
Chapter 8
Kinematic Design

Sebastian Kassner

Abstract The kinematic design of haptic interfaces is a crucial step especially when
designing interfaces with mainly kinaesthetic feedback (see Sect.12.2). This is often
the case in the context of robotic applications. In these devices, a mechanical mech-
anism is used to link the user and the feedback generating actuators. Furthermore,
the user’s input commands are often given by moving a mechanical mechanism, e.g.,
a joystick.Accordingly, the kinematic design is a crucial aspect for a device with
ergonomic design and good haptic transmission. This chapter gives an introduction
to the classes of mechanisms and how they are designed.

8.1 Introduction and Classification

Figure 8.1 shows the basic elements of a mechanical mechanism: base platform,
rods, joints, and the ↪→ TCP. The base platform is that part of a mechanism that is
static regarding its motion. This means that for all calculations to be performed to
design a mechanism as well as for all calculations executed during the operation of
the haptic interface, position, speed, and accelerations are given with respect to the
base platform.

In common mechanisms, at least one joint is located in the base platform. Rods and
further joints make up a kinematic chain linking the base platform and the ↪→ TCP.
Kinematic joints used in mechanisms are (Fig. 8.2): revolute (R) joints, prismatic
(P) joints, helical (H) joints, universal (U) joints, cylindrical (C) joints, spherical (S)
joints, and planar (E) joints.
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Fig. 8.1 Basic elements of a
kinematic structure
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Fig. 8.2 Kinematic joints, figure based on [6]

The kinematic chain is a mathematical model to calculate the kinematics of a
mechanical system. This is defined as:

Definition Kinematics Kinematics is the science of motion of points and bod-
ies in space, characterized by their position, speed, and acceleration. Thereby
the external causes of motion (forces and torques) are not taken into account.
Motion with respect forces and torques is covered by the science of kinetics.
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Fig. 8.3 Basic kinematic
structures

parallelserial hybrid

passive joint

active joint / actuator

The ↪→ TCP is the point of interaction between mechanism and environment.
It is able to move in space with a certain number of ↪→ DoF. In the case of haptic
interfaces, the haptic feedback and user interaction usually take place via this point.

8.1.1 Classification of Mechanisms

Depending on their kinematic chains mechanical mechanisms are classified as

• serial: open kinematic chains;
• parallel: closed kinematic chains, at least two paths from the base platform to the

tool-center point;
• hybrid: combination of serial and parallel mechanisms.

Figure 8.3 shows the three fundamental configurations with typically passive and
actively driven joints.

Serial Mechanisms

Serial mechanisms are widely used in all kinds of robotic applications. A classic
example is serial assembly robots in an assembly line production of motor vehicles.
Purely serial mechanisms include no passive joints. All actuators are in serial order
within one single kinematic chain.

The advantages of serial mechanisms are their simple design and their relatively
large workspace. They are furthermore easy to control, especially in positioning
tasks. This is mainly due to the serial sequence of joints and rods allowing the
application of mathematical step-by-step transformations. An established method is
the Danavit-Hartenberg transformation [4], which is not covered in this chapter.

The major drawback of a serial mechanism is its dynamic behavior. Since a load is
carried by a single kinematic chain, serial mechanisms usually have lower structural
stiffness with respect to their own weight. Additionally, the dynamic behavior is
restricted by the comparatively high masses. One reason for this effect is the mass



230 S. Kassner

Fig. 8.4 Singular positions:
a First kind. b Second kind

passive joint
active joint / actuator
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of the rods to gain a high structural stiffness. A second reason is the weight of
the actuators within the mechanism. Every actuator has to accelerate all following
actuators in the kinematic chain.

Parallel Mechanisms

This is the main advantage of parallel structures. They comprise actuators that are
fixed to the base platform or that are only moved slightly in space. The load on
a ↪→ TCP is distributed into several kinematic chains. This allows the design of
lightweight, yet stiff mechanical structures. This leads to a dynamic transmission
behavior with high cutoff frequencies and thus a more transparent transmission of
the haptic feedback. Because of these properties, parallel mechanisms are of high
significance in the design of haptic interfaces.

On the other hand, parallel mechanism has a small workspace in comparison with
serial structures. The parallel mechanism’s kinematic is often mathematically more
complex and usually nonlinear. Furthermore, the transmission behavior changes with
respect to the mechanism’s position. Thus, it is directional and anisotropic throughout
the workspace.

Parallel mechanisms have special positions that have to be taken into account
when designing a haptic interface: singular positions. These positions occur when at
least two rods of the mechanism are aligned. One distinguishes two types of singular
positions (Fig. 8.4):

Singularity of the first kind The actuator’s motion is not transmitted to the ↪→
TCP any longer. This position typically occurs at the edge of the mechanism’s
workspace.

Singularity of the second kind The actuator’s force or torque is not transmitted
to the ↪→ TCP any longer and the ↪→ TCP can carry no load. The mechanism is
jammed regarding its actuators. This position typically occurs within the mecha-
nism’s workspace.

