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Abstract In the past decade, functional near-infrared spectroscopy (fNIRS) has
seen increasing use as a non-invasive brain sensing technology. Using optical
signals to approximate blood-oxygenation levels in localized regions of the brain,
the appeal of the fNIRS signal is that it is relatively robust to movement artifacts
and comparable to fMRI measures. We provide an overview of research that builds
towards the use of fNIRS to monitor user workload in real world environments,
and eventually to act as input to biocybernetic systems. While there are still
challenges for the use of fNIRS in real world environments, its unique charac-
teristics make it an appealing alternative for monitoring the cognitive processes of
a user.

Introduction

As brain sensing technology has become more unobtrusive, portable, and inex-
pensive, it has become a more viable technology for evaluating everyday work
environments. The ability to access physiological parameters that correlate with
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brain activity is an appealing option for researchers who are trying to capture
cognitive state at its primary source. Monitoring cognitive states such as workload,
attention, or emotion provide valuable information that aids in the evaluation of
interfaces design, task design, or individual cognitive abilities.

In particular, researchers have sought to capture working memory because it
has been labelled as the information bottleneck in the brain, and is necessary for
reasoning, anticipation, and planning (Baddeley 1992). However, working mem-
ory is also limited by both duration and capacity (Miller 1956). When multiple
elements compete for space, there is a loss of information and often a decrease in
performance. Thus, preventing users from overloading their working memory, by
understanding when and how it is overloaded, is a critical component of sup-
porting analytical thought.

We pursue the use of brain sensing to capture these processes not only because
it may lend insight into periods of overload, but because overload can be difficult
to observe through other means—increasing load on working memory does not
always result in a decrease in performance (Hockey 1997). Performance may be
maintained with an increased reliance on extra resources and with extra subjective
effort, behavioral, and physiological costs.

In addition, observing load on working memory often hints at the overall mental
workload of the user. Wickens (2002) demonstrates how closely the two are
connected and how the distinctions are not always so clear with his four-dimensional
multiple resources model. Wickens’ theory dictates that two tasks that both need the
same level of a dimension will yield more conflict than two non-overlapping tasks.
Thus, multiple working memory tasks that require the same modalities are likely to
yield an overload on that resource. If we can observe working memory (or mental
workload) in real-time, then we may be able to improve the user’s environment to
better support these processes, improving interaction and increasing performance.

To capture measures of mental workload in the brain, most research has focused
on the use of electroencephalography (EEG) to monitor the electrical activity of
the brain. However, there has also been increasing interest in functional near-
infrared spectroscopy (fNIRS) as an alternative brain sensing technique. This is
largely due to the fact that fNIRS measures a unique set of physiological
parameters (oxygenated and deoxygenated hemoglobin) in a relatively unobtrusive
manner. Thus, fNIRS has seen increased use for scenarios where it is necessary to
capture cognitive state without applying too many physical restrictions on the user.

In this chapter, we give an overview of why fNIRS is well-suited to observe a
user’s working memory, specifically, the central executive (Repovš and Baddeley
2006). In particular, we focus on fNIRS work that is geared towards the field of
human-computer interaction and ecologically valid evaluations.

To accomplish this goal, we build from a technical description of fNIRS to the
use of fNIRS in real world scenarios. First, we describe fNIRS as a brain sensing
technology, highlighting its advantages and disadvantages in comparison to other
brain sensing techniques. Next, we describe Repovš and Baddeley’s (2006) multi-
component model of working memory and then dive into the existing neuroscience
literature, exploring why the prefrontal cortex is an ideal place to observe increases
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in working memory. Then, beginning with highly controlled psychology tasks, we
highlight experiments that use fNIRS to investigate working memory load in the
prefrontal cortex. Finally, we look at the potential of using fNIRS as real-time
input to adaptive brain-computer interfaces. We find this last section to be most
exciting, as using the brain as input to a computer expands the interaction band-
width between a user and the computer in unique and powerful ways.

There are still serious challenges for the use of fNIRS, which we will also
discuss in this chapter, but it also provides researchers with a unique set of
properties that can compliment other physiological signals. We hope to highlight
the potential of fNIRS in this chapter, as well as outline its future development.

Introduction to fNIRS

How Does it Work, What Does it Measure?

Functional near infrared spectroscopy (fNIRS) is an optical brain sensing tech-
nique developed in the 1990 s that is portable, resistant to movement artifacts
(Solovey et al. 2009), and observes similar physiological parameters to functional
magnetic resonance imaging (fMRI) (Chance et. al 1998). These characteristics
have made it an attractive alternative for researchers seeking to observe the brain
in natural working environments.

fNIRS uses near-infrared light to measure concentration and oxygenation of the
blood in the tissue at depths of 1–3 cm (Villringer and Chance 1997). Light is sent
into the forehead in the near infrared range (650–900 nm), where it is diffusely
reflected by the scalp, skull, and brain cortex. At this wavelength, oxygenated and
deoxygenated hemoglobin are the primary absorbers of light. A very small per-
centage of the light sent into the head returns from the cortex to the detector on the
fNIRS probe. By measuring the light returned to the detector, researchers are able
to calculate the amount of oxygen in the blood, as well as the amount of blood in
the tissue.

