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Foreword

Hollywood has long and richly enjoyed depicting biometric spoofing. As early as
1971, in the movie Diamonds Are Forever, Sean Connery’s James Bond character
uses a fake fingerprint attached to his fingertip to convince a woman of his
assumed identity. In the movie RED, Bruce Willis’ retired CIA agent character
uses a custom contact lens to spoof an eye scanner and break into CIA head-
quarters. In the movie, the scanner is called a retinal scanner, but it clearly images
the iris rather than the retina. We should not press Hollywood too much for
technical accuracy! In the film Charlie’s Angels: Full Throttle, Cameron Diaz’s
character uses a custom contact lens and fake fingerprints to fool a multi-modal
biometric scanner and break into the bad-guy corporate headquarters. Anyone
working in biometrics can probably supply several more of their favorite such
biometric spoofing scenes.

In the most general sense, biometric spoofing can be defined as the deliberate
attempt to create an error in a biometric system, either a false match or a false non-
match. This typically involves presenting a biometric sample to the system that
does not truly correspond to the person presenting it. The person committing the
spoof either wants simply to avoid being recognized as their true identity, or wants
to be recognized as a some specific chosen identity that is not their own. In the
most general sense, then, anti-spoofing is about detecting the presence of biometric
samples that are not a true representation of the person presenting the sample. The
term ‘‘liveness detection’’ is used to refer to anti-spoofing methods that are based
on determining if the sensor is imaging a ‘‘live’’ sample, as opposed to a gummy
finger, a textured contact lens, a video of a face, or some other non-live sample.

It is easy to envy what Stan Z. Li, Mark Nixon, and Sébastien Marcel have
accomplished with their Handbook on Biometric Anti-Spoofing. One reason is that
they managed to envision a truly novel theme for their handbook. There are of
course many recent books on various themes in biometrics, and more appearing all
the time. After all, biometrics is a hot area for both research and application. Some
of the books have a chapter devoted to spoofing attacks of one kind or another,
but it is not common to have even one chapter devoted to anti-spoofing methods.
And while any new spoofing attack tends to attract attention and publicity, it is the
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anti-spoofing methods that are more important to the ‘‘good guys.’’ Thus, it is
significant that Professors Li, Nixon, and Marcel have realized the first book
devoted entirely to anti-spoofing methods in biometrics.

A second reason to envy their accomplishment is that I believe Professors Li,
Nixon, and Marcel have anticipated an important emerging need. There is now a
good amount of solid research on anti-spoofing methods. But it is spread out in the
literature of the various biometrics modalities. It is rather difficult for one person to
keep abreast of it all. And there is not yet, until this book, and attempt to pull
things together and make connections and leverage commonalities between anti-
spoofing concepts developed in the context of different modalities. So there is a
good opportunity for a whole-is-greater-than-the-sum-of-the-parts effect in this
instance.

A third reason is that I judge Professors Li, Nixon, and Marcel to have also
timed the wave of need just about right. Large-scale biometric applications are
being deployed in many countries around the world. And many of these appli-
cations—India’s Aadhaar being a prime example—have serious implications for
commerce. The old saying about the criminal Willie Sutton was that he robbed
banks because that is where the money was. In the same way, as biometrics
becomes the means of identity verification for commerce, we can expect the
frequency and intensity of spoofing attacks to increase. A news article that
appeared just this month ran with the title, ‘‘Crime of the Future—Biometric
Spoofing?’’ [1]. Everyone working in the area of biometrics can appreciate that
this title may be destined to be more true than we would like. So the biometrics
research community needs to increase the amount of attention paid to anti-spoofing
methods. This book will serve as the introduction to the topic for biometrics
professionals who must come up to speed on the area.

A fourth reason is that the labors of Professors Li, Nixon, and Marcel have
resulted in a quality product. They have well covered the breadth of biometric
modalities. The depth of the material covered is state of the art, due to Professors
Li, Nixon, and Marcel having solicited contributions from accomplished
researchers throughout the world. The core technical contributions are placed in
the broader context by additional chapters dealing with essential issues such as
evaluation methodologies, databases, standards, and legal concerns.

And so the final result is the Handbook of Biometric Anti-Spoofing. It is the only
book on this important theme. It arrives at just the time that the need for it should
be apparent to all in the biometrics community. And it is a well-executed concept,
collecting together chapters of quality material authored by leading experts, and
covering all the major topics and issues.

As mentioned, Professors Li, Nixon, and Marcel have solicited chapters that
well cover the breadth of different biometric modalities. There are two chapters on
fingerprint spoofing, from the forensic viewpoint and the biometric viewpoint, by
Christophe Champod and Marcela Espinoza, and by Javier Galbally and
coworkers, respectively. There are also two chapters on face anti-spoofing, cov-
ering a visual approach and a multi-spectral imaging approach, by André Anjos
and coworkers, and by Dong Yi and co-workers, respectively. Iris anti-spoofing is
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covered by Zhenan Sun and Tieniu Tan, who have done some of the pioneering
work in the area. Voice anti-spoofing is covered by Nick Evans and coworkers,
gait anti-spoofing by the John Bustard and coworkers, and multi-modal anti-
spoofing by Giorgio Fumera and coworkers. In addition to broad coverage of anti-
spoofing techniques for various major biometric modalities, this book also includes
chapters on important general topics. Nesli Erdoğmus and Sébastien Marcel set the
stage early in the book with a general overview of biometric spoofing attacks.
Ivana Chingovska and coworkers cover the important topic of how to evaluate the
effectiveness of anti-spoofing methods. Christoph Busch discusses the topic of
standards related to anti-spoofing methods. Els Kindt addresses the topic of legal
issues related to anti-spoofing. And, finally, Stan Z. Li summarizes the evaluation
databases that are currently available.

I take it as a confirmation of the comprehensive and authoritative approach that
Professors Li, Nixon, and Marcel have taken that their Handbook includes a
chapter covering evaluation methodologies. In our own experience working on iris
anti-spoofing methods at the University of Notre Dame, we found that coming to
the right view of how to evaluate the accuracy of an anti-spoofing method can be
difficult. In our initial work, we happily evaluated the accuracy of algorithms to
detect textured contact lenses using a person-disjoint, ten-fold cross-validation.
This is, after all, the standard approach for evaluation of biometric algorithms.
Using this approach to evaluation, any of a variety of classifiers trained with local-
binary-pattern feature vectors could achieve highly accurate detection of textured
contact lenses. But when it occurred to us to ask what would happen if the textured
lenses in the test partition were from a manufacturer whose lenses were not rep-
resented in the training data, the results were much lower on average and highly
variable with the specific lens manufacturer represented in the test partition [2].
This illustrates how the area of biometric anti-spoofing is a specialized and difficult
subarea of biometrics research.

The Handbook of Biometric Anti-Spoofing edited by Professors Li, Nixon, and
Marcel is a valuable addition to the biometrics research literature. It brings a
needed focus to a theme that is certain to grow in interest and importance. I predict
that the Handbook of Biometric Anti-Spoofing will prove quite popular, and that it
will not be long before several additional books imitating this theme appear.

Notre Dame, Indiana, USA, November 2013 Kevin W. Bowyer
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Preface

In its short history, biometrics has developed very fast and is now used to enrol
entire populations. As Kevin Bowyer’s Foreword points out, the motivation of
spoofing such systems is natural and must be expected. Under the leadership of
Sébastien Marcel, the EU-funded seventh Framework Research Programme:
Trusted Biometrics under Spoofing Attacks (TABULA RASA) was aimed to be
the first concerted research program that addressed this issue. The TABULA
RASA team was formed of an international set of researchers from Switzerland,
Italy, Finland, France, UK, Spain, and China who addressed the main biometric
modalities, many of which feature within the chapters that follow. The program
included industrial partners and their demonstration and commercial material is
less suited to inclusion with a text, though their contribution to the research pro-
gram’s success was enormous.

The publisher now with the largest coverage of biometrics is Springer. Those
attending any of the major conferences that includes biometrics will have met
Wayne Wheeler and so our gratitude remains for his early enthusiasm of this
project. Of late, Simon Rees has been very patient while we reach the final stages
of the book. We regret that delay appears innate to edited texts, though this can
lead to greater polish in the result.

As such, with many thanks to many people: the authors, the reviewers, and the
technical staff, here you will find the first consolidated text that addresses bio-
metric anti-spoofing. It has been a great pleasure to work with the TABULA
RASA teams during the past 4 years; it has been a great pleasure to work in
biometrics for this is a technology that will continue to mature as it offers the
solutions to many of the problems faced by modern society. As researchers in the
field we trust you find this text of use as guidance and as reference in a field which
will continue to inspire and challenge its many researchers.

Switzerland, May 2014 Sébastien Marcel
England Mark S. Nixon
China Stan Z. Li
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Chapter 1
Introduction

Nesli Erdoğmuş and Sébastien Marcel

In a well-designed system, biometric security ensures that only authorized persons
can access to the protected facility or information, because it assesses a person’smost
unique physical and behavioural features that can be practically sensed bydevices and
interpreted by computers. It is also convenient as the users need to carry or remember
identification data is eliminated. Mainly driven by the biometrics passports that are
currently in use in many countries, more and more biometric-enabled applications
are used in daily life. However, despite a stimulating and rapidly growing market, a
crucial security issue is still to be considered by concerning parties: vulnerability to
attacks, in other words, attempts to subvert and circumvent the system.

It has been shown recently that conventional biometric techniques, such as finger-
print or face recognition are prone to one of the most potent and damaging threats
involving personal Data-Identity fraud, mostly known as spoofing.

Spoofing, also referred to as presentation attack, is a direct attack performed at the
sensor level outside the digital limits of the system. Therefore, no digital protection
mechanisms can be used against it. In an attempt to spoof a biometric system, an
intruder tries to masquerade as a valid user by forging a fake biometric sample and
presenting it to the biometric sensor to be captured. Anti-spoofing (or presentation
attack detection) refers to the countermeasures to detect and avert these attempts.
Commercial biometric authentication products without anti-spoofingmodules would
place personal security at high risk.

N. Erdoğmuş (B) · S. Marcel
Idiap Research Institute, Rue Marconi 19, 1920 Martigny, Switzerland
e-mail: nesli.erdogmus@idiap.ch,

S. Marcel
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2 N. Erdoğmuş and S. Marcel

1.1 The Need for Biometrics

Biometrics is a multidisciplinary field concerned with measuring and mapping spe-
cific biological traits, e.g. fingerprints, face, palm veins, etc. to be used as an individ-
ualized code for recognition. The need and the complexity of recognition of humans
has never been this great in our history as it is now and biometrics is considered as
an indispensable tool to overcome the difficulties being faced. In order to come to
this conclusion, one needs to consider some of the demographic facts about today’s
societies that are related to this requirement of security and identification.

The first and most prominent change in the world today that both convolute and
promote the identification problem is population growth (see Fig. 1.1). Identifying
human beings is an essential element for societies to function properly, and this was
very straightforward in the early days of civilization, when people lived in much
smaller communities and everyone knew each other. To have a clear view of the
change, we do not even have to go back further than two centuries. The identity
card that was introduced for workers by Napoleon in the early 1800s, to stop them
moving around without their employers’ permission can be accepted as the ancestor
of modern ID systems [1]. In fact, before World War I, most people did not have
or need an identity document. However with continuing population growth, identity
establishment started to rely on documents and soon its substantial dependence on
biometrics followed. The first biometric links between the ID documents and their
holders were the facial photos, which began to be attached to passports and alike
in the early decades of the twentieth century, once photography became widespread
and evidently, it did not stop there.

The impact of population growth on the necessity and complexity of secure iden-
tity has been elevated by a companion occurrence, that is the increasing mobility
of masses of people within and across international borders. International tourist

Fig. 1.1 Years when world population reached increments of 1 billion [2]
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Fig. 1.2 Rates of travel depicted by the time required to travel from New York to various locations
in a, b, c and d

arrivals grew well above expectation in 2013 by 5% and reached a new record 1,087
million arrivals worldwide. For 2014, the growth is forecast to be 4–4.5% again [3].
Mainly reinforced by the advancements in transportation technologies, the mobility
of the world population expanded enormously in the last century. The series of maps
from the 1932 Atlas of the Historical Geography of the United States in Fig. 1.2 show
a progressive decrease in travel time, mainly due to the introduction of railroads [4].

Today, it is possible to cover the longest distances in North America (e.g. Miami
to Seattle) in less than 7h, thanks to air transport. This convenience in travel has
obliterated the notion of isolated communities where everybody and their business
are known to each other or at least to an authority. Naturally, this phenomenon
boosted the importance of border controls, which like identity documents started to
spread just after WorldWar I and become even more important after the horrific 9/11
attacks. Today, the need for fast and accurate identification solutions is crucial for
border control points to operate smoothly and that is how biometrics come into play.

Up to this point, we have mainly discussed about how population growth accom-
panied by an increasingmobility plays a role in identitymanagement problem, specif-
ically in physical access control, for instance, to a country or a building and where
biometrics come into the picture. The scope can be further extended to forensic
applications through criminal identification techniques which have deep roots in
the science of anthropometry. In fact, the first anthropometric system was invented
back in 1879, by a French criminologist Alphonse Bertillon, as an alternative means
of identification to detect repeat offenders, after the repeal of the previous system
by which criminals were branded. However, the famous case of Will West in 1903
proved the fallibility of the Bertillon system. Consequently, police departments and
prisons around the world switched to the fingerprint identification system developed
by Sir Richard Edward Henry of Scotland Yard. Fingerprinting which was more reli-
able and far easier to collect took over the forensic scene and has been dominating
it since.
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However, there is another social aspect that relates to the matter of security and
identification which becomes more and more prominent each day. It is the increasing
involvement of computers in everyday life. This critical factor, that is hugely boosted
by the advancements in computation and storage power and Internet connection
speed, does not necessarily disturb physical (or geographical) security but it brings
about an issue of its own that can be referred as digital information security or
computer access control.

First, the invention of transistors and integrated circuits set the revolution of
modern computer in motion in 1950s and then came the Internet that marked the
beginning of the Digital Age in human history. Today, surrounded by networks with
constant information flow, we have adapted to a computerized everyday life that runs
via smart phones, social media and cloud computing. The density of information
storage in commercially available devices has reached impressive levels, allowing
us to create and store exabytes of information each day.

Naturally, these developments raise serious concerns with respect to the privacy
and security issues. Digital information security is a young discipline that involves
information stored in computers and it stems from early computer security studies
done in mid-20th century. Currently, the majority of the access control systems,
either to a laptop or an online account, relies on user passwords. In [5], it is claimed
that Internet users have 25 password protected accounts in average but have an
average of 6.5 different passwords, despite the common advice to avoid reusing
them. Additionally, they tend to pick weak passwords that are short and simple and
do not change them regularly. Consequently, biometrics-based solutions stand out as
an attractive and convenient alternative that improves security over weak passwords
while reducing the demand for user effort.

When we look at the whole picture, it tells us biometrics is a vital approach to
identification and security applicationwith its obvious ergonomic benefits, scalability
and reliability.Biometric identifiers provide convenience and relatively equal security
level to all users and they are difficult to be lost, forgotten or stolen. Biometric systems
are becoming a natural component of identification and security applications, such
as national ID cards, passports, online shopping and computer data security.

1.2 Biometric System Security and Spoofing

Being intrinsically linked to the user, biometric traits can be safely argued to have
the unique advantage to truly verify that a person is in fact who he claims to be. They
are not like passwords or badges that can be easily stolen and used by an intruder.
On the other hand, there is an inevitable dilemma in accepting biometrics as private.
We cannot claim them to be secret whilst our facial images are captured by sur-
veillance cameras or even by ourselves to be shared on social media platforms, our
voices are recorded by most phone-based services or we leave our fingerprints and
DNA uncontrollably everywhere we touch.
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When he says “Amateurs hack systems, professionals hack people,” American
computer security and privacy specialist Bruce Schneier emphasizes the fact that
ongoing developments in computer security technologies to prevent attackers are
thwarted by the human factor. For instance, in a survey undertaken by Infosecurity
Europe 2003 [6], 152 office workers at Waterloo Station in London were asked to
share their passwords for a cheap pen. Strikingly, more than three quarters of the
people immediately gave their password.

Although biometrics is proposed as an alternative solution for this type of issues
of conventional methods, ultimately, it is still defeated by the same “hacking the
people” approach, but this time in a different sense. In this new context, system users
are hacked by capturing and replicating their biometric samples (most of which can
be obtained rather easily) instead of working their passwords out.

An act of circumventing a biometric system by adversaries is referred as an
attack [7]. Broadly, two types of attacks can be considered: indirect and direct attacks.
Indirect attacks are performed inside the system, intruded by cyber-criminal hackers
or insiders, e.g. bymanipulating the feature extractor or thematcher, or bymodifying
the template database. This type of attacks can be prevented by numerous measures
that include but not limited to firewalls, anti-virus software, intrusion detection and
encryption. On the other hand, direct attacks are performed at the sensor (user inter-
face) level outside the digital limits of the system and therefore, no digital protection
mechanisms can be used against it.

In a direct attack, an impostor can either change his biometric characteristic in
order to evade identification (obfuscation) or claim an authorized user’s identity by
simply posing himself (zero-effort attack) or by presenting a falsified biometric trait
of that user (spoofing or presentation attack as detailed in 10) [8].

Spoofing is potentially the most dangerous type of attack as it does not require any
advanced programming skills like indirect attacks. Contrary to zero-effort attacks,
spoofing poses a serious threat to the security and the privacy of the enrolled individ-
uals irrespective of the recognition performance, specifically false acceptance rate,
of the biometric system. A spoofing attack occurs as a person tries to masquerade
as a valid user by presenting this user’s counterfeit biometric trait to the sensor. It
has been shown that conventional biometric techniques such as fingerprint [9] and
face recognition [10] are prone to this potent risk. There are also methods other than
cloning a legitimate biometric. For instance, many fingerprint recognition systems
can be deceived by reactivating the latent print left on the device from the last user,
by dusting or breathing on the collection plate.

There is a plethora of news items concerning biometrics spoofing,which continues
to grow. For instance, in 2008, a South Korean woman was caught trying to pass
through the immigration screening system in Nippon, Japan by using a special tape
with someone else’s fingerprints on her fingers to fool the fingerprint recognition
machine. Japanese officials believe many more illegal foreigners might have entered
using the same technique [13].

Similarly in 2013, a Brazilian doctorwas arrested in Sao Paulo for using prosthetic
fingers, shown in Fig. 1.3a, to fool the biometric device that tracks employee atten-

http://dx.doi.org/10.1007/978-1-4471-6524-8_10
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(a) (b) (c)

Fig. 1.3 Examples of spoofing incidents: a Six silicone fingers recovered at the time of doctor’s
arrest [11]. b Cigarette vending machines using facial age verification [12]. c Banknote portraits
that are used to fool the age verification system [12]

dance at the hospital she works. The following police investigation showed that about
300 public employees had been receiving pay checks without going to work [11].

The last example is again from Japan, this time about cigarette vending machine
age verification system (Fig. 1.3b). Just after the FinanceMinistry officially approved
the use of facial age estimation technology and before the full scale deployment of
the system around the country, a news reporter has confirmed that the cameras can be
tricked by usingmagazine photos of celebrities and even using the portraits ofHideyo
Noguchi and Yukichi Fukuzawa on 1,000-yen and 10,000-yen bills (Fig. 1.3c) [12].

As the given examples also indicate, artificial biometric traits such as a thin layer
gelatin moulded with a fingerprint, a printed photo of a face or a recorded voice can
be easily presented to the sensor to gain illegitimate access unless the security system
is equipped with a spoofing detection ability that distinguish between real and fake
biometric samples. Ideally, a good biometrics system should be able to determine
“liveness” and should not rely on the inaccessibility of the biometric traits.

As Dorothy E. Denning says, “It’s liveness, not secrecy, that counts”. The biomet-
ric prints of users do not need to (and for many modalities can not) be kept secret,
instead the validation process should be coupled with a liveness test to make sure that
the biometric trait to be evaluated is from a real, living subject and not from a photo
or a severed finger. Therefore, countermeasure modules that differentiate liveness
versus spoof are indispensable for reliable biometric systems.

1.3 Biometric Anti-spoofing

It cannot be argued that since biometrics can now affect whole populations, anti-
spoofing needs determined study. Biometrics experts both in academia and indus-
try have been working on methods to deal with the spoofing threat. Referred
as anti-spoofing, spoof detection or presentation attack detection, this task consists
of differentiating between a real biometric reading from a live person and a fake one
forged by the attacker. On the other hand, liveness detection is used to indicate the
act of verifying vitality such as pulse or blood flow. In different areas of research,
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liveness detection is taken as either a synonym of spoof detection or a method of
doing so. In this chapter, this term will be used as a subcategory of anti-spoofing
methods.

Spoof detection can be implemented during the acquisition or the processing of
the biometric data using three different approaches:

• Employing additional hardware: An extra sensor is utilized for anti-spoofing. This
approach may be costly and may still be invalidated by presenting any real bio-
metric trait to this sensor while using a fake one for identity verification.

• Capturing extra data with the same sensor: The information already captured by
the device is further processed or accumulated over time to extract discriminating
features.

• Using the biometric data: Authenticity information inherent to the captured bio-
metric trait is utilized for spoof detection. Although being ideal for cost, compu-
tational load and user convenience, this approach is hard to substantiate.

As will be discussed in the following chapters of this book, there is a wide range of
spoof detection algorithms for different biometricmodalities, but all these techniques
can again be classified into three main groups based on their working mechanisms.
The first group of techniques makes use of intrinsic properties of real biometric
samples such as shape, color or elasticity. The second group tries to detect liveness
from the biometric recording via aforementioned methods, whereas the third group
searches for counterfeiting clues in the contextual data.

1.3.1 Checking Intrinsic Properties

Biometric samples from a real living body possess certain intrinsic properties, which
can be used to check their validity. These properties can be visual such as colour,
shape and texture; physical such as density, stiffness and elasticity; spectral such
as reflectance and absorbance; and finally electrical such as permittivity and capaci-
tance. A commercial fingerprint recognition product that utilize this kind of approach
is presented in Fig. 1.4.

Numerous anti-spoofing techniques fall into this category for different biometric
systems. While some of them require additional hardware, the rest use the same
biometric trait captured for recognition purposes. For instance, electric resistance of
human skin can be measured with additional devices to fingerprint scanner, in order
to check whether it is within a particular range. On the other hand, analysing the
texture of iris images as detailed in Chap. 6 does not entail usage of extra equipment.

The examples can be expanded to face and speaker recognition aswell. The texture
and reflectance properties of facial skin can be utilized to detect spoofing attacks.
Alternatively, the difference between the shape of a face and an attack instrument
such as photo paper or mobile device screen gives a hint about the face sample’s
authenticity. For this purpose, either an extra device such as a depth sensor or a
second camera can be used or motion of the objects in the image can be analysed.

http://dx.doi.org/10.1007/978-1-4471-6524-8_6
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(a) (b) (c)

Fig. 1.4 a Lumidigm V-Series is a fingerprint sensor that checks intrinsic (spectral) properties of
human tissue for antispoofing.bExample spoofing attacks. c Spectrographic analysis to differentiate
between real fingers and fake artefacts [14]

More details are given in Chap.4. Moreover, there can be cases like mentioned in
Chap.5 where multi-spectral face recognition systems are proven to be inherently
robust to photo attacks. In other words, it is shown that photo attacks can be rendered
impractical by just using the multi-spectral sensors instead of ones that work under
visible light.

As for the speaker recognition systems discussed in Chap. 7, detecting acoustic
differences between natural and synthesized or converted voices as a countermeasure
against spoofing belongs to this group of techniques.

1.3.2 Detecting Liveness

Various methods to detect liveness of biometric samples have been proposed and
implemented. In general, these methods make use of principally three groups of
signals from a living body:

• Involuntary signals such as blood pressure, pulse and perspiration at the fingertips,
hippus movement of iris and brain wave (EEG) and electrical heart signals (ECG)

• Reflexive signals such as pupillary light reflex (pupil dilation—an example study
with near-infrared iris recognition system is presented in Fig. 1.5), corneal reflex
(blink reflex) and patellar reflex (knee-jerk)

• Voluntary signals given unconsciously or as a response to a “challenge” such as
blinking, mouth movements and facial expressions.

In Chap.4, blinking and facial movement detection is mentioned for anti-spoofing
in face recognition systems as well as challenge response precondition in which user
is prompted to perform a specific action like smiling. Same approach can also be
used for speaker recognition in a text-dependent scenario as detailed in Chap.7.

http://dx.doi.org/10.1007/978-1-4471-6524-8_4
http://dx.doi.org/10.1007/978-1-4471-6524-8_5
http://dx.doi.org/10.1007/978-1-4471-6524-8_7
http://dx.doi.org/10.1007/978-1-4471-6524-8_4
http://dx.doi.org/10.1007/978-1-4471-6524-8_7
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(a) (b)

Fig. 1.5 a Iris image acquisition system: (1) Near infrared NFOV camera; (2) Near infrared flash;
(3) WFOV video camera; (4) Controllable visible light source. b Size of the pupil decreasing
(constriction) with increasing exposure values [15]

1.3.3 Detecting Counterfeit

Differently from the two previous categories, this group of methods aim to protect
biometric systems by spotting clues of forgery in the collected sample instead of
liveness.

In fact, this approach can be considered as the longest established countermeasure
for spoofing in terms of forensic applications, which mainly relies on the visual
evaluation of experts. As discussed in Chap.2, searching for artefacts or noise that
appear in the fake fingerprint marks has been in use for decades for detection of
forgeries in forensic science.

On the other hand, forensic experts have shown limited ability to detect forgeries
especially in the case of fingerprints that are fabricated carefully with well chosen
and processed materials. For this reason, biometric research community is bound to
come up with fully- or semi- automatic solutions for fingerprint forgery detection,
specifically for the cases in which the distinction is almost impossible for human
eye whereas it might be much clearer in the proper feature space. In Chap.3, these
discriminant features are found by exploiting fingerprint-specific quality assessment
for which properties such as ridge clarity and strength are measured (see Fig. 1.6).

Detecting counterfeit cues in the contextual information is also proposed for face
anti-spoofing in Chap.4. Suspicious appearances such as a hand holding a photo or
a display in front of the camera or a background scene moving exactly the same way
as the face does can be easily noticed.

http://dx.doi.org/10.1007/978-1-4471-6524-8_2
http://dx.doi.org/10.1007/978-1-4471-6524-8_3
http://dx.doi.org/10.1007/978-1-4471-6524-8_4
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Fig. 1.6 Quality (IQF) and liveness measure (LM) of (a–b) live and (c–d) fake fingerprint samples
of a subject acquired by two different sensors [16]

1.4 Conclusion

Biometrics has become an indispensable instrument in identity management and
information security systems today with populations growing fast and becoming
more and more mobile. Consistently, security issues and vulnerabilities of biomet-
rics systems develop into a real concern and hence, capture the attention of manufac-
turers and researchers in this field. Many successful spoofing attempts and possible
countermeasures have been published. However, it is safe to say that spoofing is still
in its early stages of existence, and it has a huge potential to bear new challenges due
to a large number of biometrics traits and a growing range of available sensors.

In this book, spoofing attacks against five biometric modalities are analysed
in different chapters, including also multi-modal systems. Additionally in Chaps.
10–13, evaluation methodologies, related standards, legal aspects and ethical issues
are discussed. Still, this constitutes just a surface being scratched. Spoofing tech-
niques are fast becoming more sophisticated and anti-spoofing measures have only
a limited validity period, indicating that ongoing efforts from both industry and
academia is needed.
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Chapter 2
Forgeries of Fingerprints in Forensic
Science

Christophe Champod and Marcela Espinoza

Abstract The objective of this chapter is to provide an account of the
considerations made in forensic science regarding issues associated with potential
forgeries of fingerprints. We will start with a clarification of terms and define the
production of forgeries and the fabrication of evidence based on fingerprints. A short
historical account will be given to highlight that the raised issues coincide with the
early days of fingerprinting. Various methods of production of forged fingers as pub-
lished in the forensic literature will then be exposed, distinguishing the techniques
requiring the cooperation of the donor and the techniques without the cooperation
of the donor. Examples of the various types of forgeries with associated images will
be shown. The ability of forensic experts to distinguish between genuine marks and
fakes will then be discussed. Although manual inspection techniques, they may also
provide a reference to biometrics practitioners in their development of computerised
techniques.

2.1 Introduction

To introduce this chapter, we felt the need to provide at the outset some clarification
on the terms that are used rather loosely in the forensic literature to discuss the
issues associated with fingerprint spoofing. It will lead us to reaffirm the need to
distinguish forgeries from fabrications and marks from prints. The forensic scenario
considered later will be the case of the recovery of forged marks from a donor left
intentionally by a third party on objects associated with a crime and whether or
not these marks can be distinguished from genuine marks left unintentionally by
its legitimate donor. A few documented instances of such cases will be presented.
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The chapter will then elaborate on the techniques used to prepare forged fingers
along side with illustrations for most of these techniques. The stigmates used as
clues by forensic experts to detect forgeries will then be discussed. These clues
are considered by experts in their decision-making process in a rather unstructured
and nondocumented way. They form a part of the clues used in an holistic decision
process. The final decision regarding the genuineness of a mark remain largely based
on the training and experience of the forensic examiner. The reliability of experts to
reach conclusions will also be discussed. To conclude this chapter, wewill tentatively
offer some parallels between the issues raised in forensic science and the search for
spoofing detection system in biometric research.

2.1.1 Forgeries and Fabrication of Evidence: A Clarification
of Terms and Cases

Even though papillary lines (or friction ridge skin—FRS) are found on more areas
than the fingertips (they can also be found also on phalanges, palms, and soles), we
restrict our presentation to fingers as they are the most targeted area. Friction ridge
skin (FRS) refers to the original area of papillary lines that may be subject to forgery,
e.g. the finger itself. The term“print” is reserved to the inked (of livescan) impressions
taken under controlled conditions fromeither a genuine area of FRSor froma forgery.
When fingers are involved, these prints will be named fingerprints. The term “mark”
is used to describe the result of the apposition of impressions from the FRS or its
forgery on a surface, generally in the context of a criminal activity. These marks can
be left as 3D impressions (e.g. in mastic) or as 2D impressions that are either visible
(e.g. in blood) or latent (e.g. left in the form of a natural sweat residue). When left by
fingers, wewill refer to them as fingermarks. Themain distinction betweenmarks and
prints is that prints are left under supervised conditions (or under specific deposition
instructions or mechanisms), whereas marks are left in an uncontrolled environment
and are often latent (not visible to the naked eye). This chapter will concentrate on
the risks posed by forgeries used to intentionally leave marks in forensic contexts.
Scenarios involving prints, for example as a mean to attack a livescan device, are
covered elsewhere in this book.

As pointed out byBonebreak in 1976 [1], it is important to distinguish between the
use of forgeries of fingers and the fabrication of evidence involving a fraudulent use
of genuine marks. Both categories received little coverage in the forensic literature,
whereas it could be expected (and even more so in the future) that any fingerprint
specialist should be familiar and ready to discuss these matters in court [2]. In the
literature, the most exhaustive papers are from Wertheim [3, 4] and Geller et al. [5].
Since these contributions, few additional researches (beyond case studies) have been
presented in the forensic domain. In the light of the increased possibilities offered
by new casting materials, there is merit in revisiting the subject on a regular basis.
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Forged fingerprints are generally used by individuals committing a crime who
will deposit forged marks of an innocent party in an attempt to implicate a third
party or at least to divert the investigative process. To achieve that objective, a forged
representation of the target portion of FRS is used as a stamp applied on the objects
or surfaces of interest to leave marks. The issue of identity is generally not at stake
here; what distinguishes genuine marks from forgeries is the mechanism whereby
the marks have been deposited. A genuine mark is the result of the direct contact of
an area of FRS on a receiving substrate. This contact generally does not involve any
control or willingness of the donor (quite the contrary in criminal cases). The contact
will leave a residue that will be visualised or detected using appropriate detection
techniques. A forged mark however will be left using a reproduction of FRS that will
be applied by a party to mimic the genuine production of a mark. These marks (we
chose to name them marks still) will be left intentionally by the forger with the hope
for them to be successfully detected by the investigators. This intention will have a
bearing on the number, location, and extend of the marks deposited.

Cases involving forged marks have to be distinguished from the cases involving
the fabrication of evidence. Cases of fabrication of evidence will take the form of a
representationof a genuinemark (with someevidential benefits) that has never existed
on the surface from which it purportedly came. Cases of fabrication of evidence are
generally associated with police officers who engage into such activities to frame an
individual by producing a compelling case with fingerprints. A few cases are worth
mentioning (others can be found in [3, 6]):

The 1943 murder of Harry Oakes in the Bahamas is one of the most well-known
cases of fabrication. Two corrupt police investigators lifted a fingermark from a
drinking glass used by the defendant “Alfred de Marigny” during a police inter-
view. The investigators then testified that the mark came from the dressing screen
from Oakes’bed and filed that evidence to incriminate De Marigny. The defence
was ultimately able to show the inconsistency between the background of the lift
bearing the mark (a lift is an adhesive surface that is used conveniently to take
up a mark developed by powdering on a substrate) and the texture of the piece of
furniture from the scene from which it allegedly originated [7].
William DePalma was convicted in 1968 based on the fabrication of fingerprint
evidence by Sgt. James Bakken who used a forged mark produced from a lift taken
from a Xerox copy of a print from DePalma taken in 1957 for a minor offence [8].
Some cases do not necessarily involve deliberate wrongdoing but may sim-
ply be the consequence of mislabelling of the fingermark lift. In England,
Alan McNamara is claiming that the mark that has been used to associate him
with a burglary scene had been lifted from a vase that he touched under completely
innocent circumstances and not from a wooden jewellery box (http://news.bbc.co.
uk/2/hi/programmes/panorama/1426720.stm). Despite all his efforts to demon-
strate the error (with the support of two recognised fingerprint experts), he served
30 months in prison for burglary.
In the case of the murder of Inge Lotz, it is alleged that the police detected marks
corresponding to the defendant Mr van der Vyver from a drinking glass and then

http://news.bbc.co.uk/2/hi/programmes/panorama/1426720.stm
http://news.bbc.co.uk/2/hi/programmes/panorama/1426720.stm
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indicated that that mark was developed with powder from a DVD cover found on
the crime scene [9].
A few instances of alleged misconduct have not been settled and are often linked
with high profile cases [10].

Another use of fraudulent prints is to avoid identification by producing a friction
ridge skin that will not be associated to any known print, either because of being
a mirror image of a genuine fingerprint [11], or a synthetic image (no instance of
occurrence known at the moment). The cases involving altered fingerprints with a
view to avoid detection (in the context of border control, for example) are not covered
in this chapter, as they are not considered as forgeries. The same will apply to other
anecdotic usage of toeprints instead of fingerprints [12] to hinder the identification
or to side-track the investigation.

The intent of the manipulation associated with the production of fake is generally
beyond dispute. In the case of fabrication, an intent is difficult to establish as the
process can easily be committed either because of chain of custody procedures that
are not tight enough or simple inadvertent mix-up of exhibits, without any intent to
mislead.

In the range of possibilities to attempt to incriminate someone based on fingerprint
evidence, using forged marks is not the most convenient option, compared to the
diverted usage of genuine marks or prints, either by placing an object bearing the
marks in interest on a crime scene or by placing on the police file marks allegedly
connected to the events under consideration.

Actual cases of known fingerprint forgeries are very seldom. Wertheim [6, 13]
presented two cases: the Nedelkoff case in the 1940s [14] and the alleged forgeries
of Pollock’s fingerprints that received recent media attention.1 Hence, as Wertheim
rightly pointed out, most of the disputes are related to case of alleged fabrication of
evidence. This is not to say that defendants never make allegations of forgery. A few
cases are worth mentioned hereinafter:

In England, in 1938, a defendant David Pearce demonstrated to his jury the possi-
bilities to transfer a genuine mark from one surface to another using an adhesive
surface. Despite his efforts, Pearce was found guilty [15].
The 1980s Mickelberg case (a.k.a. “Perth Mint Swindle”) is well known in Aus-
tralia. Raymond Mickelberg has been charged of fraud for using stolen checks.
The prosecution case is based, in part, on a partial fingermark developed with
ninhydrin on one of the checks and identified to him. The defendant claimed that
the evidence was fabricated by the police using a silicon cast of his hands that he
had produced as part of his hobby. The case was portrayed as a miscarriage of
justice [16]. After years of controversies, the conviction has been quashed by the
Supreme Court of Western Australia (MICKELBERG -v- THE QUEEN [2004]
WASCA 145), without however any stance taken of the claim of forgery.

1 “The Mark of a Master”, David Grann, The New Yorker, July 12, http://www.newyorker.com/
reporting/2010/07/12/100712fa_fact_grann.

http://www.newyorker.com/reporting/2010/07/12/100712fa_fact_grann
http://www.newyorker.com/reporting/2010/07/12/100712fa_fact_grann
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The forensic literature on forged finger can be quite confusing because of lack of
clear distinction between forgery and fabrication of evidence (see for example [17]).
The purpose of this chapter is to focus only on forgeries.

2.1.2 A Short Historical Perspective on Fingerprint Forgery

As mentioned previously, documented cases of the use of forged fingerprints by
criminals are very seldom. A few anecdotic cases have been reviewed by Wertheim
[3] and chronologically in [5]. This is despite the presence of forged fingerprints in
fiction and the publicity given throughout the years to the successful production of
fake fingers. For example, in 1994, a TV program broadcasted in Holland showed the
production of a forged finger of the Minister of Justice used afterwards on a livescan
device [18]. We will not attempt here an exhaustive historical account, but will focus
on few key papers published in forensic science to argue why the whole issue of
forgery did not gain a lot of attention over the years.

The possibility of facing forged fingerprints has been raised immediately at the
start of the 20th Century when fingerprint evidence obtained from crime scene
marks gained its momentum in various jurisdictions. De Rechter published his early
attempts to produce forged fingerprint directly from his own finger using a firstmould
in plaster followed by counter moulding in latex [19]. However, the risks posed by
such productionswere quickly considered as limited by the author at the time. Indeed,
it was recognised that if a villain decided to produce a forged mark in order to pervert
the course of an investigation and focus the attention on a different individual than
himself, it would be much more easier to wear gloves in order to avoid leaving any
incriminating marks. Goddefroy conceded that marks could be forged but hastily
concluded that distinguishing the genuine mark from the fake production was trivial
when pores and ridge edges are carefully examined. Indeed, at the time, themoulding
materials were not allowing the fine resolution for a faithful reproduction of pores
and ridge edges [20].

Carlson in 1920 [21] stressed on the need for an expert to be in a position to
exclude the allegation of forgery during his testimony to the identity of a mark and
a print. The author highlighted the risks posed by casting materials can be used to
produce marks in any matrix of interest (natural secretion or blood).

In 1923, Wehde and Beffel published the first public alert against fingerprint forg-
eries [22]. They popularised the photo-etching technique for the production of forged
fingers without the cooperation of the donor. They claimed that their production was
so simple that it will put the whole fingerprint discipline at danger. That claim did
not materialise in practice. It is also in the 1920s that the first accounts of the possi-
bility to transfer marks from one surface (a glass plate) to another flat surface were
made [23].

The response from the forensic practitioners at that time has been that fingermarks
made from forged fingers could easily be detected and such line of inquiry should
not be pursued in every cases unless specific circumstances dictate. Clearly the bur-
den of proof regarding the activity associated with the deposition of the mark was
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shifted from the prosecution side to the defence. Prosecution will then not explore
systematically the avenue of forgery unless the defence suggests that possibility.
Despite the early invitation by Lee [24] to admit such a possibility and discuss its
consequences in court, very few fingerprint examiners were (and still are) prepared
to entertain such a debate in court. Cummins stated what is still valid today [25]: only
some fingerprint experts having extensive experience in manufacture of counterfeit
and their study can make a distinction between a genuine mark and a mark felt by a
forged finger based on the characteristics shown by the mark itself.

2.2 Production of Fingerprint Forgeries in Forensic Science

The chart in Fig. 2.1 summarises various options available to produce forgeries. These
methods are detailed in the next section.

2.2.1 Production of a Stamp

2.2.1.1 Production

Basedon an imageof a target area of FRSor of amark, rubber (or polymer) stamps can
be easily produced through commercial channels using laser engraving for example.

Fig. 2.1 Various options available to produce forgeries
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Fig. 2.2 Comparison made by Morisod [26] between a genuine mark left in a glass surface and
two forged marks left using sebaceous secretions on the same substrate

It leads to forgeries that lack flexibility but that can be used to leavemarks on surfaces.
Normally commercial producers of stamps should decline when asked to reproduce
fingerprints, but practice has shown that professionals may not follow the line (or
rule).

2.2.1.2 Example: Production of Fakes Using Stamps

Morisod produced marks left by a rubber stamp commercially produced from an
starting black and white image of the target fingerprint [26]. Such a stamp can be
used to leave marks composed of a greasy residue (the natural sebaceous secretion
from the front head will suffice) left as contaminant on the surface of the forgery
(Fig. 2.2).

Morisod also showed that on marks developed with DFO (an amino acid reagent),
a clear difference in the amount of residue and its distribution can be seen (Fig. 2.3).
This is due to the difficulty on forgeries to reproduce the distribution of the fingerprint
eccrine residue along the ridges. Eccrine residue being secreted through the sweat
pores of the friction ridge skin, a richer concentration is expected at the location of
pores, giving on genuine marks a detection of ridges that appears as a succession of
dotted points, especially when visualised in photoluminescence mode.
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Fig. 2.3 Comparison made by Morisod [26] between a genuine mark deposited on paper and
detected with DFO and a forged marks also detected with DFO. Note the dotty appearance of the
ridges on the genuine mark

2.2.2 Casting of a Donor Finger Followed by Counter Casting

2.2.2.1 Production

This method ultimately leads to the production of a 3D cast reproduction of the FRS
area of the donor. Impressions are then left as marks by the cast simply by greasing
it and placing it on the target surface.

The direct casting technique requires some collaboration (or at least the availabil-
ity of the surface of FRS of interest) of the donor to produce the first mould of the
FRS. The material used for this first mould can vary but very good results have been
obtained using a thermoplastic material [27]. Other types of material tend to either
produce too limited depth of valleys or air bubbles that will then be visible on the
counter cast and ultimately on the forged marks. The resolution and the ability to
reproduce sweat pores will also depend on the chosen casting material.

Alternatively, and without the cooperation the donor, the initial mould can be
obtained indirectly either through the covert capture of a mark that will serve as a
blue print for the production of a 3D mould of the ridges. From a 2D image of the
target mark, the mould is produced either by a photocopying process (the deposited
and fixed toner offering enough relief to allow a subsequent counter-cast), or by
metal plate etching.
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Once the master cast is obtained, a counter-cast can be produced (simply by
pouring another moulding material in the first cast) with various materials: silicon
white glue, polyurethanes, latex, or gelatine. One critical aspect to obtain quality
forgeries is the care in choosing casting materials that are compatible and limit the
production of artefacts or defects.

Very good reproductions can be prepared with gelatine, however they need to be
stored in a cool environment and their shelf life is rather limited (less than 5weeks). A
glucose-based formulation allows increasing the shelf life well above 11 weeks [28].

2.2.2.2 Example: Casting Techniques with the Cooperation of the Donor

It is important to state that the quality of the forgery will critically depend on the
choice of the castingmaterial. The production of artefacts dues to air bubbles depends
on the couple of moulding materials used, as shown in Fig. 2.4.

In 2011, Ioan Truta (Boston police department) presented to the forensic com-
munity forged marks produced using casting: the first cast of the finger is made
in putty, the second mould being produced with AccuTrans® casting medium
(polyvinyl siloxane). Marks are then layed down on a smooth surface (white backing
cards), developed with black magnetic powder and lifted with transparent adhesive.
Figure2.5 shows a few instances of forged marks compared against genuine marks.
When the clarity of the marks is high, some clues of forgeries can be seen (shapes
corresponding to air bubbles). However, when the clarity of the marks reduces, these

Fig. 2.4 Examples of first moulds obtained in our laboratory with four different donors using
respectively two casting materials: Sta Seal (a silicone-based moulding material from Detax Dental
GmbH & Co, Germany) and Microdice (a dental plaster from Dentsply Odoncia, France)
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Fig. 2.5 Genuine and forged marks deposited by Ioan Truta (Boston police department) on white
backing cards and detected with black magnetic powder. The forgery has been prepared using a
double casting technique with the cooperation of the donor, the first mould in putty and second
mould with AccuTrans

features cannot be distinguished from the usual background issues associated with
marks.

The ability to reproduce pores also depends on the choice of materials and to some
degree on the donor (who will also impact upon the visibility of pores on genuine
marks). Figure2.6 illustrates a case with very high quality reproduction of the pores.

2.2.2.3 Example: Casting Techniques Without the Cooperation of the Donor

Without the cooperation of the donor, the first step consists in obtaining an inversed
blueprint of the target FRS. It is done by the acquisition of a genuine mark of high
clarity and the preparation of a blueprint using image processing. That process is
shown in Fig. 2.7.

Then the blueprint is printed on acetate sheet on a laser printer and a counter-
mould is poured using gelatine, glue, or latex. Under pristine deposition conditions,
the prints are of very high quality and it is very difficult to observe intrinsic features
allowing to distinguishing the genuine from the fake (Fig. 2.8).

When marks are produced, the task of distinguishing genuine from fake is even
more difficult even on very high clarity marks, as shown in Fig. 2.9.
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Fig. 2.6 Comparison between a genuine and a forged finger acquired on an optical livescan device.
The forgery has been prepared using a double casting technique with the cooperation of the donor,
the first mould is made in a thermoplastic (UtilePlast, Pascal Rosier, France), the second is a silicon
molding paste (Siligum, Gédéo, France)

Fig. 2.7 Preparation of the blueprint (tonally reversed with white ridges black furrows) that will
serve for the preparation of the forged marks without the cooperation of the donor
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Fig. 2.8 Comparison between a genuine and a forged finger acquired on an optical livescan device.
The forgery has been prepared without the cooperation of the donor starting with a mark detected
optically on a glass surface and a latex cast (Gédéo, France)

2.2.3 Metal Plate Etching (Photo Engraving) Followed
by Counter Casting

2.2.3.1 Production

Techniques commonly used to produce printed circuit board (PCB) can be used
once an image of the target FRS is available. Hence, this technique does not require
the cooperation of the donor. By simply reversing the contrast of the target image,
printing it on a transparent media, the valleys (now in black) will protect the copper
surface, the rest of the photo sensible layer being exposed to UV light. The chemical
acidic etching process will occur on the exposed ridges, producing a 3D mould of
the target FRS.

2.2.3.2 Example: Metal Plate Etching (Photo Engraving) Followed
by Counter Casting, Without Cooperation of the Donor

An example of a mark obtained using a forgery obtained by metal plate etching is
given in Fig. 2.10.
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Fig. 2.9 Comparison between a genuine and a fake mark left on glass and visualised using opti-
cal techniques [29]. The forgery has been prepared with the cooperation of the donor. Note the
appearance of the somewhat uneven widths of valleys and ridges, but the reproduction of pores on
the forgery

2.2.4 Transfer of Fingerprint Residue or Powder
from One Surface to Another

2.2.4.1 Production

In this process, the residue of a genuine mark is lifted by an adhesive material (such
as an adhesive tape or a fingerprint lifter) and then transferred to another receiving
surface. The technique comes conveniently into play when no collaboration from the
donor is required. Technically, it could be said that such a mark is not a forgery, as it
will show the transferred attributes of the originalmark. However, on the grounds that
fraudulent intent is evident, we will consider it as a forgery [30], but the technique
has been used in cases of fabrication of evidence. Harper has stressed on the loss of
residue during the process but also showed the high quality of the forged mark so
produced [30] when examined directly under the microscope (without any detection
techniques that would normally muddy the water even more). Harper very rightly
stressed upon the importance of considering the context in which the marks were
recovered. Identifying forgeries based on the sole intrinsic attributes of the mark is
not sufficient to guide reliably on that matter.
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Fig. 2.10 Comparison
between a genuine and a
fake mark left on glass and
visualised using optical tech-
niques [29]. The forgery
has been prepared without
the cooperation of the donor
using a metal plate etching
technique. Note forgery the
poor reproduction of the edges
of the ridges

The operational success rate of such a transfer of residue is low. Some ideal con-
ditions, difficult to meet in practice, are required: an appropriate mark on a smooth
surface with enough mark residue to ensure the transfer and a clean smooth receiv-
ing surface [31]. An alternative method consists in transferring with adhesive tape
a genuine mark developed with dusting powder (such as black or grey magnetic
powder) [32].

2.2.4.2 Example: Transfer of Latent Mark from One Surface to Another

Morisod showed (Fig. 2.11) the possibility of such a transfer, successful only when
themark is particularly rich in residue [26]. Artefacts due to the use of the gelatine lift
(or any other adhesive) can be observed (edges of the adhesive foil used, air bubbles
and deposition of adhesive residue).

2.2.5 Direct Impression of a Fingermark to Produce a Forgery

That type of forgery has been suggested very recently [33]. However, to our knowl-
edge, no known forensic cases involving that process has been uncovered in forensic
casework.Due to the advances in printing technology, it is conceivable for an image of
a fingermark to be printed with an “ink” chosen to simulate the residue of interest (or



2 Forgeries of Fingerprints in Forensic Science 27

Fig. 2.11 Forged marks developed with aluminium powder by Morisod [32]. The mark originates
from a genuine mark of sebaceous residue left on glass and transferred onto another piece of glass
using a gelatine lifter (note the marks left by the edges of the lifter and the air bubbles left during
the transfer process)

targetedby thedetection technique). Thismethodof productionof forgeries is directly
inspired from a modification of an inkjet printer used to produce artificial deposition
amino acids at varying concentrations for quality management purposes [34]. The
technique has then been adapted to print images of fingerprints with an inkjet printer
replacing the ink with an amino acid colourless solution. It produces forgeries that
will be visualised once amino acid reagents are used (such as ninhydrin, DFO, or
indanedione/Zn). Kiltz and colleagues documented the differences in image quality
observed between forged and genuine marks and suggested the use, on flat surfaces,
of a contact-less CWL sensor for an optical acquisition prior any application of a
physical or chemical technique [33]. A Hough-Circles algorithm has been used to
help with the task of distinguishing genuine from fake [35]. They suggested a shape
analysis of the dots constituting the detected marks. It applies to nonporous surfaces
(marks were printed on overhead foils) and on images captured with a contact-less
CWL sensor. Using horizontal and vertical dot distance measures, they detected a
high dot density for genuine fingerprints and a low dot density for forgeries obtained
using that printing process. Taking advantage of the high resolution (12,700 dpi) of a
CWL sensor, Hildebrandt and coworkers [36] showed that both for marks optically
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acquired from nonporous surfaces or for marks on paper developed with ninhydrin,
an analysis of the texture allowed a successful classification between genuine and
fake.

2.3 Fingerprint Anti-spoofing in Forensic Science

The detection of forgeries in forensic science relies solely on the visual assessment
made by a fingerprint examiner. To our knowledge, there is no systematic measure-
ment techniques that have been proposed to assist the examiner in that task. The
approach is holistic and, at present, not fully articulated. We will first review the
clues for forgeries upon which the examiners generally rely during their examina-
tion and then we will present some data regarding the ability of experts to distinguish
between genuine and forged marks.

2.3.1 Artefacts (or Clues) Associated for Forged Marks

Artefacts (or clues) of forgeries are described in the specialised literature [3]. It
is worth distinguishing the intrinsic features (visible on the mark itself) from the
extrinsic features (i.e. the context in which the mark(s) is(are) detected). Needless
to say that the intrinsic features are easier to observe using optical techniques rather
than following a sequence of detection techniques that may hinder the visibility of
fine features such as pores or ridge edges.

The following intrinsic features may be found on forged marks (based on [37] and
also on [26, 29]) helping to distinguish them fromgenuinemarks.Wewill distinguish
between the general features observedwithout any particular magnification andmore
particular feature that will require appropriate magnification (5x–10x).

General features observed on forgeries:

• Background noise (a type of halo effect) around the mark itself or in areas without
ridges. This is due to an interaction on the surface of the mould material bearing
no ridge and the substrate.

• An overall shape of the mark that is inconsistent with the natural deposition of a
finger.

• Clear and well-defined external contours of the mark, either partially or entirely,
as a function of their deposition. Ridges will end abruptly at the boundaries of
the forged mark, whereas comparatively, on genuine marks, ridges coming to the
border of the mark will tend to fade gently.

• Missing section of ridges, or section of ridges that are of lower clarity compared
to highest clarity of the neighbouring (adjacent) ridges.

• Smudged or distorted friction ridges in areas that are not compatible with the
dynamics of a natural deposition of a finger on a surface.
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• Unexpected appearance of the ridges following the detection technique used. For
example, amino-acid reagents tend to develop genuine marks as a series of dots
leading to the appearance of papillary lines. Forged marks are laid down with a
film of residue that hardly mimics the succession of rich-residue pores.

Particular features observed on forgeries (when the clarity of the mark allows):

• The presence of air bubbles and defects due to the casting material. Note that a
careful choice of the casting material can diminish the occurrence of artefacts due
to air bubbles.

• The absence of visible sweat pores. Some authors give a lot of weight to the
presence of pores attesting the authenticity of a mark (e.g. [31]), but again an
adequate choice of the casting materials allows reproducing pores.

• Very narrow valleys compared to the ridges or uneven widths of ridges and valleys.
• The presence of reproducible artefacts on multiple marks from the same area of
FRS.

Forged marks may present some specific extrinsic features (very well described
as early as 1933 by Lee [38], Harper [30] and reaffirmed in the subsequent forensic
literature). They are:

• The detection of the mark from one finger in situations where an associated detec-
tion of the marks left by the other fingers or palm would be also expected.

• The detection ofmultiple apposition ofmarks representing the same area of friction
ridge skin, at times even to the point that they overlap completely and share the
same shapes of pores or ridge edges.

• The detection of a mark in an anatomical position that is not consistent with the
natural pre-emption of the receiving object.

• The forensic evidence in the case is based only on these fingermarks.

2.3.2 Ability of Forensic Expert to Detect Forgeries

Cummins [25] has been the first to test the ability of forensic examiners to distinguish
genuine from forged prints (i.e. obtained following an inking process). Eight experts
were invited to study four prints. Out of 32 opinions, Cummins counted 20 right
answers, 1 doubtful and 11 wrong determinations. Keeping in mind that the forged
prints were produced under pristine conditions, it may be expected that the ability
to distinguish genuine from fake will diminish when dealing with marks developed
using methods that may affect the clarity of marks. Senay submitted forged marks to
five examiners who did not show much success in their detection, especially when
forgery was not prompted as an issue to consider [31]. It is fair to say that the mere
possibility of forged marks is not at the forefront of the consideration of fingerprint
experts. For them, the first issue to assess is the question of source. The possibility
of a forgery is not explored systematically and it will be waited for the allegation to
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be made for it to be considered any further. It means that training and experience in
this area is rather limited, very ad hoc at best.

Geller et al. [39] reported, following a survey conducted among 152 examiners,
that even though a majority (85%) of professionals were aware of the possibility to
forge fingerprints, 57% only indicated that the threat was credible and 45% of them
indicated that they would not be in a position to distinguish genuine marks from
forged marks.

In 2011, Bourquin investigated the risks posed by forgeries and the ability of
forensic practitioners to detect them [37]. She elaborated forgeries without the coop-
eration of the donors. The forgeries were prepared from genuine marks developed
with cyanoacrylate fuming, prepared and printed on acetate sheets. The final moulds
were obtained with various casting materials. The use of cyanoacrylate fuming as a
detection technique allows obtaining in one step an inverse image (white ridges on
a dark background). The production of the blueprint is presented in Fig. 2.12.

Forgedmarks were prepared by apposing the moulds contaminated with an amino
acid enriched cream on target surfaces (paper or glass). Marks were detected either
with aluminum powder on smooth surfaces or with an amino acids reagent (indane-
dione/Zn) on porous surfaces. 18 marks (Eight genuine mark and Ten forgeries)
had been submitted to 78 fingerprint examiners (from the USA and from Switzer-
land). Half of the respondents received beforehand a broad guide to help them with
the assessment, the other half were just given the task without any guidance. The

Fig. 2.12 Preparation of the blueprint that will be used to produce forged moulds for the study by
Bourquin [37]
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main lines of the guide were similar to the previous section on the intrinsic features
associated with forgeries. The results are given in Table2.1.

The results confirm how difficult it is to detect forgeries, regardless of the avail-
ability of the guidance note. The guide improves slightly the detection power but to
the cost of increasing the rate of misclassification of genuine marks as forgeries. The
guide put examiners in an “awareness state” that makes them increase their claims
of forgeries.

Some examples of the marks (genuine or forged) that led to the most difficulties
in terms of classification are given in Fig. 2.13.

Table 2.1 Results on the test carried out by Bourquin [37] on a population of 78 fingerprint
examiners, half of them having some initial guidance, half of them without

Examiners (78) With the guide (39) Without the guide (39)

Forged
marks (10)

Genuine
marks (8)

Forged
marks (10)

Genuine
marks (8)

Declared as genuine (%) 63 55 53 67

Declared as forgery (%) 37 45 47 33

Fig. 2.13 Examples of genuine and forged marks used in the study by Bourquin [37]
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2.4 Conclusion

In this chapter, we focused mainly on the issue of forgery of friction ridge skin to
intentionally leavemarks to be detected in associationwith the investigation of crime.
These fake marks will be visible or latent and left intentionally on substrates that will
be the focus of the forensic investigation. The aim of such endeavor is to divert the
investigation on a noninvolved third party. Although the possibility of such forgeries
have been raised sporadically from the early days of fingerprinting, the number of
known cases involving such productions is very limited. To the point that the issue
of forgery is not considered in every forensic case, the burden of raising the issue is
left entirely to the defense.

This is in contrast with the number of cases involving the fabrication of finger-
print evidence (often based on genuine marks). Fabrication of evidence usually does
not require forging friction ridge skin, but will involve the claim that a genuine
mark recovered under “innocent” circumstances is associated with the crime under
investigation. It is more often achieved by tampering with the chain of custody, than
by resorting to the use of a forged area of friction ridge skin. Cases of evidence
fabrication are often the results of dishonest police practice.

The techniques used produce forgeries have been reviewed and illustrated. In our
view, only casting techniques can produced forged marks that will be very difficult
to detect, even more so when the donor is cooperative. The appropriate casting
techniques are cheap, easy to operate and do not require specialist knowledge.

