
Chapter 7
Control of Haptic Systems

Thomas Opitz and Oliver Meckel

Abstract This chapter reviews some aspects of the control of haptic systems,
including advanced forms of technical descriptions, system stability criteria and
measures, as well as the design of different control laws. A focus is set on the control
of bilateral teleoperation systems including the derivation of control designs that
guarantee stability as well as haptic transparency and the handling of time delay
in the control loop. The chapter also includes an example for the consideration of
thermal properties and non-ideal mechanics in the control of a linear stage made
from an EC motor and a ball screw as well as a perception-orientated approach to
haptic transparency intended to lower the technical requirements on the control and
component design.

The control of technical systems aims at safe and reliable system behavior, and
controllable system states. By its depiction as a system, the analysis is put on an
abstracted level, which allows covering many different technical systems described
by their fundamental physics. On this abstracted level, a general analysis of closed-
loop control issues is possible using several methods and techniques. The resulting
procedures are applicable to a large number of system classes. The main purpose of
any depiction and analysis of control systems is to achieve high performance, safe
system behavior, and reliable processes. Of course, this also holds for haptic systems.
Here, stable system behavior and high transparency are the most important control
law design goals. The abstract description used for a closed-loop control analysis
starts with the mathematical formulation of the physical principles the system fol-
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lows. As mentioned above, systems with different physical principles are covered
up by similar mathematical methods. The depiction by differential equations or sys-
tems of differential equations proves widely usable for the formulation of various
system behaviors. Herein, analogies allow transforming this system behavior into
the different technical contexts of different systems, provided there exists a definite
formulation of the system states that are of interest for closed-loop control analysis.
The mathematical formulation of the physical principles of the system, also denoted
as modeling, is followed by system analysis including dynamic behavior and its
characteristics. With this knowledge, a wide variety of design methods for control
systems become applicable. Their main requirements are:

System stability The fundamental requirement for stability in any technical sys-
tem is the main purpose for closed-loop control design. For haptic systems, sta-
bility is the most important criteria to guarantee safe use of the device for the
user.

Control quality Tracking behavior of the system states to demanded values, every
system is faced with external influences also denoted as disturbances that interfere
with the demanded system inputs and disrupt the optimal system behavior. To
compensate this negative influence, a control system is designed.

Dynamic behavior and performance In addition to the first two issues, the need
for a certain system dynamics completes this requirement list. With a view to
haptic systems, the focus lies on the transmitted mechanical impedance which
determines the achievable grade of transparency.

Besides the quality of the control result tracking the demanded values, the system
behavior within the range of changes from these demanded values is focused. Also,
the control effort that needs to achieve a certain control result is to be investigated.
The major challenge for closed-loop control law design for haptic systems and other
engineering disciplines is to deal with different goals that are often in conflict with
each other. Typically, a gained solution is never an optimal one, rather a trade-off
between system requirements. In the following Sect. 7.1, basic knowledge of linear
and nonlinear system description is given. Section 7.2 gives a short overview of
system stability analysis. A recommendation for structuring the control law design
process for haptic systems is given in Sect. 7.3. Subsequently, Sect. 7.4 focuses on
common system descriptions for haptic systems and shows methods for designing
control laws. Closing in Sect. 7.5, a conclusion is presented.

7.1 System Description

A variety of description methods can be applied for mathematical formulation of
systems with different physical principles. One of the main distinctions is drawn
between methods for the description of linear and nonlinear systems, summarized
in the following paragraphs. The description based on single-input–single-output
(SISO) systems in the Laplace domain was discussed in Sect. 4.3.

http://dx.doi.org/10.1007/978-1-4471-6518-7_4
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7.1.1 Linear State Space Description

Besides the formulation of system characteristics through transfer functions, the
description of systems using state space representation in the time domain also allows
to deal with arbitrary linear systems. For SISO systems, a description using an nth-
order ordinary differential equation is transformable into a set with n first-order ordi-
nary differential equations. In addition to the simplified use of numerical algorithms
for solving this set of differential equations, the major advantage is applicability
to multi-input–multi-output (MIMO) systems. A correct and systematic model of
their coupled system inputs, system states, and system outputs is comparably easy
to achieve. In contrast to the system description in the Laplace domain by transfer
functions G(s), the state space representation formulates the system behavior in the
time domain. Two sets of equations are necessary for a complete state space system
representation. These are denoted as the system equation

ẋ = Ax + Bu (7.1)

and the output equation
y = Cx + Du. (7.2)

The vectors u and y describe the multidimensional system input, respectively, to
system output. Vector x denotes the inner system states.

As an example for state space representation, the second-order mechanical oscil-
lating system as shown in Fig. 7.1 is examined. Assuming the existence of time
invariant parameters, the description using second-order differential equation is

mÿ + d ẏ + ky = u (7.3)

The transformation of the second-order differential Eq. (7.3) into a set of two
first-order differential equations is done by choosing the integrator outputs as system
states:

(a) (b)

Fig. 7.1 Second-order oscillator a scheme, b block diagram
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x1 = y ⇒ ẋ1 = x2

x2 = ẏ ⇒ ẋ2 = − k

m
x1 − d

m
x2 + 1

m
u (7.4)

Thus, the system equation for state space representation is as follows:
[

ẋ1
ẋ2

]
=

[
0 1

− k
m − d

m

] [
x1
x2

]
+

[
0
1
m

]
u (7.5)

The general form of the system equation is

ẋ = Ax + Bu (7.6)

This set of equations contains the state space vector x. Its components describe all
inner variables of the process that are of interest and that have not been examined
explicitly using a formulation by transfer function. The system output is described
by the output equation. In the given example as shown in Fig. 7.1, the system output
y is equal to the inner state x1

y = x1 (7.7)

which leads to the vector representation of

y = [
1 0

] [
x1
x2

]
(7.8)

The general form of the output equation is

y = Cx + Du (7.9)

which leads to the general state space representation applicable for single- or multi-
input and output systems. The structure of this representation is depicted in Fig. 7.2.
Although not mentioned in this example, matrix D denotes a direct feedthrough,
which occurs in systems whose output signals y are directly affected by the input
signals u without any time delay. Thus, these systems show a non-delayed step
response. For further explanation on A, B, C, and D, [32] is recommended. Note that
in many teleoperation applications where long distances between master device and
slave device exist, significant time delays occur.

7.1.2 Nonlinear System Description

A further challenge within the formulation of system behavior is to imply nonlin-
ear effects, especially if a subsequent system analysis and classification is needed.
Although a mathematical description of nonlinear system behavior might be found
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Fig. 7.2 State space description

Fig. 7.3 Wiener-model

Fig. 7.4 Hammerstein-
model

fast, the applicability of certain control design methods is an additional problem.
Static nonlinearities can be easily described by serial coupling of a static nonlin-
ear and linear dynamic device to be used as a summarized element for closed-loop
analysis. Herein, two different models are differentiated. Figure 7.3 shows the block
diagram of a linear element with arbitrary subsystem dynamics followed by a static
nonlinearity.

This configuration also known as Wiener-model is described as

ũ(s) = G(s) · u(s)

y(s) = f (ũ(s)).

In comparison, Fig. 7.4 shows the configuration of the Hammerstein-model
changing the order of the underlying static nonlinearity and the linear dynamic sub-
system.

The corresponding mathematical formulation of this model is described as

ũ(s) = f (u(s))

y(s) = G(s) · ũ(s).
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Fig. 7.5 System with internal
saturation

More complex structures appear as soon as the dynamic behavior of a system is
affected by nonlinearities. Figure 7.5 shows as an example a system with internal
saturation. For this configuration, both models cannot be applied as easily as for
static nonlinearities, in particular, if a system description is needed usable for certain
methods of system analysis and investigation.

Typical examples for systems showing such nonlinear behavior are electrical
motors whose torque current characteristic is affected by saturation effects and thus
whose torque available for acceleration is limited to a maximum value.

This kind of system behavior is one example of how complicated the process of
system modeling may become, as ordinary linear system description methods are not
applicable to such a case. Nevertheless, it is necessary to gain a system formulation
in which the system behavior and system stability can be investigated successfully.
To achieve a system description taking various system nonlinearities into account,
it is recommended to set up nonlinear state space descriptions. They offer a wide
set of tools applicable to the following investigations. Deriving from Eqs. (7.1) and
(7.2), the nonlinear system description for single-, multi-input, and output systems
is as follows:

ẋ = f(x, u, t)

y = g(x, u, t).

This state space description is most flexible to gain a usable mathematical formu-
lation of a systems behavior consisting of static, dynamic, and arbitrarily coupled
nonlinearities. In the following, these equations serve as a basis for the examples
illustrating concepts of stability and control.