Biologically, when a region of the brain is active, there is an increase of blood
flow to that region (D’Esposito et al. 1999). This increase of blood flow is typically
coupled with decreased levels of deoxygenated hemoglobin and increased levels of
oxygenated hemoglobin. Thus, fNIRS can be used to measure activity in localized
areas of the brain.

To make this calculation, raw data can be transformed into deoxygenated
hemoglobin concentrations using the modified Beer-Lambert Law [5]:

DA ¼ e� Dc� d � B ð6:1Þ

where DA is the change in attenuation of light, e is the molar absorption coefficient
of the absorbing molecules, Dc is the change in the concentration of the absorbing
molecules, d is the optical pathlength (i.e., the distance the light travels), and B is
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the differential pathlength factor. The attenuation of light is measured by how
much light is absorbed by oxygenated and deoxygenated hemoglobin (which are
the main absorbers of near infrared light at these wavelengths). As the attenuation
of light is related to the levels of hemoglobin, given DA, we can derive the changes
in the levels of oxygenated and deoxygenated hemoglobin (Chance et al. 1998).

For the sake of focus, we will primarily discuss fNIRS probes that are placed on
the forehead, measuring brain activity in the anterior prefrontal cortex. This
placement offers a significant advantage for researchers: fNIRS measurements can
be made without the interference of hair follicles, which can absorb light and
disrupt the signal. As a result, probes that monitor activity in the prefrontal cortex
are often more unobtrusive, and therefore, more interesting for researchers
searching for ecologically sound measurements.

Other Techniques: EEG and fMRI

In the past, various brain sensing technologies have been proposed to observe a
user’s response to activities in a lab setting. Electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI) are two of the most prevalent and
both have been successful at measurement and classification of brain activities.
fMRI requires a person to lie motionless inside a large, loud chamber in which
small movements (those larger than 3 mm) often result in discarded data (i.e.
Cahill et al. 2004; Davis et al. 2004). fMRI scanners are also expensive to purchase
and maintain, requiring technical staff and purpose-built rooms or buildings.

EEG has recently seen commercial success because it is portable, less invasive,
and relatively inexpensive. While EEG has a high temporal resolution, it also has a
low spatial resolution, which makes it difficult to pinpoint the origin of neural
activity. Although EEG is easier to set up and use than fMRI, many configurations
require applying gel into a person’s hair to create a conductive contact with the
skin. Finally, movement artifacts can be problematic with the use of EEG. Without
proper filtering methods, minor movements, such as facial muscles can disrupt
incoming data. Despite these limitations, EEG has gained popularity because of its
quick temporal response (1 ms), the strong existing body of EEG research, and the
availability of well-supported commercial setups.

fNIRS Advantages

While fNIRS preserves some of the core features that make EEG a popular brain
sensing technology, most notably its ease of use and portability, fNIRS also has a
few unique properties that are worth considering. For example, fNIRS has a short
setup time and is generally resistant to movement artifacts. Mouse-clicking, typ-
ing, eye movement, and blinking in normal computing environments are accept-
able during the use of fNIRS (Solovey et al. 2009). Minor head movement,
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respiration, and heartbeats can be filtered using known signal processing
techniques. Only major head and forehead movement (which could be induced by
frowning) are disruptive to the signal.

fNIRS also has a spatial resolution on the order of 0.5–1 cm, and readings have
been validated against fMRI (Strangman et al. 2002). Furthermore, fNIRS pro-
vides access to hemodynamic and metabolic parameters that are not accessible
with EEG (which is sensitive to electrical signals and not to blood flow or tissue
oxygenation) and fMRI (which is only sensitive to deoxygenated hemoglobin and
not oxygenated hemoglobin).

fNIRS Considerations

It’s important to note that there are both caveats and considerations to the use of
fNIRS as well. Once a region of the brain becomes active, the biological response
to support this increase in activity takes several seconds to reach the cortex (Gore
2003). As a result, changes in blood oxygenation that reflect user state cannot be
detected immediately using fNIRS.

The impact of this limitation is two-fold. First, we are more likely to measure
signal differences in short-term and long-term cognitive states rather than
instantaneous one-time events. Second, because the slow biological response
impacts how quickly we can identify or classify user state, it also impacts the
design of adaptation mechanisms in biocybernetic systems that respond to fNIRS
user state. In a later section, we will discuss some design considerations that can
help circumvent this issue.

Because light from fNIRS reaches depths of 1–3 cm, activity in deeper areas of
the brain is not directly accessible. Additionally, hair can obstruct light, so sources
and detectors must be maneuvered to maintain contact with the skin. Although
there are several variants of full-head fNIRS devices (Franceschini et al. 2006),
most are noticeably less comfortable than probes designed exclusively for the
forehead. As a result, many fNIRS researchers currently investigate activity in the
prefrontal cortex (PFC).

