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        Introduction 

 Progressive organ dysfunctions were fi rst reported 50 years 
ago in the surgical literature. In 1963, adult patients with 
severe peritonitis were found to develop a state of high out-
put shock and respiratory failure requiring mechanical venti-
lation. Biochemical and mechanical factors were presumed 
to explain the severe deterioration in these patients [ 1 ]. 
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    Abstract   

 Multiple organ dysfunction syndrome (MODS) occurs after a life-threatening primary 
insult, including severe infection, hypoxic-ischemic injury, or other serious injuries. It rep-
resents a continuum of physiological abnormalities rather than a distinct state (present or 
absent). Young age and chronic health conditions are the most important risk factors for the 
development of MODS. Increasing number of dysfunctional organs is correlated with mor-
tality, greater use of resources, and prolonged stay in pediatric intensive care units. Severe 
insults converge towards a common systemic response resulting in organ dysfunctions, yet 
the underlying mechanism remains ill-defi ned. Acute illnesses may trigger severe infl am-
matory response resulting in cytokine liberation, activation of coagulation, development of 
shock and capillary leak. Most experimental therapies to date have focused on attenuating 
the initial infl ammatory response with little benefi ts in humans. As the initial infl ammatory 
storm subsides, relative immune suppression becomes a major contributor to the disease 
process. Consequently, MODS patients are highly vulnerable to nosocomial infections. 
Metabolic demands and neuroendocrine responses also follow a similar seesaw pattern of 
over-activation followed by a state of relative suppression. Therefore, MODS may emerge 
from the cumulative suppression of metabolic, neuroendocrine, and immune functions 
resembling a state of dormancy, hypothesized to be an evolutionary protective cellular 
mechanism in response to overwhelming injuries. Diagnosis of MODS should encourage 
physicians to uncover the underlying etiology that may require a specifi c therapy. The 
symptomatic management of organ dysfunctions must be carefully assessed in the context 
of systemic interactions with other failing organs. Although long term outcome data of criti-
cally ill children with MODS is limited, 60 % of survivors are reported to have a normal 
quality of life with minimal health problems.  
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A sequential pattern of organ failures was identifi ed during 
the 1970s among patients with ruptured aortic aneurysms 
[ 2 ]. Improvement in the medical management of shock states 
began to change disease progression and more reports of 
multiple organ failures in shock survivors emerged [ 3 ,  4 ]. 
Several studies uncovered a relationship between an increas-
ing number of failing organs and mortality [ 5 ] or the length 
of stay in the intensive care unit (ICU) [ 5 ]. Multiple organ 
dysfunctions were found to occur with or without any identi-
fi able infectious source [ 6 ], changing in severity over time, 
and being potentially reversible. Faced with this new entity, 
adult diagnostic criteria for the systemic infl ammatory 
response syndrome (SIRS) [ 7 ], sepsis, and organ dysfunc-
tions were proposed in 1992 [ 6 ] and were revisited in 2003 
[ 8 ]. These defi nitions helped to distinguish the insult (infec-
tion, trauma, etc.), from the host response (SIRS) and the 
subsequent number of organ dysfunctions, while  emphasizing 

the pathophysiological continuum culminating in these 
organ dysfunctions [ 9 ].  

    Defi nition of Pediatric Multiple Organ 
Dysfunction Syndrome (MODS) 

 Diagnostic criteria currently used to defi ne the infectious 
insults, the host response (SIRS), and the number of organ 
dysfunction in children were established in 2002 [ 10 ] and are 
summarized here.  Systemic infl ammatory response syndrome  
[ 7 ] refers to any combination of two or more symptoms 
including fever or hypothermia; tachycardia or bradycardia 
in infants (<12 months of age); tachypnea or hypocapnia; 
leukocytosis or leukopenia (Tables  35.1  and  35.2 ) [ 6 ]. The 
host response is called “ sepsis ” when these symptoms are 
suspected to be triggered by an infection.

    Table 35.1    Defi nitions of systemic infl ammatory response syndrome (SIRS), infection, sepsis, severe sepsis, and septic shock   

  SIRS  a  
 The presence of at least two of the following four criteria, one of which must be abnormal temperature or leukocyte count: 
  Core b  temperature of >38.5 °C or <36 °C 
   Tachycardia, defi ned as a mean heart rate >2  SD  above normal for age in the absence of external stimulus, chronic drugs, or painful stimuli; 

or otherwise unexplained persistent elevation over a 0.5–4-h time period OR for children <1 year old: bradycardia, defi ned as a mean heart 
rate <10th percentile for age in the absence of external vagal stimulus, β-blocker drugs, or congenital heart disease; or otherwise unexplained 
persistent depression over a 0.5-h time period 

   Mean respiratory rate >2 SD above normal for age or mechanical ventilation for an acute process not related to underlying neuromuscular 
disease or the receipt of general anesthesia 