7.2 System Stability

As mentioned above, one of the most important goals of control design is the stabi-
lization of systems or processes during their life cycle, while operative or disabled.
Due to the close coupling of haptic systems with a human user via a human–machine
interface, safety becomes most relevant. Consequently, the focus of this chapter lies
on system stability and its analysis using certain methods applicable to many systems.
It must resemble the system behavior correctly and must be aligned with the applied
investigation technique. For the investigation of systems, subsystems, close-looped
systems, and single- or multi-input output systems, a wide variety of methods exist.
The most important ones are introduced in this chapter.
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7.2.1 Analysis of Linear System Stability

The stability analysis of linear time invariant systems is easily done by investigation
of the system poles or roots derived from the eigenvalue calculation of the system
transfer function G(s). The decisive factor is the sign of the real part of these system
poles. A negative sign in this real part indicates a stable eigenvalue; a positive sign
denotes an unstable eigenvalue. The correspondence to the system stability becomes
obvious while looking at the homogeneous part of the solution of the ordinary differ-
ential equation describing the system behavior. For example, a system is described
as

T ẏ(t) + y(t) = K u(t). (7.10)

The homogeneous part of the solution y(t) is derived using

yh = eλt with λ = − 1

T
. (7.11)

As it can be seen clearly, the pole λ = − 1
T has a negative sign only if the time constant

T has a positive sign. In this case, the homogeneous part of y(t) disappears for t →
∞, while it rises beyond each limit exponentially if the pole λ = − 1

T is unstable. This
section will not deal with the basic theoretical background of linear system stability
as these are basics of control theory. The focus of this section is the application of
certain stability analysis methods. Herein, it will be distinguished between methods
for direct stability analysis of a system or subsystem and techniques of closed-loop
stability analysis. For direct stability analysis of linear system, investigation of the
poles placement in the complex plane is fundamental. Besides the explicit calculation
of the system poles or eigenvalues, theRouth- Hurwitz criterion offers to determine
the system stability and system pole placement with explicit calculation. In many
cases, this simplifies the stability analysis. For the analysis of closed-loop stability,
determination of closed-loop pole placement is also a possible approach. Additional
methods leave room for further design aspects and extend the basic stability analysis.
Well-known examples of such techniques are

• Root locus method,
• Nyquist’s stability criterion.

The applicability of both methods are discussed in the following without looking at
the exact derivation.

7.2.1.1 Root Locus Method

The root locus offers the opportunity to investigate pole placement in the complex
plane depending on certain invariant system parameters. As example of invariant
system parameters, changing time constants or variable system gains might occur.
The gain of the open loop is often of interest within the root locus method for
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closed-loop stability analysis and control design. In Eq. (7.12), G R denotes the
transfer function of the controller and GS describes the behavior of the system to be
controlled.

−Go = G RGS (7.12)

Using the root locus method, it is possible to apply predefined sketching rules when-
ever the dependency of the closed-loop pole placement on the open-loop gain K is
of interest. The closed-loop transfer function Gg is depicted by Eq. (7.13)

Gg = G RGS

1 + G RGS
(7.13)

As an example, an integrator system with a second-order delay (IT2) described by
Eq. (7.14)

GS = 1

s
· 1

1 + s
· 1

1 + 4s
(7.14)

is examined. The control transfer function is G R = K R . Thus, we find as open-loop
transfer function

−Go = G RGS = K R

s(1 + s)(1 + 4s)
. (7.15)

Using the sketching rules that can be found in various examples in the literature
[33, 43], the root locus graph as shown in Fig. 7.6 is derived. The graph indicates that
small gains K R lead to a stable closed-loop system since all roots have a negative real
part. A rising K R leads to two of the roots crossing the imaginary axis and the closed-
loop system becomes unstable. This simplified example proves that this method can
be integrated in a control design process, as it delivers a stability analysis of the
closed-loop system by only processing an examination on the open-loop system. This
issue is also one of the advantages of the Nyquist stability criterion. Additionally,
the definition of the open-loop system is sufficient to derive a stability analysis of
the system in a closed-loop arrangement.

7.2.1.2 NYQUIST’s Stability Criterion

This section concentrates on the simplified Nyquist stability criterion investigating
the open-loop frequency response described as

−Go( jω) = G R( jω)GS( jω).

The Nyquist stability criterion is based on the characteristic correspondence of
amplitude and phase of the frequency response. As example, we use the already
introduced IT2 system controlled by a proportional controller G R = K R . The Bode
plot of the frequency response is shown in Fig. 7.7. The stability condition that has
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Fig. 7.6 IT2 root locus

Fig. 7.7 IT2 frequency
response

-270

-90

-180

-135

-225

-120

-100

-80

-60

-40

-20

0

20

40

10
-2

10
-1

10
0

10
1

10
2

R

to be met is given by the phase of the open-loop frequency response, with ϕ(ω) >

−180◦ in case of the frequency response’s amplitude A(ω) being above 0 dB. As
shown in Fig. 7.7, the choice of the controller gain K R transfers the amplitude graph
of the open-loop frequency response vertically without affecting the phase of the
open-loop frequency response. For most applications, the specific requirement of a
sufficient phase margin ϕR is compulsory. The resulting phase margin is also shown
in Fig. 7.7. All such requirements have to be met in the closed-control loop and must
be determined to choose the correct control design method. In this example, the
examined amplitude and phase of the open-loop frequency response are dependent
on the proportional controller gain K R , which is sufficient to establish system stability
including a certain phase margin. More complex control structures such as PI, PIDTn ,
or lead lag extend the possibilities for control design to meet further requirements.

This section shows the basic principle of the simplified Nyquist criterion applica-
ble to stable open-loop systems. For investigation of unstable open-loop systems, the
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Fig. 7.8 Nonlinear
closed-loop system

general form of the Nyquist criterion must be used, which itself is not introduced
in this book. For this basic knowledge, it is recommended to consult [33, 43].

7.2.2 Analysis of Nonlinear System Stability

The application of all previous approaches for the analysis of system stability is
limited to linear time invariant systems. Nearly all real systems show nonlinear effects
or consist of nonlinear subsystems. One approach to deal with these nonlinear systems
is linearization in a fixed working point. All further investigations are focused on this
point, and the application of the previously presented methods becomes possible.
If these methods are not sufficient, extended techniques for stability analysis of
nonlinear systems must be applied. The following are examples of representing
completely different approaches:

• Principle of harmonic balance;
• Phase plane analysis;
• Popov criterion and circle criterion;
• Lyapunov’s direct method;
• System passivity analysis.

Without dealing with the mathematical background or the exact proof, the principles
and application of the chosen techniques are demonstrated. At this point, a com-
plete explanation of this topic is too extensive due to the wide variety of underlying
methods. For further detailed explanation, [13–15, 29, 39, 42] are recommended.

7.2.2.1 POPOV Criterion

As preliminary example, the analysis of closed-loop systems can be done applying
the Popov criterion, respectively, the circle criterion. Figure 7.8 shows the block
diagram of the corresponding closed-loop structure of the system to be analyzed:

The block diagram consists of a linear transfer function G(s) with arbitrary
dynamics and static nonlinearity f (.). The state space formulation of G(s) is as
follows:
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ẋ = Ax + Bũ

y = Cx

Thus, we find for the closed-loop system description:

ẋ = Ax − B f (y)

y = Cx.

In case f (y) = k · y, this nonlinear system is reduced to a linear system whose
stability can be examined with the evaluation of the system’s eigenvalues. For an
arbitrary nonlinear function f (y), the complexity of the problem is extended. So, the
first constraint on f (y) is that it exists only in a determined sector limited by a straight
line through the origin with gradient k. Figure 7.9 shows an equivalent example for
the nonlinear function f (y). This constraint is depicted by the following equation:

0 ≤ f (y) ≤ ky.

The Popov criterion provides an intuitive handling for the stability analysis of the
presented example. The system is asymptotically idle state (ẋ = x = 0) stable if:

• the linear subsystem G(s) is asymptotically stable and fully controllable,
• the nonlinear function meets the presented sector condition as shown in Fig. 7.9,
• for an arbitrarily small number ρ ≥ 0, there exists a positive number α, so that the

following inequality is satisfied:

∀ω ≥ 0 Re[(1 + jαω)G( jω)] + 1

k
≥ ρ (7.16)

Equation (7.16) formulates the condition also known as Popov inequality. With

G( jω) = Re(G( jω)) + jIm(G( jω)) (7.17)

Equation (7.16) leads to

Re(G( jω)) − αωIm(G( jω)) + 1

k
≥ ρ (7.18)

With an additional definition of a related transfer function

G∗ = Re(G( jω)) + jωIm(G( jω)), (7.19)

Equation (7.18) states that the plot in the complex plane of G∗, the so-called Popov
plot, has to be located in a sector with an upper limit described as y = 1

α
(x + 1

k ).
Figure 7.10 shows an example for the Popov plot of a system in the complex plane
constrained by the sector condition. The close relation to the Nyquist criterion for
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Fig. 7.9 Sector condition

Fig. 7.10 Popov plot

the stability analysis of linear systems becomes obvious here. While the Nyquist
criterion examines the plot of G( jω) referred to the critical point (−1|0), the location
of the Popov plot is checked for a sector condition defined by a straight line limit.

