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    Abstract     The endocannabinoid system modulates the release of excitatory and 
inhibitory neurotransmitters in several brain areas implicated in motor control. 
Cannabinoid and dopamine receptors are highly abundant and often co-expressed in 
the basal ganglia circuitry, and the cross talk between these two systems regulates 
short- and long-term synaptic plasticity in the striatum. Dysregulation of the endo-
cannabinoid system has been reported in animal models of Parkinson’s disease and 
parkinsonian patients and is exacerbated in dyskinetic states, following chronic 
levodopa administration. 

 This chapter reviews recent investigations on the relationships between endo-
cannabinoids and other neurotransmitter/neuromodulator systems in the basal 
ganglia, with the intent to underline their relevance for the pathophysiology of 
levodopa- induced dyskinesia and discuss new pharmacological approaches for 
their treatment.  
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        Introduction 

 Although levodopa remains the gold standard for the treatment of motor symptoms 
in Parkinson’s disease (PD), its long-term use leads to the development of abnormal 
involuntary movement, collectively termed dyskinesia, in as many as 90–95 % of 
PD patients receiving treatment [ 1 – 3 ]. 

 The molecular mechanisms associated with LID development are not fully 
understood, but several factors, including neurotransmitter abnormalities, pulsatile 
stimulation of dopamine receptors, and maladaptive plasticity within the striatum, 
are known to play a role [ 4 ]. 

 To date, the only FDA-approved drug for the treatment of dyskinesia is the 
NMDA antagonist amantadine [ 5 ,  6 ]. This drug, however, has a short therapeutic 
time window, is poorly tolerated, and can worsen dyskinesia upon discontinuation 
or induce psychiatric complications [ 5 ,  7 ]. Thus, there is an urgent need to develop 
alternative antidyskinetic therapies targeting non-dopaminergic systems to avoid 
possible interferences with the antiparkinsonian effects of L-DOPA. 

 In the last decade, several studies have pointed to the endocannabinoid system as 
an important modulator of synaptic transmission and plasticity in the basal ganglia 
circuitry. As this system regulates dopamine-induced motor activation and is 
required for the coordination and fi ne-tuning of movement [ 8 ,  9 ], it represents a 
potential pharmacological target for the treatment of motor disorders. Indeed, both 
exogenous and endogenous cannabinoids show antiparkinsonian and antidyskinetic 
activity in animal models of PD and patients. 

 In this chapter, we will review the most relevant studies on the role played by the 
endocannabinoid system in LID, discuss the complex interactions between endo-
cannabinoids and several neurotransmitters regulating basal ganglia function [ 10 , 
 11 ], and provide a conceptual frame to address some confl icting fi ndings reported in 
the literature.  

    The Endocannabinoid System 

 The endocannabinoid system consists of a family of lipid signaling molecules 
(endocannabinoids) released on demand from membrane lipid precursors, the 
enzymes responsible for their synthesis and degradation and distinct metabotropic 
(cannabinoid), ionotropic, and nuclear receptors activated by these ligands [ 12 ,  13 ]. 

 Among the multiple endocannabinoids identifi ed so far [ 14 ], arachidonoyl etha-
nolamine (anandamide) [ 15 ,  16 ] and 2-arachidonoyl glycerol (2-AG) [ 17 ] represent 
the two most studied examples. 

 Anandamide is synthesized in a Ca ++ -dependent manner from N-arachidonoyl 
phosphatidylethanolamine by phospholipase D (PLD) [ 18 ,  19 ] or via alternative 
pathways, such as those initiated by alpha-beta-hydrolase 4 [ 20 ]. 2-AG is produced 
by diacylglycerol lipases (DAGLα and β) acting on membrane acyl arachidonoyl 
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glycerols [ 21 ,  22 ]. As in the case of anandamide, multiple biosynthetic pathways 
have been reported for 2-AG, which can also derive from the hydrolysis of phospha-
tidic acid or lysophospholipids [ 23 ,  24 ]. 

 The biological actions of anandamide are terminated by facilitated diffusion into 
cells via a carrier-mediated transport [ 25 ], followed by enzymatic hydrolysis via a 
fatty acid amide hydrolase (FAAH) [ 26 – 28 ]. To date, there is no consensus on the 
existence of an endocannabinoid transporter [ 29 ], and its molecular identity has not 
been yet identifi ed. Anandamide can be also metabolized by lipoxygenases [ 30 ] and 
cyclooxygenases (such as COX-2) [ 31 – 33 ]. In particular, the COX-2 metabolic 
pathway may become physiologically relevant under conditions promoting endo-
cannabinoid or COX-2 upregulation, as in the course of neurodegenerative pro-
cesses [ 34 ]. 