  Leukocyte count elevated or depressed for age (not secondary to chemotherapy-induced leukopenia) or >10 % immature neutrophils 
  Infection  
 A suspected or proven (by positive culture, tissue stain, or polymerase chain reaction test) infection caused by any pathogen OR a clinical 
syndrome associated with a high probability of infection. Evidence of infection includes positive fi ndings on clinical exam, imaging, or 
laboratory tests (e.g., white blood cells in a normally sterile body fl uid, perforated viscus, chest radiograph consistent with pneumonia, 
petechial or purpuric rash, or purpura fulminans) 
  Sepsis  
 SIRS in the presence of or as a result of suspected or proven infection 
  Severe sepsis  
 Sepsis plus one of the following: cardiovascular organ dysfunction or acute respiratory distress syndrome or two or more other organ 
dysfunctions. Organ dysfunctions are defi ned in Table  35.3  
  Septic shock  
 Sepsis and cardiovascular organ dysfunction as defi ned in Table  35.3  

  Adapted from Goldstein et al. [ 10 ]. With permission from Wolter Kluwers Health 
  a See Table  35.2  for age-specifi c ranges for physiologic and laboratory variables 
  b Core temperature must be measured by rectal, bladder, oral, or central catheter probe  

    Table 35.2    Age-specifi c vital 
signs and laboratory variables 
[ 10 ,  13 ]   

 Heart rate, beats/min 

 Age group 
 Tachycardia 
(beat/min) 

 Bradycardia 
(beat/min) 

 Respiratory rate, 
(breaths/min) 

 Leukocyte 
count, (10 9 /L) 

 Hypotension 
(mmHg) 

 0 days to 1 week  >180  <100  >50  >34  <59 
 1 week to 1 month  >180  <100  >40  >19.5 or <5  <79 
 1 month to 1 year  >180  <90  >34  >17.5 or <5  <75 
 2–5 years  >140  NA  >22  >15.5 or <6  <74 
 6–12 years  >130  NA  >18  >13.5 or <4.5  <83 
 13 to <18 year  >110  NA  >14  >11 or <4.5  <90 

  Lower values for heart rate, leukocyte count, and systolic blood pressure are for the 5th and upper values for 
heart rate, respiration rate, or leukocyte count for the 95th percentile 
  NA  not applicable  
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    Multiple organ failure in critically ill children is defi ned 
as the simultaneous dysfunction of at least two organ sys-
tems [ 11 ,  12 ]. Criteria for organ failures (Table  35.3 ) were 
established according to severity of illness scoring systems 
used in critically ill children [ 10 ,  13 ]. The aim of using a 
common defi nition for MODS is to provide a reproducible 
assessment of organ dysfunction that allows for tracking of 
changes in organ function. However, the reproducibility and 
relative strength of these criteria has not been evaluated. 
MODS can be classifi ed as primary or secondary, depending 
on the timing of organ dysfunctions.  Primary MODS  devel-
ops rapidly after pediatric ICU (PICU) admission [ 14 – 16 ] 
and is generally the consequence of a well-defi ned insult. In 
one study, the maximal number of organ failures was noted 
within 72 h in the majority of patients [ 14 ].  Secondary 
MODS  corresponds to children who develop evidence of 
organ damages after the fi rst week of PICU admission and/or 
develop a sequential pattern of organ dysfunction [ 17 ].

       Pediatric MODS Scoring Systems 

 Two scores were developed to quantify the severity of MODS 
and follow its evolution over time:  (1)  Leteurtre et al. devel-
oped and validated the PELOD score [ 18 ,  19 ], which is 
derived from six independent physiological variables 
(Table  35.4 ) [ 18 ];  (2)  Graciano et al. developed the Pediatric- 
MODS score, which relies exclusively on laboratory values 
(lactic acid, PaO 2 /FiO 2  ratio, bilirubin, fi brinogen, blood urea 
nitrogen) and therefore does not take into consideration the 
neurological function [ 20 ]. This may be a serious limitation 
of the Pediatric-MODS score, since 80 % of the variability in 
PELOD scores is attributable to cardiovascular and neuro-
logic dysfunctions [ 18 ]. Although both scores have good dis-
criminative values and are useful tools to describe the 
severity of MODS in critically ill children, the calibration of 
the PELOD score has been recently criticized [ 21 ,  22 ]. Since 
mortality is low (around 5 %) and incidence of MODS higher 
(from 6 % to 57 %) in critically ill children (Table  35.5 ), the 
PELOD score has been used as a surrogate outcome measure 
in pediatric clinical trials for risk adjustment [ 23 ] or second-
ary outcome [ 24 ]. Daily PELOD scores of critically ill chil-
dren effectively identifi ed survivors from non survivors [ 25 ]. 
Fifty percent of 115 deaths were associated with an increase 
in the score from day 1 to day 2 and from day 2 to day 4 [ 25 ].

