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    Abstract     The rare and familial early-onset alzheimer’s disease (EOAD) is linked 
to fully penetrant mutational genes, whereas the commonest nonfamilial and late- 
onset alzheimer’s disease (LOAD) is the result of multiple susceptibility genes, 
each one contributing a small amount to the total risk. Smaller-scale genetic asso-
ciation studies identifi ed the e4 allele of the apolipoprotein E (APOE) gene as the 
best established LOAD risk factor, increasing risk by approximately 4 or 15 times 
for one or two e4 alleles, respectively. Hundreds of other candidate genes have been 
tested for association with LOAD, and meta-analyses of confl icting results were 
collected in the AlzGene database. Instead of studying only a few genetic variants 
in small sample sizes, larger-scale genetic association studies (genome-wide asso-
ciation study or GWAS) make it possible to evaluate essentially all genes and inter-
genic regions, in large international consortia with suffi cient number of cases and 
controls. The four largest LOAD GWAS consortia joined forces forming a mega- 
consortium known as the International Genomics of Alzheimer’s Project (IGAP) 
and conducted a mega-meta-analysis of 25,500 LOAD cases and 48,500 unaffected 
controls. In addition to APOE e4 allele, IGAP identifi ed 19 susceptibility loci, but 
the effects of all these genes on LOAD risk are exceedingly small, increasing or 
decreasing the risk by approximately 1.30 times, at most. It is critical to investigate 
the functional basis for these LOAD-associated GWAS loci and their infl uence on 
gene expression (mRNA profi ling). Examining the infl uences of these loci on endo-
phenotypes (cerebrospinal fl uid biomarkers and neuroimaging and cognitive mea-
sures) can help to predict age at onset and rate of preclinical and clinical progression 
of LOAD. The proportion of heritability of LOAD unexplained by GWAS fi ndings 
could be due to rare variants that may be identifi ed by whole exome and whole 
genome sequencing. In addition, a part of the still elusive genetic variability in 
LOAD could be due to gene-gene interaction effects.  
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        Early-Onset alzheimer’s Disease and Late-Onset alzheimer’s 
Disease: Causative and Susceptibility Genes 

 Multiple genetic defects involving either predictive (mutational) or susceptibility 
(risk) genes have been linked to the development of Alzheimer’s disease (AD) 
[ 1 – 3 ]. Rare (1–2 % of all AD cases) and fully penetrant disease-causing mutations 
in three different genes ( APP , amyloid-beta protein precursor;  PSEN1 , presenilin 
1; and  PSEN2 , presenilin 2) lead to early-onset (patients younger than 65 years) 
Mendelian (familial) forms of AD (EOAD). Of note, mutations in these three genes 
explain disease in only about 13 % of patients with EOAD [ 4 ]. The vast majority 
of AD cases, the so-called sporadic AD with no apparent familial recurrence, are 
defi ned by onset age later than 65 years or late-onset AD (LOAD), and this LOAD 
form does not carry Mendelian-causing mutations but is believed to be the result of 
multiple risk genes which do not reliably cause the disease but increase an indi-
vidual’s susceptibility or predisposition to developing AD. Susceptibility genes are 
associated with the risk of LOAD, but each one contributes only a small amount to 
the risk. Twin studies predicted the heritability of LOAD to be as high as 80 % [ 5 ]. 
Susceptibility genes are identifi ed by genetic association studies in which allele 
frequency for single-nucleotide polymorphisms (SNPs) at or near a gene is com-
pared between AD cases and controls. Susceptibility genes are revealed when case 
and control frequencies differ signifi cantly. There appears to be no overlap between 
the genes driving Mendelian versus non-Mendelian form of the disease; that is, 
common SNPs in  APP ,  PSEN1 , and  PSEN2  do not seem to contribute to risk for 
LOAD [ 6 ].  

