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    Abstract     L-3,4-dihydroxyphenylalanine ( l -DOPA) treatment in Parkinson’s 
disease (PD) patients commonly leads to dyskinesia, a hyperkinetic movement 
disorder that remains an unsolved clinical problem. The unravelling of key 
pathophysiological mechanisms in PD and dyskinesia has led to updated models 
of the basal ganglia motor circuit, capturing nonlinear    neuronal information pro-
cessing in a dynamical network architecture. Our understanding into the func-
tional organization of the basal ganglia motor system is further supported by 
recent computational models that focus on neuronal activations within distinct 
closed feedback loops. Together, these models of the basal ganglia circuitry com-
pose a more comprehensive and detailed insight into the diverse neuronal dys-
functions in the pathophysiology of PD and LID.  
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        Parkinson’s Disease and Levodopa- Induced Dyskinesia 

 Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects 
approximately 1 % of the population over the age of 55 years, with highest preva-
lence in ages of 85 years and over [ 1 ]. PD is commonly characterized by a clinical 
syndrome of motor symptoms (bradykinesia, postural abnormalities, and resting 
tremor) [ 2 ] that occur due to an extensive loss of nigrostriatal neurons which release 
dopamine [ 3 ], a modulatory neurotransmitter of the basal ganglia motor circuit [ 4 ]. 

 In the early 1960s, studies showed that dopamine replacement with its immedi-
ate metabolic precursor,  l -3,4-dihydroxyphenylalanine ( l -DOPA), dramatically 
alleviated PD motor symptoms [ 5 ,  6 ]. Following this,  l -DOPA was introduced to 
PD patients [ 7 ] and has since been widely used for the treatment of PD. However, 
following long-term use of  l -DOPA, the initial benefi cial effects of treatment are 
compromised by unpredictable “on-off” fl uctuations of therapeutic effects [ 8 ,  9 ], 
gradual “wearing off” of therapeutic effi cacy [ 10 ,  11 ], and  l -DOPA-induced dyski-
nesia (LID) [ 12 ]. The latter is a severe hyperkinetic motor complication that is com-
monly expressed as an idiosyncratic mixture of chorea (irregular fl ow of muscular 
movements in rapid and slow phases) and dystonia (slow twisted movements from 
abnormal muscular contractions) [ 13 ]. LID occurs in approximately 90 % of PD 
patients after 9 years of  l -DOPA treatment [ 14 ], and once established, dyskinesia is 
elicited upon each administration of  l -DOPA, or dopamine agonist [ 15 ]. Moreover, 
LID increases in severity with further  l -DOPA treatment [ 16 ] and can become as 
debilitating as PD itself, causing a negative impact on quality of life [ 17 ]. 

 Understanding the pathophysiology of LID is an important step in developing a 
suitable treatment that can resolve the clinical need of treating dyskinesia. In this 
review, we discuss the pathophysiology of PD and LID using the basal ganglia cir-
cuitry model of the motor circuit. We also describe a recent computational model 
that demonstrates subtle dysfunctions in neural processing within the basal ganglia 
following the loss of dopamine. In addition, we highlight recent experimental fi nd-
ings of molecular adaptations that occur in the nuclei outside of the basal ganglia, 
which may have important roles in the expression of LID.  

    Basal Ganglia 

 The basal ganglia are a group of subcortical nuclei that include the striatum (cau-
date nucleus and putamen), subthalamic nucleus (STN), substantia nigra (pars 
reticulata, SNr, and pars compacta, SNc), ventral tegmental area, and globus pal-
lidus (internal, GPi, and external, GPe, segments) [ 18 ]. These interconnected 
nuclei are modulated by dopamine and together form a neural network that relays 
information from the cortex to the thalamus. These so-called corticobasal gan-
glia-thalamocortical loops functionally convey information for both motor and 
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non-motor processes [ 4 ]. Several of these loops exist for motor, oculomotor, 
associative, limbic, and orbitofrontal functions. Moreover, each loop projects 
from largely segregated regions of the basal ganglia and thalamus to different 
cortical target areas of the cerebral hemisphere [ 19 ].  

    Classic “Input” and “Output” Stations of the Basal Ganglia 

 The striatum is a major input station of the basal ganglia receiving different afferent 
projections, which include dopaminergic fi bers from the midbrain [ 20 ], serotoner-
gic fi bers from dorsal and medial raphe nucleus [ 21 ], noradrenergic fi bers from the 
locus coeruleus [ 22 ], acetylcholinergic fi bers from the pedunculopontine nucleus, 
and glutamatergic fi bers from the thalamus, STN, and cortex [ 23 ,  24 ]. The glutama-
tergic fi bers of the cortex project massively to the striatum in a somatotopically 
organized manner [ 25 – 27 ]. In the motor    cortico-basal ganglia-thalamo-cortical loop 
of the primate brain, sensorimotor afferents of the primary motor and somatosen-
sory cortices project to the posterolateral putamen [ 26 ,  28 ]. Here, the dorsal region 
is occupied by somatotopic representation of the leg, which is followed by the arm, 
while the facial representation lays most ventral [ 28 ]. The putamen projects via 
γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) to the GPi/SNr 
[ 29 ,  30 ], which are the output nuclei of the basal ganglia. These nuclei send 
GABAergic efferent neurons to the motor nuclei of the thalamus (ventralis anterior 
and lateralis) and brain stem [ 19 ,  31 – 33 ]. In turn, the motor nuclei convey excitatory 
glutamatergic projections to motor-related cortical areas, completing the motor cor-
ticobasal ganglia-thalamocortical loop [ 34 – 37 ].  