        Epidemiology 

 Pediatric mortality is closely correlated with the number of 
organ dysfunctions [ 11 ,  12 ]. Conversely, the number of chil-
dren who die in the PICU without reaching criteria for 
MODS is low [ 12 ,  15 ,  18 ]. MODS may stem from pediatric 

     Table 35.3    Organ dysfunction criteria (2002)   

  Cardiovascular dysfunction  
 Despite administration of isotonic intravenous fl uid bolus ≥40 mL/
kg in 1 h 
   Decrease in BP (hypotension) <5th percentile for age or systolic 

BP <2 SD below normal for age a  
   OR 
   Need for vasoactive drug to maintain BP in normal range 

(dopamine >5 μg/kg/min or dobutamine, epinephrine, or 
norepinephrine at any dose) 

   OR 
  Two of the following 
 Unexplained metabolic acidosis: base defi cit >5.0 mEq/L 
 Increased arterial lactate >2 times upper limit of normal 
 Oliguria: urine output <0.5 mL/kg/h 
 Prolonged capillary refi ll: >5 s 
 Core to peripheral temperature gap >3 °C 
  Respiratory  b  
   PaO 2 /FIO 2  <300 in absence of cyanotic heart disease or 

preexisting lung disease 
   OR 
  PaCO 2  >65 Torr or 20 mmHg over baseline PaCO 2  
   OR 
  Proven need c  or >50 % FIO 2  to maintain saturation ≥92 % 
   OR 
   Need for nonelective invasive or noninvasive mechanical 

ventilation d  
  Neurologic  
  Glasgow coma score ≤11 
   OR 
   Acute change in mental status with a decrease in Glasgow Coma 

Score ≥3 points from abnormal baseline 
  Hematologic  
   Platelet count <80,000/mm 3  or a decline of 50 % in platelet count 

from highest value recorded over the past 3 days (for chronic 
hematology/oncology patients) 

   OR 
  International normalized ratio >2 
  Renal  
   Serum creatinine ≥2 times upper limit of normal for age or 2-fold 

increase in baseline creatinine 
  Hepatic  
  Total bilirubin ≥4 mg/dL (not applicable for newborn) 
   OR 
  ALT 2 times upper limit of normal for age 

  Adapted from Goldstein et al. [ 10 ]. With permission from Wolter 
Kluwers Health 
  BP  blood pressure,  ALT  alanine transaminase 
  a See Table  35.1  
  b Acute respiratory distress syndrome must include a PaO 2 /FIO 2  ratio 
≤200 mmHg, bilateral infi ltrates, acute onset, and no evidence of left 
heart failure. Acute lung injury is defi ned identically except the PaO 2 /
FIO 2  ratio must be ≤300 mmHg 
  c Proven need assumes oxygen requirement was tested by decreasing 
fl ow with subsequent increase in fl ow if required 
  d In postoperative patients, this requirement can be met if the patient has 
developed an acute infl ammatory or infectious process in the lungs that 
prevents him or her from being extubated  
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conditions, including sepsis, congenital heart diseases, 
trauma, and liver or bone marrow transplantations [ 26 ]. The 
incidence and mortality rate of MODS varies between stud-
ies in part due to disparities in case-defi nition and case-mix 
(see Table  35.5 ). 

 Risk factors for MODS in adults include delayed or inad-
equate resuscitation, persistent infectious or infl ammatory 
focus, advancing age, malnutrition, or cancer [ 27 ]. In chil-
dren, MODS most frequently affects  children under 1 year of 
age  [ 28 ]. The incidence and mortality of MODS is higher in 
neonates compared to older children [ 29 ] and a distinct pat-
tern of organ dysfunctions was noted in the neonatal popula-
tion [ 30 ,  31 ]. Indeed, important developmental changes 
occur during the fi rst year of life that govern the maturation 
of renal, hepatic, gastrointestinal, and central nervous sys-
tems, which may predispose infants to MODS [ 32 ]. 

 The presence of  comorbid conditions  increases the inci-
dence of MODS and mortality. While one fourth of children 
with MODS were reported to have chronic condition in the 
mid-80s [ 12 ], now almost two thirds of pediatric ICU patients 
have an underlying chronic condition [ 33 ]. Not surprisingly, 
the incidence of MODS is twofold greater among children 
with a comorbid condition, which independently increases 
the risk of death [ 33 ].  

   Table 35.4    The pediatric logistic organ dysfunction score   

 Scoring system 

 0  1  10  20 

  Organ dysfunction and 
variable  
 Neurological a  
 Glasgow coma score  12–15  7–11  4–6  3 

  and    or  
 Pupillary reactions  Both  NA  Both  NA 

 reactive  fi xed 
 Cardiovascular b  
 Heart rate (beats/min) 
 <12 years  ≤195  NA  >195  NA 
 ≥12 years  ≤150  NA  >150  NA 

  and    or  
 Systolic blood pressure 
(mmHg) 
 <1 month  >65  NA  35–65  <35 
 1 month–1 year c   >75  NA  35–75  <35 
 1–12 years c   >85  NA  45–85  <45 
 ≥12 years  >95  NA  55–95  <55 
 Renal 
 Creatinine (μmol/L) 
 <7 days  <140  NA  ≥140  NA 
 7 days–1 year c   <55  NA  ≥55  NA 
 1–12 years c   <100  NA  ≥100  NA 
 ≥12 years  <140  NA  ≥140  NA 
 Respiratory d  
 PaO 2  (kPa)/FIO 2  ratio  >9·3  NA  ≤9·3  NA 

  and    or  
 PaCO 2  (kPa)  ≤11·7  NA  >11·7  NA 

  and  
 Mechanical ventilation d   No  Ventilation  NA  NA 

 Ventilation 
 Haematological 
 White blood cell count 
(×10 9 /L) 

