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What is not surrounded by uncertainty cannot be the truth.
—Richard Feynman

True genius resides in the capacity for evaluation of uncertain,
hazardous, and conflicting information.

—Winston Churchill

Abstract The goal of visualization is to effectively and accurately communicate
data. Visualization research has often overlooked the errors and uncertainty which
accompany the scientific process and describe key characteristics used to fully
understand the data. The lack of these representations can be attributed, in part, to the
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inherent difficulty in defining, characterizing, and controlling this uncertainty, and in
part, to the difficulty in including additional visual metaphors in a well designed,
potent display. However, the exclusion of this information cripples the use of
visualization as a decision making tool due to the fact that the display is no longer a
true representation of the data. This systematic omission of uncertainty commands
fundamental research within the visualization community to address, integrate, and
expect uncertainty information. In this chapter, we outline sources and models of
uncertainty, give an overview of the state-of-the-art, provide general guidelines,
outline small exemplary applications, and finally, discuss open problems in uncer-
tainty visualization.

1.1 Introduction

Visualization is one window through which scientists investigate, evaluate and
explore available data. As technological advances lead to better data acquisition
methods, higher bandwidth, fewer memory limits, and greater computational power,
scientific data sets are concurrently growing in size and complexity. Because of the
reduction of hardware limitations, scientists are able to run simulations at higher
resolution, for longer amounts of time, using more sophisticated numerical mod-
els. These advancements have forced scientists to become increasingly reliant on
data processing, feature and characteristic extraction, and visualization as tools for
managing and understanding large, highly complex data sets. In addition, there is
becoming a greater accessibility to the error, variance, and uncertainty not only in
output results but also incurred throughout the scientific pipeline.

With increased size and complexity of data becoming more common, visualiza-
tion and data analysis techniques are required that not only address issues of large
scale data, but also allow scientists to understand better the processes that produce
the data, and the nuances of the resulting data sets. Information about uncertainty,
including confidence, variability, as well as model bias and trends are now available
in these data sets, and methods are needed to address the increased requirements
of the visualization of these data. Too often, these aspects remain overlooked in
traditional visualization approaches; difficulties in applying pre-existing methods,
escalating visual complexity, and the lack of obvious visualization techniques leave
uncertainty visualization an unsolved problem.

Effective visualizations present information in a manner that encourages data
understanding through the appropriate choice of visual metaphor. Data are used to
answer questions, test hypotheses, or explore relationships and the visual presentation
of data must facilitate these goals. Visualization is a powerful tool allowing great
amounts of data to be presented in a small amount of space, however, different
visualization techniques are better than others for particular types of data, or for
answering specific questions. Using the most befitting visualization method based
on the data type and motivated by the intended goals of the data results in a powerful
tool for scientists and data analysts.
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The effective visualization of uncertainty, however, is not always possible through
the simple application of traditional visualization techniques. Often, the visualization
of the data itself has a high visual complexity, and the addition of uncertainty,
even as a scalar value, complicates the display. Issues of visual clutter, data
concealment, conflicts in how the data and the uncertainty are represented, and
unintentional biases are just some of the problems incurred when visualizing data
accompanied by uncertainty. Also, the complexity of these data sets may not lend
themselves to the straightforward application of existing visualization methods, and
thus, the added burden of uncertainty can be overwhelming.

Uncertainty data are becoming more prevalent and can be found in fields such
as medical imaging, geoscience, and mechanical engineering. The simulation of
complex systems, compilation of sensor data, and classification of tissue type are
but a few sources of uncertainty data and their expression, size, and complexity
can drastically vary. Uncertainty can arise in all stages of the analysis pipeline,
including data acquisition, transformation, sampling, quantization, interpolation, and
visualization. It can be a single scalar value presented alongside the original data, or
can be an integral aspect of the data, derived from the description of the data itself.
In any case, uncertainty is an imperative component of scientific data sets and should
not be disregarded in visualizations.

1.1.1 Sources of Uncertainty

Uncertainty can mean very different things in different situations, with each driven by
different key characteristics and goals. The uncertainty in a data set may result from
the process through which the data was gathered or generated, or it may represent
variability in the phenomenon represented by the data. We divide data uncertainty
sources into three broad classes: uncertainty observed in sampled data, uncertainty
measures generated by models or simulations, and uncertainty introduced by the
data processing or visualization processes. Variability in the underlying phenomenon
could manifest itself in sampled data or be incorporated into models or simulations. A
particular data set might be subject to one form of uncertainty or multiple. Different
types of uncertainty offer different challenges to effective and truthful visualization.
While most of the visualization literature about uncertainty concentrates on issues of
visual representation rather than source, a few papers have made a thoughtful analysis
of the source of uncertainty, as well [9, 30, 74, 75, 98]. Other useful discussions
of the sources of uncertainty can be found in the geo-spatial visualization and GIS
literatures [11, 19, 20, 62]. The discussion below draws from all these sources.