    Striatal “Direct” and “Indirect” Pathways 

 In the 1980s, a model of the basal ganglia circuitry was proposed based on the avail-
able anatomical, neurochemical, and electrophysiological data (see Fig.  7.1a ) [ 19 , 
 32 ]. This now “classic” model describes two main efferent projections from the 
striatum to the output of the basal ganglia, the so-called direct and indirect path-
ways. The direct pathway refers to the monosynaptic neuronal connection between 
the striatum and GPi/SNr. The neurons of this pathway primarily express dopamine 
D 1  receptors and preproenkephalin-B (PPE-B), an opioid peptide that is subse-
quently cleaved to produce co-transmitters substance P, dynorphins, leucine- 
enkephalins, and α-neoendorphin [ 38 ]. The “indirect” pathway describes the 
polysynaptic neuronal connection of the striatum to GPi/SNr. Striatofugal neurons 
of this pathway project to the GPe and, in turn, the GPe sends GABAergic efferent 
fi bers to the STN. From here, glutamatergic efferent fi bers of the STN project to the 
GPi/SNr. The striatopallidal neurons of the indirect pathway primarily express 
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dopamine D 2  receptors and preproenkephalin-A (PPE-A), an opioid peptide that is 
subsequently cleaved to enkephalin [ 38 ]. Both the direct and indirect pathways are 
modulated by dopamine, which activates striatonigral neurons of the direct pathway 
and inhibits striatopallidal neurons of the indirect pathway (see Fig.  7.1a ).

   Based on segregated pathways, the classic functional model of the basal ganglia 
describes the processing of neural information in a feed-forward manner for achiev-
ing a behavioral outcome. Using the motor circuit as an example, it was suggested 
that the direct pathway facilitates the execution of desired motor sequences, while 
the indirect pathway mediates blocking of unwanted motor programs to “smooth” 
cortical-initiated motor sequences [ 4 ,  39 – 41 ]. Both the direct and indirect pathways 
lead to inhibition of the basal ganglia output nuclei for normal motor function. 
Accordingly, electrophysiological studies of saccadic eye and limb movements in 
awake monkeys have shown GPi/SNr neurons are tonically active (50–100 Hz) dur-
ing rest and exhibit reduced activity during movement [ 42 – 45 ].  

    Basal Ganglia Circuitry in Parkinson’s Disease 

 The classic model of the basal ganglia circuitry has been used to describe the patho-
physiology of PD (see Fig.  7.1b ) [ 32 ,  33 ,  46 ]. From this model, PD motor symp-
toms occur as a result of an imbalance between direct and indirect pathways caused 
by extensive degeneration of nigrostriatal dopaminergic neurons. While striatoni-
gral neurons of the direct pathway become underactive, striatopallidal neurons of 
the indirect pathway become overactive leading to inhibition of GPe and subsequent 
disinhibition of the glutamatergic efferent fi bers of the STN [ 32 ]. Thus, with loss of 
dopamine, both pathways lead to increased activation of the GPi/SNr, thereby inhib-
iting the motor thalamic nuclei. The resulting effect is reduced activation of motor 
cortical areas, which is seen to occur in the primary sensory motor cortex [ 47 ] and 
supplementary motor area [ 48 ] in the parkinsonian state. 

 In the late 1980s, several groundbreaking studies were conducted that helped 
uncover key mechanisms in the pathophysiology of PD. In these experiments con-
ducted by Mitchell et al., neuronal metabolic marker 2-deoxyglucose (2-DG) was 
used to reveal the activity states of the basal ganglia subnuclei in the 1-methyl- 4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned nonhuman primate (nhp) 
model of PD. It was found that the STN was hyperactivated, while the GPe, tha-
lamic ventralis anterior, and lateralis nuclei were hyper-inhibited [ 49 – 51 ]. 
Accordingly, these major discoveries suggested that there was hyperactivation of 
the basal ganglia output structures in PD [ 51 ], which was later confi rmed through 
measurements of electrophysiological activity [ 52 – 54 ] and mRNA expression of 
neuronal activity marker, cytochrome oxidase subunit I [ 55 ]. Additionally, the acti-
vation states of the striatofugal pathways in PD have been demonstrated through the 
expression of striatal PPE precursors, where reports have consistently shown 
reduced PPE-B and increased PPE-A mRNA expression in the striatum [ 56 – 58 ]. 
These molecular data demonstrate underactivation of striatonigral neurons and 
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  Fig. 7.1    Schematic diagrams of the classic basal ganglia circuitry model illustrating linear, feed- 
forward information processing. Dopamine mediates opposing functional effects on the two major 
projection pathways of the striatum for ( a ) normal motor function. Loss of endogenous dopamine 
in ( b ) Parkinson’s disease (PD) causes abnormal neuronal activity leading to reduced excitatory 
feedback to the cortex. Repeated treatment with  l -DOPA in PD induces ( c ) dyskinesia, causing 
increased activity in the cortex. Arrow size corresponds to activity of neuronal projections.  l  - 
DOPA     L-3,4-dihydroxyphenylalanine,  D   1   R  dopamine D 1  receptor,  D   2   R  dopamine D 2  receptor,  Enk  
enkephalin,  Dyn  prodynorphin,  STR  striatum,  GPi  internal segment of the globus pallidus,  GPe  
external segment of the globus pallidus,  STN  subthalamic nucleus,  SNr  substantia nigra pars reticu-
lata,  SNc  substantia nigra pars compacta,  VA/VL  ventralis anterior and lateralis nuclei         

