
Chapter 2
Engineering Issues in Physiological
Computing

Domen Novak

Abstract Prototypes of physiological computing systems have appeared in
countless fields, but few have made the leap from research to widespread use. This
is due to several practical problems that can be roughly divided into four major
categories: hardware, signal processing, psychophysiological inference, and
feedback loop design. This chapter explores these issues from an engineering point
of view, discussing major weaknesses and suggesting directions for potential
solutions. Specifically, some of the topics covered are: unobtrusiveness and
robustness of the hardware, real-time signal processing capability, different
approaches to design and validation of a psychophysiological classifier, and the
desired complexity of the feedback rules. The chapter also briefly discusses the
challenge of finding an appropriate practical application for physiological com-
puting, then ends with a summary of recommendations for future research.

Introduction

Prototypes of physiological computing systems have appeared in countless fields,
from critical applications such as stress and fatigue monitoring to home enter-
tainment solutions such as physiology-based music selectors. However, despite the
wealth of publications and fascinating prototypes, few physiological computing
systems have made the jump from research to widespread use. We may wonder
why this is so: is there no need for them or are they not yet ready for consumers?

While there is certainly a need for computers that could recognize and adapt to
human psychological states, several practical problems have prevented physio-
logical computing from achieving widespread use. In the author’s personal
experience, these issues are frequently raised by both engineers and potential
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end-users, but do not yet have reliable solutions. They can be roughly divided into
four major categories corresponding to the main components of a physiological
computing system. In such a system, physiological data is first recorded by a
sensor or range of sensors in next section. The raw data is then processed using
algorithms that remove artefacts and extract potentially relevant features (Signal
processing). A set of inference rules is used to convert the processed physiological
data into an estimate of the user’s psychological state (Inferring psychological
states). Finally, the system acts on the inferred user state (Feedback loop) and the
process begins again with a new recording.

This chapter explores engineering issues related to each of the above four com-
ponents of a physiological computing system. It is not intended to cover all existing
concerns, but to point out and describe some of the major problems that people may
be unaware of as well as suggest directions for potential solutions. Since many people
involved in physiological computing are either psychologists or computer scientists,
we felt that an engineering perspective could be beneficial. This perspective attempts
to be broad, progressing from electrical and mechanical engineering (hardware)
to computer engineering and computer science (signal processing and machine
learning) with a particular emphasis on evaluation and validation of all components.
After covering the main specific topics, Finding the appropriate application
explores the general challenge of finding an appropriate practical application for
physiological computing. Finally, the last section summarizes the main issues
and presents some recommendations for future research in the field.

Hardware

Physiological measurement equipment is the basic building block of physiological
computing, and low-quality measurements invalidate the entire system. All sensors
thus need to be carefully calibrated and validated. Commercial solutions are
generally well-validated in laboratory conditions, but are geared toward
researchers and often inappropriate for widespread use. As an alternative, ambu-
latory systems have been developed to measure physiological data in varied
conditions such as walking and driving. The common feature of such systems is
that they sacrifice accuracy in favour of increased unobtrusiveness. A, by now
slightly outdated, list of ambulatory hardware was compiled by Ebner-Priemer and
Kubiak (2007).

The Trade-Off Between Unobtrusiveness and Accuracy

The main weakness of research-grade physiological sensors is their obtrusiveness,
as complex setups and controlled conditions are required to achieve good results.
As an example, consider electroencephalography (EEG), which requires the
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subject to wear a cap with electrodes. For proper measurement, the head needs to
be measured and the cap needs to be properly applied to ensure proper electrode
positioning. As it is often not clear which electrode sites are the most informative,
researchers commonly use as many electrodes as possible. Furthermore, electrode
gel is generally applied to improve signal quality and the electrooculogram (EOG)
is measured to remove ocular artifacts from the EEG. The preparation time for an
EEG measurement is thus around 30 min when using a cap with *15 signal
electrodes, a reference, ground, and EOG electrodes. Few people are willing to
spend so much time applying a cap and ruining the appearance of their hair unless
absolutely necessary.

If we wish to make the whole experience faster and more pleasant for the user, a
number of things can be changed: the number of electrodes can be reduced, dry
electrodes with no gel can be used, and the EOG can be omitted. All of these
approaches have been implemented in consumer hardware. Devices such as the
Emotiv EPOC allow EEG to be measured unobtrusively and at a far lower cost, but
with also an obviously lower accuracy (Duvinage et al. 2012). The question is
then: how much accuracy must we sacrifice to obtain a consumer-friendly device?

Research-grade sensors are usually made for a variety of possible situations.
Consumer solutions are likely to be application-specific and can be made very
specialized (as noted by e.g. Brunner et al. 2011). Some sensors can be made
contactless: for instance, temperature could be measured using infrared cameras.
Others can be built into the user interface or the surrounding environment. Lin
(2011), for example, built their sensors into the steering wheel of a car while
Wilhelm et al. (2006) built them into clothing. These sensors have great potential,
but need to be validated to ensure that factors such as intermittent contact with the
skin do not invalidate the measurements. Furthermore, real-time capability needs
to be ensured, as sensors such as those developed by Wilhelm et al. (2006) only
allow data to be stored on a memory card and analyzed later. While this is fine for
initial research, practical applications require the data to be either wirelessly
transmitted to a central computer in real time or analyzed with e.g. microcon-
trollers placed near the sensors.