1.1.1.1 Uncertainty in Sampled Data

Uncertainty in data that is gathered through a sampling process might give the appear-
ance of too little information, too much information, or information that just cannot



6 G.-P. Bonneau et al.

Fig. 1.1 Sources of uncertainty. Both sampling and modeling uncertainties affect each other and
add to visualization uncertainties

be trusted. Data sets where missing or incomplete instances provide too little infor-
mation present challenges to many visualization methods. Filtering out data with
missing elements can ignore valuable information and produce awkward holes. Fill-
ing in missing values or instances by interpolation, imputation, or other estimation
techniques from known values can introduce error. In such cases, data quality metrics
might indicate the confidence in estimated quantities. For instance, estimating a sin-
gle missing data value from a dense set of similar instances would be expected to
produce a smaller error than an estimation from a sparser or more disparate set.
Data sets where multiple, contradictory measurements seem to provide too much
data also offer challenges for visualization. Such situations can be caused by noisy
data, noisy instruments, human error in the data gathering process, or sampling at
a scale different than that natural to the phenomenon. One special case of error in
data measurements is that of spatial data where the error might be in the position of
a sampled location, rather than in its measured values, resulting in uncertainty about
where values should be displayed. Similarly, data with contradictory values might
be characterized by data quality metrics based on sample value range, variance, or
another measure of variability. Finally, metadata about a data source may cast doubt
on its certainty. For instance, data that is old, from an untrusted source, or gathered
through a nonstandard process might be regarded with some skepticism (Fig. 1.1).

1.1.1.2 Models Containing Uncertainty

Sophisticated computational models may contain elements designed to estimate the
uncertainty or variability in the model predictions. The sources of this type of uncer-
tainty include residual variability from simplifying abstractions, variability in the
mechanism or magnitude of causality and relationships, potential error in model
inputs, incorrect model parameters, and imprecision in tacit knowledge incorporated
in the model. The range of predictions made by model ensembles, where differ-
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ent component models may make different assumptions or use different parameters,
illustrate the potential variability in even the best models.

The output from such a model may include information about estimated error
in the form of a single error measure, ranges for expected values, or predicted dis-
tributions for values or errors. These measures are applicable to numeric quanti-
ties. Alternatively, a model that makes nominal or categorical predictions may also
indicate the degree of confidence in its predictions by producing multi-value predic-
tions, where each possible value or classification is associated with a likelihood.

1.1.1.3 Uncertainty from the Visualization Process

Finally, we should understand how the visualization process impacts the propaga-
tion, magnification, perception, and impact of uncertainty. In order to do this, we
must understand computational sources and magnifiers of error and uncertainty in
input values, perceptual and cognitive influences on the understanding of uncertainty
visualization, effects of differences in audience abilities and cultures, requirements
imposed by different application tasks and goals, and competing positive and negative
consequences of showing uncertainty.

1.2 Perceptual Uncertainty

Logically, it seems sensible to display information about uncertainty in a manner
consistent with our cognitive models of which perceptual elements contain variability
or uncertainty. A number of approaches to uncertainty visualization seem to build
on this principle, representing uncertainty with such visual elements as blur, flicker,
reduced saturation, sketched outlines, or transparency.

There have been relatively few careful evaluations of the effectiveness of uncer-
tainty visualization and its impact on the decision-making process that have appeared
in the visualization literature. In some cases, researchers have used quantitative eval-
uations or user studies to evaluate the ability of subjects to understand uncertain infor-
mation [33, 109]. Zuk and Carpendale [111] present a framework for the heuristic
evaluation of uncertainty visualizations from the perceptual and cognitive principles
described by Bertin [6], Tufte [101], and Ware [105]. They use this framework to ana-
lyze eight uncertainty visualizations of different types and from different domains.
They propose this sort of heuristic evaluation as a rough substitute when more specific
evaluations are not practical.

Additional insight into the perceptual and cognitive elements of effective
uncertainty representations can be found in the GIS literature. Harrower surveys
a collection of evaluations of methods for representing uncertainty in map-based
visualizations [38]. He observes that the most common characteristics used to judge
a technique are its effects on confidence, speed, and accuracy of judgements. Two
principles which may be derived from that set of evaluations are the superiority of
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displays that integrate value and certainty information over those that show each in a
separate display and the preference for static displays over those that toggle between
value and certainty. Deitrick describes experiments that show how inclusion of infor-
mation about uncertainty changes the judgements made by subjects [21].

The field of medical decision-making has also considered the role of uncertainty
in the decision-making process. Politi et al. [78] studied the effect of communication
of uncertainty on patients engaged in shared decision-making. They reported an aver-
sion to ambiguity in this situation, leading some patients to avoid making decisions in
the presence of uncertainty while others engaged in additional information-seeking
behaviors. They observed interactions between level of education and decision-
making under uncertainty. In particular, less educated patients were more likely to
conclude that the inclusion of visual depictions of uncertainty made data less trust-
worthy. Patients also tended to interpret uncertain situations in a way that reinforced
their initial values and preferences. Finally, Politi et al. suggest that communication
of uncertainty may lead to greater ultimate satisfaction in the decision process and a
lower likelihood of regret about a decision.

There is evidence that decision-making in the presence of uncertainty takes place
in different regions of the brain than decision-making in more certain conditions.
Specifically, Paulus et al. [76] observed different patterns of brain activity under fMRI
during different decision-making conditions. They suggest that the more complex
task of decision-making under uncertainty requires more complex strategies and is
more influenced by experiences in the past. The physiological evidence supports this
theory by showing increased involvement of brain areas important to strategy forma-
tion and adjustment, in particular the prefrontal and parietal cortex, when uncertainty
is present.