The attributes of the forged marks have been listed distinguishing between the
intrinsic features (obtained directly from the mark(s) itself) from the extrinsic fea-
tures (associated with the context in which the mark(s) has been discovered). The
forensic practitioners should consider both aspects when the issue of forgery has to
be evaluated.

Some forensic practitioners may think that the detection of forgeries based on
the intrinsic features shown by the detected mark is an easy task. Results from past
and more recent tests have shown the complete opposite. When forged marks have
been produced using carefully chosen techniques, they cannot be distinguished from
genuine marks even when the forgery has been obtained without the cooperation
of the donor. That state of affair simply put more weight on the whole crime scene
investigation that should provide other extrinsic evidence to help guiding on the
genuineness of the collected marks.

The above may offer also some useful parallels to the biometric research com-
munity. It is fair to say that as soon as a forgery has been prepared with carefully
chosen molding materials, there are, based on intrinsic features, very limited ways to
distinguish genuine from fake even when the deposited mark is of very high clarity.
Fingerprint experts, despite their expensive exposure tomarks (mainly genuine), have
shown limited ability to resolve this issue. This state of affair will not improve given
the rapid progress made in material technology and printing technology. We suggest
that spoof detection research in the context of biometric systems should focus less
on intrinsic features but more on extrinsic features. Promising lines in inquiry may
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be more towards the detection of attributes of the living finger or the spoof material
than on the fingerprint features displayed by the acquisition system. Forensic scien-
tists have to rely on the contextual elements surrounding the detection of the marks
than on the specific attributes of the acquired images. The same may apply to the
biometric world: the prevention or detection of spoofing may benefit more from a
careful assessment of the processes underpinning the use of the biometric system
than on technological advances.
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Chapter 3
Fingerprint Anti-spoofing in Biometric
Systems

Javier Galbally, Julian Fierrez, Javier Ortega-Garcia
and Raffaele Cappelli

Abstract This chapter is focused on giving a comprehensive description of the
state-of-the-art in biometric-based fingerprint anti-spoofing and the big advances
that have been reached in this field over the last decade. In addition, after a
comprehensive review of the available literature in the field, we explore the potential
of quality assessment as a way to enhance the security of the fingerprint-based
technology against direct attacks. We believe that, beyond the interest that the
described techniques intrinsically have, the case study presented may serve as an
example of how to develop and validate fingerprint anti-spoofing techniques based
on common and publicly available benchmarks and following a systematic and
replicable protocol.

3.1 Introduction

“Fingerprints cannot lie, but liars can make fingerprints.” Unfortunately, this
paraphrase of an old quote attributed to Mark Twain1 has been proven right in many
occasions now.

As the deployment of fingerprint, systems keeps growing year after year in
such different environments as airports, laptops, or mobile phones, people are also
becoming more familiar to their use in everyday life and, as a result, the security

1 Figures do not lie, but liars do figure.
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weaknesses of fingerprint sensors are becoming better known to the general public.
Nowadays, it is not difficult to find web sites or even tutorial videos, which give
detailed guidance on how to create fake fingerprints that may be used for spoofing
biometric systems.

As a consequence, the fingerprint stands out as one of the biometric traits that
has arisen the most attention not only from researchers and vendors, but also from
the media and users, regarding its vulnerabilities to spoofing attacks. This increasing
interest of the biometric community in the security evaluation of fingerprint recog-
nition systems against spoofing attacks has led to the creation of numerous and very
diverse initiatives in this field: the publication of many research works disclosing and
evaluating different fingerprint-spoofing approaches [1–3]; the proposal of new anti-
spoofing methods [4–6]; related book chapters [7, 8]; PhD and MsC Theses which
propose and analyze different fingerprint spoofing and anti-spoofing techniques
[9–12]; several patented fingerprint anti-spoofing mechanisms both for touch-based
and contactless systems [13–17]; the publication of Supporting Documents and Pro-
tectionProfiles in the framework of the security evaluation standardCommonCriteria
for the objective assessment of fingerprint-based commercial systems [18, 19]; the
organization of competitions focused on fingerprint-spoofing assessment [20, 21];
the acquisition of specific datasets for the evaluation of fingerprint protection meth-
ods against direct attacks [22, 23], the creation of groups and laboratories which
have the evaluation of fingerprint security as one of their major tasks [24–26]; or the
existence of several European Projects with the fingerprint-spoofing topic as one of
their main research interests [27, 28].

The aforementioned initiatives and other analog studies, have shown the
importance given by all parties involved in the development of fingerprint-based
biometrics to the improvement of the systems security and the necessity to pro-
pose and develop specific protection methods against spoofing attacks in order to
bring this rapidly emerging technology into practical use. This way, researchers have
focused on the design of specific countermeasures that enable fingerprint recognition
systems to detect fake samples and reject them, thus improving the robustness of the
applications.

In the fingerprint field, besides other anti-spoofing approaches such as the use
of multibiometrics or challenge-response methods, special attention has been paid
by researchers and industry to the so-called liveness detection techniques. These
algorithms use different physiological properties to distinguish between real and fake
traits. Liveness assessment methods represent a challenging engineering problem
as they have to satisfy certain demanding requirements [29]: (i) noninvasive, the
technique should in no case be harmful for the individual or require an excessive
contact with the user; (ii) user friendly, people should not be reluctant to use it; (iii)
fast, results have to be produced in a very short interval as the user cannot be asked
to interact with the sensor for a long period of time; (iv) low cost, a wide use cannot
be expected if the cost is excessively high; (v) performance, in addition to having a
good fake detection rate, the protection scheme should not degrade the recognition
performance (i.e., false rejection) of the biometric system.
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Liveness detection methods are usually classified into one of two groups: (i)
Hardware-based techniques, which add some specific device to the sensor in order
to detect particular properties of a living trait (e.g., fingerprint sweat, blood pressure,
or odor); (ii) Software-based techniques, in this case the fake trait is detected once
the sample has been acquired with a standard sensor (i.e., features used to distinguish
between real and fake traits are extracted from the biometric sample, and not from
the trait itself).

The two types of methods present certain advantages and drawbacks over the
other and, in general, a combination of both would be the most desirable protection
approach to increase the security of biometric systems. As a coarse comparison,
hardware-based schemes usually present a higher fake detection rate, while software-
based techniques are in general less expensive (as no extra device is needed), and
less intrusive since their implementation is transparent to the user. Furthermore, as
they operate directly on the acquired sample (and not on the biometric trait itself),
software-based techniques may be embedded in the feature extractor module which
makes them potentially capable of detecting other types of illegal break-in attempts
not necessarily classified as spoofing attacks. For instance, software-based methods
can protect the system against the injection of reconstructed or synthetic samples into
the communication channel between the sensor and the feature extractor [30–33].

Although, as shown above, a great amount of work has been done in the field
of fingerprint spoofing detection and big advances have been reached over the last
decade, the attacking methodologies have also evolved and become more and more
sophisticated. This way, while many commercial fingerprint readers claim to have
some degree of spoof detection embedded, many of them are still vulnerable to
spoofing attempts using different artificial fingerprint samples. Therefore, there are
still big challenges to be faced in the detection of fingerprint direct attacks.

In the present chapter, after a thorough review of the state-of-the-art in fingerprint
anti-spoofing,we analyze and evaluate the potential of quality assessment for liveness
detection purposes. In particular, we consider two different sets of features: (i) one
based on fingerprint-specific quality measures (FQMs) (i.e., quality measures specif-
ically adapted for fingerprint images); and (ii) a second set based on general image
quality measures (IQMs) (i.e., quality measures which may be extracted from any
image). Both techniques are tested on publicly available fingerprint spoofing data-
bases where they have reached results fully comparable to those obtained on the same
datasets and following the same experimental protocols by top-ranked approaches
from the state-of-the-art.

In addition to their very competitive performance, as they are software-based, both
methods present the usual advantages of this type of approaches: fast, as they only
need one image (i.e., the same sample acquired for verification) to detect whether it
is real or fake; nonintrusive; user-friendly (transparent to the user); cheap and easy to
embed in already functional systems (as no additional piece of hardware is required).

The rest of the chapter is structured as follows. An exhaustive review of relevant
related works in the field of fingerprint anti-spoofing is given is Sect. 3.2. A
brief description of large and publicly available fingerprint spoofing databases is
presented in Sect. 3.3. A case study based on the use of quality assessment as
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anti-spoofing tool is introduced in Sect. 3.4 where we give some key concepts about
image quality assessment (IQA) and the rationale behind its use for biometric protec-
tion. The two fingerprint anti-spoofing approaches studied in the chapter are based
on fingerprint-specific and general quality features and are described in Sects. 3.5
and 3.6, respectively. The evaluation of the methods and experimental results are
given in Sect. 3.7. Conclusions are finally drawn in Sect. 3.8.

3.2 State-of-the-Art in Fingerprint Anti-spoofing

The history of fingerprint forgery in the forensic field is probably almost as old as that
of fingerprint development and classification itself. In fact, the question of whether
or not fingerprints could be forged was positively answered [34] several years before
it was officially posed in a research publication [35].

Regarding modern automatic fingerprint recognition systems, although other
types of attacks with dead or altered fingers have been reported [36, 37], almost all
the available vulnerability studies regarding spoofing attacks are carried out either
by taking advantage of the residual fingerprint left behind on the sensor surface, or
by using some type of gummy fingertip (or even complete prosthetic fingers) manu-
factured with different materials (e.g., silicone, gelatin, plastic, clay, dental molding
material, or glycerin). In general, these fake fingerprints may be generated with the
cooperation of the user, from a latent fingerprint or even from a fingerprint image
reconstructed from the original minutiae template [1–3, 22, 38–42].

Theseveryvaluableworks andother similar studies, havehighlighted thenecessity
of developing efficient protection methods against spoofing attacks. One of the first
efforts in fingerprint anti-spoofing initiated a research line based on the analysis
of the skin perspiration pattern, which is very difficult to be faked in an artificial
finger [4, 43]. These pioneer studies, which considered the periodicity of sweat and
the sweat diffusion pattern, were later extended and improved in two successive
works applying a wavelet-based algorithm and adding intensity-based perspiration
features [44, 45]. These techniques were finally consolidated and strictly validated
on a large database of real, fake, and dead fingerprints acquired under different
conditions in [23]. Recently, a novel region-based liveness detection approach also
based on perspiration parameters and another technique analyzing the valley noise
have been proposed by the same group [46, 47]. Part of these approaches have been
implemented in commercial products [48], and have also been combined with other
morphological features [49, 50] in order to improve the spoofing detection rates [51].

A second group of fingerprint liveness detection techniques has appeared as an
application of the different fingerprint distortion models described in the literature
[52–54]. These models have led to the development of a number of liveness detection
techniques based on the flexibility properties of the skin [5, 55–57]. In most of these
works, the user is required to move his finger while pressing it against the scanner
surface, thus deliberately exaggerating the skin distortion. When a real finger moves
on a scanner surface, it produces a significant amount of distortion, which can be
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observed to be quite different from that produced by fake fingers which are usually
more rigid than skin. Even if highly elastic materials are used, it seems very difficult
to precisely emulate the specific way a real finger is distorted, because the behavior
is related to the way the external skin is anchored to the underlying derma and
influenced by the position and shape of the finger bone.

Other liveness detection approaches for fake fingerprint detection include: the
combination of both perspiration and elasticity-related features in fingerprint image
sequences [58]; fingerprint-specific, quality-related features [6, 59]; the combina-
tion of the local ridge frequency with other multiresolution texture parameters [49];
techniques which, following the perspiration-related trend, analyze the skin sweat
pores visible in high-definition images [60, 61]; the use of electric properties of the
skin [62]; using several image processing tools for the analysis of the fingertip sur-
face texture such as wavelets [63], or three very related works using Gabor filters
[64], ridgelets [65] and curvelets [66]; and analyzing different characteristics of the
Fourier spectrum of real and fake fingerprint images [67–71].

A critical review of some of these solutions for fingerprint liveness detection was
presented in [72]. In a subsequent work [73], the same authors gave a comparative
analysis of the anti-spoofing methods efficiency. In this last work, we can find an
estimation of some of the best performing static (i.e., measured on one image) and
dynamic (i.e., measured on a sequence of images) features for liveness detection,
that were later used together with some fake finger-specific features in [74] with
very good results. Different static features are also combined in [75], significantly
improving the results of the individual parameters. Other comparative results of
different fingerprint anti-spoofing techniques are available in the results of the 2009
and 2011 Fingerprint Liveness Detection Competitions (LivDet 2009 and LivDet
2011) [20, 21].

In addition, some very interesting hardware-based solutions have been proposed
in the literature by applying: multispectral imaging [76, 77], an electrotactile sensor
[78], pulse oxiometry [79], detection of the blood flow [13], odor detection using a
chemical sensor [80], or a currently very active research trend based on Near Infrared
(NIR) illumination and Optical Coherence Tomography (OCT) [81–86].

Very recently, a third type of protection methods which fall out of the traditional
two-type classification software- and hardware-based approaches have been started
to be analyzed in the field of fingerprint anti-spoofing. These protection techniques
focus on the study of biometric systems under direct attacks at the score level, in
order to propose and build more robust matchers and fusion strategies that increase
the resistance of the systems against spoofing attempts [87–92].

Outside the research community, some companies have also proposed different
methods for fingerprint liveness detection such as the ones based on ultrasounds
[93, 94], light measurements [95], or a patented combination of different unimodal
experts [96]. A comparative study of the anti-spoofing capabilities of different com-
mercial fingerprint sensors may be found in [97].

Although the vast majority of the efforts dedicated by the biometric community
in the field of fingerprint spoofing and anti-spoofing are focused on touch-based sys-
tems, some preliminary works have also been conducted to study the vulnerabilities
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of contactless fingerprint systems against direct attacks and some protectionmethods
to enhance their security level have been proposed [16, 43, 98].

3.3 Fingerprint Spoofing Databases

The availability of public datasets comprising real and fake fingerprint samples and of
associated common evaluation protocols is basic for the development and improve-
ment of fingerprint anti-spoofing methods.

However, in spite of the large amount ofworks addressing the challenging problem
of fingerprint protection against direct attacks (as shown in Sect. 3.2), in the great
majority of them, experiments are carried out on proprietary databases, which are
not made available to the research community.

Currently, the two largest fingerprint spoofing databases publicly available for
researchers to test their anti-spoofing algorithms are:

• LivDet DBs (LivDet 2009 DB and LivDet 2011 DB)2 [20, 21]: These datasets,
which share the acquisition protocols and part of the samples, are available at
the 2009 and 2011 Fingerprint Liveness Detection Competitions web sites3, 4 and
are divided into the same train and test set used in the official evaluations. They
contain over 18,000 real and fake samples coming from more than 100 different
fingers acquired with four different flat optical sensors. The gummy fingers were
generated, with the cooperation of the users, using six different materials: silicone,
gelatine, latex, wood glue, ecoflex and playdoh.

• ATVS-Fake Fingerprint DB (ATVS-FFp DB) [22]: This database is available from
the Biometric Recognition Group-ATVS web site.5 It contains over 3,000 real and
fake fingerprint samples coming from 68 different fingers and acquired using a
flat optical sensor, a flat capacitive sensor, and a thermal sweeping sensor. The
gummy fingers were generated with and without the cooperation of the user, using
modeling silicone. Cooperation of the user means that the legitimate user takes
part in the generation process (usually placing his finger on a mold in order to
produce the negative of the fingerprint), while in the noncooperative process the
user inadvertently leaves a latent fingerprint on a surface, which is then recovered
by the attacker.

Some samples of real and fake fingerprint images that can be found in the previous
databases are shown in Fig. 3.1. For a more detailed description of these fingerprint
spoofing databases and more example images, the reader should refer to Appen-
dix A.2 (Fig. 3.2).

2 During the writing of this chapter the 2013 LivDet edition was being held. The DB used in the
evaluationwill bemade public on theweb site of the competition once the final results are published.
3 http://prag.diee.unica.it/LivDet09/.
4 http://people.clarkson.edu/projects/biosal/fingerprint/index.php.
5 http://atvs.ii.uam.es/.

http://prag.diee.unica.it/LivDet09/
http://people.clarkson.edu/projects/biosal/fingerprint/index.php
http://atvs.ii.uam.es/
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BIOMETRIKA FX2000

(FLAT OPTICAL SENSOR)

IDENTIX DFR2100

(FLAT OPTICAL SENSOR)

PRECISE SC 100

(FLAT CAPACITIVE SENSOR)

REAL 

FAKE

Silicone – Coop. Gelatin – Coop. Silicone – Non Coop.

Fig. 3.1 Typical examples of real and fake fingerprints that may be found in the ATVS-FFp DB and
the LivDet 2009 and 2011 DBs described in Sect. 3.3. Fake fingerprints are labeled according to the
process (cooperative or noncooperative) and the type of material (silicone, gelatin) used for their
generation. For further details on the databases and for more sample images, we refer the reader to
Appendix A.2

Fig. 3.2 General diagram of the fingerprint anti-spoofing case study considered in Sect. 3.4.
Approach 1 and Approach 2 are described in Sects. 3.5 and 3.6, respectively. Fingerprint-specific
Quality Measures stands for Fingerprint Quality Measures, while IQMs stands for Image Quality
Measures (IQMs)
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3.4 Case Study: Quality Assessment Versus Fingerprint Spoofing

The problem of spoof detection can be seen as a two-class classification problem
where an input biometric sample has to be assigned to one of two classes: real or
fake.

Simple visual inspection of an image of a real fingerprint and a fake sample of
the same trait shows that the two images can be very similar and even the human eye
may find it difficult to make a distinction between them after a short inspection. Yet,
some differences between the real and fake fingerprints may become evident once
the images are translated into a proper feature space.

Therefore, the key point of the process is to find a set of discriminant features
which permits to build an appropriate classifier which gives the probability of the
image “liveness” given the extracted set of features.

In the present chapter, we explore and evaluate the potential of quality assessment
for fingerprint liveness detection. In particular, we consider two different sets of
features: (i) one based on FQMs (i.e., quality measures specifically adapted for fin-
gerprint images); and (ii) a second set based on general IQMs (i.e., quality measures
which may be extracted from any image).

The use of quality assessment for anti-spoofing purposes is motivated by the
assumption that: It is expected that a fake image captured in an attack attempt will
have different quality than a real sample acquired in the normal operation scenario
for which the sensor was designed.

Expected quality differences between real and fake samples may include: degree
of sharpness, color and luminance levels, local artifacts, amount of information found
in both types of images (entropy), structural distortions, or natural appearance. For
example, it is not rare that fingerprint images captured from a gummy finger present
local acquisition artifacts such as spots and patches, or that they have a lower defin-
ition of ridges and valleys due to the lack of moisture.

In the current state-of-the-art, the rationale behind the use of quality assessment
features for liveness detection is supported by three factors:

• Imagequality has been successfully used in previousworks for imagemanipulation
detection [99, 100] and steganalysis [101–103] in the forensic field. To a certain
extent, many fingerprint spoofing attacks may be regarded as a type of image
manipulation which can be effectively detected, as shown in the present research
work, by the use of different quality features.

• Human observers very often refer to the “different appearance” of real and fake
samples to distinguish between them. The different metrics and methods imple-
mented here for quality assessment intend to estimate in an objective and reliable
way the perceived appearance of fingerprint images.

• Moreover, different quality measures present different sensitivity to image arti-
facts and distortions. For instance, measures like the mean squared error (MSE)
respond more to additive noise, whereas others such as difference measured in the
spectral domain are more sensitive to blur; while gradient-related features react
to distortions concentrated around edges and textures. Therefore, using a wide
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range of quality measures exploiting complementary image quality properties,
should permit to detect the aforementioned quality differences between real and
fake samples which are expected to be found in many attack attempts.

All these observations lead us to believe that there is sound proof for the “quality-
difference” hypothesis and that qualitymeasures have the potential to achieve success
in biometric protection tasks.

In the next sections, we describe two particular software-based implementations
for fingerprint anti-spoofing. Both methods use only one input image (i.e., the same
sample acquired for authentication purposes) to distinguish between real and fake
fingerprints. The difference between the two techniques relies on the sets of quality-
based features used to solve the classification problem: (i) the first anti-spoofing
method uses a set of 10 FQMs (see Sect. 3.5); (ii) the second uses a set of 25 general
IQMs (see Sect. 3.6). Later, both techniques are evaluated on two publicly available
databases and their results are compared to other well-known techniques from the
state-of-the-art (see Sect. 3.7).

3.5 Approach 1: Fingerprint-Specific Quality Assessment (FQA)

The fingerprint anti-spoofing approach described in this section was first presented
and thoroughly validated in [6]. It is based on a parameterization of ten FQMs taken
from a number of approaches for fingerprint image quality computation that have
been described in the literature [108].

In general, fingerprint image quality can be assessed by measuring one of the
following properties: ridge strength or directionality, ridge continuity, ridge clarity,
integrity of the ridge-valley structure, or estimated verification performance when
using the image at hand. A number of information sources are used to measure these
properties: (i) angle information provided by the direction field, (ii) Gabor filters,
which are an alternative option to retrieve the direction information [109], (iii) pixel
intensity of the gray-scale image, (iv) power spectrum, and (v) Neural Networks.
Fingerprint quality can be assessed either analyzing the image in a holistic manner,
or combining the quality from local nonoverlapped blocks of the image.

In the following,wegive somedetails about the 10FQMsused in this anti-spoofing
method. The features implemented have been selected in order to cover the different
fingerprint quality-assessment approaches mentioned above so that the maximum
degree of complementarity among them may be achieved. This way, the protection
method presents a high generality and may be successfully used to detect a wide
range of spoofing attacks. A classification of the 10 features and of the information
source exploited by each of them is given in Table3.1.
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Table 3.1 Summary of the 10 Fingerprint-specific Quality Measures (FQMs) implemented in
Sect. 3.5 for fingerprint anti-spoofing

List of 10 FQMs implemented

# Acronym Name Ref. Property measured Source

1 OCL Orientation certainty level [104] Ridge strength Local angle

2 PSE Power spectrum energy [105] Ridge strength Power spectrum

3 LOQ Local orientation quality [106] Ridge continuity Local angle

4 COF Continuity of the orientation field [104] Ridge continuity Local angle

5 MGL Mean gray level [73] Ridge clarity Pixel intensity

6 SGL Standard deviation gray level [73] Ridge clarity Pixel intensity

7 LCS1 Local clarity score 1 [106] Ridge clarity Pixel intensity

8 LCS2 Local clarity score 2 [106] Ridge clarity Pixel intensity

9 SAMP Sinusoid amplitude [107] Ridge clarity Pixel intensity

10 SVAR Sinusoid variance [107] Ridge clarity Pixel intensity

All features were either directly taken or adapted from the references given. For each feature, the
fingerprint property measured and the information source used for its estimation is given. For a
more detailed description of each feature, we refer the reader to Sect. 3.5

As the features used in this approach evaluate fingerprint-specific properties, prior
to the feature extraction process, it is necessary to segment the actual fingerprint from
the background. For this preprocessing step, the same method proposed in [110] is
used.

3.5.1 Ridge-Strength Measures

• Orientation Certainty Level (OCL) [104], which measures the energy concen-
tration along the dominant direction of ridges using the intensity gradient. It is
computed as the ratio between the two eigenvalues of the covariance matrix of the
gradient vector. A relative weight is given to each region of the image based on its
distance from the centroid, since regions near the centroid are supposed to provide
more reliable information [105]. An example of OCL computation for a low- and
a high-quality fingerprint is shown in Fig. 3.3.

• Power Spectrum Energy (PSE) [105], which is computed using ring-shaped bands
of the Fourier Spectrum. For this purpose, a set of band-pass filters is employed
to extract the energy in each frequency band. High-quality images will have the
energy concentrated in few bands while poor ones will have a more diffused
distribution. The energy concentration is measured using the entropy. An example
of quality estimation using the global quality index PSE is shown in Fig. 3.4 for a
low- and a high-quality fingerprint.
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(a) (b)

Fig. 3.3 Computation of the Orientation Certainty Level (OCL) for a low- and a high-quality
fingerprint. Panel (a) are the input fingerprint images. Panel (b) are the blockwise values of the
OCL; blocks with brighter color indicate higher quality in the region
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Fig. 3.4 Computation of the energy concentration in the power spectrum for a low- and a high-
quality fingerprint. Panel (a) are the power spectra of the images shown in Fig. 3.3. Panel (b) shows
the energy distributions in the region of interest. The quality values for the low and high-quality
image are 0.35 and 0.88 respectively

3.5.2 Ridge-Continuity Measures

• Local Orientation Quality (LOQ) [106], which is computed as the average absolute
difference of the orientation angle with the surrounding image blocks, providing
information about how smoothly the direction angle changes from block to block.
Quality of the whole image is finally computed by averaging all the LOQ scores
of the image. In high-quality images, it is expected that ridge orientation changes
smoothly across the whole image, except in singularity regions. An example of
LOQ computation is shown in Fig. 3.5 for a low- and a high-quality fingerprint.

• Continuity of the orientation field (COF) [104]. This method relies on the fact
that, in good quality images, ridges and valleys must flow sharply and smoothly
in a locally constant direction. The orientation change along rows and columns of
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Fig. 3.5 Computation of the Local Orientation Quality (LOQ) for a low- and a high-quality finger-
print. Panel (a) are the direction fields of the images shown in Fig. 3.3a. Panel (b) are the blockwise
values of the average absolute difference of local orientation with the surrounding blocks; blocks
with brighter color indicate higher difference value and thus, lower quality

the image is examined. Abrupt direction changes between consecutive blocks are
then accumulated and mapped into a quality score. As we can observe in Fig. 3.5,
ridge orientation changes smoothly across the whole image in case of high quality,
except in singularity regions.

3.5.3 Ridge-Clarity Measures

• Mean Gray Level (MGL) and Standard Deviation Gray Level (SGL), computed
from the segmented foreground only. These two features had already been con-
sidered for liveness detection in [73].

• Local Clarity Score (LCS1 and LCS2) [106]. The sinusoidal-shaped wave that
models ridges and valleys [107] is used to segment ridge and valley regions (see
Fig. 3.6). The clarity is then defined as the overlapping area of the gray level
distributions of segmented ridges and valleys. For ridges/valleys with high clarity,
both distributions should have a very small overlapping area.An example of quality
estimation using the LCS is shown in Fig. 3.7 for two fingerprint blocks coming
from a low- and a high-quality fingerprint. It should be noted that sometimes
the sinusoidal-shaped wave cannot be extracted reliably, specially in bad quality
regions of the image. The quality measure LCS1 discards these regions, therefore
being an optimistic measure of quality. This is compensated with LCS2, which
does not discard these regions, but they are assigned the lowest quality level.

• Amplitude and Variance of the Sinusoid that models ridges and valleys (SAMP and
SVAR) [107]. Based on these parameters, blocks are classified as good and bad.
The quality of the fingerprint is then computed as the percentage of foreground
blocks marked as good.
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Fig. 3.6 Modeling of ridges and valleys as a sinusoid

Low Q block High Q block 

Fig. 3.7 Computation of the Local Clarity Score (LCS) for two blocks coming from a low- and
a high-quality fingerprint. The fingerprint blocks appear on top, while below we show the gray
level distributions of the segmented ridges and valleys. The degree of overlapping for the low- and
high-quality blocks is 0.22 and 0.10, respectively



48 J. Galbally et al.

3.6 Approach 2: General Image Quality Assessment (IQA)

The goal of an objective image quality measure (IQM) is to provide a quantitative
score that describes the degree of fidelity or, conversely, the level of distortion of a
given image.Many different approaches for objective IQAhave been described in the
literature [111]. From a general perspective, IQmetrics can be classified according to
the availability of an original (distortion-free) image, with which the distorted image
is to be compared. Thus, objective IQAmethods can fall in one of two categories: (i)
full-reference techniques, which include the majority of traditional automatic image
quality estimation approaches, and where a complete reference image is assumed
to be known (e.g., with a large use in the field of image compression algorithms)
[112]; (ii) no-reference techniques (also referred as blind), which assess the quality
of the test image without any reference to the original sample, generally using some
pretrained statistical model [113].

The parameterization proposed in this section and applied to fingerprint liveness
detection comprises 25 IQMs including both full-reference and blind. In order to
generate a system as general as possible in terms of number of attacks detected,
we have given priority to IQMs which evaluate complementary properties of the
image (e.g., sharpness, entropy, or structure). In addition, to assure a user-friendly
nonintrusive system, big importance has been given to the complexity and the feature
extraction time of each IQM, so that the overall speed of the final fake detection
algorithm allows it to operate in real-time environments.

Furthermore, as the method operates on the whole image without searching for
any fingerprint-specific properties, it does not require any preprocessing steps (e.g.,
fingerprint segmentation) prior to the computation of the IQ features. This charac-
teristic minimizes its computational load.

The final 25 selected IQMs are summarized in Table3.2. Details about each of
these 25 IQMs are given in Sects. 3.6.1 and 3.6.2. For clarity, in Fig. 3.8, we show a
diagram with the general IQM classification followed in these sections. Acronyms
of the different features are highlighted in bold in the text and in Fig. 3.8.

3.6.1 Full-Reference IQ Measures

As described previously, full-reference IQA methods (FR) rely on the availability of
a clean undistorted reference image to estimate the quality of the test sample. In the
problem of fake detection addressed in this work such a reference image is unknown,
as the detection system only has access to the input sample. In order to circumvent
this limitation, the same strategy already successfully used for image manipulation
detection in [99] and for steganalysis in [101], is implemented here.

The input gray-scale image I (of size N × M) is filtered with a low-pass Gaussian
kernel (σ = 0.5 and size 3 × 3) in order to generate a distorted version Î. Then, the
quality between both images (I and Î) is computed according to the corresponding
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,Î
)

)

4
FR

SC
St
ru
ct
ur
al
co
nt
en
t

[1
17

]
SC

(I
,
Î)
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Î i

,
j||

25
5

])
13

FR
T
E
D

To
ta
le
dg
e
di
ff
er
en
ce

[1
18

]
T

E
D

(I
,
Î)
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Î)

=
1

N
M

∑
N i=

1
∑

M j=
1
(|F

i,
j|−

|F̂ i
,
j|)

2



50 J. Galbally et al.

Ta
bl

e
3.

2
(C
on
tin

ue
d)

L
is
to

f
th
e
25

IQ
M
s
im

pl
em

en
te
d

#
Ty

pe
A
cr
on
ym

N
am

e
R
ef
.

D
es
cr
ip
tio

n

16
FR

SP
E

Sp
ec
tr
al
ph
as
e
er
ro
r

[1
19

]
S

P
E

(I
,
Î)
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Fig. 3.8 Classification of the 25 IQMs implemented in Sect. 3.6. Acronyms (in bold) of the different
measures are explained in Table3.2

full-reference IQA metric. This approach assumes that the loss of quality produced
by Gaussian filtering differs between real and fake biometric samples. Assumption
which is confirmed by the experimental results given in Sect. 3.7.

3.6.1.1 FR-IQMs: Error Sensitivity Measures

Traditional perceptual IQA approaches are based onmeasuring the errors (i.e., signal
differences) between the distorted and the reference images, and attempt to quantify
these errors in a way that simulates human visual error sensitivity features.

Although their efficiency as signal fidelity measures is somewhat controversial
[129], up-to-date, these are probably the most widely used methods for IQA as they
conveniently make use of many known psychophysical features of the human visual
system [130], they are easy to calculate and usually have very low computational
complexity.

Several of these metrics have been included in the 25-feature parameterization
proposed in the present work. For clarity, these features have been classified here
into five different categories (see Fig. 3.8) according to the image property measured
[114]:

• Pixel Difference measures [114, 117]. These features compute the distortion
between two images on the basis of their pixelwise differences. Here we include:
Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR), Signal to Noise
Ratio (SNR), StructuralContent (SC),MaximumDifference (MD),AverageDiffer-
ence (AD), Normalized Absolute Error (NAE), R-Averaged Maximum Difference
(RAMD) and Laplacian Mean Squared Error (LMSE). The formal definitions for
each of these features are given in Table3.2.

In the RAMD entry in Table3.2, maxr is defined as the r -highest pixel difference
between two images. For the present implementation, R = 10.
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In the LMSE entry in Table3.2, h(Ii, j ) = Ii+1, j + Ii−1, j + Ii, j+1 + Ii, j−1 −4Ii, j .
• Correlation-based measures [114, 117]. The similarity between two digital images
can also be quantified in terms of the correlation function. A variant of correlation-
based measures can be obtained by considering the statistics of the angles between
the pixel vectors of the original and distorted images. These features include (also
defined in Table3.2): Normalized Cross-Correlation (NXC), Mean Angle Similar-
ity (MAS), and Mean Angle-Magnitude Similarity (MAMS).

In the MAS and MAMS entries in Table3.2, αi, j denotes the angle between two

vectors, defined as,αi, j = 2
π
arccos

◦Ii, j ,Îi, j ∈
||Ii, j ||·||Îi, j || ,where ◦Ii, j , Îi, j ∈denotes the scalar

product. As we are dealing with positive matrices I and Î, we are constrained to the
first quadrant of the Cartesian space so that the MD attained will be π/2, therefore
the coefficient 2/π is included for normalization.

• Edge-based measures. Edges and other two-dimensional features such as corners,
are some of the most informative parts of an image, which play a key role in the
human visual system and in many computer vision algorithms including quality
assessment applications [118].

Since the structural distortion of an image is tightly linked with its edge degra-
dation, here we have considered two edge-related quality measures: Total Edge
Difference (TED) and Total Corner Difference (TCD).

In order to implement both features, which are computed according to the corre-
sponding expressions given in Table3.2, we use: (i) the Sobel operator to build the
binary edge maps IE and ÎE ; (ii) the Harris corner detector [131] to compute the
number of corners Ncr and N̂cr found in I and Î.

• Spectral distance measures. The Fourier transform is another traditional image
processing tool which has been applied to the field of IQA [114, 119]. In this
work, we will consider as IQ spectral-related features: the Spectral Magnitude
Error (SME) and the Spectral Phase Error (SPE), defined in Table3.2 (where F
and F̂ are the respective Fourier transforms of I and Î), and arg(F) denotes phase.

• Gradient-based measures. Gradients convey important visual information which
can be of great use for quality assessment. Many of the distortions that can affect
an image are reflected by a change in its gradient. Therefore, using such informa-
tion, structural and contrast changes can be effectively captured [120].

Two simple gradient-based features are included in the biometric protection system
proposed in the present article: Gradient Magnitude Error (GME) and Gradient
Phase Error (GPE), defined in Table3.2 (where G and Ĝ are the gradient maps of
I and Î defined as G = Gx + iGy , where Gx and Gy are the gradients in the x and
y directions).
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3.6.1.2 FR-IQMs: Structural Similarity Measures

Although being very convenient and widely used, the aforementioned image quality
metrics based on error sensitivity present several problems which are evidenced by
their mismatch (inmany cases) with subjective human-based quality scoring systems
[129]. In this scenario, a recent new paradigm for IQA based on structural similar-
ity was proposed following the hypothesis that the human visual system is highly
adapted for extracting structural information from the viewing field [121]. There-
fore, distortions in an image that come from variations in lighting, such as contrast
or brightness changes (nonstructural distortions), should be treated differently from
structural ones.

Among these recent objective perceptualmeasures, the Structural Similarity Index
Measure (SSIM), has the simplest formulation and has gained widespread popularity
in a broad range of practical applications [121, 132]. In view of its very attractive
properties, the SSIM has been included in the 25-feature parameterization.

3.6.1.3 FR-IQMs: Information Theoretic Measures

The quality assessment problemmay also be understood, from an information theory
perspective, as an information-fidelity problem (rather than a signal-fidelity prob-
lem). The core idea behind these approaches is that an image source communicates
to a receiver through a channel that limits the amount of information that could flow
through it, thereby introducing distortions. The goal is to relate the visual quality of
the test image to the amount of information shared between the test and the reference
signals, or more precisely, the mutual information between them. Under this general
framework, IQMs based on information fidelity exploit the (in some cases unprecise)
relationship between statistical image information and visual quality [123, 124].

In the present work, we consider two of these information-theoretic features:
the Visual Information Fidelity (VIF) which measures quality fidelity as the ratio
between the total information ideally extracted by the brain from the distorted image
and that from the reference sample [123]; and the Reduced Reference Entropic Dif-
ference index (RRED), which approaches the problem of QA from the perspective of
measuring distances between the reference image and the projection of the distorted
image onto the space of natural images [124].

3.6.2 No-Reference IQ Measures

Unlike the objective reference IQA methods, in general the human visual system
does not require of a reference sample to determine the quality level of an image.
Following this same principle, automatic no-reference image quality assessment
algorithms (NR-IQA) try to handle the very complex and challenging problem of
assessing the visual quality of images, in the absence of a reference. Presently,
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NR-IQA methods generally estimate the quality of the test image according to some
pretrained statistical model. Depending on the images used to train this model and
on the a priori knowledge required, the methods are coarsely divided into one of
three trends [113]:

• Distortion-specific approaches. These techniques rely on previously acquired
knowledge about the type of visual quality loss caused by a specific distortion. The
final quality measure is computed according to a model trained on clean images
and on images affected by this particular distortion. Two of these measures have
been included in the biometric protection method proposed in the present work.
The JPEG Quality Index (JQI), which evaluates the quality in images affected by
the usual block artifacts found in many compression algorithms running at low bit
rates such as the JPEG [125].
The High-Low Frequency Index (HLFI), which is formally defined in Table3.2. It
was inspired by previousworkwhich considered local gradients as a blindmetric to
detect blur and noise [126]. Similarly, the HLFI feature is sensitive to the sharpness
of the image by computing the difference between the power in the lower and upper
frequencies of the Fourier Spectrum. In the HLFI entry in Table3.2, il , ih , jl , jh are
respectively the indices corresponding to the lower and upper frequency thresholds
considered by the method. In the current implementation, il = ih = 0.15N and
jl = jh = 0.15M .

• Training-based approaches. Similarly to the previous class of NR-IQA methods,
in this type of techniques, a model is trained using clean and distorted images.
Then, the quality score is computed based on a number of features extracted from
the test image and related to the general model [127]. However, unlike the former
approaches, these metrics intend to provide a general quality score not related to a
specific distortion. To this end, the statistical model is trained with images affected
by different types of distortions.
This is the case of the Blind Image Quality Index (BIQI) described in [127], which
is part of the 25- feature set used in the present work. The BIQI follows a two-
stage framework in which the individual measures of different distortion-specific
experts are combined to generate one global quality score.

• Natural Scene Statistic approaches. These blind IQA techniques use a priori
knowledge taken fromnatural scene distortion-free images to train the initialmodel
(i.e., no distorted images are used). The rationale behind this trend relies on the
hypothesis that undistorted images of the natural world present certain regular
properties which fall within a certain subspace of all possible images. If quantified
appropriately, deviations from the regularity of natural statistics ca help to evaluate
the perceptual quality of an image [128].
This approach is followed by the Natural Image Quality Evaluator (NIQE)
used in the present work [128]. The NIQE is a completely blind image quality
analyzer based on the construction of a quality aware collection of statistical fea-
tures (derived from a corpus of natural undistorted images) related to amultivariate
Gaussian natural scene statistical model.
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3.7 Results

In order to achieve reproducible results, we have only used in the experimental vali-
dation the two largest publicly available databases for fingerprint spoofing introduced
in Sect. 3.3 and described in detail in Appendix A.2: (i) the LivDet 2009 DB [20]
and (ii) the ATVS-FFp DB [22]. This has allowed us to compare, in an objective and
fair way, the performance of the proposed system with other existing state-of-the-art
liveness detection solutions.

According to their associated protocols, the databases are divided into: train set,
used to train the Quadratic Discriminant Analysis classifier (QDA) [133]; and test
set, used to evaluate the performance of the protection method. In order to generate
unbiased results, there is no overlap between both sets (i.e., samples corresponding
to each user are just included in the train or the test set).

The task in all the scenarios and experiments described in the next sections is to
automatically distinguish between real and fake fingerprints. Therefore, in all cases,
results are reported in terms of: the False Genuine Rate (FGR), which accounts for
the number of fake samples that were classified as real; and the False Fake Rate
(FFR), which gives the probability of an image coming from a genuine sample being
considered as fake. The Half Total Error Rate (HTER) is computed as HTER =
(FGR + FFR)/2.

3.7.1 Results: ATVS-FFp DB

Both the train and the test set of the ATVS-FFp DB contain half of the fingerprint
images acquired with and without the cooperation of the user, following a two-
fold cross validation protocol. In Table3.3 we show the detection results of the two
systems described in Sects. 3.5 (top row) and 3.6 (bottom row).

The performance of both algorithms is very similar, although in the overall, the
method based on general IQA is slightly better in two of the three datasets (Precise
and Yubee). In addition, thanks to its simplicity and lack of image preprocessing
steps, the IQA-based method is around 30 times faster than the one using fingerprint-
specific quality features (tested on the sameWindows-based platform). This gives the
IQA-based scheme the advantage of being usable in practical real-time applications,
without loosing any accuracy.

3.7.2 Results: LivDet 2009 DB

The train and test sets selected for the evaluation experiments on this database are the
same as the ones used in the LivDet 2009 competition, so that the results obtained by
the two described methods based on quality assessment may be directly compared
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Table 3.3 Results obtained in each of the three data subsets comprised in the ATVS-FFp DB by
the two biometric protection methods described in Sects. 3.5 and 3.6

Results: ATVS-FFp DB

Biometrika Precise Yubee

FFR FGR HTER FFR FGR HTER FFR FGR HTER

IQF-based 4.9 7.6 5.8 1.8 7.0 4.4 2.2 9.7 5.9

IQA-based 9.2 4.0 6.6 6.8 1.5 4.2 7.9 1.9 4.9

Error rates are given in %. FFR stands for False Fake Rate, FGR for False Genuine Rate (FGR), and
HTER for Half Total Error Rate. Biometrika, Precise, and Yubee are the sensors used to acquired
each of the subsets (see Sect. 3.3 for further details)

Table 3.4 Results obtained in each of the three data subsets comprised in the LivDet 2009 DB
by: the two biometric protection methods described in Sects. 3.5 and 3.6 (IQF-based and IQA-
based, two top rows); each of the best approaches participating in LivDet 2009 [20] (third row);
the method proposed in [51] which combines perspiration and morphological features (fourth row);
the method proposed in [63] based on the wavelet analysis of the fingertip texture, according to an
implementation from [51] (fifth row); the method proposed in [66] based on the curvelet analysis of
the fingertip texture, according to an implementation from [51] (sixth row); the method proposed
in [49] based on the combination of local ridge frequencies and multiresolution texture analysis,
according to an implementation from [51] (bottom row)

Results: LivDet 2009 DB

Biometrika CrossMatch Identix

FFR FGR HTER FFR FGR HTER FFR FGR HTER

IQF-based 3.1 71.8 37.4 8.8 20.8 13.2 4.8 5.0 6.7

IQA-based 14.0 11.6 12.8 8.6 12.8 10.7 1.1 1.4 1.2

Best LivDet 2009 [20] 15.6 20.7 18.2 7.4 11.4 9.4 2.7 2.8 2.8

Marasco et al. [51] 12.2 13.0 12.6 17.4 12.9 15.2 8.3 11.0 9.7

Moon et al. [63] reported in [51] 20.8 25.0 23.0 27.4 19.6 23.5 74.7 1.6 38.2

Nikam et al. [66] reported in [51] 14.3 42.3 28.3 19.0 18.4 18.7 23.7 37.0 30.3

Abhyankar et al. [49] reported in [51] 24.2 39.2 31.7 39.7 23.3 31.5 48.4 46.0 47.2

Error rates are given in %. FFR stands for False Fake Rate, FGR for False Genuine Rate, and HTER
for Half Total Error Rate. Biometrika, CrossMatch and Identix are the sensors used to acquire each
of the subsets (see Sect. 3.3 for further details)

to the participants of the contest (approximately 30% of the data in the train set).
Results are shown in the first two rows of Table3.4. For clarity, only the best results
achieved in LivDet 2009 for each of the individual datasets is given for comparison
(third row).

In [51], a novel fingerprint liveness detection method combining perspiration and
morphological features was presented and evaluated on the LivDet 2009 DB follow-
ing the same protocol (training and test sets) used in the competition. In that work,
comparative results were reported with particular implementations of the techniques
proposed in: [63], based on the wavelet analysis of the finger tip texture; [66], based
on the curvelet analysis of the finger tip texture; and [49] based on the combination
of local ridge frequencies and multiresolution texture analysis. In the last four rows
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of Table3.4 we also present these results so that they may be compared with the two
quality-based methods described in Sects. 3.5 (first row) and 3.6 (second row).

The results given in Table3.4 show that the method based on general IQA out-
performs all the contestants in LivDet 2009 in two of the datasets (Biometrika and
Identix), while its classification error is just slightly worse than the best of the par-
ticipants for the Crossmatch data. Although the results are not as good for the case
of the IQF-based method, its performance is still competitive compared to that of the
best LivDet 2009 participants.

The classification rates of the two quality-based approaches are also clearly lower
than those reported in [51] for the different liveness detection solutions tested.

3.8 Conclusions

The study of the vulnerabilities of biometric systems against spoofing attacks has
been a very active field of research in recent years [134]. This interest has led to
big advances in the field of security-enhancing technologies for fingerprint-based
applications. However, in spite of this noticeable improvement, the development of
efficient protection methods against known threats (usually based on some type of
self-manufactured gummy finger) has proven to be a challenging task.

Simple visual inspection of an image of a real fingerprint and its corresponding
fake sample shows that the two images can be very similar and even the human eye
may find it difficult to make a distinction between them after a short inspection.
Yet, some disparities between the real and fake images may become evident once
the images are translated into a proper feature space. These differences come from
the fact that fingerprints, as 3-D objects, have their own optical qualities (absorption,
reflection, scattering, refraction),which othermaterials (silicone, gelatin, glycerin) or
synthetically produced samples do not possess. Furthermore, fingerprint acquisition
devices are designed to provide good quality samples when they interact, in a normal
operation environment, with a real 3-D trait. If this scenario is changed, or if the
trait presented to the scanner is an unexpected fake artifact, the characteristics of the
captured image may significantly vary.

In this context, it is reasonable to assume that the image quality properties of real
accesses and fraudulent attacks will be different. Following this “quality-difference”
hypothesis, in this chapter, after an exhaustive review of the state-of-the-art in fin-
gerprint anti-spoofing methods, we have explored the potential of quality assessment
as a protection tool against fingerprint direct attacks.

For this purpose, we have considered two different feature-sets which we have
combined with simple classifiers to detect real and fake access attempts: (i) a set of
10 fingerprint-specific quality measures which requires of some preprocessing steps
(e.g., fingerprint segmentation); and (ii) a set of 25 complementary general IQMs
which may be computed without any image preprocessing.

The two anti-spoofing methods have been evaluated on the two largest publicly
available databases following their associated protocols. This way, the results are
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reproducible and may be fairly compared with other past or future fingerprint anti-
spoofing solutions.

Several conclusions may be extracted from the evaluation results presented in the
experimental sections of the chapter: (i) The proposed methods, especially the one
based on general image quality assessment, are able to generalize well, performing
consistently well for different databases, acquisition conditions, and spoofing sce-
narios; (ii) the error rates achieved by the described protection schemes are in many
cases lower than those reported by other state-of-the-art fingerprint anti-spoofing
systems which have been tested in the framework of different independent competi-
tions; (iii) in addition to its very competitive performance, the IQA-based approach
presents some other very attractive features such as: it is simple, fast, nonintrusive,
user-friendly, and cheap, all of them very desirable properties in a practical protection
system.

All the previous results validate the “different-quality” hypothesis formulated in
Sect. 3.4, and show the great potential of quality assessment as an anti-spoofing tool
to secure fingerprint recognition systems.

Overall, this chapter, after a general overview of the progress in the field of finger-
print anti-spoofing has presented an active research line focused on new protection
approaches based on quality assessment. The experimental evaluation carried out in
the chapter has been performed following a clear and standard methodology based
on common protocols, metrics, and benchmarks. We believe that it may serve as a
baseline for the validation of future fingerprint anti-spoofing methods.
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Chapter 4
Face Anti-spoofing: Visual Approach

André Anjos, Jukka Komulainen, Sébastien Marcel,
Abdenour Hadid and Matti Pietikäinen

Abstract User authentication is an important step to protect information and
in this regard face biometrics is advantageous. Face biometrics is natural, easy
to use and less human-invasive. Unfortunately, recent work revealed that face
biometrics is quite vulnerable to spoofing attacks. This chapter presents the different
modalities of attacks to visual spectrum face recognition systems. We introduce
public datasets for the evaluation of vulnerability of recognition systems and perfor-
mance of countermeasures. Finally, we build a comprehensive view of antispoofing
techniques for visual spectrum face recognition and provides an outlook of issues
that remain unaddressed.

4.1 Introduction

Identity theft is a concern that prevents the mainstream adoption of biometrics as
de facto form of identification in high-security commercial applications [1]. Contrary
to password-protected systems, our biometric information is widely available and
extremely easy to sample. It suffices a small search on the internet to unveil prelabeled
samples from users at specialized websites such as Flickr or Facebook. Images can
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also be easily captured at distance without prior consent. Users may not trust that
their biometric samples will not be dishonestly used.

It has been suggested in the past thatmultimodal biometrics systems can be used to
increase authentication performance in higher security environments [2]. However,
it has been recently shown [3] that multimodal systems, when naively tuned, can be
intrinsically less secure than unimodal ones. This suggests each biometric modality
needs to be protected by its own specialized countermeasures. In this chapter, we are
particularly concerned with direct or presentation attacks [4] to unimodal 2D (visual
spectra) face recognition systems. These so-called spoofs [5] are attacks to the input
sensors of the biometric system. In this case, attackers are assumed not to have access
to the internals of the recognition system and manage to penetrate by only displaying
biometric samples of the attacked clients to the input device. This type of attack is,
therefore, very easy to reproduce and has great potential to succeed [6].

Face recognition systems, in particular, are known to respond weakly to presenta-
tion attacks for a long time [6–8] and are easily spoofed using one of three categories
of counterfeits [9]: (1) a photograph; (2) a video or (3) a 3D model of the enrolled
person’s face. While humans seem quite apt in identifying counterfeits, the same
does not seem to hold for face verification systems. Antispoofing for this biometric
mode should therefore be treated with priority before face recognition systems can
be adopted as replacement for user credentials in unsupervised deployments.

The rest of this chapter is organized as follows: Sect. 4.2 describes face recogni-
tion systems and attack types. Section4.3 introduces available public databases for
face antispoofing as well as for assessing robustness of face verification systems.
Section4.4 discusses the state of the art in antispoofing for face recognition. Finally,
concluding remarks are drawn in Sect. 4.5.

4.2 Attacks to Face Recognition Systems

Attacks to biometric systems can be divided into two types: indirect and direct [10].
Figure4.1 depicts aflowdiagramof a typical biometric recognition system, indicating
numbered points where possible attacks can occur. Indirect attacks are performed

Fig. 4.1 Possible attack points in a generic biometric system (from [10])
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from within the recognition system, requiring first that intruders gain access to the
internals of such a system. Once inside, indirect attackers can, for example, tamper
feature extractors or comparators (types 3 and 5 in Fig. 4.1), manipulate biomet-
ric references (type 6) or exploit possible weak points in communication channels
(types 2, 4, 7 and 8). Indirect attacks can be dealt with by increasing the security of
communication channels and by sealing off the access to the internals of recognition
systems so that cyber-criminals cannot leverage from those.

Direct, presentation or spoofing attacks [5], are performed at the sensor level
(shown as attack type 1 in Fig. 4.1) which is outside the control of the biometric
system manufacturer. In such cases, the attacker tries to directly fool the sensor and
thus no physical protection mechanisms can be used. In a direct attack, also called
presentation attack, a person tries to masquerade as another individual by falsifying
their biometric characteristic and thereby gaining an illegitimate advantage.

Face recognition systems use conventional image cameras as input sensors. These
devices may be used to capture single, multiple photos, or video sequences of users
trying to gain access to the protected resources. Figure4.2 shows an ideal static
setup for a face authentication system. In these settings, the camera is embedded
into a laptop that is programmed with the face recognition system. Users position
themselves such that the camera can capture the face for as long as as the system
deems necessary. One important aspect during the recognition process concerns
the environmental conditions during data acquisition. It is a well-known fact that
poor illumination conditions, pose, and aging among other variations can deteriorate
substantially the capacity to recognize individuals [11].

In more modern setups, such as the one represented on Fig. 4.3, users maybe
using a mobile phone for accessing protected resources on the phone itself, or as a
terminal for other applications. Mobile devices can also be used for identifying other
people in applications in forensics or surveillance. In such cases, the environmental
acquisition conditions can vary greatly [12]. Presentation attacks further augment

Fig. 4.2 Example setup of a face recognition system
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Fig. 4.3 Using a mobile phone as sensor and system for face recognition

the acquisition variability by introducing at least four more sources of information
which we describe next.

4.2.1 Attack Inventory

It is possible to spoof face recognition systems by presenting photographs, videos or
three-dimensional shaped masks (see Fig. 4.4) of targeted identities [9] to the input
camera. While one can also use make-up or even plastic surgery as other means
of spoofing, photographs, and videos are probably the most common sources of
spoofing attacks because one can easily download or simply capture them without
prior user consent. Possibly for this reason, most prior work focuses on these types
of attacks.

Four new elements compose the settings of spoofing attempts to face recognition
system (Fig. 4.4): (1) the attacker, which is the person trying to impersonate the
identity of another client in the system; (2) the sensor used in the acquisition and
quality for the client sample being used for the attack; (3) the media used to display
the sample; and finally (4) the support used for the attack. An example spoofing
attack is shown in Fig. 4.4a. In this example, the attacker uses his own hands to
support the fake sample. Figure4.4b shows another attempt in which the attacker
wears a three-dimensional mask of the user being attacked.

4.2.1.1 Photo Attacks

A photo-attack consists of displaying a photograph of the attacked identity to the
input camera of the face recognition system. Recent work by private security firms
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(a) (b)

Fig. 4.4 Example attack scenarios. a Hard copy print attack. b Mask attack

[6] indicates that many available commercial systems are vulnerable to this kind of
attack.

It can be relatively easy to either obtain photos of a valid user through internet
searching or by capturing them using a concealed/hidden camera. Once a photo is
obtained, one can print it and then present it in front of the camera. An electronic
screen (such as a those on modern tablet computers) could also be used to present the
photograph to the input camera of the biometric system. Because of the immediate
availability and accessibility of all technology required to perform this attack, it
should be considered with priority in the context of 2D face recognition systems.

4.2.1.2 Video Attacks

Video attacks represent the second most important threat to 2D face recognition
systems simply because they potentialize the probability of success by introducing
apparent vitality to the displayed fake biometric. It is intuitive to assume that systems
that offer little resistance to photo attacks will present further performance degrada-
tion on the presence video attacks. The acquisition of client samples is also becoming
increasingly easier with the advent of public video sharing sites and matching reduc-
tion of high-quality camera prices. Furthermore, technology commonly deployed on
animation software, for modeling fictional characters, could also be subverted into
producing realistic looking fake biometric samples, that would still exhibit liveness
characteristics.

4.2.1.3 Mask Attacks

Mask attacks require more skills to be well executed and possibly access to extra
material as an approximate 3D prototype of the face needs to be constructed. It
is the third type of attack conceivable to 2D face recognition systems, but may be
more likely to succeed because countermeasures may not be able to explore anymore
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deformationpatterns available on the previously described attacks.Modestly accurate
3Dmasks can be cheaplymanufactured from just two photographs of a person’s head:
frontal and profile, in websites like http://www.thatsmyface.com/.

Masks that trick 2D face recognition systems may also be manufactured using
2D prints on malleable materials such as cotton tissue available on T-shirts. Once
printed, a potential attacker can wear the tissue around its own face, trying tomitigate
2D print effects present on photo and video attacks.

4.3 Databases

Thefirst public dataset for studying antispoofing in face recognition appeared in 2010,
accompanying the work of Tan and others in [13]. In this work, the authors explore
the Lambertian reflectance model to derive differences between the 2D images of
the face presented during an attack and a real (3D) face, in real-access attempts.
Following the trend of similar past work [14, 15], the authors focus on the binary
classification task of face spoofing detection considering pictures of real-accesses
and attacks recorded with a conventional webcam. Antispoofing methods that deal
with texture analysis (see Sect. 4.4), can use the NUAA Photo Imposter Database to
compare results with values published on the original work.

As demonstrated inwork byAnjos and others [16, 17], techniques for antispoofing
can also exploit motion artifacts present in attacks to discriminate spoofing attempts.
In [16], the authors made available a public dataset composed of printed photograph
attacks and real-accesses, in which the samples available for the training and eval-
uating spoofing classifiers are videos. The PRINT-ATTACK database can be used
to devise antispoofing methods based on texture or motion or fusion of these tech-
niques [18]. An extension of this database, called the PHOTO-ATTACK database,
providing photo attacks using different attack media such as mobile phones and
tablets was introduced in [17]. Another extension called REPLAY-ATTACK data-
base, also bringing video attacks using mobile phones and tablets was introduced
in [19]. More recently, [20] showed how it is possible to use the later for verifying
the resilience of verification systems when exposed to spoofing, as well as how to
jointly perform the evaluation of antispoofing and verification systems (see Sect. 9.5)
In order to provide such a support, antispoofing databasesmust implement an authen-
tication protocol with which verification systems can be tested.

Zhang and others in [21] also created a public dataset for face antispoofing con-
taining challenging short sequenced videos of attacks to 50 different identities using
printed photographs and videos displayed through a tablet screen. The photo attacks
in this databasemay suffer warping, emulating attackers trying to promote a liveness-
look to spoofs. Because this database is also composed of videos, techniques using
motion, texture, or fused systems may be trained and evaluated on it.

The first public dataset for 2D face antispoofing to contain 3D mask attacks is
that of Erdogmus and Marcel [22]. This database contains data for 17 individuals
with both real-access attempts and colored, hard resin composite, eye-pearced mask

http://www.thatsmyface.com/
http://dx.doi.org/10.1007/978-1-4471-6524-8_9
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attacks. Datawas collected using both cameramodules (depth and visual spectra) of a
Kinect for Xbox 360, potentially allowing for amultimodality antispoofing classifier.
The 2Dvisual spectrum face data is composed of short color video sequences of about
10 s.

More detailed information on face antispoofing databases publicly available can
be found on Sect. 13.3. Specifically in AppendixA.3, the reader will find details
about acquisition, usage protocols as well as a cross-comparison of characteristics
between the different sets available.