Working Memory and the Prefrontal Cortex

Working memory has been defined as the ‘‘temporary storage and manipulation of
the information necessary for such complex tasks such as language comprehen-
sion, learning and reasoning’’ (Baddeley 1992). It is a complex topic that can be
explored at different levels (Repovš and Bresjanac 2006), such as neuroanatomical
structure, computational cognitive processes, or the more abstract level of mod-
elling its functional capacities. For the purposes of presenting working memory in
the context of using fNIRS, we explain working memory in terms of Repovš and
Baddeley’s (2006) multi-component model. We then motivate the placement of
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fNIRS on the forehead by reviewing a sample of the existing literature that has
linked the PFC to working memory. In this respect, fMRI studies are particularly
illuminating, as they access similar physiological parameters as fNIRS and their
results have the potential of being directly replicated.

Working Memory

The model proposed by Repovš and Baddeley (2006) for working memory is made
up of multiple components: a central executive, a visuospatial sketchpad, a pho-
nological loop, and an episodic buffer. The phonological loop contains verbal
information in the form of a short-term acoustic store and an articulatory rehearsal
process. The visuospatial sketchpad is comprised of visual and spatial subsystems
with independent storage, maintenance and manipulation processes. The central
executive seems to have several different functions which are involved in the
manipulation of information within the memory stores. The latest addition to the
model, the episodic buffer, holds and integrates information from other working
memory components and from long-term memory into scenes or episodes. For an
in-depth description and discussion of the multi-component model of working
memory please see Repovš and Baddeley (2006).

We propose that the increase in mental workload that the fNIRS measures in the
PFC is actually related to an increase in working memory, and more specifically,
in the central executive. We present evidence of this by discussing studies linking
working memory to the prefrontal cortex.

Prefrontal Cortex

It is largely undisputed that the prefrontal cortex is important for higher-order
cognitive functions including working memory (Ramnani and Owen 2004). The
dorsolateral prefrontal cortex has been associated with working memory and with
high-level organization of the contents of working memory. Bor et al. (2003)
presented subjects with a spatial working memory task with structured and
unstructured sequences. The structured sequences were easier to remember,
however, functional magnetic resonance imaging (fMRI) results showed increased
activation in the lateral frontal cortex with structured sequences. The results show
that even when working memory demand decreases, the frontal cortex is still
active in the organization of the contents of working memory (Bor et al. 2003).
Similarly, Bor et al. (2004) showed similar results with verbal working memory
using structured and unstructured digit sequences. Both of these studies suggest
that the lateral frontal cortex structures high-level information into organized
groups which can decrease the load on working memory.
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The ventrolateral prefrontal cortex is also associated with working memory and
is thought to be linked to the retrieval of a few pieces of information. For example,
Jonides et al. (1993) gave participants a memory task by presenting three stimuli
concurrently for 200 ms. They then asked participants whether a probe circle
displayed 3 s later occupied one of the same locations. Using positron emission
tomography (PET), Jonides et al. (1993) found increased activation in the mid-
ventrolateral prefrontal cortex in contrast to a simple perception condition. Dove
et al. (2001) tested the effects of when participants explicitly intended to remember
or retrieve information. Participants looking at pictures of abstract art were
instructed either to just look or to explicitly remember similar stimuli for later. The
latter condition created increased activation in the mid-ventrolateral cortex
(measured with fMRI) (Dove et al. 2001, see also Owen et al. 2005). These
findings suggest that the intention to remember may be the cause of the activation
in the ventrolateral cortex.

One area of the prefrontal cortex that is not so widely understood but is also
associated with working memory is the anterior prefrontal cortex (see Ramnani
and Owen 2004 for a review). This constitutes Brodmann area (BA) 10 and is very
well developed in humans in comparison to other primates. Some of the neuro-
imaging evidence points towards functionalities such as processing of internal
states and evaluating ones own thoughts and feelings (Christoff and Gabrieli
2000); memory retrieval, retrieval verification and source memory (Tulving 1983;
Rugg 1998); prospective memory such as ‘‘at time x, do y’’ (Burgess et al. 2001);
cognitive branching or the ability to hold goals while carrying out secondary goals
(Koechlin et al. 2000); and relational knowledge (Kroger et al. 2002; Christoff
et al. 2001).

A theory put forward by Ramnani and Owen (2004) is that the anterior pre-
frontal cortex is activated when a problem requires more than one cognitive
process. Hence, the cognitive operations need to be coordinated in the pursuit of a
more general goal. Their hypothesis is broadly consistent with much of the pre-
vious functional neuroimaging literature described above, and with the theory of
the central executive of Repovš and Baddeley’s (2006) model.

Detecting Working Memory with fNIRS

To build towards measuring workload in real world scenarios, we start by using
fNIRS to identify it in heavily controlled environments. In particular, we begin by
describing the n-back task, a classical workload task in the psychology literature,
and review neuroscience work that suggests that fNIRS is capable of detecting
activation in the prefrontal cortex.
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The N-Back Task

Gevins and Cutillo (1993) created the ‘‘n-back’’ task, a working memory task that
has been widely used and quoted in the literature to investigate cognitive working
memory processes. The n-back consists of a user being presented with sequentially
presented stimuli and answering positively whenever the current stimulus matches
the stimulus occurring n positions back in the sequence. The integer n is given to
the user at the start and is usually 1, 2 or 3.