 ≥4·5  1·5–4·4  <1·5  NA 

  and    or  
 Platelets (×10 9 /L)  ≥35  <35  NA  NA 
 Hepatic 
 Aspartate transaminase 
(IU/L) 

 <950  ≥950  NA  NA 

  and    or  
 Prothrombin time e  (or INR)  >60  ≤60  NA  NA 

 (<1·40)  (≥1·40) 

  Adapted from Leteurtre et al. [ 18 ]. With permission from Elsevier 
  PaO   2   arterial oxygen pressure,  FIO   2   fraction of inspired oxygen,  PaCO   2   
arterial carbon dioxide pressure,  INR  international normalised ratio 
  a Glasgow coma score: use lowest value. If patient is sedated, record 
estimated Glasgow coma score before sedation. Assess patient only 
with known or suspected acute central nervous system disease. Pupillary 
reactions: non-reactive pupils must be >3 mm. Do not assess after iatro-
genic pupillary dilatation 
  b Heart rate and systolic blood pressure: do not assess during crying or 
iatrogenic agitation. 
  c Strictly less than 
  d PaO 2 : use arterial measurement only 
  e Percentage of activity. PaO 2 /FIO 2  ratio, which cannot be assessed in 
patients with intracardiac shunts, is considered as normal in children 
with cyanotic heart disease. PaCO 2  may be measured from arterial, cap-
illary, or venous samples. Mechanical ventilation: the use of mask ven-
tilation is not counted as mechanical ventilation  

    Table 35.5    Epidemiology of pediatric MODS   

 Patients  Incidence a   Mortality b  

 General pediatric ICU population 
 Wilkinson et al. [ 12 ]  831  27 %  26 % 
 Proulx et al. [ 170 ]  777  11 %  51 % 
 Tan et al. [ 171 ]  283  6 %  56 % 
 Leteurtre et al. [ 19 ]  594  45 %  19 % 
 Tantalean et al. [ 15 ]  276  57 %  42 % 
 Leteurtre et al. [ 18 ]  1,806  53 %  12 % 
 Khilnani et al. [ 172 ]  1,722  17 %  26 % 
 Typpo et al. [ 33 ]  44,693  19 %  10 % 
 Sepsis 
 Wilkinson et al. [ 11 ]  726  24 %  47 % 
 Proulx et al. [ 173 ]  1,058  18 %  36 % 
 Goh et al. [ 16 ]  495  17 %  57 % 
 Kutko et al. [ 48 ]  80  73 %  19 % 
 Leclerc et al. [ 35 ]  593  45 %  19 % 
 Congenital heart diseases 
 Seghaye et al. [ 38 ]  460  4 %  56 % 
 Trauma 
 Calkins et al. [ 43 ]  534  3 %  17 % 
 Liver or bone marrow transplantation 
 Feickert et al. [ 45 ]  114  27 %  72 % 
 Keenan et al. [ 174 ]  121  55 %  94 % 
 Lamas et al. c  [ 175 ]  49  90 %  69 % 

  Adapted    from Proulx et al. [ 176 ]. With permission from Wolter Kluwers 
Health 
  MODS  Multiple organ dysfunction syndrome,  ICU  Intensive care unit; 
Incidence a  and mortality rate b  of MODS;  c MODS was defi ned as 3 
organ dysfunctions  
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    Etiology 

 The initial life-threatening insult leading to MODS also 
influences mortality. A diagnosis of MODS compels the 
physician to identify the underlying cause since several 
diseases with multi-systemic manifestations may require 
a specific therapy. An overview of common and less 
usual causes of pediatric MODS are presented in 
Table  35.6 .

      Sepsis 

 Pediatric MODS in sepsis is associated with a poor progno-
sis compared to non-infectious SIRS [ 34 ]. Moreover, sever-
ity of organ failures and mortality rates are closely correlated 
with the severity of the infectious process [ 15 ,  16 ,  35 ,  36 ]. 
A detailed discussion of sepsis is found later in this 
textbook.  

    Congenital Heart Diseases 

 Children with congenital heart diseases sometimes develop 
organ dysfunction both before and after cardiac surgery 
requiring cardiopulmonary bypass. Pre-operative imbal-
ances of the pulmonary and systemic circulations may lead 
to organ dysfunctions. This is the case of children with hypo-
plastic left heart syndrome and pulmonary overcirculation 
associated with poor systemic perfusion. Afterload reduction 
has been reported to improve hepatic, renal, and gastrointes-
tinal functions pre-operatively in these patients [ 37 ]. MODS 
may also occur after cardiac surgery as a consequence of car-
diopulmonary bypass and the surgical correction itself. 
Cardiovascular instability, endothelial damage, platelet and 
immune activations from cardiopulmonary bypass predis-
pose to MODS [ 38 ]. Persistent renal failure, in the context of 
cardiac surgery has been associated with poor outcome 
[ 39 ,  40 ]. The surgical repair may sometimes exacerbate 
organ damage in the presence of low cardiac output syn-
drome, residual lesions, or a delayed adaptation to the post-
operative physiology [ 37 ,  41 ]. Children with congenital 
heart diseases may be prone to “classical” adult-type MODS 
characterized by the development of immune paralysis, and 
susceptibility to a second-hit phenomenon [ 42 ]. For exam-
ple, in the fi rst week after surgery, Ben-Abraham et al. found 
that 80 % of mortality was due to MODS; thereafter, sepsis 
was believed to be the main cause of death [ 42 ].  