    Smaller-Scale Genetic Association Studies: 
The Candidate Gene Approach 

    Apolipoprotein E 

 The candidate gene approach was successful for identifying the e4 allele of the 
apolipoprotein E ( APOE ) gene on chromosome 19q13, as the only gene variant 
considered to be an “established” LOAD risk factor [ 7 ]. Unlike the EOAD muta-
tions that are fully penetrant,  APOE  ε4 allele is a genetic risk factor that is neither 
necessary nor suffi cient for the development of LOAD [ 1 ,  3 ,  4 ,  8 ]. Whereas only 
24–30 % of the general Caucasian population carries at least one  APOE  ε4 allele, 
40–65 % of LOAD patients have at least one copy of this allele. That is, many 
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LOAD patients have no  APOE  ε4 allele, and individuals carrying this allele may 
never develop LOAD, suggesting that there are additional factors modulating the 
infl uence of the APOE e4 allele in causing the development of LOAD. People with 
one  APOE  ε4 allele have a roughly four times increased risk of AD, and those with 
two  APOE  ε4 alleles have a roughly 15 times increased risk, compared with those 
with the most common genotype  APOE  ε3/3 [ 4 ]. Although there is evidence of a 
risk effect of  APOE  ε4 in non-Europeans, the estimated effect sizes are smaller with 
less consistent results in African American and Hispanic subjects, which may sug-
gest different underlying genetic or environmental factors for these ethnic groups. 
The effect of  APOE  ε4 appears to be age dependent: the lifetime risk for LOAD in 
individuals with the  APOE  ε4/4 genotype is high, estimated as 33 % for men or 
32 % for women by the age of 75 years; by age 85 years, the risk climbs to 52 % for 
men and 68 % for women [ 9 ]. This very high-risk estimates for  APOE  ε4 carriers 
seem similar to those associated with autosomal dominant Mendelian genes. 
Therefore,  APOE  has been proposed as a moderately penetrant gene with semi-
dominant inheritance: not all  APOE  ε4 carriers develop disease (hence, the ε4 allele 
in this gene is not fully penetrant), and heterozygous  APOE  ε4 carriers have inter-
mediate risk compared with homozygous carriers [ 9 ]. Considering the delayed pen-
etrance of LOAD, lack of preventive therapies, and the potential for psychological 
harm, genetic testing for  APOE  is not recommended. However, when LOAD pre-
vention becomes possible, thus, this recommendation will need to be reconsidered, 
and genetic testing might be indicated for either high-risk groups (e.g., family mem-
bers of LOAD cases) or for population screening.  

    Inconsistent Replication: Meta-analyses 
in the AlzGene Database 

    Since the original report of APOE as a genetic risk factor for LOAD in 1993, hun-
dreds of genes have been tested for association with LOAD and reported in the lit-
erature. Most candidate gene association studies in LOAD have studied a few 
variants in only one or two genes, and despite positive initial results, inconsistent 
replication of original association fi ndings has been the rule rather than the excep-
tion (except for APOE) and even for candidate genes with convincing functional 
data and thorough genetic assessment [ 1 ]. Multiple testing, population stratifi cation, 
genotyping errors, and initial small sample size are potential reasons for false- 
positive fi ndings in the original study. In addition, underpowered studies that are too 
small to detect a modest effect size can lead to false-negative follow-up studies. 
Candidate gene association studies have revealed modest estimated effect sizes with 
odds ratios (ORs) of less than 2.0 for risk alleles or greater than 0.5 for protective 
alleles. It is estimated that thousands to tens of thousands of subjects are required to 
have suffi cient power to detect such effect sizes, a prerequisite that has typically not 
been fulfi lled for many association studies in LOAD [ 10 ]. To address these very 
large numbers of confl icting results, a database (the AlzGene database) was created 
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which systematically collected, summarized, and meta-analyzed the results for all 
the genetic variants studied in association with LOAD [ 11 ]. As of 18 April 2011, the 
10 genes with the strongest signals for association in the database AlzGene included 
 APOE  and nine other candidate genes ( BIN1 ,  CLU ,  ABCA7 ,  CR1 ,  PICALM , 
 MS4A6A ,  MS4A4E ,  CD33 , and  CD2AP ), all of which came from genome-wide 
association studies.   