The application of the Popov criterion has the excellent advantage that it is pos-
sible to gain a result out of the stability analysis without an exact formulation of
the nonlinearity within the system. All constraints for the nonlinear subsystem are
restrained to the sector condition and the condition to have memoryless transfer
behavior. The most complicated aspect within this kind of analysis is how to formu-
late the considered system structure in a way that the Popov criterion can be applied.
For completeness, the circle criterion is mentioned whose sector condition is not
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represented by a straight line, rather

k1 ≤ f (y)

y
≤ k2.

defines the new sector condition. For additional explanation on these constraints and
the application of the circle criterion, it is recommended to consider [29, 39, 42].

7.2.2.2 LYAPUNOV’s Direct Method

As a second example for stability analysis of nonlinear systems, the direct method
of Lyapunov is introduced. The basic principle is that if both linear and nonlinear
stable systems tend to a stable steady state, the complete system energy has to be
dissipated continuously. Thus, it is possible to gain a result from stability analysis
while verifying the characteristics of the function representing the state of energy
in the system. Lyapunov’s direct method generalizes this approach to evaluate the
system energy by generation of an artificial scalar function, which can describe not
only the energy stored within the considered dynamic system, but is also used as an
energy-like function of a dissipative system. Such functions are called Lyapunov
functions V (x). For the examination of the system stability, the aforementioned state
space description of a nonlinear system is used:

ẋ = f (x, u, t)

y = g(x, u, t).

By the definition of Lyapunov’s theorem, the equilibrium at the phase plane origin
ẋ = x = 0 is globally, asymptotically stable if

1. a positive definite scalar function V (x) with x as the system state vector exists,
meaning that V (0) = 0 and V (x) > 0 ∀ x 
= 0,

2. V̇ is negative definite, meaning V̇ (x) ≤ 0,
3. V (x) is not limited, meaning V (x) → ∞ as ‖ x ‖→ ∞.

If these conditions are met in a bounded area at the origin only, the system is locally
asymptotically stable.

As a clarifying example, the following nonlinear first-order system

ẋ + f x = 0 (7.20)

is evaluated. Herein, f (x) denotes any continuous function of the same sign as its
scalar argument x so that x · f x > 0 and f (0) = 0. Applying this constraint, a
Lyapunov function candidate can be found described as

V = x2. (7.21)
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The time derivative of V (x) provides

V̇ = 2x ẋ = −2x f (x). (7.22)

Due to the assumed characteristics of f (x), all conditions of Lyapunov’s direct
method are satisfied; thus, the system has globally, asymptotically stable equilibrium
at the origin. Although the exact function f (x) is not known, the fact that it exists
in the first and third quadrants only is sufficient for V̇ (x) to be negative definite. As
second example, a MIMO system is examined depicted by its state space formulation

ẋ1 = x2 − x1(x2
1 + x2

2 )

ẋ2 = −x1 − x2(x2
1 + x2

2 ).

In this example, the system has an equilibrium at the origin too. Consequently, the
following Lyapunov function candidate can be found:

V (x1, x2) = x2
1 + x2

2 . (7.23)

Thus, the corresponding time derivative is

V̇ (x1, x2) = 2x1 ẋ1 + 2x2 ẋ2 = −2(x2
1 + x2

2 )2. (7.24)

Hence, V (x1, x2) is positive definite and V̇ (x1, x2) is negative definite. Thus, the
equilibrium at the origin is globally, asymptotically stable for the system.

A difficult aspect when using the Lyapunov direct method is given by how to find
Lyapunov function candidates. No straight algorithm with a determined solution
exists, which is a disadvantage of this method. Slotine and Le [39] propose several
structured approaches to gain Lyapunov function candidates, namely

• Krasovskii’s method and
• the variable gradient method.

Besides these, Slotine provides additional possibilities to involve the system’s phys-
ical principles in the procedure for determining of Lyapunov function candidates
while analyzing more complex nonlinear dynamic systems.

7.2.2.3 Passivity in Dynamic Systems

As another method for the stability analysis of dynamic systems, the passivity for-
malism is introduced within this section. Functions can be extended to system com-
binations using Lyapunov’s direct method and evaluating the dissipation of energy
in dynamic systems. The passivity formalism is also based on nonlinear positive def-
inite storage functions V (x) with V (0 = 0) representing the overall system energy.
The time derivative of this energy determines the system’s passivity. As example,
the general formulation of a system



7 Control of Haptic Systems 195

Fig. 7.11 Passivity analysis
of an RLC-network

ẋ = f (x, u, t)

y = g(x, u, t).

is considered. This system is passive concerning the external supply rate S = yT u
if the inequality condition

V̇ (x) ≤ yT u (7.25)

is satisfied. Khalil distinguishes several cases of system passivity depending on
certain system characteristics (Lossless, Input Strictly Passive, Output Strictly Pas-
sive, State Strictly Passive, Strictly Passive) [29]. If a system is passive concerning
the external supply rate S, it is stable in the sense of Lyapunov.

The combination of passive systems using parallel or feedback structures inherits
the passivity from its passive subsystems. With the close relation of system passivity
to stability in the sense of Lyapunov, the examination of system stability is possible
by verifying the subsystem’s passivity. Based on this evaluation, it can be concluded
that the overall system is passive—always with the assumption that a correct system
structure was built.

As an illustrating example, the RLC circuit taken from [29] is analyzed in the
following. The circuit structure is shown in Fig. 7.11.

The system’s state vector is defined as

iL = x1

uC = x2.

The input u represents the supply voltage U , as output y the current i is observed.
The resistors are described by the corresponding voltage current characteristics:

i1 = f1(u R1)

i3 = f3(u R3)

For the resistor that is coupled in series with the inductor, the following behavior is
assumed:

UR2 = f2(iL) = f2(x1). (7.26)
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Thus, the nonlinear system is described by the differential equation:

Lẋ1 = u − f2(x1) − x2

Cẋ2 = x1 − f3(x2)

y = x1 + f1(u)

The presented RLC circuit is passive as long as the condition

V (x(t)) − V (x(0)) ≤
t∫

0

u(τ )y(τ )dτ (7.27)

is satisfied. In this example, the energy stored in the system is described by the storage
function

V (x(t)) = 1

2
Lx2

1 + 1

2
Cx2

2 . (7.28)

Equation 7.27 leads to the condition for passivity:

V̇ (x(t), u(t)) ≤ u(t)y(t) (7.29)

which means that the energy supplied to the system must be equal to or higher than
the time derivative of the energy function. Using V (x) in the condition for passivity
provides

V̇ (x, u(t)) = Lx1 ẋ1 + Cx2 ẋ2

= x1 (u − f2(x1) − x2) + x2 (x1 − f3(x2))

= x1 (u − f2(x1)) + x2 f3(x2)

= (x1 + f1(u)) u − u f1(u) − x1 f2(x1) − x2 f3(x2)

= uy − u f1(u) − x1 f2(x1) − x2 f3(x2)

and finally

u(t)y(t) = V̇ (x, u(t)) + u f1(u) + x1 f2(x1) + x2 f3(x2). (7.30)

In case f1, f2, and f3 are passive subsystems, i.e., all functions describing the cor-
responding characteristics of the resistors exist only in the first and third quadrants,
then V̇ (x, u(t)) ≤ u(t)y(t) is true; hence, the RLC circuit is passive. Any coupling
of this passive system to other passive systems in parallel or feedback structures
again results in a passive system. For any passivity analysis and stability evaluation,
this method implements a structured procedure and shows high flexibility.

In conclusion, it is necessary to mention that all methods for stability analysis
introduced in this section show certain advantages and disadvantages concerning
their applicability, information value, and complexity, regardless of whether linear
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or nonlinear systems are considered. When a stability analysis is expected to be done,
the applicability of a specific method should be checked individually. This section
gives a brief overview of the introduced methods and techniques and does not claim
to be a detailed description due to the limited scope of this section. For further study,
the reader is invited to consult the proposed literature.

7.3 Control Law Design for Haptic Systems

As introduced at the beginning of this chapter, control design is a fundamental and
necessary aspect within the development of haptic systems. In addition to the tech-
niques for system description and stability analysis, the need for control design and
the applicable design rules becomes obvious. For control design of a haptic system,
it is especially necessary to deal with several aspects and conditions to be satisfied
during the design process. The following sections present several control structures
and design schemes to set up a basic knowledge of the toolbox for analytic control
design of haptic systems. This also involves some of the already introduced methods
for system formulation and stability analysis, as they form the basis for most control
design methods.

7.3.1 Structuring of Control Design

As introduced in Chap. 6, various structures of haptic systems exist. Demands on the
control of these structures are derived in the following.

Open-loop impedance controlled The user experiences an impression of force
that is directly commanded via an open loop based only on a demand value. In
Chap. 6, the basic scheme of this structure is shown in Fig. 6.1.