 Concerning 2-AG, although this lipid can be metabolized by FAAH and cyclo-
oxygenases [ 35 ,  36 ], in the brain it is mainly hydrolyzed by a monoacylglyceroli-
pase (MAGL), which is localized in presynaptic elements [ 37 ]. Interestingly, 
pharmacological blockade of FAAH by URB597 may decrease brain 2-AG in vitro 
via a mechanism involving TRPV1 activation and DAGL inhibition [ 38 ,  39 ]. This 
decrease, however, has not been confi rmed in vivo by other groups [ 40 – 43 ], sug-
gesting that it might be limited to specifi c brain areas. 

 The endocannabinoids can activate G i/o  protein-coupled cannabinoid receptors 
(CB1 and CB2), some members of the transient receptor potential (TRP) family, 
as well as nuclear peroxisome proliferator-activated receptors (PPAR) [ 44 ]. 
Endocannabinoids can also serve as allosteric modulators or bind to other metabo-
tropic receptors, including GPR55 [ 45 – 47 ] – a cloned orphan receptor activated 
by the CB1 antagonists rimonabant and AM251 [ 48 ] – and GPR18 [ 49 ]. However, 
the physiological roles of these receptors remain unknown, and neither anan-
damide nor 2-AG has shown consistent pharmacological effects following GPR55 
stimulation [ 50 ]. 

 In rodents and humans, CB1 receptors are highly expressed in the peripheral and 
central nervous system (CNS) [ 51 ,  52 ], whereas CB2 receptors are mainly restricted 
to immunocompetent cells, lymphoid organs, and microglia [ 44 ,  53 ,  54 ]. The “seg-
regation” of CB2 to the immune system has been challenged by recent studies 
showing their presence in neurons and glial cells throughout the brain, including the 
substantia nigra pars reticulata (SNpr) and the striatum [ 55 – 58 ]. Also, CB2 recep-
tors are upregulated in activated microglia and astrocytes in response to neurotoxic 
insults and neuroinfl ammatory events [ 59 – 62 ]. 

 Within the basal ganglia, CB1 receptors are generally expressed on presynaptic 
elements, including GABAergic striatofugal neurons [ 63 ,  64 ], striatal parvalbumin- 
positive interneurons [ 65 ,  66 ], glutamatergic terminals from the cortex [ 67 ] and the 
subthalamic nucleus [ 68 ], and serotonergic afferents [ 69 ,  70 ] (see Fig.  14.1 ). It is 
now well established that activation of presynaptic CB1 receptors by retrogradely 
mobilized endocannabinoids inhibits the release of several neurotransmitters 
involved in basal ganglia function [ 71 ,  72 ].

   Endocannabinoids and CB1 receptors have been implicated in three main forms 
of plasticity at striatal synapses: (1) short-term depolarization-induced suppression 
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of excitation (DSE) or inhibition (DSI), (2) short-term depression dependent by 
activation of postsynaptic Gq-coupled receptors, and (3) long-term depression 
(LTD) (for review, see [ 73 ]). Also, concomitant activation of CB1 and other metabo-
tropic receptors can promote the coupling of CB1 to G isoforms other than G i/o  [ 74 , 
 75 ] or the formation of heterodimers with D2 and mu-opioid receptors [ 76 ,  77 ], 
leading to different downstream signaling pathways than those traditionally acti-
vated by cannabinoids. 

 Studies on cannabinoid agonists administered to CB1 knockout mice support the 
existence of non-CB1/CB2 receptors regulating synaptic transmission throughout 
the body (for review, see [ 52 ]). 

