to be good at explaining brain activity in specific brain
regions associated with perception, if the animal attends to a certain visual stimu-
lus (Niebur and Koch 1994). This could be taken as evidence for the existence of
a neural substrate for performing correlations efficiently in the brain. Correlation
mechanisms can furthermore explain humans’ performance in detecting temporal
differences in audio-visual signals (Fujisaki and Nishida 2005).
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Remark 2 The classical JND measure is defined in the dimension of the physical
quantity under consideration, that means the haptic environment property θ (Weber
1834; Jones and Hunter 1990). In that sense, classical perception models are con-
tained in the feature comparison model proposed here and the predictions from the
feature comparison model are seen as a baseline for the other dynamic prediction
models.

8.2.3 Inverse Model Verification

An alternative approach to judge whether two soft environments have the same or
different properties is the use of a model verification technique. In system identi-
fication, verification is a standard procedure to check whether an identified system
has good generalisation capabilities (Åström and Eykhoff 1971). At first, a haptic
environment model is built by exploring one stimulus and identifying its parameters
by using, e.g., a covariance method as proposed in Sect. 8.2.2. Secondly, during the
exploration of another haptic environment, sensory information is compared to a pre-
diction of the sensory output, given the previously built internal representation of the
environment dynamics. If prediction and sensory evidence match, the environments
are considered the same. If there is a mismatch between the prediction and feedback,
the two environments are classified as different. Diverse verification methods are
utilised in various technical applications, differing in the criterion which is taken
into consideration for classification.

One possibility for a perception model as proposed in Eq. (8.1) can be formulated
based on the force required to move along a specific trajectory. The model

yp(tr ) =
{

“different” if ∃t ∈ [0, tr ] : � fm(t) > � fthresh

“same” otherwise,
(8.3)

is based on the force difference � fm(t) = | f̂m(t)− fm(t)| with fm(t) being the effec-
tive force from all muscles acting on the limb and f̂m is an estimation of the expected
force given the previously identified haptic environment. The decision threshold is
denoted � fthresh in this model. The main difference to the feature comparison model
proposed in Sect. 8.2.2 is the fact that the dissociation between a target and a ref-
erence environment is not the experimentally varied variable, e.g. stiffness or the
communication time delay in a teleoperation system, but the deviant force between
the two conditions.

In addition to Eq. (8.3), a perception model based on Weber’s Law is proposed,
respecting the fact that force discrimination levels have been found to depend linearly
on the force level (Tan et al. 1994). A difference between two soft environments can
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be perceived if the fraction of force error and force magnitude exceeds the Weber
fraction w:

yp(tr ) =
{

“different” if ∃t ∈ [0, tr ] : � fm(t)/ fm(t) > w

“same” otherwise
(8.4)

Reconstructing the motor action from a measurement of the state xh(t) requires
a dynamic model containing the body and the environment impedance. In motor
control literature, a model predicting motor actions (force) from an observation of
the body state xh (movement and position) is referred to as an inverse model. There
is experimental evidence for the usage of inverse dynamic models in sensorimotor
control by predicting the motor actions from the sensed state of the body (Kawato
1999; Shidara et al. 1993). Similarly, an inverse model f̂m,res = �inv(xh) capturing
dynamics of the arm, sensors and the environment can potentially play a role in
perception as well. A stiffness estimation method on the basis of maximum force
comparisons between conditions (Tan et al. 1995; Pressman et al. 2007) can be seen as
a representative of a perception model using inverse dynamics. Model verifications
are closely related to the prediction error method (PEM) which utilises the error
between model predictions and sensory information to enhance identification results.
This is a well-established technique in system identification (Ljung 1999) and a PEM
algorithm has been found to explain the anticipatory perception of sensory events in
a plausible way (Szirtes et al. 2005).

8.2.4 State Observer Model Verification

Alternatively to the exerted muscle force fm(t) as a decision criterion for distin-
guishing two soft haptic environments, perceptual judgments can be based on the
body state xh(t). In the proposed model of the arm in Fig. 8.1, consisting of one limb
performing a unidirectional movement, xh(t) consists of the limb position xh(t) and
velocity ẋh(t). The resulting haptic perception model is given by

yp(tr ) =
{

“different” if ∃t ∈ [0, tr ] : |x̂h(t) − xh(t)| > �xthresh

“same” otherwise,
(8.5)

where x̂h(t) is a prediction of the body state, given a previously experienced envi-
ronment dynamics.

A state observer can predict the body state from observations of the motor input
and sensory measurements, utilising a forward model of the body and environment
dynamics. A state observer with a linear dynamic model is depicted in Fig. 8.2.
The estimated dynamics of the limb and environment are contained in the state
function �̂body/env(x̂h, ˙̂xh, fm). Generally, an output function is required to trans-
form states into measurable outputs; however, since humans possess sensors for both
position and velocity, no transformation is required here. Comparing the predictions
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Fig. 8.2 A block diagram of
a state observer

observer

physical system

to the actual sensory observations leads to a prediction error which is weighted with
a matrix function K (xh − x̂h) and used to correct future estimates of the body states.
In the following, we only consider linear body and environment models and sim-
plify K (·) to a linear matrix multiplication K (·) = K . In case �̂body/env(x̂h, fm)

captures the body and environment characteristics exactly and the initial state esti-
mate x̂h(0) is correct, the state estimate over time x̂h(t) equals the real state xh(t).
If the internal prediction model deviates from the real dynamics because the envi-
ronment in the second stimulus differs from the comparison condition, the estimated
state differs from the real state.

In the case of white noise affecting the output measurement and states, the noise-
optimal choice for K is the Kalman Gain. This choice turns the observer into a
stationary Kalman filter. Kalman filters have been found to describe sensorimotor
control processes well in various situations such as the estimation of hand posi-
tion (Beers et al. 1999) or posture (Kuo 1995). This is a motivation to consider such
a structure as a candidate for perceptual processes as well.

8.3 Model-Guided Experimental Design

A percept of a soft environment can be corrupted in various ways: On the one hand,
differences in the stiffness coefficient alter the force feedback magnitude under con-
stant exploration movement; on the other hand, temporal distortions such as time
delay between movement and force feedback is capable of completely changing the
impression of the environment. Although time delay in haptic feedback is not a nat-
ural phenomenon in everyday-life haptic interactions, it is a problem in the operation
of telepresence systems over large distances (Peer et al. 2008), e.g., space (Sheridan
1993). We will focus on the investigation of distortions in the haptic combination
process due to temporal faults for two reasons: While it is known that time delay
between movement and force has a direct impact on the displayed softness (Hirche
et al. 2005; Hirche and Buss 2012), the perception of time delay in haptic interaction
with an environment is not yet sufficiently understood. However, such knowledge
is helpful to provide guidelines and specifications for haptic telepresence systems.
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As a second motivation, time delays are well-suited to dissociate between the three
perception model candidates, as will be detailed out in the following.

Experimental data from three published experiments on time delay detection in
force feedback is used to evaluate the prediction capabilities of the proposed per-
ception model candidates: In Rank et al. (2010), soft environments are explored
with sinusoidal exploration movements. Amplitude and frequency as well as the
stiffness coefficient are varied. The applicability of the models to environments dif-
ferent from softness is also examined to determine their capability to predict per-
ceptual thresholds in damped and inertial environments as well, using data from
Rank et al. (2010a).

8.3.1 Model-Guided Stimulus Selection

The prediction of perceptual thresholds based on the models introduced in Sects.
8.2.2–8.2.4 depends on a multitude of factors, e.g., the interaction movement speed,
frequency, and amplitude. Given this high-dimensional parameter space, a fully
crossed experimental design with conditions sampled over a range of stimuli is
inappropriate. Instead, we choose a model-based selection of experimental stimuli
based on predictions for the discrimination threshold of time delay in force feedback
from the environment using a linear spring with spring constant ke. Without loss
of generality, the equilibrium point of the spring is set to the position xh = 0. The
predicted perception limits of time delay on the basis of the matched filter model and
the state observer model depend on the interaction movement xh(t) with the haptic
environment. A sinusoidal movement

xh(t) = A sin(ωt) (8.6)

with amplitude A and frequency ω is chosen as the interaction pattern since it is
easy to understand and perform for participants in a psychophysical experiment. The
predictions following from the choice of environment and interaction movement are
discussed below.

The force feedback from a soft environment with time delay Td is expressed as

fh(t) = kexh(t − Td). (8.7)

Respecting the dynamical model of the human arm in contact with the environment
illustrated in Fig. 8.1, the overall motor action that is required to move the limb in
contact with the environment is

fm(t) = mh ẍh(t) + dh ẋh(t) + kexh(t − Td). (8.8)

Without loss of generality, we consider the case that the non-delayed soft environment
is explored first. The delayed feedback is perceived second and the sensory evidence
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from this exploration is compared to predictions from the undelayed stiffness. In
addition, we assume that humans have good knowledge of their body dynamics (iner-
tia mh and damping dh), and the estimate k̂e of the environment stiffness coefficient
ke is sufficiently accurate from the non-delayed stimulus exploration.

The inverse model verification model founds on a comparison between sensory
observation of the resulting muscular force fm(t) and the predicted force feed-
back f̂m(t). Consequently, f̂m(t) is determined by

f̂m(t) = mh ẍh(t) + dh ẋh(t) + k̂exh(t). (8.9)

Setting k̂e ≈ ke and substituting x(t) with Eq. (8.6), the error between model pre-
diction and sensory feedback is calculated in agreement with (8.3) to

� fm(t) = |ke A(sin(ωt) − sin(ω(t − Td)))|. (8.10)

Model verification using a state observer relies on a prediction of the body state

x̂h(t) = [
x̂h(t) ˙̂xh(t)

]T
, (8.11)

utilising a forward model of body and non-delayed environment dynamics. The state
prediction is the solution of the set of differential equations, expressed in matrix form
as

[ ˆ̇xh(t)
ˆ̈xh(t)

]
=

[
0 1

− dh
mh

− ke
mh

] [
x̂h(t)
ˆ̇xh(t)

]
+

[
0
1

mh

]
fm,res(t)+

[
k11 k12

k21 k22

]([
xh(t)
ẋh(t)

]
−

[
x̂h(t)
ˆ̇xh(t)

])
.

(8.12)

In order to be detectable, the discrepancy in the decision variable must be larger
than a threshold variable. In order to determine the amount of time delay between
movement and force feedback, the maximum deviance between prediction and sen-
sory observation is to be computed. For the inverse model, the discrepancy is at its
maximum at time 1

2 Td after the zero-crossings of the predicted (non-delayed) force
reference, which is expressed by

� fm,max = � fm(t)|t= 1
2 Td

= ke A2 sin(
1

2
ωTd) ≈ ke AωTd . (8.13)

The last step in the calculation holds for small values of ωTd , which is a valid assump-
tion for the practically relevant range of time delays in telepresence applications and
the movement frequencies considered in the experiments.

Similarly, the state observation error can be computed by solving Eq. (8.12) for
the specific interaction movement from Eq. (8.6) and the motor action from (8.8). In
contrast to the solution for the maximum force error in Eq. (8.13), the maximum state
error depends on the entries of the feedback matrix K . These values are unknown.
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Fig. 8.3 Six pairs of
movement amplitudes and
frequencies were chosen in
such a way that ω, A and
their product Aω have three
different levels respectively

Thus, the experimental conditions are optimized for the inverse model, and the
prediction capabilities of the state observer model are tested post-hoc with a feedback
matrix K that is identified based on experimental data.

Keeping the time delay Td at a constant level, the maximum force error as the
prediction criterion for time delay detection is higher with a greater amplitude A,
and/or higher movement frequency ω. This means in return, that time delay needed
to exceed a hypothesized perception threshold on force error is smaller with larger
A and/or higher ω. Notably, the maximum force error as introduced in Eq. (8.13)
depends on the product of A and ω, predicting that choosing values of A and ω such
that their product is constant (Aω = const.) results in the same detection threshold.
For testing the influence of movement amplitude, frequency and their product, a
systematic experimental design with three levels for A, three levels for ω and three
levels of Aω as depicted in Fig. 8.3 is chosen.

Another factor in the computation of the maximum force error according to
Eq. (8.13) is the stiffness coefficient ke. The perception model predicts a lower time
delay detection threshold in the case where stiffness is higher.

In addition to a soft environment, the prediction capabilities of these models in
damping and inertia are explored in order to test a generalisation to other experimental
conditions as well. Stimuli with a damping de, and an inertia me satisfy

� fm,max

fm(t)|� fm(t)=� fm,max

∣∣∣∣
de

= � fm,max

fm(t)|� fm(t)=� fm,max

∣∣∣∣
me

,

such that the Weber fraction is equal in both conditions, resulting in a constant time
delay detection threshold in the case of a perception criterion based on Weber’s Law.

8.4 Experimental Investigations

Experimental data from three studies is analysed here. From Rank et al. (2010a), time
delay detection thresholds for sinusoidal movements with parameters as depicted in
Fig. 8.3 is taken. In addition, detection thresholds for three levels of stiffness under
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Table 8.1 Mean detection thresholds (DT ) and standard error (SE) of time delay-induced alterations
of soft environments depend on the specific interaction movement and the composition of the
environment

Condition Movement variation Stiffness variation Environment
variation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ke [N/m] 65 65 65 65 65 65 65 65 65 65 65 65 65 0 0

de [Ns/m] 0 0 0 0 0 0 0 0 0 0 0 0 0 65
2π

43
2π

me [kg] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22
(2π)2

Â [cm] 8.9 10.5 13.2 8.6 10.7 8.74 14.8 14.8 14.4 18.5 18.4 18.7 11.1 11.3 11.2
ω̂

2π
0.71 0.70 0.68 0.93 0.92 1.24 1.06 1.08 1.12 0.84 0.85 0.84 1.03 1.05 1.08

DT [ms] 46 47 37 41 37 36 24 25 28 34 31 37 36 15 72

SE [ms] 4.5 7.3 6.3 5.0 4.2 5.8 4.5 6.5 9.3 9.3 4.5 9.5 5.7 2.6 6.1

two different movement patterns are taken from Rank et al. (2010a). Third, the time
delay detection thresholds obtained for stiffness are compared to those in damping
and inertia environments while keeping the interaction movement constant. This data
is reported in Rank et al. (2010). A summary of all experimental conditions and the
detection thresholds found in the experiments is provided in Table 8.1. Notably, we
also report measurements of participants’ mean amplitude Â and frequency ω̂ of their
interaction movement since these have been found to differ from the experimental
instructions.

8.4.1 Results

Four substantial findings can be concluded from the experimental findings in
Rank et al. (2010a):

1. The detection thresholds for time delay-induced environment alterations are neg-
atively correlated with movement frequency and movement amplitude.

2. Movement amplitude and frequency influence the detection threshold separately.
3. Within the range of experimental conditions, stiffness does not affect perceptual

discrimination abilities of time delay in force feedback.
4. A change in the environment due to time delay can be detected easiest in force

feedback from a damper, followed by time delay in force feedback from softness.
Inertia exhibits the largest detection thresholds.

In order to investigate which perception model candidate is most suited modelling
this observed behaviour, parameters for each model are identified and predictions
for the detection thresholds are obtained.
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8.4.2 Model Predictions

Since experimental methods and the group of participants are not homogenous over
the different experiments, we fit mean detection thresholds individually for each
experiment. To compare the prediction quality between models, the mean squared
error (MSE) is computed. In the following, the individual identification procedures
and the prediction results are discussed in detail.

8.4.2.1 Feature Comparison Model

Humans may perceive time delay in a haptic environment per se and compare indi-
vidual estimates obtained from haptic exploration of the standard and comparison
environment. The correlation techniques discussed in Sect. 8.2.2 are indeed well-
suited to infer a time delay between movement and force feedback. While an uncer-
tainty in time delay detection performance due to noise in the biological system could
lead to a detection threshold different from zero, there is no apparent reason why
the uncertainty about the time delay should change with input amplitude, frequency,
magnitude, or the type of environment. The predicted time delay detection threshold
based on this method is thus constant over conditions. Identification of the only free
parameter in this model is achieved by solving

arg min
DT θ

1

Ncond

Ncond∑
i=1

(DTi − DT θ )2 (8.14)

where Ncond is the number of conditions in the respective experiment, and DT θ is the
(constant) time delay detection threshold. The solution to this optimisation problem
is the mean time delay over all conditions within one experiment. Predictions from
this perception model result in a MSE of 127.34 ms2.

8.4.2.2 Inverse Model Verification

The parameterisation of this model, given the experimental results in Table 8.1 is the
result of a nonlinear constrained optimisation problem

arg min
DT f

i ,� fthresh

1

Ncond

Ncond∑
i=1

(DTi − DT f
i )2 (8.15)

s.t. max � fm,i (t) = max | fm,i (t) − f̂m,i (t)| = � fthresh ∀i ∈ [1, Ncond ]

where � fthresh is the (constant) detection threshold for the difference between the
delayed and non-delayed exerted force and DT f

i the corresponding time delay
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value causing � fthresh . The predicted motor action on the basis of the measured
state xh(t) is computed for each individual experimental condition, indexed by i ,
and denoted f̂m,i (t). A numeric optimisation algorithm based on the interior-point
method is used to find the optimal parameterisation fitting all experimental condi-
tions (Byrd et al. 1999). Using the dynamic inverse model to explain average detec-
tion thresholds for time delay perception results in lower prediction errors (96.7 ms2)
compared to the feature comparison model prediction. The mean force difference
thresholds for the experiments are 1.4 N for the first, 1.2 N for the second, and 1.7 N
for the third experiment.

Force difference perception for experiments with slowly-changing forces is known
to follow Weber’s Law (Tan et al. 1994). The Weber fraction of � fh(t) could thus
be an good model to explain the detection thresholds of time delay as well. The
optimisation problem to be solved is similar to Eq. (8.15), namely

arg min
DT w

i ,w

Ncond∑
i=1

(DTi − DT w
i )2 (8.16)

s.t. max
� fm,i (t)

fm,i (t)
= w ∀i ∈ [1, Ncond ]

with w the Weber fraction. Indeed, the model fit for the experiment with different
stiffness levels is admittedly good, with a MSE of only 4.5 ms2, but the model
performs poorly for all other conditions, yielding a total MSE of 127.7 ms2. Thus,
this model performs not better as the feature comparison model being the baseline
predictor.

8.4.2.3 State Observer Model Verification

In contrast to the matched filter perception model, the state observer model utilizes
an estimation of the body state for the decision about the environment time delay. The
difference between the observed state and actual state heavily depends on the choice
of the feedback matrix K , as discussed in Sect. 8.2.4. The model predicts perception
limits based on a threshold in the state estimation error. The state xh(t) consists of
two components, namely the limb position xh(t) and velocity ẋh(t). While deviations
between the observed state and the measured state could be principally based on a
generic threshold both on position and velocity, individual models considering a
threshold on xh and ẋh are considered here:

arg min
DT

x1
i ,�xh,thresh ,K

1

Ncond

Ncond∑
i=1

(DTi − DT x1
i )2 (8.17)

s.t. max �xh(t) = max |xh(t) − x̂h(t)| = �xh,thresh ∀i ∈ [1, Ncond ]
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and

arg min
DT

x2
i ,�ẋh,thresh ,K

1

Ncond

Ncond∑
i=1

(DTi − DT x2
i )2 (8.18)

s.t. max �ẋh(t) = max |ẋh(t) − ˆ̇xh(t)| = �ẋh,thresh ∀i ∈ [1, Ncond ].

The problems formulated in (8.17) and (8.18) have five free parameters to be opti-
mised. Due to the comparably low number of experimental conditions which are
available for model fitting and the fact that the optimisation problem may indeed
be non-convex, the solution can depend on the chosen initial values. Suitable values
are found from an initial grid search procedure, meaning a simulation of the state
space observer model for different feedback matrices K . Observation errors �xh(t)
and �ẋh(t) are computed for every candidate of K and the values resulting in the
lowest variance for the state error between all conditions of each experiment is taken
as initial values for the optimisation problems stated in Eqs. (8.17) and (8.18). Only
one feedback matrix K for all experiments is fit to keep the number of variables
computationally tractable and reduce the problem of overfitting. However, we do
allow for different threshold values xh,thresh , ẋh,thresh in the three experiment to
account for the differences in experimental methods. As a result, the state observers
with feedback matrices

Kxh =
[

11.8 36.3
33.3 31.1

]
, and Kẋh =

[
0 9.8

9.4 11.4

]
(8.19)

for predictions based on xh and ẋh , respectively, give predictions with the lowest
mean squared error. Threshold values for the position-based observer are 0.10, 0.02,
and 0.07 m. Velocity thresholds are 0.15, 0.04 and 0.07 m

s . The MSE values
are 98.3 ms2 for the state observer using the position error as decision variable,
and 85.7 ms2 for the velocity-based threshold. Predictions from all models in all
experimental conditions are compared in Fig. 8.4.

8.4.3 Discussion

Comparing the predictions from all models introduced in Sects. 8.2.2–8.2.4 leads
to the conclusion that the state observer model with a detection mechanism on the
observation error in limb velocity is most successful in capturing the observed percep-
tual behaviour. While in the first experiment, conditions with comparable maximum
force errors would lead to similar detection thresholds, the inverse model verification
method would predict a decreasing detection threshold for an increase in stiffness.
However, the second experiment fails to show such behaviour. In general, all dynamic
perception models except the model verification model using a threshold based on
Weber’s Law outperform the static feature comparison model.
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Fig. 8.4 Prediction errors, grouped by experimental condition (1–15, see Table 8.1). Prediction
errors are high in environments different than softness (14–15)

The state observer verification model is most successful in predicting detection
thresholds for time-delay induced changes in the environmental characteristics, but it
also has most degrees of freedom. Claiming the superiority of this model over its alter-
natives is thus admittedly difficult. Statistical tests such as the Akaike information
criterion fail here due to the inhomogeneity of the dataset with respect to participants
and methods. However, considering the technical application motivating the percep-
tual modelling, valuable predictions can still be drawn for the practically relevant set
of movement stimuli and haptic environments presented here.

An analysis of the prediction errors in the individual experimental conditions
reveals that all proposed models capture the time delay detection thresholds with a
significantly lower MSE for the soft environments compared to inertia and damping
(Welch’s t-test, t (0.14) = 15.7, p < 0.001). One reason for this lack of generality
could be our implicit assumption of an internal representation of the environment that
can generate a noise-free and temporally accurate prediction of the reference to the
actual sensory feedback. It is known that time perception can be easily disturbed by
many factors including attention to the stimulus, the frequency of events occurring
etc (Grondin 2010). The difference between the soft, damped and inertial stimuli
used in the studies described lies in the relative phase between the position and force
signals, thus in their inherent characteristic temporal relation to each other. Modelling
temporal uncertainties and noise on the perceptual signals during the exploration may
bring further insights into the mechanisms involved in the combination of movement
and force into a coherent percept of haptic environments.

