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Preface

Scientific Visualization is the transformation of abstract data, derived from
observation or simulation, into readily comprehensible images, and has proven to
play an indispensable part of the scientific discovery process in many fields of
contemporary science. Since its inception two decades ago, the techniques of
Scientific Visualization have aided scientists, engineers, medical practitioners, and
others in the study of a wide variety of data sets including, for example, high-
performance computing simulations, measured data from scanners (CAT, MR,
confocal microscopy), Internet traffic, and financial records. One of the important
themes being nurtured under the aegis of Scientific Visualization is the utilization
of the broad bandwidth of the human sensory system in steering and interpreting
complex processes and simulations involving voluminous data sets across diverse
scientific disciplines. Since vision dominates our sensory input, strong efforts have
been made to bring the mathematical abstraction and modeling to our eyes through
the mediation of computer graphics.

In June 2011, we organized a Dagstuhl seminar, with 54 participants, that
focused on the four parts of this book. The seminar comprised talks from leaders
in the field and breakout sessions on the four specific topics: Uncertainty
Visualization, Multifield Visualization, Biomedical Visualization, and Scalable
Visualization. This book is a culmination of the four topics with contributed
chapters from the participants for each of the four parts of the book.

We would like to thank all of the authors for their thoughtful and insightful
contributed chapters. We would also like to thank Catherine Waite and Lynn
Brandon from Springer UK for their assistance and patience in generating this
book.

Oxford Min Chen
Kaiserslautern Hans Hagen
Salt Lake City Charles D. Hansen

Christopher R. Johnson
Stony Brook Arie E. Kaufman
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Chapter 1
Overview and State-of-the-Art of Uncertainty
Visualization

Georges-Pierre Bonneau, Hans-Christian Hege, Chris R. Johnson,
Manuel M. Oliveira, Kristin Potter, Penny Rheingans
and Thomas Schultz

What is not surrounded by uncertainty cannot be the truth.
—Richard Feynman

True genius resides in the capacity for evaluation of uncertain,
hazardous, and conflicting information.

—Winston Churchill

Abstract The goal of visualization is to effectively and accurately communicate
data. Visualization research has often overlooked the errors and uncertainty which
accompany the scientific process and describe key characteristics used to fully
understand the data. The lack of these representations can be attributed, in part, to the
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inherent difficulty in defining, characterizing, and controlling this uncertainty, and in
part, to the difficulty in including additional visual metaphors in a well designed,
potent display. However, the exclusion of this information cripples the use of
visualization as a decision making tool due to the fact that the display is no longer a
true representation of the data. This systematic omission of uncertainty commands
fundamental research within the visualization community to address, integrate, and
expect uncertainty information. In this chapter, we outline sources and models of
uncertainty, give an overview of the state-of-the-art, provide general guidelines,
outline small exemplary applications, and finally, discuss open problems in uncer-
tainty visualization.

1.1 Introduction

Visualization is one window through which scientists investigate, evaluate and
explore available data. As technological advances lead to better data acquisition
methods, higher bandwidth, fewer memory limits, and greater computational power,
scientific data sets are concurrently growing in size and complexity. Because of the
reduction of hardware limitations, scientists are able to run simulations at higher
resolution, for longer amounts of time, using more sophisticated numerical mod-
els. These advancements have forced scientists to become increasingly reliant on
data processing, feature and characteristic extraction, and visualization as tools for
managing and understanding large, highly complex data sets. In addition, there is
becoming a greater accessibility to the error, variance, and uncertainty not only in
output results but also incurred throughout the scientific pipeline.

With increased size and complexity of data becoming more common, visualiza-
tion and data analysis techniques are required that not only address issues of large
scale data, but also allow scientists to understand better the processes that produce
the data, and the nuances of the resulting data sets. Information about uncertainty,
including confidence, variability, as well as model bias and trends are now available
in these data sets, and methods are needed to address the increased requirements
of the visualization of these data. Too often, these aspects remain overlooked in
traditional visualization approaches; difficulties in applying pre-existing methods,
escalating visual complexity, and the lack of obvious visualization techniques leave
uncertainty visualization an unsolved problem.

Effective visualizations present information in a manner that encourages data
understanding through the appropriate choice of visual metaphor. Data are used to
answer questions, test hypotheses, or explore relationships and the visual presentation
of data must facilitate these goals. Visualization is a powerful tool allowing great
amounts of data to be presented in a small amount of space, however, different
visualization techniques are better than others for particular types of data, or for
answering specific questions. Using the most befitting visualization method based
on the data type and motivated by the intended goals of the data results in a powerful
tool for scientists and data analysts.
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The effective visualization of uncertainty, however, is not always possible through
the simple application of traditional visualization techniques. Often, the visualization
of the data itself has a high visual complexity, and the addition of uncertainty,
even as a scalar value, complicates the display. Issues of visual clutter, data
concealment, conflicts in how the data and the uncertainty are represented, and
unintentional biases are just some of the problems incurred when visualizing data
accompanied by uncertainty. Also, the complexity of these data sets may not lend
themselves to the straightforward application of existing visualization methods, and
thus, the added burden of uncertainty can be overwhelming.

Uncertainty data are becoming more prevalent and can be found in fields such
as medical imaging, geoscience, and mechanical engineering. The simulation of
complex systems, compilation of sensor data, and classification of tissue type are
but a few sources of uncertainty data and their expression, size, and complexity
can drastically vary. Uncertainty can arise in all stages of the analysis pipeline,
including data acquisition, transformation, sampling, quantization, interpolation, and
visualization. It can be a single scalar value presented alongside the original data, or
can be an integral aspect of the data, derived from the description of the data itself.
In any case, uncertainty is an imperative component of scientific data sets and should
not be disregarded in visualizations.

1.1.1 Sources of Uncertainty

Uncertainty can mean very different things in different situations, with each driven by
different key characteristics and goals. The uncertainty in a data set may result from
the process through which the data was gathered or generated, or it may represent
variability in the phenomenon represented by the data. We divide data uncertainty
sources into three broad classes: uncertainty observed in sampled data, uncertainty
measures generated by models or simulations, and uncertainty introduced by the
data processing or visualization processes. Variability in the underlying phenomenon
could manifest itself in sampled data or be incorporated into models or simulations. A
particular data set might be subject to one form of uncertainty or multiple. Different
types of uncertainty offer different challenges to effective and truthful visualization.
While most of the visualization literature about uncertainty concentrates on issues of
visual representation rather than source, a few papers have made a thoughtful analysis
of the source of uncertainty, as well [9, 30, 74, 75, 98]. Other useful discussions
of the sources of uncertainty can be found in the geo-spatial visualization and GIS
literatures [11, 19, 20, 62]. The discussion below draws from all these sources.

1.1.1.1 Uncertainty in Sampled Data

Uncertainty in data that is gathered through a sampling process might give the appear-
ance of too little information, too much information, or information that just cannot
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Fig. 1.1 Sources of uncertainty. Both sampling and modeling uncertainties affect each other and
add to visualization uncertainties

be trusted. Data sets where missing or incomplete instances provide too little infor-
mation present challenges to many visualization methods. Filtering out data with
missing elements can ignore valuable information and produce awkward holes. Fill-
ing in missing values or instances by interpolation, imputation, or other estimation
techniques from known values can introduce error. In such cases, data quality metrics
might indicate the confidence in estimated quantities. For instance, estimating a sin-
gle missing data value from a dense set of similar instances would be expected to
produce a smaller error than an estimation from a sparser or more disparate set.
Data sets where multiple, contradictory measurements seem to provide too much
data also offer challenges for visualization. Such situations can be caused by noisy
data, noisy instruments, human error in the data gathering process, or sampling at
a scale different than that natural to the phenomenon. One special case of error in
data measurements is that of spatial data where the error might be in the position of
a sampled location, rather than in its measured values, resulting in uncertainty about
where values should be displayed. Similarly, data with contradictory values might
be characterized by data quality metrics based on sample value range, variance, or
another measure of variability. Finally, metadata about a data source may cast doubt
on its certainty. For instance, data that is old, from an untrusted source, or gathered
through a nonstandard process might be regarded with some skepticism (Fig. 1.1).

1.1.1.2 Models Containing Uncertainty

Sophisticated computational models may contain elements designed to estimate the
uncertainty or variability in the model predictions. The sources of this type of uncer-
tainty include residual variability from simplifying abstractions, variability in the
mechanism or magnitude of causality and relationships, potential error in model
inputs, incorrect model parameters, and imprecision in tacit knowledge incorporated
in the model. The range of predictions made by model ensembles, where differ-
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ent component models may make different assumptions or use different parameters,
illustrate the potential variability in even the best models.

The output from such a model may include information about estimated error
in the form of a single error measure, ranges for expected values, or predicted dis-
tributions for values or errors. These measures are applicable to numeric quanti-
ties. Alternatively, a model that makes nominal or categorical predictions may also
indicate the degree of confidence in its predictions by producing multi-value predic-
tions, where each possible value or classification is associated with a likelihood.

1.1.1.3 Uncertainty from the Visualization Process

Finally, we should understand how the visualization process impacts the propaga-
tion, magnification, perception, and impact of uncertainty. In order to do this, we
must understand computational sources and magnifiers of error and uncertainty in
input values, perceptual and cognitive influences on the understanding of uncertainty
visualization, effects of differences in audience abilities and cultures, requirements
imposed by different application tasks and goals, and competing positive and negative
consequences of showing uncertainty.

1.2 Perceptual Uncertainty

Logically, it seems sensible to display information about uncertainty in a manner
consistent with our cognitive models of which perceptual elements contain variability
or uncertainty. A number of approaches to uncertainty visualization seem to build
on this principle, representing uncertainty with such visual elements as blur, flicker,
reduced saturation, sketched outlines, or transparency.

There have been relatively few careful evaluations of the effectiveness of uncer-
tainty visualization and its impact on the decision-making process that have appeared
in the visualization literature. In some cases, researchers have used quantitative eval-
uations or user studies to evaluate the ability of subjects to understand uncertain infor-
mation [33, 109]. Zuk and Carpendale [111] present a framework for the heuristic
evaluation of uncertainty visualizations from the perceptual and cognitive principles
described by Bertin [6], Tufte [101], and Ware [105]. They use this framework to ana-
lyze eight uncertainty visualizations of different types and from different domains.
They propose this sort of heuristic evaluation as a rough substitute when more specific
evaluations are not practical.

Additional insight into the perceptual and cognitive elements of effective
uncertainty representations can be found in the GIS literature. Harrower surveys
a collection of evaluations of methods for representing uncertainty in map-based
visualizations [38]. He observes that the most common characteristics used to judge
a technique are its effects on confidence, speed, and accuracy of judgements. Two
principles which may be derived from that set of evaluations are the superiority of
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displays that integrate value and certainty information over those that show each in a
separate display and the preference for static displays over those that toggle between
value and certainty. Deitrick describes experiments that show how inclusion of infor-
mation about uncertainty changes the judgements made by subjects [21].

The field of medical decision-making has also considered the role of uncertainty
in the decision-making process. Politi et al. [78] studied the effect of communication
of uncertainty on patients engaged in shared decision-making. They reported an aver-
sion to ambiguity in this situation, leading some patients to avoid making decisions in
the presence of uncertainty while others engaged in additional information-seeking
behaviors. They observed interactions between level of education and decision-
making under uncertainty. In particular, less educated patients were more likely to
conclude that the inclusion of visual depictions of uncertainty made data less trust-
worthy. Patients also tended to interpret uncertain situations in a way that reinforced
their initial values and preferences. Finally, Politi et al. suggest that communication
of uncertainty may lead to greater ultimate satisfaction in the decision process and a
lower likelihood of regret about a decision.

There is evidence that decision-making in the presence of uncertainty takes place
in different regions of the brain than decision-making in more certain conditions.
Specifically, Paulus et al. [76] observed different patterns of brain activity under fMRI
during different decision-making conditions. They suggest that the more complex
task of decision-making under uncertainty requires more complex strategies and is
more influenced by experiences in the past. The physiological evidence supports this
theory by showing increased involvement of brain areas important to strategy forma-
tion and adjustment, in particular the prefrontal and parietal cortex, when uncertainty
is present.

1.3 Formal Description

The consideration and quantification of uncertainties is of great importance in many
practical applications and is part of the data analysis chain to support decision making.
For this reason, we need to understand the data including its shortcomings, value, and
relevance, which largely depends on the presence or absence of uncertainty. Our goals
are to understand quantified uncertainty and deal with it, as well as independently
perform uncertainty quantification ourselves.

1.3.1 What is Uncertainty?

Uncertainty is the lack of information. It can be due to randomness, such as results
by chance, for example the roll of the dice or knowing the exact daily quantity of rain
in Seattle. This type of uncertainty is called aleatoric and is objective in that results
differ each time an experiment is run. These types of phenomenon are truly random
in that the results depend on chance, and thus use probabilistic modeling to describe.
Uncertainty can also be due to a lack of knowledge, that is, "knowledge that can in
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principle could be known," but in practice is not. This type of uncertainty is called
epistemic and is subjective, such as not knowing the birth date of the last Chinese
Emperor. These uncertainties are due to errors that practically cannot be controlled
and can be described by non-probabilistic modeling.

1.3.2 Mathematical Modeling of Uncertainty

A variety of types of uncertainties occur in practice, including mixtures of different
types of uncertainty. Quantification of uncertainties, including mixtures, requires a
unifying mathematical framework, which is very difficult to establish and not yet
fully accomplished.

1.3.2.1 Fundamental Setting

From a fundamental standpoint, we are interested in the situation with possible
outcomes or occurrences of “events” A, B, C, where A, B, and C are subsets of
the set of all elementary events in the universe. The task at hand is to then measure
the evidence that A ever happened, the degree of truth of that statement “event A
happened”, and the probability that event A will happen. The question is then, how
do we measure and what is measurement?

In mathematics, measurement means to assign real numbers to sets. For example,
the classical task in metric geometry is to assign numbers to geometric objects for
length, area, or volume. The requirement in the measurement task is that the assigned
numbers should be invariant under displacement of the respective objects.

In ancient times, the act of measuring was equivalent to comparing with a standard
unit. However, it soon became apparent that measurement was more complicated
than initially thought in that it involves finite processes and sets. The first tool to
deal with this problem was the Riemann integral which enabled the computation of
length, areas, and volumes for complex shapes (as well as other measures). How-
ever, the Riemann integral has a number of deficiencies, including its applicability
only to functions with a finite number of discontinuities, fundamental operations of
differentiation and integration are, in general, not reversible, and limit processes, in
general, can not be interchanged. In 1898, Émile Borel developed classical measure
theory which includes σ -algebra to define a class of sets that is closed under set
union of countably many sets and set complement, and defined as additive measure
μ that associates a number ∈ R

+
0 with each bounded subset in the σ -algebra. Around

1899–1902, Henry Lebesgue defined integrals based on a measure that subsumes the
Borel measure, based on a special case. He connected measures of sets and measures
of functions.
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1.3.2.2 Quantification

Probability measure was then developed in 1933 by Andrey Nikolaevich Kolmogorov,
which used classical measure theory and added the measure of 1 assigned to the uni-
versal set. This is thought of as classical probability theory.

The classical probability theory has since become the dominant approach to
examine uncertainty and randomness. Extensive mathematical studies followed and
resulted in highly sophisticated theories. Its foundation rests on the definition of
probability space, which was Kolmogorov’s big achievement. A probability space
is a triplet (Ω, F, P). Here Ω is a countable event space containing all possible
outcomes of a random event. F is the so-called σ -algebra of Ω and it represents all
combinations of the outcomes from Ω . Its construction satisfies:

• It is not empty: ∅ ∈ F and Ω ∈ F.
• If a set A ∈ F , then its complement Ac ∈ F.
• If sets A1, A2, . . . ,∈ F , then

⋃∞
i=1 Ai ∈ F, and

⋂∞
i=1 Ai ∈ F.

P is the well known probability measure and it is used to assign a real number, i.e.,
the probability, on the occurrence of any outcomes of the events (from Ω) and their
potential combinations (from F). It satisfies the following important and well known
principles.

1. 0 ≤ P(A) ≤ 1, for any A ∈ F .
2. P(Ω) = 1. That is, the probabilities of all outcomes add up to one.
3. For A1, A2, · · · ∈ F and Ai ∩ A j = ∅, for any i �= j ,

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P(Ai ).

About 50 years later, the additivity requirement became a subject of controversy
in that it was too restrictive to capture the full scope of measurement. For example, it
works well under idealized, error-free measurements, but is not adequate when mea-
surement errors are unavoidable. In 1954, Gustave Choquet developed a (potentially
infinite) family of non-additive measures (capacities), and for each given capac-
ity, there exists a dual “alternating capacity”. An integral based on these measures is
non-additive, can be computed using Riemann or Lebesgue integration and is applied
specifically to membership functions and capacities.

In 1967, Arthur P. Dempster introduced imprecise probabilities based on the
motivation that the precision required in classical probability is not realistic in many
applications. Imprecise probabilities deal with convex sets of probability measures
rather than single measures. For each given convex set of probability measures he
also introduced 2 types of a non-additive measures: lower and upper probabilities,
and super- and supra-additive. This allow probabilities to be represented imprecisely
by intervals of real numbers.

In 1976, Glenn Shafer analyzed special types of lower and upper probabilities
and call then belief and plausibility measures. The theory based on these measures
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became known as Dempster-Shafer theory (DST) or evidence theory. DST is capable
of dealing with interval-based probabilities, such that belief or probability measures
are equal to the ranges of admissible probabilities. As it turns out, belief measures are
equivalent to Choquet capacities of order inf and plausibility measures are equivalent
to alternating capacities of order inf.

The comparison of membership functions of fuzzy sets and probabilities was
investigated in 1978 by Michio Sugeno and found to be not directly possible. This
led to the generalization of additive measures analogous to generalization such that
crisp sets generalize to fuzzy sets, and additive measures generalize to (non-additive)
fuzzy measures or monotone measures. The Sugeno integral was then introduced with
respect to a monotone measure. That same year, Lofti Zadeh defined a possibility
function associated with each fuzzy set that is numerically a membership function,
and a possibility measure that is a supremum of the possibility function in each set
of concern, for both crisp and fuzzy sets. This is one of several interpretations of the
“theory of graded possibilities”. Its connection to DST is that constant plausibility
measures are equivalent to possibility measures and constant belief measures are
necessity measures.

In summary, the three most utilized uncertainty theories are the Classical
Probability Theory, the Dempster-Shafer Theory, and Possibility Theory and can
be divided into two classes. The first class uses additive measures in which the addi-
tion equal to the union expresses no interaction between events and can be thought
of as classical probability combined with measure theory. The second class uses
non-additive measures, in which addition greater than the union expresses positive
interaction between events, such as synergy, cooperation, coalition, enhancement
or amplification, while addition less than the union expresses negative interaction
between events such as incompatibility, rivalry, inhibition, downgrading, or con-
densation. This class combines one of many uncertainty theories with generalized
measure theory.

1.4 Evaluation

Visualization research is too often neglected by industry and other potential expert
users. One of the reasons is the lack of a proper evaluation of the results. This
lack of evaluation was especially obvious in historical visualization fields such as
volume rendering or fluid flow visualization. In the more recent domain of uncertainty
visualization, researchers have made a significant effort into the assessment of the
proposed techniques. The types of evaluation may be classified into three groups:

• Theoretical evaluation: the method is analyzed to see if it follows established
graphical design principles,

• Low-level visual evaluation: a psychometric visual user study is performed to
evaluate low-level visual effects of the method,
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• Task oriented user study: a cognitive, task-based user study is conducted to assess
the efficiency or the usability of the method.

1.4.1 Theoretical Evaluation

General guidelines and rules regarding visual depiction of data have been established,
that have proven their efficiency. Bertin in [5], later translated in [6], has introduced
the concept of visual variables. These include among others the location, size, ori-
entation, shape, focus and realism. Furthermore he defined four visual properties,
natural ordering, the ability to quantify, the ability to focus user attention (selectiv-
ity) and the ability to associate similar elements (associativity). He studied which of
these properties are verified by the visual variables. Tufte in [102], through his con-
cepts of graphical excellence and integrity, has proposed a number of guidelines to
enhance the precision and the usability of graphical depiction. Chambers et al. in [14]
have studied the relative influence of specific patterns on the visual perception, for
example straight lines versus curves, dark versus light objects or small versus large
patterns. This study leads the authors to define general rules for plot construction.

These graphical design principles may be used to conduct a theoretical evalua-
tion of new uncertainty visualization techniques. As already mentioned in Sect. 1.2,
Zuk and Carpendale in [111] have done such an evaluation for eight uncertainty
visualization techniques. The same type of theoretical evaluation was followed by
Riveiro in [87] to evaluate three uncertainty visualization techniques in the context
of information fusion and decision making.

1.4.2 Low-Level Visual Evaluation

Barthelmé and Mamassian in [2] studied the influence on noise uncertainty in a
decision-making task. Based on psychometric and simple task experiments, he
proved that users can reliably measure the visual uncertainty and use this information
in their decision-making. Coninx et al. in [18] conducted psychometric experiments
to measure the impact of contrast sensitivity on the visibility of uncertain noisy pat-
terns. He used this information in order to control the visibility of uncertainty data
in a visualization technique based on the perturbation of colormaps by Perlin noise.

1.4.3 Task-Oriented User Study

Task oriented cognitive user studies are by far the most common way of assessing
the efficiency and usability of uncertainty visualization techniques. In this type of
evaluation a panel of users is typically asked to perform a task that requires not
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only low-level visual processing but also high-level cognitive treatment of the visual
information. Standard tasks as an example may consist in counting the number of
local minima in a dataset, find the location of the maximum or minimum value,
find the direction of rotation of a vortex. The task completion time, task completion
accuracy, user’s rating of efficiency and usability may be recorded. A statistical
analysis of the recorded data is done. Typical analyses include analysis of variance
(ANOVA), used to check in particular if the difference in the mean value of two
distributions is significant. Examples of uncertainty visualization papers with a task-
based evaluation include [20, 21, 69, 91].

1.5 Review of Current State of the Art

The goal of visualization is to effectively present large amounts of information in
a comprehensible manner, however, most visualizations lack indications of uncer-
tainty [42, 43, 63, 83].

1.5.1 Traditional Representations

Tukey [103] proposed graphical techniques to summarize and convey interesting
characteristics of a data set not only to facilitate an understanding of the given data but
also to further investigation and hypothesis testing. These tested graphical methods,
such as the boxplot, histogram, and scatter plot, provide identifiable representations
of a data distribution, and their simplicity allows for quick recognition of important
features and comparison of data sets. In addition, they can be substituted for the
actual display of data, specifically when data sets are too large to plot efficiently.

1.5.1.1 1D

One of the most ubiquitous approaches to displaying uncertainty information is
the boxplot [28, 34, 94, 103], which is the standard technique for presenting the
five-number summary, consisting of the minimum and maximum range values, the
upper and lower quartiles, and the median, as illustrated in Fig. 1.2a. This collec-
tion of values quickly summarizes the distribution of a data set, including range and
expected value, and provides a straightforward way to compare data sets. In addi-
tion, the reduced representation afforded by the five-number summary provides a
concise tool for data analysis, since only these characteristic values need to be ana-
lyzed. Figure 1.2b and c show visual modifications of the boxplot. Surveys on the
introduction and evolution of the boxplot can be found in [16, 81].

The box plot is often adapted to include information about the underlying distrib-
ution, as demonstrated in Fig. 1.2d–g. The most common modification adds density
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Fig. 1.2 Variations of the boxplot. a The construction of the boxplot [103]. b Range plot [94].
c Innerquartile plot [102]. d Histplot [4]. e Vaseplot [4]. f Box-percentile plot [26]. g Violin plot [39].
h Variable width notched boxplot [67]. i Skewplot [16]. j Summary plot [82]

information, typically through changes to the sides of the plot. The hist plot [4]
extends the width of the cross bars at the quartiles and median to express density
at these three locations. The vase plot [4] instead varies the “box” continuously
to reflect the density at each point in the innerquartile range. Similarly, the box-
percentile plot [26] and violin plot [39] show density information for the entire range
of the data set. Density can also be shown by adding dot plots [106], which graph data
samples using a circular symbol. The sectioned density plot [17] completely recon-
structs the box plot by creating rectangles whose colors and size indicate cumulative
density, and placement express the location of the quartiles. Sample size and confi-
dence levels can be expressed through changing or notching the width of the plot [67]
(Fig. 1.2h) or by using dot-box plots, which overlay dot plots onto box plots [107].
Other descriptors, such as skew and modality, can be added by modifying the width
of the median line [67], thickening the quartile lines [16], (Fig. 1.2i) adding beam
and fulcrum displays [23] alongside, or overlaying additional glyphs [82] (Fig. 1.2j).

1.5.1.2 2D

Standard implementations of the boxplot focus on univariate data distributions. The
five-number summary is a useful descriptor of not only univariate, but also bivariate
data distributions. The main challenge in extending the boxplot for use with higher
dimensional data is how to translate the five-number summary values, which are
vector values in the bivariate case, into visual metaphors with meaningful spatial
positions, while maintaining the simplicity of the original boxplot. A rangefinder
boxplot [3], as seen as the solid back lines in Fig. 1.3a, is a simple extension of the
boxplot into 2D which determines boxplots for the two dimensions independently and
draws lines to show the interquartile ranges and extrema of those plots. This idea was
further improved upon, as shown as the thick gray lines in Fig. 1.3a, to emphasize the
quartiles rather than the range, by moving the perpendicular lines from the extrema
values to the upper and lower quartile positions and extending whisker lines to the
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Fig. 1.3 Bivariate extensions of the boxplot. a The rangefinder boxplot [3]. b The 2D boxplot [99].
c The bagplot [88]. d The quel-(gray) and rel-(black) plots [32]

extrema value of the variables [53]. Other techniques for extending the boxplot into
2D all use the notion of a hinge that encompasses 50 % of the data and a fence that
separates the central data from potential outliers. The distinctions between each of
these methods are the way the contour of the hinge and fence are represented, and
the methods used to calculate the contours. The 2D boxplot [99], as seen in Fig. 1.3b,
computes a robust line through the data by dividing the data into three partitions,
finding the median value of the two outer partitions, and using these points as the
line. Depending on the relationship between the slope of the line and each variable,
the quartile and fence lines are drawn either parallel to the robust line, or parallel to
the variables coordinate axis. The lines not comprising the outer-fence and the inner-
hinge boxes are removed. The bagplot [88] uses the concept of halfspace depth to
construct a bivariate version of the boxplot, as seen in Fig. 1.3c. The relplot and
the quelplot [32] use concentric ellipses to delineate between the hinge and fence
regions. Both the relplot and quelplot can be seen in Fig. 1.3d.

1.5.1.3 PDFs

There is a body of research investigating methods for displaying probability distri-
bution functions with spatial positions. Each of these methods takes an exploratory
approach to the presentation of the data by filtering down the amount of data, and
then providing a user interface for the scientist to explore the data sets. Ehlschlaeger
et al. [25] present a method to smoothly animate between realizations of surface
elevation. Bordoloi et al. [7] use clustering techniques to reduce the amount of data,
while providing ways to find features of the data sets such as outliers. Streamlines
and volume rendering have been used by Luo et al. [61] to show distributions mapped
over two or three dimensions.

Kao et al. [48] uses a slicing approach to show spatially varying distribution data.
This approach is interesting in that a colormapped plane shows the mean of the
PDFs, and cutting planes along two edges allow for the interactive exploration of
the distributions. Displaced surfaces as well as isosurfaces are used to enhance the
understanding of the density of the PDFs.
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Case studies of specific data have been performed by Kao et al. [46, 47]. Their
data sets come from NASAs Earth Observing System (EOS) Satellite images and
Light Detection And Ranging (LIDAR) data. The methods used to show this data
include encoding the mean as a 2D color map, and using standard deviation as a
displacement value. Histograms are also employed to understand better the density
of the PDFs. To explore the mode of specific distributions, a small set of PDFs are
plotted onto a color mapped spatial surface.

1.5.2 Uncertainty Visualization

Many visualization techniques that incorporate uncertainty information treat uncer-
tainty like an unknown or fuzzy quantity; [75] is a survey of such techniques. These
methods employ the meaning of the word uncertainty to create the interpretation
of uncertainty or unknown to indicate areas in a visualization with less confidence,
greater error, or high variation. Ironically, while blurring or fuzzing a visualization
accurately indicates the lowered confidence in that data, it does not lead to more
informed decision making. On the contrary, it obfuscates the information that leads
to the measure of uncertainty. Because it obscures rather than elucidates the quanti-
tative measures leading to the uncertain classification, such a solution to the problem
of adding qualitative information to visualization misses important information.

1.5.2.1 Comparison Techniques

Often, uncertainty describes a comparison that can most clearly be understood visu-
ally, such as the difference between surfaces generated using different techniques, or
a range of values that a surface might fall in. A simple approach to the visualization of
this type of information is a side-by-side comparison of data sets. An example of this
type of visualization is presented in Jiao et al. [41] where streamlines computed from
various fiber tracking algorithms are interactively displayed along with the global
and local difference measures. Another example is the time window, presented in
[112], in which temporal uncertainty around archeological sites is displayed, using
various visual clues, in an interactive, exploratory system.

However, this approach may not clearly manifest subtle differences when
the data are nearly the same, and it becomes harder to perform this comparison as the
visualization becomes more complicated. Another simple approach is to overlay the
data to be compared [45]. With this technique, the addition of transparency or wire
frame can produce a concise, direct comparison of the data sets. A similar approach
uses difference images to display areas of variation [108]. These approaches are
less effective, however, when the uncertainty can be categorized as more of a range
of values rather than just two distinct ones. In such cases, a surface sweep, known
as a fat surface [75], can be used to indicate all possible values. Another approach
is the integration of isosurface and volume rendering. Here, an opaque isosurface
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can be used to indicate the most likely value, and a transparent volume rendering
surrounding the isosurface can indicate the range of possible values [43]. Uncer-
tainty information for large collections of aggregated data can be presented using
hierarchical parallel coordinates [29]. Lee et al. [52] visualize differences in loca-
tion and sub-tree structure between two hierarchies through color and transparency.
Finally, bounded uncertainty, while not effectively visualized in 3D, can be expressed
through the ambiguation of boundaries and edges of pie charts, error bars, and other
2D abstract graphs [70] or as modifications to line charts [96].

1.5.2.2 Attribute Modification

Another standard method to visualize uncertainty involves mapping it to free vari-
ables in the rendering equation or modifying the visual attributes of the data. Such
methods include modifying the bidirectional reflectance function (BRDF) to change
surface reflectance, mapping uncertainty to color or opacity [65, 91, 97], or pseudo-
coloring using a look-up table [75]. This technique has been used as a means for
conveying uncertainty in the areas of volume rendering [22, 51, 89], point cloud
surface data [77], isosurfacing [45, 79, 80, 86] and flow fields [8], and is often com-
bined with other uncertainty visualization methods. An example technique colormaps
flowline curvature onto volume rendered surfaces, highlighting areas in which small
changes in isovalue lead to large changes in isosurface orientation and thus indicat-
ing areas where the isosurface is a poor representation of material boundary [49].
Another example uses height as a free parameter to display uncertainty in 2D vector
fields [72]. Texture can be used similarly to convey uncertainty and is also often
modified by opacity, hue, or texture irregularities [18, 40, 74]. Sound has also been
used as another channel for expressing uncertainty [58].

1.5.2.3 Glyphs

Glyphs are symbols used in visualization to signify data through parameters such
as location, size, shape, orientation, and color. Because of the multivariate nature
of glyphs, they can be used in visualization to map uncertainty to a free parameter.
One such approach uses glyphs to present the distribution of multivariate aggregated
data over a range of values [15]. These glyphs show the average, standard deviation,
and distribution of three attributes of the data set. Conical glyphs have also been
used to portray fiber tracks from DTI, leveraging the radius of the cone to encode
uncertainty in the orientation of bundles [44]. An approach that modifies attributes
of glyphs already present in the visualization is presented as a procedural generation
algorithm [13]. In this work, the data is sampled on a regular grid and the size, color,
and placement of glyphs are taken directly from the data samples. The uncertainty
is then used to distort the glyphs so that glyphs with low uncertainty are very sharp,
with the sharpness level decreasing as the uncertainty level increases. This distortion
provides a clear indication of uncertainty and error while not placing heavy emphasis
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on areas of high uncertainty. In a similar fashion, contours already present in the
visualization can be used [84, 85] or modified [71, 92] to express uncertainty.

Because not all data is visualized effectively using glyphs, the addition of glyphs
to convey only uncertainty information is often a preferable approach. A specific
example is the UISURF system [45], which visually compares isosurfaces and the
algorithms used to generate them. In this system, glyphs are used to express positional
and volumetric differences between isosurfaces by encoding the magnitude of the
differences in the size of the glyphs. Similarly, line, arrow, and ellipsoidal glyphs
can be used to depict uncertainty in radiosity solutions, interpolation schemes, vector
fields, flow solvers, astrophysical data and animations through variation of placement,
magnitude, radii, and orientation [54, 55, 57, 75, 91, 93, 109, 110, 113].

1.5.2.4 Image Discontinuity

Uncertainty visualization often relies on the human visual systems ability to quickly
pick up an images discontinuities and to interpret these discontinuities as areas with
distinct data characteristics. Techniques that utilize discontinuities rely on surface
roughness, blurring, oscillations [13, 33, 56, 108], depth shaded holes, noise, and
texture [22], as well as on the translation, scaling, rotation, warping, and distortion of
geometry already used to visualize the data [75], to visualize uncertainty. Animation
can highlight the regions of distortion or blur or highlight differences in visualization
parameters [30, 60, 66]. Such techniques have been applied to multivaritate data
displayed through scatter plots or parallel coordinates [27, 36].

1.6 Examples

1.6.1 Medical Visualization

A fundamental task in medical visualization is segmentation, the partitioning of a
given image into regions that correspond to different materials, to different anatomi-
cal structures, or to tumors and other pathologies. Medical image acquisition typically
introduces noise and artifacts, and we may wish to segment structures for which the
data itself provides little contrast. This is a source of data uncertainty. In many cases,
segmentation also involves complex computational models and numerous parame-
ters, which introduces model uncertainty.

Traditional volume rendering classifies materials based on scalar intensity or fea-
ture vectors that account for first and second derivatives [50]. Lundström et al. [60]
introduce probabilistic transfer functions that assign material probabilities to model
cases in which the feature ranges of different materials overlap. This results in a dis-
tribution of materials at each location in space, which is visualized by an animation
in which each material is shown for a duration that is proportional to its probability.
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Fig. 1.4 A visualization of
the brain using transfer
functions that express the risk
associated with classification

More complex segmentation tasks cannot be achieved based on local image prop-
erties alone. They require models that account for more global assumptions or more
complex prior knowledge. Such models are also more computationally demanding
and are typically run as a pre-process of the visualization. Some of them output class
probabilities, from which Kniss et al. [51] derive measures that can be used to define
transfer functions that enable exploring the risk associated with binary classifica-
tions, or to visualize spatial decision boundaries. Figure 1.4 shows the use of such
transfer functions in a visualization of a segmented brain.

The framework of Saad et al. [90] combines volume rendering with tables that
list groups of voxels for which the same materials have been found to be most,
second most, and third most likely. They demonstrate several examples in which
these tuples can be used to detect anomalous subregions within areas that share the
most likely material. Follow-up work [89] has concentrated on identifying anomalies
or misclassification by considering regions in which the image-based likelihood
disagrees with shape and appearance priors.

Finally, work by Torsney-Weir et al. [100] addresses the model uncertainty in
segmentation methods by providing a systematic framework to explore the impact
of model parameters. This should facilitate finding settings that produce the desired
segmentation, and for which the results do not change significantly when slightly
changing the exact parameter values.

Fiber tracking, the reconstruction of nerve fiber bundles from diffusion MRI, is
another subfield of medical visualization in which uncertainty plays an important
role. It is treated in detail in Chap. 8 of this book.

http://dx.doi.org/10.1007/978-1-4471-6497-5_8
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Fig. 1.5 The EnsembleVis tool [84] for exploring short-range weather forecast data

1.6.2 Weather and Climate

Uncertainties are prolific in weather and climate applications and arise not only from
insufficient models, but also from our inability to accurately measure current weather
conditions and obtain precise knowledge on parameter settings. The typical approach
for mitigating uncertainties in weather and climate applications is to perform multi-
run simulations, often using a collection of models, parameter perturbations, and
initial conditions to generate outcome results for multiple variables and time steps.
While the variables contained in the output of both weather and climate simulations
are similar, the main differences between the two domains are the spatial region of
interest and the duration of time covered. Weather applications are typically only
interested in a small subsection of the planet, such as North America, and run to
cover time steps within the near future. In contrast, climate modeling has a spatial
interest of the whole planet and is run over hundreds of years.

The uncertainty resulting from these multi-run simulations are typically captured
in what is know as “Ensemble data sets”. These ensembles combine the multiple runs
such that notions of probability of outcome can be explored. An ensemble consists
of multiple simulation realizations and are often generated by pre-defined parameter
perturbations. The visualization and analysis of these data sets aims to understand
variations between models and effects of parameters and initial conditions, culminat-
ing in an understanding of the phenomenon leading to weather and climate events.

An example of a visualization and analysis tool can be seen in Fig. 1.5, which
shows a screen shot of the EnsembleVis framework for the exploration of short-range
weather forecasting data [84]. This tool uses a multiwindow approach to provide a
collection of views for the end user, an approach used by other tools [92]. This
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approach allows the user to see overviews of a single time step, the progression
of the data over time, drill downs to explore interesting spatial locations, including
direct data display, and finally query-based exploration for more complex analyses.

1.6.3 Security and Intelligence

Security and intelligence uncertainty factors are a natural fit for security visualization,
where making well-informed decisions is the primary goal. Enforcing security has
become a top priority among a wide range of real-life applications, for instance large
corporate or government/military networks. However, the task of decision making
is notoriously difficult due to the malicious, hidden nature of attacks, sparse sam-
pling of real-time environment, and time-critical requirements. Therefore, in security
analysis uncertainty often exists among decisions at all levels, ranging from global
scale such as “is there any malicious activity?” to finer scale such as “which enti-
ties are malicious?” or “in what order did these events actually occur?”. The results
of these decisions are used to make recommendations which can have significant
operational impact, as nodes identified as malicious will be quarantined or removed
from the network. Previously, both automated attack mitigation and interactive visu-
alization approaches have been developed for security visualization. These existing
techniques serve as a good platform for the integration of uncertainty visualizations
and interactions. For example, several visual abstractions have been explored for
detecting the sybil attack, which is a coordinated attack that can subvert many types
of networks [24]. Sybil attacks are challenging to detect due to their variable attack
forms and patterns. Because of this, traditional signature-based or behavior-based
methods are ineffective, and security analysts must often find these nodes through
manual analysis of their network. Visual abstractions from both adjacency matrix
of the network connections [59] and spectral space [37] are explored, which can
elucidate the signature patterns of an attack and apply automatic pattern matching
algorithms or interactive analysis methods to search for similar patterns. As the short
paper (Chap. 7) in this chapter describes, the factors of uncertainty can be introduced
to existing detection mechanisms to improve the continuing analytic process. Since
uncertainty is prevalent in security applications, the impact of uncertainty should
be integrated into the entire procedure of data analysis and interactive exploration.
Many current security visualization approaches can and should be augmented with
interactions and visualizations for specifying and managing analytic uncertainty. By
integrating analytic uncertainty in security visualization, analysts are able to make
better-informed decisions regarding critical network infrastructure issues.

http://dx.doi.org/10.1007/978-1-4471-6497-5_7
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1.7 Open Problems

1.7.1 Perceptual and Cognitive Implications

Since visualization often relies heavily on the use of colors to convey information, it
can be quite challenging for individuals with color vision deficiency. For them, even
interpreting visualizations that would pose no problems for individuals with normal
color vision can be a difficult task. In this case, however, the resulting ambiguity, and
therefore, uncertainty, is inherent to the observer, falling outside the broad sources
of uncertainty discussed in Sect. 1.1.1 (i.e., uncertainty observed in sampled data,
uncertainty measures generated by models or simulations, and uncertainty introduced
by the data processing or visualization processes). Thus, individuals with color vision
deficiency have to constantly deal with uncertainty visualizations and make decisions
based on ambiguous information. For those individuals, the display of additional data
that tries to express the amount of uncertainty from various sources may even generate
further ambiguities. The issues involving uncertainty visualization and color vision
deficiency are discussed in Chap. 2.

1.7.2 Comparative Visualizations

The visualization of uncertainty may involve a comparison of different results, such
as a weather forecast generated with different parameters. To detect similarities or dif-
ferences in the results a comparative visualization technique [73] can be employed.
In 3D a visualization via fusion [10, 12] is not feasible beyond a small number
(2 or 3) of data sets, due to clutter and inter-dependence of the different data sets. An
alternative to fusion is a side-by-side view of the data sets. This may be problematic
in 3D since it is hard to find corresponding reference points in more than two vol-
umes. As an example to control a 3D comparison Balabanian et al. [1] propose to
integrate volume visualization into a hierarchical graph structure. These integrated
views provide an interactive side-by-side display of different volumes while the
parameter space can be explored through the graph structure. In 2D a blending of
different results has basically the same issues as a fusion in 3D [31, 35]. There are
techniques which allow a comparative visualization of different data sets in a single
image. Urness et al. [104] introduced color weaving for flow visualization to com-
pare different flow fields in a single 2D view. In contrast to blending, each pixel of
the resulting image represents an unmodified value from one of the data sets. The
generated pattern provides a good overview to detect similar or varying regions in
the data sets. To compare certain regions in more detail, e.g., borders, it is better to
consider larger comparison areas than individual pixels. In this context it is crucial
that data sets which should be compared are visualized next to each other to get
a direct comparison for a certain area. For only two data sets a checkerboard pat-
tern can be used to achieve screen door transparency [95]. The white squares show

http://dx.doi.org/10.1007/978-1-4471-6497-5_2
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one data set and the black squares show the other data set. The attribute block by
Miller [68] allows a simultaneous comparison of four data sets. A repeating 2 × 2
pattern provides a shared border between all four data sets. An extension to this
approach is the comparative visualization technique of Malik et al. [64]. Instead of
a rectangular pattern a hexagonal pattern is used to more finely subdivide the image
space. This allows the comparison of a larger number of data sets to one central data
set since the hexagonal pattern can be subdivided according to the number of data
sets to compare. Uncertainty of a measurement, simulation, or process provides an
additional data stream which generates further visualization challenges. Uncertainty
may be shown at discrete positions through glyphs or icons. For a dense representa-
tion of uncertainty, comparative visualization seems to be a promising emerging area.
Topics of research will be: integrated views; sparsification of many data sets which
shall be shown simultaneously; comparative navigation; visualization of competing,
contradictive, or conflicting features.
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Chapter 2
Uncertainty Visualization and Color
Vision Deficiency

Manuel M. Oliveira

Abstract Color vision deficiency (CVD) affects a large number of individuals
around the world, compromising their ability to effectively interpret color-coded
information. This directly impacts the way these individuals perceive visualizations,
often introducing ambiguities and uncertainties. This article provides an overview
of the causes of color vision deficiency and discusses the main tools and techniques
available for helping designers to create more effective visualizations for individuals
with CVD. It also discusses the limitations of the existing techniques and presents
some open questions for guiding research efforts in improving visualization experi-
ences for larger audiences.

2.1 Introduction

Current estimates indicate that approximately 200 million individuals worldwide
have some form of color vision deficiency (CVD) [10, 11]. Such condition
compromises their ability to effectively perform color-related tasks, which impacts
their private lives and professional activities [8]. Since visualizations tend to make
intensive use of colors to convey information, many visualizations are not perceived
by individuals with CVD as they are intended to be (e.g., Figs. 2.1 right, and 2.2b).
This leads to uncertainties, forcing those individuals to make important decisions
based on ambiguous information, which may have catastrophic implications. Thus,
the perceptual limitations imposed by color vision deficiency is a relevant subject
to the visualization community, but one that has not yet received all the attention
it deserves. To produce more effective visualizations, we need to devise techniques
that avoid excluding this significant fraction of the population. This article briefly
discusses the the causes of color vision deficiency and the main techniques available
to help the affected individuals to recover, as much as possible, the loss of color
contrast. After pointing out the inherent limitations of these techniques, the article
presents some open questions that should guide research efforts in this area.
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Reference (2 nm) (8 nm) (14 nm) Protanope

Fig. 2.1 Simulation of the color perception of individuals with CVD. A reference image (left)
is followed by the simulation of the perceptions of anomalous trichromats (protanomalous) with
various degrees of severity (spectral shifts of 2, 8, and 14 nm). The perception of a protanope is
shown on the right. All images were simulated using the model described in [4]

(a) (b) (c)

Fig. 2.2 Example image recoloring: a reference image. b Simulated perception of a deuteranope,
using [4]. c Recolored version of the reference image for deuteranopes, using [5]. Note the significant
enhancement of color contrast with respect to b. Since the color gamut of deuteranopes is a subset
of the RGB color space, this image is perceived the same way both by deuteranopes and by normal
trichromats. The case of recoloring for other dichromats is similar

2.1.1 Color Vision Deficiency

Human normal color vision requires three kinds of retinal photoreceptors. These
are called L, M, and S cone cells, and have higher sensitivity to the long, medium,
and short wavelengths of the visible spectrum, respectively. The specific type of
photopigment contained in each kind of cone cell determines its spectral response.
Some natural variations in the composition of these photopigments can shift their
spectral sensitivities to different bands of the visible spectrum [11]. In this case, the
affected individuals are called anomalous trichromats, and can be further classified
as protanomalous, deuteranomalous, or tritanomalous, if the affected photopigment
is associated with the L, M, or S cones, respectively. The bigger the shift, the more the
individual’s color perception will vary with respect to the perception of an individual
with normal color vision (normal trichromat). In case one type of photopigment
is missing, the individual is called a dichromat. Likewise, (s)he can be classified as
protanope, deuteranope, or tritanope, according to the type of missing photopigment
(L, M, or S, respectively). Much rarer conditions include the cases of individuals with
a single kind of photopigment (cone monochromats) or no functional cone cells at
all (rod monochromats).
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As a consequence of the existence of three types of photoreceptors, normal color
vision spans a 3-D color space. The color gamut of a dichromat, on the other hand,
is only two-dimensional and can be represented by a surface patch in the same 3-D
color space. Such a reduced gamut is the cause of the ambiguity experienced by
dichromats: many different colors are perceived as the same, when projected onto
such patches. For anomalous trichromats, the color gamut falls in between these two
extremes, moving towards the gamut of a dichromat as the degree of severity of the
anomaly increases. For spectral shifts of approximately 20 nm, the perception of an
anomalous trichromat becomes similar to the perception of a dichromat [6, 11].

Currently, there is no clinical or surgical treatment for color vision deficiency.
Given the relevance of the problem, a few techniques have been recently proposed
to simulate the perception of individuals with CVD [2, 4, 7], and to enhance image
contrast through recoloring [3, 5, 9]. Next, I briefly discuss these techniques, showing
how they can assist the design of more inclusive visualization experiences, but also
discussing their inherent limitations, which calls for more research.

2.2 Tools for More Inclusive Visualizations

The first step to produce more effective visualizations for individuals with CVD is to
understand their perceptual limitations. Meyer and Greenberg [7], and Brettel et al. [2]
presented simulation techniques for the color perception of dichromats. Machado
et al. [4] introduced a physiologically-based model that supports the simulation of
dichromatic as well as anomalous trichromatic vision (with arbitrary degrees of
severity) in a unified way. This simulation model works in real time and can be
quickly incorporated into existing systems. Thus, a visualization designer can get
instantaneous feedback on how it would be perceived by individuals with CVD
(Fig. 2.1). Such knowledge allows the designer to refine the visualization, making
it more effective for wider audiences. While simulation models help to increase the
awareness of the perceptual limitations due to CVD, they do not directly help the
affected individuals to recover the loss of color contrast.

To address the problem of enhancing color contrast, a few automatic image-
recoloring techniques for dichromats have been proposed in recent years [3, 5, 9].
Essentially, all these approaches define ways of mapping the colors in the original
image to a new set of colors in the dichromat’s gamut. This is done while trying to
preserve the perceptual color differences among all pairs of colors in the original
image. Rasche et al. [9] proposed an approach that uses a constrained multivariate
optimization procedure applied to a reduced set of quantized colors. The resulting
algorithm does not scale well with size of the input image and the number of quan-
tized colors, and is not applicable to interactive applications. Kuhn et al. [3] present
a solution based on a mass-spring optimization that achieves interactive rates, and
tries to preserve the naturalness of the original images (i.e., preserve the colors that
can already be perceived by dichromats). More recently, Machado and Oliveira [5]
introduced a projection-based recoloring approach that works in real time, enforces
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Fig. 2.3 Limitation of recoloring techniques. a Original image with colors over most of the RGB
color space. b Simulated perception of a deuteranope. c Due to the dichromat’s limited color gamut,
by trying to solve some color ambiguities, recoloring techniques may introduce new ones

temporal coherence, and can be easily integrated with existing visualization appli-
cations. This makes it suitable for use in interactive visualizations. Figure 2.2 shows
an example of image recoloring produced by this technique.

All recoloring techniques for dichromats share an inherent limitation: they define
mappings from a 3-D color space to a 2-D color gamut. Thus, such techniques tend
to become ineffective as the original image content spans the entire or most of the
3-D color space. In those situations, trying to solve some ambiguity by rearranging
colors on the dichromat’s 2-D color space might introduce new ambiguities (Fig. 2.3).
Moreover, current recoloring techniques are restricted to the set of colors found in
each input image or video. Thus, mappings between pairs of colors in one image
or video may not be preserved in different ones (e.g., some cell structures may be
recolored in blue in one image, while appearing yellow in another).

2.2.1 Open Research Questions

In order to address the limitations discussed in the previous paragraph, we need to
consider the following open research questions:

Q1 How can one enhance visualizations by encoding additional information in order
to compensate for the reduced color gamut of dichromats? Or, in other words,
how can one lift the two-dimensional color gamut restriction?

Q2 Can the experiences learned from addressing the previous question also be
exploited to enhance visualizations for normal trichromats?

Q3 How can one obtain content-independent solutions that can be consistently used
over different images and videos?

Q4 Is it possible to satisfactorily extend these solutions to also represent natural
scenes, where colors have some associated meanings to the viewers?

We have started to explore some of these questions. In one initial effort, we have inves-
tigated augmenting colors with simple patterns to encode information for dichro-
mats [1]. Our results suggest that such combination can improve the performance
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of individuals with CVD in some visualization tasks, besides increasing their confi-
dence in making color-based choices. We have also noticed that the use of patterns
can help normal trichromats to fine tune color-related decisions. The use of patterns
is, however, just one option in wide space of possibilities, and many creative solutions
are waiting to be discovered.

2.3 Conclusion

Color-vision-deficient individuals routinely experience uncertainty visualizations,
both in their private lives and professional activities. This article discussed the causes
of such perceptual limitations, and briefly described the tools and techniques cur-
rently available that try to address this issue. Most of the illustrations and discussions
focused on the case of dichromats, since, in general, they face stronger restrictions
than anomalous trichromats. After analyzing the limitations of the existing tech-
niques, the article presented a list of open questions that need to be considered in
our quest for more inclusive visualizations. By understanding how to effectively
deal with the restrictions faced by individuals with CVD, we should also be able to
produce richer visualizations experiences for normal trichromats.
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Figure 2.1 (left) was kindly provided by Francisco Pinto.
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Chapter 3
Analysis of Uncertain Scalar Data
with Hixels

Joshua A. Levine, David Thompson, Janine C. Bennett, Peer-Timo Bremer,
Attila Gyulassy, Valerio Pascucci and Philippe P. Pébay

Abstract One of the greatest challenges for today’s visualization and analysis
communities is the massive amounts of data generated from state of the art sim-
ulations. Traditionally, the increase in spatial resolution has driven most of the data
explosion, but more recently ensembles of simulations with multiple results per data
point and stochastic simulations storing individual probability distributions are in-
creasingly common. This chapter describes a relatively new data representation for
scalar data, called hixels, that stores a histogram of values for each sample point of a
domain. The histograms may be created by spatial down-sampling, binning ensem-
ble values, or polling values from a given distribution. In this manner, hixels form a
compact yet information rich approximation of large scale data. In essence, hixels
trade off data size and complexity for scalar-value “uncertainty”.

We summarize several techniques for identifying features in hixel data using a
combination of topological and statistical methods. In particular, we show how to ap-
proximate topological structures from hixel data, extract structures from multi-modal
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distributions, and render uncertain isosurfaces. In all three cases we demonstrate how
using hixels provides the capability to recover prominent features that would other-
wise be either infeasible to compute or ambiguous to infer. We use a collection of
computer tomography data and large scale combustion simulations to illustrate our
techniques.

3.1 Foundations

The concepts presented in this chapter rely on mathematical foundations from both
the topology and statistics communities. A summary of the statistical methods used
in this chapter can be found in [3]. The topological tools presented in this paper are
based on Morse theory, a mathematical tool to study how the “shape” of a function is
related to the shape of its domain [8, 9]. Morse theory is a well understood concept in
the context of smooth scalar fields, and has been effectively extended to piecewise-
linear [2] and discrete [4] domains. Algorithms for computing the Morse-Smale (MS)
complex have been presented in the piecewise linear context [1, 2] as well as the
discrete context [5–7]. In this chapter we summarize the method presented in [10]
to extend the use of the MS complex to hixels.

We are interested in characterizing an uncertain scalar field defined at many points
in a metric space, M. A hixel is a point xi ∈ M with which we associate a histogram
of scalar values, h(xi ). In our setting, the h(xi ) could either represent a collection
of values in a block of data, collections of values at a location over a set of runs
in an ensemble, or uncertainty about the potential values a location may represent.
Figure 3.1 shows several empirical distributions with maxima identified.

3.1.1 Bucketing Hixels

When a hixel is defined empirically as a number of samples n fi on a finite support
{ f j | j ∈ {1, 2, . . . , N f }}, we call each entry of the support a bin. The probability
distribution (specifically here a probability mass function) is thus given by:

h : fi �−→ n fi
∑N f

k=1 n fk

for each possible value f j . Whether this distribution is defined empirically or
analytically, for instance as a weighted sum of Gaussians, we are interested in identi-
fying regions of high probability associated with peaks in the probability density. For
that we will perform topological segmentation of the histogram to identify peaks as
well as a range of function values associated with each peak. This range of function
values is called a bucket. A bucket aggregates one or more bins and is assigned a
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Fig. 3.1 Four probability distributions represented as histograms h(xi ) with 32 bins f j (rotated
90◦). Maxima (identified with black circles) indicate function values with high probability. Colors
indicate bucketing, the aggregation of bins of the histograms into modes based on the stable mani-
folds of persistent maxima. ©IEEE reprinted, with permission, from Thompson et al. [10]

probability given by the cumulative distribution function over that range of function
values. Figure 3.1 illustrates how the distributions have been bucketed by merging
maxima of h with their lowest persistence [2].

Because our scalar function f is represented by probability distribution h and we
are interested in identifying regions of high probability, we use a variant on the notion
of persistence. Typically, persistence ranks maxima by the difference in function
value between their value and their paired minima. Instead, we assign a value equal
to the area of the histogram between the pair (we call this ranking areal persistence).
By ordering intervals between maxima and minima according to the area underneath
them, peaks in probability density may be eliminated according to the probability
associated with them. The decision of which of the two possible minima (assuming
the maximum is interior) should be merged with the peak is made using regular
persistence: the smaller difference in function value indicates the region to which
corresponds the peak to be eliminated. Buckets can be merged in this fashion until
the probability of the smallest bucket is above some threshold. When the number of
samples is small, this threshold must be close to 1 since our confidence will be low.
Assuming that f has a finite variance (so that the central limit theorem holds), the
threshold may be lowered as the number of samples increases. Eventually, each hixel
will have one or more buckets corresponding to probable function values associated
with a peak in the distribution function; each bucket thus corresponds to an estimated
mode of the distribution.

Figure 3.2 shows the bucket counts for the jet dataset as areal persistence thresh-
olds are varied. At low thresholds, hixels that encompass areas of turbulent behavior
have high bucket counts. As persistence simplification is applied, but increasing
the threshold of areal persistence, buckets are merging indicating the most probable
modes of the dataset.
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Fig. 3.2 Varying areal persistence and its effect on bucketing for the Jet dataset. Using hixels
with size 163 and 256 bins/histogram, we vary areal persistence for all powers of two between 16
and 512, inclusive, from left to right. Color indicates how many buckets at that hixel’s position in
(x, y, z) space. At low levels of persistence, as many as 76 buckets can be selected in the hixel, but
as persistence increases, most hixels have only 1 or 2 buckets. ©IEEE reprinted, with permission,
from Thompson et al. [10]

3.2 Analysis of Hixel Data

In this section we summarize algorithms (1) to extract approximations of common
topological structures from hixel data; (2) to segment multi-modal data by splitting
individual histograms into their modes and correlate neighboring modes; and (3) to
define and render uncertain isosurfaces.

3.2.1 Sampled Topology

Hixels encode potential scalar values along with their distributions at sample loca-
tions, and thus can aid visualization of the uncertainty in topological segmentations
of down-sampled data. We use a three step process where we (1) sample the hixels
to generate individual instances of the coarser representation, (2) compute the Morse
complex on the instance, and (3) aggregate multiple instances of the segmentation
to visualize its variability. We generate an instance Vi of the down-sampled data by
picking values at each sample location from the co-located hixel. The value is picked
at random, governed by the distribution encoded by the hixel. By picking values in-
dependently from neighboring values, we can simulate any possible down-sampling
of the data, assuming each hixel’s distribution is independent.

For each sampled field Vi we compute the Morse complex of the instance using
a discrete Morse theory based algorithm [5], and identify basins around minima for
varying persistence simplification thresholds. We next create a binary field Ci that
encodes the geometric information of the arcs of the complex. Each sample location
in Vi contributes a value of 1 to Ci if the sample is on the boundary of two or more
basins, otherwise it contributes 0 if the sample is in the interior of a basin.

To visualize the variability of the topological segmentation of sub-sampled data,
we repeatedly sample the hixels producing Vi ’s, and compute their basin boundary
representations Ci . After n iterations, an aggregate function is computed over the
boundary representations, recording the fractional identification of a sample location
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Fig. 3.3 We sample the hixel data for an 8 × 8 blocking of combustion data, and compute the ag-
gregate segmentation for a number of iterations, also varying the level of persistence simplification.
Adjacent white pixels are identified in the interior of the same basin in every single run. The images
converge as the number of iterations increases left to right. ©IEEE reprinted, with permission, from
Thompson et al. [10]

as a basin boundary. Formally, at each sampled location we compute the aggregate
function a j = 1

n

∑
Ci

c j . Note that a j can take values between one and zero, where
one indicates it was identified as the boundary of basins in every instance, and zero
meaning it was identified as interior in every instance. In this manner, we visualize
rasterizations of the geometry of the Morse complex.

One point of interest is the amount of sampling required to capture a reasonable
aggregate field. Figure 3.3 shows each aggregate slice for the 8 × 8 block size, as
number of iterations and topological persistence are varied. The convergence of
these sequences indicates that the distribution represented by the hixels produces
stable modes of segmentation.

3.2.2 Topological Analysis of Statistically Associated Buckets

We next describe a novel statistical technique for recovering prominent topological
features from ensemble data stored in hixel format. This computation is aided by
the fact that ensemble data has a statistical dependence between runs that allows us
to build a structure representing a predictive link between neighboring hixels. Our
algorithm identifies subregions of space and scalar values that are consistent with
positive association and we perform topological segmentation on only those regions.
After bucketing all hixels, we compute a contingency table or tabular representation
between each pair of adjacent hixels, hi and h j , of the counts of all observed com-
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Fig. 3.4 Shown is a 2-dimensional spatial domain (x and y) and a function, f , on which the data
is hixelated (vertical axis). Hixel h1 has buckets a, b, c, and d; h2 has e, f , and g; and h3 has h,
i , and j . On the right, two contingency tables are shown tabulating the simultaneously observed
samples for h1 − h2 and h1 − h3. ©IEEE reprinted, with permission, from Thompson et al. [10]

binations of values as shown in Fig. 3.4. By considering simultaneously observed
samples of hi and h j , it is possible to identify pairs of buckets that co-occur more
frequently than if they were statistically independent by identifying those whose
pointwise mutual information (pmi) is greater than zero. Pointwise mutual informa-
tion is a statistical measure of association between realizations of discrete random
variables. The pmi of a realization (x, y) of a pair of discrete random variables (X,Y )
is defined as:

pmi(x, y) := log
p(X,Y )(x, y)

pX (x)pY (y)
,

where pX , pY , and p(X,Y ) respectively denote the probability density functions of X ,
Y , and the joint probability (X,Y ), for all possible outcomes of X and Y . When the
joint probability vanishes the pmi is set to −∞. Note that if X and Y are independent,
then the pointwise mutual information vanishes everywhere the joint probability does
not. Naturally, as this is a pointwise quantity, a zero value of the pmi does not indicate
mutual independence of the random variables.

Pairs of buckets in neighboring hixels, with a pmi greater then some ε ≥ 0, can
be treated as edges in a graph connecting buckets We call these connected compo-
nents sheets, illustrated in Fig. 3.5. Sheets are geometrically like lower-dimensional
surfaces in the product space of the spatial variables and the scalar data. Once we
have selected sheets, we compute topological basins of minima and maxima on each
sheet individually. We examine sheets on a mixture of 2 stochastic processes shown
in Fig. 3.6a. This data highlights the fact that individual hixels can be multi-modal
and can behave as both a minimum and maximum. A naive analysis that computes
the mean or median followed by standard topological segmentation would fail to
incorporate the multi-modal nature of the data. To addresses this issue, topologi-
cal analysis is performed on sheets of the domain that have likely simultaneously
observable sets of behavior.
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Fig. 3.5 Once the hixels have been bucketed and modes have been identified, we compute the pmis
between buckets that are spatially adjacent and connect those with positive associations to form
sheets. ©IEEE reprinted, with permission, from Thompson et al. [10]

Fig. 3.6 a Volume rendering of a hixel data set generated by sampling a mixture of Poisson and
normal distributions. Basins of minima (b) and of maxima (c) are shown for sheets, identifying
prominent features associated with each process in the mixture model. ©IEEE reprinted, with
permission, from Thompson et al. [10]

There are 512 × 512 hixels in the mixture model data set, each with 128 equally-
sized bins. The shortest axis in the images corresponds to histogram bins, thus a
spatially higher location along that axis indicates a higher function value. The data
is a mixture of two distributions at each hixel with 3,200 samples from a Poisson
distribution and 9,600 samples from a Gaussian distribution. Hue and opacity are
used to illustrate the density of samples. When the number of samples in a hixel bin
is zero, the bin is rendered as a transparent red. When the number of samples in a
bin is large, the bin is rendered as an opaque yellow.

Each hixel’s Poisson and Gaussian distribution have different parameter values
that vary smoothly over the image. The Poisson λ parameter is a maximum of 100
at five source points arranged in a circle and decreases to a minimum value of
approximately 12 proportional to the distance to the nearest of these points. The
Gaussian mean (standard deviation) is a minimum (maximum) at 4 points arranged
in the same circle as the 5 Poisson source points. The mean varies from 32 to 108
while the standard deviation varies from 16 to 3.8. Topological basins of minima
and maxima are shown in Fig. 3.6b, c for all sheets with pmi greater than zero. Our
approach clearly extracts separate sheets belonging to the two processes, allowing
topological analysis to identify the prominent features of each distribution.
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Fig. 3.7 Slicing a histogram. For an isovalue κ , we can use the histogram to count the number of
voxels with function values above (a) and below (b) i . ©IEEE reprinted, with permission, from
Thompson et al. [10]

3.2.3 Fuzzy Isosurfacing

When down-sampling larger datasets, hixels enable preserving the presence of an
isosurface within the data. In particular, because hixels store the counts of all function
values present within a block, we can compute the likelihood of the presence of
an isosurface within that block. Given a hixel hi and an isovalue κ , we slice the
histogram at κ and compute the number of voxels above and below κ . These two
counts, a and b for the count above and below, respectively, provide an indication
as to how frequently the isosurface κ may exist within the block. Alternatively these
values can approximate the surface area of the isosurface within the block, Fig. 3.7
visualizes this slicing process.

Using the values a and b, we can then compute a likelihood field. We let g = a
b − b

a .
For hixels that have a = b, g takes on the value 0, while g > 0 for hixels that are
strongly above κ and g < 0 for hixels that are strongly below. If a = 0, we set
g = b, and when b = 0 we set g = a. By volume rendering the g field we can get a
“fuzzy” depiction of where the isosurface exists in a hixelated field. By comparison,
naive down-sampling of the scalar field could either move or destroy isovalues. By
visualizing the field g we get a more honest depiction about where that isovalue was
originally in the dataset, and can thus preserve that information.

Figure 3.8 shows visualizations of the stag dataset for κ = 580, down-sampled
from its original size of 832 × 832 × 494 to 208 × 208 × 123, 104 × 104 × 61,
52 × 52 × 30, 26 × 26 × 15, and 13 × 13 × 7. Hixels of block size b3 used 2b2

bins. By tracking a histogram of values, at lower resolutions we can preserve the
fidelity of the isosurface and display a more expressive view of the data. Using only
a single value, it is challenging to preserve the thin features of the isosurface, as the
legs, antenna, and mandibles are hard to preserve. Figure 3.2 shows a side-by-side
comparison of the isosurfaces produced at κ = 580 for the mean and lower-left fields
as compared to the volume rendering of the g field when the hixel block size is 163.
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Fig. 3.8 a–c Volume rendering of g field for Stag, as compared to down-sampling with the mean
and lower left corner of each block. The dataset is originally 832×832×494, and from left-to-right
we shown hixel sizes of 43 to 643, with all powers of 2 in between. d For hixel size 163, we compare
the likelihood field g volume rendered to the isosurfaces computed for κ = 580 for the mean and
lower-left down-sampling. ©IEEE reprinted, with permission, from Thompson et al. [10]

3.3 Discussion

By unifying the representations of large scalar fields from various modalities, hixels
enable the analysis and visualization of data that would be otherwise be challenging
to process. While hixels have utility, they present a number of challenges and open
questions to explore. One important question regards information preserved by the
hixels vs. resolution loss. A study is required to explore the appropriate number
of bins per hixel as well as persistence thresholds for bucketing and mode seeking
algorithms. The performance of hixels was not currently emphasized in our work, but
the complexity of many techniques used here should allow for scaling to larger data.
Additional research is required to find a balance between data storage allotted for the
histograms versus feature preservation. Finally, further studies on what topological
features can and cannot be easily preserved by hixelation is required.
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Chapter 4
On the (Un)Suitability of Strict Feature
Definitions for Uncertain Data

Tino Weinkauf

Abstract We discuss strategies to successfully work with strict feature definitions
such as topology in the presence of noisy/uncertain data. To that end, we review
previous work from the literature and identify three strategies: the development of
fuzzy analogs to strict feature definitions, the aggregation of features, and the filtering
of features. Regarding the latter, we will present a detailed discussion of filtering
ridges/valleys and topological structures.

4.1 Introduction

Features are not only ubiquitous in scientific data, but they are inherent to the
underlying natural phenomena. For example in fluid dynamics, vortex structures
influence important properties such as the lift of an airfoil or the drag of a car. Under-
standing such features—when and where they occur, their strength, their dynamics—
is crucial to understanding and controlling the underlying phenomena.

Definition and interpretation of features depend on the underlying application, but
usually they represent important structures (vortex, stagnation point) or changes to
such structures (events, bifurcations). There are at least two ways of defining features
in scientific visualization:

• Smooth Feature: a fuzzy area of the domain where every point adheres to a given
definition to some extent.

• Strict Feature: a well-defined subset of the domain which fully adheres to a given
definition; usually a geometric object such as a point, line, or surface.

Smooth feature definitions lend themselves to interactive visual analysis approaches
such as SimVis [1], where the user can create a fuzzy feature definition interactively
by brushing in different views of the data and exploring the result in linked views.
The result is subjective, but the approach leaves room for exploration in cases where
the features cannot be described a priori (yet). Smooth feature definitions address
uncertainty or noise, at minimum, by communicating it through their fuzziness.
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Fig. 4.1 Strict feature definitions such as topology produce a wealth of structures in the presence
of noise/uncertainty

Strict feature definitions, on the other hand, lend themselves to an automated data
analysis, which can be carried out on supercomputers along the simulation. This is
preferable in some cases: for example, if the data set is too large to be efficiently
handled by commodity hardware, or if the analysis results have some influence on
the simulation itself (e.g. simulation steering). The extraction of strict features is
easily automated and therefore, it is perfectly fitted for batch jobs on supercom-
puters. Furthermore, strict feature definitions usually depend on fewer parameters
than smooth definitions or even no parameters at all. Hence, the interpretation of
the results depends less on a user-defined parametrization (e.g. isovalue, transfer
function, fuzzy feature definition), which in turn makes it easier to strive for a more
objective analysis.

However, strict feature definitions do not incorporate fuzziness: a point is either
part of a feature or not. There is no room for uncertainty. In fact, such definitions com-
municate certainty. Strict feature definitions usually produce a wealth of structures in
the presence of noise or uncertainty. Figure 4.1 illustrates this using the topological
skeletons of two vector fields: the quasi-analytically given electrostatic field around
the benzene molecule, and the numerically simulated flow behind a step.

At first glance, it seems as if the concepts of strict feature definitions and uncer-
tainty are antagonistic. In the following, we show that this is not necessarily the case.
We will explore different strategies to successfully work with strict feature definitions
such as topology in the presence of noisy/uncertain data.

4.2 Strict Features Versus Noisy or Uncertain Data

4.2.1 Fuzzy Analogs to Strict Feature Definitions

A way of dealing with uncertain data is to move away from strict requirements and
develop fuzzy analogs to strict feature definitions. An example for this is uncertain
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vector field topology by Otto et al. [11–13], where the uncertainty is incorporated
into the integration of stream lines by means of a Monte Carlo process. This leads to
a notion of critical points as distributions rather than distinct points as in the classic
case. In order to reflect the uncertainty inherent to brain diffusion MRI data, Schultz
et al. [19] introduced fuzzy versions of topological features for tensor fields based
on probabilistic tractography.

Strict definitions such as topology usually come as a part of a larger theoretical
framework with a number of properties and guarantees. In the beginning, newly
developed fuzzy analogs replace usually only certain parts of such a theoretical
framework. The development effort to rebuild the whole framework in a fuzzy manner
may be very high. For the field of topology, it is for example unclear whether the
Morse inequalities still hold for uncertain topology. This leaves room for future
research, but it also shows that fuzzy analogs are usually not a full replacement for
the corresponding strict feature definitions—at least in the beginning.

Another example for a fuzzy analog is the Probabilistic Marching Cubes method
by Pthkow et al. [15, 16], where the positional uncertainty of isocontours is evaluated.
Again, it remains a task for future research how this relates for example to contour
trees.

4.2.2 Aggregation of Features

As already mentioned, strict feature definitions usually produce a wealth of struc-
tures in the presence of noise or uncertainty. Aggregating features using statistical
methods may help in some applications to reveal the most dominating trends in a
data set. This has been done by Garth et al. [5] for tracked critical points in unsteady
3D flows. These features are curves in 4D and often prone to noise. A principal
component analysis of all space-time positions of all critical points has been used to
determine their principal spatial direction as well as their common center of move-
ment. This dimensionality reduction effectively reduced the amount of information
and the resulting visualizations aid in understanding the most dominating trends of
the data set.

4.2.3 Filtering of Features

A common method for dealing with a large number of mainly noise-induced features
is to filter them according to one or more criteria. The goal is to quantify each feature
point in terms of a certain “feature strength” and to keep only the most dominant
(parts of the) features.

In the following, we will detail this concept using the example of extremal
structures—lines and surfaces at which the scalar function value becomes mini-
mal or maximal with respect to the local neighborhood. These features are important
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in many applications. For example, vortex core lines can be found in a flow data
set as lines where the Q-criterion becomes maximal [18], or pressure minimal [10].
Strongest particle separation in an unsteady flow is denoted by surfaces where the
Finite Time Lyapunov Exponent (FTLE) becomes maximal [7].

There are two types of approaches for extracting extremal structures: the local
analysis due to ridges/valleys and the global point of view by means of topology.

4.2.3.1 Filtering of Ridges and Valleys

The extraction of ridges and valleys requires derivatives of the examined scalar field
f . The commonly used Height Ridge definition [2] builds on the first and second
derivatives of f , i.e., the gradient g and the Hessian H. As elegantly formulated by
Peikert and Sadlo [14], ridge lines in a 2D scalar field are found as a subset of the zero
contour of the derived field d = det(g|Hg). Noise in the original data as well as its
amplification in the derivatives usually cause a wealth of spurious extraction results
for ridge and valley lines. Therefore, filtering of extraction results is mandatory. Many
filtering criteria have been proposed in the literature to quantify the importance of
ridges: the feature strength of a ridge, the height of a ridge, the angle between the
gradient and a ridge line segment, or the length/area of a connected component [14,
17].

4.2.3.2 Filtering of Topological Structures

Topology provides a different means for extracting extremal structures. The Morse-
Smale (MS) complex of a 2D scalar field f is comprised of points and lines, which
provide a segmentation of the domain into monotone cells [9], i.e., regions in which f
behaves monotonically increasing from a local minimum to a local maximum. Each
cell is cornered by critical points (a minimum, a maximum, and saddle points). The
boundaries between cells are provided by separation lines—so-called separatrices.
They are extremal lines—the topological analog to ridges/valleys.

Two types of approaches exist to extract the MS complex. The continuous
approach [8, 20] builds on the gradient g and Hessian H of f . Noise in f and
noise amplification in g and H pose a numerical challenge for this approach just as
much as for ridges. The discrete approach due to Forman’s discrete Morse theory [4]
works on sampled data only, but does not require any derivatives or other numerical
computations, since it describes the MS complex in a purely combinatorial fashion.
So while noise is less of a problem due to the exclusion of derivatives, spurious
extraction results still show up because of the noise level in the original data f .
Hence, filtering is necessary. A well-accepted filtering criterion for critical points
is persistence due to Edelsbrunner et al. [3]. The separation lines of a 2D scalar
field can be filtered using a closely related measure called separatrix persistence
[21], which determines the feature strength of a separatrix or parts thereof. It was
originally introduced to filter salient edges on surfaces meshes. Figure 4.2 shows an
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min , max-30 30

Fig. 4.2 Salient edges of a surface are detected using a topological analysis of the principal curva-
tures κmin, κmax . After computing the curvature fields (left), we extract their topological skeletons
using discrete Morse theory (middle). It consists of critical points and separatrices—the latter being
lines of minimal/maximal curvature. We quantify the significance of these lines using separatrix
persistence and remove all parts below a certain threshold. This effectively removes all noise-
induced structures and yields all perceptually salient concave and convex edges of the input surface
(right)

example. Later, it has also been applied to filter extremal lines in general scalar fields
such as the elevation maps of Mars [6].

4.3 Conclusion

While strict feature definitions introduce a notion of certainty by their mere definition,
they are not necessarily antagonistic to the concept of uncertainty. We reviewed three
strategies for dealing with strict feature definitions in the presence of noisy/uncertain
data: the development of fuzzy analogs to strict feature definitions, the aggregation of
features, and the filtering of features. The latter is usually done by means of a notion
of “feature strength”, which is not only useful to remove noise-induced structures,
but may also be applied to build a hierarchy of features.
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Chapter 5
The Haunted Swamps of Heuristics: Uncertainty
in Problem Solving

Artem Amirkhanov, Stefan Bruckner, Christoph Heinzl
and M. Eduard Gröller

Abstract In scientific visualization the key task of research is the provision of
insight into a problem. Finding the solution to a problem may be seen as finding a
path through some rugged terrain which contains mountains, chasms, swamps, and
few flatlands. This path—an algorithm discovered by the researcher—helps users to
easily move around this unknown area. If this way is a wide road paved with stones
it will be used for a long time by many travelers. However, a narrow footpath leading
through deep forests and deadly swamps will attract only a few adventure seekers.
There are many different paths with different levels of comfort, length, and stability,
which are uncertain during the research process. Finding a systematic way to deal
with this uncertainty can greatly assist the search for a safe path which is in our case
the development of a suitable visualization algorithm for a specific problem. In this
work we will analyze the sources of uncertainty in heuristically solving visualization
problems and will propose directions to handle these uncertainties.