4.4 Methods

Without antispoofing measures most of the state-of-the-art facial biometric systems
are basically vulnerable to attacks, since they try to maximize the discrimination
between identities, instead of determining whether the presented trait originates
from a living legitimate client. Because of the urgent need for enhancing the security
and robustness face biometrics, a variety of spoofing detection schemes have been
proposed to tackle the problem of presentation attacks. While multimodal analysis
[23–25] and multispectral imaging [26–28] provide efficient means for discriminat-
ing real faces from fake ones, spoofing detection can be performed also based on the
same data that is used for the actual face recognition process.

The following overview of software based spoofing detection schemes concen-
trates mainly on nonintrusive techniques that can be divided into four categories
based on the inspected visual cues: presence of vitality (liveness), motion, facial
appearance and context. Also challenge-response approaches are introduced, since
random user interaction demand provides an important liveness cue in addition to
visual ones.

4.4.1 Liveness Detection

Typical countermeasure to spoofing is liveness detection that aims at detecting phys-
iological signs of life, such as eye blinking, facial expression changes and mouth
movements. For instance, Pan et al. [9] exploited the observation that humans blink
once every 2–4 s and proposed an eye blink-based antispoofing method which uses
conditional random field (CRF) framework to model and detect eye blinking. The
authors provided also a publicly available data set that contains short video clips of
eye blinks and vivid spoofing attacks using photographs. Obviously, such techniques
can only be considered with photographs while nowadays videos are ubiquitous and
can also be easily used for spoofing attacks.

To provide more evidence of liveness, Eulerian motion magnification [29] has
been applied for to enhancing subtle changes in the face region [20, 30] that may not
be otherwise observed without a closer inspection. Within the context of the second

http://dx.doi.org/10.1007/978-1-4471-6524-8_13
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competition on countermeasures to 2D facial spoofing attacks [18], one team pre-
sented a technique for magnifying the small color and motion changes that appear
on the face due to the natural human blood flow, thus the algorithm amplifies a set
of frequencies within the range of human pulse. The method was able to achieve
satisfying performance of 9.13% in terms of Half-Total Error Rate (HTER) on the
competition dataset. Bharadwaj et al. [30] used Eulerian motion magnification as
a preprocessing stage for exaggerating macro and micro facial expressions in the
input video. Moreover, inspired by the use of optical flow in micro expression detec-
tion, histogram of oriented optical flow (HOOF) features [31] were considered for
describing observed facial motion patterns. Very impressive results were reported on
the Print-Attack andReplay-AttackDatabases (0.00% and 1.25% in terms of HTER,
respectively). However, the algorithm needs to be improved in order to increase its
performance in more challenging and adversarial acquisition conditions.

4.4.2 Motion Analysis

In addition to facial motion used in liveness detection, also other motion cues can
be exploited for face antispoofing. For example, it can be assumed that the move-
ment of planar objects, e.g., video displays and photographs, differs significantly
from real human faces which are complex nonrigid 3D objects. Kollreider et al. [32]
presented an optical flow-basedmethod to capture and track the subtle relative move-
ments between different facial parts, assuming that facial parts in real faces move
differently than on photographs. The method was able to achieve an equal error rate
(EER) of 0.5% on a private data set consisting of real client accesses from XM2VTS
database and hard copy attacks from the corresponding live samples. In [33], the
same authors propose a method for fusing scores from multiple experts to combine
the results of 3D face motion analysis and liveness detection, e.g., eyeblink detection
and mouth movement analysis. However, the experiments were conducted on short
image sequences which were not made publicly available and no specific error rates
were reported.

In another work [34], Bao et al. also used optical flow for motion estimation for
detecting attacks producedwith planarmedia such as prints or screens.Themovement
of planar objects is categorized as translation, rotation, normal, or swing and the eight
quantities extracted from the cropped face are used to express the amount of these
movements. The eight values are then given to an ad-hoc equation that outputs the
probability of a spoofing attack. Experiments on a private database showed a 6%
false-alarm against about 14% false acceptance.

If a face spoof is not tightly cropped around the targeted face or it has an
incorporated background scene, scenic fake face (see Fig.A.10), it should be pos-
sible to observe high correlation between the overall motion of the face and the
background regions for stationary face recognition systems. Anjos and Marcel [16]
proposed a straightforward motion-based antispoofing technique to measure the
overall motion correlation between the face and the background regions through
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simple frame differences. A performance of 9% in terms of HTER was reported
using the publicly available Print-Attack Database [16], thus the motion correlation
analysis-based technique is efficient for measuring synchronized shaking of hand-
held attackswithin the scene.However, a drawback is that it can get confused between
a fixed support photo-attack and a motionless person while being recognized [16].

4.4.3 Facial Reflectance and Texture Properties

Themain problem ofmotion analysis and liveness detection-based antispoofing tech-
niques is that the verification process takes some time or the user needs to be very
cooperative. Even though motion is an important visual cue, vitality and nonrigid
motion detectors relying only on spontaneous facial movements are powerless under
video-replay attacks and the lack of motion may lead to high number of authen-
tication failures if user cooperation demand is not deployed. Another category of
antispoofing techniques is based on the analysis of facial appearance properties,
such as reflectance and texture, assuming that the disparities between genuine faces
and artificial material can be observed in single visual spectra images. Intuitively, the
main advantage of single image-based spoofing detection schemes is that they treat
video playback attacks as if they were photo attacks, since individual video frames
are considered [15].

Li et al. [14] described a method for detecting print-attack face spoofing. The
method is based on the analysis of 2D Fourier spectrum, assuming that photographs
are usually smaller in size and they would contain fewer high-frequency components
compared to real faces. Such an approach may work well for down-sampled photos
but is likely to fail for higher-quality images. The database used in the experiments
is unfortunately not publicly available.

In a more recent work, Tan et al. [13] considered the Lambertian reflectance to
discriminate between the 2D images of face prints and 3D live faces. The method
extracts latent reflectance features using either a variational retinex-based method
or much simpler difference-of-Gaussians (DoG)-based approach. The features are
then fed to different types of classifiers. The idea behind DoG filters is that their
bandpass behavior is able to exclude the low frequency information and the very
high frequencies (noise), and to keep the “middle” frequency information which is
valuable for spoofing detection. The authors reported promising results of area under
ROC curve (AUC) from 0.69 to 0.95 on the publicly available NUAA Photograph
Imposter Database composed of real-accesses and attacks to 15 subjects using both
photo-quality and laser-quality prints of different sizes.

Zhang et al. [21] modified the method of Tan et al. [13] by introducing
multiple DoG filters because they suggested that there is no prior knowledge which
frequency component is the most discriminative. Thus, they used the concatenated
filtered images and an SVM classifier to conduct more experiments on a new pub-
licly available CASIA Face Antispoofing database containing more versatile set of
spoofing attacks including cut-photo and video-replay attacks with three different
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imaging qualities. They noticed that the DoG filter-based method is able to detect
well the similar sharp edges in eye regions of cut-photo attacks which make the
spoofing attack samples less variational. On the other hand, the performance was
very low under video-replay attacks and when high imaging quality was used. Thus,
they claim that it may not be always a good idea to pursue high quality in imaging.

Alternatively, it is likely that real faces and fake ones present different texture
patterns because of facial texture quality degradation due to recapturing process and
disparities in surface and reflectance properties. Bai et al. [15] used microtextures
extracted from the specularity component of a recaptured image and a linear SVM
classifier to detect printed photo based spoofing attacks. The authors report a 2.2%
false acceptance rate (FAR) against a 13% false rejection rate (FRR) but also the
dataset for this experiment was not made public. The used features try to estimate
how smooth the surface of the client face is, i.e., smoother face texture is more
likely to come from a printed attacks because the reflection from a natural face
tends to be more diffuse. The major drawback of this method is that it requires high
resolution input images in order to discriminate the fine microtexture of the used
display medium.

Määttä et al. [35] and Chingovska et al. [19] addressed this issue by explor-
ing the structure of facial microtextures using local binary patterns (LBP) [36] on
conventional webcam-quality images. Evaluations carried out with three different
databases: the NUAA Photograph Impostor Database, Replay Attack Database, and
CASIA Face Antispoofing Database showed moderate results with HTER equal to
19.03, 15.16, and 18.17%, respectively. Furthermore, Kose and Dugelay [37] exper-
imented the performance of the LBP-based countermeasure under mask attacks and
satisfactory results were reported of AUC of 0.95 and classification accuracy of
88.1%.

Recently, Pereira et al. [38] extended the microtexture analysis-based spoofing
detection into spatiotemporal domain. In addition to analyzing the structure of facial
microtextures, local binary patterns from three orthogonal planes (LBP-TOP) [39]
were applied for describing specific dynamic events, e.g., facial motion, shaking, and
sudden characteristic reflections of planar display media, which might differentiate
real faces from fake ones. Similar visual cue was considered in the work by Pinto
et al. [40] as the dynamic artifacts of display devices were exploited for detecting
video-replay attacks. More specifically, visual rhythms were computed from the
Fourier spectrum of the extracted video noise signatures and the resulting textural
information was compressed with gray level co-occurrence matrices (GLCM).

The major drawback of texture analysis-based spoofing detection is that rather
high resolution input images are required in order to extract the fine details needed
for discriminating genuine faces from spoofing media. While lower imaging quality
might be enough for detecting the most crude attack attempts, such as small mobile
phone displays and prints with strong artifacts, the grid structure of a display device,
or facial pores can be captured only in high-definition close-up images. On the other
hand, also high false rejection rate might be an issue if acquisition quality is not
good enough. Furthermore, the nature of texture patterns varies a lot due to different
acquisition conditions, cameras, and display media as demonstrated in [41]. Thus
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diverse datasets are needed for training the microtexture-based methods, especially
at conventional webcam image quality.

Another interesting approach was introduced in [42] by Gao et al. within single-
view recaptured image detection. It is a more general concept of recognizing images
of natural scenes and the recaptured natural-scene images, thus could be used formore
general object recognition and scene understanding (e.g., in robotics) in addition
to spoofing detection. They proposed a general physical model for describing the
recapturing process and used a set of physical features and contextual background
information from single-view images to discriminate the recaptured images from real
scenes. The physics-based features consist of the spatial distribution of specularity
that is related to the surface geometry, the image gradient that captures nonlinearity of
the recaptured image rendering process, and color, contrast and blurriness properties
that describe the quality of the reproduction. The proposed approach outperformed
a wavelet-based method described in [43] and a publicly available data set was also
released for evaluating methods for recaptured image detection on mobile devices.

4.4.4 Contextual Information

Face images captured from face spoofs may visually look very similar to the images
captured from live faces, thus face spoofing detection is rather difficult to perform
based on only single face image or a relatively short video sequence. Depending on
the imaging and fake face quality, even for humans like us it is nearly impossible to tell
the difference between a genuine face and a fake one without any scene information
or unnatural motion or facial texture patterns. However, we can immediately notice
if there is something suspicious going on in the view, e.g., if someone is holding a
video display or a photograph in front of the camera. Therefore, scenic cues can be
exploited for determining whether display medium is present in the observed scene.

In order to make eyeblink-based liveness detection more robust to video-replay
attacks, Pan et al. [44] included scene context matching for checking if the back-
ground scene of the stationary face recognition system suddenly changes. Some care-
fully chosen fiducial points outside the face region are used to describe the expected
background scene. The scores of the eye blink and scene context detector components
are then fused together and the new setup obtained 0.5% false acceptance against
0% false rejection on a new private data set.

Komulainen et al. [45] considered scene information for detecting whether some-
one is presenting a fake face on a display medium in front of the camera by checking
if the boundaries of the spoofing medium, e.g., video screen frame or photograph
edges, or the attackers hands are visible in the provided view. Moreover, the authors
assumed that a fake face might not be well aligned with the upper half of the torso
of the imposter when a natural upper-body profile cannot be observed. Histogram
of oriented gradients (HOG) descriptors [46] were used for describing distinctive
discontinuities around the detected face and determining whether natural upper-
body profile or the boundaries of the spoofing medium is detected in the scene. The
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experiments the CASIA Face Antispoofing Database and NUAAPhotograph Impos-
tor Database showed that contextual information is indeed a very important visual
cue for face spoofing detection.

4.4.5 Fusion of Countermeasures

Indeed, many visual cues for nonintrusive spoofing detection have been already
explored and impressive results have been reported on individual databases.However,
the varying nature of spoofing attacks and acquisition conditions makes it impossi-
ble to predict how single antispoofing techniques, e.g., facial texture analysis, can
generalize the problem in real-world applications. Moreover, we cannot foresee all
possible attack scenarios and cover them in databases because the imagination of the
human mind always finds out new tricks to fool existing systems. It is reasonable to
assume that no single superior technique is able to detect all known, let alone unseen,
spoofing attacks. Therefore, the problem of spoofing attacks should be broken down
into attack-specific subproblems that are solvable if a proper combination of com-
plementary countermeasures is used. In this manner, a network of attack-specific
spoofing detectors could be used to construct a flexible antispoofing framework in
which new techniques can be easily integrated to patch the existing vulnerabilities
in no time when new countermeasures appear.

Fusion of different antispoofing techniques has not been studied much besides the
algorithms [47–49] proposed within the context of the IJCB 2011 competition on
countermeasures to 2D facial spoofing attacks [18]. Tronci et al. [48] and Schwartz
et al. [47] were able to obtain impressive performance using motion and texture
information but at the cost of complexity. In [48], several visual features and support
vector machines (SVM) were utilized for detecting print-attacks, whereas in [47]
temporal information from videos was accumulated by concatenating descriptions of
individual frameswhich results in very high-dimensional feature vectors. Conversely,
Yan et al. [49]wanted to achieve better generalization capabilities and proposed novel
liveness clues with clear semantic definitions in order to avoid just extracting specific
feature and training a “black box" classifier. However, the algorithm utilized mainly
two uncorrelated motion cues, nonrigid motion and face-background consistency
analysis, while the only spatial cue, banding analysis, was discarded unless uniform
background was observed, since both face and background regions were used for
image quality assessment.

In [50], the fusion of simple motion- and texture-based techniques was studied
under several types of scenic fake face attacks (see Fig.A.10). The authors provided
an intuitive way to explore the fusion potential of different visual cues using mutual
error analysis and showed that the moderate performance of the individual meth-
ods can be vastly improved by performing fusion at score level. The HTER of the
best individual countermeasure was decreased from 11.2 to 5.1% on the Replay
Attack Database. The idea of using complex classification schemes in individual
countermeasures was questioned, since the complementarity of the antispoofing
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techniques was shown to be somewhat independent of the complexity of the classifi-
cation schemes and nearly same fusion performance was obtained by replacing them
with a simple linear one. Thus, suggesting that the use of simple and computation-
ally efficient classifiers should be indeed considered when constructing real-world
antispoofing solutions.

4.4.6 Challenge-Response Approach

Liveness and motion analysis-based spoofing detection is rather difficult to per-
form by observing only spontaneous facial motion during short video sequences but
the amount of distinctive motion can be increased with user cooperation demand.
More importantly, user collaboration itself can be used for revealing spoofing attacks
because we humans tend to be interactive whereas a photo or video-replay attack
cannot respond to specific (random) action requirements. In particular, a face authen-
tication system prompts a specific action request to the user (challenge), such as a
facial expression [25, 51], mouth movement [23, 25] or head rotation [41, 52, 53],
and then analyses the user activity in order to check whether the required action was
actually performed (response).

While spontaneous nonrigid facial motion is likely to occur during a relatively
short authentication process, usually only small head pose changes can be observed.
Therefore, challenge-response approach is particularly useful when head pose [52]
or 3D structure estimation [41, 53] is utilized for spoofing detection. In [52], photo
and video-replay attacks were avoided by giving the user a random head pose as
a challenge and tracking the head pose in real time using 3D model and suitable
facial feature points. De Marsico et al. [53] reduced the system complexity by mea-
suring the three-dimensionality using projective invariants. Instead of tracking the
exact 3D head pose changes, the user can move more freely as long as minimum
continuous motion requirement is met, thus the making the authentication process
more comfortable. Furthermore, the movement challenge at random intervals and
expected response time are assumed to be sufficient to avoid video-replay attacks.
Wang et al. [41] presented an approach for measuring three-dimensionality of the
face without continuous motion requirement by recovering sparse 3D facial structure
from two or more images (or video) captured from different viewpoints. In [51], the
user is prompted to perform random sequence of facial expressions. Assuming that
the consecutive frames in videos of valid users contain smooth and gradual changes,
the presence of tampered or stitched video or image sequences is detected by observ-
ing image properties for abrupt changes. More specifically, SIFT flow energy [54]
between consecutive frames is computed because the videos with sudden changes
typically result in high SIFT flow energy.

The drawback of challenge-response approach is that it requires user cooperation,
thusmaking the authentication process a time-consuming and unpleasant experience.
Another advantage of nonintrusive techniques is that from challenge-response based
countermeasures it is rather easy to deduce which liveness cues need to be fooled.
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For instance, the request for uttering words suggests that analysis of synchronized
lip movement and lip reading is utilized, whereas rotating head in a certain direction
reveals that the 3D geometry of the head is measured. For nonintrusive approaches,
it is usually not known which countermeasures are used, thus the system might be
harder to deceive [44].

4.4.7 Discussion

The vulnerabilities to spoofing attacks have received more attention and the number
of proposed countermeasures is growing steadily. Still, the field of visual face anti-
spoofing is rather immature and there exists no consensus on the best nonintrusive
spoofing detection practices. The current publicly available face spoofing databases
are beginning to cover a variety of spoofing attacks from high-quality photo attacks to
video-replay attacks and impressive results have been reported on individual datasets.
However, due to the lack of variation in the collected data, e.g., acquisition conditions
and used cameras, it is impossible to determinewhether the existing countermeasures
can generalize the problem beyond databases.

Since mobile applications represent one of the most probable use cases for face
biometrics, device independence is an important property when transferring the
developed countermeasures into practice. Currently, challenge-response basedmeth-
ods, especially the ones measuring three-dimensionality of the face [41, 53], seem
to be the only imaging device independent approach for detecting photo attacks,
whereas for instance facial texture-based algorithms are drastically affected by the
varying imaging quality of different cameras [41], let alone the properties of differ-
ent spoofing media and precaptured targeted face. However, if no specific motion
type is requested, the techniques analyzing 3D facial structure are likely to fail under
prerecorded video attacks, not to mention animated faces or masks.

On the other hand, the research community has just begun to focus on the problem
of presentation attacks and the current publicly available databases have been a very
important kick-off for finding out best practices for spoofing detection. The excellent
results on simple datasets indicate that more challenging configurations are needed
before the visual face antispoofing can reach the next level. In future, more work
should be carried out for designing and collecting new databases that contain mean-
ingful number of nonredundant data and a proper evaluation protocol which provides
an unbiased comparison between different approaches and their fusion.Databases are
a critical component when developing new nonintrusive spoofing detection schemes
and evaluating not only their performance but especially their generalization capa-
bilities. The publicly available datasets inevitably affect the antispoofing research
trends and might mislead the research focus in wrong direction.
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4.5 Conclusion

Among tangible threats and vulnerabilities facing current face recognition systems
are spoofing (i.e., direct) attacks. One indeed can spoof a face recognition system by
presenting to the input camera a photograph, a video or a three-dimensional shaped
mask of a targeted identity. An increasing attention has recently been given to this
research problem (i.e., face spoofing attacks). This can be attested by the growing
number of articles and the various competitions that started to appear in major bio-
metric forums. In this chapter, we revealed the face spoofing threats, presented the
evolution of the available databases and protocols for evaluating face spoofing and
antispoofing based on visual information, and thoroughly discussed the different
approaches which have been proposed in the literature so far. Some open issues and
future directions have also been discussed.

Without spoofing countermeasures, most of the state-of-the-art facial biometric
systems are vulnerable to attacks, since they try to maximize the discriminability
between identities without regards to whether the presented trait originates from a
living legitimate client or not. The proposed antispoofing methods in the literature
have shown very encouraging results on individual databases but may lack general-
ization to varying nature of spoofing attacks that can be encountered in real-world
applications. This suggests that a network of attack-specific spoofingdetectorsmaybe
needed to tackle different spoofing attacks. The existing databases for spoofing and
antispoofing analysis have been and are still useful for studying the spoofingproblems
but one cannot foresee all possible attack scenarios and cover them in databases. As
the field evolves, new and more challenging databases can be expected. The imag-
ination of the human mind always finds out new tricks to fool existing biometric
systems.
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Chapter 5
Face Anti-spoofing: Multi-spectral Approach

Dong Yi, Zhen Lei, Zhiwei Zhang and Stan Z. Li

Abstract With the wide applications of face recognition, spoofing attack is
becoming a big threat to their security. Conventional face recognition systems usually
adopt behavioral challenge-response or texture analysis methods to resist spoofing
attacks, however, these methods require high user cooperation and are sensitive to
the imaging quality and environments. In this chapter, we present a multi-spectral
face recognition system working in VIS (Visible) and NIR (Near Infrared) spec-
trums, which is robust to various spoofing attacks and user cooperation free. First,
we introduce the structure of the system from several aspects including: imaging
device, face landmarking, feature extraction, matching, VIS, and NIR sub-systems.
Then the performance of the multi-spectral system and each subsystem is evalu-
ated and analyzed. Finally, we describe the multi-spectral image-based anti-spoofing
module, and report its performance under photo attacks. Experiments on a spoofing
database show the excellent performance of the proposed system both in recognition
rate and anti-spoofing ability. Compared with conventional VIS face recognition sys-
tem, the multi-spectral system has two advantages: (1) By combining the VIS and
NIR spectrums, the system can resist VIS photo and NIR photo attacks easily. And
users’ cooperation is no longer needed, making the system user friendly and fast.
(2) Due to the precise key-point localization, Gabor feature extraction and unsuper-
vised learning, the system is robust to pose, illumination and expression variations.
Generally, its recognition rate is higher than the VIS subsystem.
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5.1 Introduction

Although face recognition has achieved great success during the past decades, little
effort has been made to assure its security and reliability in real-world applications.
It is now increasingly known that existing face recognition systems are susceptible to
fake face attacks, through which unauthorized attackers try to access illegal authori-
ties by exhibiting fake faces of an authorized client. Serious consequences may occur
if these attacks succeed, yet there still lack effective anti-spoofing techniques.

Attackers can obtain a client’s face images by using portable digital cameras or
simply downloading from the Internet, and fake faces can be easily produced, for
example, printing photos or showing videos on a laptop. Fake faces like photos and
video replays are not only easy to implement but also usually quite effective to attack
a face recognition system [1], and has become the main concern 1 in the literature as
shown in Sect. 5.2. Actually in real-world applications, face recognition systemsmay
encounter various high quality face attacks and low quality real accesses, therefore
an excellent anti-spoofing method should distinguish their difference and perform
robust in unpredicted situations.

However, as we review the recent development in Sect. 5.2, we find that current
researches mainly concentrate on genuine and fake face with little variations. A
shortcoming in variation is the quality of attacks: in [2–4], algorithms extract the
high frequency information or micro-texture to detect attacks. But as this high fre-
quency information or micro-texture pattern highly depends on the image quality,
how will they perform on good quality and bad quality images? Do their algorithms
generalize well? We can see that due to the lack of variational data, many questions
remain unanswered. Therefore we cannot predict their performance in real-world
applications, because practical attacks are probably not limited to one single type as
in previous researches.

Therefore, we think “quality robustness” is a big problem in anti-spoofing
research. How to classify high quality attacks and low quality real accesses is the key
issue to solve this problem. Multi-modal biometrics may be a practical direction,
because we have more information available for anti-spoofing. Likewise, multi-
spectral face images are naturally stronger than single VIS face image, by fusing
which we have more chance to build a quality robust anti-spoofing module. In this
chapter, we propose a high performance face recognition system with anti-spoofing
module using multi-spectral imaging. We start by introducing the multi-spectral face
recognition system, including spectrums selection, hardware, and algorithms. Then
we report the performance of the system under licit transaction and spoofing attack.
To resist the attacks, we propose an effective multi-spectral countermeasure and
test the performance of the system with countermeasures. The experimental results
illustrate that the countermeasures resist the attacks perfectly.

1 Mask is also a good choice, but usually it is too expensive to produce client-like masks. So the
massive usage of masks rarely appears in the literature.



5 Face Anti-spoofing: Multi-spectral Approach 85

Compared with existing anti-spoofing approaches, the advantages of our system
are obvious. First, our system requires no user cooperation, and therefore is
user-friendly and fast. Second, our system, by combining multi-spectral
information, is more quality robust and can achieve higher recognition rate than
traditional single modal face recognition system.

5.2 Related Work

Existing work can be classified as three categories: facial motion detection, facial
texture analysis and multi-spectral anti-spoofing methods. The first two are usually
applied to VIS face recognition systems. The last one needs extra multi-spectral
imaging device to achieve more accurate results.

Facial motion detection techniques expect subjects to exhibit specific facial
motion, the detection of which determines the liveness. For methods of this kind,
human–computer interaction (HCI) is almost indispensable to detect users’ biologi-
cal motion. The most commonly used motion types include eye blinking [5, 6], head
rotation [6, 7], and mouth movement [8], and these motions are mainly detected by
adopting optical flow. One main problem of these methods is that users need to be
highly cooperative and the duration of liveness detection is relatively long, whichwill
make users feel uncomfortable when using such a system. Another problem is that
they cannot deal with some skilled attacks. For example, if the fake face is a photo
over a genuine face with eyes and mouth cut out as illustrated in [6], these methods
will definitely fail. Therefore, applications of such kind of methods are limited.

Facial texture analysis techniques believe that fake faces probably lack some
high frequency information during the reproduction process, and by analyzing and
learning the facial texture information, genuine and fake faces can be classified
properly. Here the term “texture” represents the high frequency details in face images.
In [2] Fourier transform is utilized to extract the high frequency information, and
the target face image is judged fake if its energy percentage of high frequency is
lower than a certain threshold. In [3] the authors use DoG and LTV algorithms to
extract high frequency information from the captured images, and the final model is
learned by a complex bilinear sparse low rank logistic regressionmodel. In [4] amore
simple but also more powerful LBP+SVMmethod (named Micro-Texture Analysis,
MTA) is proposed, and they achieve very amazing results both on the NUAA [3]
and Idiap [9] database. Similarly, [10] also utilize micro-textures and SVM to detect
spoofing attacks. However, as noted by [11], most existing spoofing databases did not
include enough variations, therefore, the best texture-basedmethods on the databases
may failed in real applications when confronting various imaging environments.

The other class is the multi-spectral methods, which detect the reflectance of
object surface under multi-spectrums. To the best of our knowledge, there have
been very few papers published in this field, among which two papers are most
representative. In [12] Pavlidis and Symosekuses use light at two wavelengths, and a
simple threshold method to detect genuine and fake faces. No experiments but only
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illustrations were reported in their paper. The second one [13] also selects light at
two different wavelengths and then LDA is used to make the final decision. However,
this paper requires the distance between the user and the system to be exactly 30cm,
and they utilize users’ forehead region to measure reflectance. Not only may the
forehead be occluded, but also the exact distance is quite demanding and impossible
to execute in practice. Furthermore, the wavelengths they select are actually not as
optimal as in [12]. Thermal information is another choice, and we refer readers to a
common facial thermal imagery database in [14]. But, the high cost also prevents its
usage in real practice.

5.3 The Multi-spectral Face Recognition System

The multi-spectral face recognition system includes the following modules: multi-
spectral image acquisition, face detection, key-point localization, feature extraction,
subspace learning, matching, and fusion. To achieve good performance and gener-
alization ability in practical applications, the multi-spectral system uses an EBGM
like pipeline to process face image, which is mainly composed of precise key-point
localization, Gabor filtering, and PCA. Yi et al. [15] have already shown the high
performance of the method on FERET (only in VIS spectrum). For each spectrum,
face image is processed separately by its corresponding pipeline, and the similarity
scores in multi-spectrums are fused by “sum rule.” The details of each module are
described as follows.

5.3.1 Spectrum Selection and Imaging Device

The use of multiple spectral bands for face biometrics permits to improve the per-
formance and robustness of face recognition in realistic scenarios including uncon-
trolled illumination conditions. Taking into account the compatibility with normal
face recognition system, VIS is selected as the first spectrum for the multi-spectral
system. On the other hand, NIR band has become themost used spectral band beyond
VIS due to several advantages: radiation which is harmless to health, good-quality
images, low-cost cameras, etc. Based on our existing NIR face recognition sys-
tem [16], we choose the second spectrum as NIR (780nm). To acquire VIS and
NIR images simultaneously, we develop a special imaging device by two CMOS
camera modules, which can capture 640 × 480 images in two bands at 15 fps. The
synchronization is controlled by the software system.

In the multi-spectral system, two spectrum bands are available and hence can be
exploited for recognition in many ways. A common method is to use all spectral
bands simultaneously that match VIS to VIS, and NIR to NIR. Currently, we use
multi-spectral images in this way, but heterogeneous matching betweenVIS andNIR
may be added into the system in the future. For example, VIS face images are used
for enrollment while NIR face images are used for testing.
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Fig. 5.1 Some genuine and fake face images in different spectrums and their 76 facial landmarks
localized by the ASM landmarker. From left to right, the three columns correspond to genuine face,
VIS photo, and NIR photo. Images in the first row are captured under visible illumination, and the
second row are captured under NIR illumination. The fake face images are produced by recapture
of the VIS and NIR printed photo by the same system

5.3.2 Key-Point Localization

Because face detection is relatively mature than other steps, we skip it. Interested
readers can refer to [17] for details. After face detection, we localize the facial
landmarks by Active Shape Model (ASM) [18]. ASM is composed of three parts:
shape model, local experts, and optimization strategy. In most ASM variants, shape
model is usually PCA [19], and we follow this model. For local experts, we use
LBP [20] feature and Boosting classifier for each landmark, which is similar to the
method in [21]. Based on the output of Boosting classifiers, we can get a confidence
map for each landmark. These confidence maps are fed to a Landmark Mean-Shift
procedure [22]. Then we can get the final positions of all facial landmarks. For
robustness and efficiency, the optimization process is repeated several times on two
scales.

The training set of our landmarker is constructed from the MUCT database [23].
Three views (a, d, and e) with small pose variations are used for training. Because the
backgrounds of images in theMUCT are almost uniform, we replace themwith some
random backgrounds and mirror all images to augment the dataset (see Fig. 5.2). The
uniform backgrounds of the face images are segmented by GrabCut [24], which is
initialized by the results of face detection. Figure 5.1 shows two example images in
the FERET database [25] and their 76 facial landmarks localized by the landmarker,
from which we can see that the landmarks are robust to small pose variations and
have good precision for the next steps.
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Fig. 5.2 Sample images in theMUCT training set for the ASM landmarker. Left A color face image
in the MUCT database, which has uniform background. Right A face image is converted to gray
scale and the background is replaced by a random image from the Internet

5.3.3 Gabor Feature and Subspace Learning

Given an aligned face image and the 76 landmarks, we extract local features on the
landmarks by a Gabor wavelet, which is described in [26].

ψk,σ (x) = k2

σ 2 e
k2

−2σ2
x2{eikx − e− σ2

2 } (5.1)

Thewavelet is a planewavewithwave vector k, restricted by aGaussian envelope,
the size of which relative to the wavelength is parameterized by σ . The second term
in the brace removes the DC component. Following the popular way, we sample
the space of wave vectors k and scale σ in a discrete hierarchy of 5 resolutions
(differing by half-octaves) and 8 orientations at each resolution (See Fig. 5.3), thus
giving 5×8 = 40 complex values for each landmark. Because the phase information
is sensitive to image shift or misalignment, we drop the phase and use the amplitude
as feature for face recognition.

Merging the feature values at all landmarks together, we get a feature vector
with 76 × 40 = 3,040 dimensions. To reduce the dimensionality of feature and
remove the redundant information, Principle Component Analysis (PCA) [27] is
used to learn a low-dimensional subspace. To remove the large variations caused
by extrinsic factors such as illumination and expression, we discard the first several
principal components. In the reduced PCA subspace, the similarity of feature vectors
are evaluated by Cosine metric.

s(x, y) = xT y
√

xT xyT y
(5.2)
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Fig. 5.3 The real part of the Gabor wavelet in 5 resolutions and 8 orientations

In practice, we usually normalize the feature vector x and y to unit length as x◦
and y◦. Then Eq. (5.2) can be written as

s(x, y) = s(x◦, y◦) = x◦T y◦. (5.3)

5.4 Performance Under Spoofing Attack

In this section, we build a database to evaluate the performance of the multi-spectral
system and analyze the vulnerabilities of the multi-spectral system when confronted
to spoofing attacks. Because making 3D mask is expensive, currently we use printed
photos (VIS and NIR) to attack the system. In order to obtain comprehensive results,
the VIS subsystem and NIR subsystem are also evaluated separately.

5.4.1 Database

All face images in the database are acquired by using the self-developed device (5.3),
which includes a VIS camera, an NIR camera with some NIR LEDs. VIS and NIR
images are synchronized by the system. The imaging device works at a rate of 15 fps
for 640 × 480 images. Figure5.4 shows the scenario of database collection.

The database comprises genuine face images of 100 subjects and their correspond-
ing fake face samples. All subjects are imaged under VIS and NIR illuminations (5
images per subject per spectrum). For the fake faces, photos are printed using both
the visible and NIR face image, named as VIS photo and NIR photo respectively.
The printed photos are acquired by the same system described above. We use a kind
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Fig. 5.4 Setup used for the acquisition of real-accesses for themulti-spectral face spoofing database

of coarse paper as printing material, because its relatively rough surface makes the
reflectance weak and the fake face more vivid. Some examples are shown in Fig. 5.5.

In summary, the information about the database is: We denote these kinds of face
images as:

• GV I S : Genuine subjects captured by VIS camera;
• G N I R : Genuine subjects captured by NIR camera;
• V PV I S : VIS photo captured by VIS camera;
• V PN I R : VIS photo captured by NIR camera;
• N PV I S : NIR photo captured by VIS camera;
• N PN I R : NIR photo captured by NIR camera.

By observing the face images in Fig. 5.5 we give some conjectures: (1) V PV I S is
easy to attack GV I S ; (2) N PV I S is harder to attack GV I S than V PV I S . And by using
the color information, we can easily detect the fake samples belonging to N PV I S ;
(3) Due to the strong specular reflectance, V PN I R is hard to attack G N I R ; (4) G N I R

is easily attacked by N PN I R . These conjectures will be verified in the following
experiments and in the next Sect. 5.5.

5.4.2 Protocol for Licit Transactions

The genuine face images in the database could be used to evaluate the performance of
the multi-spectral face recognition system. Here we describe how to use the database
to do training, enrollment, and recognition. To illustrate the performance of individual
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Fig. 5.5 Illustration of multi-spectral face images in the database. From left to right, the three
columns correspond to genuine face, VIS photo and NIR photo. Images in the first row are captured
under visible illumination, and the second row are captured under NIR illumination. The fake face
images are produced by recapture of the VIS and NIR photo by the same system

modality (VIS and NIR) and the improvement of the multi-spectral fusion, three sub-
experiments were conducted:

• VIS vs. VIS;
• NIR vs. NIR;
• VIS+NIR vs. VIS+NIR.

For the three experiments, the database is split into four subsets including:

• Training set: genuine face images of the first 30 subjects, 30 × 5 = 150 pairs;
• Development set: genuine face images of the following 30 subjects, 30×5 = 150
pairs;

• Licit Gallery set: two genuine face images of the other 40 subjects, 40 × 2 = 80
pairs;

• Licit Probe set: three genuine face images of the other 40 subjects, 40 × 3 = 120
pairs.

The PCA subspace is trained on the training set and the parameters are tuned
on the development set. During the testing phase, the parameters of model should
remain fixed. The Detection-Error Trade-off (DET) curve is used to illustrate the
performance of the system.
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5.4.3 Protocol for Spoofing Attacks

Similar to the protocols for Licit Transactions, six scenarios are evaluated to illustrate
the influence of spoofing attacks to the performance of the system. There are:

• S1.1: using the VIS photos in V PV I S to attack the VIS subsystem;
• S1.2: using the NIR photos in N PV I S to attack the VIS subsystem;
• S2.1: using the VIS photos in V PN I R to attack the NIR subsystem;
• S2.2: using the NIR photos in N PN I R to attack the NIR subsystem;
• S3.1: using the V PV I S and V PN I R photo pairs to attack themulti-spectral system;
• S3.2: using the N PV I S and N PN I R photo pairs to attack themulti-spectral system.

In the attacking scenarios, the training sets, testing sets, and gallery sets are as
same as those in licit transaction, and the probe sets are augmented by the printed
photos. In these cases the genuine user enrolls with their faces and the attacker tries to
access the system with the corresponding printed VIS or NIR photos. A successful
attack is accomplished when the system confuses a genuine face image with its
corresponding printed photo. The protocol is shown as follows:

• S1.1 Probe set: Licit Probe set described in Sect. 5.4.2 and their corresponding
printed photos in V PV I S ;

• S1.2 Probe set: Licit Probe set described in Sect. 5.4.2 and their corresponding
printed photos in N PV I S ;

• S2.1 Probe set: Licit Probe set described in Sect. 5.4.2 and their corresponding
printed photos in V PN I R ;

• S2.2 Probe set: Licit Probe set described in Sect. 5.4.2 and their corresponding
printed photos in N PN I R ;

• S3.1 Probe set: Licit Probe set described in Sect. 5.4.2 and their corresponding
printed photos in V PV I S and V PN I R ;

• S3.2 Probe set: Licit Probe set described in Sect. 5.4.2 and their corresponding
printed photos in N PV I S and N PN I R ;

The DET curves are also utilized for performance reporting, which describes the
relationship between false detection rate and false rejection rate.

5.4.4 Results

5.4.4.1 Attacking the VIS Subsystem

The experimental results of S1.1 and S1.2 are shown in Figs. 5.6 and 5.7. From the
results we can see that the VIS subsystem has good performance when it does not
confront spoofing attacks. TheFAR@FRR= 3% is about 2%.Furthermore, the score
distributions of imposters and true claimants are well separated. These observations
indicate that the VIS subsystem performs well on this database. Because the baseline
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Fig. 5.6 DET curves for the VIS subsystem baseline and spoofing attacks

is a full unsupervised method, based on local feature + PCA, it is expected to have
good generalization ability.

Under the VIS and NIR photo attacks, the performance of the VIS subsystem
drops drastically. For example, when FRR= 2% the FAR increases from 3 to 97%
and 60% respectively. This indicates that the VIS subsystem is attacked by the VIS
and NIR photos, and the VIS photo can attack the system more easily than the NIR
photo. Figure 5.7 shows the same phenomenon, the score distribution of the VIS
photo is heavily overlapped with the true claimants.

5.4.4.2 Attacking the NIR Subsystem

The experimental results of S2.1 and S2.2 are shown in Figs. 5.8 and 5.9. From
the figures we can see similar results as the VIS subsystem. When not confronting
spoofing attacks, the NIR subsystem performs well too, and even better than the VIS
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Fig. 5.7 Score distribu-
tions for the VIS subsystem
baseline and spoofing attacks.
a Attacked by VIS Photo.
b Attacked by NIR Photo

(a)

(b)

subsystem due to its illumination invariant property. Its EER (equal error rate) is
about 2%, slightly lower than the VIS subsystem.

Under the VIS and NIR photo attacks, the performance of the NIR subsystem
drops too, but decline is not as sharp as the VIS subsystem. For example, when
FRR= 2% the FAR increases from 2 to 10 and 78%, which shows that the NIR face
modality is inherently better than the VIS face modality in terms of anti-spoofing.
On the contrary with VIS, the NIR subsystem is more easily attacked by the NIR
photo, which verifies the conjectures in Sect. 5.4.1.
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Fig. 5.8 DET curves for the NIR subsystem baseline and spoofing attacks

5.4.4.3 Attacking the Multi-spectral System

By fusing the scores of the VIS and NIR subsystems, we show the experimental
results of S3.1 and S3.2 in Figs. 5.10 and 5.11. Compared with the VIS and NIR
subsystems, the performance of the multi-spectral system is improved a little, EER
from 3% and 2 to 1.8%. However, an interesting thing is that the multi-spectral
system is vulnerable both to the VIS and NIR photo attack. By the effect of “sum
rule,” the DET curves and score distributions all achieve a balance between the VIS
andNIR subsystems, which result in themulti-spectral system that is weaker than the
VIS subsystem to resist the NIR photo attack and is weaker than the NIR subsystem
to resist the VIS photo attack.
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Fig. 5.9 Score distribu-
tions for the NIR subsystem
baseline and spoofing attacks.
a Attacked by VIS Photo.
b Attacked by NIR Photo

(a)

(b)

5.5 Countermeasure Integration

5.5.1 Color and Texture-Based Countermeasure

From the experiments in the previous section, we can see “sum rule” is good to
improve the performance of face recognition but not robust to resist the spoofing
attacks. Because “sum rule” prefers to get a trade-off between the VIS and NIR
subsystems, it makes the multi-spectral system neither robust to VIS photo attack
nor to NIR photo attack Table5.1.

From the results in the previous section, we can see the VIS subsystem is robust
to the NIR photo attack, and the NIR subsystem is robust to the VIS photo attack. By
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Fig. 5.10 DET curves for the multi-spectral system baseline and spoofing attacks

Table 5.1 The information of the multi-spectral face spoofing database

Genuine subjects VIS photo attack NIR photo attack

Captured by VIS camera 100 subjects×5 100 subjects×5 100 subjects×5

Captured by NIR camera 100 subjects×5 100 subjects×5 100 subjects×5

combining their advantages, we propose a two-step countermeasure based on color
and texture analysis. The color analysis is used to resist theNIR photo attack, because
NIR photo captured by the VIS camera has no color. By setting a threshold based
on color information, we could easily reject NIR photos. VIS photo usually can pass
the color analysis, but it will be rejected by the following texture analysis due to its
strong specular reflectance in the NIR spectrum. The process of the countermeasure
is shown in Fig. 5.12.

For color analysis, we first crop the face region from image and then use the
histogram of chroma (HoC) as feature, where the chroma of each pixel is calculated
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(a)

(b)

Fig. 5.11 Score distributions for themulti-spectral systembaseline and spoofing attacks. aAttacked
by VIS Photo. b Attacked by NIR Photo

by max(R, G, B)–min(R, G, B). For texture analysis, the Gabor features, the same
as face recognition (see Sect. 5.3), are used. Finally, the linear SVM is used to train
the classifiers based on these two kinds of features respectively.

5.5.2 Protocol for Countermeasure

To train the classifiers for our countermeasure and evaluate the performance, we
construct three subsets from the database as well:

• Training set: genuine and fake face images of the the first 30 subjects;
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Pass Yes Pass

No

Fake

No

Fake

GenuineYes

Fig. 5.12 The process of our countermeasure for the multi-spectral system

• Development set: genuine and fake face images of the following 30 subjects;
• Testing set: genuine and fake face images of the other 40 subjects.

First, we train the color-based classifier using GV I S and N PV I S in the train-
ing set. Second, we train the texture-based classifier using G N I R and V PN I R . The
final countermeasure is constructed according to the structure shown in Fig. 5.12.
The performance will be evaluated with respect to two kinds of errors: FLR (False
Living Rate) and FFR (False Fake Rate). The lower these two errors, the better the
performance of the countermeasure.

To evaluate the influence of the countermeasure to the face recognition system,
we usually fix at a evaluation point (e.g., FFR= 1%). Once fixed, we can incorporate
the countermeasure as a pre-processing step into the multi-spectral face recognition
system oriented to reject fake samples, and generate the performance of the following
three profiles.

• Baseline: The performance of the multi-spectral system;
• Baseline under attacks: The performance under spoofing attacks;
• Baseline + Countermeasure under attacks: The final performance of the multi-
spectral system with countermeasure under spoofing attacks.

5.5.3 Results

After training the color and texture SVM classifiers, we apply them on the testing set.
Because the differences between the genuine and fake samples are obvious, the two
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Fig. 5.13 DET curves for themulti-spectral system baseline, spoofing attacks, and countermeasure.
Note that the plot of the “baseline + countermeasure under attacks” is invisible because it coincides
with the baseline completely (perfect countermeasure)

SVM classifiers are easy to train and both achieve 100% accuracy on the testing set.
The color SVM classifier contains 20 support vectors and the texture SVM classifier
contains 52 support vectors.

Due to the high performance of the two SVM classifiers, our countermeasure can
reject all fake samples while allowing all genuine samples to pass. Therefore, the
countermeasure can fully resist the photo attacks and do not produce any side effects
to the multi-spectral system. The DET curve of the final system is shown in Fig. 5.13.

5.6 Conclusions

As shown in this chapter, mutli-spectral face recognition has high recognition rate
and performswell to anti-spoof printed photo attacks. The success ismainly attributes
to the complement of multi-spectral face images, as the VIS subsystem is robust to



5 Face Anti-spoofing: Multi-spectral Approach 101

NIR photo attack and the NIR subsystem is robust to VIS photo attack. Although the
system works perfectly on the database, it is hard to say the anti-spoofing module in
the system can appeal to the practical requirements. Limited by the scale and varia-
tions of the database, the introduced countermeasure, especially the texture classifier,
may be over-fitting to the database. To really apply the anti-spoofing technologies
in practice, we must collect more comprehensive spoofing databases, in larger scale,
with more variations, such as pose, illumination, expression, etc., as similar as those
in traditional face recognition.
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Chapter 6
Iris Anti-spoofing

Zhenan Sun and Tieniu Tan

Abstract Iris images contain rich texture information for reliable personal identifi-
cation. However, forged iris patterns may be used to spoof iris recognition systems.
This paper proposes an iris anti-spoofing approach based on the texture discrimina-
tion between genuine and fake iris images. Four texture analysis methods include
gray level co-occurrencematrix, statistical distribution of iris texture primitives, local
binary patterns (LBP) and weighted-LBP are used for iris liveness detection. And
a fake iris image database is constructed for performance evaluation of iris liveness
detection methods. Fake iris images are captured from artificial eyeballs, textured
contact lens and iris patterns printed on a paper, or synthesised from textured contact
lens patterns. Experimental results demonstrate the effectiveness of the proposed tex-
ture analysis methods for iris liveness detection. And the learned statistical texture
features based on weighted-LBP can achieve 99accuracy in classification of genuine
and fake iris images.

6.1 Introduction

Iris recognition is becoming increasingly popular in security sensitive applications.
Like any other information security technology, an iris recognition system has the
risk to be attacked by various approaches. Possible attacks to an iris system may
be launched at sensor level, data transmission level, image processing level, pattern
recognition level, database level, or decision level [1–3].All these attacks are possible
to successfully spoof the iris recognition system by tempering with the identity
verification result. Vulnerabilities of iris recognition systems have prevented their
deployments in high level security scenarios. Therefore, it is necessary to develop
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Fig. 6.1 Example fake iris images. a Artificial eye model. b Textured contact lens. c Synthetic iris
images. d Iris pattern printed on the paper. e Iris image/video displayed on the LCD

intelligent self-protection methods to identify and defend all possible attacks to iris
systems.

This chapter mainly addresses the protectionmethods against the most commonly
encountered attacks to an iris recognition system at sensor input level, i.e., iris live-
ness detection. Presentation of a fake iris pattern to the iris camera is themost popular
approach to spoof an iris recognition system Fig. 6.1. Fake iris images may be cap-
tured from artificial eyeball (it is usually designed for blind persons with realistic
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iris-texture pattern) (Fig. 6.1a), textured contact lens (Fig. 6.1b), synthetic iris images
Fig. 6.1c, iris pattern printed on the paper (Fig. 6.1d), iris image/video displayed on
the LCD (Fig. 6.1e), etc. In 2002, German technology magazine c’t conducted a set
of well-designed tests to check the security of 11 biometrics systems available on
the market, including face, fingerprint, and iris systems [4]. The results are that all
tested systems were defeated. The first systematic study on the vulnerability of iris
recognition systems to the spoofing attacks was reported by Matsumoto [5]. The
printed iris patterns using a high resolution inkjet printer may successfully pass the
identity check of all three commercial iris recognition systems with a probability of
over 50% [5]. Therefore, it is greatly important to develop advanced iris liveness
detection methods for the security of iris recognition applications.

Iris liveness detection aims to authenticate whether the input iris images are cap-
tured from a living subject. Iris liveness detection is an important module in an iris
recognition system to reduce the risks of being spoofed by fake iris patterns at the
sensor input. Both physiological and optical characteristics of iris biometrics may be
used for iris liveness detection. And automatic detection of a fake iris attack may be
accomplished at the iris sensor level, at the algorithm level or a combination of both.
A brief review of the existing iris liveness detection methods is given as follows.

Iris liveness detection based on physiological characteristics of human iris. The
eye itself has some physiological characteristics relating to the natural processes
performed by living things, which can be exploited for liveness detection. The com-
monly used physiological characteristics for iris liveness detection include eyeblink,
pupillary light reflex, pupillary unrest (hippus), etc.

Eyeblink is a physiological activity of closing and opening the eyelids, which is
an informative feature for liveness detection of both face and iris recognition sys-
tems. Conditional random fields-based eyeblink detection method was developed
to check the liveness of face biometrics [6]. Eyeblink detection is useful to dis-
criminate real iris and static fake iris patterns such as iris photograph because of
the visual salience of dynamic features during eyelid movements. However, if the
attacker wears cosmetic contact lenses or shows a pre-recorded video, the inherent
characteristics of eyeblink is also observable. In addition, the eye blink frequency
is variable across different subjects and even the same subject may have variable
blink frequency under various conditions, so it is a challenging task to develop a
stable eyeblink-based iris liveness detection method in practical applications. The
pupil is in the state of rhythmic contraction and dilation called hippus or pupillary
unrest under normal conditions [7, 8]. The dynamic change of pupil size will cause
the nonlinear deformation of iris texture. So both pupil size variation and iris texture
deformation can be used for iris liveness detection. An intuitive solution to detect
pupillary unrest (hippus) is to measure the variation of the ratio between pupil and
iris diameter in iris image sequences. However, the change of pupil size in normal
illumination is not significant. So active illuminators are usually used in iris cameras
to cause significant pupil dilation or constriction. Pupil size usually increases in a
dark environment (allowing more light in) and decreases in a bright environment
(allowing less light in). Such an involuntary biological response of pupil to the inten-
sity (luminance) of light is known as the pupillary light reflex. Huang et al. designed
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a controllable visible light source in the long range iris image acquisition system
to generate four different illumination conditions (simulation from a dim corridor
environment to a home interior lighting and bright working areas) that cause pupil
constriction [9]. Pupil constriction measurement based on ratio of pupil diameter to
iris diameter was demonstrated to have significant difference under different illumi-
nation conditions [9]. However, a number of researchers (including Huang et al. [9]
and Puhan et al. [10]) have noticed that the pupil size variation-based iris liveness
detection methods are only effective in detection of printed iris, photographs, plas-
tic/glass eye opaque contact lens, etc., because such fake iris images do not show
the change in pupil’s size when illumination changes. If the attackers wear cosmetic
contact lens (opaque in outer side and partly transparent in inner side adjacent to
pupil [10]) where the pupil boundary is not covered or occluded [9], the fake iris
image sequences also show pupillary light reflex. Therefore, bothHuang et al. [9] and
Puhan et al. [10] suggested tomeasure the iris texture deformation as an implicit indi-
cator of pupil constriction. Huang et al. proposed to combine pupil size variation and
mutual information between cross-frame image patches to better represent the pupil
constriction features. And Puhan et al. [10] computed the normalized Hamming dis-
tance on binary texture features to quantify textural dissimilarity between localized
iris regions for verification of pupillary light reflex. The similarity measure between
interframe image regions (e.g., mutual information in [9] and normalized Hamming
distance in [10]) is a good approach to detect iris deformation and pupil constriction
but it may be sensitive to iris image quality variations in uncontrolled conditions such
as defocused, motion blurred, specular reflections, eyelids, and eyelash occluded iris
images.

Iris liveness detection based on optical characteristics of human iris. Real and
fake irises may exhibit significantly different optical characteristics under visible,
near-infrared, multispectral, and structured lighting respectively. For example, red-
eye effect may be a useful evidence of authentic iris but it is an intrusive manner to
suddenly generate flash lighting. So it is more natural to use the existing near-infrared
illumination in iris imaging for optical liveness evaluation. The main optical char-
acteristics useful for iris liveness detection under near-infrared illumination include
frequency distribution, Purkinje images, image quality features, statistical texture
features, etc.

Daugman proposed to identify the printed iris pattern based on frequency analysis
[11]. The periodic dot printing process will generate focused high frequency in fake
iris images so it is possible to utilize the frequency characteristics for iris liveness
detection. This method is limited to printed iris detection. In addition, if the fake
iris images are captured out of the focusing range, the high frequency components
cannot be found in the defocused iris images. So the defocused fake iris images have
the risk to be recognized as authentic samples using frequency analysis-based iris
liveness detection methods.

Four optical surfaces of human eye (the inner and outer surface of the cornea,
anterior and posterior surface of the lens) will generate the corresponding reflection
images which are known as Purkinje images. Lee et al. [12] proposed a fake iris
detection scheme based on Purkinje images. The Purkinje images-based method is
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effective for identification of printed iris pattern and glass/plastic eye models but
fails to detect contact lens because the pupil is still visible even the attacker wears
contact lens.

Galbally et al. proposed to use iris image quality measures for iris liveness detec-
tion [13]. A number of iris image quality features including focus features, motion
features, occlusion features, global and local contrast, pupil dilation are combined
to construct a high-dimensional feature vector for classification of genuine and fake
iris images. And then a feature selection method, namely Sequential Floating Fea-
ture Selection (SFFS) is used to select the most effective feature set for iris liveness
detection. The image quality measures try to provide a comprehensive description
of the textural and geometric features of genuine and fake iris images. But it does
not design the most effective features specific for iris liveness detection although a
variety of popular iris features have been exploited in feature selection.

Genuine and fake iris images have distinctive texture patterns, therefore,
well-developed texture analysis and pattern classification methods can be used for
iris liveness detection. The texture features useful for iris liveness detection include
gray level co-occurrence matrix [14], statistical distribution of iris texture primitives
[15], local binary patterns (LBP) [16], and weighted LBP [17]. He et al. proposed
a contact lens detection method via statistical texture analysis [14]. Four distinc-
tive features based on gray level co-occurrence matrix (GLCM) are extracted and
support vector machine is used for classification of genuine and fake iris images.
Wei et al. proposed a texture analysis-based method for contact lens detection [15].
Iris Textons are learned to represent statistical texture features of real and fake iris
images. He et al. used Adaboost to learn the most distinctive LBP features for iris
spoof detection [16]. Zhang et al. realized high accuracy fake iris detection based
on weighted LBP encoding strategy and SVM classifier [17]. Doyle et al. [18] used
modifiedLBP to automatically determine the contact lens type of a person (no contact
lens/clear prescription lens/textured cosmetic lens). Texture analysis-based iris live-
ness detection methods do not need special iris sensors. However, the texture of real
and fake iris images is not absolutely distinguishable and the training process of the
real/fake iris classification method limits the generality of the iris liveness detection
algorithm. Doyle et al. [19] demonstrated that the accuracy of texture analysis-based
textured lens detection can drop dramatically in cross-sensor or cross-lens pattern
applications.

The multispectral imaging system can illustrate the spectrum-related visual fea-
tures available in genuine iris images. Lee et al. [20, 21] found the ratio of visual
features between iris images captured under 750 and 850nm illumination is effective
for iris liveness detection. The method can distinguish printed fake iris and artificial
eyeballs from live iris patterns. Chen et al. [22] combined the multispectral char-
acteristics of conjunctival vessels in eyeball and multispectral characteristics of iris
textures from iris images simultaneously captured at near-infrared (860nm) and blue
(480nm) wavelengths for iris liveness detection. The multispecial visual features are
reliable for iris liveness detection but special design of iris sensor is needed.

Connell et al. [23] developed an optical system consisting of a miniature projector
and an offset camera to observe the discriminative optical characteristics of genuine
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Fig. 6.2 Two iris liveness detection strategies in an iris recognition system

eyeball using structured light projection. A normal eye and one with a patterned
contact lens are supposed to generate different deformations of a projected striped
pattern [23]. So the light rays projected on the subject’s eye can be used to measure
their curvature for detection of a patterned contact lens. However, this method has
limitation in applications because the structured light projection cannot be always
observed in complex environments.

Based on the above analysis, both physiological and optical characteristics have
their advantages and disadvantages in iris liveness detection. So it is better to combine
all available features together to achieve a more reliable solution to secure iris recog-
nition systems. Iris liveness detection may be performed at different stages in iris
recognition. For example, there are two strategies of iris liveness detection (Fig. 6.2).
One is to perform iris liveness detection immediately after iris image acquisition
(Fig. 6.2a). If the input iris images are identified as fake samples, the current user is
rejected immediately and the input iris images are prevented from the following iris
recognition process. If the iris liveness detection algorithm is accurate and efficient,
it is a good strategy to identify the fake iris images before iris recognition. However,
fake iris attack in some applications is a low probability event so false alarms of fake
iris images may increase the FRR of iris recognition. So another strategy is only the
successfully recognized iris images are checked with liveness detection (Fig. 6.2b).
A large portion of fake iris images can be rejected by iris recognition in quality
assessment and feature matching steps. So iris recognition is also a good approach
for iris liveness detection. This strategy can reduce the risk of false alarm of fake iris
images and save time for iris liveness detection since only recognized iris images are
checked their liveness characteristics.
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Fig. 6.3 Comparison of texture features of real and fake iris images. a Real iris images. b Fake iris
images

Although both hardware and software countermeasures may be developed to
detect iris liveness, this chapter mainly discusses automatic classification of real
and fake iris images at algorithm level. Example real and fake iris images are shown
in Fig. 6.3. There are significant differences of texture features between real and fake
iris images. The real iris images usually have naturally smooth texture features. In
contrast, the fake iris images have coarse texture pattern due to the printed iris tex-
ture on contact lens, paper, and other materials. So texture analysis is an effective
solution to iris liveness detection. We have proposed four statistical texture analysis
methods based on various texture primitives, e.g., gray level co-occurrence matrices
(GLCM) [15], iris textons [15], Adaboost selected LBP [16], and weighted LBP [17]
for classification of real and fake iris images.Andwe have also constructed a database
including different kinds of fake iris images to test the performance of texture-based
iris liveness detection methods. The main contents of this chapter introduce the
technical details and testing results of the proposed four texture analysis-based iris
liveness detection methods [15–17]. Section7.13.2 introduces statistical features of
gray level co-occurrence matrices for iris liveness detection. Section7.13.3 presents
statistical distribution of iris textons for iris liveness detection. Section7.9.4 and
Sect. 7.9.5 present Adaboost learned and weighted local binary patterns for iris live-
ness detection respectively. The fake iris image databases and evaluation results of the
four iris liveness detectionmethods are reported in Sect. 7.6.6. Our experiences in iris
liveness detection show that statistical texture features are effective to discriminate
genuine and fake iris images.