    Larger-Scale Genetic Association Studies: 
The Genome-Wide Approach 

    The HapMap Project and the 1000 Genomes Project 

 Instead of studying one or two genetic variants, recent advances now make it pos-
sible to evaluate essentially all genes and all regions between genes in a single 
experiment, a method called genome-wide association study (GWAS). The GWAS 
method represented an important advance compared to “candidate gene” studies in 
which sample sizes were generally smaller and the variants assayed were limited to 
a selected few associations that were diffi cult to replicate. The International HapMap 
Project [ 12 ,  13 ] launched in October 2002 led to the generation of a database of the 
common variants (defi ned as minor allele frequency of greater than 5 %) and the 
underlying linkage disequilibrium (LD) structure, or correlation between neighbor-
ing SNPs, providing the foundation for the GWAS. GWAS uses tagging SNPs, for 
example, polymorphisms in LD with each other, and this means that if one knows 
the genotype in one locus, one can predict with a high accuracy (dependent on the 
strength of the LD and the allele frequencies) the genotype occurring at linked loci 
[ 14 ]. Understanding LD not only allows the construction of haplotypes but also 
provides the ability to impute the genotypes of nearby unobserved (not genotyped) 
SNPs using directly observed genotypes. Imputing facilitates merging data from 
different genotyping platforms with incomplete overlap [ 10 ]. Until 2010, GWAS 
studies had almost exclusively employed the HapMap data set as the reference panel 
for imputation of their genetic data, which contained up to two to three million 
SNPs. Using genome-wide sequencing with high-throughput platforms, the 1000 
Genomes Project Consortium [ 15 ] described the location, allele frequency, and 
local haplotype structure of approximately 15 million SNPs, 1 million short inser-
tions and deletions, and 20,000 structural variants. Over 95 % of the currently 
accessible variants found in any individual are present in this data set. From 2010 
onward, the 1000 Genomes Project has increased power of GWAS to detect genetic 
infl uences due to less common variants. Rigorous quality control and statistical 
methods coupled with suffi cient sample size can lead to high reproducibility of 
GWAS. Disadvantages of GWAS are that signals can be in intergenic regions mak-
ing assessment of the functional relevance diffi cult, genetic methods often cannot 
identify which single-nucleotide variant is pathogenic, and most signals are from 
small effect loci [ 14 ].  
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    International Consortia: Meta-analyses of GWAS 

 A consensus has emerged that a  P  value less than 5 × 10 −8  corresponds to genome- 
wide signifi cance in a non-African population-based GWAS. This is a conservative 
Bonferroni correction based on roughly one million “effectively independent” com-
mon SNPs throughout the genome. This involves the risk of rejecting biologically 
valid hypotheses on purely statistical grounds, that is, false negatives. Therefore, 
statistical power is the main threat to GWAS, necessitating the formation of large 
international consortia that can provide suffi cient number of cases and controls. The 
four largest LOAD GWAS consortia are the European Alzheimer’s Disease Initiative 
(EADI) based in France, the US-based Alzheimer’s Disease Genetics Consortium 
(ADGC), the Genetic and Environmental Risk in Alzheimer’s Disease (GERARD) 
group from the UK, and the neurology subgroup of the multinational Cohorts for 
Heart and Aging in Genomic Epidemiology (CHARGE) consortium. The fi rst two 
GWAS were published in 2009 by the GERARD [ 16 ] and EADI [ 17 ] consortia. In 
approximately 6,000 LOAD and 10,000 control subjects, in addition to APOE- 
related SNPs that revealed genome-wide signifi cance ( P  = 4.9 × 10 −37  to 1.8 × 10 −157 ), 
the GERARD consortium found that rs11136000 in clusterin ( CLU ,  P  = 8.5 × 10 −10 , 
OR = 0.86) and rs3851179 in the phosphatidylinositol-binding clathrin assembly 
protein ( PICALM ,  P  = 1.3 × 10 −9 , OR = 0.86) were signifi cantly associated with 
LOAD. Analyzing 6,000 LOAD and more than 8,000 control subjects from EADI 
consortium, rs11136000 in  CLU  and rs6656401 in complement component receptor 
1 ( CR1 ,  P  = 3.7 × 10 −9 , OR = 1.21) were signifi cantly associated with LOAD. In 
2010, in more than 35,000 persons, the CHARGE consortium reported strong evi-
dence that rs744373 near bridging integrator 1 gene ( BIN1 ,  P  = 1.59 × 10 −11 , 
OR = 1.13) was signifi cantly associated with LOAD [ 18 ]. In 2011, two simultane-
ously published manuscripts reported meta-analyses of the fi ndings of the ADGC, 
CHARGE, GERARD, and EADI consortia and described strong evidence for fi ve 
new LOAD risk loci. In nearly 20,000 cases and 40,000 controls, Hollingworth 
et al. [ 19 ] described association with LOAD of rs3764650 in  ABCA7  ( P  = 5.0 × 10 −21 , 
OR = 1.23), rs610932 in  MS4A6A  ( P  = 1.2 × 10 −16 , OR = 0.91), rs9349407 in  CD2AP  
( P  = 8.6 × 10 −9 , OR = 1.11), rs11767557 in  EPHA1  ( P  = 6.0 × 10 −10 , OR = 0.90), and 
rs3865444 in  CD33  ( P  = 1.6 × 10 −9 , OR = 0.91). In approximately 19,000 cases and 
29,000 controls, Naj et al. [ 20 ] confi rmed that common variants at  MS4A  gene clus-
ter,  CD2AP ,  CD33 , and  EPHA1  were associated with LOAD.  