a

b
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hyperactivation of striatopallidal neurons, which both favor the overactivation of the 
basal ganglia output nuclei in PD. 

 Following the original neuronal metabolic activity studies, behavioral experi-
ments carried out in MPTP-lesioned nhps further characterized the pathophysiolog-
ical changes in PD. Fundamentally, these studies revealed the causal role of the STN 
in production of parkinsonian motor symptoms [ 59 ,  60 ], which were dramatically 
abolished following surgical or neurochemical (muscimol or kainic acid) lesion of 
this structure. At the cellular level, subthalamotomy was also shown to reduce the 
overactivation of the basal ganglia output nuclei in PD [ 61 ,  62 ]. Collectively, these 
revolutionary fi ndings led to a resurgence of neurosurgical procedures for the treat-
ment of parkinsonism, which included the ablation of the GPi [ 63 ,  64 ] or STN [ 65 ], 
and deep brain stimulation (DBS) of the STN [ 66 – 68 ].  

    Basal Ganglia Circuitry in Levodopa-Induced Dyskinesia 

 Early suggestions put forward on the pathophysiology of LID essentially described 
the opposite functional state to that of PD (see Fig.  7.1c ) [ 69 ]. Particular emphasis 
was originally placed on the indirect pathway in the pathogenesis of the dyskinetic 
state, where it was proposed that the underactivation of the striatopallidal neurons 

c
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caused disinhibition of the GPe, leading to subsequent over-inhibition of the 
STN. In turn, disinhibition of thalamic motor nuclei resulted in excessive excit-
atory input to motor cortical areas, which is found to occur in PD patients express-
ing LID [ 70 ,  71 ]. Pioneering experiments, again conducted by Mitchell et al. [ 72 ] 
in MPTP- lesioned nhps, showed that at peak dose of dopamine agonist-induced 
dyskinesia, there was an increased uptake of 2-DG in the STN and GPi, demon-
strating that these structures were hyper-inhibited. This study also showed that 
2-DG was reduced in the motor thalamic nuclei, refl ecting its hyperactivated state 
in dyskinesia [ 72 ]. 

 The role of the direct pathway in the pathogenesis of LID was later emphasized 
by Bezard et al. [ 86 ]. In this key review, it was suggested that underactive/abnormal 
fi ring of the basal ganglia output nuclei in dyskinesia [ 52 ,  73 – 78 ] was primarily 
caused by overactivated striatonigral neurons of the direct pathway. Indeed, func-
tional hyperactivation of the direct pathway in LID has been demonstrated at the 
cellular level from (1) dramatic elevations of striatal mRNA expression of PPE-B 
and prodynorphin [ 58 ,  79 – 82 ] and (2) supersensitization of striatal dopamine D 1  
receptors [ 83 ]. In addition, it has been reported that treatment with selective dopa-
mine D 1  receptor agonist, ABT-431, in PD patients elicits dyskinesia to a similar 
extent to that of  l -DOPA [ 84 ], supporting the hypothesis of a hyperactivated direct 
pathway in the pathogenesis of dyskinesia. It should be noted that these data are 
inline with the mechanism suggested in the classic functional model, whereby an 
overactivated direct pathway mediates over-inhibition of the basal ganglia output, 
causing the underactivation of these nuclei (see Fig.  7.1c ). 

 On the contrary, the proposed underactivation of the indirect pathway in the 
pathophysiology in LID has been, somewhat, inconsistent with several experimen-
tal fi ndings, which has presented some limitations of the classic functional model 
(discussed in more detail in the section below). For example, the underactivation of 
the indirect pathway due an overactivated GPe is not consistently seen in dyskinetic 
MPTP-lesioned nhps [ 55 ]. In addition, striatopallidal neurons of the indirect path-
way are not underactive, as demonstrated by the levels of striatal PPE-A mRNA, 
which are actually further upregulated, rather than downregulated, in dyskinesia 
compared to PD [ 79 ,  85 ]. It has since been suggested that increased striatal PPE-A 
mRNA in LID may occur due to reduced parkinsonism following  l -DOPA treat-
ment, rather than LID itself [ 86 ]. This is consistent with clinical fi ndings that have 
shown dopamine D 2  receptor agonists are effective antiparkinsonian agents with a 
reduced risk of inducing dyskinesia [ 87 ]. 