If a mechanism approaches a singular position its transmission or gear ratio
changes quickly until the mechanism is locked in the singular position. In the singu-
lar position, the mechanism’s degrees of freedom change in an undesirable way. The
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mechanism runs into danger of damage or cannot be controlled any longer. Thus,
possible singular positions have to be analyzed thoroughly during the design of a
parallel haptic device. During operation, they have to be avoided by all means. How
singular positions can be identified mathematically is discussed in Sect. 8.3.

If a serial, parallel, or hybrid mechanism is suitable for the design of a haptic
interface, it should be decided on a case-by-case basis. All are used in haptic appli-
cations.

8.2 Design Step 1: Topological Synthesis—Defining
the Mechanism’s Structure

The topological synthesis is the first step in designing a haptic interface. It leads to
the basic configuration of joints, rods, and actuators. While the basic structure of the
haptic interface is defined in this step, the topological synthesis has be carried out
thoroughly.

Topological synthesis should be based on an analysis of the specific task
and the following issues must be addressed:

• degrees of freedom: In how many ↪→ DoFs should the user interact with the haptic
interface? Which ↪→ DoFs are required (e.g., one pure rotatory as in a jog wheel,
three to mimic spatial interaction or even six to display three translations and three
rotations)?

• adaption of existing structures: Should the device adapt the structure of the task
(e.g., a controlled robot) or of the user (e.g., the user’s finger or arm)?

• workspace: How large is the desired workspace, the ↪→ TCP has to move in? Are
there any restrictions (e.g., areas of the workspace that should not be accessed)?

• mobility: Is the haptic interface designed as a device standing on a fixed place,
e.g., on a table or is designed as a portable device?

The analysis of these requirements lays the foundation for the design of an easy-to-
use and ergonomic haptic interface, which will be accepted by the user.

8.2.1 Synthesis of Serial Mechanisms

A serial mechanism is not less nor more than a sequence of rods and actuators,
whereas the actuators can be regarded as driven joints. Whether the actuators are
linear or rotary is of no importance for the complexity of the kinematic problem. For
the workspace and the orientation of the tool-center-point, however, this aspect is of
highest importance. A spacial serial mechanism with three rotatory drives changes
the orientation of its ↪→ TCP all over its workspace. If it is not intended to generate
a torque as output to the user, the handle attached to this serial mechanism has to be
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Fig. 8.5 The
geomagic Touch haptic
device is an example for a
spacial working serial
kinematic haptic device. The
hand is decoupled from
rotational movements by
passive joints. Thus, no
torques are induced to the
hand

base

driven joints

TCP

passive joints to
decouple torques from
the user’s hand

pen-like handle

equipped with a passive universal joint. Such a realization as haptic device can be
found in Fig. 8.5. Torques are decoupled from the hand. The handle does not have
to be placed exactly in the ↪→ TCP, as the moments are eliminated by the passive
joints. Force vectors can be displaced arbitrarily within space. As a result, the hand
experiences the same forces as the ↪→ TCP.

8.2.2 Synthesis of Parallel Mechanisms

The synthesis of a parallel mechanism in general is a less intuitive process than the
synthesis of a serial mechanism.

Since a parallel structure comprises several kinematic chains, the first step is to
determine the required number of kinematic chains with respect to the desired degrees
of freedom of the mechanism. This can be done using the ratio of the number of chains
k and the degrees of freedom F of the mechanism leading to the degree of parallelism
(see [4])

Pg = k

F
. (8.1)

A mechanism is partially parallel for Pg < 1, fully parallel for Pg = 1, and highly
parallel for Pg > 1. Assuming the most common case of fully parallel mechanisms,
this results in a number of kinematic chains—or “legs” of the mechanism—which
is equal to the desired number of the mechanism’s ↪→ DoF.

The next step is to determine the number of joints ↪→ DoF in the mechanism.
This is done using the Gruebler-Kutzbach-Chebycheff mobility criterion
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F = λ · (n − g − 1) +
g∑

i=1

fi − fid + s (8.2)

with

F mechanism’s ↪→ DoF
n number of rods
g number of joints
fi ↪→ DoF of the i th joint

fid number of identical links
s number of constrains
λ factor with λ = 3 for planar and λ = 6 for spatial mechanisms

An identical link is given for example when a rod has universal joints at both its
ends. The rod will be able to rotate around its axis, without violating any constraints.
Another example is two coaxial-oriented linear joints.

Constraints appear whenever conditions have to be fulfilled to enable the move-
ment. If five joint axes have to be parallel to a 6th axis to enable a movement, then
s = 5. Another example for a passive condition is two driving rods that have to be
placed in parallel to enable a motion.

Applying Eq. (8.2) at this stage of design is usually not possible in the given form
since the number of rods n and joints g is not known yet. However, it is possible to
link n − g with the already known number of kinematic chains k via

n = g − k + 2. (8.3)

Assuming a spatial mechanism (λ = 6) then leads to

g∑

i=1

fi = F + 6 · (k − 1). (8.4)

for the sum of the joint ↪→ DoFs that have to be distributed in the mechanism.