1.3 Formal Description

The consideration and quantification of uncertainties is of great importance in many
practical applications and is part of the data analysis chain to support decision making.
For this reason, we need to understand the data including its shortcomings, value, and
relevance, which largely depends on the presence or absence of uncertainty. Our goals
are to understand quantified uncertainty and deal with it, as well as independently
perform uncertainty quantification ourselves.

1.3.1 What is Uncertainty?

Uncertainty is the lack of information. It can be due to randomness, such as results
by chance, for example the roll of the dice or knowing the exact daily quantity of rain
in Seattle. This type of uncertainty is called aleatoric and is objective in that results
differ each time an experiment is run. These types of phenomenon are truly random
in that the results depend on chance, and thus use probabilistic modeling to describe.
Uncertainty can also be due to a lack of knowledge, that is, "knowledge that can in
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principle could be known," but in practice is not. This type of uncertainty is called
epistemic and is subjective, such as not knowing the birth date of the last Chinese
Emperor. These uncertainties are due to errors that practically cannot be controlled
and can be described by non-probabilistic modeling.

1.3.2 Mathematical Modeling of Uncertainty

A variety of types of uncertainties occur in practice, including mixtures of different
types of uncertainty. Quantification of uncertainties, including mixtures, requires a
unifying mathematical framework, which is very difficult to establish and not yet
fully accomplished.

1.3.2.1 Fundamental Setting

From a fundamental standpoint, we are interested in the situation with possible
outcomes or occurrences of “events” A, B, C, where A, B, and C are subsets of
the set of all elementary events in the universe. The task at hand is to then measure
the evidence that A ever happened, the degree of truth of that statement “event A
happened”, and the probability that event A will happen. The question is then, how
do we measure and what is measurement?

In mathematics, measurement means to assign real numbers to sets. For example,
the classical task in metric geometry is to assign numbers to geometric objects for
length, area, or volume. The requirement in the measurement task is that the assigned
numbers should be invariant under displacement of the respective objects.

In ancient times, the act of measuring was equivalent to comparing with a standard
unit. However, it soon became apparent that measurement was more complicated
than initially thought in that it involves finite processes and sets. The first tool to
deal with this problem was the Riemann integral which enabled the computation of
length, areas, and volumes for complex shapes (as well as other measures). How-
ever, the Riemann integral has a number of deficiencies, including its applicability
only to functions with a finite number of discontinuities, fundamental operations of
differentiation and integration are, in general, not reversible, and limit processes, in
general, can not be interchanged. In 1898, Émile Borel developed classical measure
theory which includes σ -algebra to define a class of sets that is closed under set
union of countably many sets and set complement, and defined as additive measure
μ that associates a number ∈ R

+
0 with each bounded subset in the σ -algebra. Around

1899–1902, Henry Lebesgue defined integrals based on a measure that subsumes the
Borel measure, based on a special case. He connected measures of sets and measures
of functions.
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1.3.2.2 Quantification

Probability measure was then developed in 1933 by Andrey Nikolaevich Kolmogorov,
which used classical measure theory and added the measure of 1 assigned to the uni-
versal set. This is thought of as classical probability theory.

The classical probability theory has since become the dominant approach to
examine uncertainty and randomness. Extensive mathematical studies followed and
resulted in highly sophisticated theories. Its foundation rests on the definition of
probability space, which was Kolmogorov’s big achievement. A probability space
is a triplet (Ω, F, P). Here Ω is a countable event space containing all possible
outcomes of a random event. F is the so-called σ -algebra of Ω and it represents all
combinations of the outcomes from Ω . Its construction satisfies:

• It is not empty: ∅ ∈ F and Ω ∈ F.

• If a set A ∈ F , then its complement Ac ∈ F.

• If sets A1, A2, . . . ,∈ F , then
⋃∞

i=1 Ai ∈ F, and
⋂∞

i=1 Ai ∈ F.

P is the well known probability measure and it is used to assign a real number, i.e.,
the probability, on the occurrence of any outcomes of the events (from Ω) and their
potential combinations (from F). It satisfies the following important and well known
principles.

1. 0 ≤ P(A) ≤ 1, for any A ∈ F .
2. P(Ω) = 1. That is, the probabilities of all outcomes add up to one.
3. For A1, A2, · · · ∈ F and Ai ∩ A j = ∅, for any i �= j ,

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P(Ai ).

About 50 years later, the additivity requirement became a subject of controversy
in that it was too restrictive to capture the full scope of measurement. For example, it
works well under idealized, error-free measurements, but is not adequate when mea-
surement errors are unavoidable. In 1954, Gustave Choquet developed a (potentially
infinite) family of non-additive measures (capacities), and for each given capac-
ity, there exists a dual “alternating capacity”. An integral based on these measures is
non-additive, can be computed using Riemann or Lebesgue integration and is applied
specifically to membership functions and capacities.

In 1967, Arthur P. Dempster introduced imprecise probabilities based on the
motivation that the precision required in classical probability is not realistic in many
applications. Imprecise probabilities deal with convex sets of probability measures
rather than single measures. For each given convex set of probability measures he
also introduced 2 types of a non-additive measures: lower and upper probabilities,
and super- and supra-additive. This allow probabilities to be represented imprecisely
by intervals of real numbers.