 At this point, it is worth mentioning that the classic functional basal ganglia 
model has provided an excellent basis for describing the functional mechanisms 
involved in normal and disease states (see Fig.  7.1a–c ). However, the classic 
model remains too simplistic, and its use is limited when describing the patho-
physiological mechanisms in PD and LID. In the next section, we outline some 
of the main inconsistencies that have arisen between experimental data and the 
classic functional basal ganglia model.  
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    Developments of the Basal Ganglia Circuitry Model 

 Progressing from the original descriptions of the classic functional model by 
Alexander and Crutcher [ 4 ], experimental reports have revealed a greater complex-
ity in the neural organization and information processing within the basal ganglia. 
These data have led to the development of the functional model, which has engaged 
the highly dynamic nature of neural networking in the basal ganglia circuitry. 

    Organization and Structure 

 In the classic model, the separate direct and indirect pathway organization has been 
widely accepted, but the actual degree of segregation and opposing functional activ-
ity of the striatal neuronal projections remains unclear [ 88 ]. Firstly, striatofugal 
axons show consistent collateralization to both the GPe and GPi [ 89 ], suggesting an 
interconnected, rather than segregated, organization. Secondly, the response of the 
striatofugal pathways to dopamine cannot be simply viewed as an activating or 
deactivating effect caused exclusively via actions on dopamine D 1  or D 2  receptors, 
respectively, as (1) a high percentage of striatal MSNs expresses both subtypes of 
dopamine receptors [ 90 – 92 ] and (2) because dopamine D 1  and D 2  receptor responses 
are not consistently opposite [ 93 ,  94 ]. It is also worth mentioning that the modula-
tory effects of dopamine in the basal ganglia are not only restricted to the striatum. 
In fact, extensive dopaminergic SNc projections are found to innervate most, if not 
all, of the other basal ganglia subnuclei [ 95 – 100 ]. Thus, taking this into consider-
ation, another level of complexity is added, as these dopaminergic innervations can 
bypass the feed-forward processing mediated by striatofugal neuronal activity 
[ 101 – 103 ]. 

 From the early 2000s, the mechanism of neural processing in the basal ganglia 
has been reevaluated [ 104 ,  105 ]. The concept of a linear feed-forward mechanism, 
solely based on altered fi ring rate of each basal ganglia subnucleus, has been found 
to be inconsistent with preclinical and clinical data, sparking the reorganization of 
the basal ganglia circuitry. In particular, the model now incorporates the numerous 
internal feedback loops [ 104 ,  106 ], which have been found to exist through recipro-
cal connections between the many of the basal ganglia subnuclei [ 107 – 110 ]. This 
reformed organization of basal ganglia circuitry has brought drastic changes to the 
arrangement of the classic indirect pathway, which include (1) the GPe as now 
occupying a central position and being viewed as a key structure for inhibitory 
modulation of the striatum, GPi and STN (see Fig.  7.2 ) [ 111 – 113 ], and (2) the STN 
being considered as another major input station of the basal ganglia, receiving affer-
ent glutamatergic projections from the cortex [ 114 ,  115 ] and thalamus [ 116 ], while 
sending glutamatergic efferent projections to the GPe, GPi/SNr, ventral thalamic 
nuclei, and pedunculopontine nucleus [ 117 ,  118 ]. Importantly, the overall structural 
reorganization of the motor circuit now sees the functional dual disynaptic control 
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of the GPe and GPi (see Fig.  7.2 ) [ 104 ,  113 ] via parallel cortical projections to 
the striatum and STN. The corticostriatal projection uses the striatum to mediate 
inhibitory control of the pallidal segments, while the cortico-STN projection, also 
known as the hyper-direct pathway [ 115 ], uses the STN to mediate fast excitatory 
input to these structures [ 119 ].

       Mechanism of Neural Information Processing 

 The mechanism of neural processing in the classic functional model, which is 
based only on the fi ring rate of each individual subnucleus in the basal ganglia, is 
unable to explain several major experimental fi ndings in PD and LID. Most 

  Fig. 7.2    A schematic diagram showing the functional organization of the basal ganglia. This 
updated model proposed by Obeso et al. [ 113 ] illustrates the dual disynaptic control of the internal 
and external segments of the globus pallidus, originating from corticostriatal and cortico- 
subthalamic projections. The position of the external segment of the globus pallidus in this model 
has been emphasized to mediate important inhibitory control of the basal ganglia output nuclei, 
while modulating the activity of the striatum and subthalamic nucleus via reciprocal connections. 
 DRs  dopamine receptors,  STR  striatum,  GPi  internal segment of the globus pallidus,  GPe  external 
segment of the globus pallidus,  STN  subthalamic nucleus       
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notably, simple underactivation of the basal ganglia output nuclei in dyskinesia 
[ 73 ,  76 ,  77 ] cannot fully explain the pathogenesis of LID [ 75 ]. This is because 
lesion of the GPi does not result in dyskinesia [ 120 ,  121 ]. In fact, pallidotomy of 
the internal segment effectively alleviates LID in MPTP-lesioned nhps [ 122 ] and 
PD patients [ 123 ,  124 ], which is opposite to the proposed outcome of the classic 
functional model. Other major inconsistencies of the classic model have been 
identifi ed in PD, which include: (1) lesions of the motor thalamic nuclei do not 
exacerbate parkinsonism in patients [ 120 ] and (2) lesions of the GPe do not induce 
PD motor symptoms [ 54 ]. Collectively, these data have indicated that the process-
ing of neural information for motor behavior in the basal ganglia is much more 
complex than originally thought [ 19 ], which cannot rely exclusively on fi ring 
rates. Instead, the fi ring rate model has been developed to incorporate the func-
tional roles of neuronal fi ring patterns, such as synchronicity and oscillatory acti-
vations, in motor function, which are characteristically different in established PD 
and LID [ 75 ,  125 – 127 ].  