8.2.3 Special Case: Parallel Mechanisms with Pure
Translational Motion

An important task of many haptic interfaces is the displaying of three-dimensional
spatial sensation. An example is interaction with a pen-like tool where only forces
in (x, y, z) should be displayed to the user.

A special class of 3-↪→ DoF parallel mechanisms is used for these applications:
↪→ Translational Parallel Machines (TPM). A ↪→ TPM is a mechanism whose ↪→
TCP can only move in three Cartesian coordinates (x, y, z). This is achieved by
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kinematic chains which block one or more rotatory ↪→ DoFs of the ↪→ TCP and are
able to perform translational motion in all directions.

According to Carricato [1, 2], two restrictions have to be fulfilled to ensure a
parallel kinematic mechanism with pure translational motion:

• ball joints shall not be used
• the rotatory axis of rotatory joints shall not be parallel to the axis of a degree of

freedom which should be constrained

Neglecting overdetermined configurations, this results in so-called T5-mechanisms,
each comprising four or five rotatory joints. Each joint constrains the rotation of the
↪→ TCP about one axis, defined by the unity vector ni (i = 1, 2, 3). To constrain a
rotation about ni , all rotatory axes of a chain are orientated perpendicularly to ni .

There are two ways to design a T5 mechanism. The first type is made of three T ′
5

chains, each having

• two rotatory joints following each other, with axis parallel to the unity vector w1i ;
• two rotatory joints following each other, with axis parallel to the unity vector w2i

but not parallel to w1i ;
• a prismatic joint at an arbitrary position in the chain or a fifth rotatory joint, parallel

to one of its contiguous joints.

The second type is made of three T ′′
5 chains, having

• two rotatory joints with axis parallel to the unity vector w1i ;
• two rotatory joints located between the first two rotatory joints with axis parallel

to w2i but not parallel to w1i ;
• a prismatic joint at an arbitrary position in the chain or a fifth rotatory joint, parallel

to one of its contiguous joints.

Figure 8.6 shows examples of these ↪→ TPM chains with only 1-↪→ DoF joints.
This does not mean that ↪→ TPMs are restricted to 1-↪→ DoF. For instance can two
adjoining and perpendicular rotatory joints be concentrated as a universal joint?

An important distinction between T ′
5 and T ′′

5 chains which is taken into account
during design is the position of singular positions: Whereas in a T ′

5 mechanism,
singular positions only occur at the edge of the workspace, T ′′

5 mechanisms can have
singular positions within the workspace as well. Since a mechanism cannot pass
through a singular position, this can lead to a split and therefore restricted usable
workspace.

An exemplary topology synthesis is shown in the following example. However,
one should keep in mind that topology synthesis is a process that requires some
experience and cannot only be executed by application of straightforward design
rules!
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Fig. 8.6 Examples for ↪→ TPM chains with five joint ↪→ DoFs (based on [1])

8.2.4 Example: The DELTA Mechanism

One of the most common topologies to display spatial interaction is the parallel
DELTA mechanism. Due to its relevance in the field of haptic interfaces, it is used
as an example for topological synthesis.

Let us assume the design goal of a parallel kinematic haptic interface for spatial
interaction in (x, y, z). Thus, a mechanism with three degrees of freedom is required.
Using Eq. (8.1) for a fully parallel mechanism (Pg = 1) on F = 3 haptic degrees of
freedom leads to a mechanism with k = 3 kinematic chains or legs.

In a second step, we have to determine the required joint degrees of freedom using
Gruebler’s formula (Eq. 8.4). This leads to the sum of

∑
i fi = 15 joint degrees

of freedom. Regarding an equal behavior in all spatial directions, it is self-evident to
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Table 8.1 Topologies for 3-↪→ DoF mechanisms with five ↪→ DoF in each kinematic chain

Joints per chain Topologies

1 × 1 DoF, 2 × 2 DoF UUP, UPU, PUU, UUR, URU, RUU, CUP, CPU, CUR, CRU, RCU, UCP,
UPC, PCU, UCR, URC, RUC, CCP, CPC, PCC, CCR, CRC, RCC

2 × 1 DoF, 1 × 3 DoF SPP, SRR, SPR, SRP, PSP, RSP, PSR, RSR, PPS, RRS, RPS, PRS

3 × 1 DoF, 1 × 2 DoF RRRU, RRUR, RURR, URRR, RRPU, RRUP, RURP, URRP, RPRU,
RPUR, RUPR, URPR, PRRU, PRUR, PURR, UPRR, RPPU, RPUP,
RUPP, URPP, PRPU, PRUP, PURP, UPRP, PPPU, PPUP, PUPP, UPPP,
RRRC, RRCR, RCRR, CRRR, RRPC, RRCP, RCRP, CRRP, RPRC,
RPCR, RCPR, CRPR, PRRC, PRCR, PCRR, CPRR, RPPC, RPCP, RCPP,
PRPC, PCRP, PPPC, PPCP, PCPP, CPPP

5 × 1 DoF 32 iterations of P- and R-joints

distribute the 15 joint degrees of freedom with five degrees in each leg. This leads to
the topologies in Table 8.1. The topologies are denominated according to the joints
in one leg, e.g., a UUP mechanism comprises two universal and one prismatic joint.