Closed-loop impedance controlled As it can be seen in Fig. 6.3, the user also
experiences an impression of force that is fed back to a controller. Here, a specific
control design is needed.

Open-loop admittance controlled In this scheme, the user experiences an impres-
sion of a defined position. In the open-loop arrangement, this position again is
directly commanded based only on a demand value. Figure 6.5 shows the corre-
sponding structure of this haptic scheme.

Closed-loop admittance controlled This last version as depicted in Fig. 6.7
shows its significant difference in the feedback of the force the user applies to the
interface. This force is fed back to a demand value. This results in a closed-loop
arrangement that incorporates the user and his or her transfer characteristics. Dif-
ferent from the closed-loop impedance controlled scheme, this structure uses a
force as demanded value SF compared with the detected SS , but the system output
is still a position xout. This results in the fact that the incorporation of the user

http://dx.doi.org/10.1007/978-1-4471-6518-7_6
http://dx.doi.org/10.1007/978-1-4471-6518-7_6
http://dx.doi.org/10.1007/978-1-4471-6518-7_6
http://dx.doi.org/10.1007/978-1-4471-6518-7_6
http://dx.doi.org/10.1007/978-1-4471-6518-7_6
http://dx.doi.org/10.1007/978-1-4471-6518-7_6
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into the closed-loop behavior is more complex than in a closed-loop impedance
controlled scheme.

All of these structures can be basically implemented in a haptic interaction as
shown in Fig. 2.33. From this, all necessary control loops of the overall telemanipu-
lation system become evident:

• On the haptic interface site, a control loop is closed incorporating the user that is
valid as long as the user’s reaction is fed back to the central interface module for
any further data processing or control.

• On the process/environment site also, a closed loop exists if measurable process
signals (reactions, disturbances) are fed back to the central interface module for
data processing or control.

• Underneath these top-level control loops, various subsystem control loops exist
that have a major impact on the overall system too. As an example, each electrical
actuator will most likely be embedded in a cascaded control structure with current,
speed, and position control.

It becomes obvious that the design of a control system for a telemanipulation
system with a haptic interface is complex and versatile. Consequently, a generally
valid procedure for control design cannot be given. The control structures must be
designed step-by-step involving the following controllers:

1. Design of all controllers for the subsystem actuators;
2. Design of a top-level controller for the haptic interface;
3. Design of a top-level controller for the manipulator/VR environment;
4. Design of the system controller that connects interface and manipulator or VR

environment.

This strict separation proposed above might not be the only way to structure the over-
all system. Depending on the application and functionality, the purposes of the differ-
ent controller and control levels might be in conflict with each other or might simply
overlap. Therefore, it is recommended to set up the underlying system structure and
define all applied control schemes corresponding to their required functionality.

While looking at the control of haptic systems, a similar structure can be estab-
lished. For both the control of the process manipulation and the haptic display or
interface, the central interface module will have to generate demand values for force
or position that are going to be followed by the controllers underneath. These demand
values derive from a calculation predefined by designed control laws. To gain such
control laws, a variety of methods and techniques for structural design and opti-
mization can be applied depending on certain requirements. The following sections
give an overview of typical requirements to closed-control loop behavior followed
by examples for control design.

http://dx.doi.org/10.1007/978-1-4471-6518-7_2
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d,max

Tres Tmax

Fig. 7.12 Closed-loop step response requirements

Table 7.1 Parameter for control quality requirements

Parameter Description

xd,max Maximum overshoot

Tmax Point of time for xd,max

Tε Time frame in which the residuum to the demanded value remains within a
predefined scope ε

Tres Point of time when the demanded value is reached for the first time

7.3.2 Requirement Definition

Besides the fundamental need for system stability with sufficient stability margins,
additional requirements can be set up to achieve a certain system behavior in a
closed-loop scheme such as dynamic or precision. A quantitative representation of
these requirements can be made by the achievement of certain characteristics of the
closed-loop step response.

Figure 7.12 shows the general form of a typical closed-loop step response and its
main characteristics. As it can be seen, the demanded value is reached and the basic
control requirement is satisfied.

Additional characteristics are discussed and listed in Table 7.1. For all mentioned
characteristics, a quantitative definition of certain requirements is possible. For exam-
ple, the number and amplitude of overshoots shall not extend a defined limit or have
a certain frequency spectrum that is of special interest for the control design in haptic
systems. As analyzed in Chap. 3, the user’s impedance shows a significant frequency
range that must not be excited within the control loop of the haptic device. Neverthe-
less, a certain cut-off frequency has to be reached to establish a good performance of

http://dx.doi.org/10.1007/978-1-4471-6518-7_3
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Fig. 7.13 Closed-loop disturbance response requirements

the dynamic behavior. All these issues are valid for requirements to the control design
of the process manipulation. In addition to the requirements from the step response
due to changes in the setpoint value, it is necessary to formulate requirements con-
cerning the closed-loop system behavior considering disturbances originating from
the process. When interpreting the user’s reaction as disturbance within the overall
system description, a requirement set up for the disturbance reaction of the con-
trol loop has to be established. As can be seen in Fig. 7.13, similar characteristics
exist to determine the disturbance reaction quantitatively and qualitatively. In most
cases, both the step response behavior and the disturbance reaction cannot satisfy
all requirements, as they often come into conflict with each other, caused by the
limited flexibility of the applied optimization method. Thus, it is recommended to
estimate the relevance of step response and disturbance reaction in order to choose an
optimization approach that is most beneficial. Although determined quantitatively,
it is not possible to use all requirements in a predefined optimization method. In
most cases, an adjustment of requirements is necessary to be made, to apply specific
control design and optimization methods. As an example, the time Tres as depicted
above cannot be used directly and must be transferred into a requirement for the
closed-loop dynamic characterized by a definite pole placement.

Furthermore, simulation techniques and tests offer iteration within the design pro-
cedure to gain an optimal control law. However, this very sufficient way of analyzing
system behavior and test designed control laws suggests to forget about the analytic
system and control design strategy and switch to a trial an error algorithm.
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7.3.3 General Control Law Design

This section presents some possible types of controllers and control structures that
might be used in the already discussed control schemes. For optimization of the con-
trol parameters, several methods exist, which are introduced here. Depending on the
underlying system description, several approaches to set up controllers and control
structures are possible. This section presents the classic PID-control, additional con-
trol structures, e.g., compensation, state feedback controllers, and observer-based
state space control.

7.3.3.1 Classic PID-Control

Maybe, one of the most frequently used controllers is the parallel combination of a
proportional (P), an integrating (I) and a derivative (D) controller. This combination
is used in several variants including a P-controller, a PI combination, a PD combi-
nation, or the complete PID structure. Using the PID structure, all advantages of the
individual components are combined. The corresponding controller transfer function
is described as

G R = K R

(
1 + 1

TN s
+ TV s

)
. (7.31)

Figure 7.14 shows the equivalent block diagram of a PID controller structure.
Adjustable parameters in this controller are the proportional gain K R , the integrator
time constant TN , and the derivative time TV .

With optimized parameter adjustment, a wide variety of control tasks can be han-
dled. This configuration offers on the one hand, the high dynamic of the proportional
controller and on the other, the integrating component guarantees a high precision
step response with a residuum xd = 0 for t → ∞. The derivative finally provides
an additional degree of freedom that can be used for a certain pole placement of the
closed-loop system.

As major design techniques, the following examples are introduced:

Fig. 7.14 PID block diagram
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Root Locus Method This method has its strength by the determined pole place-
ment for the closed-loop system, directly taking into account the dependence on
the proportional gain K R . By a reasonable choice of TN and TD , the additional
system zeros are influenced that affects directly the resulting shape of the root
locus and thus the stability behavior. Besides this, the overall system dynamic can
be designed.

Integral Criterion The second method for optimization of the closed-loop system
step response or disturbance reaction is the minimization of an integral criterion.
The basic procedure for this method is as follows: The tracking error xd due to
changes in the demanded set point or a process disturbance is integrated (and
eventually weighted over time). This time integral is minimized by adjusting the
controller parameters. In case of convergence of this minimization, the result is a
set of optimized controller parameters.

For any additional theoretical background concerning controller optimization, the
reader is invited to consult the literature on control theory and control design [32, 33].

7.3.3.2 Additional Control Structures

In addition to the described PID controller, additional control structures extend the
influence on the control result without having an impact on the system stability. The
following paragraphs present the disturbance compensation and a direct feedforward
of auxiliary process variables.

Disturbance Compensation

The basic principle of disturbance compensation assumes that if a disturbance on
the process is measurable and its influence is known, this knowledge can be used
to establish compensation by corresponding evaluation and processing. Figure 7.15
shows a simplified scheme of this additional control structure.