  Fig. 14.1    Schematic illustration of the basal ganglia motor circuit showing striatofugal “direct” 
and “indirect” projections to the output nuclei and afferent projections from the cortex and raphe 
nuclei to the striatum.  GPi  globus pallidus pars interna,  GPe  globus pallidus pars externa,  SNpc  
substantia nigra pars compacta,  SNpr  substantia nigra pars reticulata,  STN  subthalamic nucleus. 
Glutamatergic ( green ), GABAergic ( red ), and serotonergic projections and expression of different 
receptor subtypes are also indicated       
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 As previously mentioned, some exogenous and endogenous cannabinoids can 
target at least fi ve distinct TRP channels [ 78 ]. In particular, anandamide can bind to 
TRPV1 receptors [ 79 ], which are expressed in the striatum, globus pallidus, and the 
substantia nigra pars compacta (SNpc) [ 80 – 82 ]. As anandamide affi nity for TRPV1 
is quite low, it is not clear whether this lipid might serve as an endovanilloid ligand 
under physiological conditions [ 83 ,  84 ]. Nevertheless, blockade of FAAH activity 
has been shown to enhance anandamide potency at TRPV1 receptors in vitro [ 85 ]. 
In addition, there is evidence for a cross talk between CB1 and TRPV1 receptors, as 
CB1 stimulation can alter the phosphorylation state of TRPV1 and consequently its 
function [ 86 ]. 

 Some cannabinoid compounds, including anandamide, noladin ether, virod-
hamine, and WIN55,212-2, can also bind different subtypes of PPAR receptors and 
enhance the expression of their target genes [ 87 ]. In particular, anandamide has 
been shown to activate ⁪⁪⁪⁪ PPARα [ 88 ] and PPARγ ⁪⁪⁪⁪⁪ [ 89 ]. These recep-
tors, which are known to increase insulin sensitivity and modulate glucose and lipid 
metabolism, are also expressed in neuronal and glial cells of the basal ganglia [ 90 , 
 91 ]. Although their role in the CNS is still largely unexplored, recent studies indi-
cate that PPARα ⁪⁪⁪⁪ and ⁪⁪⁪⁪⁪ PPARγ agonists have antioxidant and neuro-
protective activity in animal models of PD [ 92 – 95 ], Alzheimer’s disease [ 96 ,  97 ], 
cerebral ischemia [ 98 ], and traumatic brain injury [ 99 ,  100 ], and they can reverse 
haloperidol-induced oral dyskinesia in rats [ 101 ].  

    Pharmacological Effects 

    Effects on PD Motor Symptoms 

 In general, systemic administration of exogenous cannabinoids, or enhancement 
of endocannabinoid tone via pharmacological blockade of their catabolic 
enzymes or reuptake, decreases locomotor activity in a CB1-dependent manner 
[ 28 ,  102 – 104 ]. In line with these observations, CB1 knockout mice exhibit motor 
abnormalities [ 105 ,  106 ] and suppression of cocaine-induced hyperlocomotion 
[ 107 ]. However, some of the cannabinoid-induced motor effects are not elicited 
via activation of CB1 receptors. For instance, anandamide produces catalepsy in 
both CB1 knockout mice and wild-type controls [ 108 ], and elevation of endocan-
nabinoid tone in these animals produces hypokinesia via a TRPV1-mediated 
mechanism [ 109 ]. Also, pharmacological blockade of TRPV1 receptors in 
6-OHDA rats has been shown to unmask the antidyskinetic effects of the FAAH 
inhibitor URB597 [ 103 ] (see below). These observations suggest that, under con-
ditions in which anandamide reaches supraphysiological concentrations and con-
sequently activates TRPV1, these channels can infl uence motor behaviors 
presumably by affecting the fi ring rate of nigrostriatal neurons and dopamine 
transmission [ 110 ]. 
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 In the context of PD, several research groups have found increased CB1 mRNA 
and receptor binding in the striatum of animal models [ 111 ,  112 ] and PD patients 
[ 113 ]. Numerous studies have also shown abnormal endocannabinoid levels, 
although there is no consensus on the direction of endocannabinoid fl uctuations. 
While some reports indicate an increase of endocannabinoid levels in the basal 
ganglia of dopamine-depleted rodents [ 114 – 116 ], other studies showed decreased 
or unaltered endocannabinoid tone [ 103 ,  117 ,  118 ]. These discrepancies may be 
 attributable to species-specifi c differences among PD models or to the physiologi-
cal state of the animals at the time of the experiments, which is known to affect 
endocannabinoid release. Interestingly, the administration of levodopa to 6-OHDA 
rats failed to elevate anandamide levels [ 103 ,  117 ] and further increased CB1 
expression in the striatum [ 119 ], suggesting that levodopa is not able to correct the 
endocannabinoid dysfunction associated with dopamine denervation. This dys-
function likely causes the disruption of the plasticity observed at corticostriatal 
synapses in PD models [ 118 – 121 ]. In this regard, elevation of endocannabinoid 
tone has been shown to rescue striatal LTD and to alleviate motor defi cits associ-
ated with the nigrostriatal lesion [ 118 ]. Although these data point to a defi cit (rather 
than an enhancement) of endocannabinoid mobilization in PD, improvement of 
motor symptoms has been achieved not only with administration of cannabinoid 
agonists but also with CB1 receptor antagonists in either rodents [ 122 – 124 ] or 
nonhuman primates [ 125 ] (Table  14.1 ). Explaining these paradoxical fi ndings is 
challenging, although the answer may lie in the multiple site of actions engaged by 
cannabinoid drugs when administered systemically. Indeed, while increased endo-
cannabinoid transmission may alleviate PD symptoms by reducing striatal gluta-
mate release [ 71 ,  115 ], on the other hand, activation of CB1 on striatofugal 
terminals of the “indirect” pathway may lead to increased GABAergic drive to the 
external globus pallidus (GPe), which may amplify the inhibitory output of the 
basal ganglia and consequently contribute to PD symptoms. Therefore, in this case, 
CB1 antagonism may produce antiparkinsonian effects by limiting GABA release 
from striatopallidal projections. Finally, other studies have hypothesized that CB1 
antagonists elicit antiparkinsonian effects only in animals with severe nigrostriatal 
lesions [ 123 ,  126 ], which may differentially affect endocannabinoid production 
and CB1 expression in the striatum and GPe of these animals versus those with less 
severe lesions.