The selection of an appropriate topology then can be carried on by a systematic
reduction of the 3 ↪→ DoF topologies in Table 8.1. The reduction is based on the
following criteria:

• Functionality as a ↪→ TPM: Criteria like the number of R-joints or the existence
of an S-joint eliminate a large number of topologies.

• Position of actors: Rotatory, linear, or piston actors (e.g., in a hydraulic system)
act as R-, P-, or C-joints. When having topologies with a U-joint attached to the
base platform, this would lead to actors located within the kinematic chain. The
required acceleration to move the actors’ relatively high masses then would inhibit
the dynamic advantages of a parallel mechanism to have the fullest effect.

• Number of joints: A concentration of two R-joints into one U-joint and an R-
and P-joint into a C-joint, respectively, simplifies the mechanism’s geometry and
thereby its kinematic equations.

Table 8.2 shows the eliminated topologies. The remaining configurations are:
UPU, PUU, CUR, CRU, RUU, and RUC.

Looking carefully at these topologies in Fig. 8.7 one recognizes that only RUU
and RUC have rotatory joint attached to the base platform. Thus, these are the only
two topologies that can be reasonably driven by a rotatory electrical motor. What
makes the RUU- or DELTA mechanism special is that there are only joints with
rotatory degrees of freedom within the kinematic chains. All forces and torques are
converted into rotatory motion and there is no chance for the mechanism to cant.
From a ↪→ TPM point of view, the RUU/DELTA is a T ′′

5 mechanism having singular
positions within the workspace. This has to be considered when dimensioning the
mechanism.

The RUU/DELTA was introduced in 1988 by Clavel [3]. Besides acting as
spatial haptic interface, the mechanism is widely used for robotic applications (e.g.,
pick-and-place tasks). Two popular examples are shown in Fig. 8.8.
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Table 8.2 Eliminated topologies, sorted by the number of 1-, 2-, and 3-DoF joints in each leg

Elimination
criterion

5 × 1 DoF 3 × 1 DoF,
1 × 2 DoF

2 × 1 DoF,
1 × 3 DoF

1 × 1 DoF,
2 × 2 DoF

No TPM RRRPP,
RRPRR,

RRPPR, RRPPP,
RPRRR,

RPRRP, RPRPR,
RPRPP, RPPRR,
RPPRP, RPPPR,
RPPPP, PRRRR,
PRRRP, PRRPR,
PRRPP, PRPRR,
PRPRP, PRPPR,
PPRRP, PPRPR,
PPRPP, PPPRR,
PPPRP, PPPPR,
PPPPP, PRPPP

RPPU, RPUP,
RUPP, URPU,
PURP, UPRP,
PPPU, PPUP,
PUPP, UPPP,
RRPC, RRCP,
RCRP, CRRP,
RPRC, RPCR,
RCPR, CRPR,
PRRC, PRCR,
PCRR, CPRR,
RPPC, RPCP,
RCPP, CRPP,
PRPC, PRCP,
PCRP, CPRP,
PPPC, PPCP,
PCPP, CPPP

SPP, SRR, SPR,
SRP, PSP, RSP,
PSR, RSR, PPS,
RRS, RPS, PRS

CUP, CPU,
RCU, UCP,
UPC, PCU,
UCR, CCP,
CPC, PCC,
CCR, CRC,

RCC

High number
of joints

RRRRR,
RRRRP,
RRRPR,

RRPRP, PPRRR

RRRU, RRUR,
RURR, RRPU,
RRUP, RURP,
RPRU, RPUR,
RUPR, PRRU,
PRUR, PURR,
UPRR, RRRC,
RRCR RCRR,

CRRR

Base joint
cannot be
used as an
actor

URRR, URRP,
URPR

UUP, UUR,
URU, URC

In these devices with mainly kinaesthetic feedback, a mechanical mechanism is
used to link the user and the feedback generating actuators. Furthermore, the user’s
input commands are often given by moving a mechanical mechanism.

8.3 Design Step 2: Kinematic Equations

The kinematics of a mechanical mechanism describe its motion by means of posi-
tion and orientation, speed, acceleration, and—of special importance for haptic
interfaces—force and torques. The kinematic equations relate those measures at
the input and output of a mechanism, typically at the base platform and the ↪→ TCP.
In other words: the kinematics represent the gearing properties of a mechanism.
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Fig. 8.7 Possible translational topologies with 3 DoF

They are of equal importance in the design and operation of a haptic device. This
chapter gives an introduction to the basics of kinematic equations.
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Fig. 8.8 Left Flex Picker for pick-and-place tasks (source ABB); right the Falcon as a 3-DoF
haptic device (source Novint Technologies Inc.)

8.3.1 Kinematics: Basic Equations for Design and Operation

The transmission of motion in a mechanism can be described in two directions:
from the actors to the ↪→ TCP and vice versa. This leads to two basic kinds of
kinematic equations: the direct kinematic problem or forward kinematics and the
inverse kinematic problem or inverse kinematics.