The n-back task is demanding and requires on-line storage, monitoring and
manipulation of information. The participant must hold information in their
working memory whilst incorporating new information and comparing it with the
older stimuli. There are different variations of the n-back stimuli: these can be
presented verbally (letters and words) or non-verbally (images such as shapes or
faces. Another variation is whether the identity of the stimulus has to be
remembered or the location of the stimulus (Owen et al. 2005). Below, we show an
image of a visuospatial n-back task, labeling the ‘yes’ responses for both a 1-back
and 3-back condition.

The n-back has been shown to produce activation in working memory related
cortical regions (Braver et al. 1997; Cohen et al. 1997). Owen et al. (2005) carried
out a meta-analysis on 24 functional neuroimaging studies carried out in Talairach
space that used the n-back paradigm on healthy subjects. They found that six
cortical regions were consistently activated across all studies including the bilat-
eral rostral prefrontal cortex (BA10), the bilateral dorsolateral prefrontal cortex
(BA9,46) and the bilateral mid-ventrolateral prefrontal cortex (BA45,47). There
were some differences depending on the variation of the n-back task. N-backs that
were verbal identity tasks created more activation in the left ventrolateral pre-
frontal cortex than the non-verbal identity tasks (Owen et al. 2005). Non-verbal
location tasks created more activation in the right dorsolateral prefrontal cortex
than non-verbal identity tasks. These results suggest that there is functional spe-
cialization of working memory systems and that activation of the prefrontal cortex
can be identified with n-back tasks to quite a specific degree of accuracy.

N-Back and fNIRS

To validate the use of fNIRS to detect workload in a visual interface HCI task,
Peck et al. (2013b) recorded signals in the prefrontal cortex of 16 participants as
they interacted with a visuospatial n-back task. In this version of the n-back task,
participants were shown a series of slides that have distinct visual patterns and
asked whether the pattern in the current slide matched the pattern viewed n slides
ago. By increasing the value of n, participants were forced to hold n patterns in
their visuospatial short-term memory. Thus, as n increased, the load on their visual
short-term memory increased.
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Participants were given eight trials of 1-back and 3-back conditions (repre-
senting low and high workload), with each condition consisting of 20 slides. Trials
lasted for 40.7 s and were separated by 12-s rest periods. fNIRS sensors, as shown
in Figs. 6.1 and 6.2 were applied to the forehead (prefrontal cortex) and changes in
deoxy-Hb were compared in the 1-back and 3-back conditions (Figs. 6.3, 6.4).

In agreement with fMRI studies, Peck found more significant decreases in
deoxy-Hb during 3-back trials than with 1-back trials. Figure 6.4 shows the mean
change in deoxygenated hemoglobin across all trials and all participants of the
1-back and 3-back task. Additionally, participants reported the 3-back to be more
mentally demanding than the 1-back and performance degraded as participants
interacted with the 3-back in comparison to the 1-back. These results agree with
other behavioral studies of the n-back task and validate the use of fNIRS to record
changes in visuospatial working-memory in the prefrontal cortex.

Fig. 6.1 Left We display one example of an fNIRS probe with four light sources and one
detector. Right A researcher uses a headband to secutre two probes to a user’s forehead

Fig. 6.2 A participant
interacts with a computer
while wearing fNIRS probes
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Detecting Workload in Real World Tasks

So far, we have discussed the potential of fNIRS to detect workload in heavily
controlled environments. But can these psychology experiments be generalized to
real world environments? As we discussed earlier, fNIRS has the unique advantage
of being relatively robust to movement artifacts in a comparison to other brain
sensing devices. In this section, we explore techniques that researchers have used
to investigate workload in scenarios that are increasingly closer to everyday tasks.

Fig. 6.3 In the visuospatial n-back task, participants view a series of slides and respond whether
the current pattern matches the pattern from n slides ago. We show positive answers for both the
1-back and 3-back conditions
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Fig. 6.4 The mean change in fNIRS signal (from a rest state) across all 16 participants in the
baseline task since the beginning of the task. The center line is the mean for each condition, while
the width indicates the standard error. We see a clear separation between the 1-back and 3-back
conditions for participants. The more demanding 3-back condition mirrors signals from the graph
design that participants believed was more mentally demanding

126 E. M. Peck et al.



As we review their work, we gradually move from offline statistical analysis of
physiological signals, to real-time automated classification of user state.

Analyzing Changes in Oxy-Hb and Deoxy-Hb

One method for using fNIRS to detect changes in workload is statistical analysis of
changes in oxy-Hb and deoxy-Hb. Recall that as brain activity increases, we
generally observe increases in oxy-Hb and decreases in deoxy-Hb. By analyzing
the changes in these parameters during a user’s interaction with a complex task, we
can hypothesize the level of activity (and the workload) in the user’s prefrontal
cortex. Here, we share three examples of studies that have performed offline
analysis of changes in oxy-Hb or deoxy-Hb to investigate workload levels.

Ayaz et al. (2012) used this approach to detect the level of workload for
participants piloting unmanned air vehicles (UAVs). In this task, participants were
asked to sit at workstations and direct simulated air traffic, trying to prevent
accidents. The number of UAVs was varied (6, 12, 18) between trials and the mean
change in oxy-Hb was calculated over the course of each trial.