    Neuronal Firing Patterns in the Basal Ganglia 

 The study of neuronal fi ring patterns is commonly conducted through electro-
physiological measurements of single/multiunit activity or local fi eld potentials 
(LFPs). Single/multiunit recordings show the action potentials of one or multi-
ple neurons, while LFPs typically refl ect subthreshold synchronized afferent 
activations of a larger group of neurons [ 128 ]. These sets of neuronal data are 
analyzed for either synchronous or oscillatory patterns of activity, which are 
determined using a range of statistical tools on the time and/or frequency 
domains [ 129 ]. While the oscillatory activity can modulate neuronal synchroni-
zation in cortical and subcortical regions [ 130 ,  131 ], these patterns of neuronal 
activity are not mutually exclusive, i.e., synchronized fi ring can occur in the 
absence of periodic fi ring or vice versa [ 129 ]. The presence of synchronized 
activity between networks in distinct neuroanatomical regions is hypothesized 
to “bind” or “couple” neural ensembles, as part of a wider functional integration 
process [ 130 – 132 ]. Such synchronized fi ring is suggested to be a mechanism of 
neural processing in cortical and thalamic regions. On the contrary, the function 
of the basal ganglia, as an intermediate in corticobasal ganglia-thalamocortical 
loop, has been suggested to mediate so-called dimensional reduction, which 
describes the funnelling of redundant cortical neuronal inputs for effi cient 
action planning [ 133 ].    This has been indicated from electrophysiological stud-
ies conducted in normal animals that have revealed the activity of neurons in the 
GPe [ 134 ], GPi [ 135 ], and STN [ 136 ] are generally asynchronous, with approxi-
mately 90 % or more of recorded neurons displaying uncorrelated fi ring patterns 
[ 53 ,  137 ,  138 ]. The oscillations in spike activity of MSNs in the striatum are 
typically weak [ 139 ,  140 ].   
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    Abnormal Neuronal Firing Patterns in the Pathophysiology 
of PD and LID 

 Following original reports of abnormal neuronal fi ring patterns in experimental 
parkinsonism [ 53 ,  141 ], patterns in burst fi ring, synchronization, and oscillatory 
activity have been well studied in PD and LID. Initial experiments conducted sin-
gle-unit measurements of neuronal activity in the subnuclei of the basal ganglia in 
MPTP- lesioned nhps and showed that the incidence of burst fi ring was increased in 
the GPe, GPi, and STN [ 53 ,  141 ,  142 ]. Additionally, neurons within these struc-
tures were found to demonstrate hyper-synchronized oscillatory activity that was 
characteristically <30 Hz (within the β (beta)-band) [ 53 ,  135 ,  143 ]. Similar fi nd-
ings have been reported in clinical studies, following measurements of LFPs via 
macroelectrodes during neurosurgery [ 125 ]. Although these data are not directly 
comparable to single-unit measurements, LFPs in the STN and GPi of PD patients 
in the off- state showed dominant low-frequency (<30 Hz) oscillations, with 
increased coherence in activity (at 6 and 20 Hz) between these structures. The ori-
gin of these low-frequency oscillations in PD has been suggested to arise from an 
abnormal network effect following extensive loss of dopamine in the basal ganglia, 
which may occur from imbalanced activity between the direct and hyper-direct 
pathways [ 105 ] or due to rebound fi ring of STN [ 144 – 146 ] caused by abnormal 
inhibitory input from the GPe [ 147 – 149 ]. The STN is likely to impose enhanced β 
(beta)-band oscillations on the GPi through its direct synaptic connection, which 
then reverberates through the motor corticobasal ganglia-thalamocortical loop, as 
indicated from coherent β (beta)-band oscillations between the basal ganglia sub-
nuclei and motor cortical regions [ 150 – 153 ]. 