5.1 Introduction

Solving visualization tasks is somewhat similar to finding a path through different
terrain (see Fig. 5.1). This terrain consists of two areas with very different characteris-
tics: steep mountains and dangerous swamps. The mountains represent high grounds
of theory. Choosing a path through the mountains one is on stable ground, but the path
may be steep, tedious, and inexperienced travelers might get lost or stuck at a dead
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Fig. 5.1 Task solving is finding a path from a problem to a solution

end. The resulting way can be a serpentine road or may even lead through a tunnel, if
enough effort is invested in its construction. Another possibility is to go through the
haunted swamps of heuristics. The path through the swamps seems to be rather easy
and straight-forward, as it is flat walking, but in fact it is neither smooth nor safe.
There might be unexpected turns and twists. There are few and badly marked paths
through these swamps. In case of even slight deviations the pioneer can easily find
himself at a dead end or even get sucked into the deadly waters. Only few researchers
find viable, elegant paths through the swamps. If it works out it may result in a shorter
way from problem to solution as compared to going on the high grounds of theory.

Using heuristics is often considered as a bad choice in the design of a visualization
algorithm. Reviewers of visualization papers tend to dislike heuristics. They comment
on heuristics like: lots of parameter tweaking, only heuristics, yet another heuristic,
too many heuristic choices, or ad hoc parameter specification. Should we try to avoid
heuristics and attempt to only find the theoretically well-grounded solutions?

5.2 Heuristics

Heuristic (or heuristics; Greek: “Eυρισκω”, meaning to find or to discover) refers
to experience-based techniques for problem solving, learning, and discovering. As
an adjective, heuristic pertains to the process of gaining knowledge or some desired
result by intelligent guesswork rather than by following some pre-established rules,
laws, or formulae. The underlying theory might not even be known. Humans often
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Fig. 5.2 Three well known optical illusions: Zöllner illusion (a), bulging checker board illusion
(b), and blur and picture content illusion (c)

apply heuristic and approximate approaches if they have to solve complex problems.
In many cases they do not have the complete information for a precise solution.
Heuristics are about finding a good enough solution where an exhaustive search
would be impractical. One of the most commonly used heuristics, which can initiate
a problem solving process, is trial and error. Other common examples of heuris-
tics are, e.g., drawing a figure for better problem understanding, working backward
from an assumed solution, or examining a concrete example of an abstract prob-
lem. Previous experiences and known information result in such heuristic concepts
as prejudices and stereotypes. By evolution some heuristic approaches are firmly
anchored in perceptual and mental processes. Heuristic problem solving may work
in many circumstances, but in some cases fails to deliver the correct solution. This
can lead to cognitive biases in decision making or to imperfections in perception like
optical illusions. Three of these optical illusions are shown in Fig. 5.2. Long black
lines with horizontal and vertical marks in the Zöllner illusion [20] (Fig. 5.2a) are
parallel to each other but do not seem to be. The apparent bulging of the checker
board (Fig. 5.2b) is not real: the board is planar. The third example (Fig. 5.2c) shows
how frequencies affect the perceived content of a picture. If the viewer examines
the image from a short distance, Albert Einstein’s face is seen, but, if looking from
farther away, the face changes to that of Marilyn Monroe. These three examples
are synthetic, but sometimes optical heuristics can fail in real life situations as well.
For instance, the size of the moon seems to vary depending on its distance from the
horizon.

Algorithm developers use heuristics for problem solving in many ways. Whenever
the information available for a task is incomplete or exact solutions are too expensive,
an algorithm or some algorithmic part is supplemented with heuristics. Often the
heuristic portions of an algorithm are encoded in coefficients or parameters. The
following section will elaborate more on the heuristic nature of parameters, issues
connected to parameters and ways to explore the uncertainty of an algorithm by
studying its parameters.
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Fig. 5.3 Objects of desire in science. a Data (from Multipath CPR [15]). b Mummy [Ötzi the Iceman
(© South Tyrol Museum of Archaeology—www.iceman.it)]. c Algorithm (courtesy of Heinzl [11])

5.3 Objects of Desire in Science

Every scientific discipline has its own object of desire, i.e., study focus. In some
areas like geology or medicine these are the physical and medical phenomena and
processes hidden inside the data. Data collection, classification, and analysis in
order to get useful insights are in the center of the scientific activity (Fig. 5.3a).
In other areas artifacts, fossils and mummies (Fig. 5.3b) are the investigated items.
In yet other disciplines pieces of text or poems might be in the center of attention. In
computer science algorithms (and data structures they work on) are the key entities
researchers and developers are designing and investigating (Fig. 5.3c).

An algorithm is a set of instructions that operate on data which are given through
constants and variables. And then there are parameters. Constants are, as the name
says, constant during the execution of an algorithm. They are fixed and may be
mathematical or physical quantities like the cosmological constant. Variables con-
tain values that change during algorithm execution. So where do parameters fit into
this picture? Parameters (again a Greek term) are auxiliary measures which are
arbitrary but fixed. They are neither constants nor variables. If an algorithm simu-
lates a specific model within a class of models that share the same characteristics, the
parameter is fixed for this one model. Switching to another model in the class means
varying the corresponding parameter. Parameters are somewhat dual in their nature.
And they are just ‘auxiliary’. Computer scientists and also visualization researchers
are very fond of the instruction part of their algorithms, which they dedicate a lot
of time to. Constraints, boundary conditions, approximations, and calibrations are
issues that often are encoded in parameters. Even more: if the algorithm still does not
work properly, it can only be in the parameters or more of them are needed. They are
our easy back-door out. Parameters in many cases do not get the necessary attention
and are all too often supposed to be specified heuristically. And it is exactly here
were heuristics get a bad reputation. Sometimes the inadequacy of an algorithm is
covered up by a set of unintuitive parameters which the developer himself cannot
control properly. So to make a virtue out of necessity, the parameters are declared to
be user-defined and this is sold as additional flexibility. In reality often this puts an

www.iceman.it
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Fig. 5.4 Algorithm and its
parameters. a Algorithm
without parameters. b
Parameters on top of the
algorithm. c Yin and Yang
union of algorithm and its
parameters

data imagealgorithm

(a)

data image
algorithm

parameters
(b)

(c)

data image

undue burden on the user and impacts the usability and applicability of an algorithm.
Finding a path, i.e., solving a problem, requires an algorithm and parameters. Visual-
ization research is often concerned with taking data and producing an image as visual
result. This mapping is realized through an algorithm. But as said above an algorithm
alone (like in Fig. 5.4a) is typically not sufficient by itself. Also an algorithm and its
parameters do not live side-by-side or one is on top of the other (like in Fig. 5.4b).
An algorithm and its parameters are closely intertwined in a yin yang union (like in
Fig. 5.4c). Changing an algorithm has an immediate impact on the pertaining para-
meters, some of them may even vanish or new ones might come into existence. On
the other hand, changing parameters may heavily impact the functioning of an algo-
rithm. The results may even be similar to the results from a quite different algorithm
(with other parameters of its own). In various disciplines parameter-space analyses
are already well established to determine the robustness and stability of processes or
procedures. In the area of visualization the investigation of parameters and the spaces
they live in has gained increased interest only in recent years. Knowledge-assisted
visualization or the visualization of variations and ensembles go into this direction.
In the next section we will discuss parameter-space analysis in more detail.

5.4 Parameter-Space Analysis

New and improved imaging modalities, like dual energy computed tomography, allow
measuring the same specimen with varying parameters. Increased computing perfor-
mance (multi-core CPUs, GPUs) allows not only calculating one simulation run but
hundreds or even thousands of runs with changing parameter settings. This necessi-
tates investigating and visualizing large sets of simulations or data ensembles at the
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Fig. 5.5 Close-up of a Julia set (a) and the Mandelbrot set as parameter map of all Julia sets (b)
(courtesy of Falconer [8] © John Wiley and Sons)

same time. Dynamical systems are an illustrative example where parameter-space
analysis has already been applied for a long time. Julia sets (Fig. 5.5a) are the result
of iterating a simple quadratic polynomial in the complex plane. Each polynomial is
characterized by a parameter p. Different parameters lead to greatly varying results
where the outcome may for example be a connected or disconnected Julia set. Doing
an analysis of all possible parameters leads to a parameter space display where the
beautiful and immensely intricate Mandelbrot set appears (Fig. 5.5b). The parameter
p of the Julia sets turns into a variable in the parameter space where the Mandelbrot
set resides. As a side note: the Mandelbrot sets comprises all those values p whose
corresponding Julia sets are connected. With dynamical systems a parameter-space
analysis may be local or global. A local investigation looks at small perturbations
of a parameter to identify for example stability properties which could be direction
dependent. A global investigation looks at larger structures in parameter space, e.g.,
asymptotic behavior, basins of attraction, bifurcations or topological items like sep-
aratrices. In the visualization domain parameter-space analyses become feasible as
well for data ensembles and parameterized simulation runs. Parameter-space inves-
tigations from other fields might act as guiding examples, though the peculiarities of
our applications have to be taken into account. While for dynamical systems parame-
ters often change continuously, in our applications parameters may be for example
discontinuous, discrete, or categorical in nature. Certain regions of parameter space
may be uninteresting or even meaningless because of the physical properties of the
underlying phenomenon. With the holistic view on large ensembles or simulation
runs interesting questions arise:

• What is the local stability of a (visualization) parameter setting?
• How do different parameters influence each other?
• What are permissible (visualization) parameter ranges?
• How can we automatically define parameter settings that optimize certain proper-

ties?
• How sensitive is the visualization outcome on parameter perturbations?
• How to efficiently sample the high dimensional parameter spaces?
• How to do reconstruction in these parameter spaces?
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In the following recent examples of parameter-space exploration in the visualiza-
tion domain are shortly discussed.

Ma [12] introduced a visualization system which presents information on how
parameter changes affect the result image as an image graph based on data gener-
ated during an interactive exploration process. Berger et al. [4] study continuous
parameter spaces in order to guide the user to regions of interest. Their system uses
continuous 2D scatter plots and parallel coordinates for a continuous analysis of a
discretely sampled parameter space. Not sampled areas of the parameter space are
filled with predictions. The uncertainty of the predictions is taken into account and
also visualized. The stability of the results with respect to the input parameters is
visualized and explored.

In the work by Amirkhanov et al. [1] parameter space exploration is carried out
in order to detect the optimal specimen placement on a rotary plate for industrial 3D
X-ray computed tomography. The parameter space is represented by Euler angles
defining the orientation of the specimen. The parameter settings providing the optimal
scanning result were determined using a visual analysis tool. The stability of the result
with respect to these parameters was additionally taken into account.

Analyzing how segmentation performs when parameters change and finding the
optimal set of parameters is a tedious and time-consuming task. It is usually done
manually by the developers of segmentation algorithms. Torsney-Weir et al. [16]
presented a system to simplify this task by providing an interactive visualization
framework. The Tuner tool samples the parameter space of a segmentation algo-
rithm and runs computations off-line. A statistical model is then applied for the
segmentation response. Hyper slices [19] of the parameter space and 2D scatter plots
are used to visualize these data. Based on the prediction model, additional samples of
parameter space may be specified in the regions of interest. The tool allows finding
the optimal parameter values and estimating the segmentation algorithm’s robustness
with respect to its parameters.

FluidExplorer by Bruckner and Möller [7] is an example of goal-driven parameter
exploration. They explore the parameters of physically-based simulations for the
generation of visual effects such as smoke or explosions. First, the set of simulation
runs with various parameter sets is run off-line. Then sampling and spatio-temporal
clustering techniques are utilized to generate an overview of the achievable results.
Temporal evolution of various simulation clusters is shown. The goal is to find the
set of parameters resulting in a certain visual appearance. The metric is defined via
user interaction when the user explores the simulation space.

The work of Waser et al. [17] uses World Lines to study complex physical sim-
ulations. In such time-dependent simulations parameters can change their values at
arbitrary moments in time. Decision support is provided by the ability to explore
alternative scenarios. A World Line is introduced as a visual combination of user
events and their effects in order to present a possible future. The proposed setup
enables users to interfere and add new information quickly to find the most appro-
priate simulation outcome. The usefulness of the technique is shown on a flood-
ing scenario where a smoothed particle hydrodynamics simulation is used. Waser
et al. further expand their framework in [18]. The authors take uncertainty of the
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simulation parameters into account to provide the confidence in the simulation
outcome. In the proposed solution, users can perform parameter studies through
the World Lines interface to process the input uncertainties. In order to transport
steering information to the underlying data-flow, a novel meta-flow (extension to
a standard data-flow network) is used. The meta flow handles components of the
simulation steering.

World lines are an example of how to handle uncertainty and parameter vari-
ations in a computational-steering environment. Now we move further down the
visualization pipeline, take a look at the visualization-mapping stage and discuss
how an integral view of parameter spaces may influence our view of ensembles of
visualization algorithms.

5.5 Parameter Spaces and Visualization Algorithms

A-space [2] is a space where all visualization algorithms live. In A-space every algo-
rithm with a specific parameter setting is represented by a unique point. Perturbing
the parameters of an algorithm produces a point set (solution cloud) in A-space. The
solution clouds of two quite different algorithms may overlap. This means that a
visualization algorithm 1 with parameter 1 produces the same or very similar results
as algorithm 2 with parameter 2.

The holistic view of visualization algorithms being embedded in a common space
enables interesting investigations and may lead to novel visualization techniques.
Sample questions are: What is the stability of an algorithm in A-space? Are there
global structures in this space? Can there be smooth transitions between rather diverse
algorithms? What would be sparse blendings between various algorithms? MIDA [6]
is an interesting example where two well-established volume rendering techniques,
i.e., direct volume rendering (DVR) and maximum intensity projection (MIP), are
combined in a fine-grained fashion. A smooth transition between DVR, MIP and
MIDA itself becomes possible and allows exploiting the strengths of DVR and MIP
while avoiding their weaknesses. Another more coarse-grained combination of visu-
alization algorithms would for example be two-level volume rendering [10].

5.6 Algorithms, Parameters, Heuristics—Quo Vadis?

Algorithms and their parameters are closely intertwined. They together constitute a
path from the problem to the solution by mapping data to images. Even if parame-
ters are ‘just auxiliary measures’ they definitely need our help. Heuristic parameter
specification is a viable approach as long as some sort of sensitivity analysis is
taken care of. This sensitivity analysis should not be only done in parameter and
algorithm spaces it should also be extended to data and image spaces. Furthermore
the sensitivity analysis should also be applied to interaction space, as we are often
confronted with interactive visualization applications. An example in this respect is
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the work of Gavrilescu et al. [9]. The increased complexity of data ensembles, large
simulation runs and uncertainty in the data poses interesting visualization challenges.
How shall we cope with the increased data and analysis complexity? Three of several
possible directions include integrated views and interaction [3], comparative visu-
alization [13] and fuzzy visualization [14]. With fuzzy visualization, techniques of
information theory will play a bigger role in coping with large parameter spaces.

Currently problem solving in visualization is typically algorithm-centric and thus
imperative by definition. With increased data complexity it will probably become
more declarative and thus more data and image centric, as domain experts have always
been data-centric. A data-centric approach means that the user does not specify how
data is mapped to images but defines which features of the data he would like to see
how in the result images. This is like specifying pre- and post-conditions but not the
instructions to get from the first to the second. An optimization process should then
automatically figure out which algorithms and parameter settings best fulfill the user
defined declarations and constraints. Semantic layers [14] is a step in this direction.

Frameless rendering [5] is about efficiently rendering animation sequences where
pixels are updated on a priority basis. At no point in time all pixels of the image
are up-to-date, i.e., no frame is available though the animation sequence as a whole
evolves. Analogously to this concept, we foresee algorithmless visualizations in the
sense that not a single algorithm is explicitly specified by the user in a specific
application. For different features of the data and for different parts of the image the
most appropriate algorithm among a set of possible candidates might be automatically
selected. Various combinations and integrations of visualization algorithms might be
possible to best achieve the user goals and declarations. Each pixel or voxel might
get its own algorithm on demand.

Interval arithmetic has long been used to cope with uncertainties due to round-
ing, measurement and computation errors. Handling ensemble data in an analogous
manner may lead to densely visualizing intervals or even distributions. While there
are already some approaches to locally investigate visualization parameter spaces,
not much has been done in terms of a global or topological analysis. For quantitative
results visualization algorithms will have to provide more stability and robustness
analyses in the future. With the increased data complexity (massive-multiple, het-
erogeneous data) heuristic approaches and parameter space analyses will become
even more important. This raises the need to visualize uncertain, fuzzy, and even
contradictory information.

Very often heuristics are useful. But even if you do not (exactly) know what you are
doing (this is what heuristics is about), you should make sure that it is safe what you
are doing. Safety concerns robustness, stability, and sensitivity of an algorithm and
its parameters. So heuristics are great, when handled with care. This way your paths
through the haunted swamps will be safe ones. We for sure agree with a statement
by Voltaire: “Doubt is not a pleasant condition, but certainty is absurd.”
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Chapter 6
Visualizing Uncertainty in Predictive Models

Penny Rheingans, Marie desJardins, Wallace Brown, Alex Morrow,
Doug Stull and Kevin Winner

Abstract Predictive models are used in many fields to characterize relationships
between the attributes of an instance and its classification. While these models can
provide valuable support to decision-making, they can be challenging to understand
and evaluate. While they provide predicted classifications, they do not generally
include indications of confidence in those predictions. Typical quality measures for
predictive models are the percentage of predictions which are made correctly. These
measures can give some insight into how often the model is correct, but provide little
help in understanding under what conditions the model performs well (or poorly).
We present a framework for improving understanding of predictive models based on
the methods of both machine learning and data visualization. We demonstrate this
framework on models that use attributes about individuals in a census data set to
predict other attributes of those individuals.
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6.1 Overview

In many scientific fields, models are used to characterize relationships and processes,
as well as to predict outcomes from initial conditions and inputs. These models can
support the decision-making process by allowing investigators to consider the likely
effects of possible interventions and identify efficient ways to achieve desired out-
comes. Machine learning research on constructing complex models (such as Bayesian
networks) typically focuses on maximizing predictive accuracy, or other measures of
model quality. Model confidence refers to the estimated certainty in the classifications
produced by the model.

We describe a new framework for improving the understanding of complex mod-
els by drawing upon the strengths of both machine learning and data visualization.
These two disciplines complement each other to combine the benefits of intelligent
automatic support for design and analysis with visual representations and interactions
that boost human abilities. We leverage these approaches to address the challenges
of developing, understanding, and using complex models to facilitate scientific dis-
covery and informed decision-making.

Our focus is on understanding the uncertainty that is associated with model pre-
dictions. This uncertainty arises from several sources. Sample uncertainty occurs
when regions of the instance space are not well represented in the training data, and
predictions are therefore based on sparse information. Model instability occurs when
model predictions vary, depending on the training data that was used to construct
the model. Prediction variability occurs when a given observation may have noisy
attributes, and this input uncertainty leads to uncertainty in the model’s predictions.
We are developing analytical techniques to create meta-models that characterize
these three forms of uncertainty. To facilitate user understanding of the nature and
distribution of these multiple types of uncertainty across the model space, we are
developing novel visualization methods to visualize these meta-models in a display
space.

This paper describes the challenges associated with model visualization and
presents our approach, which uses dimension reduction techniques to produce a
glyph-based two-dimensional display of model predictions. We illustrate the use of
these visualization techniques in a census data domain from the UC Irving Machine
Learning Repository [9].

6.2 Models

Models posit deterministic or stochastic relationships among domain attributes, char-
acterized by a set of parameters that are used to specify behaviors that generate an
output. The attributes are the observed or latent variables that correspond to the
entities of interest in the domain. For example, in the census domain, the attributes
include age, level of education, and occupation. The model behavior specifies how
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these attributes interact during a single application or execution of the model. The
internal model parameters are the numeric controls on these behaviors, and are typi-
cally inferred from observations. In the census domain, the parameters might specify
the ways in which education level influences one’s occupation. Finally, model outputs
refer to the values of summary measurements of interest, such as predicted income
level or the probability that an individual is in a particular occupation.

Predictive models can be constructed manually or can be learned from a col-
lection of example instances, identifying potentially complex relationships between
input attributes and output probabilities. Once these relationships are understood, a
predictive model can give the probability of different outcomes, given the known
values of input attributes. A predictive model might output the probability that an
individual with particular attributes will be in a high-income bracket. Predictive mod-
els can be constructed using classification mechanisms (which group observations
into one of a small, discrete number of classes), regression techniques (which fit
mathematical relationships between attributes and continuous outcomes), or density
estimation methods (which build probabilistic models that capture the distribution
and relationships among objects within a domain of interest).

It is straightforward to compute and then visualize a single model output for a
particular set of attribute values. In many cases, however, it is important to understand
model predictions more broadly. Understanding the overall behavior of the model
across the range of possible attribute values is important for understanding the model
as a whole. Inspecting single predictions is a very slow and inefficient way to develop
this broader understanding. Rather, a summary analysis or visualization that can
convey individual predictions or probabilistic distributions of predictions across all
sample locations would provide valuable insight into the overall model behavior.

We have identified four core discovery tasks, corresponding to four categories of
questions that an analyst may wish to answer:

• What are the predicted outcomes associated with specific input attribute values,
or with a region of the input space?

• What predictions and errors does the model make in input regions in which little
training data is available?

• Which input values or regions result in low-confidence and/or incorrect predic-
tions?

• Where and how should model refinement efforts (e.g., data gathering or label
correction) be concentrated?

6.3 Approach

The framework that we are developing is implemented as a pipeline, constructed of
a series of computational steps that “flow” from training data, through model con-
struction, to visualization and interaction. The framework is intended to be domain-
independent and applicable to a wide range of classification problems.
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The construction of a probabilistic model begins with a set of training instances for
a given domain. Each instance consists of a vector of attribute values (for a fixed set
of attributes that are associated with that particular domain) and a class label (which
may be a binary “yes/no” label, or may be one of a set of categorical values). We
are currently using the Weka machine learning toolkit [6] to construct models. The
model maps from an unlabeled instance (attribute vector) to a probability distribution
over class values (i.e., an assignment of a real-valued probability in the range [0, 1]
to each class value, such that the sum of the probabilities is one). Once the model has
been built, it can be used to generate predictions for both the training data and a set of
previously unseen test instances. The test instances also have associated class labels,
so they can be used to understand prediction errors on previously unseen instances.

To begin the visualization process, a dimension reduction method is applied to
a set of instances. This process results in a mapping from the high-dimensional
attribute space to a two-dimensional display space. Ideally, the dimension reduction
process will preserve important properties of the instance distribution, so that similar
instances appear near each other in the display space. Finally, a set of instances (which
could be the training instances, the test instances, both of these sets, or a new set
of sample data generated using the model) is displayed in the display space, using
glyph-based representations to show the probabilistic class predictions associated
with each instance. We have developed and are currently evaluating two alternative
glyph representations: pie charts and a “speckled” texturing.

6.3.1 Dimension Reduction

The first step in developing a model visualization is to project the high-dimensional
instance space into a two-dimensional display space. The most effective dimen-
sion reduction methods for continuous spaces, such as the ones we are interested
in, produce clusters or projections in two-dimensional space that are based on the
distribution and similarity of data instances in the higher dimensions. These meth-
ods include principal components analysis, multi-dimensional scaling [3], relevance
maps [1], and self-organizing maps [10, 13].

The figures in this paper show visualizations that use two dimension reduction
methods: feature selection (orthogonal projection using two selected attributes as
axes) and principal components analysis (a statistical method for computing an
orthogonal projection using linear combinations of the original attributes). We are
also implementing multidimensional scaling (a similarity-preserving iterative dimen-
sion reduction technique) and self-organizing maps (an iterative method based on
neural network learning).

Figure 6.1 shows two projections of an income prediction model in the census
domain. Test instances are shown with circular glyphs. In both images, individuals
who are predicted to make a high income are colored white, while those predicted to
make a low income are colored green. In the left image, the model is projected using
feature selection, with education level on the x axis and hours worked per week on
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Fig. 6.1 Predictions made by the model about most likely income level for test instances in the
census domain, projected using feature selection (left) and PCA (right)

the y axis. This pair of attributes does not seem to effectively group the instances
by predicted income. Throughout the image, green and white glyphs are intermixed.
In the right image, the model is projected using PCA. The first principal component
is mapped to the x axis, while the second principal component is mapped to the
y axis. High-income predictions tend to appear toward the top left of the display, while
low-income predictions group to the bottom right. The center of the image contains
a mixture of green and white glyphs; presumably the income of these individuals is
more difficult to predict. PCA is often more effective at grouping similar instances,
at the expense of easily interpretable axes.

6.3.2 Display

The next step is to create a visualization in the display space that effectively conveys
information about the model and its properties. Some inspiration can be drawn from
techniques designed to incorporate data certainty or multivalued data [2, 4, 7, 11,
12]. In particular, approaches that show data ranges [14], provide annotations with
data certainty information [2], or display multiple possible data values associated
with locations [5, 8] are relevant.

Instances are displayed using a glyph that conveys the distribution of class predic-
tions made by that model. Pie chart glyphs consist of slices summing to a filled circle
around a center point. Each slice represents a possible class to which the instance
could belong. The arc length of each slice is found by using the probability value
associated with that slice’s class (i.e., the probability that the instance will belong to
that class). We have found it useful to also display the true class of the instance in
a ring around the rim of the glyph. Speckle glyphs are created from several textures
that, when matted together, create a fully opaque glyph. Each such texture consists
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Fig. 6.2 Predictions made by model about income level in the census domain, projected using PCA
and displayed with pie glyphs (left) and speckle glyphs (right)

of a set of opaque pixels with density proportional to the class likelihood, and color
corresponding to the class color.

Figure 6.2 shows predictions made by a model constructed to predict income in
the census domain. Based on the demographic attributes, the model predicts whether
an individual will make more or less than $50K a year. The image at the left displays
the predictions using a pie glyph. The size of the white segment in each glyph shows
the predicted probability that the individual makes more than $50K, while the size
of the green segment shows the predicted probability that they make less than $50K.
The ring around the outside of the glyph shows the true class of the instance. Glyphs
for which the ring matches the predominant color of the pie are accurately predicted,
while those with a color mismatch are inaccurate predictions. Notice how most
individuals who make less than $50K a year are predicted with high accuracy, while
those making above $50K a year are much harder to correctly predict. To the upper
center of the image can be seen several fully confident (yet incorrect) predictions.

The right panel of Fig. 6.2 shows the same model displayed using a speckle glyph.
In both pictures, the relative likelihoods of the classes (proportion of low-income
(green) and high-income (white) instances) can be seen fairly clearly. However, the
relationship between the predicted and true class is somewhat more apparent than
with the speckled glyphs, because the density of a class color is easier to visually
interpret as a class probability than the angle width of a region in the pie chart.

Figure 6.3 shows predictions made about a multi-value nominal outcome, specif-
ically, the general occupation of an individual in the census domain. There are 11
occupation values, including tech support, sales, executive/managerial, and machine
operator/inspector. These occupations are predicted based on five input attributes:
age, income, gender, race, and nationality. The images show some localization of pre-
dictions, indicated by grouping of colors, but the regions are much less well defined
than in the income model. In addition, it is apparent that many instances are mis-
predicted (i.e., the most probable predicted class (largest “pie wedge” or dominant
speckle color) is different than the true class), and that there is often high uncertainty
(many different possible classes predicted with approximately equal probability).
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Fig. 6.3 Predictions made by model about occupation type in the census domain, projected using
PCA and displayed with pie glyphs (left) and speckle glyphs (right). Legend shown on far right

These factors indicate that this model exhibits higher error and less confidence over-
all than the income model. A few specific patterns become apparent upon closer
inspection: for example, in the lower right quadrant, there is a cluster of instances
for which the transport-moving (royal blue) and craft-repair (pure blue) classes are
conflated, and another cluster of instances for which the prof-specialty (bright green)
and exec-managerial (olive green) classes are conflated. This is intuitively unsurpris-
ing (since those occupations involve similar skills and training), but the visualization
also enables identifying some more surprising errors (e.g., to the far left just above the
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centerline of the visualization, there is an individual whose true class is tech-support
(red), but who is predicted to be either in the sales (brown) or exec-managerial (dark
green) classes).

It is not immediately obvious whether the speckle or pie chart glyph shapes are
“better” for human understanding in the general case. It does seem to be the case that
when several different classes are predicted, this pattern may be slightly easier to see
using the speckle glyphs. We are currently designing a user study to investigate the
validity of this hypothesis.

6.4 Future Work and Conclusions

Our research is in its early stages, but our preliminary results show promise for the
use of integrated machine learning and visualization techniques to improve the repre-
sentation and human understanding of uncertainty in classification models. Specific
future work includes designing and carrying out a user study of the alternative visu-
alization techniques, performing an empirical investigation of alternative dimension
reduction techniques, and investigating machine learning methods for improving the
confidence estimates associated with the predictive models.
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Chapter 7
Incorporating Uncertainty in Intrusion
Detection to Enhance Decision Making

Lane Harrison and Aidong Lu

Abstract Network security defense often involves uncertain data which can lead
to uncertain judgments regarding the existence and extent of attacks. However, ana-
lytic uncertainty and false positive decisions can be integrated into analysis tools to
facilitate the process of decision making. This paper presents an interactive method
to specify and visualize uncertain decisions to assist in the detection process of net-
work intrusions. Uncertain decisions on the degree of suspicious activity for both
temporal durations and individual nodes are integrated into the analysis process to
aide in revealing hidden attack patterns. Our approach has been implemented in an
existing security visualization system, which is used as the baseline for comparing
the effects of newly added uncertainty visualization component. The case studies
and comparison results demonstrate that uncertainty visualization can significantly
improve the decision making process for attack detection.

7.1 Introduction

Networking security generally deals with a large amount of false positives, which
are challenging for efficient and prompt decision making. Even for simple questions
like “whether an attack has occurred”, security analysts often need to search for
subtle traces in the data and analyze the data from different perspectives before
making final decision. During this process, numerous assumptions and tests are
carried out, which often overlap on dimensions like attack duration and malicious
nodes. The capability to integrate partially-developed decisions and assumptions may
help analysts in organizing and sorting out incomplete results in order to make more
complete final decisions and reports. Closely related to decision making, uncertainty
visualization can be developed for this purpose.
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In the scenario of computer network defense, security analysts are the decision
makers who monitor and react to vulnerabilities, threats, and attacks. Typical prob-
lems in network attack detection include determination of whether an attack has
occurred, which nodes/machines are involved, and the time range of the attack.

For example, a Sybil attack is characterized by one or more nodes assuming the
identity of other legitimate nodes in the network. Sybil attacks are not limited to
general computer networks. For example, sites like Amazon or Ebay, which rely on
user “voting” to make recommendations to other users, are susceptible to coordinated
attacks where false users promote items of their choosing. While some of these attacks
can be discovered via domain-specific methods, our system is designed to allow
analysts to identify attacks through exploring time-varying network connectivity
data, which is generally readily available.

As the size of networks and the complexity of attacks increase, so does the time
needed to accurately determine the scope of intrusions. Since infected nodes on the
network must often be quarantined for repair, determining the attack scope and impact
is crucial to network defense operations. Oftentimes, if an analyst cannot determine
exactly which machines are affected, they must quarantine a larger section of the
network. Therefore, the inability to properly determine the scope of an attack can
prove costly.

In this work, we examine how integrating uncertainty views and interactions with
a coordinated-views visualization and automatic classification algorithm can help
analysts make accurate and timely decisions regarding the scope and duration of
attacks. Based on our previous approach, a coordinated multiple views visualization,
we present an integrated approach to analyze network data containing Sybil attacks.
Specifically, we have designed and incorporated uncertainty management views and
interactions that assist network defenders in specifying analytical uncertainty and
reusing these results in future investigations. We compare two approaches with a
case study and discuss the effects of uncertainty visualization for the decision making
progress.

The following first describes the related work on uncertainty visualization for
decision making. We then describe our approach and present the results of compari-
son. At the end, we discuss the effects of uncertainty visualization and conclude the
paper.

7.2 Related Work

Representations of error and uncertainty have been identified as component typically
missing in visualization [9]. As a good match, uncertainty visualizations deal with
visual representations of error and uncertainty in the data [1, 10].

For security applications, the term “uncertainty” extends beyond the quality of the
data source. For example, uncertainty can also be considered and quantified in
the context of human analysis and decision making [4, 6]. This work focuses on the
latter definition of uncertainty. The uncertainty interactions and views described are
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designed to assist analysts in quantifying and utilizing uncertainty in the human
analysis process.

Network defense often requires the analysis of uncertain and deceptive data [2, 3].
Information overload is also a problem for network analysts. Recent work has found
that information overload can be mitigated by mechanisms that preserve intermediate
analysis results [5]. Network analysts have also shown preference to tools that help
them build reports that reflect analysis processes and results [8]. Similarly, our work
attempts to provide analysts a consistent and convenient method of storing interme-
diate analysis results regarding attack uncertainty. At any point in the analysis, these
results can be exported for future analysis.

7.3 SybilVis System Overview

The SybilVis system consists of three linked views designed to allow analysts explore
time-varying network connectivity data in varying levels of detail (see Fig. 7.1). The
time histogram displays node activity over time. The X axis represents timesteps;
The Y axis represents node ID. The node link view displays the network for a given
time range. In the node link view, individual timesteps are added together to make
an aggregate of network activity over time. To avoid network clutter, links are only
shown between nodes if they exceed a user-defined threshold. This threshold can
be changed interactively. The scatterplot view displays either the first and second
eigenvectors or the non-randomness and connection-degree of the nodes.

A typical analysis session begins with the time histogram view, which shows an
overview of node activity over all available timesteps. Time ranges can be explored in
sequence, or the analyst may make a selection on the time histogram that corresponds
to periods of increased or erratic activity. Once a time range is chosen, the node
link and scatterplot views are updated accordingly. Analysts generally investigate
clusters and outliers in the scatterplot view. Similarly, for the node link view, tightly
linked clusters of nodes can indicate suspicious activity. Many rounds of analysis are
typically required to determine attack scope. Previously, external sources (i.e. pen and
paper, human memory) were required to track intermediate analysis results, which
were often inconclusive until further time ranges were investigated. To address this,
we developed uncertainty and annotation views and interactions, which are described
in the following section.

Fig. 7.1 An overview of the SybilVis system
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Fig. 7.2 Uncertainty views (red and green bars) and annotations (red and blue overlays) on the time
histogram. The node uncertainty is to the right of the time histogram, and time range uncertainty is
on the bottom

7.4 SybilVis Uncertainty

Because uncertainty is often involved in network security, tools should be designed
that allow analysts to express, track, and re-use decisions during analysis. In this
section, we describe how uncertainty regarding time-ranges and individual nodes is
interactively specified and integrated into a visualization system.

7.4.1 Uncertainty Integration

Below and to the right of the time histogram view are the time-uncertainty and
node-uncertainty views (see Fig. 7.2). As analysis progresses, a user may increase
or decrease the suspiciousness-level of one or more nodes or timesteps. Changes to
the uncertainty values of nodes or timesteps is then reflected as the brightness of the
red/green colors in the corresponding areas in the uncertainty views. Specifically,
green areas correspond to no suspected attack, while a red area denotes a likely
attack period. Uncertainty colors are also then used to color nodes in the scatterplot
and node-link views. This helps the analyst to identify nodes previously identified
as suspicious when they appear in future views.

By having a persistent visual representation of node uncertainty, analysts can add
uncertainty from separate findings in both the eigenvector and degree-nonrandomness
scatterplot views. For example, a node may show up as an outlier when viewing the
eigenvectors as axes but as a non-outlier with the degree-nonrandomness as axes.
With the uncertainty functions, the analyst need only increase the uncertainty corre-
sponding to the outlier to have this result recorded to inform future analyses.

The uncertainty views and interactions serve as a low-friction way to store analysis
results. Once relevant nodes or timesteps are selected, the analyst need only use the
mousewheel or +/− signs on the keyboard to change the uncertainty result for their
selection. Furthermore, at any point a comma-delimited report can be generated with
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time durations of suspected attacks, the nodes involved, and their corresponding
uncertainty values.

An annotation mechanism is provided in the time histogram view. Users may at
any time record an annotation which is represented as a semi-transparent rectangle
on top of the time histogram. Text may be added or edited as needed. Also, users
may input the IDs of nodes of importance to the annotation. When a user mouses
over an annotation which contains node IDs, the nodes are then highlighted in the
time histogram view. Viewing suspicious nodes across time can inform users as to
which time ranges may be worth investigating next. The color of the annotation can
represent either different users or an analyst-defined tagging scheme.

7.4.2 Uncertainty Versus No-Uncertainty Case Study

To explore the utility of uncertainty views and interactions, we describe the analysis
process of a Sybil attack dataset both with and without the uncertainty views and
interactions.

While SybilVis is designed to work with general network connectivity data, we
make use of datasets from a simulation system for Sybil attacks. Additionally, the use
of simulation data provides both ground truth and the ability to specify variables to
vary the complexity of the data. Variables of the simulation datasets include network
size, number of attacking nodes, attack durations, and number of attacks. For this
case study, we used a dataset that includes five attacking nodes in three attacks across
10,000 timesteps.

For a given attack duration, it is not common for all malicious nodes to be active
at the same time. In fact, some malicious nodes may only be active for a less than
5 % of an attack duration, making them difficult to detect without iterative analysis.
Therefore, the uncertainty views and interactions presented are designed to help
capture and aggregate multiple uncertain findings into a comprehensive final result.

Suspicious time ranges are found by observing sudden drops and rises in node
activity. These fluctuations may indicate the ending or beginning of an attack range.
This process of segmenting and analyzing time ranges in the dataset is repeated
throughout the analysis process. Once a time range is selected, it is necessary to
determine if an attack has occurred, and if so, which nodes were involved. This is
done by selecting outliers in the scatterplot view, and looking for tightly connected
subgraphs in the node-link view. For a more in-depth discussion on this analysis
process, see [7].

In the first suspicious time range, the outliers in the scatterplot view do not show
up as tightly connected subgraphs in the node-link view. With uncertainty views and
interactions, these nodes and time range can have their corresponding uncertainty
values reduced, shown by green in the node-link views in Fig. 7.3a.

Without uncertainty techniques, this result must be either remembered or commit-
ted to some external source. Similarly, in the second suspicious timerange, several
outliers in the scatterplot view do form a tightly connected subgraph in the node-link
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(a)

(c)

(b)

Fig. 7.3 Case study examining the analysis process of a dataset containing three Sybil attacks.
a Scatterplot outliers and a corresponding tightly connected subgraph. b Initial time-histogram
view. c Final time-histogram view showing updated time and node uncertainties

view. However, this subgraph is not fully connected. Therefore, the uncertainty values
of these nodes can be increased according to how tightly connected the subgraph
appears.

In total, six separate time ranges are analyzed for attacks (see Fig. 7.3c). Three
ranges demonstrated both the presence of outliers in the scatterplot view and tightly
connected subgraphs in the node-link view. One time range identified as containing
an attack was previously identified as benign. With uncertainty views and interac-
tions, time ranges can be marked during an investigation, which can guide future time
range selection. Perhaps more importantly, nodes that have higher uncertainty val-
ues appear as varying shades of red in subsequent node-link and scatterplot views,
which can guide selections during the iterative scatterplot/node-link investigation
process. Without uncertainty techniques, previous results regarding time range and
scatterplot/node-link analyses are not available for future investigation, unless they
are committed to some external source and revisited/recalled at the appropriate time.

7.5 Discussion and Conclusion

In security analysis, several “soft” or “weak” decisions can be treated as evidence and
combined to produce a better-informed final decision. In fact, analytic uncertainty
need not be limited to security applications. For example, financial and healthcare
analysis also often involve analytic uncertainty. Therefore, the capabilities of uncer-
tainty analysis, which allows analysts to quantify and re-use uncertain decisions,
should be provided by visual analysis tools rather than external sources.
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Furthermore, we observe that it is useful to integrate uncertainty both into the
overview visualization (the time histogram, in our case) and the detail views (scat-
terplot and node-link). Uncertainty in the overview visualization helps guide the
analyst in selecting suspicious time-ranges for investigation, provides a summary
of analysis thus far, and reduces repeated analyses. Uncertainty in the detail views
directs the analyst’s attention to nodes previously determined to be exhibiting likely
malicious activity.

Additionally, uncertainty in the detail views can influence selections in the visu-
alizations. For example, when selecting a loosely-defined cluster of nodes in the
scatterplot view for closer examination, if there is a dark-red node (meaning it was
previously determined as suspicious) near the edge of the cluster, it will likely be
selected as well. It is possible that, in some cases, an analyst would want to examine
nodes independent of previous decisions. In this case, analysts could simply disable
the uncertainty indicators in the detail views and preserve them in the overview.
However, based on our experience with analysts (below), the awareness of previous
decisions on a node is crucial for ongoing security analysis.

Our approach is influenced in part by feedback from network security experts
who have consistently mentioned a need to be able to raise the “threat” level of a
node/machine in order to effectively track it over time to make final decisions when
necessary. Threat in this sense, is essentially uncertainty regarding a true attack from
a false positive. Hence, in our system, uncertainty regarding attack time ranges and
malicious nodes can be easily specified and integrated into the visualizations.

To conclude, we integrate analytic uncertainty into a visualization in order to assist
security analysts in identifying the time range and nodes involved in coordinated
attacks. Additionally, analysis progress is documented via the annotations and time
uncertainty values, which can assist in reducing repeated analyses. A case study is
presented that demonstrates how integrating analytic uncertainty can inform analysis
in both the overview and detail views. For future work, we will explore use of standard
automatic detection methods as input to the uncertainty views. Also, we will explore
ways to scale the node-link view, which is the current bottleneck for scalability in
this approach. Finally, we will investigate the effectiveness of similar uncertainty
management methods in other security analysis application areas, such as the VAST
Challenge datasets.
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Chapter 8
Fuzzy Fibers: Uncertainty in dMRI
Tractography

Thomas Schultz, Anna Vilanova, Ralph Brecheisen
and Gordon Kindlmann

Abstract Fiber tracking based on diffusion weighted Magnetic Resonance Imaging
(dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In
this chapter, we discuss sources of error and uncertainty in this technique, and review
strategies that afford a more reliable interpretation of the results. This includes meth-
ods for computing and rendering probabilistic tractograms, which estimate precision
in the face of measurement noise and artifacts. However, we also address aspects
that have received less attention so far, such as model selection, partial voluming,
and the impact of parameters, both in preprocessing and in fiber tracking itself. We
conclude by giving impulses for future research.

8.1 Introduction

Diffusion weighted MRI (dMRI) is a modern variant of Magnetic Resonance Imaging
that allows for noninvasive, spatially resolved measurement of apparent self-diffusion
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coefficients. Since fibrous tissues such as nerve fiber bundles in the human brain con-
strain water molecules such that they diffuse more freely along fibers than orthogonal
to them, the apparent diffusivity depends on the direction of measurement, and allows
us to infer the main fiber direction.

Based on such data, tractography algorithms reconstruct the trajectories of major
nerve fiber bundles. The most classic variant is streamline tractography, in which
tracking starts at some seed point and proceeds in small steps along the inferred
direction. In its simplest form, this results in one space curve per seed point. It has
been observed that many of the resulting streamlines agree with known anatomy
[11]. Tractography is also supported by validation studies that have used software
simulations, physical and biological phantoms [25].

Tractography is currently the only technique for noninvasive reconstruction of
fiber bundles in the human brain. This has created much interest among neuroscien-
tists, who are looking for evidence of how connectivity between brain regions varies
between different groups of subjects [60], as well as neurosurgeons, who would like
to know the exact spatial extent of specific fiber bundles in individual patients.

However, drawing reliable inference from dMRI is challenging. Even though a
randomized controlled study has shown that using dMRI in cerebral glioma surgery
reduces postoperative motor deficits and increases survival times [68], neurosurgeons
have observed that some methods for tractography underestimate the true size of
bundles [37] and they are still unsatisfied with the degree of reproducibility that is
achieved with current software packages [9].

In order to establish tractography as a reliable and widely accepted technique, it is
essential to gain a full understanding of its inherent sources of error and uncertainty.
It is the goal of this chapter to give an introduction to these problems, to present
existing approaches that have tried to mitigate or model them, and to outline some
areas where more work is still needed.

8.2 Noise and Artifacts

8.2.1 Strategies for Probabilistic Tractography

It is the goal of probabilistic tractography to estimate the variability in fiber bundle
reconstructions that is due to measurement noise. This is often referred to as precision
of the reconstructed bundle trajectory [33]. Due to additional types of error in data
acquisition and modeling, which will be covered later in this chapter, it is not the
same as accuracy (i.e., likelihood of a true anatomical connection) [35]. Current
approaches do not account for factors such as repositioning of the head or variations
in scanner hardware over time, which further affect repeatability in practice.

Rather than only inferring the most likely fiber direction, probabilistic approaches
derive a probability distribution of fiber directions from the data. The first generation
of probabilistic tractography methods has done so by fitting the diffusion tensor model
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(a) (b) (c)

Fig. 8.1 Volume rendering ensembles of orientation distribution functions highlights regions that
are included in most ensemble members. Subfigures a–c compare the uncertainty resulting from
different fiber configurations and measurement setups. Images provided by the authors of [28]. a
b = 4,000, SNR = 5, b b = 7,000, SNR = 10, c b = 7,000, SNR = 10

to the data, and using the result to parameterize a probability distribution in a heuristic
manner. This often assumes that the fiber distribution is related to a sharpened version
of the diffusivity profile [38], sometimes regularized by a deliberate bias towards the
direction of the previous tracking step [4, 19]. Programmable graphics hardware
accelerates the sampling of such models, and enables immediate visualization of the
results [40]. Parker et al. [45] present two different fiber distribution models that
are parameterized by measures of diffusion anisotropy. Subsequent work allows for
multimodal distributions that capture fiber crossings, and uses the observed variation
of principal eigenvectors in synthetic data to calibrate model parameters [44].

In contrast to these techniques, which use the model parameters from a single
fit, a second generation of probabilistic tractography methods estimates the poste-
rior distribution of fiber model parameters, based on the full information from the
measurements, which includes fitting residuals. Behrens et al. [3] do so in an objec-
tive Bayesian framework, which aims at making as few assumptions as possible, by
choosing noninformative priors. They have later extended the “ball-and-stick” model
that underlies their framework to allow for multiple fiber compartments [2].

Bootstrapping estimates the distribution of anisotropy measures [43] or fiber direc-
tions [31, 55] by repeated model fitting, after resampling data from a limited number
of repeated scans. This has been used as the foundation of another line of probabilistic
tractography approaches [35, 39]. As an alternative to estimating the amount of noise
from repeated measurements, wild bootstrapping takes its noise estimates from the
residuals that remain when fitting a model to a single set of measurements [67]. This
has been proposed as an alternative to repetition-based bootstrapping for cases where
only a single acquisition is available [32]. Residual bootstrapping [12] builds on the
same basic idea, but allows for resampling residuals between gradient directions,
by modeling the heteroscedasticity in them. It has not only been combined with the
diffusion tensor model, but also with constrained deconvolution, which allows for
multiple fiber tractography [27].

To visualize the distributions estimated by bootstrapping, Jiao et al. [28] volume
render ensembles of orientation distribution functions (ODFs). As shown in Fig. 8.1,
this highlights regions included in most ensemble members, representing the most
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(a) (b)

Fig. 8.2 Uncertainty in fiber directions has been visualized using cones of uncertainty, which
include 95 % of all estimated directions (a) [31] The characteristics of the distribution are shown
in greater detail by HiFiVE glyphs, which decompose it into a main direction, shown as colored
double cones, and a residual PDF, shown as a gray surface (b) [55]

certain part of the ODF. For tractography, the main features of interest are the inferred
fiber directions. The uncertainty in these directions has traditionally been visualized
using cones that represent 95 % confidence intervals around a main direction [31].
Figure 8.2 compares this approach to the alternative, more recent HiFiVE glyph,
which provides a more detailed impression of the distribution [55].

8.2.2 Rendering Probabilistic Tractograms

After estimating the reproducibility of white matter fiber tracts by one of the above-
described methods, we can represent the results in one of two ways: voxel-centric
or tract-centric. The voxel-centric representation assigns scores to individual voxels,
where each voxel stores the percentage of tracts passing through it. They represent
the reproducibility with which a connection from one voxel position to the seeding
region is inferred from the data. The resulting 3D volume data sets are sometimes
called probability or confidence maps, and are often visualized by volume rendering
techniques, as in Fig. 8.3b, and 2D color maps [40].

Tract-centric techniques include the ConTrack algorithm [59], which assigns a
score to each generated tract. It reflects confidence in the pathway as a whole, based
on its agreement with the data and assumptions on fiber length and smoothness.
Ehricke et al. [15] define a confidence score that varies along the fiber, and color
code it on the streamline. Jones et al. [30, 32] use hyperstreamlines to visualize the
variability of fiber tracts obtained using bootstrap or wild-bootstrap methods. They
also demonstrate that using standard streamlines to render all fiber variations equally
fails to give an impression of which fibers are stable and which are outliers.

Brecheisen et al. [6] propose illustrative confidence intervals where intervals are
based on distances or pathway scores. Illustrative techniques, i.e., silhouette and out-
lines, are used to visualize these intervals. Interaction and Focus+Context widgets are
used to extend the simplified illustrative renderings with more detailed information.
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(a) (b)

Fig. 8.3 Equally rendering all fiber variations from a seed (blue ball) as standard streamlines (a)
makes it difficult to see which of them are most stable, and which are isolated outliers. Volumetric
representations (b) are a popular alternative. Images from [53]. a Tract-centric visualization, show-
ing all streamlines traced from a common seed. b Nested isosurfaces indicate different levels of
confidence

Schultz et al. [57] cluster the voxels in which probabilistic tractography terminates,
based on the seed points from which they are reached. They then derive a per-voxel
score that indicates how frequently the voxel was involved in a connection between
two given clusters. Fuzzy fiber bundle geometry is defined by isosurfaces of this
score, with different isovalues representing different levels of precision.

8.3 Other Factors

8.3.1 Impact of Parameters

One source of uncertainty in dMRI tractography that has not received much atten-
tion is parameter sensitivity. Most tractography algorithms depend on user-defined
parameters, which results in a poor reproducibility of the output results. Some repro-
ducibility studies for concrete applications have been reported [13, 65]. However,
there does not exist an automatic solution that resolves the problem in a general
manner. The stability of the parameter setting is relevant information for both neu-
roscientists and neurosurgeons who are trying to assess whether their fiber tracking
results are stable. Visualization can play an important role to help this assessment.

Brecheisen et al. [7] build a parameter space by sampling combinations of stop-
ping criteria for DTI streamline tractography. Stopping criteria primarily affect fiber
length. The investigation of parameter sensitivity is based on generating a streamline
set that covers the whole parameter space of stopping criteria. Afterwards, selective
culling is performed to display specific streamline collections from the parameter
space. This is done by selecting parameter combinations using 2D widgets such
as the feature histogram displayed in Fig. 8.4. An example feature is average fiber
density per voxel. These views help the user to identify stable parameter settings,
thereby improving the ability to compare groups of subjects based on quantitative
tract features.
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Fig. 8.4 Main viewports of Brecheisen et al. [7] exploration tool. Top-left 3D visualization of fiber
tract together with anatomical context and axial fractional anisotropy slice. Top-right Color map
view used for selecting individual threshold combinations and definition of color detail regions.
Bottom-right Feature map view showing changes in quantitative tract features as a function of
threshold combination at discrete sample points of the parameter space. Bottom-left Cumulative
histograms of both threshold and feature values. © IEEE Reprinted, with permission, from IEEE
Transactions on Visualization and Computer Graphics 15(6)

Jiao et al. [29] introduce a toolkit based on three streamline distances that are used
to measure differences between fiber bundles. The user can vary parameters that affect
the results of the fiber tractography and measure the resulting differences based on
these distances. This allows them to quantify the variation and reproducibility of the
fiber bundles due to different sources of uncertainty and variation in the tractography
input parameters.

Although these methods provide a first step to study uncertainty due to parameter
settings, it remains a time consuming exploratory task for the user. This is especially
true if parameters are correlated, and their interrelation needs to be investigated.
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8.3.2 Model Uncertainty and Selection

Methods for tractography that seek to recover more than a single fiber direction in a
given area have to make a judgement about how many fiber directions can be meaning-
fully recovered from the dMRI data. The combination of measurement noise, partial
voluming, and the practical constraints on how many diffusion weighted images may
be acquired create uncertainty in the number of fibers present. Qualitatively different
than the angular uncertainty in a single fiber direction, the traditional focus of prob-
abilistic tractography, this uncertainty can be a viewed as a kind of model selection
uncertainty, which is described further in Sect. 8.4.1.

Uncertainty in fiber number has been handled by different tests that either sta-
tistically sample or deterministically choose a level of model complexity (with an
associated fiber number) from a nested set of models. Behrens et al. [2] use Automatic
Relevance Determination (ARD) to probabilistically decide the number of “sticks”
(fibers) in their ball-and-multiple-stick model. Within their probabilistic tractogra-
phy, this achieves Bayesian Model Averaging [22] of the fiber orientation. For deter-
ministic tractography, Qazi et al. [50] use a threshold on the (single, second-order)
tensor planarity index cp [66] to determine whether to fit to the diffusion weightes
images a constrained two-tensor model [46] that permits tracing two crossing fibers.

Schultz et al. compare different strategies for deciding the appropriate number
of fiber compartments, based on the diminishing approximation error [56], thresh-
olding compartment fraction coefficients of a multi-fiber model [58], or by learning
the number of fiber compartments using simulated data and support vector regres-
sion [54], which represents uncertainty in the form of continuous estimates of fiber
number (cf. Fig. 8.5).

Much of the work on determining the number of per-voxel fiber components has
been described outside of any particular tractography method, but may nonetheless
inform tractographic analysis. Alexander et al. [1] use an F-Test to find an appropri-
ate order of Spherical Harmonic (SH) representation of the ADC profile. Jeurissen
et al. [26] decide the number of fibers by counting significant maxima in the fiber
orientation distribution after applying the SH deconvolution (constrained by posi-
tivity) of Tournier et al. [62]. The SH deconvolution of Tournier et al. [62] in some
sense involves model selection, because the deconvolution kernel is modeled by the

Fig. 8.5 Support vector
regression estimates the
number of fiber compartments
per voxel as a continuous
quantity, indicating regions in
which a discrete number of
fiber compartments can only
be determined with
considerable uncertainty [54]
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SH coefficients of the voxels with the highest FA, presumably representing a single
fiber.

Aside from the question of counting fibers, other work has examined more broadly
the question of which models of the diffusion weighted signal profile are statistically
supported. Bretthorst et al. [8] compute Bayesian evidence (see Sect. 8.4.1) to quan-
tify the fitness of various models of the diffusion weighted signal, producing maps
of model complexity in a fixed baboon brain, and of evidence-weighted averages of
per-model anisotropy. Freidlin et al. [17] choose between the full diffusion tensor and
simpler constrained tensor models according to the Bayesian information criterion
(BIC) or sequential application of the F-Test and either the t-Test or another F-Test.

8.3.3 Partial Voluming

Tractography works best in voxels that contain homogeneously oriented tissue.
Unfortunately, many regions of the brain exhibit more complex structures, where
fibers cross, diverge, or differently oriented fibers pass through the same voxel [1].
This problem is reduced at higher magnetic field strength, which affords increased
spatial resolution. However, even at the limit of what is technically possible today
[20], a gap of several orders of magnitude remains to the scale of individual axons.

Super-resolution techniques combine multiple images to increase effective reso-
lution. Most such techniques use input images that are slightly shifted with respect
to each other and initial success has been reported with transferring this idea to MRI
[47]. However, due to the fact that MR images are typically acquired in Fourier
space, spatial shifts do not correspond to a change in the physical measurement, so
it is unclear by which mechanism repeated measurements should achieve more than
an improved signal-to-noise ratio [48, 51]. It is less controversial to compute images
that are super-resolved in slice-select direction [18, 52] or to estimate fiber model
parameters at increased resolution via smoothness constraints [42].

Track density imaging [10] uses tractography to create super-resolved images
from diffusion MRI. After randomly seeding a large number of fibers, the local
streamline density is visualized. It is computed by counting the number of lines
that run through each element of a voxel grid whose resolution can be much higher
than during MR acquisition. Visually, the results resemble those of line integral
convolution, which had been applied to dMRI early on [23, 69].
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8.4 Perspectives

8.4.1 Evidence for Model Selection

Many of the methods for finding per-voxel fiber count (or more generally the per-
voxel signal model) described in Sect. 8.3.2 share two notable properties which may
be reconsidered and relaxed in future research. First, they deterministically calculate
the single best model, with hard transitions between the regions best explained by
one model versus another [1, 17, 26, 50, 56, 58]. Yet we know that partial voluming
(Sect. 8.3.3) creates smooth transitions between different neuroanatomic tissue
regions. Though computational expensive, Markov Chain Monte Carlo (MCMC)
sampling of both model parameter space and the set of models enables averaging
information from more than one model [2, 8]. Second, most methods work within
a particular hierarchical set of linearly ordered models (SH of different orders [1],
ball and multiple sticks [2], sum of higher-order rank-1 terms [58]). One can easily
imagine configurations, however, that confound such a linear ordering: an equal mix
of two fibers crossing and isotropic diffusion (perhaps due to edema), or a mix of
one strong fiber and two weaker equal-strength fibers. Furthermore, there is rarely
objective comparison or reconciliation between disjoint sets of models.

An informative perspective on these situations may be gained by directly visual-
izing, either on data slices or by some form of volume rendering, the fitness of a large
palette of possible models. In a Bayesian setting, the model fitness can be quantified
by the marginal likelihood of the data x given the model Mk , or the model evidence,
computed by integrating over the model parameter space θk [36].

P(x|Mk)︸ ︷︷ ︸
evidence

=
∫

P(x|θk, Mk)︸ ︷︷ ︸
likelihood

P(θk |Mk)︸ ︷︷ ︸
prior

dθ . (8.1)

Bretthorst et al. [8] have pioneered the calculation and visualization of model
evidence for dMRI, but many possible directions are left unexplored, including the
application to counting fibers, and to models that account for intra-voxel fanning or
bending [41].

8.4.2 Reproducibility, Seeding, and Preprocessing

The reproducibility of tractography depends on many factors. The manual placement
of seed points is an obvious concern. Detailed written instructions improve repro-
ducibility between operators [13], especially across sites [65]. Combining multiple
seed regions with logical operators makes the results more reproducible [21, 24] and
seeding protocols for up to 11 major fiber bundles have been developed this way [65].
Warping individual brains to a standard template has also been reported to increase
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reproducibility [21, 64]. Selecting streamlines from a whole brain tractography via
three-dimensional regions of interest [5] or semi-automated clustering [63] is an
alternative way to reproducibly extract fiber bundles.

When the same person places the seeds on a repeated scan, the resulting variability
is generally higher than when different observers follow a written protocol to place
seeds in the same data [13]. Within the same session, measurement noise is the main
limiting factor [14]. Between sessions, differences in exact head positioning and
other subtle factors increase the variability noticably [64].

Reproducibility suffers even more when repeating the measurement on a different
scanner [49]. Even a pair of nominally identical machines has produced a statistically
significant bias in Fractional Anisotropy [64]. Improving calibration between ses-
sions or scanners via software-based post-processing appears possible [64], but has
not been widely explored so far.

More time consuming measurement protocols generally afford better repro-
ducibility. Even though Heiervang et al. [21] report that the improvement when using
60 rather than 12 gradient directions was not statistically significant, Tensouti et al.
[61] report a clear improvement between 6 and 15 directions, which continues—at
a reduced rate—when going to 32 directions. Farrel et al. [16] use 30 directions and
demonstrate a clear improvement when averaging repeated measurements.

Finally, reproducibility depends on the tractography algorithm [61], its exact
implementation [9], as well as the methods used for pre-processing the data [34,
64] and their parameter settings. Given that the reproducibility of tractography will
be crucial for its wider acceptance in science and medicine, more work is needed
that specifically targets these problems.

8.5 Conclusion

Reproducibility of dMRI tractography is a fundamental problem that limits the accep-
tance of this technique in clinical practice and neuroscience research. Although some
effort has been made to include uncertainty information in the tractography results,
several open issues remain that need further investigation.

Probabilistic tractography is established, but visualization research has concen-
trated on deterministic streamline-based techniques, and few techniques have been
developed to visualize the information obtained by probabilistic methods. There are
several sources of uncertainty in the tractography visualization pipeline. However,
only a few of them have been explored, and if at all studied, they are often consid-
ered independently with no connection to each other. Techniques that investigate the
impact of parameters on the fiber tracking results and that aim to reduce the impact
of user bias through parameter selection have been investigated only recently. Model
selection and data preprocessing have hardly been studied with respect to their effects
on tractography results.

Techniques that allow the combined analysis of uncertainty from different sources
in the same framework, and that facilitate an understanding of their influence on the
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final tractography result are still missing. One challenge faced by visualization sys-
tems that aim to aid understanding of these uncertainties is to display this additional
information efficiently and effectively, without causing visual clutter.

Ultimately, uncertainty visualization should contribute to making fiber tracking
a more reliable tool for neuroscience research, and to conveying the information
needed for the decision making process in clinical practice.
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Chapter 9
Mathematical Foundations of Uncertain Field
Visualization

Gerik Scheuermann, Mario Hlawitschka, Christoph Garth and Hans Hagen

Abstract Uncertain field visualization is currently a hot topic as can be seen by
the overview in this book. This article discusses a mathematical foundation for this
research. To this purpose, we define uncertain fields as stochastic processes. Since
uncertain field data is usually given in the form of value distributions on a finite set
of positions in the domain, we show for the popular case of Gaussian distributions
that the usual interpolation functions in visualization lead to Gaussian processes in
a natural way. It is our intention that these remarks stimulate visualization research
by providing a solid mathematical foundation for the modeling of uncertainty.

9.1 Introduction

The visualization of uncertain field data has attracted a lot of attention in recent
time. As practically no measured or simulated data is exact, visualization research
attempts to incorporate uncertainty in the images presented to the user. Despite
this undebated need, there has been only slow progress towards this goal. There
are many field visualization methods without an extension taking uncertainty into
account. We think that a major reason for this fact is a lack of knowledge regarding
the necessary mathematical description of uncertainty in the case of fields. As we
argue in this article, stochastic processes are a viable tool to describe uncertain
functions over continuous domains. Since stochastic processes are usually not part
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of the standard curriculum in computer science and sometimes even mathematics,
visualization researchers are not very familiar with this non-trivial subject.

In many cases, the field visualization problem consists of a finite set of given
positions where the field value is known. It shall be noted that this holds for scalar,
vector, and tensor fields. Before most field visualization methods are applied, an
interpolation of these values is defined creating a continuous field over the whole
continuous domain. The uncertain field visualization problem is very similar: One
is given a finite set of positions with a (known or estimated) distribution of the
(unknown) field value at each position. We consider the prominent case of Gaussian
distributions in this article and show that all the well-known interpolation methods in
visualization can be used in this case to define the uncertain field over the continuous
domain as a Gaussian process. This rarely known fact emphasizes the potential of
stochastic processes as model for uncertain fields in visualization research.

9.2 Stochastic Processes

We want to describe a (scalar, vector or tensor) field over some closed domain
D ⊂ Rd , d = 1, 2, or 3, that depends on some unknown (typically high dimensional)
parameter ω ∈ Ω . The whole uncertainty is contained in this parameter: If we know
the parameter ω, we know the field. To keep things simple, we assume thatΩ = Ru ,
but that is not necessary.1 In addition, we assume thatΩ , is known i.e. the number
and type of parameters that determine our field.

In a first step, we need a probability measure onΩ . AsΩ contains an uncountable
number of elements, we use a σ -algebra S on Ω . Because of Ω = Ru , the Bore-
lalgebra B(Ru) is a natural choice.2 Furthermore, we need a probability measure
P : S → [0, 1]. As usually, this means that the probability for ω ∈ A ⊂ Ω is
P(A) ∈ [0, 1]. Again, we assume that this probability measure is known.

In our second step, we define a random variable

X : Ω → Rv

as measurable3 map where the σ -algebra on Rv is the Borelalgebra B(Rv). Essen-
tially, this is a usual (i.e. deterministic) function, assigning each (unknown) parameter

1 In general, we only need a complete probability space, i.e. some set Ω with a σ -algebra and a
probability measure on this σ -algebra. Completeness means that any subset of a set with measure
zero must be in the σ -algebra. One can construct a complete probability space from an arbitrary
probability space by adding elements to the σ -algebra and defining the measure on these elements
accordingly [4, Suppl. 2] without any change of practical relevance.
2 The Borelalgebra is the smallest σ -algebra that contains all open and closed subsets. This ensures
in our case that we can measure the probability for all subsets of interest in practical cases.
3 A map is measurable if each preimage of a measurable set is measurable
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ω ∈ Ω a value.4 If the parameter ω is known, the random variable has a fixed value.
From the probability measure P onΩ , we can derive a probability distribution of X
on Rv: For any set A ⊂ Rv in the Borelalgebra B(Rv), we set

P(X ∈ A) := P(X−1(A)).

As final step, we will define uncertain fields now. Basically, we need to define
a random variable at every position x ∈ D. However, there has to be some strong
correlation between the random variables at close positions because, in visualization,
we are usually dealing with continuous or even differentiable fields. Following Adler
and Taylor [2], we define an uncertain field depending on our uncertain parameter
ω ∈ Ω over the domain D as a measurable, separable5 map

f : Ω → (Rv)D.

In perfect analogy to random variables, each parameter ω ∈ Ω gets assigned a deter-
ministic function fω : D → Rv, here denoted as an element of (Rv)D . Furthermore,
for each position x ∈ D, we have a random variable fx : Ω → Rv that assigns a
fixed value at point x ∈ D to the parameter ω ∈ Ω . We will use the notations

fω(x) := fx (ω) := f (ω, x) := ( f (ω))x ∈ Rv

for the value of the uncertain field f at position x ∈ D given parameter ω ∈ Ω .
The measure on (Rv)D can be defined by a consistent description of distributions on
arbitrary finite subsets of positions in D.6

4 The case v = 1 means a scalar, v = d, d = 2, 3 means a vector and the case v = d × d = d2,

d = 2, 3 describes a second order tensor.
5 This condition removes subtle measurement problems without imposing restrictions of practical
relevance, see Adler and Taylor [2, p. 8]. The concept was originally introduced by Doob [4] in his
book on stochastic processes. In essence, it demands a dense countable subset D ⊂ P , and a fixed
null set N∈S with P(N ) = 0 such that for any closed B ⊂ R

d and open I ⊂ P

{ω| f (x, ω) ∈ B∀x ∈ I }Δ{ω| f (x, ω) ∈ B∀x ∈ I ∩ D} ⊂ N

with symmetric set difference Δ.
6 According to Doob [4, I.5, II.1] and going back to theorems by Kolmogorov, one needs to define
probability distribution functions

Fx1,...,xn (a1, . . . , an) = P(|x1| ≤ a1, . . . , |xn | ≤ an)

for arbitrary finite tuples (x1, . . . , xn) of points in D, such that the following rather obvious
two consistency conditions hold for all finite subsets of points {x1, . . . , xn} and value bounds
a1, . . . , an ∈ :

Fx1,...,xn (a1, . . . , an) = Fxα1 ,...,xαn
(aα1 , . . . , aαn ) ∀ permutations α

and
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If we consider the situation at a single point x ∈ D and a measurable subset of
values V ⊂ Rv, e.g. V is closed or open, we have the probability

P( f (ω, x) ∈ V ) = P({ω| f (ω, x) ∈ V }).

As an example for the probability space (Ω,S,P), we assume that we have a set
of positions {p1, . . . , pN } ∈ R2 in the plane. At these positions, we have uncertain
scalar values {v1, . . . , vN } ∈ R with normal distributions7 Wi ∼ N (μi , σi ). We may
assume that these values are not independent with covariances

Ci j = E((vi − μi )(v j − μ j )) with σi = √
Cii .

Then, we have (Ω,S,P) = (RN ,B(Rn), N (μ,C)). This means that our proba-
bility space is N-dimensional real space with an N -dimensional normal distribution
with mean vector μ ∈ RN and (symmetric) covariance matrix C ∈ RN×N . It shall
be noted that it is possible to derive a space with independent Gaussian variables with
potentially smaller dimension M < N by spectral decomposition of C and using the
eigenvectors with eigenvalue different from 0. In the following sections, we will see
how we can define an uncertain scalar field from these data.

9.3 Gaussian Processes

The previous section introduced stochastic processes without referring to a specific
type of distribution at every position. A careful look at the footnotes or intuition
tells that the distributions at the different points have to be somehow consistent,
and that a simple solution might be to use distributions of the same type every-
where. Looking at the literature, it can be said that Gaussian distributions are the
most often used case. If one uses them, one arrives at the special topic of Gaussian
processes. They have been analyzed in detail with respect to geometric proper-
ties by Adler and Taylor [1–3] in a mathematically rigorous fashion. But Gaussian
processes have also been applied in other areas of computer science. A nice ex-
ample is provided by machine learning as described in the book by Rasmussen

Fx1,...,xm (a1, . . . , am) = lim
λ j →∞, j = m+1,...,n

Fx1,...,xn (a1, . . . , an) ∀m < n

We will use multivariate Gaussian distributions for this purpose in the next sections. This footnote
illustrates that other distributions are possible.
7 A normal distribution on is defined by a probability density function

φ(x) = 1√
2πσ

exp− (x−μ)2
2σ2 .

μ is the mean of the distribution and σ the standard deviation.
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and Williams [7]. This section and the rest of the article will focus on Gaussian
processes.

As before, let (Ω,S,P) be a known probability space. Let D ⊂ Rd , d =
1, 2, or 3 be the known domain of our field and let Rv be the set of potential values
of our field, i.e. v = 1 means a scalar field, v = d means a vector field, and v = d ×d
means a tensor field of second order. A measurable, separable map

f : Ω → (Rv)D

is called Gaussian random field on D if for all finite tuples (x1, . . . , xn) of points
in D the random variable ( fx1 , . . . , fxn ) is a v × n-dimensional Gaussian random
variable. The function

μ : D → Rv, μ(x) = E( fx )

with expectation E is called expectation function. The map

C : D × D → Rv×v C(x, y) := E(( fx − E( fx ))( fy − E( fy)))

is called covariance function. For any function μ : D → Rv and any non-
negative definite function C : D × D → Rv×v, there is a unique Gaussian
process with expectation functionμ and covariance function C , see Adler and Taylor
[2, p. 5]! This statement is the basis behind the design and use of Gaussian processes
in machine learning as described by Rasmussen and Williams [7]. However, we
think that an approach starting with interpolation is more appropriate to visualiza-
tion, as this is the usual way of defining continuous fields from discrete data in our
discipline.

9.4 Linear Interpolation on the Line as a Gaussian Process

This section considers a very simple example. We take the real line as domain, i.e.
D = R. We assume that we are given two uncorrelated Gaussian distributions of
scalar values

W1 ∼ N (μ1, σ1) and W2 ∼ N (μ2, σ2)

at the points x1 = 0 and x2 = 1 as data. We want to describe a simple linear interpo-
lation. Since the two values are uncorrelated, we take Ω = R2 as parameter space,
the Borelalgebra B(R2) as σ -algebra and the 2-dimensional normal distribution
P = N (μ,C) with

μ =
(
μ1

μ2

)

, C =
(
σ1

σ2

)



98 G. Scheuermann et al.

as probability distribution. This means that we assume two normally distributed,
independent real parameters that will determine our uncertain field. In this simple
case, the two random variables

W1 : Ω → R,W1(ω) = ω1, W2 : Ω → R,W2(ω) = ω2

determine the values at the two given positions x1 and x2, respectively. It is natural
to define the linearly interpolated uncertain field f on the real line by

f : Ω → (R) , ( f (ω))x := ω1(1 − x)+ ω2x .

With the notation
fω(x) = ω1(1 − x)+ ω2x,

it becomes pretty clear that we are really defining a linear interpolation of the values
at 0 and 1 on the real line for each given ω. However, the whole point of the chapter
is that we are really defining a Gaussian process! The short argument is that this
follows from slightly more abstract arguments of Adler and Taylor [3, pp. 17–19].
However, some basic computations might improve understanding of this point: At
every position x ∈ D, we have the random variable

fx (ω) = ω1(1 − x)+ ω2x .

As ω1, ω2 are independent Gaussian variables, this is a Gaussian variable with
expectation

μ(x) = E( fx (ω)) = μ1(1 − x)+ μ2x

and variance

σ 2(x) = E(( fx (ω)− μ(x))2) = σ 2
1 (1 − x)2 + σ 2

2 x2.

For the covariance function C : D × D → R, we have

C(x, y) = E(( fx (ω)− μ(x))( fy(ω)− μ(y)))

= E(((ω1−μ1)(1 − x)+ (ω2 − μ2)x)((ω1 − μ1)(1 − y)+ (ω2 − μ2)y))

= (1 − x)(1 − y)E((ω1 − μ1)
2)+ xyE((ω2 − μ2)

2)

= (1 − x)(1 − y)σ 2
1 + xyσ 2

2

because of the independence ofω1, ω2, i.e. E((ω1−μ1)(ω2−μ2)) = 0. For σ1 = σ2,
this coincides with the construction by Pöthkow and Hege [5].
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9.5 General Interpolation

We turn now to a realistic interpolation scenario. We consider some closed domain
D ⊂ Rd . We assume that we are given N positions p1, . . . , pN ∈ D. At these posi-
tions, we are given N uncertain v-dimensional values with normal distributions, say

W i ∼ Nv(μ
i ,Ci ), ∀i = 1, . . . , N

where Ci ∈ R(v×v) denotes the covariances between the dimensions at a single
position. We still assume that the N values are independent. Our interpolation method
is given by N (deterministic) weight functions

φi : D → R,∀i = 1, . . . , N with φi (p
j ) = δi j

with Kronecker δ. This is the typical case in finite element formulations and for
almost all grid based field data in visualization.

We define our probability space via Ω = RN×v, Borelalgebra B(Ω) and

P ∼ N (μ,C), μ =
⎛

⎜
⎝

μ1

...

μN

⎞

⎟
⎠ , C =

⎛

⎜
⎝

C1

. . .

C N

⎞

⎟
⎠

as probability measure. Our uncertain field f is defined as

f : Ω → (Rv)D, f (ω, x) = fω(x) = fx (ω) = ( f (ω))x =
N∑

i=1

ωiφi (x).

Fixing position x ∈ D, we get a random variable

fx : Ω → Rv

that describes the distribution of values at that position as a Gaussian distribution

fx ∼ N (μ(x),C(x)), μ(x) =
N∑

i=1

μ jφ j (x), C(x) ∈ Rv×v,

Ckl(x) =
N∑

i=1

Ci
klφ

2
i (x).

Looking at the whole uncertain field again, we have the expectation function
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μ : D → Rv, μ(x) =
N∑

i=1

μ jφ j (x)

and the covariance function

C : D × D → Rv×v, Ckl(x, y) =
⎧
⎨

⎩

0 k �= l
N∑

i=1

N∑

j=1
φi (x)φ j (y)Ck

i j k = l

because of the independence of ωk, ωl . It should be noted that the definition of an
interpolation as above and the definition of a covariance function as usually done in
machine learning, see Rasmussen and Williams [7], is actually equivalent, see Adler
and Taylor [3, pp. 17–19].

Finally, we describe the case of dependent data at given N positions. To simplify
notation, we formulate only the scalar case. We consider a closed domain D ⊂ Rd

and N positions p1, . . . , pN ∈ D. At these positions, we are given N uncertain
scalar values with normal distributions

W i ∼ N (μi ,Cii ) ∀i = 1, . . . , N

with covariances8

Ci j = E((W i − E(W i ))(W j − E(W j ))).