    International Genomics of Alzheimer’s Project: 
Mega-meta- analysis of GWAS 

 The four LOAD GWAS consortia have joined forces, forming a mega-consortium 
known as the International Genomics of Alzheimer’s Project (IGAP). The project 
drew on data from a total of 74,000 people of European ancestry (25,500 LOAD and 
48,500 unaffected controls) and conducted a mega-meta-analysis, working with 
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more than 11 million SNPs with a very dense coverage of the genomic map [ 21 ]. 
Table  4.1  depicts the list of genes and variants associated with LOAD in this 
mega-meta-analysis: in addition to the already eight known GWAS-defi ned genes 
( ABCA7 ,  BIN1 ,  CLU ,  CR1 ,  CD2AP ,  EPHA1 ,  MS4A4 , and  PICALM ) that have been 
confi rmed ( CD33  gene did not reach here genome-wide signifi cance), 11 new sus-
ceptibility loci have been identifi ed in or near plausible candidate genes ( CASS4 , 
 CELF1 ,  FERMT2 ,  HLA-DRB5/DRB1 ,  INPP5D ,  MEF2C ,  NME8 ,  PTK2B , 
 SLC24A4/RIN3 ,  SORL1 , and  ZCWPW1 ). The effects of all these 19 genes on risk 
for LOAD are exceedingly small (Table  4.1 ), with allelic ORs between 0.77 ( SORL1 ) 
and 1.22 ( BIN1 ); in contrast, the ORs for APOE ε4 are approximately 4 or 15 for 
one or two ε4 alleles, respectively. That is, one or two copies of the APOE ε4 allele 
increases the risk for APOE by more than 400 % or 1500 %, whereas one copy of 
all these non-APOE alleles merely increases or decreases the risk by approximately 
30 %, at most. However, the fi ndings from this mega-meta-analysis are, for the most 
part, not based on the true susceptibility variants but are refl ective of their tagging 
markers, which may harbor greater heterogeneity than the former with respect to 
alleles and extent of LD. Thus, it remains a possibility that the actual functional 
susceptibility variants may have bigger effect sizes.

       Population Attributable Fraction: Understudied Populations 

 The cumulative population attributable fraction (e.g., the proportion of LOAD 
cases in a population that would be prevented if an exposure were eliminated) at 
each of the 19 non- APOE  loci identifi ed by the IGAP (Table  4.1 ) was between 
1.1 % ( CASS4  and  SORL1 ) and 8.1 % ( BIN1 ) and that of APOE was 27.3 % [ 21 ]. 
The remaining genetic risk for LOAD could be due to new common loci, rare vari-
ants, structural variants, and gene-gene and gene-environment interactions. Most 
of large GWAS have identifi ed several variants that affect LOAD susceptibility in 
non- Hispanic whites of European ancestry. African Americans and other minori-
ties are understudied, and it is unclear whether any of the recently identifi ed loci 
modify risk of LOAD in racial or ethnic groups other than whites. The ADGC 
consortium [ 22 ] performed a GWAS among the largest sample of African 
Americans ever assembled for genetic study of LOAD (nearly 2,000 cases and 
4,000 cognitively normal elderly controls). The  APOE  ε4 allele, previously shown 
to be associated with LOAD in whites, was also implicated in African Americans 
( P  = 5.5 × 10 −47 , OR = 2.3), and more striking was that the effect size for  ABCA7  was 
comparable with that observed for  APOE . In fact, variants at the  ABCA7  gene 
increased the risk for LOAD approximately 1.8-fold ( P  = 2.21 × 10 −9 ) in individuals 
of African ancestry as opposed to the modest increased risk of 1.15-fold in indi-
viduals of European ancestry (Table  4.1 ). A number of other variants in other genes 
( CR1, BIN1, PICALM, CLU, EPHA1, MS4A  cluster,  CD2AP,  and  CD33 ) did not 
reach the  P  value cutoff for genome-wide signifi cance in this African American 
population.   
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    Functional Basis for the LOAD-Associated GWAS Loci 