    Multiple Trauma 

 Multiple trauma is a cause of MODS in children, albeit less 
frequent than in adults. In a series of 334 children admitted 
to the PICU with isolated head injury, not a single patient 
developed MODS [ 43 ]. Only 3 % of children with multiple 
traumatic injuries acquired MODS 2 days after their admis-
sion to the PICU [ 43 ]. However, multiple trauma associated 
with abdominal compartment syndrome and MODS has a 
worse prognosis, with a reported mortality rate of 20 % in 
children [ 44 ]. Overall, the mortality from multiple trauma is 
threefold lower in children compared to adults [ 43 ], possibly 
because children have different mechanisms of injury, fewer 
comorbid conditions, and a different physiological response 
to traumatic injury.  

    Solid Organ or Bone Marrow Transplantations 

 MODS is a major determinant of early mortality after pedi-
atric orthotopic liver transplantation due to vascular throm-
bosis, sepsis, or as a result of pre-transplant organ 
dysfunctions [ 45 ]. The extent of damage to the engrafted 
liver is a major contributor to organ dysfunction. In this 
regard, hepatic vascular thrombosis may lead to severe 

   Table 35.6    Etiologies of multiple organ dysfunction in children   

 Severe hypoxia or cardiorespiratory arrest [ 170 ] 
 Shock states:  septic  a , cardiogenic b , hemorrhagic 
 Severe dehydration c  
 Multiple trauma [ 44 ] 
 Burns [ 104 ] 
 Inhalation pneumonia 
 Acute liver failure [ 177 – 179 ] 
 Acute pancreatitis 
 Intestinal ischemia d  
 Acute leukemia e  
 Solid organ f  or bone marrow transplantation g  
 Familial or secondary hemophagocytic lymphohystiocytosis h  [ 180 , 
 181 ] 
 Thrombotic microangiopathy i  
 Sickle cell [ 182 ] 
 Vasculitis [ 183 ] 
 Inborn errors of metabolism j  [ 179 ,  184 ] 
 Malignant hyperthermia [ 185 ] 
 Toxic ingestion 
 Snake bite 

   a Including purpura fulminans, toxic shock syndrome, severe pneumo-
nia, bacterial meningitis, viral meningoencephalitis 
  b Myocarditis, left heart obstructive lesions, prolonged cardiopulmonary 
bypass, univentricular physiology 
  c May occur in neonates or children with encephalopathy 
  d Intestinal volvulus, intussusception, perforation, necrotizing 
enterocolitis 
  e Promyelocytic leukemia 
  f May occur with vascular thrombosis, massive bleeding, occult intesti-
nal perforation, post transplant lymphoproliferative disease 
  g Veno-occlusive disease, graft versus host disease 
  h Secondary hemophagocytosis may also occur during MODS itself 
[ 186 ] 
  i Post diarrheal or atypical hemolytic uremic syndrome, thrombotic 
thrombocytopenic purpura 
  j Urea cycle defect, congenital lactic acidosis, organic acidemia  

35 Multiple Organ Dysfunction Syndrome
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 hemorrhagic shock and acute renal failure. This may then 
lead to polymicrobial sepsis due to intestinal perforation and 
malnutrition. Severe rejection is rare early after liver trans-
plantation. Conversely, patients with rejections are less 
likely to develop MODS in the postoperative phase [ 45 ]. 
Long term survival depends on the underlying disease, the 
presence of MODS in the post-operative phase, or late sep-
sis [ 45 ]. The development of chronic graft failure or lym-
phoproliferative disease are also major determinants of 
outcome [ 45 ], the latter being associated with a 50 % mor-
tality rate [ 46 ]. 

 In bone marrow transplantation, pre-transplant condition-
ing leads to potentially reversible cytotoxicity including pan-
cytopenia, capillary leak syndrome, acute graft versus host 
disease, and hepatic veno-occlusive disease. If important, 
this toxicity may create MODS. In one large prospective 
study, MODS was the only variable that had a negative 
impact on the outcome [ 47 ]. An increased mortality rate has 
been noted in children who developed septic shock and 
MODS after bone marrow transplantation, but not among 
those suffering from neoplasic disorders who did not have 
transplantation [ 48 ]. In the former group, pulmonary or neu-
rological dysfunctions were important determinants of 
patient survival [ 49 ]. Respiratory insuffi ciency may be sec-
ondary to opportunistic infections, bronchiolitis obliterans, 
pulmonary edema, or toxicity. Combined neurological and 
renal dysfunctions may occur with cyclosporine or tacroli-
mus toxicity and the related bone marrow transplant throm-
botic microangiopathy.   