The interpolation is again given by N deterministic weight functions

φi : D → R,∀i = 1, . . . , N with φi (p
j ) = δi j

with Kronecker δ. The interesting point is that the dependence of the uncertain values
typically reduces the number of independent uncertain parameters. Mathematically,
this means that the (symmetric) covariance matrix C has only M <= N independent
rows. One can find them by principal component analysis.9 Let λ1, . . . , λM ∈ R be
the non-zero eigenvalues of C , e1, . . . , eM ∈ RN the corresponding eigenvectors.
LetΛ ∈ RM×M be the diagonal matrix of the non-zero eigenvalues λ1, . . . , λM . We
model our probability space via Ω = RM , Borelalgebra B(Ω) and P ∼ N (0,�)
as probability measure. This probability space consists of M independent normally
distributed scalar parameters with mean 0. The uncertain field f is defined as

8 In praxis, the covariances are either given or have to be estimated from several given sample fields.
Obviously, this estimation might be a challenge in its own right as the number of positions is almost
certainly larger than the number of sample fields. Pöthkow et al. [6] made some comments in this
direction.
9 In praxis, there will be eigenvalues very close to zero in the estimated covariance matrix which
one might want to set to zero. Again, this is an obvious challenge outside the scope of this article.
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f : Ω → (Rv)D, ( f (ω))x =
N∑

i=1

(

μi +
M∑

k=1

ωkek
i

)

φi (x).

The Gaussian distribution at each position x , mean function and expectation function
can be derived from here as before.

9.6 Conclusion

We have shown that stochastic processes provide a suitable mathematical foundation
for the definition of uncertain fields in visualization. In the case of given Gaussian
distributions, we have demonstrated how the well-known interpolation methods allow
to define Gaussian processes from uncertain field data. We hope that these remarks
will stimulate and simplify research on the visualization of uncertain field data. Of
course, there is much more to say on the topic that would require more space than
available here. For further reading, we recommend the cited literature below.
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Part II
Multifield Visualization

During the Dagstuhl 2011 Seminar on Scientific Visualization, members of the
break-out group on Multifield Visualization worked extraordinarily hard in
planning for this Part of the book. They were deeply immersed in evaluating
several proposed definitions of the term ‘‘multifield’’, while cheers of a volleyball
match crept into the meeting room. They showed no sign of stopping their
discussions in the dining room, while everyone could taste, in the air, the delicious
aroma of Dagstuhl cakes. The group was determined to produce a series of
chapters that could provide visualization researchers with a coherent, and
hopefully comprehensive, coverage of the subject of multifield visualization.
After the Dagstuhl 2011 event, members of the group worked together through a
Wiki page, and completed the 10 chapters in this Part by February 2012. As the
coordinator of this Part, it has been a great joy for me to work with this group of
colleagues and authors.

The structure of this Part of the book is organized following a planned flow. It
starts with two introductory chapters. In the first chapter, Definition of a Multifield,
Hotz and Peikert introduce us to the necessity of multifield visualization, and
provide us with a mathematically consistent set of definitions. In the following
chapter,Categorization, Hauser and Carr examine two taxonomic schemes for
categorizing the subject of multifield visualization, and note that this Part is
organized according to the categorization by visualization approach.

The next two chapters examine techniques for visualizing multifield data
directly. In the chapter entitled Fusion of Visual Channels, Chen, Mueller, and
Ynnerman consider methods for combining different visual channels in order to
depict data from different fields. They first provide us with a large list of visual
channels, then examine constructive operators on visual channels and uses of
channel fusion in visualizing time-varying fields, and finally consider the
techniques available for compressing multifield data. In the following chapter,
Glyph-Based Multifield Visualization, Chung, Laramee, Kehrer, and Hauser
provide us with an overview of an alternative technique that encodes multiple data
attributes using glyphs. They survey the state-of-the-art glyph-based visualization,



and examine design principles and guidelines that may influence the success in
deploying such a technique.

Some may suggest that it is not common to encounter multifield datasets. In the
next chapter, Derived Fields, Zhang and Natarajan show that even with a single
input field, one can derive a multifield dataset, and there is a need for visualizing
such derived fields. They first consider the scenario of deriving additional field
data from two input fields, then discuss cases where there are more than two input
fields, and finally examine the scenario of deriving a multifield dataset from a
single input field. This chapter confirms the ubiquity of multifield data.

The next two chapters focus on the role of interaction in visualizing multifield
data. In the chapter entitled Interactive Visual Exploration and Analysis, Weber
and Hauser examine different aspects of interactive visual analysis of multifield
data, ranging from the generic show-and-brush paradigm to application-specific
paradigms where users may interact with application-specific features. In the
following chapter, Visual Exploration of Multivariate Volume Data Based on
Clustering, Linsen examines the visual analytics paradigm where analysis,
visualization, and interaction form a closed loop. In particular, Linsen examines
the attribute space in multivariate volume visualization, and the role of interactive
visual exploration in cluster-based data analysis.

The following two chapters focus on the role of feature analysis in visualizing
multifield data. In the chapter entitled Feature-Based Visualization of Multifields,
Obermaier and Peikert begin with a general discussion on feature extraction in
scientific visualization. They then provide us with definitions of multifield features
and a categorization of different feature-based visualization techniques. In the
following chapter, Feature Analysis in Multifields, Carr examines techniques for
detecting features in multifield data. In particular, Carr organizes feature analysis
techniques into categories of Scalar Features in Reduced Domains, Scalar
Features in the Range, Manifold Features, Overlapping Scalar Features, and Joint
Feature Analysis, and structure the discussions accordingly.

The last chapter, led by Laramee, captures a truly collaborative effort by this
Dagstuhl break-out group, and reflects the enthusiasm and energy that made
members of group so deeply immersed in the discussions and writings for this Part.
The chapter, which is entitled Future Challenges and Unsolved Problems in Multi-
Field Visualization, consists of an introduction by Laramee and contributions from
Carr, Chen, Hauser, Linsen, Mueller, Natarajan, Obermaier, Peikert, and Zhang. It
is a collection of proposed challenges in multifield visualization, covering a broad
range of technical aspects. This collection of challenges will no doubt influence the
future directions in this area of research.

Min Chen
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Chapter 10
Definition of a Multifield

Ingrid Hotz and Ronald Peikert

Abstract A challenge, visualization is often faced with, is the complex structure of
scientific data. Complexity can arise in various ways, from high dimensionalities of
domains and ranges, time series of measurements, ensemble simulations, to hetero-
geneous collections of data, such as combinations of measured and simulated data.
Many of these complexities can be subsumed under a concept of multifields, and
in fact, multifield visualization has been identified as one of the major current chal-
lenges in scientific visualization. In this chapter, we propose a multifield definition,
which will allow us a systematic approach to discussing related research.

10.1 Motivation

In its beginnings visualization has focused on single fields, meaning data representing
one specific quantity given over some domain. Thereby, the term field is mostly used
in context with some inherently continuous domain. Typical examples are scalar,
vector, tensor fields or also abstract data given over a two to four dimensional space-
time. Many corresponding visualization techniques have been developed solving
visualization problems related to one specific structure of the domain and data with
a specific characteristic.

In many real world applications the situation often looks very different. To solve
a problem often multiple fields, data from different sources, with different resolu-
tion and representing different quantities are common. E.g., in computational fluid
dynamics (CFD) simulations, the result is not just a single field but a collection of
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multiple quantities, which are somehow related to each other. Other examples are
imaging data acquired with different modalities or multiple runs of one simulation
exploring a complex parameter space.

Applying a side-by-side visualization using established methods for the single
fields might give a first insight into the data. But such an approach might be over-
whelming for the user and, even worse, it ignores the information resulting from
the interrelation of the different fields. The need for more integrated visualization
methods for such cases have lead to the development of a scientific area focusing
on “multifields”, whereby the term is used in very different contexts for different
applications.

Some instances of multifield visualization go back to the 20th century, e.g., visual-
ization involving different quantities of computational fluids dynamics (CFD) results
or volumetric scans using different modalities. The term multifield visualization has
been introduced in 2001 by Johnson et al. [1] who describe it as “an area ripe for
research [...] in which a scientist could visualize combinations of the above fields in
such a way as to see the interactions of the fields”. A recent overview of multifield
visualization is given by Obermaier in his PhD thesis [2].

To start a proper analysis of the current state of this area, the first step is to agree
on a basic definition for “multifields”. There are many possibilities for a definition
of such fields, which might be more or less appropriate for different applications.

10.2 Definitions

The purpose of this section is to define multifields in a way that is general enough
to cover most of its usages, distilling the shared properties, which we consider to be
the most important.

10.2.1 Fields

As a first step towards a definition of “multifields” as collections of somehow inter-
related fields, it is important to agree on a formal definition of “fields”.

In visualization, the term “field” has been adopted as it is used in physics where it
describes a quantity which is associated to each point in space-time. Therefore, con-
fusion with other meanings of the term, such as for algebraic structures, is unlikely.
The prevalent representatives in visualization are scalar fields, vector fields and ten-
sor fields. But the notion of fields has also been extended to functions or distributions
linked to points in space-time. Essential for the understanding of fields is the assump-
tion of some continuity of the underlying space (domain) as well as the described
phenomenon (range). This is in contrast to data inherently defined over a discrete
space or abstract data. The continuity assumptions together with distance measures
facilitates the use of analysis methods based on derivatives.
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In practice the data mostly origin from simulations and measurements and are
only available on a finite subset of the domain. Due to the continuity assumptions
it is principally possible to evaluate the field over the entire domain using some
interpolation or approximation method. To account for the fact that data acquisition
in general involves further parameters, the continuous field domain is augmented by
an additional parameter space.

10.2.2 Definition of a Field

A field F is defined as a function

F : D → R.

• Domain D
The domain consists a Cartesian product of a finite-dimensional metrical space
and some parameter space (DP ). Since for many applications time plays a dis-
tinguished role we further separate the temporal dimension (DT ) from the spatial
dimensions (DS).

D = DS × DT × DP .

• In the most general form the range R of a field F is defined as the Cartesian product
of a metric space RM and a set of categorical values �.

R = RM ×�.

The general case for RM are finite-dimensional spaces representing scalars, vectors
or tensors, which can be considered as subsets of R

n for some n ∈ N. But this
definition also allows for the more general case of function or distribution spaces.
Categorical values � are in general of discrete nature and include classifications
or binary markers.

10.2.3 Multifields

Based on this definition of fields a multifield M is defined as a set of fields

M = {F1, F2, . . . , Fr }, r ∈ N

Fi : Di → Ri (10.1)

Di = DS
i × DT

i × DP
i

Ri = RS
i ×�
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We further require that the various fields have a shared embedded space-time domain
D = DS × DT .

DS
i ⊂ DS and DT

i ⊂ DT , for all i

The subsets can also be lower-dimensional, such as domain boundaries.

10.2.4 Uniqueness of Representation

It is possible that there is not one unique representation for a field or multifield
according to the definition given above. E.g., it would be possible to shift the indices
for the components of a vector to the parameter space. Or one could even consider
a vector field already as a multifield consisting of several scalar fields.

Another example is the representation of multi-run simulations. Here two cases
can be distinguished. On the one hand, a simulation can be run repeatedly for different
(combinations of) parameters. In this case, a multifield representation is obtained
straightforwardly by making the parameter space a part of the domain.

On the other hand, stochastic ensemble simulations, as done typically in climate
research, generate a field with distributions as its values instead of scalars or vectors.
Another option would be to interpret each run as a separate field.

The decision for the specific choice of the domain and range of a field should be
guided by the semantics of the multifield and its fields.

10.3 Multifields and Related Concepts

The above definition of a multifield provides enough flexibility to capture most of
the types of compound datasets that occur in practice. In this section we identify the
types of data that can be represented by our multifield definition and describe the
actual mapping to this abstract mathematical representation.

The term multi-channel data is commonly used to describe data having multiple
variables (quantities, attributes) per point in space-time. This fits straightforwardly
into our multifield concept and is in fact a standard case of it.

The same holds, conceptually, also for multi-modal data. Practically, a differ-
ence is that in multi-modal data the single fields are typically given in different
discretization and on overlapping domains. Multi-modal data are generated in sepa-
rate processes, and data from different modalities have to be registered first, before
they can be represented as a multifield.

Multi-material simulations generate data for different materials. These can be
represented by different fields of a multifield. Domains can overlap if materials can
mix, but also at material boundaries because of discretization.

The term multi-dimensional data can be used to give a vague description of the
complexity, but by not making a distinction between the dimension of the domain
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and the range, it cannot be used as a precise characterization. Similarly, the term
multivariate should be avoided in a general discussion of multifields, because its
meaning depends on the discipline. In statistics it refers to the dimension of the
range and in other branches of mathematics to the dimension of the domain.

Multi-value data are a more difficult case. If there is only a bounded number
of values that a point in space-time can have, the data could be represented as a
multifield, although an artificial ordering of the values is introduced this way. If the
data per point in space-time can be arbitrary sets, then such data cannot be expressed
by multifields.

Multiphysics refers to simulations involving multiple physical models such as
magnetohydrodynamics, fluid structure interaction, or fluid flow combined with
chemical reactions. Multiphysics simulations are a source of multifield datasets
containing an even larger number of components than are obtained from CFD
simulations.
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Chapter 11
Categorization

Helwig Hauser and Hamish Carr

Abstract Multifield visualization covers a range of data types that can be visualized
with many different techniques. We summarize both the data types and the categories
of techniques, and lay out the reasoning for dividing this Part into chapters by tech-
nique rather than by data type.

As we have seen in the previous chapter, multifield visualization covers a broad range
of types of data. It is therefore possible to discuss multifield visualization according
to these data types, with each type covered in a separate chapter. However, it is
also possible to approach the question by considering the techniques to be applied,
many of which can be applied to multiple types of multifield data. In this chapter, we
therefore discuss both ways of analysing multifield visualization techniques, and why
we have chosen to proceed according to technique rather than type in the subsequent
chapters.

11.1 Categorization by Data Type

All multifield data shares a common attribute—that it is known or presumed that the
fields are related spatially to each other. However, these relationships can arise in
different ways, and this has an impact on how we analyze or visualize the data.

Broadly speaking, the individual fields in multifield data can be related in a number
of ways:

1. Multi-variate data, where related properties are computed or measured,
2. Spectral data, where multiple properties are measured, but may or may not be

related,
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3. Multi-run/ensemble data, where each field is a separate output of a computational
or measurement process,

4. Derived fields, where new fields are generated to sharpen the understanding of
existing fields,

5. Multi-scale data, where fields at different resolutions or scales are considered,
6. Other, ranging from tensor fields to time-dependent data.

We will canvass each of these types of data separately, proceeding from the types
whose fields are more obviously tightly related, to those where the multifield repre-
sentation is more a choice of representation than an inherent structure.

11.1.1 Multi-variate Data

Multi-variate data are common to several applications, including computational fluid
dynamics (CFD), where the interaction between multiple physical quantities are
modeled and computed over detailed spatial grids. In the simplest case, each location
or sample in a spatial domain is assigned a coherent vector of multiple variables. The
paradigm case of this type of data is CFD, where properties such as pressure and
velocity are computed for each location in a grid.

Multi-variate datasets (in terms of this definition) are usually characterized by
a relatively small number of variables (between two and a few dozen). Here, the
visualization challenges arise from the fact that the correlation between pairs of
variables is wildly heterogeneous. For example, while some variables are perfectly
linearly correlated, others may be largely unrelated as, e.g., when resulting from
separate solvers (say a fluid solver and a chemical reaction solver).

11.1.2 Spectral Data

Another type of multifield data is spectral data. Most commonly resulting from
physical acquisition techniques (such as spectral imaging techniques), we consider
datasets where data relating to different frequencies are represented as different fields.
An example is spectral satellite imaging, where (concurrently) a number of images
at different wavelengths are taken from the same target, resulting a multi-frequency
dataset.

In comparison with multi-variate data, spectral datasets may involve much larger
numbers of fields (frequencies), which leads to interesting visualization challenges.
However, it is commonly the case that there is a substantial amount of coherence
between all the fields. For example, the fields are often sorted in a meaningful way
(usually by frequency), and responses to different frequencies tends to correlate more
tightly than for example pressure and vorticity in a CFD computation.
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11.1.3 Multi-run/Ensemble Data

A third type of multifield data is multi-run, multi-parameter, or ensemble data. These
datasets represent multiple results from the same operation, rather than multiple
related operations. Multi-run data, for example, can result from repeating a stochas-
tical simulation a certain number of times, leading to data which can be interpreted as
a statistical sample of outputs from the model. Multi-parameter or ensemble data can
also result from repeating the data acquisition (simulation or measurement) while
varying input parameters of either the simulated model or the measurement technique
(for example regular or Monte-Carlo sampling).

Visualization of these multi-run, multi-parameter, or ensemble data usually
amounts to performing a sensitivity/variability analysis of the phenomenon under
consideration. In climate research, for example, the dependency of a forecast on
certain model parameters can be studied. In engineering, on the other hand, the
performance of a certain system component can be studied, while external driving
conditions are varied.

11.1.4 Derived Fields Data

As one moves from intrinsically multifield data to data which is multifield as a result
of the choice of representation, the next type to be considered is that of derived fields.
In these datasets, one or more additional fields are computed directly from the known
fields (as distinct from being computed at the same time as the original fields).

For example, to understand moving particles, additional descriptive quantities are
often computed for each field location that—all together—explain aspects of the
behaviour of the system, whether local or global.

Intrinsic to this derivation is an expectation that the derived field will depend
strongly on the originating fields—thus, the derived field can either be viewed as
additional information or as a reduced or simplified form of information. Even for a
single scalar field, however, the opportunity of deriving fields implies that multifield
visualization methods may be applicable.

11.1.5 Multi-scale Data

A further type of multifield data arises when a single field is measured at different
scales or different resolutions. The effective selection of a scale can often depend
on understanding the relationship between these resolutions, giving rise therefore to
multifield problems. In essence, the scale axis is used to set the fields alongside each
other, leading to a scale-space representation where each field represents the data at
a certain scale.
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Visualization questions for these data types involve the selection of an appropriate
scale, or the consideration of the data through a proprietary (for example selective)
reconstruction of the data (based on certain scales of interest).

11.1.6 Other Types of Multifield Data

In addition to the major types of data already listed, a multifield framework can
be used as a representation for data such as tensor fields, where tensor components
are interpreted as individual fields, or time-dependent data, where the time-steps are
interpreted as individual fields.

Representing such data in a multifield form allows the use of existing visual-
ization methods such as coordinated multiple views with linking and brushing, or
focus+context visualization. Of course, an additional challenge is generated by the
fact that an important semantic aspect of the data (that the fields actually make up a
tensor or a time series) is possibly lost (or cannot be exploited).

11.1.7 Summary

If we look at the various types of multifield data, we see that nearly all of the types
require similar tasks to be performed, and in particular require the detection or visu-
alization of correlations between the fields. As a result, many of the techniques
applicable to one type will tend to be applicable to other types, and a categorization
by data type risks the repetitive discussion of the same techniques. We therefore con-
sider in the next section the techniques that are applicable to multifield visualization,
then return to the question of which approach to adopt.

11.2 Categorization by Visualization Approach

As we have seen above, one way to categorize multifield visualization is to focus on
the type of data. A second way to categorize is to observe that many techniques cut
across all of the types of data as discussed above. The advantage of this characteriza-
tion is that it gives a principled context in which to discuss not only those techniques
that have already been reported, but also in which to discuss classes of techniques
that could be introduced in the future. A second advantage of this approach is that we
can extrapolate more readily from techniques known to work for single-field data,
whether scalar, vector or tensor.

Broadly speaking, we can observe that the visualization of single-field data relies
on mapping the data to properties of the human visual system, on providing the user
interactive tools for isolating regions of the data, and on the detection of significant
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features in the data. In addition to these basic categories, existing multifield visu-
alizations often rely on the mathematical habit of reducing complex problems to
simpler problems with known solutions. In the context of multifield visualization,
this usually means computing a single scalar or vector field based on the input data,
then visualizing that single field.

This therefore leaves four broad categories of approaches to multifield visualiza-
tion, in approximate order of difficulty:

1. Visual Channel Mapping
2. Derived Fields
3. Interactive Exploration
4. Feature Detection and Analysis

Each of these will be covered in a separate section, but we start with a high-level
overview of these methods first.

11.2.1 Visual Channel Mapping

For single fields or for multifields with small numbers of variables, the first set of
approaches, including much of the work published to date, involves mapping data
properties to visual properties. So, for example, one dependent variable may be
mapped to the red channel, a second to the green channel, and a third to the blue
channel. Alternately, one channel could map to hue, a second to saturation, and a
third to brightness.1 Visual channels that can be exploited this way are not, however,
restricted to colour alone—as we will see in Chap. 12, texture and geometric shape
are also used to represent data properties.

A core problem with visual channel mapping is that the human visual system has a
limit on how many different visual channels can be perceived at once. Moreover, the
amount of precision in the visual system limits the qualitative conclusions that can
be drawn. However, due to the simplicity and straightforwardness of visual channel
mapping, it often forms the basis for the methods to be developed in subsequent
chapters.

11.2.2 Derived Fields

Once the visual channel limitations are realized, the next set of methods relies on
reducing the number of visual channels by combining elements of multiple data
variables in a single channel. This is usually done by computing some summative
property that encapsulates a relationship between the variables, thus reducing the

1 We note that both of these mappings are poor choices visually, but they are the easiest illustrations
of the principle.
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116 H. Hauser and H. Carr

multifield to a single field, which is then visualized directly using existing techniques.
These methods may include measures of complexity or correlation between variables,
or derived properties such as vorticity.

While these methods can be very effective, they tend to work best at detecting
relationships that are known or suspected. This is because the choice of the summa-
tive property is usually guided by a sense that a particular aspect of the data set is
significant. Moreover, they presume that the phenomenon being studied is uniform
throughout the domain: thus, if two properties are weakly correlated in one area, but
strongly correlated elsewhere, these methods will be less successful.

11.2.3 Interactive Exploration

A third category of visualization techniques relies on the experience and intuition
of the user, by providing an interactive tool for exploring the data. Inevitably, this
relies on visual channel mapping and derived fields to give the user sufficient insight
to identify features, and increasingly, on feature detection as well.

Interactive exploration can operate by manipulation of the visual channel mapping,
by the provision of geometric tools to identify regions of the data, by selection
of paradigm points or regions as seeds for similarity measures, by combination of
properties through logical rules, or by reference to abstract descriptions or secondary
visualizations.

While often the most effective approach, interactive exploration starts breaking
down with larger data sets, as does direct visualization itself, as the volume of data
outstrips the humans visual and cognitive capacity to understand the data.

11.2.4 Feature Detection and Analysis

All three categories described so far share a common difficulty: that, as the amount of
data increases, less and less of it can be presented to the user. In short, the question is
not “how can we visualize the data”, but “what subset of the data can we visualize”.
As a result, visualization techniques have increasingly relied on abstract definitions
of features, either specific to a domain, specific to a type of data, or common to
multiple domains and data types. These features are detected computationally and
presented to the user either as the answer to a question, or as the seeds to an interactive
exploration.

Philosophically, these methods shade off into the disciplines of image analysis,
computer vision and data analysis, all of which share a common interest in detecting
features in masses of data. However, one set of methods which is distinctive in visu-
alization is the reliance on formal mathematics such as topology to extract abstract
features either for further analysis or for direct visualization.
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11.2.5 Summary

Clearly, a breakdown according to techniques runs a similar risk of repetition to the
risk observed for a breakdown according to types. However, as we can see from the
discussion above, a breakdown according to techniques has more obvious and clearer
demarcations, in addition to providing a roadmap for as yet unidentified techniques.

11.3 Conclusion

In short, while we can categorize multifield visualization either by the type of data
or by the type of technique, we have chosen the latter for two reasons. First, similar
techniques are visible across all types of data, and it is therefore easier to consider a
single technique and, if necessary, its application to different types. Second, it allows
us to extrapolate future techniques out from the accumulated experience of working
with single-field data.



Chapter 12
Fusion of Visual Channels

Min Chen, Klaus Mueller and Anders Ynnerman

Abstract In this chapter, we consider the need in multifield visualization to depict
information contained in two or more fields in a compositional manner. There are
many different visual channels, some of which are more commonly seen in visu-
alization than others. Channel fusion occurs when two or more visual entities have
to share the same screen space. By applying appropriate constructive operations on
visual channels in the composition, one may encode the integration as well as sepa-
ration of the underlying information depicted by the original channels. One special
situation is where multiple fields are a set of fields from different temporal steps,
which imposes additional constraints on the use of visual channels. It is inevitable
that the availability of visual channels will not be able to scale up to a large number
of visual channels. Hence, we consider briefly several general-purpose data mapping
methods that can be used to reduce the complexity of visual mapping.

12.1 Introduction

One primary goal of multifield visualization is to depict information contained in two
or more fields in a compositional manner, which facilities combinational overview
or visual comparison. In visualization, the most fundamental approach to achieve
this goal is to make use of different visual channels available in the design space,
which we refer to as channel fusion. This differs from a naive approach for displaying
individual fields independently, typically in sequence or using juxtaposition, which
usually result in a high cognitive load in gaining an insight about compositional
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effects of, or making a comparison between, different fields. In this section, we first
consider different visual channels that have been used in visualization (Sect. 12.2).
We then discuss various constructive operations on visual channels, showing various
examples of channel fusions (Sect. 12.3). This is followed by an examination of a
special situation where multiple fields are a set of fields from different temporal steps
(Sect. 12.4). Finally, we consider a collection of alternatives, in which data mapping
plays a critical role in reducing the complexity of visual mapping (Sect. 12.5).

The fusion of visual channels is highly sensitive to the limitations of human per-
ception as well as application-specific visual metaphors. In scientific visualization, it
is often constrained by elementary properties of the data. For instance, when geom-
etry (e.g., an isosurface) is an intrinsic property of one of the fields, the flexibility in
using geometry to depict other types of properties in a composite visualization is sig-
nificantly reduced. When color is an intrinsic property of one of the fields (e.g., visible
spectrum in remote sensing data), it is usually very difficult to fuse different color
metaphors by introducing virtual colors for other types of properties while maintain-
ing the original color representation. Furthermore, the number of visual channels is
limited; hence their use cannot be scaled to an arbitrary number of multiple fields.
Because of these reasons, it is important to avoid overloading of the visual channels
by enabling users to choose a subset of multiple fields or a subset of properties to
be visualized (see Sect. 12.5), and by employing appropriate analytic methods for
filtering out unimportant data and selecting features to be highlighted (see Chaps. 17
and 18).

12.2 Visual Channels in Multifield Visualization

There are many types of visual channels that can be utilised in visualization. Bertin
provided a comprehensive study on several visual channels typically used in geo-
spatial visualization in general and cartography in particular [1]. However, mul-
tifield visualization exhibits many characteristics that are untypical in geo-spatial
visualization. For example, most multifield datasets represent objects or phenom-
ena in a continuous 3D spatial domain, and many encode directional and temporal
information at a much larger scale than ordinary geographical datasets. Hence it
is not uncommon for multifield visualization to make use of more visual channels
than those commonly-available in geo-spatial visualization. Visual channels can be
roughly divided into the classes of Geometric, Optical, Relational, and Semantic
channels [7]. This classification focuses on the effect of a visual channel rather than
its cause. For example, the curvature of a surface is indubitably a geometric property,
but one of the most effective ways to depict this property (i.e., to cause this effect) is
shading, which is an optical channel. On the other hand, geometric channels can also
be used to influence optical perception, hence contributing to the formation of optical
channels. For example, textures, which are made of different geometric components,
are commonly used to convey different scales of brightness that is an optical channel.

http://dx.doi.org/10.1007/978-1-4471-6497-5_17
http://dx.doi.org/10.1007/978-1-4471-6497-5_18
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Geometric Channels provide means to differentiate visual entities by making use
of their different geometric properties, including

• Size/length/width/height/depth/thickness/area/volume
• Orientation
• Shape
• Curvature
• Smoothness

Optical Channels provide means to differentiate visual entities by making use of
different optical effects. Many of such effects rely extensively on perceptual inter-
pretation. For example, different shading effects, which can be used to encode high-
level concepts such as materials, are perceived through the changes of brightness
and colours resulting from some rendering algorithms. In visualization, motion can
be depicted explicitly as well as implicitly. The former includes both first-order and
second-order motion perception, while the latter makes use of static depiction, such as
motion blur patterns. Different visual effects in the class of optical channels include:

• Intensity/brightness
• Colour/hue/saturation
• Opacity/transparency
• Line style/surface texture/volume texture
• Shading and lighting effects/halos
• Shadow
• Photographic effects such as focus, blurring, optical distortion
• Implicit motion/motion blur patterns
• Explicit motion/animation/flicker

Relational Channels provide means to differentiate visual entities by making use
of depictions of different relations. There are two main types of relations. Spatial
relationships, such as distance, depth, and density, convey the difference between
two visual entities through their geometric or geographic relationships with other
entities in the scene, or the perceived spatial relationship with the viewer. Topological
relationships, such as connectivity, hierarchy, and closure, convey the difference
between two visual entities through the different structures associated with them, or
their different roles in a shared structure. Some of such effects rely on perceptual
interpretation, while many rely extensively on cognitive interpretation. For example,
depth is a complex perceptual phenomenon because it may result from different
visual channels. The perception of depth can be caused by explicit binocular cues
(e.g., stereo vision), or implicit monocular cues (e.g., perspective and occlusion).

• Connection/edge
• Node/internal node/terminator
• Inside/outside/enclosure/boundary
• Distance/displacement/offset
• Closure/opening
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• Connectivity
• Partition/completeness
• Intersection/overlap
• Depth ordering/partial or full occlusion
• Hierarchy/level
• Density/distribution
• Convexity
• Continuity
• Homeomorphism/genera
• Similarity
• Translation/scaling/rotation/deformation

Semantic Channels provide means to differentiate visual entities by making use of
pre-defined visual languages that encode different semantic concepts.

• Number
• Text
• Symbol/ideogram
• Sign/icon/logo/glyph/pictogram
• Isotype

12.3 Constructive Operations on Visual Channels

Let F1, F2, . . . , Fn be a set of fields to be visualized in an amalgamated manner. Let
V (F1),V (F2), . . . ,V (Fn) be a set of corresponding visual mappings. The compo-
sition of these visual mappings is thus a function that combines these visual mappings
into a single visual representation, such that,

Λ : V1(F1),V2(F2), . . . ,Vn(Fn) → V

where V is a visual representation that is directly displayable on a 2D or 3D display,
and Vi , i = 1, 2, . . . , n are different visual mappings, each of which may utilize one
or several visual channels.

The functionΛ is usually designed to serve specific requirements of visualization
tasks, which may be one or several of the followings:

• Association and Correlation—This is the most basic task in multifield visualiza-
tion, with a goal for users to establish correspondence between features in other
field and those in the other fields. The emphasis is placed on the ability to see the
visual mappings of individual fields, Vi , i = 1, 2, . . . , n, through the composite
visualization V .

• Comparison or Contrast—The goal of the tasks in this category is for users to
examine the similarity or difference between different fields, and to estimate the
changes qualitatively or quantitatively. While the requirement for the ability to
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see the visual mappings of individual field remains, there is also an additional
constraint, that is, in order to compare field Fa and Fb, their visual mappings, Va

and Vb have to be visually comparable.
• Observation of Combined Effects—In some applications, different fields can be

combined meaningfully, by using, for example, logical, algebraic and statistical
operators. In such cases, the emphasis has been shifted from the depiction of
individual fields to that of the combined effects.

Note that these three types of tasks are not totally exclusive or performed in
isolation. For example, once an observation of association is made, one may use
combined effects, such as point-wise subtraction, to compare two fields and evaluate
the changes from one to another.

Volume Visualization. Earlier works in volume visualization were focused primar-
ily on logical operators on voxel occupancy in combination of multiple volume
datasets (e.g., [8, 21]). At the turn of the new millennium, three groups indepen-
dently developed methods for constructive operators for combining real-domain vol-
ume datasets [3, 6, 17]. Among them, Chen and Tucker [6] provided an algebraic
framework, CVG, for combining discretely specified volume datasets and contin-
uous functional specifications of scalar fields, and rendering a multi-volume scene
as a CVG expression that is equivalent to a tree or scene graph. The constructive
operators are defined with four separate channels for α, R, G and B, each of which
can be operated on differently from others. The open-source vlib [22] extended
this approach to allow for independent constructive operators on attribute fields for
the Phong illumination model, reflection and refraction. Chen [4] later added the
notion of point-based volume objects into the CVG framework to enable scalar fields
defined by point clouds to be visualized with volume datasets and functional scalar
fields.

It is usually difficult to evaluate the characteristics of individual fields through
combined effects in multifield visualization. To support 3D visualization tasks with
strong elements of association and correlation, one critical problem is occlusion.
While translucency is effective for simultaneously depicting non-overlapping fea-
tures in volume visualization, it is necessary to use other visual channels to deal
with features that are from different fields and occupy more or less the same space.
One approach is to use visual representations that exhibit a reasonable amount of
empty space, such as wire frames and coarse non-photorealistic textures. For exam-
ple, one method proposed in [20] is a class of pen-and-ink textures which can be
used in conjunction with conventional shaded RGB surfaces and αRGB amorphous
effects. The density of the pen-and-ink lines and the opacity of the empty area in
the textures can be controlled using a transfer function. Another approach is to use
deformation to force a field to make space for another field, provided that the users
can still comprehend the actual spatial position of the deformed field. For example,
Chen et al. [5] introduced deformation as a generic operator in the CVG framework
and the detailed displacement as fields that can be applied onto any other scalar fields
in a scene graph to facilitate focus and context views of different scalar fields.
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Flow Visualization often sees the need for multifield visualization, where a vector
field is depicted with other multivariate properties such as temperature and pres-
sure [13, 16, 19]. The primary vector fields are usually visualized using the orienta-
tion and size channels, which are commonly depicted using glyphs, lines, surfaces,
and textures. Different colors are commonly used for depicting one or two secondary
fields. In 3D flow visualization, it is common to visualize a vector field in conjunc-
tion with an iso-surface. In this case, any volumetric data that is not on the surface
is removed to reduce occlusion.

Uncertainty Visualization involves the depiction of the measurement of uncertainty
in conjunction with the primary data set. When both are in field representations, it
essentially becomes a problem of multifield visualization. The primary task is thus
association because the foremost requirement is usually the need to observe the
uncertainty measurement associated with some or all parts of the data field. The
visual channels used for depicting uncertainty include color, texture, transparency,
haziness, blurring, uncertainty glyph, and geometric transformation (for details, see
discussions in [11, 18]).

One common dilemma in uncertainty visualization is that the underlying data
fields often require the use of several visual channels. For example, in surface and
volume rendering, many geometrical channels and optical channels are used explic-
itly or implicitly. The continuous spatial usage prevents substantial use of relational
and semantic channels. If the visual channels for depicting uncertainty were con-
fused with those for the primary data fields, it would introduce additional and unde-
sirable visual uncertainty. One effective means for addressing this dilemma is to use
repetitively-animated glyphs [15]. The dynamic nature of the uncertainty depiction
makes a clear distinction from the static depiction of the primary data fields.

12.4 Composition of Time-Varying Fields

Time-varying fields are often visualized as an animated sequence of images, each
of which depicts a single field or multiple fields at a particular time step. While this
form of visualization is intuitive and commonly deployed in practice, it has several
shortcomings. For example, viewing animations requires full attention, and is prone
to change blindness. Because of the limitation in short-term memory, an animation
is often watched over and over again in order to make comparison between different
time steps.

One alternative approach is to compose a static visualization to depict several time
steps. Hence, even when we consider only a signal field, F , at two different time steps
t1 and t2, the composition of the two fields, Ft1 and Ft2 transforms the problem to
that of a conventional multifield visualization as discussed in the previous sections.
The requirements for such visualizations approaches often place a great emphasis
on spatial association, comparison and differentiation, posing a non-trivial challenge
to the selection of visual channels. On one hand visually disparate channels (e.g.,
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color, outline, symbol) would create difficulties for comparison and differentiation.
On the other hand, similar visual channels (e.g., red and green hues) might not deal
with occlusion effectively.

Botchen et al. [2] conducted a small study on visual channels in the context of
video visualization. They conducted a survey that rated the suitability of six visual
channels (i.e., color, luminance, opacity, thickness, symbols and textures) for three
data types (category, uncertainty and size), and optimized their selection of multiple
channels based on the rating. The proposed visual design, VideoPerpetuoGram, is
scalable to an arbitrary number of time steps.

Woodring et al. considered a more challenging problem of time-varying volume
visualization, and used constructive operations to combine different color channels
corresponding with different time steps [24] and to create combined effects for visu-
alizing set and numerical relationships between different time steps [23]. Hsu et al.
used color and outline channels for different time steps, in conjunction with spatial
layouts that separate different time steps [10].

One approach is to have one time step as a reference, and illustrate the rela-
tive changes of the succeeding (or occasionally preceding) time steps using a dif-
ferent visual channel. The illustration-inspired techniques proposed by Joshi and
Rheingans [12] exemplifies this approach.

12.5 Compression of Multifields

A main obstacle with multifield data is that they can exceed the number of visual
channels available, at least in a general sense. This is very reminiscent to the problem
of multivariate data when the aim is to reduce the dimensionality of the data for
display. A number of strategies have been devised to achieve this, what is called low-
dimensional embedding through dimension reduction. Note that in the following it is
assumed that the multifield data “live” in a spatial context where this spatial context
does not need to be a regular lattice. While spatial context is not a strict requirement,
the spatial coordinates could also be integrated into the analysis.

1. Principal component analysis (PCA): Methods based on this technique would
first determine the covariance matrix of the multifield data. An eigenvector analy-
sis would then determine the k most significant axes onto which the multifield
data would be projected and then mapped to the available visual channels.

2. Multi-dimensional scaling (MDS): These methods perform a linear or non-
linear projection of the data into a lower-dimensional space. Since this is an
optimization problem, many different techniques with different strategies are
available. Typically the quality of an embedding is measured by a stress metric
which is the RMS error of the point-wise distances in data space and the respective
distance in embedded space. For multifield data, one would perform MDS on the
data and set k to the number of visual channels.

3. Linear Discriminant Analysis (LDA): LDA is somewhat related to PCA but
unlike PC is does maximize to identify projections of highest variation, but instead
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it seeks to model the difference between the classes of data. This assumes that
some clustering or classification of the data exists. An inherent constraint of LDA
is that the number of remaining dimensions cannot be below the number of classes
else overlap in the embedded space will occur. Thus, for the multifield data case
one would first perform data clustering, say via k-means setting k to the total
number of available visual channels and then perform LDA.

4. Information-Theoretical Analysis: This approach seeks to identify spatial
regions where different fields may or may not have similar information or a similar
amount of information. Information measures, such as mutual information can be
used to quantify the levels of similarity. Based on such a measurement, different
fields can be fused together, for example, by computing a weighted average of
their values at each point. Haidacher et al. used this approach to design a joint
transfer function in visualizing multiple volume datasets from different imaging
modalities [9].

5. Expert-guided dimension reduction: PCA, MDS, LDA can be guided by experts
via suitable visual interfaces. This has come to be known as visual cluster analysis,
where experts use information visualization tools to guide the clustering, the
selection of the principal components, the weighting of the dimensions, and the
selection of influential data points. For multifield data the expert would use a
bi-modal interface consisting of an information display and a suitable scientific
visualization display to interactively and iteratively steer the insight gained.

Lawrence et al. [14] present a technique that can fuse an arbitrary number of
aligned images into a single color or intensity image. Their method falls into the
second grouping of above, i.e., MDS-based compression. They specifically target
multi-spectral imagery as obtained from remote sensing. They use an iterative stress
majorization method in conjunction with clustering to determine the low-dimensional
subspace into which the solution is embedded. A very useful feature of their algo-
rithm is that it allows users to incorporate direct constraints onto the mapping process.
This, for example, allows for better preservation of object colors that a user may want
to maintain.

References

1. Bertin, J.: Semiology of Graphics: Diagrams, Networks. ESRI Press, Maps (2008)
2. Botchen, R.P., Bachthaler, S., Schick, F., Chen, M., Mori, G., Weiskopf, D., Ertl, T.: Action-

based multifield video visualization. IEEE Trans. Vis. Comput. Graphics 14(4), 885–899 (2008)
3. Cai, W., Sakas, G.: Data intermixing and multivolume rendering. Comput. Graphics Forum

18(3), 359–368 (1999)
4. Chen, M.: Combining point clouds and volume objects in volume scene graphs. In: Proceedings

of Volume Graphics pp. 127–135 (2005)
5. Chen, M., Silver, D., Winter, A.S., Singh, V., Cornea, N.: Spatial transfer functions—a unified

approach to specifying deformation in volume modeling and animation. In: Proceedings of
Eurographics/ACM Volume Graphics, pp. 35–44 (2003)

6. Chen, M., Tucker, J.V.: Constructive volume geometry. Comput. Graphics Forum 19(4), 281–
293 (2000). A short version of the paper was presented in VG99 (July 1999)



12 Fusion of Visual Channels 127

7. Chen, M., Floridi, L.: An Analysis of Information in Visualisation. Synthese 190(16), 3421-
3438 (2013)

8. Fang, S., Dai Srinivasan, R.: Volumetric CSG—a model-based volume visualisation approach.
In: Proceedings of 6th International Conference in Central Europe on Computer Graphics and
Visualisation, pp. 88–95 (1998)

9. Haidacher, M., Bruckner, S., Kanitsar, A., Gröller, M.E.: Information-based transfer functions
for multimodal visualization. In: Proceedings of Eurographics Workshop on Visual Computing
for Biomedicine (2008)

10. Hsu, W.H., Mei, J., Correa, C.D., Ma, K.L.: Depicting time evolving flow with illustrative
visualization techniques. In: Proceedings of International Conference on Arts and Technology
(ArtsIT2009) (2009)

11. Johnson, C., Sanderson, A.: A next step: visualizing errors and uncertainty. IEEE Comput.
Graphics Appl. 23(5), 6–10 (2003)

12. Joshi, A., Rheingans, P.: Illustration-inspired techniques for visualizing time-varying data. In:
Proceedings of IEEE Visualization, pp. 679–686 (2005)

13. Laramee, R.S., Hauser, H., Doleisch, H., Post, F.H., Vrolijk, B., Weiskopf, D.: The state of the
art in flow visualization: dense and texture-based techniques. Comput. Graphics Forum 23(2),
203–221 (2004)

14. Lawrence, J., Arietta, S., Kazhdan, M., Lepagne, D., Ogan, C.: A user-assisted approach to
visualizing multidimensional images. IEEE Trans. Vis. Comput. Graphics 17(10), 1487–1498
(2011)

15. Lundstrom, C., Ljung, P., Persson, A., Ynnerman, A.: Uncertainty visualization in medical
volume rendering using probabilistic animation. IEEE Trans. Vis. Comput. Graphics 13(6),
1648–1655 (2007)

16. McLoughlin, A., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of
integration-based, geometric flow visualization. Comput. Graphics Forum 29(6), 1807–1829
(2010)

17. Nadeau, D.R.: Volume scene graphs. In: Proceedings of IEEE Symposium on Volume Visual-
ization (2000)

18. Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Vis.
Comput. 13, 370–390 (1997)

19. Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow
visualization: feature extraction and tracking. Comput. Graphics Forum 22(4), 775–792 (2003)

20. Treavett, S., Chen, M.: Pen-and-ink rendering in volume visualization. In: Proceedings of IEEE
Visualization, pp. 203–209 (2000)

21. Wang, S.M., Kaufman, A.: Volume sampled voxelization of geometric primitives. In: Proceed-
ings of IEEE Symposium on Volume Visualization, pp. 78–84 (1993)

22. Winter, A.S., Chen, M.: vlib: a volume graphics API. In: Proceedings of Volume Graphics, pp.
133–147. Springer Wien New York (2001)

23. Woodring, J., Shen, H.W.: Multi-variate, time varying, and comparative visualization with
contextual cues. IEEE Trans. Vis. Comput. Graphics 12(5), 909–916 (2006)

24. Woodring, J., Wang, C., Shen, H.W.: High dimensional direct rendering of time-varying volu-
metric data. In: Proceedings of IEEE Visualization, pp. 417–424 (2003)



Chapter 13
Glyph-Based Multi-field Visualization

David H.S. Chung, Robert S. Laramee, Johannes Kehrer
and Helwig Hauser

Abstract In this chapter, we present a state of the art on glyph-based visualization
techniques that address the complex challenges of multi-field visualization. Glyphs
are discrete parametrized visualization objects that encode multiple data values based
on appearance (i.e., visual channels) such as size, shape, color, and opacity, and are
effective for conveying multiple fields of data simultaneously. We provide a cate-
gorization of these techniques with the aim for an informative overview of recent
literature. Our categorization is based on visual channels utilized by the glyph for
mapping each data attribute, and the spatial dimensionality of the glyph-based visu-
alization. We also discuss critical design aspects of glyph-based visualization to deal
with the perceptual challenges inherent with this approach.

13.1 Introduction

The visualization of data that are given as fields of values is a classical topic in
visualization research. A substantial amount of relevant work has been done, offering
a wealth of well-proven techniques for revealing insight into such data fields. When
visualizing multiple fields of data that co-exist with respect to a joint domain of
reference, additional challenges are faced. On the one hand, there is a technological
challenge of how to realize a visualization mapping that can reveal multiple fields
of data at a time. On the other hand, there is a perceptual challenge of how easy it is
to understand and correctly interpret such a visualization.
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Glyph-based visualization is one possible approach to realize such a visualiza-
tion of multi-field data (and other chapters of this book part describe alternative
approaches). A parameterized visualization object is considered—called a glyph (or
sometimes also an icon)—such that certain specifics with respect to its form, e.g., its
shape, color, size/orientation, texture, etc., are given according to data values which
this glyph should represent. A glyph-based visualization is then created by arranging
a certain number of these glyphs across the domain of reference (these could be just
a few, or just one, or many, even so many that they merge into a dense visualization)
such that every glyph becomes a visualization of the data at (or nearby) the location
where the glyph is placed.

Glyph-based visualization approaches span a certain spectrum from, for example,
dense arrangements of relatively simple shapes (stick figures [17] would be an exam-
ple) to individual instances of complex glyphs that reveal a lot of information (but
only for few, selected places)—the local flow probe [13] would be an example for this
type of a glyph-based data visualization. Glyph-based visualization approaches also
vary with respect to whether they are constructed in a 2D or 3D visualization space.
We think that it also makes sense to consider glyph-based visualization approaches,
which are based on the placement of glyphs on surfaces within 3D (called 2.5D in
the following). Additionally, we can differentiate visualization solutions according
to which form aspects are varied according to the data, and how many different values
a glyph eventually represents (usually this number is not too large, often 2–4, but
then also examples exist where dozens of values are represented).

A property of all glyph-based visualization approaches is that a discrete visual-
ization is created (instead of a continuous representation like a color map)—only at
certain locations across the domain individual glyphs are instantiated to represent
the data. This means that this approach is only suitable, when it is possible to assume
a certain minimal degree of continuity of the data such that a mental reconstruction
of the data, in particular also in the space between the glyphs, is at least principally
possible. In scientific visualization, this often is possible, making glyph-based visual-
ization particularly interesting for this particular field of application. Alternatively, a
glyph-based visualization also makes sense for discrete data, if a one-to-one relation
between every instance of the data and the glyphs is established.

In the following, we first review a selection of techniques that have been proposed
for glyph-based data visualization. Then, we continue with a discussion of critical
design aspects of glyph-based visualization, not at the least oriented at opportunities
to deal with the perceptual challenge that is inherently associated with this form of
visualization approach.

13.2 State-of-the-Art

This section presents a selection of important papers with a focus on glyph-based
multi-field visualization. A categorization is given based on the visual channels such
as color, shape, size, texture and opacity occupied by the glyph in requirement for
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Table 13.1 Table illustrating
a classification of
multi-variate glyph-based
visualization techniques
based on the visualization
dimensionality and the visual
channels required to depict
the data set

Visual channel Visualization dimensionality

2D 2.5D 3D

Color [5] [3] [21]

[11] [6] [12]

[22] [16] [9]

[2]

[10]

[15]

[8]

Shape [8] [1]

[13]

[21]

[9]

[7]

[10]

[15]

Size [25] [3] [21]

[22] [16] [9]

[20] [2]

[15]

Texture [22] [3]

[6]

Opacity [11] [15]

[22]

mapping each data attribute. We further cluster the techniques with respect to the
spatial dimensionality of the visualization e.g., 2D, 2.5D and 3D. Texture can be
subjective in terms of glyph-based classification, however, we find that it is very
relevant in the research of multi-field. The following work can be acknowledged
without the use of this classification, but we include this in the table for completeness.

13.2.1 Spatial Dimensionality: 2D

A common technique for representing multi-field data is to overlay multiple visual-
izations onto a single image. Kirby et al. [11] stochastically arrange multiple visu-
alization layers to minimize overlap. Given a permutation of layers, a user-specified
importance value is attached to each visualization of increasing weights in order
to provide greater emphasis to higher layers. Visual cues such as color and opacity
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indicate regions and layers of importance (e.g., Rate of strain tensor example empha-
sized the velocity more by using black arrows). This method enables the simultaneous
depiction of 6–9 data attributes, in which the authors apply to a simulated 2D flow
field past a cylinder at different reynolds number. The example shows the visualiza-
tion of velocity, vorticity, rate of strain tensor, turbulent charge and turbulent current.

Visualizing Multiple Fields on the Same Surface by Taylor [22] provides an
overview of successful and unsuccessful techniques for visualizing multiple scalar
fields on the same surface. The author first hypothesizes that the largest number of
data sets that can be displayed by mapping each field to the following: a unique sur-
face characteristic, applying a different visualization technique to each scalar field
or by using textures/glyphs whose features depend on the data sets. This framework
is limited to visualizing up to four scalar fields. The author then describes two tech-
niques that prove effective for visualizing multiple scalar fields, (1) data-driven spots
(DDS)—using different spots of various intensities and heights to visualize each data
set, and (2) oriented slivers—using sliver like glyphs of different orientations that
are unique to each data set along with various blending.

13.2.2 Spatial Dimensionality: 2.5D

A Scientific Visualization Synthesizer by Crawfis and Allison [3] introduces a novel
approach for visualizing multiple scientific data sets using texture mapping and raster
operations. The authors present an interactive programming framework that enables
users to overlay different data sets by defining raster functions/operations. Using a
generated synthetic data, the author presents a method for reducing the visual clutter
by mapping color to a height field and using a bump map to represent the vector plots
and contour plots. The final texture is mapped onto a 3D surface.

Peng et al. [16] describes an automatic vector field clustering algorithm and
presents visualization techniques that incorporate statistical-based multi-variate
glyphs. In summary, the authors clustering algorithm is given by: (1) derive a mesh
resolution value for each vertex, (2) encode vector and mesh resolution values into
R, G, B and α in image space. Clusters naturally form in this space based on pixel
values. (3) The clusters are merged depending on a similarity value derived using
Euclidean distance, mesh resolution, average velocity magnitude and velocity direc-
tion. Several clustering visualizations are given, using |v|-range glyph that depicts the
local minimum and maximum vector, and a θ -range glyph that shows the variance of
vector field direction along with the average velocity direction and magnitude. Other
visualization options include streamlets that are traced from the cluster centre, and
color coding with mean velocity. The authors demonstrate their clustering results on
a series of synthetic and complex, real-world CFD meshes.
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13.2.3 Spatial Dimensionality: 3D

Geometric shapes are often used to represent multiple data values. Superquadrics
and Angle-Preserving Transformations by Barr [1] introduces such an approach for
creating and simulating three-dimensional scenes. The author defines a mathematical
framework used to explicitly define a family of geometric primitives (superquadrics)
from which their position, size, and surface curvature can be altered by modifying
a set of different parameters. Example glyphs include a torus, star-shape, ellipsoid,
hyperboloid or toroid. In addition, the paper describes a group of invertible transforms
developed to bend and twist mathematical objects in three dimensions into a new
form where shape properties such as volume, surface area and arc length is conserved.

De Leeuw and van Wijk [13] present an interactive probe-glyph for visualizing
multiple flow characteristics in a small region. In particular, the authors focus on
visualizing six components: velocity, curvature, shear, acceleration, torsion and con-
vergence. The construction of the glyph is given by, (1) a curved vector arrow where
the length and direction represents the velocity, and the arc shape is mapped to the
curvature, (2) a membrane perpendicular to the flow where its displacement to the
center is mapped to acceleration, (3) candy stripes on the surface of the velocity
arrow illustrates the amount of torsion, (4) a ring describes the plane perpendicular
to the flow over time (shear-plane), and finally (5) the convergence and divergence
of the flow is mapped to a “lens” or osculating paraboloid. Placement of such probes
are interactively placed by users along a streamline to show local features in more
detail.

Data Visualization Using Automatic, Perceptually-Motivated Shapes by Shaw
et al. [21] describes an interactive glyph-based framework for visualizing multi-
dimensional data through the use of superquadrics. The author uses the set of
superquadrics defined by Barr [1] and describes a method for mapping data attributes
appropriately to shape properties such that visual cues effectively convey data dimen-
sionality without depreciating the cognition of global data patterns. They map in
decreasing order of data importance, values to location, size, color and shape (of
which two dimensions are encoded by shape). Using superellipsoids as an example,
the authors applied their framework on two different data sets.

Superquadric Tensor Glyphs by Kindlmann [9] introduces a novel approach of
visualizing tensor fields using superquadric glyphs. Superquadric tensor glyphs
address the problems of asymmetry and ambiguity prone in previous techniques
(e.g. cuboids and ellipsoids). The author provides an explicit and implicit parameter-
ization of the primitives defined by Barr [1] that uses geometric anisotropy metrics
cl , cp, cs to quantify the certainty of a tensor based on shape, and a user-controlled
edge sharpness parameter γ . The parametrization forms a barycentric triangular
domain of tensor glyphs that change in shape, flatness and orientation under dif-
ferent tensor eigen vectors. A subset of the family of superquadrics is chosen and
applied towards visualizing a DT-MRI tensor field which is then compared against
an equivalent ellipsoid visualization.
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Fig. 13.1 Visualization of the flow in an engine using composite glyphs that depict the range of
vector magnitude and direction in each cluster by Peng et al. [16]

13.3 Critical Design Aspects of Glyph-Based Visualization

It was a wide-spread opinion for a long time that “just” knowing the basic principles
of glyph-based visualization would suffice to its successful usage. More recently,
however, it has been understood that only well designed glyphs, where different glyph
properties are carefully chosen and combined, are actually useful. In this section, we
discuss critical design aspects and guidelines for glyph-based visualization.

In the context of information visualization, Ward [24] discusses glyph place-
ment strategies such as data- or structure-driven placement. Ropinski and Preim [19]
propose a perception-based glyph taxonomy for medical visualization. The authors
categorize glyphs according to (1) preattentive visual stimuli such as glyph shape,
color and placement, and (2) attentive visual processing, which is mainly related to
the interactive exploration phase (e.g., changing the position or parameter mapping
of a glyph). Additional usage guidelines are proposed, for instance, that parameter
mappings should focus the user’s attention and emphasize important variates in the
visualization. Also, glyph shapes should be unambiguous when viewed from differ-
ent viewing directions. Kindlmann [9], for example, uses superquadric glyph shapes
that fulfill the latter criterion.

Inspired by the work of Ropinski and Preim, Lie et al. [14] propose further guide-
lines for glyph-based 3D visualization. Aligned with the visualization pipeline [4], the
task of creating a glyph-based 3D visualization is divided into three stages as shown
in Fig. 13.2: (1) during data mapping, the data variates are remapped (to achieve, for
example, some contrast enhancement) and mapped to the different glyph properties;
(2) glyph instantiation creates the individual glyphs, properly arranged across the
domain; and (3) during rendering, the glyphs are placed in the visualization, where
one has to cope with issues such as visual cluttering or occlusion. In the following,
we discuss critical design aspects for each of these steps.
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Fig. 13.2 Each data variate is subject to three stages of data mapping: windowing, exponentiation
and mapping. The values are mapped to different glyph properties and used to instantiate the
individual glyphs. Finally, the glyphs are rendered in their spatial context

Similar to Ward [24], Lie et al. consider it useful that the glyphs expect normalized
input from the depicted data variates such as values in the range [0, 1]. During data
mapping, the authors identify three consecutive steps. First, the data values within
a user-selected range [wlef t ,wright ] are mapped to the unit interval. Values outside
this range are clamped to 0 or 1, respectively. This allows to enhance the contrast of
the visualization with respect to a range of interest (sometimes called windowing).
A natural default choice for this step would be a linear map between [wle f t ,wright ]
and [0, 1], but also other forms of mapping could be considered (for example, a
ranking-based or discontinuous mapping). After the windowing, an optional expo-
nential mapping e(x) = xγ can be applied in order to further enhance the contrast
on the one or the other end of the spectrum. Finally, a third mapping step enables
the user to restrict or transform the output range that should be depicted by a glyph
property. Here, also semantics of the data variates can be considered (compare to
the usage guidelines of Ropinski and Preim [19]). Using a reverse mapping, for
instance, smaller data values that are possibly more important can be represented in
an enhanced style while larger values are deemphasized.

Several considerations are important for the instantiation of individual glyphs.
When using a 3D glyph shape, one has to account for possible distortions introduced
when viewing the glyph from a different point of view [9]. In order to avoid this
problem, Lie et al. suggest to use 2D billboard glyphs instead.1 In certain scenarios,
however, it makes sense to use 3D glyphs, for example, when depicting a flow field
via arrow glyphs. Another challenge in glyph design is the orthogonality of the
different glyph components, meaning that it should be possible to perceive each
visual cue individually (or to mentally reconstruct them as suggested by Preim and
Ropinski [19]). When representing a data variate by glyph shape, for example, this
affects the area (size) of the glyph as well. Accordingly, such effects should be
normalized against each other, for instance, by altering the overall glyph size in
order to compensate for implicit changes of the glyph shape.

1 A billboard is a planar structure placed in a 3D scene, which automatically adjusts its orientation
such that it always faces the observer.
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However, it is not always easy to design a glyph-based visualization such that the
different data-to-property mappings are independent and do not influence each other
(the interpretation of shape details, for example, is usually influenced by the size of
the glyph). In this context, the number of data variates that can be depicted must be
seen in relation to the available screen resolution. Large and complex glyphs such as
the local probe [13] can be used when only a few data points need to be visualized. If
many glyphs should be displayed in a dense manner, however, a more simple glyph
may be desirable [10]. Another design guideline is the usage of redundancies, for
instance, to use symmetries that ease the reconstruction of occluded parts of the
glyph. Important properties can, moreover, be mapped to multiple glyph properties
in order to reduce the risk of information loss.

Important aspects when rendering many glyphs in a dense 3D context are depth
perception, occlusion, and visual cluttering. In cases where many glyphs over-
lap, halos can help to enhance the depth perception and to distinguish individual
glyphs (compare to Piringer et al. [18]). For improving the depth perception for non-
overlapping glyphs a special color map (called chroma depth [23]) can be used to
represent depth. Finally, appropriate glyph placement [19, 24], interactive slicing, or
filtering via brushing are strategies for dealing with occlusion and cluttering issues.
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Chapter 14
Derived Fields

Eugene Zhang and Vijay Natarajan

Abstract This chapter reviews various methods for multifield visualization that
are based on the notion of derived fields. The derived fields are categorized based
on properties like the number and type of input fields. Mathematical properties,
algorithms, and applications are discussed for each derived field. Correlation and
alignment measures are examined for a set of homogeneous fields, including pairwise
similarity/dissimilarity measurements. Multifield analysis is also discussed in the
context of input fields being the components of the decomposition of another field,
possibly of a different type. Finally, research challenges are discussed in the context
of the design of multifield analysis and visualization methods based on the concept
of derived fields.

14.1 Introduction

In this chapter we consider the notion of derived fields in the context of multifield
analysis and visualization. We discuss a categorization based on the number of fields
studied, their homogeneity, and the type of relationship between the input fields that
is captured by the derived field.

First, given a set of at least two fields of the same type, it is possible to define
pairwise similarity and dissimilarity for any two of the fields as well as the global
alignment and dependency of the fields considered as a whole. These quantities,
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namely pairwise similarity/dissimilarity, global alignment, and dependency, are
derived quantities that can provide critical information on the input fields. For
example, when tracking features in fluid flow datasets, it is often desirable to measure
the alignment of a sequence of consecutive time-slices in the data. In Sect. 14.2 we
will review existing work on pairwise derived fields, i.e., the number of input fields
is two. In Sect. 14.3 we will consider global alignment and dependency measures
for the case when there are more than two input fields.

Another scenario of derived fields in the context of multifield visualization is
referred to as decomposition and componentization. In this case, this input may
be considered as a single field. However, its key characteristics are revealed by a
decomposition into multiple derived fields. The behavior of the input field can be
better understood by studying each derived field in the decomposition as well as
the interplay among them. An example of this is the well-known Hodge-Helmholtz
decomposition, where an input vector field is decomposed into the sum of three
vector fields: (1) divergence-free, (2) curl-free, and (3) harmonic vector fields. We
will review techniques corresponding to this category in Sect. 14.4.

14.2 Pairwise Distances and Correlation Measures

A first step towards capturing the relationships between fields in multifield data
is to consider pairwise interactions. In this context we discuss the use of distance
measures, similarity measures, and local correlations between two fields.

14.2.1 Correlation Measures

The correlation coefficient is a standard and popular statistical measure used to
determine if two sets of real values are linearly related by comparing their deviations
from the respective mean values [4, Chap. 8]. When two scalar functions are sampled
at discrete points, the correlation coefficient is computed as

ρ =
∑n

i=1(xi − x̄) · (yi − ȳ)
√(∑n

i=1(xi − x̄)2
) · (∑n

i=1(yi − ȳ)2
)

where xi , yi are the corresponding values of the two functions and x̄, ȳ are the mean
values of the two functions. Two scalar functions have a high correlation coefficient
if they deviate consistently from their respective mean values i.e., if one function
takes a value close to its mean then so does the other function at the same point in the
domain. Note that the correlation coefficient as defined above is a global measure.
However, in the context of two time-varying fields, the correlation coefficient can
be computed at each point resulting in a derived field over the domain. This field
captures the linear relationship between the two time-series data at each point.
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Fig. 14.1 Tracking flow features by treating a stack of vector fields as spin images and using vector
and tensor field measurements [27]. © IEEE Reprinted, with permission, from IEEE Conference
on Computer Vision and Pattern Recognition, 2009

Xu et al. [27] track features in a flow dataset by treating the 3D flow field as a
stack of 2D vector fields. Given a point in one slice in the stack, points in other slices
can be correlated to this point by treating the 2D vector fields as spin images. This
idea is then extended to using the velocity gradient tensor fields of the vector fields,
leading to more efficient feature matching (Fig. 14.1).

14.2.2 Gradient Comparison

Correlation between a pair of scalar fields has also been defined based on the gradi-
ents. The use of the gradients allows the incorporation of the spatial locality into the
correlation computation. We now describe two derived fields that compare gradients
and discuss their relative merits.
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14.2.2.1 Definitions and Properties

Sauber et al. [22] introduce a gradient similarity measure (GSIM) between two
gradient fields ∇ fi and ∇ f j that assumes high values when the gradients have similar
magnitude and direction. The measure is defined at each point as

s(∇ fi ,∇ f j ) = (sd(∇ fi ,∇ f j ) · sm(∇ fi ,∇ f j ))
r , where

sd(∇ fi ,∇ f j ) =
(

∇ f T
i ∇ f j

‖ ∇ fi ‖ · ‖ ∇ f j ‖

)2

, and

sm(∇ fi ,∇ f j ) = 4
‖ ∇ fi ‖ · ‖ ∇ f j ‖

(‖ ∇ fi ‖ + ‖ ∇ f j ‖)2 .

In the above expression, sd represents the similarity in gradient direction, sm rep-
resents the similarity in gradient magnitude, and the exponent r is a parameter that
determines the sensitivity of the measure. The fields are normalized to have a common
range before computing gradients.

Edelsbrunner et al. [3] define a derived field that assumes high values when the
gradients are orthogonal to each other. The derived field, denoted by κ , is essentially
the length of the cross product between the two gradients vectors.

While the two fields are different in the sense that GSIM measures similarity
whereas κ measures dissimilarity, both derived fields have many similarities besides
the fact that both are based on gradient comparison. Both GSIM and κ depend
on the scale and length of the gradients, are pointwise comparisons, and do not
distinguish between positive and negative correlation. The similarities imply that
both techniques are applicable to the same data sets. Gosink et al. [5] also compute
correlation between gradient fields to study the interactions between the different
pairs of scalar fields in multifield data. The inner product of the gradients of two
fields of interest is computed over principle level sets of a third field. They employ
this approach to study combustion in methane and hydrogen. The correlation field
proposed by Gosink et al. is similar to GSIM described above with the difference
being the domain over which the correlation field is computed.

14.2.2.2 Applications

Figure 14.2 shows the derived field GSIM for two pairs of quantities measured in
the simulation of hurricane Isabel. The transfer function assigns non-zero opacity to
regions with values of GSIM greater than 0.9. Patterns in the derived field can help
in the analysis of various phenomena like fronts in the hurricane.

A visualization of κ helps in the study of the different phases in a combustion
simulation as shown in Fig. 14.3. Three time steps are shown: the ignition, burn-
ing, and the final phase. The flame front is tracked by regions with large values of
κ computed for the scalar field pair prog and H2, which represent the progress of
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Fig. 14.2 Gradient similarity measure (GSIM) computed for two pairs of scale fields: precipitation
versus vapour (left) and vapour versus temperature. Image courtesy of Sauber et al. [22]. © IEEE
Reprinted, with permission, from IEEE Transactions on Visualization and Computer Graphics 12(5)

Fig. 14.3 Local comparison of two scalar fields prog and H2 from a combustion simulation. The
derived field κ , which compares the gradients of the two scalar fields, is shown using a terrain map
and prog is mapped to color. From left to right: ignition phase, burning phase, and the end of
combustion. The fronts of the flames are tracked by a region with higher values of κ . This region is
represented by the peaks that enclose the burnt region. Image courtesy of Edelsbrunner et al. [3]

combustion and fuel concentration, respectively. The higher peaks in the terrain cor-
respond to sections of the flame front that are progressing faster. They also discuss
an application to the study of a protein–protein complex in structural biology. A
protein–protein complex consists of two or more proteins docked in a stable confor-
mation. For example, the barnase-barstar complex (1BRS) consists of two proteins.
The electrostatic potential defined by barnase (N) and barstar (S) individually in their
docked conformation and the potential defined by the complex are available as scalar
fields sampled over the space, namely fN , fS, and f1B RS . Regions where κ between
fN and fS is high correspond to salt bridges/strong hydrogen bonds. Figure 14.4
shows a visualization of κ . The colored dots in the figure indicate high values of κ
values, namely those in the range [0.002, 0.0207] and are mapped from blue to red.
The dots with values lower than 0.002 are not displayed. The gold lines indicate the
hydrogen bonds corresponding to those regions of space.
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Fig. 14.4 Visualization of the derived field κ between electrostatic potentials defined by barnase
and barstar in the complex 1BRS. Left an overview of the regions with high values of κ in the
complex. The proteins are shown as alpha-carbon traces, with barnase in magenta and barstar in
yellow. Right a closeup of a hydrogen bond cluster. Asp 39 of barstar hydrogen bonds with Arg
87, Arg 83, and His 102 of barnase. All four residues are highly important in the interaction
between barnase and barstar. Image courtesy of Edelsbrunner et al. [3]

14.3 Alignment and Dependency Measures

We now discuss derived fields that capture the variation or dependency between
multiple (greater than two) fields.

14.3.1 Local Gradient-Based Comparison Measures

The gradient comparison measures discussed in the previous section also extends
to multiple scalar fields. We now describe these extensions, their properties and
applications.

14.3.1.1 Definitions and Properties

The gradient similarity measure GSIM is extended to k gradient fields by computing
the minimum gradient pair similarity

Ck = min{s(∇ fi ,∇ f j ) | 1 ≤ i < j ≤ k}.

The measure assumes low values if the gradient directions are equally distrib-
uted in the domain. Given k fields, GSIM can be computed for all possible sub-
sets of fields. The size of this set grows exponentially with the number of fields
and hence it is impractical to compute and analyze GSIM for all subsets of fields.
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Sauber et al. [22] address this issue by introducing the multifield-graph. Nodes of
this graph correspond to each subset of input fields and are displayed with icons that
graphically represent the similarity between the fields. Nodes are laid out in layers
corresponding to the number of fields in the subset. Two nodes in adjacent layers
are connected by an edge if the fields in lower layer node are also compared in the
upper layer node. The correlation/similarity and the size of domain with high cor-
relation/similarity are represented by the size and color of a disk displayed within
each node. A selective display of nodes enables focusing on nodes that represent
high correlations.

The derived field κ also extends to multiple fields. Given k scalar fields, κ is
defined as the norm of the wedge product between the 1-forms d fi ,

κ =‖ d f1 ∧ d f2 ∧ · · · ∧ d fk ‖ .

Each one form d fi corresponds to the gradient ∇ fi . The wedge product is a nat-
ural extension of the cross product of two gradient vectors and represents the k-
dimensional volume of the parallelpiped spanned by the k gradients [3]. While the
comparison measure κ does not satisfy the triangle inequality, it satisfies a number
of useful algebraic properties.

1. Symmetry: κ(. . . , fi , . . . , f j , . . .) = κ(. . . , f j , . . . , fi , . . .).
2. Degeneracy: κ(F) = 0 if d fi = d f j for 1 ≤ i �= j ≤ k.
3. Scaling: κ(α f1 + β, f2, . . . , fk) = |α| · κ( f1, f2, . . . , fk), with α, β ∈ R.
4. Sub-additivity: κ( f1 + g1, f2, . . . , fk) ≤ κ( f1, f2, . . . , fk)+ κ(g1, f2, . . . , fk).

5. Sub-multiplicativity: κ( f1, . . . , fi , fi+1, . . . , fk)
vol(M) ≤ κ( f1, . . . , fi ) · κ( fi+1, . . . , fk).

14.3.1.2 Computation and Applications

In practice, the scalar fields are measured at discrete points in the domain and linearly
interpolated within elements in a triangulation of the manifold. In such a setting,
GSIM and κ can be computed in a loop over the d-simplices in the triangulation. Since
all functions are linear over a d-simplex, their gradients/differentials are constant
within each mesh element. The norm of the k-form is evaluated at a point within the
d-simplex directly from the formula and weighted by the volume of the d-simplex.

In a typical application of the multifield-graph, the user selects a particular node
using a visual interface and analyzes the derived field corresponding to that particular
node. Figure 14.5 shows the multifield-graph for the hurricane Isabel data set with
six scalar fields. Selected nodes are displayed within three of the five possible layers.
The extension of κ to k fields is directly visualized for two- and three-dimensional
domains to study the relationship between the fields.
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Fig. 14.5 Multifield-graph computed for the hurricane Isabel data set. The size and color of the
disks represent the degree of correlation/similarity between the fields. Image courtesy of Sauber
et al. [22]. © IEEE Reprinted, with permission, from IEEE Transactions on Visualization and
Computer Graphics 12(5)

14.3.2 Local Statistical Complexity

Multifield data have also been studied using statistical and information theoretic
methods. Jänicke et al. [10] adapt the notion of local statistical complexity to the
context of time-varying fields and apply it to study data available from PDE simula-
tions [11]. The local statistical complexity is a measure of the amount of information
required from the past to predict the field in the current time step a specific point. It
is computed using the notion of entropy and mutual information as a time-varying
scalar field. Consider a time-varying field. All points that could possibly influence the
value of the field at a point p are arranged into a light cone. The size of the region of
influence increases by one for each time step away from p. A light cone (l+) into the
future time steps is also considered, similar to the light cone in the past (l−), for the
computation. A conditional distribution P(l+|l−) can be defined on the light cones.
The local statistical complexity is computed as the mutual information between the
distribution represented by a particular light cone and the equivalence class of past
light cones that have similar conditional distribution. Jänicke et al. [10, 11] describe
efficient algorithms to compute the local statistical complexity. Features are iden-
tified as complex if the probability that they occur again is low. They demonstrate
applications of this derived field to a wide range of data from diffusion, flow, and
weather simulations.

14.3.3 Multifield Comparison Measure

Nagaraj et al. introduced a gradient-based comparison measure for multiple scalar
fields [14]. The measure is defined as the norm of a matrix comprising the gradient
vectors of the different functions. Let A be a m ×n matrix of real numbers. The norm
of the matrix A, denoted as ‖A‖, is defined as

‖A‖ = max
‖x‖=1, x∈Rn

‖Ax‖,
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where ‖x‖ represents the Euclidean norm of vector x [9]. Let F = { f1, f2, f3,

. . . , fm} be a set of smooth scalar fields defined on a manifold M. The derivative at
a point p ∈ M is written as a matrix of partial derivatives,

d F(p) =

⎡

⎢
⎢
⎣

∂ f1
∂x1
(p) . . . ∂ f1

∂xn
(p)

...
. . .

...
∂ fm
∂x1
(p) . . . ∂ fm

∂xn
(p)

⎤

⎥
⎥
⎦

The multifield comparison measure ηF
p at point p is defined as the norm of the matrix

d F(p), ηF
p = ‖d F(p)‖.

14.3.3.1 Properties and Computation

The measure ηF
p satisfies three important properties: symmetry, coordinate system

independence and stability.

• Symmetry. The measure is independent of the permutation of the functions in F .
• Coordinate system independence. The norm of the matrix d F at a point p does

not depend on the coordinate system used to represent p.
• Stability. A finite change in the functions results in a bounded change in the

multifield comparison measure. The amount of change additionally depends on
the size of the triangle.

Evaluating the multifield comparison measure at a point requires the solution to a
maximization problem. Nagaraj et al. show that this computation can be reduced to
the faster evaluation of the maximum eigenvalue of a positive semi-definite matrix
Λ = (d F(p))T (d F(p))

ηF
p =

(

max
x∈Rn ,‖x‖=1

xTΛ x

) 1
2

= max{√λ : λ is a diagonal element of Λ}
= max{√λ : λ is an eigenvalue of (d F(p))T (d F(p))}.

The derivative matrix d F(p) is constant within each mesh element if the scalar field
is available as a sample and linearly interpolated within elements of a triangulation.

14.3.3.2 Applications

The multifield comparison measure has been applied to study various real-world
data from weather modeling, climate simulations, and combustion simulations. In
particular, it was used to study a simulation of the hurricane Isabel and the analysis
of a global wind pattern data set.
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Rainbands and fronts. A simulation of the hurricane Isabel that struck the
Atlantic region in USA was performed on a physical area of 2139 km × 2004 km ×
19.8 km over 48 simulated hours [26]. The data is available over a 600 × 600 × 600
grid over 48 time steps. Among the multiple quantities computed, the scalar fields
corresponding to pressure (Pf) and the horizontal wind velocity components (Uf and
Vf) were considered in this experiment. Cloud structures associated with an area of
rainfall, called rainbands, occur mainly at boundaries separating two masses of air
of different densities and temperatures, called fronts. The leading edge of the cooler
mass of air is called the cold front and the leading edge of a warm air mass is called
the warm front. The turbulence of the horizontal wind velocity is high near rain
bands. The fronts can be analyzed by computing the multifield comparison measure
for the pair of 3D scalar fields Uf and Vf, where the 3D domain corresponds to the
volume in the altitude range 1,500–5,800 m.

First, the multifield comparison measure is computed for the fields Uf and Vf
in the 10th time step. A visualization of the measure clearly shows the two warm
fronts and a cold front [14]. The warm front leads the cold front. This information
about fronts cannot be extracted from the two functions individually. The multifield
comparison measure is computed next for the fields Uf and Vf in the 40th hour of
simulation. The warm front at the north disappears, see Fig. 14.6c, d. The previously
leading warm front is overtaken by the cold front resulting in an occlusion.

Wind patterns. Prevailing winds blow in a dominant direction at a particular
point and are affected by movements in the Earth’s atmosphere. In regions of mid-
latitudes, the winds blow from west to the east and are known as westerlies. The
winds found in the tropics near the equator are easterlies or trade winds. Data from a
climate simulation for a 50 year period between 1960 and 2009 is available over 600
time steps corresponding to each month [21]. Data within each time step is available
on a 3D grid with resolution corresponding to 1◦×1◦×16 plev (pressure elevations)
on earth.