So far, all found effects had been attributed to the time delay introduced between
position and force feedback. However, using a regular exploration strategy with
fixed frequency makes time delay indissociable to a non-linear spring, similar to
Leib et al. (2010). The detection could thus as well be a measure of non-linearity in
the environment characteristics rather than actual delay. Further studies are required
to actually dissociate between these possibilities.
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8.5 Implications for Telepresence Systems

Time delay is a critical issue for haptic telepresence systems operating over long
distances (Peer et al. 2008; Hirche and Buss 2012; Sheridan 1993). Challenges to
be dealt with include technical issues such as system instability and, on the side
of the human operator, impaired perception of the environment’s haptic properties,
especially softness (Hirche and Buss 2007, 2012). High-fidelity telepresence systems
must aim for a high degree of transparency, that means, that the operator can not
distinguish whether he/she directly interacts with the environment or by means of the
technical system. Towards this ultimate goal, our findings provide valuable insights
for the design and control of telepresence system that allow an unaltered perception
of a remotely explored softness. First of all, the operator’s movement must be taken
into consideration to evaluate whether a time delay in the communication channel
affects softness perception or not. A haptic task which requires only slow movements
can tolerate longer delays in the feedback than a highly dynamic task requiring
movements with a high frequency. Not only the task can limit the amplitude and
movement frequency, but also the haptic interface. A smaller workspace on the one
hand, and high friction or uncompensated inertia on the other hand can influence
the detection thresholds. The workspace dimensions of the local haptic interface
determine the maximum movement amplitude, and detection thresholds increase.
With larger inertia and damping of the local haptic interface, the achievable human
movement frequency decreases, resulting in a higher detection threshold for time
delay.

The finding that a scaling of the stiffness coefficient within the investigated range
does not influence the sensitivity of temporal perception is interesting for the applica-
tion in a specific teleoperation application, namely micromanipulation. In this area,
small forces arising in a micro-scale environment must be augmented for the user to
provide a perceptible haptic impression (Ando et al. 2001). For the case of delayed
haptic feedback, our finding suggests that the scaling factor can be chosen irrespec-
tive of haptic latency. Note, however, that we only validated this hypothesis for a
limited range of stiffnesses. In extreme scenarios, such as stiff contact with a rigid
object, an infinitesimally small time delay may result in an unstable system, which
completely changes the characteristics of the system. The human operator may then
be able to infer the time delay from increasing oscillations in the force feedback.

Although none of the current model candidates are capable of entirely predicting
thresholds for time delay detection in force feedback, the finding of such a dynamic
model would have direct application for the design of communication algorithms,
or haptic rendering systems as well: The greatest benefit of these models lies in
the possibility to consider the influence of interaction movements on the perceptual
threshold explicitly. In this way, more accurate predictions whether a time delay in
the haptic feedback is perceivable or not can be utilised during the execution of a
task, and appropriate measures can be taken, for example in communication Quality-
of-Service control algorithms. We take this as a motivation to work further towards
this ultimate goal.
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8.6 Conclusions and Open Problems

Humans do not possess a dedicated sensor for haptic environment properties such
as stiffness, damping, or inertia. Instead, temporal and magnitude information from
movement and force feedback must be combined together to infer such measures.
System theoretic perception models capable of combining these information sources
have been proposed in this chapter. We tested the ability of all model candidates to
predict time delay detection thresholds in force feedback. Taking together the results
of six psychophysical experiments on time delay perception thresholds, a dynamic
state observer model has been identified as the model capturing human discrimination
performance best when movement and force feedback are temporally misaligned.

Although all model candidates have been tested for a number of different move-
ments, the pattern was so far restricted to sinusoids of different amplitudes and
frequencies. For a more general applicability to haptic telepresence systems, other
movements must be considered as well. Ultimately, perceptual responses for time-
delayed feedback from arbitrary voluntary explorations shall be predictable. Further-
more, the modelling performance in the third experiment, considering time delay
perception levels in stiff, damped and inertial environments have not been captured
well by either model proposed so far. Alternative models with other decision cri-
teria could further improve the prediction performance. Together with a dynamic
perception model for the influence of magnitude information on the combination of
movement and force, conclusions about perception mechanisms for abstract envi-
ronments containing arbitrary combinations of stiffness, damping and inertia could
be eventually drawn.
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Chapter 9
Perception of Stiffness with Force
Feedback Delay

Ilana Nisky, Raz Leib, Amit Milstein and Amir Karniel

9.1 Introduction

Throughout the course of our everyday lives, we retrieve information from our
environment and generate internal representations of the world around us (Karniel
2009, 2011; Kawato 1999; Wolpert and Kawato 1998; Wolpert et al. 1998). The sense
of touch helps us to generate internal representations of the mechanical properties
of objects, and we use it both for constructing perception and for guiding action. For
example, a surgeon may palpate a tissue and use the perceived stiffness for diagnosis,
but also for determining how strongly to grip a scalpel while cutting it. This book
is focused on understanding how the human sensorimotor system integrates vari-
ous sources of information to form a representation of stiffness—the linear relation
between position and force. In this chapter, we will examine attempts to answer this
question when users interact with artificially changed environment in which the force
resulting from an interaction with the object is delayed, such as in the case of remote
bilateral teleoperation.

Bilateral teleoperation allows human operators to interact with distant objects by
moving a local robotic device and sensing the forces reflected from a remote device
that interacts with the environment. Successful bilateral teleoperation can improve
various aspects of our lives, including the practice of telemedicine, such as telesurgery
(Anvari 2007; Marescaux et al. 2001; Satava 2006) and remote rehabilitation (Duong
et al. 2010; Reinkensmeyer et al. 2002), the safe handling of hazardous materials,
the ability to perform space vessel maintenance tasks (Hirzinger et al. 1993; Imaida
et al. 2004; Reintsema et al. 2007; Yoon et al. 2004), and the addition of a personal
touch to standard telecommunications (Avraham et al. 2012; Karniel et al. 2010). It
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can also facilitate telementoring in fields where motor skills acquisition might benefit
from a telepresent teacher (Gillespie et al. 1997; Sheridan 1997), such as in medicine
(Ballantyne 2002; Rosser et al. 1997), sports, performing arts, and education.

Transparency quantifies the fidelity of a teleoperation system, and is typically
defined as the ability to accurately display remote environment properties to the
operator, and the ability to accurately execute the movements of the operator in
the remote environment. Most of the classical transparency studies have focused
on the optimization of teleoperation system in isolation from the human operator
and the environment—a system-centered approach. Recently, an alternative, human-
centered, approach to this problem, that emphasizes the subjective experience of
the operator and the successful outcomes of the operation was suggested (Nisky
2011; Nisky et al. 2008a, 2011, 2013). A key step in developing a human-centered
approach to remote teleoperation is to explore the effects of delay on the perception
and action of the operator, and in this chapter, we will address the implications of
delay effects on the design and analysis of teleoperation systems.

Perception, action, and adaptation to externally induced delay are also interest-
ing to explore because they can reveal how the human motor control system is able
to successfully cope with internal delays that change during the course of our life.
In addition, understanding mechanical interaction with delayed environments may
advance the knowledge of how sensory force feedback is integrated with feedback
about executed movements for control and for estimation of mechanical properties,
even when force is not delayed. During interaction with spring-like elastic objects,
there is a linear coupling between movement and force, and therefore, it is impossible
to disambiguate which information is used by the motor system in various contexts.
Delay of force feedback breaks this coupling between motion and force, and gener-
ates a haptic illusion. Various visual and haptic illusions (Bicchi et al. 2008; Gentaz
and Hatwell 2004; Hogan et al. 1990; Lederman and Jones 2011) are often used in
neuroscience as tools to explore underlying neural mechanisms by suggesting com-
putational models that can explain the behavior of participants under these illusions.
We will discuss the implications of the perceptual effects of delay on the understand-
ing of sensorimotor processes in the brain, and in particular, on the combination of
force and position control in palpation of soft objects.

Perception of stiffness can be explored using real elastic objects or using virtual
elastic springs rendered by means of haptic devices (Biggs and Srinivasan 2002). The
advantage of using virtual environments is that when a programmable robotic device
generates the mechanical coupling between motion and force, the researcher is free
to design the environment such that each component of the mechanical interaction
can be studied separately. Users may face various environments, such as elastic force
fields with delay (Nisky et al. 2008b, 2010; Pressman et al. 2007, 2008), viscous
force fields (Shadmehr and Mussa-Ivaldi 1994), or various nonlinear force-position
(Leib et al. 2010; Mugge et al. 2009; Nisky et al. 2010, 2011; Repperger et al. 1995)
and force-velocity (Millman and Colgate 1995) relations. Utilizing interaction with
virtual environments is critical for exploring the effect of delay on perception and
action, because it allows easy implementation of a pure delayed spring without the
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need of setting up a teleoperation channel, and hence avoiding jitter, communication
distortion, and controllers’ dynamics.

This advantage of using virtual environments comes with the price of
potential inaccuracies in the rendered environments resulting from hardware and
control limitations. These limitations, however, may be mitigated by experimental
protocol design. For example, the effect of delay is typically evaluated by compar-
ison between delayed and non-delayed elastic objects in a forced-choice paradigm
rather then using magnitude estimation psychophysical methods.

To study the effect of delay on perception and action, participants are often asked
to interact with a force field that has the mechanical properties of a one-sided spring,
i.e., the applied force is proportional to the penetration into the field:

f (t) =
{

k (x(t) − x0) , x(t) ≥ 0
0, x(t) < 0

(9.1)

where k is the stiffness of the elastic force field, and x0 is its nominal boundary. A
one-sided spring is a first order approximation of the mechanical properties of many
real-life objects that apply forces on the user only when compressed. When a delay
of �t ms is introduced, the force is proportional to the penetration �t ms ago, as in:

f (t) =
{

k (x(t − �t) − x0) , x(t − �t) ≥ 0
0, x(t − �t) < 0

. (9.2)

(a) (b)

Fig. 9.1 Force-position plane trajectories of one forward and back palpation cycle in contact with
a spring-like field without (a) and with (b) delay. A sinusoidal movement trajectory (as a function
of time) was assumed here for illustration purpose. The solid vertical line denotes the position of
the nominal boundary. The dashed vertical line indicates the position of the effective boundary.
The square symbol represents a possible perceived boundary. The ‘o’ and ‘x’ symbols represent
the maximum force and penetration, respectively. In the case of a delayed spring-like field (b), the
operator first penetrates the field without force feedback, and only after the delay does the force
increase gradually. As the operator reverses the movement direction (at the ‘x’ mark), the force
continues to increase for the duration of the delay and then decreases (at the ‘o’ mark). The slope of
the dotted-dashed line represents the nominal, non-delayed, stiffness, and the dotted line represents
the perceived stiffness based on the model in Pressman et al. (2007) that estimates perceived stiffness
as the ratio between peak force and perceived penetration, i.e. the distance between the position at
the time when the peak force was applied, and the perceived boundary
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Stiffness is defined as the ratio between applied force and penetration. In the non-
delayed case, the force-position trajectory is a straight line (Fig. 9.1a); however, delay
causes this trajectory to become elliptical (Fig. 9.1b), and the force is no longer
a single-valued function of the position. During the probing movement, the local
stiffness is at some times lower and at other times higher than the non-delayed
stiffness. In addition to the nominal boundary, an effective boundary can be defined,
which is the position where the forces are first applied on the user. The effective
boundary of a linear spring-like field is a region where stiffness is ill defined, i.e.,
the derivative of the force-position relation exhibits a sudden transition from zero to
a non-zero value, and at the transition point, it has different values along different
directions. In the non-delayed case, the effective boundary is the nominal boundary. In
the delayed case, they do not coincide, and the exact position of the effective boundary
depends on the delay and on the velocity of the probing movement. In general, the
faster the users move their hand while interacting with the elastic force field, the
larger the effects of delay on force-position trajectories are. It is also important to
keep in mind that larger movement velocities also enhance device-related artifacts
such as the effects of device inertia and sampling time interval.

9.2 The Effect of Delay on Stiffness Perception

To systematically explore the perceptual effect of delay, Pressman et al. (2007) used a
forced choice paradigm with the method of constant stimuli. In each trial, the partici-
pants were presented with two elastic force fields: one of them was never delayed and
the other was delayed in half of the trials. After interacting with both elastic fields for
as long and as many times as they wanted, participants were asked to answer which
of the two was stiffer. Based on their answers, it was shown that participants tend
to overestimate the stiffness of elastic force fields when force feedback is delayed,
and that this effect is enhanced with increasing delays, and reversed if direction of
delay is reversed (namely, force precedes position). Moreover, delay caused over-
estimation of stiffness even in the case of more complex force fields, in which the
delay was present either only during the inward portion of the probing movement
(and the forces applied during the outward portion of the probing simulated a linear,
non-delayed, elastic force field), or only during the outward portion (and accord-
ingly, the forces applied during the inward motion simulated a non-delayed elastic
field). In this experiment, participants made planar movements of their entire arm
including shoulder, elbow, and wrist joints in the sagittal plane passing through
their shoulder (Fig. 9.2a) while interacting with a planar robotic manipulandum
(Shadmehr and Mussa-Ivaldi 1994), and the interaction forces were applied in the
sagittal plane toward them. The participants were free to cross the boundary of the
elastic field as much as they liked.

To explain these experimental results, the authors suggested that the perception
of stiffness is formed based on a limited subset of force-position information that the
participant experienced during probing. Their best model for this effect suggested that
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(a) (b)

Fig. 9.2 In studies of perception of stiffness with delay, seated participants interact with robotic
devices that emulate interaction with one-sided elastic force field. In both panels, the orange gradient
represents the strength of the elastic force field. The arrow denotes the direction of the applied force,
f, and x0 is the location of the nominal boundary of the elastic force field. In a, a view from above
of the posture in Pressman et al. (2007, 2008, 2011) is depicted. In b, a side view of the posture in
Nisky et al. (2008b) and in the “elbow” condition in Nisky et al. (2010) is depicted

the participants’ answers could be explained by the ratio of the maximum interaction
force and the perceived penetration into the force field. The perceived penetration is
calculated relative to the perceived boundary of the elastic field, which is estimated
by a combination of the effective boundary at a specific trial with a prior based on
the effective boundary positions that were experienced in previous interactions with
the elastic object. During the experiment, participants interacted with delayed and
non-delayed elastic force fields, and hence, experienced both shifted and identical to
nominal effective boundaries. Hence, the perceived boundary is between the nominal
and effective boundaries (as depicted in Fig. 9.1b), and the perceived penetration is
larger than the effective one, but it is smaller than the nominal. The maximal force
is a function of the nominal penetration, and hence the stiffness is overestimated, as
depicted in Fig. 9.1b.

To further test the effect of the perceived boundary location on stiffness perception
in cases other than delay of force feedback, Pressman et al. (2008, 2011) performed
two additional studies. In these studies, they caused a shift in the position of the
perceived boundary by occasionally shifting the entire elastic object away from or
towards the participant. When the boundary of an elastic force field was shifted
away from the participants they underestimated its stiffness, whereas a shift toward
the participant caused overestimation. In this case, unlike in the case of delayed force
field, the effective and nominal boundaries coincide, and both are shifted. The prior
estimation of the position of the boundary is based on the entire history of interaction
with the shifted as well as regular elastic force fields, and therefore, the perceived
boundary is shifted less than the effective and nominal, As a result, the perceived
penetration is larger in the case of an away shift, and smaller in the case of a toward
shift, causing underestimation and overestimation of stiffness, respectively.
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Interestingly, other studies showed the opposite effect of delay on perception of
stiffness, namely, underestimation of stiffness (Di Luca et al. 2011; Ohnishi and
Mochizuki 2007). In both of these studies, participants interacted with a Phantom
Premium 1.5, Sensable Technologies, which was placed on a table in front of them,
leading to a posture in which the elbow is flexed and is close to the trunk (similar the
posture in Fig. 9.2b). Note that (Di Luca et al. 2011) talked about the compliance of
elastic fields, i.e. the inverse of stiffness, but for consistency with the other studies,
we transform their results into stiffness effects.

These studies only considered nominal boundaries, and suggested a model of
stiffness estimation based on the ratio of force and penetration during the loading
phase of the interaction with the elastic spring, that is, the inward movement. During
the loading phase, the forces are consistently smaller than those that would be expe-
rienced for similar penetration without delay, whereas during the unloading phase,
the forces are larger. Therefore, a higher weight on the information that is sensed
during the loading phase can explain underestimation of stiffness due to delay. This
model assumes that the higher weight of the loading phase is a result of a statisti-
cally optimal integration of information between the two phases, and is supported
by the result that the just noticeable difference for stiffness discrimination is larger
when users interact with the spring in the unloading phase only when compared to
loading phase only (Di Luca et al. 2011). In addition, when the visual information
of movement was delayed, the effect was reversed. This is consistent with the idea
that the users combined visual and proprioceptive information to obtain an estimate
of the penetration into the elastic field (Ernst and Banks 2002), and therefore,
delaying the visual information effectively reverses the sign of delay when com-
pared to delay in force.

While it is clear from the studies that we have reviewed so far that temporal
mismatch between force and position information during interaction with elastic
force fields biases the perception of stiffness, the results are unequivocal about the
direction of this bias. In addition, in Pressman et al. (2007), the effect of delay
was similar regardless to whether it was introduced during the loading or unloading
phases of exploration, which is not consistent with the models that were suggested
in Di Luca et al. (2011) and Ohnishi and Mochizuki (2007). There are, however,
numerous differences between the ways the participants interacted with the elastic
force fields in these studies, including: properties of the haptic devices that were
used for rendering the elastic force fields (the relatively powerful and large robotic
manipulandum compared to the smaller Phantom Premium 1.5 haptic device); the
posture of participants; the joints and muscles that were active during interaction with
the elastic force field; the direction of the applied forces with respect to gravity, and
the trajectories of their exploratory palpations (Kaim and Drewing 2008). Moreover,
in Di Luca et al. (2011), users received both haptic and visual information during
interaction with the virtual objects, whereas in Pressman et al. (2007), they received
only partial visual information about their lateral movement which was orthogonal
to the direction of applied forces. These factors are very likely to be at least partially
responsible for the discrepancy in the results.
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Nisky et al., studied how two of these factors may influence the way delay biases
perceived stiffness:

• The effect of the trajectories of exploratory palpations, focusing on crossing the
boundary of the elastic force field (Nisky et al. 2008b).

• The effect of the joint that pivots the palpation movements (Nisky et al. 2010).

They found that the perceptual effect of delay depends on the probing: participants
underestimated delayed stiffness when they did not move across the boundary of
the elastic field and maintained continuous contact with the field, and overestimated
delayed stiffness when they frequently crossed the boundary and left the field (Nisky
et al. 2008b). To explain these effects, the authors suggested a model that, unlike the
previously described models, takes the entire information acquired during interaction
with the elastic field into account. According to this model, perception of stiffness
is constructed from a convex combination of the inverse of the slope of regression
of position over force (which predicts overestimation of stiffness), and the slope of
regression of force over position (which predicts underestimation of stiffness). The
fraction of the probing movements that included boundary crossing out of the overall
probing movements within each trial determined the weight of position over force
regression.

The authors suggested that this model might imply that the estimation process
is related to the control policy that guides the movement of the hand (as illustrated
conceptually in Fig. 9.3a). When the hand moves in a homogeneous environment,
such as in the case of probing an elastic force field continuously, position control

(a) (b)

Fig. 9.3 The force and position control hypothesis. a A conceptual model of the control and
estimation causalities. The physical environment may be thought of as impedance (stiffness) or
admittance (compliance) and the appropriate estimation is determined by the control of probing
movements. b Both control causalities are combined in probing of elastic force fields, and they
are weighted according to the frequency of crossing the boundary of the elastic force field, and
according to the proximity of the joint that is used for probing. This is reflected in the perceptual
biases due to delay. The shade represents the weighting of the control causality (dark—position
control, light—force control) as well as the perceptual effect of delay (dark—underestimation,
light—overestimation)
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dominates the control of probing interaction. In this case, sensed force is a linear
function of commanded displacement; namely, the environment is impedance, and
the appropriate estimation of stiffness is the slope of force over position regression.
However, when the hand encounters the boundary frequently and the participant
experiences abrupt changes in stiffness, the preferred control causality becomes force
control. In this case, sensed displacement is a linear function of the applied force;
namely, the environment is admittance, and stiffness is estimated based on the inverse
of the slope of position over force regression. This idea was further supported in a
study where perception of the stiffness of a stepwise linear force-position relation
was successfully explained as the inverse of estimation of compliance (Leib et al.
2010). In this study, the stiffness of the force field increased several times during a
single probing cycle, and its results suggest that probing of an object with multiple
boundaries in which the levels of stiffness increase is dominated by force control.

The distinction between force and position control is prominent in robotics (Raib-
ert and Craig 1981). Recent evidence suggests that this may also be relevant for the
human motor system. While there are some studies that report independent motion
and force control (Chib et al. 2009; Venkadesan and Valero-Cuevas 2008), it is more
likely that in the motor system they are weighted gradually rather than switched in a
discrete manner. This weighting may depend on the impedance of the environment,
as supported by the findings that increasing environment stiffness elevates the weight
of force contribution to sensory estimation (Mugge et al. 2009) and causes transition
from restoring an unperturbed trajectory to compliance with the perceived object
boundary (Chib et al. 2006).

In Nisky et al. (2010), the authors hypothesized that the effect of delay on percep-
tion of stiffness might depend upon the joint that is used to pivot palpation movements.
Intuitively, we know that our fingers are more dexterous than our shoulders, and our
shoulder muscles stronger than finger muscles. The apparent biomechanical differ-
ences between limb segments are reflected in the distinct control of proximal versus
distal joints (Kandel et al. 2000; Kurata and Tanji 1986), as evident in anatomical
(Brouwer and Ashby 1990; Davidson and Buford 2006; Lemon and Griffiths 2005;
McKiernan et al. 1998; Palmer and Ashby 1992; Riddle et al. 2009; Turton and Lemon
1999), functional (Biggs and Srinivasan 2002; Domenico and McCloskey 1987; Hall
and McCloskey 1983; Hamilton et al. 2004; Refshauge et al. 1995), and clinical
(Colebatch and Gandevia 1989; Dijkerman et al. 2008; Lu et al. 2000; Turton and
Lemon 1999) observations. These differences might be responsible for the superior-
ity of the distal muscles in control and perception of the position of endpoint of the
limb (Domenico and McCloskey 1987; Hall and McCloskey 1983; Refshauge et al.
1995; Tan et al. 1994) and the superiority of proximal muscles in the control of force
(Biggs and Srinivasan 2002; Hamilton et al. 2004).