    Pathogenesis 

    Evolutionary Ties Between 
Sepsis and Tissue Injury 

 Despite similar host responses to severe sepsis and post- 
traumatic SIRS suggestive of a unifying cause, the molecu-
lar mechanism has been poorly understood. Due to lower 
blood pressure and relative splanchnic hypoperfusion in 
severe trauma, the possibility of bacterial translocation from 
the gut was initially suggested. However, this hypothesis 
was later refuted. More recent evidence posits activation of 
the innate immune system through highly conserved mole-
cules known as the pathogen-associated molecular patterns 
(PAMPs), expressed by a variety of pathogens. Similarly, 
host molecules released following tissue injury called 
damage- associated molecular patterns (DAMPs) also initi-
ate the innate immune response through shared signalling 
pathways with PAMPs, even in the absence of microbial 
pathogens [ 50 ]. Recent evidence reveals that DAMPs, 
including the high mobility group protein (HMGB1) pro-
duced by nucleated cells, are released in the blood of injured 
patients and their levels correlate with the development of 
organ failures. 

 Mitochondria provide a plausible explanation for the 
common infectious and tissue injury triggers of the innate 
immune response (Fig.  35.1a ). Mitochondrial and bacterial 
DNA share similar structural motifs as an evolutionary 
 consequence of the bacterial origin of these organelles [ 51 ]. 

Sepsis Trauma

Evolution

Mitochondrion
Cellular components

Bacteria
Bacterial components

PAMPs DAMPs

Inflammatory responseb

a

Endothelium Neutrophils

Cytokines

ROS Lipid effectors

Complement↑TF & PAI-1

Microangiopathy

Coagulopathy Vasodilatation Capillary Leak

Cellular Dysoxia

MODS

Hemodynamic Instability

Monocytes

  Fig. 35.1    Sepsis, tissue injury and the infl ammatory response. 
(Panel  a ) Release of molecules called pathogen-associated molecular 
patterns ( PAMPs ) from bacteria and damage-associated molecular 
 patterns ( DAMPs ) from tissue necrosis and mitochondrial fragments 
trigger the infl ammatory response. (Panel  b ) Activation of innate 
immunity and the complement cascade leads to the release of cytokines, 
reactive oxygen species ( ROS ) and highly reactive lipid mediators. 
Hemodynamic instability is the outcome of changes in myocardial 
 contractility, vasodilatation and capillary leak. The endothelium begins 
to express tissue factor ( TF ) launching the coagulation cascade, while 
plasminogen activator inhibitor-1 ( PAI-1 ) decreases fi brinolysis; this 
results in microangiopathy and DIC. Together, cellular dysoxia 
 culminate in organ dysfunctions    (Adapted from Cohen [ 187 ]. With 
 permission from Nature Publishing Group)       
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Zhang et al. therefore postulated that mitochondrial compo-
nents spilled by necrotic tissue after severe trauma (DAMPs) 
could mimic PAMPs and activate host response [ 52 ]. 
Administration of mitochondrial DAMPs in rats induced 
acute lung injury. Severe trauma in humans caused a rapid 
release of mitochondrial DNA and mitochondrial DAMPs 
such as formyl peptides, which attracted neutrophils and ini-
tiated the immune response through pattern-recognition 
receptors (PRRs), such as toll-like receptor 4 (TLR-4). 
Conserved molecular motifs between bacteria and mitochon-
dria may therefore provide an explanation for a shared 
immune response to injury and infections [ 52 ].

       Infl ammation and Immune System 

 Sepsis and MODS were traditionally believed to result 
from over-activation of the immune system and the ensu-
ing infl ammatory cascade (Fig.  35.1b ). Overwhelming 
stimulation of innate immune cells expressing PRRs rap-
idly initiate host defence after tissue damage or microbial 

infection [ 53 ]. TLRs are a subfamily of PRRs crucial to the 
initiation of the infl ammatory response. TLR4-mediated 
recognition of lipopolysaccharide and DAMPs (such as 
mitochondrial DNA), rapidly initiates host response and 
facilitate crosstalk with the complement system [ 53 ]. 
Activated neutrophils and macrophages produce cytokines, 
chemokines, and complement- activation products, result-
ing in a markedly imbalanced cytokine response (or ‘cyto-
kine storm’). This pro- infl ammatory environment triggers 
the liberation of powerful secondary lipid mediators and 
reactive oxygen species that further amplify the infl amma-
tory storm, leading to host tissue damage. Children who 
died from meningococcal sepsis presented higher concen-
trations of several pro- infl ammatory cytokines, as well as 
increased serum levels of anti-infl ammatory mediators (IL-
10, soluble TNF receptors) [ 54 ,  55 ]. Hereditary markers of 
innate immunity infl uence the outcome of sepsis [ 56 ,  57 ]. 
However, if most patients die during the initial phase of 
sepsis and MODS, several succumb later during the second 
phase characterized by protracted immune suppression 
(Fig.  35.2 ).