    True Functional Variants: Expression Quantitative Trait Loci 

 The associated SNPs identifi ed through GWAS are unlikely to be functional variants 
themselves. For any disease-associated SNP, the true variant underlying the pheno-
type studied may be the GWAS hit itself, a known common SNP in LD with the 
identifi ed GWAS hit, an unknown common or rare SNP tagged by a haplotype on 
which the hit occurs, or a linked copy number variant [ 23 ]. For all traits studied by 
GWAS, only 12 % of the associated SNPs are located in, or occur in high LD with, 
protein-coding regions of genes; the vast majority (80 %) of trait-associated SNPs are 
located in intergenic regions or noncoding introns [ 24 ]. LOAD is not different: taking 
into account the 19 SNPs reported in the 11 new loci and the 8 previously reported 
loci associated to LOAD in the IGAP mega-meta-analysis [ 21 ], 12 SNPs are located 
in intronic regions and 7 in intergenic regions (Table  4.1 ). These fi ndings clearly indi-
cate that follow-up studies should not only examine coding variability but should also 
play close attention to the potential roles of these intronic and intergenic regions in the 
regulation of gene expression. Therefore, GWAS follow- up studies should rely on 
fi ne mapping of the associated loci and deep re- sequencing of the associated regions 
in samples of interest in order to identify all possible functional variants. In addition, 
it is critical to characterize the novel LOAD candidate variants and genes that are 
being identifi ed in LOAD-associated GWAS with respect to their infl uence on gene 
expression, also known as expression quantitative trait loci (eQTL) studies [ 25 ]. The 
underlying premise of these studies is that the level of the expressed gene transcript 
(mRNA profi ling) from LOAD patients will have changes in comparison to controls, 
by using data generated from tissue affected by the disease (such as the temporal 
cortex) or peripheral immune cells [ 26 ]. SNPs that infl uence brain gene expression 
(eSNPs) constitute an important class of functional variants. In this respect, SNPs in 
the CLU (rs11136000) and  MS4A4A  (rs2304933/rs2304935) genes infl uenced their 
expression levels in temporal cortex [ 27 ]: the LOAD-protective  CLU  and the risky 
 MS4A4A  alleles both occurred in conjunction with elevated levels of brain expression, 
implicating regulatory genetic variation for these genes in LOAD risk. In a systemati-
cal examination of  CLU ,  CR1 ,  ABCA7 ,  BIN1 ,  PICALM , and  MS4A6A/MS4A6E  loci 
for LOAD, coding variability might explain only the  ABCA7  association with LOAD, 
but common coding variability did not explain any of the other loci; in addition, none 
of these loci had eQTL effects and the regional expression of each of the loci did not 
match the pattern of brain regional distribution in Alzheimer pathology [ 23 ].  

    Pathogenic Pathways Implicated in LOAD from GWAS Loci 

 The LOAD candidate genes make biological sense and have identifi ed different 
pathways involved in LOAD pathogenesis [ 4 ,  21 ,  28 ]. As suggested by Table  4.1 , 
the implicated pathways are:
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•    A/Amyloid-beta metabolism (production, degradation, and clearance):  APOE , 
 CLU ,  ABCA7 ,  PICALM ,  BIN1 ,  CD2AP ,  SORL1 ,  CASS4 , and  CD33  [ 29 ]  

•   B/Immune system function (both innate and adaptive):  CLU ,  CR1 ,  ABCA7 , 
 MS4A  cluster,  CD33 ,  EPHA1 ,  HLA-DRB5/DRB1 ,  INPP5D , and  MEF2C   

•   C/Cholesterol metabolism:  APOE ,  CLU , and  ABCA7   
•   D/Synaptic cell functioning mechanisms and cell membrane processes (endocy-

tosis):  PICALM ,  BIN1 ,  CD33 ,  CD2AP ,  EPHA1 ,  SORL1 ,  CELF1 ,  NME8 , 
 MEF2C , and  PTK2B   

•   E/Tau pathology (microtubule stability, tau phosphorylation/aggregation, and 
neurofi brillary tangle formation):  CASS4 ,  FERMT2 ,  SLC24A4/RIN3 ,  BIN1  [ 30 ], 
and  PICALM  [ 31 ]    

 Exactly how  APOE  might cause LOAD is a matter of debate, and as well as 
being the main transporter of cholesterol and other lipids into the brain, it is also 
thought to remove amyloid-beta from the brain. Ultimately, the validation of the 
pathogenic mechanisms of all these LOAD GWAS loci will require comprehensive 
functional studies in in vitro systems, in vivo animal models, and clinical samples.   