6.2 Statistical Features of Gray Level Co-occurrence Matrices
for Iris Liveness Detection

Gray level co-occurrence matrices (GLCM) describe the distribution of neighboring
pixel pairs with specific pattern of intensity and spatial relations. GLCM is a classic
texture analysis method in modeling second order image statistics. The repeated dot
patterns of iris texture printed on the cosmetic contact lens (Fig. 6.3b) can be well
represented by GLCM.

http://dx.doi.org/10.1007/978-1-4471-6524-8_7
http://dx.doi.org/10.1007/978-1-4471-6524-8_7
http://dx.doi.org/10.1007/978-1-4471-6524-8_7
http://dx.doi.org/10.1007/978-1-4471-6524-8_7
http://dx.doi.org/10.1007/978-1-4471-6524-8_7
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Fig. 6.4 Feature selection of GLCM-based texture features for iris liveness detection

Haralick et al. defined 14 measures of textural features based on co-occurrence
matrix, e.g., homogeneity, contrast, correlation, variance, inverse differencemoment,
etc. [24]. We adopt these distinctive measures to represent real and fake iris images
[15]. These features are orientation dependent sowe can obtain four feature values for
each measure computed at different orientations (0◦, 45◦, 90◦, 135◦) . The statistics
of the four feature values including mean X and range (Max(X) − Min(X)) are
used to represent the texture features of each measure. Therefore, an iris image can
be represented by 28 GLCM-based texture features. We found that the feature set
shows certain redundancies, indicating only some feature components are necessary
for iris liveness detection. Therefore feature selection strategy is employed to find
the most effective subset of the GLCM feature set. We tried different combinations
of these 28 texture features for classification of real and fake iris images in the
training set (Fig. 6.4). The result shows that only three features are enough to achieve
high classification rate and more features cannot improve the CCR further. Therefore
three GLCM-based texture features are finally selected to characterize iris texture.
They are inverse difference moment fidm , sum average fsa and sum entropy fse

with the following definitions:

fidm =
∑

i

∑

j

1

1 + (i − j)2
p(i, j)

fsa =
∑2Ng

i=2
i px+y(i)

fse = −
∑2Ng

i=2
px+y(i) log(px+y(i)) (6.1)

where p(i, j) is the co-occurrence matrix, px+y(k) = ∑Ng
i=1

∑Ng
j=1 p(i, j),

(i + j = k, k = 2, 3, . . . , 2Ng) , and Ng is the number of gray levels.
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Fig. 6.5 Flowchart of learning Iris-Texton vocabulary

Euclidean distance is used to measure the dissimilarity between the texture features
of two iris images. Finally, SVM is employed to learn a classifier for iris liveness
detection.

6.3 Statistical Distribution of Iris Textons for Iris Liveness
Detection

Iris texture varies from person to person in terms of the number, size, shape, ori-
entation, and location of minute image structures. These minute features are the
building blocks (or textons) of iris texture. So it is a good idea to represent iris tex-
ture using texton-like concept. However, it is inappropriate to use traditional concept
of textons for this purpose due to the irregularity of iris textons. Comparatively, the
learning-based texton concepts such as bag-of-word, visual codebook, or visual dic-
tionary in object recognition literature aremore suitable for iris texton representation.
Local binary patterns are predefined visual dictionary which is universal for statis-
tical texture analysis. LBP cannot precisely describe the freckles, coronas, crypts,
furrows, etc., in iris images. So it is desirable to learn a better visual dictionary spe-
cific to iris minute features. In addition, it is interesting to find the dominant textons
and their distributions in iris images.

Motivated by the popularity of bag-of-words model in object recognition, we
propose clustering-based Iris-Texton vocabulary. The flowchart of learning visual
iris vocabulary is shown in Fig. 6.5 with the following key steps:

(1) Construct the training dataset. The training set should contain normalized iris
images from a large number of subjects so that various representative iris texture
patterns can be included.

(2) Filter all iris images in training set with a bank of Gabor filters so that each iris
image region is transformed into a feature vector.

(3) Cluster all feature vectors into a compact set of typical iris image patches,
i.e., Iris-Texton Vocabulary.
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Fig. 6.6 Distribution of iris textons in real and fake iris images

Iris-Texton vocabulary is well suited to describe the specific texture features of iris
images. Therefore statistical distribution of iris textons is adopted for classification
of real and fake iris images [15]. The only difference is the training data is replaced
with real and fake iris images to learn the specific visual primitives in real/fake
iris texture. Finally, the input iris image is represented with the distribution of iris
textons (Fig. 6.6). It is expected that real and fake iris images have significantly
different constitution of basic texture elements. Chi-square is used to measure the
dissimilarity between the statistical texture features of two iris images. Finally, SVM
is employed to learn a classifier for classification of real and fake iris images.

6.4 Selected Local Binary Patterns for Iris Liveness Detection

Local binary pattern has become a popular method for texture analysis. So it is a
straightforward idea to use LBP features to represent the regional texture pattern of
fake iris images. However, how to choose appropriate parameters of LBP descriptors
is still unknown. In addition, the texture features of fake iris images vary from region
to region (Fig. 6.3b). Most discriminating features of fake iris images are distributed
on regions close to the iris boundary. So it is necessary to use a machine learning
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Fig. 6.7 The ROI of iris images used for iris liveness detection

Fig. 6.8 Illustration of Local binary patterns

method to select the most effective LBP features for iris liveness detection [16]. To
avoid eyelids or eyelashes occlusions, the upper and lower regions of iris images are
excluded and only the left and right parts are divided into six subregions for LBP
feature extraction (Fig. 6.7).

The local binary patterns (LBP) is adopted as texture descriptor. Basically, LBP
is defined for each pixel by thresholding its neighborhood pixels with the center
pixel value, and considering the result as a binary bit string (Fig. 6.8). We use mul-
tiresolution uniform LBPs (including L B Pu2

8,1, L B Pu2
8,2, L B Pu2

8,5, L B Pu2
8,7, L B Pu2

12,2,

L B Pu2
12,3, L B Pu2

12,5, L B Pu2
16,3, L B Pu2

16,5, L B Pu2
16,7 ) for iris texture representation [25].

The numbers of bins of these LBP histograms are 59, 59, 59, 59, 135, 135, 135, 243,
234, and 234 respectively. For six subregions, we totally get 8,220 possible LBP
bins. Each bin represents the frequency of one type of micro image structures on a
subregion, and is considered as a candidate texture feature. A large pool of regional
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Fig. 6.9 The most effective local binary patterns selected by Adaboost

LBP features is generated, which contains much redundant information because of
the redundancy between different LBP features as well as that between different sub-
regions. The Adaboost algorithm is adopted to learn the most discriminative regional
LBP features from the redundant feature pool [26, 27]. Adaboost is particularly effi-
cient for two-class problems, and therefore is suitable for selecting the best LBP
features for iris spoof detection. Given a training database, we can learn the most
effective local binary patterns based on Adaboost (Fig. 6.9). It should be noted that
these LBP features are extracted at different regions of iris images and each texture
feature for iris spoof detection is jointly determined by an LBP feature and an image
region. Each LBP feature is regarded as weak classifier and an ensemble of the most
effective LBP features are combined to construct a strong classifier for iris liveness
detection.
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Fig. 6.10 The ROI of an iris image used for feature extraction

6.5 Weighted LBP for Iris Liveness Detection

As introduced above, the LBP feature is capable for iris liveness detection and other
coarse classification task. However, the weights of different binary codes are equal in
LBP coding, resulting in the sensitiveness of LBP to noise. Therefore, we proposed
a weighted LBP (w-LBP) feature which re-ranks the binary digits of LBP according
to the gradient direction. The SIFT descriptor is largely invariant to changes of scale,
illumination, and local affine distortions, and also in a certain degree of stability to
view changes and noise [28]. We use the SIFT descriptor to improve the stability and
robustness of LBP.

We extract w-LBP features from iris images. The bounding square block of iris
circle is regarded as the ROI for feature extraction (Fig. 6.10). To extract w-LBP fea-
tures, the first step is to generate the scale space L(x, y, 3/4) from the convolution of
a variable-scale Gaussian template G(x, y, 3/4), with an image I (x, y). The second
step is to extract a simplified SIFT descriptor for each pixel in its 5 × 5 neighbor-
hood, as shown in Fig. 6.11. Arrows denote the magnitude and orientation at each
image pixel, and the overlaid circle is weighted Gaussian window. Fig. 6.11b shows
the orientation histograms summarizing the visual contents over subregions. In order
to achieve orientation invariance, the coordinates of the descriptor and the gradient
orientations are rotated relatively to the main orientation, which is determined by all
the gradient directions of every scale. The last step is to get a descending rank of the
orientation histogram, denoted as kSIFT(i),RankSIFT(i) ∈ {0, 1, . . . , 7} , where i is
the ID of orientation.

Then, for each pixel, we regard the directionwith the larger SIFT histogram entries
as the higher bit of binary string. According to the SIFT orientation histogram, we
encode w-LBP as
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Fig. 6.11 Simplified SIFT descriptor. a Gradients. b Descriptor

Fig. 6.12 Diagram of weighted LBP encoding

w-LBP8 =
7∑

i=0

sign (gi − gc)2
RankSIFT(i)

sign (gi − gc) =
{
0, if gi < gc

1, if gi ≥ gc
(6.2)

where gi is gray value of a neighbor pixel, gc is gray value of the central pixel, and
the neighbor pixel ID i corresponds to the ID of orientation histogram. Fig. 6.12 is
an illustration of w-LBP encoding.

To achieve gray-scale invariance, w-LBP is extracted at each level of Gaussian
scale space, denoted by G1–G6. For G1–G3, we get three w-LBPmaps as mentioned
above, as shown in Fig. 6.13a. For G4–G6, we extract w-LBP in 24 neighbors shown
in Fig. 6.13b. For a specific direction, when at least two of three neighborhood pixels
are larger than the center pixel, the value of a binary bit string is set as 1, otherwise 0.

We divide a w-LBP map into m × n partitions equally, and abandon the first
and last rows to avoid the impact of eyelids. In each partition, three statistics of the
w-LBPmap are exacted, namely, standard deviation of w-LBP histogram, mean, and
standard deviation of w-LBP map according to the following formulas.
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Fig. 6.13 Diagram of the multiscale weighted LBP features

Imap = 1

m × n

∑

i, j
Imap(i, j)

σmap =
√

1

m × n

∑

i, j
(Imap(i, j) − Imap)2

σhist =
√

1

256

∑255

i=0

(

hist(i) − m × n

256

)2

(6.3)

where m and n are the size of block, and Imap and hist are map and histogram of
w-LBP respectively. The extracted features are used for classification of fake and
genuine iris images based on SVM classifier.

6.6 Experimental Results

To establish a benchmark for iris liveness detection, we develop a large fake iris
imagedatabase includingvarious fake iris images captured fromprinted iris, cosmetic
contact lens, and plastic eyeball, and synthesized from cosmetic contact lens patterns.

6.6.1 Printed Iris Pattern

High quality iris images can be printed on paper with advanced laser printers. We
choose to print color iris images from UPOL database [29] to forge visually realistic
iris pattern. The UPOL database contains 384 iris images from left and right eyes of
64 subjects.We randomly select one image of each class for printing. And then an iris
camera is used to capture ten iris images from each forged iris pattern. Two examples
of the captured fake iris images and the corresponding normalized iris images are
shown in Fig. 6.14. The iris texture is clearly preserved on the captured iris images.
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Fig. 6.14 Two example images captured from the printed iris patterns and the corresponding
normalized iris images

Fig. 6.15 Example iris image with cosmetic contact lens. a Genuine iris image. b Fake iris pattern
with cosmetic contact lens

6.6.2 Textured Contact Lens

Nowadays more and more people wear cosmetic contact lens, which has become the
most popular approach to spoof an iris system. There are 74 volunteers wearing 56
kinds of cosmetic contact lens for acquisition of fake iris images (Fig. 6.15).

6.6.3 Synthesized Iris Images with Textured Contact Lens

The size of fake iris image database is limited, so we propose to synthesize more
samples from the fake iris images with cosmetic contact lens. Firstly the iris image
synthesis method based on patch sampling [30] is used to generate artificial iris
texture prototypes from the original iris images captured from the subjects wearing
cosmetic contact lens. And then intraclass variations such as distortion, defocus,
noise, perturbation, and rotation are introduced to generate multiple derivatives for
each class. Fig. 6.16 shows an example of image prototype with cosmetic contact
lens and its intraclass derivatives.
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Fig. 6.16 An iris image prototype of cosmetic contact lens and its intraclass derivatives.aPrototype.
b Defocus sample. c Noisy sample. d Deformation sample. e Rotation sample

Fig. 6.17 Forged iris images from plastic eyeball model. a Plastic eyeball models. b Fake iris
images captured from the plastic eyeball model

6.6.4 Plastic Eyeball Model

Plastic eyeball with realistic iris texture pattern can be used to spoof iris recognition
systems. So we made some plastic eyeball models with iris texture from the UPOL
database [29] (Fig. 6.17). And then ten iris images are captured from each plastic
eyeball to construct the fake iris image database.

To evaluate the performance of iris liveness detection methods, a fake iris image
databaseDB_All including four datasets, i.e., DB_Print, DB_Contact, DB_Synthesis
and DB_Eyeball is constructed (Fig. 6.18). DB_Print contains 640 iris images
captured from the printed iris patterns on paper. DB_Contact contains 1,000 iris
images captured from the subjects wearing cosmetic contact lens. DB_Synthesis
contains 2,400 iris images synthesized from DB_Contact. DB_Eyeball contains 480
iris images captured from the plastic eyeball models.

Four texture analysis-based iris liveness detection methods, i.e., GLCM,
Iris-Texton, s-LBP (Adaboost selected local binary pattern) and w-LBP (weighted
LBP) are tested on the fake iris image databases. Half of the fake iris images are
used for training and the rest for testing. Table6.1 shows the testing results including
CCR (Correct Classification Rate) and EER (Equal Error Rate) of these methods.

A number of conclusions can be drawn from the experimental results.
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Fig. 6.18 Examples of fake iris images. a–d Iris images with cosmetic contact lens.e, f Iris images
captured from the printed iris pattern on paper. g, h Iris images captured from the plastic eyeball
models. i Synthesized fake iris image. j–l Genuine iris images

Table 6.1 Testing results of four iris liveness detection methods

Test database DB_Print DB_Contact &
DB_Synthesis

DB_Eyeball DB_All

Metrics CCR(%) EER(%) CCR(%) EER(%) CCR(%) EER(%) CCR(%) EER(%)

Method

GLCM 95.78 5.33 93.72 7.23 96.13 4.72 93.85 6.56

Iris-Texton 99.54 0.70 98.65 4.54 97.58 1.38 95.82 5.07

s-LBP 99.67 0.54 98.36 1.82 99.80 0.47 98.22 1.07

w-LBP 99.62 0.52 99.14 0.92 99.66 0.38 99.23 0.86

1. Texture analysis is an effective method for classification of genuine and fake
iris images. Four kinds of fake iris images including printed iris pattern, cosmetic
contact lens, synthesized iris pattern, and plastic eyeballmodel can be successfully
identified by these texture-based iris liveness detection methods.

2. There is significant difference between these four statistical texture analysismeth-
ods in terms of iris liveness detection performance. So it is important to develop
distinctive and robust iris feature representations for classification of genuine and
fake iris images.



6 Iris Anti-spoofing 121

3. Weighted LBP method achieves the best CCR and EER in iris liveness detection
because SIFTdescriptor andLBPoperator are combined to characterize the robust
texture features of fake iris images.

4. It is still difficult to successfully discriminate all genuine and fake iris images
since the texture features of some genuine and fake iris images are similar. It is
unrealistic to rely on iris liveness detection algorithms to identify all iris spoof
attacks. So it is suggested to combine sensor level and algorithm level iris liveness
detection approaches to improve the security of iris recognition systems.

6.7 Summary

Iris recognition is being deployed in many important applications such as national ID
card, banking, social benefit, border control, etc. The risk of security attacks to iris
recognition systems increases accordingly driven by the great benefit of fraudulent
identity authentication. It is predictable that attackers will paymore efforts to develop
advanced methods to spoof iris biometrics. For example, more realistic fake iris
patterns may be presented at iris sensor input. So it will become more challenging
to develop a reliable security solution to iris recognition with the advancement of
iris attack approaches. In this sense, the research of security defense technology for
iris recognition will never stop since the attack approaches are dynamically updated.
The most challenging problem for secure iris recognition is that the possible attacks
to an iris recognition system are unpredictable but the attack patterns in a training
database are limited.And the sources of attacks to an iris systemarewidely distributed
at sensor level, iris recognition algorithm level and application level. So it is almost
impossible to guarantee a 100% absolutely secure iris recognition system. But the
efforts to protect the security of iris recognition systems are meaningful since the
risk can be reduced with intelligent attack detection.

This chapter aims to improve the security level of an iris recognition system
against commonly encountered attacks at the iris sensor. Texture analysis methods
are proposed to classify the input iris images into genuine and fake samples. Our
results show that the learned statistical texture features such as LBP can achieve
99 accuracy in identification of fake iris pattern printed on paper, cosmetic contact
lens, and plastic eyeball. The performance of the proposed security enhancement
methods for iris biometrics needs more test in practice. It is still unknown whether
the texture-based iris liveness detection method can identify more natural fake iris
patterns in practice.
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Chapter 7
Speaker Recognition Anti-spoofing

Nicholas Evans, Tomi Kinnunen, Junichi Yamagishi, Zhizheng Wu,
Federico Alegre and Phillip De Leon

Abstract Progress in the development of spoofing countermeasures for automatic
speaker recognition is less advanced than equivalent work related to other biometric
modalities. This chapter outlines the potential for even state-of-the-art automatic
speaker recognition systems to be spoofed. While the use of a multitude of different
datasets, protocols and metrics complicates the meaningful comparison of different
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vulnerabilities, we review previous work related to impersonation, replay, speech
synthesis and voice conversion spoofing attacks. The article also presents an analysis
of the early work to develop spoofing countermeasures. The literature shows that
there is significant potential for automatic speaker verification systems to be spoofed,
that significant further work is required to develop generalised countermeasures, that
there is a need for standard datasets, evaluation protocols andmetrics and that greater
emphasis should be placed on text-dependent scenarios.

7.1 Introduction

As one of our primary methods of communication, the speech modality has natural
appeal as a biometric in one of two different scenarios: text-independent and text-
dependent. While text-dependent automatic speaker verification (ASV) systems use
fixed or randomly prompted utterances with known text content, text-independent
recognisers operate on arbitrary utterances, possibly spoken in different languages.
Text-independent methods are best suited to surveillance scenarios where speech sig-
nals are likely to originate fromnoncooperative speakers. In authentication scenarios,
where cooperation can be readily assumed, text-dependent ASV is generally more
appropriate since better performance can then be achieved with shorter utterances.
On the other hand, text-independent recognisers are also used for authentication in
call-centre applications such as caller verification in telephone banking.1 On account
of its utility in surveillance applications, evaluation sponsorship and dataset avail-
ability, text-independent ASV dominates the field.

The potential for ASV to be spoofed is now well recognised [1]. Since speaker
recognition is commonly used in telephony or other unattended, distributed scenarios
without human supervision, speech is arguably more prone to malicious interference
or manipulation than other biometric signals. However, while spoofing is relevant
to authentication scenarios and therefore text-dependent ASV, almost all prior work
has been performed on text-independent datasets more suited to surveillance. While
this observation most likely reflects the absence of viable text-dependent datasets in
the recent past, progress in the development of spoofing countermeasures for ASV
is lagging behind that in other biometric modalities.2

Nonetheless, there is growing interest to assess the vulnerabilities of ASV to
spoofing and new initiatives to develop countermeasures [1]. This article reviews
the past work which is predominantly text-independent. While the use of different
datasets, protocols and metrics hinders such a task, we aim to describe and analyse
four different spoofing attacks considered thus far: impersonation, replay, speech
synthesis and voice conversion. Countermeasures for all four spoofing attacks are
also reviewed and we discuss the directions which must be taken in future work

1 http://www.nuance.com/landing-pages/products/voicebiometrics/freespeech.asp.
2 http://www.tabularasa-euproject.org/.

http://www.nuance.com/landing-pages/products/voicebiometrics/freespeech.asp
http://www.tabularasa-euproject.org/
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to address weaknesses in the current research methodology and to properly protect
ASV systems from the spoofing threat.

7.2 Automatic Speaker Verification

This section describes state-of-the-art approaches to text-independent automatic
speaker verification (ASV) and their potential vulnerabilities to spoofing.

7.2.1 Feature Extraction

Since speech signals are nonstationary, features are commonly extracted from short-
term segments (frames) of 20–30ms in duration. Typically, mel-frequency cepstral
coefficient (MFCC), linear predictive cepstral coefficient (LPCC), or perceptual lin-
ear prediction (PLP) features are used as a descriptor of the short-term power spec-
trum. These are usually appended with their time-derivative coefficients (deltas and
double-deltas) and they undergo various normalisations such as global mean removal
or short-term Gaussianization or feature warping [2]. In addition to spectral features,
prosodic and high-level features have been studied extensively [3–5], achieving com-
parable results to state-of-the-art spectral recognisers [6]. For more details regarding
popular feature representations used in ASV, readers are referred to [7].

The literature shows that ASV systems based on both spectral and prosodic fea-
tures are vulnerable to spoofing. As described in Sect. 7.3, state-of-the-art voice
conversion and statistical parametric speech synthesisers may also use mel-cepstral
and linear prediction representations; spectral recognisers can be particularly vul-
nerable to synthesis and conversion attacks which use ‘matched’ parameterisations.
Recognisers which utilise prosodic parameterisations are in turn vulnerable to human
impersonation.

7.2.2 Modelling and Classification

Approaches to ASV generally focus on modelling the long-term distribution of spec-
tral vectors. To this end, theGaussianmixturemodel (GMM) [8, 9] has become the de
facto modelling technique. Early ASV systems used maximum likelihood (ML) [8]
andmaximum a posteriori (MAP) [9] training. In the latter case, a speaker-dependent
GMM is obtained from the adaptation of a previously trained universal background
model (UBM). Adapted GMM mean supervectors obtained in this way were com-
bined with support vector machine (SVM) classifiers in [10]. This idea lead to the
development of many successful speaker model normalisation techniques including
nuisance attribute projection (NAP) [11, 12] and within-class covariance normalisa-
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tion (WCCN) [13]. These techniques aim to compensate for intersession variation,
namely differences in supervectors corresponding to the same speaker caused by
channel or session mismatch.

Parallel to the development of SVM-based discriminative models, generative fac-
tor analysis models were pioneered in [14–16]. In particular, joint factor analysis
(JFA) [14] can improve ASV performance by incorporating distinct speaker and
channel subspace models. These subspace models require the estimation of various
hyper-parameters using labelled utterances. Subsequently, JFA evolved into a much-
simplified model that is now the state of the art. The so-called total variability model
or ‘i-vector’ representation [17] uses latent variable vectors of low-dimension (typ-
ically 200–600) to represent an arbitrary utterance. Unlike JFA, the training of an
i-vector extractor is essentially an unsupervised process which leads to only one sub-
spacemodel. Accordingly it can be viewed as a approach to dimensionality reduction,
while compensation for session, environment and other nuisance factors are applied
in the computationally light back-end classification. To this end, probabilistic linear
discriminant analysis (PLDA) [18] with length-normalised i-vectors [19] has proven
particularly effective.

Being based on the transformation of short-term cepstra, conversion and synthe-
sis techniques also induce a form of ’channel shift’. Since they aim to attenuate
channel effects, approaches to intersession compensation may present vulnerabili-
ties to spoofing through the potential to confuse spoofed speech with channel-shifted
speech of a target speaker.However, even if there is some evidence to the contrary, i.e.,
that recognisers employing intersession compensation might be intrinsically more
robust to voice conversion attacks [20], all have their roots in the standard GMM
and independent spectral observations. Neither utilises time sequence information,
a key characteristic of speech which might otherwise afford some protection from
spoofing.

7.2.3 System Fusion

In addition to the development of increasingly robust models and classifiers, there is
a significant emphasis within the ASV community on the study of classifier fusion.
This is based on the assumption that independently trained recognisers capture dif-
ferent aspects of the speech signal not covered by any individual classifier. Fusion
also provides a convenient vehicle for large-scale research collaborations promot-
ing independent classifier development and benchmarking [21]. Different classifiers
can involve different features, classifiers, or hyper-parameter training sets [22]. A
simple, yet robust approach to fusion involves the weighted summation of the base
classifier scores, where the weights are optimised according to a logistic regression
cost function. For recent trends in fusion, readers are referred to [23].

While we are unaware of any spoofing or anti-spoofing studies on fused ASV
systems, some insight into their likely utility can be gained from related work in
fused, multi-modal biometric systems; whether the scores originate from different
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biometric modalities or sub-classifiers applied to the same biometric trait makes little
difference. A common claim is that multi-biometric systems should be inherently
resistant to spoofing since an impostor is less likely to succeed in spoofing all the
different subsystems. We note, however, that [24] suggests it might suffice to spoof
only one modality under a score fusion setting in the case where the spoofing of a
single, significantly weighted sub-system is particularly effective.

7.3 Spoofing and Countermeasures

Spoofingattacks are performedonabiometric systemat the sensor or acquisition level
to bias score distributions toward those of genuine clients, thus provoking increases
in the false acceptance rate (FAR). This section reviews past work to evaluate vul-
nerabilities and to develop spoofing countermeasures. We consider impersonation,
replay, speech synthesis and voice conversion.

7.3.1 Impersonation

Impersonation refers to spoofing attacks whereby a speaker attempts to imitate the
speech of another speaker and is one of the most obvious forms of spoofing and
earliest studied.

7.3.1.1 Spoofing

Thework in [25] showed that impersonators can readily adapt their voice to overcome
ASV, but only when their natural voice is already similar to that of the target (the
closest targets were selected from YOHO corpus using an ASV system). Further
work in [26] showed that impersonation increased FAR rates from close to 0% to
between 10 and 60%. Linguistic expertise was not found to be useful, except in cases
when the voice of the target speaker was very different to that of the impersonator.
However, contradictory findings reported in [27] suggest that evenwhile professional
imitators are better impersonators than average people, they are unable to spoof an
ASV system.

In addition to spoofing studies, impersonation has been a subject in acoustic-
phonetic studies [28–30]. These have shown that imitators tend to be effective in
mimicking long-term prosodic patterns and the speaking rate, though it is less clear
that they are as effective in mimicking formant and other spectral characteristics.
For instance, the imitator involved in the studies reported in [28] was not successful
in translating his formant frequencies towards the target, whereas the opposite is
reported in [31].
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Characteristic to all studies involving impersonation is the use of relatively few
speakers, different languages and ASV systems. The target speakers involved in such
studies are also often public figures or celebrities and it is difficult to collect techni-
cally comparable material from both the impersonator and the target. These aspects
of the past work makes it difficult to conclude whether or not impersonation poses a
genuine threat. Since impersonation is thought to involve mostly the mimicking of
prosodic and stylistic cues, it is perhaps considered more effective in fooling human
listeners than today’s state-of-the-art ASV systems [32].

7.3.1.2 Countermeasures

While the threat of impersonation is not fully understood due to limited studies
involving small datasets, it is perhaps not surprising that there is no prior work to
investigate countermeasures against impersonation. If the threat is proven to be gen-
uine, then the design of appropriate countermeasures might be challenging. Unlike
the spoofing attacks discussed below, all of which can be assumed to leave traces of
the physical properties of the recording and playback devices, or signal processing
artefacts from synthesis or conversion systems, impersonators are live human beings
who produce entirely natural speech.

7.3.2 Replay

Replay attacks involve the presentation of previously-recorded speech from a gen-
uine client in the form of continuous speech recordings, or samples resulting from
the concatenation of shorter segments. Replay is a relatively low-technology attack
within the grasp of any potential attacker even without specialised knowledge in
speech processing. The availability of inexpensive, high-quality recording devices
and digital audio editing software might suggest that replay is both effective and
difficult to detect.

7.3.2.1 Spoofing

In contrast to research involving speech synthesis and voice conversion, spoofing
attacks where large datasets are generally used for assessment, e.g. NIST datasets,
all the past work to assess vulnerabilities to replay attacks relates to small, often
purpose-collected datasets, typically involving no more than 15 speakers. While
results generated with such small datasets have low statistical significance, differ-
ences between baseline performance and that under spoofing highlight the vulnera-
bility.

The vulnerability of ASV systems to replay attacks was first investigated in a
text-dependent scenario [33] where the concatenation of recorded digits was tested
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against a hidden Markov model (HMM) based ASV system. Results showed an
increase in the FAR (EER threshold) from 1 to 89% for male speakers and from 5
to 100% for female speakers.

The work in [34] investigated text-independent ASV vulnerabilities through the
replaying of far-field recorded speech in a mobile telephony scenario where signals
were transmitted by analogue and digital telephone channels. Using a baseline ASV
system based on JFA, their work showed an increase in the EER of 1% to almost
70% when impostor accesses were replaced by replayed spoof attacks. A physical
access scenario was considered in [35]. While the baseline performance of their
GMM-UBM ASV system was not reported, experiments showed that replay attacks
produced an FAR of 93%.

7.3.2.2 Countermeasures

A countermeasure for replay attack detection in the case of text-dependent ASV was
reported in [36]. The approach is based upon the comparison of new access samples
with stored instances of past accesses. New accesses which are deemed too similar to
previous access attempts are identified as replay attacks. A large number of different
experiments, all relating to a telephony scenario, showed that the countermeasures
succeeded in lowering the EER in most of the experiments performed.

While some form of text-dependent or challenge-response countermeasure is usu-
ally used to prevent replay attacks, text-independent solutions have also been inves-
tigated. The same authors in [34] showed that it is possible to detect replay attacks
by measuring the channel differences caused by far-field recording [37]. While they
show spoof detection error rates of less than 10% it is feasible that today’s state-
of-the-art approaches to channel compensation will render some ASV systems still
vulnerable.

Two different replay attack countermeasures are compared in [35]. Both are based
on the detection of differences in channel characteristics expected between licit and
spoofed access attempts. Replay attacks incur channel noise from both the recording
device and the loudspeaker used for replay and thus the detection of channel effects
beyond those introduced by the recording device of the ASV system thus serves as
an indicator of replay. The performance of a baseline GMM-UBM system with an
EER 40% under spoofing attack falls to 29% with the first countermeasure and a
more respectable EER of 10% with the second countermeasure.

7.3.3 Speech Synthesis

Speech synthesis, commonly referred to as text-to-speech (TTS), is a technique
for generating intelligible, natural sounding artificial speech for any arbitrary text.
Speech synthesis is used widely in various applications including in-car navigation
systems, e-book readers, voice-over functions for the visually impaired and com-
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munication aids for the speech impaired. More recent applications include spoken
dialogue systems, communicative robots, singing speech synthesisers and speech-
to-speech translation systems.

Typical speech synthesis systems have two main components: text analysis and
speech waveform generation, which are sometimes referred to as the front-end and
back-end, respectively. In the text analysis component, input text is converted into
a linguistic specification consisting of elements such as phonemes. In the speech
waveform generation component, speech waveforms are generated from the pro-
duced linguistic specification.

There are four major approaches to speech waveform generation. In the early
1970s, the speech waveform generation component used very low-dimensional
acoustic parameters for each phoneme, such as formants, corresponding to vocal tract
resonances with hand-crafted acoustic rules [38]. In the 1980s, the speech waveform
generation component used a small database of phoneme units called ’diphones’ (the
second half of one phone plus the first half of the following phone) and concatenated
them according to the given phoneme sequence by applying signal processing, such
as linear predictive (LP) analysis, to the units [39]. In the 1990s, larger speech data-
bases were collected and used to select more appropriate speech units that match
both phonemes and other linguistic contexts such as lexical stress and pitch accent
in order to generate high-quality natural sounding synthetic speech with appropriate
prosody. This approach is generally referred to as ‘unit selection’, and is used inmany
speech synthesis systems, including commercial products [40–44]. In the late 1990s
another data-driven approach emerged, ‘Statistical parametric speech synthesis’, and
has grown in popularity in recent years [45–48]. In this approach, several acoustic
parameters are modelled using a time-series stochastic generative model, typically
a hidden Markov model (HMM). HMMs represent not only the phoneme sequences
but also various contexts of the linguistic specification in a similar way to the unit
selection approach. Acoustic parameters generated fromHMMs and selected accord-
ing to the linguistic specification are used to drive a vocoder (a simplified speech
production model with which speech is represented by vocal tract and excitation
parameters) in order to generate a speech waveform.

The first three approaches are unlikely to be effective in ASV spoofing since they
do not provide for the synthesis of speaker-specific formant characteristics. Further-
more, diphone or unit selection approaches generally require a speaker-specific data-
base that covers all the diphones or relatively large amounts of speaker-specific data
with carefully prepared transcripts. In contrast, state-of-the-art HMM-based speech
synthesisers [49, 50] can learn individualised speech models from relatively little
speaker-specific data by adapting background models derived from other speakers
based on the standard model adaptation techniques drawn from speech recognition,
i.e. maximum likelihood linear regression (MLLR) [51, 52].
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7.3.3.1 Spoofing

There is a considerable volume of research in the literature which has demonstrated
the vulnerability of ASV to synthetic voices generated with a variety of approaches
to speech synthesis. Experiments using formant, diphone and unit selection-based
synthetic speech in addition to the simple cut-and-paste of speech waveforms have
been reported [33, 34, 53].

ASV vulnerabilities to HMM-based synthetic speech were first demonstrated
over a decade ago [54] using an HMM-based, text-prompted ASV system [55] and
an HMM-based synthesiser where acoustic models were adapted to specific human
speakers [56, 57]. The ASV system scored feature vectors against speaker and back-
groundmodels composedof concatenated phonememodels.When testedwith human
speech the ASV system achieved an FAR of 0% and an FRR of 7%.When subjected
to spoofing attacks with synthetic speech, the FAR increased to over 70%, however
this work involved only 20 speakers.

Large-scale experiments using the Wall Street Journal corpus containing 284
speakers and two different ASV systems (GMM-UBM and SVM using Gaussian
supervectors) was reported in [58]. Using a state-of-the-art HMM-based speech syn-
thesiser, the FAR was shown to rise to 86 and 81% for the GMM-UBM and SVM
systems, respectively. Spoofing experiments using HMM-based synthetic speech
against a forensics speaker verification tool BATVOX was also reported in [59] with
similar findings. Today’s state-of-the-art speech synthesisers thus present a genuine
threat to ASV.

7.3.3.2 Countermeasures

Only a small number of attempts to discriminate synthetic speech fromnatural speech
have been investigated and there is currently no general solution which is indepen-
dent from specific speech synthesis methods. Previous work has demonstrated the
successful detection of synthetic speech based on prior knowledge of the acoustic
differences of specific speech synthesisers, such as the dynamic ranges of spectral
parameters at the utterance level [60] and variance of higher order parts of mel-
cepstral coefficients [61].

There are some attempts which focus on acoustic differences between vocoders
and natural speech. Since the human auditory system is known to be relatively insen-
sitive to phase [62], vocoders are typically based on a minimum-phase vocal tract
model. This simplification leads to differences in the phase spectra between human
and synthetic speech, differences which can be utilised for discrimination [58, 63].

Based on the difficulty in reliable prosody modelling in both unit selection and
statistical parametric speech synthesis, other approaches to synthetic speech detec-
tion use F0 statistics [64, 65]. F0 patterns generated for the statistical parametric
speech synthesis approach tend to be over-smoothed and the unit selection approach
frequently exhibits ‘F0 jumps’ at concatenation points of speech units.
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7.3.4 Voice Conversion

Voice conversion is a sub-domain of voice transformation [66] which aims to con-
vert one speaker’s voice towards that of another. The field has attracted increasing
interest in the context of ASV vulnerabilities for over a decade [67]. Unlike TTS,
which requires text input, voice conversion operates directly on speech samples. In
particular, the goal is to transform according to a conversion functionF the feature
vectors (x) corresponding to speech from a source speaker (spoofer) to that they are
closer to those of target a speaker (y):

y = F (x, θ). (7.1)

Most voice conversion approaches adopt a training phase which requires frame-
aligned pairs {(xt , yt )} in order to learn the transformation parameters θ . Frame align-
ment is usually achieved using dynamic time warping (DTW) on parallel source-
target training utterances with identical text content. The trained conversion function
is then applied to new source utterances of arbitrary text content at run-time.

A large number of specific conversion approaches have been reported. One of
the earliest and simplest techniques employs vector quantisation (VQ) with code-
books [68] or segmental codebooks [69] of paired source-target frame vectors to
represent the conversion function. However, VQ introduces frame-to-frame discon-
tinuity problems.Among themore recent conversionmethods, joint density Gaussian
mixture model (JD-GMM) [70–72] has become a standard baseline method. It
achieves smooth feature transformations using a local linear transformation. Despite
its popularity, known problems of JD-GMM include over-smoothing [73–75] and
over-fitting [76, 77] which has led to the development of alternative linear conversion
methods such as partial least square (PLS) regression [76], tensor representation [78],
a trajectory hidden Markov model [79], a mixture of factor analysers [80], local lin-
ear transformation [73] and a noisy channel model [81]. Non-linear approaches,
including artificial neural networks [82, 83], support vector regression [84], ker-
nel partial least square [85] and conditional restricted Boltzmann machines [86],
have also been studied. As alternatives to data-driven conversion, frequency warping
techniques [87–89] have also attracted attention.

The approaches to voice conversion considered above are usually applied to the
transformation of spectral envelope features, though the conversion of prosodic fea-
tures such as fundamental frequency [90–93] and duration [91, 94] has also been
studied. In contrast to parametric methods, unit selection approaches can be applied
directly to feature vectors coming from the target speaker to synthesise converted
speech [95]. Since they use target speaker data directly, unit selection approaches
arguably pose a greater risk to ASV than statistical approaches [96].

In general, only the most straightforward of the spectral conversion methods
have been utilised in ASV vulnerability studies. Even when trained using a non-
parallel technique and non-ideal telephony data, the baseline JD-GMM approach,
which produces over-smooth speech with audible artefacts, is shown to increase
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significantly the FAR ofmodernASV systems [20, 96]; unlike the human ear, current
recognisers are essentially ‘deaf’ to obvious conversion artefacts caused by imperfect
signal analysis-synthesis models and poorly trained conversion functions.

7.3.4.1 Spoofing

When applied to spoofing, voice conversion aims to synthesise a new speech signal
such that features extracted for ASV are close in some sense to the target speaker.
Some of the firstwork relevant to text-independentASV spoofing includes that in [32,
97]. The work in [32] showed that a baseline EER increased from 16 to 26% as a
result of voice conversion which also converted prosodic aspects not modelled in
typical ASV systems. The work in [97] investigated the probabilistic mapping of a
speaker’s vocal tract information towards that of another, target speaker using a pair
of tied speaker models, one of ASV features and another of filtering coefficients. This
work targeted the conversion of spectral-slope parameters. The work showed that a
baseline EER of 10% increased to over 60% when all impostor test samples were
replaced with converted voice. In addition, signals subjected to voice conversion did
not exhibit any perceivable artefacts indicative of manipulation.

The work in [20] investigated ASV vulnerabilities using a popular approach to
voice conversion [70] based on JD-GMMs, which requires a parallel training cor-
pus for both source and target speakers. Even if converted speech would be easily
detectable by human listeners, experiments involving five different ASV systems
showed universal susceptibility to spoofing. The FAR of the most robust, JFA sys-
tem increased from 3% to over 17%.

Other work relevant to voice conversion includes attacks referred to as artifi-
cial signals. It was noted in [98] that certain short intervals of converted speech yield
extremely high scores or likelihoods. Such intervals are not representative of intelligi-
ble speech but they are nonetheless effective in overcoming typical text-independent
ASV systems which lack any form of speech quality assessment. The work in [98]
showed that artificial signals optimised with a genetic algorithm provoke increases
in the EER from 10% to almost 80% for a GMM-UBM system and from 5% to
almost 65% for a factor analysis (FA) system.

7.3.4.2 Countermeasures

Some of the first work to detect converted voice draws on related work in synthetic
speech detection [100]. While the proposed cosine phase and modified group delay
function (MGDF) countermeasures proposed in [63, 99] are effective in detecting
spoofed speech (see Fig. 7.1), they are unlikely to detect converted voice with real-
speech phase [97].

Two approaches to artificial signal detection are reported in [101]. Experimen-
tal work shows that supervector-based SVM classifiers are naturally robust to
such attacks whereas all spoofing attacks can be detected using an utterance-level
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Fig. 7.1 An example of a spoofed speech detector combined with speaker verification [99]. Based
on prior knowledge that many analysis–synthesis modules used in voice conversion and TTS sys-
tems discard natural speech phase, phase characteristics parametrised via the modified group delay
function (MGDF) can be used for discriminating natural and synthetic speech

variability feature which detects the absence of natural, dynamic variability charac-
teristic of genuine speech. An alternative approach based on voice quality analysis
is less dependent on explicit knowledge of the attack but less effective in detecting
attacks.

A related approach to detect converted voice is proposed in [102]. Probabilistic
mappings between source and target speaker models are shown to yield converted
speechwith less short-term variability than genuine speech. The thresholded, average
pair-wise distance between consecutive feature vectors is used to detect converted
voice with an EER of under 3%.

Due to fact that current analysis–synthesis techniques operate at the short-term
frame level, the use of temporal magnitude/phase modulation features, a form of
long-term feature, are proposed in [103] to detect both speech synthesis and voice
conversion spoofing attacks. Another form of long-term feature is reported in [104].
The approach is based on the local binary pattern (LBP) analysis of sequences of
acoustic vectors and is successful in detecting converted voice. Interestingly, the
approach is less reliant on prior knowledge and can also detect different spoofing
attacks, examples of which were not used for training or optimisation.

7.3.5 Summary

As shown above, ASV spoofing and countermeasures have been studied with a mul-
titude of different datasets, evaluation protocols and metrics, with highly diverse
experimental designs, different ASV recognisers and with different approaches to
spoofing; the lack of any commonality makes the comparison of results, vulnera-
bilities and countermeasure performance an extremely challenging task. Drawing
carefully upon the literature and the authors’ own experience with various spoofing
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Table 7.1 A summary of the four approaches to ASV spoofing, their expected accessibility and
risk

Spoofing Description Accessibility Effectiveness (risk)

technique (practicality) Text-indep. Text-dep.

Impersonation [25,
27, 32, 105]

Human voice mimic Low Low/unknown Low/unknown

Replay [33, 34] Replay of
pre-recorded
utterance

High High Low (rand.
phrase) to
high (fixed
phrase)

Text-to-speech
[54, 55, 58]

Speaker-specific
speech
generation from
text input

Medium
(now) to
high
(future)

High High

Voice conversion
[20, 32, 97,
98]

Speaker identity
conversion using
speech only

Medium
(now) to
high
(future)

High High

approaches, we have nevertheless made such an attempt. Table 7.1 aims to sum-
marise the threat of spoofing for the four approaches considered above. Accessibility
(practicality) reflects whether the threat is available to the masses or limited to the
technically knowledgeable. Effectiveness (risk), in turn, reflects the success of each
approach in provoking higher false acceptance rates.

Although some studies have shown that impersonation can fool ASV recognisers,
in practice, the effectiveness seems to depend both on the skill of the impersonator,
the similarity of the attacker’s voice to that of the target speaker and on the recogniser
itself. Replay attacks are highly effective in the case of text-independent ASV and
fixed-phrase text-independent systems. Even if the effectiveness is reduced in the
case of randomised, phrase-prompted text-dependent systems, replay attacks are the
most accessible approach to spoofing, requiring only a recording and playback device
such as a tape recorder or a smart phone.

Speech synthesis and voice conversion attacks pose the greatest risk. While voice
conversion systems are not yet commercially available, both free and commercial
text-to-speech (TTS) systems with pre-trained voice profiles are widely available,
even if commercial off-the-shelf (COTS) systems do not include the functional-
ity for adaptation to specific target voices. While accessibility is therefore medium
in the short term, speaker adaptation remains a highly active research topic. It is
thus only a matter of time until flexible, speaker-adapted synthesis and conversion
systems become readily available. Then, both effectiveness and accessibility should
be considered high.
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7.4 Discussion

In this section, we discuss current approaches to evaluation and some weaknesses in
the current evaluation methodology. While much of the following is not necessarily
specific to the speech modality, with research in spoofing and countermeasures in
ASV lagging behind that related to other biometric modalities, the discussion below
is particularly pertinent.

7.4.1 Protocols and Metrics

While countermeasures can be integrated into existing ASV systems, they are most
often implemented as independent modules which allow for the explicit detection of
spoofing attacks. The most common approach in this case is to concatenate the two
classifiers in series.

The assessment of countermeasure performance on its own is relatively straight-
forward; results are readily analysed with standard detection error trade-off (DET)
profiles [106] and related metrics. It is often of interest, however, that the assessment
reflects their impact on ASV performance. Assessment is then non-trivial and calls
for the joint optimisation of combined classifiers. Results furthermore reflect the
performance of specific ASV systems. As described in Sect. 7.3, there are currently
no standard evaluation protocols, metrics or ASV systems which might otherwise be
used to conduct evaluations. There is a thus a need to define such standards in the
future.

Candidate standards are being drafted within the scope of the EU FP7 TABULA
RASAproject.3 Here, independent countermeasures preceding biometric verification
are optimised at three different operating points where thresholds are set to obtain
FARs (the probability of labelling a genuine access as a spoofing attack) of 1, 5 or
10%. Samples labelled as genuine accesses are then passed to the verification sys-
tem.4 Performance is assessed using four different DET profiles,5 examples of which
are illustrated in Fig. 7.2. The four profiles illustrate performance of the baseline sys-
tem with zero-effort impostors, the baseline system with active countermeasures, the
baseline system where all impostor accesses are replaced with spoofing attacks and,
finally, the baseline system with spoofing attacks and active countermeasures.

Consideration of all four profiles is needed to gauge the impact of countermeasure
performance on licit transactions (any deterioration in false rejection—difference
between first and second profiles) and improved robustness to spoofing (improve-
ments in false acceptance—difference between third and fourth profiles). While the

3 http://www.tabularasa-euproject.org/.
4 In practice samples labelled as spoofing attacks cannot be fully discarded since so doing would
unduly influence false reject and false acceptance rates calculated as a percentage of all accesses.
5 Producedwith theTABULARASAScore-toolkit: http://publications.idiap.ch/downloads/reports/
2012/Anjos_Idiap-Com-02-2012.pdf.

http://www.tabularasa-euproject.org/
http://publications.idiap.ch/downloads/reports/2012/Anjos_Idiap-Com-02-2012.pdf.
http://publications.idiap.ch/downloads/reports/2012/Anjos_Idiap-Com-02-2012.pdf.
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Fig. 7.2 An example of four DET profiles needed to analyse vulnerabilities to spoofing and coun-
termeasure performance, both on licit and spoofed access attempts. Results correspond to spoofing
attacks using synthetic speech and a standard GMM-UBM classifier assessed on the male subset of
the NIST’06 SRE dataset

interpretation of such profiles is trivial, different plots are obtained for each coun-
termeasure operating point. Further work is required to design intuitive, universal
metrics which represent the performance of spoofing countermeasures when com-
bined with ASV.

7.4.2 Datasets

While some works have shown the potential for detecting spoofing without prior
knowledge or training data indicative of a specific attack [63, 104, 107], all previous
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works are based on some implicit prior knowledge, i.e. the nature of the spoof-
ing attack and/or the targeted ASV system is known. While training and evaluation
data with known spoofing attacks might be useful to develop and optimise appro-
priate countermeasures, the precise nature of spoofing attacks can never be known
in practice. Estimates of countermeasure performance so obtained should thus be
considered at best optimistic. Furthermore, the majority of the past work was also
conducted under matched conditions, i.e. data used to learn target models and that
used to effect spoofing were collected in the same or similar acoustic environment
and over the same or similar channel. The performance of spoofing countermeasures
when subjected to realistic session variability is then unknown.

While much of the past work already uses standard datasets, e.g. NIST SRE data,
spoofed samples are obtained by treating them with non-standard algorithms. Stan-
dard datasets containing both licit transactions and spoofed speech from a multitude
of different spoofing algorithms and with realistic session variability are therefore
needed to reduce the use of prior knowledge, to improve the comparability of differ-
ent countermeasures and their performance against varied spoofing attacks. Collab-
oration with colleagues in other speech and language processing communities, e.g.
voice conversion and speech synthesis, will help to assess vulnerabilities to state-
of-the art spoofing attacks and also to assess countermeasures when details of the
spoofing attacks are unknown. The detection of spoofing will then be considerably
more challenging but more reflective of practical use cases.

7.5 Conclusions

This contribution reviews previous work to assess the threat from spoofing to auto-
matic speaker verification (ASV). While there are currently no standard datasets,
evaluation protocols or metrics, the study of impersonation, replay, speech synthe-
sis and voice conversion spoofing attacks reported in this article indicate genuine
vulnerabilities. We nonetheless argue that significant additional research is required
before the issue of spoofing in ASV is properly understood and conclusions can be
drawn.

In particular, while the situation is slowly changing, the majority of past work
involves text-independent ASV, most relevant to surveillance. The spoofing threat is
pertinent in authentication scenarios where text-dependent ASV might be preferred.
Greater effort is therefore needed to investigate spoofing in text-dependent scenarios
with particularly careful consideration being given to design appropriate datasets and
protocols.

Second, almost all ASV spoofing countermeasures proposed thus far are depen-
dent on training examples indicative of a specific attack. Given that the nature of
spoofing attacks can never be known in practice, and with the variety in spoofing
attacks being particularly high in ASV, future work should investigate new coun-
termeasures which generalise well to unforeseen attacks. Formal evaluations with
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standard datasets, evaluation protocols, metrics and even standard ASV systems are
also needed to address weaknesses in the current evaluation methodology.

Finally, some of the vulnerabilities discussed in this paper involve relatively high-
cost and high-technology attacks.While the trend of open source softwaremay cause
this to change, such attacks are beyond the competence of the unskilled and in such
case the level of vulnerability is arguably overestimated. While we have touched on
this issue in this article, a more comprehensive risk-based assessment is needed to
ensure such evaluations are not overly-alarmist. Indeed, the work discussed above
shows that countermeasures, some of them relatively trivial, have the potential to
detect spoofing attacks with manageable impacts on system usability.
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6. Kockmann M, Ferrer L, Burget L, Cěrnocký J (2011) i-vector fusion of prosodic and cepstral
features for speaker verification. In: Proceedings of interspeech, annual conference of the
international speech communication association, Florence, Italy, pp 265–268

7. Kinnunen T, Li H (2010) An overview of text-independent speaker recognition: from features
to supervectors. Speech Commun 52(1):12–40

8. Reynolds D, Rose R (1995) Robust text-independent speaker identification using Gaussian
mixture speaker models. IEEE Trans Speech Audio Process 3:72–83

9. Reynolds DA, Quatieri TF, Dunn RB (2000) Speaker verification using adapted Gaussian
mixture models. Digital Signal Process 10(1):19–41

10. CampbellWM, SturimDE, Reynolds DA (2006) Support vector machines using GMMsuper-
vectors for speaker verification. IEEE Signal Process Lett 13(5):308–311

11. Solomonoff A, CampbellW, Boardman I (2005) Advances in channel compensation for SVM
speaker recognition. In: Proceedings of IEEE international conference on acoustics, speech
and signal process (ICASSP), pp 629–632, Philadelphia, USA
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Chapter 8
Gait Anti-spoofing

John D. Bustard, Mohammad Ghahramani, John N. Carter,
Abdenour Hadid and Mark S. Nixon

Abstract Gait recognition is a relatively new biometric and as a result relatively
little effort has yet been devoted to studying spoofing attacks against it. This
chapter examines the effects of two different spoofing attacks against two different
state-of-the-art gait recognition systems. The first attack uses clothing impersonation
where an attacker replicates the clothing of a legitimately enrolled individual. The
second attack is a targeted attack where an imposter deliberately selects the legiti-
mately enrolled subject whose gait signature is closest to the attacker. The analysis
presented here reveals that both systems are vulnerable to both attacks. In particular,
if both attacks are combined and the systems have acceptance thresholds set at the
EER of their baseline performance, the attacks cause the FAR to rise from 5% to
between 60 and 95%. The chapter describes two countermeasures that can be applied
to minimise the effects of the spoofing attacks. Using the same acceptance thresholds
the countermeasure to clothing attacks reduces the FAR performance under clothing
impersonation from 40 to 15%. Likewise, the targeting countermeasure reduces the
FAR for targeted attacks from 20 to 2.5% sufficient to even improve on the baseline
performance.
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8.1 Introduction

Gait biometrics aim to recognise people from their walking style. It is a relatively
new biometric modality and has a valuable advantage over other features, such as
iris and fingerprint, in that it can be easily captured from a distance. This makes it
an attractive option in video surveillance applications.

The current state-of-the-art gait recognition systems use body silhouette or model
based approaches [1]. Of these techniques relatively more approaches use the human
silhouette as the basis of recognition, and of these approaches, those which use the
averaged silhouette have proved most popular [2]. The earliest techniques achieved
recognition rates exceeding 90% and this is matched by the most recent approaches
on databases extending to 300 subjects. Much of the earlier work was conducted on
data acquired using controlled conditions but later recognition was demonstrated on
outdoor derived data, though with slightly lower performance.

In terms of spoofing there has been relatively little investigation into attacks. As
with other vision-based biometrics, gait recognition may be vulnerable to replay
attacks of recordings of valid subjects played back on displays placed in front of
cameras. However, this may be less of a concern for three-dimensional systems as
replay attacks require precise synchronised replay attacks simultaneously performed
against multiple cameras, which is a significant technical barrier for most attackers.
Likewise, as gait recognition is a behavioural biometric, synthetic artefact attacks
cannot impersonate a gait signature.

Four existing spoofing investigations have been performed. Three of these are very
similar. They useworn accelerometer sensors to provide signatures of gaitmovement.
The gait sensor approach is less practical than the more traditional, vision-based
gait recognition systems as many potential gait recognition applications focus on
flexible general access control where having to attach sensors prior to access would
diminish its convenience advantages. Despite this limitation, the studies provide
valuable analysis of the challenges of gait spoofing.

The first investigation had a small number of subjects (22) and made no attempt
to select subjects with similar build. However, the subjects could walk while viewing
the spoofing target’s gait, in fact they walked behind the target to be spoofed copying
their movements. Using this system the active spoofing attempts could be identi-
fied as there were relatively few spoofing attempts that had a lower matching score
than the worst genuine match scores. This study is too small to draw strong conclu-
sions, however, it indicates that the dynamics of gait movement may be difficult to
impersonate.

The second study had an even smaller number of subjects (13). To enable spoofing
the response of an accelerometer sensor attached to the leg was projected onto a wall.
The subjects could view this response and see how their own appeared as theywalked.
Using this visualisation they could adjust their movement to match the response of
the target. The signature was used as the basis for recognition. Using this technique
they found that it was possible to alter a gait signature to achieve a match percentage
of over 60% against a target’s gait signature. The authors described this as evidence
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that gait was vulnerable to spoofing, however this result is contradicted by a third
study which questions the significance of the risk that a 60% match represents.

The third study had the smallest number of attackers (6) although it used a much
larger group of 50 subjects to establish validation thresholds. Like the other studies
it used an accelerometer approach and focused on whether imposters could improve
their spoofing performance through practice. To measure this effect there were two
sequences of attacking attempts. The first used six attackers making 60 attempts.
The second used a longer sequence of 160 mimicking attempts by a single attacker.
Of the six attackers studied only one came close to matching the signature, however,
the match was not close enough to fall within a 95% confidence interval, four of
the six actually had worse performance when trying to replicate gait. The studies
conclusions were that practice often decreased performance and that physiology
placed real limits on a subject’s ability to replicate another person’s gait.

Only one recent piece of research has yet demonstrated whether the, more com-
mon, machine vision-based gait recognition techniques are vulnerable to spoofing
attacks [3]. Vision-based systems often use a subject’s body silhouette shape as
part of a subject’s biometric signature. This provides improved recognition perfor-
mance. However, this also offers another basis for attacks. The fourth study uses this
route, demonstrating how impersonating a target’s clothing can effectively spoof
two different gait recognition systems. Clothing impersonation is one of the most
straightforward and unobtrusive methods for performing gait attacks. It is an impor-
tant vulnerability to address as such an attack is relatively straightforward. It is likely
that such an approach will already be used by an attacker to unobtrusively enter a
secure area where uniforms or formalised styles of dress are common. This attack
can be viewed as a similar approach to that of wearing a 3D mask in order to spoof
a facial recognition system. The same paper also identifies another, more general,
targeted attack. This attack assumes that the attacker has freedom to select which
subject the attacker is going to impersonate. It simply involves selecting a target
with a similar gait signature. The paper reveals that such an approach can result
in successful impersonation attacks and when combined with a clothing imperson-
ation can significantly increase the chances that an attacker is falsely accepted by
a system. The targeted attacks performed in the paper require the attacker to have
access to the gait system and the legitimate subject enrollment data. This makes the
attack impractically challenging for many attackers. Simpler, more heuristic, target
selection approaches, such as personal judgement, are likely to be less effective,
but as with clothing impersonation, a likely attack approach for those attempting
unobtrusive access.

Two example gait recognition systems have been used to investigate the effec-
tiveness of clothing and targeted spoofing attacks:

The first system produced by the University of Oulu is a 2D gait system
[4, 5] (UOULU). It uses 2D dynamic texture descriptors, namely Local Binary Pat-
terns from Three Orthogonal Planes (LBP-TOP), to describe human gait in a spatio-
temporal way. A video sequence of a person’s walking is thought as spatio-temporal
volume. The LBP-TOP description is formed by calculating the LBP features from
XY,XT andYTplanes of volumes and concatenating the histograms to catch the tran-
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sition information in spatio-temporal domain. Gentle AdaBoost is used to perform
feature selection and to build a strong classifier.

The second system, produced by the University of Southampton uses a 3D
average silhouette-based gait recognition system (USOU). The system uses shape
from silhouette third reconstruction to synthesise a profile silhouette sequence from
which an average silhouette is constructed. 3D volumetric data is used to synthesise
silhouettes from a fixed viewpoint relative to the subject. The resulting silhouettes
are then passed to a standard 2D gait analysis technique; in this case the average sil-
houette. The advantage of using three-dimensional data is that silhouettes from any
arbitrary viewpoint can be synthesised, even if the viewpoint is not directly seen by a
camera. Silhouettes are taken from a side-on orthogonal viewpoint. This view is not
seen by any camera and so must be synthesised. The use of a side-on viewpoint facil-
itates comparison with previous results. To generate the average silhouette images
the centre of mass is found for each frame. The average silhouette is then found by
summing the centre of mass aligned silhouettes. The average silhouette is treated as
the feature vector and used for leave-one-out recognition, using nearest-neighbour
classification and the euclidean distance as the distance metric between samples.