The wind velocity on the grid is a vector field. The matrix norm for 600 vector fields
is computed by replacing the rows with the wind velocities. The normηF measures the
variation of the wind velocities over the time period of the simulation, see Fig. 14.7b.
Comparing with the wind patterns in Fig. 14.7a, we see that high values of ηF

(a) (b) (c) (d)

Fig. 14.6 Fronts in Hurricane Isabel at hour 40. a Volume rendering (top view) of horizontal wind
speed Uf. b Volume rendering (top view) of horizontal wind speed Vf. c Volume rendering (top view)
of multifield comparison measure ηF computed for Uf and Vf showing the rainbands at different
fronts. The cold front leads the warm front resulting in an occlusion. d Volume rendering from a
different viewpoint. Image courtesy of Nagaraj et al. [14]
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(a)

(b) (c)

(d) (e)

Fig. 14.7 Multifield comparison measure ηF computed for wind velocities over the years 1960–
2009, where the comparison is over a set of six hundred 3D vector fields. a Map of world showing
wind patterns (source Wikipedia). b Distribution of ηF over surface corresponding to pressure
elevation 925 hPa. The dark red regions correspond to the wind patterns. c Distribution of ηF over
surface corresponding to pressure elevation 300 hPa. The temperate regions exhibit higher values.
d Storm track for the years 1985–2005 (source Wikipedia). e Distribution of ηF after removing
regions with low mean temperature (<27 ◦C). Red regions correspond to the storm tracks. The
world map is overlaid for clarity. Image courtesy of Nagaraj et al. [14]

correspond to the prevailing winds, particularly the westerlies found in the regions
surrounding Antarctica, the region of hurricanes in Atlantic, the cyclone prone region
between Madagascar and Australia, and the trade winds across the Atlantic sea
traveling towards the Caribbean sea. The distribution of the comparison measure over
the isobar for pressure level 300 hPa, which corresponds to approximately 30,000 feet
above sea level, is shown in Fig. 14.7c. The comparison measure assumes high values
over the temperate regions corresponding to the westerly jet. This is a semi-permanent
feature of the mid-latitudes. Many regions in the tropics undergo a seasonal reversal
of wind (called the monsoons). Lower values of the comparison measure over the
tropics indicates unsteadiness and corresponds to a seasonal reversal in wind pattern
over this part of the world.
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Storm tracks. The regions over the ocean with warm temperatures (>27 ◦C) are
susceptible to storms. Filtering out regions with lower temperatures and restricting
the analysis to the months from June to November helps locate storm tracks. Regions
shown in blue in Fig. 14.7e have been filtered out. The red regions match closely with
the storm tracks shown in Fig. 14.7d. Even though the west coast of South America
has trade winds, storms are particularly absent due to lower temperatures. The storm
prevalent regions in the Indian, Atlantic, and Pacific oceans have high values of the
comparison measure.

14.4 Decomposition and Componentization

In this section we examine a different situation in which multiple fields can arise as
the components of a decomposed field.

14.4.1 Hodge Decomposition

A classical example of this is the Hodge-Helmholtz decomposition [18, 25] of a
vector field V as follows:

V = Vc + Vd + Vh (14.1)

where Vc is curl-free (
 × Vc = 0), Vd is divergence-free (
 · Vd = 0), and Vh is
harmonic (
 · Vh = 0 and 
 × Vh = 0).

Such a decomposition can have applications in many scientific and engineering
domains such as fluid simulation and modeling, electromagnetism, weather predic-
tion, engine design, scientific visualization, and computer graphics. In these appli-
cations, one often needs to analyze an input vector field such as the velocity of fluid
particles and the direction of the magnetic field. One of the most important aspects of
a vector field is singularities, which are points in the domain that satisfy V (p) = 0.
A singularity can be classified by its Jacobian (gradient tensor) as follows [6]:

1. source: both eigenvalues of the Jacobian are positive.
2. sink: both eigenvalues are negative.
3. center: both eigenvalues are imaginary numbers.
4. saddle: one of the eigenvalues is positive and the other negative.

Through the decomposition, the sources, sinks, and some saddles can be captured
by the curl-free component, while the centers and some other saddles are captured by
the divergence-free component. The harmonic component is often seemingly feature-
less in the planar case. However, on hyperbolic surfaces, the harmonic component
can capture the saddles that arise as a result of surface topology. For example, any
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(a) (b) (c) (d)

Fig. 14.8 Two examples of Hodge-Helmholtz decomposition: (top) a planar vector field, and (bot-
tom) a vector field defined on a torus. From left to right are: (a) the original field V , (b) the curl-free
component Vc, (c) the divergence-free component Vd , and the harmonic component Vh . Notice that
singularities in the original field can be captured effectively by the decomposition. Moreover, the
harmonic component is more prominent for fields defined on a hyperbolic manifold. Image courtesy
of Polthier and Preuss [18, 19]

smooth vector field on a genus-two surface must contain at least four saddles or some
higher-order saddles.

Polthier and Preuss develop techniques to efficiently perform the Hodge-Helmholtz
decomposition on a triangular mesh with a piecewise constant vector field [18, 19]
(Fig. 14.8). Such techniques are later extended to volumes [25].

Another important application of the Hodge-Helmholtz decomposition is in fluid
simulation. In this case the fluids are assumed to divergence-free. However, numerical
solvers often introduce errors which lead to flow fields with a non-zero divergence,
thus causing unrealistic fluid behaviors. This is corrected by a projection step, for
which the Hodge-Helmholtz decomposition is performed on the vector field, and the
curl-free part is removed [23, 24].

14.4.2 Components of Tensor Field

There has been some recent trend in studying asymmetric tensor fields [1, 13, 28,
29], with applications in flow visualization and earthquake engineering. Given a
vector field V such as the velocity of fluid particles or the deformation of land, the
gradient T = 
V is an asymmetric tensor field which can be used to describe the
deformation of particles in both fluid and solid movements. This can be explained
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by the following decomposition of the gradient tensor:

T = D + R + S (14.2)

where D = γd I d is a multiple of the identity matrix, R is an anti-symmetric matrix,
and S is a traceless, symmetric matrix. There are three fundamental fluid motions
besides translation, and they are isotropic scaling, rotation, and anisotropic stretching
or pure shearing. Interestingly, these motions correspond to the three components
described in Eq. (14.2). D describes the isotropic stretching. When γd > 0, the
particle’s volume will increase, while when γd < 0, the particle will lose volume
when it travels. R represents rotations, i.e., spinning around the center of the particle.
This is related to the vortices in the flow. S corresponds to the anisotropic stretching. In
this case the particle is under pure shearing, which refers to simultaneous expansion
along some axis or axes and contraction along perpendicular directions without
changing the volume. Pure shearing is linked to the rate of angular deformation, rate
of mixing of multiple interacting fluid materials, and energy dissipation.

While these fields can be studied independently, in this context it is often important
to study their interaction. For example, for two-dimensional cases, i.e., T is a 2 × 2
matrix, Zhang et al. [28] introduce the notion of eigenvalue manifold and eigenvector
manifold. We will examine these concepts in detail.

In 2D, the components in Eq. (14.2) can be written as follows:

D = γd

(
1 0
0 1

)

, R = γr

(
0 −1
1 0

)

, S = γs

(
cos θ sin θ
sin θ − cos θ

)

(14.3)

where γd , γr , and γs ≥ 0 are the strengths of isotropic scaling, rotation, and pure
shearing, respectively. θ decodes the orientation of the shearing. Note that the eigen-
values of T are purely decided by γd , γr , and γs . Zhang et al. [28] treat the triple
(γd , γr , γs) as a vector and consider the configurations corresponding to unit vec-
tors. Such vectors form a hemisphere which they refer to as the eigenvalue mani-
fold (Fig. 14.9: left). There are five canonical points on this manifold (Fig. 14.9:
colored dots), corresponding to (γd = 1, γr = 0, γs = 0) (pure expansion),
(γd = −1, γr = 0, γs = 0) (pure contraction), (γd = 0, γr = 1, γs = 0) (pure
counterclockwise rotation), (γd = 0, γr = −1, γs = 0) (pure clockwise rotation),
and (γd = 0, γr = 0, γs = 1) (pure shearing). A configuration is said to be dom-
inated by one of these five canonical motions, μ, if the point corresponding to the
this configuration has the smallest geodesic distance to the canonical motion μ. The
partition of the eigenvalue manifold in turn leads to a partition of the domain of
tensor field T , although the map is not bijective.

Figure 14.10 illustrates this with an example vector field that is generated by com-
bining two counter-rotating Sullivan vortices. Notice that the flow is predominantly
expanding in the middle (yellow), contracting on the outside (blue), rotating (red
and green), and pure shearing (white) elsewhere. Note that a region of predominant
expansion motion cannot be directly adjacent to a region of predominant contraction.
Similarly, a counterclockwise rotation region cannot be adjacent to a region domi-
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Fig. 14.9 Eigenvalue Manifold: there are five special points on the manifold, which are positive and
negative scaling, counterclockwise and clockwise rotation, and anisotropic stretching. The Voronoi
decomposition with respect to these five special points partitions the manifold into five cells where
the flow is dominated by different characteristics [28]. © IEEE Reprinted, with permission, from
IEEE Transactions on Visualization and Computer Graphics 15(1)

Fig. 14.10 Color-coding based on the eigenvalue manifold (left) and the combined eigenvalue and
eigenvector manifold (right) [28]. © IEEE Reprinted, with permission, from IEEE Transactions on
Visualization and Computer Graphics 15(1)

nated by clockwise rotation. Such results have led Lin et al. [13] to define asymmetric
tensor field topology in terms of graphs whose nodes correspond to the regions in
the partition and whose edges encode adjacency relationships between the regions.

The eigenvector information in the tensor field is determined purely by γr , γs ,
and θ from Eq. (14.3). Note that asymmetric tensors may have real eigenvalues (real
domains) or complex eigenvalues (complex domains). In the latter case no real-valued
eigenvectors exist. Zheng and Pang [29] introduce the notion of dual-eigenvectors
which they show are the continuous extension of major and minor eigenvectors from
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the real domains into complex domains. Dual-eigenvectors are also the semi-axes of
the elliptical flow patterns inside the complex domains.

Zhang et al. [28] realize that the decomposition from Eq. (14.3) can be simplified
and reparameterized as follows:

T (ρ, θ, ϕ) = ρ cosϕ

(
cos θ sin θ
sin θ − cos θ

)

+ ρ sin ϕ

(
0 −1
1 0

)

(14.4)

where ρ = √
γ 2

r + γ 2
s is the tensor magnitude. Notice that D, the isotropic scaling

component, does not impact the directional information in a tensor field and can
be dropped when considering eigenvectors. Furthermore, (γs, γr ) is considered as a
vector since it is their respective strength that determines whether a tensor is in the
real domain or complex domain, the angle between the major and minor eigenvectors
in the real domain, and the eccentricity of the elliptical flow patterns in the complex
domain. Similar to the definition of eigenvalue manifold, Zhang et al. define the
eigenvector manifold by considering unit vectors, i.e., γ 2

r + γ 2
s = 1. Such tensors

can be parametrized using spherical coordinates shown in Eq. (14.4). Zhang et al. [28]
demonstrate that a tensor is in the real domain if −π

4 < φ < π
4 and complex domain

if φ < −π
4 or φ > π

4 . The equator (φ = 0) corresponds to the pure shearing
tensors while the poles (φ = ±π

2 ) correspond to pure rotations (degenerate points
in the tensor). The boundary between the real and complex domains (φ = ±π

4 ) is
referred to degenerate curves. Points on these curves correspond to simple shears
which are different from pure shears. Notice that equator serves as the boundary
between counterclockwise rotating flows and clockwise rotating flows. Figure 14.11
illustrates these facts, while Fig. 14.12 demonstrates some special configurations.

Fig. 14.11 Eigenvector manifold: the orientation of the rotational component is counterclockwise
in the northern hemisphere and clockwise in the southern hemisphere. Each hemisphere is par-
titioned into real domains and complex domains. The equator represents pure symmetric tensors
(irrotational flows), while the poles represent pure rotations. The directions of expansions and con-
traction in the real domain as well as the orientations of the elliptical patterns are determined by the
relative stretches between the rotation and stretching components in the decomposition [28]. © IEEE
Reprinted, with permission, from IEEE Transactions on Visualization and Computer Graphics 15(1)
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Fig. 14.12 Example tensors and their corresponding vector field patterns [28]. © IEEE Reprinted,
with permission, from IEEE Transactions on Visualization and Computer Graphics 15(1)

Fig. 14.13 The tensor decomposition in Eq. (14.4) can be adapted to symmetric tensors. In this
example the symmetric tensor is the curvature tensor in the surface. Note that this tensor decom-
position can lead to surface classification and feature extraction [15]. © IEEE Reprinted, with
permission, from IEEE Transactions on Visualization and Computer Graphics 18(6)

The decomposition in Eq. (14.4) can also be used to symmetric tensor fields. In
this case γr = 0 and the tensor can be rewritten as:

ρ sin φ

(
1 0
0 1

)

+ ρ cosφ

(
cos θ sin θ
sin θ − cos θ

)

(14.5)

where ρ =
√
γ 2

d + γ 2
s again is the tensor magnitude. Like Eq. (14.4), this equation

is a special case of Eq. (14.2) where one of the three components disappears (the
anti-symmetric component). Nieser et al. [15] have applied this to the curvature
tensor to extract surface features for remeshing purposes. Figure 14.13 illustrates this
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Fig. 14.14 Higher-order tensors have been used to present N-way rotational symmetries (N-
RoSy [16]), with applications in pen-and-ink sketching (a), regular pattern synthesis (b), archi-
tectural modeling (c), and geometry remeshing (d). Image (a) and (c) are courtesy of [17]. © IEEE
Reprinted, with permission, from IEEE Transactions on Visualization and Computer Graphics 17(7)

classification with a bunny surface. have applied this to the curvature tensor to extract
surface features for remeshing purposes. Figure 14.13 illustrates this classification
with a bunny surface.

14.4.3 Higher Order Tensor Fields

The decomposition of the asymmetric tensor field is intrinsically linked to the Hodge-
Helmholtz decomposition. D, R, and S from Eq. 14.2 correspond to the curl-free,
divergence-free, and harmonic component in the Hodge-Helmholtz decomposition
(Fig. 14.14).
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Higher-order tensors, i.e., tensors of a rank larger than two, are of great interests
to scientists and engineers in many application domains. For example, general rela-
tivity deals with higher-order tensors. Elasticity tensor, a fourth-order tensor, relates
the strain tensor (deformation) to the stress tensor (force). The spatial gradient of an
N -th order tensor is an N +1-th order tensor. This has been used by Delmarcelle and
Hesselink to classify degenerate points for symmetric second-order tensors [2]. A
special class of higher-order tensors have also been used to describe rotational sym-
metries on surfaces [16], with applications in pen-and-ink sketching [7], remesh-
ing [15, 20], and regular texture and geometry synthesis on surfaces [15].

There have been a number of decomposition methods [12]. However, physical
interpretation of these decompositions as well as effective analysis and visualization
is still lacking. The only prominent work available at this point is [8].

14.5 Conclusions

In this chapter we have examined applications and existing techniques on multi-
field visualization based on the notion of derived fields. The derived fields play an
important role in understanding relationships between multiple input fields. In addi-
tion, for a single input field, multiple derived fields can be generated as a result of
decomposition which have the potential of providing insights on the input field.

There are a number of future research directions that we believe are important
and can have major impact on multifield visualization:

1. Adaptation of pairwise similarity/dissimilarity as well as global alignment and
dependency measures to a set of heterogeneous fields.

2. A detailed study of the sensitivity of the derived fields to the mesh that represents
the domain. This study will be particularly useful if the input fields are specified
on different meshes representing a common domain.

3. An effective interface using derived fields that supports identification of (a) impor-
tant fields that can further analyzed in detail and (b) redundant fields that can be
discarded from further studies.

4. Integrating the derived fields with existing techniques for interactive exploration
like query-based visualization framework [5], focus+context, and show and brush
for visual analysis.
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Chapter 15
Interactive Visual Exploration
and Analysis

Gunther H. Weber and Helwig Hauser

Abstract Interactive exploration and analysis of multi-field data utilizes a tight
feedback loop of computation/visualization and user interaction to facilitate knowl-
edge discovery in complex datasets. It does so by providing both overview visu-
alizations, as well as support for focusing on features utilizing iterative drill-down
operations. When exploring multi-field data, interactive exploration and analysis
relies on a combination of the following concepts: (i) physical views that show
information in the context of the spatiotemporal domain (domain perspective), (ii)
range views show relationships between multiple fields (range perspective), and (iii)
selecting/marking data subsets in one view (e.g., regions in a physical view) leading to
a consistent highlighting of this subset in all other views (brushing and linking). Based
on these principles, interactive exploration and analysis supports building complex
feature definitions, e.g., using Boolean operations to combine multiple selections.
Utilizing derived fields, statistical methods, etc., adds a further layer of flexibility to
this approach. Using these concepts, it is also possible to integrate feature detection
methods from the other chapters of this part, as well as application-specific feature
extraction methods into an joint framework. This methodology of interactive visual
data exploration and analysis has proven its potential in a larger number of successful
applications. It has been implemented in a larger number of systems and is already
available for a wide spectrum of different application domains.
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Fig. 15.1 Interactive visual analysis (IVA) uses two types of views: Spatiotemporal views (like the
image on the right), e.g., false color plots, show the distribution of a quantity within the domain.
Range views (like the images on the left), including scatter plots (top left) and histograms (bottom
left), show the correlation between multiple fields or additional information about a single field,
respectively

15.1 Basic Concepts

At its basis, interactive visual analysis (IVA) builds on the combination of different
views on data with the ability to emphasize data subsets interactively (most commonly
features of interest). In the context of multi-field data exploration and analysis, two
aspects of data are of primary interest: (i) the spatiotemporal distribution of one or
more fields, and (ii) the relationship of one or multiple fields with respect to each
other. For example, examining multiple fields in a simulation of a hurricane, one may
be interested in the spatial location of regions of high velocity, but also in learning how
velocity correlates with pressure. To provide this information, IVA utilizes two types
of views displaying complementary information. (i) Spatiotemporal views, such as
false color plots or volume rendered images provide a domain-centric perspective
on the data. For example, in the hurricane example we can map velocity to color
and display a false color plot that shows the spatial distribution of velocity in the
simulation domain [Fig. 15.1 (right)]. (ii) Range views, such as scatter plots [3] or
parallel coordinate plots [4, 13], show the correlation between two or more fields
and show the data from a range perspective. For example, for the hurricane example,
a scatter plot of pressure and velocity shows their correlation [Fig. 15.1 (top left)].
Individually, the use of these types of views has a long history in science and statistics.

Considering only one aspect at a time limits data analysis capabilities. The funda-
mental idea underlying IVA is to combine different views on the same data in such a
way that a user can correlate the different views. One way to achieve this correlation
is to enable the interactive selection of data subsets, and highlight such a data subset
in other views in a consistent manner, i.e., ensuring the same data items are visually
emphasized over their context in all views. Selection is often performed directly on a
view by interactive visual means, similar to those in a drawing program, and therefore
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Fig. 15.2 Brushing-and-linking correlates multiple views by making it possible to select a data
subset in one view, e.g., selected ranges in attribute/field space, and consistently highlighting this
subset in all other views. Changing color (e.g., showing the selected points in a different color (left)
or using saturation (right)) is a common way to achieve this effect of highlighting the emphasized
data subset over its context (commonly referred to as focus plus context (F + C)

are usually called brushing. Highlighting in this instance serves as means of linking
views together, and this technique is referred to as brushing-and-linking1 [1, 19].

For example, in the hurricane case, one might be interested in spatial regions cor-
responding to fast moving clouds. Using brushing-and-linking it is possible to select
such a feature in the scatter plot [Fig. 15.2 (right)] and highlight the corresponding
regions in other views, such as in a physical view of the hurricane [Fig. 15.2 (left)].
Using brushing-and-linking, it is possible to formulate simple queries interactively,
such as “where are regions of high temperature and low velocity” and visualize the
results in a physical view. While there are many instances, where such features of
interest are known a priori and analysis is driven by known queries [29], the full
power of IVA lies in the fact that a user can discover features of interest during
interaction and pose or refine queries during interactive analysis.

As a consequence, IVA often defines “features” as data subsets of interest to the
user, be it due to prior knowledge or because a data subset has caught the user’s
attention. Common user interactions include brushing for outliers (e.g., to determine
why a subset is behaving differently from the rest), regions of strong correlation
(e.g., to verify if this correlation holds in the entire data set or only in particular
subsets), or a spatial region of interest, like an inlet or outlet of a flow simulation
(e.g., to determine if a correlation exists in that region). In general, we distinguish
three patterns of explorative/analytical procedures:

1 We note that the visualization community uses the order “linking-and-brushing” more commonly,
while the database community uses the order “brushing-and-linking”. We use the term “brushing-
and-linking” here as brushing is usually performed before linking.
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1. From the domain to the range perspective, we select a subset of data items in a
physical view and examine the selection in range views. This type of analysis
serves to localize the investigation to a region of interest such as an inlet or outlet.

2. From the range to the domain perspective, we select a subset of data items in a
range view, such as in a scatter plot, and examine the result in a physical view.
This type of analysis enables localizing features. In this case brushing defines a
feature, usually as a set of thresholds, and highlighting in a spatiotemporal view
shows whether the selection corresponds to a localized feature.

3. Within the range perspective, we select subset of data items in a range view and
observe the selection in another range view. This type of analysis provides a means
of performing an interactive multivariate analysis, e.g., by brushing in one scatter
plot and examining the selection in another scatter plot of different variables. This
pattern was originally introduced in the field of information visualization [1, 31].

Using one or more of these patterns is the simplest form of IVA, more recently
referred to as “Show & Brush.” It utilizes multiple views, usually at least one range
view for visually correlating multiple fields and one domain view to show properties
in a physical domain context. Though being the simplest form of IVA, this method
already covers a large percentage of use cases in multi-field analysis and serves as
powerful basis for more advanced types of exploration and analysis. This type of IVA
has proven valuable in many application areas, including aeronautical design [12],
climate research [15, 20], biomedical visualization [8, 25], the analysis of gene
expression data [32], the analysis of combustion engines [7, 22], and the analysis of
simulations of particle accelerators [27].

15.2 Additional Concepts

Based on the simple “Show & Brush” paradigm, a few extensions can greatly enhance
the expressiveness of IVA. First, in many cases it is useful to define brushes not as
binary classifiers into two categories “of interest” and “not of interest” but as a means
to map each data item to a degree of interest [6]. It is possible to define this degree
by specifying two selections (e.g., regions in a scatter plot). All items inside an inner
range have a degree of interest of 100 % (i.e., are definitely of interest), and all items
outside an outer range have a degree of interest of 0 % (i.e., not of interest). Between
those regions, a transfer function maps the distance of a sample from inner and outer
range to a degree of interest between 100 and 0 %. A linear ramp is a common choice
for this transfer function. More generally, we can utilize fuzzy logic operators to
combine multiple smooth brushes.

This smooth drop-off of a degree of interest makes it possible to transition
seamlessly between data items of interest and those of not interest and use gen-
eralized focus plus context (F+C) methods [5, 9, 26] to reduce cluttering in resulting
visualizations and draw a user’s attention to the most important details. Traditionally,
focus and context methods use space distortion such as a fish-eye lens to assign more
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space to data of interest while presenting the remainder as context for orientation.
However, in a generalized setting, various visual attributes can serve to emphasize
or deemphasize data items, including, for example:

• Color (hue, saturation, brightness, or an alternative representation) and opacity: a
typical example would be to present the data subset in focus in color and its context
in gray scale by mapping the degree of interest to saturation [8]. Alternatively, the
degree of interest can be mapped to opacity, rendering the focus opaque and the
context semi-transparent [21].

• Style: different visualization modalities (isosurfaces, volume rendering, etc.) can
be used to discriminate focus and context. Alternatively, rendering styles, in par-
ticular non-photorealistic/illustrative styles (halos, outlines, cross-hatched/dotted
lines/polygonal primitives) can serve this purpose (for example in a two-level vol-
ume rendering approach [11]).

• Frequency: Only use the full spectrum of spatial frequencies for the data subsets
in focus and render the context band-limited. This approach is called Semantic
Depth of Field [18] and results in a blurred style for the context, directing the
user’s attention to the sharply rendered data subsets in focus.

• Space: This approach refers to the traditional notion of F+C visualization, i.e.,
that the visualization space is distorted in order to give more space (or time) to the
visualization of data subsets in focus.

15.3 Levels of IVA

So far, with “Show & Brush”, we have seen the base level of IVA. Based on the
complexity of feature definitions, we distinguish additional, more complex (and
thereby also more powerful) levels of IVA. It is our experience, however, that in many
cases—if not in most cases—the simple Show & Brush technique already provides
sufficient functionality to enable an effective data analysis; the more complex levels
of IVA, as introduced below, are only advanced solutions for more complicated cases
which cannot be served with the base-level IVA.

1. Show & Brush (level 1): This level captures the analysis as described so far. It
utilizes at least two linked views, usually one physical and one range view. The
interactive selection of features of interest is accomplished by brushing in one
view, leading to a focus plus context visualization in the linked view(s).

2. Relational analysis (level 2): This level supports the combination of brushes
using logical operations and a simple feature definitions language.

3. Complex analysis (level 3): This level integrates computational analysis, e.g.,
derived fields, statistical methods, machine learning [28], etc., into the interactive
visual approach, thus adding a new dimension of possible procedures. A typical
scenario would be that, prompted by insights gained during visual exploration and
analysis, the user decides to initiate a certain computational analysis procedure,
such as clustering. This procedure results in at least one additional (synthetic)
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data attribute, such as membership in a cluster, which can subsequently be used
together with all other data to improve the analysis.

4. Proprietary analysis (level 4): This class is a container for everything beyond
complex analysis and includes, e.g., the integration of application-specific feature
definitions (such as flow feature detectors [2]) or could entail the integration
of higher-level feature definition languages. Identifying common concepts and
refining IVA beyond this level is a subject of future research.

We note that this terminology is potentially controversial and that “relational analy-
sis” and “complex analysis” have other possible meanings. Consequently, we present
this classification as a starting point that can evolve as research in IVA progresses.
In the following, we describe the higher levels of IVA in greater detail.

15.4 Relational Analysis

Relational analysis takes the selections in form of brushes and provides means to
combine these brushes (or selections) into more complex feature definitions. A sim-
ple feature definition language uses Boolean expressions, for example, to combine
brushes into more complex feature definitions. Figure 15.3 shows an example from
the analysis of three-dimensional gene expression data. Here, positions correspond
to the locations of cells in an organism, and the multiple fields represent expression
values of genes, i.e., they specify whether a certain gene is expressed in a given
cell. Individual brushes select expression patterns based on single genes. Combining
these brushes using Boolean operations, it is possible to define complex selections.
The example in the figure uses this capability, to combine patterns based on a priori
knowledge about how genes interact, and verify whether the genes involved com-
pletely explain the arising pattern.

It is possible to generalize logical operations to smooth brushes [5, 6] and enable
F+C visualization in relational analysis. One associated challenge is to extend the
visual means, which discriminate data subsets in focus from their context, in such a
way that takes this more complex form of feature definition into account. Within each
view, an appropriate F+C visualization is necessary to reflect the brush(es) applied
to this view. Another level of F+C visualization must reflect the overall feature
specification, possibly also involving multiple features. One possible solution to this
problem is a four-level F+C visualization approach proposed by Muigg et al. [23],
which, as one particular aspect, is based on an intelligent color combination scheme.

Combining brushes usually defines a relation between multiple fields. Early work
on query-driven visualization (QDV) [29] used similar concepts in that it defined fea-
tures as a Boolean combination of relational expressions. However, in this QDV work,
the features and expressions were known a priori and not refined during analysis. An
important aspect of QDV visualization is the use of indices, such as FastBit [33], to
accelerate data selection based on queries. However, there is also work on combining
QDV concepts with IVA, e.g., using parallel coordinates [27].
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Fig. 15.3 Building complex feature definitions from individual brushes using Boolean operations
in an example from three-dimensional gene expression. Genes are expressed in spatial patterns that
control specialization of cells into different tissue types. More complex patterns, such as the seven
stripes of the gene even skipped (eve) (red pattern in the image), arise from simpler expression
patterns when expression of one gene controls (enhances or suppresses) the expression of other
genes. The image shows the use of brushes to verify known relations that create eve stripes two and
seven. The expression patterns of the genes giant (gt), hunchback (hb), Krüppel (Kr), and tailless
(tll) are first classified by defining an independent brushes in scatter plots. Subsequently, the brushes
defining the gt, Kr, and tll patterns are inverted using a NOT operation (to model suppression of
gene expression). Afterwards these brushes as well the brush defining the hb pattern are combined
using a sequence of AND operations. In this way the overlap of the hb expression pattern, and the
inverted gt, Kr, and tll expression patterns can be determined. The result (green) is compared to the
eve expression pattern (red) identified by another brush. ©IEEE/ACM Reprinted, with permission,
from IEEE/ACM Transactions on Computational Biology and Bioinformatics 6(2)

15.5 Complex Analysis

The levels of IVA described so far are an extremely versatile and powerful framework
for enabling effective and efficient visual data analysis. Certain aspects of complex
datasets, however, cannot be captured with these mechanisms. In such situations, the
integration of computational data analysis tools, like those known from statistics, data
mining, or machine learning, can help, leading to a solution which is tightly aligned
with the currently modern visual analytics methodology [17, 30]. Alternatively, the
implementation of extended interaction mechanisms, such as brushes that are capable
of grasping aspects of the data that are not explicitly represented in a visualization,
can also help in these situations. In the following, we exemplify both approaches to
achieve complex analysis in the context of IVA.
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A very powerful extension of the IVA methodology as described up to here is
adding the capability to interactively derive new, user-defined data attributes, based
on computational data analysis procedures. While in principle there are no limits to
the set of potentially useful data derivation mechanisms, it is the authors’ opinion
that it is worthwhile to emphasize a few more general examples:

Interactive Spatiotemporal Data Derivation: Interactive estimation of gradients
with respect to the usually spatiotemporal domain is a generally useful data
derivation mechanisms. Spatial and temporal derivatives, including higher order
derivatives obtained by repeated application of an interactive derivation operator,
are often useful for defining features definition since features are often based on
some notion of change. Using temporal derivatives, for example, supports a more
advanced analysis of time-dependent aspects of such datasets, where the con-
sideration of first- and second-order derivatives (wrt. time) leads to a massively
parallel data analysis similar to how curve sketching is performed for individual
time series.
Interactive and Targeted Data Normalization: Data analysis commonly adopts
two types of perspective: an absolute perspective that considers absolute data
values (or derived attribute values), and a relative perspective that examines rela-
tive values. One mechanism that enables a relative perspective in IVA is to support
interactive data normalization. A powerful aspect of performing this normaliza-
tion as part of IVA is that it not only allows for global normalization procedures,
which usually do not add too much in terms of opportunities to understand data
aspects that otherwise would not be accessible, but to also enables more localized
normalization operations. Examples are normalization per time step, normaliza-
tion per height-level, etc. Useful normalization operators include the scaling to the
unit interval, z-standardization, or the normalization against other data statistics
like the median and the MAD.
Interactive Derivation of Data Statistics: Statistics are powerful means to sum-
marize and characterize data. Having data statistics, in particular localized data
statistics, available for subsequent computations and interactive feature specifi-
cations, enriches the spectrum of possibilities in IVA substantially. A very good
starting point are the standard descriptive statistics mean, standard deviation,
skewness, and kurtosis. Interesting complements include more robust estimates
such as the median, MAD, etc., as well as ranking-based statistics (e.g., based on
quartiles or octiles). Interesting applications for IVA have been demonstrated, for
example, in the context of multi-run data analysis for climatology [14].
Considering correlation information, data clustering, etc.: Data analysis techniqu
es from statistics, data mining, machine learning, etc., are very rich in terms of
history and available related work, and the potential set of useful mechanisms
that are promising candidates for integration into IVA is almost unlimited. Partic-
ularly interesting candidates for extending the power of IVA are: the interactive
derivation of correlation information between data attributes (e.g., based on the
standard Pearson correlation, or Spearman’s correlation measure), techniques for
attribute selection or dimension reduction (such as PCA or LDA, for example),
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the consideration of data clustering (e.g., based on supervised or unsupervised
clustering techniques), the integration of measures of outlyingness (e.g., based on
the Mahalanobis distance of the data points, or derived from normality tests such
as Shapiro’s p-test), etc. One example for combining IVA with clusterings is the
analysis of three-dimensional gene expression data with integrated clustering [28].

Advanced brushing mechanisms can be integrated in IVA as an alternative or in
addition to these data derivation approaches. Brushes developed for special purposes
include angular brushing [10] of parallel coordinates to access the slopes of the lines,
or similarity brushing [23, 24], which utilizes a more advanced similarity measure
between data and brush to determine the data items that are selected by a certain
brushing interaction.

In principle, it is possible to design advanced brushes for any of the data aspects
that otherwise could be made accessible (to standard brushing) via the further above
described data derivation mechanism. The more indirections, however, in terms of
implicitly considered data derivations, are built into an advanced brush, the more
challenging the additional cognitive load becomes when using such a brush. It there-
fore stands to reason that highly complicated relations in the data, which only can
be accessed through a number of concepts as described above (some statistics, some
dimension reduction, some outlyingness measure, etc.), are better made available to
interactive feature specification in a step-by-step procedure (a certain sequence of
data derivation steps, for example) than packing too much into a single advanced
brushing tool.

Figure 15.4 shows an example of a Complex Analysis—in this case an outlier
analysis in a multi-run climate simulation dataset. As part of a coupled atmosphere–
ocean–biosphere simulation model, temperature values in the world’s big oceans,
represented by three 2D cross-sections (longitude vs. depth), are analyzed, which
are given over a 500 year period at about 6000 BC. The goal of this analysis was
to identify spatiotemporal locations where the simulated temperature values exhibit
large differences (as compared to the main trend) in some simulation runs. Using the
interactive data derivation mechanism, first the overall number of outliers per space-
time location was computed (this step uses a mild univariate outlyingness measure,
i.e., all values which lie more than 3 · IQR/2 above q3 (the 3rd quartile) or below
q1 (with IQR being the interquartile range q3 − q1). The scatter plot in Fig. 15.4a
identifies all locations according to how many such outliers exist (x-axis) and to
which degree they are large- or small-value outliers (y-axis). A smooth brush was
then used to highlight all locations with a substantial number of outliers, and the
glyph-based visualization in Fig. 15.4b shows these locations emphasized (larger,
less transparent glyphs). In a next step, the analysis was confined to lower-value
outliers. This restriction was achieved by first using the data derivation mechanism,
again, to ”normalize” the y-axis wrt. its vertical extent per x-location. This step
enables a selection—with a standard rectangular brush—of those outliers, which are
mainly lower-value outliers. The scatter plot after loading this new attribute and the
according brush are illustrated in Fig. 15.4c.
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Fig. 15.4 Selected steps within a complex analysis example (outlier analysis in a multi-run climate
simulation dataset—more details in the main text). After having used the interactive data derivation
mechanism to compute an IQR-based outlyingness measure, spatiotemporal locations are identified
with outliers. This identification is achieved by brushing scatter plot (a) and observing the selected
locations in the linked visualization (b). In a next step, the analysis was confined to lower-value
outliers (using the data derivation mechanism, again) by brushing scatterplot (c). Subsequently, to
see the actual outliers themselves, a new scatter plot was used, with detrended and accordingly
normalized temperature values on y, to focus on the actual outliers, then observed in views (e) and
(f). More details about this study are available in the main text and in a paper by Kehrer et al. [16]

Up to this point, the entire analysis was solely focused on delimiting locations that
have outliers of a particular characteristic. In the next step, the focus was directed to
the outliers themselves. To select them, another data derivation steps was performed,
computing detrended and normalized temperature values per location (the performed
operation was to first subtract the median temperature wrt. all simulation runs, per
location, and then divide by IQR). A new scatter plot, shown in Fig. 15.4 (d), was used
to show all data points wrt. their distance to the median (x-axis) and this detrended and
normalized temperature measure (y-axis). Consistent with Fig. 15.4a, b, all points
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with y-values beyond ±2 are also considered as outliers (and brushed accordingly).
This brushing leads to their identification in the views Fig. 15.4e, f, where each
ocean section is repeated 100 times (once for every computed simulation run). This
analysis resulted in an interesting deep-water pattern of some “outliers” in the north
of the simulation, translating from the Atlantic slice into the Arctic basin (which
actually look much more like a distinct pattern than just outliers) as well as some
surface-water outliers (warm water, half-way north in the Pacific, marked orange)
and some other outliers near Antarctica (circled red). More details about this study
have been presented by Kehrer et al. [16].

15.6 Conclusions and Future Directions

IVA has already proven valuable in a wide range of application areas, including engi-
neering, climate research, biomedical research and economy. The ability to define
features interactively and refine feature definitions based on insights gained during
visual and exploration and analysis provides an extremely powerful and versatile
tool for knowledge discovery. Future challenges lie in the integration of alternate
feature detection methods and their utilization in intelligent brushes. Furthermore,
integrating IVA and simulations, thus supporting computational steering, offers a
wide range of new possibilities for knowledge discovery.
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Chapter 16
Visual Exploration of Multivariate
Volume Data Based on Clustering

Lars Linsen

Abstract The attribute space of a multivariate volume data set is hard to handle
interactively in the context of volume visualization when more than three attributes
are involved. Automatic or semi-automatic approaches such as involving clustering
help to reduce the complexity of the problem. Clustering methods segment the
attribute space, and the segmentation can be exploited for visual exploration of the
volume data. We discuss user-guided and automatic clustering approaches of the
multi-dimensional attribute space and visual representations of the results. Coor-
dinated views of object-space volume visualization with attribute-space clustering
results can be applied for interactive visual exploration of the multivariate volume
data and even for interactive modification of the clustering results. Respective meth-
ods are presented and discussed and future directions are outlined.

16.1 Introduction

Volume visualizations rely on some segmentation of the given volumetric domain.
Typical examples are the choice of an isovalue for isosurface extraction from a scalar
field or the application of a one-dimensional transfer function to the range of a scalar
field for direct volume rendering. Such a segmentation of the volumetric domain is
implicitly given by segmenting the range of the scalar field. Some early approaches
extended this idea to the segmentation of 2D or even 3D spaces formed by the range
and some derived properties such as magnitude of first- and second-order derivatives.
The segmentation in these spaces are performed interactively by providing respective
interaction methods and widgets. This is possible as long as the interaction takes place
in 2D or, with some limitations, in 3D visual spaces. These visual spaces are often
obtained by histogram computations and their visualization by using color coding.
Interaction mechanisms, then, allow the user to select regions of interest and assign
parameters for the volume visualization methods to them. For example, the idea of
using multi-dimensional transfer functions to direct volume rendering goes back to
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Kindlmann and Durkin [21]. They proposed using 2D histograms of the value and the
magnitudes of first- or second-order directional derivatives of a scalar field to define
transfer functions. Kniss et al. [22] extend their work by introducing a set of direct
manipulation widgets for multi-dimensional transfer functions. For vector fields,
Daniels II et al. [9] presented an approach for interactive vector field exploration by
brushing on a 2D scatterplot of two derived scalar properties of the vector field.

When dealing with multivariate volume data, the number of attributes per sample
is typically (significantly) larger than two or three. Hence, purely interactive methods
are of limited use for selecting regions of interest. Automatic components help to
alleviate the problem. The segmentation of the multi-dimensional attribute space
can be achieved by employing a clustering method. Automatic clustering methods
of multi-dimensional spaces is an intensively researched topic and many different
methods can be applied, see Sect. 16.2. Also, clustering methods with user guidance
are of interest in this regard, see Sect. 16.3.

With the obtained clustering result, the volume visualization parameters can be
set to highlight the areas in object (or physical) space that correspond to the clusters
in attribute space. The mapping from the clustering result to the volume visualiza-
tion parameters can be obtained automatically, but due to occlusion one needs to
restrict the volume visualization to a subset of clusters. It is desirable to have an
interactive selection of these subsets. This selection mechanism replaces the interac-
tive operation in a high-dimensional attribute space. However, it still requires some
suitable visual encoding of the clustering result to allow for intuitive interactions,
see Sect. 16.4. The requirements to this visual encoding are that it scales well in the
number of dimensions and in the number of samples, as we may be dealing with a
larger number of attributes and the underlying multivariate field is typically sampled
at many positions of its volumetric domain.

The visual encodings of the clustering result lead to coordinated views of the
object-space volume visualization and the attribute-space cluster visualization, see
Sect. 16.5. Multiple visual encodings of the clustering results and its value distrib-
utions in attribute space may be coupled with the volume visualization to allow for
an interactive exploration of the clustering result.

Finally, one may also need to consider that the automatic part of the pipeline, i.e.,
the clustering step, may not produce the optimal results. This may be due to some
limitations of the clustering methods or due to the fact that the user may bring in
some domain expertise that goes beyond what one can extract from the raw data.
Consequently, an interactive modification of the clustering result is also of interest,
see Sect. 16.6.

In this chapter, we present and discuss different approaches for the individual steps
described above. We conclude the paper with open problems and future directions,
see Sect. 16.7.
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16.2 Automatic Clustering of Attribute Space

Cluster analysis divides data into meaningful or useful groups (clusters). Clustering
algorithms can be categorized with respect to their properties of being based on
partitioning, hierarchical, based on density, or based on grids. In partitioning methods,
data sets are divided into an number of clusters and each object must belong to exactly
one cluster. In hierarchical methods, data sets are represented using similarity trees
and clusters are extracted from this hierarchical tree. In density-based methods,
clusters are a dense region of points separated by low-density regions. In grid-based
methods, the data space is divided into a finite number of cells that form a grid
structure and all of the clustering operations are performed on the cells. A complete
review of existing methods is beyond the scope of this chapter, but we refer to
respective survey papers [13, 18].

In the context of multivariate volume data visualization, Maciejewski et al. [29]
proposed to apply a clustering of the attribute space to the 2D histogram obtained
by the range of a scalar function and the magnitude of its gradients. The clustering
is being visualized as a segmented image of the 2D histogram using color coding of
the segments. This segmented image serves as a user interface to select clusters and
display them in a volume visualization. This approach is limited to two-dimensional
attribute spaces.

When dealing with higher-dimensional attribute spaces, it is favorable to use
a hierarchical clustering method, as the cluster hierarchy can be used for visual
encoding of the clustering result. Moreover, a density-based approach is desirable, as
the computed density values can be assigned to the respective sample points in object
space leading to a volumetric density field. This density field can be exploited for
volume visualization methods. Density-based clustering methods are either kernel-
based or grid-based. Kernel-based methods convolve each point with some kernel
function and sum up the contributions of all kernels to compute the density. Grid-
based methods subdivide the space into cells, count the number of points that fall
into each cell, and compute the density as the number of points within a cell divided
by its area. Typically, the grid is a uniform, rectilinear one, i.e., it represents a multi-
dimensional histogram. In multivariate volume data, attribute values may be given at
different scales. Hence, when using kernel-based methods one would need to apply
anisotropic kernels. How to choose the scaling in the individual dimensions becomes
an issue. Thus, grid-based methods are favorable, as they split each dimension into
a number of cells independent of the scales the attributes are given in.

Linsen et al. [25–28] presented an approach for multivariate volume data visual-
ization that uses a hierarchical density-based approach where densities are computed
over a grid. The main advantage of that approach over other techniques with similar
properties is the direct identification of clusters without any threshold parameter of
density level sets. This property is achieved by the observation that density is pro-
portional to the number of points per cell when assuming cells of equal size. Hence,
density becomes an integer value and one can iterate over the density values. To
estimate all non-empty cells, a partitioning algorithm is used that iterates through all
dimensions. Given the multi-dimensional histogram, clusters are defined as largest
sets of neighboring non-empty cells, where neighboring refers to sharing a common
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vertex. To detect higher-density clusters within each cluster, all cells containing the
minimum number of points in this cluster are removed and one detects among the
remaining cells, again, largest sets of neighboring cells. This step may lead to split-
ting of a cluster into multiple higher-density clusters. This process is iterated until
no more clusters split. Recording the splitting information, one obtains the cluster
hierarchy. Those clusters that do not split anymore represent local maxima and are
referred to as mode clusters. The approach scales well with the number of dimen-
sions, since only non-empty cells are being stored. Moreover, it is quite efficient,
since the histogram is computed by iterating over the dimensions and subdividing
the non-empty cells only. For a detailed analysis and comparison of this clustering
approach to other clustering approaches, we refer to the thesis by Long [40]. In par-
ticular, it is shown that this clustering approach is capable of extracting clusters of
any shape including clusters with concave areas and even holes.

Another suitable approach for defining clusters in multivariate volume data is to
use statistical methods to evaluate correlations between the different attributes and
identify regions of the object space with matching correlations. Jänicke et al. [19]
propose to use mutual information to detect regions of a certain behavior in multi-
variate volume data. This approach is not anymore build upon the idea of clustering
in attribute space but rather on segmenting the object space directly. Similarly, one
can also apply standard segmentation algorithms and generalize them such that they
can deal with multivariate volume data. Ivanovska [16] presented a segmentation
approach based on the concept of minimum description length of the encoding of the
segments. It can be derived from information theory that the segmentation with min-
imum description length for the segments boundaries represents an optimum. The
original idea was extended to a multivariate setting, where the minimum description
length takes into account all attributes such that the optimization strives for getting
the segments boundary to coincide. Figure 16.1 shows a result of the approach.

Fig. 16.1 Automatic segmentation of multivariate medical imaging data: segments are derived
from three attributes obtained using T1-, T2-, and T2∗-weighted MRI imaging of plaque using a
multivariate version of the minimum description length approach. Segments are shown as regions of
constant color. (Data courtesy of Andreas Harloff and Michael Markl, University Hospital Freiburg,
Germany.)
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16.3 User-Guided Clustering of Attribute Space

Instead of using completely automatic clustering approaches, it may be favorable to
keep the user in the loop. A simple way of doing this is to start with a coarse clustering
result and iteratively refine it in an adaptive manner. Ivanovska and Linsen [17]
presented an approach, where simple and efficient clustering methods such as median
cut [14], k-means [30], and c-means [7] are used to cluster multivariate volume
data, the results are visualized using a 2D slice viewer, and clusters are selected to
adaptively refine them by further splitting (i.e., clustering) operations. Because of
the simple clustering methods used, the process is highly interactive. The approach
was only applied to RGB color data, where the clusters can be represented by their
average color, which makes it easy to identify clusters for adaptive refinement.

A different approach for user-guided clustering is to interact in object space. The
user brushes in the volume visualization to select some samples and assigns to them
a cluster ID. Based on this sparse information about the desired clustering result, a
clustering of the full data set is obtained using machine learning techniques. Tzeng
et al. [38] presented an approach, where the user brushes on 2D slices using different
colors, where the colors function as cluster identifiers. The selected voxels of the
data set are used as training set for a neural network. With the trained network, the
entire data set in classified. The neural network is implemented on the GPU to assure
that computations can be done in an interactive setting. Thus, the selection can be
modified anytime by further brushing operations. The updated training set is then fed
to the neural network classifier, again. Tzeng et al. applied their approach to scalar
fields and RGB color data. El-Moasry et al. [11] presented an approach that builds
on this idea, but uses a rough set classifier instead of a neural network. The rough set
classifier reports back probabilities that a certain voxel belongs to a certain cluster.
The probability information can be used for uncertainty visualization. Figure 16.2
shows a result of the approach.

Dobrev et al. [10] present an approach that, in principle, embeds an automatic
clustering approach. However, it is shown that the clustering can also be generated
completely interactively by brushing on a parallel coordinates plot representing the
attribute space and seeing the selection in a linked volume rendering of the object
space. Although it is possible to create some meaningful clusters, the approach would
be very cumbersome for extracting higher-dimensional clusters with non-axis aligned
shapes.

16.4 Visual Encoding of Clustering Result

16.4.1 Object-Space Representation

The simplest way of displaying the result of clustering a multi-dimensional attribute
space is to use volume visualizations of the object-space representation of each
cluster and show the visualizations all next to each other. Tzeng and Ma [39]
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Fig. 16.2 User-guided clustering based on brushing in object space and using machine-learning
techniques to classify all data from the brushed selection: a Assigning the training set by interactively
selecting image regions and respective classes (or clusters). b Medical color imaging data segmen-
tation based on rough classification, where blue color is used to visualize an area of uncertainty
between the two adjacent clusters. (Data set courtesy of Art Toga, UCLA, USA.)

follow this idea. They applied ISODATA clustering to the attribute space and show
object-space visualizations of all clusters by using one display per cluster. They allow
the users to directly interact with the extracted clusters. User interactions allow for
assigning material properties to clusters, i.e., one can show selected clusters in one
display with different appearance properties. User interactions also include merging,
splitting, growing, and shrinking of clusters.

16.4.2 Cluster Hierarchy

When using a hierarchical clustering approach, the cluster structure can be repre-
sented using a tree data structure. The cluster tree can be visualized using conventional
tree visualization methods such as nodelink diagrams, where nodes represent clus-
ters and links represent parent-child relationships. Different layouts of the nodelink
diagram are applicable. Linsen et al. [25–27] visually encode the cluster tree using
a nodelink diagram with radial layout. The size of the nodes encode the size of the
clusters and the color of the nodes represent the respective colors that are used in the
volume visualization of the clusters.

16.4.3 Projection

The clusters can also be visualized using an attribute space visualization. The attribute
space structure is given in form of a set of points in a multi-dimensional space. As
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the number of dimensions is typically larger than three, the space must be projected
into a 2D or 3D visual space. In the visual space, clusters can be indicated using
enclosing curves or surfaces or by color coding.

Many algorithms for projections exist. The simplest projection of the multi-
dimensional attribute space is to project all data points to a visual space that is
spanned by two of the attribute dimension. This projection leads to a standard 2D
scatter plot. In the context of multivariate volume data visualizations, standard 2D
scatter plots can be extended to continuous scatter plots [5, 6, 15, 23, 24]. Con-
tinuous scatter plots generalize the concept of scatter plots to the visualization of
spatially continuous input data by a continuous and dense plot. It uses the spatial
neighborhood in the object space to allow for applying an interpolation between the
points in the attribute space.

Blaas et al. [8] use scatter plots in attribute space, where the multi-dimensional
data is projected into arbitrary planes. In general, one refers to multi-dimensional
scaling for techniques that project high-dimensional data into a low-dimensional
visual space. Given a set of d-dimensional data points {p1, . . . , pn}, multidimen-
sional projection techniques apply some criterion to generate a representation of the
points in an m-dimensional space with m ≤ d. A possible criterion is to preserve
as much as possible the neighborhood relationships amongst the original points. The
projected points are the input to visual representations that convey information about
groups of elements with similar or dissimilar behavior. Several classical techniques
like Sammon Mapping [34], FastMap [12] or more recent techniques like Nearest-
Neighbor Projection [37] or ProjClus [31] are described in the literature to handle
different high-dimensional data in different ways. A somewhat outdated survey paper
is given by König [4]. Least Square Projection [32] is a multidimensional projec-
tion technique that effectively handles large data sets characterized by a sparse data
distribution in the high-dimensional space.

Takanashi et al. [36] applied Independent Component Analysis (ICA) on a multi-
dimensional histogram to classify the volume domain. Classification becomes equiv-
alent to interactive clipping in the ICA space. Paulovich et al. [33] presented an effi-
cient two-phase mapping approach that allows for fast projection of large data sets
with good projection properties. They applied their approach to multivariate volume
data and were even able to handle time-varying data.

The described projection techniques are based on a set of high-dimensional data
points as input. When pre-clustering the data, one can optimize the projection such
that clusters stay as much separated as possible. Linsen et al. [25] are using a respec-
tive projection technique for projecting clusters into a visual space whose layout is
given in form of optimized star coordinates. The main idea of the approach is to
represent the mode clusters of the cluster hierarchy by their barycenter and project
the centers using a linear contracting projection that maximizes the distance between
the clusters’ barycenters. Since the method is linear, distances in the projected space
still allow for some interpretations. The contraction property assures that clusters
stay together and do not fall apart. The maximization of the distance between the
barycenters when projecting assures that separated clusters stay separated as much as
possible. Finally, the projection uses a star coordinate approach, where the directions,
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Fig. 16.3 Visual encoding of clustering result using color after projection into a 2D visual space.
Comparison of projections into standard star coordinates (left) and optimized star coordinates (right).
The optimized star coordinates minimize the overlap of projected clusters

scaling, and order of the axes are optimized by the derived projection. Displaying
the projected clusters in this optimized star coordinates plot allows for relating the
clusters to the original attribute dimensions. Figure 16.3 shows the projection of a
six-dimensional data set into optimized star coordinates and compares the projection
to standard star coordinates (with optimal permutation of the coordinate axes) [20].
The clusters are visually encoded in the projection by using color. The optimized star
coordinates achieve to keep all clusters separated, while the standard star coordinates
fail to do so. This can also be quantified using the distance consistency measure intro-
duced by Sips et al. [35]: The standard star coordinates achieved a value of 82.71,
while the optimized star coordinates has the optimal value of 100.

16.4.4 Parallel Coordinates

A common approach to visualize multi-dimensional data visualization is the use
of parallel coordinates plots. When compared to projected views, parallel coordi-
nates plots have the advantage that the attribute values can be visually retrieved in
a non-ambiguous way. Moreover, correlations between attributes can be observed.
However, the latter is subject to an appropriate ordering of the attribute dimensions
in the parallel coordinates plot. While parallel coordinates plots scale well in the
number of attribute dimensions (when compared to other techniques), one of the
main drawbacks of parallel coordinates plots is that they do not scale so well in
the number of samples. While scatter plots still work for large number of samples,
parallel coordinates plots tend to suffer from visual clutter. Since we are typically
dealing with many samples in the context of multivariate volume data, it is advis-
able to not display all the individual samples of the clusters, but rather have a more
abstract representation of the clusters. For example, Dobrev et al. [10] display a band
(in form of a sequence of quadrilaterals) for each cluster instead of set of polylines.
The opacity of the band reflects the line density of the parallel coordinates plot for
that cluster. Using parallel coordinates plots for the clustering result does not only
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exhibit the individual attribute values for the clusters, but also visually encodes how
homogeneous or heterogeneous a cluster is. It can even reveal whether a cluster splits
into subclusters in one of the attributes.

16.5 Coordinated Views for Visual Exploration
of Clustering Result

The visual encodings presented in the previous section all represent the clustering
result, but they do reveal different properties of the clusters: The object-space rep-
resentation exhibits the distribution of the clusters within the volumetric domain,
the cluster hierarchy encodes the structure of the clusters, a projection shows the
distribution of the clusters within the multi-dimensional attribute space, and the par-
allel coordinates allow for retrieving individual attribute values. Consequently, it is
desirable to have all those visual encodings embedded into a visual exploration sys-
tem. The system would provide different views on the data, where the views shall
be coordinated, i.e., any interactions like selection or filtering that are performed in
one view shall simultaneously also be applied to all the other views. Then, all views
provide one coherent snapshot of the data.

Akiba et al. [2, 3] presented a system that operates with coordinated views on mul-
tivariate volume data. In particular, they used a representation of the multi-variate data
in parallel coordinates to allow the user to generate a transfer function by brushing
regions of interest. They even add another aspect to it, as they are dealing with time-
varying multivariate data, where another coordinated view shows a visual encoding
of changes over time. However, their approach is not based on the clustering idea
such that the amount of necessary user interaction increases with increasing dimen-
sionality and may at some point get cumbersome.

Dobrev et al. [10] follows the idea of using clustering to provide intuitive
operations in cluster space. Like for Akiba et al., the system is based on an intu-
itive user interface, but the combination with hierarchical density-based clustering
has the benefit that it scales better to high dimensionality. Object-space representa-
tion of the clusters is achieved using a GPU-based volume rendering approach, to
which only the cluster IDs and the density values from the clustering approach are
handed. Each cluster is assigned a unique color and opacity value according to the
user selections. The gradients of the density values can be used to obtain appropriate
surface normals for the clusters, which are needed for illumination. The cluster tree is
visually encoded as a radial nodelink diagram, which serves as the main interaction
widget for selecting clusters and assigning material properties. Parallel coordinates
plots are used to show the attribute values of the selected clusters. Figure 16.4 shows
the system with the three coordinated views.
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(c)

(b)(a)

Fig. 16.4 Coordinated views for visual exploration of clustering result: a Cluster tree visualization
of a hierarchical density-based clustering approach. b Parallel coordinates plots of selected clusters.
c 3D texture-based volume rendering of selected clusters with selected material properties. System
is applied to a physical ionization front instability simulation dataset with a ten-dimensional feature
space. (Data set provided in the 2008 IEEE Visualization Design Contest [41])

16.6 Interactive Modification of Clustering Result

User-guided clustering approaches like the ones by Ivanovska and Linsen [17] or
Tzeng and Ma [39] allow for a modification of the clustering result within their
user-guided clustering framework as described above. Since automatic clustering
approaches may also produce results that are subject to manual improvements and
since the user may bring in some domain expertise that may go beyond what can
be achieved with fully automatic approaches, it is also desirable to allow modifica-
tions of the automatic clustering results. In particular, it is desirable to couple the
visual exploration described in the previous section with means to interactively adjust
clusters. As the visual exploration process may lead to new insights about the clus-
ters under investigation, those new insights shall be documented, e.g., by splitting a
cluster into two smaller clusters.

The system of coordinated views by Dobrev et al. [10] as shown in Fig. 16.4 also
allows for an interactive modification of the clusters. First, since density values are
given, clusters can be shrunk (and grown again) by adjusting the density level that
corresponds to the density cluster. Second, the parallel coordinates plot also serves
as an interactive widget. Brushing on the individual axes of the parallel coordinates
plot induces a selection that is directly reflected in the linked volume renderer. If
the interactions on the parallel coordinates plot lead to the detection of a certain
subcluster within the selected cluster, the cluster can be split appropriately. Third,
clusters can be merged by selecting them in the cluster tree widget and applying a
merge operation.

16.7 Conclusions and Future Directions

We have presented approaches for multivariate volume visualization that are based
on clustering methods. Clustering is applied to capture the information in the multi-
dimensional attribute space of the multivariate volume data into regions of sim-
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ilar behavior. This aggregation step allows for interactive visual analyses of the
data. While purely interactive methods have limits when trying to operate in a
multi-dimensional attribute space, aggregation via clustering allows for new visual
encodings of the attribute space. Different visual encodings of the clustering result
provide different information such that a system with different coordinated views
on the clustering result proves to be most efficient. Those coordinated views shall
also allow for interactive modification of the clustering result during the exploration
process, especially if the user can bring in some additional domain expertise.

The presented approaches mainly deal with multivariate data in the sense of
multiple scalar fields, where the scalar fields may be given dimensions or may be
derived attributes. In particular, the attributes may be derived from vector or tensor
fields. The most obvious future direction is to extend the approaches to time-varying
data. Akiba and Ma [1] did incorporate the time dimension into their interactive
system, however, it was not based on the clustering idea. Still, the ideas may be
applicable to cluster-based approaches. Next, it is of interest to also incorporate spa-
tial information into the clustering approach such that one cluster always represents
a connected region in object space. Local spatial relationships have been used, e.g.,
to draw statistics [11], which allows for further differentiation between regions of
similar values but different textures. However, these local measures do not guarantee
any global properties. In terms of the clustering itself, scaling and normalization
issues of the individual dimensions may need further investigation, especially when
simultaneously considering original attributes, derived attributes, spatial dimensions,
time dimension, etc. Non-linear scalings may be appropriate to use. Finally, it has
not yet been investigated how these approaches generalize to multi-run or ensemble
data, although a cluster-based visualization of the parameter space is also feasible.
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Chapter 17
Feature-Based Visualization of Multifields

Harald Obermaier and Ronald Peikert

Abstract Feature-based techniques are one of the main categories of methods used
in scientific visualization. Features are structures in a dataset that are meaningful
within the scientific or engineering context of the dataset. Extracted features can
be visualized directly, or they can be used indirectly for modifying another type
of visualization. In multifield data, each of the component fields can be searched
for features, but in addition, there can be features of the multifield which rely on
information form several of its components and which cannot be found by searching
in a single field. In this chapter we give a survey of feature-based visualization of
multifields, taking both of these feature types into account.

17.1 Feature Extraction in Scientific Visualization

Scientific visualization has adopted the concept of a feature from computer vision [6],
where it describes a salient structure of an image. Some of the most common image
features are edges, ridges, corners, and blobs. Features are important in various
applications, such as object recognition and tracking.

In visualization, features are used to put a focus on those parts that are of interest
in the context of a certain research or engineering problem. For example, in flow
data sets, features can be shock waves, vortices, recirculation, boundary layers, and
separation and attachment lines. By restricting the visualization of a dataset to its
features, its visual complexity can be substantially reduced. A visualization can
consist of only the extracted features, together with some context information, but

H. Obermaier (B)
UC Davis, Davis, USA
e-mail: hobermaier@ucdavis.edu

R. Peikert
ETH Zurich, Zurich, Switzerland
e-mail: peikert@inf.ethz.ch

© Springer-Verlag London 2014
C.D. Hansen et al. (eds.), Scientific Visualization, Mathematics and Visualization,
DOI 10.1007/978-1-4471-6497-5_17

189



190 H. Obermaier and R. Peikert

more often features, which are abstract objects, are visualized in combination with
more traditional techniques. Furthermore, features can be used to guide the placement
of visualization objects such as glyphs or streamline seeds [3, 36, 38]. Finally, in time-
dependent datasets, features can be tracked over time [29], providing information on
the dynamics of processes. Feature-based visualization methods have been developed
for scalar, vector, and tensor fields in a wide range of application areas such as fluid
flow [27] and medical visualization [4].

17.2 Multifield Feature Definitions

17.2.1 Single-Field Versus Multifield Features

Multifield features and their definitions can only be fully understood in the context of
single-field feature definitions. While multifield and single-field features share com-
mon properties, they often present researchers and users with additional challenges
with respect to data size, limitations of visual space, and conceptional differences as
highlighted in the following.

Feature definitions and visualization techniques in a single-field setting benefit
from a set of assumptions. Often features are free of spatial overlaps, have equal
priority with respect to the visual space they occupy if no feature strength is measured,
and, most importantly, the feature definition process is a one-to-many mapping from
data to feature space. Contrarily, the feature extraction and visualization process
for a multifield data set is inherently a many-to-many mapping, thus introducing an
additional dimension of complexity. Where a single-field feature extraction technique
may produce a set of features for different feature definitions on the same field that
are combined into a final visualization, features in a multifield data set can be created
by feature definitions based on a single-field, multiple heterogeneous fields, or, in
the most complex case, multiple heterogeneous fields.

In situations, where feature based visualization consists of visual blending of
single-field features, the feature extraction and visualization process is extremely
similar to that in a single-field setting. True combined feature extraction techniques
are unique to multifield data in such that the geometric representation of the final
feature is dependent on a set of single fields.

17.2.2 Classes of Multifield Feature Definitions

Feature definitions in a multifield setting may be classified into one of two groups:

(a) Isolated Feature Definitions: Feature definition and extraction is performed
on an independent per-field level. The multifield notion is obtained as the final
visualization combines these isolated features into a common representation.
The resulting multifield feature is essentially a collection of classic features.
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(b) Combined Feature Definitions: Feature definition and extraction is performed
on a combined set of fields, i.e., the feature definition depends on information
encoded in multiple fields. These feature definitions extend the classic single-
field feature definition and creates features that are not present in any single
field.

There is generally no preferred way of multifield feature extraction and visualiza-
tion, neither in theory nor in applications. Both feature definitions are widely used
in the visualization community.

17.3 Classification of Visualization Techniques

17.3.1 Isolated and Modulated Features

The earliest and most straight-forward feature-based visualization techniques that
rely on data from multiple fields make use of individual feature definitions for each
field and combine these isolated features into a combined multifield visualization.
Often, complex feature extraction is limited to one field only with other fields used
for modulation of the extracted feature representation.

One of the earliest example is the enhanced display of streamlines in a flow
field as streamtubes and streamribbons by modulating extracted line geometry with
properties of the derived rotation and divergence fields [34]. Similarly, integral lines in
time-varying flow fields have been enhanced with deformation information extracted
from the derived velocity gradient field [24]. Both examples illustrate how the initial
feature extraction process is limited to one field, whereas the final visualization
conveys multifield data.

Love et al. [19] demonstrate the use of streamline extraction for multivalue data
sets. While the feature extraction process is limited to an individual field, concurrent
visualization of streamlines extracted from multiple related fields facilitates visual
comparison of flow directions.

An approach that modulates the geometry of the shared computational mesh of
multifield CFD data is presented by Henze [14]. Henze proposes to map the initially
feature-less computational grid of the simulation domain into spaces of fields present
in the data set. A single vector valued field as well as multiple scalar valued fields are
used to displace vertices of the original mesh. Feature identification and extraction
in this new coordinate system allows joint analysis of the affected fields.

17.3.2 Locally Defined Features

One of the classical sources of multifields is Computational Fluid Dynamics (CFD)
simulations, the results of which contain physical variables such as velocity, pressure,
and density. CFD solvers commonly output an extensive set of scalar-, vector-, or
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tensor-valued variables, up to several dozens [1]. Therefore, it is not surprising that
multifield visualization is crucial for the understanding of flow data. This also holds
for the class of feature-based visualization methods, as some of the physically most
relevant features of flows rely on several physical quantities in their definition. For
example, some of the classical vortex detectors are based on the combination of
pressure and vorticity [2] or of velocity and vorticity [18]. Since vorticity can be
derived from the velocity field using a numerical gradient estimation technique, the
classification of such a method as a multifield technique might be questionable.
However, the velocity gradient tensor is typically an original result of a CFD solver.
In the case of vortex methods [7], it is even so that vorticity is an original variable,
while velocity is a derived one.

Multifield feature detectors can be realized in a number of ways. An efficient class
of methods requires only local information, i.e., the field values at a given point and,
possibly, some low-order derivatives of them. One such approach is reduction to a
scalar field, followed by an isosurface extraction. It was used by Levy et al. in their
definition of a vortex as a region where helicity [18] is high. Helicity is defined as the
scalar product of velocity and vorticity, and often normalized helicity is used where
vectors are normalized.

Multifields lend themselves also to predictor-corrector approaches. The vortex
detector developed by Banks and Singer [2] is based on the assumption that the vortex
axis roughly follows the vorticity vector while passing through pressure minima in
its cross section. Therefore, it is realized by taking steps along the vorticity vector
alternating with steps along the pressure gradient in the orthogonal space. A variant
of this method, proposed by Stegmaier et al. [32], replaced pressure by the λ2 vortex
indicator [17]. Both of these methods not only compute the vortex axis as a curve, but
they also provide the vortex hull, which is obtained by a radial search in the normal
plane of the vortex axis.

In many cases, a feature defined by a pair of variables can be expressed by the par-
allel vectors operator [25], which is a generic approach to extract line-like features
from a pair of two- or three-dimensional vector fields. This way, the aforementioned
methods [2, 18] can be reformulated. Further examples are the criteria by Sujudi
and Haimes [33] for vortex axes in steady flow and its extension to unsteady flow
by Fuchs et al. [11]. Here, the vortex axis is defined as the locus where velocity and
acceleration are parallel vectors, subject to the additional condition that the velocity
gradient has a pair of complex conjugate eigenvalues.

Related to the parallel vectors technique is the extraction of creases (ridges and
valleys). Examples are the definition of vortex axes as valley lines of pressure by
Miura and Kida [20] and the definition of Lagrangian coherent structures as ridge
surfaces of the finite-time Lyapunov exponent, by Haller [13]. Extraction of creases
requires first and second derivatives of a scalar field. Therefore, this is not a typical
multifield method, but rather a method based on derived fields.

Fields of a multifield often represent different physical quantities. An interesting
technique for comparing multiple scalar fields is to compare their gradients. For k ≤ n
scalar fields in n-space, the comparison measure proposed by Edelsbrunner et al. [10]
is the volume of the parallelotope spanned by the k gradient vectors. A feature can



17 Feature-Based Visualization of Multifields 193

now be defined to consist of the places where all gradients are similar with respect
to this measure. In the given application example, a pair of scalar quantities from a
combustion simulation was used, and the resulting features represent the frame front.
Nagaraj et al. [22] use as an alternative comparison measure the norm of the matrix
composed of the gradient vectors.

Feature definitions can involve, besides physical quantities, also geometric infor-
mation. An example are the spatial coordinates, which can serve to define features
restricted to regions-of-interest. A less trivial information, that deserves to be called
a “field” within the multifield, is the wall distance, the distance of each data point to
the nearest point on a solid boundary. Wall distance is required for some turbulence
models, therefore it is provided as output by most CFD solvers. It can be used to
focus on features that are either close to walls or distant from walls. Furthermore,
wall distance is needed for estimating limits, such as the wall-shear stress, a quantity
which is of importance, e.g., for the study of aneurysms in medical data [23]. The
wall-shear stress is amenable to 2D vector field topology, and the latter can be com-
bined with the 3D topology of the velocity field, thus making vector field topology
a two-field method [26].

17.3.3 Statistical Features

In multifield data sets with homogeneous field types, i.e., collections of scalar fields,
the existence of a common dimensionality allows the application of statistical meth-
ods for visualization purposes. Especially in this context of the visualization of sta-
tistics of fields, data is often called multi-variate data, see [5]. While most features
defined in this manner are representatives of the group of combined features, as is the
case for multifield feature detectors or operators, some techniques compute statistics
over time or space rather than different fields.

The most basic geometric feature in a scalar field is an isocontour or, in a three-
dimensional setting, an isosurface. Their mathematical and computational simplic-
ity makes them prime for feature analysis in sets of scalar fields. Gosink et al. [12]
perform statistical multifield visualization on multiple scalar fields by extracting
representative principle isosurfaces of one of the scalar fields and color it accord-
ing to correlation of a pair of two other scalar fields present in the data set. These
principle isosurfaces correspond to contours of the most frequently occurring scalar
values. The required statistics for frequency determination are gathered by scalar-
value histogram computation. The variation of a collection of scalar fields is another
statistical quantity that can contribute to multifield visualization. In the work by
Nagaraj et al. [21] relevant isovalues are identified by computing and plotting the
variation density function of multiple scalar fields in a data set. Their method is able
to compare n ≤ k scalar fields in a k-dimensional data set and helps in identify-
ing characteristic isosurfaces in sets of scalar fields. Two scalar field comparison
methods that extend to n dimensions are presented by Sauber et al. [30], namely
gradient similarity and local correlation coefficient. The large number of correlation
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fields created by their method requires the use of a multifield graph for interactive
correlation field selection. Regions with interesting field correlations can be easily
selected manually.

A related problem that is not so much concerned with correlations between dif-
ferent fields, but with statistical and stochastic properties of different instances of
the same field is known as ensemble data analysis. Ensembles are frequently used
in meteorological data analysis, where a number of simulation outputs created by
perturbed simulation input parameters are compared to investigate the likelihood
of certain weather events. For small perturbations, the resulting ensemble data sets
have high correlation and describe the same sets of variables. In the work by Smith
et al. [31] outputs from multiple simulation runs are clustered before visualization
to avoid the loss of distinct features when global averaging over all simulation runs
is applied. Potter et al. [28] visualize standard deviation and mean of ensembles by
color mapping and contouring. The simultaneous visualization of contours from mul-
tiple scalar fields called spaghetti plots facilitates analysis of relative distributions of
scalar values.

Correlation and variation can not only be computed for sets of fields, but also
for different instances of the same variable as common in time-varying data sets.
In such a way Jänicke et al. [16] compute local statistical complexity for different
quantities of CFD simulations. Local statistical complexity is a measure that describes
the predictability of values of a local variable overt time. Extrema of this measure
often correspond to interesting regions in the flow domain or feature regions as, for
example, extracted by vortex core techniques. The mathematical framework allows
application of the same visualization and feature extraction to different fields of the
same simulation, while providing independent visualization output for each analyzed
variable. Thus, it is a multifield visualization technique only in the sense that it can
be applied to several fields in a multi field data set in a consistent way.

17.3.4 Interactive Feature Specification

Features in fields or multifields have in the ideal case a precise mathematical definition
which does not depend on any “tuning” parameters. An example in hydrodynamics
are cavitation zones, which occur where the local pressure falls below the vapor
pressure at the given temperature. As another example, Hunt et al. [15] defined an
eddy as the region with positive second invariant, Q, of ∇u, with the additional con-
dition that the pressure be lower than the ambient value. While this is a precise and
parameter-free definition, there are competing definitions of eddies, which in a visu-
alization can be used as well, possibly even in combination. An example of a feature
definition involving a parameter is the vortex definition of Jeong and Hussain [17].
In the original definition, the derived quantity λ2 has to be negative, but practically,
for better isolation of the vortices a negative number is used as a threshold for λ2.
Such feature definitions involving a parameter require a visualization system where
parameters can be controlled by the user. For multifields the visualization system
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has to support several such parameters and the possibility to derive new fields from
the given ones. A system for combining multiple volumetric scalar fields by apply-
ing a hierarchy of algebraic and logical operations has been proposed by Woodring
et al. [37]. Not in all cases, the feature definition is known in advance. For an interac-
tive feature specification, Doleisch et al. [8] presented a feature definition language,
in which a hierarchy of subset operations is built up interactively by using “brushing”
operations in a system offering multiple views, i.e., projections of the data space.
The feature definition language has been applied to hurricane simulations [9] and
chemical reactions in biological processes [35]. A similar system of linked views
has been used by Blaas et al. [4] for medical applications, especially for studying
tumors for surgery planning.
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Chapter 18
Feature Analysis in Multifields

Hamish Carr

Abstract As with individual fields, one approach to visualizing multifields is to
analyze the field and identify features. While some work has been carried out in
detecting features in multifields, any discussion of multifield analysis must also
identify techniques from single fields that can be extended appropriately.

18.1 Introduction

Analysis of features in multifields is a discipline in its infancy. As such, the relevant
literature is somewhat scattered, but some broad categories can be seen in the existing
work. Before examining these categories, however, it is useful to start with a working
definition of a feature: a feature is a (usually) geometric feature of the underlying
phenomenon that is of significance to the user.

Strictly speaking, feature analysis relies on the computer to detect objects for the
human user to view or for further processing. In practice, it is more accurate to think
of there being a spectrum of methods:

1. Visual Fusion
2. Interactive Definition
3. Derived Properties
4. Distributions
5. Abstract Structures

Of these, visual fusion maps individual properties of the multifield to differ-
ent visual properties, then relies on the user’s visual system to identify regions of
interest. Interactive definition takes this one step further, with the user changing
the visual mapping(s)—in essence, this is a manual search of a parameter space.
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Derived Properties such as gradient, local density, vorticity or information theoretic
complexity are computed directly from the input data, then visualized separately.
Distributions compute statistics of one or more properties of the data which are
visualized separately, while Abstract Structures show summary information about
relationships deduced from the data.

All these methods depend on implicit or explicit understanding of features, so that
feature analysis in multifields depends strongly on interactive and human-centred
methods. Moreover, it is characteristic in all methods that the result is confirmed by
visualizing any features detected directly, and usually interactively.

In addition to this spectrum of methods, it is often the case that researchers in the
application domain have an existing test for features which can be exploited directly.
Moreover, visual fusion, interactive methods, derived properties and clustering are
canvassed elsewhere in this volume, and are largely omitted, except where explicit
feature extraction is used.

As a result, it is convenient to discuss multifield feature detection and analysis in
the following categories:

Section 18.2 Scalar Features in Reduced Domains
Section 18.3 Scalar Features in the Range
Section 18.4 Manifold Features
Section 18.5 Overlapping Scalar Features
Section 18.6 Joint Feature Analysis

18.2 Scalar Features in Reduced Domains

A related approach is to choose a feature in one property of the multifield, then
restrict another property to that feature, and analyse its restriction.

Bremer, Weber et al. [2] apply this to combustion simulations. One property
(temperature) is restricted to define an isosurface. Features are then identified and
tracked over time for a second property (combustion rate) restricted to the underlying
isosurface. Subsequently, Bremer, Weber et al. [3] analysed the topology of one
property (fuel consumption), but annotated the features so discovered with values
derived from the other properties.

Ropinski et al. [34] extract aortic arches from mouse PET/CT scans, then use
image-processing techniques to recognize standard features and register the scans.
Once this is done, however, secondary properties such as vessel diameter are mapped
onto the detected geometry for human visualization.

To date, however, there has been relatively little work performed under this head-
ing. Instead, many researchers have concentrated on detecting features in the range
of the multifield, and we consider these approaches next.
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18.3 Scalar Features in the Range

Instead of reducing the multifield to a scalar field defined over the same domain, it
is possible to reduce the multifield to a scalar field whose domain is the range of the
multifield. Once this has been done, it becomes possible to perform scalar feature
detection this new scalar field, provided that there is a solid understanding of the
relationship between features in the domain and features in the range of the function.