Validating Ambulatory Physiological Sensors

Major progress has already been made in the validation of ambulatory equipment,
especially dry and wireless EEG systems. Three approaches have commonly been
used:

• An ambulatory system is used, and the study evaluates whether its accuracy is
sufficient for a particular application (e.g. Berka et al. 2004).

• An ambulatory system is used together with a reference laboratory system, and
the study evaluates whether the two systems infer significantly different psy-
chological information such as stress level (e.g. Estepp et al. 2010).
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• An ambulatory system is used together with a reference system, and the study
evaluates whether the two systems record significantly different raw physio-
logical signals such as ECG (e.g. Chi et al. 2012).

The third option is by far the most general, as guaranteeing high-quality raw
data guarantees usability of an ambulatory system in a variety of applications. It
can, however, be problematic for physiological computing developers, as it can be
very difficult to ensure that the ambulatory and reference system are measuring
the same data. For instance, as electrodes from two sensors cannot be placed in the
exactly same spots at the same time, it is impossible to measure the exactly same
signals even using identical sensors (Chi et al. 2012). Nonetheless, it has been
shown that it is possible to measure raw EEG (Chi et al. 2012), respiration
(Grossman, Wilhelm and Brutsche 2010) and ECG (Chi, Jung and Cauwenberghs
2010) using ambulatory sensors with practically the same accuracy as using lab-
oratory hardware. Of course, this has only been demonstrated for some particular
models of hardware.

Since validating the quality of raw data from ambulatory sensors is technically
demanding, it would be optimally left to the manufacturer, who would publish
evaluations of ambulatory hardware as compared to a reference, similarly to how
traceability is performed in metrology. The evaluations would ideally be done in
both ideal operating conditions (which, for an ambulatory system, are still worse
than laboratory conditions) and poor operating conditions (e.g. many motion
artefacts). With such hardware validation, physiological computing could utilize
ambulatory systems without worrying about their performance.

When such data is not easily accessible, developers can nonetheless use
ambulatory systems and compare the obtained information (extracted features or
inferred psychological states) to either a reference device used in the same con-
ditions or results obtained by other studies in similar situations. Such comparisons
are useful not only to ensure acceptable accuracy, but also to ensure that a device
is measuring the quantity it should measure. For instance, if stress in a task is
correlated with physical activity, a poorly designed ambulatory sensor may
actually measure motion artefacts and successfully infer increased stress from
them despite not actually measuring any physiological processes.

Robustness

Many commercial sensors (ambulatory or not) are not at all robust. They are
adversely affected by factors such as movement, temperature, humidity etc. These
factors do not prevent the sensor from outputting a value; rather, they affect the
output value either directly (e.g. motion artefacts cause electrode movement and
thus incorrect readings of skin conductance) or indirectly via human physiology
(e.g. increased environmental temperature causes sweating, increasing skin con-
ductance for nonpsychological reasons). While indirect effects are not the fault of
hardware, sensors do need to be made more robust to direct effects.
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The primary problem are motion artefacts, which shift electrodes on the skin
and cause incorrect readings. Even if the subject is perfectly still, artefacts can
occur due to movement of the cables between the electrodes and the analog-digital
converter. This can partially be compensated for by signal processing (Signal
Processing), but not always. The motion artefacts in the skin conductance signal,
for instance, can be very difficult to distinguish from actual skin conductance
changes. Motion artefacts in the electrocardiogram (ECG) can be noticed easily,
but are still difficult to remove since their frequency range partially overlaps the
frequency range of the ECG.

Ambulatory sensors may be the solution for at least some environmental fac-
tors, as they are specifically built for robustness in rough conditions. Even
researchers who are only interested in laboratory studies could thus benefit from
ambulatory sensors. Other factors, however, will likely remain a problem (e.g.
sensor output can vary with operating temperature). In such cases, physiological
computing experts should keep up to date with discoveries in fields such as
metrology and biomedical engineering while remaining aware of sensors’ short-
comings and potentially compensating for them using signal processing (Signal
Processing).

Standardization and Measurement Guidelines

Though physiological sensors can be made very application-specific, a certain
degree of standardization would nonetheless allow easier implementation of
practical solutions as well as allow results to be more easily compared between
studies. First, this could involve very simple components. For example, Brunner
et al. (2011) suggested the standardization of connectors between EEG caps and
signal amplifiers. Similar steps could be taken for other sensors, making it easier
and cheaper to build a complete system.

In addition to standardizing the components themselves, measurement proce-
dures could also be standardized. As an example, let’s look at skin conductance
measurements, where several attempts at standardization have been made with no
major success. Scarpa Scerbo et al. (1992) showed that the highest skin conduc-
tance values are obtained when measuring at the distal phalanges of the fingers.
Nonetheless, many studies still place electrodes on the medial phalanges, proximal
phalanges or palm of the hand. Proper preparation of the skin is also uncertain:
Boucsein (2011) summarizes various preparation strategies, with no clear advan-
tage of any method. This becomes doubly important since some skin conductance
sensors (such as the g.GSR from g.tec Medical Engineering GmbH, Austria) are
not meant to be used with electrode gel. This makes it very difficult to compare
results from different studies.