Direct Kinematic Problem

The direct kinematic problems give a vector x = (x1, x2, ..., xm) of ↪→ TCP coordi-
nates (position and orientation) with respect to a vector q = (q1, q2, ..., qn) of actor
coordinates by

x = f (q). (8.5)

In contrast to serial mechanisms, for parallel mechanisms, the direct kinematic
problem can only be solved numerically. However, there are exceptions as can bee
seen later.

An important application of the direct kinematic problem is the calculation of
an input command in impedance-controlled device. The users move the device, the
mechanism’s joint is detected and based; thereon the mechanism’s ↪→ TCP position
is derived by Eq. (8.5).

Inverse Kinematic Problem

In the opposite direction, the transformation from ↪→ TCP coordinates is given by
the inverse kinematic problem

q = f −1 (x) . (8.6)
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Equation (8.6) is used to determine required actor positions with respect to a desired
↪→ TCP position. Thus, it is the essential equation in robotic positioning tasks. In
admittance-controlled displays, it is used to calculate the required evasive movement
in order to regulate a desired contact force between the user and the haptic interface.

The procedure of calculating the inverse kinematic problem can be split into the
following three steps:

1. Formulation of closed vector chains for each leg, starting at the reference coor-
dinate system enclosing the ↪→ TCP coordinate system and going back to the
reference coordinate system.

2. Splitting the vector chains in all—Cartesian—movement directions of the indi-
vidual leg.

3. Solving the resulting system of equations according to the ↪→ TCP coordinates.

In the design process, inverse kinematic problem the inverse kinematic problem
can be used to derive the haptic interface’s workspace, the space in which the user
can operate the haptic device. This can be done using the fact that a point x is within
the workspace if it yields a real solution for Eq. (8.6).

JACOBIan Matrix

In both the direct and inverse kinematic problems, the vectors x and q are linked
via the mechanism’s gearing properties. These properties are represented by the
Jacobian matrix J. For the mechanism’s kinematics, the Jacobian matrix represents
the transmission matrix of the first order. It carries all information regarding dimen-
sions and transmission properties. J is defined by the partial derivative of the direct
kinematic problem Eq. (8.5) with respect to the actor or joint coordinates q.

From a mathematical perspective, the transformation is a mapping of the
differentiable function f : R

n → R
m , n = 1 . . . 6, m = 1 . . . 6 via a n × m

matrix. It is

J (q) = ∂ f

∂qT =

⎛

⎜⎜⎝

∂ f1
∂q1

· · · ∂ f1
∂qn

...
. . .

...
∂ fm
∂q1

· · · ∂ fm
∂qn

⎞

⎟⎟⎠. (8.7)

By its derivatives, the Jacobian matrix gives correlation of speeds between actor and
↪→ TCP coordinates.

Using the Jacobian matrix the direct kinematic problem is expressed as

dx = J · dq (8.8)

where the inverse kinematic problem is given by

dq = J−1 · dx. (8.9)
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Fig. 8.9 Geometry of the DELTA mechanism (based on [9])

For the design and operation of haptic interfaces a third equation of high importance
is the transformation of forces and torques by a mechanism. Again the Jacobian
matrix can be used. To display a force or torque vector F the required actor forces
and torques τ are given by

τ = JT · F. (8.10)

8.3.2 Example: The DELTA Mechanism

Figure 8.9 shows the dimensions and angles necessary to derive the mechanism’s
kinematic equations. It is desired to express all these equations with respect to the
world coordinate system (WKS) in the middle of the base platform.

The x axis points toward the first leg. By means of simplification, we introduce
a local coordinate system (xi , yi , zi ) in the start point Ai of the i th leg. The local
coordinate system is rotated by φi = (i − 1) · 120, i = 1, 2, 3 with respect to the
WKS.

8.3.2.1 Direct Kinematic Problem

As mentioned above, the direct kinematic problem in general cannot be solved for
parallel kinematic mechanisms. In case of the DELTA mechanism, it is different.
Here the method of trilateration can be applied. This approach is based on the fact
that—if looking at one leg—all points Bi are on the surface of a sphere with radius
b and the center point Ci . The surface is given by the sphere equation

(
x − xCi

)2 + (
y − yCi

)2 + (
z − zCi

)2 = b2 (8.11)
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with the center coordinates
(
xCi , yCi , zCi

)
of the sphere. Assuming a leg’s start point

A′
i not in the distance rBasis from the basis’ origin but with the distance (rbase − rTCP),

all sphere surfaces of the three legs intersect in the point P. With respect to the WKS,
the assumed center point C′

i of the sphere is at

C′
i =

⎛

⎝
cos (−φi ) sin (−φi ) 0
−sin (−φi ) cos (−φi ) 0

0 0 1

⎞

⎠ ·
⎡

⎣

⎛

⎝
a · cos θ1i

0
a · sin θ1i

⎞

⎠ +
⎛

⎝
rbase − rTCP

0
0

⎞

⎠

⎤

⎦ (8.12)