As users were forced to keep track of more UAVs, fNIRS detected increased
levels of oxy-Hb in the PFC. Ayaz found these changes to be comparable to those
observed during interacton with the n-back task—a well-characterized psycho-
logical task for increasing working (or short-term) memory load. Increased levels
of oxy-Hb also correlated with self-reported NASA-TLX workload measures,
further validating the detection of signals that point to workload.

In another translation of fNIRS measures to real world environments, activity
was recorded as participants were engaged as part of a human-robot team (Solovey
et al. 2011). In this task, participants engaged in a multi-tasking assignment that
could not be accomplished by the human nor the robot alone. The study investi-
gated three classifications of multi-tasking—delay, dual-task, and branching.
While branching required participants to maintain the context of a primary task
while exploring a secondary task, users did not have to maintain this context in the
dual-task condition, and they completely ignored the secondary task in the delay
condition. Analyzing the mean combined hemoglobin (deoxy-Hb ? oxy-Hb) for
each participant, the branching condition was found to have higher levels of
combined hemoglobin than either the dual-task or the delay conditions. In a second
experiment that compared changed in deoxy-Hb in random interruptions with
interruptions that could be predicted by the user, Solovey found that random
interruptions provoked sharper decreases in deoxy-Hb.

Finally, Peck et al. (2013b) used fNIRS to detect working memory differences
in a task that derives exclusively from the visual design of information. To explore
the potential of fNIRS in evaluating information visualization, a complex visual
task was constructed by mapping a well-studied visual judgment task (Cleveland
and McGill 1984) with the n-back task. In Cleveland’s original study of visual
variables, participants made percentage estimates of elements within either bar
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graphs or pie charts. Their results demonstrated that people can more accurately
compare information in bar graphs than in pie charts.

In order to modify this simple visual comparison task to mimic more complex,
memory-intensive tasks, participants in Peck’s experiment compared a graph
element in the current graph (bar graphs or pie charts) with a graph element from
the previous graph (Fig. 6.5). This manipulation required participants to maintain
graph elements in their short-term memory, and fNIRS measurements were
intended to capture how each graph design (bar graphs or pie charts) supported this
mental process. Rather than test on easy and difficult conditions for each graph
type, participants engaged with a single 1-back task for each graph to see whether
the visual encoding of information would result in low or high workload (Fig. 6.5).

In addition to recording brain activity with fNIRS, participants completed the
NASA Task Load Index (NASA-TLX) after interaction. Results showed that
levels of deoxy-Hb differed during interaction with bar graphs and pie charts.
However, these differences were not categorical. Instead, they correlated with the
visualization technique that participants believed was more mentally demanding.
Similar to the observations made in other workload-intensive tasks, higher mental
demand correlated with larger decreases in deoxy-Hb.

These experiments demonstrate that fNIRS can detect workload in a wide
variety of tasks that is not limited to a specific type of stimuli or category of
working memory.

Automatic Detection of Workload

If fNIRS is to become a viable tool for analyzing mental state during interaction
with an interface, it would be ideal for the analysis of fNIRS signals to move from
a manual to an automated process. In this section, we discuss work that has
employed the use of predictive models to objectively (and automatically) classify
user state.

Fig. 6.5 An example of the
memory-intensive graphical
comparison task used by Peck
et al. (2013b). Instead of
making percentage
comparisons of graph
elements on the same chart,
participants compared an
element in the current chart
with an element from the
previously seen chart
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Classifying Known User State

When the user’s intended state is known, some researchers have used predictive
models as a statistical method to show that multiple user states is separable.
However, the true potential of these models is in the automation of classifying
fNIRS signals. This allows evaluators to avoid non-automated analysis—a
potentially time-consuming task if fNIRS is to be used as a tool in real user studies.
In these circumstances, researchers check the accuracy of their model by using
cross-validation techniques.

For example, Luu and Chau (2008) used predictive models to distinguish
between fNIRS signals during periods of low and high preference. In their
experiment, participants viewed pictures of soft-drinks that they either highly-
preferred or did not like at all. After identifying sensors that highly correlated with
user preference, they were able to predict the preferred drink with over 80 %
accuracy.

Similarly, Moghimi et al. (2012) used fNIRS to measure participants’ emotional
responses to music, attempting to capture both valence (positive or negative
feelings) and arousal. They used linear discriminant analysis (LDA) to build a
classifier and found that they could distinguish positive and negative valence with
an average accuracy of 71.94 %. They also found they could distinguish between
high arousal music and brown noise (low arousal) with an average accuracy of
71.93 %.