Work in this area includes many papers on transfer function design, and in particu-
lar multi-dimensional transfer function design. This work started with the observation
by Levoy [25] that aliasing (also called partial volume effects) mean that an isovalued
boundary is rarely seen clearly in a simple isovalue-based transfer function. Levoy’s
solution was to define a tent function in which isovalues close to a selected isovalue
were given opacity proportional to both the proximity to the isovalue and to the local
gradient: much subsequent work on transfer functions has been based on variations
of this.

Kindlmann and Durkin [21] then showed that the sampled isovalues can be plotted
against gradient values in a scatterplot, and that, due to partial volume effects, edges
show up in these plots as parabolic arcs. Sato et al. [35] elaborated this with several
characteristic types of object showing up as different types of curves, then applied
fuzzy logic to assign individual samples to different classes of curves (i.e. features).

Kniss et al. [22, 23] built an interface in which rectangular and triangular regions
were used in the isovalue-gradient histogram to identify features in the domain, and
related their triangular regions to Levoy’s tent functions. In contrast, Tenginakai et
al. [39] computed secondary moments such as skew and kurtosis, then displayed two-
dimensional histograms of isovalue plus one other property and visually identified
isovalues of interest: in some of these plots, the features of interest are ellipsoidal.

Independently, Kettner et al. [20] showed an interface where the number of com-
ponents in the isosurfaces was mapped to isovalue and time to produce a two-
dimensional plot of topological complexity, in which topological complexity was
recognizable in the forms of peaks for individual time-slices, or ridges when con-
sidered over time. Again, these features were simply observed, rather than detected
automatically.

Similarly, Rezk-Salama et al. [32] described using trapezoids, paraboloids and
quadrilaterals for designing transfer functions in the 2D isovalue-gradient histogram.
Hadwiger et al. [16] used rectangular blocks in 3D transfer functions: here, two of the
three properties were derived properties from an underlying scalar field, but the same
approach to transfer function design could be used to define features in multifields.

Šereda et al. [40] used a span space representation instead of gradient, then used
region-growing to identify peaks as features in the span space. However, span space
is now know to be equivalent to the isovalue-gradient histogram [8], so this can
now be seen as a variation on the general theme of feature detection in the range.
Similarly, Roettger et al. [33] performed region detection in a smoothed version of
the isovalue-gradient histogram.
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Rautek et al. [30] used fuzzy logic on multiple derived properties such as gradient
and curvature. Because this implicitly uses ranges in each, the effect of this is to
apply blocks or Gaussian ellipsoids in the histograms to define features, even if they
are not shown directly. Johnson and Huang [19] compute histograms separately for
individual properties, and compare them using boolean predicates to identify features
of interest.

Song et al. [38] provided a volume-renderer for meteorological data that incorpo-
rate an equation parser so that scientists could compute derived properties at runtime
in order to identify features. In a similar vein, Glatter et al. [14] assumed that the
underlying numerical data could be represented in textual form, then used grep-style
pattern matching to identify features. Gosink et al. [15] also took a similar approach,
giving it the name of Query-Driven Visualization.

Maciejewski et al. [27] combined this with clustering to define features as arbitrary
shapes in the isovalue-gradient histogram. It thus becomes clear that it is feasible,
although not necessarily desirable, to discuss clustering in the context of n-D his-
tograms.

More recently, Lindholm et al. [26] observed that small spatial neighborhoods
in medical data normally intersect only a few distinct materials. Thus, by identify-
ing ellipsoidal Gaussian peaks in local histograms, material types are identified and
mapped to transfer functions. These peaks are mapped manually, except in simple
cases, where they can be detected by iterative peak detection, or in established work-
flows, where templates from other data sets can be adapted. Similarly, Correa and
Ma [7] used manual sums of Gaussians to define features in 2D histograms.

18.4 Manifold Features

We have just seen that features can be detected in either the domain of the function or
in its range. Interestingly, this allows us to see in retrospect that multiple researchers
have converged on similar solutions: defining features to be compact sets (preferably
peaks) in n-D histograms or n-D feature space.

More recently, work that relates n-D feature space or n-D histograms back to the
domain started with the observation by Carr et al. [5] that statistics of data sampled
from a continuous function are directly related to geometric properties of contours
in the domain. Subsequent work by Scheidegger et al. [36] refined the formulation
to include a missing gradient factor. Simultaneously, Bachthaler and Weiskopf [1]
showed that the observation could be extended to multifields, and that doing so
resulted in the continuous scatterplot: i.e. that multi-dimensional histograms are
discrete approximations of a projection of the function manifold to the range.

Subsequently, Lehman and Theisel [24] observed that a prominent feature of
continuous scatterplots was the presence of visible edges, or boundary curves, and
extracted these curves with Canny edge-detection. This ties in with recent work
by Duffy et al. [9] which formalises the relationship of histogram statistics with the
function manifold and Geometric Measure Theory [13], the underlying mathematical
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theory of integration. As part of the connection between integration, mensuration and
statistics, these authors identified the role in integration of the multiplicity function
which measures the number of distinct input values mapping to a single output value.
From this viewpoint, it then becomes apparent that the boundary curves detected by
Lehman and Theisel [24] are the folds in the manifold when projected into the
range. It then follows that this form of feature detection is related to domain-based
topological analysis.

Nagaraj and Natarajan [28] have also recently defined a variation density function
for multifields: while the details have not been explored, it seems likely that this
function is also connected to mensuration.

Heinrich and Weiskopf [18] have also extended continuous scatterplots to parallel
coordinates: by implication feature-recognition techniques are likely to develop in
this area as well.

In summary, then, three broad trends are visible in recent work in this area: that
transfer function papers often rely in practice on human perception to detect features
in multi-dimensional histograms, that theoretical work is providing strong linkages
between the multi-dimensional histograms and the underlying multifield, and that
feature recognition methods are increasingly exploiting these linkages to identify
significant features.

18.5 Feature Overlap

Since feature detection algorithms now exist in scalar and vector fields, one simple
approach is to detect features separately in each field, then overlap them spatially to
see how well they match.

Woodring and Shen [41] allowed the user to perform set operations on
(iso-)surfaces defined by individual properties. Similarly, Navrátil et al. [29] mapped
isosurfaces of different properties to different colours. In each case, we can see that
isovalued-features (i.e. isosurfaces) are in effect being overlapped either logically or
visually.

Schneider et al. [37] took the next step by using contour trees to recognize features
of each of two fields separately. For each pair of features, the spatial overlap was
computed as a similarity measure. An interface then showed all pairings above a
similarity threshold as a bipartite graph for user selection. Heine et al. [17] then
extended this to arbitrary numbers of fields, showing strong correlations as cliques.

18.6 Joint Feature Analysis

We have noted above that scalar topological analysis can be applied to one or more
properties of the multifield. The obvious next question is whether there exist forms
of topological analysis that can be applied directly to the multifield. To date, several
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approaches have been reported, all based on the existing work on scalar data, in
particular the contour tree and Reeb graph approaches.

Edelsbrunner and Harer [10] introduced Jacobi Sets, which produce a skeletal
representation of the data by tracking the critical points of individual properties as
other properties are varied. Edelsbrunner, Harer, Natarajan and Pascucci integrated
gradients over Jacobi Sets to find κ , a measure of topological persistence, and used
this to identify features. However, since the Jacobi Sets were 1 − D structures, the
features identified could not be space-filling.

In subsequent work, Edelsbrunner et al. [11] computed time-varying Reeb graphs
for continuous space-time data and related them to Jacobi Sets, while Nagaraj and
Natarajan [28] showed how to simplify Jacobi Sets.

Carlsson, Singh and Zomorodian [4] also described a formal algorithm for mul-
tidimensional persistence, a generalization of persistence for scalar fields.

A more general approach is to take Reeb graphs and generalise them. For a
functions f : IRm → IRn , a contour can be defined as a connected component
of the inverse image f −1(h) for some h ∈ IRm . Following the definition of the
Reeb graph [31], Edelsbrunner, Harer & Patel defined the Reeb space [12] to be the
continuous contraction of each contour to a single point. Since the domain has n
dimensions instead of the one originally assumed by Reeb, the result is not a graph
but a manifold of dimension min(m, n). More recently, Carr and Duke [6] have
described the Joint Contour Net—a graph approximation of the Reeb space.

Since the Reeb graphs and contour trees of individual properties can be extracted
directly from the Reeb space or Joint Contour Net, many of the approaches described
above will turn out to be special cases of this more general approach. Similarly, both
Jacobi Sets and multidimensional persistence are likely to be special cases.

While none of these methods is complete, multivariate analysis is beginning to
become possible, and visualizations based on these abstractions can be expected to
follow in due course.
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was another important topic of discussion the same year. The subject of how to eval-
uate visualization returned a few years later. Chris Johnson published a list of 10 top
problems in scientific visualization research. This was followed up by report of both
past achievements and future challenges in visualization research as well as financial
support recommendations to the National Science Foundation (NSF) and National
Institute of Health (NIH). Chen recently published the first list of top unsolved infor-
mation visualization problems. Future research directions of topology-based visual-
ization was also a major theme of a workshop on topology-based methods. Laramee
and Kosara published a list of top future challenges in human-centered visualization.

19.1 Introduction

Robert S Laramee:

Evaluation, solved and unsolved problems, and future directions are popular themes
pervading the visualization community over the last decade. The top unsolved prob-
lems in both scientific and information visualization was the subject of an IEEE
Visualization Conference panel in 2004 [10]. The future of graphics hardware was
another important topic of discussion the same year [6]. The subject of how to eval-
uate visualization returned a few years later [3, 12]. Chris Johnson published a list of
top problems in scientific visualization research [4]. This was followed up by report
of both past achievements and future challenges in visualization research as well
as financial support recommendations to the National Science Foundation (NSF)
and National Institute of Health (NIH) [5]. Chen recently published the first list of
top unsolved information visualization problems [1]. Future research directions of
topology-based visualization was also a major theme of a workshop on topology-
based methods [2, 11]. Laramee and Kosara published a list of top future challenges
in human-centered visualization [7].

These pervasive themes coincide roughly with the 20th anniversary of what is often
recognized as the start of visualization in computing as a distinct field of research [8].
Consensus is growing that some fundamental problems have been solved and a re-
alignment including new directions is sought. In accordance to this redirection, we
present a list of top unsolved problems and future challenges in multi-field visu-
alization. Our list draws upon discussions at the Dagstuhl Workshop in Scientific
Visualization 2011 as well as our own first hand experiences.

19.2 Challenges

Hamish Carr on Topology:

While scalar and vector topology have received a lot of attention, multifield topology
and visualization techniques based on it have not. Moreover, where a large body of
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literature existed on topological analysis of scalar or vector data, the same is not
true for multi-field topology. For example, Morse-Smale complexes are based on
gradient lines, but in multifield data, the gradient is replaced by the Jacobian, a ten-
sor quantity, and it is far from clear what the equivalent of a gradient line might
be. Even were there to be an equivalent, the mapping to features in the underly-
ing phenomena is not clear—where the Morse-Smale complex can be understood
in terms of drainage patterns, such metaphors are not immediately obvious for s.
As a result, the challenges related to multifield topology are manifold, including
developing the underlying mathematics, insight and metaphors, as well as the usual
topological feature descriptions, algorithms, data structures, visualization methods,
and interfaces.
Min Chen on Standard Protocols:

One of the most fundamental challenges in multi-field visualization is to establish a
set of intuitive and effective protocols for using visual channels. Given a multi-field
data set, a “brute-force” visual design would be to juxtapose the visualizations of
individual fields. However, such a visual design cannot support many comparative
or combinational tasks effectively because of the difficulties in visual search for
spatially corresponding positions across many images. An alternative approach is
to depict information in the multi-fields in a comparative or combinational manner.
However, as existing visual representations have largely been developed for single
field visualization, combining such visual representations into a single visualization
will inevitable cause conflicts in using visual channels. For instance, if the color
channels are being used for one field, the other fields may have to make use of less
desirable channels. Furthermore, there is no commonly agreeable means to depict
the effect of constructive operations on different fields. For example, if one has
used the texture channel to depict the similarity and difference between two scalar
fields, perhaps one should not use such a channel for depicting the addition or union
of these two fields in the same application. Hence, we may challenge ourselves
with the following questions. Should there be some standard (or de facto standard)
visual designs or visual metaphors for depicting different constructive operators (e.g.,
addition, subtraction, mean, OR, AND, etc.)? Should there be some standard (or de
facto standard) protocols for visualizing some common configurations of multi-fields,
such as two or a few scalar fields, on scalar field and one vector field, and so on? Can
we evolve such protocols from some ad hoc visual effects, to commonly adopted
visual metaphors, and eventually to standardized visual languages?

Helwig Hauser on Multi-dimensional, Scientific Visualization:

One common notion of scientific data is to consider it as a mapping of independent
variables—usually space and/or time in scientific visualization—to a set of depen-
dent values, very often resembling some measurements or computational simula-
tion results that represent different aspects of a natural or man made phenomenon.
Traditionally, neither the spatio-temporal domain nor the dependent variables are
of higher dimensionality. A larger number of dependent values, however, leading
to multi-variate data (as a special case of multi-field data), however, has recently
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lead to interesting visualization research. Highly interesting and very challenging,
also, the emergence of higher-dimensional scientific data (in the sense of a higher-
dimensional domain) leads to new visualization questions. Multi-run/ensemble sim-
ulation data, for example, includes parameters as additional independent variables.
New approaches are needed to deal with this situation, especially in the context of
scientific visualization, where generally a stronger and more immediate relation is
present between the domain of the data and the visualization space (and to estab-
lish this relation in an effective way becomes more challenging, obviously, the more
dimensions the data domain has). The integration of descriptive statistics, for exam-
ple, is one opportunity that allows to perform a linked interactive visual analysis
both on aggregation level as well as on the original multi-run data. It seems clear,
however, that more research is needed to more thoroughly discuss, what the best
possible approaches are.

Robert S Laramee on Spatial Integration:

Another major challenge of multi-field visualization is the integration (or coupling)
of two or more data fields into the same spatial domain from which they originate. A
common example is from computational fluid dynamics (CFD) [9]. CFD simulation
data generally contains many attributes, e.g., flow velocity, pressure, temperature,
kinetic energy, etc. And each multi-attribute data sample is associated with the same
spatial domain. It is tempting to separate each attribute into its own visualization
space, either abstract or scientific. However, integration of the data attributes into
the same spatial domain from which they stem offers distinct advantages. However,
how can such an integration be done in a meaningful and helpful way without over-
crowding the visualization space?

Lars Linsen on Intuitive Visual Exploration of Multi-variate Features:

Features may have a complicated geometrical structure in the multi-dimensional
attribute space. Extracting those features interactively is often tedious, if not impossi-
ble. Automatic components can help to compute such features. However, an intuitive
visual exploration of such features is crucial to the user’s understanding. What is the
object space representation and, more importantly, what attribute values correspond
to such a feature? Are their other features that are related, which possibly should
have been merged by the automatic component? How homogeneous is a feature?
Are their sub-regions within a feature that allow for further splitting of the feature?
Such questions shall a user be able to answer when exploring the multi-field data.
Intuitive visual encodings in object- and attribute-space as well as intuitive interaction
mechanisms need to be provided.

Klaus Mueller on Channel Fusion:

The term “channel” is often used in the context of color images, comprised of a reg-
ular array of RGB color pixels. By mapping these 3D vector data to the three display
primaries, channel fusion can occur directly in the viewer’s visual system, engaging
the tristimulus processes of color perception. However, once the number of channels
exceeds three, the fusion must be externalized via some analysis and subsequent
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transformation to RGB color for display. In essence, one may regard this fusion as
a mapping from H to L where H is the original and L the reduced number of chan-
nels, with the latter being three in this case. These types of reductive mappings are
often encountered in low-dimensional embeddings of high-dimensional data. Such
embeddings are ill-defined once the number of significant principal components in H
is greater than L, which is most often the case. Hence, when applying such techniques
for channel fusion, one must make certain trade-offs which are also determined by the
type of dimension reduction technique used. There are a great many of these, some
linear (PCA, LDA, and others) and some non-linear (MDS, LLE, and others). The
former require some kind of component thresholding for channel reduction, while
the latter suffer from distortion problems. Since in our specific case, both thresh-
olding and distortion will affect the color composition of the display—as opposed
to the spatial layout—the effects are possibly more noticeable. This leaves much
room for further study. For example, it will be interesting to examine to what extent
feature analysis and user-defined or learned constraints can be used to alleviate or
control the adverse effects of dimension reduction in color display. A targeted and
intuitive user interface might be needed to determine the appropriate fusion map-
ping. Finally, since gradients and higher-order derivatives are often employed in the
graphics rendering of the data, it will be beneficial to study how the tensor resulting
from high-dimensional derivative calculus can be interpreted for shading and other
gradient-enhancements in 3D.

Vijay Natarajan on Categorizing Relationships between Fields:

Scientists try to understand physical phenomena by studying the relationship between
multiple quantities measured over a region of interest. A characterization of the
relationship between the measured/computed quantities will greatly enable the
design of effective techniques for multifield visualization. For example, the depen-
dence between fields could be linear or non-linear, the fields could be statisti-
cally correlated, or the relationship can be inferred using information theoretic
measures. A challenging problem in this context is the categorization of different
types of relationships and the design of measures that quantify the relationship in
each case.

Harald Obermaier on Field Prioritization:

Modern simulation and measurement techniques can generate large numbers of fields
spanning a wide range of types. While some of these fields may be crucial for the
understanding and analysis of the behavior of the system, others may be used to
enhance or extend the insights gained by multi-field visualization, while further others
are largely irrelevant from an application or visualization point-of-view. Such a static
prioritization of fields in a multi-field setting limits the potential of in-depth visual
analysis especially in the area of application-driven data analysis, where the focus
of interest can change during exploration. Future research in (interactive) multi-field
visualization has to develop and integrate techniques that allow for a dynamically
changing focus or field prioritization. Especially for inhomogeneous field types the
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question remains, how and whether multi-field visualization can incorporate such
dynamic changes in an intuitive and expressive way.

Ronald Peikert on Feature-based Visualization:

The challenges of multifield visualization also extend to the area of feature-based
visualization. Many useful techniques have been developed for finding inherent fea-
tures in scientific data. They typically operate on one or at most two scalar, vector
or tensor fields. In most cases, such feature detectors are not based on concepts that
easily generalize to larger multi-fields containing additional variables. A feature can
in the simplest case be represented by scalar field indicating the presence or absence
of the feature or, alternatively, a probability for the feature to be present at a given
location. But even with this simple notion of a feature, it is not clear how to combine
a large number of them in a single visualization. To visualize their statistics, e.g.,
using uncertainty visualization techniques, can be a solution, but only if the features
are based on the same physical quantities and can therefore be directly compared.
New approaches are needed if the underlying multi-field represents a multitude of
physical quantities, in which case features having different meanings are to be com-
bined in one visualization. Extending other feature concepts, such as geometric or
topological ones, to multi-fields will be an additional challenge.

Eugene Zhang on Tensor Fields and their Derived Fields:

Given a tensor field of some order, it is possible to derive a number of tensor fields
from it. Examples of this includes the spatial gradient, the Laplacian, and the diver-
gence. The derived fields contain rich information and provide great insight to the
original field. However, the derived fields often are of a different order. This leads
to the need of simultaneous analysis and visualization of multiple tensor fields of
different types. Most existing work on multi-field analysis focuses on fields of the
same type, and there has not been much research on higher-order tensor fields due
to the mathematical and physics background it often requires.
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Chapter 20
Overview of Visualization in Biology
and Medicine

Arie E. Kaufman, Gerik Scheuermann and Jos B.T.M. Roerdink

Similar to all other areas of visualization, visualization in biology and medicine is
driven to a large extent by developments in the application domain itself. In recent
years, new experimental techniques have increased measured data by orders of mag-
nitude. These technological improvements continue to change biomedical research,
and consequently, biomedical visualization. Thus far, there is no end in sight to
this continuous challenge. One special aspect in this development is that biomedical
research uses more and more heterogeneous data which need to be integrated to
gain insight. This requires visualization systems that deal with these different data
types and provide a unified view of this variety of aspects of the same problem.
Especially, we continue to see measured images (but with an enormous increase in
resolution), networks (with rapid updates and increasing size), electromagnetic sig-
nals, simulations of partial differential equations, and rapidly increasing genomics
data that are partially or all present in typical application scenarios. Publicly available
databases enhance this trend substantially, since the data in an application scenario
typically comes only partially from measurements and simulations of the researcher
or medical doctor—the rest of the picture comes from databases. In addition, most
modern research in life sciences requires consideration of different scales spanning
many orders of magnitude in space and time. Furthermore, we see the ongoing
trend of data analysis and data cleaning incorporated into the visualization process.
Overall, we observe that visualization has become a key technology for larger parts
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of biological and medical research. This underlines the high practical relevance of
the on-going quest in visualization to find the optimal tool for human insight. Even
as various issues become solved problems, further developments in technology and
new questions posed by researchers require an unceasing and continuous spectrum
of research in the fields of data acquisition, management, analysis, and visualization
in order to achieve further insight.

Chapter 21 provides a general overview of the emerging field of connectomics.
Connectomics is a branch of neuroscience that attempts to create a connectome,
that is, a complete map of the neuronal system and all connections between neu-
ronal structures. Such a holistic representation can then be used to understand how
functional brain states emerge from their underlying anatomical structures and how
dysfunction and neuronal diseases arise.

The notion of brain connectivity by itself is not straightforward. In fact, different
types of connectivity can be distinguished at different spatial scales. Structural or
anatomical connectivity usually refers to the physical connections between neural
elements. Functional connectivity refers to the temporal correlation between spa-
tially remote neurophysiological events; it does not necessarily imply an anatomical
connection. Finally, effective connectivity concerns causal interactions between dis-
tinct units within a nervous system. One can also differentiate between macro-, meso-,
and microscale connectomes. At the macroscale, a whole brain can be divided into
anatomically distinct areas with specific patterns of connectivity. One order of mag-
nitude smaller is the mesoscale connectome that describes local neuronal circuits,
such as, cortical columns. At the finest microscale, the connectome involves mapping
single neuronal cells and their connectivity patterns. Ultimately, connectomes from
all scales should be merged into one hierarchical representation.

Since the field of connectomics is to a large extent based on image data, visual-
ization is an important task for the analysis of brain structures and their functional
connections. Therefore, this chapter reviews the current state-of-the-art of visualiza-
tion and image processing techniques in the field of connectomics and associated
challenges. This chapter first presents some biological background into the con-
cepts of neural systems and model systems. Relevant imaging modalities are also
introduced, including electroencephalography, magnetoencephalography, magnetic
resonance imaging, positron emission tomography, and diffusion-weighted imag-
ing. Then, current techniques to extract connectivity information from the image
data at the macro-, meso-, and microscale are reviewed. Based on this extraction,
integration of the data for the important topics of brain mapping and neural network
modeling by reverse engineering are discussed. Lastly, techniques for visual analysis,
measurements, and comparative visualization are discussed.

Chapter 22 concerns visualization in biology. Similar to Chap. 21, the notion of
scale is very important. Basic biological research spans a huge range of scales, from
the genome level up to the cellular and population level. Advances in high-throughput
measuring devices such as genome sequencers and the public availability of large
amounts of data have fundamentally changed the way that biologists conduct
research. Access to this data has made visualization a key component in almost
every biological discovery workflow.

http://dx.doi.org/10.1007/978-1-4471-6497-5_21
http://dx.doi.org/10.1007/978-1-4471-6497-5_22
http://dx.doi.org/10.1007/978-1-4471-6497-5_21
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Several common themes can be identified in this field. First, to keep up with
the accelerated experimental process in biology, visualization tools should be devel-
oped rapidly to be relevant. A second challenge is the integration of many different
types of data. Visualization should support the discovery of complex patterns in such
heterogeneous data. Thirdly, close collaboration between biologists and visualiza-
tion researchers is essential for requirement elicitation and prototype design. The
chapter discusses visualization in the context of comparative genomics and func-
tional genomics, as well as evolutionary and developmental biology. The common
types of biological data, questions and methods in each of these fields are covered,
along with visualization challenges and case studies that highlight the biological
impact of visualization tools.

In the field of comparative genomics, scientists compare the genomes of organisms
to answer questions about evolution and how the genome encodes cellular functions.
Here, several challenges arise. First, the number of features to be compared can easily
run into the thousands. Second, the size of the features is often orders of magnitude
smaller than the size of the chromosomes. Third, it is often important to understand
the location and size of paired features in the context of their similarity scores. Many
current visualization tools do not support this.

Functional genomics studies how genes work together in a cell to perform different
cellular functions, such as metabolism or reproduction, and how these are controlled
by many interrelated chemical reactions which form complicated networks. Finding
differences and similarities in networks from different experimental conditions, in
different cell types, and in different species is an important component of functional
genomics. Again, scale is a major challenge. The number of nodes and links in the
network can become very large. Major questions are how to visualize such networks
on different scales, how to support interactive exploration and pattern discovery, how
to understand changes over time, and, maybe most difficult of all, how to integrate
the various data.

Finally, in evolutionary and developmental biology, scientists can nowadays cap-
ture data about living organisms at an unprecedented level of detail in time and space.
For example, it is possible to identify each single cell of a complex organism, follow
its development over time, and connect this with genetic information. This allows
the scientist to study how a single cell evolves into a complex organism, how inter-
nal regulatory processes cause differentiation, or how genomic differences relate to
differences in physiological structure. Due to the wealth of data, robust automatic
preprocessing and a sophisticated visualization framework are central requirements
to allow for future advances in this field.

Chapter 23 is about medical visualization. Given the ubiquitous nature of medical
volume data, medical visualization is now an established branch of visualization,
with applications in medical diagnosis, treatment, research and education. During
the past decades, medical image acquisition technology has undergone continuous
and rapid development. It is now possible to acquire larger and more complex data
than ever before by techniques such as computed tomography, (functional) mag-
netic resonance imaging, electroencephalography, diffusion tensor imaging, etc. The

http://dx.doi.org/10.1007/978-1-4471-6497-5_23
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questions that users attempt to answer using medical visualization have also become
significantly more complex.

This chapter first gives a brief overview of developments in medical visualization
over the past three decades. Basic techniques such as isosurface and direct vol-
ume rendering are discussed, as well as more advanced methods for multi-modal,
multi-field, multi-subject, and time-dependent data visualization. These techniques
are useful for therapy planning, predictive simulation, and diagnosis. In addition,
illustrative medical visualization is discussed, which is useful for presentation and
exploration purposes. Then, major medical visualization research challenges for the
coming decade are discussed. These arise first because of advances in hardware
and data acquisition, such as combined CT-PET scanners, simultaneous EEG-fMRI
acquisition, high angular resolution diffusion imaging (HARDI), molecular imaging,
high-resolution microscopy imaging, etc., leading to ever larger and more complex
data sets. Mobile display and computing devices also may have a great impact on
medical practice, leading to demands for new interaction and visualization for such
devices, and introducing tele-medicine. Other challenges are the interactive segmen-
tation of medical data, the integration of predictive simulation models and uncer-
tainty visualization in surgical planning, intelligent data mapping and reformatting,
and evaluation of illustrative versus (hyper)realistic visualization for diagnostic and
treatment planning purposes. Furthermore, visual analysis in healthcare as well as
visualization of population data are expected to grow in importance.

Chapter 24 is devoted to ultrasound imaging. Ultrasound is one of the most
frequently used imaging modalities in medicine due to its high spatial resolution,
interactive nature, and patient-friendliness. The main challenge of ultrasound is
image interpretation for diagnostic purposes, which requires extensive training.
Special problems arise because of the low dynamic range, noise and speckle occur-
ring in ultrasound images.

Ultrasound imaging presents several challenges for visualization. For example, in
functional ultrasonography, that is, ultrasound imaging of physiology and/or organ
function, information on motility, biomechanics and perfusion can be obtained non-
invasively. A set of 2D images can be aligned to form 3D data sets for which volume
visualization provides added value in terms of a more holistic understanding of
the data. Typical examples are demonstration of complex anatomy and pathology,
pre-operative surgical planning or virtual training of medical students. In addition,
matrix 3D probes are now on the market that allow real-time 3D acquisition. To ben-
efit from the high temporal resolution, advanced graphics techniques are required to
develop fast and efficient algorithms for rendering on-the-fly. Co-registration tech-
niques enable the use of multi-modal data sets. Fusion imaging, where ultrasound is
combined with either CT, MRI, or PET images, allows for more precise navigation
in ultrasound-guided interventions. This demands advanced visualization research
to enlighten how different data types can be combined and presented in novel ways.

This chapter presents the process-pipeline for ultrasound visualization, with an
overview of the specific tasks performed. A technique-based taxonomy is presented
based on a set of significant publications. In pre-processing, the ultrasound data is
reconstructed and oftentimes enhanced to improve quality. Segmentation techniques

http://dx.doi.org/10.1007/978-1-4471-6497-5_24
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are used to extract important features. Methods for registration, both rigid and non-
rigid, are discussed to align the ultrasound data with other modalities. The rendering
task presents a visual presentation of the data to the user, and important techniques
in transfer function design, multi-modal rendering, shading, and illumination are
discussed. Lastly, augmented reality projects are discussed which, though currently
not popularly available in clinical systems, show great potential for the future. The
differences between ultrasound-based techniques and techniques for other imaging
modalities are also discussed.

Chapter 25, finally, concerns visual exploration of simulated and measured blood
flow. This is of high importance in diagnosis and treatment planning for severe
cardiovascular diseases. Assessment of cardiovascular disease is facilitated by vari-
ous imaging modalities. Vascular diseases occur primarily at regions with complex
or unstable flow, which significantly influences the morphology of cardiovascular
tissue. The flow behavior is therefore of vital importance to the cardiovascular system
and potentially harbors a considerable value for both diagnosis and risk assessment.
The analysis of haemodynamic characteristics involves qualitative and quantitative
inspection of the blood-flow field. Visualization plays an important role in the qual-
itative exploration, as well as the definition of relevant quantitative measures and its
validation.

There are two main approaches to obtain information about the blood flow: simula-
tion by computational fluid dynamics, and real measurements. Although research on
blood flow simulation has been conducted for decades, many open problems remain
concerning accuracy and patient-specific solutions. Possibilities for real measure-
ment of blood flow have recently increased considerably through new developments
in magnetic resonance imaging which enable the acquisition of 3D quantitative mea-
surements of blood-flow velocity fields. MRI scanners with higher magnetic field
strengths (7–9 Tesla) provide the required resolution and signal-to-noise ratios to
analyze blood flow in smaller vessels than the main arteries around the heart.

This chapter presents the visualization challenges for both simulation and real
measurements of unsteady blood-flow fields. For simulation, challenges arise because
of the many assumptions made, the difficulty to make it patient specific, and the val-
idation. Measured flow data, on the other hand, although being patient specific, has
many limitations regarding resolution, artifacts, and noise in the data. An interesting
direction is to combine both methods for higher performance. Recent blood-flow
visualization techniques involve ad-hoc decisions with respect to seeding, segmen-
tation, or the use of illustration techniques, which need to be better linked to the
user needs. A major challenge is the novelty of this type of data for the domain
experts. Many existing methods involve rather complex visual representations that
might overwhelm a considerable portion of the target user group. Future research
should address simplifications of the blood flow and aim at a better understanding
of specific tasks, decisions and relevant information necessary to support blood flow
exploration with a guided workflow-based interaction.

http://dx.doi.org/10.1007/978-1-4471-6497-5_25


Chapter 21
Visualization in Connectomics

Hanspeter Pfister, Verena Kaynig, Charl P. Botha, Stefan Bruckner,
Vincent J. Dercksen, Hans-Christian Hege and Jos B.T.M. Roerdink

Abstract Connectomics is a branch of neuroscience that attempts to create a
connectome, i.e., a complete map of the neuronal system and all connections between
neuronal structures. This representation can be used to understand how functional
brain states emerge from their underlying anatomical structures and how dysfunction
and neuronal diseases arise. We review the current state-of-the-art of visualization
and image processing techniques in the field of connectomics and describe a number
of challenges. After a brief summary of the biological background and an overview
of relevant imaging modalities, we review current techniques to extract connectivity
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information from image data at macro-, meso- and microscales. We also discuss data
integration and neural network modeling, as well as the visualization, analysis and
comparison of brain networks.

21.1 Introduction

Connectomics is a field of neuroscience that analyzes neuronal connections. A
connectome is a complete map of a neuronal system, comprising all neuronal con-
nections between its structures. The term ‘connectome’ is close to the word ‘genome’
and implies completeness of all neuronal connections, in the same way as a genome is
a complete listing of all nucleotide sequences. The goal of connectomics is to create
a complete representation of the brain’s wiring. Such a representation is believed to
increase our understanding of how functional brain states emerge from their under-
lying anatomical structure [89]. Furthermore, it can provide important information
for the cure of neuronal dysfunctions like schizophrenia or autism [83].

Different types of connectivity can be distinguished. Structural or anatomical
connectivity usually refers to the “wiring diagram” of physical connections between
neural elements. These anatomical connections range in scale from those of local
circuits of single cells to large-scale networks of interregional pathways [87]. Func-
tional connectivity is defined as “the temporal correlation between spatially remote
neurophysiological events” [32]. This can be seen as a statistical property; it does
not necessarily imply direct anatomical connections. Finally, effective connectivity
concerns causal interactions between distinct units within a nervous system [32].

Sporns et al. [89] differentiate between macro-, meso- and microscale connec-
tomes. At the macroscale, a whole brain can be imaged and divided into anatomically
distinct areas that maintain specific patterns of interconnectivity. Spatial resolution
at the macroscale is typically in the range of millimeters. One order of magnitude
smaller is the mesoscale connectome that describes connectivity in the range of
micrometers. At this scale, local neuronal circuits, e.g., cortical columns, can be dis-
tinguished. At the finest microscale, the connectome involves mapping single neu-
ronal cells and their connectivity patterns. Ultimately, connectomes from all scales
should be merged into one hierarchical representation [89].

Independently of the scale, the connectivity can be represented as a brain graph
G(N ;E) with nodes N and weighted edges E representing anatomical entities and
the degree of structural or functional interactions, respectively. Associated to each
abstract graph is a graph in real space that connects real anatomical entities. Neural
systems can be investigated by analyzing topological and geometrical properties of
these graphs and by comparing them. An equivalent way of representing an undi-
rected or directed brain graph is a connectivity or association matrix C , whose entries
ci j represent the degrees of interactions. Thresholding and sometimes also binarizing
them reveals the essential interactions. A spatial connectivity graph can be depicted
in real space, showing the actual physical structure of the neural system. A connec-
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tion matrix is usually visualized using a color-coded matrix view. For more details
and examples see, e.g., the recent reviews [12, 30].

In contrast to genomics, the field of connectomics is to a large extent based on
image data. Therefore, visualization of image data can directly support the analysis
of brain structures and their structural or functional connections.

In this chapter, we review the current state-of-the-art in visualization and image
processing techniques in the field of connectomics and describe some remain-
ing challenges. After presenting some biological background in Sect. 21.2 and an
overview of relevant imaging modalities in Sect. 21.3, we review current techniques
to extract connectivity information from image data at macro-, meso- and microscale
in Sects. 21.4–21.6. Section 21.7 focuses on integration of anatomical connectivity
data. The last section discusses visually supported analysis of brain networks.

21.2 Biological Background

Neural systems. Functionally, neurons (or nerve cells) are the elementary signaling
units of the nervous system, including the brain. Each neuron is composed of a cell
body (soma), multiple dendritic branches and one axonal tree, which receive input
from and transfer output towards other neurons, respectively. This transfer is either
chemical (synapses) or electrical (gap junctions). Generally, during synaptic trans-
mission, vesicles containing neurotransmitter molecules are released from terminals
(boutons) on the axon of the presynaptic neuron, diffuse across the synaptic cleft,
and are bound by receptors on dendritic spines of the postsynaptic neuron, inducing
a voltage change, i.e., a signal.

These basic building blocks can mediate complex behavior, as potentially large
numbers of them are interconnected to form local and long-range neural microcir-
cuits. At the meso-level, local neuron populations, e.g., cortical minicolumns, can
be identified that act as elementary processing units. At the macroscale, neurons in
the human cortex are arranged in a number of anatomically distinct areas, connected
by interregional pathways called tracts [89].

Model systems. An important neuroscientific goal is to understand how the human
brain works. However, due to its complexity (with an estimated 1011 neurons with
1015 connections [89]), brain function at the circuit or cellular level is often studied
in other organisms that are more amenable in complexity and size.

Conserved genes and pathways between different species offer the potential
of elucidating the mechanisms that affect complex human traits based on similar
processes in other organisms. This problem is particularly tractable in the round-
worm Caenorhabditis elegans, whose brain with 302 neurons has been completely
mapped [106], or in insects. In these organisms brain structure and function can be
studied at the level of single identifiable neurons. Classical insect model organisms
that are well understood and allow easy genetic manipulations are the fruit fly
Drosophila melanogaster and the honeybee. Drosophila, for example, has been
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shown to be an experimentally amenable model system even for the study of such
quintessential human physiological traits as alcoholism, drug abuse, and sleep [63].

Rodents, being mammals, have a brain structure that is similar but much smaller
than the human brain, and that therefore can be used to study cortical networks.
The mouse brain is an attractive model system to study, for example, the visual
system, due to the abundant availability of genetic tools allowing monitoring and
manipulating certain cell types or circuits [38]. The whisker-barrel pathway of the
rat is a relatively small and segregated circuit that is amenable to studying sensory
information processing at the molecular/synaptic, cell, and circuit/region levels.

21.3 Imaging Modalities Employed in Connectomics

We now provide an overview of imaging modalities that are used in obtaining connec-
tivity information. They differ in the spatial and temporal resolution at which connec-
tivity is captured. At the macroscale there is a wide range of structural and functional
imaging modalities, with applications in medical settings and anatomical research.
Functional imaging modalities include electroencephalography (EEG), magnetoen-
cephalography (MEG), functional magnetic resonance imaging (fMRI), and positron
emission tomography (PET). Modalities such as single-photon emission computed
tomography (SPECT) and magnetic resonance imaging (MRI) provide structural
information on the macroscale. Section 21.4 gives a detailed introduction to the rel-
evant modalities in the context of connectomics. At the mesoscale, light microscopy
(LM) techniques provide sufficient resolution to image single neurons. Most light
microscopy techniques focus on structural imaging. Techniques such as wide-field
fluorescence microscopy allow for the imaging of living cells, and computational
optical sectioning microscopy techniques [17] enable non-destructive acquisition
of 3D data sets. Section 21.5 provides further details about light microscopy tech-
niques. At the microscale, the sufficient resolution is offered by electron microscopy
techniques (EM) such as Transmission Electron Microscopy (TEM) and Scanning
Electron Microscopy (SEM). These methods require technically complex speci-
men preparation and are not applicable to live cell imaging. Imaging of 3D vol-
umes requires ultra-thin sectioning of the brain tissue followed by computational
realignment of the acquired images into one image volume [46]. More information
about electron microscopy in the connectomics setting can be found in Sect. 21.6.
Figure 21.1 provides an overview of the different imaging modalities and their spatial
and temporal resolution.

21.4 Macroscale Connectivity

First, we discuss the main acquisition techniques for revealing macroscopic func-
tional and structural connectivity. We start with MEG and EEG, as these were used
for functional connectivity before fMRI, then diffusion-weighted MRI for structural



21 Visualization in Connectomics 225

Fig. 21.1 Different brain imaging modalities and their spatial and temporal resolutions. For con-
nectomics, light-(LM) and electron microscopy (EM) are mostly performed in vitro. The color
indicates functional versus structural information in the acquired data

connectivity, and finally fMRI for functional connectivity. Besides the visualization
approaches discussed here, the reader is also referred to Sect. 21.8 for more detail
on network analysis and comparative visualization techniques.

21.4.1 EEG and MEG

Developed in the 1920s, electroencephalography (EEG) is the oldest noninvasive
functional neuroimaging technique, which records electrical brain activity from elec-
trodes on the scalp. Nowadays, the number of electrodes can be as large as 128 or
even 512; in that case one speaks of multichannel or high-density EEG [81, 93].
By contrast, magnetoencephalography (MEG) measures magnetic fields outside the
head induced by electrical brain activity [35]. The temporal frequency of these sig-
nals ranges from less than 1 Hz to over 100 Hz. The spatial resolution is lower than
that of fMRI. Sometimes, MEG is preferred over EEG because the electrical signals
measured by EEG depend on the conduction through different tissues (e.g., skull and
skin). However, EEG has much lower costs and higher equipment transportability
than MEG (and fMRI). Moreover, EEG allows participants more freedom to move
than MEG and fMRI. In Sect. 21.8 we will discuss the use of EEG to discover func-
tional brain networks. Therefore, we will focus on EEG for the remainder of this
section.

Electrical potentials generated within the brain can be measured with electrodes
at the scalp during an EEG recording. The measured EEG signals reflect rhythmical
activity varying with brain state. Specific brain responses can be elicited by the pre-
sentation of external stimuli. For EEG analysis, one often studies activity in various
frequency bands, such as alpha, beta, theta or delta bands. As a result of volume con-
duction, an electrical current flows from the generator in the brain through different
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tissues (e.g., brain, skull, skin) to a recording electrode on the scalp. The measured
EEG is mainly generated by neuronal (inhibitory and excitatory) postsynaptic poten-
tials and burst firing in the cerebral cortex. Measured potentials depend on the source
intensity, its distance from the electrodes, and on the conductive properties of the
tissues between the source and the recording electrode.

Several visualization methods are applied to assist in the interpretation of the
EEG [93]. In a conventional EEG visualization, the time-varying EEG data are rep-
resented by one time series per electrode, displaying the measured potential as a
function of time. Synchronous activity between brain regions is associated with a
functional relationship between those regions. EEG coherence, calculated between
pairs of electrode signals as a function of frequency, is a measure for this synchrony.
A common visualization of EEG coherence is a graph layout. In the case of EEG,
graph vertices (drawn as dots) represent electrodes and graph edges (drawn as lines
between dots) represent similarities between pairs of electrode signals. Traditional
visual representations are, however, not tailored for multichannel EEG, leading to
cluttered representations. Solutions to this problem are discussed in Sect. 21.8.

21.4.2 MRI

In magnetic resonance imaging, or MRI, unpaired protons, mostly in hydrogen atoms,
precess at a frequency related to the strength of the magnetic field applied by the
scanner. When a radio-frequency pulse with that specific frequency is applied, the
protons resonate, temporarily changing their precession angle. They eventually regain
their default precession angle, an occurrence that is measured by the scanner as
an electromagnetic signal. By applying magnetic field gradients throughout three-
dimensional space, protons at different positions will precess and hence resonate at
different frequencies, enabling MRI to generate volume data describing the subject
being scanned.

21.4.2.1 Diffusion-Weighted Imaging

Water molecules at any temperature above absolute zero undergo Brownian motion
or molecular diffusion [23]. In free water, this motion is completely random, and
water molecules move with equal probability in all directions. In the presence of
constraining structures such as the axons connecting neurons together, water mole-
cules move more often in the same direction than they do across these structures.
When such a molecule moves, the two precessing protons its hydrogen nucleus con-
tains move as well. When this motion occurs in the same direction as the diffusion
gradient q (an extra magnetic field gradient that is applied during scanning) of a
diffusion-weighted MRI scan, the detected signal from that position is weakened.
By applying diffusion gradients in a number of different directions, a dataset can be
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built up showing the 3D water diffusion at all points in the volume, which in turn is
related to the directed structures running through those points.

Diffusion tensor imaging. When at least six directions are acquired, a 3 × 3 sym-
metric diffusion tensor can be derived, in which case the modality is described as
Diffusion Tensor Imaging (DTI). Per voxel DTI, often visualized with an ellipsoid,
is not able to represent more than one major diffusion direction through a voxel.
If two or more neural fibers were to cross, normal single tensor DTI would show
either planar or more spherical diffusion at that point. The left image of Fig. 21.2
shows a 3-D subset of such a dataset, where each tensor has been represented with
a superquadric glyph [50].

DTI visualization techniques can be grouped into the following three classes [102]:
Scalar metrics reduce the multi-valued tensor data to one or more scalar values such
as fractional anisotropy (FA), a measure of anisotropy based on the eigenvalues of the
tensor, and then display the reduced data using traditional techniques, for example
multi-planar reformation (slicing) or volume rendering. An often-used technique is
to map the FA to intensity and the direction of the principal tensor eigenvector to
color and then display these on a slice. Multiple anisotropy indices can also be used
to define a transfer function for volume rendering, which is then able to represent
the anisotropy and shape of the diffusion tensors [49].

Glyphs can be used to represent diffusion tensors without reducing the dimen-
sionality of the tensor. In its simplest form, the eigensystem of the tensor is mapped
directly to an ellipsoid. More information can be visually represented by mapping
diffusion tensors to superquadrics [50] (see Fig. 21.2).

Vector- and tensor-field visualization techniques visualize global information of
the field. The best known is probably fiber tractography, where lines are reconstructed
that follow the tensor data in some way and hence are related to the major directions
of neural fibers. In its simplest form, streamlines, tangent to the principal eigenvec-

Fig. 21.2 On the left, superquadric glyphs have been used to represent the diffusion tensors in a
3-D region of a brain dataset (image courtesy of Gordon Kindlmann, University of Chicago). On
the right, the cingulum neural fiber bundle has been highlighted in a full-brain tractography [8]
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tors of the diffusion tensors, are extracted and displayed [2]. Care must to be taken
to terminate the streamlines in areas of isotropic or planar diffusion. Hyperstream-
lines take into account more of the tensor information [109]. Many tractography
approaches require one or more regions of interest to be selected before tracts can
be seeded starting only from those regions, while more recent efforts allow for full-
brain fiber tracking followed by more intuitive interactive selection within the brain’s
tracked fiber bundles [8, 85] (see the right image in Fig. 21.2 for an example). For a
simplified visual representation, the envelopes of clustered streamline bundles can be
shown [25], or illustrative techniques such as depth-dependent halos can be used [26].
With probabilistic tractography, local probability density functions of diffusion or
connectivity are estimated and can in turn be used to estimate the global connectivity,
that is, the probability that two points in the brain are structurally connected [4]. This
type of data is arguably a higher fidelity representation of structural connectivity.
Connectivity between two points can be visualized with, e.g., constant-probability
isosurfaces, with direct volume rendering of the probability field, or using topolog-
ical methods from flow visualization [82]. Calculating and effectively visualizing a
full-brain probabilistic tractography would be challenging.

DSI and HARDI. As explained above, DTI is not able to capture more than one
principal direction per sample point. In order to reconstruct the full diffusion proba-
bility density function (PDF), that is, the function describing the probability of water
diffusion from each voxel to all possible displacements in the volume, about 500
or more diffusion-weighted MRI volumes need to be acquired successively. This is
called diffusion spectrum imaging or DSI [34] and is the canonical way of acquir-
ing the complete 3-D water diffusion behavior. However, the time and processing
required to perform full DSI complicate its use in research and practice.

In High Angular Resolution Diffusion Imaging, or HARDI, 40 or more direc-
tions are typically acquired in order to sample the 3-D diffusion profile around every
point [95]. Based on such data, multiple diffusion tensors can be fit to the data [95],
higher order tensors can be used [69], or a model-free method such as Q-Ball imag-
ing [96] can be applied. Q-Ball yields as output an orientation distribution function,
or ODF. The ODF is related to the diffusion PDF in that it describes for each direction
the sum of the PDF values in that direction. It can be visualized as a deformed sphere
whose radii represent the amount of diffusion in the respective direction.

HARDI visualization follows much the same lines as DTI visualization, except
that the data are more complex. Analogous to DTI, HARDI scalar metrics, such as
generalized (fractional) anisotropy and fractional multifiber index, can be used to
reduce the data to one or more scalar values that can be visualized with traditional
techniques. Multiple diffusion tensors can be represented as glyphs, or the diffusion
ODF can be directly represented using a tessellated icosahedron or by raycasting
the spherical harmonics describing the ODF [70]. This results in a field of complex
glyphs representing at each point the diffusion profile at that position. In contrast to
DTI glyph techniques, regions of crossing fibers can in general be identified.

Although there are fewer examples, especially in the visualization literature,
(probabilistic) fiber tracking can be performed based on HARDI data [72]. More
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recently, HARDI glyphs have been combined dynamically with DTI glyphs and
fiber tracts based on local data characteristics [73].

21.4.3 Functional MRI

Blood-oxygen-level dependence, or BOLD, is a special type of MRI that is able to
measure increased levels of blood oxygenation [67]. Due to requiring more glucose
from the bloodstream, active neurons cause higher blood oxygenation in nearby
veins. Based on this principle, functional MRI, or fMRI, uses BOLD to image time-
dependent 3-D neural activity in the brain [68].

fMRI can also be used to derive functional or effective connectivity in the
brain. Functional connectivity is determined by calculating the temporal correla-
tions between the fMRI signals originating from different parts of the brain [32].
This is done either whilst the subject performs a specific task, in order to assess
how the brain network is applied during that task, or during resting state, in order to
derive the baseline functional brain network. Connectivity data can be determined
between a specific seed region or voxel and one or more other regions or voxels, or
exhaustively between all regions or voxels in the brain.

Effective connectivity, defined as the causal influence one neuronal system exerts
over another, is dependent on a model of the connectivity between the participating
regions. For example, the signal at one position could be expressed as the weighted
sum of the signals elsewhere [32]. If the model is invalid, the effective connectivity
derived from fMRI is also invalid.

Visualization of fMRI-derived connectivity information is quite varied, often
combining techniques from scientific and information visualization. Scatter plots
have been used to plot correlation strength over distance, dendrograms and multi-
dimensional scaling to represent correlations between regions in 2D [80], matrix
bitmaps to represent region-wise correlation matrices [28], 2-D and 3-D
(pseudo-) anatomical node-link diagrams to show the derived brain networks [107],
and coupled-view visual analysis techniques to explore resting state fMRI data [99].
When connectivity is determined between all pairs of voxels in the cortex, visual-
ization and knowledge extraction pose perceptual and computational challenges that
have not yet been fully explored.

21.5 Mesoscale Connectivity

Light microscopy was the first modality that allowed for imaging of single neuronal
cells. While the resolution of a light microscope is not sufficient to resolve synapses,
it allows for the identification of major cell parts, such as dendrites, somas, axons, and
also boutons as possible locations for synaptic connections. Imaging whole neuronal
cells and analyzing their geometry enables neuroanatomists to identify different types
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of cells and to come to conclusions about their function. Following the motto “the
gain in the brain lies mainly in the stain” [1], the three following main techniques
are employed to map neuronal circuits with light microscopy [60].

Single-cell staining by dye impregnation. This is the oldest staining method and
it laid the foundation for modern neuroscience. As neuronal tissue is densely packed
with cells, a complete staining of the whole sample would not allow one to dis-
criminate single cells in light microscopy images. Instead, the so-called Golgi stain
enables stochastic marking of just a few individual nerve cells. The stained cells
appear dark in the light microscopy images, discriminating them from a bright back-
ground formed by the unstained tissue. This staining method, combined with the
ability of the light microscope to focus on different depth of the sample, allows for
3D imaging of the cell geometry. The famous neuroscientist Cajal (1852–1934) was
able to identify different types of neurons and also describe connectivity patterns and
principles of neuronal circuit organization using Golgi’s method [60].

Diffusion or transport staining. Diffusion staining techniques enable biologists
to analyze the projective trajectory of brain regions. For this technique, different
staining markers are injected into different regions of the brain in vivo. The staining
is then diffused along the connected neurons. Finally, a sample of brain tissue is
extracted from a different region, in which no marker has been injected. The color
code in the staining of different neurons in this area then reveals the projection of
these neurons back to the initial staining areas, providing information about long-
distance connectivity [33]. The range of possible colors for this method is limited to
three or four different stainings.

Multicolor or brainbow. This staining technique does not involve application or
injection of staining to brain tissue. Instead, transgenic mice are bred to produce
photophysical fluorescent proteins. A confocal laser-scanning microscope activates
the fluorescent proteins with a laser beam and records an image with the expressed
light. Brainbow mice are bred to express three fluorescent proteins of different colors.
By different stochastic expression of these three colors, the single neurons of the mice
are colored with one out of >100 labels. The main advantage of this method is that
it allows one to uniquely identify dendrites and axons belonging to the same neuron
in densely colored tissue [60], see also Fig. 21.3.

All of these three staining methods allow imaging the geometry of neurons at
the micrometer scale. The different staining protocols all aim at visually separating
single neurons out of the complex and dense neuronal tissue. Visualization tech-
niques for connectomics need to enhance the visual separation further, e.g., by
providing contrast enhancement and enabling flexible mappings of image data to
varying amounts of transparency in the transfer function [51]. Especially for the
brainbow staining it is useful to have visual enhancement of color differences in
regions of interest where two neurons with a similar staining combination need to
be distinguished. For diffusion staining this problem is less pronounced than for
brainbow data, as typically only three to four easily distinguishable colors are used.
But this also leads to the challenge of distinguishing two neighboring cells that are
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Fig. 21.3 Brainbow image of
mouse cerebral cortex tissue.
The different color stainings
facilitate the differentiation of
neuronal cells. Image
courtesy of Jean Livet and
Jeff Lichtman

stained with the same color. This problem also arises in the Golgi stain, as only one
color is applicable for this staining. Thus, visualization needs to focus on providing
a good impression of the neurons’ geometry. The user needs to be able to access
the three-dimensional structure on different scale levels to infer the connectivity of
dendritic parts and axons. In order to analyze the neuron geometry further, dendritic
and axonal trees have to be identified and segmented. This task is typically performed
either semi-automatically or fully automatically with a final proof-reading step [97].

An additional major challenge for the visualization of microscopy data sets in the
field of connectomics is the large data volume required to analyze the geometry of
full neurons. Microscopes typically only record regions of interest at the required
resolution. Afterwards the acquired images or image stacks need to be stitched into
one large data volume. While this problem is well known and automatic methods
for image stitching and alignment exist [24, 74], these tools typically work offline,
assembling all images into one large image file for later visualization. But with
image volumes in the gigapixel range this method is no longer applicable. Instead,
visualization tools are required to perform operations like image stitching, alignment,
contrast enhancement, and denoising on-demand in the region of interest shown to
the user. To allow for interactive visualization, these operations do not only need to
be executed fast, but also on multiple scales, allowing the user to zoom in and out of
the displayed data volume. Recent work by Jeong et al. [41] provides this demand-
driven visualization approach and combines it with a client server architecture. The
client can visualize the data with user interaction and annotation while computations
are performed on a high-performance server transparently to the user. Multiple client
instances can connect to the same server to allow multiple users to access the data at
the same time and cooperatively work on the same data set.
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21.6 Microscale Connectivity

In contrast to light microscopy, which is limited in its resolution by the wavelength
of light, electron microscopy enables imaging of neuronal tissue at the nanometer
scale. Hence, electron microscopy is the only imaging modality so far that can resolve
single synapses. However, the sample preparation and image acquisition in electron
microscopy is labor-intensive and time-consuming. As a consequence, the analysis
of the connectivity between single neurons has been limited to sparse analysis of sta-
tistical properties such as average synapse densities in different brain regions [20].
Little is known about the complete connectivity between single neurons. Information
about the individual strength of synapses or the number of connections between two
cells can have important implications for computational neuroanatomy and theoret-
ical analysis of neuronal networks [98].

Recently, significant progress has been made in the automation of ultra-thin serial
sectioning [36] and automatic image acquisition [21, 52]. These techniques allow
neuroanatomists to acquire large datasets of multiple terabytes (TB) in size. With a
resolution of 5 nm per pixel, and a section thickness of 50 nm, one cubic millimeter of
brain tissue requires imaging of 20,000 sections with 40 gigapixels per image, leading
to an image volume of 800 TB. With data sets of this size new challenges emerge
for automatic computed analysis and visualization techniques. Important processing
tasks include demand-driven image stitching and alignment, cell segmentation and
3D reconstruction, as well as multi-scale visualization and multi-user interaction via
client server architectures.

Electron microscopy samples are typically densely stained. While in light
microscopy sparse staining is necessary to visually separate a cell of interest
from unstained background tissue (see Sect. 21.5), the fine resolution of electron
microscopy allows one to discriminate structures according to shape, size, and tex-
ture. Electron microscopy images are limited to gray scale and typically do not have
a uniform background. Instead, the background is noisy and highly variable, which
imposes an important challenge for the visualization of electron microscopy image
stacks. The image data cannot be visualized according to gray values alone, as the
densely stained tissue forms a nearly solid block. Instead, higher order features that
discriminate texture and shape, e.g., gradient histograms, are necessary to enhance
the visibility of different structures of interest in the visualization [42]. Ultimately,
full segmentation of the image data is necessary to allow the user visual inspection
of different biological structures, from small structures such as vesicles or mitochon-
dria to entire neuronal cells. Figure 21.4 shows example reconstructions of different
neuronal structures from electron microscopy images. A number of software pack-
ages have been developed to aid the user in manual segmentation of cell structures
in the images [14, 29, 37]. More recent semi-automatic methods greatly facilitate
this time-intensive process [16, 76, 77, 91].

Progress has also been made on fully automatic segmentation of EM brain images
[39, 44, 47, 48, 101, 103]. However, all methods developed so far require manual
interaction and inspection by users. Thus, visualization tools should not only provide
the ability to inspect the original EM data and the computed segmentations, but also
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Fig. 21.4 Three dimensional reconstructions of neuronal structures from electron microscopy data.
Left three dendrites (colored) and all intervening axons (transparent), right different axons (colored)
with vesicle filled boutons (yellow)

provide a user interface to detect and correct segmentation errors, a process called
proofreading.

Another interesting challenge for the visualization of neuronal microscopy images
is the concurrent display of light and electron microscopy data acquired from the
same sample. Correlative microscopy is a newly developing field, which allows for
inspection of the same neuronal tissue using both light and electron microscopes.
Thus the fine resolution of the electron microscopy images can be combined with the
advantage of color staining and information about long-range connectivity in, e.g.,
diffusion stained light microscopy images. Visualization of this data requires multi-
modal registration of both data sets, which has not yet been addressed for correlative
microscopy.

Currently, most research efforts in connectomics at the microscale concentrate
on the image acquisition and segmentation of electron microscopy images. Little
research has been done in the visualization of entire connectomes, i.e. the wiring
diagram of neurons, their types and the connectivity for detailed analysis of neuronal
circuits. Connectomes, like the manually reconstructed circuit of C. elegans, are
visualized by connectivity matrices or connection graphs [100].

21.7 Data Integration and Neural Network Modeling

As described in the previous sections, neurobiological data can be acquired from
many different sources. Relating these different kinds of data by integrating them in
a common reference frame offers interesting opportunities to infer new knowledge
about the relation between structure and function. In this section, we describe two
approaches and their visualization aspects for such data integration with the purpose
of inferring functional properties: brain mapping and network modeling by reverse
engineering.
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21.7.1 Brain Mapping

A major goal in neuroscience is to define the cellular architecture of the brain.
Mapping the fine anatomy of complex neuronal circuits is an essential first step
in investigating the neural mechanisms of information processing. The term brain
mapping describes a set of neuroscience techniques predicated on the mapping of
biological quantities or properties onto spatial representations of the brain resulting
in maps. While all of neuroimaging can be considered part of brain mapping, the
term more specifically refers to the generation of atlases, i.e., databases that combine
imaging data with additional information in order to infer functional information.
Such an undertaking relies on research and development in image acquisition, repre-
sentation, analysis, visualization, and interaction. Intuitive and efficient visualization
is important at all intermediate steps in such projects. Proper visualization tools are
indispensable for quality control (e.g., identification of acquisition artifacts and mis-
classifications), the sharing of generated resources among a network of collaborators,
or the setup and validation of an automated analysis pipeline. Data acquired to study
brain structure captures information on the brain at different scales (e.g., molecular,
cellular, circuitry, system, behavior), with different focus (e.g., anatomy, metabolism,
function), and is multi-modal (text, graphics, 2D and 3D images, audio, video) [15,
53]. The establishment of spatial relationships between initially unrelated images
and information is a fundamental step towards the exploitation of available data [7].
These relationships provide the basis for the visual representation of a data collection
and the generation of further knowledge.

Databases and atlases. A neuroanatomical atlas serves as a reference frame for com-
paring and integrating data from different biological experiments. Maye et al. [64]
give an introduction and survey on the integration and visualization of neural struc-
tures in brain atlases. Such atlases are an invaluable reference in efforts to compile a
comprehensive set of anatomical and functional data, and in formulating hypotheses
on the operation of specific neuronal circuits.

A classical image-based neuroanatomical atlas of Drosophila is the FlyBrain
atlas,1 spatially relating a collection of 2D drawings, microscopic images, and text.
One approach in generating a digital atlas of this kind is by acquiring confocal
microscope images of a large number of individual brains. In each specimen, one
or more distinct neuronal types are highlighted using appropriate molecular genetic
techniques. Additionally, a general staining is applied to reveal the overall structure
of the brain, providing a reference for non-rigid registration to a standard template.
After registration, the specific neuronal types in each specimen are segmented, anno-
tated, and compiled into a database linked to the physical structure of the brain. Jenett
et al. [40] describe techniques for quantitative assessment, comparison, and presen-
tation of 3D confocal microscopy images of Drosophila brains and gene expression
patterns within these brains. Pereanu and Hartenstein [71] and Rybak et al. [79]
described 3D atlases of the developing Drosophila brain and the honeybee brain.

1 http://flybrain.neurobio.arizona.edu

http://flybrain.neurobio.arizona.edu
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The Neuroterrain 3D mouse brain atlas [5] consists of segmented 3D structures rep-
resented as geometry and references a large collection of normalized 3D confocal
images.

Visual exploration and analysis. 3D microscopy data is often visualized using
Maximum Intensity Projection (MIP), which displays the maximum values along
viewing rays. Direct Volume Rendering (DVR) enables better perception of spatial
relationships, but has the disadvantage of added complexity, as an additional transfer
function is required. It can lead to problems with occlusions, particularly when mul-
tiple channels need to be visualized simultaneously. Maximum Intensity Difference
Accumulation (MIDA) [9] improves this situation by combining the simplicity of
MIP with additional spatial cues provided by DVR. Wan et al.[105] presented a tool
for the visualization of multi-channel data tailored to the needs of neurobiologists. As
acquired volumetric data is typically visualized together with segmented structures,
it is important to avoid occlusions as well as visual clutter. Kuß et al. [56] proposed
and evaluated several techniques to make spatial relationships more apparent.

However, to enable the exploration of large-scale collections of neuroanatomi-
cal data, massive sets of data must be presented in a way that enables them to be
browsed, analyzed, queried and compared. An overview of a processing and visual-
ization pipeline for large collections of 3D microscopy images is provided in a study
by de Leeuw et al. [59]. NeuARt II [13] provides a general 2D visual interface to 3D
neuroanatomical atlases including interactive visual browsing by stereotactic coor-
dinate navigation. Brain Explorer [58], an interface to the Allen Brain Atlas, allows
the visualization of mouse brain gene expression data in 3D. The CoCoMac-3D
Viewer developed by Bezgin et al. [6] implements a visual interface to two databases
containing morphology and connectivity data of the macaque brain for analysis and
quantification of connectivity data. An example of an interface to neuroanatomical
image collections and databases that features basic visual query functionalities is
the European Computerized Human Brain Database (ECHBD) [31]. It connects a
conventional database with an infrastructure for direct queries on raster data. Visual
queries on image contents can be performed by interactive definition of a volume of
interest in a 3D reference image. Press et al. [75] focused on the graphical search
within neuroanatomical atlases. Their system, called XANAT, allows for the study,
analysis, and storage of neuroanatomical connections. Users perform searches by
graphically defining a region of interest to display the connectivity information for
this region. Furthermore, their system also supports textual search using keywords
describing a particular region. Kuß et al. [55] proposed ontology-based high-level
queries in a database of bee brain images based on pre-generated 3D representa-
tions of atlas information. In the BrainGazer system [9] anatomical structures can be
visually mined based on their spatial location, neighborhood, and overlap with other
structures. By delineating staining patterns in a volume rendered image, for exam-
ple, the database can be searched for known anatomical objects in nearby locations
(see Fig. 21.5). Lin et al. [61] presented an approach to explore neuronal structures
forming pathways and circuits using connectivity queries. In order to explore the
similarity and differences of a large population of anatomical variations, Joshi et
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Fig. 21.5 Visual query for neural projection in the Drosophila brain using the BrainGazer sys-
tem [9]. Left The query is specified by sketching a path on top of a Gal4 expression pattern. Right
An existing segmented neural projection that matches the query is displayed

al. [43] proposed a similarity-space approach that embeds individual shapes in a
meta-space for content-driven navigation.

While these efforts represent promising directions, many challenges remain. As
noted by Walter et al. [104], a major goal is the integration of brain mapping data with
other resources such as molecular sequences, structures, pathways and regulatory
networks, tissue physiology and micromorphology. The ever-growing amount of
data means that distributed solutions are required. The integration of computational
and human resources gives significant benefits: each involved partner may bring
computational resources (in terms of hardware and tools), human resources (in terms
of expertise), and data to analyze. Advances in web technology, such as HTML5 and
WebGL, provide new opportunities for visualization researchers to make their work
accessible to the neuroscience community.

21.7.2 Neural Network Modeling

A complete reconstruction of the connectivity at the synapse level is currently possi-
ble for small brain volumes using electron microscopy techniques, but not yet feasible
for volumes the size of a cortical column. Oberlaender et al. [65] therefore pursue a
reverse engineering approach: A computational model of a cortical column in the rat
somatosensory cortex, consisting of ∼18,000 neurons, is created by integration of
anatomical data acquired by different imaging and reconstruction techniques into a
common reference system. As the data is acquired from different animals in a popu-
lation, the network represents an “average” cortical column: some model parameters
are given as probabilistic densities. By generating realizations of these stochastic
parameters, concrete network models are created.

The number of neurons and their distribution in a cortical column is obtained by
automatic counting of neural soma (cell bodies) in confocal images [66]. The 3D
dendritic morphologies of ∼100 neurons of different cell types in the column as
well as axons are reconstructed from transmitted light bright field images [22]. The
column model is created by generating soma positions satisfying the given neuron
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Fig. 21.6 Reverse engineering of a cortical column. Reconstructed dendrites (a) are replicated and
inserted into the column reference frame according to a given neuron density (b). By determining
the local structural overlap with axons projecting into the column (c), the number of synapses for
different post-synaptic cell types can be estimated. (d) Shown are synapse densities for two cell
types. Figure created from data published in [65]

density and replicating and inserting the dendrite morphologies into the reference
frame according to the given cell type frequency (see Fig. 21.6). Differences in
synaptic densities between cell types can be quantified and visualized [65]. Based on
the estimated number of synapses per cell, a complete network wiring is established
to study network function using numerical simulation [57].

Extracting relevant neurobiological knowledge from such network models is a
challenging task. Whereas computation of specific quantities for comparison with
literature results in order to validate the model is straightforward, exploratory knowl-
edge discovery within such large, complex networks is not. Easy-to-use tools are
needed to let the neurobiologist query and visualize the structural and functional
properties of such networks or ensembles of network realizations. As network mod-
els are increasing in size, large data handling will be a challenging issue as well.

21.8 Network Analysis and Comparative Visualization

A recent innovation in neuroimaging is connectivity analysis, in which the anatom-
ical or functional relation between different (underlying) brain areas is calculated
from data obtained by various modalities, allowing researchers to study the resulting
networks of interrelated brain regions. Of particular interest are comparisons of func-
tional brain networks under different experimental conditions and between groups
of subjects.
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21.8.1 Network Measures

For each of the brain connectivity types (anatomical, functional, effective), one can
extract networks from data obtained by an appropriate brain imaging modality [10,
54]. The next step is to characterize such networks. In the last decade, a multitude
of topological network measures have been developed in an attempt to characterize
and compare brain networks [11, 45, 78, 90]. Such measures characterize aspects
of global, regional, and local brain connectivity.2 Examples of global measures are
characteristic path length, clustering coefficient, modularity, centrality, degree dis-
tribution, etc. Some of them, such as clustering coefficient or modularity, refer to
functional segregation in the brain, i.e., the ability for specialized processing to occur
in densely interconnected groups of brain regions. Others characterize functional
integration, i.e., the ability to rapidly combine specialized information from distrib-
uted brain regions [78, 90]. Typical measures in this class are based on the concept
of paths in the network, e.g., characteristic path length or global efficiency (aver-
age inverse shortest path length). It is believed that both anatomical and functional
brain connectivity exhibit small-world properties, i.e., they combine functionally
segregated modules with a robust number of intermodular links [3, 88]. The degree
distribution can be used as a measure of network resilience, i.e., the capacity of the
network to withstand network deterioration due to lesions or strokes.

For characterizing networks on a local scale one uses single node features such as
in-degree and out-degree, or the local clustering coefficient. Typical regional network
measures are network motifs, which are defined as patterns of local connectivity. A
typical motif in a directed network is a triangle, consisting of feedforward and/or
feedback loops. Both anatomical and functional motifs are distinguished. The signif-
icance of a certain motif in a network is determined by its frequency of occurrence,
and the frequency of occurrence of different motifs around a node is known as the
motif fingerprint of that node.

21.8.2 Brain Network Comparison and Visualization

The comparison of different brain networks presents challenging problems. Usually
the networks differ in number and position of nodes and links, and a direct comparison
is therefore difficult. One possible approach is to compute a network measure for
each of the networks, and then compare the network measures. However, this loses
spatial information. For interpretation and diagnosis it may be essential that local
differences can be visualized in the original network representation [27, 86]. This
asks for the development of mathematical methods, algorithms and visualization
tools for the local comparison of complex networks—not necessarily of the same
size—obtained under different conditions (time, frequency, scale) or pertaining to
different (groups of) subjects.

2 Similar approaches have been used in genomics [62, 84] and other areas.
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Fig. 21.7 FU maps for multichannel EEG coherence visualization. Brain responses were collected
from three subjects using an EEG cap with 119 scalp electrodes. During a so-called P300 experiment,
each participant was instructed to count target tones of 2,000 Hz (probability 0.15), alternated with
standard tones of 1,000 Hz (probability 0.85) which were to be ignored. After the experiment, the
participant had to report the number of perceived target tones. Shown are FU maps for target stimuli
data, with FUs larger than 5 cells, for the 1-3Hz EEG frequency band (top row) and for 13–20 Hz
(bottom row), for three datasets (Figure adapted from [92], Fig. 3)

Several methods exist for spatial comparison of brain networks, which assume
that the position and number of network nodes is the same in the networks to be
compared. For example, Salvador et al. [80] use a brain parcellation based on a prior
standard anatomical template, dividing each cerebral hemisphere into 45 anatomical
regions that correspond to the nodes of the brain network. Another possibility is
to consider each voxel a network node, but in this way the networks become very
large. Links between the nodes can then be defined by several measures of node-node
association, such as correlation or mutual information of temporal signals. Using the
same construction for two or more data sets enables a direct network comparison
[108].

A method to perform network comparison in the original network representation
was recently proposed for the case of multichannel EEG by Crippa et al. [19]. This
approach is based on representation of an EEG coherence network by a so-called
functional unit (FU), which is defined as a spatially connected clique in the EEG
graph, i.e., a set of electrodes used in the EEG experiment that are spatially close and
record pairwise significantly coherent signals [92, 94]. To each electrode a Voronoi
cell is associated and all cells belonging to an FU are given a corresponding color.
Lines connect FU centers if the inter-FU coherence exceeds a significance threshold.
The color of a line depends on the inter-FU coherence. Such a representation of
the FUs in an EEG recording is called a FU map. FU maps can be constructed for
different frequency bands or for different subjects (see Fig. 21.7).
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Comparison of multiple FU maps can be done visually when displayed next to
each other, but this method is limited as humans are notoriously weak in spotting
visual differences in images. An alternative, which is more quantitative although it
still involves visual assessment to a certain degree, is to compute a mean FU map,
based upon the concept of graph averaging [19]. The mean of a set of input FU maps
is defined in such a way that it not only represents the mean group coherence during
a certain task or condition, but also to some extent displays individual variations
in brain activity. The definition of a mean FU map relies on a graph dissimilarity
measure that takes into account both node positions and node or edge attributes.
A visualization of the mean FU map is used with a visual representation of the
frequency of occurrence of nodes and edges in the input FUs. This makes it possible
to investigate which brain regions are more commonly involved in a certain task, by
analyzing the occurrence of an FU of the mean graph in the input FUs.

In [19] the graph averaging method was applied to the analysis of EEG coherence
networks in two case studies, one on mental fatigue and one on patients with corti-
cobasal ganglionic degeneration. An extension of the method to resting state fMRI
data was presented in [18].

21.9 Conclusions

There is currently great scientific interest in connectomics, as it is believed to be
an important prerequisite for understanding brain function. As much of the data for
obtaining neural connectivity is image-based, visualization techniques are indispens-
able. Great effort has been put recently into extraction of connectivity information
from images, integration of multimodal information into reference systems, and
visual analysis of such data and systems at different scales. These efforts will need to
be intensified in the future, as data is being produced at a much larger scale, also by
new imaging modalities. New methods to integrate this data across modalities and
scales to attain the ultimate goal, a description of the human connectome, will be the
main challenge for visualization in connectomics.
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Chapter 22
Visualization in Biology and Medicine

Heike Leitte and Miriah Meyer

Abstract Basic biological research spans a huge range of scales, from studying the
genome up to studying populations of people. Biological data is just as expansive.
Advances in measuring devices and the public dissemination of large amounts of
data has fundamentally changed the way that biologists conduct research and make
scientific discoveries. Access to this data has made visualization a key component in
almost every biological discovery workflow. In this chapter we focus on visualiza-
tion in just a few areas of biology and highlight the challenges inherent within each.
We present case studies from our own work to illustrate the impact that thought-
fully designed visualization systems can have on complex biological problems and
highlight challenges for visualization research in these areas.

22.1 From Genomes to Cells: Visualization in Biology

Basic biological research spans a huge range of scales, from studying the genome
up to studying populations of people. Biological data is just as expansive. Advances
in measuring devices and the public dissemination of large amounts of data has
fundamentally changed the way that biologists conduct research and make scientific
discoveries. Access to this data has made visualization a key component in almost
every biological discovery workflow.

In this section we focus on visualization in just a few areas of biology and high-
light the challenges inherent within each. We present case studies from our own work
to illustrate the impact that thoughtfully designed visualization systems can have on
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complex biological problems. Despite the variety of scientific goals and data types in
these areas, several common themes have emerged from our combined work. First,
the accelerated experimental process in biology due to high-throughput technologies
is requiring that visualization tools be developed rapidly and nimbly to be relevant
to the discovery process. Second, many interesting visualization challenges now
exist around the idea of integrating very different types of data and finding complex
patterns within. And third, close collaboration with biologists is essential for devel-
oping visualization design requirements—we have found that these requirements
often require many interviews and multiple prototypes to articulate clearly.

The rest of this chapter discusses visualization in the context of comparative
genomics (Sect. 22.2), functional genomics (Sect. 22.3), and evolutionary and devel-
opmental biology (Sect. 22.4). In each section we will cover the common types of
biological questions and data in each of these fields, along with typical methods and
techniques for visualizing the data. We also discuss visualization challenges as well
as present case studies that highlight the biological impact of visualization tools.

22.2 Comparative Genomics

In the field of comparative genomics, scientists compare the genomes of organisms
to answer questions about evolution and how the genome encodes cellular functions.
These comparisons look for regions of similar DNA sequences which provide evi-
dence of common ancestry as well as potential shared function, giving insight into
the Tree of Life, the discovery of new genes, and the understanding of how our DNA
makes us who we are.

When studying the similarities and differences between genomes, these scien-
tists are most often looking for similar features of interests, such as genes. Finding
similar features implies a conservation relationship between the features, meaning
these features were conserved through evolution as the individual species diverged
from a common ancestor. Finding these similar features within large genomic data
sets relies on sophisticated computational algorithms. These algorithms characterize
conservation across a range of scales, from the genome down to the gene. Finding
patterns of conservation, across multiple scales, allows scientists to answer questions
like: Is there evidence of larger segments of conservation that could indicate a whole
genome duplication? What changes to a genome can account for species variation?
What segments of the genome account for the ability of a species to adapt to different
environments?

22.2.1 Data in Comparative Genomics

A genome is physically composed of multiple, distinct chromosomes. Each chro-
mosome is made up of a string of nucleotides which come in four common types
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represented by the letters A, T, C and G. Over evolutionary time, mutations arise in
these strings as they are passed on from one organism to another, sometimes resulting
in an increased survival rate and a possible divergence into a new species. Under-
standing how and when these mutations occurred is a major topic in comparative
genomics and informs scientists about the relatedness of species, both genomically
and functionally.