In 1976, Glenn Shafer analyzed special types of lower and upper probabilities
and call then belief and plausibility measures. The theory based on these measures
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became known as Dempster-Shafer theory (DST) or evidence theory. DST is capable
of dealing with interval-based probabilities, such that belief or probability measures
are equal to the ranges of admissible probabilities. As it turns out, belief measures are
equivalent to Choquet capacities of order inf and plausibility measures are equivalent
to alternating capacities of order inf.

The comparison of membership functions of fuzzy sets and probabilities was
investigated in 1978 by Michio Sugeno and found to be not directly possible. This
led to the generalization of additive measures analogous to generalization such that
crisp sets generalize to fuzzy sets, and additive measures generalize to (non-additive)
fuzzy measures or monotone measures. The Sugeno integral was then introduced with
respect to a monotone measure. That same year, Lofti Zadeh defined a possibility
function associated with each fuzzy set that is numerically a membership function,
and a possibility measure that is a supremum of the possibility function in each set
of concern, for both crisp and fuzzy sets. This is one of several interpretations of the
“theory of graded possibilities”. Its connection to DST is that constant plausibility
measures are equivalent to possibility measures and constant belief measures are
necessity measures.

In summary, the three most utilized uncertainty theories are the Classical
Probability Theory, the Dempster-Shafer Theory, and Possibility Theory and can
be divided into two classes. The first class uses additive measures in which the addi-
tion equal to the union expresses no interaction between events and can be thought
of as classical probability combined with measure theory. The second class uses
non-additive measures, in which addition greater than the union expresses positive
interaction between events, such as synergy, cooperation, coalition, enhancement
or amplification, while addition less than the union expresses negative interaction
between events such as incompatibility, rivalry, inhibition, downgrading, or con-
densation. This class combines one of many uncertainty theories with generalized
measure theory.

1.4 Evaluation

Visualization research is too often neglected by industry and other potential expert
users. One of the reasons is the lack of a proper evaluation of the results. This
lack of evaluation was especially obvious in historical visualization fields such as
volume rendering or fluid flow visualization. In the more recent domain of uncertainty
visualization, researchers have made a significant effort into the assessment of the
proposed techniques. The types of evaluation may be classified into three groups:

• Theoretical evaluation: the method is analyzed to see if it follows established
graphical design principles,

• Low-level visual evaluation: a psychometric visual user study is performed to
evaluate low-level visual effects of the method,
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• Task oriented user study: a cognitive, task-based user study is conducted to assess
the efficiency or the usability of the method.

1.4.1 Theoretical Evaluation

General guidelines and rules regarding visual depiction of data have been established,
that have proven their efficiency. Bertin in [5], later translated in [6], has introduced
the concept of visual variables. These include among others the location, size, ori-
entation, shape, focus and realism. Furthermore he defined four visual properties,
natural ordering, the ability to quantify, the ability to focus user attention (selectiv-
ity) and the ability to associate similar elements (associativity). He studied which of
these properties are verified by the visual variables. Tufte in [102], through his con-
cepts of graphical excellence and integrity, has proposed a number of guidelines to
enhance the precision and the usability of graphical depiction. Chambers et al. in [14]
have studied the relative influence of specific patterns on the visual perception, for
example straight lines versus curves, dark versus light objects or small versus large
patterns. This study leads the authors to define general rules for plot construction.

These graphical design principles may be used to conduct a theoretical evalua-
tion of new uncertainty visualization techniques. As already mentioned in Sect. 1.2,
Zuk and Carpendale in [111] have done such an evaluation for eight uncertainty
visualization techniques. The same type of theoretical evaluation was followed by
Riveiro in [87] to evaluate three uncertainty visualization techniques in the context
of information fusion and decision making.

1.4.2 Low-Level Visual Evaluation

Barthelmé and Mamassian in [2] studied the influence on noise uncertainty in a
decision-making task. Based on psychometric and simple task experiments, he
proved that users can reliably measure the visual uncertainty and use this information
in their decision-making. Coninx et al. in [18] conducted psychometric experiments
to measure the impact of contrast sensitivity on the visibility of uncertain noisy pat-
terns. He used this information in order to control the visibility of uncertainty data
in a visualization technique based on the perturbation of colormaps by Perlin noise.

1.4.3 Task-Oriented User Study

Task oriented cognitive user studies are by far the most common way of assessing
the efficiency and usability of uncertainty visualization techniques. In this type of
evaluation a panel of users is typically asked to perform a task that requires not
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only low-level visual processing but also high-level cognitive treatment of the visual
information. Standard tasks as an example may consist in counting the number of
local minima in a dataset, find the location of the maximum or minimum value,
find the direction of rotation of a vortex. The task completion time, task completion
accuracy, user’s rating of efficiency and usability may be recorded. A statistical
analysis of the recorded data is done. Typical analyses include analysis of variance
(ANOVA), used to check in particular if the difference in the mean value of two
distributions is significant. Examples of uncertainty visualization papers with a task-
based evaluation include [20, 21, 69, 91].

1.5 Review of Current State of the Art

The goal of visualization is to effectively present large amounts of information in
a comprehensible manner, however, most visualizations lack indications of uncer-
tainty [42, 43, 63, 83].