8.1.1 Baseline Dataset

The Southampton gait database [6] has been used for the experimental evaluation.
It contains multiple views and detailed camera calibration information. The data-
base consists of recordings of 227 subjects walking through the Southampton Gait
Tunnel [6] at least nine times. Each recording consists of eight synchronised video
sequences of approximately 140 frames. One hundred and thirteen subjects were
randomly selected for computing the baseline performance of the systems, i.e. the
performance when the systems are not confronted to spoofing attacks. Nine record-
ings of each of the 113 subjects were used, one for enrolment and eight for testing.
This results in one enrolment video for each user and 8 ∗ 113 test client (positive
sample) videos for each user. When producing impostor scores all the other clients
are used, yielding 8 ∗ 112 ∗ 113 zero effort impostor attacks.

The enrollment and test sequences were obtained on the same day, when the
subject was wearing the same clothing. Significantly, lower performance could be
expected if subjects were to change their clothing between enrollment and valida-
tion [7]. Similarly no subjects were carrying any objects in the recorded data which
could also degrade the systems recognition capability.

8.1.2 Baseline Systems

This section provides a brief overview of how both example systems work. Further
information is available in publications [4, 5, 8] which describe the systems in more
detail.
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8.1.2.1 USOU Gait Recognition System

The first stage of processing the recorded datawas to convert the captured images into
colour from their original raw Bayer format, using nearest-neighbour interpolation.
Background estimation and segmentation was then performed to find the subjects
silhouette; modelling each background pixel with a single Gaussian distribution per
colour channel. The distribution for each pixel was found using previously captured
video footage, where no subject was present. The background segmentation was per-
formed by calculating the distance between a pixel and its corresponding background
distribution, where a pixel would be marked as background if its distance was less
than a global threshold; linked to the standard-deviation found by the background
estimation. Shadow labelling and removal was performed to reduce the number of
pixels incorrectly marked as foreground. Binary morphological post-processing was
then performed to reduce noise levels and smooth the silhouettes shape. Finally, all
regions except that with the greatest area were removed and any holes in the remain-
ing region were filled. Radial distortion caused by the camera optics was removed
by the use of a nonlinear transformation. The reconstructed volumetric data was
smoothed using binary erosion and dilation morphological operators to reduce the
level of noise and reconstruction artefacts. Gait cycles were detected by finding the
instances where the length of the bounding box encompassing a subject is minimal
in the direction of travel. This was found by fitting local polynomials to the length
variation and locating potential maxima values. The time for a gait cycle was deter-
mined by finding the first maxima in the cross correlation of the length variation.
This corresponds to the first half gait cycle. The first set of length peaks that were
separated by the half gait cyclewere identified. The first and third peakswere selected
to identify a complete gait cycle. Sagittal silhouettes for each frame within this cycle
were calculated. The centre of mass of each of the voxels was used to align each
frame on top of one another and the sagittal silhouettes were then averaged to produce
a signature for each recording. Each signature was then compared to determine the
average pixel difference between them. Detection error trade-off (DET) curves were
then calculated to identify how false accept and false reject validation rates change
with respect to one another, as a result of different validation thresholds.

8.1.2.2 UOULU Gait Recognition System

The silhouette extraction process is the same as that used with the USOU Gait
recognition system. Gait cycles were estimated using the width of the bottom part
(feet) of the silhouette. The sagittal silhouette images were stacked to a space time
volume and LBP-TOP features were calculated using a grid defined by the centroid
of the silhouette in each frame. Histogram of the LBP-TOP features was used to
represent each gait sample. A boosted classifier was trained on the training set to
get a matching function between two histograms. Based on the matching scores of
all samples in the test data, DET curve was calculated to identify the validation
performance on different thresholds.
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In more details, the UOULU gait recognition system works as follows. First, a
video sequence of a person’s walking can be thought as spatio-temporal volume.
The volume is partitioned into subvolumes. Using the sub-volume representation,
motion and shape are encoded on three different levels: pixel-level (single bins in
the histogram), region-level (sub-volume histogram) and global-level (concatenated
sub-volume histograms). Second, LBP-TOP description is formed by calculating the
LBP features from XY, XT and YT planes of volumes and concatenating the his-
tograms to catch the transition information in spatio-temporal domain. TheLBP-TOP
features from each sub-volume are extracted and concatenated to encode motion and
shape characteristics. Third, to use the multi-resolution information, original uni-
form patterns are improved with ordering sampling points according to the sampling
angle, by which they will also produce codes that satisfy the bit transition condition
and any number of sampling points can be used on different LBP kernels. Fourth,
the length of the LBP-TOP histogram representation can be quite large depending
on the number of sampling points and number of sub-volumes that are used. A better
and more compact representation can be obtained by using feature selection meth-
ods. Gentle AdaBoost was used to perform feature selection and to build a strong
classifier. Instead of building a classifier that gives the identity of the person from
one sample, a two-class classifier was trained, which classifies whether two samples
come from the same person or not.

8.1.3 Baseline Evaluation

8.1.3.1 USOU Gait Evaluation

As can be seen in Fig. 8.1 using the 3Dbaseline approach, the equal error rate (EER) is
around 6%. This is an encouraging result, reflecting a high correct classification rate
(CCR) in recognition based on this data (91%). Provided subjects are recorded and
validated wearing the same clothing and not carrying objects, the 3D gait recognition
approach is comparable to other widely used biometrics such as 2D-face, provided
such face images are recorded in a similarly unconstrained lighting setup as the gait
tunnel. From a manual examination of each of the recordings that were incorrectly
classified, there are two main causes of failure: shape from silhouette distortion, and
variation in arm swing. The distortion is caused by inaccurate camera calibration,
which produces different body shapes at different points in the tunnel. Arm swing
magnitude appears less constrained than leg dynamics. Weighting to the silhouette
could be used to address this issue.

8.1.3.2 UOULU Gait Evaluation

Figure8.1 also shows that the UOULU system has an EER of about 4.5%. This
result is indeed encouraging. This performance can be explained by the use of
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Fig. 8.1 Detection error trade-off (DET) profiles for the UOULU and USOU gait recognition
systems on the baseline USOU gait database

spatio-temporal analysis that combines both motion and shape cues. However, the
result is obtained with data that is recorded while the subjects are wearing the same
clothing in all samples.We believe the performancemay decrease whenmore covari-
ate conditions and spoofing attacks are included, as has been observed inmany studies
on other databases such as the USF gait database.

8.2 Attacks

This section describes experiments which analyse the effect of the clothing and
targeted attacks on the two example gait recognition systems. Attacks are performed
with the same equipment and experimental procedure as that of the baseline gait
recognition results. A successful attack is performedwhen the difference between the
signature of an attacker and their target are below the systems verification threshold.
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This section describes different spoofing scenarios including (i) clothing imper-
sonation, (ii) deliberate selection of a target that has a similar build to the attacker
and (iii) combination of clothing and target selection. This yielded in four protocols
for studying gait under spoofing attacks:

• Baseline performance: The original Southampton gait database without spoofing
attacks is considered for computing client and impostor scores. This provides the
performance under normal settings.

• Clothing attacks: The attacks are calculated by comparing each of the uniform
recordings of each subject against the uniform recordings of all of the other sub-
jects. This provides insights into how clothing impersonation affects the perfor-
mance.

• Targeted attacks: The attacks are measured by comparing each of the normal
clothes recordings of each subject against each of the normal clothes recordings
of the subject with most similar build. This provides insights into how selection
of the target affects the performance.

• Targeted clothing attacks:The attacks are the same as targeted attacks except that
instead of using the normal clothing recordings the uniform clothing recordings
are used. This is equivalent to each subject selecting the person with the most
similar build and impersonating their clothing.

8.2.1 Gait Spoofing Dataset

To analyse the performance under spoofing attacks, new data (referred to as the
USOU Gait Spoofing Database) has recently been recorded at the University of
Southampton [9]. This consists of 22 subjects (14 male and 8 female), between
20 and 55 years old. The subjects were recorded walking through the same tunnel
in both their normal clothes and whilst wearing a common uniform. The uniform
consists of white overalls. By having every subject wear the same clothes, the degree
to which one subject could impersonate another by mimicking their clothes can
be investigated. The uniform clothing appearance was achieved by having subjects
wear white overalls over their normal clothes. Each recording of normal or uniform
clothing was repeated between 10 and 35 times depending on subject availability.

For the purpose of this analysis there is an assumption that the attacker may
have complete knowledge of the system they are targeting. We have therefore based
the selection of a target on the similarity of the gait silhouette. The expectation is
that such a signature could be obtained through covert surveillance, for example by
recording the target walking down the street. This represents an upper bound on the
effectiveness of target selection for a target pool of 22 subjects.
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Fig. 8.2 Gait biometric performance under different kinds of spoofing attacks (false acceptance
rates superimposed for spoofing performance comparison). The left graph is for UOULU2D system
and the right graph shows the performance of the 3D USOU system

8.2.2 Spoofing Results

The results of our experiments are shown in Fig. 8.2 in the formofDETprofileswhich
illustrate the dynamic behaviour of the two gait verification systems (UOULU and
USOU) as the decision thresholds are changed. The DET curves show how the false
acceptance rate varies relative to the false rejection rate. The percentage of successful
attacks is equivalent to the false accept rate of the systems when attacked. The lowest
profiles (curves labelled baseline in Fig. 8.2) are that of the baseline performance
when the systems are not confronted to attacks. They are important to gain insight
into the effect of the spoofing as our focus is on the degradation in performance
caused by spoofing attacks relative to these baselines. The curves labelled clothing
show the average false accept rate when attackers replicate the clothing of their
target but are unable to select which person they are attacking. This curve shows that
clothing impersonation does convey a small advantage, increasing the EER of the
3D gait system from 6 to 12% and increasing the 2D gait system from 4 to 28%.
The curves labelled targeted show how effective spoofing attempts are when an
attacker selects a target that is most similar to them without also impersonating their
clothing. In terms of EER these kinds of attacks seem to be less effective than clothing
impersonation. The curves that combine target selection and clothing impersonation
show a significant raise in the EERs compared to the baseline performance, indicating
serious vulnerabilities from such combined attacks. This can also be seen in the score
distributions in Figs. 8.3 and 8.4 showing a clear overlap between the distributions
of the true claimants and the attackers of the 2D gait system. The curves in Fig. 8.6
indicate that the state-of-the-art systems used for gait recognition are quite sensitive
to spoofing attacks and this is the case not only at FRR of 2% but for any chosen
FRR value.
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Fig. 8.3 Score distributions showing the overlap between the true claimants and the attacks

8.3 Countermeasures

Unlike the majority of biometric spoofing, such as gummy fingerprint or facial photo
attacks, both clothing impersonation and targeting have no artificial traits that can
be detected. They therefore require an adaptation of the gait recognition algorithm
to make it intrinsicly robust to such attacks.

8.3.1 Clothing Impersonation Countermeasures

This section examines methods for increasing the robustness of the 2D UOULU gait
recognition system to clothing impersonation attacks. The following observations
have been used to develop countermeasures:

1. The overall human body has various types of information to be extracted and
selected for gait recognition. Body shape (built), overall body movement and
body limbs movement patterns could greatly contribute to gait recognition. In
case of spoofing attacks, these types of information may be altered to attack
the system. Hence, the baseline system is vulnerable to altered information as
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Fig. 8.4 Score distributions showing the overlap between the true claimants and the attacks

boosting did not learn from attacks and could potentially over-fit the training
data.

2. The baseline 2D gait system analyses the body in four divided regions. Based
on the type of spoofing attacks (target or clothing), the information extracted
from body portions could be altered. The overall histogram considers the overall
portion and combines the altered information of body portions that are more
vulnerable to spoofing attacks to those carrying movement information than
body built and shape information.

The ideas used to solve the shortcomings of the baseline system to better cope
with spoofing attacks are:

• Prevent over-training by employing a histogram distance as the classifier.
• Divide the body into multiple horizontal portions, as shown in see Fig. 8.5.

The gait recognition database does not contain camera and viewpoint changes.
Hence, we can divide the body into multiple regions to prevent altered information
from body parts that are vulnerable to spoofing attacks to combine with the overall
information. We extract LBP-TOP features from each body part and concatenate the
overall histogram to separate information extracted from body regions.
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Fig. 8.5 Block diagram of our proposed initial gait anti-spoofing solution (part-based 2D gait
recognition)

Baseline

Baseline_under_attacks
Anti-spoofing_system

Anti-spoofing_system_under_attacks

Fig. 8.6 TheDETCurves of the initial anti-spoofing system (part-based 2Dgait recognition system)
for ‘Clothing targeted attacks’ and comparison with baseline results

8.3.1.1 Experimental Setup

A successful attack is performed when the difference between the signature of an
attacker and their target are below the system’s verification threshold. In the clothing
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impersonation scenario, the attacks are calculated by comparing each of the uniform
recordings of each subject against the uniform recordings of all of the other subjects
while the targeted clothing attacks are equivalent to each subject selecting the person
with the most similar build and impersonating their clothing.

A revised evaluation protocol has been used in order to training the countermea-
sures using spoofing data. Some subjects were excluded from testing and used only
for training. Both the ‘normal clothes’ and ‘uniform’ recordings of excluded subjects
can be used to learn the type of attacks, and thus improve the robustness to attacks.
The data is required to comprise reasonably high number of non-excluded subjects
to ensure that the targeting would have a realistic effect. On the other hand, there is
a need for enough excluded subjects to ensure that effective training is performed.

The dataset has been split in half with 11 subjects being used as training subjects
and 11 for testing. We considered to have 6-fold cross validation on 50/50 splits of
the dataset to prevent any distinctive characters dominating the results.We addressed
this by creating six different subsets, repeating the training and testing on each set
and then combining the scores.

8.3.1.2 Results

The results of the experiments are presented as theDETcurve in Fig. 8.6 for ‘Clothing
attacks’. The body is divided into 10 equal horizontal regions and LBP-TOP features
are extracted and concatenated to obtain 10 sets of histograms as the resulting feature
vector. Thefigure shows four plots comparing the baseline system ‘baseline’, baseline
system under attacks, anti-spoofing system performance using the baseline database
and anti-spoofing system performance on the spoofing database. As expected, the
figure clearly showsperformance improvement against spoofingattacks but at the cost
of slight performance degradation of the baseline dataset. A similar conclusion can
also bemadeon the results of the experiments, shown inFig. 8.7 for ‘Clothing targeted
attacks’. Due to more challenging spoofing attacks, the performance improvement
is less significant than in the ‘clothing attack’ scenario.

The experimental results showed that this gait anti-spoofing system significantly
increases the robustness of the baseline system against spoofing attacks but, as
expected, at the cost of some performance degradation on baseline tests not including
spoofing attacks. Using our anti-spoofing initial solution under ‘clothing attacks’ at
FRR of 5%, the FAR performance gain was in the order of 25% (as the FAR of the
baseline system which was 40% dropped till 15% using the countermeasure).

8.3.2 Targeted Attacks

This section describes an approach to countering targeted attacks. It is challenging
to counteract the effects of targeted attacks as such attacks increase the likelihood
that the most similar impersonations are selected and there is nothing artificial in a
targeted attack that makes it identifiable. Countermeasures rely on obtaining a more
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Baseline

Baseline_under_attacks
Anti-spoofing_system

Anti-spoofing_system_under_attacks

Fig. 8.7 TheDETCurves of the initial anti-spoofing system (part-based 2Dgait recognition system)
for ‘Clothing attacks’ and comparison with baseline results

distinctive signature that is harder for an attacker to obtain or providingmore accurate
estimates of subject’s variation in gait signatures so more precise verifications can be
performed. Targeted attacks highlight the importance of securing both the recognition
system and enrollment databases to make it harder for attackers to identify the best
targets. In addition, targeted attacks demonstrate the advantage of using biometric
features that are harder for attackers to obtain. Unfortunately, in many cases this is
at odds with the main advantages of non contact biometrics, such as gait, where the
biometric signature is visible at a distance.However, as the 3Dgait recognition system
has a full 3D reconstruction of the walking subject there is additional information
above a traditional 2D gait silhouette. The described countermeasure constructs two
additional gait signatures using the front and top silhouettes as shown in Fig. 8.8.
These silhouettes are highly correlated with each other and a simple concatenation
of these signatures does not produce any significant defense against targeted attacks.
However, by using a MAX fusion rule where the largest match score of the three
silhouettes is selected, significant improvements in performance can be made.
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Fig. 8.8 Example of the 3
different average silhouettes
that capture the appearance
and shape of the walking
subject from the side front
and top. Used to provide
a countermeasure against
targeted attacks

8.3.2.1 Experimental Setup

The countermeasures to targeted spoofing attacks are evaluated with the same equip-
ment and experimental procedure as that used to evaluate the effects of spoofing.
A successful attack is performed when the difference between the signature of an
attacker and their target are bellow the system’s verification threshold.

8.3.2.2 Results

The results of the experiments are shown in Fig. 8.9. The figure shows the affect
on false acceptance rates as a result of using the three fused gait signatures side,
front and top. The curve labelled ‘Baseline’ shows the performance of the gait
recognition system using only the side average silhouette. The curve labelled ‘Base-
line_under_attacks’ shows the performance when targeted attacks are performed on
the system. The third curve labelled ‘Anti-spoofing_system_under_attacks’ shows
the performance of the attacked system when the countermeasure is applied. The
final curve labelled ‘Anti-spoofing_system’ shows the effects on the baseline system
without attacks when the countermeasure system is in place.

As themulti-signature approach increases the quantity of biometric features avail-
able the countermeasure has the potential to improve both the baseline and the attack
performance. For verification systems tuned to performance levels near the equal
error rate, both baseline and attack performance is improved and in some cases the
attacks provide negligible increase in false acceptance rates. However, for verifica-
tion systems tuned to very low or very high false rejection rates the false acceptance
rate is increased. In the case of the very low false rejection rate the false acceptance
rater reaches 100% indicating that at least one of the signatures of one of the subjects
can be replicated by an attacking target more reliably than the subject themselves.
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Baseline

Baseline_under_attacks
Anti-spoofing_system_under_attacks

Anti-spoofing_system

Fig. 8.9 The DET Curves of the initial anti-spoofing system (3D gait recognition system) for
‘Targeted attacks’ and comparison with baseline results

However, such levels of false rejection are impractical for current gait recognition
systems.

Using the multi-signature countermeasure, at a false rejection rate of 5%, the
baseline false acceptance rate falls from approximately 5 to 2%. Likewise at a false
rejection rate of 5% the attacked performance drops from 20 to 2.5%.

8.4 Further Work

Study of clothing is an important factor to both the study of gait as a biometric
and to the study of spoofing. In order to further this analysis investigation of the
effects of other covariates would be valuable, such as the effect of wearing different
shoes. The future study of targeting will encompass theoretical modelling of the
underlying distribution of gait signatures to better understand how increasing the
number of targets increases the effectiveness of targeted attacks. There is also value
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in exploring additional gait features beyond those outlined in this chapter. Such
features may improve the baseline performance and could help to limit the increase
in FAR caused by targeted attacks. Additional work also remains in examining the
effects of targeted attacks on other biometrics.

8.5 Conclusions

This chapter has shown how two example of gait recognition systems can be spoofed
using clothing impersonation and targeted attacks. These attacks are particularly
challenging as they have no artificial traits that can be detected. They are therefore
applicable even under attentive human supervision. Countermeasures to both attacks
were presented, both countermeasures provide a significant defense against these
attacks, however, in the case of clothing attacks they do so at a slight reduction in
baseline performance.
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Chapter 9
Multimodal Anti-spoofing in Biometric
Recognition Systems

Giorgio Fumera, Gian Luca Marcialis, Battista Biggio, Fabio Roli
and Stephanie Caswell Schuckers

Abstract While multimodal biometric systems were commonly believed to be
intrinsically more robust to spoof attacks than unimodal systems, recent results
provided clear evidence that they can be evaded by spoofing a single biometric
trait. This pointed out that also multimodal systems require specific anti-spoofing
measures. In this chapter, we introduce the issue of multimodal anti-spoofing, and
give an overview of state-of-the-art anti-spoofing measures. Such measures mainly
consist of developing ad hoc score fusion rules that are based on assumptions about
the match score distribution produced by fake biometric traits. We discuss the pros
and cons of existing measures, and point out the current challenges in multimodal
anti-spoofing.

9.1 Introduction

Other chapters of this book addressed the issue of “anti-spoofing” in unimodal
biometric systems. In this kind of system, anti-spoofing consists of an additional
module, also called “liveness detector,” that is used as a countermeasure to spoof
attacks. This countermeasure is able to detect if the biometric signal acquired by
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some sensors belongs to a “live” person or is an artificial replica: for example, a fake
finger, or a 2d photo of a face.

Anti-spoofing in multimodal biometric systems, or, for the sake of brevity, “mul-
timodal anti-spoofing,” is not a clear concept as in the unimodal case. On the basis of
what has been discussed in other chapters, we can define multimodal anti-spoofing
as follows:

1. Fusion of multiple liveness detectors for a single biometric. This can bemotivated
by the fact that different approaches to liveness detection can be “complementary,”
thus they can be combined at different levels to improve the liveness detection
performance (for example, fingerprint liveness detectors which combine fake-
based and live-based features according to [1]). This definition comes from the fact
that liveness detection is substantially a two-class classification problem where
an individual liveness detector can be seen as a classifier. Approaches aimed
at fusing multiple liveness detectors appeared in [1–4]. Therefore, in this case,
“multimodal anti-spoofing” refers to the combination of “modalities” defined by
each individual liveness detector.

2. Fusion of liveness detector andmatcher. In this case, the different “modalities” are
given by the two heterogeneous classifiers, namely, the uni-biometric verification
system and the liveness detector. This very recent topic has been considered in
[5–7].

3. Multibiometric systemswhere no liveness detection is performed [8]. In this case,
each “modality” consists of a different kind of biometric trait (e.g., fingerprint
and face), which is processed by a different biometric verification module. The
proposed anti-spoofing measures for this kind of system consist of ad hoc score
fusion rules, capable to exploit the information coming from amatch score gener-
ated when comparing a spoofed biometric against the related genuine template(s)
[9–12].

Definitions 1 and 2 refer to unimodal biometric systems. Therefore, for sake of
clarity and with respect to the scope of this book, we will focus on definition 3 only,
where “multimodal anti-spoofing” means protecting multimodal biometric systems
against spoof attacks by using robust score-level fusion rules. This topic is very
recent, since the first papers were published in 2009.

The rest of this chapter is organized as follows. Section9.2 states the problem.
Section9.3 presents the current state of the art on multimodal spoofing, with an
introduction aimed at pointing out how this problem was perceived in the biometric
community before 2009. Section9.4 reports experimental evidences on the effective-
ness on anti-spoofing measures described in Sect. 9.3. Finally, Sect. 9.5 is devoted to
a discussion on current challenges in multimodal anti-spoofing, and to a summary
of recent achievements in the “TABULA RASA” research project.
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9.2 Problem Statement

In this chapter, wewill refer tomultimodal biometric verification systems, whose aim
is to verify a claimed identity on the basis of different biometric traits submitted by the
user. In multimodal biometric verification, a person submits N different biometrics,
and claims a certain identity. A feature set xi is extracted from the i th biometric, and
compared by a matching algorithm with the template of the claimed identity. The
output is a match score si for the i th biometric system. Match scores {s1, . . . , sN }
coming from suchmatchers are processed by a “fusion rule”module, which produces
a “combined” match score that is finally used to accept of reject the claimed identity.
This can be done according to two basic approaches:

1. The distribution of genuine and impostor match scores of individual matchers are
used for estimating the joint likelihoods, and the Likelihood Ratio (LR) rule is
used [9].

2. The distribution of genuine and impostor match scores are derived from the fused
scores, and the final decision is made by setting an appropriate acceptance thresh-
old.

Let {s1, . . . , sN } be the set of match scores coming from the N matchers, and let
I ◦ {0, 1} be the Boolean random variable denoting whether the verification attempt
comes from an impostor (I = 1) or a genuine user (I = 0). The approach 1 above
requires that the joint probability likelihood ratio is evaluated:

LR(s1, . . . , sN ) = P(s1, . . . , sN |I = 0)

P(s1, . . . , sN |I = 1)
= P(s1|I = 0) · . . . · P(sN |I = 0)

P(s1|I = 1) · . . . · P(sN |I = 1)
,

(9.1)

where P(si |I = 0) and P(si |I = 1) are the match score distributions of
genuine users and of impostors, respectively, for the i th matcher. Joint
distributions P(s1, . . . , sN |I = 0) and P(s1, . . . , sN |I = 1) can be derived by
factorizing individual likelihoods under the hypothesis that match scores are inde-
pendent given I . This hypothesis is commonly accepted in multimodal biometric
verification, since it is reasonable that match scores derived from the comparison of
different kinds of biometrics are independent on each other. A threshold σ is then set,
and, if L R(s1, . . . , sN ) > σ, the user is accepted as genuine; otherwise, it is rejected
as an impostor.

In the approach 2 above, a fusion rule f (s1, . . . , sN ) is applied to the set of match
scores, to derive a novel match score:

s = f (s1, . . . , sN ;α), (9.2)

where α is a set of parameters which can be estimated from an additional validation
set. If α = ∈ no parameters are necessary and the rule is referred to as a “fixed” one,
otherwise it is referred to as a “trained” rule. For example, well-known fixed rules
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are the maximum score, or the sum or product of the N scores. Examples of trained
rules are the weighted sum and the weighted product of the N scores.1 The final
score s is compared to an acceptance threshold s≥, as usually done for uni-biometric
systems. If s > s≥, the user is accepted as genuine; otherwise, it is rejected as an
impostor. In this chapter, we will consider both approaches above.

When a spoof attack is performed, one or more of the N required biometrics are
counterfeited with an artificial replica. In this case, we could expect that:

1. M < N biometrics have been counterfeited, so that they should be similar to the
corresponding biometrics of the claimed identity.

2. The remaining N − M biometrics are noncounterfeited, so that they belong to
one or more impostors.

Thus, the problem is to reject users that attempt a spoof attack, as well as users that
do not attempt a spoof attack, but claim a different identity, by classifying them as
impostors (I = 1), and to classify the other users as genuine (I = 0). This implies
that detecting the liveness of submitted biometric is not the focus of such systems.

In absence of spoof attacks, biometric systems are evaluated on the basis of two
kinds of errors:

• the fraction of impostors accepted as genuine users, called False Acceptance Rate
(FAR);

• the fraction of genuine users rejected as impostors, called False Rejection Rate
(FRR); Genuine Acceptance Rate (GAR = 1−FRR) can be used as well.

By varying the acceptance threshold one obtains different pairs of FAR and GAR
values. Plotting FAR (GAR) as a function of FAR leads to the well-known DET
(ROC) curve.

In presence of spoof attacks, the evaluation of a third kind of error has been
proposed in [12], and is also adopted in this chapter, namely, the rate of accepted
spoof attacks, called Spoof-False Acceptance Rate (SFAR). A spoof false accept is
defined as the case where the fusion rule falsely accepts an attacker when one or
more of the modalities in a multimodal system have been successfully spoofed. We
will call SROC (Spoof-ROC) the curve obtained by plotting GAR as a function of
SFAR, to distinguish it from the standard ROC curve.

It is important to note that, at a specific operating point (i.e., for a given acceptance
threshold), the FRR does not change under a spoof attack. Therefore, reporting the
ROC and SROC curves related to the same system allows one to easily evaluate the
performance when the system is under standard operation conditions or under spoof
attacks, respectively. More precisely, for a given operating point whose FRR value
is denoted as FRR≥, the effect of a spoof attack is represented by the SFAR that is
obtained by the intersection of the SROC curve with the horizontal line given by
FRR = FRR≥.

1 Also the LR rule and similar ones can be referred to as trained rules, as they require the estimation
of likelihoods.
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9.3 State of the Art on Multimodal Biometric Spoofing

In this section, we review recent works that pointed out the vulnerability of
multimodal systems to spoof attacks against a single biometric trait.We then describe
the anti-spoofing measures proposed so far against such a vulnerability.

9.3.1 Are Multimodal Systems More Secure than Unimodal Ones?

About a decade ago, the use of multimodal systems to implement anti-spoofing
measures was proposed [13–15]:

[...] multibiometric systems provide anti-spoofing measures by making it difficult for an
intruder to simultaneously spoof the multiple biometric traits of a legitimate user. By asking
the user to present a random subset of biometric traits, the system ensures a live user is
indeed present at the point of data acquisition [13].

The rationale is that, even if an intruder is able to fabricate a perfect replica of a
given trait (e.g., a fingerprint), he/she is not guaranteed to be wrongly recognized as
a genuine user, since the system may not require the submission of that trait. This
would force intruders to spoof more than one trait, making multimodal systems a
deterrent against such attacks.

Subsequently, a stronger belief spread in the biometric community, about the
security of multimodal systems against spoof attacks, i.e., evading them always
requires an intruder to spoof all the involved traits (or at least more than one),
regardless of the adoption of any anti-spoofingmeasure like the one above, and, most
important, of the considered score fusion rule. This would imply that multimodal
systems are intrinsically more secure than unimodal ones against spoof attacks, in
the sense that their evasion requires a higher effort by the intruder. Although this is
far from evident, until a few years ago nowork questioned or attempted to verify such
a belief. This issue has been addressed first in [9, 10, 12]. These works studied the
performance of multimodal biometric systems that use parallel score fusion rules,
where only a subset of the modalities used in the system, or even a single one,
are spoofed, and the attacker merely presents his/her own biometric traits for the
remaining biometric(s). They even argued that this would make such systems more
vulnerable than unimodal ones:

Intuitively, a multimodal system is intrinsically more secure than unimodal systems since
it is more difficult to spoof two or more biometric traits than a single one. However, is it
really necessary to spoof all the fused biometric traits to crack a multimodal system? This
question is especially important when a very secure biometric (e.g., retina scan) is combined
with another that is easily spoofed (e.g., face). In this scenario, the benefits of adding the
face information may be negated by reduction in overall security [9].

If an intruder can break the multimodal system by attacking only one mode, then the
multimodal system is not more secure than the least secure mode (i.e., the “weakest link”).
In this case, we can even argue that the multimodal system is less secure than its unimodal
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systems alone since the use of several modes leads to a bigger number of vulnerability points,
increasing the possibility of an intruder to take advantage of at least one of these vulnerabil-
ities. For example, consider a multimodal system combining signature and fingerprint traits
under a spoof attack. In this scenario, a forger can choose which trait to spoof according to
his skills, what may increase his chances of being successful [10].

In fact, empirical evidences provided in [9, 10, 12], and subsequently in [7]
showed that parallel multimodal systems that combine two to four different modali-
ties, and use several state-of-the-art score fusion rules, can be evaded by spoofing a
single trait. Moreover, the probability of accepting spoof impostors as genuine users
(i.e., the SFAR) was shown to be significantly affected by the choice of the score
fusion rule. Despite this interesting result, designing score fusion rules that are robust
to spoof attacks without degrading significantly the performance in the absence of
spoofing is still an open issue, as well as thoroughly assessing the security of standard
score fusion rules to understand whether and under what circumstances some fusion
rules may be intrinsically more secure than others. Accordingly, another open issue
remains that of deriving clear guidelines to help system designers to select the most
appropriate score fusion rule for the task at hand (e.g., depending on the level of
security and performance in the absence of spoofing required by their system).

It is worth pointing out also that the aforementioned result was obtained by
simulating spoof attacks, under the assumption that, in a successful spoof attack,
the match score distribution of fake traits equals that of live, genuine traits. This
corresponds to a scenario in which the attacker is able to produce a replica which is
(statistically) indistinguishable by the matcher from the original, live trait. Accord-
ingly, to simulate a successful spoofing attempt, a randomly drawn genuine score
was used for the spoofed modality, while the impostor scores were used for the other
modalities (i.e., assuming the attacker supplied his/her own biometric).

In [9] a biometric system combining face and fingerprint modalities was
considered, and the LR and Weighted sum were used as score fusion rules. For
instance, when the operational point was set to FAR = 0.1%, under a simulated face
spoofing attack a SFAR of about 40% was measured. In other words, the probability
that an impostor is wrongly accepted as a genuine user by submitting a replica of the
face of the targeted client is 400 times higher than for standard impostors. An even
more disruptive effect was observed for fingerprint spoofing, for which the SFAR
became almost 100%. This means that the considered multimodal system can be
evaded almost with certainty by providing a “good” fingerprint replica.

Similar results were reported in [10] for face spoofing. Contrary to [9], fingerprint
spoofing was investigated using a data sets of scores coming from real spoof attacks,
obtained from the Fingerprint Liveness Detection Competition 2009 [16]. In this
case, setting the operational point to FAR = 0.1%, the SFAR was about 8%, i.e.,
about an order of magnitude lower than in the case of simulated attacks, but still
much higher than the desired value of 0.1%.

In [12] a multimodal database consisting of face, iris, and fingerprint match scores
from genuine and imposter pairs was used. This database was created by West
Virginia University and is available on the CITeRwebsite [17]. Besides twomodality
systems, the investigation was extended to a three modality system, where one or
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two modalities are spoofed. The sum fusion rule was considered. A spoof attempt
was simulated using a genuine match score in place of an impostor match score, as
in [9]. Even using three modalities, spoofing only one trait was found to significantly
increase the probability that an attacker is accepted as a genuine user. For instance,
the point at which FRR equals FAR (which is known as the equal error rate, EER)
was chosen as the operating point of the system by setting the corresponding thresh-
old level, and the corresponding SFAR was analyzed based on the same threshold.
Reported results show an EER (FRR/FAR) of 0.05%. For this operating point, when
one of three modalities is spoofed, the average SFAR is 4.9%, with an associated
FRR of 0.05%. When two of three modalities are spoofed the SFAR jumps up to an
average of 97.4%, that is, over 97% of the time, a person will be able to spoof the
system by spoofing two of three modalities.

Finally, in [7] four different modalities were considered, one face and three finger-
prints. The LR and sum fusion rules were used. Spoof attacks were simulated again
as in [9]. As an example, setting the operational point to EER = 0.32%, when the
sum rule was used, it was observed that spoofing a single fingerprint lead to a SFAR
of 9–56% (depending on which of the three fingers is spoofed). Using the LR rule,
the ERR was much lower, about 0.004%. However, the SFAR was 57–91%. This
means that spoofing a single trait can allow an attacker to evade even a multimodal
system that combines four different modalities. Moreover, we point out that the LR
fusion rule was found to be more vulnerable than the simplest sum rule, although it is
known to be optimal in the Neyman-Pearson sense (provided that a reliable estimate
of the genuine and impostor score distributions is available). Indeed, while its EER
is much lower than the one of the sum rule, its SFAR was significantly higher.

In our subsequent work, we extended this investigation to real spoof attacks,
focusing on biometric systems involving two modalities, face and fingerprint [11,
18–21]. To this aim, we collected in our Lab several face and fingerprint data sets,
fabricated fake traits using several techniques, and evaluated several multimodal
systems using different sensors, matchers, and score fusion rules (see Sect. 9.4). All
our results clearly confirmed that spoofing a single trait can drastically increase the
probability that an impostor is wrongly accepted as a genuine user by a multimodal
system. For instance, in [11] we observed that, using the sum, LR and LDA score
fusion rules, and setting the operational point to FAR = 0.1%, the SFAR that can
be attained by face and fingerprint spoofing was respectively beyond 20 and 50%
(depending on the score fusion rule and on the spoofing technique used). In [20] we
found that also multimodal systems using serial score fusion rules exhibit the same
vulnerability.

To sum up, empirical evidence collected so far clearly shows that sole use of
multiple modalities does not guarantee that a biometric system can not be evaded
by spoofing a single biometric trait. In the next section we overview anti-spoofing
measures proposed so far for multimodal systems that use parallel score fusion rules,
and always require the user to submit all the considered traits.
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Table 9.1 Results obtained in [12] that show the benefits of selecting the EER operating point
according to a trade-off between FRR and SFAR (EERspoof)

Operating point FAR (%) FRR (%) SFAR (one modality) SFAR (two modalities)

(%) (%)

EER 0.05 0.05 4.9 97.4

EERspoof � 0.001 2.89 0.31 2.89

The first row reports FAR, FRR, and SFAR when one or two modalities are spoofed attained when
the EER operating point (FAR = FRR) is chosen. The second row reports the same performance
measures when the EERspoof operating point is considered (FAR = SFARwhen two modalities are
spoofed)

9.3.2 Countermeasures to Spoof Attacks in Multimodal Systems

In [9, 10, 12] different anti-spoofingmeasures have been proposed, aimed at reducing
the probability (SFAR) that an intruder, by spoofing a single trait, can break multi-
modal systems that require users to submit all the considered traits, and use parallel
score fusion rules. All the proposed countermeasures act on the score fusion rule.
The simplest one consists of modifying the criterion for choosing the threshold on
the fused score [12]; another one involves some modification of existing fusion rules
[9, 10]; another one consists of a novel, ad hoc fusion rule [9]. They are summarized
in the following, and their pros and cons are discussed.

While the decision threshold on the fused score is usually set according to a desired
trade-off between FRR and FAR, the anti-spoofingmeasure proposed in [12] consists
of setting it according to a trade-off between FRR and SFAR. For instance, if the
operational point is set at the ERR,where FRR=FAR, it is suggested in this paper that
in order to improve security of the fusion algorithm, a new threshold is considered
where SFAR equals FRR. This is called the Spoof EER (EERspoof). Other operating
points could also be selected, depending on the application requirements for FRR,
FAR, and SFAR.

For instance, in the experiments summarized in Sect. 9.3.1, setting the threshold at
the EER operating point led to a FAR (and FRR) equal to 0.05%, while the average
SFAR was 4.9% for a single spoofed trait, and 97.4% for two spoofed traits. As
also reported in Table9.1, setting the operating point at EERspoof, a better trade-off
between FRR and SFAR can be achieved at 2.89% EERspoof for the case where
two modalities are spoofed. If the operating point of 2.89% EERspoof is chosen, the
corresponding FRR is 2.89% and FAR turned out to be � 0.001%. In other words,
the new operating point decreases SFAR from 97.4 to 2.89% when two modalities
are spoofed. Similarly, the average SFAR attained under spoofing of one modality
decreases from 4.9 to 0.31%. However, this comes at a sacrifice to FRR which
increases from 0.05 to 2.89%. The trade-off in these adjusted error rates may be
preferred given the threat of a spoof attack. In summary, adjusting the operating
point according to a system assessment based on SFAR can ensure for a more secure
system. The main advantage of this anti-spoofing measure is that it can be applied
to any score fusion rule, and is very simple to implement. One drawback is that a
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higher security comes at a cost of increased FRR. Another drawback is that thematch
score distribution produced by spoof attacks, and consequently the corresponding
SFAR as a function of the decision threshold, are very difficult to estimate. This
issue was addressed in [12] by assuming that such a distribution equals the one of the
corresponding genuine traits, which is the approach proposed in [9] (see Sect. 9.3.1,
and below). Note that, under this assumption, SFAR = GAR for any value of the
decision threshold. This can be a pessimistic assumption. Moreover, it does not
allow the proposed anti-spoofing measure to be applied, when the original criterion
is the so-called zeroFAR, i.e., setting the decision threshold to the lowest value at
which the estimated FAR equals 0. In this case, under the above assumption the
threshold should be set so that SFAR = 0. This however implies GAR = 0, which is
clearly not acceptable.

More complex anti-spoofing measures involve the modification of existing score
fusion rules. In [9] thewell-knownLRrulewas considered [seeEq. (9.1)] [9] proposes
to estimate P(si |I = 1) by taking int account also auxiliary information about the
“security degree” of each matcher against spoof attacks, and about the probability
that an attack against any subset of matchers occur. Denoting with Ti ◦ {0, 1} and
Fi ◦ {0, 1} the Boolean random variables that indicate respectively whether a spoof
attack has been attempted against the i th matcher, and whether it was “successful”,
P(si |I ) can be estimated by marginalizing the distribution P(si , Ti , Fi |I )2:

P(si |I ) =
∑

T1,...,TN ,F1,...,FN

P(T1, . . . , TN |I ) ×
M∏

i=1

P(Fi |Ti )P(si |Fi , I ). (9.3)

In this model, the security of the i th matcher is defined as the probability that a spoof
attack against it is successful, P(Fi = 1|Ti = 1). As pointed out in [9], this value
should be manually set according to general knowledge. Obviously, P(Fi = 1|Ti =
0) = 0. The other two distributions in the right-hand side of Eq. (9.3)weremodeled in
[9] according to the following assumptions: (i) spoof attacks against any of the 2N −1
subsets of oneormorematchers are equiprobable, i.e., P(T1, . . . , TN |I = 1) = 1−π,
if T1 = · · · = TN = 0, and P(T1, . . . , TN |I = 1) = π

2N −1
otherwise, where π is the

probability that some spoof attack has been attempted; (ii) genuine users will never
provide a fake trait, i.e., P(T1, . . . , TN |I = 0) = 0 for T1 = · · · = TN = 1, and thus
P(si |Fi = 1, I = 0) need not to be modeled; (iii) the match score distributions in
absence of successful spoof attacks, P(si |Fi = 0, I = 0) and P(si |Fi = 0, I = 1),
equal respectively to the standard genuine and impostor distributions, and can thus
bemodeled from training data; (iv) thematch score distribution of a successful attack
equals the corresponding genuine distribution: P(si |Fi = 1, I = 1) = P(si |Fi =
0, I = 0). It follows that P(si |I ) is a mixture of the score distributions of genuine
users and impostors distributions.

2 In [9] quality measures of the biometric samples in each modality were also considered. For the
sake of simplicity we do not include them in our description.



174 G. Fumera et al.

The above anti-spoofing strategy allows one a finer tuning of the score fusion
rule, with respect to the one of Johnson et al. [12]. On the other hand, it is tailored to
the LR rule only, and is based on the same pessimistic assumption about the score
distribution of successful spoof attacks (which was originally proposed in that work).
Moreover, it trades a higher flexibility for the necessity of defining the probability
π of a spoof attack, and the security of each matcher, P(Fi = 1|Ti = 1), which are
difficult to estimate in practice. Finally, also this countermeasure has the drawback of
increasing the FRR, since the mass of the distribution P(si |I = 1) is shifted towards
the genuine distribution.

A simplification of the ExtLR rule was proposed in [10], to avoid an ad hoc choice
of the parameters π and P(Fi = 1|Ti = 1). The former was set to π = 0.5, based
on the rationale that no a priori information about the occurrence of spoof attack is
usually available. The latter was set to 1 according to the worst-case assumption that
each spoof attack will be successful.

A similar approach was also proposed in [22], although not specifically tailored
to biometric applications. In particular, the underlying idea of this approach was
to learn secure classifiers in adversarial settings, including spam filtering, intrusion
detection, and biometrics, by modeling the distribution of carefully crafted attacks
which may be not present in the training data.

Finally, a novel, ad hoc score fusion rule was proposed in [9]. The rationale is
to explicitly defining, by high-level linguistic expressions, the decision criteria to
fuse the information consisting of the match scores, the quality measures of the
acquired traits (if available), and the prior information about the security of each
matcher. To this aim, a fuzzy score fusion rule was devised. The input data and
the output score were associated respectively to the linguistic expressions “high
score/quality/security,” and “high output” (using the convention that the higher the
output value, the higher the probability that the user is genuine), which weremodeled
as fuzzy variables. In particular, the output was associated to the three linguistic
values “low,” “medium” and “high.” The proposed fuzzy rules were defined for
a biometric system involving two modalities, according to the criterion that “low
security biometric system cannot faithfully perform the recognition task alone; and
similarity scores with low quality should have low weights in the final output” [9].
For instance, two of these rules can be phrased as: “if the twomatch scores are “high”,
then the output is “high” (independently on the qualitymeasures and security levels)”;
“if one of the matchers has a ‘low’ security and produces a ‘high’ score, while the
other produces a “low” match score (independently on its security level), then the
output is ‘high’ ,”

The main advantage of this anti-spoofing strategy lies in the possibility to
explicitly defining high-level rules to fuse the input information. On the other hand,
the drawback is that the number of fuzzy rules grows exponentially with the number
of matchers, which makes it difficult to define them for biometric systems involving
three or more modalities. Moreover, empirical evidence provided in [9] shows that
also this anti-spoofing measure is likely to increase the FRR.

To sum up, specific anti-spoofing measures proposed so far for multimodal
systems are based on more or less complex manipulations of the score fusion rule,
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and sometimes require the knowledge of information difficult to estimate. Moreover,
an inherent feature of these measures is that they trade a higher security against spoof
attacks for a higher FRR. In the next section, we give an overview of the performance
of some of these anti-spoofingmeasures, on publicly available datasets including real
spoof attacks.

9.4 Experimental Evidences and Discussion

In this section, we present some experimental results from our previous works, with
the aim of pointing out the vulnerability of multimodal systems to spoof attacks
against a single biometric trait, and to show how such a vulnerability can bemitigated
by one of the anti-spoofingmeasures described in Sect. 9.3.2.We chose the Extended
LR to this aim, since it is tailored to improve the robustness of the well-known LR
score fusion rule. We describe the datasets used in our experiments in Sect. 9.4.1,
and the experimental protocol in Sect. 9.4.2. The results are presented and discussed
in Sect. 9.4.3.

9.4.1 Datasets of Spoofed Samples

Fingerprint spoofing We used the LivDet 2011 data set, created for the Second
Fingerprint Liveness detection competition [23]. It includes 80 clients (distinct
fingers). Different impressions of live and fake fingers were acquired in two different
sessions, separated by about two weeks. All the ten fingers were considered. Fake
fingerprints were created by the consensual method [24]. Gelatine, silicone, alginate,
and latex, were used as the casting materials, while plasticine- and silicon-like mate-
rials were used for molds. Fingerprint images were acquired using the well-known
Biometrika FX2000 and Italdata ET10 optical sensors, which have respectively a
resolution of 569dpi and 500dpi, and a sensing area of 13.2 × 25mm and approxi-
mately 30.5× 30.5mm. Images of latex fake fingerprints turn out to be very similar
to the images of the corresponding live fingerprints, while fakes obtained using other
materials exhibit some artifacts. The fake fingerprints LivDet 2011 dataset repre-
sents the state of the art in fingerprint spoofing, and thus provides a reasonable set
of realistic scenarios.

Face spoofing We used three publicly available datasets: the Photo Attack and
Personal Photo Attack [18], and thePrint Attack dataset [25, 26]. In the Photo Attack
and Personal Photo Attack datasets, two different kinds of face spoof attacks were
considered. The live face images of each client were collected in two sessions, with a
time interval of about 2 weeks between them, under different lighting conditions and
facial expressions. Spoofed face images for the PhotoAttack datasetwere constructed
using the following “photo attack” method, also used in [26, 27]. It consists of
displaying aphoto of the targeted client on a laptop screen (or printing it onpaper), and
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Table 9.2 Characteristics of the fake fingerprint and fake face datasets used in our experiments

Data set Number of clients Number of spoofed Number of live

images per client images per client

LivDet11-Alginate 80 3 5

LivDet11-Gelatin 80 3 5

LivDet11-Silicone 80 3 5

LivDet11-Latex 80 3 5

Photo attack 40 60 60

Personal photo attack 25 3 (avg.) 60

Print attack 50 12 16

of showing it to the camera. To this end, the testing “live” face images of the clients
were used. This simulates a pessimistic scenario in which the attacker can obtain
photos of the targeted client under a setting similar to the one of the verification phase.
The Personal Photo Attack dataset has been built using personal photos voluntarily
provided by 25 of the 50 clients (on average, 3 photos for each client), that were
acquired in different times and under different environmental conditions than those
of the live training and testing images. This simulates a more realistic scenario
where the attacker is able to collect a photo of the targeted client, e.g., from theWeb.
According to the above observations, we expect that the fake score distribution of our
Photo Attack dataset, provided by a given matching algorithm, will be very similar
to that of the genuine users. This may not be true for the Personal Photo Attack,
instead, whose effectiveness strongly depends on the ability of the attacker to obtain
images similar to the templates used by the system.

The Print Attack dataset was constructed during the Competition on
Countermeasures to 2D Facial spoof attacks, in 2011. It consists of 200 video clips of
printed-photo attack attempts to 50 clients, under different lighting conditions, and
of 200 genuine access attempts from the same clients. We extracted the “live” and
spoofed face images from the corresponding videos. In particular, for each client, we
extracted 12 “live” face images and 16 spoofed face images from each video clip.

Table9.2 reports the size of all the datasets described above.

9.4.2 Experimental Protocol

We used a similar experimental protocol as in [9, 12]:

• We built 5 × 3 = 15 chimerical datasets, by randomly associating face and
fingerprint images of pairs of clients of the available five fingerprint and three
face datasets. Building chimerical datasets is a widely used approach in experi-
mental investigations on multimodal biometrics [8].
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• Each chimerical dataset was randomly subdivided into five pairs of training and
testing sets. Forty percentage of the “virtual” clients was included into the training
set,3 and the remaining 60% for the testing set. All the above procedure was
repeatedfive times, for different randomassociations of face andfingerprint images
of pairs of clients (namely, creating different “virtual” clients). In each run, the
parameters of the trained fusion rules have been estimated on the training set.
The results reported below refer to the average testing set performance, over the
resulting 25 runs.

• The fake match scores were computed by comparing each fake image of a given
client with the corresponding template image.

• Wenormalized allmatch scores in [0, 1] using themin-max technique [8]. The nor-
malization parameters were estimated on the training set.

• The performance was assessed by computing the DET curves (FRR vs FAR). Note
that, in the evaluation of spoof attacks, the DET curve reports FRR vs SFAR [12].
In both cases, the performance increases as the curve gets closer to the origin.

We used the NIST Bozorth34 and the VeryFinger5 matching algorithms, for fin-
gerprint verification. They are both based on matching the fingerprint minute details,
called “minutiae.” As they exhibited very similar behaviors, we will only report the
results for Bozorth3. The Elastic Bunch Graph Matching (EBGM) algorithm was
used for face verification.6 It is based on representing a face with a graph, whose
nodes are the so-called face “landmarks” (centered on the nose, eyes, and other points
detected on the face). These nodes are labeled by a feature vector, and are connected
by edges representing geometrical relationships among them. We also carried out
some preliminary experiments using the Principal Component Analysis (PCA) and
the Linear Discriminant Analysis (LDA), which yield again very similar results to
that of the EBGM algorithm, and are thus omitted for sake of clarity.

We investigated three attack scenarios using the fake traits of our datasets:
(a) only fingerprints are spoofed, (b) only faces are spoofed, (c) both fingerprints
and faces are spoofed (bi-modal or double spoofing). For the scenarios (a) and (b),
we also evaluated simulated spoof attacks under the pessimistic scenario defined in
[9, 10, 12]: fictitious fake scores were generated by randomly drawing a set of gen-
uine match scores from the testing set.

The fusion rules we considered are: sum, product, weighted sum (LDA), LR, and
Extended LR. Since the bi-modal system considered in these experiments is the same
as in [9], we used for the Extended LR rule the same values of the parameters as in
[9] (i.e., the probability that a spoofing attack against either matcher is successful,
and the prior probability of a spoof attack: see Sect. 9.3.2).

3 The clients of a chimerical dataset are usually referred to as “virtual” clients, since they do
not correspond to a real person or identity. They are indeed created by randomly associating the
biometric traits of different “real” clients.
4 http://www.nist.gov/itl/iad/ig/nbis.cfm
5 http://www.neurotechnology.com/verifinger.html
6 http://www.cs.colostate.edu/evalfacerec/algorithms5.php

http://www.nist.gov/itl/iad/ig/nbis.cfm
http://www.neurotechnology.com/verifinger.html
http://www.cs.colostate.edu/evalfacerec/algorithms5.php
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9.4.3 Results and Discussion

We report in the following a representative set of results, related to the following
pairs of spoof attacks:

1. LivDet11-Latex and Photo Attack;
2. LivDet11-Gelatin and Print Attack;
3. LivDet11-Alginate and Personal Photo Attack.

We do not report here any result related to fake fingerprints fabricated with silicone
(LivDet11-Silicone), since they attained very similar results to that fabricated with
latex (LivDet11-Latex), as also reported in [11]. Tables9.3, 9.4 and 9.5 report the
average performance and the standard deviation attained on each data set by all
fusion rules, for three operating points: EER (when FAR = FRR), FAR = 1%, and
FAR = 0.1%. This allows us to directly compare the performance of the different
fusion rules under standard operating conditions (in terms of FAR and FRR), and
their robustness to spoof attacks (in terms of SFAR). Each operating point was fixed
on the DET curve obtained without spoof attacks, namely, by considering genuine
users and impostors (non-spoof attacks). The FRR at each selected operating point is
reported in the first column (labeled as no spoof ) of Tables9.3, 9.4 and 9.5. The SFAR
attained by the different spoof attacks at the same operating point is reported in the
remaining columns. This allows us to understand to which extent a fusion rule is
robust: once the operating point is fixed, the effect of spoofing is only to increase the
FAR (actually, the SFAR) as it only affects impostor match scores, while the FRR
remains unchanged.

When no spoofing attack is performed, all fusion rules exhibited almost the same
performance, except for the Sum rule (see the no spoof column in Tables9.3, 9.4 and
9.5). The Sum rule performedmuchworse, because of the strong performance imbal-
ance between the fingerprint and the face matcher: the genuine users and impostors
score distributions of the face matcher exhibited indeed a much higher overlapping.

Spoofing a single biometric trait always led to a SFAR higher than the corre-
sponding FAR in the considered multimodal systems, for all the adopted fusion rules
(see the fing., s-fing., face and s-face columns in Tables9.3, 9.4 and 9.5). This pro-
vides evidence that multimodal systems are not intrinsically robust to spoof attacks
against a single biometric trait. In particular, fingerprint spoofing was almost always
much more harmful than face spoofing. Also this behavior is due to the performance
imbalance between the fingerprint and the face matcher, which caused all fusion
rules, except for Sum, to give a higher weight to the former. Therefore, the Sum rule
exhibited the worse performance in the absence of attacks, and the highest vulnera-
bility to face spoof attacks, while it turned out to be the least vulnerable to fingerprint
spoofing. Spoofing both traits led to an even higher SFAR (see the both column in
Tables9.3, 9.4 and 9.5). No that the SFAR values reported in Tables9.3, 9.4 and
9.5 under the fing. columns show that latex-based fingerprint spoofing appears more
effective than using gelatin-based fake fingerprints; in turn, the latter appears more
effective than using alginate-based fake fingerprints.
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Table 9.3 EER, FRR at FAR = 1%, and FRR at FAR = 0.1% for the considered fusion rules on
the Livdet11-Latex and Photo Attack datasets (no spoof )

Rule no spoof face s-face fing. s-fing. both

EER % SFAR % SFAR % SFAR % SFAR % SFAR %

Sum 9.98 ± 2.1 33.25 ± 3.9 37.82 ± 3.8 44.07 ± 4.8 79.85 ± 3.8 60.89 ± 2.9

Product 3.49 ± 1.4 5.72 ± 2.1 6.43 ± 2.2 70.06 ± 5.4 96.11 ± 1.8 73.10 ± 4.9

LDA 3.32 ± 1.5 8.39 ± 4.3 9.87 ± 4.8 70.79 ± 5.6 96.36 ± 2.2 74.09 ± 5.4

LR 3.60 ± 1.4 5.58 ± 2.8 6.36 ± 3.2 71.41 ± 5.1 96.46 ± 2.2 73.47 ± 5.1

Ext. LR 3.61 ± 1.4 5.64 ± 2.7 6.40 ± 3.1 71.49 ± 5.0 96.38 ± 2.2 73.57 ± 5.1

FRR % at SFAR % SFAR % SFAR % SFAR % SFAR %

FAR = 1%

Sum 17.41 ± 3.2 15.58 ± 1.6 20.46 ± 1.9 28.38 ± 5.2 69.00 ± 6.1 46.00 ± 3.8

Product 5.15 ± 2.7 1.93 ± 0.4 2.28 ± 0.5 63.22 ± 4.7 94.37 ± 3.1 66.57 ± 4.4

LDA 5.05 ± 2.6 2.17 ± 0.5 2.73 ± 0.7 64.91 ± 4.7 95.12 ± 3.1 67.83 ± 4.6

LR 5.46 ± 2.6 1.22 ± 0.4 1.43 ± 0.5 64.94 ± 4.7 95.22 ± 3.1 66.38 ± 4.7

Ext. LR 5.63 ± 2.8 1.17 ± 0.4 1.38 ± 0.5 64.68 ± 4.8 94.94 ± 3.3 66.03 ± 4.8

FRR % at SFAR % SFAR % SFAR % SFAR % SFAR %

FAR = 0.1%

Sum 22.76 ± 3.5 8.84 ± 1.1 12.68 ± 1.5 21.65 ± 4.9 62.68 ± 6.7 37.30 ± 3.9

Product 8.59 ± 4.1 0.30 ± 0.1 0.36 ± 0.1 53.41 ± 5.5 90.62 ± 4.1 56.79 ± 4.9

LDA 7.99 ± 3.7 0.26 ± 0.1 0.32 ± 0.2 56.32 ± 5.3 92.45 ± 3.8 58.66 ± 5.2

LR 8.91 ± 4.1 0.14 ± 0.1 0.17 ± 0.1 56.23 ± 6.0 92.39 ± 3.9 57.48 ± 6.0

Ext. LR 9.46 ± 5.2 0.16 ± 0.1 0.19 ± 0.1 56.13 ± 5.7 90.97 ± 5.5 57.27 ± 6.0

The SFAR corresponding to the same operating points is reported for real spoof attacks against
fingerprint (fing.), face (face), and both traits (both), and for the simulated spoof attacks against
fingerprints (s-fing.), and face (s-face). Results are averaged over 25 runs, and are reported as mean
and standard deviation

Let us now focus on the Extended LR rule, which was specifically designed to
counteract spoof attacks. At the considered operating points, it performed similarly
to the LR rule, independently on the kind of attack, although it was expected to
improve the robustness of the LR rule. Moreover, it exhibited a SFAR higher than
that of the LR rule, at operating points characterized by FAR values lower than the
ones considered in Tables9.3, 9.4 and 9.5 (these results are not reported here, due to
lack of space). This suggests that the assumption about the score distribution of fake
traits on which the Extended LR rule is based is too pessimistic. This can also be
argued by the fact that the SFAR of the simulated spoof attacks always overestimates
the corresponding SFAR under a real spoof attack.