Finally, Girouard et al. (2009) measured users as they played a game of Pac-
man, interacting with game modes that were both very easy and very difficult.
They used a k-nearest neighbor (kNN) algorithm to classify game difficulty levels.
While Girouard found that they could distinguish between periods of play and non-
play with accuracy levels above 90 %, distinguishing between easy and hard
difficulty levels yielded classifications just over 60 %.
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Fig. 6.6 In a study comparing bar graphs (blue) and pie charts (green), Peck found that a group
of participants that subjectively rated bar graphs as more mentally demanding than pie charts
(left) exhibited reversed fNIRS signals from those who rated pie charts as more mentally
demanding than bar graphs (right). The plots represent the mean change in deoxygenated
hemoglobin (from a rest state) across all trials of each condition. The width of the line represents
the standard error at each time point
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As Fig. 6.7 suggests, the discrepancies in classification accuracy in each study
may partially stem from the various configurations of fNIRS probes; the first two
studies used configurations with significantly more source-detector pairs. This
provides two distinct advantages. First, increasing the number of information
channels decreases the potential for one noisy channel to adversely impact a
model. Second, these configurations provide better coverage of the prefrontal
cortex. For example, Moghimi et al. (2012) showed that using information from a
source-detector pair on the anatomical midline of the prefrontal cortex yielded the
best overall accuracy in their model for capturing emotion. This is information that
a smaller probe with a more linear configuration (such as the one used by
Girouard) may have difficulty accessing unless it is placed in precisely the right
location. However, accuracy is also heavily dependent on analysis methods, and
thus far, we have skipped exactly how fNIRS is used as input to these models.

Selecting fNIRS Features

When predictive models are created, we need to determine which features of the
signal are fed into the models. Choosing too many features with too few training
examples may result in the ‘‘curse of dimensionality’’ and low classification rates.
Choosing too few features, or incorrect features of the signal, may lead to a set of
features that is not truly descriptive of the signal, also resulting in low classifi-
cation accuracy. Currently, there is no standardized approach to feature extraction.
We give four examples from current fNIRS literature:

• Solovey et al. (2012) used the signal value from each time point and each channel
over the entire trial as individual features to a support vector machine (SVM).

• Luu et al. (2008) used the average signal value, estimated from a specific
channel over a specific time interval within a trial (for example, 15–45 s).

Fig. 6.7 Probes with different numbers/locations of sources and detectors may impact
classification accuracy of user state. We show four probe configurations used in studies
described in section ‘‘Detecting Workload in Real World Tasks’’. Red circles are light sources
and black squares are detectors. In each case, probes would be centered on the participant’s
forehead a Moghimi et al. (2012), b Luu and Chau (2008), c Girouard et al. (2009), Hirshfield
et al. (2011), Solovey et al. (2011), and Solovey et al. (2012), d Ayaz et al. (2012)
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• Hirshfield et al. (2011) extracted the max signal value, min signal value, mean
signal value, slope, time to peak, and full width at half maximum.

• Moghimi et al. (2012) used the mean and slope of the signal during each trial.
They also used the coefficient of variation, mean difference between signal and
noise, and a handful of laterality features.

As these examples suggest, there is yet to be a prevailing consensus about
which features of the fNIRS signal potentially result in the highest levels of
accuracy. However, there are at least two dominant approaches to feature selection
used in current fNIRS literature.

The first is to manually select a set of features based on an expert’s knowledge
or personal experience. For example, based on the changes of deoxy-Hb in
response to load on working memory that we observed in Fig. 6.4, the mean
change in deoxy-Hb would appear to be a good indicator of low/high load on
working memory. In a finger-tapping task, Cui et al. (2010) show that including
both oxy- and deoxy-Hb information to a predictive model improves accuracy.
They also found that increasing the number of information channels improves
accuracy. Broadly speaking, because the mean change in oxy-Hb is often used in
the statistical comparison of fNIRS signals, it stands to reason that this feature is a
good starting point for input to a model.

Using this method, context is important. Cui et al. (2010) note that the features
they chose were ‘‘necessarily dependent’’ on the classification technique (in their
case, support vector machines), and may be dependent on the task. One interesting
distinction is that each of the previous examples is event-related—they observe
how the fNIRS signals respond following a discrete moment in time. However, to
serve as input to biocybernetic systems, it is often desirable for evaluators to view
a moment-by-moment picture of workload, introducing new challenges. For
example, task starting times, end times, and length may be undefined.

Given these challenges, an alternative approach is to select a large feature
space. Then, using the participant’s data, automatically determine which features
yield the most information for each individual (for example, Luu et al. 2008).
While this method often results in higher cross-validation classification rates, there
is a danger that we may be building a model that succeeds on a particular dataset
rather than one that represents a more general user state. We must take care not to
overfit the model to the user’s data, making it less flexible and robust for real world
environments. In the next section, we describe how research is attempting to
construct more generalized models of user state for real-time monitoring.

Classifying Periods of Unknown User State

Unfortunately, in normal user evaluation, researchers often do not know in
advance whether a period of interaction should be low or high workload, or even
when a period of low or high workload may begin. To help solve this problem,
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Hirshfield et al. (2009) proposed a methodology for using machine-learning
techniques to classify user state in these scenarios.

1. Choose cognitive benchmark tasks from the psychology literature that are
known to induce specific user states. For example, if we are investigating the
level of verbal working memory that a visual environment might induce, we
might run a participant on a demanding 0-back and 3-back task, representing
low and high levels of verbal working memory.

2. Next, we build a machine learning classifier to identify and store a cognitive
footprint of the fNIRS signal during each level of the benchmark task. We make
the assumption that we have stored an accurate representation of verbal
working memory for this particular user.

3. Finally, the participant performs a set of tasks in a more complex environment.
We run the fNIRS data from those tasks on the classifier we built in the
previous steps. The idea is that we are comparing the fNIRS data from this
complex environment to the patterns we identified in the cognitive benchmark
tasks. Our machine learning classifier returns whether the signal most closely
matches low, medium, or high verbal working memory.