Shock Nosocomial infections

HOST
RESPONSE

Immune paralysis / Apoptosis

Hypermetabolism Malnutrition

Metabolic syndrome
Adrenal insufficiency
Euthyroid sick syndrome

Polyneuropathy / Myopathy

TAMOF

Disseminated Intravascular Coagulation

Acute Respiratory
Distress Syndrome

Capillary Leak Syndrome

Acute Renal Failure

Myocardial depression

Vasoplegia

Upper Gastrointestinal Bleeding

  Fig. 35.2    Overview of the pathophysiology of multiple organ dysfunc-
tion syndrome. The host response to injury or infection is central to the 
development of multiple organ dysfunction syndrome ( MODS ). Shock 
states are characterized by abnormal microcirculatory blood fl ow, with 
variable degree of peripheral vasoplegia and myocardial depression that 
may cause acute renal failure. The latter may aggravate capillary leak 
syndrome. Renal failure itself may result in worse lung injury or other 
organ failure. Infl ammatory processes, including the cytokine and che-
mokine response, lead to endothelial cell activation, which is clinically 

recognized as disseminated intravascular coagulation, capillary leak as 
well as acute respiratory distress syndrome. Hypermetabolism, also 
called “septic autocannibalism”, may result in a state of severe malnu-
trition which is associated with secondary immunoparalysis. Overall, 
impaired mechanisms of tissue repair may lead to the development of 
nosocomial infections, usually 7–10 days later. The biological signifi -
cance of other clinical conditions highlighted above remains to be clari-
fi ed ( TAMOF  Thrombocytopenia associated multiple organ failure)       
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       Adaptive Immunity and Immune Suppression 

 In contrast to the innate immune system, adaptive immunity 
develops over several days and provides a more specifi c line 
of defence against pathogens. T cells orchestrate the infl am-
matory response, particularly CD4+ T helper 1 (T H 1) and 2 
(T H 2) cells, with distinct cytokine profi les. During sepsis, 
adaptive immunity shifts from a T H 1 cell mediated infl am-
matory response (interferon-γL-2 and IL-12), to a T H 2-cell 
response (IL-4, IL-5, IL-10 and IL-13), which can contribute 
to immunosuppresion. 

 Multiple cellular mechanisms underlie the immune sup-
pression in sepsis. Increased levels of apoptosis in lympho-
cytes and dendritic cells contribute to immune suppression 
[ 58 ]. Moreover, apoptotic cells intensify the process of 
‘immune paralysis’ in remaining immune cells characterized 
by shut-down of cytokine response and signalling capacity 
[ 59 ,  60 ], albeit not a generalized phenomenon [ 61 ]. In con-
trast to circulating immune cells, those derived from tissues 
appear to remain fully responsive, thereby indicating 
 compartmentalization of infl ammatory processes [ 61 ]. 
Intracellular reprogramming may be responsible for the 
hyporeactivity of circulating leukocytes and may represent a 
physiological adaptation with protective effects. This obser-
vation is reminiscent of the phenomenon of endotoxin toler-
ance well described in sepsis models [ 62 – 64 ]. 

 Autopsies of pediatric and adult patients that died of 
sepsis and MODS revealed signifi cant lymphoid deple-
tion. An absolute lymphocyte count of less than 1,000 for 
more than 7 days was only observed in children with 
MODS [ 65 ]. Lymphopenia and lymphoid depletion 
 predispose to anergy, a state of non-responsiveness to 
 antigens. Together, this immune reprogramming (or 
‘immunoparesis’) referred to as the compensatory anti-
infl ammatory response syndrome (CARS), is an adaptive 
mechanism to restrain the initial aggressive infl ammatory 
burst. However, relative immune suppression also predis-
poses critically ill patients to viral reactivation [ 66 ], noso-
comial infections and death [ 65 ].  

    Coagulation and Fibrinolysis 

 The sepsis triad refers to the activation of coagulation and 
inhibition of fi brinolysis triggered by infl ammation [ 67 ] (see 
again Fig.  35.1b ). The extent of pro-thrombotic and anti- 
fi brinolytic plasma activation is correlated with the severity 
of pediatric MODS and mortality [ 68 – 75 ]. Tissue factor (TF) 
is pivotal to the initiation of the coagulation cascade. In sep-
sis, infl ammation results in the expression of TF on endothe-
lial cells, the activation of coagulation and ensuing 
disseminated intravascular coagulation (DIC). Tissue factor 

binds and activates factor VII, X and V, thereby increasing 
thrombin activation, fi brin deposition, and microthrombi 
 formation [ 76 ]. Infl ammation also elevates the levels of 
plasminogen- activator inhibitor 1 (PAI-1) and thrombin- 
activatable fi brinolysis inhibitor (TAFI) which impair fi brin 
removal [ 77 ]. The general consumption of factors that regu-
late thrombin formation, such as antithrombin III, protein C 
and tissue-factor pathway inhibitor (TFPI) further exacer-
bates DIC [ 78 ]. 

 Thrombocytopenia-associated multiple organ failure 
(TAMOF) is a clinical entity associated with sepsis. It com-
prises a spectrum of similar conditions including dissemi-
nated intravascular coagulation (DIC) and secondary 
thrombotic microangiopathy (TMA) [ 79 ]. Autopsies of 
 children with TAMOF revealed a predominance of von 
Willebrand factor-rich (vWF) thrombi in the microvascula-
ture of their brain, lung and kidney [ 80 ]. Recent evidence 
also suggests that as many as 30 % of children with severe 
sepsis have moderately decreased (20 % activity) 
ADAMTS-13 protease activity [ 81 ], which may increase 
the risk of thrombosis and organ dysfunction in this 
population.  