In this scheme, a disturbance signal is assumed to affect the closed loop via a dis-
turbance z transfer function G D . By measuring the disturbance signal and processing,
the compensator transfer function GC results in a compensation of the disturbance
interference. Assuming an optimal design of the compensator transfer function, this
interference caused by the disturbance is completely erased. The optimal design of
a corresponding compensator transfer function is depicted as

GC = −G D

GS
. (7.32)

This method assumes that a mathematical and practicable inversion of G D exists. For
those cases where this assumption is not valid, the optimal compensator G K must
be approximated. Furthermore, Fig. 7.15 states clearly that this additional control
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Fig. 7.15 Simplified
disturbance compensation

Fig. 7.16 Feedforward of
auxiliary input variables

structure does not have any influence on the closed-loop system stability and can
be designed independently. Besides, the practicability of the additional effort should
be taken into account. This effort will definitively increase just by the sensors to
measure the disturbance signals and by the additional costs for realization of the
compensator.

Auxiliary Input Feedforward

A structure similar to the disturbance compensation is the feedforward of auxiliary
input variables. This principle is based on the knowledge of additional process vari-
ables that are used to influence the closed-loop system behavior without affecting
system stability. Figure 7.16 shows an example of the feedforward of the demanded
setpoint w to the controller signal u using a feedforward filter function GFF.

7.3.3.3 State Space Control

Corresponding to the techniques for the description of MIMO systems discussed
earlier in this chapter, state space control provides additional features to cover the
special characteristics within these systems. As described before, MIMO systems
are preferably depicted as state space models. Using this mathematical formulation
enables the developer to implement a control structure that controls the internal
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Fig. 7.17 State feedback control

system states to demanded values. The advantage is that the design methods for state
space control use an overall approach for control design and optimization instead of
a control design step-by-step for each system state. With this approach, it becomes
possible to deal with profoundly coupled MIMO systems with high complexity, and
design a state space controller simultaneously. This section presents the fundamental
state space control structures, which covers the state feedback control as well as the
observer-based state space control. For further detailed procedures as well as design
and optimization methods, the reader is referred to [32, 42].

State Feedback Control

As shown in Fig. 7.17, this basic structure for state space control uses a feedback
of the system states x. Similar to the depiction in Fig. 7.2, the considered system is
presented in state space description using matrices A, B, C, and D. The system states
x are fed back gained by the matrix K to the vector of the demanded values that were
filtered by matrix V. The results represent the system input vector u. Both matrices
V and K do not have to be square matrices as a state space description is allowed
to implement various dimensions for the state vector, the vector for the demanded
values, and the system input vector.

Observer-Based State Space Control

The state space control structure discussed above requires complete knowledge of all
system states, which is nothing else but that they have to be measured and processed
to be used in the control algorithm. From a practical point of view, this not possible
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Fig. 7.18 Observer-based state space control

always due to technical limits as well as costs and effort. As a result, the developer is
faced with the challenge to establish a state space control without complete knowl-
edge of the system states. As a solution, these system states that cannot be measured
due to technical difficulties or significant cost factors estimated using a state space
observer structure as shown in Fig. 7.18.

In this structure, a system model is calculated parallel to the real system. As exact
as possible, this system model is described by the corresponding parameter matrices
A∗, B∗, C∗, and D∗. The model input is also represented by the input vector u.
Thus, the model provides an estimation of the real system states x∗ and an estimated
system output vector y∗. By comparison of this estimated output vector y∗ with the
real output y, which is assumed to be measurable, the estimation error is fed back
gained by the matrix L. This results in a correction of the system state estimation x∗.
Any estimation error in the system states or the output vector due to varying initial
states is corrected and the estimated states x∗ are used to be gained by the equivalent
matrix K and fed back for control.
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This structure of an observer-based state space control uses the Luenberger
observer. In this configuration, all real system states are assumed not to be measur-
able; thus, the state space control refers to estimated values completely. Practically,
the feedback of measurable system states is combined with the observer-based esti-
mation of additional system states. In [32, 42], examples for observer-based state
space control structures as well as methods for observer design are discussed in
detail.

7.3.4 Example: Cascade Control of a Linear Drive

As an example for the design of a controller, the cascade control of a linear drive
buildup of an EC motor and a ball screw is considered in this section based on [27].
The consideration includes nonlinear effects due to friction, temperature change, and
a nonlinear degree of efficiency of the ball screw.

A schematic representation of the EC motor is given in Fig. 7.19. in which only
one phase is illustrated for simplification. The motor is supplied with voltage uDC.
The resistance R and the inductance L represent the stator winding of the motor. The
angular speed of the rotor ω M generates a back electromotive force (back-EMF)
uEMF. The mechanical properties of the motor are described by the motor torque
M e, the load torque M L, and the moment of inertia of the rotor J . Mesh analysis
yields to the equation for the electrical part of the motor

uDC = Ri + L
di

dt
+ uEMF (7.33)

which can be written in the frequency domain as

U DC − U EMF = I (R + sL) (7.34)

The back electromotive force UEMF depends on the angular speed of the rotor ωM ,
the back-EMF constant ke, and the parameter F(φe), which describes the dependence
of the back-EMF of the electrical angle φe.

Fig. 7.19 Equivalent circuit
of the considered EC motor
with attached ball screw to
transform rotary into
translational movement [27]
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Fig. 7.20 a Equivalent thermal circuit of the EC motor, b efficiency of the ball screw depending
on the mechanical load [27]

uEMF = keωM F(φe) (7.35)

The motor torque Me generated by the motor current i correlates with the mechanical
load ML and the angular acceleration ωM of the rotor with the moment of inertia J .
It follows that:

Me = i · uEMF

ωM
= ike F(Φe) = J

dωM

dt
+ ML (7.36)

In the frequency domain, the mechanical properties of the motor are described as

Me − ML = s JωM. (7.37)

The model takes three different types of nonlinearities into account: friction, tem-
perature change, and a nonlinear efficiency of the ball screw. The friction is modeled
as the sum of a static friction KF and a dynamic friction kF ·ωM. So, the equilibrium
of moments of the rotor can now be written as

Me − ML − KF = (kF + s J )ωM. (7.38)

The influence of changes in temperature on motor parameters is modeled by a
thermal equivalent circuit shown in Fig. 7.20a. The temperature change in the stator
winding TW can be determined by

�TW = Rth1Tth2s + Rth1 Rth2

Tth1Tth2s2 + (Tth1 + Tth2)s
Pel + Rth2

Tth1Tth2s2 + (Tth1 + Tth2 + Rth2Cth1)s + 1
Pfric.

(7.39)

with

Tth1 = Rth1Cth1 and Tth2 = Rth2Cth2 (7.40)
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Fig. 7.21 Structure of cascade controller of EC motor [27]

The resulting resistance of the stator winding R∗ and the back-EMF constant ke∗ can
be derived with knowledge of the temperature coefficients αR , αk from

R∗ = R(1 + αR�TW), ke∗ = ke(1 + αk�TW). (7.41)

The efficiency of the ball screw depends on the mechanical load of the linear drive.
Its qualitative characteristics are shown in Fig. 7.20b and can be included in the
model as characteristics in a lookup table. The resulting model can be computed for
example in Matlab/Simulink and used for simulation and design of a controller. In
this example, a cascade controller is chosen (Fig. 7.21). It consists of an inner loop
for current control, a middle loop for velocity control, and an outer loop for position
control. As controller for the different control loops, P- or PI-controllers are used.

7.4 Control of Teleoperation Systems

In the previous sections, an overview of system description and control aspects in
general, which can be used for the design of local and global control laws, was given.
The focus of this section lies on special methods used for modeling haptic systems
stability analysis of bilateral telemanipulators. In contrast to Sect. 7.3, special tools
for the development of control laws are presented here based on the two-port hybrid
representation of bilateral telemanipulators (Sect. 7.4.1). Subsequently, in Sect. 7.4.2,
a definition of transparency is introduced, which can be used to analyze the perfor-
mance of a haptic system dependent on the system characteristics and the chosen
control law. In Sect. 7.4.3, the general control model for telemanipulators is intro-
duced to close the gap between the closed-loop representation, known from general
control theory, and used in Sects. 7.1–7.3, and the two-port hybrid representation.
In Sect. 7.4.4, it is shown how a stable and safe operation of the haptic system can
be achieved. Furthermore, the design of stable control laws in the presence of time
delays are presented in Sect. 7.4.5.
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7.4.1 Two-Port Representation

In general, a haptic system is a bilateral telemanipulator, where a user handles a
master device to control a slave device which is interacting with an environment.
A common representation of a bilateral telemanipulator is the general two-port model
as shown in Fig. 7.22.

User and environment are represented by one ports, characterized by their mechan-
ical impedances Z H and Z E as they can be seen as passive elements [28], see Chap. 3.
The mechanical impedance Z is defined as Eq. (7.42)

Z = F

v
(7.42)

The user manipulates the master device, which controls the slave device. The slave
interacts with the environment. The behavior of the telemanipulator is described by
its hybrid matrix H [16, 37]. So the coupling of user action and interaction with the
environment is described by the following hybrid matrix, taking forces and velocities
at the master and slave sides and the properties of the haptic system into account.