Standardization could even be extended from low-level issues of obtaining a
good signal to high-level issues such as obtaining good psychophysiological
information. Strict standardization cannot be expected at higher levels since
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different goals and conditions require different hardware and measurement pro-
cedures, but it should be possible to at least develop guidelines for particular goals.
For instance, laboratory studies commonly use every available sensor to infer
psychological states. Features are extracted from all the sensors, and machine
learning algorithms are commonly used to determine which features are the most
important (Novak et al. 2012). However, as the field moves toward downscaled
and cheaper measurement solutions, it becomes necessary to know just which
sensors are important in a given situation and which can be ignored. Researchers
should thus, if possible, report which signals most contributed to psychophysio-
logical inference. This can be done using the same machine learning methods used
for psychophysiological inference. For instance, in our previous study, we used
stepwise linear discriminant analysis to identify the features that had the largest
effect on classification (Novak et al. 2011). Though we used a respiration sensor in
the study, no respiration features had a large effect on classification, and a
downscaled system for the same application could thus omit respiration altogether.
Similarly, Wilson and Russell (2007) began their work on adaptive assistance
using a full set of EEG electrodes, but later downscaled their system to five
electrodes since they found them to be the most important.If researchers consis-
tently report the most important features and sensors in their studies, a meta-
analysis would be able to produce guidelines on which sensors to use in which
situations (e.g. mental workload assessment in office tasks, fun assessment in
physically demanding tasks), allowing application-specific sensors to be made
simpler and cheaper with little loss in accuracy.

Signal Processing

The raw data collected from physiological sensors must generally be processed
before it can be used for psychophysiological inference. In general, this process
consists of filtering the signals to remove irrelevant low- and high-frequency
information, removing any noise (due to e.g. motion) and calculating psycho-
physiologically relevant features from the cleaned signals (e.g. band power from
the EEG). The required methods are fairly well-known and for the most part not
limited to physiological computing: ECG processing is based on decades of
clinical ECG analysis while EEG processing uses essentially the same methods for
both physiological computing and active brain-computer interfaces. Nonetheless,
some issues still need to be addressed.

Real-Time Noise Removal

Physiological computing systems must be able to quickly detect and respond to
changes in the inferred psychophysiological state. While physiological quantities
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can be measured in real time, real-time processing is significantly more chal-
lenging. First of all, the raw data often contains noise that is not at all related to the
measured physiological response. Examples include motion artefacts, speech
artefacts in respiration signals, eye artefacts in the EEG, and so on. While some of
these can be removed using simple bandpass filtering, this is not always possible.
For instance, the frequency bands of the EEG, electrooculogram and electro-
myogram all partially overlap, so bandpass filtering does not remove all eye and
motion artefacts from the EEG (Vaughan et al. 1996).

As an example of how noise can affect measurements, let’s look at a 2-minute
ECG recording from a 25-year-old healthy subject resting without performing any
activity. As a very small change, an additional peak is added between two con-
secutive R-peaks in the signal, simulating an extra heartbeat erroneously detected
due to an artefact. It is first added exactly halfway between the two R-peaks, then
20 % of the distance from the first peak to the second. Standardized measures of
heart rate variability are computed according to recommendations of the Task
Force of the European Society of Cardiology and the North American Society of
Pacing and Electrophysiology (1996): standard deviation of NN intervals (SDNN),
square root of the mean squared differences of successive NN intervals (RMSSD),
percentage of differences of successive NN intervals greater than 50 ms (pNN50),
total power in the high-frequency heart rate band (HF power), total power in the
low-frequency heart rate band (LF power), and the ratio of LF and HF power.
Results are shown in Table 2.1.

A single erroneously detected heartbeat can thus cause huge changes in cal-
culated heart rate variability. Sufficiently large errors could be automatically
detected even online. For instance, if no R-peak occurs for more than 2 seconds,
this could automatically be declared an error by the preprocessing algorithm. More
complex criteria have been evaluated for heart rate in a classic psychophysio-
logical paper by Berntson et al. (1990). In a similar vein, during online feature
extraction, it would be possible to set acceptable ranges for individual features. For
instance, expected values of SDNN and RMSSD in a given population could be
obtained from the literature, and any value outside this range would be automat-
ically declared an error. A larger problem is presented by smaller errors (e.g. 30 %

Table 2.1 Measures of heart rate variability calculated from the ECG over a 2-minute rest period
when a single additional heartbeat is erroneously detected due to noise

no noise at 50 % at 20 %

SDNN (% of true value) 100.0 123.6 136.5
RMSSD (% of true value) 100.0 116.1 143.5
pNN50 (% of true value) 100.0 100.4 99.0
HF power (% of true value) 100.0 226.7 4156.2
LF power (% of true value) 100.0 153.5 1319.2
LF/HF ratio (% of true value) 100.0 67.7 31.8

The additional heartbeat is added either halfway between two real heartbeats (column ‘at 50 %’)
or at 20 % of the interval between two real heartbeats (column ‘at 20 %’)
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increase), which may be incorrectly interpreted as a change in psychological state
and cause inappropriate reactions by the computer.

Such small errors require more complex approaches to detect online. The first
popular approach uses a secondary reference sensor that gauges the quality of the
primary sensor’s output. With EEG, for instance, it is common to detect noise due
to eye movements by measuring the EOG. Signal processing algorithms can then
remove noise from the EEG by using the EOG as a reference (Croft and Barry
2000). Similarly, motion artefacts can be detected using sensors such as acceler-
ometers. A second popular approach uses processing methods such as principal or
independent component analysis to remove artefacts without the need for an
additional sensor. It has been successfully used to remove motion artefacts from
ambulatory EEG (Gwin, Gramann, Makeig, and Ferris 2010) and ambulatory ECG
(Wartzek et al. 2011) and thus has high potential, but has not yet seen widespread
adoption in physiological computing.