Indeed, in an experiment in which the users did not have access to the boundary of
the elastic force field, they found a proximodistal gradient in the amount of underes-
timation of delayed stiffness in the transition between probing with shoulder, elbow,
and wrist joints. That is, the underestimation was largest when users used their wrist,
and was smallest when they used the shoulder. In some of the participants, the effect
when probing with the shoulder was even overestimation. To explain these results,
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the authors used the same regression-based model, but in this case, the weight of the
estimation of compliance (that is related to the force controller) increased with the
proximity of the probing joint; that is, when probing was pivoted at the shoulder,
participants weighted the compliance estimation more, and when probing was piv-
oted at the wrist, they relied on stiffness estimation.

To summarize, the regression-based model implies that if perception is directly
related to the control policy that guides the hand, estimation of stiffness is related
to position control, whereas the estimation of the inverse of compliance is related to
force control. If this is true, then the findings about the effect of delay on perception
of stiffness provide an indirect evidence for the combination of position and force
control in explorative movements. The findings in Leib et al. (2010), Nisky et al.
(2008b), Nisky et al. (2010) suggest that position and force control are weighted
commensurately with the demands opposed by the environment, such as boundary
crossing and with the demands opposed by the biomechanical and control constraints
of the motor system itself, such as the proximity of the joint that is involved in
the probing movement. The weight of force control is increased as the boundary
crossing ratio increases and with the proximity of the probing joint. Therefore, a
proximodistal gradient in underestimation of delayed stiffness, as well as a transition
between underestimation and overestimation of delayed stiffness when increasing
boundary-crossing ratio are observed (Fig. 9.3b).

Now, let us return back to the inconsistency in the reports about the direction of
the bias in perceived stiffness due to delay, while keeping in mind that constraining
the probing movement to the shoulder joint caused the effect of delay to be shifted
towards the direction of overestimation. Based on these results, we suggest that in the
study of Pressman et al. (2007), the involvement of the shoulder, together with the
repeated crossings of the boundary of the elastic field during palpation [see Fig. 9.2
dashed traces in Pressman et al. (2007)], drove the users to weight force control higher
than position control, and was responsible for stiffness overestimation due to delay.
Another factor that could have contributed to increasing the weight of force control,
and consequently, to overestimation of stiffness due to delay is the relatively high
stiffness levels of the explored objects. In Pressman et al. (2007), users interacted
with stiffness levels ranging from 150 to 600 N/m, compared to levels up to 50 N/m
in Di Luca et al. (2011), Ohnishi and Mochizuki (2007). Indeed, in Nisky et al.
(2008b), where the stiffness levels were intermediate, ranging between 85 and 265
N/m, mixed results of over- and underestimation of delayed stiffness were observed.
Such reasoning is consistent with other findings, where during interaction with elastic
force fields, with increasing stiffness level, users tend to weight force cues stronger
in control (Chib et al. 2006) and in sensory integration (Mugge et al. 2009).

To yield perceptual effects, the delay does not need to be large. In all the studies
reviewed here, the delay between force and position ranged between 5 and 60 ms. In
a different study (Ishihara and Negishi 2008), delay was reported to have perceptual
effects at values as small as 4 ms. Larger delays are typically not studied because
they disrupt palpation movements, and because the perception of an elastic spring
as a physical object breaks down when the delay becomes too large relative to the
typical palpation frequency of around 2 Hz (Brown et al. 2004; De Gersem et al.
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2005; Karniel et al. 2010). Importantly, such delays have a practical meaning—they
are typical for long distance teleoperation on earth [e.g. “Operation Linbergh” in
which surgery was performed via teleoperation between New-York and Strasbourg
(Marescaux et al. 2001)] or for ground-to-earth-orbit teleoperation via radio link
(Reintsema et al. 2007).

Finally, while we focused on perception of stiffness, other mechanical properties
of objects play an important role in our representation and interaction with the world.
Delay was shown to induce changes in the perception of many other mechanical
properties, such as mechanical impedance, including mass, viscosity, and stiffness
(Hirche et al. 2005; Hirche and Buss 2007), and texture, including roughness and
friction (Okamoto et al. 2009).

9.3 The Effect of Delay on Action: Motormetric Representation
of Stiffness

So far, we have discussed the effect of delay on perception of stiffness as can be
measured by asking participants about the relative stiffness of different objects. Such
perceptual aspect is useful for verbal communications and for decision-making. For
example, it can be used in the daily task of choosing fruits at the grocery store, or
in medical applications, where the stiffness of the tissue conveys to the physician
important information about its health. Internal representation of the mechanical
properties of an object, however, plays at least an equally important role in action,
or, more specifically, the planning and execution of movement in contact with the
object. Examples are when a surgeon determines the necessary forces to apply on
a surgical scalpel for cutting a tissue, or when an artist uses their fingers to remove
just enough material while shaping a sculpture.

Arguably, the most adequate way of describing the relation between perception
and action is a bidirectional coupling. Perception of the mechanical properties of the
environment is important in planning future actions, and at the same time, natural
haptic exploration of the environment is active—we move and probe the environment
to create haptic perception. Inconsistencies between perception and action are evident
in many tasks. For example, in adaptation to force fields that are applied by a robotic
device (Shadmehr and Mussa-Ivaldi 1994), participants report that by the end of
training, they can no longer feel the field, and when the force field is suddenly
removed, they report that they begin to feel a sensation of an opposite force even
though the robotic device is not applying any forces. Several studies have reported
resistance of motor actions to visual illusions (Aglioti et al. 1995; Carey 2001; Ganel
and Goodale 2003; Goodale and Milner 1992) and inconsistency between perception
and action in various tasks (Aglioti et al. 1995; Ganel and Goodale 2003; Goodale and
Humphrey 1998; Goodale and Milner 1992). Such dissociation between the motor
and perceptual responses was also reported with regard to the size-weight illusion
(Brayanov and Smith 2010; Flanagan and Beltzner 2000).
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To quantitatively assess the effect of delay on action-related representation, a
modification to the perceptual forced choice paradigm was developed that is based on
adaptation to force fields and aftereffects in catch trials (Pressman et al. 2008). Instead
of processing the answers of participants about their subjective perception using a
psychometric analysis (Wichmann and Hill 2001), the authors have introduced the
term motormetric analysis to designate procedures that are based on observable motor
actions for assessing the evolution of perceptual models (Pressman et al. 2008).

In the psychometric analysis, in each trial, participants compared pairs of force
fields, and their judgment about the relative stiffness was used to construct a psy-
chometric curve. In the motormetric analysis, a block of trials was used to extract
the motor response to a difference between a pair of force fields. In each trial, par-
ticipants were asked to reach out and back to a target inside a virtual force field. In
each block, the participants first performed several trials and adapted to reach into
a certain force field that could be delayed or not. Then a catch trial was presented,
in which the force field was unexpectedly replaced with a non-delayed field with a
different level of stiffness (as depicted in Fig. 9.4 until the ‘catch’ trial).

The amount of overshoot or undershoot is a proxy to action-related overestimation
or underestimation, respectively, of the trained force field relative to the catch field,
and it was used to construct the motormetric curve as a function of the difference in
stiffness levels between the trained and the catch force fields.

Using this paradigm, the authors showed that perceptual and motor-related esti-
mations of stiffness are inconsistent. While the direction of the perceptual bias was
toward overestimation of stiffness, users did not reach the target, i.e. underestimated
the stiffness of the elastic force field. Moreover, in the same study, similar motor
responses were observed in an experiment where instead of introducing delay, they
shifted the elastic force field away from the user. Interestingly, the perceptual effect
of the shift was in the opposite direction from the effect of delay—participants under-
estimated the stiffness when the force field was shifted away from them.

This paradigm was further refined to allow exploring the effect of delay on per-
ception and action in the same experiment (Nisky et al. 2011). To do this, the authors
incorporated questions about the relative stiffness of the last two force fields the

Fig. 9.4 The structure of a single block of the combined motormetric and psychometric experimen-
tal protocol. Each block included five to seven training trials with either a delayed or a non-delayed
elastic force field (box with thick line), followed by one of ten possible non-delayed catch trials
(box with dashed line), followed by a question: “Which of the last two fields had higher level of
stiffness?” (box with double line), or a repetition of the trained field and a question
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user has interacted with during the experiment (Fig. 9.4). Using this paradigm, they
found an inconsistency between the effect of delay on perception and action in virtual
teleoperated needle insertion—delay caused motormetric underestimation without
changing the perception of stiffness. For the purpose of our discussion here, the
virtual teleoperated needle insertion is just an example for a nonlinear elastic force
field. Therefore, we do not elaborate here about the needle insertion-related aspects
of this study, and refer the interested reader to (Nisky et al. 2011).

This evidence might indicate two parallel neural processes, but the studies we
reviewed here did not provide direct support of this hypothesis. Therefore, further
exploration of this intriguing gap is open for future studies. Interestingly, while
not providing an explanation for the underlying mechanisms that are causing this
inconsistency, its experimental evaluation was successfully used for improving trans-
parency of a simple virtual teleoperation channel (Nisky et al. 2011), as will be
discussed in more details below. More generally, the effect of delay on motor perfor-
mance was mostly studied in the context of teleoperation, such as a virtual bimanual
pick and place task (Cooper et al. 2012), or a peg in a hole task (Yip et al. 2011).
In these studies, however, the focus is on task performance rather than on trying
to pinpoint the specific contribution of the mechanical properties of objects, and in
most cases, the objects are rigid.

9.4 Discussion

We described three conceptually different explanations for the complex effects of
delay on perception of stiffness. This means that all of them are very likely to be
wrong. This, however, does not discourage us, because in fact, “all models are wrong,
but some are useful” (Box and Draper 1987). A false but simple model can be
very useful if it provides an understanding for what exactly about the model is
wrong (Fernandes and Kording 2010), if it generates working hypotheses for future
experiments that may refine or refute the model and suggest alternative explanations
for the behavioral results, or if it provides a sufficiently good approximation under
certain conditions that have practical application. We think that the models that we
have reviewed here can be useful in several ways, as we elaborate in the remainder
of the discussion.

9.4.1 Novel Models for the Effect of Delay
on Stiffness Perception

New models may be generated from the combination of two or more of the models
that we have described here. The regression model (Nisky et al. 2008b, 2010) could
be combined with the perceived boundary model (Pressman et al. 2007, 2011) into
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a single model that calculates a regression line that is constrained to pass through
the perceived boundary. This model could be further combined with the loading-
unloading model (Di Luca et al. 2011) by an appropriate weighting of the data points
in calculation of the regression parameters.

Certainly, other models could be devised based on additional studies. For example,
in the attempt to augment the perceived stiffness of virtual surfaces with simple haptic
devices that cannot generate high forces, models based on Rate Hardness (Han and
Choi 2010; Lawrence et al. 2000), i.e. the ratio between change of force and velocity
at specific points of interaction with the surface, were suggested. According to the
Rate Hardness model (Lawrence et al. 2000), perceptual judgment of rigidity can
be explained as the ratio between initial change in force and initial velocity, where
initial means at the instance when the user first encounters the virtual surface. In
the Extended Rate Hardness model (Han and Choi 2010), the initial force change is
replaced with maximal force change. A model for perception of stiffness with delay
could be constructed such that it takes into account rate hardness. Naturally, some
adjustment might be necessary for the model to explain as much as possible of the
answers of our participants. For example, in the cases when participants choose not
to cross the boundary of the elastic force field while probing (Nisky et al. 2008b),
or could not access it (Nisky et al. 2010), the initial interaction with the elastic force
field is not well defined, and therefore, maximum velocity could be used instead
(Han and Choi 2010).

We have made the experimental data from several of our studies reviewed in
the current chapter available in an online repository located at http://www.bgu.ac.
il/~akarniel/database/index.htm. Hopefully, new models for perception of stiffness
will be tested against the answers of participants in our experiments. We invite the
readers to contact us if they wish to add their experimental data to this repository.

9.4.2 Development of Novel Solutions for Teleoperation

Future experiments will be necessary to elucidate the underlying mechanisms that
are responsible for the behavioral effects, and it is very likely that the mechanistic
aspects of the models will be refined or completely changed in the process. The
empirical predictions of the models may be well used in practical applications such as
improving transparency in teleoperation. Transparency typically refers to the ability
of a teleoperation system to accurately display the mechanical properties of the
remote environment to the operator, and to accurately execute operator’s actions in
the remote environment. While this intuitive definition includes the operator and the
environment, most of the classical studies of transparency focused on the optimization
of teleoperation system in isolation from the human operator and the environment—
a system-centered approach. Recently, an alternative, human-centered, approach to
this problem was suggested (Nisky 2011; Nisky et al. 2008a, 2011, 2013). A key
step in developing such a human-centered approach to remote teleoperation was to
explore the effects of delay on the perception and action of the operator.

http://www.bgu.ac.il/~akarniel/database/index.htm
http://www.bgu.ac.il/~akarniel/database/index.htm
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Based on the findings that we discussed in the current chapter, a multidimen-
sional measure of transparency in teleoperation was suggested, which included the
following components:

1. Perceptual transparency: The human operator cannot distinguish between
teleoperation with the system and direct operation.

2. Local motor transparency: The movement of the operator (position and force
trajectories) does not change when the teleoperation system is replaced with
direct operation at local site.

3. Remote motor transparency: The movement of the remote robot (position and
force trajectories) does not change when the teleoperation system is replaced
with direct operation at remote site.

According to this framework, in non-ideal systems, it is beneficial to obtain per-
ceptually transparent teleoperation (1) and remote motor transparency (3) without
local motor transparency (2). The gap between perception and action that we dis-
cussed is a necessary condition for transparency in such non-ideal system, because
a choice must be made between local and remote motor transparencies. In practice,
local motor transparency is relatively unimportant, since the motor goal of teleoper-
ation tasks is often defined in the remote environment. Therefore, we can sacrifice
local motor transparency in favor of remote motor transparency. At the same time,
however, realistic perception must be rendered in the local environment. The gap
between perception and action can allow perceptual transparency without the motor
counterpart at the local site.

In addition, in cases where the baseline gap between perception and action is insuf-
ficient for allowing perceptual as well as remote motor transparency optimization,
training of the human operator can be an effective strategy to improve transparency.
Such training-induced dissociation between perception and action was reported in
many studies of motor adaptation, including adaptation to force fields (Shadmehr
and Mussa-Ivaldi 1994), and grip force adaptation in face of the size-weight illusion
(Brayanov and Smith 2010; Flanagan and Beltzner 2000).

This strategy was successfully employed to achieve transparency in a virtual
one-dimensional remote needle insertion task (Nisky et al. 2011). The virtual tele-
operation channel consisted from a pure delay and a gain, and the environment was
a nonlinear, needle insertion-like force field: a nonlinear rigid boundary that repre-
sents penetration into the skin, followed by a linear elastic force field representing
the underlying soft tissue. Using the protocol described in the current chapter, the
authors experimentally identified the effect of delay on the answers of participants
about their stiffness perception and on their probability to overshoot the inserted nee-
dle. They found that the motor response of the participants indicated underestimation
of the stiffness of the nonlinear elastic field when compared to its non-delayed coun-
terpart, but the perception of participants was not biased. Based on these findings,
the authors calculated the gains that achieved perceptual and motor transparency,
and demonstrated the applicability of the new empirical approach for transparency
optimization.
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9.5 Conclusions

In this chapter, we reviewed how external delay between probing movements and
contact forces changes perception of mechanical stiffness. The effect of delay on
perception is complex, and depends on many factors such as the way the user interacts
with the probed objects, the joint that is used during probing, the source of information
that is delayed, and possibly, even the range of stiffness levels of the probed object.
Moreover, there is a gap between the effect of delay on cognitive perception of
mechanical properties of objects and its effect on action in contact with them.

Understanding delay effects is important because the temporal mismatch between
force and movement signals decouples them, and provides a window into the senso-
rimotor processes underlying perception of mechanical properties. In addition, these
studies can also teach us about how our brain copes with internal delays. Finally, it
is important because it can provide the necessary information for human-centered
design and control of teleoperation systems. We accompany the chapter with an online
repository that contains raw data from several of our studies that were reviewed in
this chapter. We hope that the repository will be used to further promote each of these
important goals.
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Chapter 10
Compliance Perception Using Natural
and Artificial Motion Cues

Netta Gurari and Allison M. Okamura

10.1 Introduction

In order to perform activities such as pressing keys on a keyboard, checking whether a
piece of fruit is ripe, determining whether a bike tire is low on air, and shaking another
person’s hand, it is necessary to have an understanding of the object’s compliance,
or the relationship between one’s applied force and the resulting change in position
of one’s hand. There are many situations in which humans are not able to perform
such tasks due to limitations in their sensory and/or motor control channels. For
example, upper-limb prosthesis users lack perception of sensations at the artificial
limb, and surgeons performing procedures using teleoperated robots lack haptic
feedback. For those with suboptimal sensing, the quality of experiencing interactions
with the environment and the ability to perform manual tasks may be enhanced by
the development of new technologies and paradigms that will artificially create or
enhance missing sensations.

When performing activities of daily living, humans must merge kinesthetic and
tactile cues (Bicchi et al. 2000; Srinivasan and LaMotte 1995) to sense an objects
compliance. This means that they combine position information derived from sensory
receptors in muscles, articular capsulae, and tendons (kinesthetic cues) with pressure
and indentation information derived from the skin (tactile cues). Kinesthetic cues,
collectively referred to as kinaesthesia, were first defined by Bastian (1887), and the
term has been used synonymously with the term proprioception later defined by Burke
(2007). Here we refer to proprioception as the intuitive knowledge for how one’s body
is situated in space and how it moves (in the absence of vision or other external sensory
signals). A distinction can be made between kinaesthesia and proprioception, where
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the former refers to limb movement and the latter to limb position; however, here
we use the two terms interchangeably. Prior work demonstrates the importance of
tactile cues for interpreting compliance, especially when interacting with deformable
objects such as a piece of rubber or fruit (Srinivasan and LaMotte 1995). Here, we
focus on compliance perception when interacting with rigid-surfaced objects, such
as piano or keyboard keys, where both kinesthetic and tactile cues are needed. We
hypothesize that proprioception plays an important role for interacting with such
rigid-surfaced compliant objects and that it should be considered when designing
systems for artificially relaying compliance.

Ian Waterman is a famous patient who lost his proprioception when he was afflicted
by a large-fiber sensory neuropathy (Cole 1995). Ian is unique regarding his neu-
ropathy, in that he learned to control his movements and interact with the world again
through a reliance on sight. If the lights are turned off in a room or if he is distracted
by an attractive woman, he loses control and collapses. Ian describes the energy he
exerts to control his motions on a regular basis as running a daily marathon. Thus,
the lack of one’s sensing capability, notably proprioception, results in a heavy taxing
of the visual sensory modality, and further, daily living activities are not possible for
most individuals afflicted by such a neuropathy.

In this chapter, we present challenges faced in the design of active touch feedback
devices for the artificial display of compliance (e.g. using actuators in a tactile feed-
back system to stimulate, and in turn, convey information to the user). We hypothesize
that relaying proprioception will provide significant benefit to the user. Below we
describe related literature that discusses the role of proprioception in compliance
perception. Then, we present a human participant study, conducted using a novel
setup that allows the role of motion cues to be quantified in a compliance perception
task under differing sensory conditions. Next, we discuss methods by which com-
pliance can be relayed artificially using active haptic feedback devices, and present
the advantages and disadvantages of various touch sensory substitution systems (i.e.,
electrocutaneous, vibrotactile, force, and skin stretch stimulation). Last, we discuss
two human studies in which the effectiveness of a skin stretch feedback system and a
vibrotactile feedback system is tested for displaying respectively compliance and pro-
prioception information. The skin stretch feedback device was tested for numerous
reasons, including that it has been shown to be more effective in relaying positional
information than the more traditional vibratory feedback devices and it allows direct
mapping between a rotation of one’s limb and a rotation of the skin stretch device.
The chapter concludes with a summary of what has been presented, and a proposal
for future research directions.
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10.2 The Role of Proprioception in Human Compliance
Perception

10.2.1 Background

The mechanism for human compliance perception is complex and is still not com-
pletely understood. An object’s compliance can be estimated by merging the afore-
mentioned proprioceptive, force, and tactile signals (Kuschel et al. 2010; Pressman
et al. 2007; Srinivasan et al. 1996; Srinivasan and LaMotte 1995; Tiest and Kappers
2009; Varadharajan et al. 2008). Interestingly, visual and auditory information also
influence one’s estimation of an object’s haptic compliance (Avanzini and Crosato
2006; Lecuyer et al. 2000); these phenomena are discussed in detail in separate chap-
ters. As humans do not have dedicated compliance mechanoreceptors for directly
measuring an object’s elasticity, a common hypothesis is that compliance perception
occurs by combining force, position, and cutaneous cues. The manner in which such
cues combine to identify an object’s compliance has been hypothesized and tested,
e.g. (Pressman et al. 2007; Tiest and Kappers 2009). Here, we focus on the role of
motion information (proprioception) in compliance perception.

Proprioception plays an important role in object interaction tasks, as it provides a
context with which other touch cues can integrate in order for a person to understand
his/her surroundings (Berryman et al. 2006). As with compliance, the mechanism
for how proprioception occurs is not known; that is, the manner by which the vari-
ous signals are combined and/or integrated remains unclear (Matthews 1982). It is
known that proprioception is derived from numerous sources, including muscle spin-
dle fibers, Golgi tendon organs, joint angle receptors, and skin stretch mechanore-
ceptors (Collins and Prochazka 1996; Collins et al. 2005; Edin 2004; McCloskey
1978). Additionally, corollary discharges, or copies of the efferent commands that
are sent to the sensory area of the brain, can create the perception of limb motion
even in the absence of limb motion (Crapse and Sommer 2008; Gandevia et al. 2006).
The amount each signal contributes to the sensation may differ depending on which
limb is being rotated and the movement type that is being made, e.g. (Brewer et al.
2005) versus (Tan et al. 2007), as well as the level of muscle activation (Taylor and
McCloskey 1992).