The position of the ↪→ TCP center point P = (xP yP zP )T, which is the solution
to the direct kinematic problem, can be derived by the solution of the three sphere
equations with the center points C′

i

(
xP − xC ′

i

)2 +
(

yP − yC ′
i

)2 +
(

zP − zC ′
i

)2 = b2 (8.13)

Since the lower rod in point A′
i , respectively, Ai rotates solely around the axis xi

axis, point C′
i is always within the xi /zi plane and for the y coordinate of C′

i one can
write

yC ′
i
= 0. (8.14)

With respect to the WKS, the assumed center of the assumed sphere C′
i hence is

given as

C′
i =

⎛

⎝
cos (−φi ) sin (−φi ) 0

− sin (−φi ) cos (−φi ) 0
0 0 1

⎞

⎠

︸ ︷︷ ︸
rotational matrix

·
⎡

⎣

⎛

⎝
a · cos θ1i

0
a · sin θ1i

⎞

⎠ +
⎛

⎝
rbase − rTCP

0
0

⎞

⎠

⎤

⎦ (8.15)

The rotational matrix maps the coordinates of the local coordinate system in Ai

respectively A′
i into the WKS. The rotation is done clockwise by −φi .

This means that the equation system of the three sphere equations has to be solved:

(
xP − xC ′

1

)2 +
(

yP − yC ′
1

)2 +
(

zP − zC ′
1

)2 = b2 (8.16)
(

xP − xC ′
2

)2 +
(

yP − yC ′
2

)2 +
(

zP − zC ′
2

)2 = b2 (8.17)
(

xP − xC ′
3

)2 +
(

yP − yC ′
3

)2 +
(

zP − zC ′
3

)2 = b2 (8.18)

from (8.16)–(8.17) we get
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xP

(
−2xC ′

1
+ 2xC ′

2

)
+ yP · 2yC ′

2
+ zP

(
−2zC ′

1
+ 2zC ′

2

)

= −x2
C ′

1
+ x2

C ′
2
+ y2

C ′
2
− z2

C ′
1
+ z2

C ′
2
, (8.19)

from (8.16)–(8.18) we get

xP

(
−2xC ′

1
+ 2xC ′

3

)
+ yP · 2yC ′

3
+ zP

(
−2zC ′

1
+ 2zC ′

3

)

= −x2
C ′

1
+ x2

C ′
3
+ y2

C ′
3
− z2

C ′
1
+ z2

C ′
3

(8.20)

and from (8.17)–(8.18) we get

xP

(
−2xC ′

2
+ 2xC ′

3

)
+ yP

(
−2yC ′

2
+ 2yC ′

3

)
+ zP

(
−2zC ′

2
+ 2zC ′

3

)

= −x2
C ′

2
+ x2

C ′
3
− y2

C ′
2
+ y2

C ′
3
− z2

C ′
2
+ z2

C ′
3

(8.21)

The solution yields to two points of intersection of the spheres, whereas only one
solution is geometrically meaningful. The calculation of P = (xP yP zP )T should
be computer-assisted , e.g., by using Mathematica®.

Inverse Kinematic Problem

The DELTA mechanism is especially known from impedance-controlled devices. In
the mode of operation, the inverse kinematic problem is not needed. However, it is
a useful tool in the design process to determine the available workspace which is
shown later. Furthermore, it provides an effective way to determine the Jacobian
matrix of DELTA mechanism.

As mentioned above a standard approach to determine a mechanism’s inverse
kinematic is using closed vector chains. In the case on hand, this can be done via

−→
OP + −→

PBi = −−→
OAi + −−→

Ai Ci + −−→
Ci Bi . (8.22)

This leads to the coordinates of the point Bi with

⎛

⎝
xBi

yBi

zBi

⎞

⎠ =
⎛

⎝
a · cos θ1i + b · sin θ3i · cos (θ1i + θ2i )

b · cos θ3i

a · sin θ1i + b · sin θ3i · sin (θ1i + θ2i )

⎞

⎠ (8.23)

Since we want to derive the mechanism’s base angles with respect to the ↪→ TCP
position in point P, we can use the relation between P and Bi which is given by

⎛

⎝
xBi

yBi

zBi

⎞

⎠ =
⎛

⎝
cos φi sin φi 0

− sin φi cos φi 0
0 0 1

⎞

⎠ ·
⎛

⎝
xP

yP

zP

⎞

⎠ +
⎛

⎝
rTCP − rbase

0
0

⎞

⎠. (8.24)
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By solving Eq. (8.23), we can determine the solution for the inverse kinmatic equa-
tions as given by Tsai [9] as

θ3i = arccos
yBi

b
(8.25)

θ2i = arccos
x2

Bi
+ y2

Bi
+ z2

Bi
− a2 − b2

2ab sin θ3i
(8.26)

θ1i = arctan
xBi − b sin θ3i cos (θ1i + θ2i )

zBi − b sin θ3i sin (θ1i + θ2i )
(8.27)

Especially Eq. (8.25) gives the angles of joints attached to the base platform with
respect to the ↪→ TCP position, and therefore, the solution for the inverse kinematic
problem. Furthermore, the inverse Jacobian matrix