 The functional relevance of enhanced β (beta)-band oscillations in the motor 
corticobasal ganglia-thalamocortical loop has been postulated to disrupt informa-
tion processing, contributing to the expression of PD motor symptoms [ 154 ]. In-line 
with this suggestion, low-frequency (5–20 Hz) stimulations of the STN typically 
worsen akinesia in PD patients [ 155 – 157 ], while neuronal fi ring of GPi cells at 
4–6 Hz in MPTP-lesioned nhps [ 53 ] and PD patients [ 158 ] has been correlated to 
the frequency of resting tremor. Moreover, studies have shown that treatment with 
dopaminergic agents in PD suppresses the low-frequency β (beta)-band oscillations 
in the basal ganglia [ 125 ,  159 ,  160 ] and motor cortical regions [ 151 ,  152 ], causing 
several marked changes in neuronal activity, such as the uncoupling of high- 
frequency oscillations (HFO) (>300 Hz) to low-frequency β (beta)-band oscillations 
[ 160 ] and a shift to a new prominent peak in activity at ~70 Hz (γ (gamma)-band) 
[ 125 ], as parkinsonism is alleviated. The presence of γ (gamma)-band oscillations 
(70–85 Hz) in the basal ganglia, particularly the STN, may be refl ective of an 
improved motor state in PD as clinical studies have shown (1) HFS of the STN 
>70 Hz alleviates PD motor symptoms in patients [ 155 ] which also suppresses low- 
frequency β (beta)-band oscillations in the GPi [ 161 ] and (2) increased coherence 
between the STN and GPi in the γ (gamma)-band frequency following  l -DOPA 
treatment in PD patients, which also augments with movement [ 151 ]. However, in 
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PD patients that exhibit dyskinesia following treatment with dopaminergic 
 medication, different patterns of neuronal activities are induced [ 127 ,  162 ]. While 
LFPs in the STN of these patients do show increased (17.8 %) logarithmic power of 
activity in the γ (gamma)-frequency range, there is a more striking increment 
(77.6 %) in activity at 4–10 Hz (θ (theta)/α (alpha)-band) that is specifi cally associ-
ated with dyskinesia [ 127 ,  163 ]. Clinical data have also revealed that the coherence 
between the STN and GPi at <10 Hz is increased in the dyskinetic state [ 162 ]. 

 As discussed above, neuronal patterns of burst fi ring, synchronization, and oscil-
latory activity within the motor corticobasal ganglia-thalamocortical loop are asso-
ciated with different motor states. It has been postulated that tonic levels of 
endogenous dopamine in the normal basal ganglia may mediate desynchronized 
neuronal fi ring for the processing of motor commands [ 126 ,  164 ]. However, in PD, 
when there is extensive loss of dopamine, these motor commands are not, or inef-
fi ciently, processed within the basal ganglia. Prominent changes, such as enhanced 
hyper-synchronization and oscillatory patterns of fi ring at β (beta)-band frequen-
cies, may represent increased threshold levels of activity, acting as a “barrier” that 
ultimately impedes information processing for movement [ 126 ,  164 ]. On the con-
trary, hyper-synchronization of neuronal activity at θ (theta)/α (alpha)-band fre-
quencies, as recorded in LID [ 127 ,  162 ,  163 ], may allow for release of involuntary 
motor sequences that become expressed as dyskinesia. Thus, neurosurgical proce-
dures for symptomatic treatments of PD and LID can be viewed as a method of 
alleviating, or resetting, abnormal subcortical activations [ 165 ], allowing the 
resumption of neuronal processing for motor programming in the absence of an 
endogenous dopamine tone. In the next section, we discuss a recently developed 
computational model of the basal ganglia circuit for action selection, which 
describes the loss of motor function and emergence of low-frequency oscillations 
following striatal dopamine denervation.  

    Computational Models of the Basal Ganglia Motor Circuit 

 Although the precise functional consequences of abnormal neuronal fi ring patterns 
in the basal ganglia in parkinsonian and dyskinetic states remain unclear, recent 
advances have been made in our understanding of neural processing in the expres-
sion of the motor symptoms. Studies conducted by Boraud’s group identifi ed key 
functional changes in the basal ganglia output nuclei that related to the onset of 
parkinsonism [ 166 ]. Their work demonstrated that hyper-synchronized β (beta)-
band oscillations in the GPi occurred following the establishment of PD motor 
symptoms in MPTP-lesioned nhps [ 166 ]. In the same study, the authors identifi ed 
that onset of experimental parkinsonism was closely related to a shift in the fi ring 
profi le of GPi neurons, where there was an increased (~1.5-fold) proportion of 
excitable neurons and a decreased (~0.5-fold) number of functional inhibitory neu-
rons [ 166 ]. Moreover, in an earlier study conducted by the same research group, GPi 
neurons in MPTP-lesioned nhps were found to have altered fi ring activities that 
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were related to the spatiotemporal aspects of motor processing [ 167 ]. In these 
MPTP-treated nhps, it was shown that the number of GPi neurons responsive to 
manipulated limb movements was increased (~5-fold), demonstrating a loss of 
somatosensory selectivity [ 167 ]. Neurons within the GPi also displayed premature 
fi ring in relation to onset of muscular activity, suggesting dysfunctional neural pro-
cessing for movement [ 167 ]. These key experimental fi ndings indicated that changes 
in neural activity at the level of the GPi could be instrumental in disrupting motor 
processing in action selection, leading to the motor disabilities seen in PD. 