Given the complexity of proprioception, it is difficult to remove this sensation
without affecting other sensory capabilities (e.g. cutaneous cues), making it very
challenging to study the role of proprioception in sensorimotor tasks. Interestingly,
there are a small number of individuals afflicted by large-fiber sensory neuropathies.
They do not have proprioception, but have intact cutaneous sensations. It is possi-
ble to compare task performance between these individuals and healthy participants
in the presence and absence of proprioception (Ghez et al. 1990). This method,
however, does not allow for comparison of performance with and without propri-
oception in a single person; thus, the role of proprioception in the task might be
confounded by other unanticipated or unacknowledged factors that are occurring
between the persons. Positional cues can be removed using invasive methods [i.e.,
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anesthesia (McCloskey 1978) or ischemic nerve blocks (Kelso 1977)]. With such
interventions, the role of tactile cues and proprioception cannot be disentangled, and
there are practical limitations due to the invasiveness of the procedures. The position
information can be non-invasively altered by vibrating particular muscles (Larish
et al. 1984), but the sensation is shifted and not removed. Additionally, the role of
motion cues has been evaluated by either permitting or restricting the motion of a
limb in the presence of sight (Blank et al. 2010). When the limb motion is constrained,
proprioceptive cues from the constrained limb indicate that the limb is not moving,
while the visual cues indicate that the limb is moving. Thus, sensory integration may
be occurring such that the “visual motion” cues are based on both the moving visual
and non-moving proprioceptive information.

10.2.2 Experiment: Role of Motion Cues in Compliance
Perception

Here we present an experiment that investigates how motion cues (i.e., visual, pro-
prioceptive) and forces cues combine and how visual and proprioceptive motion
cues integrate when pressing a compliant object. More details about the study can be
found in Gurari et al. (2013). The motivation for this work was to investigate whether
the upper-limb prosthesis experience can be improved by reducing the demand on
vision during arm control. The power of visual cues for eliciting haptic sensations
is demonstrated in a separate chapter; thus, we do not delve into a discussion of this
literature here.

For upper-limb prosthesis users, it has been found that a phantom limb can
be moved just by observing a visual limb’s motion that is initially co-located with
the phantom limb (Ramachandran and Rogers-Ramachandran 1996; Ramachandran
et al. 1995). Upper-limb prosthesis users, however, desire their artificial limbs to
require less visual attention during certain tasks (Atkins et al. 1996). Thus, we aim
to quantify the effectiveness of various sensory modalities for relaying positional
cues, with the eventual goal of artificially relaying such information to those with
compromised sensing.

15 healthy, intact, dominantly right-handed participants with no neurological ill-
nesses or right-hand impairments took part in the study. Eight participants were
male and seven female, with an age range of 18–34. The Johns Hopkins University
Homewood Institutional Review Board provided approval to run this study, and all
participants provided their informed consent before taking part.

Participants used a custom kinesthetic feedback haptic device to control the motion
of either their real finger (proprioceptively) or of a virtual finger displayed on a com-
puter monitor (visually) for a one-degree-of-freedom rotational spring discrimination
task by applying a force at their index finger. Thus, participants always had corollary
discharge cues since they were actively applying an effort, and they always felt the
sensation of an applied force at their finger. The manner by which the motion was
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portrayed was either using visual motion cues, proprioceptive motion cues, or their
combination. Note that there is always proprioception; the distinction between the
conditions is whether the proprioceptive cues indicate that the finger is in motion
or that the finger is held still. Performance for a spring discrimination task was
tested under each of these conditions using the method of constant stimuli for a
two-alternative forced choice task on rigid-surfaced virtual springs, with a reference
stiffness of 290 N/m.

Below we briefly summarize the experiment, discuss the general findings, and
explain the implications for how sensory combination and integration occur. Addi-
tionally, we motivate the need for either creating or enhancing the motion sensation
for those with compromised proprioception using active artificial feedback devices.
Last, we investigate whether the (Ernst and Banks 2002) maximum-likelihood esti-
mation (MLE) model, which states that visual and proprioceptive information com-
bine according to the MLE theory during a compliance discrimination task, can
explain the sensory integration of visual and proprioceptive cues for the task dis-
cussed here.

10.2.2.1 Sensory Conditions

A novel testbed was created with the aim of investigating the role of visual motion
and/or proprioceptive motion cues in the perception of an object’s compliance (see
Fig. 10.1). The role of vision is relatively straightforward to study since a cue can
be either displayed or hidden from view on a computer monitor. The role of propri-
oception was investigated by either allowing the limb to move (isotonic condition),
or by restraining its motion (isometric condition).

The mechanism by which compliance may be sensed in our study is visually
depicted in Fig. 10.2. Throughout the experiment, participants always applied a
force in order to control the compression of a virtual spring. The manner by which
the motion cues were rendered was varied as follows: visually a virtual finger moved
on a computer monitor (Visual Motion), physically the real finger rotated (Propri-
oceptive Motion), or a combination of the two occurred (Visual and Propriocep-
tive Motion). In all conditions, sensory combination occurs with corollary discharge
cues, cutaneous/force/torque cues, and position/motion cues contributing to the com-
pliance percept. The manner by which the position/motion cues contribute differs
depending on which sensory modalities are relaying the sensation—vision and/or
proprioception—and how they integrate.

During the Visual Motion condition, sensory integration may occur since a virtual
finger is visually drawn to show the motion of the finger and the real finger proprio-
ceptively indicates that the finger is not moving. Note that this is similar to what may
occur during upper-limb prosthesis use; the visual cues of the artificial limb move-
ment may integrate with the proprioceptive phantom limb cues of the “stationary
arm”, as in the rubber hand illusion (Ramachandran et al. 1995). We also point out
that the virtual finger is not an accurate representation of a real finger. Likewise, a
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Fig. 10.1 a Experimental setup. A computer monitor displays a graphical depiction of the user’s
index finger, and white noise playing headphones mask possible auditory cues/distractions. The
user interacts with the haptic device using the right index finger (blue box), which is concealed from
sight by the red cloth. b Custom haptic device. The ball bearings permit rotation of the finger plate,
and the motor with encoder applies a torque and measures the angular position of the finger plate
via a 10:1 capstan gear. The force sensor measures the user’s applied effort, and the solenoid can
lock the finger plate in a stationary position. c User interaction. The user applies a torque about the
metacarpophalangeal joint of τf , has a right index finger length of lf , and makes contact with the
finger plate at the volar portion of the right index finger, as indicated by the orange circle. Adapted
from Fig. 10.1 in Gurari et al. (2013) © IEEE 2013

prosthetic limb may not look like a natural limb. During the Proprioceptive Motion
condition, sensory integration does not occur since only haptic cues are available.
During the Visual and Proprioceptive Motion condition, sensory integration may
occur since both the visually relayed and proprioceptively sensed motion cues may
be used in determining the sensation of motion.
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Fig. 10.2 Experimentally tested sensory conditions. Adapted from Fig. 10.2 in Gurari et al. (2013)
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Fig. 10.3 Psychometric curves based on experimental data for an example participant. Raw data
is indicated by the black dots, nominal stiffness (N = 290 N/m) by the green line, PSE by the red
line, and lower and upper JNDs by the blue lines. Adapted from Fig. 10.3 in Gurari et al. (2013) ©
IEEE 2013

10.2.2.2 Results and Discussion

Participants interacted with 10 comparison springs (5 equally-spaced springs with a
stiffness that is less than 290 N/m and 5 with a stiffness that is greater than 290 N/m)
and indicated whether the comparison spring was stiffer than the nominal spring
(stiffness of 290 N/m). The proportion of “stiffer than” responses is plotted as a
function of the comparison spring stiffness value, giving psychometric curves as
displayed in Fig. 10.3 (example curves for a representative participant). Task per-
formance was quantified in each condition using the Weber fraction (WF), which
relates a physical change to how one perceives the change (Gescheider 1997). WFs
were estimated based on the psychometric curves that were experimentally obtained
for each participant and every condition.

First, the just noticeable difference (JND), or amount of change in stiffness that
was required for the change to be noticed, was estimated by identifying the lower
and upper JND:
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JNDlower = PSE − k∗
0.25 (10.1)

JNDupper = k∗
0.75 − PSE (10.2)

where k∗
0.25 and k∗

0.75 are the stiffness values at the corresponding 0.25 and 0.75
proportion of “stiffer than” responses, and PSE is the point-of-subjective-equality,
or the experimentally perceived nominal stiffness value, N , when the proportion of
“stiffer than” responses is 0.50. Averaging these together gives a JND of:

JND = JNDlower + JNDupper

2
. (10.3)

In turn, the WF was experimentally obtained as follows:

WF = JND

PSE
. (10.4)

Theoretically, this equates to:

WF =
√

2 σ

N
, (10.5)

where human perception is defined by a Gaussian curve, N (N, σ), with a mean of N
and standard deviation of σ. JND = √

2 σ describes one’s experimentally obtained
perceptual capabilities when pressing two springs, assuming that equal levels of
noise, σ, are sensed when pressing each spring.

Ideally, the experimentally obtained PSE values across all tested conditions are
290 N/m, but in practice they have differing values that depend on the noise in the
sensing and rendering capabilities. Thus, it made sense to compare the unit-less WFs
rather than the JNDs with units of Newtons, where the noise level was normalized by
the experimentally obtained nominal stiffness values. A lower WF indicates better
perceptual/sensing capabilities.

Task performance, as defined by the WFs, and user ratings were used to compare
compliance perception under Visual Motion, Proprioceptive Motion, and Visual and
Proprioceptive Motion cues. The main findings from this work are as follows:

• no significant differences were found in task performance among the three sensory
conditions,

• the MLE model was not able to explain the signal dispersion observed in the
Visual and Proprioceptive Motion condition based on task performance in the
Visual Motion and Proprioceptive Motion conditions,

• exploration style (largest penetration distance, number of spring presses, and total
exploration time) did not significantly differ between sensory conditions, and

• the Proprioceptive Motion and Visual and Proprioceptive Motion conditions were
subjectively rated by users as significantly more useful than Visual Motion.
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Task Performance

The spring discrimination sensory integration literature supports the notion that
vision dominates when users perceive a spring, and that the addition of vision to
proprioception improves perceptual performance. Paljic et al. (2004) ran a spring dis-
crimination study in which participants discriminated between isometric and elastic
haptic springs in the presence of vision. During the isometric condition the user
applies a force yet the finger does not move, while during the elastic condition the
user applies a force and the finger rotates an amount proportional to the measured
force. They found that the visual feedback can create a motion percept for the iso-
metric condition, and the combination of the proprioceptive and visual motion cues
in the elastic condition gives improved perceptual performance over the isometric
condition. Based on anecdotal feedback from our participants, we also observed
visual dominance in the Visual Motion condition; several participants commented
that they felt that their hand was moving. Unlike (Paljic et al. 2004), compliance
discrimination performance was not found to differ across the three conditions of
Visual Motion, Proprioceptive Motion, and Visual and Proprioceptive Motion (see
Table 10.1 for an overview of the WF results). A within-subjects one-way analysis of
variance (ANOVA) with a Box (Greenhouse-Geisser) epsilon-hat adjustment did not
find a statistically significant difference between the conditions [F(2, 22) = 2.21,
ε̂ = 0.6041, p = 0.16].

MLE Model

We tested whether the Ernst and Banks MLE model, which states that visual
cues, N (PSEv, σv), and proprioceptive cues, N (

PSEp, σp
)
, integrate in a compli-

ance discrimination task according to the maximum-likelihood estimation (MLE),
holds (Ernst and Banks 2002):

PSEMLE = σ2
p

σ2
v + σ2

p
PSEv + σ2

v

σ2
v + σ2

p
PSEp, (10.6)

σMLE =
√

σ2
v σ2

p

σ2
v + σ2

p
, (10.7)

and

WFMLE =
√

2 σMLE

PSEMLE
. (10.8)

Human sensory perception of a stimulus is modeled by a Gaussian curve with a
signal, PSEMLE , and signal dispersion, σMLE . These parameters are used to calculate
a theoretical Weber fraction (WFMLE).
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We used our results from the Visual Motion condition and Proprioceptive Motion
condition to obtain the MLE model estimates for the Visual and Proprioceptive
Motion condition, and compared these to our empirically obtained results for the
Visual and Proprioceptive Motion condition (see Table 10.1). A pairwise two-tailed
t-test did not find significant differences between the PSEs (t(22) = 0.7416, p =
0.4661), however did find significant differences between the WFs (t(22) = 2.7401,
p = 0.0120). Thus, the empirically obtained results had a larger signal dispersion
than that hypothesized by the MLE model, and the MLE model did not predict
how sensory integration occurred in the Vision and Proprioceptive Motion condition
as a function of perceptual performance in each of the individual Visual Motion
and Proprioceptive Motion conditions. Therefore, participants integrated the motion
cues from the two sensory channels in a less efficient manner than by what the model
predicted.

We propose several reasons for not observing enhanced performance in the inte-
grated sensory condition of Visual and Proprioceptive Motion. First, the MLE model
may not have held and sensory integration may not have been observed for our study
if participants discriminated the springs using force cues rather than compliance
cues. Tan et al. (1992) showed that springs can be discriminated based on force cues,

Table 10.1 WF and PSE estimates across all participants and conditions

Participant Weber fraction

[(Point of subjective equality (N/m)]

Visual Proprioceptive Visual and Maximum-likelihood

motion motion proprioceptive motion estimation model

1 0.071 (291.9) 0.040 (299.8) 0.036 (292.4) 0.035 (297.8)

2 0.152 (281.3) 0.048 (295.0) 0.061 (290.9) 0.046 (293.6)

3 0.038 (296.6) 0.056 (290.9) 0.048 (291.9) 0.031 (294.8)

4 0.059 (293.2) 0.028 (294.7) 0.047 (294.7) 0.025 (294.4)

5 0.068 (279.5) *0.037 (291.7) 0.037 (293.0) –

6 0.020 (290.6) 0.025 (298.7) 0.026 (296.0) 0.016 (293.7)

7 0.024 (294.1) *0.007 (313.8) 0.007 (310.1) –

8 0.057 (283.3) 0.031 (299.9) 0.056 (298.3) 0.027 (295.8)

9 *0.081 (288.7) 0.043 (297.4) 0.038 (300.8) –

10 0.012 (298.2) 0.020 (296.2) 0.025 (294.8) 0.010 (297.7)

11 0.052 (296.7) 0.039 (290.0) 0.060 (297.8) 0.031 (292.3)

12 0.059 (293.7) 0.055 (285.3) 0.048 (288.5) 0.040 (289.1)

13 0.029 (290.3) 0.024 (282.2) 0.029 (283.6) 0.019 (285.4)

14 0.029 (286.8) 0.057 (300.2) 0.034 (305.9) 0.026 (289.4)

15 0.057 (287.9) 0.019 (288.8) 0.021 (295.2) 0.018 (288.7)

Mean 0.053 (290.9) 0.037 (293.5) 0.041 (294.2) 0.027 (292.7)

The mean WF and PSE values exclude Participants 5, 7, and 9, since a goodness-of-fit was not
achieved for one sensory condition for each of these participants, as indicated by the asterisk (*).
Adapted from Table 10.1 in Gurari et al. (2013) © IEEE 2013
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Table 10.2 Largest penetration distance of a representative participant during exploration of the
standard spring across all testing trials

Largest penetration distance (cm)

Visual motion Proprioceptive motion Visual and proprioceptive motion

Minimum 0.83 0.85 0.91

Lower quartile 1.85 1.97 1.87

Median 1.99 2.09 2.05

Upper quartile 2.12 2.24 2.21

Maximum 2.48 2.61 2.96

Across all trials in each testing condition during the exploration of a standard spring for a represen-
tative participant, the respective minimum, lower quartile, median, upper quartile, and maximum
distance that the finger traveled is given. Adapted from Table IV in Gurari et al. (2013) © IEEE
2013

not compliance cues, if the distance one’s hand travels does not vary across testing
trials, giving WFs close to 0.08. The testing procedures used and data obtained in our
study do not provide conclusive evidence as to whether participants were discrim-
inating based on force or compliance. WFs were on average less than 0.06, which
correlates well with a force perception task, whereas the distance that the finger trav-
eled was highly variable both across participants and within each participant. The
largest penetration distance, or the maximum distance that the finger traveled, across
all trials in each testing condition during the exploration of a standard spring for a
representative participant is given in Table 10.2. The large amount of variability in
the penetration distances suggests that participants were performing a compliance
discrimination task. Independently of whether force or compliance discrimination
was occurring, there was a need to sense the position/motion cues in order to identify
the distance that the finger was traveling.

Additional possible reasons for why the MLE model did not hold, and enhanced
perceptual performance was not observed in the sensory integration condition, are
as follows. As the real and virtual fingers were not spatially aligned, there may be
a disconnect between vision and touch. That is, the visual rendering of the user’s
finger as a black rotating line may map onto something other than the users finger. A
further reason is that σV was never estimated since there was always a proprioceptive
contribution; thus, it was only possible to measure σP and σP+V for this testing setup.
Lastly, it may be that the MLE model does not describe sensory integration for this
particular task.

Exploration Style

With regard to exploration style, there was no change in the interaction methods
used across the different tested sensory conditions. A repeated measures one-way
ANOVA was run using a Box (Greenhouse-Geisser) epsilon-hat adjustment to cor-
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rect for violations of sphericity, and no significant differences were found for the
largest penetration distance (F(2, 28) = 0.85, ε̂ = 0.713, p = 0.41), number of
spring presses (F(2, 28) = 0.08, ε̂ = 0.7394, p = 0.87), and total exploration time
(F(2, 28) = 1.07, ε̂ = 0.888, p = 0.35). Thus, the exploration method employed
may not necessarily change when motion cues are relayed using the different sensory
pathways.

Subjective Ratings

Importantly, subjective results found that the proprioceptive motion cues were per-
ceived as significantly more useful than the visual motion cues. Participants were
asked to rank the usefulness of each of the three tested conditions. A Friedman
two-way ANOVA, which is the nonparametric equivalent test to the repeated mea-
sures one-way ANOVA, was run with factors of participant and experimental sensory
condition. Sensory condition significantly affected participants’ usefulness ratings
(χ2(2, 28) = 16.53, p = 0.0003). A post-hoc test using a Bonferroni adjustment
(MATLAB function multcompare which indicates significance at the p = 0.05 level)
showed that the proprioceptive motion cues were perceived as significantly more
useful than the visual motion cues, and the addition of vision to proprioception did
not lead to perceived benefits over only proprioception. Prior to taking part in the
experiment, several participants had indicated that they did not expect to find the pro-
prioceptive motion cues to be more useful than the visual motion cues. These results
suggest that the user experience of sensing a compliant object may be enhanced if
motion information is relayed through the haptic channel rather than through the
visual channel.

10.2.3 Summary and Implications

The motivation of this work was to identify a method for enhancing the upper-
limb prosthesis experience by reducing the dependence on vision. The results are
encouraging since they suggest that it may be feasible to lessen the visual burden,
while maintaining comparable task performance, by shifting the reliance on vision
to a reliance on proprioception for such a compliant object perception task. Findings
demonstrate that compliance discrimination is possible using proprioceptive motion
cues in the absence of vision. This suggests that for those experiencing compromised
proprioception, it may be possible to perceive a compliant object using only haptic
motion cues without taxing the visual modality. Further, given that performance did
not significantly differ in the Visual Motion and Proprioceptive Motion conditions,
performance should not deteriorate if visual motion cues are replaced by veridical
haptic motion cues in a compliance perception task. Moreover, task performance will
not necessarily improve if both cues are provided simultaneously (e.g. both vision
and proprioception).



10 Compliance Perception Using Natural and Artificial Motion Cues 201

Proprioception may be subjectively valued because it is less cognitively taxing
than visually observing the motion of a limb. A study by Brown et al. (2012) inves-
tigated the role of co-location of the force and position cues for a compliance per-
ception task and showed that the coupled force/motion condition gave significantly
better performance in terms of spring identification accuracy and response time
than the non-coupled condition. They concluded that the uncoupled motion and
force cues required the brain to remap the sensory cues to the applied motion in a
manner that contradicts what may be actually occurring, perhaps either due to the
disconnect between the force and motion neural pathways, or due to an integration
of the stationary cues from one limb with the motion cues from the other limb. In
the study presented here, for the Proprioceptive Motion condition the haptic cuta-
neous/force/torque cues combine with the haptic position/motion cues at the same
location, while for the Visual Motion condition the haptic cutaneous/force/torque
cues combine and possibly integrate across sensory modalities with the visually
relayed position/motion cues. Thus, there is a physical disconnect between the cues.

Kim and Colgate (2012) investigated whether a novel multi-sensory haptic feed-
back device that they had developed could relay touch cues to the reinnervated chest
area of upper-limb amputees who had undergone a targeted reinnervation surgical
procedure [a procedure that remaps nerves that normally target the missing limb to a
different site at which reinnervation occurs (Kuiken et al. 2007)]. Such an approach
allowed for the artificially relayed sensory sensations to match both somatotopically
and by modality. That is, respectively the location and the sensation that was arti-
ficially conveyed matched the location and the sensation that was being stimulated
on the prosthetic limb. Results demonstrate that haptically displaying information
about a single modality (shear or pressure feedback) successfully decreased forces
applied when grasping an object, while the combination of relaying both sensations
gave higher grasping forces than when relying on only one of the sensations. These
findings demonstrate that there may be a limit to the amount of information that can
be effectively transmitted, even when using somatotopic and modality matching.

In the next section, we provide an overview of methods by which compliance could
be relayed artificially using haptic artificial proprioception displays. Implications
from our study, (Brown et al. 2012), and (Kim and Colgate 2012) suggest that artificial
cues should be relayed in a manner that is haptically natural and intuitive in order to
maximize user performance and ease of use.

10.3 Haptic Sensory Substitution Systems for Compliance
Perception

Here we provide an overview of tactile feedback technologies and considerations
for relaying compliance using sensory substitution systems. Sensory substitution
is defined as the mapping of one sensation (e.g. proprioception) to another (e.g.
vibration) in order to convey the original information in a different way. One example
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of a very effective and well-known device that functions as such is the cell phone,
which uses vibrations to notify the user of an incoming call. It is a small and light-
weight packaged system, and it effectively uses vibratory cues to convey what was
previously auditory stimulation. Below we give an overview of haptic feedback
sensory substitution devices, discuss practical locations for relaying the sensations,
and provide an overview of work already done in relaying compliance, force, and
position information.

10.3.1 Challenges in Sensory Substitution

Given that the mechanism by which compliance perception occurs is not completely
known, it is not clear how this sensation should be artificially relayed. Once a model
that explains how compliance perception occurs is validated, one can go about the
task of relaying the missing haptic information using artificial feedback devices. For
example, tactile cues were demonstrated to be sufficient for sensing springs with
deformable surfaces (Srinivasan and LaMotte 1995). In turn, a novel device was
created to interact with the finger cutaneously by increasing a contact surface area
as a function of an applied force. The combination of the tactile feedback with the
kinesthetic feedback gave, as expected, better compliance perception than relying
solely on kinesthetic cues (Bicchi et al. 2000). The research direction on which we
focus is the interaction with rigid-surfaced springs, where both kinesthetic and tactile
cues are important for compliance perception (Srinivasan and LaMotte 1995).