(
F H
−v E

)
=

(
h 11 h 12
h 21 h 22

)
·
(

v H
F E

)
. (7.43)

In this case, the four h-parameters represent

(
F H
−v E

)
=

(
Master input impedance Backward force gain
Forward velocity gain Slave output admittance

)
·
(

v H
F E

)
(7.44)

Please note that the velocity of the slave vE is taken into account with a negative
sign. This is done to fulfill the convention for general two-ports, where the flow is
always flowing into a port. The hybrid two-port representation as shown before is
often used to determine stability criteria and to describe the performance properties of
bilateral telemanipulators. Despite the formulation with force as flow variable (also
found in [16, 30], for example), one can also find velocity as flow variable in other
two-port descriptions of bilateral telemanipulators [19]. As long as the coupling is
defined by the impedance formulation given in Eq. (7.42), both these variants of the
two-port descriptions are interchangeable.

Fig. 7.22 General two-port
model of a telemanipulator

User Environment
Telemani-

pulator

vH

F H F E

vE

ZH ZE

http://dx.doi.org/10.1007/978-1-4471-6518-7_3
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7.4.2 Transparency

Besides, system stability performance is an important design criterion in the devel-
opment of haptic systems. The function of a haptic system is to provide high fidelity
force feedback of the contact force at the slave side to the user manipulating the mas-
ter device of the telemanipulator. One parameter often used to evaluate the haptic
sensation presented to the user is transparency. If the user interacts directly with the
environment, he experiences a haptic sensation, which is determined by the mechan-
ical impedance Z E of the environment. If the user is coupled to the environment via
a telemanipulator system, he experiences a force impression, which is determined by
the backward force gain and the mechanical input impedance of the master device.
It is desirable that the haptic sensation for the user of the telemanipulator is the same
as interacting directly with the environment. Therefore, the telemanipulator has to
display the mechanical impedance of the environment Z E at the master device.
Assume that h12 = h21 = 1, so there is no scaling of velocity or force. Therefore,
the following conditions have to hold to reach full transparency.

F H = F E and v H = v E. (7.45)

From this it follows that for perfect transparency [30]

Z H = Z E (7.46)

Therefore, the force experienced by the user at the master device is

F H = h 11v H + h 12 F E

and for velocity at the slave side it holds that

−v E = h 21v H + h 22 F E.

Therefore, the mechanical impedance displayed by the master and felt by the user is
described as

Z T = F T

v T
= h 11v H + h 12 F E

v E−h 22 F E
h 21

(7.47)

By analyzing Eq. (7.47), the conditions for perfect transparency can be derived. To
achieve perfect transparency, output admittance at the slave side and input impedance
at the master side have to be zero. From this it follows that for perfect transparency,
in the case of no scaling, the matrix has to be of the form

(
F H
−v E

)
=

(
0 −1
1 0

)
·
(

v H
F E

)
.



7 Control of Haptic Systems 211

It is obvious that perfect transparency is in practice not achievable without further
actions taken, due to nonzero input impedance h 11 and output admittance h 22 of
the manipulator system. If the input impedance was zero, the user would not feel the
mechanical properties of the master device (mass, friction, compliance). An output
admittance of zero relates to an ideal stiff slave device.

7.4.2.1 A Perception-Oriented Consideration of Transparency

Christian Hatzfeld, Sebastian Kassner, Carsten Neupert

To obtain a transparent system, the system engineer has two options: Work on the
control structure, as described in the following sections or consider the perception
capabilities of the human user in the definition of transparency. The latter is the focus
of this section, which is based on the detailed elaborations in [22]. It has to be noted
that this approach still lacks some experimental evaluation.

Up till now, transparency as defined in Eqs. (7.45) and (7.46) is a binary criterion:
A system is either transparent if all conditions are fulfilled, or is not transparent if one
of the equalities is not given. Despite this formulation, one can define the absolute
transparency error e T according to Heredia et al. as shown in Eq. 7.48 [25]

e T = Z H − Z E (7.48)

and the relative transparency error e′
T as shown in Eq. (7.49)

e′
T = Z H − Z E

Z H
(7.49)

When analyzed along the whole intended dynamic range and in all relevant ↪→DoF
of the haptic system, Eqs. (7.48) and (7.49) allow for the quantitative comparison of
different haptic systems and can give insight into the relevant ranges of frequency
that have to be optimized for a more transparent system. They also provide the basis
for the integration of perception properties in the assessment of transparency.

From the above-mentioned definitions of transparency [Eqs. (7.45) and (7.46)],

one can conclude that e T = e′
T

!= 0 to fulfill the requirement for transparency. On
the other hand, it is obvious that a human user will not perceive all possible mechan-
ical impedances, since the perception capabilities are limited as shown in Sect. 2.1.
To obtain a quantified range for e T and e′

T, a thought experiment1 is conducted in
the following [40].

1 Thought experiments (also gedankenexperiment) consider the possible outcomes of a hypothesis
without actually performing the experiment, but by applying theoretical considerations. They are
conducted when the actual performance of an experiment is not possible or universally valid. Famous
thought experiments include Schrödinger’s Cat to illustrate quantum indeterminacy.

http://dx.doi.org/10.1007/978-1-4471-6518-7_2
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Experiment Assumptions

The following assumptions are made for the thought experiment about the user and
the teleoperation scenario:

1. Linear behavior of haptic perception as discussed in Sect. 2.1.4.2 is assumed,
which holds for a wide range of tool-mediated teleoperation scenarios.
Superthreshold perception properties like masking are neglected.

2. For each user, there exists a known mechanical impedance Z user. This impedance
generally depends on external parameters like temperature, contact force as shown
in Chap. 3. All of these parameters are assumed to be known and invariant over the
course of the experiment. Further, a set of frequency-dependent sensory thresh-
olds for deflection and forces exist. They are labeled as Fθ and dθ , respectively.
Both thresholds can be coupled using the mechanical impedance of the user and
ω = 2π f as the angular frequency of the haptic signal as stated in Eq. (7.50) [23].

|Z user| =
∣∣∣∣ Fθ

jωdθ

∣∣∣∣ (7.50)

3. The user is able to impose an interaction force F user,int or deflection d user,int on
the teleoperation system that does not necessarily trigger a sensation event at the
contact point. This is, for example, possible by the movement of an arm, while
only the fingertips are in contact with the teleoperation system.

4. The teleoperation system is perfectly transparent, i.e., |e T| = 0 for all frequen-
cies. The system is able to read and display forces and deflections reproducible
below the absolute thresholds of the user.

5. The environment is considered passive for simplification reasons.

Thought Experiment

For the experiment, an impedance type system is assumed, i.e., the user imposes a
deflection on the haptic interface of the teleoperation system and interaction forces
measured are displayed to the user. First, we assume an environment impedance
Z E < Z user. Further evaluation leads to Eq. (7.51).

Z E = F E

jωd E
<

F user

jωd user
= Z user (7.51)

For an impedance type system, the user can be modeled as a source of deflection
or velocity. In that case, the induced deflection of the teleoperation system equals
the deflection of the environment d user,int = d H = d E. With Eq. (7.51), this leads
to F H = F E < F user. Assuming that the deflection d user,int imposed by the user is
smaller as the user’s detection threshold dθ (assumption no. 3), the resulting amount

http://dx.doi.org/10.1007/978-1-4471-6518-7_2
http://dx.doi.org/10.1007/978-1-4471-6518-7_3
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of force displayed to the user |F user| is smaller than the individual force threshold
Fθ according to Eq. (7.50).

This experiment can be extended to admittance-type systems easily. Descriptively,
the result can be interpreted as the environment “evading” manipulation, as for exam-
ple, a slow-moving hand in free air: The arm muscles serve as a deflection source
moving the hand, but the interaction forces of the air molecules are too small to be
detected.

For large environment impedances, the inequalities above are reversed. In that
case, the forces or deflections resulting from the interaction are larger than the detec-
tion threshold; the user will feel an interaction with the environment.

Experiment Analysis

One can reason that the user impedance will limit the transparency error function
from Eq. (7.49) from the experiment. This is done in such a way that environment
impedances lower than the user impedance will be neglected as shown in Eq. (7.52).

e′
T = Z H − max (Z E, Z user)

max (Z E, Z user)
(7.52)

If the user impedance is greater than the environment impedance, the user impedance
is used, since the user will not feel any haptic stimuli generated by the lower
environment impedance. If the user impedance is smaller than the environment
impedance, the environment impedance is used as reference for the transparency
error.