    Examining Genetic Infl uences on Endophenotypes 

 Endophenotypes are biologically relevant, quantitative, and heritable phenotypes. 
There are many endophenotypes that are currently utilized or are excellent candidates 
for genetic studies of LOAD, including cerebrospinal fl uid measures of amyloid- 
beta, tau and phosphorylated tau, neuroimaging measures in magnetic resonance 
imaging (MRI) and positron emission tomography (PET) scans (such as hippocam-
pal volume), and cognitive measures [ 25 ]. Genetic studies of LOAD endophenotypes 
are an effective approach for identifying disease risk loci that are complementary to 
case–control association studies, and these genetic variants might be implicated not 
only with risk for LOAD but also with age at onset or rate of progression. Cognitive 
endophenotypes (e.g., level of cognitive function and rate of decline in cognition) can 
help to detect genetic risk factors attributable to the preclinical and subclinical change 
in cognition in LOAD. For example, the simultaneous consideration of the joint 
effects of eight non-APOE LOAD-associated GWAS loci ( ABCA7 ,  BIN1 ,  CD2AP , 
 CLU ,  CR1 ,  MS4A4E ,  MS4A6A , and  PICALM ) aggregated as a cumulative genetic 
risk score predicts accelerated progression from mild cognitive impairment (MCI) to 
LOAD in those subjects with higher scores [ 32 ]. Moreover, MCI patients with the 
 APOE  ε4 allele are more likely to convert to LOAD as compared to those without the 
 APOE  ε4 allele [ 33 ]. No clear profi le has emerged from studies of the relation 
between genotype and amyloid or tau phenotype in cerebrospinal fl uid: whereas no 
evidence for association between variants in  BIN1 ,  CLU ,  CR1 , and  PICALM  genes 
and amyloid-beta and phosphorylated tau levels in cerebrospinal fl uid has been found 
in a study [ 34 ], APOE ε4 allele,  CLU , and  MS4A4A  genetic variants were associated 
with signifi cantly reduced amyloid- beta levels in cerebrospinal fl uid in other study 
[ 35 ]. Investigating whether LOAD- associated GWAS loci infl uence MRI measures 
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(hippocampal and amygdala volumes and entorhinal cortex and temporal pole cortex 
thicknesses), the  APOE  ε4 allele and  PICALM  and  CR1  genotypes have been signifi -
cantly associated with these neuroimaging measures [ 36 ].  