 In 2006, Boraud’s team put forward a dynamic computational model of the 
basal ganglia network that described the neural processing for action selection 
from closed feedback loops (see Fig.  7.3 ) [ 105 ]. Interestingly, in-line with 
experimental fi ndings in MPTP-treated nhps [ 166 ], this computational model 
described how reduced dopamine levels caused loss of action selection that cor-
related with a shift in the proportion of activated neurons in the GPi, prior to the 
development of synchronized low-frequency oscillations within the basal gan-
glia [ 105 ]. This functional model of the basal ganglia uses two main feedback 
loops that are each arranged in a somatotopic manner [ 168 – 171 ]: (i) the hyper-
direct pathway (cortex-STN-GPi- thalamus-cortex) [ 114 ] and (ii) the direct 

  Fig. 7.3    A schematic diagram of basal ganglia neuronal connections in a model for action selec-
tion proposed by Leblois et al. [ 105 ]. In this circuit, two neuronal populations ( black and gray ), 
each composed of (i) cortex-STR-GPi-thalamus-cortex and (ii) cortex-STN-GPi-thalamus-cortex 
pathways compete to execute action selection. This is achieved when activity in of one cortical 
population overcomes threshold activity in the other cortical population. Importantly, projections 
from the STN cross over, modulating GPi neuronal activity in the competing loop. Dopamine in 
the striatum mediates potentiation of corticostriatal synapses, strengthening the activity of a spe-
cifi c striatal projection. This can lead to increased feedback to the cortex in the same neuronal 
population to cause action selection.  DA  dopamine,  STR  striatum,  GPi  internal segment of the 
globus pallidus,  STN  subthalamic nucleus       
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pathway (cortex-striatum-GPi-thalamus-cortex). These two pathways have 
opposing effects on cortical activity; the hyper-direct inhibits the thalamic 
nuclei which causes reduced cortical fi ring (global negative), while the direct 
pathway disinhibits the thalamic nuclei leading to increased cortical fi ring 
(global positive). Leblois et al. [ 105 ] described two somatotopic channels from 
one corticobasal ganglia-thalamocortical loop (each composed of two feedback 
loops) that act in parallel and compete to execute action selection (see Fig.  7.3 ) 
[ 170 – 172 ]. This is achieved when the activity of one cortical population over-
comes the threshold activity of that in the other. Importantly, the projections 
from the STN to the GPi have pivotal roles in the execution of a motor program, 
as the STN mediates “cross-path” activity, modulating GPi neuronal activity in 
its own loop and also in the competing circuit [ 105 ]. This functional model also 
describes the effects of dopamine in the striatum, where it mediates potentiation 
of corticostriatal synapses in sensorimotor regions [ 173 ], strengthening direct 
pathway activity for biasing selection of the motor program in the correspond-
ing circuit. When dopamine levels are normal, i.e., 100 %, the computational 
model demonstrates how action selection can occur as “symmetry breaking,” 
the transition of activity when one neuronal population becomes greater than 
the other, takes place. Such a situation arises when motor planning information, 
sent from sensorimotor cortical areas, produces strong positive feedback activ-
ity in the direct pathway and inhibitory feedback activity in the hyper-direct 
pathway, causing asymmetric activations of neuronal populations in the GPi. In 
turn, cortical activity in one population is enhanced, while the other is attenu-
ated leading to the selection of an action [ 105 ].

   An extension to the computational model proposed by Leblois et al. has recently 
been described for the processing of neural information in the basal ganglia for two 
level decision-making (i.e., cognitive and motor) [ 174 ]. Based on electrophysiologi-
cal data in nhps [ 175 ], the updated model demonstrated how task-related decisions 
made at the cognitive level can infl uence the motor level for action selection. The 
model architecture of the updated model is more sophisticated, describing two action 
selection modules, i.e., one cognition and one motor, which act in parallel. Each 
action selection module arises from distinct regions of the cortex, consisting of the 
direct and hyper-direct pathways, in a corticobasal ganglia-thalamocortical loop. For 
each loop, channels composed of separate ensembles in cortical areas are representa-
tive of decision choices that compete for action selection [ 174 ]. This computational 
model incorporates the idea of multiple corticobasal ganglia- thalamocortical loops 
for different aspects of neural processing [ 4 ], which interact in the striatum as affer-
ent fi bers converge in specifi c overlapping regions [ 174 ]. In this model, symmetry 
breaking for action selection can be initiated by internal noise prior to learning, 
which is followed by dopamine-mediated effects at corticostriatal synapses. 
Subsequently, synaptic gain in the direct pathway at the striatal level mediates posi-
tive feedback of that channel, while negative feedback of the hyper- direct pathway 
suppresses competing channels [ 174 ], in a center-surround inhibitory fashion [ 176 ]. 
Thus, activities of both circuits promote action selection of a specifi c channel. 

 These novel dynamic computational models of neural networks may prove to be 
important tools in the study of basal ganglia disorders. In the original computational 

W.K.D. Ko et al.