       Effects on LID 

 As endocannabinoids counteract dopamine-mediated hyperactivity [ 103 ,  136 ,  137 ] 
and given the fact that increased corticostriatal glutamate transmission contributes to 
dyskinesias [ 138 ,  139 ], stimulation of CB1 receptors should alleviate dyskinetic 
symptoms by (1) reducing levodopa-induced sensitization of dopamine receptors, (2) 
normalizing aberrant glutamate release, and (3) rebalancing maladaptive plasticity in 
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the denervated striatum. In support of this hypothesis, several groups have shown 
cannabinoid-mediated improvement of levodopa-induced abnormal involuntary 
movements (AIMs) in rodent models and nonhuman primates [ 103 ,  118 ,  128 ,  131 , 
 132 ] and PD patients [ 129 ] (Table  14.1 ). 

 The antidyskinetic effects of cannabinoid agonists do not seem to result from a 
generalized motor suppression, as they were obtained using doses that did not pro-
duce hypomotility or catalepsy [ 103 ,  126 ]. Nevertheless, as in the case of PD motor 
defi cits, signifi cant antidyskinetic effects [ 125 ,  130 ], or no effects [ 134 ], were also 
observed with CB1 antagonists (Table  14.1 ). The rationale for blocking CB1 recep-
tors as a pharmacological approach to treat dyskinesia is based on the observations 
that endocannabinoid transmission is elevated in dyskinetic animals [ 140 ] and PD 
patients [ 113 ] and that genetic deletion of CB1 receptors prevents the development 
of severe abnormal movements in mice [ 140 ]. However, neither striatal endocan-
nabinoid levels nor CB1 upregulation has been correlated to LID expression or 
severity [ 125 ,  141 ]. 

 Overall, these discrepancies reveal some limitations in generalizing cannabinoid 
effects across different animal models and may be ascribed to the multiple sites of 

     Table 14.1    Pharmacological effects of cannabinoid agents on PD motor symptoms and dyskinesia   

 Cannabinoid agent  Pharmacology  PD motor symptoms  Dyskinesia 

 THC (Cannabis)  CB1/CB2 agonist  Alleviate motor defi cits 
in PD models [ 126 ] or no 
effect [ 122 ,  127 ] 

 No effect in PD patients 
[ 127 ] 

 Nabilone  CB1/CB2 agonist  Improve levodopa 
antiparkinsonian action 
[ 128 ] 

 Antidyskinetic in PD 
models [ 128 ]. Can 
reduce dyskinesia in PD 
patients [ 129 ] 

 URB597  FAAH inhibitor  Alleviate motor defi cits 
in PD models [ 118 ] 

 Antidyskinetic in PD 
models in the presence of 
a TRPV1 blocker [ 103 ] 