Hirshfield used this methodology to explore the working memory demand in a
driving task in which the steering controls were reversed (Hirsfield et al. 2011). In
comparison to more natural steering controls, the model classified incoming fNIRS
data during the reversed control condition as requiring high working-memory. In
the same way, Hirshfield used the Stroop test to detect response inhibition during
interaction with an interfaces. We use this general structure as a foundation to
move towards adaptive brain-computer interfaces.

Using fNIRS in Biocybernetic Interfaces

One of the primary reasons we focus on algorithms that automatically classify the
fNIRS signal is that they enable fNIRS to be used as input to intelligent, adaptive
systems. Because fNIRS is lightweight and does not place any unreasonable
restrictions on the user, it can feasibly be used to augment many operator stations.
In a real-time adaptive system, fNIRS data may be used as an additional implicit or
explicit input, relaying information about the user to the computer without any
further work for the user.

However, while fNIRS devices typically have a sharp temporal resolution, as
we have discussed, the biological signal is sluggish. As a result, there are limi-
tations to the systems that can be constructed. In this section, we discuss adaptive
systems that use fNIRS as input, the limitations of such systems, and also identify
domains where these systems may thrive.
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Calibration and Training

Similar to the training method previously described (Hirshfield et al. 2009), in
order to create a successful biocybernetic system, users must first perform a task
with a known cognitive effect in order for the system to calibrate to the charac-
teristics of brain patterns of each individual. However, the model must be very
cautious since users are often in a different mental state during offline calibration
and online feedback (Vidaurre et al. 2010).

Ideally, we strive to minimize training time and maximize classification
accuracy. Unfortunately, these two objectives typically compete with each other.
Many machine learning algorithms are traditionally designed with the assumption
that there are hundreds or thousands of training examples. But in an experimental
setting, training the user for hours on end is unreasonable. As a result, researchers
typically train users for as long as the ordinary time constraints of a user study
allows. However, as more research is done in this field, we may find universal
patterns that allow us to circumvent the training period. For example, using fNIRS,
Herff et al. (2012) found neural responses to speaking modes to be consistent
enough to construct a general classifier of accuracy of 71 %. We suspect that
similar general models may be constructed for classification of other user states.

Fig. 6.8 3D View from the
robots’ perspective in
Solovey’s multi-tasking
navigation environment.
Automation was turned on or
off based on the user’s
workload
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Brainput: A Real-Time fNIRS System

In this section, we give a concrete example of previous work that uses passive
fNIRS input to an intelligent system. Solovey et al. (2012) created a system,
Brainput, which was able to adapt a scenario where an interactive human-robot
system changed its state of autonomy based on whether it detected a particular
state of multitasking (Fig. 6.8).

To train the system to detect these states, they used a well-validated multi-
tasking exercise that had previously been explored using fMRI. Participants were
shown either lower-case or upper-case letters of the word ‘tablet’. Depending on
the case of the letter, participants were instructed to perform different actions,
thereby resembling a multi-tasking environment. In a previous study (which we
described earlier), Solovey et al. (2011) showed that this task could be used to
identify multi-tasking scenarios with fNIRS.

In the testing task, users were instructed to direct two robots through a virtual
environment to search for areas with strong transmission strengths, and were told
to not let the robots go idle or collide with walls or objects in the environment
(Fig. 6.8). fNIRS signals from the participants’ prefrontal cortex were collected
and classified as one of two user states that described the multi-tasking load
associated with navigation. The second robot was autonomously controlled
whenever the system detected a state of branching, where the user must hold in
mind goals while exploring and processing secondary goals (Solovey et al. 2012).
The changes occurred in real-time, allowing the system to dynamically respond to
the user’s individual, situational needs.

Solovey found that more participants completed the task with fewer collisions
in this adaptive condition. However, to demonstrate that adaptation mechanism
was indeed reacting to correctly classified fNIRS data, Solovey also introduced a
maladaptive condition. This condition caused the system to intentionally perform
the opposite response that should aid the user. In this maladaptive state, users did
worse than in a nonadaptive condition, and had a lower overall average trans-
mission strength than either other condition. This experiment provides a successful
example of using fNIRS as input to a real-time system that intelligently adapts to
the user.

Potential Domains for Adaptive Interfaces

This method has the capability to be used for many other adaptive interfaces,
especially operator stations where users may be in charge of complex tasks, such
as driving or controlling aerial vehicles. In driving simulators, oxygenated
hemoglobin levels for users increased when they were not using cruise control
(Tsunashima and Yanagisawa 2009). In addition, prefrontal activation increased
when users were preparing to turn, and there were increases in oxygenation levels
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during a driving task when users were prompted with directions instead of
knowing when to turn (Liu et al. 2012). This opens the door for driving applica-
tions that may alleviate the user’s workload by delivering relevant information
(such as directions) in different modes or at different times depending on the user’s
state.