As a final note, though modern real-time artefact removal algorithms are quite
advanced, it is not unreasonable to expect occasional errors due to artefacts, and
the physiological computing system should plan for this (for instance, by acting
conservatively).

Feature Extraction

The features commonly extracted from physiological responses for the purpose of
psychophysiological inference are relatively well-defined, with lists of common
features available in the work of e.g. Kreibig (2010) for autonomic nervous system
responses. Nonetheless, some problems remain. The chief problem again has to do
with real-time use: how often should features be extracted and over what kind of
time periods?

The frequency of feature extraction depends both on the needs of the study and
the real-time processing capabilities. While the raw data must be recorded with a
high sampling frequency, it is not necessary to calculate features with the same
frequency if we only wish to perform psychophysiological inference every few
minutes. It is also difficult with current hardware, as many physiological features
(e.g. spectral analysis of heart rate or EEG) require significant computing power to
calculate. In general, it seems most appropriate to perform feature extraction once
per instance of psychophysiological inference.

This feature extraction should be performed over a time period (‘window’)
spanning from a point in the past to the present moment. It is unclear, however,
what the best length of the feature extraction window is. The upper bound is likely
the time between instances of psychophysiological inference: since (we assume)
an action is performed by the physiological computing system after each inference,
measurements taken before the action should be irrelevant to the current state. Of
course, we may wish to make the window even shorter. Immediately after an
action is taken by the computer, the user is not in a steady state since he/she must
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get used to the effects of the action. We could thus only include data from the
steady state. There are also some theoretical considerations; for instance, some
heart rate variability features should only be extracted from a steady-state period
of at least 2 min (Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology 1996). Nonetheless, we also do
not want to make the window too long, as the magnitude of physiological
responses to a stimulus diminishes over time. Long windows may thus make it
difficult to extract stimulus-related information from background noise. As some
physiological signals respond more quickly to stimuli than others (EEG in less
than a second, skin conductance in a few seconds, and skin temperature in up to a
minute), different windows may be needed for different features.

Finally, regardless of real-time use, we should consider the definitions of the
features themselves. Although most features are well-defined, some definitions
seem somewhat arbitrary and stem from literature published before physiological
computing ever got started. Consider, for example, the skin conductance signal. A
common skin conductance feature is the number of skin conductance responses,
which are defined as sufficiently large and rapid changes from the baseline value.
A commonly used amplitude threshold for a skin conductance response is 0.05
microsiemens. But why this specific value? As Boucsein (2011) explains, this
threshold originally largely depended on the skin conductance signal’s expected
range and amplification. Old recording devices with paper output did not use
thresholds below 0.5 microsiemens, but values as low as 0.01 microsiemens have
been suggested for modern sensors (Boucsein 2011). The 0.05 microsiemens value
seems to be used today mainly because it is popular. However, given the myriad of
possibilities regarding sensor placement, use of gel, sensor amplification, and
filtering, all of which affect the range of the signal, it makes little sense to always
use the same threshold. In fact, we may wonder whether counting the number of
skin conductance responses itself may not be a relic. The practice originated in the
time of recorders with paper output, when manual analysis was required, but in the
era of personal computers it may be more sensible to use e.g. the central moments
of the signal (i.e. variance, skewness or kurtosis).

The evaluation of different windows and the evaluation of potential new fea-
tures are both better suited for basic psychophysiological research than for
physiological computing, but an easy first step would be to identify a set of
potential window lengths and/or new features, then calculate features on old data
from several published studies and evaluate how well-correlated they are with
psychological information.

Inferring Psychological States

Inferring the subject’s psychological state from measured physiological responses
represents a major challenge in physiological computing, and requires knowledge
of both psychology and computer science. As stated by Cacioppo and Tassinary
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(1990), connections between physiology and psychology are rarely one to one (a
single psychological element affecting a single physiological response), but are
more likely to be one-to-many (one psychological element affects many physio-
logical responses) or many-to-one (many psychological elements affect one
physiological response). Researchers have already raised the issue of whether
physiological responses even contain enough psychological information to allow
practical implementations of physiological computing (e.g. Fairclough 2009).

Engineers may be frustrated by the lack of standardized methods for the
interpretation of psychophysiological responses. Asked about his dislike of
physiological computing, a colleague with over a decade of engineering experi-
ence remarked:

When I’m doing sensor fusion, I know that the Kalman filter is great. In control engi-
neering, I always know the basic approaches to build on. But with psychophysiology, it
seems like you start over with every new application.

To a degree, his concern is valid: due to the inherently subjective nature of
psychophysiological responses, there can probably never be a ‘standard’ recipe for
a physiological computing system. Nonetheless, at the moment it can be assumed
that most physiological computing systems can share the same general structure
and deal with the same issues. In their seminal work on psychophysiological
inference, Picard et al. (2001) demonstrated several steps that have now become
commonplace: feature extraction, dimension reduction and classification. A recent
review (Novak et al. 2012) shows that most studies that perform data fusion with
autonomic nervous system responses in psychophysiology still perform feature
extraction and classification, with many incorporating dimension reduction. The
used classifiers range from linear discriminant analysis to neural networks, but
generally each study only uses a single static classifier (i.e. one that does not take
temporal relations into account). Classification is usually performed on a prere-
corded dataset that contains roughly equal numbers of physiological data examples
from each possible class. While this approach is perfectly valid, it has several
weaknesses.