The sequence of a genome is determined from the output of a sequencing pipeline.
In this pipeline, the genomes from many cells of an organism are extracted and
chopped up into very small segments. These segments are read using a variety of
techniques in which the individual nucleotides of each segment are determined.
Using computational alignment algorithms, the sequences from the segments are
then pieced together to produce the string of letters representing each chromosome
in the sequenced genome.

Using the genomic sequences from different species, or sometime from just a sin-
gle species, algorithms look for regions that have similar genomic sequences while
taking into account models of how genomes evolve over time. These algorithms pro-
duce pairs of conserved features, giving each pair a strength based on the amount of
similarity. Some algorithms will further group the paired features into larger regions
based on characteristics of the features like proximity and orientation (features such
as genes have an orientation along the genome). The result of these algorithms is
a multiscale list of features and regions for each chromosome that are paired with
features and regions on a different chromosome. Each of these pairs has a score that
represents the strength of the similarity.

22.2.2 Challenges for Visualization

The challenge of visualizing comparative genomics data arises on several fronts. First,
these data sets can easily contain thousands of paired features, scattered over dozens
of chromosomes. Second, the size of the features is often orders of magnitude smaller
than the size of the chromosomes. And third, it is often important to understand the
location and size of paired features in the context of their similarity scores.

22.2.3 Visualization for Comparative Genomics

Visualization tools for exploring comparative genomics data represent chromo-
somes as distinct, 1D coordinate systems, with a set of chromosomes representing a
complete genome. These chromosomes are most often represented linearly and in a
series. Conserved features and regions are shown as subregions along the chromo-
somes. These tools generally compare two genomes at a time, where the genome
of interest is considered the source and the comparison genome is considered the
destination.
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Fig. 22.1 Visualization methods for comparative genomics data. Most comparative genomics data
is shown using two kinds of encoding: a color encoding, where each chromosome in the destination
genome is assigned a unique color, and paired features in the source genome are colormapped
according to their paired feature’s chromosome; b connection encoding, where lines are drawn
between the source and destination genomes connecting paired features. c MizBee [28] uses both
color and connection for showing conserved genomics data across multiple scales and in conjunction
with similarity scores

There are two predominate ways for visually representing the conserved pairs:
using color and using connection. To use color, as shown in Fig. 22.1a, each chromo-
some in the destination genome is assigned a unique color. Each conserved feature
in the source genome is colormapped according to the chromosome its paired fea-
ture is associated with. Examples of visualization tools that use this encoding are
SyntenyVista [14], Sybil [46], and Cinteny [42]. Using color to encode conserved
features benefits from minimal visual clutter as the number of pairs increases, but
does so at the expense of only showing the location of the features on the source
genome. This encoding, however, suffers from color indistinguishability. We are able
to distinguish less than a dozen colors when showing categorical data [50], but most
genomes of interest will have on the order of dozens of chromosomes.

The second method for encoding conserved pairs is connection, shown in
Fig. 22.1b. In this encoding, the source and destination genomes are aligned,
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usually in parallel, and connecting lines are drawn between paired features.
Visualization tools that use a connection encoding include Ensemble [6], Syn-
Browse [33], Mauve [8], and Apollo [24]. A connection encoding shows both the size
and location of paired features on the source and destination genomes. The encoding,
however, suffers from visual clutter when more than a few dozen paired features are
shown—many comparative genomics datasets contain thousands of pairs.

A limitation of many of the visualization tools for comparative genomics data is
that they do not encode similarity scores in conjunction with the size and location
of paired features. A common method for looking at these scores is using a scatter-
plot [21, 35]. In this method, each axis is the coordinate system for a chromosome,
and paired features are indicated with a dot at the appropriate coordinates. These
dots are colormapped based on their associated similarity scores.

22.2.4 Case Study: MizBee

In this case study, we worked with two biologists to design a visualization tool
to look at comparative genomics data across multiple scales and in the context of
similarity scores. We conducted a series of interviews with the biologists from which
we compiled a list of fourteen low-level, data-centric questions they were asking in
their research. For each of these questions, we characterized the scale at which it
operated. From an extensive review of existing tools for visualizing comparative
genomics data, we created a taxonomy of the design space for showing conserved
features as well as amenable ways to layout the chromosomes from the source and
destination genomes.

Our question characterization and design space taxonomy guided the design
of MizBee [28], the first interactive tool to visualize comparative genomics data
across multiple different scales in the context of similarity scores. MizBee, shown in
Fig. 22.1c uses multiple linked views [36] to support guided navigation of the data by
incorporating overviews with detailed views [41]. The tool includes three levels of
views: the genome view (left), chromosome view (middle), and region view (right).
The genome view uses a circular layout of the source and destination genomes, with
the destination chromosomes on the inner ring along with a single selected source
chromosome from the outer ring. Both color and connection are used as a redun-
dant encoding of paired features. The connecting edges are bundled [13] to reduce
visual clutter and to highlight spurious pairs. In the chromosome view, the selected
source chromosome is shown in more detail to see the size of conserved regions
along with a bar chart that indicates each region’s similarity score. The lowest level
region view shows individual paired features within a conserved region. This view
gives information about the size, location, and orientation of the features, along with
a bar chart of similarity scores. All three views are linked together through selection
and highlighting.

To validate MizBee, we conducted a series of case studies with our biology col-
laborators. These case studies highlight how MizBee improved communication of
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comparative genomics research findings, as well as supported the validation of data
and computational algorithms that determine paired features. More information about
MizBee, as well as source code, executables, and example data, can be found at http://
mizbee.org.

22.3 Functional Genomics

The field of functional genomics is, at a high level, about answering the question: how
do genes work together in a cell to perform different functions? Cellular functions,
such as metabolism or reproduction, are controlled by many interrelated chemical
reactions that are catalyzed by genes, or more precisely the products of genes called
proteins. These chemical reactions are complex and highly connected, forming com-
plicated networks that biologist need to discover, unravel, and understand. Finding
differences and similarities in networks from different experimental conditions, in
different cell types, and in different species is an important component of functional
genomics.

22.3.1 Data in Functional Genomics

Scientists working in functional genomics predominately work with two kinds of
data: gene expression and molecular networks. Gene expression is a continuous
measurement of how much a gene is on or off in a cell. It is primarily derived using
microarray technology where the expression levels of many genes are measured at
once. The resulting data is stored as a table of values where most often the rows
are genes and the columns are different samples such as time points, experimental
conditions, tissue types, or species.

Molecular networks are large graphs representing chemical reactions that occur in
a cell. Some of the very well-characterized networks, such as that for metabolism, are
generated from years of careful experimentation. These networks are shared through
curated libraries such as the BioCyc or KEGG databases [4, 17]. These large networks
are often broken into smaller, more manageable subsets called molecular pathways,
usually consisting of a dozen reactions or fewer. Other networks, such as protein-
protein interaction networks, are generated using machine-learning algorithms that
look for correlations in large sets of gene expression measurements.

22.3.2 Challenges for Visualization

Whether visualizing gene expression or molecular networks, scale is a major chal-
lenge. For gene expression, the table of measurements can contain thousands of data
points, with current trends moving towards tables with more than two dimensions.
For molecular networks, the graphs can contain many nodes with high connectivity.

http://mizbee.org
http://mizbee.org
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How do you find patterns in these large data sets? How do you understand changes
over time? An even bigger challenge is: how do you integrate these data types
together?

22.3.3 Visualization for Comparative Genomics

The visual convention for looking at gene expression data from microarrays is nearly-
universally the heatmap display, where the data is laid out in a matrix and each value
is encoded with a color [10, 52, 53]. Heatmaps are often augmented with clustering
algorithms to enhance the perception of trends in the data [9], as in Java TreeView [38]
and the Hierarchical Clustering Explorer [39]. These visualizations have a very high
data density, allowing many data points to be viewed at a single time. The use of
color, however, makes fine scale analysis difficult due to perceptual limitations [7]
as well as the relativity of color [54].

Tools designed to visualize molecular networks usually focus on showing the
topological structure of the graph. In these systems, networks are most often visu-
alized using a node-link graph, such as is Cytoscape [40], MicrobesOnline [1], and
iPath [23]. These systems support the visualization of an additional dimension of
data by colormapping values on the nodes and edges of the graph. Other recently
developed tools support the visualization of an entire set of values, for example a full
time series, for each node and edge using techniques like small multiples [48], anima-
tion, or glyphs—example tools are Cerebral [2], Pathway Tools [18], VANTED [16],
PathwayExplorer [31], and GENeVis II [3].

22.3.4 Case Study: Pathline

We collaborated with a group of biologists who are pioneering the new field of
comparative functional genomics. This field extends the questions of functional
genomics to understand how gene interactions vary across species. Our collaborators
are interested in understanding how evolutionary mechanisms affect gene regulation
for metabolism in yeast. To probe these questions, the biologists collected data for
multiple genes, at multiple time points, and in multiple related species. They need
to integrate this data in order to find patterns in gene expression levels belonging to
multiple pathways over time and across multiple species. When we started working
with this group, the problem they faced was that existing visualization tools only
look at subsets of this data at a time.

To address the challenge of data integration we designed a tool called Pathline [29],
shown in Fig. 22.2. Pathline was designed in a user-centered process using iterative
refinement based on feedback from our biology collaborators. Each design decision
was motivated by the specific needs of the biologists.
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Fig. 22.2 Pathline [29], an interactive tool for the visualization of comparative functional genomics
data. The left side shows a linearized pathway representation and the right side shows a detailed
curvemap display. Pathline is the first tool to integrate data for multiple genes, time points, species,
and pathways

Pathline consists of two novel visual representations, a linearized pathway
representation and a detailed curvemap display, shown on the left and right sides
of Fig. 22.2 respectively. The linearized pathway representation shows molecular
pathways as an ordered list of nodes and edges for a visually concise overview that
supports the comparison of quantitative data along pathways. The topology of the
pathway is shown as secondary information using several types of stylized marks.
The curvemap display shows time series data with small multiples of filled line charts
and overlaid curves that support comparison of temporal gene expression across mul-
tiple species. The columns of the curvemap display are populated with genes selected
by the user within the pathway representation view.

Through a series of case studies with our biology collaborators, we were able to
validate that Pathline can show known information more clearly than could be seen
with their previous tools. Furthermore, the biologists directly attribute new insights
into their data to the use of Pathline. More information about Pathline, as well as
source code, executables, and example data, can be found at http://pathline.org.

http://pathline.org
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22.4 Evolutionary and Developmental Biology

A combination of novel microscopes with improved computer hardware and software
has enabled scientists in recent years to capture data about living organisms at an
unprecedented level of detail in time and space. Using this data, biologist can identify
each single cell of a complex organism and investigate how it develops over time.
With additional highlighting procedures, complementary information such as active
genes can be recorded simultaneously to link the acquired information to processes
on even finer biological scales. This wealth of information opens up new roads
to study complex, yet fundamental processes in evolutionary and developmental
biology (informally called evo-devo), such as: How does a single cell evolve into
a complex organism? How do internal regulatory processes cause (nearly) identical
cells to perform different tasks? How do genomic differences relate to differences in
physiological structure? How do neurons connect to form rich and powerful structures
within the brain?

Due to the wealth of evo-devo data and the relevant information therein, robust
automatic preprocessing and a sophisticated visualization framework are central
requirements to allow for future advances in this field. The fundamental data process-
ing pipeline consists of three major steps:

1. Data acquisition and storage: commonly from digital microscopy
2. Data preprocessing: data fusion, image processing, and feature extraction
3. Visualization and data analysis: rendering of large-scale spatio-temporal data and

deployment of application-focused interaction and data-mining techniques

In the following sections, we will investigate each step and outline relevant aspects
for data analysis in general and data visualization in particular.

22.4.1 Data Acquisition and Storage

One of the most widely used data acquisition techniques in developmental biol-
ogy is digital microscopy. Numerous specialized microscopes developed over the
last decades support a large variety of applications. Most techniques enable the
user to record 2D and 3D data, either from a single, volumetric specimen, or from
cross-sections of one. Additional techniques exist to record volumetric time-series
of living specimen (laser scanning microscopy) or data with a very high spatial reso-
lution (electron microscopy). A variety of experimental preprocessing steps, such as
selective dyes or fluorescent markers [19, 47], enhance data quality by highlighting
structures and processes of interest. More details on experimental methods can be
found in an excellent summary of microscopy usage in biology [49].

A lack of standardization in storage for microscopy data has resulted in a large
variety of file formats, which poses a major challenge for generalizing processing
pipelines. Most data, however, is stored as image files using, for example, the JPEG
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or TIFF file format. Depending on the application and the microscope manufacturer,
the images have varying color depths and meta information, adding to the problem
of data format diversity. To address this issue, the BioFormats group has developed
a Java library for the reading and writing of a large variety of life science image file
formats (http://www.loci.wisc.edu/software/bio-formats).

22.4.2 Data Preprocessing

The raw data coming off of a microscope often suffers from poor contrast, unreg-
istered images, or the lack of precise information about individual structures in the
image data. The following preprocessing steps are commonly employed to prepare
the data for subsequent analysis:

1. Data enhancement: Due to limitations inherent in the microscope and the prepa-
ration of the specimen, the data often suffers from low contrast and high signal-
to-noise ratios. To obtain better results during subsequent steps, the raw data is
improved using image processing filters such as contrast adjustment or equaliza-
tion of lighting. Deconvolution [26] is commonly used to decrease blurring.

2. Data fusion: Large specimens are often recorded in multiple passes that must be
fused. This is commonly achieved using image stitching [45] and/or image regis-
tration [11]. Likewise, multiple recorded channels, e.g., from cameras recording
parts of the sample that fluoresce with different wavelengths, must be registered.
Additional problems arise in time-series data if a living specimen is recorded
that can grow and/or move during recording. Such data not only requires the
registration of individual time-steps, but also the application of drift correction
algorithms.

3. Image segmentation: The image data is commonly too large and complex to be
analyzed manually, thus causing automatic feature extraction algorithms to be
mandatory. In a first step this means data segmentation [43], i.e., the extrac-
tion of relevant structures, such as cell boundaries, from the data. Segmentation
and object classification is one of the major challenges in computer vision [44]
and most microscopy images pose additional challenges as the algorithms have
to cope with large variations in data intensity, morphological complexity and
diversity, and varying signal-to-noise ratios. Despite the development of numer-
ous, specialized segmentation algorithms, many applications still require manual
or semi-automatic segmentation.

4. Computation of metadata: Many subsequent analysis steps, especially if time-
series or multimodal data is recorded, require the computation of additional
metadata. Simple examples of metadata include the size and shape of structures,
textural properties, and image statistics of segmented regions. More advanced
metadata is necessary for time series data where numerous cells are captured at
individual time-steps. For the analysis of the morphology and morphodynamics,
the cells need to be tracked over time. Here, cell tracking becomes a crucial part

http://www.loci.wisc.edu/software/bio-formats
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of the preprocessing step. A large variety of metadata can be derived from the
raw data, the inclusion of which depends on the specific application and scientific
question.

Visualization is necessary in the first three preprocessing steps for data validation
and quality assessment. Most automatic techniques come with errors and uncertain-
ties which need to be conveyed to the user to help them judge the quality of their
data and improve existing algorithms. Computation of metadata is commonly an
important part of the visualization process itself and will be discussed in more detail
in Sect. 22.4.3.

22.4.3 Visualization and Data Analysis in Evo-devo

A large number of evo-devo frameworks and techniques are being developed to
support comprehensive analysis tasks. Most efforts currently concentrate on data
preprocessing such as feature segmentation and the subsequent mathematical analy-
sis where statistics are a widely applied tool [49]. Visualization is often reduced to
the depiction of the data, which in itself is already rather difficult due to the size of the
data and its time-dependent and multivariate nature. Tools widely used on the appli-
cation side have a similar feature spectrum. Many of them support image processing
tasks such as data registration and segmentation, feature extraction and analysis, and
interactive rendering of three-dimensional data—even time-series data is supported
by most applications. Examples of such tools are: (commercial) MetaMorph, Imaris,
Volocity, Amira; and (open-source) ImageJ, Fiji, BioImageXD, V3D.

As the needs of specific applications diversify, specialized tools are being
developed such as Cellenger (automated image segmentation and feature analy-
sis: http://tiny.cc/rARky/), the CellProfiler project (automated image segmentation,
feature analysis, data mining and visualization: http://cellprofiler.org), and vari-
ous commercial products from microscope manufacturers. Recent research has also
concentrated on the interactive validation of preprocessing steps applied to 3D spatio-
temporal data. Examples for the validation of segmentation results are a combination
of different rendering modes to overlay raw with segmented data [51] and the visu-
alization of automatically quantified uncertainty [15, 20, 37]. A second direction is
feature tracking, which has long been an important area of research in visualization
[34], and is a crucial task in biological data analysis. Two major distinctions can be
made for tracking algorithms operating on volumetric time-series data. One direc-
tion of research focuses on digital image processing approaches such as optical flow
and operates directly on the scalar data [12, 30]. The other direction is based on
tracking structures that have been segmented beforehand [25, 27]. If individual cells
are tracked over time, they form cell lineages, i.e., binary trees that encode patterns
of cell migration and division. Several browsers for the investigation of cell lineage
data have recently been proposed [5, 32, 55], which combine volume rendering of
the scalar data and graph drawing for the depiction of the lineage tree.

http://tiny.cc/rARky/
http://cellprofiler.org
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22.4.4 Challenges for Visualization

Evo-devo data presents several challenges for visualization, the largest of which is
validation of the complex preprocessing pipeline. Assuming, however, that the data is
perfectly preprocessed, the following visualization challenges remain for supporting
data analysis:

• Large-scale volumetric data: The recorded data is typically quite large (up to sev-
eral terabytes for a single specimen). Volume visualization needs to bridge different
levels of detail to provide an overview in conjunction with detailed information
about fine-scale structures.

• Multimodal and time-series data: Combining multimodal and temporal data is an
open-research problem in visualization.

• Wealth of data: Many datasets consist of terabytes of raw data with numerous
small features in long time series. Adequate abstraction mechanisms are therefore
mandatory to help the user browse and investigate the data.

• Combination of InfoVis and SciVis necessary: Due to the versatile nature of the
input data, techniques from both information and scientific visualization need to
be combined in interactive frameworks.

• Sophisticated data analysis required: Feature selection and extraction is a crucial
part of the visualization pipeline in evo-devo and requires knowledge in many
related subjects such as computer vision, machine learning, and statistics.

22.4.5 Case Study: Visualization in Developmental Biology

As previously stated, visualization in evo-devo requires expertise in different areas
of research. In this case study, we summarize the on-going work of our interdiscipli-
nary team that studies the biological processes that occur during embryonic develop-
ment, with the goal of creating a digital embryo model. The team consists of experts
from: developmental biology who research the embryonic development of fish and
flies; microscopy research who work towards better image acquisition techniques;
multidimensional image processing who develop algorithms for the automatic seg-
mentation and analysis of 3D spatio-temporal images; and scientific visualization
who concentrate on data validation, feature extraction, and interactive data visual-
ization and analysis. As the scientific questions related to embryonic development
are very diverse and often change and expand over time, we decided to develop a ver-
satile visualization framework (Scifer—http://scifer.info) with additional dedicated
algorithms to address specific biological questions. Scifer, shown in Fig. 22.3, is a
multi-window environment with linked views that combines interactive information
and scientific visualization algorithms.

The primary GUI consists of three windows. The main window (Fig. 22.3a) is used
to control the workflow. In this window, the user selects from a list of preprocessing
algorithms, after which an interactive dialog box opens where additional parameters

http://scifer.info
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Fig. 22.3 Visualization in developmental biology using Scifer: a Main window, b dialog of an
algorithm, c 3D window with MIP projection of part of a zebrafish embryo, and d 2D window with
an interactive lineage depiction

Fig. 22.4 Visualization techniques for data analysis in evo-devo (left to right): Cell lineage tree
visualization in 3D, cell lineage tree visualization in 2D, volume visualization of microscopy data,
combined rendering of microscopy and segmented data, isosurfaces of segmented cell nuclei

and user preferences are entered. Executed algorithms are listed in a separate widget
where they can be altered and restarted. A progress bar and an abort button support
the user while running computationally intensive algorithms. The two graphics win-
dows support rendering and interaction with graphical primitives. The 2D window
(Fig. 22.3d) is mainly used for information visualization, such as plotting interac-
tive scatterplots, heat maps, or cell lineages. Graphical primitives in the 2D window
are selected by the user for further visualization in the native 3D space of the data,
which are rendered in the 3D window (Fig. 22.3c). Additional windows are added
on demand to display supplementary information.

The system currently consists of several algorithms, the selection of which is
driven by our interdisciplinary collaboration [22]. A selection of the interactive ren-
dering techniques provided in Scifer is depicted in Fig. 22.4. We currently support the
following functionalities: (i) Data rendering: We provide volume rendering, maxi-
mum intensity projection, and isosurfacing of the raw and segmented data to support
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validation and understanding of the measured and preprocessed data. (ii) Feature
computation and visualization: Algorithms to compute additional cell features, such
as cell volume, mean intensity, and texture properties, are provided to further investi-
gate properties of individual cells and their temporal evolution. For the visualization
and interactive exploration of this data, we provide suitable visual representations
such as histograms, scatterplots, and heatmaps that are interactively linked to the 3D
window, where selected cells are highlighted. (iii) Lineage computation and render-
ing: To visualize the data over time, we developed a robust cell tracking algorithm.
The resulting cell lineages are rendered in the 2D window using standard graph
drawing algorithms. Again, interaction is a central feature that adds additional infor-
mation upon selecting a cell lineage or an individual cell, e.g., display of cell features
or highlighting of the selected cell in the 3D window.

This initial set of algorithms forms the basis for exploring and analyzing spatio-
temporal evo-devo data. We anticipate the ongoing development of novel visualiza-
tion techniques within this framework to answer more specific biological questions
as our collaboration continues.

22.5 Conclusions

Biology poses a wealth of interesting, and evolving, visualization challenges. The
data is continually becoming larger and more complex, requiring novel solutions for
processing and making sense of the patterns therein. Many biologists have already
realized that pure mathematical data analysis does not suffice to answer their ques-
tions, or more precisely, help them formulate the right questions to understand the
structures and processes they are interested in. The inherent relationships are often
very diverse and complex, and visualization can help biologists successively gain
deeper insight into the processes at hand. While dedicated visualization software has
already helped a lot for specific problems, there are still many open research problems
in visualization in biology that will not only advance biology but also visualization
research.

We have found our collaborations with biologists to be truly symbiotic and that
our contributions as visualization researchers goes beyond the development of a new
tool. Our discussions with biologists help them to clarify, and sometimes change,
their analysis needs and approaches. And the biological problems provide us with
the motivation and inspiration to develop new visual representations and systems,
as well as to refine our methods and processes. In short, there is a huge amount of
interesting work at the intersection of visualization and biology.

From a visualization point of view, major areas of future research will have to
be dedicated to volume visualization of large time-dependent datasets (terabytes per
dataset) with multiple relevant levels of detail and varying levels of noise, integration
of techniques from scientific visualization, information visualization, and visual ana-
lytics, and the visualization of multi-input datasets, i.e., data that consists of multiple
information sources such as volumetric records with multiple channels and varying
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levels of detail, gene expression measurements, network data describing multiple
correlated processes, mathematical simulations, or previous research/knowledge
stored in databases.
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Chapter 23
From Individual to Population: Challenges
in Medical Visualization

C.P. Botha, B. Preim, A.E. Kaufman, S. Takahashi and A. Ynnerman

Abstract Due to continuing advances in medical imaging technology, and in medi-
cine itself, techniques for visualizing medical image data have become increasingly
important. In this chapter, we present a brief overview of the past 30 years of devel-
opments in medical visualization, after which we discuss the research challenges
that we foresee for the coming decade.

23.1 Introduction

Since the advent of magnetic resonance imaging (MRI) and computed tomography
(CT) scanners around the early seventies, and the consequent ubiquitousness of med-
ical volume data, medical visualization has undergone significant development and
is now a primary branch of Visualization. It finds application in diagnosis, for exam-
ple virtual colonoscopy, in treatment, for example surgical planning and guidance,
and in medical research, for example visualization of diffusion tensor imaging data.
Although the field of medical visualization only established itself with this name in
the late eighties [57], we shall see in the next section that already in the seventies
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there were published examples of computer-generated images, based on medical data
and used for medical applications.

During the past decades, medical image acquisition technology has undergone
continuous and rapid development. It is now possible to acquire much more complex
data than ever before. For example, in High Angular Resolution Diffusion Imaging
(HARDI), forty or more diffusion-weighted volumes are acquired in order to calcu-
late and visualize water diffusion and, indirectly, structural neural connections in the
brain [70]. In fMRI-based full brain connectivity, time-based correlation of neural
activity is indirectly measured between all pairs of voxels in the brain, thus giving
insight into the functional neural network [24]. Moreover, the questions that users
attempt to answer using medical visualization have also become significantly more
complex.

In this paper, we first give a high-level overview of medical visualization develop-
ment over the past 30 years, focusing on key developments and the trends that they
represent. During this discussion, we will refer to a number of key papers that we
have also arranged on the medical visualization research timeline shown in Fig. 23.1.
Based on the overview and our observations of the field, we then identify and discuss
the medical visualization research challenges that we foresee for the coming decade.

23.2 Thirty-year Overview of Medical Visualization

Already in 1978, Sunguroff and Greenberg published their work on the visualization
of 3D surfaces from CT data for diagnosis, as well as a visual radiotherapy planning
system, also based on CT data [64]. Five years later, Vannier et al. published their
results developing a system for the computer-based pre-operative planning of cran-
iofacial surgery [71]. By this time, they had already used and evaluated their surgical
planning system in treating 200 patients. The system was based on the extraction
and visualization of 3D hard and soft tissue surfaces from CT data. Through the
integration of an industrial CAD application, it was also possible to perform detailed
3D measurements on the extracted surfaces.

23.2.1 Practical and Multi-modal Volume Visualization

In 1986, Hohne and Bernstein [26] proposed using the gray-level gradient to per-
form shading of surfaces rendered from 3D CT data. In 1987, Lorensen and Cline
published the now famous Marching Cubes isosurface extraction algorithm, which
enabled the fast and practical extraction of 3D isosurfaces from real-world medical
data. In the year thereafter, Levoy [47] introduced the idea of volume raycasting
in May, and Drebin et al. [19] in August. Although medical volume visualization
was possible before these publications, as witnessed by a number of publications,
previous techniques were either not as fast or yielded less convincing results. With
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1978 - Sunguroff and Greenberg: CT and 3D surfaces for diagnosis and radiotherapy planning [64].

1983 - Vannier et al.: 3D surfaces from CT for planning of craniofacial surgery [71].

1986 - Hohne and Bernstein: Shading 3D Images from CT using gray-level gradients [26].

1987 - Lorensen and Cline: Marching Cubes [49].

1988 - Levoy publishes Direct Volume Rendering paper in May [47], Drebin et al. in August [19].
Multi-modal volume rendering by Höhne et al. [27].

1993 - Altobelli et al.: Predictive simulation in surgical planning [1]. Gerig et al.: Vessel visualization [23].

1994 - Basser et al.: Diffusion Tensor Imaging [5].

1995 - Hong et al.: 3D Virtual Colonoscopy [28].

1996 - Behrens et al. et al.: Visualization of Dynamic Contrast-Enhanced MRI mammography data (time-varying) [7].

1998 - Basser et al.: DTI Tractography [4, 6].

2000 - Ebert and Rheingans - Medical Volume Illustration [20].

2001 - Tory et al.: Multi-timepoint MRI [69].

2003 - Krüger and Westermann: GPU raycasting [45].

2007 - Blaas et al.: Multi-Field Medical Visualization [9].
2008 - Wang et al.: LifeLines2 - multi-subject electronic health records [73].

2010 - Steenwijk et al.: Cohort studies - multi-subject imaging and metadata [63].

Fig. 23.1 Timeline with a subset of medical visualization papers showing the progression from
scalar volume datasets through time-dependent data to multi-field and finally multi-subject datasets.
This timeline is by no means complete, instead attempting to show a representative sample of papers
that represent various trends in the development of the field

the introduction of Marching Cubes and volume raycasting, volume visualization
became a core business of visualization and medical visualization for the years to
come.

Up to this point, research had focused on uni-modality data, primarily CT. How-
ever, already in 1988 the first multi-modal volume rendering paper was published
by Höhne et al., in which they demonstrated the registration and combined visual-
ization of CT and MRI. A great deal of work has been done since then on the theory
and applications of multi-modal volume visualization. The first notable example is
the work of Cai and Sakas in 1999 where they classified voxel-voxel multi-modal
volume rendering techniques according to the volume rendering pipeline stage where
they take place [13]. The three classes are image level, where two volume renderings
are combined pixel-by-pixel, accumulation level, where looked up samples along
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the ray are combined, and illumination model level, where the illumination model
is adapted to process two volume samples directly. The second example we men-
tion is a convincing application of multi-modal volume rendering for the planning
of neurosurgical interventions, where MRI, CT, fMRI, PET and DSA data are all
combined in an interactive but high quality visualization for the planning of brain
tumor resection [8].

23.2.2 Therapy Planning, Predictive Simulation, and Diagnosis

Therapy planning was one of the first real applications of medical visualization and
remains important to this day. In 1993, Altobelli et al. [1] published their work on
using CT data to visualize the possible outcome of complicated craniofacial surgery.
By manually repositioning soft tissue fragments based on the bony surfaces under
them, in certain cases taking into account bone-skin motion ratios from literature,
the expected outcome of a craniofacial procedure could be visualized. Although
still rudimentary, this could be considered one of the earliest cases of predictive
or outcome simulation integrated with visualization for surgical planning. The idea
of predictive simulation, or predictive medicine, was further explored by Taylor
et al. [66] for cardiovascular surgery.

With the introduction of virtual colonoscopy (VC) in 1995 [28], medical visual-
ization also gained diagnosis as an important medical application, namely screening
for colon cancer. VC combines CT scanning and volume visualization technologies.
The patient’s abdomen is imaged in a few seconds by a multi-slice CT scanner. A 3D
model of the colon is then reconstructed from the scan by automatically segmenting
the colon and employing “electronic cleansing” of the colon for computer-based
removal of the residual material. The physician then interactively navigates through
the volume rendered virtual colon employing camera control mechanisms, cus-
tomized tools for 3D measurements, “virtual biopsy” to interrogate suspicious
regions, and “painting” to support 100 % inspection of the colon surface [29]. VC is
rapidly gaining popularity and is poised to become the procedure of choice in lieu of
the conventional optical colonoscopy for mass screening for colon polyps—the pre-
cursor of colorectal cancer. Unlike optical colonoscopy, VC is patient friendly, fast,
non-invasive, more accurate, and a more cost-effective procedure for mass screening
for colorectal cancer.

VC technologies gave rise to the computer-aided detection (CAD) of polyps,
where polyps are detected automatically by integrating volume rendering, conformal
colon flattening, clustering, and “virtual biopsy” analysis. Along with the reviewing
physician, CAD provides a second pair of “eyes” for locating polyps [30]. This
work was also the basis for many other virtual endoscopy systems, such as virtual
bronchoscopy, virtual cystoscopy, and virtual angioscopy. A careful integration of
image analysis (e.g., segmentation, skeletonization), with efficient rendering (e.g.,
occlusion culling) and interaction (e.g., camera control based on predefined paths)
are major ingredients of such systems [3, 29].
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23.2.3 Multi-field Data

Diffusion Tensor Imaging, or DTI, is an MRI-based acquisition modality, introduced
in 1994 by Basser et al., that yields 3 × 3 symmetric diffusion tensors as its native
measurement quantity [5]. The tensors represent the local diffusion of water mole-
cules, and hence indirectly indicate the presence and orientation of fibrous structures,
such as neural fiber bundles or muscle fibers. Already in this first paper, the authors
employed 3D glyphs to visualize the eigensystems represented by the tensors.

Basser and his colleagues were also some of the first to extract and visualize fiber-
tract trajectories from DTI data of the brain [4, 6], thus linking together the point
diffusion measurements to get an impression of the global connective structures in
the brain. With DTI it was encouraging to see that the first visualization efforts were
initiated by the scientists developing this new scanning modality themselves. Early
work by the visualization community includes tensor lines for tractography [76] and
direct volume rendering of DTI data [38, 39].

Importantly, DTI serves as one of the first examples of natively multi-field medical
data, that is medical data with multiple parameters defined over the same spatio-
temporal domain. The advent of DTI initiated a whole body of medical visualization
research dedicated to the question of how best to visually represent and interact with
diffusion tensor data in particular and multi-field medical data in general. The 2007
paper by Blaas et al. presented a visual analysis-inspired solution to this problem
based on linked physical and feature space views [9].

23.2.4 Time-Varying Data

Time-varying medical volume data visualization made its entrance in 1996 with work
by Behrens et al. [7] on supporting the examination of Dynamic Contrast-Enhanced
MRI mammography data with the display of parameter maps, the selection of regions
of interest (ROIs), the calculation of time-intensity curves (TICs), and the quantitative
analysis of these curves. In 2001, Tory et al. [69] presented methods for visualizing
multi-timepoint (1 month interval) MRI data of a multiple sclerosis (MS) patient,
where the goal was to study the evolution of brain white matter lesions over time.
Methods used included glyphs, multiple isosurfaces, direct volume rendering and
animation. Coto et al. [16] applied multiple coupled views, including linked cursors
and brushing on 3D renderings and scatterplots, to dynamic contrast-enhanced MRI
(DCE-MRI) mammography data.

23.2.5 Illustrative Visualization

Illustrative visualization is primarily motivated by the attempt to create renditions
that consider the perceptual capabilities of humans. As an example, humans infer
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information about shapes not only from realistic shading but also from appropriate
hatching and from outlines that support the mental separation of nearby objects
rendered in similar colours.

Illustrative visualization is related to the term Non-Photorealistic Rendering in
computer graphics, or NPR for short. The term NPR was used since around 1990 when
the seminal paper of Saito et al. clearly illustrated that complex 3D shapes could be
rendered more comprehensible by using certain feature lines [61]. Compared to NPR,
illustrative visualization is the more focused term that covers rendering techniques
serving clear visualization goals, namely to convey shape information efficiently.
In medical visualization, either surfaces or volume data are rendered in illustrative
styles. For illustrative volume rendering, the term volume illustration was introduced
by Ebert et al. in 2000 [20]. Boundary enhancement based on gradient approxima-
tion [17] and curvature-based transfer functions [40] are landmarks in illustrative
medical visualization. Tietjen et al. applied silhouettes and other feature lines for
various scenarios in liver surgery planning [68]. Besides silhouettes, stippling and,
probably even more, hatching, have great potential to reveal details of shapes [32].

Later, Bruckner et al. [10–12] made a number of important contributions that
support depth and shape perception with adapted transfer functions. In particular, they
considered the peculiarities of interactive exploration of 3D datasets and elaborated
on the idea of preserving essential context information. These and later refinements
are integrated in the VolumeShop-system that is publicly available and used by several
research groups.

23.2.6 Multi-subject Data

Medical visualization has also started to work on the problem of dealing with multi-
subject data. These are datasets that include measurements, including imaging, of
more than one subject. The goal is to be able to extract patterns that affect sub-
groups of the whole collection, for example to explore which aspects of the data
correlate with a specific disease outcome. An example of this type of work includes
LifeLines2, an information visualization approach to visualize and compare mul-
tiple patient histories or electronic medical records [73]. More recently, work has
been done on the interactive visualization of the multi-subject and mixed modality
datasets acquired by medical cohort studies [63]. In these studies, mixed modality
data, including imaging, genetics, blood measurements and so on, are acquired from
a group of subjects in order to understand, diagnose or predict the clinical outcome
of that group. Steenwijk et al. demonstrated that it was possible to create a highly
interactive coupled view visualization interface, integrating both information and
scientific visualization techniques, with which patterns, and also hypotheses, could
be extracted from the whole data collection.
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23.3 Challenges in Medical Visualization

23.3.1 Advances in Data Acquisition

Toshiba’s 320-slice CT scanner, the Aquilion One, was introduced in 2007. It is able
to acquire five 320 slice volumes per second [31] and can thus image a beating heart.
Rapid and continuous advances in the dynamic nature and sheer magnitude of data
in this and other mainstream medical imaging necessitates improvements to existing
techniques in terms of computational and perceptual scalability.

High Angular Resolution Diffusion Imaging (HARDI) [70] and Diffusion Spec-
trum Imaging (DSI) [25] datasets contain hundreds of diffusion-weighted volumes
describing the diffusion of water molecules and hence indirectly the orientation of
directed structures such as neural fiber bundles or muscle fibers. This is a rather
extreme example of multi-field medical data that is becoming more relevant in both
medical research and clinical application. Completely new visual metaphors are
required to cope with the highly multi-variate and three-dimensional data of dif-
fusion weighted imaging in particular and many other new imaging modalities in
general.

Molecular imaging enables the in vivo imaging of biochemical processes at the
macroscopic level, meaning that, for example, pathological processes can be stud-
ied and followed over time in the same subject long before large-scale anatom-
ical changes occur. Examples are bioluminescence (BLI) and fluorescence (FLI)
imaging, two molecular imaging modalities that enable the in vivo imaging of gene
expression. Molecular imaging yields datasets that vary greatly in scale, sensitivity,
spatial-temporal embedding and in the phenomena that can be imaged. Each per-
mutation brings with it new domain-specific questions and visualization challenges.
Up to now, most of the visualization research has been focused on small animal
imaging [41, 42], but due to its great diagnostic potential, molecular imaging will
see increased application in humans.

The integration of microscopy imaging is an essential task for the future, where
data handling, interaction facilities but also more classical rendering tasks such as
transfer function design become essential. With more and more large scale and 3D
microscopy data available, there are many opportunities for visualization researchers.
Recent examples include techniques for interactively visualizing large-scale biomed-
ical image stacks demonstrated on datasets of up to 160 gigapixels [34] and tools
for the interactive segmentation and visualization of large-scale 3D neuroscience
datasets, demonstrated on a 43 GB electron microscopy volume dataset of the hip-
pocampus [33].

With these examples, we hope to have illustrated that advances in image acqui-
sition are continuous, and due to the increasing demands of modern society are
accelerating. Each new advance in imaging brings potentially greater magnitudes
and exotic new types of data, leading to new challenges for medical visualization.
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23.3.2 Heterogeneous Display and Computing Devices

Mobile devices, in particular the Apple products iPad and iPhone, are extremely
popular among medical doctors and indeed solve some serious problems of desktop
devices in routine clinical use. In particular, bedside use of patient data is an essential
use case for medical doctors of various disciplines.

Meanwhile, several mobile devices are equipped with powerful graphics cards
and, using the OpenGL ES (Embedded Systems) standard, they are able to provide
high-quality interactive rendering. Although the performance still trails that of mod-
ern desktop devices, slicing medical volume data and 3D rendering is feasible [52].

The rapid and widespread use of mobile devices also made gesture input popular.
In particular, multi-touch interaction is considered an intuitive interaction since many
potential users know a variety of gestures from their everyday activities with smart
phones. Therefore, multitouch interaction is also incorporated in large displays in
medical use, e.g. the Digital Lightbox1 by BrainLab and the multi-touch table of
Lundström et al. [50].

23.3.3 Interactive Image Segmentation

Image segmentation is important in clinical practice, for example, in diagnosis and
therapy planning, and also in image-based medical research. In these applications,
segmentation is complicated by the great deal of variation in image acquisition,
pathology and anatomy. Furthermore, in matters of diagnosis or therapy planning,
the accuracy of the segmentation can be critical. It comes as no surprise that user
interaction is often required to help ensure the quality of the results, by initializing
an image processing method, checking the accuracy of the result or to correct a
segmentation [55].

A well-known interactive segmentation technique is the live-wire or intelligent
scissors [51]. These ideas were later extended and applied to medical images [21].
More recently, visualization has been applied to the challenge of explicitly dealing
with the uncertainty inherent in interactive 3D segmentation [56, 60].

Medical visualization research often combines elements of image analysis, graph-
ics and interaction, and is thus ideally equipped to address the challenge of developing
and validating effective interactive segmentation approaches for widespread use in
medical research and practice.

23.3.4 Topological Methods

Topological data representation has played an important role in medical visualization,
since it can allow us to segment specific features such as human organs and bones

1 http://www.brainlab.com/art/2841/4/surgical-pacs-access/

http://www.brainlab.com/art/2841/4/surgical-pacs-access/
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Fig. 23.2 Previewing a sheep heart volume along the optimal camera path. Image taken from
Ref. [65]

from the input medical datasets systematically and identify their spatial relationships
consistently. Actually, such topological concepts have been already introduced in the
earlier stage of medical visualization. For example, the 3D surface of a human cochlea
was reconstructed from a series of 2D CT cross-sectional images by identifying
correct correspondence between the cross-sectional contours [62].

Topological approaches have also been extended to analyze 3D medical volume
data. Contour trees [2] have been employed for designing transfer functions in order
to illuminate human organs and bones systematically since the associated anatomical
structure can be effectively captured as topological skeletons of isosurfaces [75]. Spa-
tial relationships between bones and the position of an aneurysm were successfully
extracted respectively from CT and angiographic datasets using a variant of con-
tour trees [15]. Interesting features in medical volume data can be visually analyzed
using an optimal camera path, which can be obtained by referring to the topolog-
ical structure of human organs [65] (see Fig. 23.2). Topological methods are now
being developed for visualizing multi-variate and high-dimensional datasets, and
thus potentially for analyzing tensor fields obtained through DT-MRI, multi-subject
data in group fMRI studies, and time-varying data measured by high-speed CTs.

23.3.5 Integration of Simulation Models

In their 1999 predictive medicine paper, Taylor et al. argued that surgical planning
should not only address questions of surgical approach but also of the expected
outcome, for example, predicted future states such as the efficacy of a treatment
option or the performance of an implant [66]. Medical visualization approaches
become significantly more valuable when enhanced with simulation models that help
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Fig. 23.3 The American Heart Association standardized 2D bull’s eye plot (BEP) of the left ventri-
cle of the heart (Courtesy of Konrad Mühler, inspired by Ref. [14]). Each numbered segment in 2D
corresponds to a particular anatomical segment of the very much three dimensional heart muscle

to predict the outcome of a disease process or therapeutic procedure, or that enrich
measured data with expected physiological phenomena. Examples besides the blood
flow simulations of Taylor et al. include interactive skeletal range of motion [43] and
biomechanical stress [18] simulation models for implant planning in orthopedics and
nasal airflow simulation for reconstructive rhinosurgery [77].

The integration of these predictive models, although potentially valuable, brings
with it new challenges. The addition of potentially complex and dynamic simulation
output data to existing visualizations requires new visual representation techniques.
Furthermore, for the simulation results to be maximally useful, the models should be
tightly coupled to and steered by the user’s interaction with the medical visualization.
Finally, most simulations yield data with a certain degree of inherent uncertainty.
The role of this uncertainty should be fully explored and it should be carefully but
explicitly represented as an integral part of the visualization.

23.3.6 Mappings and Reformations

In 2002, the American Heart Association proposed a standardised segmentation and
accompanying 2D bull’s eye plot (see Fig. 23.3) of the myocardium, or heart mus-
cle, of the left heart ventricle [14]. This 2D plot is a simple but great example of
reducing complex 3D data to a standardized 2D representation that greatly facili-
tates the interpretation of that data. Another well-known example is that of curved
planar reformation, or CPR, where volume data is sampled along a curved plane
following the trajectory of a blood vessel or other tubular structure, thus enabling
the study of the vessel and its surroundings with the minimum of interaction [36].
Other good examples of reformation can also be found in brain flattening [22] and
colon unfolding [72].

Recently, the idea of intelligently reformatting or mapping 3D data was further
explored by Neugebauer et al. [53] with aneurysm maps for the visualization of
complex blood flow simulation data on the inside surfaces of aneurysms and by Rieder
et al. [59] with their tumor maps for the post-operative assessment of radiofrequency
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ablation therapy. These types of reformations and mappings entail that more effort has
to be put into carefully designing simplified, usually 2D, representations of complex
3D data, as opposed to, for example, the relatively straight-forward projection of
volume data. The resultant visualization, if done right, requires less or no interaction
and by definition avoids a number of problems inherent in 3D representations [74].

23.3.7 Illustrative Visualization in Medicine

For a long time, it was not possible to apply illustrative visualization techniques in
practice due to performance constraints. With advances in graphics hardware and
algorithms, such as GPU raycasting [45], it is now feasible from a computational
standpoint. Now that computational problems have been largely solved, illustrative
visualization approaches have to be finetuned and evaluated for diagnostic and treat-
ment planning purposes. Recent examples of such work include the simulation of
crepuscular rays for tumor accessibility planning [37] and multi-modal illustrative
volume rendering for neurosurgical tumor treatment [58].

Illustrative medical visualization becomes increasingly important when visualiza-
tions become more complex and multi-modal, integrating functional (measured and
simulated) information, anatomical information and, for example, surgical instru-
ments. Illustration techniques enable visual representations to be simplified intelli-
gently by the visualization designer, whilst still communicating as much information
as possible. An example of this is the work of Zachow et al. [77] on the visualization
of nasal air flow simulation where boundary enhancement was used as an illustrative
technique to convey the simulated flow and the anatomy simultaneously.

23.3.8 Hyper-Realism

Analogous to the case of illustrative visualization, the rapid development in graphics
hardware and algorithms has now enabled the interactive rendering of medical imag-
ing datasets with physically-based lighting [44]. Figure 23.4 shows an example of
such a visualization. These techniques make possible the simulation of an arbitrary
number of arbitrarily shaped and textured lights, real shadows, a realistic camera
model with lens and aperture, and so forth, all at interactive rates.

These techniques enable not only photo-realism, but also a technical form of
hyper-realism in art, where it is possible to enhance visualizations with additional
realistic detail in order to better convey information. Whilst there are strong indica-
tions that, for example, global illumination and shadows can have a positive effect
on task performance in normal volume rendering [48], the possibilities and value of
hyper-realistic effects in medical visualization need to be explored.



276 C.P. Botha et al.

Fig. 23.4 Two examples of interactive visualizations made with the volume renderer of Kroes
et al. [44]. Through the use of GPUs, physically-based lighting has become possible in an interactive
volume rendering setting, enabling increased realism through soft shadows, depth of field and in
this case mixed phase function and BRDF surface scattering

23.3.9 Visual Analysis in Healthcare

Visual analysis is becoming an essential component of medical visualization due
to the rapidly growing role and availability of complex multi-dimensional, time-
varying, mixed-modality, simulation and multi-subject datasets. In our view, the
magnitude and especially the heterogeneity of the data necessitate the use of visual
analysis techniques.

Existing examples involving time-varying data include the work of Coto et al. [16]
on DCE-MRI mammography and Oeltze et al. [54] on perfusion data in general and
MR perfusion of the brain in particular. Blaas et al. applied visual analysis techniques
to multi-modal medical data, whilst Zachow et al. [77] focused on nasal airflow
simulation data combined with anatomical information.

There is great potential for visual analysis in medical visualization, with clini-
cal applications including advanced diagnosis and medical research and, even more
importantly, treatment planning and evaluation, e.g. radio therapy planning and post-
chemotherapy evaluation. The new Visual Analysis in Healthcare (VAHC) work-
shops that were held at IEEE VisWeek in 2010 and 2011 underline the emerging
importance of this research direction.
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23.3.10 Population Imaging

In population imaging, medical image data and other measurements are acquired of
a large group of subjects, typically more than one thousand, over a longer period,
typically years, in order to study the onset and progression of disease, general aging
effects, and so forth in larger groups of people. Examples include the Rotterdam Scan
Study focusing on neuro-degeneration [46] and the Study of Health In Pomerania
(SHIP) focusing on general health [35].

This application domain is an extreme example of multi-subject medical visual-
ization discussed in Sect. 23.2, integrating large quantities of heterogeneous, multi-
modal and multi-timepoint data acquired of a large group of subjects. The scientists
running these studies usually do not formulate strictly-defined hypotheses before-
hand, instead opting for meticulous data acquisition, followed by an extended period
of analysis in order to extract patterns and hypotheses from the data. Recently, Steen-
wijk et al. [63] set the first steps for the visualization of population imaging by
applying visual analysis techniques to cohort study imaging data. The extreme het-
erogeneity and magnitude of the data, coupled with the explorative nature of the
research, renders this a promising long-term application domain for visual analysis
and medical visualization.

23.4 Conclusions

In this chapter, we gave a compact overview of the history of medical visualization
research, spanning the past 30 years. Based on this history and on our own observa-
tions working in the field, we then identified and discussed the research challenges
of the coming decade.

Our discussion of classic medical visualization problems related to efficient and
high quality display of one static dataset was brief. We devoted more space to data that
change over time, to the integration of anatomy with simulation and finally to cohort
studies. We refer to problems where such time-dependent and high-dimensional data
are employed as MedVis 2.0 problems. While the classic problems are—from an
application perspective—solved, there are many research opportunities in MedVis
2.0 problems. These data are significantly more difficult to analyze, to process and to
visualize. Time-dependent MRI data, e.g., exhibit all artifacts of static MRI data but
a number of additional artifacts, e.g. due to motion. Integrated analysis and visualiza-
tion is a key feature of MedVis 2.0 solutions. In general, successful solutions to these
problems require a considerably deeper understanding of the medical background
and thus favor close collaborations with medical doctors over merely having access
to medical data.
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Chapter 24
The Ultrasound Visualization Pipeline

Åsmund Birkeland, Veronika Šoltészová, Dieter Hönigmann, Odd Helge Gilja,
Svein Brekke, Timo Ropinski and Ivan Viola

Abstract Radiology is one of the main tools in modern medicine. A numerous set of
deceases, ailments and treatments utilize accurate images of the patient. Ultrasound
is one of the most frequently used imaging modality in medicine. The high spatial
resolution, its interactive nature and non-invasiveness makes it the first choice in many
examinations. Image interpretation is one of ultrasound’s main challenges. Much
training is required to obtain a confident skill level in ultrasound-based diagnostics.
State-of-the-art graphics techniques is needed to provide meaningful visualizations of
ultrasound in real-time. In this paper we present the process-pipeline for ultrasound
visualization, including an overview of the tasks performed in the specific steps.
To provide an insight into the trends of ultrasound visualization research, we have
selected a set of significant publications and divided them into a technique-based
taxonomy covering the topics pre-processing, segmentation, registration, rendering
and augmented reality. For the different technique types we discuss the difference
between ultrasound-based techniques and techniques for other modalities.
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24.1 Introduction

Medical ultrasound has a strong impact on clinical decision making and its high sig-
nificance in patient management is well established [49, 50]. Ultrasonography (US)
has in comparison with CT, MRI, SPECT and PET scanning very favorable cost,
great availability world-wide, high flexibility, and extraordinary patient friendliness.
In addition to these factors, ultrasonography stands out as the imaging method with
the highest temporal resolution and also often the best spatial resolution. Further-
more, ultrasonography is a clinical method that easily can be applied bedside, even
using mobile, hand-carried scanners [23] and even pocket sized scanners [19], thus
expanding the field of applications considerably. However, a low signal-to-noise ra-
tio, “shadowing” and the relatively small scan sector make ultrasound images very
difficult to interpret. Accordingly, improved visualization of the broad spectrum of
ultrasound images has a great potential to further increase the impact of ultrasonog-
raphy in medicine.

As advancement of technology is fertilizing and stimulating medical develop-
ment, there is a continuous need for research and new applications in visualization.
Visualization methods have the capacity to transform complex data into graphical
representations that enhance the perception and meaning of the data [22]. Ordinary
ultrasound scanning produces real-time 2D slices of data, and these dynamic se-
quences pose in itself a challenge to visualization methods. One example is functional
ultrasonography (f-US), i.e. ultrasound imaging of (patho)physiology and/or organ
function, in contrast to conventional imaging of anatomic structures. Using f-US,
information on motility, biomechanics, flow, perfusion, organ filling and emptying
can be obtained non-invasively [24, 57]. Moreover, the 2D images can be aligned
to form 3D data sets. In such cases, 3D visualization provides added value in terms
of a more holistic understanding of the data. Typical examples are demonstration of
complex anatomy and pathology, pre-operative surgical planning or virtual training
of medical students. Furthermore, there are now matrix 3D probes on the market
that allow real-time 3D acquisition. To benefit from the high temporal resolution, ad-
vanced graphics techniques are required in ultrasound visualization, preventing the
visualization technique from being the performance bottleneck. This opens up new
challenges to the visualization community to develop fast and efficient algorithms
for rendering on-the-fly.

In addition, co-registration techniques enable use of multi-modal data sets. Fusion
imaging, where ultrasound is combined with either CT, MRI, or PET images, allows
for more precise navigation in ultrasound-guided interventions. This challenging new
arena demands advanced visualization research to enlighten how different data types
can be combined and presented in novel ways.

The diversity of the ultrasound imaging technology provides a great tool for
medical diagnostics, but the nature of the data can make it challenging to process.
Techniques which work well for other modalities are being adapted to suit the special
characteristics of ultrasound. In this chapter, we present an overview of the pipeline
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for advanced visualization specific to ultrasound data. The chapter is divided into the
chosen taxonomy, in essence each step of the visualization pipeline; pre-processing,
entation, registration, rendering and augmented reality.

24.2 Taxonomy

Techniques for ultrasound visualization can be categorized in a variety of ways, e.g.,
when they where developed, which types of data modalities were utilized, which
anatomy the technique was focused on, etc. The development of new ultrasound
technology leads to different visualization techniques. The step from 2D ultrasound
images to 3D freehand ultrasound (2D ultrasound with position information) revealed
new challenges as spatial information could be included to generate volumetric data.
The recent development of 2D matrix probes provided again a new challenge of
3D + time (4D) data visualization. Karadayi et al. published a survey regarding 3D
ultrasound [32]. This chapter has a greater focus on data acquisition and volume
handling, but also gives a brief overview of visualization of 3D ultrasound data.

Another taxonomic scheme for ultrasound visualization is based on the different
types of data the technique utilized. 3D freehand and 4D ultrasound pose very dif-
ferent challenges compared to 2D ultrasound or when handling multiple modalities.
Blending B-mode ultrasound for tissue and Doppler ultrasound for blood flow can
be challenging enough in 2D and even more in 3D. An example image is shown
in Fig. 24.1d. In addition to the ultrasound input, the combination of other medical
imaging modalities, such as CT or MRI with ultrasound, provide more information,
but also more challenges to the visualization researcher.

Different anatomic regions have different characteristics in ultrasound images, as
can be seen in Fig. 24.1. For instance, in a liver scan one might look for tumors using
a high-resolution abdominal 2D probe. For heart infarctions, the doctor might need
to examine the strain in the heart muscle to detect defective muscle tissue. The large
difference between tissue and pathology leads to anatomically specific visualization
techniques.

In this survey we categorized around 60 papers and from the different categories
we generated a parallel-coordinate plot, shown in Fig. 24.2. Looking at the graph, we

Fig. 24.1 Example ultrasound images from the cardiac (a), gastric (b), fetal (c) and Blood flow
(d) domain
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Data Type Technique Year
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Fig. 24.2 The different classifications shown in a parallel-coordinate plot. The colors depict which
technique a publication has given the most weight

see an increase in rendering techniques for 3D ultrasound in the last five years. Volume
rendering is often considered to be a solved problem. However, our study shows that
much work dealt with volumetric ultrasound data. Yet, 3D ultrasound rendering can
still not be considered a solved problem. The high presence of noise, shadows from
hyper-echoic areas and inconsistent data values provide a great challenge to make
3D ultrasound a more easy-to-use tool for examiners.

We also see an absence of augmented reality techniques for 3D ultrasound. Yet
another trend is the neglection of 2D ultrasound from the visualization community.
2D ultrasound is the most used modality by physicians and while presenting the
signal data onto the screen is straight forward, understanding what you see is not
so trivial. Increasing the readability of 2D ultrasound is mostly worked on in the
commercial domain, aiming to give a company an edge over its rivals.

In Fig. 24.2 we see the categorized papers in a parallel coordinate plot where each
axis corresponds to the different taxonomy classification. The third axis (the pipeline
axis) is selected as the classification for this survey. Five categories where chosen
based on what we recognize as the essential parts in the visualization pipeline for
ultrasound data:

• Pre-processing: Processing ultrasound data prior to segmentation, registration or
rendering.

• Segmentation: Extracting features from ultrasound data.
• Registration: Combining ultrasound data with other types of medical imaging

modalities.
• Rendering: Presenting ultrasound data.
• Augmented Reality: Mixing ultrasound rendering with natural vision.

In the following sections we motivate the need for each of the major topics,
focusing on significant techniques and how they deal with the characteristics of
ultrasound data.
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24.3 Pre-processing

3D ultrasound is often employed in clinical diagnostic imaging. If a dedicated 3D
probe is unavailable, 3D volumes can be acquired using freehand ultrasound systems;
a 2D probe with an attached tracker which places and orients the 2D images in 3D
space. Volume compounding consists of two levels: acquisition and reconstruction.
Precise reconstruction requires calibration of the tracking system and correction of
pressure-induced artifacts from the probe onto the skin.

Ultrasound allows for extracting more information, such as tissue strain. Strain is
a tissue-deformation property and can be used to detect functional deficiencies, e.g.,
from myocardial infarction. Strain determination via tissue tracking is a complex task
and can be done by using tissue Doppler [27]. Deprez et al. advanced in 3D strain
estimation by providing a better out-of-plane motion estimation [12]. Visualization
of strain has, however, stagnated compared to the development of technology and is
mostly depicted by elementary color coding.

For freehand ultrasound systems, it is necessary to calibrate the position and ori-
entation of the 2D image with respect to the tracking sensor. Wein and Khamene
proposed to make two perpendicular sweeps through tissue containing well-visible
structures [79]. They used an optimization strategy to maximize the similarity be-
tween two volumes reconstructed from each sweep.

To achieve the best possible quality of scans, the clinician presses the probe against
the body. However, the human factor causes a non-constant pressure and different
deformations of underlying structures in the body. Prager et al. correlated images
in the sequence and used a rigid translation in the x and y directions followed by a
non-rigid shift in depth z [58].

Ultrasound acquisition takes place in polar coordinates (φ, R) for 2D or (φ,ψ, R)
for 3D. The angles φ and ψ correspond to the azimuth and elevation angles of the
beam and R is the depth of the tissue boundary which has reflected the echo. In order
to use off-the-shelf 3D volume rendering techniques, the grid must be scan-converted
to a Cartesian lattice. This can be done as a preprocessing step or on-the-fly directly
at the rendering stage.

This section is dedicated to selected methods for volume reconstruction from
scan-converted freehand ultrasound and for data enhancement tailored for ultrasound
volumes, which in the pipeline typically follow the reconstruction stage.

24.3.1 Reconstruction

Volume reconstruction from a set of 2D images needs to solve several important
problems. Each image must be inserted precisely into the right spatial context.
Space-filling between individual images is also crucial and the high framerate of
2D ultrasound implies speed requirements.
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A detailed categorization of reconstruction algorithms was done by Rohling et
al. [61] and Solberg et al. [70]. We adopt the categorization by Solberg et al. into
voxel-, pixel- and function-based methods and complete it with recent works.

Voxel-based methods, i.e., backward compounding, run through the voxel grid
and assign each of them a value estimated by an interpolation method such as the
Stradx system [59]. It allows for real-time visualization of freehand ultrasound, in-
cluding plane re-slicing based on nearest-neighbor interpolation and later also for
direct volume rendering [58]. They blend images generated by re-slicing as de-
scribed in their previous work. Gee et al. also used nearest neighbor interpolation for
direct plane re-slicing [21]. The reconstructed plane is intended for direct viewing—
implying only one re-sampling stage. Linear, bilinear and trilinear interpolation meth-
ods have also been used [6, 74]. Recent developments by Wein et al. improve both
quality and performance by applying a backward-warping paradigm implemented
on dedicated graphics hardware [80].

Karamalis et al. used interpolation on the GPU for high-quality volume recon-
struction [33]. They select an optimal orientation of reconstruction slices based on the
orientation of the scans and reconstruct the volume by following this direction. Each
sampling layer is reconstructed from scans which intersect this layer by interpolating
intensity values between the intersections. The visualization pipeline includes two
re-sampling steps: one during the reconstruction and one while volume rendering.

Pixel-based methods, i.e., forward compounding, traverse each pixel of all ac-
quired 2D images and update the value of one or several voxels of the target grid.
Gobbi and Peters used splatting as a high-quality interpolation method and described
a technique that operates in real-time while the data is captured [25].

Function-based methods employ a specific function to interpolate between vox-
els. In most applications, the shape of the underlying data is not considered. Rohling
et al. investigated the quality of interpolation using splines, which is a polynomial
function [60]. They compared this technique with other standard methods and showed
that it produces more accurate reconstructions.

Tetrahedron-based methods reconstruct a 3D model built from tetrahedra using
an iterative subdivision of an initial tetrahedron instead of a regular grid [63]. The
subdivision terminates if all tetrahedra contain one data point. Each point is assigned
a value which corresponds to the barycentric coordinates of the data point in this
tetrahedron. This strategy is adaptive; the model adapts as new data is streamed in.

We listed selected algorithms in categories based on how they were implemented.
If choosing a specific algorithm, one must choose between speed and quality. Solberg
et al. compared the performance of some of the algorithms [70]. From all listed
methods, the radial-based function reconstruction by Rohling et al. [61] delivers
reconstructions of the best quality but it is also the most computationally expensive.
However, the increasingly powerful dedicated graphics hardware for computational
acceleration solves this problem.
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24.3.2 Data Enhancement

Ultrasound is a challenging modality for visualization due to its natural properties
such as low dynamic range, noisiness and speckle patterns [64]. Also, the geometric
resolution varies with depth and the tissue boundaries can be several pixels wide
depending on their orientation. Tissue boundaries can even disappear if they are
parallel to the ultrasound beam. 2D images are preferred without filtering and en-
hancement. Speckle patterns refer to the texture of the tissue boundary, which is
valuable information for clinicians. However, speckle in 3D brings no added value to
the visualization and is considered as an artifact the same as noise. Therefore, prior
to the rendering stage, the 3D data is filtered to enhance its quality.

For a review on early speckle reduction techniques, refer to the survey of Forsberg
et al. [16]. Belohlavek et al. [5] use the eight hull algorithm with a geometric fil-
ter [10]. Recent techniques are based on region growing [9], adaptive filtering [67],
compression techniques [26] and anisotropic diffusion filters [38].

Systems usually employ a blend of image-processing techniques to enhance the
data. Sakas et al. listed techniques with a good trade-off between loss of informa-
tion and quality [64]. They employed Gaussian filters for noise reduction, speckle-
removal methods for contour smoothing and median filters for gap closing and noise
reduction. Median filters remove small surface artifacts and preserve the sharpness
of boundaries. There exist fast implementations where a histogram can be used to
keep track of values [29]. Still, they require a more advanced memory management,
making them less parallelizable than the evaluation of fast Gaussian filters. Lizzi
and Feleppa described a technique to increase the axial resolution by processing
the signal in the frequency domain. This resolution gain is especially valuable in
opthalmology when visualizing thin layers within the cornea [45].

24.4 Segmentation

Selecting interesting features to be visualized is important to be able to root out
the occluding elements from large datasets. For most modalities, segmentation can
be performed by extracting regions with similar data values. For instance, because
of the physical properties of x-rays, the data values in a CT scan are recorded into
Hounsfield units which provide a good basis for binary thresholding techniques for
certain tissue types. Early work indicated that binary thresholding techniques are not
very well suited for ultrasound data [72]. More sophisticated techniques are required
for satisfactory segmentation. An extensive survey on ultrasound image segmentation
was presented by Noble and Boukerroui [48] in 2006. In this section we have focused
on significant publications from recent years.

To increase robustness of the ultrasound segmentation, the various approaches are
usually tailored for specific anatomies. Carneiro et al. have developed an automatic
technique for segmenting the brain of a fetus [8]. By first detecting the cerebellum,
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Fig. 24.3 Automatic segmentation of the ovarian follicles [13]

the system can narrow down the search for other features. On the other hand, segmen-
tation is an extremely critical procedure which may obscure diagnostically relevant
aspects of the anatomy under examination. Consequently, fully automatic segmen-
tation techniques have not been implemented in clinical systems so far, with the
exception of a method for follicle volumetry [13], as shown in Fig. 24.3.

A great challenge with ultrasound segmentation is that the data is dependent on
many factors. For one, different positions and orientations of the probe, while looking
at the same anatomical part, can provide very different images. Hyper-echoic regions
cast shadows onto the tissue behind it according to the probe position. This alone,
makes ultrasound segmentation data highly uncertain. Most segmentation techniques
return a model with no indication of the uncertainty of the result. To compensate for
the fuzzy nature of the ultrasound data, Petersch et al. developed a soft segmentation
technique for 3D ultrasound data [56]. This technique calculates a probability map
for 3D ultrasound data, which in turn can be used to create soft representations of
the features extracted.

24.4.1 Clipping

Feature extraction can be computationally costly. In-vivo 3D ultrasound examination
cannot always afford the extra time necessary to extract the interesting structures.
Therefore, clipping is a commonly used tool in live visualization of 3D ultrasound.
Interactively removing regions which are not interesting, the user gets a clear view
of the features normally occluded. Sakas et al. developed a clipping tool in their
ultrasound visualization system [64] which is nowadays a standard feature in com-
mercial 3D ultrasound systems. The user can segment the dataset in-vivo using three
approaches: drawing on one of the three axially-aligned slices, selecting everything
along the current axis, and within the sketch. Another tool is based on sketching
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Fig. 24.4 Using MagiCut to Clip the volume, generating a clear view to the desired structure [1]

directly on the 3D rendered scene. Each voxel is then projected onto the screen and
removed if it lies within the marked area. The third clipping tool is based on the
distance from a single mouse-click on the view-plane. A hemispherical wave front
is propagated from the seed-point and stops when the voxels reach a user-specified
threshold. Figure 24.4 shows an example of clipping implemented in the GE Voluson
machines [1].

24.5 Registration

Merging ultrasound with other modalities can be very beneficial. While ultrasound
provides high resolution images at a high frame-rate, other modalities, such as MRI
or CT can provide information complimentary to the ultrasound images. Data reg-
istration is the process of transforming different modalities into the same reference
frame to achieve as much comprehensive information about the underlying struc-
ture as possible. While CT and MRI are typically pre-operative imaging techniques,
ultrasound can easily be performed live during surgery. For instance, the radiation
from CT is dangerous and the large electro magnets in an MRI scanner require that
everything in the room is non-magnetic. Recently Curiel et al. built a non-magnetic
ultrasound scanner for proper simultaneous intra-operative imaging [11]. Though
there was some electric interference between the two modalities, the technique is
promising, although availability will most likely be very low.

Nikas et al. published an evaluation of the application of co-registered 2D ul-
trasound and MRI for intra-operative navigation [47]. Ultrasound based navigation
shows promising results due to live acquisition at high frame rates and easy portabil-
ity. For prostate brachytherapy a combination of ultrasound and co-registered CT can
be used, as shown by Fuller et al. [17]. Existing commercial products apply optical
tracking for intra-operative navigation during neurosurgery [71]. Figure 24.5 shows
how ultrasound and CT can be blended together into a single reference frame [7].

Registration can be divided into two different types: Rigid and non-rigid. Rigid
registration can be used to quickly obtain a registration between two modalities and
is suitable for rigid anatomies such as the skull. A common approach to register two
images is to search for the transformation which minimizes a difference function,
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Fig. 24.5 Registering ultrasound and CT a: Slice-view of a CT scan co-registered with 2D ultra-
sound. b: Cut-away view of a CT scan co-registered with 2D ultrasound [7]

for instance sum-of-square-differences. Direct image based registration between ul-
trasound and CT or MRI can be difficult due to the different nature of the imaging
techniques and usually some pre-processing, such as filtering, is required. For in-
stance, an approach presented by Leroy et al. used a gradient-preserving speckle
filter and then looked for the similarity in the gradients.

Penney et al. proposed a technique for registering MRI and ultrasound. The system
calculates a probability map of each element being a part of a liver-vessel [52]. Later
Penney et al. extended their technique for CT-ultrasound registration of the pelvis and
femur [53]. The system was validated using cadavers, showing that the registration
was accurate to a 1.6 mm root-mean-square error on average. A similar technique
for the cardiovascular domain was proposed later by Zhang et al. [83].

Combining segmentation with registration, King et al. presented a technique for
registering pre-segmented models with ultrasound [35]. The technique predicts the
probability that the ultrasound image was produced by the segmented anatomy.

In addition to a rigid transformation, affine registration includes non-uniform scal-
ing which sometimes needs to be applied in order to get a more correct registration.
Wein et al. developed an automatic affine-registration technique between CT and
ultrasound [78]. To provide a better similarity of the ultrasound and CT, the system
creates a simulated ultrasound image out of the CT scan based on the tracked probe
position. The simulated ultrasound image is generated using a ray-traced approach
to calculate the ultrasound wave reflection and attenuation in the tissue. To simulate
tissue specific echogeneity, they apply an angle-independent polynomial function
based on which tissue the region corresponds to.

External pressure or different laying positions of the patient when acquiring the
images are influential factors. To account for local deformations while imaging soft
tissue, a more complex registration is required. Papenberg et al. proposed two ap-
proaches for CT ultrasound registration [51] given a set of paired landmarks in both
the CT and ultrasound data set. One approach uses the landmarks as hard constraints
and in the other, the landmarks are considered as soft constraints and are combined
with intensity value information, in this case the normalized gradient field. The pa-
per shows a non-rigid registration between the liver vascular structures. The latter
technique was later evaluated by Lange et al. [40].
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24.6 Rendering

Visual presentation of the data is the last stage of the pipeline before involving the
user. The basic B-mode ultrasound images can be depicted on a screen in a straight-
forward manner as varying pixel intensities according to the echo amplitude. Doppler
information can be included as well with color-encoded blood-flow direction. Other
data, such as tissue strain, can also be included into 2D as overlays. Another example
of overlays is the CycleStack Plot which superimposes the respiratory signal onto a
selected feature of interest in the ultrasound image [41]. Doctors use this information
to account for the respiration-caused motion of the tumor in order to minimize the
damage done by certain tumor treatments.

Freehand ultrasound In Sect. 24.3.1, we discussed how freehand ultrasound
systems can be used to create large volumes by putting images into 3D spatial context.
Garrett et al. presented a technique for correct visibility ordering of images using a
binary positioning tree [18]. Visualization of large volumes leads to visual clutter.
Therefore, Gee et al. extended existing re-slicing tools to create narrow-band volumes
which contain less elements and are easier to present [20].

3D ultrasound is not as trivial to present due to its natural properties. In an early
work, Nelson and Elvis discussed the effect of existing techniques for presenting
3D ultrasound data, such as surface fitting and volume rendering [46]. Later, seven
ultrasound-dedicated volume projection techniques were evaluated by Steen and
Olstad [72]. They included maximum intensity projection (MIP), average intensity
projection (AIP) and gradient magnitude projection (GMP). The techniques were
applied to 3D fetal data, where GMP was valued to give the best detail and robustness
towards viewing parameters.

Data definition in the polar coordinate system is another challenge for ultra-
sound volume rendering. Kuo et al. presented a technique for quick on-the-fly scan-
conversion [39]. To reduce the costs of the functional evaluation of tan(φ) and tan(ψ),
the functional values were pre-calculated and stored in a texture as a look-up-table.

Surface Rendering is a common tool for many imaging modalities. In ultra-
sound, the low signal-to-noise ratio and parallel tissue boundary discontinuities make
defining smooth surfaces difficult. Smoothing of a surface can be performed at the
rendering stage. Fattal et al. presented an approach to render smooth surfaces from
3D ultrasound [15]. The surface is extracted based on the variational principle. Fuzzy
surface rendering is done by a technique called oriented splatting. Oriented splatting
creates triangles aligned with the gradient of the surface function. The triangle is
then colored with a Gaussian function and rendered in a back-to-front order. Wang
et al. proposed an improved surface rendering technique for 3D ultrasound data of
fetuses [77]. To remove the noise and to preserve edges, a modified anisotropic dif-
fusion is first applied to the dataset. To enhance low intensities which appear due
to signal loss as the sound wave propagates through the tissue, a light absorption
function based on the distance from a point is applied to the data. Finally, a texture-
based surface rendering is used, where the texture is extracted from images of infants.
The textures are warped and blended with the surface of the fetus face. To create
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smooth surfaces and remove unimportant noise in direct volume rendering, Lim
et al. proposed a filtering technique in their GPU based ultrasound rendering frame-
work [43]. This technique employs different sized filters to smooth out the noise.

24.6.1 Transfer Function Design

For direct volume rendering, transfer functions map ultrasound data, i.e., voxel
echogenicity in B-mode imaging and frequency information in Doppler imaging,
onto colors and opacities. Usually, this mapping is based on look-up tables. In color
Doppler imaging the commonly used red-to-blue color transfer function encodes di-
rection and velocity of flow, whereas a variety of predefined color maps is in use for
B-mode volume rendering. Custom color map editors are available, but hardly ever
used. Overall, there is a well-established set of color-maps used in clinical practice.

Different from color transfer functions, where the selection largely depends on the
preferences of the sonographer, the proper design of an appropriate opacity transfer
function (OTF) is crucial: When designing OTFs, the goal is to assign a high opacity
to voxels of structures of interest, while mapping all other samples to low opacities,
thus avoiding any occlusion of the target structure. Whereas computed tomography
allows classification of tissue based on voxel intensities, tissue classification-based
transfer functions do not work in B-mode imaging due to the completely different data
characteristics. Generally, a high signal intensity arises at a transition between tissues
of different acoustic properties. Thus, at least in the case of soft tissue structures, we
will measure high signal intensity at transitional areas and lower intensity signals
within homogeneous tissue. This is the reason for applying monotonically increasing
opacity transfer functions in DVR of ultrasound data. The aim is to opacify the tissue
transitions in the hope of obtaining a visualization of an entire target structure.

The most commonly used OTF in volume rendering of B-mode data assigns voxels
to one of three classes depending on their echogenicity, namely invisible, transparent,
and opaque. The corresponding piecewise linear OTF is modified manually by means
of two parameters, namely a threshold intensity Ithresh and a transparency value
α controlling the increase of opacity for intensities above Ithresh . The effect of
modifying Ithresh is depicted visually on MPR images, see Fig. 24.6.

The parameters of the OTF affect the rendered image in a substantial way. The
lower the Ithresh value, the lower the rendered image’s brightness, due to an increas-
ing number of hypoechoic voxels contributing to the image. Furthermore, the OTF
affects depth contrast, i.e., the contrast arising from a spatial discontinuity in the target
structure, and tissue contrast, i.e., contrast due to different echogenicity of adjacent
tissue. See Ref. [28] for an evaluation of these effects on linear and parabolic OTFs.
On the other hand, any modification of fundamental acquisition parameters, such as,
overall gain, or depth gain compensation, and any change of the position of the trans-
ducer or the target structure, changes the echogenicity distribution and thus requires
modifying the OTF for an optimal visualization. For a real time imaging modality,
incessant modification is not feasible. Hence, in clinical practice sonographers use
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Fig. 24.6 The parameter Ithresh determines which echo intensity values to render transparently.
A user control with immediate feedback, indicating transparent regions in pink, is essential

a default OTF providing reasonable visualization in the majority of cases, and hardly
ever touch the OTF control panel.

Therefore, there is a need for automatic determination of an optimal OTF for
every single acquisition. Due to the distinct characteristics and the real-time nature
of ultrasound imaging, most conventional approaches for transfer function design
have proven inadequate or require substantial modification in order to be applicable to
ultrasound volume imaging. Among the most important advances in transfer function
design for CT data is the work by Kindlmann et al. [34] and subsequent work by
Kniss et al. [36], introducing the concept of histogram volumes for semi-automatic
generation of OTFs for datasets where the regions of interest are boundaries between
materials of relatively constant value. In [30], von Jan et al. adapt this approach
to ultrasound data and apply it successfully to 3D freehand acquired volumes of
hyperechoic structures.