 WIN55,212-2  CB1/CB2 agonist  Induce hypokinesia in 
rodents [ 103 ,  130 ] 

 Antidyskinetic in PD 
models [ 103 ,  117 ,  131 ] 

 HU-210  CB1/CB2 agonist  Impair motor function 
[ 132 ] 

 Alleviate some AIM 
subtypes [ 132 ] 

 SR141716A 
(rimonabant) 

 CB1 antagonist  Alleviate motor defi cits 
in PD models [ 123 – 125 ] 
or no effect [ 122 ,  133 ] 

 Antidyskinetic in PD 
models [ 125 ] or no effect 
[ 117 ]. Can precipitate 
AIMs in non-dyskinetic 
animals [ 132 ] 

 AM251  CB1 antagonist  Alleviate motor defi cits 
in PD models [ 123 ] 

 No effect [ 103 ,  132 ] 

 CE  CB1 antagonist  Enhance antiparkinsonian 
action of levodopa [ 134 ] 

 No effect [ 134 ] 

 Oleylethanolamide 
(OEA) 

 TRPV1 antagonist  No effect [ 135 ]  Antidyskinetic in PD 
models [ 135 ] 
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action of cannabinoid agents (see above), which complicate the translation of these 
fi ndings into new pharmacotherapies. 

 So far, studies carried out in PD patients have been inconclusive. While a 
 randomized, double-blind, placebo-controlled pilot study by Sieradzan et al. 
[ 129 ] has shown an antidyskinetic action of the cannabinoid agonist nabilone in 
PD patients [ 129 ], other reports have not confi rmed any benefi cial effects of 
either cannabinoid agonists [ 127 ] or antagonists [ 133 ] on LID. However, the 
study of Carroll et al. [ 127 ] evaluated the effects of oral cannabis, which has a 
highly variable pharmacokinetics and a more complex pharmacological profi le 
than synthetic cannabinoid agonists. In addition, the assessment of dyskinesia 
was based on patient self- reported questionnaires, which are often inaccurate in 
identifying symptoms [ 142 ]. On the other hand, the dose of the CB1 antagonist 
rimonabant used in the study of Mesnage et al. [ 133 ] was signifi cantly lower than 
that used by van der Stelt and coworkers [ 125 ]. Thus, new and larger-scale clini-
cal studies are necessary to confi rm the antidyskinetic properties of cannabinoid 
agents in humans. 

 Pharmacological blockade of FAAH, which elevates anandamide and other 
acylethanolamides in those brain areas where they are actively synthesized, did 
not reduce levodopa-induced AIMs in 6-OHDA rats [ 103 ]. These fi ndings suggest 
that increasing anandamide tone is not suffi cient to alleviate dyskinesia, possibly 
because of the concomitant stimulation of CB1 and TRPV1 receptors, which exert 
opposite effects within the basal ganglia circuitry. In support of this hypothesis, 
coadministration of the FAAH inhibitor URB597 and the TRPV1 antagonist cap-
sazepine produced a signifi cant antidyskinetic effect in 6-OHDA rats [ 103 ,  131 ]. 
In addition, a recent study by Gonzalez-Aparicio [ 143 ] has shown that oleyletha-
nolamide (OEA), a structural analog of anandamide that does not bind to CB1 but 
has antagonistic activity at TRPV1 receptors, can reduce levodopa-induced AIM 
via a TRPV1-mediated mechanism [ 135 ]. These observations differ from those 
reported by Lee et al. [ 143 ], showing that the administration of either URB597 or 
the TRPV1 agonist capsaicin alone reduced levodopa-induced hyperactivity in 
reserpine-treated rats [ 143 ]. However, it is important to note that hyperactivity in 
reserpine-treated rodents has not been validated as an appropriate measure of dys-
kinesia [ 144 ]. 