Context-Awareness

Psychophysiological responses are affected by a huge number of confounding
factors. Age, gender, disease, time of day, physical activity, external temperature,
ingested substances (coffee, medicine…) and many other factors can completely
obscure any physiological changes due to psychological factors. Laboratory studies
generally try to control as many of these factors as possible, creating very artificial
conditions that are not feasible in the real world (Wilhelm and Grossman 2010).

In real-world applications, we need to take into account both the nonpsycho-
logical context (temperature, physical activity…) as well as psychological context
(situation-specific demands of enacting a given psychological state) of
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physiological responses in order to accurately interpret them (Kreibig 2010;
Wilhelm and Grossman 2010). As an illustration of how problematic this can be,
Picard et al. (2001) analyzed the psychophysiological responses of a single subject
who expressed eight emotional states daily over 20 days. They were able to
classify the eight emotions with an accuracy of 81 %. They then attempted to
classify the measured emotions according to the day they were evoked and were
able to classify the day with an accuracy of 83 %. It is therefore easier to deter-
mine the day on which an emotion was expressed than the type of emotion from
physiology! This is even more startling since there were 8 possible emotions and
20 possible days, making day classification much more challenging in principle.

Picard et al. (2001) also found that the subject’s daily mood (long-term psy-
chological state) affects what emotion (short-term psychological state) can be
expressed and to what degree. Kreibig (2010) thus emphasized the importance of
separating moods from emotions, but Wilhelm and Grossman (2010) noted that it
is very difficult to capture mood alterations with physiology in most studies.

Luckily, many confounding factors can be measured using various sensors. As
reviewed by Wilhelm and Grossman (2010), it is possible to measure e.g. physical
activity using accelerometers, speech using respiration sensors, food intake using
electronic diaries or circadian rhythms using clocks. The measured confounding
factors could thus be included and accounted for in a sufficiently complex psycho-
physiological inference algorithm. This is what we refer to as context-awareness. The
end goal should be to establish reliability of inference across a range of representative
test conditions, test environments and individual differences (Fairclough 2009).

Unfortunately, psychophysiological studies only rarely distinguish between
different contexts (Wilhelm and Grossman 2010), a problem that has also been
noted in affective computing fields such as speech and gesture recognition (Zeng
et al. 2009). This is not because the idea itself is new; the psychophysiological
inference algorithm of Picard et al. (2001) already included multiple measures that
should correspond to physical activity and circadian rhythms. Context-awareness
does seem to be gaining popularity, especially in fatigue studies. Ji et al. (2006)
and Yang et al. (2008) both combined physiological measurements of fatigue with
user conditions (e.g. sleep quality, workload) as well as environmental conditions
(e.g. weather). Nonetheless, context-awareness is in its infancy, and should rep-
resent a major avenue of new physiological computing research. In the beginning,
context could represent only an additional input feature to the psychophysiological
inference algorithm, but more complex approaches should be possible later. For
instance, the context could represent the prior probability for a probabilistic
inference algorithm, or the system could switch between different inference
algorithms depending on the context.
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Dynamic and Ensemble Classification Algorithms

A recent review of data fusion algorithms using autonomic nervous system
responses in physiological computing shows that most existing algorithms are static
single-level classification algorithms (Novak et al. 2012). Essentially, features from
the current time period are input into a single static classifier that outputs the
inferred psychological state among a limited number of possibilities. Even ignoring
context-awareness (Context-awareness), this is a relatively simple approach.

First of all, a single static classifier ignores the dynamic nature of physiological
measurements and emotions by treating each measurement as independent of
previous ones. However, current cognitive workload, for instance, is not inde-
pendent of cognitive workload felt a few minutes ago, and current skin conduc-
tance is not independent of recent skin conductance. While most physiological
features are averaged over a period of time (up to a few minutes), thus reducing
temporal relations in the data, dynamic classifiers that take temporal relations into
account could potentially increase accuracy. This is especially important since
different physiological signals have different response times to stimuli, so infor-
mation from different periods of time should be taken into account.

The most promising dynamic classifiers are dynamic Bayesian networks.
Kalman filters, which are commonly used in general sensor fusion and have been
shown to improve psychophysiological inference with autonomic nervous system
responses by ‘learning’ about a subject over time (Koenig et al. 2011; Novak et al.
2011), are theoretically a simple dynamic Bayesian network, though not well-
validated in physiological computing. More advanced dynamic Bayesian networks
have been tested, some of them incorporating context-awareness (Ji et al. 2006;
Lee and Chung 2012; Yang et al. 2008). Besides Bayesian networks, alternate
dynamic classifiers include e.g. Long Short Term Memory recurrent neural net-
works (Wöllmer et al. 2011).

In addition to dynamic classifiers, one possibility that has remained relatively
unexplored are ensemble classifiers: combining several classifiers (of the same
type or different types) to obtain a final result. For instance, each measurement
‘category’ (autonomic nervous system, central nervous system, nonphysiological)
could have its own classifier, and the outputs of the individual classifiers would
then be combined to obtain the final result. This was performed, among others, by
Chanel et al. (2009). Another possibility is the so-called decision cascading, where
one classifier makes a rough first estimate and a second classifier then confirms or
discards that estimate (e.g. Picot et al. 2012).

Both dynamic and ensemble classifiers could in principle improve inference
accuracy, providing a more complex and intelligent inference algorithm. However,
they are also likely to require a large amount of training data, which is not always
available in physiological computing. They thus need to be properly compared to
simple classifiers in order to evaluate their effectiveness.
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Detecting Brief Critical States

Most psychophysiological inference algorithms assume that all psychological
states are equally probable. This is often true in laboratory studies, but not in the
real world. When trying to detect stress and fatigue during driving, for instance,
the vast majority of the measured psychological states would involve normal
driving, and a small number of brief high-stress or high-fatigue periods would need
to be detected. This challenge was mentioned as early as Picard et al. (2001).