Hönigmann et al. suggest an approach dedicated to the specific problem of ren-
dering hyperechoic structures embedded in hypoechoic fluid [28]. By analyzing so
called tube cores, they yield an estimate for the position of the most prominent tissue
transition in the rendering direction. Voxel intensities prior to and at the detected in-
terface steer the extent of modification of an initial, parabolic OTF in a multiplicative
way. In a subsequent publication the authors assess the temporal coherence of the
tube core method and conclude that it is sufficiently efficient and robust for online-
computation of OTFs for an entire sequence of acquired volumes, if smoothing in
the temporal domain is employed [54].
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24.6.2 Multi-modal Rendering

Additional challenges arise when it comes to DVR of multiple datasets. Multi-modal
rendering is meant to bring two or more data sets of the same object into a single
image. Having two or more datasets in the same scene creates a challenge to keep the
cluttering of less interesting regions to a minimum from the datasets. For ultrasound,
3D Doppler data can be acquired simultaneously with 3D B-mode data. Jones et al.
discuss several approaches to explore and visualize 4D Doppler data [31]. Multi-
planar rendering, showing several slices at once, provides a surface fitting of the
Doppler data based on the YCbCr color scheme values to improve separation between
Doppler data and B-mode data. An approach is presented to blend multi-planar slice
rendering into a DVR scene. The DVR is shown highly transparent and the slices
provide better detail along the perspective. A different way of combining B-mode
with Doppler data was presented by Petersch and Hönigmann [55]. They propose
a one level composite rendering approach allowing for blending flow and tissue
information arbitrarily, using silhouette rendering for the B-Mode and a mix of
Phong shaded DVR and silhouette rendering on color Doppler.

A new technique for blending Doppler and B-mode was introduced by Yoo
et al. [82]. Instead of blending two 2D rendered images (post fusion), or a blending
the two volumes while rendering (composite fusion), they proposes a way to do both
called progressive fusion (PGF). Post fusion has a problem with depth blending and
composite fusion will get a too early ray termination. PGF compensates for this by
using an if-clause to adjust the alpha-out value in the ray-caster to composite either
the Doppler-signal or the B-mode-signal.

Burns et al. applied illustrative cut-aways combined with 3D freehand ultrasound
and CT [7]. This provides a better spatial overview for the ultrasound images. To add
more information onto the 2D ultrasound image, Viola et al. proposed an approach
to enhance the ultrasound image by overlaying higher order semantics [75], in this
case in the form of Couinaud segmentation. The segmentation is pre-defined in a CT
dataset and visually verified using exploded views. To combine it with ultrasound
images, the CT dataset is co-registered with the ultrasound using rigid transformation
according to user defined landmarks. The different segments are superimposed onto
the ultrasound image enabling the user to directly see which segments are being
imaged. To improve ultrasound video analysis, Angelelli et al. used a degree-of-
interest (DOI) distribution superimposed on the image [3]. The video sequence was
presented as a function of time (x-axis), where the y-axis was defined by the amount
the current ultrasound image covered the DOI-function.

24.6.3 Shading and Illumination

Light is an indispensable part of scenes we see in real life. Also in computer graphics,
light sources and light transport models have to be taken into account when rendering
realistic scenes. In volume graphics, the problem of illumination and light transport
has been tackled by a handful of researchers as well.
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We distinguish between local and global illumination models. Local illumination
models use gradients of the volumetric function instead of surface normals to evaluate
the diffuse and specular terms of the Phong illumination model [42]. While local
illumination models already reveal structures, global illumination methods result in a
more realistic appearance, which further supports spatial perception. While gradient-
based local illumination methods are faster to evaluate, gradient computation is
sensitive to noise and high frequencies, which are natural properties of ultrasound
data.

Recent works show that global illumination models based on gradient-free meth-
ods are suitable for rendering ultrasound volumes [62, 76]. Ropinski et al. described
a volumetric lighting model which simulates scattering and shadowing [62]. They
use slice-based volume rendering from the view of the light source to calculate a
light volume and raycasting to render the final image (see Fig. 24.7b). A perceptual
evaluation of the generated images indicates that the proposed model yields stronger
depth cues than gradient-based shading. Šoltészová et al. presented a single-pass
method for the simulation of light scattering in volumes [76]. Light transport is ap-
proximated using a tilted cone-shaped function which leaves elliptic footprints in the
opacity buffer during slice-based volume rendering. They use a slice-based renderer
with an additional opacity buffer. This buffer is incrementally blurred with an ellip-
tical kernel, and the algorithm generates a high-quality soft-shadowing effect (see
Fig. 24.7c). The light position and direction can be interactively modified. While these
two techniques have been explicitly applied to 3D US data, the application of other
volumetric illumination models potentially also improves the visual interpretation
of 3D US data. Figure 24.8 shows a comparison of six different shading techniques
as applied to a 3D US scan of a human heart. While the first row of Fig. 24.8 shows
examples for the already addressed shading techniques, the second row shows three
alternative approaches. Figure 24.8d incorporates scattering of light in volume data,
as proposed by Kniss et al. [37]. Their slicing technique allows textured slices to be
rendered from both light and viewing direction simultaneously. By sampling the in-
cident light from multiple directions while updating the light’s attenuation map, they

Fig. 24.7 a Diastole of the aortic valve on a modern ultrasound workstation using color-coding
based on depth. b Rendering of 3D ultrasound of a human heart with shadowing from the work of
Ropinski et al. [62] and c rendered using the technique presented in the work of Šoltészová et al. [76]
© IEEE Reprinted, with permission, from IEEE Pacific Visualization Symposium (PacificVis), 2010
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Fig. 24.8 Comparison of six volume shading models as applied to a 3D US scan of a human heart.
a Phong, b [62], c [76], d [37], e [66], f [44]

account for scattering effects in slice-based volume rendering. Figure 24.8e shows
the application of the directional occlusion shading technique [66]. This technique
constrains the light source position to coincide with the view point. Finally, Fig. 24.8f
shows the application of a technique based on spherical harmonic lighting [44].

Advanced illumination techniques are now being implemented in the commercial
ultrasound workstations. Some workstations use additional color coding based on
depth. Deeper tissues are colored with cold tones such as blue while close regions
have red and orange tones. This effect has been firstly described by Einthoven [14]
and is also referred to as chromostereopsis [2]. Figure 24.7a shows a chromatic depth-
encoding rendering of a 3D human heart in a modern ultrasound workstation.

24.7 Ultrasound and Augmented Reality

Ultrasound is commonly viewed on a separate monitor. Therefore, it is difficult to
comprehend the spatial relationship between what you see on the monitor and where
it is located in the patient’s body. Augmented reality can aid the user by, for instance,
super-imposing the ultrasound image onto the body where the ultrasound probe is
positioned. Bajura et al. presented a system which linked 3D freehand ultrasound
with a head-mounted display (HMD) [4]. The HMD contains a camera, tracker and
two displays, one for each eye. The system can then project the tracked ultrasound
image onto the tracked camera feed so the user can see where in the body the image
is actually positioned.

Combining segmentation, surface rendering and augmented reality, Sato et al.
aimed to aid surgeons during breast tumor removal for minimizing risk and
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maximizing breast preservation [65] by projecting a segmented tumor onto a video
feed. The tumor is segmented using a minimal intensity projection based selection
of the volume of interest. In the final stage, the tumor is surface rendered and super-
imposed on the video image.

Stetten et al. show how tomographic reflection can provide a superimposed image
onto the body without any tracking systems [73]. The ultrasound probe carries a half-
silvered mirror. The mirror reflects the ultrasound image which is shown on a flat
panel monitor mounted on the probe. This technique was extended in the Sonic
Flashlight [68]. The tomographic reflection was shown to increase the localization
perception compared to conventional ultrasound [81].

Augmented reality shows a great potential benefit in medical ultrasound imaging.
Yet, there is a lag from technology development to the actual integration into every
day usage. Sielhorst et al. published a detailed review for advanced medical displays
in 2008 [69]. This chapter discuss the potential benefit and the increasing use for
augmented reality in medical imaging in general. They state that improvements in
both technologies are needed to be able to create a seamless integration into the
workflow of physicians and surgeons.

24.8 Summary and Discussion

In this chapter, we have categorized several of the most important works in what con-
stitute the ultrasound visualization pipeline. The pipeline is defined as the five major
categories in data processing and rendering. The five categories are pre-processing,
segmentation, registration, rendering and augmented reality.

Medical ultrasound data is very different compared to other medical imaging
modalities. Techniques for the individual steps in the visualization pipeline are tai-
lored to suit the special nature of the data. For instance, techniques meant for in-vivo
use have strong performance requirements to handle the high frame rate of ultrasound
images. Segmentation and registration becomes very challenging, due to inconsis-
tent data values for similar tissue. Still, ultrasound remains as one of the most used
imaging modalities in medicine. Research in advanced ultrasound visualization tech-
niques focuses greatly on 3D ultrasound, but the trend in diagnostics is mostly 2D
due to higher frame-rates, high resolution and a minimal requirement for interaction.
The temporal and spatial resolution for ultrasound is approaching the physical limits
of the speed of sound. It is very important to explore what strengths and weaknesses
the different modalities possess and combine the strengths into the natural work flow
of medical personnel.
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Chapter 25
Visual Exploration of Simulated
and Measured Blood Flow

A. Vilanova, Bernhard Preim, Roy van Pelt, Rocco Gasteiger, Mathias
Neugebauer and Thomas Wischgoll

Abstract Morphology of cardiovascular tissue is influenced by the unsteady
behavior of the blood flow and vice versa. Therefore, the pathogenesis of several
cardiovascular diseases is directly affected by the blood-flow dynamics. Understand-
ing flow behavior is of vital importance to understand the cardiovascular system and
potentially harbors a considerable value for both diagnosis and risk assessment. The
analysis of hemodynamic characteristics involves qualitative and quantitative inspec-
tion of the blood-flow field. Visualization plays an important role in the qualitative
exploration, as well as the definition of relevant quantitative measures and its vali-
dation. There are two main approaches to obtain information about the blood flow:
simulation by computational fluid dynamics, and in-vivo measurements. Although
research on blood flow simulation has been performed for decades, many open prob-
lems remain concerning accuracy and patient-specific solutions. Possibilities for real
measurement of blood flow have recently increased considerably by new develop-
ments in magnetic resonance imaging which enable the acquisition of 3D quantitative
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measurements of blood-flow velocity fields. This chapter presents the visualization
challenges for both simulation and real measurements of unsteady blood-flow fields.

25.1 Introduction

Cardiovascular disease (CVD) is a class of conditions affecting the heart and blood
vessels, with an estimated overall prevalence of over thirty percent of the American
population [1], and is currently the leading cause of death worldwide [53].

Diagnosis of CVD typically involves an evaluation of both the anatomical struc-
ture and function, while the behavior of blood flow is still rarely inspected. The flow
behavior is, nevertheless, of vital importance to the cardiovascular system. Mor-
phology of cardiovascular tissue is significantly influenced by the unsteady behavior
of flowing blood and vice versa. Therefore, blood flow analysis potentially har-
bors a considerable value for both diagnosis and risk assessment. A wide range of
pre-clinical research indicates that flow behavior directly relates to medical condi-
tions [13, 28].

In particular, congenital heart diseases imply anomalous hemodynamics that
strongly influence the progression and treatment of the innate defects. For the adult
case, a noteworthy application is the aortic dissection, which is caused by a tear in
the inner aortic wall. This allows blood to flow between the disintegrated layers of
the vessel wall, resulting in a high risk of rupture. Again, the blood flow behavior
plays a predominant role in the course of the condition. Decision support in case of
cerebral aneurysms is one of the main applications of blood flow analysis. Blood flow
is essential for the assessment of risk of rupture, urgency of treatment in case of mul-
tiple aneurysms, selection of treatment strategy (e.g., coiling/stenting, neurosurgical
clipping).

The analysis of hemodynamic characteristics involves qualitative and quantitative
inspection of the blood flow field. Physicians in clinical research investigate both the
spatiotemporal flow behavior, as well as derived measures, such as the mean flux or
cardiac output. The analysis of the blood flow data often requires complex mental
reconstruction processes by the physician. Visualization plays an important role in
the qualitative exploration, as well as the definition of relevant quantitative measures
and its validation.

There are two main approaches to obtain information about the blood flow: simu-
lations (i.e., computational fluid dynamics) and in-vivo measurements. Both of these
methodologies can obtain information about the unsteady blood flow characteristics,
where each has different advantages and disadvantages.

Although research on simulations of blood flow has been active for several
decades, still a lot of open problems remain concerning accuracy and patient-specific
solutions. Recently, research around measurement of blood flow has increased con-
siderably. Developments in magnetic resonance imaging (MRI) have made the acqui-
sition of 3D quantitative measurements of blood flow velocities fields possible. Fur-
thermore, several vendors have made essential postprocessing software to inspect
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the data clinically available. Therefore, clinical pilot studies have been possible and
have shown the relevance and potential of this data. Furthermore, the MRI acquisition
development towards 7 and 9 T machines have the potential to provide the required
resolution and signal-to-noise ratios (SNR) to analyze blood flow in smaller vessels
compared to the main arteries around the heart.

In this chapter, we will consider the visualization challenges for both simula-
tions and in-vivo measurements of unsteady flow fields. We will present a review of
the existing literature, the main challenges related to blood flow visualization and
analysis, as well as the open issues.

25.2 Blood Flow Simulation

One way of determining blood flow within a vascular system is through simulation.
This approach involves two major steps. First, the vascular structure needs to be
segmented, and the geometry of the vessel boundary determined as accurately as
possible. Next, a Computational Fluid Dynamics (CFD) model simulates the blood
flow within the reconstructed geometry. The next sections will discuss these steps in
more detail.

25.2.1 Grid Generation

In order to simulate blood flow with CFD, the boundary conditions of the underly-
ing mathematical model have to be defined properly. In case of vascular flow, the
boundary conditions are defined by two different components: the first one is the the
geometric boundary of the vessels; the second one consists of the inflow and outflow
characteristics as defined by the circulatory system.

There are different ways of identifying the vessel boundary. Typically, some imag-
ing technique is used to generate a scan of the vascular structure for which the flow is
supposed to be simulated, for example a Computed Tomography (CT) scan. In order
to extract the vascular structure from such a volumetric image, the data needs to be
segmented. Simple thresholding based on the intensity value can be used. However,
this may not be sufficient for anatomical structures where significant perfusion and
noise occurs, such as the heart. More sophisticated segmentation techniques are nec-
essary, for example, gradient-based thresholding techniques tend to produce better
results in those cases.

The segmentation process also has great influence on the overall accuracy of the
simulation. Basic intensity thresholding techniques, for example, determine individ-
ual voxel locations as being part of the vessel boundary. However, it is unlikely that
the vessel boundary is located precisely at such a voxel location, especially given that
the volumetric data set only imposes an artificial grid on the organ at hand. There-
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Fig. 25.1 An example of a vessel boundary based on a CT scan segmented using gradient-based
thresholding with sub-voxel precision (a) and resulting simulation of blood flow visualized by
color-coding the wall-shear stress (b)

fore, the accuracy can be improved by using segmentation techniques that operate at
a sub-voxel level, e.g., Marching Cubes algorithm [25].

The downside of the Marching Cubes algorithm, however, is that it only operates
with a fixed intensity threshold across the entire data set. Since typically a point
spread function with a radius greater than one has to be assumed for most imaging
techniques, this may cause errors in the boundary geometry, overestimating larger
vessels and underestimating smaller vessels. Gradient-based approaches can achieve
better results in these cases identifying the location where the maximal gradient
value is assumed to find a more accurate estimate for the exact location of the vessel
boundary [52]. The geometric model resulting from the segmentation step can then
be further refined, for example by using smoothing or rounding off the transitions at
vessel bifurcations [33], resulting in a vessel boundary that can be used for a CFD
simulation. Figure 25.1a shows an example of such a vessel boundary generated
based on a CT scan using gradient-based thresholding with sub-voxel precision.

25.2.2 Computational Fluid Dynamics Model

In addition to the geometric boundary of the vascular structure inflow, outflow, and
wall boundary conditions have to be defined properly for the CFD simulation [5, 49].
Inflow and outflow conditions arise from the fact that the current vascular structure
has to be isolated from the rest of the arterial system. In practice, the flow rate or
the speed profile at the inlets and the pressure at the outlets are utilized for a car-
diac cycle. These quantities are obtained based on experimental measurements or by
time-resolved Phase-contrast MRI flow measuring from the patient (see subsequent
section). boundary condition arises from the fact that the vessel wall is distensible,
which may influence the local hemodynamic and vice versa [44]. However, typi-
cally no proper characterization of the arterial wall, such as modulus of elasticity,
wall thickness, or pressure wave that form at the wall, is available or is difficult to
measure noninvasively [5]. Thus, a rigid wall is assumed in most cases, which also
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decreases the numerical computation time. With all boundary conditions defined,
the flow can be computed based on the 3D unsteady Navier-Stokes equations for an
incompressible Newtonian fluid. Typically, common CFD solvers are used for this
step, for example ANSYS Fluent or OpenFOAM. The resulting velocity and pressure
of the blood flow can subsequently be used for further analysis. For example, the
computation of the dimensionless Reynolds number [6]. The Reynolds (Re) number
characterizes the local flow behaviour in terms of laminar (Re<300) or turbulent
(Re>300). In addition to velocity and pressure values, other hemodynamic quanti-
ties are obtained during the simulation. An important quantity is the wall shear stress
(WSS), which represents the tangential force produced by blood moving across the
vessel surface. It is known that WSS has an influence on the tissue structure of the
vessel wall and it is likely that WSS plays an important role in initiation, growth
and rupture of cerebral aneurysms [32]. The WSS can be computed based on the
velocity field and the geometry [6, 17]. Figure 25.1b shows the result of such a CFD
simulation using the inlet pressure and velocity based on a typical heart rate. This
simulation is based on 124 time steps. For each time step, a grid size of 500,000 cells
was used to accurately represent the vascular structure resulting in close to 900 MB
of data. CFD simulations give blood flow information at high resolution. However,
CFD simulations are based on models with assumptions and simplifications which
make it difficult to obtain patient-specific accurate results.

25.3 Blood Flow Measurement

25.3.1 Acquisition Methods

Measured blood flow information is mostly obtained by quantitative ultrasound (US)
acquisition (see Chap. 5). US is a cost-effective modality, providing flow informa-
tion at high spatiotemporal resolution. However, US acquisition requires a skilled
operator, is generally subject to a substantial amount of noise, and volumetric mea-
surements of the vector velocity field are not possible. Consequently, this modality
is less suitable for challenging cardiovascular conditions. Alternatively, computed
tomography provides a limited number of blood flow acquisition sequences while
delivering better signal-to-noise ratios. CT has the drawback of not measuring flow
directly and exposing the patient to harmful radiation, which is impermissible for
young patients. Instead, we focus on non-invasive Phase-Contrast (PC) MRI acqui-
sition, which is the only modality providing volumetric quantitative measurements
of blood flow velocities throughout the cardiac cycle. A typical size of such a vol-
umetric data is 150 × 150 × 50 voxels with velocity vectors with a resolution of
2 × 2 × 2.5 mm per voxel, and a time series of 20–25 steps per cardiac cycle.

Phase-contrast MRI sequences enable acquisition of flow data that is linearly
related to the actual blood flow velocities, capturing both speed and direction. This
linear relation is described by the velocity encoding (VENC) acquisition parameter,
representing the largest speed that can be measured unambiguously and is typically

http://dx.doi.org/10.1007/978-1-4471-6497-5_5
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Fig. 25.2 The PC flow data set consists of 20 phases in time. Each phase in the series comprises a
velocity vector volume with a resolution of 144 × 144 × 50 voxels of 2.0 × 2.0 × 2.7 mm. a PC-P
right to left; b PC-P anterior to posterior; c PC-P head to feet; d PC-M right to left; e PC-M anterior
to posterior; f PC-M head to feet © IEEE Reprinted, with permission, from IEEE transactions on
visualization and computer graphics 16(6)

defined in centimeters per second. The range of the imposed speed limit, for example
(−100 cm/s, 100 cm/s], corresponds to the phase extremities, i.e., −π and π radians.
If a suitable VENC is chosen, PC-MRI provides a data set with great correspondence
to the actual blood flow velocity field [15]. As a consequence, the acquired data allows
for quantitative analysis of the blood flow behavior. PC cine MRI sequences support
the acquisition of volumetric blood flow data throughout the cardiac cycle, generat-
ing a 4D blood flow velocity field [27, 34]. There are two customary approaches to
reconstruct the acquired raw data to the desired flow images [3]: phase (PC-P) and
magnitude (PC-M) reconstruction. Figure 25.2 depicts a single slice of the recon-
structed 4D flow data, at a certain point in time. The top row, Fig. 25.2a–c, represents
the blood flow data in the three patient-oriented orthogonal directions, encoding both
speed and directions of the blood flow quantitatively. This data is commonly referred
to as the phase (PC-P) reconstruction. The bottom row, Fig. 25.2d–f, represents the
blood flow data in three directions, encoding only speed. This data is commonly
referred to as the complex difference or magnitude (PC-M) reconstruction. Even
though the blood flow direction cannot be resolved from the PC-M reconstruction,
the resulting data is inherently less prone to the uncorrelated noise that is typical for
the PC-P reconstructed data.
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25.3.2 Noise and Artifacts

Measurements come with imperfections which complicate the meaningful quanti-
tative analysis of the flow data. In particular, measures derived from the data are
sensitive to relatively small errors in the flow measurements. Inaccuracies are caused
by a combination of many factors, associated with the MRI hardware, imaging
sequences and their parametrization, and patient movement. For sensitive cardiac
applications, the generally accepted objective is to acquire flow data with less than
10 % error [14].

The parametrization of the imaging sequence has a large influence on the accu-
racy of flow measurements. The parametrization directly influences the spatial and
temporal resolution [15]. In particular quantitative analysis of small vessels (e.g., in
the brain) becomes cumbersome at low resolution [2].

Besides user parametrization, motion is an important cause of imaging artifacts.
There are three major causes of tissue displacement due to patient movement: motion
artifacts by peristaltic motion, artifacts caused by contraction of the heart muscle, and
respiration. Contraction of the heart muscle artifacts can be considerably reduced dur-
ing acquisition. The impact of the respiratory motion can also be largely suppressed,
by exploiting the relatively motionless period after exhalation.

In addition, flow measurements are subject to general MRI artifacts, largely due to
hardware imperfections common in all MRI scans [4]. A relevant artifact for flow is
due to the fast gradient switching which induces eddy currents in the electromagnetic
field. This causes background phase errors in the image, which manifest as slowly
varying image gradients in both the spatial and temporal domains. These effects are
difficult to predict and therefore challenging to correct [14, 38]. The conventional
MRI noise follows a Rician distribution. For flow imaging, it can be shown that
the noise in flow regions depends on the velocity encoding speed and is inversely
proportional to the SNR of the corresponding magnitude image [26]. Hence, the
VENC parameter should be chosen as small as possible, while capturing the full
dynamic range of the actual flow. The decision about the VENC value is often not
easy to make.

There are additional artifacts that are specific to flow data. For instance, aliasing,
or phase wrapping, erroneously introduces regions with opposite flow directions.
Whenever the actual blood flow speed transcends the VENC value, a phase wrap
occurs. Several methods have been devised to correct these artifacts caused by a
single phase wrap through postprocessing [22, 54]. Another flow-specific artifact is
misregistration where blood flow regions are shifted from the stationary tissue. This
is due to the time between the phase encoding and frequency encoding gradients.
These artifacts can be corrected by adding a bipolar gradient to each phase encoding
gradient [51].

The flow imaging sequences are based on the assumption that the blood flow
velocities are constant at the time of measurement. Hence, measurements of acceler-
ated flows are less accurate and can cause undesirable artifacts. Accelerated flows can
be found in pulsatile flows, stenotic flows, or jets that can cause so-called flow voids
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Fig. 25.3 The focus structures, the aneurysm and its immediate inflow and outflow are rendered
opaquely with highly saturated colors. Context information is shown with a less striking colour
with decreasing opacity for more distant vasculars structures

at relatively low spatial resolutions. To verify whether this behavior has occurred,
black blood scans are often employed to inspect the vessel delineation.

25.4 Visual Exploration

25.4.1 Visualization of the Anatomical Context

The visual exploration of blood flow data is usually focused on a rather small anatom-
ical region. In case of simulated blood flow data, this represents the domain where the
simulation was performed. It may be necessary to present this focus region embedded
in a somehow larger context to better understand the location of a pathology and the
in- and outflow regions. Such a visualization goal may be achieved with a coordi-
nated focus-and-context view, where the detail view presents only the target region
and the context view provides the big picture with additional anatomical context.
An integrated focus-and-context view is mentally easier to interpret. A reasonable
strategy is to employ distance-based transfer functions [42], where the distance to
the target anatomy is mapped to opacity in order to hide distant vascular structures.
This strategy is illustrated in Fig. 25.3. The specific choice of colours and opacity as
well as the amount of information to be displayed requires careful discussions with
physicians [31]. Such a visualization may be a first step in a pipeline of exploration
and analysis, as it presents an overview and needs to be followed by a more local
analysis.
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Fig. 25.4 Comparison between a semi-transparent visualization (a) and a ghosted view technique
(b, c) applied to the enclosed vessel surface to show the internal flow. In b the hidden streamlines
are depicted in grey and omitted in c to reduce visual clutter

The flow strongly depends on local variations of the enclosing vascular structures.
Large changes in flow speed occur at stenotic regions, and turbulent flow occurs
primarily at bifurcations or strongly curved areas. Thus, it is important to investigate
the morphology of anatomical structures and the internal flow simultaneously. In
case of simulated flow, such an integrated analysis may reveal that a significant flow
feature is due to a small variation of the surface, which may result from an inaccuracy
in the segmentation. The simplest idea to display flow and vascular anatomy at the
same time is to render the vascular surface transparently. However, depending on the
transparency level, either the vascular anatomy is hardly recognizable, or the internal
flow is strongly obscured by the vessel wall.

As a remedy, smart visibility techniques [50], such as ghosted views, may be
employed. The flow may be considered as an important object and the vessel walls
transparency is modified to reveal flow lines. This idea has been realized by Gasteiger
et al. [12]. The specific solution to provide ghosted view visualizations is based on
a Fresnel reflection model [39], where the reflection term is replaced by opacity. In
Fig. 25.4 a comparison of that technique with conventional semi-transparent render-
ing is presented. Gasteiger et al. refined their technique by an integration of landmarks
described in the next section, and the ability to remove all hidden flow lines to further
reduce visual clutter (see Fig. 25.4).

Van Pelt et al. [46] presented an anatomical context based on methods inspired by
medical illustrations, where the detail is removed while the morphological informa-
tion is preserved (see Fig. 25.5). To this end, they used cel-shaded silhouettes, com-
bined with superimposed occluding contours. Hidden contours were visible during
viewpoint interactions in order to resolve occlusion problems and to clarify spatial
relations. Their user evaluation showed that these methods had a positive impact for
the purpose of anatomical context representation of the flow.
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Fig. 25.5 Anatomical context visualization with cel shaded silhouettes and occluding contours. a
Thoracic arteries. b MPR visualization exploded view of planes at cross-section positions. c Flow-
rate arrow-trails arrows at 280 ms after the start of the cardiac cycle. [46] © IEEE Reprinted, with
permission, from IEEE transactions on visualization and computer graphics 16(6)

25.4.2 Localization of Anatomical Landmarks

The exploration of vascular structures and the embedded flow benefits strongly from
geometric descriptors that enable a carefully guided or constrained interaction. Such
geometric descriptors may also be used to decompose the relevant anatomy in mean-
ingful subregions to ease the exploration of complex flow data.

A widely used geometric descriptor is the vessel centerline, determined by a
skeletonization algorithm (see, e.g., [19]). The vessel centerline is often used in order
to move a cross-sectional plane that is always aligned perpendicular to the centerline,
presenting the maximum-sized area. In conventional vessel analysis packages, the
cross-sectional view displays the intensity values from the original image data, e.g.,
the CT Hounsfield values. In case of blood flow data, this strategy may be used to
present any scalar value derived from the flow or the flow data itself, e.g., by using
some glyph mapping. Van Pelt et al. [46] presented this cross-sectional visualization
approach for the main arteries (see Fig. 25.5).

Better support for exploration tasks may be achieved by detecting and analyz-
ing further anatomical landmarks of a particular region. Once these landmarks are
identified, they may be used for labeling and for guiding movements in the complex
3D anatomy. The choice of such landmarks is specific for a particular anatomical
region. We describe and illustrate this principle for the specific example of cerebral
aneurysms. First, it is essential to understand which landmarks are actually important
to characterize the local vessel anatomy. Neugebauer et al. [29] questioned a couple
of neuroradiologists to draw cerebral aneurysms and extracted characteristic points
commonly used by them. The following points were deemed essential (see Fig. 25.6).

• the dome point of an aneurysm,
• the (curved) ostium plane, where the blood enters the aneurysm, and
• a so-called central aneurysm axis (the closest connection between the parent ves-

sel’s centerline and the dome point)
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Fig. 25.6 Geometric descriptors for characterizing cerebral aneurysms

These landmarks may be utilized for example to move a plane along the central
aneurysm axis or to employ the ostium plane as the seeding region, where streamline
integration starts. The robust and precise detection is challenging due to the large
variety of pathologic situations. Nevertheless even if it is successful only in about
90 percent of the cases, it provides a valuable support (see Neugebauer et al. [29]
for a description of landmark extraction in saccular cerebral aneurysms). A similar
landmark extraction process can be significant for other anatomical regions as well,
since it provides a familiar reference frame for medical doctors. Constrained naviga-
tion does not necessarily mean that it is impossible to deviate from a predefined path.
There are many variants to combine a preference direction with free exploration
where the user is attracted to the predefined path, but may deviate. For a general
discussion of constrained navigation techniques, see Hanson et al. [16] and more
recently Elmqvist and Tudoreanu [8].

25.4.3 Exploration of Surface Flow Scalar Features

Blood flow simulations result in flow data as well as scalar flow features, such as
pressure, speed and wall shear stress (WSS). It is known that WSS plays an essential
role in the understanding of initiation and progression of vascular diseases. A simple
solution to display scalar flow features is to show the surface of the relevant vascular
region with a color-coded scalar flow feature.

The disadvantage of this simple solution is that only a small portion of the surface
is visible at the same time. Map projections, which unfold an anatomical structure
onto a plane, allow the visualization of the whole scalar information simultaneously.
However, a map exhibits distortions (not all spatial relations, such as distances or
angles can be preserved) and, even worse, a simple map is very hard to relate to the
complex 3D anatomy of pathologic vessels. One promising approach is to combine a
faithful 3D anatomy representation and a map view, where interaction in both views
are synchronized. It is inspired by map views in other areas of medical diagnosis,
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Fig. 25.7 A 3D model of the relevant vascular anatomy is surrounded by map views that display
scalar flow features of five sides (features at the left, right, bottom, and up side are shown at the
corresponding ring portions). Scalar features of the backside are shown at the most right display.
The lines pointing from the map portions to the 3D view indicate correspondences, where scalar
features are shown in both views. If the user drags a point, representing an interesting feature from
a map view to the center, the anatomical model is rotated to make that region visible. All map views
change accordingly

such as the Bull’s eye plot in cardiology and stretched curved planar reformations in
vessel diagnosis [18].

Neugebauer et al. [30] introduced a map display for scalar flow features, where the
3D anatomy model is presented in a central part and flow features of the surrounding
sides are presented as flat regions of a map of the anatomical view. The map views
and the 3D anatomy view are linked to depict positions of interest selected by the user
(see Fig. 25.7). This enables a systematic exploration of all regions. Neuroradiologists
emphasized that this technique enables a better exploration of scalar flow features.

Despite encouraging feedback obtained by Neugebauer et al., more evaluation and
corresponding refinements are necessary to make this strategy broadly applicable.
While in principle their approach is applicable to unsteady flows, it is likely that
modifications are necessary if the scalar flow features change over time, leading
to frequent changes of both views. Furthermore, flow information is volumetric.
Although some measures are meaningful on the vessel wall, several flow features
can only be analyzed through full volumetric visualization.

25.4.4 Blood Flow Probing

Time consuming segmentation is a necessary step in most tools for the inspection of
measured flow data. Many tools incorporate functionality for local 2D segmentation
of the vasculature [37]. This step is necessary not just to provide the anatomical
context, as described in Sect. 25.4.1, but also to limit the domain where the vector field
is considered valid. Due to the acquisition process, measured flow data presents values
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outside the vessel boundaries. This limits direct applicability of some visualization
methods, such as integral lines or particle traces.

Segmentation techniques have been developed to directly segment measured 4D
flow data. These methods are based on the assumption that the flow outside the vessel
boundary exhibits incoherent behavior [7, 35, 40]. Van Pelt et al. [45] presented
an extension of active surfaces to segment flow. Krishnan et al. [20] introduce a
segmentation technique based on Finite-Time Lyaponov Exponents (FTLE). The
main drawback of these methods is that they will fail in some pathologies due to the
characteristics of the flow, e.g., areas with slow flow.

Most flow visualization techniques require seeding or region selection as initial-
ization. The main reason for the selection is to avoid the clutter that visualizing the
flow in the full domain supposes. The definition of the seeding region is usually done
by probing in the volume domain, often with the help of segmentation.

Van Pelt et al. [46] presented a semi-automatic technique to probe cross-sections
of anatomical data avoiding full segmentation (see Fig. 25.5). If anatomical data is
not available an option for cross-sectional placement is to use the so called temporal
maximum intensity projection (TMIP). For each voxel position of the TMIP scalar
volume, the maximum speed is determined along the time axis of the 4D flow data.
Hence, each voxel with a bright intensity indicates that a flow velocity with a sub-
stantial speed has occurred there at least once during the cardiac cycle. This probing
method has several drawbacks: it assumes tubular structures, so it is only valid for
vessels, and it does not consider the movement of the vessels during the heart cycle.

In later work, Van Pelt et al. [47] presented a probing technique to allow fast
qualitative inspection, avoiding full segmentation. The user positions a 3D virtual
probe on the viewing plane with common 2D interaction metaphors. An automatic
fitting of the probe is provided for the third dimension, i.e., the viewing direction.
Using the available velocity information of the measured blood flow field, the probe
is aligned to this field. In particular, the automated fitting aligns the orientation of
the long axis of the virtual probe to be tangential to the average local blood flow
orientation. The probe is the basis for further visualizations (see Fig. 25.9).

Van Pelt et al. [46] also investigated different local seeding strategies based on the
vessel center (e.g., radial or circular) concluding that fixed template seeding cannot
accommodate flow variations. Krishnan et al. [20] presented a seeding strategy based
on the segmentation of flow maps [41]. Flow maps are based on the end position
of the particle after integration or advection. It is expected that this seeding strategy
will adapt to real flow patterns.

In visualization, focus-and-context approaches are commonly used to avoid clut-
ter. Gasteiger et al. [11] propose the FlowLens which is a user-defined 2D magic lens.
This lens combines flow attributes by showing a different attribute and visualization
within and outside the lens. Additionally, they incorporate a 2.5D lens to enable
probing and slicing through the flow. To simplify the interface, they provide scopes
which are task-based. Each scope consists of pairs of focus vs. context attributes,
and propose visualization templates to represent each pair (see Fig. 25.8).
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Fig. 25.8 Two examples of the FlowLens, which is depicted with a red contour line and two
handles. Outside the lens the flow is visualized with illustrative and color-coded streamlines. Inside
the lens a view-aligned probe plane with a LIC visualization for the investigation of the degree of
vorticity (a) as well as the flow pressure as isosurfaces (b) are embedded

25.4.5 Blood Flow Visualization

Flow visualization has been an active field of research for decades. It has developed
a large number of methods for inspecting flow data, and there are different review
articles that define and classify these techniques [23, 36]. Although these techniques
can be directly applied to blood flow fields, it is important to note that not all tech-
niques are meaningful due to the characteristics of the data, e.g., measured data has
low temporal resolution. Furthermore, the chosen visualization should be compre-
hensible to physicians and clinical researchers. In other words, the features shown
should be linked to an intuitive understanding of the flow, and the pathology. In the
remainder of this section, we will present the most common blood flow visualization
techniques that have been proposed in literature, and their variations.

One of the most common ways to depict flow is using integral curves. There are
two main approaches used for blood flow the so-called streamlines and pathlines.
These integral curves represent the trajectory that a massless particle would follow
through the vector field. Streamlines assume steady flow, so the vector field does not
change in time. Pathlines are the extension of the streamlines that convey the temporal
behavior of unsteady flow fields. Therefore, pathlines are the curves to depict parti-
cles trajectories in the vascular system. However, streamlines are still often used to
depict instantaneous flow-field structure. In measured flow data, where the temporal
resolution is low, streamlines can be informative, since error is accumulated at each
integration step of the pathlines, and therefore the reliability of the lines decreases
rapidly. Streaklines are another category of integral curves which have been used
less often for blood flow. Streaklines are generated by a continuous seeding through
time. Each point of the line corresponds to a seed that is continuously integrated
through time.
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Fig. 25.9 GPU-generated long pathlines, statically seeded in the heart chambers to capture aorta
and pulmonary arteries. a shaded imposter tuboids. The left-hand side shows a larger versions
of the pathlines, respectively without and with halos and contours. b pathsurfaces presented as
tube-shaped surfaces. The latter may be nested, approximately capturing the wave-front profile. A
stripe pattern is employed to convey rotation [47] © IEEE. Reprinted, with permission, from IEEE
transactions on visualization and computer graphics 17(12)

Integral curves are often rendered as illuminated lines or shaded tuboids. Percep-
tion of the spatial relations between pathlines is improved by means of halos [9].
Van Pelt et al. [47] additionally applied contours in order to enhance the structure
of the pathlines (see Fig. 25.9a). Two types of seeding strategies are also proposed
by Van Pelt et al. [46]. On the one hand, lines may be seeded statically from a fixed
position in space and time. On the other hand, integration curves may be seeded
dynamically, tracing the lines from a fixed spatial location, and varying seed time
with the current time frame of the cardiac cycle. Dynamically seeded pathlines con-
sist of comparatively short traces. Although the covered temporal range is relatively
narrow, the pathlines are more reliable, and provide an approximative depiction of
the pulse-wave in the cardiovascular system. The drawback is that it does not provide
enough information on a large scale; it only provides sufficient local information.

Integral surfaces are a generalization of integral lines. Integral surfaces are formed
by a continuum of integral curves. The surfaces enable surface shading techniques
which improve the perception of 3D structures. Integral surfaces are initialized by a
seeding curve which defines the topological connection between the integral curves.
Depending on the integral curve used there exist: streamsurfaces, pathsurfaces and
streaksurface. Integral surfaces have been recently studied for blood flow [20, 47].

The seeding curve used for initialization is crucial for the correct interpretation
of the integral surface. Krishnan et al. [20] define the seeding curve as the boundary
of segmented regions based on flow maps. Van Pelt et al. [47] presented cross-
shaped and tube-shaped patterns of the integral surfaces (see Fig. 25.9b). Integral
surfaces allow shading and texturing. For example, for tube-shaped surfaces stripes
texturing emphasizes the rotational motion around the centerline. The color may
convey various derived measures of the blood flow. In the user evaluation of Van
Pelt et al. [47], the integral surfaces were considered valuable to explore the local
rotational aspects of the flow.
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Particle systems are readily applied to blood flow. Commonly, particles are
depicted as spheres [48], or otherwise represented by small integral curves [37]. Both
approaches convey blood flow speed through color, while direction information is
captured by temporal cohesion of the animated particles. Integral curves addition-
ally provide a short history of the particle trajectory. Both conventional approaches
employ the available visual cues, such as color and shape, to capture only the blood
flow velocity information. Van Pelt et al. [47] propose an illustrative particle-based
approach that captures the velocity information by means of shape, keeping the color
cue available for more elaborate blood flow characteristics. They mimic techniques
often used to convey motion in comic books by deforming a ball at high-speed motion,
and adding speed lines to improve the perception of direction (see Fig. 25.9c).

Visual clutter remains an important issue in 4D blood flow field visualizations.
Usually, this clutter is avoided by user biased interaction methods which can miss
important properties of the flow. Grouping vector field areas with meaningful similar
characteristics, i.e., clustering, can help in developing techniques to improve the
visual exploration and minimize the user bias. Some work exists in the clustering of
static 3D vector fields [10, 21, 24, 43] while little research has been conducted to
extend it to 3D unsteady flow fields [55]. Developing and extending these techniques
to blood flow data is an interesting research direction. The main challenge is to
provide a clustering that has a meaning for the user, and an adequate visualization
technique that enables efficient exploration of the clusters.

25.5 Discussion and Open Issues

Simulated and measured blood flow data have been two distinct research fields that
have developed in parallel. Simulation data is based on many assumptions, it is
difficult to make it patient-specific, and also validation is a challenge. Measured flow
data, on the other hand, represents the patient-specific flow, but it has a lot of limitation
concerning resolution, artifacts, and noise in the data. An interesting direction is to
combine both methods to strengthen each other. For example, measured data can be
used as boundary conditions for a simulation, or simulation methods could be used
to compensate for the lack of temporal resolution.

Blood flow data sets are considerably large data sets since they consist on a
time series of vector-field volumes. The issue of dealing with large data will be of
increasing importance given the improvements in spatial and/or temporal resolution
that are expected.

Recently, new blood flow visualization techniques have been developed. Many
decisions with respect to seeding, segmentation, integral curves, the use of illustration
techniques are rather ad-hoc decisions based on intuition. It is important to link the
decision to the users’ needs. Additionally a more thorough exploration of the design
space and comparisons of existing methods is needed. A major challenge is that
this data is new to the domain experts, and it is challenging for them to identify the
relevant features to visualize.
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The existing methods are rather complex visual representations that overwhelm a
considerable portion of the target user group. Future research should address simpli-
fications of the blood flow by either clustering flow or by detecting and emphasizing
relevant features. Existing techniques for flow field analysis may serve as orientation,
but certainly need to be combined with the in-depth knowledge of domain experts
regarding the relevance of certain blood flow characteristics. A better understanding
of specific tasks, decisions and relevant information is necessary to support blood
flow exploration with a guided workflow-based interaction.

Radiologists need to prepare reports where they summarize their findings verbally
including relevant images. A better understanding of such reports may help to better
support reporting, e.g., in case of cardiovascular diseases. While current applications
are strongly focused on measured cardiac flow and simulated cerebral blood flow,
advances in image acquisition will lead to further applications, e.g., where renal or
liver flow is represented.
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Part IV
Scalable Visualization

We live in the era of the data tsunami. Data is generated faster than our ability to
digest the deluge of information. Visualization researchers and domain experts
typically think of scalability in terms of the development of high-performance
computational resources systems and of powerful new scientific instruments
collecting vast amounts of data. These have lead to an unprecedented rate of
growth of scientific data. The potential impacts to science of being able to
effectively analyze these abundant sources of both simulation and measured/
scanned data are tremendous. For effective data analysis, scalable visualization
methods are required. Scalability takes on many forms from algorithmic
scalability, the diversity of types of data, scalability across devices, scalable
functional representations of data, and the integration into high-performance
computational environments. This Part of the book addresses these issues.

In the first chapter, Garth and Gaither discuss the visualization and analysis,
using integration-based methods, of large-scale vector fields on parallel architec-
tures. They provide an overview and describe parallelization over seeds verses
parallelization over blocks. The chapter concludes with a discussion of future
directions.

As data sizes increase, one approach to scalability is to use feature-based
techniques to represent the data with a smaller feature space. Bennet, Gyulassy,
Pascucci, and Bremer discuss in Chap. 27 a feature hierarchy framework with two
examples: the merge tree and the Morse-Smale complex. They describe how to
perform interactive exploration of feature-based statistics and apply these concepts
to a computational combustion example.

Scalability includes the number of different data sources as well as interactions
between physical scales. In Chap. 28, Ebert, Gaither, and Lasher-Trapp explore
system-of-systems and cross-scale issues and opportunities. The vast variety of
data poses interesting scalability issues including visual scalability, software
scalability, and information scalability. After discussing such issues, the authors
conclude with an assessment of technology needs to address these.

http://dx.doi.org/10.1007/978-1-4471-6497-5_27
http://dx.doi.org/10.1007/978-1-4471-6497-5_28


Scalability includes both scaling up and scaling down. Scalable devices include
smart phones, tablets, monitors, and display walls. In Chap. 29, Krüger and
Hadwiger explore such hardware and software infrastructure for scaling across
such diverse devices. Different user interfaces and rendering techniques are
described as well as the outlook for future devices.

Scalable function representations are important for data analysis, processing,
and storage. Jang provides an overview of common methods for multiscale
representations in Chap. 30. There is an extensive bibliography included for fur-
ther reading on this topic.

High-performance computational (HPC) resources provide a rich environment
of ever increasing simulation data. In the final chapter of this Part, Flatken,
Wagner, and Gerndt discuss infrastructure for visualization and interaction using
HPC systems. The chapter provides an overview of current solutions and ongoing
research in this domain. State-of-the-art infrastructures are described and example
implementations are provided.
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Chapter 26
Large-Scale Integration-Based Vector Field
Visualization

Christoph Garth and Kelly Gaither

Abstract In this chapter, we provide a brief overview of the visualization of large
vector fields on parallel architectures using integration-based methods. After briefly
providing background, we describe the state of the art in corresponding research,
focusing on parallel integral curve computation strategies. We analyze the rela-
tive benefits of two fundamental schemes and discuss algorithmic improvements
presented recently. To conclude, we point out open problems and future research
directions.

26.1 Introduction

Simulations on the current generation of supercomputers are producing data sets of
unprecedented scale. To achieve the fundamental goal of scientific insight from the
resulting very large datasets, a variety of problems must be addressed pertaining to
their storage and handling. For simulations that involve vector fields, integral curves,
or streamlines are one of the most illuminating techniques to obtain insight; they
are a cornerstone of visualization and analysis across a great variety of application
domains. Drawing on an intuitive interpretation in terms of particle movement, they
are an ideal tool to illustrate and describe a wide range of phenomena encountered in
the study of application-domain vector fields, such as transport and mixing in fluid
flows. However, calculating integral curves in large data presents a significant chal-
lenge because their calculation is non-local and data dependent. Thus, leveraging
parallel computational resources to achieve scalable and well-performing visualiza-
tion in this setting requires optimal parallelization strategies that adapt smartly to the
widely varying characteristics of integral curve problems.
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In this chapter, after briefly introducing some background in Sect. 26.2, we report
in Sect. 26.3 on the current state of research in large-scale integration-based visual-
ization. Our primary intent is to provide a concise overview of recent research, and
point readers interested in a deeper and more detailed description to relevant work.
To conclude, we briefly discuss future research directions on parallel vector field
visualization in Sect. 26.4.

26.2 Background

In the following, we will briefly introduce integral curves and motivate their use in
vector field visualization

26.2.1 Vector Fields Visualization and Integral Curves

As simulation data sets are continuously growing in size and complexity, the use
of parallel resources for visualization and analysis has become a key property of
scientific work flows. While there are many methods available to visualize scalar
data in parallel, involving such techniques as isosurfacing and volume rendering, the
compendium of methods for vector field (and similarly, tensor fields) has remained
comparatively smaller.

In applications, vector fields are typically described as discrete samples over a
computational mesh or grid, with each sample denoting a vector. The time-dependent
case is represented as an ordered set of time slices, spanning the temporal domain of
the vector field. In contrast, stationary fields can be described as a single slice as a
special case.

Integral curves are parametric curves that are everywhere tangent to a given vector
field. They can be expressed as ordinary differential equations, and can be solved
given an initial condition (starting point or seed point). Intuitively, integral curves
correspond to the trajectories of massless particles that are advected by the vector
field, and are thus naturally suited to visualize and analyze vector field processes
such as transport and mixing.

Computationally, integral curves are approximated using numerical integration
methods that solve the corresponding ordinary differential equations. There is an
extensive body of work on this topic, and we refer the interested reader to [8]. In
visualization applications, so-called Runge-Kutta methods are typically employed
(e.g. the RK54 scheme); however, specialized integration schemes can be mandated
by specific applications (see e.g. [17]). In general, integration schemes work in black
box fashion, requiring evaluations of the vector field at points closely surrounding
the particle trajectory during the approximation process. Thus, interpolation must
be used on discrete data to achieve a continuous vector field representation. Again,
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Fig. 26.1 Left Direct visualization of integral curves in a spinning turbine. Right Visualization of
Lagrangian coherent structures in a jet flow

while linear interpolation is commonly found in visualization applications, other
interpolation schemes can be used if specific problems mandate it.

26.2.2 Integration-Based Visualization

The visualization and analysis of vector fields is an active research area, and
so-called integration-based techniques that derive vector field visualization from
integral curves have progressed well beyond the direct depiction of individual
integral curves (see Fig. 26.1 left) or a small subset of them [12]. Integral sur-
face techniques [7, 9] compute and visualize a surface consisting of all streamlines
emanating from a common curve, while flow volumes examine the behavior of entire
volumes of particles [1, 22]. Topological methods, on the other hand, aim at extract-
ing the structural skeleton of a vector field by considering the dynamical system
induced by it and computing critical points and stable and unstable manifolds. More
recently, the notions of Finite-Time Lyapunov Exponents and Lagrangian Coher-
ent Structures [11, 18] were introduced to allow for an accurate structural analysis
of time-varying vector fields. These Lagrangian methods, which can require many
thousands to millions of integral curves, are built on observing the separation be-
tween closely neighboring particles as they are advected, and coherent structures are
then identified by lines and surfaces along which this separation is maximal (see
Fig. 26.1 right).

The computational overhead induced by integration-based vector field analysis
tools significantly extends beyond the approximation of few curves. In the case of
integral surfaces, hundreds to thousands of integral curves must be computed,
whereas for Lagrangian methods, the required curves can number in the millions.
The improving computational capability of modern supercomputers allows the simu-
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lation of vector fields in unprecedented detail and results in extremely large datasets.
Here, data size itself poses an additional challenge to integration-based visualization.
Due to the highly non-linear, data-dependent nature of the integral curve approxima-
tion process, traditional approaches for distributing computation and data to leverage
available computing resources optimally are not applicable in this situation. Hence,
approaches developed for the analysis of large scalar field data that are built on
decomposing a dataset and independently treating each part do not generalize well
to the vector field case directly. To further complicate the choice of parallelization ap-
proach, the computational characteristics of integral curve computation are strongly
dependent on a variety of factors such as vector field complexity, data set size, seed
set size, and integration length.

26.2.3 Parallel Integral Curve Computation

Computing many integral curves simultaneously is an embarrassingly parallel
problem, since the curves are mutually independent. In this respect, parallelization
is achieved in a straightforward manner by decomposing the overall set of inte-
gral curves. However, issues arise when data size grows. In the next section, we
will discuss the problems of computing integral curves on large data and aim at an
approximate characterization of integration-type problems.

Focusing on data size, early work on parallel integral curve computation has
focused primarily on out-of-core techniques that are commonly used in large-scale
data applications where data sets are larger than main memory. These algorithms
focus on achieving optimal I/O performance to access data stored on disk. Ueng
et al. [20] presented a technique to compute streamlines in large unstructured grids
using an octree partitioning of the vector field data for fast fetching during streamline
construction. Taking a different approach, Bruckschen et al. [2] describe a technique
for real-time particle traces of large time-varying data sets, by isolating all integral
curve computation in a pre-processing stage. The output is stored on disk and can then
be efficiently loaded during the visualization phase. Similarly, PC cluster systems
were leveraged to accelerate advanced integration-based visualization algorithms,
such as time-varying Line Integral Convolution (LIC) volumes [13] or particle visu-
alization for very large data [6]. While such approaches can give good performance,
they do not generalize to more modern vector field visualization techniques such as
integral surfaces or Lagrangian Coherent Structure visualization.

In the following, we will introduce general integral curve problems as a basis
for modern integration-based flow visualization, describe their characteristics, and
discuss corresponding algorithms.

26.2.4 Problem Description and Classification

Given a vector field data set, a set of seed points in its domain, and parameters that
control the integration process, an integral curve problem consists of computing all
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integral curves emanating from all seed points. Parameters typically pertain to solver
accuracy and integration length. Assuming that the vector field data is decomposed
into connected regions or blocks, integral curves likely traverse multiple blocks, each
of which has to reside in main memory on the processor performing the integration
of the curve. Thus, the data access pattern is not only dependent on the data set, but
also influenced by the choice of seed points and integration parameters.

Studying the effectiveness of parallelization approaches to integral curve prob-
lems, Pugmire et al. [16] classified scenarios according to three categories with strong
implications on performance. We briefly recapitulate their description here.

Seed Set Size If the given problem requires only the computation of tens to hundreds
of streamlines, parallel computation takes a secondary place to optimal data distribu-
tion or loading; the corresponding seed set is referred to as small. This case is typically
encountered in exploratory visualization scenarios where comparatively few integral
curves are interactively seeded by a user. In contrast, a large seed set encompasses
thousands to millions of seed points for integral curves. For such problems, parallel
computation of integral curves must be employed.

Seed Set Distribution Similarly, the distribution of seed points is an important
problem characteristic. If seed points are concentrated, i.e. located densely, within a
small region of the vector field domain, it is likely that all integral curves will traverse
a relatively small amount of the overall data. For some applications such as integral
curve statistics, on the other hand, a sparse seed set covers the entire vector field
domain. This results in integral curves traversing the entire data set. Hence, the seed
set distribution determines strongly if performance stands to gain most from parallel
computation, data distribution, or both.

Vector Field Complexity The structure of a vector field can have a strong influence
on which parts of the data need to be taken into account in the integral curve com-
putation process. Critical points or invariant manifolds of strongly attracting nature
draw streamlines towards them, and the resulting integral curves seeded in or travers-
ing their vicinity remain closely localized. On the other hand, the opposite case of a
nearly uniform vector field requires integral curves to pass through large parts of the
data. This data dependency of integral curve computation is both counterintuitive and
hard to identify without conducting prior analysis to determine the field structure.

Overall, these problem characteristics determine to what extent an integration-
based problem can profit from a chosen parallel computation and data distribu-
tion. Jointly, they affect the three main cost factors inherent in parallel algorithms—
communication, I/O, and computation—that need to be balanced to achieve optimal
performance. We will next describe two basic approaches and briefly survey advanced
algorithms that provide improved performance and efficiency in certain cases.
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26.3 Parallelization Strategies

In all algorithm discussion below, we consider vector field data as decomposed
into a number of spatially disjoint blocks. In the case of time-varying vector fields,
the blocks are assumed to be four-dimensional, i.e. encompass a time interval in
addition to a spatial subset. There are two straightforward parallelization approaches
that partition either the computation workload, with seed points as the elementary
unit of work, or the data set, where data blocks are distributed.

26.3.1 Parallelization Over Seeds

The parallelize-over-seeds (POS) algorithm parallelizes over the set of seed points,
assigning to each processor a fixed number of seed points from which integral curves
are propagated. Data blocks are loaded on demand when required, i.e. when inte-
gration must be continued in a block that is not present in memory. Communication
is not required in this scheme except to synchronize processors at initialization and
termination. Clearly, the dominant cost of this scheme is I/O and can be expressed
as the number of blocks loaded. To alleviate overall I/O cost, blocks can be kept in
processor memory to be reused (caching).

Pugmire et al.[16] provided a detailed analysis of the performance of POS over
a range of streamline problems. They make aggressive use of caching, new blocks
are only loaded when no streamline can be continued on the current resident blocks.
Cache eviction is performed according to least recently used order.

The initial assignment of seed points to processors is chosen based on spatial
proximity, following the reasoning that the integral curves traced from spatially close
seed points are likely to traverse the same regions, and thus blocks, of a dataset. This
approach is effective in increasing block reuse, especially for dense seed sets. They
also sketch out worst case scenarios. For example, if streamlines travel nearly in
cycles, and if the number of blocks encountered along these cycles exceeds the size
of the cache, performance drops significantly.

In general, caching can only be effective if block reuse is high; this is often the case
for stationary fields, but less frequent for time-varying fields since curves advance
monotonically along the time axis and thus traverse previously not encountered
spatiotemporal blocks frequently.

A different approach to address I/O cost was described by Wolter et al. [21]
by introducing intelligent prefetching to overlap I/O and computation. By building
a Markov model of block transitions, they are able to predict likely future blocks
which can then be loaded ahead of time. Two strategies are proposed for initializing
the Markov model, both requiring pre-computation to build a transition probability
model. They find much increased performance for the stationary case, but point out
limitations for time-varying problems that stem from a construction of the prediction
model on individual time slices.
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Fig. 26.2 An illustration of
basic parallelization strategies
for integral curves. Left
Parallelize-over-blocks
distributes data, and
integration is performed on
the processor owning
required blocks. Right
Parallelize-over-seeds
statically assigns curves to
processors; data needed for
integration must be loaded
on-demand Processor 2Processor 1Processor 0

Parallelize-over-blocks Parallelize-over-seeds

A much simpler strategy for the latter case was pointed out by Lane [10]. Here,
prefetching is achieved by limiting integration to short time intervals; while com-
putation is running, blocks for future time steps are loaded. However, his method
loads all blocks corresponding to the next time step, and is thus not truly a POS-type
method.

Overall, POS is a robust strategy. While it is generally found to be I/O intensive,
it does not possess limitations with respect to data size, and given enough parallel
resources, can in principle treat problems of arbitrary size.

26.3.2 Parallelization Over Blocks

The parallelize-over-blocks (POB) approach distributes data blocks across processors
using a fixed assignment. Integral curves are communicated between the tasks to
migrate them to the task owning the block required to continue integration. This
algorithm performs minimal I/O; before integration commences, every task loads all
blocks assigned to it, leveraging maximal parallel I/O capacity.

An early implementation of this algorithm for streamlines was described by Su-
judi and Haimes [19], who made use of distributed computation by splitting the
block in consideration into several sub-blocks and assigning each processor one such
sub-block. A streamline is communicated among processors as it traverses different
sub-blocks. Their design is a client/server architecture, in which the clients perform
integration and the server manages routes trajectories between clients.

A systematic investigation of the performance and scalability of the POB
approach, applied to streamline problems and spanning a wide range of integra-
tion problems, was given by Pugmire et al. [16]. In their implementation, processors
directly communicate solver state to each other when integration traverses block
boundaries. Curve geometry generated during the integration remains with the
processor that generated it, and is merged in a post-processing step; thus, their bench-
marks reflect only the curve propagation portion of a visualization pipeline.
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In their findings, the communication cost incurred by block transitions plays a
secondary role to the overall number of blocks traversed. Essentially, in the case
of a dense seed set, streamlines in the same spatial regions must be computed by
comparatively few processors owning the required blocks, leading to a large load
imbalance. A similar observation holds for vector fields with regions of strong con-
vergence, which tends to concentrate trajectories in small regions of a data set. To
counteract this effect, they propose to assign blocks to processors in round-robin
fashion or randomly.

Nouanesengsy et al.[14] provided an approach to address the load imbalances in
POB by using workload-aware partitioning of the vector field data. Treating block
assignment as an optimization problem, they compute a flow graph from an abstract
representation of the vector field. In conjunction with a given seed set, the flow graph
provides an estimate of blocks that need to be traversed to compute curves, and the
resulting set of blocks is then partitioned to minimize communication cost. Addi-
tionally, to leverage resources optimally, block replication is allowed, addressing
starvation problems. In experiments, they observe better performance and scalabil-
ity with respect to a round-robin assignment; however, they incur a non-negligible
preprocessing cost per data set.

While it is straightforward to implement, the POB algorithm has one severe lim-
itation; if the combined memory on all processors cannot accommodate the entire
data set, this algorithm cannot be used. This is especially the case for time-varying
vector fields.

26.3.3 Adaptive Load Balancing

As apparent from the discussion above, POS and POB represent two extremes of a
spectrum of parallelization schemes, focusing exclusively on either work distribution
or data distribution. To address the respective shortcomings of either choice, Pugmire
et al. [16] describe an adaptive algorithm that performs dynamic distribution of both
integral curves and blocks, attempting to balance I/O and communication loads at
run-time based on heuristics.

Algorithmically, a master processor coordinates the workloads of a fixed set of
slave processors. The master initially determines a seed point assignment for the
slaves; as work progresses, it monitors the length of each slave’s assigned integral
curve set and the blocks that are loaded. To avoid overload and starvation, it then
reassigns individual curves or entire blocks among slaves. Once the master deter-
mines that all curves have been computed, it instructs the slaves to terminate. This
adaptive approach entails significant complexity, which is expressed in complicated
heuristics. The authors also investigate the scalability of their approach, but find that
using a single master becomes a bottleneck as the number of processors grows. They
postulate that a hierarchical approach with a hierarchy of master processes should
perform better at scale. Furthermore, the load-balancing heuristics rely on several
machine-dependent parameters such as I/O and communication latency and speed
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for best performance. However, if this effort is undertaken, results on up to 256
processors indicate that the adaptive approach performs at least as good as the better
of POS or POB.

Peterka et al. [15] propose a different approach to achieve load balancing. They
partition integration into multiple rounds, with each round advancing integral curves
only over a small time interval. After each round, the work load is analyzed and
redistribution is performed. Load is primarily measured as the number of particles
residing on each processor.

To actually balance the load, geometric partitioning using recursive coordinate
bisection is employed; this ensures that particles assigned to a processor for the
next round are likely to reside in the same blocks, effecting an overall reduction
of I/O. Furthermore, since particle exchange is performed only between rounds,
communication can be optimized. Overall, reasonable scaling is observed up to
16,384 processors.

26.3.4 Hybrid Parallelism

To take advantage of modern parallel architectures where a single node typically
contains multiple processor cores with shared memory, Camp et al. [4] presented and
studied the performance of a hybrid parallel implementation of both POS and POB.
Their implementation is based on a combination of classical message passing across
nodes with multiple threads per node, and the paper focuses on comparing hybrid
algorithm variants to non-hybrid ones. In their hybrid implementation of POS and
POB, worker threads perform actual integration work, while I/O and communication
are managed by separate threads.

For POB, multiple separate I/O threads identify blocks to be loaded and initiate
I/O if there is room in the cache; when a block has finished loading, corresponding
integral curves are added to a work queue shared by the worker threads. In their imple-
mentation, the number of worker and I/O threads is in principle arbitrary. However,
they propose to use one worker thread and one I/O thread for each core to leverage
overlapping I/O.

Similarly, in the hybrid POB algorithm, several worker threads process streamlines
in the resident set of blocks, and a single communication thread is responsible for
receiving streamlines and sending them to other processors. Due to complications
with the MPI message passing library, however, the communication thread has to
resort to polling to identify sendable or newly received streamlines. Thus, one core
is exclusively dedicated to this task, while the remaining cores perform integration.

Comparing the performance of hybrid and non-hybrid implementations for several
test cases on 128 cores in total (32 nodes with 4 cores each), they report significant
performance gains. Largely, this is a consequence of the increased memory available
to each process, which positively influences cache size and thus block reuse in the
POS case, and reduces starvation in the POB algorithm. However, they also describe



336 C. Garth and K. Gaither

specific cases in which no improvement in performance can be obtained. In general,
their results indicate that the benefit obtained from a hybrid implementation can be
significant, at the cost of increased implementation complexity.

26.3.5 Extended Memory Hierarchies

Continuing their work on leveraging architectural features of modern supercomputing
architectures, Camp et al. [3] also investigated the benefits of using an extended mem-
ory hierarchy in combination with the POS approach. In their paper, they considered
node-local secondary storage (such as SSDs or conventional hard drives) that can be
used to add a secondary layer of caching, reducing the number of global I/O oper-
ations. Upon evicting a block from the cache, their modified algorithm writes it to
secondary storage. Hence, if a block is encountered by the same processor again but
was previously discarded from main memory, it can be quickly re-loaded from the
secondary cache.

The given comparison shows that a significant benefit can be achieved from this
with respect to a baseline implementation that performs global I/O exclusively. Their
results indicate that for many different test cases, a large majority of block loads is
accelerated, resulting in much increased performance overall.

26.3.6 Other Techniques

Instead of aiming at user-controlled integration-based visualization, i.e. attempting
the solution of an arbitrary integral curve problem such as the algorithms discussed
above, a number of authors propose to trade off flexibility of the visualization with
increased performance and scalability. For example, Yu et al. [23] introduced a
parallel integral curve visualization that computes a set of representative, short in-
tegral segments termed pathlets in time-varying vector fields. A preprocessing step
computes a binary clustering tree that is used for seed point selection and block
decomposition. This seed point selection method mostly eliminates the need for
communication between processors, and the authors are able to show good scaling
behavior for large data. However, this scaling behavior comes at the cost of increased
preprocessing time and, more importantly, loss of the ability to choose arbitrary, user-
defined seed-points. Chen and Fujishiro [5] apply a spectral decomposition using a
vector-field derived anisotropic differential operator to achieve a similar goal.
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26.4 Discussion and Future Directions

While the state of the art in large-data integration-based visualization has consider-
ably matured recently, a satisfactory method that can satisfy all visualization require-
ments remains elusive. Future research must address a number of difficult problems:

• While data sets of significant size have proven feasible, the approaching exascale
generation of hardware architectures will impose new demands on visualization
algorithms; this is especially the case for parallel integral curve algorithms. It is
unclear at this point whether the load balancing strategies discussed in Sect. 26.3.3
can be adapted to such scenarios. More general schemes are required that provide
adequate scalability and do not require data pre-analysis, which will likely be
prohibitive on exascale data.

• Current algorithms still require minutes to achieve results even for small prob-
lems due to the factors discussed in Sect. 26.2.4. This stands in stark contrast with
the requirements of user-guided, interactive exploration that has proven extremely
valuable in obtaining insight into the complex nature of vector fields. Here, pro-
gressive algorithms are needed that can quickly produce approximate results which
are refined over time. However, the non-local nature of integral curves has thus far
prevented that application of downsampling techniques on this problem.

• Similarly, as the volume of data resulting from simulation codes will grow past
the point of feasible retention on external storage, it is anticipated that future visu-
alization algorithms will possess a large in situ component, requiring the majority
of the analysis to be performed during a simulation run. At this point, it is entirely
unclear how to achieve user-guided vector field visualization in an in situ scenario.

While first steps in these directions have been taken, many problems remain open,
and more research in this interesting area is needed.
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Chapter 27
Large Scale Data Analysis

Janine Bennett, Attila Gyulassy, Valerio Pascucci and Peer-Timo Bremer

Abstract As data sets grow in size and complexity, global analysis methods do not
necessarily characterize the phenomena of interest, and scientists are increasingly
reliant on feature-based analysis methods to study the results of large-scale simula-
tions. This chapter presents a framework that efficiently encodes the set of all possible
features in a hierarchy that is augmented with attributes, such as statistical moments
of various scalar fields. The resulting meta-data generated by the framework is orders
of magnitude smaller than the original simulation data, yet it is sufficient to support
a fully flexible and interactive analysis of the features, allowing for arbitrary thresh-
olds, providing per-feature statistics, and creating various global diagnostics such as
Cumulative Density Functions (CDFs), histograms, or time-series. The analysis is
combined with a rendering of the features in a linked-view browser that enables sci-
entists to interactively explore, visualize, and analyze data resulting from petascale
simulations. While there exist a number of potential feature hierarchies that can be
used to segment the simulation domain, we provide a detailed description of two:
the merge tree and the Morse-Smale (MS) complex, and demonstrate the utility of
this new framework in practical settings.
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27.1 Scalable Analysis/Introduction

Historically, scientists have relied on conditional statistics, applied globally, to effec-
tively reduce large-scale data to manageable proportions. While pre-computing a sin-
gle set of structures is feasible, appropriate parameter choices are not always known
a priori, and exploring the parameter space by extracting many sets of features is
becoming infeasible due to massive data sizes. Furthermore, traditional statistics
typically provide only global averages rather than per-feature information, making
simple queries such as how many features exist overall, difficult to answer.

This chapter summarizes a new integrated analysis and visualization framework
that enables a free choice of feature parameters and conditional sub-selections;
providing the capability to interactively produce a wide range of diagnostic plots
equivalent to the processing of the entire data set. Furthermore, the statistics viewer
is cross-linked to a visualization of the corresponding three dimensional structures,
enabling selection of (sets of) features on either end. The feature visualization
employs a specialized volume rendering technique optimized for sparse, dynamic,
and binary segmented volumes.

Instead of extracting a single set of features, we compute a multi-resolution hier-
archy, capable of representing features for different parameters and at various scales.
In a single pass over the original data we pre-compute a large variety of statistics
for the finest resolution features. At run time the user selects parameters resulting
in a set of features whose properties are aggregated on-the-fly, allowing the user to
explore an entire family of feature definitions without accessing the original data. By
pre-computing statistics for a base set of features, and providing the user with sev-
eral multi-resolution hierarchies to explore, our system provides significantly greater
flexibility in the analysis process than the typical range queries of indexing schemes.
Additionally, the run-time aggregation avoids much of the cost of re-computing sta-
tistics for each set of features. As a result, our approach delivers the flexibility of
extract-and-analyze techniques while allowing for interactive exploration of large
data on a commodity desktop machine.

27.2 Augmented Feature Families

One of the basic concepts of our framework is the notion of a feature family. Given
an algorithm to define and extract features of interest corresponding to a parameter
p, a feature family is a one-parameter family that for every possible parameter p
stores the corresponding set of features. While any feature definition can be used
to create a feature family by exhaustively pre-computing all possible features for
all possible parameters, many popular algorithms naturally produce nested sets of
features for varying parameters. For example, clustering techniques progressively
merge elements [4, 14] and a threshold-based segmentation creates increasingly
larger regions [3]. In these examples all features can be described by a collection
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of base elements (e.g. clusters) or as a collection of differences between features
at different parameters (e.g. regions above threshold a that are below threshold b)
respectively.

Feature families with a nested structure can be encoded and computed in an
efficient manner. In our system, we specify for each element in the hierarchy its life
span (in terms of the feature parameter), an arbitrary number of children, and a single
parent. As is common with hierarchies, the set of features at a particular parameter
p is then defined as all elements that are alive at parameter p combined with all their
descendants. More formally we define:

Definition 27.1 (Element) An element e is defined by a unique id and minimally
contains a parameter range [pmin, pmax], a direction, a collection of its children ids,
and the id of its parent:

e = (id, direction, [pmin, pmax], {child0, . . . , childn}, parent) ∈ E

Definition 27.2 (Feature) A feature f is the union of an element e and all its descen-
dants

f = {
e ∪ childrenn(e)|n ∈ {1, 2, ...}}

The element id is simply a unique identifier that is typically stored implicitly, e.g.
based on the order in which elements are stored in a file. The direction indicates
whether the parent of an element is born at p < pmin and consequently its children
are born at p > pmax or the opposite.

A feature family is a collection of features defined hierarchically as described
above:

Definition 27.3 (Feature Family) A feature family F is a set of features

F = {f0, . . . , fm} ⊂ F

Finally, in a time-dependent simulation or an ensemble of simulations we have one
feature family per time or ensemble member:

Definition 27.4 (Clan) A clan C is an ordered set of feature families

C = {F0, . . . ,Fn} ⊂ F

We store feature families in a traditional multi-resolution graph that is updated
on-the-fly as the user changes parameter. At any time we maintain a set of living
elements that serve as the representatives for their corresponding features. Using the
parent and child information this set is progressively updated as the feature parame-
ter changes. Specifically, when an element dies it is removed from the set and either
its children or its parent are born and added to the set. Furthermore, we support the
encoding of multiple hierarchies associated with a feature family by storing multiple
parameter ranges and child/parent ids in each feature, one for each hierarchy.
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27.3 Sample Feature Hierarchies

Merge Trees As shown in [3, 12] the merge tree is ideally suited to hierarchically
encode regions of locally varying isovalues. Given a simply connected domain M and
a function g : M → R the level set L(s) of g at isovalue s is defined as the collection
of all points on R with function value equal to s: L(s) = {p ∈ M|g(p) = s}. A
connected component of a level set is called a contour. The merge tree of g represents
the merging of contours as the isovalue s is swept top-to-bottom through the range
of g, see Fig. 27.1a. Each branch of the tree represents a family of contours that
continuously evolve without merging as s is lowered. These contours sweep out a
subset of M and thus the branches correspond to a segmentation of M, see Fig. 27.1a.
To increase the resolution in parameter space we refine the merge tree by splitting
long branches and refining the segmentation accordingly, see Fig. 27.1b.

In a simple threshold-based segmentation, each branch of the tree is an ele-
ment with a lifetime given by the function values of the branch’s top and bottom
nodes. Given a particular threshold, each branch acts as the representative of its sub-
tree/feature and, by construction, each subtree represents a simply connected region
of high threshold, see Fig. 27.1c. However, when g spans multiple orders of mag-
nitude relevance [12] is an alternate metric that scales g at each node by its local
maximum—the highest maximum in its corresponding subtree. The relevance life-
time of a branch is thus given by the relevance interval between its top and bottom
node and ranges between 0 and 1, see Fig. 27.1d. Typical examples of merge tree hier-
archies are shown in Fig. 27.2. Figure 27.2a shows the burning cells in a simulation
of low-swirl pre-fixed combustion [5]. In this applications burning cells are defined
as regions of high fuel consumption and thus the merge tree of fuel consumption
provides the appropriate segmentation. Figure 27.2b shows extinction regions in a
turbulent simulation of non-premixed combustion. These regions are indicated by a
high scalar dissipation rate [12]. Since the dissipation rates spans multiple orders of
magnitude these structures are extracted using relevance as metric. Finally, Fig. 27.2c
shows eddies in the north Atlantic ocean extracted using a split tree (the merge tree
of the negative function) of the Okubo-Weiss scalar field [15].

Morse Complexes Merge trees or in general level set based hierarchies are well
suited to encode threshold based regions. However, there exist a second, in some
sense dual, class of feature descriptions based on the gradient flow. Given a point
x ∈ M we call a line γ (t) : R → M, with γ (0) = x, the integral line of x with respect
to γ if ∂γdt = ∇g. For each maximum m of g its stable manifold is defined as the set
of points whose integral lines converge to m [6]. The set of all stable manifolds forms
a segmentation of M, see Fig. 27.3. Similar to merge trees Morse complexes have
a natural hierarchical structure induced by merging neighboring stable manifolds.
However, instead of using the thresholds this hierarchy typically employs persistence,
the difference in function value between the lower of the two maxima and the saddle
separating them [6]. In this case, the life time of features always starts at 0 (since all
maxima/stable manifolds exists for 0 persistence) and ends at the persistence level
at which a stable manifolds merges with one of its neighbors. An application where
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(a) (b)

(c) (d)

Fig. 27.1 a Merge trees represent the merging of contours as a function is lowered through its
range. Each branch represents a portion of the domain as indicated by the colors. b To increase
the resolution in parameter space we refine the merge tree by splitting long branches and refining
the segmentation accordingly. c A threshold based segmentation of a merge tree at a threshold
slightly above 80 % of the global maximum. d A relevance based segmentation at relevance around
slightly above 0.2 (slightly below 80 % of the local maximum per branch). All local maxima are
included and regions of higher function value (red) span a larger range. © IEEE. Republished
with permission of IEEE, from Feature-Based Statistical Analysis of Combustion Simulation Data,
Bennett, Krishnamoorthy, Liu, Grout, Hawkes, Chen, Shepherd, Pascucci, Bremer, IEEE TVCG
17(12) 2011; permission conveyed through Copyright Clearance Center, Inc.

Fig. 27.2 Examples of different merge tree hierarchies: a Burning cells in a premixed hydrogen
flame; b Extinction regions in turbulent non-premixed combustion simulation; and c Eddies in the
north atlantic extracted using the Okubo-Weiss threshold

such hierarchical segmentations have proven useful is, for example, the analysis of
Raleigh-Taylor instabilities [11]. As shown in Fig. 27.4, stable manifolds naturally
segment the mixing interface into bubbles and the persistence simplification enables
a multi-scale analysis.
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(a) (b)

Fig. 27.3 A Morse complex of a set of maxima before a and after b merging the red and yellow
stable manifolds. The persistence of the merge is the difference in function value between the circled
critical point pair

Fig. 27.4 Stable manifolds of a late stage mixing surface in a Raleigh-Taylor instabilities at: a About
1 % persistence where several large scale bubbles are over-segmented; b About 2.5 % persistence
which reduces the over segmentation but still shows some artifacts; and c About 5 % persistence
where the segmentation matches the human intuition

1-Skeleton of the Morse-Smale complex The Morse complex is the collection of
stable manifolds of all critical points. The unstable manifold of a critical point is
the collection of integral lines originating at that critical point. A function is Morse-
Smale if its stable and unstable manifolds intersect only transversally. The cells of
the Morse-Smale complex are formed by the intersections of stable and unstable
manifolds. The set of 0- and 1-dimensional cells (nodes and arcs) of the complex
are known as the 1-skeleton, describing the connectivity structure of gradient flow
of a function. Each node has an associated stable and unstable manifold. Each arc
connects two nodes, and additionally stores its geometric embedding (the integral
line it represents).