 Although TRPV1 blockade seems necessary to unmask the antidyskinetic effect 
of URB597, the benefi cial action of this drug is only partially mediated by CB1 
receptors, since pretreatment with the CB1 antagonist AM251 did not fully reverse 
the combined effect of URB597 and capsazepine (CPZ) [ 103 ]. Interestingly, admin-
istration of the nonselective PPAR antagonist BADGE completely blocked the 
URB597 + CPZ antidyskinetic effect (unpublished observations), suggesting a 
PPAR-dependent mechanism. Whether the involvement of PPAR in this response 
refl ects a direct action of anandamide, or of other lipid signaling molecules elevated 
by FAAH blockade, on these nuclear receptors is still unclear. Nevertheless, a recent 
study has shown that PPARα ⁪⁪⁪⁪⁪ and ⁪⁪⁪⁪⁪ PPARγ agonists administered 
individually or in combination with antipsychotics can alleviate haloperidol-induced 
oral dyskinesias [ 101 ].   
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    Endocannabinoid Modulation of Basal Ganglia Circuitry: 
Pathophysiology and Implications for LID 

 According to the classical model of basal ganglia organization (see Fig.  14.1 ), stria-
tal MSN receive excitatory glutamatergic projections from the cerebral cortex. 
MSN are in turn modulated by nigrostriatal dopaminergic afferents that exert excit-
atory or inhibitory effects on “direct” and “indirect” striatofugal pathways via dopa-
mine D1 and D2 receptors, respectively. 

 Although CB1 are not present on dopaminergic neurons [ 145 ], they co-localize 
with D1/D2-like receptors in the dorsal striatum and indirectly affect dopamine 
output by modulating neurotransmitter release from projecting inhibitory and excit-
atory terminals via stimulation of CB1 receptors [ 64 ,  67 ,  68 ,  72 ,  146 ,  147 ]. The 
overall effect of cannabinoids on dopamine release in the caudate-putamen remains 
controversial, as some studies have shown a decrease [ 72 ], an increase [ 148 ], or no 
effect at all [ 149 ,  150 ]. Anandamide- and endocannabinoid-enhancing drugs, such 
as FAAH inhibitors, can also modulate nigrostriatal dopamine transmission by act-
ing at TRPV1 [ 109 ,  110 ,  151 ,  152 ] or PPAR receptors [ 153 ]. 

 Stimulation of dopamine D1- and D2-like receptors has been shown to affect 
striatal endocannabinoids in opposite ways: for example, while D1 agonists tend to 
decrease anandamide [ 154 ], D2-like agonists increase it [ 103 ,  117 ,  136 ,  155 ]. These 
effects may depend on the ability of D1 and D2 agonists to enhance or diminish 
excitatory postsynaptic currents in striatal MSN, respectively, and suggest a 
dopamine- mediated control of endocannabinoid mobilization [ 156 ]. Indeed, studies 
have shown that LTD at corticostriatal synapses is regulated by D2 receptors [ 118 , 
 157 ]. Although the precise site of this modulation is still the subject of debate, it 
appears to be restricted to glutamatergic projections onto MSN of the indirect path-
way [ 118 ,  158 ] and to be mediated by anandamide or 2-AG, depending on the fre-
quency of stimulation applied to the glutamatergic afferents [ 159 – 161 ]. 

 Endocannabinoids, in particular anandamide, also mediate synaptic depression 
at GABAergic afferents onto striatal MSN [ 155 ,  162 – 164 ] to produce disinhibition 
of MSN activation. 

 Interestingly, endocannabinoid-mediated LTD at corticostriatal synapses is pro-
foundly compromised after striatal dopamine denervation [ 118 ] or blockade of D2 
receptors [ 157 ,  165 ,  166 ] and completely lost in dyskinetic – but not in non- 
dyskinetic – parkinsonian rats treated with levodopa [ 167 ]. 

 In line with these observations, behavioral studies indicate that the anandamide 
elevation observed after administration of dopaminergic agonists may serve as an 
inhibitory feedback signal to offset dopamine-induced hyperactivity [ 136 ,  137 , 
 168 ]. Thus, abnormalities in dopamine and endocannabinoid-mediated plasticity 
may disrupt this feedback mechanism and lead to motor disturbances, particularly 
upon long-term activation of dopamine receptors. 

 Recent studies have added a further level of complexity, showing a competitive 
interaction between dopamine D2 and adenosine A 2A  receptors in the induction of 
endocannabinoid-mediated plasticity, such that D2 receptor activation promotes 
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LTD, whereas A 2A  activation promotes LTP [ 158 ,  169 ]. Also, coadministration of 
A 2A  and CB1 agonists has been shown to partially inhibit the CB1-dependent 
decrease of glutamate transmission [ 170 ]. The presence of A2A receptors on gluta-
matergic terminals projecting onto MNS spines [ 171 ] suggests that these might be 
the anatomical substrate for these complex interactions. 