We simplify the task to one of interpreting the kinesthetic cues [force and posi-
tion (Chib et al. 2009)], ignoring the tactile cues, to demonstrate the complexity
of this work. Some open-ended questions for relaying kinesthetic compliance cues
include: should both force and position information be relayed, or only one of these?
How will the increased cognitive load from using the sensory substitution system
impact task performance? When and how should the sensory information be deliv-
ered? For example, should position and/or velocity be conveyed? Finally, should the
device be activated at all times, or should it be only activated to indicate changes
between an initial position and a final target position when exploring an object?

We demonstrate the difficulty of artificially relaying compliance by discussing
the example of conveying the compliance sensed by one hand. The human hand
has 22+ degrees-of-freedom (DoF). Compliance information could be displayed
by artificially stimulating the user to relay a net force using a device such as a
linear actuator and a separate device to portray the net hand position. However, by
reducing the information displayed, the compliance sensed at each unique finger is
not necessarily being represented. If one attempts to relay all of the information, an
immense number of devices would be required to represent each DoF and sensory
cue (e.g. force, position).

An additional challenge is artificially displaying the information in a manner that
will not interfere with one’s ability to perform activities of daily living. That is,
sensory substitution mechanisms should be usable during the wearer’s daily routine.
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For example, users should be able to sense a change in position and force, integrate the
information to sense an object’s compliance, and simultaneously actively maintain
currently relevant information in the mind (e.g. working memory load).

Using tactile sensory substitution systems is beneficial compared to relying on
visual and auditory feedback since areas on the body that are not generally used during
activities of daily living can be stimulated. Such systems are comprised of one or
more tactors—elements that stimulate the user via the tactile channel—to convey
information. Tactors are challenging to implement because it is necessary to identify
an effective stimulation location on the body; select a design and control schema for
stimulating the user; discern which information is critical to feed back to the user;
package the system into a compact, light-weight, portable system that responds in real
time; select an appropriate stimulation method (e.g. vibrotactile, electrocutaneous
cues); and ensure that the artificial stimulation will not interfere with one’s daily
activities (Jones and Sarter 2008; MacLean 2009; Stanley and Kuchenbecker 2011).

10.3.2 Haptic Stimulation

Artificial haptic stimulation has been implemented both through invasive and non-
invasive means. Ideally, these sensory feedback systems would have somatotopic
matching, where the bodily location is directly stimulated such that the feeling is
natural and intuitive; however, this may require an invasive procedure such as tar-
geted reinnervation (Kim and Colgate 2012). An additional item for consideration
is matching the sensory modality, such that the sensation relayed to the user is iden-
tical to that which was externally perceived, so that feeling may be more easily and
quickly interpreted (Kim and Colgate 2012).

Tested invasive stimulation methods include using targeted reinnervation (Kuiken
et al. 2007) and peripheral nerve stimulation (Dhillon and Horch 2005; Horch et al.
2011; Riso 1999). Such invasive stimulation methods are not yet developed techno-
logically to safely, naturally, and seamlessly relay realistic compliance, force, and
position cues.

A more feasible method for actively displaying haptic information currently is the
use of noninvasive methods such as electrical, vibratory, force, and skin stretch stim-
ulation. An article by Kaczmarek et al. (1991) provides a thorough overview of the
first two sensory stimulation methods. They also provide a list of performance criteria
considerations for such devices, which includes minimal power consumption, max-
imal stimulation comfort, minimal post stimulation skin irritation, minimal sensory
adaption, and maximal information transfer. Note that training may be necessary to
remap the neural pathways for interpreting the new flow of sensory information.

Below we give an overview of numerous novel haptic feedback technologies that
have been developed in recent years, and in Fig. 10.4 we depict several sensory
substitution devices that we have tested for relaying compliance and proprioception
artificially to various locations on the body. Methods tested for artificially displaying
compliance-related information include using multiple vibrating elements for con-
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Fig. 10.4 Examples of sensory substitution devices. a Vibratory feedback via multiple vibrating
elements to the torso (adapted from Fig. 10.3 in Cheng (2012) © IEEE 2012). b Skin slip feedback
via a single rotating element with a raised ridge. c Vibratory feedback to the toe (adapted from
Fig. 10.3 in Gurari et al. (2009) © IEEE 2009), and d skin stretch feedback to the forearm (adapted
from Fig. 10.2 in Gurari et al. (2012) © Springer 2012)

veying hand configuration to the torso (Cheng 2012), a novel skin stretching/slipping
mechanism for relaying angular position to the big toe, a comparison of perception
of vibration at the finger, foot, and forearm (Gurari et al. 2009), and stretching the
skin on the user’s forearm to display proprioception artificially during compliance
perception (Gurari et al. 2012).

10.3.2.1 Feedback Mechanisms

Currently, the most common method for conveying information haptically is using
vibration feedback. Vibratory feedback devices are cheap, have relatively low power
consumption, convey highly perceivable signals, and are small, light-weight, and
portable. Drawbacks include the limited information that can be displayed using one
vibrating element, possible confusion of interpreting multiple vibrating elements,
discomfort and/or annoyance of the sensation, and disregard of the signal if it is
continuous. Pylatiuk et al. (2006) suggested that vibratory feedback be limited to
between 3 and 5 s of continuous stimulation in order to limit user annoyance. A
detailed discussion of the advantages and disadvantages of vibrotactile feedback
devices is given in Stanley and Kuchenbecker (2011).
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Another widely tested method for relaying information haptically is electrical
stimulation (Cholewiak and Collins 2003; Kajimoto et al. 1999; Riso and Ignagni
1985; Rohland 1975). Benefits of using electrocutaneous signals are similar to those
of vibrotactile stimulation, and include low cost, light weight, compact size, and low
power consumption. A major drawback of this stimulation modality is that the cues
can be uncomfortable, if not painful, especially if the stimulated skin is moist.

Force feedback has also been used for conveying sensory cues artificially
(Kim et al. 2010; Panarese et al. 2009; Prattichizzo et al. 2012). Force, or pressure,
feedback can be beneficial because the mapping can be more intuitive if the force
being measured at one location is artificially displayed through a force-feedback
mechanism at another location. Additional benefits of force feedback include that it
can be a relatively lightweight and compact device (although larger and heavier than
vibratory and electrocutaneous devices), requires low power consumption, and is low
in cost. A drawback is that the amount of information that can be relayed through
a single device is limited. Note that force feedback can be considered as compli-
mentary to vibrotactile feedback, since the difference between the two sources of
information is in the frequency, the former exhibiting a lower frequency response
and the latter exhibiting a higher frequency response.

Skin stretch is a more recently explored idea that is being pursued for conveying
sensory information, e.g. (Bark et al. 2008; Gleeson et al. 2009). Skin stretch feedback
is useful because it can give position, velocity, and direction information all from one
mechanism. Additionally, this method has been shown to give better performance in
displaying position and velocity cues over a vibrotactile stimulus (Bark et al. 2008).
A limitation of this method is that the information will not be effectively conveyed
if the end-effector to skin contact is not strong, such as when the skin is moist and/or
the adhesive material used is not strong enough.

Electrocutaneous, vibrotactile, force, and skin stretch stimulation are stimulation
methods that have all been applied for artificially conveying compliance, force, and/or
position information (Bark et al. 2008; Cipriani et al. 2008; Kim et al. 2010; Mann
and Reimers 1970; Panarese et al. 2009; Pylatiuk et al. 2006; Riso and Ignagni
1985; Rohland 1975; Schorr et al. 2013; Wheeler et al. 2009). Mixing numerous
feedback signals into one device may enable richer information to be simultaneously
conveyed, as suggested by Kim et al. (2010) when they created a novel multi-sensory
feedback device that displays touch, pressure, vibration, shear force, and temperature
all-in-one. Another idea proposed for realistically displaying sensations is to have
body-machine interfaces (Casadio et al. 2010). Such interfaces allow a patient to use
body parts that are still partially functional in order to control machines that assist
them in performing tasks. These are valuable, in part, because they allow for natural
proprioceptive cues at another portion of the body to be remapped to proprioceptive
cues at the missing sensory channel.
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10.3.2.2 Feedback Locations

The sensitivity of different locations on the body to various haptic stimuli depends
on which location of the body is being stimulated. The glabrous (hairless) skin at
locations such as one’s toes, fingertips, or lips has a greater sensory bandwidth,
and in turn, is more sensitive than hairy skin regions at locations such as one’s
back, shoulder, and forearm (Weinstein 1968). Sensitivities vary depending on the
available mechanoreceptors, the response properties of their afferents (Merzenich
and Harrington 1969), and their corresponding density levels. The more sensitive
glabrous skin areas tend to be employed for activities of daily living, making these
sites less ideal for use in sensory substitution systems.

We conducted several studies to identify the effectiveness of various sensory
substitution devices for relaying information to different parts of the body, focusing
primarily on two locations: the foot and the torso (see Fig. 10.4). The foot is of interest
because it has the highly sensitive glabrous skin and, thus, offers a relatively large
surface area of mechanoreceptors. Additionally, it provides the possibly convenient
option of developing a system that can be packaged inside a shoe. The torso is of
interest since it is a portion of the body that is not actively used during activities
of daily living, and it has a large surface area that could allow for the placement of
a large number of actuators. Furthermore, packaging for the system can be placed
underneath a shirt so that it is hidden from view.

The effectiveness of various locations for haptic sensory substitution systems on
the body has been tested in many scenarios. For example, prior research demonstrated
that the vibrotactile stimulation of the torso is easier to perceive than stimulation of
the forearm (Jones et al. 2006), and another study demonstrated that perception of
vibratory cues was comparable at the glabrous sites of the fingertip and foot, which
were both superior in performance to the forearm (Gurari et al. 2009).

10.3.2.3 Relaying Compliance Through Haptic Sensory Substitution Systems

Vibrotactile, electrical and force stimulation have all been used for displaying force
and position cues artificially. Several decades ago, work done by Shannon (1976)
and Scott et al. (1980) demonstrated that vibrotactile stimulation could be used to
convey grip/pinch force to upper-limb prosthesis users, while (Mann and Reimers
1970) used this stimulation modality for displaying the angular position of the elbow
joint of a prosthesis. More recently, (Pylatiuk et al. 2006) and (Chatterjee 2007)
showed that vibratory stimulation can aid in controlling the grasping force of a
myoelectrically controlled prosthetic device, and (Cipriani et al. 2008) found that
vibrotactile feedback was subjectively important to users, even though it did not
improve performance during an object grasping task. Additionally, force feedback
to the toes has been effective for relaying grip force sensed by a robotic hand (Panarese
et al. 2009). Furthermore, electrical stimulation was used to convey the position of a
user in a motion-tracking task, and it was shown to give improved task performance
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over no feedback, but worse performance than when relying on visual cues (Riso
and Ignagni 1985). Another study used electrical stimulation for relaying gripping
pressure when grasping an object, and they concluded that the electrical stimulation
is desired by upper-limb prosthesis users for such a task (Rohland 1975).

Very recent work investigated whether compliance could be relayed with vibro-
tactile feedback of force and position information (Witteveen et al. 2013). A single
high-quality vibrating element modulated amplitude to convey either force or position
information while the latter modulated the activated position of 4–8 cheaper vibrating
elements to relay the second piece of compliance information. Results demonstrate
that compliance perception was most effective when both force and proprioceptive
cues were artificially portrayed and when solely artificial proprioceptive information
was conveyed. The artificial display of solely force cues resulted in significantly
worse task performance. Interestingly, response times for interpreting compliance
were shorter with artificially conveyed proprioceptive cues over the combination.
This is similar to the finding in Kim and Colgate (2012) in that the combination of
pressure and shear feedback gave worse task performance over receiving information
from only one of the sensory channels.

Currently, skin stretch stimulation methods are receiving attention for the display
of position, force, and compliance. Using such a display may be more intuitive
than the aforementioned methods for several reasons. Firstly, skin stretch is a natural
signal used in sensing proprioception and force. Secondly, there may be more natural
mappings (such as rotation or translation of a device for a rotary limb motion or
linearly applied force), and finally, a large amount of information may be more easily
conveyed using a single device (e.g. position, motion, and directional information
all-in-one). Schorr et al. (2013) found that artificially relayed skin stretch cues can
give comparable compliance discrimination performance to force feedback cues, and
the mapping between the skin stretching and the signal is intuitive (no training is
required). Using a different skin stretching device, (Bark et al. 2008) demonstrated
that skin stretch feedback was more effective at conveying proprioception during
a sighted targeting task over vibratory feedback, which was superior to having no
artificial haptic feedback cues.

Below we describe two relevant studies conducted by the authors: one identified
the effectiveness of a skin stretching mechanism (Wheeler et al. 2009) for artificially
displaying compliance (Sect. 10.3.3), and the second investigated the feasibility of
conveying hand configuration by relaying four synergistic motions of the hand via
four vibrating elements (Sect. 10.3.4).

10.3.3 Experiment: Relaying Compliance Using Skin Stretch
Feedback

In Sect. 10.2.2 we presented an experiment demonstrating that the perception of a vir-
tual compliant object is similar in the cases when motion cues are perceived visually
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or proprioceptively. Here, we investigate perceptual performance in the compliance
discrimination task when motion cues are also conveyed using an artificial proprio-
ceptive display.

10.3.3.1 Experimental Overview

We used the skin stretch device presented in Wheeler et al. (2009) and shown in
Fig. 10.4d to repeat the study described in Sect. 10.2.2 under slightly modified exper-
imental procedures. Visual feedback was relayed on the computer monitor, but here
the monitor was horizontally aligned with the real finger (via visual inspection) and
vertically aligned such that the virtual finger was offset by approximately 0.09 m from
the real finger. Below we provide a brief overview of this work; the experimental
setup and study is explained in more detail in Gurari et al. (2012).

The skin stretch device was designed to stretch the user’s skin clockwise and
counterclockwise to a maximum range-of-motion of 40◦ in each direction. The device
attaches to the user’s right forearm via velcro straps, and two cylindrical 1.4 cm
disks that are spaced 2.6 cm apart make contact with the user’s skin. The device was
comprised of a Shinesei USR30-B3 non-backdriveable ultrasonic motor (Himeji,
Japan) that applies a torque to the end-effector via a 6:1 capstan/cable transmission,
and an optical encoder that measures the angular rotation of the end-effector. Shape
Deposition Manufacturing (Binnard and Cutkosky 2000) was used to manufacture
the body of the device.

Eight healthy, intact participants were involved in the study. They used the custom
kinesthetic feedback haptic device shown in Fig. 10.1 to control the motion of a real
and/or virtual limb by applying a force at the right index finger. Thus, an effort was
always actively applied, producing corollary discharge cues, and forces applied at the
index finger were always sensed. Participants performed a method of constant stimuli,
two-alternative forced choice task on rigid-surfaced virtual springs. They compared
springs with a reference stiffness of 290 N/m to one of 10 comparison springs with
a stiffness ranging between 250 N/m and 330 N/m in increments of 8 N/m. Motion
feedback was portrayed under four possible conditions: vision (Vision), natural pro-
prioception (Proprioception), artificial proprioception (Skin Stretch), or artificial pro-
prioception combined with sight (Skin Stretch with Vision).

The aim of this study was to quantify perceptual performance across each of
the conditions to determine the effectiveness of the artificial proprioception device
in comparison with vision and natural proprioception. The artificial proprioceptive
condition used the skin stretching device to stretch the skin on one’s ipsilateral
forearm by an amount proportional to the angular rotation of a virtual prosthesis.
In Fig. 10.5, we pictorially depict the tested conditions and indicate how a user
of a myoelectric upper-limb prosthesis, and a user of this experimental setup, may
combine and integrate sensory cues to perceive the artificial limb’s location.

Participants interacted with the springs for a maximum of 30 s [which was demon-
strated to be a reasonable amount of time for comfortable exploration (Gurari et al.
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Fig. 10.5 Sensory cues available during the experimental testing conditions and as compared to
myoelectrically controlled upper-limb prosthesis use. Adapted from Fig. 10.1 in Gurari et al. (2012)
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2009)] and were asked to indicate which spring was stiffer. The maximum force was
obtained during a pre-testing calibration procedure based on the maximum amount
of force that the user could comfortably apply. This was to ensure that the entire
skin stretch device workspace was effectively employed. Additionally, the interac-
tion speed was limited to 100◦/sec to ensure that spring stiffness rendered using the
kinesthetic feedback device was comparable to those rendered visually and artifi-
cially (Gurari et al. 2013).

As described in Sect. 10.2.2.1, the different sensory conditions result in different
afferent pathways of the motion cues. The manner by which the corollary discharges
combine with the force cues remains comparable across conditions, whereas the
motion is perceived as follows for each of the conditions. During Proprioception,
the user’s finger rotates by an amount that is proportional to his/her applied force.
During Vision, a graphical representation of the virtual finger, as depicted by a vertical
line that is the length of the user’s real finger, rotates by an amount that is proportional
to the user’s applied force (varies as a function of the rendered spring) while the real
finger is held still. During Skin Stretch, the skin stretch device rotates on the user’s
forearm by an amount that is proportional to his/her applied force (varies as a function
of the rendered spring) to indicate the location of the virtual finger while the real
finger is held still. During Skin Stretch with Vision, the user observes a graphical
representation of the virtual finger rotating on the monitor and feels the skin stretch
device rotating on his/her forearm by an amount that is proportional to the applied
finger force (varies as a function of the rendered spring) while the real finger is held
still. For all conditions, aside from
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Fig. 10.6 Example perceptual curve for a representative participant. Proportion of “stiffer than”
user responses for each comparison spring based on a the originally collected data and b the
flipped-and folded-over condition. Perceptual performance is defined as the area under the normal-
ized curve of the flipped-and folded-over curve. This figure is adapted from Gurari et al. (2012)
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Proprioception, sensory integration may occur between the visually and/or hap-
tically relayed cues and the stationary positional cues from the real finger.

10.3.3.2 Results and Discussion

The effect of sensory condition on task performance and exploration methods
was evaluated using a repeated measures one-way ANOVA with a Box (Geisser-
Greenhouse) epsilon-hat adjustment to correct for violations of sphericity. Percep-
tual performance is defined here as the area under the normalised curve, since it
describes the cumulative discrimination capabilities and allows for a comparison
across conditions (see Fig. 10.6). The WF was not used since a goodness-of-fit was
not obtained for a number of the conditions and participants given the employed
analysis method. Sensory condition was not found to significantly affect perceptual
performance (F(3, 21) = 0.84, ε̂ = 0.5134, p = 0.43) and exploration method
[number of spring presses (F(3, 21) = 0.42, ε̂ = 0.5800, p = 0.64), total time spent
pressing springs (F(3, 21) = 1.54, ε̂ = 0.6964, p = 0.25), or largest penetration
distance (F(3, 21) = 1.18, ε̂ = 0.5191, p = 0.33)].

Participants provided feedback on how useful they perceived each feedback con-
dition, as well as how difficult they found the stiffness perception task using each
sensory feedback condition. The Friedman test (factors of participant and sensory
condition) did not find an effect of sensory condition on perceived usefulness rank-
ings (χ2(3) = 4.95, p = 0.176); however, perceived task difficulty was significant
(χ2(3) = 9.64, p = 0.022) and a post-hoc analysis using the Tukey’s honestly sig-
nificant difference criterion found a significant difference between proprioceptive
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cues only and skin stretch cues only at a significance level of p = 0.05 (using the
MATLAB function multcompare). A possible drawback of the artificial skin stretch
cues is that the task may be perceived as more difficult when it is used. The force cues
combined with the position cues conveyed from the skin stretching mechanism were
sufficient for discriminating between springs; however, the increase in task difficulty
may be practically problematic.

A general perception is that haptic cues are required in order to control one’s
motions, e.g. (Cole 1995). Interestingly, these results along with the findings from
the previously presented study demonstrate that vision and proprioception do not give
significantly different performance results. Future work could better inform on the
role of the natural and artificial cues by identifying task performance and subjective
feedback for a passive task when compared to this active task. Such testing may
additionally inform on the effectiveness of the artificial cues for scenarios when
an artificial limb may automatically perform a task (e.g. automatic grasping of an
object). Further, studies could test the system with amputees to identify its potential
as well as limitations for artificially relaying proprioception (and/or other haptic
cues) in practice, since participants in this study were all intact healthy individuals.
Moreover, testing with additional participants on the current setup could give higher
confidence in the findings.

10.3.4 Experiment: Perception of Hand Proprioception via
Multiple Vibrating Elements

10.3.4.1 Experimental Overview

It is challenging to create a sensory substitution haptic display for relaying compli-
ance for practical purposes. Ideally, either force or position cues will be an “input”,
and only one of these sensations will be artificially displayed to convey the “output”
of the compliant object. It is not clear, however, how to create a device that can dis-
play sensory information in a manner that is comparable to natural proprioception
in terms of information transfer and cognitive loading, especially if the stimulation
is noninvasive. Furthermore, being able to display information for higher-DoF tasks
adds significantly more mechanical and control complexity. A clever and intuitive
mapping should be developed that can effectively relay the position and/or force cues
perceived at all relevant digits. Proposed possible algorithms for how this could be
done include conveying the entire hand posture based on measurements of solely the
fingertip positions (Mulatto et al. 2010) or fusing a priori information with a limited
and possibly noisy set of sensor data (Bianchi 2012).

The authors recently investigated the possibility of conveying a reduced set of
proprioceptive information about the 22-DoF hand using a subset of four unique
hand configurations, or hand synergies (Cheng 2012). This work is motivated by the
idea that nearly 85 % of one’s hand motions can be broken down into four unique hand
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movements (Thakur et al. 2008). Thus, by displaying a subset of sensory information,
it may be possible to sense and, in turn, control one’s hand movements.

In the hand-synergy feedback experiment, four vibrotactile devices around the
torso were activated in controlled vibration patterns to convey hand configuration
(see Fig. 10.4b). The vibrotactile elements were activated via two unique mappings to
identify each one’s effectiveness: (1) a Synergy-based mapping motivated by results
of a principal component analysis on general hand motions, and (2) Decoupled hand
motions that were experimenter-chosen and included finger grasp and finger spread.
Each tactor could be activated at one of three levels in which the envelope frequency
was respectively either 0.5, 1.0, or 2.0 Hz at a carrier frequency of 250 Hz.