1.5.1 Traditional Representations

Tukey [103] proposed graphical techniques to summarize and convey interesting
characteristics of a data set not only to facilitate an understanding of the given data but
also to further investigation and hypothesis testing. These tested graphical methods,
such as the boxplot, histogram, and scatter plot, provide identifiable representations
of a data distribution, and their simplicity allows for quick recognition of important
features and comparison of data sets. In addition, they can be substituted for the
actual display of data, specifically when data sets are too large to plot efficiently.

1.5.1.1 1D

One of the most ubiquitous approaches to displaying uncertainty information is
the boxplot [28, 34, 94, 103], which is the standard technique for presenting the
five-number summary, consisting of the minimum and maximum range values, the
upper and lower quartiles, and the median, as illustrated in Fig. 1.2a. This collec-
tion of values quickly summarizes the distribution of a data set, including range and
expected value, and provides a straightforward way to compare data sets. In addi-
tion, the reduced representation afforded by the five-number summary provides a
concise tool for data analysis, since only these characteristic values need to be ana-
lyzed. Figure 1.2b and c show visual modifications of the boxplot. Surveys on the
introduction and evolution of the boxplot can be found in [16, 81].

The box plot is often adapted to include information about the underlying distrib-
ution, as demonstrated in Fig. 1.2d–g. The most common modification adds density
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Fig. 1.2 Variations of the boxplot. a The construction of the boxplot [103]. b Range plot [94].
c Innerquartile plot [102]. d Histplot [4]. e Vaseplot [4]. f Box-percentile plot [26]. g Violin plot [39].
h Variable width notched boxplot [67]. i Skewplot [16]. j Summary plot [82]

information, typically through changes to the sides of the plot. The hist plot [4]
extends the width of the cross bars at the quartiles and median to express density
at these three locations. The vase plot [4] instead varies the “box” continuously
to reflect the density at each point in the innerquartile range. Similarly, the box-
percentile plot [26] and violin plot [39] show density information for the entire range
of the data set. Density can also be shown by adding dot plots [106], which graph data
samples using a circular symbol. The sectioned density plot [17] completely recon-
structs the box plot by creating rectangles whose colors and size indicate cumulative
density, and placement express the location of the quartiles. Sample size and confi-
dence levels can be expressed through changing or notching the width of the plot [67]
(Fig. 1.2h) or by using dot-box plots, which overlay dot plots onto box plots [107].
Other descriptors, such as skew and modality, can be added by modifying the width
of the median line [67], thickening the quartile lines [16], (Fig. 1.2i) adding beam
and fulcrum displays [23] alongside, or overlaying additional glyphs [82] (Fig. 1.2j).

1.5.1.2 2D

Standard implementations of the boxplot focus on univariate data distributions. The
five-number summary is a useful descriptor of not only univariate, but also bivariate
data distributions. The main challenge in extending the boxplot for use with higher
dimensional data is how to translate the five-number summary values, which are
vector values in the bivariate case, into visual metaphors with meaningful spatial
positions, while maintaining the simplicity of the original boxplot. A rangefinder
boxplot [3], as seen as the solid back lines in Fig. 1.3a, is a simple extension of the
boxplot into 2D which determines boxplots for the two dimensions independently and
draws lines to show the interquartile ranges and extrema of those plots. This idea was
further improved upon, as shown as the thick gray lines in Fig. 1.3a, to emphasize the
quartiles rather than the range, by moving the perpendicular lines from the extrema
values to the upper and lower quartile positions and extending whisker lines to the
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Fig. 1.3 Bivariate extensions of the boxplot. a The rangefinder boxplot [3]. b The 2D boxplot [99].
c The bagplot [88]. d The quel-(gray) and rel-(black) plots [32]

extrema value of the variables [53]. Other techniques for extending the boxplot into
2D all use the notion of a hinge that encompasses 50 % of the data and a fence that
separates the central data from potential outliers. The distinctions between each of
these methods are the way the contour of the hinge and fence are represented, and
the methods used to calculate the contours. The 2D boxplot [99], as seen in Fig. 1.3b,
computes a robust line through the data by dividing the data into three partitions,
finding the median value of the two outer partitions, and using these points as the
line. Depending on the relationship between the slope of the line and each variable,
the quartile and fence lines are drawn either parallel to the robust line, or parallel to
the variables coordinate axis. The lines not comprising the outer-fence and the inner-
hinge boxes are removed. The bagplot [88] uses the concept of halfspace depth to
construct a bivariate version of the boxplot, as seen in Fig. 1.3c. The relplot and
the quelplot [32] use concentric ellipses to delineate between the hinge and fence
regions. Both the relplot and quelplot can be seen in Fig. 1.3d.

1.5.1.3 PDFs

There is a body of research investigating methods for displaying probability distri-
bution functions with spatial positions. Each of these methods takes an exploratory
approach to the presentation of the data by filtering down the amount of data, and
then providing a user interface for the scientist to explore the data sets. Ehlschlaeger
et al. [25] present a method to smoothly animate between realizations of surface
elevation. Bordoloi et al. [7] use clustering techniques to reduce the amount of data,
while providing ways to find features of the data sets such as outliers. Streamlines
and volume rendering have been used by Luo et al. [61] to show distributions mapped
over two or three dimensions.