    The Whole Exome and Whole Genome Sequencing Approach 

    Common Versus Rare Variants 

 A proportion of heritability (the portion of phenotypic variance in a population attribut-
able to additive genetic factors) is apparently unexplained by GWAS fi ndings. 
Explanations for this “missing heritability” include rarer variants (possibly with larger 
effects) that are poorly detected by available genotyping arrays that focus on variants 
present in 5 % or more of the population; structured variants poorly captured by exist-
ing arrays, including copy number variants such as insertions and deletions and copy 
neutral variation such as inversions and translocations; low power to detect gene-gene 
interactions; and inadequate accounting for shared environment among relatives [ 37 ]. It 
is likely that a substantial portion of the genetic risk underlying LOAD is actually con-
ferred by rare sequence variants, those occurring with a frequency <1 % in the general 
population, and possibly of relatively large genetic effect (e.g., with odds ratios >2). 
Rare variants are much more likely to have functional consequence than the more com-
mon variants; in fact, regulatory regions show preferential exclusion of common vari-
ants relative to rare ones just like protein-coding sequence [ 38 ]. GWAS are by design 
powered to detect association with causal variants that are relatively common in the 
population, and current microarray technology is not designed for de novo identifi ca-
tion of rare sequence variants. Thus, the identifi cation of presumed disease-associated 
rare variants requires deep re-sequencing in suitable data sets, either small scale (e.g., 
previously associated GWAS regions) or large-scale (whole exome or whole genome). 
Whole exome sequencing is most often chosen for monogenic Mendelian diseases, 
largely because of its low cost compared with whole genome sequencing (the exome is 
1–2 % of the whole genome) and the notion that most sequence variations leading to a 
severe phenotypic effect are located in the coding part of the genome [ 4 ]. Whole exome 
sequencing is capable of identifying not only very rare Mendelian causes of disease but 
also low-frequency variability with medium-effect sizes modulating disease develop-
ment. A signifi cantly proportion of EOAD is caused by autosomal dominant, fully pen-
etrant mutations. LOAD recurs within families more often than expected by chance 
alone, and this observed familial recurrence could be attributed to genetic loci with 
large phenotypic effects and reduced penetrance (possibly recessive loci) [ 10 ]. With 
monogenic recessive contributions to LOAD, one would not necessarily expect to see 
recurrence of the disease in multiple generations, nor a high recurrence rate among 
siblings, and the disease would be sporadic in the population. So far, the role of  recessive 
mutations in LOAD has been considerably overlooked.  
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    Rare Monogenic Forms of LOAD 

     TREM2  

 Homozygous loss-of-function mutations in  TREM2  gene, encoding the triggering 
receptor expressed on myeloid cells 2 protein, have previously been associated 
with an autosomal recessive form of early-onset dementia presenting with bone 
cysts and consequent fractures called polycystic lipomembranous osteodysplasia 
with sclerosing leukoencephalopathy or Nasu-Hakola disease. Homozygous 
 TREM2  mutations have been recently identifi ed in three Turkish patients present-
ing with a clinical phenotype associated with frontotemporal dementia and with 
leukodystrophy but without any bone-associated symptoms [ 39 ]. Whereas severe 
and early- onset disease is caused by homozygous loss-of-function mutations in 
 TREM2 , heterozygous loss-of-function variants are associated with LOAD. For 
example, in 2,000 LOAD patients and 4,000 controls, a rare missense mutation 
(rs75932628-T) in  TREM2 , which was predicted to result in a R47H substitution, 
showed a strong, highly signifi cant association with LOAD ( P  = 9.0 × 10 −9 , 
OR = 5.05), with a minor allele frequency among healthy controls of 0.12 % in the 
United States [ 40 ]. Similarly, in 2,261 Icelandic participants, the  T  allele of 
rs75932628 in  TREM2  was found to confer a signifi cant risk of LOAD 
( P  = 3.42 × 10 −10 , OR = 2.9), with a minor allele frequency of 0.63 % in healthy 
controls [ 41 ]. Consequently, this R47H variant of  TREM2  is a low-prevalence 
variant that increases LOAD risk with a moderate-to- high effect size, similar to 
that of the  APOE  ε4 allele. Neurodegeneration in  TREM2 - associated  LOAD is 
probably driven by a chronic infl ammatory process with dysfunction in the 
microglial phagocytosis [ 42 ].  

     APP  

 About 25 coding mutations in the  APP  gene have resulted in EOAD, but until now, 
mutations in APP had not been implicated in LOAD. In a set of whole genome 
sequence data from 1,795 Icelanders, the  A  allele of rs63750847 results in an ala-
nine to threonine substitution at position 673 in  APP  ( A673T ) and was found to be 
signifi cantly more common in the elderly control group aged 85 or greater than in 
the LOAD group (0.62 % versus 0.13 %,  P  = 4.78 × 10 −7 , OR = 0.189) [ 43 ]. In addi-
tion, the cognitive function of elderly noncarriers remained poorer than for carriers 
of  A673T  after removing LOAD cases.  A673T  represents the fi rst example of a rare 
sequence variant conferring strong protection against LOAD and also protecting 
against cognitive decline in the elderly without LOAD. The  A673T  substitution is 
critical for reducing the production of amyloid-beta. The complete absence of the 
 A673T  variant in a large cohort of Asian subjects [ 44 ] suggests that this is possibly 
an ethnicity-specifi c variant.  
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     MAPT  