Fourteen participants took part in the experiment, all healthy with no neurological
illnesses. Six participants were female, eight male, and all provided informed consent.
The task was to identify one of five possible hand configurations using either the
Synergy or the Decoupled tactor stimulation patterns. The experiment spanned two
days. On the first day, half of the participants interacted with the Synergy method and
the other half on the Decoupled method. On the second day, the stimulation method
applied was switched. Participants trained on the system with visual feedback for
30 min prior to the testing to learn the mapping between the tactile stimulation and
the hand configuration. Data collection for the testing portion was conducted when
only vibrotactile cues were relayed to convey the hand configuration.

10.3.4.2 Results and Discussion

Results demonstrate that there is still a long way to go for interpreting the best
mapping from a multiple sensory space to effectively relaying the information using
artificial haptic display devices. Tactor patterns were correctly identified 74.3 % of the
time for the Synergy method and 53.6 % of the time for the Decoupled method. The
ability to correctly identify the tactor pattern along with the corresponding hand con-
figuration was 68.6 % for the Synergy method and 46.4 % for the Decoupled method,
where guessing, or chance, was 2.5 %. User response times were much less inspiring,
with participants requiring 30–45 s to estimate the hand configurations. Compar-
isons were made for the two methods—Synergy and Decoupled—using a repeated
measures one-way ANOVA. The ability to correctly identify hand configurations was
significantly higher (F(1,12) = 16.91, p = 0.001), time elapsed to identify the hand
configurations was significantly less (F(1, 12) = 26.67, p = 0.0002), and ability
to identify solely the tactor pattern was significantly better (F(1, 12) = 6.72, p =
0.023) for the Synergy method than the Decoupled method. Future work for relaying
sensory information should ensure that both the tactor patterns and the sensory cues
are as orthogonal, or as different, as possible to enhance user interpretation of the
signals.
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10.4 Concluding Remarks

In the first part of the chapter, we underscored the importance of proprioception
for compliance perception. An experiment was presented that demonstrated that the
combination of force and proprioception cues allows for compliance perception, and
that sensing the force and position information haptically is less cognitively taxing
than the combination of a haptically relayed force and a visually observed motion of
a limb.

In the second part of the chapter, we proposed touch feedback devices that could be
used for artificial display of proprioception to those with compromised touch sensing
(e.g. lack of proprioception). Skin stretch is a promising method because it may allow
for more natural mappings (e.g. rotation of a device to portray a rotary limb motion)
and the information displayed may better encompass the pertinent information (e.g.
ability to display position, motion, and directional cues simultaneously with one
device). Experimental results indicate that task performance may be possible using
skin stretch feedback. There are still limitations, however, since the task may be
perceived to be more difficult using such cues.

For future work, an enhanced understanding of the neural mechanisms underlying
compliance perception may provide inspiration for how to artificially relay missing
information intuitively and naturally. If the mechanism governing how human posi-
tion, force, and tactile cues merge to create the compliance percept is unlocked, then
perhaps simpler artificial stimulation patterns can be generated to involve the appro-
priate neural pathways to create the desired sensations. Furthermore, this enhanced
understanding could be eventually applied to patient populations with limited or
nonexistent sensing to aid in their ability to move around and interact with their
surroundings.
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Chapter 11
A Fabric-Based Approach for Softness
Rendering

Matteo Bianchi, Alessandro Serio, Enzo Pasquale Scilingo
and Antonio Bicchi

11.1 Introduction

The reproduction of material properties like softness is a crucial component for
a compelling and realistic experience of tactile interaction. Softness is a property
specifically related to tactile information and hence to the semantic representation
of objects (Klatzky et al. 1991; Lederman and Klatzky 1987; Newman et al. 2005).
Indeed, tactile signals about softness are among the most accessible sources of infor-
mation after the initial phases of contact (Lederman and Klatzky 1997b) since their
coding does not require any geometrical description of the object (Klatzky et al.
1989). Softness perception relies on two types of sensory signals: cutaneous (tac-
tile) information (which is mainly related to the mechanical deformation of the skin)
and proprioception/kinaesthesia [which can be regarded as the internal sensing of
forces, displacements and postures processed inside joints, muscles, tendons and skin
(Bastian 1888)], even though other modalities could also contribute to some extent
like vision and audition, see Chaps. 2 and 4 respectively. Both types of information
are necessary to have a softness perception for compliant objects with rigid surfaces.
However, during normal interaction with the world, tactile sensory information is
predominant, as the cutaneous contribution alone is sufficient for softness discrim-
ination of objects with deformable surfaces (Srinivasan and LaMotte 1995). Most
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haptic devices which are currently available (Hannaford and Okamura 2008) act
primarily as force displays, although a cutaneous sensation is nevertheless provided
through the contact with the device tool, but it is not modulated by the device. By con-
trast, tactile displays stimulate skin by conveying force with both contact and shape
information. To convey cutaneous information with these devices, it is necessary
to reproduce on the finger pad the complex mechanical interaction and stress/strain
distribution which originates from the contact between the finger and the external
object. Such tactile displays stimulate the mechanoreceptors that basically react to
the strains of the skin in a manner proportional to the velocity, acceleration, or elonga-
tion (Kern 2009). Trying to measure and reproduce the tensor distribution produced
by the human skin (itself a dishomogeneous, anelastic material), is a difficult task.
The challenge for research is to reduce the complexity of the tactile information to a
meaningful approximation, while considering design limitations such as feasibility,
costs and quality of the rendering of the haptic stimuli.

11.2 Taming the Complexity of Haptic Information

To identify models which harness the complexity of tactile sensing, Bianchi (2012)
proposed a geometrical reduction method, mapping a high dimensional space of per-
ceptual elemental variables (such as information provided by sensory receptors) to
a low dimensional space comprised of perceptual primitives and performance vari-
ables. The goal was to use these primitives to drive the design of haptic devices and
artificial systems, which might enable a more reliable human-machine interaction.
This approach draws inspiration from the neuroscientific studies on the biomechan-
ical and neural apparatus of the human hand, which demonstrate that, despite the
hands complexity, the simultaneous motion and force of the fingers is characterised
by coordination patterns that reduce the number of independent Degrees of Freedom
(DoFs) to be controlled (Schieber and Santello 2004). This experimental evidence,
which can be explained in terms of central and peripheral constraints in the neu-
romuscular apparatus, describes well the concept of hand synergies (synergy, from
Greek work together), i.e. the aforementioned covariation schemes observed in digit
movements and contact forces. For a complete review on the concept of synergies
(see Santello 2013).

A valuable conclusion can be drawn from these results: for a wide range of hand
behaviours the kinematic space of the hand has a smaller dimensionality than the
one represented by its mechanical degrees of freedom. Synergies can be regarded as
maps (Latash 2008) between the higher dimensional complexity of purely mechanical
architecture of the human hand and the lower dimensional control space of the action
and performance. In the latter it is possible to individuate kinematic and kinetic
primitives. In robotics, the concept of synergies has been used to design robotic
hands in a simplified manner, and has lead to promising initial results [from the
early attempts, e.g. (Brown and Asada 2007; Ciocarlie et al. 2007; Ciocarlie and
Allen 2009), to the most recent applications (Catalano et al. 2012)]. Furthermore,
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synergies were also used to guarantee optimal performance and design for glove-
based Hand Pose Reconstruction (HPR) systems (Bianchi et al. 2013a, b).

As previously mentioned, Bianchi (2012) extended the aforementioned motoric
concepts to the (dual) haptic sensing domain, to find a mapping between the
higher-dimensional redundant space of elemental sensory variables involved in
the mechanics of touch and the lower dimensional space of perceptual primitives,
i.e. “what we actually feel”. An attempt to accomplish this goal was pioneered in
Bicchi et al. (2011), where authors hypothesised the existence of a sort of sensory syn-
ergy basis. The elements of this basis can be regarded as tactual perception manifold
projections onto constrained subspaces, where the subspaces increasingly individuate
refined approximations of the full spectrum of haptic information. Hayward (2011)
investigated the existence of a plenhaptic function for determining the dimensionality
of haptic perception. This function is the haptic counterpart of the plenoptic func-
tion (Adelson and Bergen 1991), defined in the visual domain to indicate the number
of coordinates necessary to describe all possible sensorimotor interactions. From a
mechanical point of view, the plenhaptic function can be regarded as the complete
characterisation of haptic experience. In terms of vector basis it comprises all the ele-
ments necessary for an exhaustive description. In Hayward (2011) it was also noted
that even if the number of dimensions needed to describe mechanical interactions
in haptics is larger than three or four, human touch-related experience seems to take
place in a lower dimensional space; i.e. the nervous system produces nearly instan-
taneous reductions of dimensions, to convert a complex problem into a manageable
set of computational tasks. Tactile illusions, for example, can be interpreted as the
results of these low dimensional simplifications of the plenhaptic function—sampled
in time and space—related to motoric and sensory capabilities.

11.3 The Contact Area Spread Rate Approach for Softness
Rendering

In softness discrimination, a possible reduction of the dynamic, force-varying tactile
information operated by the nervous system might be described by the tactile flow par-
adigm (Bicchi et al. 2005, 2008), which extends Horn and Schunk’s equation (Horn
and Schunk 1981) for image brightness to three-dimensional strain tensor distrib-
utions. Tactile flow equation suggests that, in dynamic conditions, a large part of
contact sensing on the finger pad can be described by the flow of Strain Energy
Density (SED) (or Equivalent von Mises Stress), since Merkel-SA1 afferents, which
are primarily responsible for dynamic form in tactile scanning, were proven to be
selectively sensitive to these scalar quantities (Johnson 2001). Moreover, the integral
version of the tactile flow equation can be used to explain the Contact Area Spread
Rate (CASR) (Bicchi et al. 2000) experimental observation, which affirms that a
considerable part of tactile ability in object softness discrimination is retained in the
relationship between the contact area growth over an indenting probe (e.g. the finger
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Fig. 11.1 The discrete
CASR display (a). A finger
interacting with the discrete
CASR device (b)

pad that presses the object) and the indenting force itself. These suitable approxi-
mations and reductions of the haptic information manifold suggest new strategies
for building haptic interfaces. For example, recognizing that a simple force-area
relation describes a large amount of the cutaneous information involved in softness
discrimination by probing has inspired the development of simpler and more effective
softness displays for human-machine interaction.

11.3.1 The First Discrete CASR-Based Display

Bicchi et al. (2000) presented the first prototype of a CASR-based display. Its
role is to mimic the rate at which the contact area of the probed material grows
over the surface of the probing finger pad. The implementation proposed in Bicchi
et al. (2000) consists of a set of cylinders of different radii, assembled in telescopic
arrangement (see Fig. 11.1).

As a result of the discontinuity in the structure due to the cylinders, this CASR
display will be referred to as the discrete CASR display. Regulated air pressure acts
on one end of the cylinders according to the desired force to be perceived by users
during the indentation (see Fig. 11.1). Pressure is applied on all the cylinders. When
the user finger probes the display, pushing down against the cylinders, it comes
into contact with a surface depending on the height of the cylinders themselves and
perceives a resultant force correlated to the pressure. The length of the cylinders is
chosen such that, when the operator exerts no force, the active surface of the display
can be approximated in a stepwise manner as a cone whose vertex has a total angle
of 2a. After the finger is pushed down by an amount of δ, the contact area A can be
approximately computed as A(δ) = π δ2 tan(δ)2. Consequently, the resultant force
F that is opposed to the finger is F(δ) = p A (δ), where p is the pressure to be
provided to the inner chamber of the device by the external pressure regulator. In
this prototype, the displacement δ can be measured with an optoelectronic sensor
or a proportional Hall sensor placed at the bottom of the inner chamber. In Bicchi
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et al. (2000) psychophysical experiments proved that the discrete CASR display is
able to provide better performance in softness discrimination than the one achieved
using a purely kinaesthetic display (i.e. the discrete CASR display covered with a
hollow rigid cylinder).

The experimental curves F/A (or CASR curves) obtained for the discrete CASR
display, at fixed pressure levels, are linear; to mimic CASR curves of real objects,
typically nonlinear, the display has to be controlled acting on the variable p.

11.4 Fabric-Based Displays

The discrete CASR display was proven to be able to replicate desired force-area
curves and to enable a more realistic softness perception compared with the one
achievable with a purely kinaesthetic device. However, the structure of this display
does not provide users with a continuously deformable surface, thus producing edge
effects. This fact might lead to a not completely immersive experience, which can
destructively affect the transparency and reliability of the perception, e.g. in tele-
operation tasks. Moreover, the contact area involved in the interaction can be known
only after some geometric considerations related to the measured displacement. This
can represent a limitation for correctly mimicking real CASR curves, for which a
real-time accurate measurement of the contact region is mandatory.

To overcome these limits, we propose a new concept of displays based on a bi-
elastic fabric, hereinafter defined as Fabric Yielding Displays (FYDs). Bi-elastic
means that the fabric exhibits properties that render it elastic in at least two sub-
stantially perpendicular directions. After preliminary tests on different materials, we
decided to use the Superbiflex by Mectex (Erba, Como, Italy) since it offers both
good elastic behaviour within a large range of elasticity, and a high resistance to
traction. By changing the elasticity of the fabric, users are able to feel different levels
of softness by touching a deformable surface. At the same time the contact area on
the finger pad can be measured via an optical system.

11.4.1 Introduction to the First FYD Prototype

The first prototype of the FYD consists of a hollow plastic cylinder (ABS 3D printed,
195 × 50 mm) containing a linear actuator (Linear Actuator L16-100-35-12-P by
Firgelli, Victoria BC, Canada), which is a compact DC motor geared to push or pull
loads along the stroke (100 mm). This actuator comes with a built-in potentiometer
and control (maximum positional error of 0.4 mm), allowing one to monitor and set
the actuator position. On the top of the cylinder a rectangular shaped piece of fabric
(200 × 200 mm) is placed and tied to a circular crown. The crown is attached to
the motor stroke and it can run alongside the cylinder with minimal friction. When
the motor pulls down the crown, the fabric is stretched and its apparent stiffness
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Fig. 11.2 The FYD first prototype, an overview (a). A finger interacting with the display. For the
sake of clarity the FYD is shown without and with the cover in (b) and in (c), respectively

increases. Conversely, when the motor pushes up the crown, the fabric is relaxed
and feels softer (Bianchi et al. 2010). The linear actuator is able to move at a rate of
32 mm/s and can exert up to 50 N of force at lower speeds, for a range of motion of
30 mm. The FYD also behaves like a contact area display. A web camera (Hercules
web cam, resolution of 320 × 240 pixels at 30 frames/s) is placed inside the hollow
cylinder, at the centre of the mechanical interface, just beneath the fabric (at a distance
of � 300 mm). The camera is equipped with high luminosity Light Emission Diodes
(LEDs) and frames the lower surface of the fabric, in particular the image of the
strained fabric after the indentation. During tactual probing, the fabric is strained
and the fabric area in contact with the fingertip changes in proportion to the applied
force. The contact area can be estimated using the algorithms described below. The
prototype as a whole is connected to a base and enclosed within a protective shell,
with total dimensions of 195 × 115 × 115 mm. An overview of the system and an
exploded drawing view are reported in Figs. 11.2 and 11.3, respectively. For further
details on the architecture of the first FYD prototype the reader can refer to (Bianchi
et al. 2009, 2010).

11.4.2 Area Acquisition

The contact area between the fabric and the finger can be estimated and visually
displayed by means of a suitable segmentation algorithm. The contact area acquisi-
tion algorithm is based on RGB image binarisation. More properly, only one image
band (the R band, which is a 320 × 240 matrix of integer numbers) out of three
is involved in the area detection algorithm to reduce the computational workload
and allow for fast processing. The underlying idea is quite simple; while the fabric
is probed, the indented fabric surface is closer to the camera with respect to the
outer region, see Fig. 11.4. Consequently, this area will be more brightly lit by the
LEDs. The difference between background luminosity and contact area luminosity
is discriminated via binarisation thresholds, heuristically calculated. Using a linear
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Fig. 11.3 The FYD first
prototype: exploded drawing
view

Fig. 11.4 The measurement
of the contact area

interpolation, a binarisation threshold is associated to each vertical position of the
crown. In this manner, the pixels in the image that belong to the contact area can be
individuated and displayed (see also Fig. 11.5). In order to guarantee uniform and
repeatable luminosity conditions, a cover is placed on the top of the external shell of
the device (see Fig. 11.2). The contact area Acontact expressed in (cm2) is estimated
as

Acontact = Nc × A f

Nw
, (11.1)
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Fig. 11.5 An image of the fabric indented by the finger recorded by the camera (a). The result of
the area detection algorithm (for the sake of clarity the contact area is shown in black) (b). The
number of pixels belonging to the contact area on the right is Nc while the total number of pixels
is Nw

where Nc is the number of pixels belonging to the contact area; A f is the area captured
by the web camera (frame area) in [cm2] and Nw is the web camera resolution
(i.e. 320 × 240 pixels).

11.4.3 Characterisation, Interpolation and Experiments

The FYD prototype is controlled in order to simulate mechanical compliance of
materials having specific (stiffness) force/displacement (F(δ)) and force/area (F(A))
curves. Since force (F) and displacement/indentation (δ) are the primary objects of
kinaesthesia, F(δ) profiles can be regarded as useful abstractions and approxima-
tions of the kinaesthetic behaviour of materials; at the same time, based on CASR
assumption, F(A) curve contains a large part of the cutaneous information useful
for softness discrimination.

In Fig. 11.6, the F(δ) and F(A) curves of the fabric at different levels of stretching
are reported. More specifically these levels were obtained changing the position of
the crown, in a range between 0 mm (0 mm was chosen near the top of the cylinder)
and 30 mm, with an incremental step of 5 mm.

For the characterisation phase we used a compressional rigid indenter shaped as
a human finger, driven by an electromagnetic actuator and capable of applying a
maximum controlled displacement of 10 mm in the axial direction, while the contact
area, the displacement(indentation) and the contact force were measured, by the
web camera, a magnetic linear transducer and a load cell, respectively. The shape
of the wood indenter—15 mm in diameter and 100 mm in length—represents a first
geometrical approximation of the human fingertip (Dandekar et al. 2003). The load-
cell was mounted on the indenter to measure the force applied on the fabric during the
indentation. What is noticeable is that F(A) and F(δ) curves are linear over all the
positions of the crown. During the characterisation phase, only a finite set of positions
was acquired. For intermediate values, a piecewise linear interpolant was adopted. It
is possible to mimic a given material with a specific stiffness coefficient (which can be
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Fig. 11.6 Force/indentation characteristics at different fixed positions of the crown (a). The inden-
tation is measured using a magnetic linear transducer. Force/area characteristics at different fixed
positions of the crown (b). Notice that the position at 0 mm is close to the top of the external cylinder

regarded as the angular coefficient of the F(δ) linear curve), by suitably identifying
the corresponding position of the crown. Moreover, from the actual measurement of
the contact area, since F(δ) and F(A) curves are coupled, an indirect estimation of
the indented force and hence of the displacement can be obtained. Notice that these
estimations are strongly related to the nature of the contact. Indeed, in order to obtain
coherent values, the user should touch the fabric in the same manner as the wood
indenter did during the characterisation phase.

11.4.4 Evaluation Experiments

We designed an experimental session to evaluate the performance of the FYD, com-
paratively with the discrete CASR display, using five simulated levels of stiffness
(SS1, SS2, SS3, SS4 and SS5). Table 11.1 shows the input parameters for the FYD
and for the discrete CASR device necessary to reproduce the five simulated stiffness
values.
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Table 11.1 Parameters used to control the discrete CASR display (third column) and the FYD
(fourth column) in order to render the same level of stiffness (first and second columns)

Stiffness Coeff. (N/cm) Pressure (bar) Position (mm)

SS1 0.67 0.35 1.6

SS2 1.00 0.5 4.1

SS3 1.18 0.6 8.6

SS4 1.28 0.7 14.4

SS5 1.71 0.8 23.3

The term “Position” refers to the vertical position of the crown of the FYD (the position 0 is chosen
close to the top of the cylinder) associated to a given stiffness coefficient. The term “Pressure” refers
to the pressure of the air inflated into the inner chamber of the discrete CASR display to mimic a
given stiffness coefficient

Table 11.2 Confusion matrix of ranking experiments with the discrete CASR display

SS1 SS2 SS3 SS4 SS5 Accuracy (%)

SS1 18 4 1 1 6 60

SS2 0 19 8 3 0 63

SS3 2 1 18 8 1 60

SS4 8 1 1 17 3 56

SS5 2 5 2 1 20 66

The accuracy is the percentage of correct recognition, associated to a specific level. The first column
contains the names of the stimuli, while the first raw indicates the responses, i.e. how stimuli were
identified (ranked) by participants. The total accuracy, i.e. the percentage of correct recognition
across all levels, is 61 %

After providing written consent, 10 right-handed volunteers participated in the
study (7 males and 3 females, their age ranged from 23 to 40) (Bianchi et al. 2010).
None had a history of limitations that could affect experimental outcomes. They
performed the tests blindfolded and with ear plugs, to prevent the possible use of any
other sensory cues and eliminate any diversion from the task. They were presented
with different levels of stiffness and asked to judge them by pressing vertically or
tapping their index finger against the displays. In ranking tests, which were conducted
independently with each device, participants were presented with new stimuli for less
than one second and each trial was repeated three times per participant. They were
asked to probe the set of five levels SS1 to SS5, presented in random order, and sort
in terms of softness,. Participants were asked to rank the stimuli from 1 to 5, where
1 corresponded to the softest.

Results from ranking experiments are shown in Tables 11.2 and 11.3, where
subjective softness is reported versus objective compliance in a confusion matrix
structure (Srinivasan and LaMotte 1995) for the five levels, using both the devices.
Values on the diagonal express the number of correct answers. The percentage of total
accuracy is calculated considering the sum of all correct answers for all the levels of
stiffness. The correspondence between an objective estimation of the compliance and
the subjective evaluation in terms of numerical values in a given scale was already
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Table 11.3 Confusion matrix of ranking experiments with the FYD

SS1 SS2 SS3 SS4 SS5 Accuracy (%)

SS1 22 4 0 2 2 73

SS2 4 25 1 0 0 83

SS3 0 1 27 0 2 90

SS4 3 0 0 25 2 83

SS5 1 0 2 3 24 80

The accuracy is the percentage of correct recognition, associated with each specific level. The first
column contains the names of the stimuli, while the first raw indicates how they were identified
(ranked) by participants. The percentage of correct recognition across all levels, is 82 %

used e.g. in Srinivasan and LaMotte (1995), and Friedman et al. (2008). The results
obtained with the discrete CASR display exhibits a percentage of total accuracy of
61 %, while with the FYD the percentage of total accuracy is 82 %. Notice that the
chance level is 20 %.