With regard to this behavior, Tables9.3, 9.4 and 9.5 show that the difference
between the SFAR of simulated face spoofing and of real face spoofing (face and
s-face columns) is much lower than in the case of fingerprint spoofing (fing. and
s-fing. columns), for all the considered fusion rules. In particular, for face spoofing
this difference is often very small. This means that the assumption underlying the



180 G. Fumera et al.

Table 9.4 Results attained on the Livdet11-Gelatin and Print Attack data set

Rule no spoof face s-face fing. s-fing. both

EER % SFAR % SFAR % SFAR % SFAR % SFAR %

Sum 14.35 ± 2.2 46.31 ± 3.0 47.26 ± 2.6 29.98 ± 3.0 76.38 ± 5.1 58.97 ± 3.9

Product 5.25 ± 1.6 16.31 ± 4.4 21.20 ± 5.5 53.54 ± 8.6 92.94 ± 3.0 68.01 ± 7.9

LDA 4.32 ± 1.8 29.54 ± 9.9 38.27 ± 8.5 53.28 ± 10.3 94.02 ± 3.4 69.51 ± 10.1

LR 4.16 ± 1.6 17.68 ± 8.7 28.65 ± 12.3 56.31 ± 9.5 94.88 ± 2.7 66.64 ± 10.8

Ext. LR 4.18 ± 1.6 16.52 ± 7.9 27.68 ± 12.3 56.02 ± 9.6 94.84 ± 2.8 66.16 ± 10.9

FRR % at SFAR % SFAR % SFAR % SFAR % SFAR %

FAR = 1%

Sum 28.04 ± 5.1 32.84 ± 2.3 39.50 ± 1.0 8.42 ± 2.8 56.24 ± 8.9 40.90 ± 3.5

Product 8.87 ± 3.2 4.87 ± 0.9 7.50 ± 1.5 38.40 ± 7.7 88.61 ± 4.9 52.89 ± 6.7

LDA 6.43 ± 2.9 10.42 ± 4.1 23.48 ± 7.8 41.88 ± 7.7 91.61 ± 4.7 56.57 ± 6.5

LR 6.58 ± 3.0 3.34 ± 1.4 8.18 ± 5.9 45.46 ± 7.9 92.98 ± 4.1 52.52 ± 8.2

Ext. LR 6.64 ± 3.0 3.15 ± 1.3 7.03 ± 4.8 45.39 ± 7.8 92.95 ± 4.2 52.22 ± 8.0

FRR % at SFAR % SFAR % SFAR % SFAR % SFAR %

FAR = 0.1%

Sum 34.52 ± 5.7 22.08 ± 4.5 36.08 ± 1.4 3.86 ± 1.9 46.04 ± 9.8 31.93 ± 4.6

Product 13.82 ± 4.2 1.05 ± 0.3 1.90 ± 0.4 26.08 ± 7.2 82.45 ± 6.5 38.21 ± 7.2

LDA 9.98 ± 3.7 1.39 ± 0.6 4.61 ± 2.9 31.64 ± 7.8 88.62 ± 5.6 41.27 ± 7.0

LR 10.73 ± 4.3 0.37 ± 0.2 0.81 ± 0.5 33.78 ± 8.2 89.53 ± 5.3 38.04 ± 8.4

Ext. LR 10.61 ± 4.4 0.40 ± 0.2 0.81 ± 0.4 34.15 ± 7.9 89.67 ± 5.4 38.59 ± 7.9

See the caption of Table 9.3 for the details

simulation of spoof attacks made in [9] is too pessimistic, especially for fingerprint
spoofing. Note that results of Tables9.3 and 9.4 refer to face spoof attacks obtained
by using face images taken from the testing set, that are thus similar to the template
of the targeted users. Thus, the corresponding fake score distribution is likely to be
similar to that of the genuine users, but this is a pessimistic attack scenario.

The above results suggest that the assumption that the fake score distribution
equals the one of genuine users can be often violated by real spoof attacks, and that a
more realisticmodeling of the fake score distribution should be adopted for designing
robust score fusion rules.

9.5 Current Challenges in Multimodal Anti-spoofing

In this chapter, we reviewed the main achievements in the field of multimodal
anti-spoofing. We summarized empirical evidence showing that multimodal biomet-
ric systems are not intrinsically robust to spoof attacks against one biometric trait,
and that the probability of accepting spoof impostors as genuine users especially
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Table 9.5 Results attained on the Livdet11-Alginate and Personal Photo Attack dataset

Rule no spoof face s-face fing. s-fing. both

EER % SFAR % SFAR % SFAR % SFAR % SFAR %

Sum 10.57 ± 1.5 10.75 ± 3.5 37.97 ± 4.1 14.80 ± 1.6 78.32 ± 3.2 16.63 ± 4.0

Product 4.08 ± 1.1 6.12 ± 1.8 8.05 ± 2.0 25.09 ± 6.0 95.62 ± 1.6 30.36 ± 9.0

LDA 3.89 ± 1.3 6.48 ± 2.4 11.63 ± 3.7 25.16 ± 5.6 95.81 ± 1.8 28.75 ± 7.5

LR 4.14 ± 1.1 5.03 ± 1.9 7.89 ± 2.4 25.43 ± 6.0 95.97 ± 1.7 28.52 ± 6.9

Ext. LR 4.14 ± 1.1 5.17 ± 1.7 8.31 ± 2.8 25.88 ± 5.5 96.03 ± 1.7 28.78 ± 7.1

FRR % at SFAR % SFAR % SFAR % SFAR % SFAR %

FAR = 1%

Sum 18.80 ± 3.0 1.40 ± 1.0 20.37 ± 2.3 2.83 ± 0.8 66.84 ± 4.8 2.94 ± 1.6

Product 6.38 ± 2.2 1.47 ± 0.6 2.33 ± 0.3 13.61 ± 4.4 93.18 ± 2.8 15.36 ± 6.1

LDA 6.21 ± 2.4 1.47 ± 0.7 2.84 ± 0.8 14.53 ± 4.4 94.09 ± 2.8 15.48 ± 6.2

LR 6.64 ± 2.5 1.15 ± 0.5 1.71 ± 0.4 15.01 ± 4.7 94.41 ± 2.8 14.81 ± 5.9

Ext. LR 6.63 ± 2.5 1.13 ± 0.5 1.64 ± 0.3 14.86 ± 4.6 94.29 ± 2.9 14.64 ± 5.8

FRR % at SFAR % SFAR % SFAR % SFAR % SFAR %

FAR = 0.1%

Sum 24.59 ± 3.3 0.17 ± 0.2 12.53 ± 1.4 0.82 ± 0.5 60.14 ± 5.0 0.66 ± 0.7

Product 9.81 ± 3.1 0.17 ± 0.1 0.38 ± 0.1 6.27 ± 3.1 89.14 ± 3.6 6.05 ± 3.9

LDA 9.21 ± 3.1 0.17 ± 0.1 0.36 ± 0.2 7.23 ± 3.2 91.26 ± 3.5 6.40 ± 3.9

LR 10.55 ± 4.6 0.15 ± 0.1 0.15 ± 0.1 6.82 ± 3.8 90.86 ± 3.9 5.52 ± 3.8

Ext. LR 10.85 ± 6.5 0.15 ± 0.1 0.18 ± 0.1 7.33 ± 3.8 88.69 ± 10.8 6.24 ± 3.7

See the caption of Table 9.3 for the details

depends on the chosen score fusion rule. In particular, multimodal systems that use
well-known trained score fusion rules, like the LR, turned out to be potentially more
vulnerable than systems that use simpler, fixed, rules (e.g., the product rule), even
though the LR is optimal according to the Neyman-Pearson criterion, provided that
the genuine and impostor distributions are reliably estimated. Despite the reported
results, no specific guidelines on how to determine the most suitable fusion rule for
the task at hand have been given yet. It is still an open issue to understand whether
and to what extent score-level fusion rules are vulnerable to spoof attacks, and
under what circumstances some rules may be intrinsically more secure than others.
Nevertheless, the reported empirical evidences suggest us that ad hoc anti-spoofing
measures should be adopted also in multimodal systems (like the one originally
proposed in [13]).

We then considered recently proposed anti-spoofing measures that consist of
modifying existing score fusion rules, and of developing novel ones, by exploit-
ing additional information about spoof attacks, in terms of specific assumptions on
the corresponding match score distribution.We focused in particular on the approach
proposed in [9], and subsequently used in [7, 10, 12], for evaluating the vulnerability
of multimodal systems against spoof attacks, and for designing robust score fusion
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rules. It is based on the assumption that the match score distribution produced by
successful spoof attacks equals that of genuine users. While this approach does not
require one to fabricate spoof attacks in order to estimate the corresponding match
score distribution, the above assumption is often violated in practice, and turns out to
be too pessimistic. This can lead one to overestimate the vulnerability of multimodal
systems. Moreover, when the above assumption is used in the design of robust score
fusion rules like the Extended LR [9], it can even make the resulting multimodal
system less robust to real spoof attacks.

Accordingly, a suitable assumption for the match score distribution produced by
spoof attacks is crucial in the design of robust score fusion rules, if no informa-
tion from liveness detection modules is exploited. In principle, this requires one to
fabricate a large variety of spoof attacks to analyze the corresponding match score
distribution. However, this would affect the scalability of a multimodal biometric
system, since the fake score distribution should be re-estimated as novel genuine
users are added. It would also affect the acceptability of the system, since genuine
users would have to provide replicas of their own biometrics.

A possible solution is to develop realistic models of the fake score distribution
that are representative of different kinds of spoof attacks, and can be used by the
designers of multimodal systems without the need of actually fabricating any spoof
attack. A preliminary attempt towards this direction was made by the authors in
[21, 28]. The model proposed in that work consists of simulating a family of fake
score distributions that exhibit an intermediate behavior between the impostor and
the genuine distribution, parametrized by a measure of the relative distance to the
latter. However, such a model was based on a limited empirical evidence, and, thus,
it may not properly account for the wide variability of spoof attack distributions
induced, e.g., by different spoof fabrication techniques and materials. Extending
this preliminary model and collecting larger empirical evidence on spoof attack
distributions to overcome such limitations is indeed part of the authors’ ongoing
work. Further, we advocate that security of multimodal biometric systems to spoof
attacks should be evaluated and improved based on a proactive what-if analysis,
i.e., by anticipating potential (and novel) spoof attacks that may be incurred during
system operation, as also suggested in our recent work on the security of pattern
recognition systems [29]. To this end, relying on a well-suited simulation model
of the spoof distribution has the main advantage of allowing system designers to
thoroughly assess the security ofmultimodal systems against a large number of spoof
attack scenarios, instead of considering a limited number of cases corresponding to
spoof attacks fabricated in a laboratory setting. This approach may also shed some
light on the open issue mentioned at the beginning of this section, i.e., it may help
understanding the security properties of standard score-level fusion rules in a more
systematic manner.

Another approach for improving the robustness of multimodal systems is to
integrate the match score with the score provided by liveness detectors, through
suitable fusion rules. Although building a liveness detector requires one to collect
samples of spoof attacks, it is not required that such samples are taken from the gen-
uine users of the multimodal biometric system under design. This approach is under
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investigation in the “TABULA RASA” research project,7 and preliminary results are
reported in [7]. Note that this approach does not fall within the definition of “multi-
modal anti-spoofing” considered in Sect. 9.1, since state-of-the-art liveness detection
is related to the integration of liveness and match scores in unimodal biometric sys-
tems [6]. We also argue that the aforementioned spoof simulation model may be also
exploited to the same end, i.e., to train fusion rules that combinematching algorithms
and liveness detectors without submitting any fake trait to the matching algorithm to
estimate the corresponding score distribution.

To sum up, the issue of multibiometric anti-spoofing has been raised only recently
in the biometric community, and it has quickly become one of the most relevant open
problems in this field. Further and more systematic theoretical and experimental
investigations of this issue are therefore needed, taking into account the large variety
of biometrics and of possible score-level fusion rules.
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Chapter 10
Evaluation Methodologies

Ivana Chingovska, André Anjos and Sébastien Marcel

Abstract Anti-spoofing systems, regardless of the technique, biometric mode or
degree of independence of external equipment, are most commonly treated as binary
classification systems. The two classes that they differentiate are genuine accesses
and spoofing attacks. From this perspective, their evaluation is equivalent to the
established evaluation standards for the binary classification systems. However, the
anti-spoofing systems are designed to operate in conjunction with recognition sys-
tems and as such can affect their performance. From the point of view of a recognition
system, the spoofing attacks are a separate class that they need to detect and reject.
As the problem of spoofing attacks detection grows to this pseudo-ternary status,
the evaluation methodologies for the recognition systems need to be revised and
updated. Consequentially, the database requirements for spoofing databases become
more specific. The focus of this chapter is the task of biometric verification and its
scope is threefold: first, it gives the definition of the spoofing detection problem from
the two perspectives. Second, it states the database requirements for a fair and unbi-
ased evaluation. Finally, it gives an overview of the existing evaluation techniques
for anti-spoofing systems and verification systems under spoofing attacks.

10.1 Introduction

The problem of spoofing and anti-spoofing can be seen from two different perspec-
tives. As implied directly by the definition of the task of anti-spoofing systems to
discriminate between two classes: genuine accesses and spoofing attacks, the prob-
lem is most often designed as binary classification problem. On the other hand,
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spoofing attacks are directed toward deceiving recognition systems, regardless of
whether there is an anti-spoofing algorithm to prevent them to do so, or not. From
that perspective, the problem of spoofing and anti-spoofing is not limited only to
binary classification systems, as the isolated anti-spoofing systems are. It is of equal
importance to transfer the problem understanding to the domain of biometric recog-
nition systems (in particular, in this chapter, biometric verification systems).

This concept shift may influence the biometric verification systems at several
levels. First of all, spoofing attacks represent another class of input samples for
the verification systems, which may cause changes in their internal algorithms to
gain greater spoofing resilience. Two most prominent attempts for such changes are
multimodal fusion [1–5] and fusion of a verification system with an anti-spoofing
system [6–9]. Second, the problem restatement needs to modify the evaluation stan-
dards for verification systems. Finally, it may play a key role in the process of their
parameterization.

While thefirst aspect of the spoofing and anti-spoofingproblemunder the umbrella
of a verification system is out of scope of this chapter, we will thoroughly inspect all
themodifications that the evaluation standards need to undergo to accustom to the new
setting. The main reason is that once the danger of spoofing attacks is acknowledged,
the verification performance of the biometric systems is not the only measurement of
their quality. Important property to assess is their robustness to spoofing attacks. Only
in that case, one can say that the overall performance of the system is being estimated.
In this context, by verification system we could consider any type of system that can
produce verification scores given a biometric sample as an input. No assumption on
the mechanism the system employs for protection against spoofing attacks, if any,
is needed. The system may be solely any baseline biometric verification algorithm
which disregards the hazard of spoofing attacks, or a multimodal system or a fusion
with an anti-spoofing algorithm. In any case, the system can be regarded as a black
box, and the full evaluation can be done based on the verification scores it outputs
for the input samples.

Mutual comparison of verification systems is the second matter of their evalua-
tion with regards to spoofing. For example, it is of great importance to observe the
performance change of a verification system before and after an integration with a
anti-spoofing system. Blending in a spoofing countermeasure into an existing veri-
fication system can increase its robustness to spoofing, but at the same time it can
affect its verification performance. The evaluation methodology which is going to
be deployed should be able to assess the trade-off between these two effects.

Issues regarding the aspect of parameterization and tuning of the verification
systems when spoofing attacks have a non-negligible prior will be also touched upon
in this chapter.

With the previous observations in mind, stating the problem of spoofing and anti-
spoofing from the perspective of an anti-spoofing system, as well as from the per-
spective of a verification system is the primary objective of this chapter (Sect. 10.2).
Thorough review of the evaluation strategies for isolated anti-spoofing systems,
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as well as for verification systems commonly used in the literature will follow in
Sect. 10.4. As a prerequisite, the concepts we are going to evaluate entail certain
database structure that will be covered in Sect. 10.3.

10.2 Problem Statement

When treating spoofing as a binary classification problem, designers are interested in
determining the capacity of a given system to discriminate between genuine accesses
(positives) and attacks (negatives).1 These systems, which do not have any capacity
to perform biometric verification, are only exposed to elements of these two classes.
Figure10.1 represents these settings in a block diagram. In order to evaluate a given
system, one feeds data from each of the two classes involved on the assessment.
Scores collected from the evaluated system are fed into an evaluation framework
which can compute error rates or draw performance figures. This workflow, typical
for evaluation of binary classification systems, iswidely deployed by countermeasure
developers aswell [6, 10–15]. Thedatabase design and the evaluationof anti-spoofing
systems comprise to the standards of general binary classification systems and will
be revisited in Sects. 10.3.1 and 10.4.2, respectively.

A less considered perspective is how biometric verification systems treat spoof-
ing attacks. The classical approach puts biometric verification systems into the set
of binary classifiers. Normally, such systems are designed to decide between two
categories of verification attempts: genuine users (positives) and the so-called zero-
effort impostors (negatives) [16]. Spoofing attacks represent a new type of samples
that can be presented at the input of this system. Considering that both spoofing
attacks and impostors need to be rejected, it is still possible to regard the problem as
a binary classification task where the genuine users are the positives, while the union

Fig. 10.1 Evaluation of a (unknown) system with regards to its capacity to discriminate spoofing
attacks from genuine accesses

1 In this chapter, we shall treat as positive class or simply as positives, examples in a (discriminative)
binary classification system one wishes to keep and, as negative class or negatives, examples that
should be discarded.
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of spoofing attacks and impostors are the negatives. Nevertheless, tuning of different
properties of the verification system to make it more robust to spoofing attacks may
require a clearly separated class of spoofing attacks. Furthermore, the correct ratio of
spoofing attacks and impostors in the negative class union is, at most times, unknown
at design time. Applications in highly surveilled environments may consider that the
probability of a spoofing attack is small, while applications in unsurveilled spaces
may consider it very high. Spoofing attacks, therefore, should be considered as a
third separate category of samples that the verification systems need to handle.

From such a viewpoint, biometric verification can be cast into a pseudo-ternary
classification problem. While as binary classifiers, verification systems comply to
standard evaluation methods; in this new perspective their concept and evaluation
need to be changed accordingly. Figure10.2 depicts these new settings. Instead of
inputting a single set of negative examples, this new evaluation method requires two
subclasses of negative samples: samples coming from zero-effort impostors and the
ones coming from spoofing attacks.

Researchers generally simplify the pseudo-ternary classification problem so that
it suits the binary nature of the verification systems. A common approach is to
reduce it to two binary classification problems, each of which is responsible for one
of the two classes of negatives. According to this, the verification system can be
operating in two scenarios or operation modes: (1) when it receives genuine accesses
as positives and only zero-effort impostors as negatives, and (2) when it receives only
genuine accesses as positives and spoofing attacks as negatives. Sometimes the first
scenario is called a normal operation mode [17–19]. As it is going to be discussed
in Sect. 10.4.3, it is beneficial to simplification that the positives (genuine accesses)
that are evaluated completely match in both scenarios.

The workflow of the verification system confronted with spoofing attacks, from
the input to the evaluation stage, is represented in Fig. 10.2. The score histogram
displays three distinctive groups of data: the positive class and the two negative
ones. If the mixing factor between the negative classes is known at design time,
system evaluation can be carried using known binary classification analysis tools.
Since that is usually not the case, the evaluation tools for the verification systems
need to be adapted to the new settings.

Fig. 10.2 Evaluation of a (unknown) system with regards to its capacity to discriminate genuine
accesses from zero-effort impostors and spoofing attacks
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The new concept for verification systems explained above requires a database
design and evaluation methodologies adapted to the enhanced negative class, regard-
less of the system’s robustness to spoofing and how it is achieved. An overview of the
research efforts in this domain will be given in Sects. 10.3.2 and 10.4.3, respectively.

10.3 Database Requirements

The use of databases and associated evaluation protocols allow for objective and
comparative performance evaluation of different systems. As discussed on Sect. 10.2,
the spoofability of a system can be evaluated on isolated anti-spoofing systems,
but also on fully functional verification systems. The simple evaluation of anti-
spoofing systems requires only that database and evaluation protocols consider two
data types: genuine accesses and spoofing attacks. The evaluation of verification
systems, merged with spoofing counter-measures or not, requires the traceability of
identities contained in each presented sample, so that tabs are kept for probe-to-
model matching and non-matching scenarios. The particular requirements for each
of the two cases are given in Sects. 10.3.1 and 10.3.2. Databases for each of these two
settings exist in the literature. An exhaustive listing of databases that allow for the
evaluation of spoofing resilience in isolated anti-spoofing or biometric verification
systems is given in Sect. 10.3.3.

10.3.1 Databases for Evaluation of Anti-spoofing Systems

The primary task of a database for evaluation of anti-spoofing systems is to provide
samples of spoofing attacks along with samples of genuine accesses. The identity
information of clients in each sample need not to be present and can be discarded in
case it is. The two sets of samples, which will represent the negative and the positive
class for the binary classification problem, are just by themselves sufficient to train
and evaluate an anti-spoofing system. It is a common practice that a database for
binary classification provides a usage protocol which breaks the available data into
three datasets [20]:

• Training set Dtrain, used to train an anti-spoofing model;
• Development set Ddev, also known as validation set, used to optimize the decisions
in terms of model parameters estimation or model selection;

• Test set Dtest, also known as evaluation set, on which the performance is finally
measured.

In the case of spoofing databases, it is recommended that the 3 datasets do not
contain overlapping client data in order to avoid biasing related to client specific
traits and to improve generalization [21]. A database with this setup completely
satisfies the requirements of a two-class classification problem, as the isolated spoof-
ing detection is.
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The process of generating spoofing attacks requires genuine access samples that
will serve as a basis to create the fake copies of the biometric trait. These may or
may not be the same samples as the genuine access samples of the database. In any
case, if they are provided alongside the database, it can be enhanced with new types
of spoofing attacks in future.

10.3.2 Databases for Evaluation of Verification Systems

If a database is to serve for evaluation of a verification system, it needs to possess
similar properties of a biometric database. Training and testing through biometric
databases require (preferably) disjoint sets of data used for enrollment and verifica-
tion of different identities. In practice, many databases also present a separation of
the data in three sets as described above. Data from the training set can be used to cre-
ate background models. The development data should contain enrollment (gallery)
samples to create the user-specific models, as well as probe samples to match against
the models. Similar specifications apply for the test set. The matching of the devel-
opment probe samples against the user models should be employed to tune algo-
rithms’ parameters. Evaluation is carried out by matching probe samples of the test
set against models created using the enrollment samples. The identity of the model
being tested and the gallery samples are annotated to each of the scores produced
so that the problem can be analyzed as a binary classification one: if model identity
and probe identity match, the score belongs to the positive class (genuine client),
otherwise, the score belongs to the negative class (zero-effort impostors). Usually,
all identities in the three datasets are kept disjoint for the same reasons indicated
in Sect. 10.3.1. Following this reasoning, a first requirement for a spoofing database
aspiring to be equally adapted to the needs of anti-spoofing and verification systems,
is provision of separate enrollment samples, besides the genuine access and spoofing
samples.

The pseudo-ternary problem of spoofing as explained in Sect. 10.2 imposes sce-
nario for matching genuine accesses, zero-effort impostors, and spoofing attacks
against the models. In order to conform to this second requirement, the simplifica-
tion of the pseudo-ternary problem introduced in Sect. 10.2 is of great help. In the
case of the first scenario, or the normal operation mode, matching entries equivalent
to the entries for genuine users and zero-effort impostors for a classical biometric
verification database are needed. In the case of the second scenario, the provided
entries should match the spoofing samples to a corresponding model or enrollment
sample.

To unify the terminology, we formalize the two scenarios of operation of the
verification system as below:

• Licit scenario: A scenario consisting of genuine users (positives) and zero-effort
impostors (negatives). The positives of this scenario are created by matching the
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genuine access samples of each client to the model or enrollment samples of the
same client. The negatives can be created by matching the genuine access samples
of each client to the model or enrollment samples of other clients. This scenario is
suitable to evaluate a verification system in a normal operation mode. Evidently,
no spoofing attacks are present in this scenario;

• Spoof scenario: A scenario consisting of genuine users (positives) and spoofing
attacks (negatives). The positives of this scenario are created by matching genuine
access samples of each client to the models or enrollment samples of the same
client. The negatives are created by matching the spoofing attacks of each client
to the model or enrollment samples of the same client. No zero-effort impostors
are involved in this scenario.

The licit scenario is necessary for evaluation of the verification performance of
the system. The spoof scenario is necessary for evaluation of the system’s robustness
to spoofing. If we follow a convention to match all the genuine access samples to
the model or enrollment samples of the same client in both scenarios, we will end
up having the same set of positives for the two scenarios. This agreement, as will be
shown in Sect. 10.4.3, plays an important role in some approaches for evaluation of
the verification systems.

To better illustrate how to create the scenarios out of the samples present in any
spoofing database, let us assume a simple hypothetical spoofing database containing
one genuine access and one spoofing attack of two clients with identities A and
B. Let us assume that the database also contains enrollment samples for A and B
allowing computation of models for them. The matching of the samples with the
models in order to create the positives and the negatives of the two scenarios is given
in Table10.1. To exemplify an entry in the table, L+ in the first rowmeans that entries
that match genuine accesses of client A to the model of client A belong to the subset
of positives of the licit scenario. The same applies for L+ in the third row, this time
for client B. Similarly, S- in the second row means that entries that match spoofing
attacks of client A to the model of client A belong to the subset of negatives in the
spoof scenario.

Instead of creating a spoofing database and then creating the licit and spoof sce-
nario from its samples, an alternative way to start with is to use an existing biometric
database which already has enrollment samples as well as data for the licit scenario.

Table 10.1 Creating licit and spoof scenarios out of the samples in a spoofing database

Probe Model for A B

A Genuine access L+, S+ L−
Spoofing attack S− No match done

B Genuine access L− L+, S+
Spoofing attack No match done S−

+ stands for positives,− for negatives. L is for licit and S for spoof scenario. Note that the positives
are the same for both L and S scenarios
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All that is needed is creating the desirable spoofing attacks out of the existing samples.
One should note, however, that the complete system used for the acquisition of sam-
ples, including the sensor, should be kept constant through all the recordings as differ-
entiation may introduce biases. For example, consider a situation in which a speaker
verification system is evaluated with data collected with a low-noise microphone,
but in which attack samples are collected using noisier equipment. Even if attacks
do pass the verification threshold, it is possible that potential counter-measures may
rely on the additional noise produced by the new microphone to identify attacks. If
that is the case, then such a study may be producing a less effective anti-spoofing
system.

10.3.3 Overview of Available Databases for Spoofing

Table10.2 contains an overview of the existing anti-spoofing databases that are pub-
licly available. The columns, that refer to properties discussed throughout this section,
refer to:

• Database: the database name;
• Trait: the biometric trait on the database;
• # Subsets: the number of subsets in the database referring to existing separate set
for training, developing, and testing systems;

• Overlap: if there is client overlap between the different database subsets (training,
development, and testing);

• Recognition: if the database can be used to evaluate a verification system resilience
to spoofing (i.e., contains enrollment samples);

• Existing DB: if the database is a spin-off of an existing biometric database not
originally created for spoofing evaluation;

• Sensor: If the sensors used to acquire the spoofing samples are the same as those
used to acquire the genuine accesses.

Table 10.2 Catalog of evaluation features available on spoofing databases available

Database Trait # Subsets Overlap Recognition Existing DB Sensor

ATVS-FFp [19] Fingerprint 2 No No No Yes

LivDet 2009 [22] Fingerprint 2 ? No No Yes

LivDet 2011 [15] Fingerprint 2 ? No No Yes

LivDet 2013 [23] Fingerprint 2 ? No No Yes

NUAA PI [13] Face 2 No No No Yes

CASIA FAS [24] Face 2 No No No Yes

Replay Attack [25] Face 3 No Yes No Yes

Yale Recaptured [26] Face 1 Yes No Yes No

All databases are fully described on the book appendix. For detailed column description, please see
text



10 Evaluation Methodologies 193

10.4 Evaluation Techniques

Several important concepts about evaluation of binary classification systems have
been established and followed by the biometric community. Primarily, they are used
to evaluate verification systems, which have a binary nature. They are also applicable
in the problem of anti-spoofing as a binary classification problem.

In Sect. 10.4.1 we revisit the basic notation and statistics for evaluation of any
binary classification system. After that recapitulation, we give an overview of how
the error rates and methodologies are adapted particularly for anti-spoofing systems
in Sect. 10.4.2 and verification systems under spoofing attacks in Sect. 10.4.3.

10.4.1 Evaluation of Binary Classification Systems

The metrics for evaluation of binary classification systems are associated to the
types of errors and how to measure them, as well as to the threshold and evaluation
criterion [27]. A binary classification system is subjected to two types of errors: False
Positive (FP) and False Negative (FN). Typically, the error rates that are reported are
False Positive Rate (FPR), which corresponds to the ratio between FP and the total
number of negative samples and False Negative Rate (FNR), which corresponds to
the ratio between FN and the total number of positive samples.

Alternatively,many algorithms for binary classification report different error rates,
but still equivalent to FPR and FNR. For example, True Positive Rate (TPR) refers
to the ratio of correctly classified positives and can be computed as 1—FNR. True
Negative Rate (TNR) gives the ratio of correctly detected negatives, and can be
computed as 1—FPR.

To compute the error rates, the system needs to compute a decision threshold τ

which will serve as a boundary between the output scores of the genuine accesses
and spoofing attacks. By changing this threshold one can balance between FPR and
FNR: increasing FPR reduces FNR and vice-versa. However, it is often desired that
an optimal threshold τ ∗ is chosen according to some criterion. Two well-established
criteria are MinimumWeighted Error Rate (WER) and Equal Error Rate (EER) [27].
In the first case, the threshold τ ∗

WER is chosen so that it minimizes the weighted total
error rate as in Eq. 10.1 where β ∈ [0, 1] is a predefined parameter which balances
between the importance (cost) of FPR and FNR. Very often, they have the same
cost of β = 0.5, leading to Minimum Half Total Error Rate (HTER) criteria. In the
second case, the threshold τ ∗

EER ensures that the difference between FPR and FNR is
as small as possible (Eq. 10.2). The optimal threshold, also referred to as operating
point should be determined using the data in the development set, denoted in the
equations below as Ddev.

τ ∗
WER = arg min

τ
β · FPR(τ,Ddev) + (1 − β) · FNR(τ,Ddev) (10.1)

τ ∗
EER = arg min

τ
|FPR(τ,Ddev) − FNR(τ,Ddev)| (10.2)
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Regarding the evaluation criteria, once the threshold τ ∗ is determined, the systems
usually report the WER (Eq. 10.3) or its special case for β = 0.5, HTER (Eq. 10.4).
Since in a real world scenario the final system will be used for data which have not
been seen before, the performance measure should be reported on the test set Dstest.

WER(τ,Dtest) = β · FPR(τ,Dtest) + (1 − β) · FNR(τ,Dtest) (10.3)

HTER(τ,Dtest) = FPR(τ,Dtest) + FNR(τ,Dtest)

2
[%] (10.4)

10.4.1.1 Graphical Analysis

Important tools in evaluation of classification systems are the different graphical
representations of the classification results. For example, an intuition about how good
the discriminating power of a binary classification system is, one can get by plotting
its output score distributions for the positive and the negative class, as in Fig. 10.3a.
Better separability between the two classesmeans better results in terms of error rates.

To summarize the performance of a system and to present the trade-off between
FPR and FNR depending on the threshold, the performance of the binary classifica-
tion systems are often visualized using Receiver Operating Characteristic (ROC) and
Detection-Error Tradeoff (DET) [28] curves. They plot the FPR versus the FNR (or
some of the equivalent error rates) for different values of the threshold. Sometimes,
when one number is needed to represent the performance of the system in order to
compare several systems, AreaUnder ROC curve (AUC) values are reported. Usually
it is computed for ROC curves plotting FPR and TPR and, in this case, the higher the
AUC the better the system. Figure10.3b illustrates the DET curve for a hypothetical
binary classification system.

Unfortunately, curves like ROC and DET can only display a posteriori perfor-
mance. When reading values directly form the plotted curves, we implicitly choose a
threshold on a dataset and the error rates are reported on the same dataset. Although
ROCandDETgive a clear idea about the performance of a single system, as explained
in [29], comparing two systems with these curves can lead to biased conclusions. To
solve this issue, [29] proposes the so-called Expected Performance Curve (EPC). It
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Fig. 10.3 Evaluation plots for hypothetical anti-spoofing system. a Score distributions. b DET
curve. c EPC curve
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fills in for two main disadvantages of the DET and ROC curves: 1. it plots the error
rate on the test set depending on a threshold selected a-priori on the development
set; and 2. it accounts for varying relative cost β ∈ [0; 1] of FPR and FNR when
calculating the threshold.

Hence, in the EPC framework, an optimal threshold τ ∗ is computed using Eq. 10.1
for different values of β, which is the variable parameter plotted on the abscissa.
Performance for the calculated values of τ ∗ is then computed on the test set. WER,
HTER, or any other measure of importance can be plotted on the ordinate axis. EPC
curve is illustrated in Fig. 10.3c for a hypothetical classification system.

10.4.2 Evaluation of Anti-spoofing Systems

In the domain of anti-spoofing, the number of errors known as FP and FN refer to the
number of spoofing attacks which are incorrectly classified as genuine accesses and
the number of genuine accesses incorrectly classified as spoofing attacks, respec-
tively. Thus, the error rate FPR is associated with the ratio between FP and the total
number of spoofing attacks, and FNRwith the ratio between FN and the total number
of genuine accesses.

Since the positives and the negatives are associated with the action of acceptance
and rejection by the anti-spoofing system, a common practice is to replace FPR and
FNR with their synonyms False Accept Rate (FAR) and False Reject Rate (FRR),
respectively. Some publications deviate from this convention and utilize other syn-
onyms, which are listed in Table10.3.

For a more general framework, where the system is specialized to detect any kind
of suspicious or subversive presentation of samples, be it a spoofing attack, altered
sample or artifact, [32] has assembled a different set of notations for error mea-
surements. Such a system reports False Suspicious Presentation Detection (FSPD)
in the place of FNR and False Non-Suspicious Presentation Detection (FNSPD) in
the place of FPR. To summarize the error rates into one value, some authors use
accuracy [12, 26, 33], which is the ratio of the overall errors that the system made

Table 10.3 Typically used error rates in anti-spoofing and their synonyms

Error rate Acronym Synonyms

False Positive Rate FPR False Accept Rate (FAR), False Spoof Accept Rate [8], False
Living Rate (FLR) [14]

False Negative Rate FNR False Reject Rate (FRR), False Alarm Rate [10], False Live
Rejection Rate [8], False Fake Rate (FFR) [14]

True Positive Rate TPR True Accept Rate

True Negative Rate TNR True Reject Rate, detection rate [10, 11, 30], detection
accuracy [31]

Half Total Error Rate HTER Average Classification Error (ACE) [14]
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and the total number of samples. Finally, to graphically represent the performance of
the anti-spoofing systems, score distribution plots [34], ROC, DET, and EPC curves
are often used.

10.4.3 Evaluation of Verification Systems Under
Spoofing Attacks

The classical approach regards a biometric verification system as a binary classi-
fication system. In the scope of biometric verification systems, False Match Rate
(FMR) and False Non-Match Rate (FNMR) are the most commonly used terms for
the error rates FPR and FNR. FMR stands for the ratio of incorrectly accepted zero-
effort impostors and FNMR for the ratio of incorrectly rejected genuine users. These
and the equivalent error rates are often substituted with other synonyms which are
different by different authors. The most common of them are listed in Table10.4.
Although not always equivalent [16], we adopt the convention in [35], where FMR
and FNMR are substituted with FAR and FPR, respectively.

Simplifying the ternary classification into two binary classification problems, as
explained in Sect. 10.2, is the key step that sets the standards for the evaluation of
verification systems. The systems are usually evaluated separately in the two modes
of operation associated with the two scenarios stated in Sect. 10.3.2. This section
focuses on the error rates and plots typical for this evaluation.

While the verification performance metrics is well established and widely used,
the metrics for spoofing evaluation is not unified and is ambiguous in different pub-
lications. In fact, even the nomenclature regarding the spoofing attacks themselves is
not coordinated. For example, several authors do notmake a clear distinction between
a spoofing attack and a zero-effort impostor and refer to both types of samples as
impostors. The nature of the sample can be concluded by the scenario that is being
used: licit or spoof. The error rate associated with spoofing attacks in these systems is
again FAR. The ambiguous character of FAR in this case can often lead to confusion.

Table 10.4 Typically used error rates in biometric verification and their synonyms

Scenario Error rate Synonyms

Licit False Negative Rate False Reject Rate (FRR), False Non-Match Rate [8, 37],
Pmiss [6])

Spoof False Positive Rate False Accept Rate (FAR) [17], Spoof False Acceptance Rate
[2, 5], Liveness False Acceptance Rate [36], Success
Rate [18, 19], Attack Success Rate [37]

Both False Positive Rate False Accept Rate (FAR), False Match Rate [8, 37], Pfa [6]

Both True Positive Rate True Accept Rate, Genuine Acceptance Rate [32, 38]

Union False Positive Rate System False Acceptance Rate (SFAR) [36], Global False
Acceptance Rate (GFAR) [8]

False Negative Rate Global False Rejection Rate (GFRR)
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The importance of a clear distinction between the terminology for the error rates
reporting on themisclassified zero-effort impostors and spoofing attackswas outlined
in [36]. Besides Liveness FalseAcceptanceRate (LFAR) as a ratio of spoofing attacks
that are incorrectly accepted by the system, [36] defines error rates connected to the
total number of accepted negatives, regardless of whether they come from zero-effort
impostors or spoofing attacks. For example, the union of FAR in licit scenario and
LFAR in spoof scenario is called System False Acceptance Rate (SFAR). A detailed
overview of all themetrics utilized by various authors is given in Table10.4. The table
contains twometrics of error rates for negatives: for the licit and spoof scenario. It also
reports the overall error rates that occurwhenboth scenarios are considered as a union.

The adopted terminology in the remainder of this text is as follows:

• FRR—ratio of incorrectly rejected genuine users (both licit and spoof scenario)
• FAR—ratio of incorrectly accepted zero-effort impostors (in the licit scenario)
• SFAR—ratio of incorrectly accepted spoofing attacks [2] (in the spoof scenario)
• GFAR—ratio of incorrectly accepted zero-effort impostors and spoofing attacks.

Researchers generally follow threemainmethodologies for determining the effect
of spoofing attacks over the verification systems and obtaining the error rates. The
differences between the three evaluationmethodologies are in thewayof computation
of the decision threshold.

10.4.3.1 Evaluation Methodology 1

Two decision threshold calculations are performed separately for the two scenarios,
resulting into two separate values of the error rate (HTER or EER) [2, 17, 39–41].
FRR, FAR and SFAR are reported depending on the decision threshold obtained for
the scenario they are derived from. One weak point of this type of evaluation is that
it neglects that there is only one verification system at disposal and it should have
only one operating point corresponding to one decision threshold. Furthermore, the
decision threshold and the reported error rates of the spoof scenario are irrelevant in
a real-world scenario. The problem arises because the spoof scenario assumes that
all the possible misuses of the system come from spoofing attacks. It is not likely
that any system needs to be tuned to operate in such a scenario. Therefore, the error
rates depending on the threshold obtained under the spoof scenario are not a relevant
estimate of the system’s performance under spoofing attacks. Furthermore, the error
rates for the licit and spoof scenarios cannot be compared, because they rely on
different thresholds.

10.4.3.2 Evaluation Methodology 2

This methodology adapts for more realistic performance evaluation. It takes advan-
tage of the assumption that the licit and spoof scenarios share the same positive
samples: a requirement mentioned to be beneficial in Sect. 10.3.2. In this case, the
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system will obtain the same FRR for the both scenarios regardless of the threshold.
Once the threshold of the system is chosen, FAR and SFAR can be reported and com-
pared. The threshold can be chosen using various criteria, but almost always using
the licit scenario. Most of the publications report error rates for the two scenarios
using a threshold chosen to achieve a particular desired value of FRR [1, 3–7, 18,
19, 37, 38, 42].

The issue that the evaluation methodology 2 oversees is that a system whose
decision threshold is optimized for one type of negatives (for example, the zero-effort
impostors), cannot be evaluated in a fair manner for another type of negatives (the
spoofing attacks). If the system is expected to be exposed to two types of negatives
in the test or deployment stage, it is fair that the two types of negatives play a role in
the decision of the threshold in the development stage.

10.4.3.3 Evaluation Methodology 3

This methodology aims at filling in the gaps of the evaluation methodology 2 and
establishes a criteria for determining a decision threshold which considers the two
types of negatives. To this end, a new error measurement FARω is introduced as a
weighted error rate for the two negative classes. It is calculated as in Eq. 10.5.

FARω = (1 − ω) · FAR + ω · SFAR (10.5)

The weight factor ω can be interpreted as the relative importance or cost of SFAR
with regards of FAR. In the cases, when the prior of impostors and spoofing attacks
for a given system can be estimated, ω can be interpreted as the ratio of spoofing
attacks among all the misuses of the system.

Then, the optimal classification threshold is chosen using one of two criteria. The
first one corresponds to the EER criteria from Eq. 10.2 and it minimizes the differ-
ence between FARω and FRR on the development set. The new decision threshold
determination is given in Eq. 10.6. The second one corresponds to the Minimum
HTER criteria and selects a threshold that minimizes HTERω as in Eq. 10.7.

τ ∗
EERω

= arg min
τ

|FARω(τ,Ddev) − FRR(τ,Ddev)| (10.6)

τ ∗
HTERω

= arg min
τ

FARω(τ,Ddev) + FRR(τ,Ddev)

2
(10.7)

Finally, using the determined threshold, different error rates can be computed and
reported on the test set. Among them, HTERω, an error rate analogous to HTER is
suggested and calculated as in Eq. 10.8.

HTERω(τ,D) = FARω(τ,D) + FRR(τ,D)

2
[%] (10.8)
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10.4.3.4 Graphical Analysis

Following the typical convention for binary classification system, biometric verifi-
cation systems use score distributions, ROC or DET curves to graphically present
their performance. The plots for a traditional biometric verification system regard
the genuine users as a positive and the zero-effort impostors as a negative class. The
details about these types of plots are given in Sect. 10.4.2.

When using graphical representation of the results, the researchers usually follow
the evaluationmethodology 2. Thismeans that all the tuning of the algorithms, in par-
ticular in computation of the decision thresholds, is performed using the licit scenario,
while the plots may represent the results for one of the scenarios or for both of them.

When only the licit scenario is of interest, the score distribution plot contains the
distributions only for the genuine users and the zero-effort impostors. If evaluation
with regards to the vulnerability to spoofing is desired, the score distribution plot
gets an additional distribution corresponding to the scores that the system outputs
for the spoofing samples in the spoof scenario. As a result, the score distribution plot
presents three score distributions, which, illustratively for a hypothetical verification
system, are given in Fig. 10.4a.

An information about the dependence of SFAR on the chosen threshold can be
obtained directly from the score distribution plot. An example is shown in Fig. 10.4b,
where the full green line represents how SFAR varies with shifting the threshold,
while the vertical dashed green line represents the threshold at a chosen operating
point.

Typically, ROC and DET curves visualize the trade-off between FAR and FRR
for a biometric system with no danger of spoofing attacks anticipated. The closest
analogy to the ROC and DET curves when evaluating a system exposed to spoofing
attacks can be found using the evaluation methodology 2. First, the curve using the
licit scenario is plotted. Then, it can be overlaid with a curve for the spoof scenario.
For the licit scenario, the vertical axis represents FAR, while for the spoof scenario
it represents SFAR. However, meaningful comparison of the two curves is possible
only if the number of genuine access samples in both licit and spoof scenario is the
same. In such a case, a certain selected threshold will result in the same value of FRR
for both the scenarios. By drawing a vertical line at the point of the obtained FRR,
one can examine the points where it cuts the curves for the licit and spoof scenario,
and can compare FAR and SFAR for the given system. Illustration of this analysis is
given in Fig. 10.4c.

The drawback of the DET curve coming from its a-posteriori evaluation feature
explained in [29] and obstructing fair comparison of two systems, is not a concern
here. The plot does not compare different systems, but the same system with a single
operating point under different set of negative samples.

As an alternative figure delivering similar information as DET, [1, 38] suggest
to plot FAR versus SFAR. Thresholds are fixed in order to obtain all the possible
values of FAR for the licit scenario and SFAR is evaluated on the spoof scenario
and plotted on the ordinate axis. By plotting the curves for different verification
systems, the plot enables to compare which of them is less prone to spoofing given a
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Fig. 10.4 Performance and spoofing vulnerability evaluation plots for hypothetical verification
system. a Score distributions. b Score distributions with SFAR line. c DET curve. d FAR versus
SFAR curve. e EPC curve. f EPSC curve

particular verification performance. However, this comparison suffers from the same
drawback as the DET: a-posteriori evaluation. As such, its fairness is limited. This
plot is illustrated in Fig. 10.4d.

The logic for plotting the EPC curve is similar if onewants to follow the evaluation
methodology 2. One has to vary the cost parameter β which balances between FAR
and FRRof the licit scenario and choose the threshold accordingly. Using the selected
threshold, one can plot WER on the licit scenario. Afterwards, to see the method’s
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resilience to spoofing depending on β, the WER curve can be overlaid with SFAR
curve using the spoof scenario, as shown in Fig. 10.4e for a hypothetical system.

A graphical evaluation for the evaluation methodology 3 cannot be easily derived
from the existing ROC orDET curves. The hyperparameter of this evaluation scheme
is the cost parameter ω, and the graphical evaluation should focus on plotting how
the error rates vary with regards to its change. A plot of that kind will enable compar-
ison of systems for a range of values of ω. A plot similar to EPC, where the plotted
error rates depend on ω may be useful. This plot, called Expected Performance and
Spoofability Curve (EPSC) iterates over a range of values for ω and calculates the
decision threshold like in Eq 10.6. Unlike for EPC, in the decision threshold calcu-
lation for EPSC both the licit and spoof scenario take place, because both FAR and
SFAR contribute with a certain weight. The threshold should be calculated using the
development set. Then, a relevant error rate on the test set, like HTERω is plotted
on the ordinate axis. The EPSC curve for a hypothetical verification system showing
HTERω is given in Fig. 10.4f. The threshold is obtained on the development set using
the criteria in Eq. 10.6.

The convenience of EPSC for evaluation of verification systems under spoof-
ing attacks is covered by several properties. First, since it follows the evaluation
methodology 3, it provides that both types of negatives participate in threshold deci-
sion process. Second, it presents a-priori results: the thresholds are calculated on the
development set, while the error rates are reported on the test set. This ensures unbi-
ased comparison between algorithms. Furthermore, this comparison is enabled for a
range of values for the cost parameter ω. This is of interest for any application for
which the prior of zero-effort impostors and spoofing attacks among the fraudulent
usages of the system can vary or is not known in advance.

Besides HTERω, other error rates of interest may be plotted on the EPSC plot,
like SFAR or FARω.

10.5 Conclusions

Anti-spoofing systems in biometrics can rarely be imagined working as stand-alone.
Their task is to perform an additional check on the decision of a biometric verification
systems in order to detect a fraudulent user who possesses a copy of a biometric trait
of a genuine user. Unless they have perfect detection rate, they inevitably affect the
performance of the verification system they protect.

Traditionally, the anti-spoofing systems have been evaluated as binary classifica-
tion systems, and in reason: by nature they need to distinguish between two classes—
genuine accesses and spoofing attacks. However, the above observation throws a light
on the critical issue of establishing a methodology for evaluation of verification sys-
tems with regards to spoofing attacks. This equally applies for verification systems
with or without any mechanism for handling spoofing attacks.

This task requires reformulation of the problem of biometric verification. They, as
well, are, by definition, binary classification systems distinguishing between genuine
accesses and zero-effort impostors. With the spoofing attacks in play, the problem
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scales to pseudo-ternary classification problem, with two types of negatives: zero-
effort impostors and spoofing attacks.

As a result of the above observations, this chapter covers the problem of spoofing
evaluation from two perspectives: evaluation of anti-spoofing systems alone and
evaluation of verification systems with respect to spoofing attacks. The evaluation
in the first case means straightforward application of well-established evaluation
methodologies for binary classification systems, in error rates (FAR, FRR, HTER
etc.), decisions on operating point (Minimum WER, EER etc.) and graphical repre-
sentation of results (ROC, DET, and EPC curves). The second perspective requires a
simplification of the pseudo-ternary problem, in, for example, two binary classifica-
tion problems. This, on the other hand, imposes certain database requirements, and
spoofing databases which do not satisfy them cannot be used for the evaluation of
biometric verification systems under spoofing attacks. Depending on the steps under-
taken to simplify the pseudo-ternary problem, the evaluation paradigm for the system
differs. In particular, in this chapter, we discussed three evaluation methodologies,
together with the error rates and the plots associated with them.

As the interest for spoofing and anti-spoofing in almost all biometric modes is
growing both in research, but even more in industrial environment, a common fair
criteria for evaluation of anti-spoofing systems and of verification systems under
spoofing attacks is becoming of essential importance. For the time being, there is a
lot of inconsistency in the error rates conventions, as well as the evaluation strategies
used in different publications.
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Chapter 11
Related Standards

Christoph Busch

Abstract This chapter reports about the relevant international standardization
activities in the field of biometrics and describes a harmonized taxonomy for terms
in the field of liveness detection. The scope and progress of the presentation attack
detection standard ISO/IEC 30107 is discussed.

11.1 Introduction

Biometric systems are characterized by two essential properties. On one hand, func-
tional components or subsystems are usually dislocated. While the enrollment may
take place as a part of an employment procedure with the personal department or as
a part of an ePassport application in the municipality administration, the biometric
verification takes place likely at a different location, when the data subject (e.g., the
staff member) is approaching a certain enterprise-gate (or any other physical border
gate) or when the citizen is traveling with his new passport. On the other hand, while
the biometric enrollment is likely to be a supervised capture process and often linked
with training on sensor interaction such supervision does not exist for the verifica-
tion process. To the contrary, the verification is often conducted based on a probe
sample that was generated in a unsupervised capture process. In consequence for
the verification not only usability of the sensor and ease of human–machine interac-
tion is essential but moreover a measure of confidence that the probe sample was in
deed collected from the subject that was initially enrolled and not from an biometric
artifact that pretends the presence of the enrollee.

In most cases, the comparison of probe a biometric sample with the stored bio-
metric reference will be dislocated from the place of enrollment. Some applications
store the reference in a centralized or de-centralized database. More prominent are
token-based concepts like the ICAO ePassports [1, 2] as they allow the subject to
keep control of his/her personal biometric data as the traveling individuals decide
themselves whether and when they provide the token to the controlling instance.
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The recognition task is likely to fail, if the biometric reference is not readable
according to a standardized format. Any open system concept does require the use
of an open standard in order to allow that for the recognition task a component from
any different suppliers can be used. The prime purpose of a biometric reference is to
represent a biometric characteristic. This representation must, on the one hand, allow
a good biometric performance but at the same time the encoding format must fully
support the interoperability requirements. Thus, encoding of a biometric sample (i.e.,
fingerprint imageor face image) according to the ISO/IECBiometric data interchange
format [3] became a prominent format structure for many applications. The image
itself is stored with high compression ratio for which JPEG2000 [4] and Wavelet
Scalar Quantization (WSQ) [5] turned out to be quite efficient encoding schemes.

For all data interchange formats, it is essential to store along with the representa-
tion of the biometric characteristic essential information (meta data) on the capture
process and the generation of the sample. Metadata that is stored along with the
biometric data includes information such as size and resolution of the image but also
relevant data that impacted the data capturing process: Examples for such metadata
are the Capture Device Type ID, that identifies uniquely the device that was used
for the acquisition of the biometric sample and also the Certification block data that
reports the Certification authority, which had tested the capture device and the cor-
responding Certification scheme that was used for this purpose. These data fields are
contained in standardized interchange records [3, 6, 7].

An essential information that was furthermore considered helpful for the verifica-
tion capture process is some measure to describe the reliability of the capture device
against spoofing attacks. This is more pressing, if capture device and decision sys-
tems are dislocated. Thus, ISO/IEC has started in 2011 to work on a standard that is
covering this issue and will be introduced in this chapter. We will outline the strategy
behind this standardization process, cover the taxonomy that was established so far,
and discuss the constraints to be considered in the respective standardization project.

11.2 International Standards Developed in ISO/IEC SC37

International standardization in the field of information technology is driven by a
Joint Technical Committee (JTC1) formed by the International Organization for
Standardization (ISO) and the International Electrotechnical Commission (IEC).
An important part of the JTC1 is the Sub-Committee 37 (SC37) that was estab-
lished in 2002. First standards developed in SC37 became available in 2005 and
have found wide deployment in the meantime. More than 700 million implemen-
tations according to SC37 standards are estimated to be in the field at the time of
this writing. Essential topics that are covered by SC37 include the definition of a
Harmonized BiometricV ocabulary (ISO/IEC 2382-37) that removes contradic-
tions in the biometric terminology [8, 9], a harmonized definition of a (ISO/IECSC37
SD11) that describes the distributed subsystems, which are contained in deployed
systems [10], a common programming interface BioAP I (ISO/IEC 19784-1) that
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supports ease of integration of sensors and SDKs [11] and also the definition of SC37
has over its first 10 years of work concentrated on the development of the ISO/IEC
19794 family, which includes currently the following 13 parts:

• Part 1: Framework (IS)
• Part 2: Finger minutiae data (IS)
• Part 3: Finger pattern spectral data (IS)
• Part 4: Finger image data (IS)
• Part 5: Face image data (IS)
• Part 6: Iris image data (IS)
• Part 7: Signature/Sign time series data (IS)
• Part 8: Finger pattern skeletal data (IS)
• Part 9: Vascular image data (IS)
• Part 10: Hand geometry silhouette data (IS)
• Part 11: Signature/Sign processed dynamic data (IS)
• Part 12: – void –
• Part 13: Voice data (WD)
• Part 14: DNA data (IS).

The first part includes relevant information that is common to all subsequent
modality specific parts such as an introduction of the layered set of SC37 standards
and an illustration of a general biometric system with a description of its functional
subsystems namely the capture device, signal processing subsystem, data storage
subsystem, comparison subsystem, and decision subsystem [3]. Furthermore, this
framework part illustrates the functions of a biometric system such as enrolment,
verification, and identification and explains the application context of biometric data
interchange formats. Part 2 to Part 14 then detail the specification and providemodal-
ity related data interchange formats for both image interchange and template inter-
change on feature level. The 19794-family gained relevance, as the International
Civic Aviation Organization (ICAO) adopted image based representations for finger,
face, and iris for storage of biometric references in Electronic Passports. Thus, the
corresponding ICAO standard 9303 [2] includes a normative reference to ISO/IEC
19794. ICAO estimated in February 2013 that there were over 480million Electronic
Passports issued by 101 member states of ICAO.

11.3 The Development of Presentation Attack Detection
Standard ISO/IEC 30107

For more than a decade along with the enthusiasm for biometric technologies the
insight into potential risks in biometrics systems was developed and is documented
in the literature [12–14]. Within the context of this chapter, the risks of subversive
attacks on the biometric capture device became a major concern in unsupervised
applications. Over the years, academic and industry research developed counter-
measures in order to detect biometric presentation attacks that constitute a subversive
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activity. From a general perspective, a subversion attack can be conducted from an
outsider that interacts with a biometric capture device but could aswell be undertaken
from an experienced insider. However, the need to develop a harmonized perspective
for presentation attacks that are conducted by biometric capture subjects became
obvious. Thus, the motivation to develop a standard that is related to liveness detec-
tion and spoofing was supported from stakeholders of all three communities that
are active in SC37 namely from industry (essentially representatives from vendors
working fingerprint-, vein-, face-, and iris-modality), from academia and research
projects (e.g., European projects on liveness detection) as well as from governmen-
tal agencies (e.g., responsible for testing laboratories). The latter took the lead and
have started the development of a standard with a new work item proposal that was
successfully balloted in 2011. Since then, experts from the biometric community as
well as the security community have intensively contributed to the working draft
of a new standard that is entitled “ISO/IEC Information Technology—Biometrics—
Presentation attack detection” [15]. The intention of this standard is to provide a
harmonized definition of terms and a taxonomy of attack techniques, a set of test-
ing methods and data formats that can transport measured robustness against said
attacks.

The objectives of a standardization project are best understood by analyzing the
scope clause. For the Presentation Attack Detection (PAD) standard, the scope indi-
cates that it aims at establishing beyond the taxonomy and terms and definitions a
specification and characterization of presentation attack detection methods. A sec-
ond objective is to develop a common data format devoted to presentation attack
assessments and a third objective is to standardize principles and methods for perfor-
mance assessment of PAD-algorithms. This field of standardization work becomes
sharpened, when topics that are outside the scope are considered: Outside this current
standardization project are definition of specific PAD detection method as well as
detailed information about countermeasures that both are commonly valuable IPR
of the industrial stakeholders. In addition, a vulnerability assessment of PAD is out
of scope at this point in time. We will discuss the latter briefly in Sect. 11.6.

11.4 Taxonomy for Presentation Attack Detection

Literature and science specifically in a multidisciplinary community as in biometrics
tends to struggle with a clear and noncontradictonary use and understanding of its
terms. Thus, ISO/IEC has undertaken significant efforts to develop a Harmonized
Biometric Vocabulary (HBV) [9] that contains terms and definitions useful also in
the context of discussions about presentation attacks. Without going into detail of
the terminology definition process it is important to note that biometric concepts are
always discussed in context (e.g., of one or multiple biometric subsystems) before a
term and its de f ini tion for said concept can be developed. Thus terms are defined
in groups and overlap of groups (“concept clusters") and the interdependencies of its
groupmembers necessarily lead to revision of previously founddefinitions. The result
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of this work was recently published as ISO/IEC 2382-37 [8] and is also available
online [9]. It is of interest to consider here definitions in the HBV, as they are relevant
for the taxonomy and terminology that is under development in ISO/IEC 30107 [15].
The following list contains definitions of interest:

• Biometric characteristic: biological and behavioral characteristic of an individual
from which distinguishing, repeatable biometric features can be extracted for the
purpose of biometric recognition (37.01.02).

• Biometric feature: numbers or labels extracted from biometric samples and used
for comparison (37.03.11).

• Biometric capture subject: individual who is the subject of a biometric capture
process (37.07.03).