J−1 =
⎛

⎝
j11 j12 j13
j21 j22 j23
j31 j32 j33

⎞

⎠ (8.28)

comprises the matrix elements [9]

ji1 = cos (θ1i + θ2i ) sin θ3i cos φi − cos θ3i sin φi

a sin θ2i sin θ3i
(8.29)

ji2 = cos (θ1i + θ2i ) sin θ3i sin φi + cos θ3i sin φi

a sin θ2i sin θ3i
(8.30)

ji3 = sin (θ1i + θ2i )

a sin θ2i
. (8.31)

This closed-form solution provides an effective way to calculate the DELTA mech-
anism’s Jacobian matrix during operation.

8.4 Design Step 3: Dimensioning

The design step of dimensioning covers the optimization and determination of all
designable lengths and angles within a topology that has been defined in step 1. Since
especially the dimensioning of parallel kinematic mechanisms is a rather complex
procedure, the following section focuses on this class of mechanisms.



8 Kinematic Design 245

1

1

-1

-1

1

1

-1

-1u1

u2 v2

v1

v = A ·u

Fig. 8.10 Linear mapping of a vector, Example based on [5]

8.4.1 Isotropy and Singular Positions

As discussed in Sect. 8.1, parallel kinematic has a rather complex transmission behav-
ior. Especially two effects have to be taken into account: isotropy and singular posi-
tions.

The key to analyze these effects in the design process is again based on properties
of the Jacobian matrix. A key performance index which is derived from the Jacobian
matrix properties is the condition number κ . It is introduced in the following section.

The Conditioning Number

The kinematic transmission behavior is rated by the singular values σi of the inverse
Jacobian matrix J−1. In general the singular values of a matrix A are defined as

σi (A) =
√

λi
(
ATA

)
. (8.32)

They are a measure for the distortion of the general linear projection of the vector
u to v via

v = A · u (8.33)

Figure 8.10 shows an example for this kind of distortion in a two-dimensional pro-
jection.

The role of the singular values can be shown by Golub’s method of singular value
decomposition. It is based on the fact that each complex m × n-matrix A with the
rank r can be fractioned in the product

A = U · � · V* (8.34)

of the unitary m × m-matrix U and the adjoint matrix V* of the n × n-matrix V. �

is a m × n- diagonal matrix with
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� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1
...

. . . · · · 0 · · ·
σr

...
...

· · · 0 · · · · · · 0 · · ·
...

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.35)

and σ1 ≥ · · · ≥ σr > 0. In the linear projection, U and V* act as rotations and �

as elongation and compression of the ellipse from Fig. 8.10. σmin and σmax quantity
the minimal and maximal amplifications of the vector u.

A measure to rate the distortion is the conditioning number

κ = σmax
(
J−1)

σmin
(
J−1) (8.36)

as the ratio of the two maximal singular values σmax and σmin of J−1. Thus, the con-
ditioning number κ is a measure for the equal amplification u in all spatial directions.
As a function of the Jacobian matrix κ changes with respect to the mechanism’s
position. The conditioning number can reach values from 1

κ
= 0 . . . 1.

Isotropic Transmission and Singular Positions

The goal of kinematic design is a highly isotropic transmission. From the distortion
properties of singular values, the design target of

1

κ
= 1 (8.37)

for an isotropic transmission can be derived. On the other hand, one has to avoid
singular behavior with

1

κ
= 0. (8.38)

In singular positions, the rank of the Jacobian matrix decreases. This means that
the transformation equations are no longer independent of each other. Practically,
this leads to the loss of one or several controllable degrees of freedom.

For the two introduced kinds of singular positions (see Fig. 8.4), the loss of rank
is characterized as

1. Singularity of the first kind: det (J) = 0
2. Singularity of the second kind: det

(
J−1) = 0
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For all conclusions drawn from the Jacobian matrix, one has to take care of the
used definition. In this book, we use the definition as in Eq. (8.7), but also the inverse
definition

Jalternative (x) =

⎛

⎜⎜⎝

∂q1
∂x1

· · · ∂q1
∂xn

...
. . .

...
∂qm
∂x1

· · · ∂qm
∂xn

⎞

⎟⎟⎠ = J−1 (8.39)

is possible and used in the literature. However, given the fact that for singular values
of a matrix A applies

σ (A) = 1

σ
(
A−1) (8.40)

the derived conditions from the Jacobian matrix can be transferred into each other.

Transmission of Force and Speed

Besides the analysis of isotropy the second aspect one has to take care of in the design
process is the transmission of force and speed.

1. Transmission of force: To limit the maximal required force and torque and thereby
limit also the size of the used actuators, it is important reach a good transmission
of forces and torques even in cases of a disadvantageous scaling σi . From the
transposed Eq. (8.10)

F = J-T · τ (8.41)

we can derive the criteria
σmin

(
J-T

)
→ max (8.42)

and with σ (A) = σ
(
AT)

we get

σmin

(
J−1

)
→ max (8.43)

as a design criterion for the force transmission.