Results show that the FYD enables a better softness perception than the discrete
CASR display. This enhancement is probably due to the absence of edge effects dur-
ing the interaction between the fingertip and the fabric surface; indeed, the FYD pro-
vides cues for a more reliable and realistic perception, since the fabric is deformable
in a controlled manner under the finger pad. This fact might also help to develop in
a more effective manner the haptic memory required for multiple comparisons.

11.5 The Second Version of the FYD: The FYD-2

Although the first FYD prototype was proven to be able to enhance softness
discrimination accuracy in participants, by conveying contact area cues in an intu-
itive and efficient manner, there were still some design aspects to be improved.
Indeed, although the contact area was actively measured, no contact-area feedback
for dynamic tracking was implemented. Furthermore, the physical dimensions of the
device can potentially prevent it from integration in multi-device systems such as
in Scilingo et al. (2010), for tasks where space constraints are mandatory. For these
reasons, we created a second version of the display, hereinafter referred to as FYD-2
(Serio et al. 2013) (cfr. Fig. 11.7). The main advantages of the FYD-2 design are:
the reduced dimensions (70 × 70 × 100 mm), which enable possible integrations
with other devices and wearability; an actuation system based on two fast motors
and a more effective sensorisation scheme, which consists of a web camera, for real-
time measurement, and a force sensor mounted at the base of the device, to record
the normal contact force exchanged between the finger pad and the fabric. Other
approaches found in literature lack real-time area measurement, and this severely
limits the reliability of tracking F(A) curves by introducing edge effects and dis-
cretisation (Bicchi et al. 2000) or allowing the control of the fingertip contact area
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Fig. 11.7 The FYD-2, an overview (a). A finger interacting with the display. For the sake of clarity
the FYD-2 is shown without and with the cover in (b) and in (c), respectively

only for a finite set of constructed and stored in advance “numerical models” as in
Fujita and Ohmori (2001). Here, the proposed actuation and sensorisation scheme
realises a closed-loop control, based on the actual measurement of the contact area,
which allows to track arbitrary force/area characteristics.

Furthermore, the actuation scheme endows the system with an additional degree of
freedom, which can be used to convey supplementary haptic cues, such as directional
information, for a more compelling and immersive haptic experience.

11.5.1 Mechanical Design

In the second version of the device the extremities of a rectangular strip of the fabric
are connected to two rollers. These rollers are independently moved by two DC
Maxon Motors REmax—256 : 1, 3 Watt—(Maxon Motor ag, Sachseln, Switzerland)
through two pulleys placed on motor shafts.

Motor positions can be controlled by processing the signals from two absolute
magnetic encoders (12 bit magnetic encoder by Austria Microsystems—Unterprem-
staetten, Austria—AS5045 with a resolution of 0.0875◦), read by a custom made
electronic board (PSoC-based electronic board with RS–485 communication proto-
col).

A level of softness is generated by appropriately stretching the fabric using the
two motors; i.e. when motor 1 rotates in a counter-clockwise direction and motor 2
rotates in a clockwise direction they stretch the fabric thus increasing its apparent
stiffness. When motor 1 rotates in a clockwise direction and motor 2 rotates in a
counter-clockwise direction they relax the fabric thus reducing its apparent stiffness,
see Fig. 11.8. Furthermore, it is important to notice that the two-motor configuration
allows one to implement and exploit an additional degree of freedom. Indeed, when
the two motors coherently rotate in the same direction, a translational shift can be
imposed on the finger pad interacting with the fabric, as it is shown in Fig. 11.8. This
shift can be used to convey kinaesthetic, directional and vibrotactile information
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Fig. 11.8 How the system
works during the interaction
with a human finger pad. K
is the stiffness of the fabric,
which depends on motor
positions, θ1 and θ2

to users. Finally, since motors can be independently controlled, it is also possible
to modify contact area geometry (eccentricity), thus simulating incipient slippage
conditions or curvature perception.

The FYD-2 is also endowed with a load cell (Micro Load Cell (0-780g) - CZL616C
from Phidgets, Calgary, Alberta, Canada) placed at the base of the device, to record
the normal force exerted by the user finger interacting with the fabric. Notice that
the shear force is not considered. This is in agreement with the instructions given
to users interacting with the device. Indeed they were recommended to not perform
movements of the finger across the surface and to not apply lateral forces, in order to
eliminate any anisotropic effect or distortion in softness but only focusing on normal
indentation of the specimens (Lederman and Klatzky 1997a).

The system has also a web camera (Microsoft “LifeCam HD–3000” with a res-
olution of 640 × 480) and two high luminosity LEDs (whose luminosity can be
regulated with a trimmer) just beneath the fabric (30 mm), for measuring the contact
area in real-time (cfr. Fig. 11.9). Force and area information are then used to imple-
ment the force/area tracking algorithm, whose results are described in the following
subsections.

11.5.2 Experiments

As discussed in the Introduction, softness perception relies on both haptic channels—
kinaesthesia and cutaneous information—although tactile sensing plays a predomi-
nant role. Based on these considerations, the fabric-based device exhibits two types
of behaviour and hence of control:
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Fig. 11.9 FYD-2, exploded drawing view

(I) the FYD-2 can be controlled to track F(δ), while acting as a contact area (real-
time) display

(II) the FYD-2 can be controlled to track F(A), while actively using, together with
the measured force, the real-time measured contact area as a feedback signal.

Notice that both F(δ) and F(A) curves are not independent since they represent
the cutaneous and kinaesthetic characterisation of the softness properties of a given
object. Therefore they are determined by the fabric (object) characteristics. This
represents a common limitation for all haptic devices: to properly decouple these
curves it would be necessary to have two independent control variables, as proposed
for example by Scilingo et al. (2010), where a conventional kinaesthetic haptic display
is combined with a cutaneous softness one.

For case (I), the aim is to mimic a given stiffness. In this case, the display behaves
like common kinaesthetic devices (Hannaford and Okamura 2008 which can be
regarded as force displays), although cutaneous cues and the measurement of the
contact area provide additional information. On the other side, case (II)—F(A)

tracking problem—represents a more challenging issue, given that the law that relates
the growth of the contact area and the indenting force, i.e. the CASR paradigm,
represents a large part of the tactile information used for softness discrimination.
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To implement these controls, the first step is to characterise the device. The
characterisation procedure is analogous to the one used for the first prototype. Dif-
ferent positions of the motors were considered, with same starting point and angular
displacement used for both. The angular values (θ = θ1 = −θ2) used for the char-
acterisation range from 10◦ to 80◦, with an incremental step of 10◦. The range of
contact force is from 0 to 20 N. In this case, the force/displacement characteristics,
interpolated at fixed motor positions, are quadratic (R2 > 0.94), and the stiffness [σ
in (N/mm)] of the fabric can be computed directly deriving the contact force with
respect to the displacement. Let the characteristic be F = λδ2, with λ (N/mm2) rep-
resenting the quadratic coefficient of the parabolic curve at fixed motor positions. In
this case the stiffness of the fabric depends on the displacement and it can be defined
as (Grioli and Bicchi 2010; Serio et al. 2011): σ(δ) = ∂ F/∂δ = ρδ, where ρ = 2λ

(N/mm2) represents the stiffness coefficient.

11.5.2.1 Constant Stiffness Tracking

For this kind of experiment, we used the finger pad of a right-handed male participant
(age 32) as the indenter for probing the fabric approximately every second. Since the
fabric stiffness is not constant but it depends on the indentation, we control motor
positions using motor encoders to know θ value. From this value it is then possible to
retrieve the angular coefficient [ρa in (N/mm2)] of the actual stiffness curve from the
characterisation characteristics or interpolating between them. Using the information
about the contact force measured by the load cell of the device, the actual indentation
δ can be obtained as δ = √

F/λ. Finally, the actual stiffness [σa in (N/mm)] of the
fabric can be computed as σa = ρaδ (see also Fig. 11.10 for more details).

In Fig. 11.11, the results of tracking a constant stiffness of σr = 1 N/mm and
the control scheme adopted are reported. A PID control (constants P = 1, I = 0.01,
D = 0, heuristically found) is then used to control motor positions, based on the
error (e) between σr (reference stiffness) and σa (actual stiffness). In this case, after
an initial transitory phase due to motor positioning, we get an RMSE of 0.18 N/mm,
less than 20 % of the reference value. The effect of the transitory phase on human
perception will be investigated in future experiments.

11.5.2.2 Trajectory Area Tracking

In order to reproduce common quadratic F(A) characteristics (Bicchi et al. 2000),
the position of the motors needs to be controlled and suitably rapidly changed, based
on the actual contact area. This fact motivated the need for a fast actuation system. Let
be F(A) = ξr A2

r , the quadratic curve to be tracked, with ξr in (N/mm4) the quadratic
coefficient of the curve. In order to properly implement the control, we need to know
the actual ξa (N/mm4) coefficient. This coefficient is obtained each time by dividing
the indenting force measured by the load cell for the squared value of the measured
area Am . A PID controller is then used, which is based on the error between ξr and the
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Fig. 11.10 The control
scheme used for constant
stiffness tracking. A PID
control is used to control
motor positions, based on the
error (e) between σr (refer-
ence stiffness) and σa (actual
stiffness)

Fig. 11.11 a Stiffness
control. b Force.
Reference stiffness
(dashed line) versus
controlled stiffness
(continuous line) (a). Force
measurement (b)

0 10 20 30 40 50 60
0

0.5

1

1.5

Time (s)

S
tif

fn
es

s 
(N

/m
m

)

Controlled StiffnessStiffness Reference

0 10 20 30 40 50 60
0

2

4

6

8

10

12

Time (s)

F
or

ce
 (

N
)

(a)

(b)

actual ξa (see Fig. 11.12), constants: P = 5, I = 0.3, D = 0. The effectiveness of this
control scheme was experimentally verified by tracking the characteristic curves of
different silicone specimens, realised with different percentage of plasticiser, whose
characteristic curves were experimentally obtained, as described below.

For the sake of space, in Fig. 11.13 we report only the results for the specimen
at 0 % plasticiser percentage. In this case, we get an RMSE of 41.3 mm2, less than
14 % with respect to the reference value.
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Fig. 11.12 The block diagram of control for F(A) curve tracking. Let be F(A) = ξr A2
r , the

quadratic curve to be tracked, with ξr in (N/mm4) the quadratic coefficient of the curve. In order to
properly implement the control, we need to know the actual ξa (N/mm4) coefficient. This coefficient
is obtained each time by dividing the indenting force measured by the load cell for the squared value
of the measured area Am . Fm is the measured force. A PID controller is then used to control the
quadratic coefficient

Fig. 11.13 a F(A) Control.
b Force. Reference area
(dashed line) versus
Controlled area (continuous
line) (a). Force measurement
(b)
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11.5.3 Evaluation Experiments

We report a preliminary assessment of the FYD-2 performance by a comparative
evaluation of the rendered softness and the objective compliance of real materials.
Results of such experiments from one right-handed male participant (age 27) are
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Fig. 11.14 The system used
for the characterisation of the
silicone specimens

reported. The participant had no physical limitation that would affect the experimental
outcomes.

As in Fujita and Ohmori (2001), the goal was to test how effectively softness
discrimination can be elicited by the system. To achieve this objective, we used
three different silicone specimens, chosen as in Scilingo et al. (2010). The speci-
mens, whose softness properties were reproduced by the FYD-2, were half–spheres
of radius of 20 mm and they were made of material obtained by mixing a given
quantity of a commercial bicomponent, room temperature-curing silicone (BJB TC-
5005A/B), with a variable percentage of plasticiser (BJB TC-5005C), acting as a
softener. The amount of softener in the mixture was chosen as 0, 10 and 20 %,
referring to the specimen SS1, SS2 and SS3, respectively. To derive the relationship
between the contact force and the contact area we used a custom made characterisa-
tion system reported in Fig. 11.14. The procedure was analogous to the one reported
in Scilingo et al. (2007).

The system consists of an indenter attached to a servo-controlled linear actuator by
Firgelli (L-12-50-100-6-L). The specimens to be characterised were placed under the
motor stroke and put in progressive contact with a transparent glass. The indenting
velocity was 5 mm/s and the range of force was 0 ÷ 20 N.

A webcamera—Microsoft LifeCam HD-5000—was put under the glass. As the
indenter pushed against the specimen the web cam captured a snapshot of the surface
flattened against the plexiglass. In order to enhance contours of contact area a thin
white paper behaving as optical filter was placed between the specimen and the
plexiglass.
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Fig. 11.15 The force/area (F(A)) characteristics for the silicone specimens

Fig. 11.16 Confusion matrices showing how the objective compliance was subjectively perceived
by one participant

Following the previously described techniques, we obtained the contact area on the
basis of heuristically found binarisation thresholds based on luminosity. Furthermore,
for each contact area, the indentation force was also measured by means of a load
cell placed at the base of the system. In this manner the F(A) curves were obtained
for SS1, SS2 and SS3, see Fig. 11.15.

Using the previously adopted terms, let be SH1, SH2 and SH3 the rendered
stimuli corresponding to SS1, SS2 and SS3, respectively. The rendered stimuli were
obtained by reproducing the F(A) curves of the silicone specimens, using the control
scheme described in the previous subsection. SH1, SH2 and SH3 were presented
three times in a random order to the participant (right-handed, male, age 30) and then
he was asked to associate them to their physical counterparts. The participant did
not have time limitations since he was allowed to touch the silicone specimens and
the rendered stimulus as many times as he wanted. The experiment was performed
in blind conditions.

Results are shown in Fig. 11.16, where the perception of artificial specimens was
associated to the perception of real ones in a confusion matrix structure. In other
words, the three stimuli are reported along the row dimension, while the ranked
responses are reported along columns.
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These results suggest a high degree of reliability in force/area tracking as well
as in eliciting overall discriminable levels of softness. Although these results are
preliminary and have no statistical significance, they are promising performance
for this display. We intend to undertake further testing, with a larger number of
participants and a greater number of rendered specimens, to give a more complete
assessment of this device.

11.6 Conclusions

In this chapter we have presented fabric-based softness displays. Such displays,
which allow real-time measurements of the contact area, are based on the CASR
(Contact Area Spread Rate) paradigm which states that a large part of tactile sens-
ing information for softness discrimination is retained in the relationship between
the contact area growth over the finger pad and the increasing indenting force. This
paradigm can be regarded as a haptic synergy, since it represents an approximation
and reduction between the high dimensional space of the mechanics of touch and
human perception. We have described different prototypes of the fabric-based soft-
ness display, showing their effectiveness in eliciting a compelling softness sensation,
by properly mimicking force-area and stiffness properties of real materials.
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Chapter 12
Haptic Augmentation in Soft Tissue Interaction

Seokhee Jeon, Seungmoon Choi and Matthias Harders

12.1 Introduction

In augmented reality (AR), the interaction space exploits a real environment, and
only essential virtual content is added to achieve the application’s goal, thereby
transforming the real space into a semi-virtual space. This procedure reduces the
workload for application development to a great extent, while preserving the realism
of interaction as much as possible. These benefits have enabled the adoption of AR
technology in a variety of domains. One important missing component in the current
AR technology is in the domain of touch. As will be reviewed below, the status of
haptic AR technology is still immature, in spite of recent research endeavours. In the
following, we provide a brief introduction to haptic AR, focusing on its taxonomy
and associated concepts.
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12.2 Haptic Augmented Reality

12.2.1 Taxonomy and Concepts

The reality-virtuality continuum defined by Milgram and Colquhoun (1999) places
reality and virtuality at the two ends of the continuum with mixed reality (MR) in-
between, treating the degree of reality (or virtuality) as a continuous concept. Whether
an environment is closer to reality or virtuality depends on the amount of information
added to the environment with the computer; the more information inserted, the closer
to virtuality. Based on this criterion, MR is further classified into augmented reality
and augmented virtuality. In augmented reality, the main interaction occurs within the
real environment, and only indispensable virtual components are implemented for the
interaction (e.g., the heads-up display in an aircraft cockpit). In augmented virtuality,
primary interaction occurs within a computer-generated virtual environment, and
some real elements can be mixed in to improve realism (e.g., a computer game
employing a virtual dancer with the face image of a real actor or actress). Despite
this clear theoretical distinction, the current literature does not strictly discriminate
between the two terms and rather tends to use AR and MR interchangeably. It should
also be noted that the focus in literature is almost exclusively on aspects of visual
augmentation.

Nonetheless, as detailed in Jeon and Choi (2009), we can define the same reality-
virtuality continuum for touch and then combine it with the visual continuum.
This results in the composite visual-haptic reality-virtuality continuum, as shown
in Fig. 12.1. This continuum is instrumental in clarifying the associated concepts
and classifying related studies, as will be seen in the next section.

12.2.2 Related Work

In the composite continuum, the left column comprises three categories of haptic
reality: vR-hR, vMR-hR, and vV-hR, where the corresponding environments provide
only real haptic sensations (hR). An interesting category here is vMR-hR, wherein a
user sees mixed reality objects, but still touches only real objects. A typical example
is tangible AR, where a handheld real prop is used as a tangible interface in visually
mixed environments (e.g., the MagicBook in Billinghurst et al. (2001)). Another
example is the projection augmented model, where a computer-generated image is
projected onto a real physical object that is explored by the bare hand (Bennett
and Stevens 2006). In these cases, variation of haptic properties is regarded as less
important.

The three categories in the right column of Fig. 12.1, vR-hV, vMR-hV, and vV-hV,
stand for haptic virtuality (hV). They correspond to environments with purely vir-
tual haptic sensations. Robot-assisted motor rehabilitation is an example of vR-hV
where synthetic haptic feedback is provided in a real visual environment; while an
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Fig. 12.1 The extended
reality-virtuality continuum
for visual and haptic stimuli
(Jeon and Choi 2009). Shaded
areas in the continuum corre-
spond to the realm of mixed
reality

interactive virtual training simulator is an instance of vV-hV where the sensory
information of both modalities is virtual. In the intermediate category, vMR-hV,
purely virtual haptic objects are rendered using a haptic interface in a visually mixed
environment. Required haptic rendering algorithms are not very different from the
conventional algorithms for virtual objects. The central issue is the integration of vir-
tual haptic rendering into the existing visual AR framework, with particular emphasis
on precise registration between the haptic and visual coordinate frames (Vallino and
Brown 1999). Bianchi et al. (2006a, b) proposed an accurate registration scheme
through intensive calibration using a vision-based object tracker. Their later work
explored the potential of visuo-haptic AR technology for medical training (Harders
et al. 2009). Ott et al. (2007) also applied an HMD-based visuo-haptic framework
to training processes in industry. A similar setup was employed for cranial implant
design in Scharver et al. (2004) and for an MR painting application in Sandor et al.
(2007).

The final categories for haptic mixed reality (hMR), vR-hMR, vMR-hMR, and
vV-hMR, lie in the middle column of the composite continuum. A common char-
acteristic is that synthetic haptic signals generated from a haptic interface modulate
or augment the haptic stimuli that occur due to a contact between a real object and
the haptic interface tool. The VisHap system (Ye et al. 2003) can be an instance
of vR-hMR that provides mixed haptic sensations in a real environment. In this
system, some information about a virtual object (e.g., shape and stiffness) is gen-
erated by a haptic device, whereas other properties (e.g., texture and friction) are
supplied by a real prop attached at the end-effector of the device. Other examples in
this category include the SmartTool (Nojima et al. 2002) and SmartTouch systems
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(Kajimoto et al. 2004). Using various sensors that capture real but small signals that
can hardly be perceived by the bare hand, the authors translated the signals into hap-
tic information and delivered them to the user to facilitate target tasks (e.g., peeling
off the white from the yolk in an egg). The MicroTactus system (Yao et al. 2004) is
another example, which detects and magnifies acceleration signals resulting from the
interaction of a pen-type probe with a real object. This system was shown to improve
the performance of tissue boundary detection in arthroscopic surgical training. A
similar pen-type interface, Ubi-Pen (Kyung and Lee 2009), embedded miniaturized
texture and vibrotactile displays in the pen, providing realistic tactile feedback for
interaction with a touch screen. Other examples in this category are the FreeD milling
system (Zoran and Paradiso 2013) and haptic augmentation on floor surfaces (Visell
et al. 2009, see Chap. 3 for a review).

In contrast, environments in vV-hMR use synthetic visual stimuli. For example,
Borst and Volz (2005) investigated the utility of haptic MR in a visual virtual environ-
ment by adding synthetic force to a passive haptic response for a panel control task.
Their results showed that mixed force feedback improved task performance and user
preference compared to pure synthetic force feedback. Haptically enhanced touch-
panels, e.g., the TeslaTouch (Bau et al. 2010) is another example in this category. In
vMR-hMR, both modalities rely on mixed stimuli. Ha et al. (2007) installed a vibra-
tor in a real tangible prop to produce virtual vibrotactile sensations in addition to the
real haptic information of the prop in a visually mixed environment, demonstrating
that the virtual vibrotactile feedback enhances immersion for an AR-based handheld
game. Bayart et al. (2007, 2008) introduced a teleoperation framework where force
measured at the remote site is presented at the master site with additional virtual force
and mixed imagery. In particular, they tried to modulate haptic stimuli such as con-
tact forces with virtual feedback for a hole patching task and a painting application,
which distinguishes the work from most of the other related studies.

Lastly, Bayart and Kheddar (2006) also suggested a simple taxonomy for haptic
AR based on the functional aspect of a system. They termed a haptic AR application
as “enhanced haptic” if haptic data from an information source was modulated or
extrapolated in the application, e.g. providing active haptic guidance to sensorimo-
tor skills (Lee and Choi 2010). In contrast, in applications for “haptic enhancing,”
fundamentally new information obtained from sources different from a haptic data
source is added to the haptic data, e.g. haptizing non-haptic attributes such as weather
variables on a geological map (Lee et al. 2008).

The next section gives an example of haptic mixed reality. We present a set of
algorithms designed for modulation of real object stiffness by means of virtual force
feedback.

12.3 Stiffness Augmentation

A person interacting with a real object constructs a mental image of it through per-
ceiving distinct physical attributes of the object, such as shape, stiffness, friction,
and surface texture. Consequently, haptic rendering of an object requires exclusive

http://dx.doi.org/10.1007/978-1-4471-6533-0_3
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algorithms dedicated to each individual attribute as well as a combined framework
that integrates these components. While this is a general notion valid in most haptic
rendering systems, the same approach should also be followed in haptic AR. Accord-
ingly, our recent research has focused on developing algorithms for augmenting
individual haptic attributes, progressively moving towards a combined framework,
a “haptic augmented reality toolkit.”