• Biometric capture process: icollecting or attempting to collect a signal(s) from a
biometric characteristic, or a representation(s) of a biometric characteristic(s,) and
converting the signal(s) to a captured biometric sample set (37.05.02).

• Impostor: subversive biometric capture subject who attempts to being matched to
someone else’s biometric reference (37.07.13).

• Identity concealer: subversive biometric capture subject who attempts to avoid
being matched to their own biometric reference (37.07.12).

• Subversive biometric capture subject: biometric capture subject who attempts
to subvert the correct and intended policy of the biometric capture subsystem
(37.07.17).

• Subversive user: user of a biometric system who attempts to subvert the correct
and intended system policy (37.07.18).

• Uncooperative biometric capture subject: biometric capture subject motivated
to not achieve a successful completion of the biometric acquisition process
(37.07.19).

• Uncooperative presentation: presentation by a uncooperative biometric capture
subject (37.06.19).

In order to formulate a common understanding of attacks on biometric systems,
the list of above terms was expanded with the following concepts that provided in
the 5th Working Draft of ISO/IEC 30107 [15]. Note that these terms are still subject
to discussion in the subcommittee and might be changed in the final version of the
standard.

• Artefact: artificial object or representation presenting a copy of biometric charac-
teristics or synthetic biometric patterns.

• Artefact species: artefacts based on sources whose biometric characteristics differ
butwhich are otherwise identical (e.g., based on a commonmediumandproduction
method but with different biometric characteristic sources).

• Artefact type: artefacts based on a common medium and production method and
a single biometric characteristic source.

• Presentation attack: presentation of an artefact or human characteristic to the
biometric capture subsystem in a fashion that could interfere with the intended
policy of the biometric system.
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• Presentation attack detection (PAD): automated determination of a presentation
attack.

• Liveness: the quality or state of being alive, made evident by anatomical char-
acteristics (e.g., skin or blood absorption of illumination), involuntary reactions
or physiological functions (e.g., iris reaction to light, heart activity, pulse), or
voluntary reactions or subject behaviors (e.g., squeezing together fingers in hand
geometry or a biometric presentation in response to a directive cue).

Note that the use of the above terms is recommended and similar terms such as
f ake should be deprecated despite their intense previous use in the literature. In the
development of ISO/IEC 30107, a frameworkwas defined to understand presentation
attack characteristics and also detection methods. Figure11.1 illustrates the potential
targets in a generic biometric system [10] that could be attacked. In the following,
we concentrate only on attack presentations that occur at the capture device.

The framework defined in [15] considers two types of attacks. On the one hand,
the Active Imposter Presentation Attack is considered, which attempts to subvert the
correct and intended policy of the biometric capture subsystem and in which the
attacker aims to be recognized as a specific data subject known to the system (e.g.,
an impersonation attack). On the other hand, the framework considers an Identity
Concealer Presentation Attack as attempt of the attacker to avoid being matched to
its own biometric reference in the system.

An attacker be it an active imposter or an identity concealer will use an object
for attack that is interacting with the capture device. Moreover, the potential of his
attack will depend on his knowledge, the window of opportunity and other fac-
tors that we will discuss in Sect. 11.6. However for the object that is employed the
standard widens the scope from gummy fingers and considers various categories of
objects that could be used in a presentation attack. Figure11.2 illustrate that aside of

Fig. 11.1 Examples for points of attacks (from [15])
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Fig. 11.2 Categories of objects used in presentation attacks (from [15])

artificial objects (i.e., arte f acts) natural material could be used. When the expected
biometric characteristic from an enrollee is absent and replaced by an attack pre-
sentation characteristic (i.e., the attack presentation object) this could be a human
tissue from a deceased person (i.e., a cadaver part) or it could be an altered fingerprint
[16], which is targeting on distortion or mutilation of a fingerprint—likely from an
Identity Concealer. Moreover, an attacker might present his genuine characteristic
but identification is avoided with non-conformant behavior with respect to the data
capture regulations, e.g., by extreme facial expression or by placing the with tip or
the side of the finger. But attack objects can also include other natural material such
as onions or potatoes.

Detailed information about countermeasures (i.e., anto-spoofing techniques) to
defend the biometric system against presentation attacks are out of scope of the
standard in order to avoid conflicts of interests for industrial stakeholders. However,
the standard does discuss a general classification in terms of detection on the level of a
biometric subsystem (e.g., artefact detection, liveness detection, alteration detection,
nonconformance detection) and through detection of noncompliant interaction in
violation with system security policies (e.g., geographic or temporal exception).

11.5 Data Formats

One of the objectives of the ISO/IEC 30107 standard is to transport information
about the presentation attack detection results from the capture device to subsequent
signal processing or decision subsystems. The container to transmit such information
is the open data interchange format (DIF) according to the ISO/IEC 19794 series
[3]. This subsection outlines the conceptual data fields that are considered for a PAD
record. A selection of fields is illustrated in Table 11.1. It should be noted that this
table is neither complete nor finalized in the discussion of the standardization group.
However, it indicates that the result of the PAD functionality should be encoded as a
scalar value in the range of 0–100 in analogy to the encoding of the sample quality
assessment that is potentially also conducted by the capture device and stored as a
quality score according to ISO/IEC 29794-1 [17].

In the absence of standardized assessment methods, a PAD score would be
encoded on a range of 0 (i.e., indicative of an attack) to 100 (i.e., indicative of a
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Table 11.1 Selected data fields considered for a PAD record according ISO/IEC 30107

Field name Size in bytes Valid values Notes

PAD decision availability 1byte 0. 1 An indication of whether a PAD
decision has been made, where
one indicates a decision

PAD decision 1byte 0. 1 If the above indicator is positive,
the nature of the decision,
where one indicates possible
attack attempt

PAD result 1byte 0–100 PAD score between 0 and 100
provided by the attack
detection mechanism, with
lower scores being indicative of
attack presentation objects and
higher scores indicative of
genuine capture attempts

PAD parameters text string Any external parameters (e.g.,
threshold) directly related to
the technique employed to
make the PAD decision

Risk level 1 byte 0–254 Current risk level; a value of 0
indicating no risk and 254
indicating every transaction
certainly an attack attempt

Level of supervision 1 byte 1–5 Level of supervision/surveillance
during the capture process

Note that entries in the table areworking draft elements and subject to further discussions in ISO/IEC
SC37

genuine capture attempt) the reliability that the transmitted biometric sample can be
trusted. Any decision based on this information is at the discretion of the receiver. The
described PAD data record is likely to become an integral part of the representation
header in ISO/IEC 19794-x. Remaining challenges are to allow optional encoding
as a capture device may or may not encode such additional information and further
to achieve backwards compatibility with already deployed system that need to parse
DIFs according to 19794-1:2006 or 19794-1:2011.

11.6 Metrics Under Development

In order to evaluate the reliability of PAD record that is transmitted in an interchange
record two evaluations are foreseen. The first relevant information is to transport for
the capture device that was encoding the interchange record the performance testing
results that were elaborated by an independent testing laboratory. Test procedures
as such are well known since the biometric performance testing standards ISO/IEC
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19795-1 was established in 2006 [18]. This framework for Biometric Performance
Testing and Reporting was developed on the basis of established concepts such as the
Best Practices in Testing and Reporting Performance of Biometric Devices [19] and
it defines in which way algorithm errors such as false-match-rate (FMR) and false-
non-match-rate (FNMR) as well as system errors such as false-accept-rate (FAR)
and false-reject-rates (FRR) must be reported. For testing of presentation attack
detection unfortunately such established concepts do not exist. Thus, various national
approaches have been proposed are now discussed as the standard ISO/IEC 30107 is
under development. However, some metrics appear familiar to a testing expert and
are indeed derived from biometric performance testing metrics.

A starting point for suchmetrics is given by the presentation-attack-detection-rate
(PADR), which is defined as the proportion of presentation attacks with a defined
level of difficulty detected by a system. The PADR could be defined for multiple
presentation attack samples of one artefact type, or for multiple presentation attack
samples of multiple artefact types or in the best case for multiple artefact species. A
challenge in this definition is that unlike for biometric performance testing aka tech-
nology testing a large corpus of testing samples can not be assumed to be available.
Top national laboratories are in possession of no more than 60 artefact species for a
fingerprint recognition system. In this case, it becomes essential that the proportion
is computed not to a potentially large number samples all of one singe artefact type,
that are all of similar material properties and stemming from the same biometric
source. At least the denominator should be defined by the number of artefact species
as outlined in Sect. 11.4. Note that one single artefact species would correspond to
the set of fingerprint artefacts all made with the same recipe and the same materi-
als but with different friction ridge patterns from different fingerprint instances. A
complementary measure to the PADR is the presentation attack non-detection rate
(PA-NDR), which constitute the proportion of presentation attacks with a defined
level of difficulty not detected by a system.

An essential difference of PAD testing is that obviously there is beyond the mere
statistical observations as expressed by PADR and PA-NDR metrics the need to
categorize the attack potential itself. Such methodology is well established in the
scope of Common Criteria testing that developed the Common Methodology for
Information Technology Security Evaluation [20]. It might be desirable to replace
the indication of an defined level of difficulty according to the PADR definition by
an attack potential attribute of a biometric presentation attack expressing the effort
expended in the preparation and execution of the attack in terms of elapsed time,
expertise, knowledge about the capture device being attacked,windowof opportunity
and equipment, graded as no rating, minimal, basic, enhanced-basic, moderate or
high. Such gradings are established in Common Criteria testing and would allow a
straightforward understanding of a PAD result for security purposes.
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11.7 Conclusion and Future Work

This chapter introduces the standardization work that began recently in the area of
presentation attack detection. While metrics are not yet well established the current
working draft already contains a mature taxonomy of presentation attack detection
terms and also a sound categorization of attack objects. The discussions on encoding
details of the PAD interchange record are ongoing and the reader might want to
contribute to this process via his national standardization body. By separation of
work tasks in ISO/IEC JTC1 discussion of security related topics is not in scope of
ISO/IEC 30107. However the CommonCriteria concept of attack potential should be
seen as both a good categorization for the criticality of an attack and the precondition
to conduct later a security evaluation based on the results of a ISO/IEC 30107metric.
However, this link needs to be established and thus there is space for many activities
as future work.
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Chapter 12
Legal Aspects: Biometric Data, Evidence
Rules and Trusted Identities

Els J. Kindt

In the near future many transactions will no longer be
performed by traditional methods, like face-to-face contacts or
regular mail. Instead, computer networks will be the new
vehicles. As persons are physically separated, new and secure
methods of identification and authentication are required

Peter J. Hustinx
Preface in “At face value On biometrical identification and

privacy”, 1999.

Abstract Biometric characteristics could play an increasing role as means for bind-
ing electronic documents and transactions to a person and for identifying that person.
However, one of the conditions for biometric methods to be used as an electronic
signature is that spoofing vulnerabilities are adequately assessed and appropriate
solutions are developed.Anti-spoofingmeasures are also crucial in electronic identity
schemeswhichmay include biometric characteristics. For these schemes, privacy and
data protection issues remain to be solved as well.

12.1 Introduction

Biometric data are used to verify claims of individuals in various scenarios, for
example, for (border) access control, but also for online transactions. For this pur-
pose, an individual provides his or her biometric characteristics for making his or
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her claim “authentic”.1These claims are subsequently relied upon by third parties,
for example, an access control (border) guard or a bank for an online transaction.
Under which conditions may these third parties trust these claims augmented with
biometric data ? It is clear that our Internet economy faces the challenge to develop
urgently an appropriate digital identity management framework for both the private
and public sector. This is not only recognized by the OECD [1] but also by the
fact that numerous national and international initiatives are currently exploring the
development of digital identity management schemes and strategies.

This chapter aims to contribute to these discussions. First, we review how bio-
metric data fit in the present legal framework in relation to evidence and electronic
signatures in the European Union. We aim to identify whether methods using bio-
metric data could qualify as electronic signatures. Specific attention is hereby paid
to the need and importance of anti-spoofing measures.

We also review the proposed EU Commission Regulation on electronic identifi-
cation of 2012 and whether and under which conditions biometric data could play a
role in this proposed framework for trusted identities. Besides the need for solutions
for biometric vulnerabilities, we expect that privacy and data protection issues as
well need to be solved for the use of biometric data in trusted identity schemes.

12.2 Biometric Data and Evidence in the Information
Society

Legal transactions in civil and commercial matters pass in today’s society increas-
ingly through electronic communication networks. The legislative framework had
to follow this evolution and adopted new rules on the evidence value of electronic
documents and electronic signatures.

Pursuant to Article 9 of the E-Commerce Directive 2000/31/EC, the Member
States of the Union were required to ensure that their legal systems allow contracts
to be concluded by electronic means [2]. More specifically, the Member States had
to ensure that the legal requirements applicable to the contractual process would
neither create obstacles for the use of electronic contracts nor deprive them for legal
effectiveness andvalidity.Only for some specific categories of contracts, an exception
could be made by the Member States, such as for contracts for the creation or the

1 The verb “to authenticate” can be described as “making authentic, legally valid.” “Authentic”
has several meanings, including “1. written or made by own handwriting, not falsified, (...) real,
originating in reality from whom it is attributed, 2. corresponding with the original and therefore
authoritative (...) 5. of which the reliability is guaranteed (...) 6. carrying an own characteristic (...)”
(VanDale, general dictionary of theDutch language, 13th edition (1999) at the terms “authentiseren”
and “authentiek”; the term “authentication” (“authenticatie”) in Dutch is therein not mentioned, but
has been added in the 14th edition (2005); in this edition, the meaning of “to authenticate” is now
completed with “to establish the identity of”). For a definition of authentication, see also Article
3(4) of the Proposal of Regulation on electronic identification and trust services, mentioned in
Sect. 12.4.1
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transfer of rights in real estate (except for rental rights), contracts requiring by law
the involvement of courts or public authority, contracts on suretyship and collateral
securities by persons other than professionals and contracts governed by family or
succession law (see Article 9, al. 2 E-Commerce Directive 2000/31/EC).

As a result, and generally speaking, writings of parties used as evidence of a
contract were no longer required to be on paper but could also be in electronic form.
Electronic documents will hence also qualify as a “writing” (“geschrift”/“écrit”),
subject to the national rules on evidence, after the implementation of theE-Commerce
Directive 2000/31/EC. The Directive could be implemented in various ways. In
Belgium, for example, the equivalence between paper and electronic documents was
established by disconnecting the requirements for a “writing” from the carrier (e.g.,
paper) and connecting requirements to the conditions for the content. The equivalence
of electronic documents with paper documents was thus established on the level of
the requirements for documents. For a “writing,” it is now sufficient that there “is
a sequence of understandable signs which are accessible2 for later consultation,
whatever the carrier and the transmission modalities.”

For a “writing” to have a strong evidence value, it will in many cases however be
required that the document contains a signature. Such requirement may be imposed
by a legal provision or by case law.3 In Belgium, for example, such “acts with signa-
ture”(“onderhandse akte”/“acte sous seing privé”) are presently required according
to the evidence rules in civil matters as evidence for transactions with a value above
375 euro. Writings without signature only count as presumptions or as a start of
documentary evidence. In commercial matters, professionals are free to prove the
existence and the content of commercial obligations, although writings with signa-
ture will remain important for commercial transactions (see the Articles 1341 of the
(Belgian) Civil Code and Article 25 of the (Belgian) Commercial Code). To meet the
requirement of a writing by someone who is binding him- or herself, it shall (only) be
ensured and guaranteed that it originates from that person notwithstanding any sup-
port or the transmission modalities used.4 Non-repudiation or the lack of deniability
is an important aspect and requirement. To prove a signature, the integrity of the act
with signature shall also be demonstrated. In France, the legal provisions of the Civil
Code require for writings in electronic form for being accepted as evidence that the

2 This should be accessible for human persons, whether directly or indirectly (e.g., with the use of
computers and other technical tools). About electronic signatures, see also e.g., J. Dumortier and
P. Van Eecke, “De nieuwe wetgeving over digitale en elektronische handtekening,” in J. Dumortier
(ed.), Recente ontwikkelingen in informatica- en telecommunicatierecht, Brugge, Die Keure, 1999,
pp. 1–26; P.VanEecke,Dehandtekening in het recht: vanpennentrek tot elektronische handtekening,
Brussel, De Boeck/Larcier, 2004, 608 p.
3 For example, for Germany, see section 126 of the German Civil Code. In Belgium, the need for
a signature is imposed by case law, as approved unanonymously by the legal scholars. See also P.
Van Eecke, “De elektronische handtekening in het recht,” T.B.H. 2009, (322), p. 325 (“Van Eecke,
Elektronisch handtekening, 2009”).
4 Article 16 Section 2 al. 1 and 3 of the (Belgian) Act of 11 March 2003 relating to some legal
aspects of information society services (B.S., 17.03.2003), implementing E-Commerce Directive
2000/31/EC (“Act of 11 March 2003”).
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integrity of the document is assured and that the person establishing the document is
known.5 To summarize, in order to evaluate whether a document has the value of a
writing or of an act with signature, one will have to verify whether the functionalities
of a writing and of a (handwritten) signature are fulfilled.6 Other aspects, such as
the carrier (whether on paper, tape, optical disk, chipcard, etc) and any technologies
used are in principle not relevant.

This brings us to the question of the role of biometric data in the establishment
of evidence in electronic commerce, in particular of electronic documents. Several
biometric characteristics are accepted to be unique to individuals, such as finger-
print or iris. Could such biometric characteristics play a role in the establishment of
electronic documents and could this be enforced under the current legal framework?

Biometric data has already been used since long to indicate that a particular object
or document, whether electronic or not, originates from a particular person because
of the unique link with that person. In ancient times, biometric characteristics were
used to bind, for example, texts in a clay tablet or images (e.g., paintings in caves)
to the author. Finger prints in ink have been used on documents as well.7

Biometric data are nowhowever increasingly used in automated processing opera-
tions. Could the use of biometric data guarantee the origin of awriting, i.e., a sequence
of understandable signs which are accessible for later consultation as belonging to
a particular person? Could the automated processing of biometric data belonging to
a particular individual be used to produce an electronic document guaranteeing the
origin of the writing and its integrity? In other words, could biometric data be used
for an electronic signature? We will explore this in the next section.

12.3 Biometric Data for Establishing Electronic Signatures?

12.3.1 Legal Rules on the Use of e-Signatures

We explained that an (electronic) document should preferably contain a signature
to have a stronger evidentiary value. Such signature can also be an electronic sig-

5 See Article 1316 1 (French) Civil Code: “L’écrit sous forme électronique est admis en preuve
au même titre que l, écrit sur support papier, sous réserve que puisse être dûment identifiée la
personne dont il émane et qu, il soit établi et conservé dans des conditions de nature á en garantir
l’ intégrité”. and Article 1316 3 (French) Civil Code: “L’écritsur support électronique a la même
force probante que l’ écrit sur support papier. For the introduction of the concept of electronic
documents and signature, further to the forementioned Directives in Germany, see A. Albrecht,
Biometric Authentication from a Legal Point of View A European and German Perspective, in W.
Sloan Coats (ed.), The Practitioner’s Guide to Biometrics, Chicago, ABA, 2007, (87), pp. 118–119
(referring in particular to Article 126a German Civil Code (BGB)).
6 See also Article 16 Section 1 of the (Belgian) Act of 11 March 2003.
7 Under Belgian law, however, the use of fingerprints on a document is generally not accepted
as a valid (handwritten) signature. See also Van Eecke, Elektronisch handtekening, 2009, p. 327
and the various references cited in the footnotes. The reason is that according to old case law, a
(handwritten) signature should consist of letter signs, and not of symbols or other signs, such as
a cross.
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nature. Electronic signatures however are used in a large variety of circumstances
and applications. Therefore, the E-Signature Directive 1999/93/EC was adopted and
was aimed at harmonizing the legal rules on the use of electronic signatures [3].
EU Member States have adopted legislation on electronic signatures based on this
E-Signature Directive 1999/93/EC.

An electronic signature is defined in Article 2.1 of this Directive as “(1) data in
electronic form (2) which are attached to or logically associated with other electronic
data and (3) which serve as a method of authentication” (numbers added). There
are many forms and types of electronic signatures. For example, name and other
identifying data attached to an email message could be considered as a form of
electronic signature. The E-Signature Directive 1999/93/EC imposes upon Member
States to not deny legal effectiveness and admissibility of electronic signatures as
evidence in legal proceedings solely because they are in electronic form or do not
comply with additional requirements mentioned in this Directive.

Such additional requirements are imposed for “advanced electronic signatures”
and “qualified electronic signatures” as defined in this Directive. The “advanced
electronic signature” is a signature which “(a) is uniquely linked to the signatory, (b)
is capable of identifying the signatory, (c) is createdusingmeans that the signatory can
maintain under his sole control, and (d) is linked to the data towhich it relates in such a
manner that any subsequent change of the data is detectable’(Article 2.2 E-Signature
Directive 1999/93/EC). A “qualified electronic signature” is an advanced electronic
signature combinedwith a qualified certificate and a secure-signature-creation device
meeting respectively the requirements of Annex I and II and the requirements of
Annex III of this Directive. These types of signature refer mainly to the use of digital
signatures based on public key cryptography and infrastructure (PKI). The Belgian
eID, for example, includes identity and signature keys and certificates, allowing for
a qualified electronic signature. The card however does not deploy biometric data
for these purposes.

The Member States adopted national legislation recognizing these types of elec-
tronic signatures and these signatures were given legal effects. Article 5 of the
E-Signature Directive 1999/93/EC requires that the third type of electronic signa-
ture, the qualified electronic signature, is treated equally as a handwritten signature.8

However, judges may not reject electronic signatures as evidence or refuse them
because they are not based on a qualified certificate or created with a secure means
(See Article 5.2 E-Signature Directive 1999/93/EC). To conclude, one shall retain
that rather than the form of the signature, it is of importance for any signature that
the required functionalities as explained above are fulfilled.

8 See also, e.g., Belgium, Article 1322, al. 2 Civil Code, specifying that “a set of electronic data
which may be attributed to a specific person and which demonstrates a guarantee for the integrity
of the content of the document” may be sufficient for the requirement of a signature for purposes
of attributing the evidence value of an act with signature to a writing.
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12.3.2 Could Biometric Data and Methods Allow
for an e-Signature?

The question now raises whether biometric data and methods allow to make an
electronic signature with legal effect. We are more particularly interested in the
question whether the use of (particular) biometric characteristics or methods would
enable the making of an electronic signature, an “advanced electronic signature” or
even a “qualified electronic signature” which confers to a writing the status of an
“act with signature.”

As explained above, an advanced electronic signature requires that the signature
is uniquely linked to the signatory and is capable of identifying the signatory (condi-
tions (a) and (b) for this type of signature). The fact that the signature shall in principle
identify the signatory is interesting as it makes biometric data that are based on the
unique biological and/or behavioral characteristics of human beings in particular
useful because of its unique link to and its identification capabilities of the creator of
an electronic signatory. Several biometric characteristics and biometric data derived
thereof are capable of identifying the signatory. Biometric data are in principle also
uniquely linked to the individual to whom they belong, even for identical (monozy-
gotic) twins, who have distinguished unique fingerprints.9 Biometric data based on
the unique biological and/or behavioral characteristics of human beings would hence
in principle meet the first two requirements for an advanced electronic signature.

An advanced electronic signature however requires in addition that the signature is
created using means that the signatory can maintain under his sole control (condition
(c) for this type of signature). It can be argued that biometric characteristics uniquely
belong to individuals and are part of their body and are therefore also under the
sole control of the individual. Biometric data would therefore meet this requirement
of being means that is kept under the sole control of the signatory. Is this control
affected if individuals from time to time agree to have their characteristics registered
and stored for particular applications, such as for example for registered traveler’s
(frequent flyer) programmes ? One could say that this does not necessarily imply
loss of control. It may be compared with the fact that individuals also from time
to time put handwritten signatures, which could be copied (for example, by fax),
without any originally placed handwritten signatures losing evidentiary evidence.
To evaluate the evidentiary value, judges will have to check whether the individual
to whom the biometric data belong, the genuine “owner” of the biometric data, was
involved. An important risk of the use of biometric data, however, is the unwanted
(andoftenunnoticed) capturingof biometric characteristics and its reuse by impostors
for spoofing purposes [4] (p. 18, 30 and 32). Spoofing is a broad term referring to
situations where someone or somewhat pretends to be someone or something else,
often for purposes of criminal activities. In the context of biometric data processing,

9 We do not include DNA in the concept of biometric data. For biometric data, the use or fitness for
use by automated means is in our view essential and we include therefore DNA data at present not
in the concept and definition of biometric data.
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it is described as “the presentation of an artifact designed to imitate a legitimate
biometric so as to defeat or circumvent a biometric system or process” [5]. It could
be argued in court that the use of biometric characteristics, since they (potentially
all [6] pp. 446–448) leave traces and therefore could be “stolen,” does not guarantee
that the owner of the characteristics was actually involved in the establishment of
the written evidence and the transaction. Because of various abuses, including, for
example, the unwanted identification of individuals in public places, such as by face
recognition, we have already pleaded for legal provisions because of privacy and data
protection reasons, restricting the collection of biometric data of others, in particular
the hidden collection [6] (pp. 644–645). But biometric systems are also vulnerable
for numerous types of attacks against various components of the biometric system
itself. The biometric data can be captured for several purposes, including for spoofing
and identity theft. There is evidence from various sources that several attempts to use
forged or stolen biometric data to fool biometric systems have been successful. Such
endeavors were made in relation with fingerprint, but also for other characteristics,
such as face and iris. For this reason, an individual could also deny that he or she
agreedwith a particular transaction or that thewriting originates fromhimor her. This
is also referred to as repudiation. For biometric data processing, this is a particular
challenge, not only in criminal, but also in civil matters.10 Legislative initiatives
limiting the (hidden) collection of biometric data of individuals would hence also
be beneficial, not only from a privacy and data protection perspective, but also for
the further consideration of biometric data as means for evidence and for enabling
electronic commerce.

It remains, however, difficult for nonspecialists to assess these vulnerabilities.
The research project Biometrics Evaluation and Testing (BEAT)11 aims to develop
and to describe metrics that allow to measure the resistance of biometric systems
against known direct attacks based on spoofed characteristics and also against indi-
rect attacks. Additional research about the vulnerabilities of biometric data, such as
in the project BEAT, and also as presented in this book, is hence not only important
because of the obligation under the data protection regulation to implement appropri-
ate technical and organizational security measures upon the processing of personal
(biometric) data to secure the data, but also crucial for evaluating and for assessing
to what extent particular biometric data may remain under the sole control of the
persons to whom they belong. This research should also allow to develop and test
effective anti-spoofing measures. Making an adequate evaluation of and finding the
appropriate solutions for biometric vulnerabilities are thus crucial for the further use
of biometric data as means for enforcing evidence and electronic signatures.

10 See BWG, Biometric Security Concerns, V.1.0, September 2003, 27 p.; see also A. Schumacher
and K. Unverricht, “Rechtliche und gesellschaftliche empfehlungen zur Gestaltung Biometrischer
Systeme. Gemss ISO/IEC Technical Report TR 24714-1”, Datenschutz und Datensicherheit 2009,
(308), p. 309.
11 BEAT is a EU research project under the 7th Framework programme. For the homepage, see
http://www.beat-eu.org/.

http://www.beat-eu.org/
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At the same time, one should acknowledge that even if sufficient anti-spoofing
measures can be implemented, the increasing enrolment of individuals in various
biometric applications should also be taken into accountwhen evaluating the evidence
value of biometric data. Biometric characteristics can be stored on objects kept under
the control of the data subjects for verification purposes or in databases. The more
biometric characteristics are stored, not only on objects that the individuals can
keep under their sole control, but in particular in centralized databases, the more
it becomes unlikely that biometric characteristics could be considered to be under
the sole control of the individuals any longer and hence as means for an (advanced
and even qualified) electronic signature. Storage on an object under the control of
the individual concerned, for example on a smart card or token, is therefore not
only for data protection but also for evidence reasons preferred as well. At the same
time, additional technical measures for ensuring the control over centrally stored data
remain relevant and need to be further explored. The protection of stored biometric
information, enabling to limit the use of the biometric information to particular
contexts and requiring the presence of the individual when using the stored protected
biometric data is hereby an important measure.12 The protection as mentioned of the
centrally stored biometric information remains hereby in particular relevant. Other
solutions have been proposed as well.13 To enhance the link between the individual
and the biometric data and the control, additional means which guarantee that the
biometric data were deployed by the “owner” (data subject) of the biometric data
only are recommended or even required for evidence purposes, for example, by the
use of information only known to the data subject (e.g., the use of a PIN) and other
challenge-response methods. While control of the individuals, also data subjects,
over their biometric data is from a privacy and data protection (and even ethical)
perspective generally considered as very important because of the special nature of
the biometric data, we emphasize that such control is hence also important for the
use of biometric data for evidence purposes.

For a qualified electronic signature, it is in addition necessary that the signature is
based upon a “qualified certificate” and generated with a “secure-signature-creation
device.” A qualified certificate needs to meet specific requirements, but shall also be
issued by a certification-service-provider. These providers need to respect the Annex
II conditions. As for other biometric enrolments, it will hereby be very important that,
especially for evidence purposes, the identity of the person to whom the certificate
will be issued is adequately verified. This is also explicitly mentioned in Annex II to
the Directive. A “secure-signature-creation device” is defined as “soft- or hardware

12 About these new technical measures, restricting interconnections and unchecked disclosures,
see also Article 29 Data Protection Working Party, Opinion 3/2012 on developments in biometric
technologies, WP193, 27 April 2012, pp. 32–33.
13 See, e.g., H. Biermann, M. Bromba, C. Busch, G. Hornung, M. Meints, and G. Quiring-Kock,
(eds.) White Paper zum Datenschutz in der Biometrie, 2008. In this paper, it was suggested that use
of such centralized biometric data would depend upon submission of one or more specific key(s)
exclusively stored on a token kept by the data subject. In case of decentralized or centralized storage,
the system design would allow the data subject to influence the disclosure and use of the biometric
data.
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which are used to implement the data used for making the signature and which meet
the requirements set forth in theAnnex III to theDirective.” Further toArticle 5 of the
E-Signature Directive 1999/93/EC, the “data used for creating the signature” is also
defined as “unique data, such as codes or cryptographic private keys, which are used
by the signatory to make an electronic signature.” If these additional conditions are
fulfilled, the electronic signature can be considered as a handwritten signature. The
use of biometric data for a qualified electronic signature requires that the conditions
for an advanced electronic signature are fulfilled first, including that the signature is
created using means that the signatory can maintain under his sole control. Even in
case the creationdevicewouldmeet the specificationofAnnex III to theDirective, and
a qualified certificate could, after appropriate identity check, be issued, the control of
the individual may remain problematic for the same reasons as we mentioned above.

The above does not mean that biometric data would not allow to make any other
electronic signature with legal effect.

In case of failure of a biometric method of meeting the requirements for the
creation of an advanced or qualified electronic signature, in particular, because one
would not accept that tools are used which remain under the control of the signatory,
biometric data captured for expressing consent could still be and qualify for an
electronic signature under the E-signatureDirective. The reason is that biometric data
can be used for authentication. For example, providing fingerprint captured through
a sensor to express agreement with some electronic text on a website (e.g., general
terms) could be considered as providing an electronic signature attached to this text.
Banking transactions could also be “signed” by biometric data used as a method of
authentication of the originator of the order or banking transaction. For that purpose,
the result of the biometric comparison need to be attached or logically associated
with the data of the banking transaction. Because of the problem of control, the
vulnerability of biometric systems and the increased (central) storage of biometric
data, banks could limit the risks of spoofing by deploying biometric data only in
combination with, for example, a PIN or the private key of the customer kept under
the sole control of the customer, for example, to unlock the private key [7] (p. 15
et seq.). This combination allows to argue that the individual remains in control of
the deployment of his biometric characteristics. This method however will in the
first place be considered a third factor authentication increasing the security of the
transaction,while the use of the private keykept under the control of the customermay
allow for a qualified electronic signature subject to fulfilment of the requirements.

It will be further up to the courts how much weight shall be given to a particular
biometric signature process. It is likely that courts would take the existence of appro-
priate anti-spoofing mechanisms into account in their evaluation. In case of dispute,
experts will be called upon to advise on whether these measures are sufficient and
the requirements of electronic signature are met. In the Proposal for Regulation on
electronic identification and trust services, mentioned in Sect. 4.1, the proposed new
definition of an advanced electronic signature now requires that the signature ‘(...)
(c) is created using electronic signature data that the signatory can, with high level of
confidence, use under his sole control (...)’ (Article. 3(7)). It is the question whether
this will allow better the use of biometric data for an advanced electronic signature.

http://dx.doi.org/10.1007/978-1-4471-6524-8_4
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As explained, the vulnerability of biometric data and biometric systems, the degree
to which particular biometric can be spoofed but also increasing (central) storage,
and the biometric method used, will play an important role therein.

From the above,we can conclude that biometric data andmethods used for authen-
tication purposes may qualify as an electronic signature and will be admissible as
evidence, including in legal proceedings. The type of electronic signature (simple,
advanced, or qualified) however will depend to an important extent upon the degree
of control that the data subjects can retain over their biometric data. For evaluating
this requirement, the degree that anti-spoofingmeasures are effective will play a role.
The control is also affected by the central storage of biometric data. The increasing
central storages of biometric data may hence, besides the many privacy and data
protection reason, also be to the detriment of the further development and use of
biometric data as electronic signature.

In the next section, we turn to the role of biometric data processing in electronic
identification applications.

12.4 Biometric Data and Electronic Identification

12.4.1 The Proposal for a Regulation on Electronic
Identification and Trust Services for Electronic
Transactions

The European Commission has understood that the authentication of electronic iden-
tities is essential in the information society and in particular for transactions on the
Internet, and this for both the private and public sector. The concern of the Com-
mission is hereby that the solutions for the authentication of electronic identities, for
example, an eID solution of a particular country, are interoperable and recognized
cross-border in all Member States, as set forth in its “Digital Agenda” in 2010 [8]
(p. 11).

With that objective in mind, the Commission proposed in 2012 a Regulation
on electronic identification and trust services. The proposed Regulation addresses
electronic identification schemes, containing clarifications and amendments to the
existing electronic signature regulation, and suggests a general legal framework for
the use of various so-called electronic trust services (e.g., electronic time stamping,
electronic delivery services, web site authentication, ...) [9]. The Proposal will repeal
the E-Signature Directive 1999/93/EC. For the electronic identification schemes, the
Commission has services in mind accessible with notified electronic identification
means in both the public sector (e.g., eGovernment services, eHealth, ...) and the
private sector (e.g., online banking services, eCommerce services, ...). The Pro-
posal for Regulation however only targets schemes where electronic identification is
required for public services and accepted in one jurisdiction and electronic identifi-
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cation means which are issued by, on behalf or at least under the responsibility of a
Member State.

Article 5 of the Proposal provides for the mutual recognition and acceptance of
such means falling under such a scheme which—subjects to specific conditions—is
eligible for notification to theCommission.An example of an electronic identification
means issued by aMember State is the Belgian electronic identity card, which is also
equipped and can be used to authenticate the owner online, for example, to file a tax
return (Tax on Web). Important is that Member States must accept liability for the
unambiguity of the link between the identification data attributed to a particular
person (or legal person)(see Article 6.1 (c) and (e)). They shall also ensure the
availability of the authentication possibility online, at any time and free of charge.

Is there any role for biometric data in the electronic identification schemes envis-
aged in this Proposal ?

12.4.2 Biometric Data and Electronic Identification

Article 3 (1) defines “electronic identification” as the process of using person identi-
fication data in electronic form unambiguously representing a natural or legal person.
While one of the main conditions for the schemes and their notification is that the
Member States must ensure an unambiguous link between the electronic identifica-
tion data and the person concerned and take liability for such unambiguous attribu-
tion, it does not mean that a person cannot have multiple electronic identification
means. In that case, however, they must all link to the same person.

Biometric data are not mentioned in this Proposal of Regulation on electronic
identification and trust services. One of the reasons could be the continued debates
about the use of biometric data for citizens in the Union and in some countries, in par-
ticular, in the electronic passports and subsequent national centralized databases.14

Article 3 (2) defines “electronic identification means” as a material or immaterial
unit containing person identification data in electronic form unambiguously repre-
senting a natural or legal person, and which is used to access services online where
electronic identification using an electronic identification means and authentication
is required under national legislation or administrative practice to access the service.
Any technical means which meets the requirements obtains the legal effects of this
Regulation. The Proposal aims to be technology-neutral.

But how will Member States guarantee such link unambiguously? Presently,
Member States take various initiatives in the domain of eGovernment to ensure
that data processed by services are correctly attributed to particular persons, such as
by using “authentic sources” [10] (pp. 251–282). However, mistakes are often made,
which shall not surprise. In Belgium, for example, only 55, 1% of the citizens have
a unique name, and 0.7% has a name shared by 100 persons or more. On 1.01.2006,

14 About these debates and pending court proceedings, see e.g., also Kindt [6].
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1, 299 persons carry the name “Maria Peeters” and “Maria Janssens” is the name of
907 persons.15

Biometric data combined with the alphanumerical data of the person concerned
may provide with an unambiguously link with a particular person. But combining
biometric data with alphanumerical data requires in the first place that due orga-
nizational measures are in place to collect biometric data with good quality from
the right persons to establish the required unambiguous link. For schemes which
also require the collection of biometric data, such as for the European e-passport,
in particular face and fingerprint, this has proven to be already quite a challenge.
Members of the European Parliament, for example, questioned early 2012 the level
of confidence in the process of collecting biometric data. They referred to allegations
that a high number of the biometric passports in circulation in France were false,
having been obtained on the basis of fraudulent documents. They also referred to tests
conducted in the Netherlands, revealing that in 21% of 448 cases, the fingerprints
were non-verifiable and therefore useless. It is therefore clear that the procedures of
issuance of such electronic identity will require a profound analysis of the organiza-
tional and technical procedures for the issuance of such identity. For the e-passport,
the research in the project “Fast and trustworthy identity delivery and check with
e-Passports leveraging traveller privacy” (Fidelity) investigates the security of the
whole chain of the use of the e-passport, starting with its issuance. It is hereby recog-
nized that it is essential that a reliable link is created between the passport holder
and the passport, especially at the time of the issuance of the e-passport. The project
reviews various issuance procedures, including the documents submitted to provide
evidence of identity and studies the possibilities to enhance their security as well as
their use. Several principles are hereby applied, such as that it shall be verified at the
time of the issuance whether the identity exists (and for example, that the identity
is not a fiction) and that the identity claimant is linked to the identity (and is the
sole claimant of the identity). Since biometric characteristics could play a role in
enhancing the identity verification, it is essential that when using biometric data at
the moment of the issuance of the credentials, spoofing attacks are taken into account
as well.

In addition, biometric data could be considered sensitive or are at least “of a
special nature.” Since several risks exist for the data subjects, the collection and use
of biometric data, especially in identity schemes, have to be fair, lawful, and legitimate
and not infringe the fundamental rights of the data subjects. It would include that
it is demonstrated that the use of the data for such electronic identification scheme
is “a pressing social need,” while the biometric methods shall at the same time be
relevant and sufficient (including, for example with acceptable error rates), without
alternative solutions which are less infringing with the privacy and data protection
rights of the data subjects. Biometric anti-spoofing measures will play a role for
the required relevancy as well. The scheme should, for example, include adequate

15 5.8 miljoen Belgen dragen een unieke naam, Brussel, FOD Economie, K.M.O., Middenstand en
Energie, 1.04.2011, available on http://statbel.fgov.be/nl/statistieken/organisatie/adsei/informatie/
statbel/in_de_kijker_archief/in_de_kijker_2011/.

http://statbel.fgov.be/nl/statistieken/organisatie/adsei/informatie/statbel/in_de_kijker_archief/in_de_kijker_2011/
http://statbel.fgov.be/nl/statistieken/organisatie/adsei/informatie/statbel/in_de_kijker_archief/in_de_kijker_2011/
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solutions for the risk that someone uses fake biometric characteristics for applying for
an identity credential such as an eID or an e-passport. Finally, appropriate safeguards
to protect the rights of the data subjects will be required. Because of the particular
risks of the use of biometric data, including reuse and (unknown) identification, the
necessity for using biometric data would hence have to be proven combined with
safeguards.

The use of biometric data in electronic identification schemes for public services
and schemes issued by, on behalf of or at least under the responsibility of Mem-
ber States raises therefore other questions as well. For trusted identities in eCom-
merce and in the digital world in general, privacy and data protection is a key issue.
The impact on privacy and data protection shall be carefully assessed. System wide
privacy and data protection requirements are hence a must. If such schemes would
imply the further collection of biometric data by governmental authorities, such as is,
for example, planned in France under the newly proposed Act relating to the protec-
tion of identity, as adopted by the parliament on 6 March 2012, the use of biometric
data by the government for such schemes is problematic and even requires additional
attention. This is probably not sufficiently addressed in the Proposed Regulation on
electronic identification. One of the problems is that biometric characteristics and
hence the data, because of their uniqueness and also their persistence, can be used
as a key to combine information stored in various systems about a particular per-
son (for example, someone’s use of a particular service, the crossing of a border,
...). The Article 29 Data Protection Working Party and various reports have pointed
since some time to this issue of the use and possible misuse of biometric data as
unique identifiers.16 The ubiquitous use of the same unique identifier, such as bio-
metric data, renders the assembly and the accumulation of information relating to a
particular person possible and facilitates its use. The risks lay in the potential com-
bination of the information stored in various places, but also in the ability to use
the biometric identifiers to trace and survey persons. In the worst case, biometric
characteristics can be used for omnipresent surveillance as an important enabler of
a global surveillance infrastructure. Although the General Data Protection Directive
95/46/ECmandatesMember States to determine the conditions under which an iden-
tifier of general application, as for example biometric data, may be processed, very
few Member States have taken initiatives in this regard.

By decision of 22 March 2012, the Constitutional Court declared several provi-
sions of this newly proposed French Act mentioned above, including the provisions
for central storage of biometric data collected for both the FrenchEID andE-passport,
unconstitutional because of lack of safeguards. Moreover, the risks, in particular the
scale, the collection and central storage of fingerprints, the technical and access spec-
ifications, and the use of the central biometric data collection for other purposes were
considered not proportionate to the aims pursued.

16 WP 29 Opinion on Biometrics 2003 (WP80), p. 10; CNIL, “Homo informaticus en 2005 entre
servitude et liberté. L’homo informaticus biomaîtrisé”, 26e Rapport d’Activité 2005, p. 49; Hes,
Hooghiemstra and Borking, At Face Value, 1999, pp. 43–44.
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While biometric data could remain interesting to ensure that identification data are
attributed unambiguously to a natural person, several gaps in the legal protection of
these personal data remain to be solved.At the same time, the deployment of technical
measures, in particular the use of biometric data in protected form could provide
some guarantees to the data subjects, i.e., that the biometric data are irreversible,
unlinkable, and revocable. The development of effective anti-spoofing measures is
another challenge [4, 6] (pp. 606–619).

12.5 Conclusions

We analyzed above under which conditions and to what extent biometric data and
methods are fit to play a (more important) role in eCommerce and electronic identity
schemes.

Biometric characteristics could play an increasing role in written evidence and as
means for an electronic signature, provided spoofing vulnerabilities are adequately
assessed and solutions developed. As a result thereof, biometric data could be con-
sidered as (more) under the sole control of the signatory. This is one of the basic con-
ditions for electronic signatures to be qualified and having the value of an advanced
or even qualified electronic signature. At the same time, we mention the central stor-
age of biometric data as an additional factor which could influence the evaluation
whether biometric data are under the sole control of the individuals placing a signa-
ture. Anti-spoofing measures are also crucial for biometric characteristics to play a
role in electronic identity schemes, also cross-border. At the same time, including
biometric data in electronic identity schemes should also provide a solution for spe-
cific risks posed by biometric data processing, such as the risks of their use as unique
identifiers, as well as other risks specified. For both scenario’s, the use of protected
templates may limit the risks.
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Chapter 13
Ethical Issues in Anti-spoofing

Andrew P. Rebera

Abstract The increasingly widespread and high-profile use of biometrics has
attracted a good deal of attention from ethicists.While the ethics of biometrics in gen-
eral has been widely discussed, technical features of biometric systems have under-
standably attracted less attention. Yet the societal acceptability of certain biometric
modalities, the status of anonymised templates vis-à-vis data protection legislation,
and the impact of template-ageing-induced performance degradation in rapidly age-
ing societies, all show that, in addition to broad ethical questions, biometrics poses
more specific ethical challenges. Among these are difficulties presented by counter-
measures developed to combat spoofing attacks. This chapter identifies and discusses
themain ethical issues arising from the development and deployment of anti-spoofing
technologies.

13.1 Introduction

The ethical implications of the use of biometrics for identifying, authenticating,
profiling, and categorising people have attracted a good deal of critical attention.
Several themes are recurrent. In the policy field, biometrics raises difficult ques-
tions regarding data protection. More directly philosophical questions concern the
conceptualisation of persons implicit in the development and use of biometrics, as
well as the role of biometrics in various sociopolitical and economic settings. Irma
van der Ploeg, for instance, has explored the societal and ethical implications of the
“informatisation” and “digitisation” of the body which is associated with biometrics:
the creation of “machine-readable bodies”.1

1 See, e.g. [1]. Further critiques include that of philosopher Giorgio Agamben, who has argued
that the routine biometric identification of citizens is dehumanising and demeaning, casts cit-
izens as inherently suspect, and in so-doing dangerously distorts biopolitical power relations:
“What is at stake here is none other than the new and ‘normal’ biopolitical relation between
citizens and the State. This relation no longer has to do with free and active participation in the
public sphere, but instead concerns the routine inscription and registration of the most private
and most incommunicable element of subjectivity—the biopolitical life of the body” [2], p 202.
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In addition to the broad ethical questions it poses, biometrics throws up more
specific ethical challenges. Individual modalities, for instance, raise individual issues
(e.g. fingerprinting is sometimes held to have a negative association with criminality,
facial recognition raises the possibility of profiling on the basis of emotion-detection,
etc.); and specific societal contexts may raise context-specific questions (e.g. con-
cerning the use of biometrics in ageing societies).2

More specific challenges include those presented by countermeasures to spoofing
attacks. Spoofing is a form of sensor-level attack on a biometric system, in which
the perpetrator attempts to have a system erroneously identify or authenticate him
by presenting a fake biometric feature to the scanner. All physiological modali-
ties can be spoofed, though some may be easier to spoof than others. Researchers
in the TABULA RASA project have demonstrated the efficacy of spoofing attacks
against different modalities (face, iris, fingerprint, voice, gait, and electrophysiolog-
ical modalities)3; and the issue of spoofing has come public attention in the recent
controversy concerning Apple’s iPhone 5S—the fingerprint sensor of which was
spoofed within two days of the phone’s going on sale. This chapter identifies and
discusses the main ethical issues arising from the development and deployment of
anti-spoofing countermeasures. The following summaries of different “families” of
countermeasures will suffice to ground discussion in this chapter (for further details
the reader should consult other chapters of this book).

• Liveness detection techniquesmobilise physiological indications of liveness to dis-
tinguish real (living) biometric features from fake ones. Dedicated scanners can
detect characteristics peculiar to living features (e.g. perspiration from a genuine
fingerprint); alternatively, the original signal derived froma feature can be analysed
to detect patterns distinguishing fakes (e.g. skin exhibits different reflectance pat-
terns to representations of skin, such as photographs).

• Challenge-response techniques are, in a sense, a form of liveness detection. The
user is challenged to perform an action deemed to distinguish their genuine feature
from a fake. Using a facial recognition system, for instance, a person may have to
blink a certain number of times (distinguishing them from, e.g., a photograph).

• Combining biometric modalities—Multi-modality—increases the number of fea-
tures a spoofer must replicate: the more modalities, the more difficult a successful
attack becomes (to spoof two or more modalities requires more resources, wider
know-how, etc.).

• Some modalities may be inherently robust to spoofing attacks. For instance, elec-
trophysiological modalities (EEG, ECG) are difficult to spoof because the patterns
on which they rely are inaccessible without specialist equipment. Such modalities

2 On the societal and ethical impact of biometrics in ageing societies see [3].
3 TABULA RASA—“Trusted Biometrics Under Spoofing Attacks”—is funded by the European
Commission under the Seventh Framework Programme (Grant Agreement no. 257289; http://www.
tabularasa-euproject.org/). It aims to: address the need for a draft set of standards to examine the
problem of spoofing; propose countermeasures to spoofing attacks; and to examine novel biometrics
that may be inherently robust to direct attacks.

http://www.tabularasa-euproject.org/
http://www.tabularasa-euproject.org/
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are not impossible to spoof, but the “barriers to entry” for the spoofer are higher
than with some other modalities.

It is interesting to note that the latter two techniques can be considered “counter-
measures” only by taking that word in a broad sense (one might justifiably consider
them as of interest simply in terms of their use as reliable identifiers). That they
are currently considered countermeasures tells us something interesting about the
history and development of biometrics and anti-spoofing—and about its possible
future.4 As the field develops, it is possible that anti-spoofing countermeasures will
achieve the status of entirely unremarkable, standard components of biometric sys-
tems. If that happens, what it means to use a biometric will change from (putting it
crudely) comparing two representations of a feature to a more complicated process
involving forms of feature verification such as, say, liveness detection. This theme is
not our focus here, yet it is worth highlighting because of its connection with much
of the discussion to follow.

13.2 Ethical Issues Raised by Anti-spoofing
Countermeasures

Anti-spoofing techniques raise ethical questions that, while undoubtedly related, are
independent of those raised by biometrics in general. This chapter is concerned with
ethical issues raised by anti-spoofing countermeasures, rather than by biometrics
per se.

13.2.1 Privacy, Intimacy and Integrity

This section addresses issues arising from the capacity of anti-spoofing techniques to
capture and process data which may be considered—in two senses to be articulated
below—“intimate”. As a preliminary, however, two clarifications are in order.

Our topic in this section is, broadly, privacy. The scholarly literature on pri-
vacy is wide, interdisciplinary and complex. It features disagreement as to what
privacy-protection measures are in order, but also on the foundational matter of what
privacy is. Legal scholar Daniel Solove has written:

Privacy […] is a concept in disarray. Nobody can articulate what it means. [It] is a sweep-
ing concept, encompassing (among other things) freedom of thought, control over one’s
body, solitude in one’s home, control over personal information, freedom from surveillance,
protection of one’s reputation and protection from searches and interrogation [5], p. 1.

For present purposes, we may bypass much of this uncertainty. Our scope is
considerably more focussed. Thus, the first clarification serves to narrow our focus
from privacy in general to specific aspects concerning, in particular, intimacy.

4 Anti-spoofing research is not in itself new (e.g. [4]). The increasing prominence of the field is
presumably connected with more widespread use of biometric systems, and the increasingly serious
consequences of identity fraud.
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The second clarification serves, by contrast, to caution against too restricted focus:
while this section is concerned with instances of data processing, it in no way follows
that the questions at stake relate solely to data protection. The question of data pro-
tection with respect to biometric systems is interesting, and anti-spoofing techniques
can certainly aggravate those issues.5 Yet the focus of this section (indeed of the
chapter as a whole) is more encompassing. When discussing intimacy, the question
will not be of whether there is a (potential) breach of data protection legislation, but
of if, when and how the gathering of intimate data may be ethically acceptable.

Clarifications in place, let’s turn to the question of intimacy. The word “intimate”
(in its adjectival sense) stems from the Latin intimus (meaning “inmost”), from
whence we derive its contemporary meaning (or one of them) of deeply personal. A
potential problem with some anti-spoofing techniques then, is that they rely for their
efficacy on the exploitation of data which could be considered intimate in that sense.

Data might be considered deeply personal if they get to (or approach) the heart
of who or how someone is.6 Data potentially revealing of medical information are
deeply personal in thisway: generally speaking, if others inquire too closely after your
medical information, they do you a harm. Similarly, data revealing of certain lifestyle
choices are, for the most part, protected by ethical and legal norms: except in certain
specific circumstances (a court of law perhaps), one’s sex life, dietary habits and so
on, are nobody else’s business. This is partly motivated by the attempt to prevent
discrimination, but is also motivated by the very personal nature of such data.

There are two senses in which these kinds of information are intimate. In one
sense, their intimate nature stems from a natural concern a person may have for the
kind information others may know about them. The thought that information about
one’s sex life (say) is no one else’s business is based on the premise that others do
not have a legitimate claim to access that information. In another sense, however,
intimacy can be based on norms concerning the kind of physical access a person
is prepared to allow others. The wearing of certain clothes, the drawing of curtains
and the closing of doors all protect intimacy by imposing a physical barrier between
an intimate thing and those who would otherwise see, touch or access it. These two
senses concern, respectively, ways in which psychological and physical integrity can
be violated.

With this distinction inmind, it is clear that anti-spoofing raises issues of intimacy.
Countermeasures maywell exploit intimate data and information. Liveness detection
techniques may process data which, even if not directly revealing of one’s medical
status, is nonetheless related to it. (After all, techniques such as pulse oximetry derive
from medical techniques.) Now, to reiterate, the point is not to do with the nature of
medical data in itself. It is rather that persons may well consider such information
intimate, and hence hold that its use constitutes an alarming deviation from a broadly
acceptable status quo. The data is intimate both in the sense that others do not

5 In the Europe Union, the Data Protection Directive (95/46/EC) sets the legal framework for the
processing of personal data. Data protection with respect to anti-spoofing is discussed in [6].
6 Or of what someone is. The above-mentioned critiques of van der Ploeg and Agamben raise, in
different ways, this question.
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(except in specific circumstances) normally have a legitimate claim to access it; and
in the sense that it derives from normally inaccessible (e.g. subdermal) parts of the
body. Accessing such data could constitute an affront to a person’s psychological
and/or physical integrity (quite independently of the status of such data with respect
to data protection legislation).

Similar concerns attend all anti-spoofing techniques. For some challenge-response
techniques—namely those involving actions provoking a physiological reaction (e.g.
whitening of the finger)—the critique is the same. For challenge-response techniques
based intentional behavioural responses (e.g. blinking on demand) there is a possi-
bility of revealing of an abnormality. Some abnormalities—particularly, but not only,
medical conditions—are liable to be considered intimate. Note that this is irrespec-
tive of whether those conditions are physically apparent. In cases such as some forms
of arthritis or nystagmus, it is not the fact that others can know of the condition that is
ethically relevant, but rather the fact that the data on which such knowledge would be
based is the specific focus of—i.e. is singled out by—the challenge-response proce-
dure. Hence the point of such medical examples is not to promote special measures
in such cases, but to demonstrate that intimacy and integrity are at issue in all cases
(whether medical conditions or other abnormalities are involved or not).

Arguments of these kinds apply to countermeasures exploiting modalities con-
sidered inherently robust to spoofing attacks. Behavioural modalities (e.g. gait) are
potentially indicative of unusual mobility or agility; modalities based on internal
physiology (e.g. vein or electrophysiological patterns) are intimate in that others
cannot normally physically access them and, even if they could, do not have a legit-
imate claim to be able to (other things being equal).

The use of multi-modality raises a variation on the arguments above. Multi-modal
biometrics may cause an affront to intimacy and integrity by gathering too much data
(what constitutes “too much” is likely to be contentious.) A problem of proportion-
ality raises its head here: processing a great deal of data may be a disproportionate
response to the challenges posed by a particular context of deployment.7 Once again,
the ethical problem is not so much amount of data processing per se, but the fact that
in interrogating several modalities, a biometric system is liable to be felt by an indi-
vidual (or more generally by a group) as examining them unacceptably closely—as
constituting an unwanted and unwarranted intrusion into a person’s sphere of inti-
macy. To violate that sphere is to violate a person’s integrity (physical, psychological
or both).

Not all entries into one’s personal, private sphere are threats to integrity. After all,
as a noun, theword “intimate” denotes thosewhomwewelcome into our private lives.
Intimacy is an integral part of personhood (the inability to foster it is pathological).
We also invite other persons (not normally described as “intimates”) into our private
spheres for quite specific reasons: most obviously in relation to healthcare, but also

7 Whether the question of proportionality is considered from the perspectives of ethics or (as is
commonplace) data protection, what is at stake is the proportionality of the identification system
as a whole (rather than of the anti-spoofing component in isolation). On this see [6].
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in the fields of finance, legal matters and education (to pick up an earlier example, a
doctor’s directing her full attention to one’s arthritis or nystagmus does not undermine
one’s integrity). Thus we manage intimacy, integrity, and privacy through norms
of appropriate behaviour which are responsive to two major factors: context and
consent.8 These major factors are open to change and development: consent can
be revoked; context—particularly, but not only, insofar as it concerns sociocultural
interactions among individuals and larger groups—is an extremely dynamic concept.
The ways in which technologies are experienced within a community can change,
as can that community itself as technologies become embedded in its ways of life.
As anti-spoofing technologies become more commonplace, it will be necessary to
regularly revisit their role and acceptability in society. This is a very complex but
necessary task.

13.2.2 Autonomy and Choice

Autonomy is, broadly speaking, the capacity of an individual to make decisions of
their own, free from coercion. More specifically, those decisions should be both free
and informed. Here we focus on the latter condition.

The basic of the shape of the problem is this: to identify a person is to per-
form an operation affecting them in certain ways. Respect for autonomy demands
that the administrators of an identification system should provide the person with
sufficient information that they can make a reasonable assessment of the potential
consequences, and on that basis decide whether to go ahead with the identification.
A number of problems arise. First, consequences can never be known with complete
comprehensiveness or precision; hence there are limits to how well the administrator
could possibly inform a person or target group. Second, the administrator cannot
reasonably be held responsible for all possible consequences; hence their responsi-
bility to inform target groups of those consequences is diminished. Third, various
background factors are present, including legal requirements. These may differ from
case to case (e.g. legal requirements are different in different jurisdictions; require-
ments are different in civil,medical,military, law-enforcement and aviation contexts).
Fourth, the level of information required to sufficiently inform one target group may
differ—possibly wildly—from that required to sufficiently inform another. Fifth, an
effective means of communicating information to one target group may be not be an
effective means of informing another.

Since these issues concern all identification systems (biometric or not), our focus
here is only on the question of how much information administrators or vendors
should be expected to provide in relation to anti-spoofing techniques.