Turning to another application area, Bunce et al. (2011) found that oxygenated
hemoglobin levels increased in an unmanned aerial vehicle (UAV) commander
task when the number of UAVs to identify increase. They also found that practice
decreased the overall oxygenation change, with experts maintaining higher per-
formance despite lower prefrontal activation. However, at difficult levels, novice
performance and oxygenation fell, indicating that they gave up on the task, while
experts showed a strong increase (Bunce et al. 2011). This suggests that neural
activation can be used to determine a user’s expertise in real-time, as well as when
the user disengages from a task. The same trend of decreased activation for experts
was found using fNIRS on ground operators performing UAVs approach and
landing tasks (Izzetoglu et al. 2011). Using fNIRS to detect expertise during
interaction may translate from operators to more general educational scenarios,
and an adaptive system could potentially calibrate it’s instructional aid based on
the sensed expertise level of the user.

These measures can be applied to other domains as well. fMRI studies have
shown that blood oxygen signals in the prefrontal cortex develop during economic
choices where users must make gambling evaluations and expected value deci-
sions (Minati et al. 2012) and when determining decision value for different cat-
egories of goods for purchase (Grabenhorst and Rolls 2011). Using these
activation patterns, Peck et al. (2013a) demonstrated the use of fNIRS as input to
information-filtering systems, constructing a movie recommendation engine that
gradually personalized movies to the user based on predicted preference values.

These examples illustrate a small subset of application areas for interfaces that
adapt according to physiological input. From gaming to education, there are
numerous opportunities to cater the computing environment to each individual’s
cognitive state.

Challenges of Application

It’s important to note that building these systems is not without significant chal-
lenge. A real-time adaptive system must filter raw data and determine state as
quickly as possible in order to respond before the user’s state changes and the
adaptation becomes obsolete. Preferably, the system should be flexible and robust
in that it is able to detect the user’s workload in a variety of environments and
tasks.

Aside from the difficulties in classification, the relatively sluggish fNIRS signal
limits the appropriate adaptive responses of an interface. For example, using
fNIRS to directly control a mouse cursor would likely prove to be frustrating for a
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user, as their actions would be delayed by 5–7 s. In general, we suggest the use of
slow, gentle modifications to the system which the user does not (or hardly)
perceive. For example, Solovey’s (2012) Brainput system increased performance
by adjusting the level of automation. Peck et al. (2013a) recommendation system
changed which information was emphasized to the user. In both cases, individual
changes were imperceptible to the user. These studies suggest that manipulating
background processes may present an opportunity for designers to positively
impact the user without disruptive adaptation mechanisms. Additionally, these
changes minimize the impact of misclassification. Given the current challenges in
achieving high classification rates, it is important that incorrect guesses do not
result in disrupting the user’s workflow or mental model of the system.

Finally, while a primary benefit of measuring activity in the prefrontal cortex
stems from its involvement in many high-level user states, the general participa-
tion of the PFC in cognition is also a challenge. A variety of user states, from
economic judgments to emotion to working memory load, have been correlated
with the PFC. As we move the use of fNIRS into increasingly complex environ-
ments, it will be important to understand how the interaction of these states
impacts changes in oxy-Hb and deoxy-Hb, as it may become difficult to identify
them individually.

The Future of fNIRS

Although the work that we have discussed suggests a positive trajectory in using
fNIRS to monitor user state, we have also been candid with some of the present
challenges in using fNIRS in real world environments. Despite these challenges,
recent advances hint that fNIRS will soon become even more lightweight and
comfortable.

Moving towards an untethered system, a wireless setup of fNIRS has been
implemented by a team at Drexel University (Yurtsever et al. 2003). Other
research has seen the development of brush optrodes—sensors that are able to
navigate through hair and comfortable measure numerous areas of the brain
(Wildey et al. 2010). Finally, there has been preliminary work in no-contact fNIRS
sensors, or remote sensing of the brain (Sase et al. 2012). Although these are early
proof-of-concept studies, they suggest that someday, optical brain sensing may not
require probes of any kind. While the equipment in our laboratory is expensive, the
basic technology can eventually be implemented at greatly reduced costs since it
consists fundamentally of simply a light source and an optical detector. Given
these recent advances, we expect that fNIRS will continue to be considered a
viable technology for brain sensing in the coming decades.
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Conclusion

In this chapter, we reviewed work that has used functional near-infrared spec-
troscopy to observe changes in user workload during interaction with a computer
interface. We began by describing basic, highly-controlled experiments in which
fNIRS recorded changes in workload in classical psychology tasks (the n-back).
From there, we moved towards tasks that more closely mirror tasks that users face
in everyday life. However, the analysis was performed manually and offline,
creating a burden on evaluators that is not ideal for industrial user-studies. Finally,
we shared work that uses predictive models to automatically identifies the user’s
state, requiring little intervention from the evaluator.

Turning an eye towards the future, we painted a picture in which these clas-
sifications of user state could be used as passive input to real-time adaptive
interfaces. We believe that these interfaces have the potential to specially calibrate
the user’s computing environment to their individual skills and abilities.

Overall, use of fNIRS is not without its challenges. Signal classification is
difficult, and systems must push for increased accuracy in increasingly noisy
environments. However, fNIRS provides a unique source of input that can be seen
as complimentary to other physiological sensors. We believe that the information
that we can gain from fNIRS brain sensing can contribute to evaluation in real
world environments, as well as personalization in real-time environments.
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