Kao et al. [48] uses a slicing approach to show spatially varying distribution data.
This approach is interesting in that a colormapped plane shows the mean of the
PDFs, and cutting planes along two edges allow for the interactive exploration of
the distributions. Displaced surfaces as well as isosurfaces are used to enhance the
understanding of the density of the PDFs.
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Case studies of specific data have been performed by Kao et al. [46, 47]. Their
data sets come from NASAs Earth Observing System (EOS) Satellite images and
Light Detection And Ranging (LIDAR) data. The methods used to show this data
include encoding the mean as a 2D color map, and using standard deviation as a
displacement value. Histograms are also employed to understand better the density
of the PDFs. To explore the mode of specific distributions, a small set of PDFs are
plotted onto a color mapped spatial surface.

1.5.2 Uncertainty Visualization

Many visualization techniques that incorporate uncertainty information treat uncer-
tainty like an unknown or fuzzy quantity; [75] is a survey of such techniques. These
methods employ the meaning of the word uncertainty to create the interpretation
of uncertainty or unknown to indicate areas in a visualization with less confidence,
greater error, or high variation. Ironically, while blurring or fuzzing a visualization
accurately indicates the lowered confidence in that data, it does not lead to more
informed decision making. On the contrary, it obfuscates the information that leads
to the measure of uncertainty. Because it obscures rather than elucidates the quanti-
tative measures leading to the uncertain classification, such a solution to the problem
of adding qualitative information to visualization misses important information.

1.5.2.1 Comparison Techniques

Often, uncertainty describes a comparison that can most clearly be understood visu-
ally, such as the difference between surfaces generated using different techniques, or
a range of values that a surface might fall in. A simple approach to the visualization of
this type of information is a side-by-side comparison of data sets. An example of this
type of visualization is presented in Jiao et al. [41] where streamlines computed from
various fiber tracking algorithms are interactively displayed along with the global
and local difference measures. Another example is the time window, presented in
[112], in which temporal uncertainty around archeological sites is displayed, using
various visual clues, in an interactive, exploratory system.

However, this approach may not clearly manifest subtle differences when
the data are nearly the same, and it becomes harder to perform this comparison as the
visualization becomes more complicated. Another simple approach is to overlay the
data to be compared [45]. With this technique, the addition of transparency or wire
frame can produce a concise, direct comparison of the data sets. A similar approach
uses difference images to display areas of variation [108]. These approaches are
less effective, however, when the uncertainty can be categorized as more of a range
of values rather than just two distinct ones. In such cases, a surface sweep, known
as a fat surface [75], can be used to indicate all possible values. Another approach
is the integration of isosurface and volume rendering. Here, an opaque isosurface
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can be used to indicate the most likely value, and a transparent volume rendering
surrounding the isosurface can indicate the range of possible values [43]. Uncer-
tainty information for large collections of aggregated data can be presented using
hierarchical parallel coordinates [29]. Lee et al. [52] visualize differences in loca-
tion and sub-tree structure between two hierarchies through color and transparency.
Finally, bounded uncertainty, while not effectively visualized in 3D, can be expressed
through the ambiguation of boundaries and edges of pie charts, error bars, and other
2D abstract graphs [70] or as modifications to line charts [96].

1.5.2.2 Attribute Modification

Another standard method to visualize uncertainty involves mapping it to free vari-
ables in the rendering equation or modifying the visual attributes of the data. Such
methods include modifying the bidirectional reflectance function (BRDF) to change
surface reflectance, mapping uncertainty to color or opacity [65, 91, 97], or pseudo-
coloring using a look-up table [75]. This technique has been used as a means for
conveying uncertainty in the areas of volume rendering [22, 51, 89], point cloud
surface data [77], isosurfacing [45, 79, 80, 86] and flow fields [8], and is often com-
bined with other uncertainty visualization methods. An example technique colormaps
flowline curvature onto volume rendered surfaces, highlighting areas in which small
changes in isovalue lead to large changes in isosurface orientation and thus indicat-
ing areas where the isosurface is a poor representation of material boundary [49].
Another example uses height as a free parameter to display uncertainty in 2D vector
fields [72]. Texture can be used similarly to convey uncertainty and is also often
modified by opacity, hue, or texture irregularities [18, 40, 74]. Sound has also been
used as another channel for expressing uncertainty [58].

1.5.2.3 Glyphs

Glyphs are symbols used in visualization to signify data through parameters such
as location, size, shape, orientation, and color. Because of the multivariate nature
of glyphs, they can be used in visualization to map uncertainty to a free parameter.
One such approach uses glyphs to present the distribution of multivariate aggregated
data over a range of values [15]. These glyphs show the average, standard deviation,
and distribution of three attributes of the data set. Conical glyphs have also been
used to portray fiber tracks from DTI, leveraging the radius of the cone to encode
uncertainty in the orientation of bundles [44]. An approach that modifies attributes
of glyphs already present in the visualization is presented as a procedural generation
algorithm [13]. In this work, the data is sampled on a regular grid and the size, color,
and placement of glyphs are taken directly from the data samples. The uncertainty
is then used to distort the glyphs so that glyphs with low uncertainty are very sharp,
with the sharpness level decreasing as the uncertainty level increases. This distortion
provides a clear indication of uncertainty and error while not placing heavy emphasis
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on areas of high uncertainty. In a similar fashion, contours already present in the
visualization can be used [84, 85] or modified [71, 92] to express uncertainty.