The same problem is well-known in gesture and speech recognition, where the
majority of recordings consist of ‘garbage’ and actual events occur only briefly.
Hidden Markov models, for instance, can try to deal with the problem using a
‘garbage’ model where one possible class is dedicated specifically to various types
of meaningless measurements (Bernardin et al. 2005; Wilpon et al. 1990). For
physiology, Kreibig (2010) suggested tackling the problem by first using unspe-
cific physiological responses (which distinguish between neutral and nonneutral
conditions) to detect periods of interest, then using specific physiological
responses to determine the exact psychological state experienced—a type of
ensemble classification. Wilhelm and Grossman (2010) similarly suggested using
abrupt changes in physiology to detect nonneutral conditions. Nonetheless, the
problem is currently unsolved and likely requires the development of new types of
inference algorithms.

Inference Validation

Once we have created a system capable of inferring a person’s psychological state,
we need to test it and see if it works correctly. For this, it is necessary to compare
inferred psychological states to another, reference measurement that we assume is
correct. Possibilities include self-report questionnaires, observable behavior, or
simply using standardized stimuli that are expected to always induce the same
psychological state. All of these have their own weaknesses.

Self-report questionnaires measure conscious processes only, while physio-
logical responses are based on both conscious and unconscious processes. Thus,
conditions may arise when subjects are unaware of their psychological states
despite observable physiological and behavioral indicators (Fairclough 2009;
Kreibig 2010). This is especially likely in subjects who are not healthy young
adults, such as severe stroke victims (Koenig et al. 2011). Analysis of observable
behavior provides an alternative, but psychophysiological changes can occur in the
absence of any corresponding expression of overt behavior (Fairclough 2009).
Finally, induction of psychological states using standardized stimuli such as media
or standard tasks is very context-specific and does not generalize well (Fairclough
2009). Frustration induced with an extremely difficult mental arithmetic task, for
instance, may not evoke the same physiological responses as frustration due to a
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traffic jam. At this time, finding appropriate reference measurements is likely to
remain an application-specific affair. Some engineers may actually be content not
to separately validate the inference part and simply consider the system a success
if it accomplishes its overall goal such as higher performance or user satisfaction.

Assuming that we find a reference measure, we can then calculate the accuracy
of the psychophysiological inference: the percentage of times that the psycho-
logical state inferred by physiology is the same as the state inferred by the ref-
erence measurement. Accuracy remains the primary and often only quantitative
way to validate psychophysiological inference (as reviewed by Novak et al. 2012).
However, it is not always clear what the target accuracy in a certain setting should
be. With active brain-computer interfaces, which are closely related to physio-
logical computing, users were found to expect and accept approximately 75 %
accuracy in recognition of four possible desired movements (Ware et al. 2010), but
the finding is very application-specific.

In critical situations such as driver fatigue monitoring, physiological computing
systems should be very accurate, as any mistake would either cause harm
(potential problem not detected) or annoy the user (alarm or automated assistance
engaged inappropriately). In casual applications such as computer games where
the difficulty is regularly adjusted, accuracies of around 70 % for a two-class
problem (increase/decrease difficulty) may be acceptable since the general trend
would lead the player toward the optimal difficulty given enough time. On the
other hand, such low accuracies would likely not be very useful since the same
level of information can likely be obtained from simple performance measures. In
any case, physiological measurements should always be compared to other (non-
reference) measures to determine whether they can provide sufficient accuracy
both on their own and when combined with other sources of information.

Of course, overall accuracy is not the only important factor in validation.
Accuracy is frequently described using confusion matrices, which state how often
each particular psychological state is misclassified as a different one (e.g. Healey
and Picard 2005). This can help us better evaluate the practical usefulness of the
classifier. For instance, if we have three possible levels of stress (low, medium and
high), we may accept a classifier that regularly confuses low and medium stress,
but always correctly detects high stress, as we would only wish to react to high
stress. Other measures such as confidence values are also sometimes used together
with accuracy (e.g. Picard et al. 2001), but not very frequently in physiological
computing.

Finally, classification (which selects one psychological class out of many) is not
the only possible method of psychophysiological inference. An admittedly less
popular alternative is estimation, which uses methods such as linear regression or
fuzzy logic (as reviewed by Novak et al. 2012) to output a continuous value of a
particular psychological dimension (e.g. stress value 4.1 out of 10). This is intu-
itively useful when the goal of physiological computing is to adjust continuous
variables such as the amount of lighting in a room or the speed of opponents in a
computer game. However, the problem of estimation is that commonly accepted
validation metrices practically do not exist in physiological computing. While it
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should be possible to determine, for instance, the mean squared error, variance, or
bias of an estimator, this is rarely done in psychophysiological studies, and results
are instead often described only qualitatively. An important exception is the work
of Mandryk and Atkins (2007), who validate the accuracy of a fuzzy estimator
using mean squared error and a questionnaire as the reference measure. Since
estimation could represent a useful alternative to classification in specialized
applications where we only wish to monitor one psychological dimension, this
work could serve as the starting point for development of more advanced vali-
dation methods.