Information provided to data subjects cannot be too technical. Currently, most
people have no expertise in biometrics, hence to provide them with technical details

8 On the relationship between privacy and context see the work of Helen Nissenbaum, notably [7].
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would be overwhelming, probably uninteresting, and possibly counterproductive.
Giving too little information is problematic, but so is giving too much. Efforts should
therefore be made to identify, for each modality, what we might call “core informa-
tion”, which can be easily communicated and understood, and which explains the
process of being identified by that modality. For example, with respect to fingerprint,
there is no real need to provide details about ridge patterns or particular algorithms:
that level of precision will not increase people’s understanding so markedly as to
offset the difficulty of the explanation. The “core information” to be given in rela-
tion to fingerprint might include, instead, some simple facts about the procedure
for scanning a finger and the matching of fingerprints.9 Once the core information
relating to a modality has been established, it can be judged whether the addition
of an anti-spoofing measure would involve the use of data, or activities, which are
not adequately explained by the core information. For example, suppose a liveness
detection procedure involves detecting a pulse. If it is deemed (a) that information
concerning this kind of procedure should in principle be communicated to users,
and (b) it is not already part of the core information, then users should be provided
with additional information. Or again, if a challenge-response measure involves an
activity not normally considered part of engaging with a particular sensor, then if the
requirement that the user performing that action is not already covered by the core
information, users ought to be given further information.

As spoofing becomes an increasingly prominent issue, it will be necessary to
reconsider what kinds of procedures are considered “standard” in the use of any
particular modality (and hence what the “core information” provided to users should
be). After all, anti-spoofing need not only be seen as a security-enhancing measure:
it can also be seen as aimed at improving system performance.10 This is particularly
clear for multi-modality and inherently robust modalities: the line between data
processing specifically aimed at identification and aimed at security is almost—if not
completely—indistinguishable. Anti-spoofing measures—particularly those that are
“invisible” to the user (e.g. liveness detection, which requires no user cooperation)—
may well, over time, come to appear as “normal” steps in the process of biometric
identification. Developments of this kind touch on the way in which a society—and
groups and individuals within it—understand biometrics, anti-spoofing, and what
it means to live with those technologies. In considering such developments, it is
essential to attempt to understand what is (and what is perceived, at the societal level)
a “normal” engagement with a biometric system, and how anti-spoofing technologies
possibly upset that status quo. It is then necessary to find an appropriate compromise
between the need to not overload users with technical information and the necessity
of informing users if sensitive (e.g. private or intimate) data is used.

9 Efforts towards standardisation in this area would be valuable.
10 Referring to anti-spoofing only as a security measure reflects, and contributes to, important
societal narratives concerning security, suspicion, risk and so on. This is discussed in [6].
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13.2.3 Acceptability, Fairness and Non-discrimination

This section concerns the societal acceptability of anti-spoofing technologies. Two
sorts of caseswill detain us: the acceptability of countermeasures in particular cultural
contexts; and the potential of countermeasures to be unfair to, or to discriminate
against, particular groups.

A biometric system’s societal acceptability is a function of many factors—the
authors of [8] (to take just one example) identify several, including how accustomed
users are to biometric technologies and whether there is a human in attendance
overseeing use of the system. They write that “Different biometrics are acceptable in
applications deployed in different demographics depending on the cultural, ethical,
social, religious, and hygienic standards of that society” (p. 17). Such considerations
obviously apply also in the case of anti-spoofing. In some instances, a countermeasure
may be presumed societally acceptable on the assumption that the system of which
it is a component is acceptable. If an already acceptable deployment of a fingerprint
scanner (for an ATM machine, say) incorporates liveness detection measures that
place no further burden on the user—the user experience is effectively the same—
the countermeasure is likely to be acceptable.11 Yet the implementation of multi-
modal systems, or those based on inherently robust modalities, should be carefully
assessed.12 Consider also that acceptability may increase or decrease over time.

The related problems of fairness and discrimination concern instances where a
system leaves particular users either un- or less able to use it. This poses a challenge
to anti-spoofing technologies (though by nomeans a unique one13): as far as possible,
countermeasures should rely only on data or abilities that all people can provide or
carry out. In some cases this will require that, say, an inherently robust modality is
not deployed on its own—or that if it is, reasonable alternatives, which are unlikely to
single out those partaking of them as unusual, should be provided. Or it may require
that challenge-response measures are deployed with sensitivity to the capacities of
those likely to encounter them. Requesting a blink as a countermeasure for either
facial recognition or iris systems is likely to be a goodfit for a laptop-login:most users
will be able to use that system, and those who cannot will typically have other options
(e.g. traditional passwords, voice-recognition options, etc.). But that same technique
would likely be an unsuitable countermeasure for a system managing access to a
service for the visually impaired.

This suggests a general mitigation strategy: namely, close attention to contextual
details.When a biometric system is deployed in a given scenario, that scenario should
be carefully analysed to identify any factors that may influence the system’s accept-
ability. In particular, itmust be consideredwhether the anti-spoofing countermeasures

11 Depending on whether and what further data processing is involved.
12 Users may deem new modalities unacceptable or unpalatable if they are unfamiliar, or simply
not a good fit for that society. Fingerprint may be acceptable in a society, but enhancing robustness
by adding face as a second modality may be unacceptable (e.g. in societies where many people
routinely cover their faces).
13 It occurs with any biometric system because no modality is 100 in ageing societies, see [3, 9].
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raise any issues or tensions not raised by the biometric system itself. If so, other anti-
spoofing measures may be more suitable.

13.2.4 Openness, Convenience and Security

How open should stakeholders in the biometrics community—academic researchers,
industrial and commercial researchers, vendors of systems, organisations and individ-
uals deploying systems—be about vulnerabilities to spoofing, and the effectiveness
of countermeasures?

Transparency and openness are, for the most part, positive (as discussed above,
they can promote autonomy in decision-making). It is important to distinguish open-
ness and honesty.Naturally, all pronouncements about spoofing and countermeasures
should be honest—lies are unacceptable.14 But none of this implies any prima facie
obligation to actively reveal all information about vulnerabilities, or about the effec-
tiveness of countermeasures. The right sort of information should be made available
to the appropriate stakeholders.

Vendors of systems and countermeasures have a duty to be openned about the
vulnerabilities of systems they sell. Research in the TABULA RASA project arrived
at the following suggestion:

Vendors should make available to customers sufficient information regarding security and
vulnerabilities that the customer is able to make a well-informed judgment as to whether the
system in question is a good fit for the specific context(s) in which they intend to deploy it.15

This implies a dual responsibility. The vendor must provide sufficient informa-
tion to the customer. But the customer also needs a very clear understanding of
their actual requirements. Measuring the vulnerability of a biometric device—or
the effectiveness of a countermeasure—is extremely difficult due to the importance
of contextual factors (particularly considering that such factors are not static, but
change over time). Thus, the customer must identify relevant factors: the amount
of human supervision expected, other (non-biometric) relevant security measures,
cultural norms influencing acceptability and so on.

Commercial researchers may have legitimate reasons for not advertising their
findings. Perhaps revealing the vulnerabilities and poor performance of an emerg-
ing modality would undermine its potential market. There are ethically legitimate
economic justifications for not releasing such findings (e.g. consequentialist analy-
ses of long-term implications) so long as the systems or devices in question are not
yet on the market or otherwise in use. Similar considerations may apply to acad-
emic researchers, although they may strike a different balance between the com-
mercial implications of publishing findings and the potential benefit to the scientific

14 Whether lying is always and everywhere unacceptable—whether, were it so, this would apply
also to spoofing—is addressed in [6].
15 See TABULA RASA’s “Ethical Guidelines” (Deliverable D7.5; Sect. 9.3), Rebera and Mordini
[3] at: http://www.tabularasa-euproject.org/.

http://www.tabularasa-euproject.org/.
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community. The guiding and underlying principle is this: if a biometric system or
anti-spoofing countermeasure is at the stage at which it is likely to affect people (i.e.
by being used), then:

1. those people affected by it ought to have the means of discovering how it is likely
to impact them;

2. those people or organisations deploying it ought to have access to details con-
cerning its vulnerabilities and the effectiveness of any countermeasures.

The two points above have the form of claim rights and, as such, impose correspond-
ing duties upon researchers, vendors and deployers of systems and countermeasures
to make the appropriate information available to the appropriate stakeholders.

As discussed above, it must be understood that quantifying system vulnerabilities
and countermeasure effectiveness are extremely complicated. Absolute precision is
impossible. Hence suitable standards for comparing countermeasures are urgently
needed.

13.3 Conclusion: Should Anti-spoofing Countermeasures
be Compulsory?

Identity theft and fraud are widespread problems with serious consequences. This
being so, onemight suppose that, since anti-spoofing countermeasures enhance secu-
rity against identity fraud, such measures should be mandatory, at least in some
circumstances.

As a blanket measure, the above suggestion is incorrect. There is no need to
demand the routine inclusion of countermeasures in all biometric systems. To aid
discussion, it may help to have an example in mind. The recent controversy over
Apple’s iPhone 5S—the fingerprint sensor of which was spoofed within two days of
the phone’s going on sale—will serve.

Like any other mobile phone, the iPhone requires security measures to ensure
that only the owner is able to access its applications and content. A standard security
feature is a numerical code, chosen by the owner, which they key in to unlock the
phone. Some versions of the iPhone 5S come equippedwith “Touch ID”, a fingerprint
sensor managing user authentication. Users can enrol up to five fingerprints, which
can then be used to access to the phone itself and the user’s iTunes account (for
purchasing music, films, etc.). All fingerprint data is stored on the phone itself and,
according to Apple’s head of software, cannot be retrieved from it. Two days after
the worldwide release of the iPhone 5S, a German group called the Chaos Computer
Club announced that they had successfully spoofed their way into an iPhone 5S,
using a fingerprint lifted from a glass surface and transposed onto a cover that could
be worn over another person’s finger.16

16 Details of this story can be found across the media. The comment from Apple’s head
of software is taken from: http://www.theguardian.com/technology/2013/sep/22/apple-iphone-
fingerprint-scanner-hacked.

http://www.theguardian.com/technology/2013/sep/22/apple-iphone-fingerprint-scanner-hacked.
http://www.theguardian.com/technology/2013/sep/22/apple-iphone-fingerprint-scanner-hacked.
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The spoofing of the iPhone 5S’s fingerprint sensor caused a media furore; but, in
the end, it is difficult to conclude from the episode that the fingerprint sensor is any
less secure than the traditional numerical code logon. The procedure for spoofing
a fingerprint is one of the simplest spoofing methods, yet it is considerably more
complicated, and requires far greater technical know-how, than the most likely form
of “spoofing” to which a numerical code logon is vulnerable (namely, surreptitious
observation of the user’s code17). Additionally—and this is the issue with which
this chapter will close—the episode again shows something about the importance of
context in anti-spoofing and, consequently, that responsibility for security lies not
only with technology providers, but also partly with every other actor in a given
scenario.

It is difficult to overestimate the importance of contextual factors in assessing
a countermeasure’s suitability. In terms of security, to decide on the most fitting
countermeasure, at a minimum the person or organisation deploying the biometric
system should understand:

• what asset the system manages access to, and what value that asset has;
• what would be the consequences of illegitimate access to the asset;
• who might have an interest in gaining illegitimate access to the asset;
• how difficult (in general) it would be to gain illegitimate access to the asset;
• what other security features are in place in the scenarios (e.g. physical locks and
blocks, human supervision, etc.).

And with respect to ethics, in addition to the above, the following should be
understood:

• the balance of proportionality between the sensitivity of the data gathered and the
value of the asset (i.e. does the nature of the asset justify the use of the counter-
measures involved?);

• what ethical, legal or policy standards and frameworks are in place in the envisaged
scenario, and how are they to be complied with;

• which groups are likely to use the system and which if any of them are likely to
be singled out by it (e.g. minors, people with disabilities, etc.);

• background sociopolitical, cultural or historical factors—in particular those liable
to influence the perceived acceptability of the system and countermeasure (e.g. a
history of political opposition to a certain form of identification system).18

From all these factors, it is clear that in some cases a person or organisation
deploying a biometric system would be (to some extent) morally culpable if they
failed to provide reasonable anti-spoofing protection.19 For example, a system man-
aging access to a critical infrastructure facility (a nuclear plant, say) requires very

17 Consider also that if one loses one’s phone, the person finding it could, in theory, guess a numerical
code (supposing they cannot hack into the phone), but they cannot guess a fingerprint.
18 These contextual factors are discussed in the TABULA RASA project’s “Ethical Guidelines”
(Deliverable D7.5).
19 Primary responsibility presumably resides with the spoofer.
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robust anti-spoofing protection because the consequences of illegitimate access are
potentially massive. In that scenario, it would be enormously irresponsible to deploy
a system vulnerable to relatively low-cost, low-tech spoofing attacks.20 On the other
hand, inmany cases security requirements are far lower. Aswemove down that scale,
it becomes increasingly apparent that users are themselves (partly) responsible for
using technology in ways that do not place themselves or others at risk.21

Mobile phone users need secure devices to prevent unauthorised access and, more
particularly, because they store (or access) private information on them.22 But phones
are used very frequently. From the beginning then, users have two requirements:
security and convenience. Phone providers will aim to provide, as default, a balance
between the two.

For smartphones, arguably an appropriate balance would be somewhat as follows.
Primary access should be secure, but not at a significant cost to convenience (either
by slowing access time or sapping processing power). But if that is the case, then
other features within the phone which could be abused should be given additional
protection. Sometimes this is standard: you can use your smartphone to access a bank
account online, but access is subjected to further security checks (administered by the
bank). In other cases, further security is not standard (e.g. accessing contact lists, or,
in the iPhone 5S case, accessing the iTunes store).23 As mentioned above, users must
take some responsibility for their own security behaviour—by, for example, ensuring
that any sensitive data (e.g. a professional email account) is suitably protected. Thus,
when attributing moral responsibility and liability for the consequences of fraud or
other malicious acts resulting from spoofing, key issues will always include:

• whether the provider provided a system adequately robust to spoofing attacks (the
concept of “adequacy” is to be analysed through examination of relevant contextual
factors, including as realistic as possible a vulnerability assessment);

• whether the user could reasonably has been expected to understand the threat from
spoofing and its potential consequences. In some cases, such an understanding
should be actively promoted by the provider: in others it falls under “common
sense” (but this is an extremely difficult matter, particularly with respect to new
and emerging technologies);

• whether the user brought additional vulnerability upon themselves through the
way they used the system (or the tool or asset the system managed access to).

20 Of course matters are more complicated than this. To take just one very simple example, it would
be irresponsible to deploy an extremely secure system without adequately training people in its
correct operation.
21 Compare personal responsibility for online safety: regulators, ISPs and website administrators
all have some responsibility—but so do individuals.
22 This shows how societal understanding of technologies evolves. Mobiles are no longer mere
communication devices, but can be used for computing, storing data, accessing services, mobile
payments and more.
23 An important further consideration is that access to one service or data set can often result in
access to others. For example, access to an online store account could yield a great deal of personal
and financial information.
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This chapter surveyed ethical issues arising from the development anddeployment
of anti-spoofing countermeasures. It focused on issues of: privacy, intimacy and
integrity; autonomy and choice; acceptability, fairness and non-discrimination; open-
ness, convenience and security. A key and recurrent factor has been the importance
of the background contexts into which anti-spoofing technologies are introduced.
Understanding which countermeasures are most appropriate in a given case, and
what are the ethical risks associated, is a matter of close attention to those con-
texts. Of course contexts are complicated things. They are dynamic and different
threads within them unravel at different speeds. Significantly, researchers attempting
to analyse contexts are no more independent of those contexts than are the technolo-
gies which provoke the analyses in the first place.

Anti-spoofing raises several ethical issues in addition to those raised by biometrics
in general. Perhaps one of the most difficult, intriguing and important of these con-
cerns the relationship between countermeasures and systems. Are countermeasures
additional complements to systems, or integral components? How will that relation-
ship evolve? Will anti-spoofing become standard in biometric identification? And,
most importantly, what does all of this mean for the people and groups that have to
live with biometric technologies? The first step in addressing ethical issues raised
by anti-spoofing technologies is to identify the live issues affecting us all at present.
This chapter has been a contribution to that task. The second step is to identify, track
and solve the ethical issues that may and will appear in the future. That very difficult
task is ongoing.
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Appendix A
Evaluation Databases

Stan Z Li, Javier Galbally, André Anjos and Sébastien Marcel

A.1 Introduction

“In God we trust; all others must bring data”. This quote commonly attributed
to William Edwards Deming1 may be applied to any machine learning or pattern
recognition problem, however, it is specially true for the biometric technology due
to the variety of knowledge areas that it covers, which require large amounts of data
and specific evaluation protocols.

Certainly, one of the key challenges faced nowadays by this rapidly evolving
technology is the need for new public standard datasets that permit the objective
and statistical evaluation of the different aspects related to biometric recognition
systems (e.g., performance, security, interoperability or privacy). This is particularly
relevant for the assessment of spoofing attacks and their corresponding anti-spoofing
protection methodologies.

In the field of spoofing, only quite recently the biometric community has started
to devote some important efforts to the acquisition of large and statistically meaning-
ful anti-spoofing databases. In most cases, these datasets have been captured in the

1 (W.E.D, 1900–1993). On theWeb, this quote has been widely attributed to Deming, however,
as stated in the introduction of [1]
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framework of international competitions such as the series of Fingerprint Liveness
Detection Competitions, LivDet, held biannually since 2009, or the more recent 2-D
Face Anti-Spoofing contests that started in 2011. These, and a few others, are very
valuable examples of the way to proceed in order to further develop the security
capabilities of biometric systems, since they provide a public and common bench-
mark where developers and researchers can objectively evaluate their proposed anti-
spoofing solutions and compare them in a fair manner to other existing approaches.

However, in spite of the patent interest that the biometric community has shown
over the last recent years in the study of the vulnerabilities of this technology to spoof-
ing attacks, the availability of such anti-spoofing databases is still scarce. These lack
of data may be explained both from a technical and a legal point of view: (i) From
a technical perspective, the acquisition of spoofing-related data presents an added
challenge to the usual difficulties encountered in the acquisition of standard biomet-
ric databases (i.e., time-consuming, expensive, human resources needed, cooperation
from the donors...): the generation of a large amount of fake artifacts which are in
many cases tedious and slow to generate on large scale (e.g., gummy finger, printed
iris lenses, face videos); (ii) The legal issues related to data protection are controver-
sial and make the sharing and distribution of biometric databases among different
research groups or industries very tedious and difficult. These legal restrictions have
forced most laboratories working in the field of spoofing to acquire their own pro-
prietary (and usually small) datasets on which to evaluate their protection methods.
Although these are very valuable efforts, they have a limited impact, since the results
may not be compared or reproduced by other institutions.

The present appendix is a summary of the current publicly available anti-spoofing
databases that may be used for the development of new and efficient protection
measures against direct attacks.Only the fingerprint, face and iris traits are considered
in the chapter since, for the other modalities, although different studies related to
spoofing can be found in the literatured, to the best of our knowledge no public
datasets have been released.

A.2 Fingerprint Anti-spoofing Databases

A.2.1 Fake Fingerprint Generation

Before describing themost widely used fake fingerprint databases which are publicly
available, and in order to help to understand their structure, we believe it is useful to
present here a brief summary of the most common techniques used for the generation
of gummy fingers.

The creation of fake fingers is in almost all cases carried out following one of
three procedures depending on the starting point of the manufacturing process:

• Starting from the user’s finger This method is also known as “cooperative” and
further reading may be found for instance in [2, 3]. In this case, the legitimate user
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is asked to place his finger on a moldable and stable material in order to obtain the
negative of the fingerprint. In a posterior step the gummy finger is recovered from
the negative mold. The different typical steps performed in the generation process
are depicted in Fig.A.1.

• Starting from a latent fingerprint This method is also referred to in many publica-
tions as “non-cooperative” and was first introduced in [4]. In this case the first step
is to recover a latent fingerprint that the user has unnoticedly left behind (e.g., on
a CD). The latent fingerprint is lifted using a specialized fingerprint development
toolkit and then digitalized with a scanner. The scanned image is then enhanced
through image processing and finally printed on a PCB from which the gummy
finger is generated. The typical main steps of this non-cooperative process are
depicted in Fig.A.2.

• Starting from a minutiae template This possibility was studied for the first time in
[5]. In this case the first step is to reconstruct the fingerprint image from a com-
promised minutiae template of the user following one of the algorithms described
in the literature [6, 7]. Once the digital image has been reconstructed, the gummy
finger is generated using a PCB in an analogue way to the non-cooperative method
described above.

Currently we can find four large fingerprint anti-spoofing databases wheremost of
the attacks cited abovemaybe found for a variety of sensors and for differentmaterials
of the gummy fingers: the ATVS-FFp DB and the three databases corresponding to
the series of Fingerprint Liveness Detection competitions (LivDet) held in 2009,
2011 and 2013.

A.2.2 ATVS-FFp DB

The ATVS-FFp DB [3] is publicly available at the ATVS-Biometric Recognition
Group website.2

It comprises real and fake fingerprint images coming from the index and middle
fingers of both hands of 17 users (17×4 = 68 different fingers). For each real finger,
two gummy fingers were created with modeling silicone following a cooperative and
non-cooperative process as described in Sect.A.2.1.

Four samples of each fingerprint (fake and real) were captured in one acquisition
session with three different sensors of the most widely spread acquisition technolo-
gies currently available:

• Flat optical sensor Biometrika FX2000 (569dpi, image size 312 × 372).
• Flat capacitive sensor by Precise Biometricsmodel Precise 100 SC (500dpi, image
size 300 × 300).

• Sweeping thermal sensor by Yubee with Atmel’s Fingerchip (500dpi, image size
232 × 412).

2 http://atvs.ii.uam.es/.

http://atvs.ii.uam.es/
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Fig. A.1 Typical process followed to generate silicone fake fingerprints with the cooperation of
the user: select the amount of moldable material (a), spread it on a piece of paper (b), place the
finger on it and press (c), negative of the fingerprint (d). Mix the silicone and the catalyst (e), pour
it on the negative (f), wait for it to harden and lift it (g), fake fingerprint (h)
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Fig. A.2 Typical process followed to generate silicone fake fingerprints without the cooperation of
the user: latent fingerprint left on a CD (a), lift the latent fingerprint (b), scan the lifted fingerprint
(c), enhance the scanned image (d), print fingerprint on PCB (e), pour the silicone and catalyst
mixture on the PCB (f), wait for it to harden and lift it (g), fake fingerprint image acquired with the
resulting gummy finger on an optical sensor (h)
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Table A.1 General structure of the ATVS-FFp DB

ATVS-FFp DB

Real/Fake (#Train = #Test) Fakes generation

# Fingers # Samples Coop No-Coop

Biometrika FX2000 (569dpi) 68/68 272/272 136 136

Precise SC100 (500dpi) 68/68 272/272 136 136

Yubee (500dpi) 68/68 272/272 136 136

The distribution of the fake images is given in terms of the procedure used for their generation:
cooperative (Coop), or non-cooperative (No-Coop)

Thus, the database comprises 68 fingers×4 samples×3 sensors= 816 real image
samples and as many fake images for each scenario (with and without cooperation).
In order to ensure inter- and intra-class variability, samples of the same finger were
not captured consecutively.

The database is divided into a train and test set which contain half of the fingerprint
images with no overlap between them (i.e., samples corresponding to each user are
just included in one of the sets), and their general structure is given in TableA.1.
Some typical examples of the images that can be found in this database are shown
in Fig.A.3, where the type of process used for the generation of the gummy fingers
is given (cooperative or non-cooperative).

A.2.3 LivDet 2009 DB

The LivDet 2009DBwas acquired in the framework of the First Fingerprint Liveness
Detection Competition held in 2009 [8], and is publicly available at the contest
website.3

It comprises three datasets of real and fake fingerprints captured each of them
with a different flat optical sensor:

• Flat optical, Biometrika FX2000 (569dpi, image size 312 × 372).
• Flat optical, CrossMatch Verifier 300CL (500dpi, image size 480 × 640).
• Flat optical, Identix DFR2100 (686dpi, image size 720 × 720).

The gummy fingers were generated using three different materials: gelatine, play-
doh and silicone, following always a consensual procedure (with the cooperation of
the user).

The train and test sets of this database are the same as the ones used in the LivDet
2009 competition so that the results achieved on it may be directly compared to those
obtained by the participants in the contest.

The train and test sets comprise over 5,000 samples coming from around 100
different fingers (depending on the dataset). The general distribution of the fingerprint

3 http://prag.diee.unica.it/LivDet09/.

http://prag.diee.unica.it/LivDet09/
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ATVS-FFp DATABASE

BIOMETRIKA FX2000
(FLAT OPTICAL)

PRECISE SC 100
(FLAT CAPACITIVE)

YUBEE with ATMEL’S FINGERCHIP
(THERMAL SWEEPING)

REAL 

SILICONE
FAKE

(WITH USER
COOPERATION) 

SILICONE
FAKE

(WITHOUT
USER

COOPERATION)  

Fig. A.3 Typical examples of real and fake (generated with and without the cooperation of the
user) fingerprint images that can be found in the public ATVS-FFp DB

images between both sets is given in TableA.2, where the number of real and fake
fingers/samples and the material used for the generation of the gummy fingers are
specified.

Some typical examples of the images that can be found in this database are shown
in Fig.A.4, where the material used for the generation of the fake fingers is given
(gelatine, playdoh or silicone).

A.2.4 LivDet 2011 DB

The second Fingerprint Liveness Detection Competition was held in 2011 [9]. For
this competition a new database, the LivDet 2011 DB, was acquired as extension of
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LivDet 2009 DATABASE

BIOMETRIKA  FX2000
(FLAT OPTICAL)

CROSSMATCH VERIFIER 300CL
(FLAT OPTICAL)

IDENTIX DFR2100
(FLAT OPTICAL)

REAL 

FAKE
GELATIN

Not included in the DB

FAKE
PLAYDOH

Not included in the DB

FAKE
SILICONE

Fig. A.4 Typical examples of real and fake fingerprint images that can be found in the public
LivDet 2009 DB. A blank space in the figure means that the corresponding fake type is not present
in the database

the previous LivDet 2009 DB (see Sect.A.2.3), and is currently publicly available
through the competition website.4

TheLivDet 2011DBcomprises four datasets of real and fake fingerprints captured
each of themwith a different flat optical sensor. The resolution of some of the sensors
(Biometrika and Digital Parsona) was slightly modified in order to have the same
value across all four datasets (500dpi). This way, the impact of the variation of the
fingerprint image size on the performance of the tested anti-spoofing algorithms may
be estimated:

• Flat optical, Biometrika FX2000 (569dpi → 500dpi, image size 312 × 372).
• Flat optical, Digital Persona 4000B (512dpi → 500dpi, image size 355 × 391).

4 http://people.clarkson.edu/projects/biosal/fingerprint/index.php.

http://people.clarkson.edu/projects/biosal/fingerprint/index.php
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Table A.3 General structure of the LivDet 2011 DB (# denotes “number of”)

LivDet 2011 DB

Real/Fake (#train = #test) Material fakes (#train = #test)

# Fingers # Samples e g l p s w

Biometrika FX2000 (500dpi) 100/20 1,000/1,000 200 200 200 200 200

Digital Persona 4000B (500dpi) 100/20 1,000/1,000 200 200 200 200 200

ItalData ET10 (500dpi) 100/20 1,000/1,000 200 200 200 200 200

Sagem MSO300 (500dpi) 56/40 1,000/1,000 200 200 200 200 200

The distribution of the fake samples is given in terms of the materials used for their generation: e
stands for ecoflex, g for gelatin, l for latex, p for playdoh, s for silicone and w for wood glue

• Flat optical, Italdata ET10 (500dpi, image size 640 × 480).
• Flat optical, Sagem MSO300 (500dpi, image size 352 × 384).

The gummy fingers were generated following a consensual procedure using six
different materials: ecoflex (platinum-catalysed silicone) gelatine, latex, playdoh,
silicone and wood glue.

The train and test sets of this database are the same as the ones used in the LivDet
2011 competition so that the results achieved on it may be directly compared to those
obtained by the participants in the contest.

The train and test sets comprise over 8,000 samples coming from around 200
different fingers (depending on the dataset). The general distribution of the fingerprint
images between both sets is given in TableA.3, where the number of real and fake
fingers/samples and the material used for the generation of the gummy fingers are
specified.

Some typical examples of the images that can be found in this database are shown
in Fig.A.5, where the material used for the generation of the fake fingers is given.

A.2.5 LivDet 2013 DB

During the writing of this book the LivDet 2013 edition was being held. The DB
used in the evaluation will be made public on the website of the competition once
the final results are published.5 Although part of the information may not be fully
accurate (especially that related to the test set which has still not been released), we
present here a summary of the most important features of the database.

TheLivDet 2013DBcomprises four datasets of real and fake fingerprints captured
with three different flat optical sensors and a thermal sweeping scanner:

• Flat optical, Biometrika FX2000 (569dpi, image size 312 × 372).
• Flat optical, Italdata ET10 (500dpi, image size 640 × 480).

5 http://prag.diee.unica.it/fldc/.

http://prag.diee.unica.it/fldc/
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LivDet 2011 DATABASE

BIOMETRIKA  FX2000
(FLAT OPTICAL)

DIGITAL PERSONA 4000B
(FLAT OPTICAL)

ITALDATA ET10
(FLAT OPTICAL)

SAGEM MSO300
(FLAT OPTICAL)

REAL 

FAKE
ECOFLEX Not included in the DB Not included in the DB

FAKE
GELATIN

FAKE
LATEX

FAKE
PLAYDOH Not included in the DB Not included in the DB

FAKE
SILICONE

FAKE
WOOD GLUE

Fig. A.5 Typical examples of real and fake fingerprint images that can be found in the public
LivDet 2011 DB. A blank space in the figure means that the corresponding fake type is not present
in the database
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Table A.4 General structure of the LivDet 2013 DB (# denotes “number of”)

LivDet 2013 DB

Real/Fake (#train = #test) Material fakes (#train = #test)

# Fingers # Samples b e g l m p w

Biometrika FX2000 (569dpi) 200/50 1,000/1,000 200 200 200 200 200

ItalData ET10 (500dpi) 500/125 1,250/1,000 250 250 250 250

CrossMatch L SCAN (500dpi) 200/50 1,000/1,000 200 200 200 200 200

Atmel Fingerchip (96dpi) 250/125 1,250/1,000 250 250 250 250

The distribution of the fake samples is given in terms of the materials used for their generation: b
stands for body-double silicone, e for ecoflex silicone, g for gelatin, l for latex, m for modasil, p for
playdoh and w for wood glue

• Flat optical, CrossMatch L SCAN Guardian (500dpi, image size 640 × 480).
• Thermal sweeping, Atmel Fingerchip (96dpi, image size not available).

The gummy fingers were generated following a consensual procedure using
seven different materials: body-double skin-safe silicone rubber, ecoflex platinum-
catalysed silicone, gelatin, latex, modasil, playdoh and wood glue.

The train and test sets of this database are the same as the ones used in the LivDet
2013 competition so that the results achieved on it may be directly compared to those
obtained by the participants in the contest.

The train and test sets comprise over 8,000 samples coming from around 200
different fingers (depending on the dataset). The general distribution of the fingerprint
images between both sets is given in TableA.4, where the number of real and fake
fingers/samples and the material used for the generation of the gummy fingers are
specified.

Some typical examples of the images that can be found in this database are shown
in Fig.A.6, where the material used for the generation of the fake fingers is given.

In TableA.5 we present a comparative of the most important features of the four
fingerprint spoofingdatabases previously presented: theATVS-FFpDB (Sect.A.2.2),
and the three databases corresponding to the series of Fingerprint Liveness Detection
Competitions, LivDet 2009, 2011 and 2013 (Sects.A.2.3, A.2.4 and A.2.5).

A.3 Face Anti-spoofing Databases

As in the previous section we will present here a very brief summary of the studied
most common direct attacks to face recognition systems, which may help to under-
stand the rationale behind the design and structure of the presented face anti-spoofing
databases.

The vast majority of face spoofing attacksmay be classified in one of three groups:

• Photo-Attacks These fraudulent access attempts are carried out presenting to the
recognition system a photograph of the genuine user. This image may be printed
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LivDet 2013 DATABASE

BIOMETRIKA  FX2000
(FLAT OPTICAL)

ITALDATA ET10
(FLAT OPTICAL)

CROSSMATCH L SCAN
(FLAT OPTICAL)

ATMEL FINGERCHIP
(THERMAL SWEEPING)

REAL 

FAKE
BODY DOUBLE Not included in the DB Not included in the DB

FAKE
ECOFLEX Not included in the DB Not included in the DB

FAKE
GELATIN Not included in the DB Not included in the DB

FAKE
LATEX

FAKE
MODASIL Not included in the DB Not included in the DB

FAKE
PLAYDOH Not included in the DB Not included in the DB

FAKE
WOOD GLUE

Fig. A.6 Typical examples of real and fake fingerprint images that can be found in the public
LivDet 2013 DB. A blank space in the figure means that the corresponding fake type is not present
in the database
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on a paper (i.e., print attacks) or may be displayed on the screen of a digital device
such as a mobile phone or a tablet (i.e., digital-photograph attacks) [10, 11].

• Video-Attacks Also referred to in some cases as replay-attacks. In these type of
spoofing attempts the attacker, instead of using a still image, he replays a video of
the genuine client using a digital device (e.g., mobile phone, tablet or laptop)[12,
13].

• Mask-Attacks These are far less common than the previous two types and are only
starting to be systematically studied. In these cases the spoofing artifact is a 3-D
mask (e.g., self craftedwith silicone) of the genuine client face [14].Although there
are some companies where you can get such a face 3-D model for a reasonable
price,6 self-manufacturing this type of masks is in general fairly difficult and time
consuming. An alternative that has also been studied is the use of photographic-
masks, which are high resolution printed photographs where the eyes and the
mouth have been cut out, and the impostor is placed behind [15].

In addition, all the previous types of attacks have a number of variants depending
on the resolution (quality) of the attack device, the type of support used to present
the fake copy (e.g., handheld or fixed support), or the type of external variability
allowed (e.g., illumination or background). Currently there are four large public face
anti-spooofing databases. They are: the NUAA Photo Imposter database, the Replay
(Photo, Print) Attack databases, the CASIA Face Anti-Spoofing database and the 3D
Mask Attack (3DMAD) database.

A.3.1 NUAA PI DB

The NUAA Photo Imposter Database7 is available from on request through the
corresponding author’s of [11]. The database was built using a generic unspecified
webcam that captured photo attacks and real-accesses to 15 different identities. The
database is divided in three sesssionswith different illumination conditions, as shown
in Fig.A.7. The amount of data among sessions is unbalanced as not all the subjects
participated in the three acquisition campaigns.

In all sessions, participants were asked to look frontally to the web camera, posing
a neutral expression and avoiding eye blinks or head movements so that it resembles
a photo as much as possible. The webcam would then record for about 25 s at 20 fps
from which a set of frames is hand-picked for the database. The original video
sequence is not distributed with the database. Bitmap images are available instead
of each of the hand-picked frames from the database.

Attacks were generated by first collecting high (unspecified) definition photos
for each subject using a Canon camera of unspecified model, in such a way that the
face would take about 2/3 of whole photograph area available. Photos were then
printed on photographic paper with dimensions 6.8cm x 10.2cm (small) and 8.9cm

6 http://www.thatsmyface.com/.
7 http://parnec.nuaa.edu.cn/xtan/NUAAImposterDB_download.html.

http://www.thatsmyface.com/
http://parnec.nuaa.edu.cn/xtan/NUAAImposterDB_download.html
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Fig. A.7 Samples from the NUAA Photo Imposter Database, extracted from [11]. In each column
(from top to bottom) samples are respectively from session 1, session 2 and session 3. In each row,
the left pair are from a live human and the right from a photo. Note that it contains variability
commonly encountered by a face recognition system (e.g., gender, illumination or glasses). All
original images in the database are color pictures with the same definition of 640×480 pixels

x 12.7cm (bigger) using a traditional development method or on a 70g white A4
paper using an unspecified Hewlet-Packard color printer. The three samples are then
used to create photo attacks by moving the photo during the capture, as indicated on
Fig.A.8. TableA.6 summarizes the number of images and main characteristics per
session.

A.3.1.1 Protocols

The NUAA Photo Imposter Database is decomposed into two sets, one for training
and another for testing. Images for the training set are those coming from Sessions
1 and 2 exclusively, which contains data for the first nine clients. A total of 3,491
images are available from which 1,743 represent real-accesses while 1,748, photo
attacks containing different warping. The test set makes use of the remaining 9,123
images from Session 3 and therefore, does not overlap with the training set. The test
set contains real-access data (3,362 images) from the other remaing six clients, but
also for some clients from the training set. The attack data for the test set contains
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Fig. A.8 Attack samples from the NUAA Photo Imposter Database, extracted from [11]. From left
to right, we show examples of attacks generated by: (1) moving the photo horizontally, vertically,
back and front; (2) rotating the photo in depth along the vertical axis; (3) the same as (2) but along
the horizontal axis; (4) bending the photo inward and outward along the vertical axis; (5) the same
as (4) but along the horizontal axis

Table A.6 General structure of the NUAA PI DB

NUAA PI DB

Overall Info. (train/test) # Images per session (train/test)

# Users # Images Session 1 Session 2 Session 3

Real accesses 15 (9/9) 5,105 (1,743/3,362) 889 (889/0) 854 (854/0) 3,362 (0/3,362)

Print-Attacks 15 (9/15) 7,509 (1,748/5,761) 855 (855/0) 893 (893/0) 5,761 (0/5,761)

5,761 imageswith an even largermix of data from clients also available in the training
set.

No development set is available on this database, which makes comparative tun-
ning of machine learning algorithms difficult. Prior work [12, 16, 17] overcame this
limitation by implementing cross-validation based only on the training data. To do
so, the training data is divided into (almost) equally sized subsets and classifiers are
trained by grouping together four of the subsets and leaving one out, that is finally
used to tune and evaluate the classification performance. The classifier that achieves
the best classification performance on the folded training set is then selected and
finally evaluated on the test set.

Performance characterisation using the NUAA Photo Imposter Database is not
imposed as part of the training and testing protocol, though database proponents
reported results using the Area Under the ROC Curve (AUC) obtained while evalu-
ating classification schemes uniquely on the test set.

The data is distributed in three folders which contain:

1. the raw picture (in JPEG format), with size 640× 480 pixels as output by the
webcam;

2. the face cropped by the author’s own Viola-Jones face detector (also in JPEG
format), with variable bounding-box size; and, finally
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3. the face cropped (as above), but also normalized to a size of 64× 64 in which
detected eyes have a fixed position (in Bitmap format). The resulting crops are
also gray-scaled to eight bits precision.

Most of work available in literature [11, 12, 16, 17], including the author’s ref-
erence use the pre-cropped data.

A.3.2 The Replay Attack Database Family

The Replay-Attack Database8 [12] and its subsets (the Print-Attack Database [18]
and the Photo-Attack Database [19]) are face anti-spoofing databases consisting of
short video recordings of about 10 s of both real-access and spoofing attacks to a face
recognition system. This was the first database to support the study of motion-based
antispoofing techniques. This database was used on the 2011 and 2013 Competition
on Countermeasures to 2-D Facial Spoofing Attacks [20, 21].

Samples were recorded from 50 different identities. The full database contains
spoofing attempts encompassing three major categories of most intuitive attacks to
face recognition systems:

• Print-Attacks: attacks with photograps printed on a paper;
• Photo attacks: digital photographs displayed on a screen of an electronical device;
• Video attacks: video clips replayed on a screen of an electronical device.

Depending on the subset utilized, one has access to the three types of attacks, the
first one (Print-Attack subset) or the first two (Photo-Attack subset). To create the
real accesses available in the database each person recorded three video clips at two
different stationary conditions:

• controlled: In this case the background of the scene is uniform and the light of a
fluorescent lamp illuminates the scene;

• adverse: In this case the background of the scene is non-uniform and day-light
illuminates the scene.

Under these two different conditions, people were asked to sit down in front of a
custom acquisition system built on an Apple 13-inch MacBook laptop and capture
two video sequences with a resolution of 320 by 240 pixels (QVGA), at 25 fps and
of 15s each (375 frames). Videos were recorded using Apple’s Quicktime format
(MOV files).

The laptop was positioned on the top of a small support (approx. 15cm in height,
like shown inFig.A.9) so that faces are captured as they lookup-front. The acquisition
operator launches the capturing program and asks the person to look into the laptop
camera as they would normally dowaiting for a recognition system to do its task. The
program shows a reproduction of the current image being captured and, overlaid, the

8 http://www.idiap.ch/dataset/replayattack.

http://www.idiap.ch/dataset/replayattack
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Fig. A.9 Setup used for the
acquisition of real-accesses for
the Replay-Attack database

output of a face-detector used to guide the person during the session. In this particular
setup, faces are detected using a cascade of classifiers based on a variant of Local
Binary Patterns (LBP) [22] referred asModified Census Transform (MCT) [23]. The
face-detector helps the user self-adjusting the distance from the laptop camera and
making sure that a face can be detected at most times during the acquisition. After
acquisition was finished, the operator would still verify the videos did not contain
problems by visual inspection and proceed to acquire the next video. This procedure
is repeated three times for each of the stationary conditions described above, making
up a total number of six real accesses (videos) per client.

In order to create the attacks, photographs and video clips needed to be recorded.
The photographs were used as a basis for generating print and photo attacks, while
the videos were used as a basis for preparing the video attacks. To record this extra
data to prepare the attacks, the acquisition operator took two photographs and two
video clips of each person in each of the two illumination and background settings
used for recording the real accesses. The first photograph/video clip was recorded
using iPhone 3GS (3.1 megapixel camera) and the second using a high-resolution
12.1 megapixel Canon PowerShot SX200 IS camera. People were asked to cooperate
in this process so as tomaximize the chances of an attack to succeed. Theywere asked
to look up-front like in the acquisition of the real-access attempts. Finally, attacks
were generated by displaying the taken photographs and video clips on a particular
attack media in front of the aquisition system. The aquisition system for recording
the spoofing attacks is identical to the one used for recording the real accesses.

The forged attacks are executed so that the border of the display media is not
visible in the final video clips of spoofing attacks. This was done to avoid any bias
on frame detection for algorithms that are developed and tested with this database.
Furthermore, each spoofing attack video clip is recorded for about 10 s in twodifferent
attack modes:
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• hand-based attacks: in this mode, the operator holds the attack media using their
own hands;

• fixed-support attacks: the operator sets the attack media on a fixed support so they
don’t do involuntary movements during the spoof attempt.

The first set of (hand-based) attacks show a shaking behavior that can be observed
when people hold photographs of spoofed identities in front of cameras and that,
sometimes, can trick eye-blinking detectors. It differs from the second set that is
completely static and should be easier to detect.

To generate the print attacks, the operator displays hard copies of the high-
resolution digital photographs printed on plain A4 paper using a Triumph-Adler
DCC 2520 color laser printer. There are four print-attacks per client, corresponding
to two tries under the two different illumination conditions. Digital photo and video
attacks are generated by displaying either the iPhone sample on the iPhone screen
or the high-resolution digital samples taken with the 12.1 megapixel camera using
an iPad screen with resolution (1,024 by 768 pixels). FigureA.10 shows examples
of attacks in the different conditions explored by the Replay Attack Database.

A.3.2.1 Protocols

A total of 1,300 video clips is distributed with the database. From those, 300
correspond to real-accesses (3 trials in two different conditions for each of the 50
clients). The first trial for every client and condition is put apart to train, tune and
evaluate face verification systems. The remaining 200 real-accesses and 1,000 attack
video clips are arranged into different protocols that can be used to train, tune and
evaluate binary anti-spoofing classifiers. Identities for each subset were chosen ran-
domly but do not overlap, i.e. people that are on one of the subsets do not appear in
any other set. This choice guarantees that specific behavior (such as eye-blinking pat-
terns or head-poses) are not picked up by detectors and final systems can generalize

Fig. A.10 Example attacks in different scenarios and with different lighting conditions. On the
top row, attacks in the controlled scenario. At the bottom, attacks with samples from the adverse
scenario. Columns from left to right show examples of real accesses, hard-print, photo and video
attacks



Appendix A: Evaluation Databases 267

better. Identities between the verification protocol and anti-spoofing protocols match
—i.e., identities on available on the training set of the verification protocol match the
ones available on a training set in any of the anti-spoofing protocols available with the
dataset. The same is true for any other subset. This feature is an important character-
istic of the Replay AttackDatabase, allowing it to be used for the combined operation
of anti-spoofing and face verification systems [21] (see also Chap.12 “Evaluation
Methodologies”).

One of six so-called “Anti-spoofing Protocols” can be used when simple binary
classification of spoofing attacks is required. The protocols are associated with spe-
cific conditions, specific type of attack, specific devices used to perform the attack or
different types of support for the attacks. Each anti-spoofing protocol in the database
contains the 200 videos of real-accesses plus different types of attacks as indicated
on TableA.7.

Face annotations (bounding-boxes) automatically annotated by a cascade of clas-
sifiers based on a variant of Local Binary Patterns (LBP) referred asModified Census
Transform (MCT) [23] are also provided. The automatic face localisation procedure
works detects faces in more than 99% of the total number of frames acquired.

In the case developed counter-measures requires training, it is recommended that
training and development samples are used to train classifiers how to discriminate.
One trivial example is to use the training set for training the classifier itself and
the development data to estimate when to stop training. A second possibility, which
may generalize less well, is to merge both training and development sets, using
the merged set as training data and to formulate a stop criteria. Finally, the test
set should be solely used to report error rates and performance curves. If a single
number is desired, a threshold τ should be chosen at the development set and theHalf-
Total Error Rate (HTER) reported using the test set data. As means of uniformizing
reports, we recommend choosing the threshold τ on the Equal Error Rate (EER) at
the development set.

Table A.7 Number of attack videos in the six different anti-spoofing protocols provided by the
Replay-Attack database

Protocol Hand attack Fixed support All supports References

(train/dev/test) (train/dev/test) (train/dev/test)

Print 30/30/40 30/30/40 60/60/80 [18]

Mobile 60/60/80 60/60/80 120/120/160

Highdef 60/60/80 60/60/80 120/120/160

Photo 90/90/120 90/90/120 180/180/240 [19]

Video 60/60/80 60/60/80 120/120/160

Grantest 150/150/200 150/150/200 300/300/400 [12]

On the right of the table, references to priorwork that introduced specific studieswith those protocols

http://dx.doi.org/10.1007/978-1-4471-6524-8 _12
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A.3.3 The CASIA Face Anti-spoofing Database

The CASIA Face Anti-Spoofing Database9 [13] (CASIA-FASD) introduces face
attacks with a varying degree of imaging quality. It is a database that poses the
spoofing detection as a binary classification task like the NUAA Photo Imposter
Database described on Sect.A.3.1. Contrary to the later, this database provides video
files allowing for the exploration of texture, motion or fusion techniques for anti-
spoofing.

As indicatedby the authors, quality is a factor thatmay influence the quality of anti-
spoofing, especially facial texture analysis basedmethods. The database contains data
from 50 real clients, collected through three different devices with varying quality
as shown in Fig.A.11:

• low quality: captured using an old USB camera of unspecified brand, which
acquires low quality videos with a resolution of 640× 480 pixels;

• normal quality: captured using a new USB camera of unspecified brand with a
better image quality (but also with a resolution of 640× 480 pixels;

• high quality: captured using a SonyNEX-5with a resolution of 1,920× 180 pixels.

Real-accesses (genuine) videos are captured in natural scenes with no artificial
environment unification. Subjects are required to blink during data taking as authors
indicate that facial motion is crucial for liveness detection as in [18, 19]. Spoofing
attacks are generated following 3 different strategies as shown in Fig.A.12:

• Warped photo attacks: one frame is hand-picked from the high resolution videos
collected with the Sony camera for every subject and printed on copper paper,
keeping a better quality than that which can be obtained on A4 printing paper,
avoiding print marks that can be seen on [18]. In this type of attack, the attacker

Fig. A.11 Samples showing low, normal and high quality, from left to right, captured used to create
the attacks and real-accesses for the CASIA-FASD, from [13]

9 http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp.

http://www.cbsr.ia.ac.cn/english/FaceAntiSpoofDatabases.asp
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Fig. A.12 Samples showing the three types of attacks present in the CASIA-FASD. From left to
right warped photo, cut photo and video attacks, from [13]

warps the printed photo in front of the camera trying to simulate facial motion.
The photo is cut around the face region;

• Cut photo attacks: the same prints as above undergo some trimming so that the
attacker only preserve the face region available on the printed photo. The eye
regions are also trimmed so that the attacker can also try to fake eye blinking by
laying this improvised mask over their own face or with the support of a second
piece of paper that remains moveable;

• Video attacks: in this case the attacker displays the high-resolution videos using
an iPad with a screen resolution of 1,280× 768 pixels.

A.3.3.1 Protocols

The data from the CASIA-FASD can be used through seven different anti-spoofing
protocols, split into two subsets for training and testing spoofing classifiers. No
development set is available for tunning counter-measures. In total, 12 videos of
about 10 s are available for each identity: 3 real-accesses, threewarped photo-attacks,
three cut photo-attacks and three video attacks produced using each of devices with
variable quality described before.Authors recommend that algorithms are thoroughly
tested for each of the seven protocols in the three different test scenarios:

1. Quality Test

• Low: Use only the low-quality images;
• Normal: Use only the normal-quality images;
• High: Use only the high-quality images.

2. Attack Test

• Warped photo attacks: Use only the warped photo attacks;
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• Cut photo attacks: Use only the cut photo attacks;
• Video attacks: Use only the iPad attacks.

3. Overal Test: use all available videos.

The Detection-Error Trade-off (DET) curve as in [18] should be used to evaluate
the anti-spoofing accuracy. From DET curves, the point where the False Acceptance
Rate (FAR) equals False Rejection Rate (FRR) is located, and the corresponding
value, which is called the Equal Error Rate (EER), should also be reported. For any
evaluating algorithm, seven DET curves and seven EER results should be reported
corresponding to the above seven protocols.

A.3.4 The 3D Mask Attack (3DMAD) Database

The 3D Mask Attack Database (3DMAD)10 [24] is composed of real-accesses and
mask attack videos to 17 different identities. Data was recorded using Microsoft
Kinect sensor and therefore includes 2D visual spectra and depth information. This
database represents the first controlled assessement of mask attacks to 2D face recog-
nition systems. To create the database, masks in hard resine for each of the 17 individ-
uals were ordered from the website thatsmyface.com. To do so, the company requires
photos from the front and the person’s profile out of which they prepare and print
a 3D model of the person’s face. The authors argue that this type of mask attacks
is more realistic than those in [25] for example, since they can be articulated from
non-consentual images of clients instead of full 3D models that require user cooper-
ation. Out of the original set of images for each client, the authors ordered life-size
wearable masks and also paper-cut ones. The original frontal and profile images of
each client and the paper-cut masks are made available with the database download.
The masks used to create the attacks on this database are shown in Fig.A.13.

As indicated before, all recordings in the database are performed using aMicrosoft
Kinect device for Xbox 360. The sensor provides both RGB (8-bit per color channel)
and depth data (11-bit, single channel) with a size of 640× 480 pixels at a constant
acquisition speed of 30 fps. The depth data can be used to explore the vulnerability
of 3D face recognition systems to mask attacks. The 2D RGB data is useful for
visual spectra two-dimensional face recognition, which is the subject of this chapter.
Images of real-accesses and mask attacks as captured by the Kinect sensor can be
seen at Fig.A.14.

The videos are collected in three different sessions encompassing two real-access
sessions two weeks apart from each other and one spoofing session performed by a
single attacker. Each session records five videos of exactly 10s for each client, which
are stored in uncompressed format (HDF5). With these settings, 255 color and depth
videos containing 300 frames each are available in the database. The conditions for
each session are well-controlled: the scene background is uniform and lighting is

10 http://www.idiap.ch/dataset/replayattack.

thatsmyface.com
http://www.idiap.ch/dataset/replayattack
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Fig. A.13 The 17 hard-resin facial masks used to create the 3DMAD dataset, from [24]

Fig. A.14 Examples of real
accesses (columns 1 and 3)
and mask attacks, (columns
2 and 4) available in the
3DMAD dataset. The first row
represents data captured using
the Kinect’s 2D visual spectra
camera, while the second, the
depth camera. From [24]

adjusted to minimize shadows cast on the face. The database is also distributed with
annotations of eye positions for every 60th frame in all videos, linearly interpolated
so that all frames have valid key points.

A.3.4.1 Protocols

The 17 subjects in the database are divided into three groups allowing for anti-
spoofing and face verification systems to be trained and evaluated with minimal bias.
The number of identities in each subset is 7 (training), 5 (development) and 5 (test).
Training of counter-measures to spoofing attacks should be done only using data
from the training and development subsets while the test set should be solely used
to report final performances.

In practice, because of the short number of video sequences in the database,
authors recommend the use of cross-validation for the evaluation of anti-spoofing
classifiers. To create the folds, one should select randomly, but without repetition,
the clients for each subset respecting the size conditions described above (7-5-5).
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The original article reports results with a 1,000-fold leave-one-out cross-validation,
by averaging the HTER obtained by fixing a threshold on the EER estimated the
development set.

The 3DMAD database also provides a protocol for testing face verification sys-
tems. To make that possible, authors subdivide the development and test sets into
gallery and probe videos respecting the following protocol:

• Enrollment (gallery): Session 1
• Real access Probing (verification): Session 2
• Mask-attack Probing (spoofed verification): Session 3

A.3.5 Comparative Table of Face Anti-spoofing Databases

In TableA.8 we present a comparative of the most important features of the four face
spoofing databases previously presented.

A.4 Iris Anti-spoofing Databases

Although some works have presented very sophisticated spoofing artifacts such as
the use of multilayered 3-D artificial irises [26]. Almost all the iris spoofing attacks
reported in the literature follow one of two trends:

• Photo-Attacks These fraudulent access attempts are carried out presenting to the
recognition system a photograph of the genuine iris. In the vast majority of cases
this image is printed on a paper (i.e., print attacks) although itmay also be displayed
on the screen of a digital device such as a mobile phone or a tablet (i.e., digital-
photograph attacks) [27].

• Contact Lens-Attacks In this case the pattern of the genuine iris is printed on a
contact lens that the attacker wears at the moment of the fraudulent access attempt
[28].

Although the iris is one of the most analyzed traits in terms of its vulnerabilities
to spoofing attacks, to the best of our knowledge, there is only one publicly available
database which contains real and fake iris images: the ATVS-Fir DB.

A.4.1 ATVS-FIr DB

The ATVS-FIr DB [29, 30] is publicly available at the ATVS-Biometric Recognition
Group website.11

11 http://atvs.ii.uam.es/.

http://atvs.ii.uam.es/
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Face Spoofing Attack: CASIA-FAS DB

Low resolution Normal resolution High resolution

REAL

FAKE
(WARPED)

FAKE
(CUT)

FAKE
(VIDEO)

Fig. A.15 Typical examples of real and fake (warped, cut and video) face images that can be found
in the public CASIA FAS DB. Images were extracted from videos acquired with the three capturing
devices used: low, normal and high resolution

The database comprises real and fake iris images (printed on paper) of 50 users
randomly selected from theBioSec baseline corpus [31]. It follows the same structure
as the original BioSec dataset, therefore, it comprises 50 users × 2 eyes × 4 images



Appendix A: Evaluation Databases 275

× 2 sessions = 800 fake iris images and its corresponding original samples. The
acquisition of both real and fake samples was carried out using the LG IrisAccess
EOU3000 sensor with infrared illumination which captures bmp grey-scale images
of size 640 × 480 pixels.

The fake samples were acquired following a three step process which is further
detailed in [29]: (i) first original images were processed to improve the final quality
of the fake irises, (ii) then they were printed using a high-quality commercial printer,
and last (iii) the printed images were presented to the iris sensor in order to obtain
the fake image.

Although the database does not have an official protocol, in the experiments
described in [30] the database was divided into a: train set, comprising 400 real
images and their corresponding fake samples of the first 50 eyes; and a test set with
the remaining 400 real and fake samples coming from the other 50 eyes available in
the dataset.

In Fig.A.16 we show some typical real and fake iris images that may be found in
the dataset.

REAL

ATVS-FIr DATABASE

FAKE

Fig. A.16 Typical real iris images (top row) and their corresponding fake samples (bottom row)
that may be found in the ATVS-Fir DB

Table A.9 General structure of the ATVS-FIr DB

ATVS-FIr DB

Overall Info. # Samples per subset

# Users # Samples Train Test

Real-Accesses 50 800 400 400

Print-Attacks 50 800 400 400

The distribution of the train and test set is given according to the protocol followed in [30]
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A.5 Glossary

anti-spoofing: Countermeasure to an spoofing attack, see presentation attack
detection

ASV: Automatic Speaker Verification
AUC: Area Under ROC
DET: Detection-Error Tradeoff
EER: Equal Error Rate
EPC: Expected Performance Curve
EPSC: Expected Performance and Spoofability Curve
FAR: False Accept Rate
FFR: False Fake Rate
FLR: False Living Rate
FMR: False Match Rate
FN: False Negative
FNMR: False Non-Match Rate
FNR: False Negative Rate
FNSPD: False Non-Suspicious Presentation Detection
FP: False Positive
FPR: False Positive Rate
FRR: False Reject Rate
FSPD: False Suspicious Presentation Detection
GFAR: Global False Accept Rate
GFRR: Global False Reject Rate
HTER: Half Total Error Rate
impersonation: A spoofing attack against automatic speaker verification whereby a

speaker attempts to imitate the speech of another speaker
LFAR: Liveness False Accept Rate
LivDet: Fingerprint Liveness Detection Competitions
liveness detection: See anti-spoofing
obfuscation: Changing his/her biometric characteristic in order to evade

identification.
PA-NDR: Presentation Attack Non-Detection Rate
PADR: Presentation Attack Detection Rate
PCB: Printed Circuit Board
presentation attack detection: See anti-spoofing
presentation attack: See spoofing attack
replay: A spoofing attack against automatic speaker verification with the

replaying of pre-recorded utterances of the target speaker
ROC: Receiver Operating Characteristic
SFAR: Spoof False Accept Rate
speech synthesis: A spoofing attack against automatic speaker verification using

automatically synthesised speech signals generated from arbitrary text
spoof detection: See anti-spoofing
spoofing attack: Outwitting a biometric sensor by presenting a counterfeit biometric

evidence of a valid user. see presentation attacks spoofing, see
spoofing attack see presentation attack



Appendix A: Evaluation Databases 277

TABULA RASA: Is the accronym of the European project “Trusted Biometrics under
Spoofing Attacks” funded under the 7th Framework Programme of the
European Union (EU) (grant agreement number 257289)
www.tabularasa-euproject.org.

TPR: True Positive Rate
voice conversion: A spoofing attack against automatic speaker verification using an attackers

natural voice which is converted towards that of the target
WER: Weighted Error Rate
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