123

model, Leblois et al. [ 105 ] demonstrated that striatal dopamine denervation leads to 
complete loss of action selection ability. Initial changes included a marked reduc-
tion in the ratio of inhibited GPi neurons by the direct pathway, which occurred 
following ~30 % dopamine loss [ 105 ]. As a result, feedback from the direct path-
way was reduced, preventing the mechanism of symmetry breaking. Interestingly, 
after approximately 70–80 % striatal dopamine denervation, the inability of the 
direct pathway to counteract negative feedback of the hyper-direct pathway resulted 
in synchronized oscillatory neuronal activity (frequency of 10–12 Hz) [ 105 ]. As 
these predictions are in-line with experimental fi ndings in PD [ 166 ], the model pro-
vides an excellent tool for studying the pathogenesis of disease states, with the 
advantage of incorporating more parallel loops and additional anatomical subnuclei 
[ 105 ,  174 ]. Although the pathophysiological changes in LID have yet to be mod-
elled in these computational models, it would be particularly interesting to investi-
gate whether synchronized θ (theta)/α (alpha)-band oscillations are produced in the 
basal ganglia in the dyskinetic state, as reported in patients [ 127 ,  162 ]. Speculatively, 
the dyskinesia could be modelled by incorporating pathophysiological hallmarks of 
LID, such as dysfunctional LTP at corticostriatal synapses [ 177 ,  178 ]. If this is pos-
sible, the current computational model could help elucidate the precise conse-
quences of abnormal neuronal oscillatory activations in the basal ganglia subnuclei 
on action selection or identify the subtle changes in fi ring activities that lead to the 
expression of dyskinesia. In addition, we suggest that future basal ganglia models 
should be extended for describing the pathophysiology of LID. This is because 
recent studies have demonstrated molecular and functional adaptations associated 
with the expression of dyskinesia also occur in anatomical regions beyond the sub-
nuclei of the basal ganglia. In a recent study conducted by Halje et al. [ 179 ], it was 
shown that dyskinetic motor symptoms in the unilateral 6-hydroxydopamine 
(6-OHDA)-lesioned rat model of LID were alleviated as abnormal motor cortical 
oscillations (80 Hz) were attenuated, following application of a dopamine D 1  recep-
tor antagonist to specifi c cortical regions. These data, as well as our recent fi ndings 
[ 180 ], highlight the need to look beyond the basal ganglia subnuclei for functional 
changes that can directly impact motor function.  

    Additional Nuclei in the Pathophysiology of LID 

 Molecular changes in the pathophysiology of LID have been well studied in the 
basal ganglia subnuclei [ 181 ], but little remains known of the adaptations that occur 
in other structures. A previous report identifi ed the bed nucleus of the stria termina-
lis (BST) was hyperactivated in dyskinetic MPTP-lesioned nhps [ 182 ], suggesting 
a potential role of this structure in the pathophysiology of LID. Using the unilateral 
6-OHDA-lesioned rat model of LID, we recently investigated the molecular adapta-
tions in the whole brain by quantifying the expression of four immediate early genes 
(IEGs) (ΔFosB, ARC, FRA2, Zif268/EGR1) [ 180 ]. We found that dyskinesia sever-
ity in  l -DOPA-treated unilateral 6-OHDA-lesioned rats correlated to the overex-
pression of these specifi c IEGs in the following structures: oval (oBST), juxta 
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(jBST), and medial (mBST) bed nucleus of the stria terminalis, lateral habenula 
(lHb), pontine nuclei (Pn), and cuneiform nucleus (CnF). Such molecular adapta-
tions in these nuclei could stem from irregular activities of afferent fi bers. For exam-
ple, serotonergic afferents [ 183 ] to the oBST and jBST may facilitate unregulated 
fl uctuations of dopamine release in LID [ 184 – 187 ], which is likely to cause an 
abnormal functional state of these nuclei [ 188 ]. The molecular adaptations in the 
lHb nuclei, a structure that projects to different monoaminergic regions including 
the serotonergic dorsal and medial raphe, could be involved in the aberrant release 
of dopamine from serotonergic (5-HT) terminals in LID, contributing to the patho-
genesis of dyskinesia [ 189 – 192 ]. Further studies are currently being conducted to 
fully elucidate the functional roles of these additional nuclei in the pathogenesis of 
dyskinesia. It is important to note that recent fi ndings from our group and others 
[ 179 ] highlight the need to evaluate regions outside of the basal ganglia for fully 
uncovering the pathophysiological mechanisms in LID.  

    Conclusions 

 The functional basal ganglia circuitry model for describing the pathophysiology of 
PD and LID has developed quite considerably over the past few decades. Critical 
evaluation of functional mechanisms has proved an important step in progressing 
from the original descriptions of basic box-arrow circuitry and feed-forward infor-
mation processing [ 4 ] to more updated basal ganglia models, which have captured 
complex neural network connections [ 104 ] and the dynamic nonlinear neuronal 
processing in disease states [ 105 ]. While our understanding of the pathophysiologi-
cal mechanisms of PD and LID motor symptoms remains incomplete, the road to 
uncovering subtle dysfunctional neuronal processes will undoubtedly be guided by 
accurately modelling the latest experimental fi ndings. Recent technological 
advancements that allow for the simultaneous measurements of single-unit neuronal 
activity, whole body kinematics, and muscular activities in freely moving nhps 
[ 193 ] are likely to be at the forefront of relating specifi c motor abnormalities that 
occur in PD and LID to abnormal neural processing in the basal ganglia and other 
anatomical regions. By striving to understand the complex mechanisms involved, 
we hope to make solid progress in the development of novel clinical treatments for 
PD and LID, to ultimately improve the quality of life of patients suffering from 
these movement disorders.     
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