 CB1 receptors are also expressed on serotonergic raphe-striatal fi bers [ 69 ] 
(Fig.  14.1 ), which are able to (1) convert levodopa into dopamine and release it as 
a “false neurotransmitter,” thus contributing to LID development [ 172 ]; (2) infl u-
ence nigrostriatal dopamine release [ 173 ]; and consequently (3) affect the 
dopamine- mediated and CB1-dependent control of glutamate release [ 174 ]. 
Therefore, we could speculate that cannabinoid agents may exert their antidyski-
netic effects by dampening the ectopic dopamine release from serotonergic termi-
nals and/or by controlling dopamine transmission indirectly via inhibition of 5-HT 
release [ 175 ,  176 ]. 

    Molecular Mechanisms 

 Overactivity of D1-positive striatofugal neurons of the direct pathway has been long 
known to be involved in LID [ 177 – 179 ]. Dopamine denervation leads to a high- 
affi nity D1 receptor state in 6-OHDA rats [ 180 ,  181 ], and D1 agonist-induced 
GTPγS binding has been correlated with LID severity in MPTP-treated primates 
[ 182 ]. D1 overactivity is also accompanied by dysregulation of the cAMP/protein 
kinase A (PKA) signaling cascade and increased signaling of the dopamine- and 
cAMP-regulated phosphoprotein-32 kDa (DARPP-32), a key integrator of dopami-
nergic and glutamatergic inputs in the striatum [ 131 ,  183 ,  184 ]. 

 Administration of the cannabinoid agonist WIN55,212-2 has been shown to alle-
viate levodopa-induced AIM in 6-OHDA rats and to reverse the concomitant over-
activity of striatal PKA [ 131 ]. In keeping with these observations, blockade of PKA 
signaling has been proven as an effective strategy to reduce AIM expression [ 185 , 
 186 ], possibly by preventing PKA-mediated cytoskeleton modifi cations, which may 
contribute to the long-term aberrant plasticity underlying striatal dysfunction in 
dyskinesia [ 185 ,  187 ]. The reduction of PKA activity elicited by cannabinoids may 
result from the direct activation of CB1 receptors, which are negatively linked to 
adenylyl cyclase and co-localized on D1-positive striatal neurons [ 69 ]. 

 PKA-induced phosphorylation at the threonine (Thr)-34 site converts DARPP- 32 
into an inhibitor of protein phosphatase-1 (PP1) [ 188 ]. Although DARPP-32 phos-
phorylation appears to be required for the expression of CB1-mediated motor 
effects, such as catalepsy [ 189 ], WIN55,212-2 administration to dyskinetic rats 
produced a dephosphorylation of DARPP-32 at Thr-34 that was only partially 
reversed by the CB1 antagonist AM251 even at doses that fully blocked 
WIN55,212-2 antidyskinetic effect [ 131 ]. This discrepancy may depend on differ-
ent biochemical or functional aspects underlying the behaviors measured in these 
studies (catalepsy versus AIM) and/or, as previously mentioned, on species- specifi c 
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differences among animal models. Interestingly, Polissidis et al. [ 190 ] have shown 
that WIN55,212-2 can produce opposite effects on striatal Thr-34 phosphorylation 
across different rat strains [ 190 ].   

    Concluding Remarks 

 Experimental evidence indicates that systemic administration of cannabinoids 
reverses the aberrant levodopa-induced overactivity of downstream signaling that 
may lead to long-term maladaptive changes in striatal plasticity. However, both 
direct (or indirect) cannabinoid agonists and antagonists have shown antidyskinetic 
actions in preclinical models, and experimental evidence for their effi cacy in clini-
cal settings is still limited. Given the modulatory action played by the endocannabi-
noid system in the basal ganglia, understanding its dysfunction in PD and reconciling 
confl icting data may have important implications for the pathophysiology and treat-
ment of levodopa-associated motor complications. 

 In addition, the therapeutic potentials of modulating endocannabinoid levels or 
targeting non-CB receptors activated by endocannabinoids, such as TRP channels 
and PPAR receptors, have not been fully explored. These approaches may offer 
more effective and specifi c pharmacological actions than those observed with tradi-
tional cannabinoid agents. Furthermore, as some of these drugs have shown anti- 
infl ammatory and neuroprotective properties in the CNS [ 191 ], their application in 
PD therapy appears particularly appealing, as they may delay/halt the progressive 
neurodegenerative process occurring in this pathology.     
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