Therefore, we have to maximize the speed transmission for the most disadvanta-
geous spatial direction. With the Jacobian matrix, a measure for speed transmis-
sion

ẋ = J · q̇ (8.44)

we accordingly get
σmin (J) → max (8.45)
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Table 8.3 Summarization of
the experiments

Design aspect Criterion

Force transmission σmin (J) → max

No singular positions σmin (J) → max

High stiffness σmin (J) → max

Speed transmission σmax (J) → min

Isotropy σmin(J)
σmax(J)

→ max

as a design goal. Analogous to the design goal for the force transmission with
Eq. (8.40) from

σmin (J) = min {σ1 (J) , . . . , σr (J)}
= 1

max
{

1
σ1(J)

, . . . , 1
σr (J)

}

= 1

max
{
σ1

(
J−1) , . . . , σr

(
J−1)}

= 1

σmax
(
J−1) (8.46)

we can derive the criterion

σmax

(
J−1

)
→ min. (8.47)

Table 8.3 sums up the various design aspects.
Looking at the definition of the conditioning number in Eq. (8.36), we see that

the requirements for σmin
(
J−1) → max are σmax

(
J−1) → min are covered by one

single value. Therein both requirements are weighted equally. Thus, the conditioning
number 1/κ covers the evaluation of isotropy and of force and torque, respectively,
speed at the same time.

One major drawback of Eq. (8.36) is that it rates the mechanism for Jacobian
matrix or position. The pure optimization of 1/κ would in fact lead to one single
position where the mechanism reaches high isotropy. However, one cannot draw the
conclusion that the whole workspace in total has an optimized transmission behavior.

What is needed is a measure to rate 1/κ of a whole workspace. This measure is
provided by the global conditioning index (e.g., Merlet [7])

ν =
∫

W
1
κ

dW∫
W dW

. (8.48)
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Fig. 8.11 Hull of DELTA’s workspace from two angles

In a computer-assisted algorithm, it can be programmed in discrete form as

ν = dW · ∑
n

1
κ

n · dW
(8.49)

with n as the number of sampling points in the workspace and dW the size of a
discretized voxel.
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8.4.2 Example: The DELTA Mechanism

The parameters to be designed are the length of the rods a and b and the radii of the
↪→ TCP platform rTCP and of the base platform rbase. The design goal is a mechanism
with a workspace of suitable size and isotropic transmission behavior.

This is done by an algorithm which is executed in two steps for each set of
a, b, rTCP, rbase

1. determine the workspace,
2. evaluate the global conditioning index.

The workspace is defined by the set of possible ↪→ TCP positions. As mentioned
above, a point is within this set if a real solution for the inverse kinematic problem
exists. Using this criterion, the workspace can be determined using an algorithm
that solves the inverse kinematic equations (8.25), (8.26), (8.27) pointwise in space.
Simultaneously, the size of resulting workspace is determined by the number of points
or voxels which fulfills the inverse kinematic equation. The shape of the DELTA’s
workspace obtained by this method is shown in Fig. 8.11.

To rate the mechanism’s isotropy in each workspace, we use the global con-
ditioning index as in Eq. (8.49). Figure 8.12 shows ν, calculated for rod lengths
a = 0.2 . . . 0.8. Cubic spaces have been discretized with voxels of dW = 0.001.
The result shows a global maximum at a = 0.46 and b = 0.54, respectively. This
ratio yields a mechanism with a maximal global conditioning index.

A similar analysis shows that the variations of rTCP and rbase have rather small
influence on the global conditioning index and regarding the size of the workspace
rTCP = rbase = 1 turns out to be a good choice.
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Fig. 8.12 Global conditioning index ν for varied rod lengths a and b = 1−a with rTCP = rbase = 1
(all lengths without dimensions)
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1. singular posittion of the
first kind

2. singular position of
the first kind

singular position of the second
kind

Fig. 8.13 Singular positions

As mentioned in the first part of the example in Sect. 8.2.4, we have to keep in
mind that the RUU/DELTA mechanism is a T ′′

5 mechanism having singular positions
within the workspace. Moving the ↪→ TCP through its workspace this leads to the
singular positions as shown in Fig. 8.13. Since a mechanism cannot cross singular
positions—or in the case of a haptic device provide a feedback in singular positions—
the workspace is divided by the second kind of singular position. The device is only
operated in one part of the theoretically available workspace. In the shown case, this
would be in the part above the second kind of singular position.

Recommended Background Reading

[6] Kong, X. & Gosselin, C.: Synthesis of Parallel Mechanisms. Springer, Germany,
2007.
Comprehensive description of the design of parallel kinematic mechanisms.

[7] Merlet, J.P.: Parallel robots. Springer, Netherlands, 2009.
Standard textbook on parallel mechanisms with a great variety of examples.

[8] Tsai, L.: Robot analysis: the mechanics of serial and parallel manipulators.
John Wiley & Sons, Netherlands, 1999.
Standard textbook on parallel and serial mechanisms with deep discussion of
mathematical backgrounds.
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