Feedback Loop

Once the psychological state of the user has been inferred, the physiological
computing system must respond to undesirable user states, thus closing the bio-
cybernetic feedback loop. Three broad categories of feedback exist: offering
assistance to a frustrated user, adapting the level of challenge if the user is bored or
discouraged by a task, or adding an emotional display to encourage positive and
mitigate negative emotions (Gilleade et al. 2005). However, while the theory of
physiological feedback is well-developed and many possible feedback stimuli
have been identified, implementations have proven challenging. It appears to be
unclear just when and how feedback should be provided in order to achieve the
desired goals.

Feedback Complexity and Speed

We should first ask ourselves: in a given system, how many actions should the
system have at its disposal to achieve the desired goals? A larger selection of
possible actions could increase the potential precision and helpfulness of the
system, as it could then respond to more specific issues or simply perform a variety
of actions so that the user does not constantly experience the same feedback.
However, it is questionable whether the specificity of psychophysiological infer-
ence is sufficient to allow more than a small number of user states to be reliably
identified. Furthermore, adding more and more actions could make it harder to
analyze the performance of the system, as it becomes unclear just which of many
possible actions made a contribution to the user’s psychological state. This is
especially problematic since there is no guarantee that contributions are additive;
performing two actions consecutively may have a wildly different effect than the
sum of the effects of each individual action.

At the moment, a small number of discrete actions or a small number of
continuous variables (e.g. game difficulty level) should be sufficient for physio-
logical computing. If the developer of the system has time, it may be best to first
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analyze the response of the user to each individual action and then to likely
combinations of actions, leading to the best possible understanding of the system.

Once we have defined the possible actions the system can take, it is also
necessary to determine how often feedback should be provided. This depends on
the physiological measurements used, the application, and the actions themselves.
Firstly, different physiological signals have different stimulus response times, from
less than a second for EEG to more than ten seconds for peripheral skin tem-
perature. This sets the upper boundary for feedback frequency: once an action is
taken by the system, its effect should become visible in the physiological response
before a new action is taken.

The feedback frequency should also take into account the intrusiveness and
explicitness of the individual actions (Fairclough 2009; Ju and Leifer 2008). Very
explicit actions should be taken only occasionally, as they may otherwise upset the
users. Consider the example of changing the difficulty of the game: if the difficulty
changes every ten seconds, users may become annoyed at the inability to enjoy a
stable game experience. Conversely, if the system offers assistance every ten
seconds, users may become upset as attention is drawn to their poor performance.
Implicit, unobtrusive actions such as changing the lighting of the room can be
taken more often, but have two disadvantages. First, they may not be able to evoke
large changes in the user’s psychophysiological state since they are by definition
weaker than explicit actions. Second, even if implicit actions can evoke changes,
they may be difficult to both design and validate due to their unobtrusive nature.
An example is the application of Ritter (2011), which aims to improve task per-
formance by subtly changing the visual appearance of items on the screen. While
improved performance is shown, the entire system is basically a ‘black box’ and it
is very hard to determine just what factors led to improved performance.

User- and Situation-Specific Feedback Rules

We have already mentioned that each person’s physiological responses are unique
and that psychophysiological inference should take into account factors such as
age and gender. Similarly, the feedback loop should also take each person’s
characteristics into account, as two people in the same situation will not neces-
sarily respond to the same stimulus in the same way. As an example, studies of
socially assistive robotics have shown that, in stroke rehabilitation, some users will
perform best when a robot provides nurturing statements (‘‘I know it’s hard, but
it’s for your own good!’’) while others will perform best when the robot provides
challenging statements (‘‘Oh come on, you can do it!’’) (Tapus et al. 2008).

The feedback loop should also consider previously taken actions. On one hand,
this would allow the physiological computing system to learn what actions ‘work’
(as suggested by Serbedzija and Fairclough 2012). On the other hand, it would also
allow it to better gauge what the situation is like, thus identifying actions that
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should not be taken since a certain opposing action or a very similar (perhaps even
the same) action was taken shortly beforehand.

Unfortunately, feedback in existing applications is generally limited to a
handful of predefined rules independent of either user or situation (see Novak et al.
2012, for a review of feedback loops using autonomic nervous system responses).
Exceptions do, however, already exist. One promising example is the work of Liu
et al. (2008), where players need to throw baskets through a basketball hoop
controlled by a robotic arm. The hoop is constantly moved in different directions
according to the measured psychophysiological state. The movement rules
themselves are gradually adapted as the robot tries different patterns and discovers
the effect each pattern has on the current player’s enjoyment of the game. This
application shows the promise of context-awareness in physiological computing.

Since context-awareness is a major field of study in other fields, it should be
possible to adapt many lessons on context-aware feedback for physiological
computing. As the feedback rules themselves do not necessarily depend on how
the user’s psychological state is obtained, the same feedback rules could, for
instance, be used with a system that infers cognitive workload from physiology
and a system that infers cognitive workload from movement patterns. This perhaps
makes the task easier than context-aware psychophysiological inference, where the
effects of context on physiology are very specific. On the other hand, context-
aware feedback rules may include a physiology-specific factor: the reliability of
the psychophysiological inference itself. A physiological computing system could
provide strong feedback when it is confident that the psychological state has been
correctly identified while taking only minor actions or even explicitly querying the
user when the inferred psychological state is uncertain. This was done by e.g.
Gruebler et al. 2012, whose robot performs actions slowly when uncertain, giving
the user more time to intervene. It could be a welcome approach to also partially
dealing with psychophysiological inference issues, which are likely to remain
problematic for quite some time.