Up till now, only absolute detection thresholds were considered that describe
the detection properties of haptic perception. In a second step, the discrimination
properties will be considered in detail. It is assumed that a system is transparent
enough for a satisfactory usage, if errors are smaller than the differences that can be
detected by the user. This difference can be described in a conservative way by the
↪→JND as defined in Sect. 2.1. With that, a limit can be imposed on Eq. (7.52) as
given by Eq. (7.53)

e′
T = Z t − max (Z e, Z user)

max (Z e, Z user)
< cJND(z) (7.53)

This limit cJND(z) is defined as the JND of an arbitrary mechanical impedance.
Although this value is not clearly measurable, it can be either bordered by the JNDs
of ideal components like springs, masses, and viscous dampers (see Sect. 2.1 for
values) or by the JNDs of forces and deflections (since a change in impedance can
be detected if the resulting force or deformation for a fixed imposture of deflection
or force, respectively, exceeds the JND). With known values, this leads to a probably
sufficient limit of

∣∣e′
T

∣∣ ≤ 3 dB.

http://dx.doi.org/10.1007/978-1-4471-6518-7_2
http://dx.doi.org/10.1007/978-1-4471-6518-7_2
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With Eq. (7.53), a perception-considering error term of the transparency of haptic
teleoperation systems is given. One has to keep in mind the assumptions of the under-
lying thought experiment and the fact that experimental evaluation of this approach
is still the focus of current research activities by the authors.

7.4.3 General Control Model for Teleoperators

In principle, a telemanipulator system can be divided into three different layers as
shown in Fig. 7.23. The first layer contains the mechanical, electrical, and local
control properties of the master device. The second layer represents the communica-
tion channels between the master and slave and therefore eventually occurring time
delays. The third layer describes mechanical, electrical, and local control properties
of the slave device. As mentioned before, the dynamic behavior of a master and
accordingly a slave device (first and third layer) is determined by its mechanical
and electrical characteristics. Dependent on the type of actuator used in the mas-
ter device, respectively, slave device, a distinction is made between impedance and
admittance devices. Impedance devices receive a force command and apply a force
to their environment. By contrast, admittance devices receive a velocity command
and behave as a velocity source interacting with the environment (see Chap. 6).

Customarily, dominant parameters are the mass and friction of the device. Com-
pliance can be minimized by a well-considered mechanical design. In addition, it
can be assumed that the dynamic characteristics of the electronic can be disregarded
because the mechanical design is dominating the overall performance of the device.
A local controller design may extend the usable frequency range of the device and
can guarantee a stable operation of the device. In addition, it is possible to change
the characteristics of the device from impedance behavior to admittance behavior
and vice versa [19].

The second layer describes the characteristics of the communication channel.
Significant physical values, which have to be transmitted between master and slave
manipulator, are the values for forces and velocities at the master and slave sides.

Telemanipulator

vH

FH

Master vm

Fm

vs

Fs

Slave vE

FE

Zn ZE
Commu-
nication

Layer 1 Layer 2 Layer 3

Fig. 7.23 Schematic illustration of a telemanipulator

http://dx.doi.org/10.1007/978-1-4471-6518-7_6
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Fig. 7.24 System block
diagram of a general
telemanipulator in
impedance–impedance
architecture as shown in [21]
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Therefore, telemanipulators exhibit at least two and up to four communication chan-
nels for transmitting these values. These communication paths may be afflicted with
a significant time delay T , which can cause instability of the whole system.

Figure 7.24 shows the system block diagram of a general four-channel architecture
bilateral telemanipulator using impedance actuators for master and slave manipulator,
for instance electric motors [21, 30]. In total, there are four possible combinations of
impedance and admittance devices, impedance–impedance, impedance–admittance,
admittance–impedance, and admittance–admittance.

In this section, the impedance–impedance architecture is used due to its common
use because of the high hardware availability. The forces of user and environment F H
and F E are independent values. The mechanical impedance of user and environment
is described by Z H and Z E. The communication layer contains of four transmission
elements C1, C2, C3, and C4 for transmitting the contact forces and velocities v H, F E,
F H, and v E between master and slave sides. Z−1

m and Z−1
s represent the mechanical

admittance of master controller and slave manipulator. In addition, CmP and CsP are
local master and slave position controllers and CmF and CsF are local force controllers.

The dynamics of the four-channel architecture are described by the following
equations:
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F CM = CmF F H − C4e−sT v E − C2e−sT F E − CmPv H

F CS = C1e−sT v H + C3e−sT F H − CsF F E − CsPv E

Z sv E = F CS − F E

Z mv H = F CM + F H

So, the closed-loop dynamics of the telemanipulator are represented by

(
Z m + CmP

) · v H + C4e−sT v E = (1 + CmF) · F H − C2e−sT F E (7.54)

− (
Z s + CsP

) · v E + C1e−sT v H = (1 + CsF) · F E − C3e−sT F H (7.55)

As presented in Sect. 7.4.1, it is common to describe the dynamics of a telemanip-
ulator by two-port representation. In addition, several stability analysis methods can
be applied on two-port model. From Eqs. (7.54) and (7.54) with (7.43), the following
h-parameters can be obtained:

h 11 = (Z m + CmP) · (Z s + CsP) + C1C4e−2sT

(1 + CmF) · (Z s + CsP) − C3C4e−2sT
(7.56)

h 12 = C2(Z s + CsP)e−sT − C4(1 + CsF)e−sT

(1 + Cm F ) · (Z s + CsP) − C3C4e−2sT
(7.57)

h 21 = −C3(Z m + CmP)e−sT + C1(1 + CmF)e−sT

(1 + CmF) · (Z s + CsP) − C3C4e−2sT
(7.58)

h 22 = (1 + CsF) · (1 + CmF) − C2C3e−2sT

(1 + CmF) · (Z s + CsP) − C3C4e−2sT
(7.59)

With Eqs. (7.47) and (7.56)–(7.59), the impedance transmitted to the user Z T is
given by Eq. (7.60) [19].

Z T =
(Z m + CmP) · (Z s + CsP) + C1C4e−2sT +

[
(1 + Cs F ) · (Z M + CmP) + C1C2e−2sT

]
· Z E

(1 + CmF) · (Z s + CsP) − C3C4e−2sT + [
(1 + CsF) · (1 + CmF) + C2C3e−2sT

] · Z E

(7.60)

Perfect transparency is achievable, if the time delay T is insignificant. The controllers
must hold the following conditions, which are known as the transparency-optimized
control law [21, 30]:
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C1 = Z s + CsP

C2 = 1 + CmF

C3 = 1 + CsF

C4 = − (
Z m + CmP

)
C2, C3 
= 0 (7.61)

By use of local position and force controllers of master and slave Cmp, Csp, CmF, and
CsF, a perfect transparency can be achieved with only three communication channels.
In this case, the force feedback from slave to master C2 can be neglected [20, 21].

The most common control architecture is the forward-flow architecture [16] also
known as force feedback or position-force architecture [30], which uses the two
channels C1 and C2. C3 and C4 are set to zero. The position, respectively, velocity
v h at the master manipulator is transmitted to the slave. The slave manipulator
feeds back the contact forces between manipulator and environment F e. Due to
not compensated impedances of master and slave devices, perfect transparency is
not achievable by telemanipulator buildup in the basic forward-flow architecture.
This architecture has been described and analyzed by many authors [7, 8, 16, 17,
19, 30].

7.4.4 Stability Analysis of Teleoperators

Besides the general stability analysis for dynamic systems from Sect. 7.2, several
approaches for stability analysis of haptic devices have been published. Most of
them use the two-port representation introduced in Sect. 7.4.1 for stability analy-
sis and controller design and were derived from the classical network theory and
communications technology. The following section gives an introduction to the most
important of them and also presents methods to guarantee stability of the system
under time delay.

7.4.4.1 Passivity

The concept of passivity for dynamic systems is introduced in Sect. 7.2.2. Within
this section, the focus is on the application of this concept on the stability analysis of
haptic devices. Assume the two-port representation of a telemanipulator as presented
in Fig. 7.23. Furthermore, it is assumed that the energy stored in the system at time
t = 0 is V (t = 0) = 0. The power Pin at the input of the system at time t is given
by the product of the force FH(t) applied by the user to the master times the master
velocity vH(t).

Pin = FH(t) · vH(t)
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Accordingly, the power Pout at the output of the telemanipulator is given by the
contact force of the slave FE(t) manipulating the environment times the velocity of
the slave vE(t)

Pout = FE(t) · vE(t)

Thus, the telemanipulator is passive and therefore stable as long as the following
inequality is fulfilled:

t∫
0

(Pin(τ ) − Pout(τ )dτ) =
t∫

0

(FH(τ ) · vH(τ ) − FE(τ ) · vE(τ )dτ) ≥ V (t) (7.62)

Alternatively, the criterion can be expressed in the form of the time derivative of
Eq. (7.62)

FH(t) · vH(t) − FE(t) · vE(t) ≥ V (t) (7.63)

From Eq. (7.62), respectively, Eq. (7.63), it can be seen that the telemanipulator
must not generate energy to be passive. Thus, an easy method to receive a stable
telemanipulator system is to implement higher damping, though it decreases the
performance of the system.