Because not all data is visualized effectively using glyphs, the addition of glyphs
to convey only uncertainty information is often a preferable approach. A specific
example is the UISURF system [45], which visually compares isosurfaces and the
algorithms used to generate them. In this system, glyphs are used to express positional
and volumetric differences between isosurfaces by encoding the magnitude of the
differences in the size of the glyphs. Similarly, line, arrow, and ellipsoidal glyphs
can be used to depict uncertainty in radiosity solutions, interpolation schemes, vector
fields, flow solvers, astrophysical data and animations through variation of placement,
magnitude, radii, and orientation [54, 55, 57, 75, 91, 93, 109, 110, 113].

1.5.2.4 Image Discontinuity

Uncertainty visualization often relies on the human visual systems ability to quickly
pick up an images discontinuities and to interpret these discontinuities as areas with
distinct data characteristics. Techniques that utilize discontinuities rely on surface
roughness, blurring, oscillations [13, 33, 56, 108], depth shaded holes, noise, and
texture [22], as well as on the translation, scaling, rotation, warping, and distortion of
geometry already used to visualize the data [75], to visualize uncertainty. Animation
can highlight the regions of distortion or blur or highlight differences in visualization
parameters [30, 60, 66]. Such techniques have been applied to multivaritate data
displayed through scatter plots or parallel coordinates [27, 36].

1.6 Examples

1.6.1 Medical Visualization

A fundamental task in medical visualization is segmentation, the partitioning of a
given image into regions that correspond to different materials, to different anatomi-
cal structures, or to tumors and other pathologies. Medical image acquisition typically
introduces noise and artifacts, and we may wish to segment structures for which the
data itself provides little contrast. This is a source of data uncertainty. In many cases,
segmentation also involves complex computational models and numerous parame-
ters, which introduces model uncertainty.

Traditional volume rendering classifies materials based on scalar intensity or fea-
ture vectors that account for first and second derivatives [50]. Lundström et al. [60]
introduce probabilistic transfer functions that assign material probabilities to model
cases in which the feature ranges of different materials overlap. This results in a dis-
tribution of materials at each location in space, which is visualized by an animation
in which each material is shown for a duration that is proportional to its probability.
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Fig. 1.4 A visualization of
the brain using transfer
functions that express the risk
associated with classification

More complex segmentation tasks cannot be achieved based on local image prop-
erties alone. They require models that account for more global assumptions or more
complex prior knowledge. Such models are also more computationally demanding
and are typically run as a pre-process of the visualization. Some of them output class
probabilities, from which Kniss et al. [51] derive measures that can be used to define
transfer functions that enable exploring the risk associated with binary classifica-
tions, or to visualize spatial decision boundaries. Figure 1.4 shows the use of such
transfer functions in a visualization of a segmented brain.

The framework of Saad et al. [90] combines volume rendering with tables that
list groups of voxels for which the same materials have been found to be most,
second most, and third most likely. They demonstrate several examples in which
these tuples can be used to detect anomalous subregions within areas that share the
most likely material. Follow-up work [89] has concentrated on identifying anomalies
or misclassification by considering regions in which the image-based likelihood
disagrees with shape and appearance priors.

Finally, work by Torsney-Weir et al. [100] addresses the model uncertainty in
segmentation methods by providing a systematic framework to explore the impact
of model parameters. This should facilitate finding settings that produce the desired
segmentation, and for which the results do not change significantly when slightly
changing the exact parameter values.

Fiber tracking, the reconstruction of nerve fiber bundles from diffusion MRI, is
another subfield of medical visualization in which uncertainty plays an important
role. It is treated in detail in Chap. 8 of this book.

http://dx.doi.org/10.1007/978-1-4471-6497-5_8
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Fig. 1.5 The EnsembleVis tool [84] for exploring short-range weather forecast data

1.6.2 Weather and Climate

Uncertainties are prolific in weather and climate applications and arise not only from
insufficient models, but also from our inability to accurately measure current weather
conditions and obtain precise knowledge on parameter settings. The typical approach
for mitigating uncertainties in weather and climate applications is to perform multi-
run simulations, often using a collection of models, parameter perturbations, and
initial conditions to generate outcome results for multiple variables and time steps.
While the variables contained in the output of both weather and climate simulations
are similar, the main differences between the two domains are the spatial region of
interest and the duration of time covered. Weather applications are typically only
interested in a small subsection of the planet, such as North America, and run to
cover time steps within the near future. In contrast, climate modeling has a spatial
interest of the whole planet and is run over hundreds of years.

The uncertainty resulting from these multi-run simulations are typically captured
in what is know as “Ensemble data sets”. These ensembles combine the multiple runs
such that notions of probability of outcome can be explored. An ensemble consists
of multiple simulation realizations and are often generated by pre-defined parameter
perturbations. The visualization and analysis of these data sets aims to understand
variations between models and effects of parameters and initial conditions, culminat-
ing in an understanding of the phenomenon leading to weather and climate events.

An example of a visualization and analysis tool can be seen in Fig. 1.5, which
shows a screen shot of the EnsembleVis framework for the exploration of short-range
weather forecasting data [84]. This tool uses a multiwindow approach to provide a
collection of views for the end user, an approach used by other tools [92]. This
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approach allows the user to see overviews of a single time step, the progression
of the data over time, drill downs to explore interesting spatial locations, including
direct data display, and finally query-based exploration for more complex analyses.