 In a combined analysis of 15,369 subjects, re-sequencing at the gene encoding for 
the microtubule associated protein tau ( MAPT ) discovered that the rare substitution 
 A152T  within exon 7 of MAPT increases the risk for LOAD (0.69 % in patients 
versus 0.30 % in controls,  P  = 4.0 × 10 −3 , OR = 2.3) and also for frontotemporal 
dementia (0.89 % in patients,  P  = 5.0 × 10 −4 , OR = 3.0) [ 45 ]. This study emphasizes 
the point that statistical evaluation of the role of rare sequence variants poses a chal-
lenge, and no thresholds for rare variant signifi cance have been established. The 
functional studies show that the  A152T  in  MAPT  causes a pronounced decrease in 
microtubule stability and might enhance the level of tau oligomers. This is another 
example that rare variants can increase the risk for complex diseases with heteroge-
neous phenotypes.  

     FRMD4A  

 In a meta-analysis of EADI and GERARD consortia and a combined analysis of 
fi ve additional case–control studies (10,000 LOAD and 16,000 controls), the AAC 
haplotype in the  FRMD4A  locus was associated with increased LOAD risk 
( P  = 1.1 × 10 −10 , OR = 1.68) when compared with most frequent  GGT  haplotype [ 46 ]. 
As the  AAC  haplotype is rare (with a mean frequency of 2 % in Caucasian popula-
tions), this might explain why the locus was not detected in previous GWAS based 
on single-SNPs analyses, as SNPs with low frequency are poorly imputed even 
when using the 1000 Genomes data set. Therefore, other complementary approach 
to GWAS is this example of genome-wide haplotype association study. The protein 
encoded by  FRMD4A  is involved in cell structure, transport, and signaling 
functions.    

    Gene-Gene Interactions (Epistasis) 

 Evidence is accumulating that a pronounced part of the still elusive genetic vari-
ability in complex diseases could be due to ignored epistatic effects [ 47 ]. The term 
epistasis is conventionally used when an increased risk is only seen in the presence 
of two genetic factors and not seen when they act apart. In such cases, studies that 
examine simple loci individually, such as most GWAS, will fail to detect an effect. 
To understand the causes of LOAD, one needs to study not simple factors one at a 
time but interactions between genetic risk factors. In the case of LOAD, epistasis is 
likely to play a major part, in view of the high heritability of the disease. Epistasis 
had previously proved hard to demonstrate, mainly because sample sets had been 
too small and poorly characterized and inappropriate statistical methods had been 
used. The Epistasis Project [ 48 ] was designed to avoid these problems, with a mul-
tinational collaboration of 7 LOAD research groups from the UK, Spain, the 
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Netherlands, and Germany, contributing DNA samples from 1,757 LOAD cases and 
6,295 controls. A typical GWAS may examine perhaps 500,000 loci, but the number 
of potential two-way interactions between these 500,000 loci is >100 billion (10 11 ). 
In order therefore to reduce the number of potential interactions to a manageable 
fi gure, a hypothesis-driven approach is required, and consequently, a selection of 
gene-gene interactions should be chosen according to prior evidence of a statistical 
interaction and a plausible biological hypothesis [ 49 ]. The chosen interactions in the 
Epistasis Project were involved in various pathogenic networks that contribute to 
the development of LOAD (lipid metabolism, amyloid-beta metabolism, infl amma-
tion, oxidative stress, and insulin metabolism), and the “synergy factor” [ 50 ] (equiv-
alent to the interaction term defi ned by two binary factors in a logistic regression 
model) was used to measure the gene-gene interaction. In the infl ammation path-
way, the Epistasis Project has demonstrated that the interaction between the inter-
leukin- 6 proinfl ammatory cytokine and the interleukin-10 anti-infl ammatory 
cytokine genes [ 48 ] and the interaction between the aromatase (a rate-limiting 
enzyme in the synthesis of estrogens) and the interleukin-10 genes [ 51 ] are both 
associated with increased LOAD risk. In the oxidative stress pathway, the Epistasis 
Project has revealed an increased LOAD risk due to the interaction between the 
hemochromatosis and transferrin genes [ 52 ] and the interaction between the gluta-
thione S-transferase and the gene cluster of the hematopoietically expressed homeo-
box, the insulin-degrading enzyme, and the kinesin family member 11 [ 53 ]. In the 
future, to achieve higher power for such gene-gene interaction studies, larger sam-
ple sizes are needed, such as that of the IGAP mega-meta-analysis of GWAS [ 21 ].     
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