Among various haptic attributes, our first focus was on the augmentation or mod-
ulation of real object stiffness, which is one of the most important attributes for
perceiving shape and material. This section summarises a series of efforts that we
made for stiffness modulation for more details, see Jeon and Choi (2008, 2009,
2010, 2011), Jeon and Harders (2012). The required system components, covering
augmentation algorithms and hardware, are introduced. The presented frameworks
are also the basis for an example application testbed outlined in Sect. 12.4.

The objective of stiffness augmentation is to provide a user with an augmented
or modulated stiffness, by adding virtual force feedback when interacting with real
objects. Two different kinds of interaction are examined in this section. The first
system covered in Sect. 12.3.2 concerns stiffness modulation for single-point inter-
action. It supports typical exploratory patterns, such as tapping, stroking, or contour
following. The second system, addressed in Sect. 12.3.3, extends the first one to
two-point manipulation, focusing on grasping and squeezing interactions.

The emphasis of the algorithm design has been on minimising the need for
prior knowledge and preprocessing for the geometric and material properties of real
objects, while maintaining convincing perceptual rendering quality. In particular, our
haptic AR systems require no geometry information of a real object. This allows us to
avoid capturing the geometric model of a real environment, which otherwise would
be time-consuming and require special equipment. Instead, we determine a-priori
the dynamics model of a real object, employing the same interface as in the render-
ing stage. This strategy preserves a key advantage of AR; unlike in VR systems, a
model of the entire environment is not required, which potentially leads to greater
simplicity in the development of specific applications.

12.3.1 Rendering Hardware

As shown in Fig. 12.2, the haptic interface used in our haptic AR system consists
of general impedance-type haptic interfaces (SensAble Technologies; PHANToM
premium model 1.5), each of which has a custom-designed tool that is employed
for interaction with a real object. The number of haptic interfaces depends on the
number of contact points considered during manipulation. Stiffness augmentation in
single-contact interaction (Sect. 12.3.2) requires one PHANToM, while the augmen-
tation in two-contact squeezing needs two devices (Sect. 12.3.3). Each haptic tool is
instrumented with a 3D force/torque sensor (ATI Industrial Automation, Inc.; model
Nano17) attached between the tool tip and the gimbal joints at the last link of the
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Fig. 12.2 Haptic AR hardware comprising two kinesthetic feedback devices. Reprinted, with per-
mission, from Jeon and Harders (2012)

PHANToM. This configuration enables the system to measure the sum of two force
components: force from the haptic interface and force from the user’s hand.

12.3.2 Stiffness Modulation in Single-Contact Interaction

Our haptic AR systems target interaction with elastic objects of moderate stiffness.
Objects made of plastic (e.g. clay), brittle (e.g. glass) or high stiffness material
(e.g. steel) are not considered due to either complex material behaviour or the per-
formance limitations of current haptic devices. In addition, we assume homoge-
neous dynamic material responses for the model-based estimation of real object
deformation.

Indenting a real elastic object with a probing tool results in a deformation, while
the user experiences a reaction force. We denote the apparent stiffness perceived by
the user at time t by k(t). Note that this is the stiffness when no additional virtual
force is rendered. The goal of stiffness augmentation is now to alter the user-perceived
stiffness, from k(t) to a desired stiffness k̃(t), by providing an adequate virtual force
to the user’s hand.

Let the force exerted at the tool tip through the haptic device be fd(t) and that
through the user’s hand be fh(t), as shown in Fig. 12.3a. The two force components
deform the object surface and result in a reaction force fr(t) in a steady state, such
that

fr(t) = −{fh(t) + fd(t)}. (12.1)

The reaction force fr(t) during contact can be decomposed into two orthogonal
force components, as shown in Fig. 12.3b:

fr(t) = fn
r (t) + f t

r(t), (12.2)
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Fig. 12.3 Variable definitions for single-contact augmentation. Reprinted, with permission, from
Jeon and Choi (2011). a For force computation. b For deformation estimation

where fn
r (t) results from object elasticity in normal direction; and f t

r(t) represents the
tangential force, which is mainly due to friction between tool tip and object surface.
Next, we consider the displacement x(t) caused by the elastic force component. The
magnitude describes the distance between the haptic interface tool position, p(t),
and the original non-deformed position pc(t) of a particle on the object surface. The
unit vector in the direction of fn

r (t) is denoted by un(t).
For a user to experience the target stiffness k̃(t) at his or her hand, the augmentation

should result in:

f̃h(t) = k̃(t)x(t)un(t). (12.3)

Thus, using (12.1) the force that the haptic device needs to exert is

f̃d(t) = −fr(t) − k̃(t)x(t)un(t). (12.4)

This equation indicates that in every haptic loop, the stiffness modulation algorithm
requires four stpdf: (1) detection of the time instance at which the haptic tool touches
the real object, (2) measurement of the reaction force fr(t), (3) estimation of the
direction un(t) and magnitude x(t) of the resulting deformation vector, and (4) control
of the device-rendered force fd(t) to exert the desired force f̃d(t). The following
describes how these stpdf are addressed.

Step 1 is the contact detection. If the entire geometry of the real object is
known, conventional haptic collision detection algorithms for virtual objects could
be employed. However, this reduces the flexibility of the system since modelling
would be required. Instead, we utilise force sensor readings for contact detection. A
collision is assumed to have occurred when forces sensed during interaction exceed a
small threshold. In this approach, the time delay between actual and detected contact
depends on the force sensing quality and the threshold. We have developed algo-
rithms to suppress noise, as well as to compensate weight and dynamics effects of
the tool details are available in Jeon and Choi (2011). With this strategy, the time
delay of contact detection was in most cases found to be smaller than 4 ms. This
compares well with known perceptual thresholds of tactile simultaneity (20–30 ms)



248 S. Jeon et al.

see e.g. Jeon and Choi (2011). The approach allows stable stiffness augmentation
and no difficulties were reported in user studies.

For step 2 the reaction force has to be measured, which is also simply done with
the force sensor attached to the probing tool. Then, the key process of stiffness
modulation takes place in Step 3: the estimation of the deformation direction un(t)
and magnitude x(t). Conventional haptic rendering algorithms used for fully virtual
environments are not applicable, since no geometric information is available. Instead,
we identify the friction and deformation dynamics of a real object in a preprocessing
step, which is used later on to estimate the sought quantities. We summarise the
details of this process below.

Prior to actual rendering, two preprocessing stpdf have to be carried out for the
object to be augmented. First, the friction between the real object and the tool tip is
identified following Jeon and Choi (2011). For this a physical model-based approach
is taken, employing the Dahl friction model. The original Dahl model is transformed
into an equivalent discrete-time equation, as introduced in Mahvash and Okamura
(2006). It is combined with a velocity-dependent term to cope with viscous friction.
For the actual friction identification, we introduced an online technique that avoids
complex nonlinearities. An adapted divide-and-conquer strategy is followed by per-
forming the identification separately for the presliding and the sliding regime. This
allows us to divide the nonlinear identification problem into two linear problems.
Data are acquired during manual stroking by a user. The former include lateral dis-
placement, velocity, normal force, and friction force, which are divided into two bins
according to the lateral displacement. The data bin having smaller displacements
(i.e. data in the presliding regime) is used to identify a parameter defining behaviour
at low velocity; while the other is used for viscous and Coulomb parameters. Both
processes use a linear recursive least-squares algorithm to determine the parameters.

Following this, the second preprocessing step is to identify the deformation
dynamics of the real object. We rely on the Hunt-Crossley contact dynamics
model (Hunt and Crossley 1975) to identify the nonlinear responses of an object.
In the model, the response force magnitude under a certain displacement x(t) and
velocity ẋ(t) is determined by

f (t) = k{x(t)}m + b{x(t)}mẋ(t), (12.5)

where k and b are stiffness and damping constants, and m is a constant exponent
(usually 1 ≤ m ≤ 2).

For the identification, a user repeatedly presses and releases the elastic sample in
normal direction, while data triples are recorded consisting of displacement, velocity,
and reaction force magnitudes, along the surface normal. The recorded data are passed
to a recursive least-squares algorithm for an iterative Hunt-Crossley model parameter
estimation (Haddadi and Hashtrudi-Zaad 2008). In general, the overall identification
process takes around 20–40 s.

Finally, in Step 4, based on the a-priori acquired information, the following com-
putational process is carried out in every haptic rendering frame, in which the probing
tool is detected as being in contact. The core part of the rendering is to estimate two
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variables: the deformation direction un(t) and the magnitude of the deformation x(t).
The former is derived as follows. As specified above in (12.2), the response force
fr(t) consists of two perpendicular force components: fn

r (t) and f t
r(t). Since un(t) is

a unit vector given by fn
r (t), un(t) can be determined from (12.2) by

un(t) = fr(t) − f t
r(t)

|fr(t) − f t
r(t)|

. (12.6)

This equation indicates that estimating the friction force f t
r(t) is sufficient to find

un(t), instead of relying on the geometric information of the real object. The mag-
nitude of f t

r(t) can be directly estimated using the identified Dahl model; while its
direction is derived from the tangent vector at the current contact point p(t). The
tangent vector can be found by projecting �p(t) = p(t)−p(t −�t) onto un(t −�t)
and subtracting it from �p(t), followed by the normalisation of the resultant vec-
tor. The tool velocity v(t) needed for the Dahl model is estimated by the first-order
adaptive windowing filter (Janabi-Sharifi et al. 2000).

The next part of the rendering step is to estimate the displacement of the tool
tip x(t), to account for the amount of deformation (see Fig. 12.3b). Recursively
estimating pc(t) using ut(t) inherently accumulates errors in un(t), resulting in the
divergence of pc(t) over time. Instead, under the assumption of material homogene-
ity, the inverse of the Hunt-Crossley model identified previously is employed to
approximate x(t), regardless of contact location, via

x(t) =
{

f n
r (t)

Ke + Beẋ(t)

} 1
m

. (12.7)

Finally, all sought values are computed, and the required force command f̃d(t) is
calculated using (12.4). The target force is sent to an interface control module that
employs a PID feedback controller for stable and accurate control of the interface.

In Jeon and Choi (2011), the physical performance of each algorithm is thoroughly
evaluated with real samples. Each algorithm is experimentally verified to satisfy the
physical performance requirements that have to be met for a convincing rendering
quality. In addition, the final perceptual quality of stiffness rendering is assessed in a
psychophysical experiment where the difference in the perceived stiffness between
augmented and virtual objects is measured. The error is less than the human discrim-
inability of stiffness, demonstrating that our system can provide stiffness modulation
with perceptually negligible errors.

12.3.3 Stiffness Modulation in Two-Contact Squeezing

In later work we addressed a more challenging interaction: stiffness modulation in
two-contact squeezing (Jeon and Harders 2012). The introduced algorithms were
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Fig. 12.4 Variable definitions in two-point stiffness augmentation. a For force computation. b For
deformation estimation. Reprinted, with permission, from Jeon and Harders (2012)

extended to provide a modulated stiffness when grasping and squeezing an object
with two probing tools. Again a number of simplifications had to be made. The
object is assumed to be fully lifted from the ground and not in contact with any other
support except the two points of grasping. In addition, the contact points are assumed
to be fixed, with no slip occurring on the object surface. Finally, we also do not take
inertial effects into account, but consider the response of the objects as quasi-static.

Haptic interaction with a lifted object involves an additional force component due
to weight, fw in Fig. 12.4a. More specifically, the user applies forces fh,∗(t) to hold
and squeeze the object (hereafter, ∗ is either 1 or 2 depending on the contact point).
The haptic interfaces exert forces fd,∗(t) for the modulation. Weight forces fw,∗(t)
are also present at the two contact points. At each contact location, these three force
components support and deform the object in a steady state, resulting in reaction
force fr,∗ such that

fr,∗(t) = fh,∗(t) + fd,∗(t) + fw,∗(t). (12.8)

As shown in Fig. 12.4b, this reaction force can be further decomposed into pure
weight and a force component in squeezing direction fr,∗(t) = fsqz,∗(t) + fw,∗(t).
In our interaction scenario, the momentary stiffness, i.e. the ratio between applied
force and displacement at a point in time, is perceived during squeezing. Thus, the
force component of interest for stiffness modulation is fsqz,∗(t), and (12.8) can be
rewritten using the decomposition as

fsqz,∗(t) = fh,∗(t) + fd,∗(t). (12.9)

The hand force depends on the desired stiffness k̃(t) and is given by

fh,∗(t) = k̃(t)x∗(t)u∗(t), (12.10)
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where x∗(t) is the displacement of the deformation resulting from squeezing and
u∗(t) is a unit vector representing the direction of that deformation. With (12.9)
and (12.10), the virtual force that the haptic interface should provide to achieve the
desired augmentation is

f̃d,∗(t) = fsqz,∗(t) − k̃(t)x∗(t)u∗(t). (12.11)

According to (12.11), during rendering the squeezing force fsqz,∗(t), the displacement
x∗(t), and direction u∗(t) of the deformation need to be estimated for each contact
point, based on measurable variables fr,∗(t) and tool tip positions p∗(t).

The squeezing force fsqz,∗(t) cannot be directly calculated since fw,∗(t) is not
known. Instead, we derive these forces according to the following three observa-
tions about an object held in a steady state. First, the two squeezing forces fsqz,1(t)
and fsqz,2(t) share the same magnitude, but are in opposite direction (fsqz,1(t) =
−fsqz,2(t)). Second, to hold the object stably without torques, each squeezing force
should fall on the line connecting the two contact locations. Third, since the object is
supported against gravity only by the two contacts, the sum of the two reaction force
vectors is equal to the total weight of the object: fr,1(t) + fr,2(t) = fw,1(t) + fw,2(t).

From our first and second observation, the directions of fsqz,∗(t) (= u∗(t)) can
be easily obtained using the line segment from p1(t) to p2(t) (l(t) in Fig. 12.7). Its
magnitude fsqz,∗(t) is determined in a few stpdf. The total magnitude of the reaction
forces along the squeezing direction is given by the magnitudes of the projections of
the two reaction force vectors onto the direction of l(t), ul(t).

fr↓sqz(t) = |fr,1(t) · ul(t)| + |fr,2(t) · ul(t)|. (12.12)

Note that fr↓sqz(t) includes not only the two squeezing forces, but also the weight.
The magnitude of only the squeezing force can be calculated by subtracting the effect
of weight along l(t) from fr↓sqz(t):

fsqz(t) = fr↓sqz(t) − fw↓sqz(t). (12.13)

fw↓sqz(t) is given according to the third observation by

fw↓sqz(t) =
∣∣∣(fr,1(t) + fr,1(t)

)
· ul(t)

∣∣∣ . (12.14)

Finally, according to the first observation, the force magnitude at each contact point
is

fsqz,1(t) = fsqz,2(t) = 0.5fsqz(t). (12.15)

The next step is the estimation of the displacement x∗(t) of the deformation due to
squeezing in (12.11). Let d0 be the distance between the contact points on the original
non-deformed surface, which is constant over time due to our no-slip assumption.
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Fig. 12.5 Visuo-haptic augmentation. Reaction force (red), weight (blue), and haptic device
force (green) are depicted. Examples with increased stiffness (virtual forces oppose squeezing)
and decreased stiffness (virtual forces assist squeezing) are shown on left and right, respectively.
Reprinted, with permission, from Jeon and Harders (2012)

d0 is given by the two initial contact points, pc,1(t) and pc,2(t) in Fig. 12.7. With our
initial assumption of a homogeneous object, we can derive x1(t) = x2(t), and the
displacements can be calculated by

x1(t) = x2(t) = 0.5
(

d0 − d(t)
)
, (12.16)

where d(t) is the distance between the points during the interaction. Here, we should
note that the estimates of deformation direction and magnitude may differ from the
actual quantities. Nevertheless, this presumably will have only little influence on
judging stiffness since stiffness perception in squeezing is mainly based on relative
distance between contact points and squeezing force magnitude. Finally, with these
required variables, the desired force command for stiffness modulation, f̃d,∗(t), can
be calculated according to (12.11).

In Jeon and Harders (2012), the physical performance and the result of a psy-
chophysical experiment are reported. Overall, the evaluation indicates that our two-
point stiffness modulation algorithm is also capable of augmenting object stiffness at
a reasonable quality. Augmentation was possible regardless of the real base stiffness
and direction of stiffness change.

The developed haptic augmentation system has further been merged with a visual
AR framework (Harders et al. 2009). The visual system allows, for instance, the
display of information related to the haptic augmentation, such as the force vectors
involved in the algorithm. Example snapshots are depicted in Fig. 12.5.

12.4 Example Application: Augmentation of Stiffer Inclusions

In this section an application example will be outlined, in which virtual stiffer inclu-
sions (i.e. simulated tumour tissue) are created inside real deformable sample objects,
with the target of medical training (see Fig. 12.6). The general concept of the stiffness
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Fig. 12.6 Setup used for
haptic augmentation of stiffer
tumor. Reprinted, with per-
mission, from Jeon et al.
(2012)

augmentation remains the same as introduced in the previous sections. The goal is
to alter the overall force fH(t) experienced by the user, by rendering an additional
virtual stimuli fT (t) representing the tum-or, together with the real response fR(t) of
the object, at time t. We rely on nonlinear Hunt-Crossley models (Hunt and Crossley
1975) to augment the dynamic behaviour of a simulated embedded stiffer inclusion.
Further details on the overall approach are available in Jeon et al. (2012). In a first
step, appropriate parameters for the models have to be identified to represent the
forces contributing to the overall feedback.

The underlying idea of identifying parameters to describe response forces of an
embedded stiffer inclusion is to use two physical silicone hemispheres— one without
and one with an enclosed physical nodule. Estimating the difference between the
two samples allows to determine the contribution of only the inclusion itself. To this
end, the same haptic acquisition hardware as described above is employed to obtain
interaction data when probing both samples. Positions are acquired through haptic
device encoders, while contact velocities are estimated using a first-order adaptive
windowing filter (Janabi-Sharifi et al. 2000). The indentation forces are measured
with the attached Nano 17 force/torque sensor. These data are employed to obtain
an explicit-form Hunt-Crossley model f = H(x, ẋ) via a recursive least-squares
algorithm.

First the force response model f = HNT (x, ẋ) of the sample with no inclusion is
obtained. Thereafter, interaction data for the model with an embedded stiffer nodule
are acquired. The surface is contacted at point pT ,s, closest to the centre pT of the
spherical inclusion. The indentation is performed towards pT . Figure 12.7 illustrates
the locations of these two points. The collected data are denoted by (xTE, ẋTE, fTE).

With regard to force augmentation, HNT (x, ẋ) represents the magnitude of fR(t).
Moreover, the forces fTE measured from the model with inclusion combine fR(t) and
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Fig. 12.7 Quantities required
in rendering algorithm for aug-
mentaion of stiffer inclusion.
Reprinted, with permission,
from Jeon et al. (2012)

fT (t). Thus, in order to obtain the magnitude of fT (t), all data pairs (xTE, ẋTE) are
passed to HNT (x, ẋ), and differences are computed according to

fT (xTE, ẋTE) = fTE − HNT (xTE, ˙xTE). (12.17)

This yields new data triples (xTE, ẋTE, fT ), based on which another Hunt-Crossely
model HT (x, ẋ) can be identified that only captures the contribution of the stiffer
inclusion. Note that this model specifies the force response at contact point pT ,s,
when probing into the direction of pT . In the following we will describe how the
model is used to determine arbitrary feedback forces.

Based on the identified models, a heuristic rendering algorithm is employed to
compute haptic feedback fT (t) representing the tumour contribution during real-time
augmentation. The same hardware as during the recording is employed. Figure 12.7
illustrates all variables involved in this process.

When the user contacts the sample with the probing tool at pH(t) at time t, then
the augmentation response force fT (t) is given as

fT (t) = fT (t)
pH(t) − pT

|pH(t) − pT | . (12.18)

The force fT (t) is directed from inclusion position pT to tool position pH(t), and
has a magnitude fT (t). Therefore, fT (t) has to be estimated based on the identified
model.

The closest point from pH(t) on the non-deformed sample surface is denoted as
pH,s(t). The displacement of this point due to deformation is d(t). The line segment
between pH,s(t) and pT is denoted as lT (t). Projecting the displacement vector d(t)
onto lT (t) yields a vector of length

xlt(t) = d(t) · lT (t)

|lT (t)| , (12.19)

where distance xlt(t) represents the displacement d(t) of pH,s(t) into the direction
of the inclusion.

Based on xlt(t), fT (t) is approximated using the previously obtained Hunt-
Crossley model. Assuming material homogeneity, the response along lT (t) can be
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approximated by HT (x, ẋ). This requires the length of lT (t) to be identical to that of
l0. However, in general, |lT (t)| ≥ |l0|. Therefore, we apply a simple scaling:

x(t) = xlt(t)
|l0|

|lT (t)| . (12.20)

The distance x(t) is a linearly-normalised deformation magnitude in relation to the
reference deformation along l0. Based on this, the force magnitude due to the presence
of the stiffer inclusion is estimated as

fT (t) = HT (x(t), ẋ(t)), (12.21)

where ẋ(t) is derived from x(t) using a first-order adaptive windowing filter.
It should be noted that this algorithm is only heuristic. As before, it has been

designed for real-time rendering, without any need of geometric information of
the real objects. Various experiments with the algorithm have been conducted, as
described in Jeon et al. (2012). The results demonstrated that the augmentation tech-
nique was capable of providing reasonable feedback approximating a stiffer inclusion
in a soft sample object.

12.5 Conclusion and Discussion

In this chapter the new paradigm of haptic augmented reality has been overviewed. A
taxonomy of the domain has been provided, extending Milgram’s reality-virtuality
continuum. Heuristic algorithms for stiffness augmentation have been outlined—
considering contact at one or two surface locations. Finally, an example of stiffness
augmentation in an applied context has been provided. A system ultimately targeting
medical training of palpation has been described. Stiffer virtual inclusions in real
deformable samples could be rendered, based on a modification of the previously
introduced algorithms.

While the discussed stiffness augmentation algorithms constitutes a first step
towards the envisioned haptic augmented reality toolkit, there are still numerous
clear limitations and assumptions. All interactions are tool-mediated. It would be
more appropriate to allow direct finger interactions, however, this necessitates the
development of more advanced hardware, including miniaturised force sensors. Fur-
thermore, tissue homogeneity is assumed for the real mock-ups in the presented
examples. In addition, only very basic shapes were employed for the test objects. It
remains to be seen if the proposed dynamics model can also be extended to inhomo-
geneous contact dynamics. Moreover, the algorithms mainly consider indentations
only in normal direction. Tangential probing motions should also be allowed. In
future work, further extensions in these domains are necessary to develop practi-
cal applications employing haptic augmented reality. Nevertheless, the presented
algorithm lay the groundwork for such endeavours.
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