1.6.3 Security and Intelligence

Security and intelligence uncertainty factors are a natural fit for security visualization,
where making well-informed decisions is the primary goal. Enforcing security has
become a top priority among a wide range of real-life applications, for instance large
corporate or government/military networks. However, the task of decision making
is notoriously difficult due to the malicious, hidden nature of attacks, sparse sam-
pling of real-time environment, and time-critical requirements. Therefore, in security
analysis uncertainty often exists among decisions at all levels, ranging from global
scale such as “is there any malicious activity?” to finer scale such as “which enti-
ties are malicious?” or “in what order did these events actually occur?”. The results
of these decisions are used to make recommendations which can have significant
operational impact, as nodes identified as malicious will be quarantined or removed
from the network. Previously, both automated attack mitigation and interactive visu-
alization approaches have been developed for security visualization. These existing
techniques serve as a good platform for the integration of uncertainty visualizations
and interactions. For example, several visual abstractions have been explored for
detecting the sybil attack, which is a coordinated attack that can subvert many types
of networks [24]. Sybil attacks are challenging to detect due to their variable attack
forms and patterns. Because of this, traditional signature-based or behavior-based
methods are ineffective, and security analysts must often find these nodes through
manual analysis of their network. Visual abstractions from both adjacency matrix
of the network connections [59] and spectral space [37] are explored, which can
elucidate the signature patterns of an attack and apply automatic pattern matching
algorithms or interactive analysis methods to search for similar patterns. As the short
paper (Chap. 7) in this chapter describes, the factors of uncertainty can be introduced
to existing detection mechanisms to improve the continuing analytic process. Since
uncertainty is prevalent in security applications, the impact of uncertainty should
be integrated into the entire procedure of data analysis and interactive exploration.
Many current security visualization approaches can and should be augmented with
interactions and visualizations for specifying and managing analytic uncertainty. By
integrating analytic uncertainty in security visualization, analysts are able to make
better-informed decisions regarding critical network infrastructure issues.

http://dx.doi.org/10.1007/978-1-4471-6497-5_7
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1.7 Open Problems

1.7.1 Perceptual and Cognitive Implications

Since visualization often relies heavily on the use of colors to convey information, it
can be quite challenging for individuals with color vision deficiency. For them, even
interpreting visualizations that would pose no problems for individuals with normal
color vision can be a difficult task. In this case, however, the resulting ambiguity, and
therefore, uncertainty, is inherent to the observer, falling outside the broad sources
of uncertainty discussed in Sect. 1.1.1 (i.e., uncertainty observed in sampled data,
uncertainty measures generated by models or simulations, and uncertainty introduced
by the data processing or visualization processes). Thus, individuals with color vision
deficiency have to constantly deal with uncertainty visualizations and make decisions
based on ambiguous information. For those individuals, the display of additional data
that tries to express the amount of uncertainty from various sources may even generate
further ambiguities. The issues involving uncertainty visualization and color vision
deficiency are discussed in Chap. 2.

1.7.2 Comparative Visualizations

The visualization of uncertainty may involve a comparison of different results, such
as a weather forecast generated with different parameters. To detect similarities or dif-
ferences in the results a comparative visualization technique [73] can be employed.
In 3D a visualization via fusion [10, 12] is not feasible beyond a small number
(2 or 3) of data sets, due to clutter and inter-dependence of the different data sets. An
alternative to fusion is a side-by-side view of the data sets. This may be problematic
in 3D since it is hard to find corresponding reference points in more than two vol-
umes. As an example to control a 3D comparison Balabanian et al. [1] propose to
integrate volume visualization into a hierarchical graph structure. These integrated
views provide an interactive side-by-side display of different volumes while the
parameter space can be explored through the graph structure. In 2D a blending of
different results has basically the same issues as a fusion in 3D [31, 35]. There are
techniques which allow a comparative visualization of different data sets in a single
image. Urness et al. [104] introduced color weaving for flow visualization to com-
pare different flow fields in a single 2D view. In contrast to blending, each pixel of
the resulting image represents an unmodified value from one of the data sets. The
generated pattern provides a good overview to detect similar or varying regions in
the data sets. To compare certain regions in more detail, e.g., borders, it is better to
consider larger comparison areas than individual pixels. In this context it is crucial
that data sets which should be compared are visualized next to each other to get
a direct comparison for a certain area. For only two data sets a checkerboard pat-
tern can be used to achieve screen door transparency [95]. The white squares show

http://dx.doi.org/10.1007/978-1-4471-6497-5_2
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one data set and the black squares show the other data set. The attribute block by
Miller [68] allows a simultaneous comparison of four data sets. A repeating 2 × 2
pattern provides a shared border between all four data sets. An extension to this
approach is the comparative visualization technique of Malik et al. [64]. Instead of
a rectangular pattern a hexagonal pattern is used to more finely subdivide the image
space. This allows the comparison of a larger number of data sets to one central data
set since the hexagonal pattern can be subdivided according to the number of data
sets to compare. Uncertainty of a measurement, simulation, or process provides an
additional data stream which generates further visualization challenges. Uncertainty
may be shown at discrete positions through glyphs or icons. For a dense representa-
tion of uncertainty, comparative visualization seems to be a promising emerging area.
Topics of research will be: integrated views; sparsification of many data sets which
shall be shown simultaneously; comparative navigation; visualization of competing,
contradictive, or conflicting features.
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