Considering the frequency domain passivity of the system can be analyzed using
the immitance matrix of the transfer function [7, 8, 10–12, 35–37]. A system is
passive and, hence inherently, stable if the immitance matrix G(s) of the n-port
network is positive real. The criteria for positive realness of the immitance matrix,
which have to be satisfied, are [5, 24]:

1. G(s) has real elements for real s;
2. The elements of G(s) have no poles in Re(s) > 0 and poles on the jω-axis are

simple, such that the associated residue matrix is nonnegative definite Hermitian;
3. For any real value of ω such that no element of G( jω) has a pole for this value,

G( jw) + G( jw) is nonnegative definite Hermitian.

For real rational G(s), points 1 and 3 may be replaced with

4. G(s) + G(s) is nonnegative definite Hermitian in Re(s) > 0

User and environment can be seen as passive [28]. Therefore, if passivity of the
telemanipulator system can be proved, the whole closed loop of user, telemanipula-
tor, and environment can be guaranteed to be passive and hence stable. It has been
shown that a robust (passive) control law and transparency are conflicting objectives
in the design of telemanipulators [30]. In many cases, the haptic sensation presented
to the user can be poor if a fixed damping value is used to guarantee passivity of
the telemanipulator. Thus, a new approach using passivity-based control law and
improving performance has been done by implementing a passivity observer and
passivity controller. The passivity controller increases damping of the system only
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when needed to guarantee stability. A further benefit of this concept is that no para-
meter estimation for the dynamic model of the telemanipulator has to be done and if
considered, uncertainties can be compensated [18, 38].

7.4.4.2 Absolute Stability Criterion (Llewellyn)

A stability criterion for linear two-ports has been derived by Llewellyn
[9, 24, 31]. His motivation was the investigation of generalized transmission lines and
active networks. Later, several authors have used the criteria formulated by Llewellyn
to analyze the stability of telemanipulators or to design control laws for bilateral tele-
operation [1, 2, 4, 19]. The criterion is formulated in the frequency domain and it is
assumed that the two-port is linear and time invariant, at least locally [3]. A linear
two-port is absolute stable if and only if there exists no set of passive terminations
for which the system is unstable.

The following criteria provide both necessary and sufficient conditions for
absolute stability for linear two-ports.

1. G(s) has no poles in the right half s-plane, only simple poles on the imaginary
axis

2. Re(g11) > 0, Re(g22) > 0
3. 2 · Re(g11) · Re(g22) ≥ |g12g21| + Re(g12g21) ∀ω ≥ 0

Conditions 1 and 2 guarantee passivity of the system when there is no coupling
between master and slave. This case occurs when master or slave are free or clamped.
Condition 3 guarantees stability if master and slave are coupled.

These criteria may be applied to every type of immitance matrix, thus the
impedance matrix, admittance matrix, hybrid matrix, or inverse hybrid matrix. If
the criteria are fulfilled for one form of immitance matrix, they are fulfilled for the
other three forms as well. A network for which h21 = −h12, which is the same as
z21 = z12 holds is said to be reciprocal. In this particular case, the tests for passivity
and unconditional stability are the same. A passive network will always be absolute
stable, but an absolute stable network is not necessarily passive. A two-port that
is not unconditional stable is potentially unstable, but this does not mean that it is
definitely unstable as shown in Fig. 7.25.

7.4.5 Effects of Time Delay

When master and slave are far apart from each other, communication data have to
be transmitted over long distance with significant time delays, which can lead to
instabilities unless the bandwidth of signals entering the communication block is
severely limited. The reason for this is a non-passive communication block [8], so
energy is generated inside the communication block.
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Fig. 7.25 Stability-activity
diagram [24]
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7.4.5.1 Scattering Theory

Anderson [6–8] used the scattering theory to find a stable control law for bilateral
teleoperation systems with time delay. Scattering variables were well known from
transmission line theory. The scattering operator S maps effort plus flow into effort
minus flow and is defined in terms of an incident wave F(t) + v(t) and a reflected
wave F(t) − v(t).

F(t) − v(t) = S(t) (F(t) + v(t))

For LTI systems S can be expressed in the frequency domain as follows:

F(s) − v(s) = S(s) (F(s) + v(s))

In the case of a two-port the scattering matrix can be related to the hybrid matrix
H(s) by loop transformation, which leads to

S(s) =
(

1 0
0 −1

)
· (H(s) − 1) (H(s) + 1)−1

To ensure passivity of the system, the reflected wave must not carry higher energy
content than the incident wave. Therefore, a system is passive if and only if the norm
of its scattering operator S(s) is less than or equal to one [8].

‖S(s)‖∞ ≤ 1
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7.4.5.2 Wave Variables

Wave variables were used by Niemeyer [35, 36] to design a robust control strategy
for bilateral telemanipulation with time delay. It separates the total power flow into
two parts, one the power flowing into the system and the other part representing the
power flowing out of the system. Later, these two parts are associated with input
and output waves. This approach is also valid for nonlinear systems. Assume the
two-port shown in Fig. 7.26 using ẋm and Fe as inputs.

Therefore, the power flow through the two-port can be written as

P(t) = ẋ T
M FT − ẋ T

s FS = 1

2
uT

M uT − 1

2
vT

M vT + 1

2
uT

S uS − 1

2
vT

S vS .

Here, the vectors uM and uS are input waves, which increase the power flow into the
system. Analogous to this vM and vS are output waves decreasing the power flow
into the system. Note that velocity is denoted here as ẋ . The transformation from the
power variables to wave variables is described as

uM = 1√
2b

(FM + bẋM )

uS = 1√
2b

(FS − bẋS)

vM = 1√
2b

(FM − bẋM )

vS = 1√
2b

(FS + bẋS)

The wave impedance b relates velocity to force and represents an opportunity to
tune the behavior of the system. Large b values lead to an increased force feedback
at the cost of high inertial forces. Small b values lower any unwanted sensations, so
fast movement is possible, but also decreases the force impression of contact forces
between slave and environment [34]. The wave variables can be inverted to provide
the power variables as a function of the wave variables.
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Fig. 7.26 Wave-based teleoperator model
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FM =
√

b

2
(uM + vM )

FS =
√

b

2
(uS + vS)

ẋM = 1√
2b

(uM − ẋM )

ẋS = − 1√
2b

(uS + vS)

By transmitting the wave variables instead of the power variables, the system remains
stable even if the time delay T is not known [35]. Note that when the actual time
delay T is reduced to zero, transmitting wave variables is identical to transmitting
velocity and force.

7.5 Conclusion

The control design for haptic devices faces the developing engineer with a complex
manifold challenge. According to the fundamental requirement, to establish a safe,
reliable, and determined influence on all structures, subsystems, or processes, the
haptic system composed of an analytical approach for control system design is not
negligible anymore. It provides a wide variety of methods and techniques to be able
to cover many issues that arise during this design process. This chapter intends to
introduce the fundamental theoretical background. It shows several tasks, functions,
and aspects the developer will have to focus on, as well as certain methods and
techniques that are going to be useful tools for the system’s analysis and the process
of control design.

Starting with an abstracted view on the overall system, the control design process
is based on an investigation and mathematical formulation of the system’s behavior.
To achieve this, a wide variety of methods exist that can be used for system description
depending on the degree of complexity. Besides methods for the description of linear
or linearized systems, this chapter introduced techniques for system description to
represent nonlinear system behavior. Furthermore, the analysis of MIMO systems
is based on the state space description, which is also presented here. All of these
techniques on the one hand are aimed at the mathematical representation of the
analyzed systems as exactly as possible, on the other hand they need to satisfy
the requirement for a system description that further control design procedures are
applicable to. These two requirements will lead to a trade-off between establishing an
exact system formulation that can be used in analysis and control design procedures
without extending the necessary effort unreasonably.

Within system analysis of haptic systems, the overall system stability is the most
important aspect that has to be guaranteed and proven to be robust against model
uncertainties. The compendium of methods for stability analysis contains techniques
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applicable to linear or nonlinear system behavior, corresponding to their underlying
principles that of course limit the usability. The more complex the mathematical
formulation of the system becomes, the higher the effort gets for system analysis.
This comes into direct conflict with the fact that a stability analysis of a system with a
simplified system description can only provide a proof of stability for this simplified
model of the real system. Therefore, the impact of all simplifying assumptions must
be evaluated to guarantee the robustness of the system stability.

The actual objective within establishing a control scheme for haptic systems is the
final design of controller and control structures that have to be implemented in the
system at various levels to perform various functions. Besides the design of applicable
controllers or control structures, the optimization of adjustable parameters is also part
of this design process. As shown in many examples in the literature on control design,
a comprehensive collection of control design techniques and optimization methods
exist that enable the developer to cover the emerging challenges and satisfy various
requirements within the development of haptic systems as far as automatic control
is concerned.
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