Finding the Appropriate Application

In the previous four sections, we examined the main issues that physiological
computing currently needs to address. While most of these will undoubtedly be
dealt with in time, we should think about what applications would benefit from
physiological computing in its current state. The purpose of this section is not to
discourage research in applications with no immediate practical benefit, but rather
to help researchers consider the presented topics in a more ‘applied’ manner.

It might seem almost trivial that any product will only be successful if it
provides a useful service: improved performance, higher pleasure, or something
else. But at the same time, it must be better at providing this service than alter-
native solutions. In physiological computing, it must essentially provide the
computer with enough additional information to justify the added cost and the
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obtrusiveness of the sensors. Furthermore, this additional information should not
be more easily obtained by other, nonphysiological means. End-users are usually
very aware of this, leading to questions such as:

But why would I want to wear a cap and gel on my head just for that?

Why don’t I just tell the computer what I want myself?

As an example, consider the physiology-guided music selector, which has been
explored by numerous authors (the first being Healey et al. 1998). The premise is
that the device selects an appropriate song for the listener based on the current
psychological state, which is inferred from various physiological measurements
(usually skin conductance and/or heart rate). However, we might ask whether an
expensive music player with potentially unreliable inference of psychological state
would really be preferable to a simple music player where we can select the
playlist ourselves.

Similarly, numerous studies have shown prototypes of games or tasks where the
difficulty can be dynamically adjusted using physiological measurements to pro-
vide a moderate challenge to the user. As with the music player, we can ask
whether expensive, obtrusive and potentially unreliable sensors are preferable to
either letting users change the difficulty themselves or having the system change
difficulty based on some measure of task performance. For example, the Director
of the Left 4 Dead video games by Valve Software is an artificial intelligence that
dynamically adjusts the challenge posed by the game in response to the players’
performance, which is assumed to be proportional to their emotional intensity
(Booth 2009). Physiological computing would thus be more appropriate for tasks
where performance measures do not exist or are not necessarily connected to
psychological state (e.g. a task where the user is likely to maintain high perfor-
mance while becoming excessively stressed).

Critical situations such as fatigue monitoring in vehicles may be the most
promising application of physiological computing at the moment. The potential
costs of failing to detect fatigue are high, making the investment reasonable. A
vehicle is unlikely to be used by a large amount of people, so it would be possible
to tailor the data fusion algorithms to each user. Physiological sensors built into the
seat and steering equipment (e.g. Lin 2011) could reduce the obtrusiveness of the
system, and sensors already existing in vehicles such as speedometers and clocks
could provide context information. Less critical applications such as home
entertainment are unlikely to see widespread use until physiological computing has
been made less expensive, less intrusive, and better at performing psychophysi-
ological inference. An expensive or obtrusive device will never be used by con-
sumers, and an inaccurate one will serve more as a novelty than anything else.
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Recommendations

Physiological computing currently faces many issues, which we roughly divided
into four categories: hardware, signal processing, psychophysiological inference,
and feedback design. At the moment, they are severe enough to hamper practical
use of physiological computing in most applications, but they should not be
thought of as insurmountable. A brief summary of practical steps that physio-
logical computing experts and psychophysiologists in general can take today is as
follows.

In hardware, the most important issue is the development and validation of
ambulatory physiological sensors. It is crucial that the such systems are robust and
properly validated with comparison to either laboratory hardware or previous
literature. The field has advanced far enough that simply presenting a prototype is
no longer sufficient; it should be proven to work so that future studies do not need
to worry about low-level problems. At the same time, even researchers not
working with ambulatory sensors can contribute by reporting which specific
sensors and features were found to be most useful for a given situation. This would
immensely assist hardware developers in ‘pruning’ unnecessary electrodes or
sensors from ambulatory solutions. Finally, as hardware improves, manufacturers
should consider greater standardization so that different devices can be used
together more easily.

In signal processing, the most important issue is real-time artefact detection and
removal. While offline methods are common, advanced online approaches have
not yet seen widespread use in physiological computing. At the moment, physi-
ological computing should adopt existing online approaches and test their effec-
tiveness. A second important issue is the real-time extraction of features from raw
data. Here, it may be beneficial to take data from several already published studies
and explore different extraction methods (different window lengths, normalization
approaches or even new features) to see how they affect psychophysiological
inference.

Psychophysiological inference remains somewhat mired in the ‘classic’ labo-
ratory approach of classifying different psychological state using a single static
classifier with no regard for context or temporal trends. Especially context-
awareness is a promising avenue of research that could provide useful knowledge
not only for physiological computing but human-machine interaction in general.
Continuous estimation of psychological dimensions should also be explored as an
alternative to classification. Finally, there should be a major focus on algorithms
that detect brief critical states, unlike the classic approach where all emotions are
equally likely and the baseline is the only neutral state.

Feedback design is still in its infancy, and its practicality must be better
explored. User experience studies are needed to determine just how complex
feedback rules can be and how often feedback should be provided. At the moment,
such studies could work with very basic feedback rules and evaluate not only how
accurate the psychophysiological inference is, but also how satisfied the user is
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with the system. As more complex feedback rules are designed, studies could
evaluate whether the complexity is beneficial to the user. In particular, user-
specific and context-aware feedback rules could have a great effect on the per-
formance of a feedback loop.

While the above challenges do not cover every issue in physiological com-
puting, they can hopefully serve as an overview of the more technical side of the
field. As they are gradually overcome, physiological computing will mature and
spread into different facets of everyday life. But even in its current state, physi-
ological computing could already gain acceptance in applications such as fatigue
monitoring, helping to popularize the field and pave the way for the future.
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