A hierarchy of Morse-Smale complexes is created by repeated cancellation of criti-
cal points in order of persistence. These cancellations are manifested in the 1-skeleton
as the creation of new arcs, removal of arcs, and removal of a pair of nodes [9]. Each
new arc has geometric embedding that is the merging of the embeddings of three
removed arcs, as in Fig. 27.5. However, when reconstructing the geometry of an arc,
only children that appear an odd number of times in the hierarchy should be used,
since the ones that appear an even number of times correspond to a path that doubles
back on itself. Therefore, when computing statistics on arcs in a hierarchy, this rule
must be enforced.
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Fig. 27.5 A cancellation operation on the 1-skeleton of the Morse-Smale complex removes two
critical points (u and l), and reconnects their neighborhood. In this example, each arc connected to u is
re-routed to reach the new maximum. In practice, the new geometry is constructed by concatenating
three paths [7]. © IEEE. Republished with permission of IEEE, from Feature-Based Statistical
Analysis of Combustion Simulation Data, Bennett, Krishnamoorthy, Liu, Grout, Hawkes, Chen,
Shepherd, Pascucci, Bremer, IEEE TVCG 17(12) 2011; permission conveyed through Copyright
Clearance Center, Inc.

Fig. 27.6 The 1-skeleton of the Morse-Smale complex is computed for the simulated porous solid
(left). Applying simplification and filtering allows representation of the filament structure at multiple
scales (middle, left)

We apply the 1-skeleton of the Morse-Smale complex to finding the filament
structure of a porous material [8], as shown in Fig. 27.6. The material is represented by
a signed distance field from an interface surfaces demarking “inside” from “outside”
the solid portion of the domain. The 2-saddle-maximum arcs of the complex form
the space of possible reconstructions of the filaments. By combining filtering of the
arcs based on the 2-saddle and maximum function values with exploration of the
topological hierarchy, it is possible to study the filament structure at multiple scales
and for multiple thresholds.

27.4 Feature Attributes

In addition to the information necessary to encode a feature family we augment each
feature with an arbitrary number, k, of additional attributes (att0, . . . , attk). Our sys-
tem currently supports various descriptive statistics such as minima, maxima, first
through fourth order statistical moments and sums, as well as as shape descriptors
such as volumes and various length-scales. Descriptive statistics are computed incre-
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mentally as the feature family is constructed, using the same update formulas [1, 13]
employed for the interactive aggregation during data exploration (Sect. 27.5). Specif-
ically, as each vertex is labeled with its branch id, the vertex’s associated attributes are
added to the corresponding statistical aggregator. While this incremental approach
works well for descriptive statistics, certain attributes such as shape descriptors can-
not easily be computed in this manner, and are thus computed in a post-processing
step.

File Format We store feature families and their corresponding attributes in a modu-
lar and easily extendable file format. Typically, we save one file per feature family to
easily allow the restriction to temporal subsets, for example. At the end of each file we
store an XML-footer followed by the file offset to the start of the footer as the last eight
bytes in the file. The XML structure encodes which components are stored for the fea-
ture family, and typically comprises a simplification sequence storing the hierarchy
information in addition to a number of attributes. Any attributes stored indicate their
type in addition to meta-data such as the name of the source field, how many bytes are
used for each value, and whether data is stored in binary or ascii format. For the sta-
tistical moments we store not only the final value, e.g. mean, but enough information
to further aggregate multiple values as needed by the parallel statistics formulas of
[1, 13]. This requires each n-th order statistical moment to store all lower-order
moments to support aggregation. Most importantly the XML structure stores file
offsets to each corresponding block of data, allowing for the selective loading of
subsets of attributes for exploration. One immediate advantage of this file structure
is that it can be easily extended without re-writing entire files. Given a new set of
attributes, we read the XML footer, append the new data at the end of the old data
(overwriting the old footer), update the footer, and append it to the file.

27.5 Interactive Exploration of Feature-Based Statistics

One of the main advantages of our system is the ability to quickly explore a wide
variety of statistical information based on the given feature definitions. To achieve
this our framework supports four operators that map feature families, sets of features,
and statistics into new sets of features, or scalar quantities:

Definition 27.5 (Selection) A selection S : F × R → P(F) is an operator that,
given a feature family and a parameter, returns a set of features as well as (a subset)
of their corresponding attributes.

Note that each feature stores attribute information regarding the portion of the domain
it covers, see Fig. 27.1a. A selection will, for most attributes, aggregate all values
in the associated subtree on-the-fly as the hierarchy is navigated. This preserves
the flexibility to base different feature families on the same set of initial attributes.
Nevertheless, if only one type of family is needed, aggregation of attributes can be
performed once and stored to accelerate the exploration, see Sect. 27.4.
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Fig. 27.7 Computational pipeline for interactive feature exploration. Starting from a clan of feature
families represented by a sequence of merge trees (a) setting the feature parameter results in a
sequence of sets of features each represented by a subtree of elements (b). Aggregating statistical
attributes for each feature produces a set of features with attributes for each time step (c). A
subselection on an arbitrary attribute narrows this collection to features of interest (d). Subsequently,
either clan wide plots such as CDFs are created (e, bottom) or a reduction operator is applied to each
family to create a time series of aggregated attributes (e, top). Finally, the time series is plotted (f,
bottom) or an additional reduction is used to create a clan wide aggregated scalar property (f, top),
which produces a single sample of a parameter study. A full study is created by repeatedly executing
the pipeline. © IEEE. Republished with permission of IEEE, from Feature-Based Statistical Analysis
of Combustion Simulation Data, Bennett, Krishnamoorthy, Liu, Grout, Hawkes, Chen, Shepherd,
Pascucci, Bremer, IEEE TVCG 17(12) 2011; permission conveyed through Copyright Clearance
Center, Inc.

Definition 27.6 (Aggregation) An aggregation A : P(F) × {0, ..., k} → R is an
operator that, given a set of features and an attribute index, returns the combined
attribute for the set of features.

Definition 27.7 (Subselection) A subselection U : P(F) × {0, ..., k} × R
2 →

P(F) is an operator that, given a set of features, an attribute index, and a corre-
sponding attribute interval range, returns the subset of features whose attribute value
is contained in the interval.

The subselection operator facilitates the creation of conditional plots, which are
often an important part of the analysis pipeline.

Definition 27.8 (Reduction) A reduction R : P(R) → R is an operator that given
a set of scalar values returns a single scalar value, for example by computing the
mean.

Using the operators described above we create three different types of plots as
summarized by Fig. 27.7: species distributions, parameter studies, and time-series.
To simplify the discussion below, we assume that the input to each of the operators
is all feature families in a clan, even though in practice we support the restriction to
subsets of the data. All plots take as input a feature clan C, a parameter p, subselections
Q ={(atti0

min, atti0
max),. . .,(attil

min, attil
max)}, and an attribute index i. First, the parameter
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Fig. 27.8 Our framework provides a natural and intuitive work-flow for the exploration of global
trends in feature-based statistics. The linked view system allows users to display susbsets of features
using range sliders and/or by selecting regions of CDFs and histograms. This image shows regions
of locally high scalar dissipation rate in a temporally-evolving turbulent CO/H2 jet flame

p is used to select an initial set of features from the clan, which are then further
subselected using the subselections Q.

Species distributions plots include histograms and empirical CDFs, and track
the distribution of the attribute atti. A time-series, as the name suggests, shows the
evolution of atti over time, and requires an additional family-wide reduction operator,
Rf , as input. Parameter studies are an extension of time-series that show how atti

changes as the parameter p is varied. For these plots a clan-wide reduction operator,
Rc, is required in addition to Rf . Note that parameter studies can be come expensive
as the range and granularity of p increases, because attributes must be aggregated
for each p-value independently. While parameter plots are the most expensive to
produce they are also often very useful. In particular, a parameter plot shows how
stable or unstable a given analysis is to the parameter selection. This is crucial in
any exploratory setting to guarantee that the basis of important conclusions is not an
inherently unstable analysis.

We provide a convenient GUI that allows the user to specify which attributes they
would like to explore, loading only those to minimize memory overhead. Subselec-
tion sliders are generated for each specified attribute automatically and, if multiple
hierarchies are available, the user can toggle between these and can update parame-
ters interactively. Optional log scaling is provided, and radio buttons are used for
selection of family- and clan-wide reduction operators. The plot viewer is linked to
the feature browser to provide context as statistics are explored. Only those features
that have been subselected using the GUI sliders are displayed by the feature browser.
Users can click on an individual feature in the feature browser to obtain details on
its associated statistics. Furthermore, when the user picks regions of histograms or
CDFs, only those features that are contained in the selected bins are displayed by the
feature browser, see Fig. 27.8.
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Fig. 27.9 a Weighted cumulative density function of feature volume in an idealized premixed
hydrogen flame echoing Fig. 9d in [2]. b The average density variance for features defined by
different density thresholds in a simulation of hydrogen under pressure

27.6 Results

Using the combined visual exploration and analysis capabilities, scientists are able
to quickly produce feature-based statistical summaries of their data. For example,
Fig. 27.8 shows the distribution of scalar dissipation rate in a temporally-evolving
turbulent CO/H2 jet flame undergoing extinction and reignition at different Reynolds
numbers [10]. The features of interest are defined by locally varying isovalues of the
scalar dissipation rate, and a merge tree is used to encode the feature hierarchy. Of
interest to the scientists is the relationship between the temperature and thickness of
these structures, and so the merge tree was augmented with mean and variance of tem-
perature in addition to lengthscale measurements. Figure 27.9a shows the weighted
cumulative volume distribution of an idealized pre-mixed combustion simulation [5]
along side the corresponding segmentation. Figure 27.9b shows the average density
variance for different density thresholds in a simulation of hydrogen under pressure.
As the threshold is lowered the variance increases up to a breaking point, after which
it rapidly falls. The corresponding segmentation is generated using the approximate
threshold of the peak variance. Somewhat surprisingly, the peak variance does not
correspond to the point at which the individual surfaces begin to merge, rather there
are still a large number of well separated features.

27.7 Conclusion

This chapter summarizes a novel framework that combines topological and statisti-
cal analysis with visualization to perform feature-based statistical analysis of large
scientific data. The framework represents a novel technology that has converted the
typically cumbersome post-processing cycle of explore and analyze into an interac-
tive process, providing application scientists easy access to cutting edge visualization
and feature-based analysis techniques coupled to traditional statistical techniques. In
particular, this framework provides an intuitive GUI that enables traditional statisti-
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cal distributions obtained from conditional feature sets to be easily related back to
the sets of features contributing to the statistic through feature-based visualization
and linked views.
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Chapter 28
Cross-Scale, Multi-Scale, and Multi-Source
Data Visualization and Analysis
Issues and Opportunities

David Ebert, Kelly Gaither, Yun Jang and Sonia Lasher-Trapp

Abstract As computational and experimental science have evolved, a new
dimension of challenges for visualization and analysis has emerged: enabling
research, understanding, discovery at multiple problem scales and the interaction
of the scales, and abstractions of phenomena. Visualization and analysis tools are
needed to enable interacting and reasoning at multiple simultaneous scales of rep-
resentations of data, systems, and processes. Moreover, visualization is crucial to
help scientists and engineers understand the critical processes at the scale bound-
aries through the use of external visual cognitive artifacts to enable more natural
reasoning across these boundaries.

28.1 The Challenge of Multi-Scale Interactions

“Multi-Scale Interactions” has been used to characterize and emphasize that
significant breakthroughs need to occur in a variety of fields by understanding both
how the larger scales fuel the smaller scales, and how smaller scales feed back into
larger scales. One fundamental example of this is turbulence. Turbulence is a major
unsolved problem for fluid flow and is applicable to weather, medicine, engineering,
and climate change. Biology gives us another example where scientists are working
to understand structure and function from the cellular level up to the level of organs,
then to functional subsystems within the body. Another example occurs in para-
meterization in numerical modeling: how one represents processes occurring at the
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subgrid scale, and improving their parameterizations. If parameterizations are good,
then the necessity to keep resolving smaller and smaller scales in one’s numerical
model disappears.

Another class of problems is filling data holes and gaps. How can new tools
help us explore these holes and gaps between different kinds of observational data
collected at different scales, or between the hierarchies of numerical models that we
use to solve subsets of the problem that need to be merged to understand the relative
contribution or importance of the solutions to the subsets?

28.1.1 Systems of Systems

The challenges of multi-scale interactions in complex systems and processes has led
to new areas of research and refocusing of disciplines in engineering, as illustrated
by the evolution of industrial engineering to industrial and systems engineering, and
the development of the subarea of systems of systems research. Therefore, in order
for these multi-scale interactions to be investigated and explored, tools are needed
which scale to handle systems of systems [2]. These problems are common in science
and engineering, and may require analysis and combination of data across scales. For
example, macrobiology analysis may require understanding the interactions of data
simultaneously at the genome, protein, cell, organ, human, country, and ecosystem
levels. Cancer care treatment requires understanding and integrating data from the
biomarker level (e.g., integrating metabolics, lipidomics, genomics, and proteomics
data already at multiple scales) and cancer processes at the organ level, environmen-
tal exposure, and socioeconomic factors that affect the success and completion of
treatment regimens.

Weather and the environment provide further examples, such as clouds and pre-
cipitation. Clouds and precipitation affect our daily lives, personal safety, commer-
cial decisions, and our future sustainability on Earth. Clouds and precipitation are
important at all regional scales: local, state, national, and global. Clouds influence the
daily maximum and minimum temperatures over our homes and they modulate the
global temperature by affecting the amount of incoming solar radiation and outgoing
long wave radiation. Precipitation is likewise important at all scales. It directly affects
our quality of life: our food supply, drinking water supply, air purity, modes of trans-
portation, and many other human needs across the earth. As the inhabitants of earth
become increasingly concerned about global warming and climate change on global
and regional levels, it is necessary to understand the roles of clouds and precipitation
in the Earth’s System in order to predict the future state of our planet. However, fun-
damental questions remain concerning cloud motions and evolution, cloud longevity,
and precipitation formation, and these gaps in our knowledge hamper our efforts to
understand and predict weather and climate. Understanding and predicting clouds
and precipitation are very difficult tasks which require the measurement and model-
ing of properties on a wide variety of scales (microscale, cloud scale, storm scale,
mesoscale, synoptic scale, global scale as shown in Fig. 28.1), fusion of computa-
tional model data and measured data, and the simultaneous fusion of hundreds of
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Fig. 28.1 Multi-scale examples, a microscale, b cloud scale, c storm scale, and d global scale. ©
IEEE reprinted, with permission, from IEEE transactions on visualization and computer graphics
12(5)

scalar and vector fields that vary over time. Current tools for atmospheric visualiza-
tion and analysis are incapable of the following crucial functions:

• Integrating these various data sources and providing effective interfaces for fusion,
analysis, experimentation, exploration, hypothesis testing, and discovery.

• Communicating the complex three-dimensional, time-varying information neces-
sary to accurately predict atmospheric events, conditions, and consequences (e.g.,
aircraft icing) and extend the understanding of atmospheric phenomena.

• Integration of visual representations into the scientific analysis and discovery
process.

28.1.2 Transformational Cross-Scale Science

Facilitating breakthrough scientific discoveries will require the development of trans-
formational science that produces revolutionary new tools for mastering the multi-
and cross-scale challenges of our world. Science discovery possibilities are presented
here as a broad spectrum of disciplines, including the following.1

1 This is summarized from the NSF Science and Engineering Community Workshop report by Ebert
D., Gaither K., and Gilpin C.
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• Computational Fluid Dynamics—Understanding computational fluid dynamics
will allow us to understand and design a broad spectrum of applications: design
more aerodynamic (and hence fuel-efficient) cars and planes, design better artifi-
cial hearts, perform better cardiovascular surgery, design better air conditioners,
fans, and heat exchangers, better short-term weather prediction (including accurate
precipitation forecasts and models), and understand the dynamics of global warm-
ing in the long term, improve our understanding of the dynamics of the oceans,
and allow us to predict solar storms that affect radio communication, design better
hydroelectric generators, design more efficient HVAC systems in buildings, design
more efficient wind farms for the generation of electricity, improve the design of
ship hulls, help us understand the mechanism of flight in birds and insects, and
help us understand the locomotion of aquatic animals, including microorganisms.

• Preserving Coastal Margins—We have to preserve coastal margins so that our
great-grand children will have access to a functioning environment that supports
economic development and quality of life. By understanding cause-effect rela-
tionships between climate, human activity and coastal margins well enough to
predict and communicate ecosystem evolution, we can effectively influence soci-
ety’s choice on affecting ecosystems health and sustainability.

• Virtual Paleoworld—We can reconstruct climate in the broadest sense for any time
in the Earth’s past and see what it looks like globally. This will allow us to see Tec-
tonic plates in their proper shapes and positions and all data sites marked. We can
see topography, heat flow, atmospheric composition, wind belts, biomes on land,
and ocean currents as they existed then and with explicit depiction of differences
from today and from individual data sites with accompanying uncertainties (e.g.,
model-data comparison).

• Understanding the Origin of Our Universe—Gravitational waves can probe to
10−43 seconds after the big bang. They carry key information of what happened just
after it all began. Deciphering their content and comparing them with cosmological
models will enable us to hone in on the model that captures reality. This will
additionally have implications for a unified theory of physics, understanding dark
matter and energy and why regular matter (like the one humans and stars are made
of) only comprises about 3 % of the total.

• Understanding the ’Cradle of Life’—Supernovae are responsible for producing
the needed energy that turns heavier elements (e.g., iron) of a soon to explode star
into lighter elements that are the building blocks for life (hydrogen, oxygen, etc).
Understanding such systems require complex simulations at the peta-(and beyond)
scales and their solution have commonalities with other spectacular phenomena
like gamma ray bursts. Obtaining the correct model to explain supernovae events
will go a long way towards understanding what is required for the basic build-
ing blocks of life to be produced and explain the most spectacular astrophysical
phenomena.

• Origin and Evolution of Languages—The origin and evolution of languages is a
result of interactions with culture. We need to better understand how languages
reflect the history of cultures, and how genetics/genomics data sets can be used to
study unrecorded historical data concerning the migration of humans.
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• The Cell at Subnanometer Resolution—The cell is the most basic building block
of life. Cell function is a direct reflection of cell structure, and we understand the
function of the cell only to the degree that we understand its molecular architecture.
The molecular defects that underlie human disease are rooted in changes in the
molecular components in the cell that alter cell structure and function. Molecular
medicine would be greatly advanced by a molecule level view of the cell since it
would guide the engineering of molecular therapies to fix what is broken in cells
in the disease state.

28.1.3 Temporal Scalability

Sensemaking often involves temporal reasoning, and may require handling data at
different time scales. For example, it may be necessary to understand long-term
patterns by looking at data over a period of years or even decades, and simultane-
ously understand near-term effects by looking at data over a period of hours or less.
Moreover, it may be necessary to integrate and perform correlative analysis on data
collected at different temporal scales based on acquisition technology. For instance,
in understanding fundamental principals of rain formation in clouds, it can be nec-
essary to integrate data collected 1000 times per second with data collected every
several minutes (radar data) and this information may then be fed into climate models
that work on the scale of years and decades.

28.2 Variety of Data

Our ability to collect data is increasing at a faster rate than our ability to analyze it [3].
Scientists, engineers, and analysts are often overwhelmed with massive amounts of
data from multiple sources and where the important information content exists in a
few pieces. Therefore, we need to create new methods to allow them to visually exam-
ine this massive, multi-dimensional, multi-source, time varying information stream
to make decisions more efficiently. The various data types include the following:

• Textual data—Massive textual data from documents, speeches, e-mails, or web
pages now influence the problem domain. This data can be truly massive, contain
billions of items per day, and much of it must be analyzed in a time-critical matter.

• Databases—Many corporate and government entities have constructed huge
databases containing a wealth of information. We require new algorithms for the
efficient discovery of previously unknown patterns in these large databases.

• Geospatial data—Consider the data collected by satellites that image the earth.
We now have satellites that can create images at less than 1 m resolution and that
can collectively image the land surface of the planet in a very short time. These
images must be examined in a time-critical matter.
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• Sensor data—The revolution in miniaturization for computer systems has allowed
us to produce a myriad of sensors. The sensors can collect data about their en-
vironment (location, proximity, temperature, light, radiation, etc.), can analyze
this data, and can communicate between themselves. Collections of sensors can
produce very large streaming sets of data.

• Video data—Video analytics are being used more and more to enhance the effec-
tiveness of the security in high-risk security operations. Content analysis, com-
bined with massive recording capabilities, is also being used as a powerful tool
for improving business processes and customer service. New techniques must be
developed to integrate this streaming data paradigm into the analyst’s toolbox.

Whereas each of these categories can produce massive data streams containing
information that is applicable to a given problem domain, the grand challenge prob-
lem in the area of scalability is to use analytics to distill the relevant pieces of
information from these widely disparate information streams, and create an infor-
mation space containing relevant information that can be examined by analytical or
visual means to influence the exploration, hypothesis testing, discovery, and decision
making of the user. These systems need to provide mechanisms that can visualize the
connections between the relevant information in the information streams, and allow
the user to relate concepts, theories, and hypotheses to the data.

Several research directions present themselves as candidates to address these
scalability problems, classified as visual scalability, information scalability, software
scalability and information fusion.

28.2.1 Visual Scalability

Visual scalability [1] is the capability of visualization tools to effectively display
massive data sets, in terms of either the number or the dimension of individual data
elements. Factors affecting visual scalability include the quality of visual displays,
the visual metaphors used in the display of information, the techniques used to
interact with the visual representations, and the perception capabilities of the human
cognitive system. A critical area of research in visual scalability is in methods that
allow the user to change the visual representation of data.

28.2.2 Information Scalability

Information scalability implies the capability to extract relevant information from
massive data streams. Methods of data scalability include methods to filter and reduce
the amount of data, techniques to represent the data in a multiresolution manner,
methods to abstract the data sets.
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28.2.3 Software Scalability

A commonly held best practice in active data visualization begins with a visualization
that summarizes a large data set followed by a subsetting to examine its detail. This
practice requires active data visualization software that can execute visual queries
and scale to data sets of varying sizes. Software scalability includes the generation
of new algorithms that scale to the ever-increasing information sets that we generate
today. We wish to avoid the hidden costs that arise when we build and maintain
monolithic, non-interacting, non-scalable software models.

28.2.4 Information Fusion

Information fusion includes the capability to fuse the relevant information from
divergent multi-source multi-dimensional time-varying information streams. This is
the grand challenge problem in visualizations. Researchers must not just produce new
visual representations and data representations for specific data types or information
streams, but we must develop methods that fuse the relevant information into a single
information space and develop new visual metaphors that allow the analyst to look
inside this complex, multi-dimensional, time-varying space.

We must also develop techniques to measure scalability so new tools can be ana-
lyzed for their applicability in this domain. We must establish metrics that allow us
to evaluate both visual metaphors and data representations as they apply to scalable
algorithms. The best measurement will not only evaluate the representations accord-
ing to scale, but also to the number of insights, actions, or value achieved for the
analyst.

28.2.5 Technology Needs

What is needed in the visualization research agenda is to extend the state-of-the-art
visual and data representations to be able to explore the heterogeneous multi-source
multi-dimensional time-varying information streams. We must develop new visual
methods to explore massive data in a time critical matter. We must develop new tech-
niques for information fusion that can integrate the relevant pieces of information
from multi-source multi-dimensional information. We must develop new methods
to address the complexity of information, and create a seamless integration of com-
putational and visual techniques to create a proper environment for analysis. We
must augment our methods to consider visual limits, human perception limits, and
information content limits. Therefore, the following challenges can have significant
impact on science, engineering, discovery, and society:
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• Develop quantifiable scalable visual representations, data representations, and
software tools for various domains.

• Develop new methods for abstraction of massive streaming data from textual
sources, satellite data, Sensor data, video data, and other information streams.

• Develop new research capabilities for information fusion. These methods should
utilize visual analytic techniques to extract the relevant nuggets of information
from heterogeneous multi-source multi-dimensional time-varying information
streams, fusing these pieces into explorable information space.
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Chapter 29
Scalable Devices

Jens Krüger and Markus Hadwiger

Abstract In computer science in general and in particular the field of high
performance computing and supercomputing the term scalable plays an important
role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system
scales with the size of the problem, i.e., it can not only be used in a very specific
setting but it’s applicable for a wide range of problems. From small scenarios to pos-
sibly very large settings. In this spirit, there exist a number of fixed areas of research
on scalability. There are works on scalable algorithms, scalable architectures but
what are scalable devices? In the context of this chapter, we are interested in a whole
range of display devices, ranging from small scale hardware such as tablet comput-
ers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly
is not so much the hardware setup but mostly the visualization algorithms behind
these display systems that scale from your average smart phone up to the largest
gigapixel display walls.

29.1 Introduction

In this chapter we will give an overview over the current state of the art of scalable
device visualization. Scalable device visualization for us, is a visualization software
and hardware setup that allows the efficient and effective visualization of—usually
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very large and complex—scientific data on a wide range of devices. Such a list of
devices does include the omnipresent PC workstation but it also extends to very
small displays such as pads, tablet PCs, and smart-phones it also includes large scale
visualization installations such as high-resolution front and back-projection systems,
LCD display assemblies and the various virtual reality setups such as CAVEs [13]
and similar immersive environments.

In the context of this chapter the perfect visualization system would be the one
that runs perfectly on (or scales to) the entire range of displays imaginable from
the smallest wristwatch display to the biggest terrapixel screen. As—to our best
knowledge—something like that does not exist yet, we will first focus on works
that primarily deal with the very small displays and then take a look at large scale
visualization environments. Finally, we conclude with an outlook over current and
future work in this area.

29.2 Small Devices

In this section, we will focus on the small, the portable, the mobile, the hand-held, the
low power consumption hardware. Many names for a class of display and computing
resources that—if we believe the predictions of the analysts—may soon almost com-
pletely replace the PCs from our homes and even workplaces. Before we begin to take
a look at existing works that utilize this type of hardware let us reflect why we want
to use these devices for visualization. First of all, there are a couple of good reasons
not to use them. They are small by definition, which in most cases means they have
a small screen.1 Another good reason to avoid them for visualization purposes is the
lack of traditional input metaphors such as mouse and keyboard which are replaced
by a number of sensors and input modalities that we do not have access to on a
standard PC. Finally, there is no doubt that the graphics and computing resources on
mobile devices are limited even in comparison to commodity PC based workstations,
not to mention computing clusters that are often employed for visualization.

On the positive side, we have the low power consumption, which is certainly
interesting for some first responder, disaster or remote location scenarios were no
reliable power infrastructure is present, but often power is not a concern. Being
portable, mobile, hand-held appears to be a much more interesting feature. There
are quite a few scenarios where we would have access to a power outlet, wired, and
wireless Internet but where a workstation, a notebook, or a netbook are impractical.
Examples include a doctor on a ward round, mobile medical units, scientists in the
field, ad-hoc brainstorming sessions on a lunch break, or simply the only specialist to
a problem who just happens to be on vacation skiing in the mountains. Most of these
examples are based on yet another argument, that is: the best visualization platform is

1 At this point, we knowingly ignore those devices that come with a projector and use arbitrary
objects as projection surfaces, as to our best knowledge these designs are still in early prototype
state.
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the one that we currently have easy access to. Most of us carry their smart-phones with
us almost 24 h 7 days a week and we are familiar with the important features of these
devices. This in—our opinion—is the strongest argument for mobile visualization,
we call this concept the convenient visualization. If the user interface manages to
stick to the general paradigms that the users know from their devices already, you
can give them a visualization platform that is available 24/7, is simple to learn, and
very convenient for them.

To achieve this, however, there are a number of challenges that need to be
addressed first. We need to display large and complicated data on a relatively small
screen with limited computing, graphics, networking and storage resources available.
That said, the challenges can be classified into two categories, efficient user interface
design and screen space efficient visualization methods on the one hand and efficient
data management and rendering on the other hand.

29.2.1 Mobile User Interfaces

There exists a vast body of literature on user interface design for mobile devices.
Due to the limited space of this chapter, we restrict the discussion to works on user
interfaces specifically for mobile visualization systems.

Focused on visualization and multimedia but still a very general work has been
presented by Paelke et al. [45] where they propose a visualization design repository
for mobile devices. Chittaro [12] focused on the general issues of visualizing content
on mobile devices.

Recently, Eissele et al. [19] note that with the presence of location sensors such
as cameras, GPS antennas, inertial accelerometers, WiFi receivers etc., the amount
of user interaction and consequently user interface can be reduced by utilizing those
location sensors focusing on information relevant for the current context.

29.2.2 Rendering Approaches

Even before today’s powerful mobile devices were readily available Encarnação
et al. [20] discussed the general issues in using mobile devices to obtain and access
data. They recognized the problems of limited processing hardware and network
bandwidth. Even though both the network as well as the computing capabilities of
mobile devices have increased significantly since 1995 the basic challenges remain
the same. To address these limitations, over the last couple of years, two main avenues
of research have been followed: The improvement of server based remote rendering,
and the development of novel techniques that make due with the limited resources
available to client-based rendering directly on the mobile device.
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29.2.2.1 Remote Rendering

One solution to circumvent the limitation of the mobile device’s graphics hardware
is not to rely on it for the complex rendering tasks required for many visualization
algorithms but to let a server do the rendering work and to transfer the rendered
image to the mobile device. In 2005 Lluch et al. [39] presented such a client/server
rendering system. In their system a server holds a scene graph and uses it, along with
client view information, to select an appropriate resolution from a multi-resolution
representation on disk. Scene access is done in an out-of-core fashion, allowing
very large models to be visualized. Even when rendering is done on the server, for
large data a single machine may not be able to provide updates to the mobile device
quickly enough for mobile users. For this reason Lamberti and Sanna [38] introduce
a Chromium-based [26] rendering system which encodes the data as MPEG and
streams it to be decoded on the mobile device. With motion estimation being the most
expensive process of MPEG4 encoding, Cheng et al. [11] are able to significantly
improve this step by directly retrieving motion vectors from information available in
the rendering pipeline.

More recently, this area of research has matured from the stage of developing
the basic building blocks, to presenting solutions for specific problems, and demon-
strating the practical use of mobile visualization. Park et al. [47] developed a system
for collaborative medical visualization, using parallel server-based volume rendering
techniques, while Meir and Rubinsky [41] investigate the use of mobile devices as a
cost-effective component of a distributed system for performing ultrasounds. Their
system combines simple-to-use, inexpensive ultrasound devices at the client site,
which generate ultrasound data. The data is sent to a server which performs volume
rendering at pre-defined camera angles, and sends the images back down to mobile
devices for analysis in the field.

29.2.2.2 Client Based Rendering

In a client based setting the entire rendering workload is handled solely by the
mobile device and no persistent server connection is required for the visualization.
A network connection may be required for some initial data transfer but for the
visualization itself no server connection is necessary. In the first work that does
3D visualization with only the mobile hardware resources, Burigat and Chittaro [6]
described a VRML-based system for visualizing what a user sees as they roam a city.
A similar approach was taken by Nadalutti et al. [44] based on the X3D standard.

Moser and Weiskopf [43] were the first to present a prototypic client-only inter-
active volume rendering application on mobile devices. Due to the lack of 3D texture
support by the OpenGL ES GPU their work is based on the concept of axis aligned
slices as proposed by Rezk-Salama et al. [54].

Similar to the remote rendering works, one can also observe for the client based
rendering systems that both the hardware as well as the methods have reached a
state that allows for implementations to leave the stage of research prototypes and to
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Fig. 29.1 This figure shows
a mobile device based visu-
alization system for the use
in deep brain stimulation
(DBS). The system renders
semi-transparent geome-
try (Patient thalamus, sub-
thalamic nucleus, and DBS
lead with electrode contacts)
together with the volume
(the activation zone of the
electrodes). For the volume
rendering with correct geom-
etry sorting and compositing
this client-based visualization
system achieves interactive
frame-rates even on a first
generation Apple iPad. In a
clinical study the system was
able to improve the DBS para-
meter setup-time from about
4 h to less than 2 min

realize systems that show practical use. Recently, Butson et al. [7] demonstrated that a
mobile rendering system can improve the clinical routine for Deep Brain Stimulation
parameter setup (see Fig. 29.1).

29.2.2.3 Hybrid Rendering

Both the server based remote rendering approaches as well as the client-only ren-
dering strategies have their advantages and disadvantages. One issue that all remote
rendering approaches share is the need for a persistent and reliable network connec-
tion to the server. Surprisingly, even today—more than 15 years after Encarnação
et al. [20] early works, which already included considerations about 3G networks—
such a network connectivity is far from guaranteed. Client only solutions, on the other
hand, still suffer from the limited capabilities of the mobile devices, consequently
a hybrid solution, which uses both the massive graphics and computing power of a
server system as well as the low latency and constant availability of the local device
hardware seems appealing.

To reduce the bandwidth requirements and transmission latencies a number of
hybrid schemes based upon the idea of image warping [3, 4, 9, 35, 59, 63] have been
proposed. All of these methods have in common that they receive image data of a hard
to render object from a server. The mobile client then generates the displayed image
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by warping the server’s data to the correct viewing parameters. To compensate for
the missing data due to parallax either multiple depth peeled images are transmitted
or the missing information is requested as a small package from the server.

Diepstraten et al. [15] follow a different approach, instead of reconstructing the
full image from data received from the server, they propose to focus only on feature
lines. These lines can be transmitted efficiently to the client and rendered even on
the low end mobile hardware interactively.

29.3 Large Displays

Using large output displays has been of interest in visualization for a long time.
This is illustrated, for example, by early systems such as the PowerWall [62], or
sophisticated immersive virtual reality setups such as the CAVE [13].

In recent years, advances in digital cameras and computational photography
have created a lot of interest in creating, processing, and displaying high-resolution
imagery such as Gigapixel images [36]. Gigapixel images cannot be displayed on
regular monitors in their entirety at their original resolution, and thus are a natural fit
for the high display resolution of large-scale displays. One example is the Giga-stack
system [50], which targets tiled display walls and relies on the CGLX framework [16]
to display the correct image data on the individual LCD panels comprising the display
array.

Similarly, recent advances and increased resolutions in scientific image acqui-
sition such as confocal microscopy, for example high-resolution biological image
stacks [34], or electron microscopy scans of brain tissue [33], result in image and
volume data of extremely high resolution, for which inspection on high-resolution
displays is of great interest. Figure 29.2 shows an example of a high-resolution brain
tissue block obtained via electron microscopy, rendered on a large display wall with a
total resolution of 13,660×3,072 pixels (40 megapixels), consisting of 40 individual
display panels.

A well-established approach to building large-scale displays is to use multiple
high-resolution projectors [56, 57]. In such systems, projector calibration in order to
hide seams, brightness and contrast differences, and other artifacts is often a difficult
practical issue. Recent advances in LCD display technology have enabled building
large, tiled displays consisting of individual, relatively cheap LCD panels [50]. Such
display arrays are usually much cheaper and easier to maintain than projector-based
systems. Recently, Papadopoulos et al. [46] combined 416 LCD displays for the
1.5 gigapixel, 4-wall Reality Deck. A practical issue on LCD display arrays is the
bezel width of the screens used, which determines the width of the border between
the individual image tiles.

Apart from the practical issue of building and setting up the actual hardware of
large displays, we are most of all concerned with the necessary software infrastruc-
ture and visualization algorithms that enable efficient rendering on tiled displays.
Many visualization systems build on an underlying software framework—or mid-
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Fig. 29.2 A high-resolution electron microscopy (EM) volume of brain tissue, rendered on a
large display wall consisting of 10 × 4 individual LCD displays. Each screen has a resolution of
1,366 × 768, leading to a total display resolution of 13,660 × 3,072

dleware—that supports distributing data to multiple displays. The next section gives
an overview of common middleware for large-scale displays. Another important
issue on a completely different conceptual level is, how users can interact with
visualizations on large displays, where the typical mouse and keyboard interaction
used on desktop systems is not a good fit.

29.3.1 Middleware for Visualization on Large Displays

Well-known software frameworks for visualization on large displays are the WireGL
system [5, 24, 25], its successor Chromium [26], Equalizer [17, 18], SAGE [29–32,
53], and CGLX [16].

A crucial differentiating property of these frameworks is how and where they
interface with application code, whether and how they require the application code
to split up the data to be visualized, as well as where in the graphics pipeline this
distribution occurs [42]. This determines the crucial trade-off between the obtainable
performance, and the magnitude of required changes to application code and the
algorithms employed.

The WireGL system [5, 24, 25] allows rendering with scalable output resolution
using unmodified application code. WireGL substitutes the regular OpenGL driver
with an implementation that can automatically distribute the OpenGL command
stream to multiple rendering and display nodes. This process is completely trans-
parent to the application, and thus no changes to the application code are necessary.



368 J. Krüger and M. Hadwiger

WireGL employs sort-first parallel rendering [42], i.e., splitting up the rendering in
image space, which directly supports rendering on tiled displays. A major drawback
of this approach, however, is that the data have to be replicated on each render node,
i.e., this approach scales to large display sizes, but not as easily to large data sizes.
This problem was reduced in WireGL [24] by filtering the OpenGL command stream
to correspond better to the sub-streams required by individual render nodes, which
builds on an early parallel graphics API implementation [27]. However, WireGL
requires all data to be transmitted over the network every frame, which incurs a
significant scalability problem for large data.

Compositing is a very important issue in distributed rendering, which is usually
handled completely in software, but special purpose hardware solutions such as
the Lightning-2 system [60] have been developed and combined with WireGL, for
example.

The Chromium system [26] builds on the earlier work of WireGL to create a
powerful framework for command stream processing and distribution, introducing
programmable command stream filters that enable building general sort-first and sort-
last parallel rendering algorithms on top of the provided functionality. Like WireGL,
Chromium is based on intercepting OpenGL command streams.

The Equalizer framework [17, 18] provides very general capabilities for distrib-
uted rendering, both for distributing data, as well as for rendering on tiled displays.
In contrast to the other middleware discussed here, Equalizer aims to provide a
full-featured distributed parallel rendering framework. However, this requires the
application code to use the Equalizer API and adapt its structure accordingly. Equal-
izer supports both sort-first and sort-last rendering approaches, and also provides
parallel compositing capabilities with different strategies, as well as load balancing.

The SAGE (Scalable Adaptive Graphics Environment) framework [29–32, 53]
concentrates solely on streams of pixel data, which can be distributed efficiently to
the corresponding displays. In this way, SAGE can be used as a powerful low-level
primitive for streaming pixel data, which have been generated before by any dis-
tributed visualization algorithm. SAGE allows multiple clients to display different
views on a single display array, arranging for pixel streams to be sent to and dis-
played on the correct nodes. Application windows can be freely moved and resized
anywhere, seamlessly handling windows straddling multiple displays, and multiple
views partially overlapping the same display. In order to be able to stream pixel data,
all rendered images must be read back from the GPU to the CPU and then transmitted
over the network.

The CGLX framework [16] provides a GLUT-like application interface, which
allows for easy conversion of OpenGL code that uses GLUT to large display arrays.
Although distributed rendering is handled automatically, existing code must be con-
verted from GLUT to CGLX. Although the required code changes to convert a
GLUT application to CGLX are relatively minor, for applications that are not based
on GLUT, using CGLX is not straightforward. An example for using CGLX as the
low-level middleware to build a Gigapixel viewer is the Giga-stack system [50].
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29.3.2 Interaction with Large Displays

A big conceptual challenge of using large displays for visualization is providing
efficient and natural paradigms for user interaction. On large displays, normal win-
dow system interaction metaphors break down [25]. A simple example of this is
moving windows on the screen, which is trivial on regular displays but much harder
to achieve on large displays if larger pixel distances need to be covered. More-
over, using mouse and keyboard interaction together with large displays is cumber-
some, because they usually require the user to sit down with mouse and keyboard
in front of the display. Large displays make walking around and gesturing natural,
whereas classical interaction paradigms lack this naturalness [49]. However, high-
resolution displays have been shown to improve the capabilities of users to compare
and find targets, as well as to outperform displays of lower resolution for navigation
tasks [2].

Large displays invite metaphors such as those of standard whiteboards [51], which
affords using informal writing, sketching and space management [22]. These display
devices also invite collaborative approaches to visualization [52], and multi-user
interaction [28]. Related approaches have been developed for collaborative visual-
ization on tabletop displays [58], which often employ tracking via overhead-mounted
cameras like the Lambda table system [37].

Common interaction approaches leverage tracked objects or pointers, such as the
VisionWand [8], which provides the user with a (passive) wand that is tracked in 3D,
and then used together with visual widgets overlayed on the display. The physical
size of large displays can become a significant problem in such approaches, which
can be circumvented by interaction metaphors that do not require direct pointing.
Examples are using infrared laser tracking [10], or the LumiPoint system [14] that
is capable of tracking multiple pen-like objects with video cameras.

Whiteboard-style interaction can also be achieved by giving users small touch
screens and a pen [51]. More recently, similar interaction capabilities can be provided
using multi-touch tablets such as an Apple iPad where multi-touch gestures steer the
visualization on the display wall [1]. Instead of using pointer objects, gestures can
be recognized directly, such as multi-finger gestural input [40]. Multi-touch input
technologies can broadly be categorized as being either optical, capacitive, or resis-
tive [55]. Painting gestures can also be seamlessly supported across the boundaries
of multiple displays, by stitching the individual parts together [23]. Gesture recog-
nition can further be combined with speech recognition [48, 49]. Recent approaches
employ other technological advances such as the cheap gyroscopes and accelerom-
eters found in mobile phones and video console hardware, for example using the
peripherals of the Nintendo Wii video game console for stroke-based rendering [21].
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Fig. 29.3 A distributed weather analysis and emergency warning system, a visualization scenario
running on top of the ZAPP framework [61]

29.4 Outlook

Scalable devices are the future! Analysts agree that the future of home computing
lies in small computers such as pads, tablets, or small notebooks, and visualization
labs around the globe invest significant amounts of money in tiled display systems
hardware and research. But will that ultimately influence the way we interact with
data in the long term? While such things are always hard to predict, we do believe
that the added value of high-resolution and collaborative large-displays as well as
the ease of use of mobile computers make those devices the ideal platform for con-
venient visualization, already few works exist to combine the best of both worlds
and allow the control and interaction on large display walls with mobile computers
(see Fig. 29.3).
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Chapter 30
Scalable Representation

Yun Jang

Abstract Although the amount and variety of data being generated is increased
dramatically, the capabilities of data visualization, analysis, and discovery solutions
have not been improved accordingly with the explosive rate of data production. One
reason is that storage and processing at the level of raw data require supercomputer
scale resources. The other is that working at the level of raw data prevents effective
human comprehension while exploring and solving most problems. Here we show
several approaches to scalable functional representations. Encoding, abstraction, and
analysis at multiple scales of representations are a common approach in many scien-
tific disciplines and provides a promising approach to harness our expanding digital
universe.

30.1 Functional Representations

Scalable functional representations have been studied in many research areas in order
to interpolate, approximate, and abstract data. Many disciplines no longer explore raw
data, but functionally derived and processed information from the raw data. Examples
include CT and MRI images in medical applications, and the derived high-level
products from remote sensing data. Common techniques for functional representation
include radial basis functions, wavelets, and spherical harmonics. The nature of this
functional representation is to find functions hierarchically, therefore, it is possible
to represent data from abstract to detail levels according to compression ratio and
level of detail. The abstract level of the representation allows us to visualize large
data interactively, whereas, the detail level requires more computational power for
the visualization. Moreover it is a unified representation regardless of data formats.
Details of the functional representations are presented as follows.
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30.1.1 Radial Basis Functions

Previously, most radial basis function (RBF) encoding work has concentrated on
surface fitting. In the early 1970s, RBFs were used to interpolate geography surface
data using multiquadric RBFs [13] and results showed that RBFs are a good inter-
polation basis function for smooth surface data sets. Hardy [14] presented 20 years
of discovery in the theory and applications of multiquadric RBFs and surveys RBF
work from 1968 to 1988. Franke [10] showed scattered data interpolation and tests
using several methods, such as the inverse distance weighted method, the rectangle
based blending method, and the triangle based blending method. He compared these
methods and showed that Hardy’s multiquadric approach is best. Since Franke’s
work, multiquadrics have been considered the best basis function in most surface
fitting research. After Franke’s survey, Franke and Nielson [12] collected more work
on surface fitting and presented their research by surveying and comparing several
techniques. For better interpolation, the least squares approach were used by Franke
and Hagen [11]. For the approximation of surface fitting, knot (center) selection [23]
was introduced using thin plate splines by Dirichlet tessellation. Through knot selec-
tion, encoded data can be reduced and a small number of basis function can represent
the whole data set.

Although RBFs have been used to reconstruct surfaces by approximating scattered
data sets, they were primarily used for mesh reduction of surface representations [4,
25, 32, 39]. In more recent work on surface fitting, Carr et al. [4] showed surface
fitting as an approximation using multiquadric RBFs. They iteratively added basis
functions using a greedy algorithm by computing fitting errors, where basis functions
were added at larger error points. In their work, the zero level set implicit surface
of the distance function was fit and energy (error) was minimized for the smoothest
interpolant. Ohtake et al. [31] also showed the fitting of implicit surfaces. They
selected centers based on the density of data points. More basis functions were
added in higher density areas. By linking the RBF approximation and the partition
of unity method [30], Ohtake el al. presented a robust approximation for noisy data.

Volume fitting using RBFs was introduced by Nielson et al. [28, 29], where they
extended surface fitting methods to volume fitting. Their approaches showed good
approximation of volume data. In more recent work on volume fitting, Co et al. [5]
showed a hierarchical representation of volumetric data sets based on clusters com-
puted by Principal Component Analysis (PCA). A level of detail representation was
extracted by either the hierarchical level or the error. Jang et al. [16, 17] and Weiler
et al. [41] proposed a functional representation approach for interactive volume ren-
dering. Their approaches were designed for any scattered datasets and directly vol-
ume rendered the basis functions without resampling. Moreover, using ellipsoidal
basis functions, they improved the functional representation statistically and visu-
ally [16]. Recently, Ledergerber et al. [19] applied a moving least square to interpolate
the volumetric data and Vuçini et al. [40] reconstructed non-uniform volumetric data
by B-splines.
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30.1.2 Wavelets

As a hierarchical data representation for comparison, there is an approach, wavelet
[3, 6, 15, 26, 27, 35–37]. In the area of volume encoding, most work [15, 26, 27]
has been performed for regular grids and shows effective 3D compressed volumes
and rendering. Recently, this research has been extended to irregular grids organized
using polygonal meshes [6, 36, 37]. The wavelet encoding of irregular grids is usually
performed using irregular sampling and adaptive subdivision. However, the wavelet
for the irregular data set is based on polygonal meshes. Therefore, it is not easily
extended to arbitrary scattered volume data. Sohn et al. [35] presented a compression
scheme for encoding time-varying isosurface and volume features. They encoded
only the significant blocks using a block-based wavelet transform.

30.1.3 Spherical Harmonics

Most of the work in spherical harmonics has been done for surface fitting, especially,
3D object modeling and molecular surface modeling. For 3D object modeling [7,
18, 38], the datasets were decomposed into high and low frequency components
and represented by the properties of the spherical harmonic basis functions. Also
this modeling was used for shape deformation [8, 9]. In molecular surface mod-
eling [22], spherical harmonics give a sequence of smooth approximations to the
molecular surface since the shapes of the spherical harmonics are very similar to the
shapes of the molecules. For volume fitting, Misner [24] showed spherical harmonic
decomposition, however, the volume fitting is based on a rectangular grid.

30.1.4 Time Series Data Representations

The large volume of time-varying data makes visualization a challenging problem.
Many techniques for volume rendering of time-varying data have been proposed and
these techniques enable the visualization of large amount of time-varying datasets.
One approach is to use data coherency between consecutive time steps to speed up
volume rendering [1, 2, 33, 34]. Another approach is to encode and compress the
time-varying data appropriately for the volume rendering [20, 21, 35, 42]. Shen
and Johnson [34] proposed an algorithm that exploits data coherency between time
steps and extracts the differential information for biomedical and computational fluid
dynamics datasets. Shen et al. [33] showed the time-space partitioning (TSP) tree and
this structure improves the rendering speed and reduces the amount of volumetric
data I/O. For temporal compression approach, Westermann [42] proposed a memory
minimizing algorithm based on multi-resolution representations of both the spatial
distribution and the time evolutions. Ma and Shen [21] presented quantization and
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octree encoding of time-varying datasets and reduced the rendering speed over time.
Lum et al. [20] presented temporal encoding using discrete cosine transform (DCT)
and accelerated the rendering speed using the graphics hardware.
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Chapter 31
Distributed Post-processing and Rendering
for Large-Scale Scientific Simulations

Markus Flatken, Christian Wagner and Andreas Gerndt

Abstract With the ever-increasing capacity of high performance computing (HPC)
systems, the computational simulation models become still finer and more accurate.
However, the size and complexity of the data produced poses tremendous challenges
for the visualization and analysis task. Especially when explorative approaches are
demanded, distributed and parallel post-processing architectures have to be devel-
oped in order to allow interactive human-computer interfaces. Such infrastructures
can also be exploited for the evaluation of ongoing simulation runs. The applica-
tion here ranges from online monitoring to computational steering. But also remote
and parallel rendering can be integrated into the overall setup. This chapter gives an
overview of current solutions and ongoing research activities in this domain.

31.1 Motivation

Simulations of complex dynamic systems have been made a big progress over the
last decade. Nowadays, they are not only used to merely assess and review results
from experiments but increasingly to replace them with computational simulation.
The reason for that in many domains is a continuously increasing comprehension of
how to model dynamic systems with computer algorithms. But besides robustness
and confidence in the modeling, the main basis for the success of simulations is the
availability of supercomputer systems, which makes it possible to perform very high-
resolution and complex simulations in a reasonable time. Depending on the domain,
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Fig. 31.1 Interactive flow field exploration of a centrifuge in a virtual environment

resulting simulation output can exceed sizes of tera- and peta-bytes of data. Without
appropriate approaches for the analyses of those datasets, it is almost impossible to
obtain better insight into the highly complex interdependencies of dynamic systems.
Often, merely some samples are taken or simplified views are generated just to proof
the correctness of the hypothesis used for the modeling.

In case that such simplified confirmative approach is not sufficient and satisfying
enough, more explorative methods have to be integrated into the workflow. Explo-
ration, however, requires interactive tools to enable the search for findings which
were unexpected or not known yet. Interactivity on large-scale datasets is the main
challenge of a real-time post-processing of dynamic simulations. Furthermore, pro-
duced results typically consist of many scalar and higher-dimensional data fields
and may also change over time. One of the most intuitive ways to facilitate insight
into those data is scientific visualization. Improved virtual reality (VR) techniques
can eventually add the demanded interactivity in order to achieve an immersive and
intuitive exploration environment (see Fig. 31.1).

Precise tracking of the scientist in a virtual environment and updating the view-
dependent images on (typically) multiple displays with high frame rates is already
a challenging requirement on such systems. Therefore, handling of large-scale sim-
ulation data and performing an appropriate post-processing on the same machine
would easily break the interactivity requirements required for such explorative visu-
alization environments. The solution is a distributed architecture, which relieves the
visualization frontend from heavy post-processing work that can now be moved to a
remote system. In addition, the visualization can be performed by remote rendering
clusters to enhance the interactivity at the frontend even more.

With a supercomputer at hand, the post-processing can additionally be sped-up
considerably by parallelization strategies. Instead of storing results of a running sim-
ulation to the file server, it may now also be possible to process the data directly



31 Distributed Post-processing and Rendering for Large-Scale Scientific Simulations 383

in main memory for online monitoring purpose. As soon as this is available to the
engineers, the next desirable step would be the interactive modification of simula-
tion parameters in a virtual environment to steer the ongoing simulation. To address
the challenges appearing in such distributed and parallel post-processing and steer-
ing architectures, this chapter discusses strategies and presents solutions to enable
interactive exploration of large-scale datasets even for future simulation models.

31.2 Distributed Visualization Infrastructure

The infrastructure for distributed post-processing can consist of many heterogeneous
computer systems. Typically, a parallel HPC cluster is responsible for managing the
large-scale raw simulation datasets and for parallel feature extraction. This backend
sends extracted intermediate results to the visualization frontend for final processing
and rendering steps. The exploration of the result takes place in the visualization
environment where the user can request more information from the backend. Never-
theless, often a visualization cluster with many high-end graphics processing units
for parallel co-processing and rendering is incorporated into the infrastructure. Each
system can then carry out work for which it is optimized. An overview of possibly
involved components with tasks and data flow is depicted in Fig. 31.2.

Depending on the assignment of responsibilities (e.g. simulation, extraction, ren-
dering) to the depicted systems, the infrastructure can be used for a variety of
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of large-scale data visualization
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Fig. 31.3 A classical visualization pipeline transforming raw data to images

applications (e.g. online monitoring, in-situ processing, computational steering).
However, the efficiency of a currently appointed task does not only depend on the
hardware components used but is also particularly affected by algorithms which
have to be tailored to existing individual environments and requirements. This will
be evaluated in more detail in the following sections.

31.2.1 Parallel Post-processing

Post-processing for scientific visualization is mostly based on data flow networks
describing how to process raw data step by step [16]. Figure 31.3 shows a simplified
visualization pipeline along with the data flow between the pipeline modules. In
interactive applications, each stage of the pipeline can be manipulated by a user,
which triggers the execution of all subsequent stages repeatedly.

In scientific visualization applications, raw data is often multi-variate and stored
in structured file formats. Filtering this raw data, e.g. an extraction of sub-volumes,
could be a method to fill gaps, or an algorithm to smooth data values. The derived data
is then mapped to abstract visualization primitives with extensions in time and space.
The last transformation is the rendering step which produces displayable 2D-images
from the abstract visualization primitives.

When traversing this pipeline, the heavy workload mainly occurs in the filtering
and mapping stages. Thereafter, large-scale data is considerably reduced to a man-
ageable size even for smaller computer systems. To speed-up the processing time
of the first stages, parallelization strategies can be implemented on HPC clusters.
For large-scale simulations, however, task parallelism and pipeline parallelism are
not very promising approaches. In contrast, data parallelism shows great success,
which assigns partitions of the dataset to the available processing elements. If the
domain is decomposed, each processor can load and process its parts concurrently.
After all processors computed have their partial results, extracted features have to
be joined before they are sequentially processed by the remaining pipeline stages
(see Fig. 31.4). To enhance the interactivity in virtual environments, partial data
already extracted on the backend may be streamed to the rendering stage as soon as
possible. Particularly suitable for data streaming approaches are progressive multi-
resolution data formats. These allow early previews of the overall result which is
steadily refined until all remaining feature details are arrived [14].
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Fig. 31.4 Usage of data parallelization speeds up the heavy workload of the post-processing
pipeline. Each processor can process its independent part of the source data. The processed data is
collected in a final step for further calculations

Today many turnkey applications exist in this area. The most popular systems
for scientific visualization of large-scale datasets are the open-source systems
ParaView [25] and VisIt [6] as well as commercial tools such as EnSight, TecPlot,
or FieldView. While these applications are more appropriate for desktop user
interaction, another framework called Viracocha is focusing more on the explorative
analysis of unsteady simulation datasets within immersive virtual environments [14].
Special interaction metaphors are implemented to interact with the virtual environ-
ment in a more natural way.

31.2.2 In-situ Processing

Typically, the data is stored to a file server after the simulation was carried out. This
allows analyzing the results whenever an engineer has time or wants to explore more
findings at a later time. But sometimes, one is already interested about intermediate
results while a simulation is still running. Instead of storing the data for such cases,
it can be transferred to a dedicated post-processing system for online monitoring
directly after a computation step is completed. While the so-called co-processing is
performed on this second computer cluster, the simulation can continue.

The main purpose for co-processing is not only online monitoring but also reduc-
ing and reorganizing the huge amount of raw data to reasonable sizes and formats
for persistent storage on file servers. Sub-sampling raw data is the simplest way to
reduce simulation data. Further shrinking is possible by quantization or compression.
Quantization compresses value ranges to single values and can be applied in differ-
ent ways. To achieve high scalability, local and computationally cheap quantizations,
such as the Jayant quantizer [21], should be preferred [13]. Complex global quanti-
zations like the global Lloyd-Max method [15] or codebook-based methods like the
Linde-Buzo-Gray algorithm [27] can be too computationally intense. However, in
terms of cost and performance, using transform-based compression is a better choice
[28]. Popular encoding algorithms are the discrete cosine transform and the wavelet
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transform. They transform the data from spatial domain to different domains, in
which important information can be easily accessed.

But already transferring large-scale data over the network for post-processing
is a very time-consuming task. A more efficient approach is the treatment of the
raw data directly in the main memory of the supercomputer where the simulation is
located. For this so-called in-situ processing, no data movement or storage between
the simulation and the filtering stage of the visualization pipeline is required [28].
Now, extracted and usually more compact representations can almost immediately
be achieved and transmitted to the visualization environment.

Compared to classical parallel post-processing approaches, sharing the simulation
host introduces additional challenges for in-situ processing [28]:

• Domain Decomposition: It is optimized for best simulation performance. However,
it is not necessarily optimal for visualization purposes. Repartitioning is not an
option because of high communication and data transmission costs. Therefore,
this fixed partitioning has a strong influence on the scalability of visualization
algorithms.

• Common Memory Usage: In order to avoid data duplication, the simulation and the
visualization have to share the same data structures in memory. If the simulation
uses most of the available memory, the visualization is only allowed to allocate a
small extra amount for its own internal data structures.

• Post-Processing Time: The post-processing should not occupy too much time to
avoid slowing down the simulation process.

• Software Architecture: Since the visualization must work directly on the data
structures of the simulation, a common interface needs to be provided.

A successful implementation has been presented by Moelder et al. [35]. The
authors demonstrate an in-situ method for feature tracking using a low cost and
incremental prediction and morphing approach to track a turbulent vortex flow.
In-situ rendering is utilized by Tu et al. [40] in order to visualize a tera-scale earth-
quake simulation. Here, ray casting is performed independently on each parallel
processor before the generated images are combined and streamed to the visualiza-
tion frontend. In [42], Wagner et al. discuss how explorative analysis with freely
movable cutplanes in interactive virtual environments can be supported by in-situ
online monitoring (see Fig. 31.5).

The later approach requires update rates of at least 100 ms to interactively provide
the required scalar field data on the cutplane. If using an analytical cutplane algorithm
to determine the sample points on the cutplane, all cells intersecting the cutplane have
to be found. In this case, the load on each processing element depends heavily on
the position of the cutplane and the distribution of the cells (see Fig. 31.6, left).

To avoid a long and unpredictable extraction runtime, progressive sampling
schemes can be applied instead. First, the needed information is just sampled on few
positions. By adding further sample points, the cutplane visualization is progres-
sively refined. The data streaming is stopped as soon as the interactivity threshold is
reached (see Fig. 31.6, right).
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Fig. 31.5 Continuously moving of cutplanes through a dataset requires short responses from the
in-situ processing
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Fig. 31.6 Runtime and number of intersected cells (left) are strongly dependent on the cutplane
position. Interactivity is achieved by using a progressive sampling pattern (right), which supports
increasingly resolutions per streamed level at the frontend

This approach provides high update rates at the cost of image quality. Nevertheless,
regions of interest can be determined successfully. The achieved runtime is also
nearly constant for positions intersecting a large number of cells.

31.2.3 Computational Steering

Numerical simulations are typically following a straightforward workflow, start-
ing with setting up the simulation, performing numerical calculations and finally
analyzing the results. However, in order to gain insights into complex situations, a
more interactive simulation style is desirable. Examining the interdependencies of
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Fig. 31.7 Computational steering loop. Users are able to steer a running simulation by communi-
cating with the simulation through a user interface

simulation variables during a simulation run can increase the scientist’s understand-
ing of the modeled physics and decreases the number of iterations required in order
to successfully perform a simulation. Due to this importance, computational steer-
ing, the process of influencing a running numerical simulation, has applied since the
early times of numerical simulations.

Figure 31.7 depicts the computational steering process according to Muelder
et al. [36]. Information about a running simulation needs to be communicated to
a user interface (online monitoring). The user interprets the visual feedback to deter-
mine potential manipulations. These manipulations then have to be distributed to the
simulation nodes for execution. Based on these functionalities of a computational
steering process the following issues are identified:

• Instrumentation: The definition of interfaces between the simulation and the steer-
ing framework as well as the required adaption inside the simulation.

• Re-usability: A steering framework should support various types of simulation
solvers. This involves dealing with different data layouts and generic graphical
user interfaces.

• Data Exchange: Data collection and distribution is essential for various tasks. E.g.
simulation data needs read and write access by the user interface.

Due to the fact that visualization is a key component for computational steering, it
is not surprising that many computational steering approaches are based on enhanced
visualization toolkits. Therefore, VisIt and ParaView, the two main open-source visu-
alization systems, provide a computational steering solution.

VisIt is a parallel high-performance visualization environment providing efficient
visual analysis of scientific data. libsim [9] is a lightweight library that offers an
API in order to connect simulations to the VisIt environment. However, this API has
a complex instrumentation and requires many code changes. Furthermore, data is
required to be converted into VisIt’s native data structures. ParaView, on the other
hand, did not originally support computational steering. Nevertheless, Biddiscombe
et al. [3] extended ParaView with a plugin and a IO library which enables computa-
tional steering. They make use of a virtual file driver which emulates conventional
disc storage and distributes data via message passing. This ParaView plugin, called



31 Distributed Post-processing and Rendering for Large-Scale Scientific Simulations 389

Simulation Script

CFD Solver
Module

CSM Solver
Module

Solver XY
Module

Steering
Module

Data ManagementFile
System

Fig. 31.8 Integration of FSSteering into the multi-disciplinary simulation environment Flow-
Simulator. This deep integration allows for simple usage and accessibility to many parameters
and methods

ICARUS, interprets an additional XML file describing data layout and user com-
mands.

Contrary to extending visualization tools, pure native steering frameworks exist,
such as the Steereo [22] or INRIA’s EPSN [7]. They often concentrate on coupling
different simulations and distribute data among them easily. Therefore, missing
analysis tasks as well as the visualization have to be implemented by the user. This
results in a high adaptation overhead for specific problems.

FSSteering [41] is a domain-specific framework focussing on multi-disciplinary
CFD workflows. It is integrated into Airbus’s FlowSimulator framework (see
Fig. 31.8). Important parameters as well as the simulation mesh are accessible and can
be changed on-demand without the need to prepare the simulation for this. Due to its
deep integration, instrumentation is possible with minimal changes to the simulation
script and no additional description has to be maintained.

31.3 Techniques for Parallel and Remote Rendering

In most cases, large-scale datasets are only stored where they are generated. A direct
access to storage systems is often prohibited or restricted. However, even if the dataset
can be downloaded, it would be too large to be stored locally and the transmission
time would exceed acceptable waiting periods. Remote and parallel rendering tech-
niques are meaningful tools to avoid those I/O problems. The rendering is directly
performed where the data is accessible. But not only the possibility to process the
results on the same HPC resources where they have been created but also the avail-
ability of massive parallel rendering capacities at today’s computing centers helps to
accelerates the delivery of rendered images. Finally, presenting intermediate results
of running simulation in time can also easily be integrated in such distributed and
parallel rendering frameworks.
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31.3.1 Parallel Rendering

Creating high quality images from large-scale simulation data is obviously a compute
intensive process, especially in the case where interactive virtual environments are
used. Fast update rates are required which leads to very high floating-point per-
formance and enormous memory requirements. These requirements are beyond the
capabilities of a single graphics processor. A common solution to avoid these issues
is parallelism.

Various types of parallelism have proven to speedup the rendering process.
Functional parallelism called pipelining for example can speedup critical calcula-
tions, and data parallelism is essential to compute multiple results at once. Data
segmentation in the field of parallel rendering can either rely on geometry distribu-
tion and/or the distribution of screen-pixels or screen-portions.

When rendering geometry, which is formed by a collection of raw primitives (e.g.
triangles), all raw primitives have to pass the rendering pipeline including geometry
processing followed by rasterization. Geometry processing performs calculations like
transformation, clipping and lighting. The rasterization then transforms the resulting
screen-space primitives from the geometry processing to pixels. To get a uniform
understanding of parallel rendering techniques, Molnar et al. [33] introduced a classi-
fication scheme based on where sorting from object coordinates to screen coordinates
occurs. The sort can, in general, take place anywhere in the rendering pipeline:

• during geometry processing (sort-first),
• between geometry processing and rasterization (sort-middle),
• or during rasterization (sort-last).

Sort-first means that raw primitives are redistributed before their screen-space
parameters are known. Sort-middle means the redistribution of screen-space primi-
tives and in sort-last pixels are redistributed. Before rendering, the geometry is arbi-
trarily distributed over the involved rendering resources. Therefore, every resource
has to render only a subset of the geometry.

In sort-first rendering the screen is divided into disjunct regions. Therefore, in a
first step it is determined in which screen region the raw primitive has to be ren-
dered via simplified transformations. Subsequent geometry processing steps are dis-
carded. If the raw primitive falls into another screen-portion, it is send over a network
interconnect to the correct rendering resource. Sort-first algorithms have advantages
because of low communication requirements if only few raw primitives have to be
redistributed between frames or when a raw primitive requires many pixels to be cov-
ered on screen. However, this technique can lead to load imbalances when primitives
are unevenly distributed over the screen portions or due to clustering of geometry
due to transformations.

Sort-middle systems redistribute screen-space primitives between geometry
processing and rasterization. The screen is also divided into disjunct regions. In a
first step it is determined in which screen region the raw primitive has to be rendered
due to passing the complete geometry processing unlike in sort-first. The result-
ing screen-space primitives are then redistributed to the correct rasterizer, possibly



31 Distributed Post-processing and Rendering for Large-Scale Scientific Simulations 391

on another rendering resource. This method also leads to load imbalances between
rasterizers when screen-space primitives are distributed unevenly over the screen
space.

Sort-last rendering defers sorting until the end of the rendering pipeline. On each
rendering resource all of the resources’s raw primitives have to pass the complete
rendering pipeline, no matter where they fall in the screen. The resulting pixels
are transmitted over a network interconnect to the resource responsible for a last
compositing step which resolves the visibility of pixels. Sort-last algorithms are less
prone to load imbalance and have improved scalability from previous techniques, but
they can produce very high pixel traffic. The major limitation for a scalable sort-last
rendering solution is the required bandwidth for image compositing, especially when
rendering with very high resolutions. Therefore, Makhinya et al. [30] introduced
techniques for fast image compositing. They try to reduce the required bandwidth
using compression techniques in combination with region of interest methods.

Today various parallel rendering frameworks like WireGL [19], Chromium [20],
IceT [34] and Equalizer [10] exist. WireGL and Chromium are more generic solutions
to extend default OpenGL applications for parallel rendering. IceT and Equalizer
are API’s for developing parallel rendering applications. To avoid the problem of
imbalances in parallel rendering, Erol et al. introduces approaches for optimized
load balancing [12].

31.3.2 Remote Rendering

Remote rendering techniques for interactive scientific visualization are of high impor-
tance when the data to be analyzed is just available remotely, e.g. in a distant com-
puting center. To connect the remote site with the local workstation of the engineer
typically client/server architectures are used [39]. This implies that the raw massive
dataset does not have to be transferred to the local workstation for the rendering task
anymore but can be processed directly where it is produced and stored. The server
only sends reduced data like sub-volumes, extracted features, or—in our case—
rendered images to the client.

Another advantage of using remote rendering is the suitability to be incorporated
in multi-user or distributed collaborative environments. The images rendered on a
remote server can easily be dispatched to a number of connected user clients. If even
more application-related functionalities are shifted to the server, the requirements for
the local computer system can drop considerably. At the end, merely thin clients or
just web browsers are needed to carry out demanding post-processing analyses. Those
approaches are already widely used by online gaming companies like OnLive, OTOY
and Gaikai for their game streaming platforms [38] and may be easily adaptable for
large-scale data processing.

Distributing the visualization pipeline between local and remote resources has
advantages but also introduces new challenges and research topics:
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• Network Latency: The delay between sending an interaction command, e.g. a
viewpoint position, and receiving frame updates can lead to unacceptable convul-
sive movement of objects.

• Network Bandwidth: The bandwidth requirements for sending large polygonal
data or series of high resolution images between local and remote resources can
be very high.

• Error Recovery: Errors while transferring data can lead to unacceptable visual
artifacts or poor application behavior.

• Scalability: Most of the workload is shifted to remote resources. The number
of concurrently supported users is limited by network bandwidth and compute
capacities.

• Network Robustness: The system should be failure-resistant to network problems
such as packet loss.

• Load Balancing: Optimal balancing of the visualization pipeline between available
local and remote resources is not trivial.

31.3.2.1 Classification of Remote Rendering Techniques

Remote rendering techniques can be classified based on their distribution of the
visualization pipeline as depicted in Fig. 31.9. This leads to different data types
transferred between the local and the remote resource.

A common and simple remote rendering approach is image streaming. The image
is rendered on a remote machine for the requested viewer position. Finally, the client
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Fig. 31.9 Classification of distributed rendering techniques based on their pipeline distribution.
Depending on the chosen technique some pipeline stages are executed on local resource and others
on remote resources
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has to receive and display the remote rendered image. This means only the display
stage is performed on the client, whereas all other stages are executed on the server.
Applications like SAGE [23] or VirtualGL1 use this approach. Image streaming has
its main limitation in the presence of interaction delays and it is sensitive to network
latency. Nevertheless, this solution requires modest client resources and is suitable
for dynamic scenes.

In traditional 3D graphics systems, the scene consists of geometric primitives with
attributes like materials, colors and a set of lights. Based on these scene descriptions
the rendering system generates and displays an output image. Image-based rendering
(IBR) systems differ from traditional 3D graphics systems in that the client generates
images for the actual camera position based on pre-generated images rendered at dis-
cretized viewpoints. By using image-based rendering in a client/server architecture,
only the display stage of the visualization pipeline is executed on the client. The com-
plete rendering is performed on the server side with the traditional rendering. The
major advantage of image-based rendering is that the cost of viewing the scene inter-
actively on the client is independent of scene complexity and modest computational
resources are sufficient.

Apple’s QuickTimeVR [5], an early IBR system, used a 360◦ cylindrical envi-
ronment map to quickly generate an overview of the scene on the client. The main
limitation of using simple environment maps or panoramic images is that the view-
point is fixed in space. View interpolation or warping methods address this problem
[31, 32]. Based on a depth value for each pixel, it is possible to warp the image to any
desired viewpoint on the client. The key challenge using interpolation or warping is
to fill the gaps of previously occluded areas which are now visible in the requested
view (see Fig. 31.10). Another popular IBR approach is to use light fields [26] or
lumigraphs [4] where a discretized volume is formed by an array of images. The
client can now extract a slice out of this volume from any requested position and
orientation. Because many images are used for extracting a slice out of this volume,
the produced error can be reduced. Using this approach in a client/server architec-
ture requires the generation and transmission of multiple images for the client’s slice
extraction.

Model-based rendering (MBR) systems in a distributed environment transfer raw
data, derived data or geometric primitives instead of images. This means that at least
the rendering and display stages of the visualization pipeline are performed on the
client side. While data or geometries are available locally, the client is given more
freedom in manipulating viewing parameters and it may also reduce network traffic in
the end, but they require much more memory and rendering capacity often exceeding
the client’s capabilities. Common post processing applications like Paraview, VisIt,
Ensight, FieldView or TecPlot use this approach and some of them are able to switch
to image streaming when local capacities are exceeded.

Hybrid rendering therefore try to optimize or balance computing and rendering
requirements between the client and the server. In most cases, parts of the geometry
are rendered by the client itself with low-resolution and high frame rates . The server

1 http://www.virtualgl.org/

http://www.virtualgl.org/
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Fig. 31.10 Warping of a delayed remote image (left) to the actual viewer position (right) based on
only one depth image leads to unpleasant artifacts

Fig. 31.11 Hybrid rendering allows interactive analysis of complex geometry like the depicted
compressor tera-byte dataset on a powerwall (left) and on a display wall (right). The surface geom-
etry is rendered locally at high frame rates whereas isosurfaces are rendered remotely

transmits images and the corresponding depth values per pixel from highly complex
scenes to the local client. Finally, these images are composed to a result. Noguera
et al. [37] used a hybrid rendering approach for terrain visualization on mobile
devices. While the geometry of the terrain close to the viewer is locally rendered,
geometry near the horizon with lots of triangles is rendered remotely. Engel et al.
[11] combines local and remote rendering in medical applications. Their system
uses a low quality local volume rendering while the viewer is changing visualization
parameters. When the view manipulation stops, a high quality image is requested
from the remote system.

Another approach is to split geometry into context geometry with low triangle
counts and complex feature geometry. While the context geometry is rendered with
local resources, complex features, such as isosurfaces, are rendered utilizing high-
performance parallel remote hardware (see Fig. 31.11). This can be used in order to
guarantee minimal frame rates on the client side, which is required in virtual envi-
ronments. Because remote images are received with delays due to network transfer,
they do not fit exactly to the local perspective. Therefore, image warping techniques
can be used to re-adjust the remote images to the current view.
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31.3.2.2 Compression Techniques for Remote Rendering Systems

To overcome the challenge of bandwidth limitations in a remote rendering environ-
ment mentioned previously, many research activities have been started to efficiently
compress and stream the data types generated on the remote host to the client’s appli-
cation. Therefore, compression algorithms greatly reduce the required bandwidth for
network transmission. However, they introduce an additional latency for compression
and decompression. The choice of the compression technique is strongly dependent
on the available network bandwidth and the time needed to compress and decompress
the data. In this section, techniques to compress image-, depth- and geometry-data
are presented. These are the main data types typically generated by the remote side.

Colored images, e.g. from graphics card framebuffers, are mostly compressed by
standard image or video codecs to reduce bandwidth [2]. One major problem using
standard video codecs like MPEG or H.264 is that they rely on previous frames
introducing an additional delay, which is unacceptable for real-time applications.
A solution mentioned by Pajak et al. used an adapted H.264 coding algorithm.
Motion vectors are directly recovered from the 3D rendering to reduce the costly
time for motion estimation in video encoding [38]. Another popular software using
image streaming for remote rendering is VirtualGL. VirtualGL intercepts OpenGL
frame buffers for transmission and uses a high-performance JPEG library called
‘libJPEGTurbo’ (a derivative of the standard ‘libJPEG’ library). Light fields or lumi-
graphs typically consist of hundreds of high-resolution images, which can consume
a significant amount of bandwidth. Magnor and Girod [29] proposed two coders for
light-field compression. The first coder is based on video-compression techniques
that have been modified to compress the four-dimensional light-field data struc-
ture efficiently. The second coder relies entirely on disparity-compensated image
prediction establishing a hierarchical structure among the light-field images. Both
techniques reduce the size of light-fields significantly.

Compressing depth images with traditional image or video codecs, which are
more focused on maintaining the perceived visual quality, is not optimal. Many of
these algorithms smooth depth values in order to increase compression performance
at the cost of precision. Using hybrid rendering solutions where local and remote
images have to be composed, this loss of precision leads to unpleasant artifacts
(cf. Fig. 31.12). To avoid this situation, alternative lossless compression algorithms
such as run-length encoding can be used. But most of the simple lossless compres-
sion algorithms do not meet the bandwidth constraints due to lower compression
ratio than standard image or video codecs. Therefore, many research activities have
focused on efficient depth compression [17, 24]. Bao et al. [1] presented a remote
rendering environment based on three-dimensional image warping and deep com-
pression utilizing the context statistics structure present in depth views. Pajak et al.
[38] developed a method allowing a tradeoff between quality and compression of
depth images.

Geometry compression algorithms [8] are convenient when using model-based
rendering techniques in a client/server architecture to reduce the bandwidth require-
ments. On the server side the extracted geometry can either be compressed as a
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Fig. 31.12 The local image of the surface geometry is composed via z-value comparison with the
remote rendered image of the isosurface. The left image is composed with lossless compression of
depth values and right image with JPEG compression which leads to artifacts

single resolution or multiresolution data format [18]. Using progressive multireso-
lution approaches has the advantage that the client can already start rendering on a
coarse representation before the high resolution geometry is available. This consid-
erably reduces the latency waiting for first results. The initial level gets finer with
each new level received from the server.
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