    Capillary Leak Syndrome 

 MODS has been associated with abnormal systemic vascular 
permeability resulting in the development of the capillary 
leak syndrome [ 82 ,  83 ]. In meningococcemia, the amount of 
circulating endotoxin and complement activation determines 
the severity of capillary leakage [ 84 ]. Susceptibility to the 
development of edema after cardiopulmonary bypass 
[ 85 ,  86 ] or bone marrow transplantation [ 87 ] is also related 
to activation of the complement system. More importantly, a 
positive fl uid balance is associated with prolonged mechani-
cal ventilation and increased mortality [ 88 ,  89 ]. PICU survi-
vors had less fl uid overload and were more likely to attain 
their target dry weight during continuous renal replacement 
therapy [ 90 – 92 ]. However, it is unclear whether endothelial 
dysfunction and the ensuing edema is simply an epiphenom-
ena or contributes to the disease process. Recent work 
explored the role of adherens junctions that binds endothelial 
cells together to prevent vascular leak. Slit proteins and its 
receptor Robo4 are important to neuronal and vascular devel-
opment. London and colleagues recently demonstrated that 
Slit and Robo4 proteins can stabilize VE-cadherin on endo-
thelial adherens junction thereby decreasing vascular perme-
ability [ 93 ]. In three different mouse model of infection, 
intravenous injection of Slit prevented vascular leakage and 
reduced mortality [ 93 ]. The role of the microvascular barrier 
in severe infections is now considered a therapeutic target 
[ 94 ]. Although confi rmation in human is required, this may 

F. Proulx et al.



465

suggest a critical role of the endothelium and the capillary 
leak syndrome in sepsis.  

    Neuroendocrine Response 

 The initial phase of MODS results in a massive release of 
stress hormones, including adrenocorticotropic hormone 
(ACTH) and cortisol, catecholamines, vasopressin, gluca-
gon, and growth hormone [ 95 ]. These hormones help supply 
the increased demand by maintaining circulation and the lib-
eration of energy substrate, namely glucose, fatty acids and 
amino acids. Insulin resistance is a common manifestation of 
this overwhelming neuroendocrine response, although the 
mechanism remains ill-defi ned [ 95 ]. Intracellular metabo-
lism, energy expenditure and tissue oxygen consumption 
doubles during that initial period. Concurrently, less vital 
systems are shut down and anabolism is halted. 

 In the second phase of MODS, the hormonal response 
recedes. Vasopressin levels are often insuffi cient, the adre-
nals become less responsive to ACTH, and sick euthyroid 
syndrome begins to appear [ 95 ]. Suppression of the 
hypothalamus- pituitary-adrenal axis is presumed to be a con-
sequence of hypoperfusion, cytokine, and nitric oxide signal-
ling in situ [ 96 ]. The transition between the fi rst and second 
phase of the hormonal response may result from the abnor-
mal pulsatile secretion of growth hormone, thyrotropin, and 
prolactin [ 95 ]. The later endocrine changes may also in part 
be the consequence of inhibitory feedbacks from the initial 
burst of hormonal activation. As such, high cortisol levels 
prevent the secretion of growth hormone, and together with 
prolactin repress the secretion of gonadotropins. Cortisol 
may also modulate thyroid metabolism by promoting the 
generation of metabolically inactive reverse T3, contributing 
to the development of the sick euthyroid syndrome. 

 In children, non-survivors from meningococcal sepsis 
had variable aldosterone levels [ 97 ,  98 ], lower serum corti-
sol, and severely decreased cortisol to ACTH ratio, indicat-
ing a state of adrenal insuffi ciency [ 97 ,  99 ,  100 ]. They also 
had acquired sick euthyroid syndrome (decreased total T 3  
and T 4 , increased reverse T 3 , normal free T 4  and TSH) [ 96 , 
 101 ,  102 ]. In newborns, dopamine curbs the secretion of 
growth hormone, thyrotropin and prolactin, which could 
aggravate partial hypopituitarism and sick euthyroid syn-
drome [ 103 ].  

    Hyper and Hypometabolism 

 At the onset of severe infections or thermal injury, a decreased 
metabolic rate with hypothermia and stimulation of the neu-
roendocrine response has been referred to as the ebb phase 

[ 104 ]. Hypermetabolism has then been noted during the fl ow 
phase, usually about 24 h after injury [ 105 ]. Normal meta-
bolic requirements were noted in children with SIRS or sep-
sis without any organ dysfunction [ 106 ]. Briassoulis et al. 
noted a predominance of a hypermetabolic pattern which 
declined within 1 week of an acute stress [ 107 ]. In adults, 
hypermetabolism occurs as a result of an increased oxidation 
of glucose and fatty acids [ 108 ], as well as an increased rate 
of neoglucogenesis through the use of lactate, glycerol or 
amino acids (alanine, glutamine, serine, glycine). 

 Humoral factors released by the wound have been shown 
to trigger skeletal muscle proteolysis. TNF-α, also known as 
“cachectin”, plays a major role along with IL-1 in the devel-
opment of “septic autocannibalism” [ 108 ]. Decreased lipo-
protein lipase activity induced by TNF-α leads to increased 
serum levels of triglycerides, cholesterol and hyperglycemia, 
a clinical condition known as the “metabolic syndrome”. 
Glucose-lactate metabolism between skeletal muscle and 
liver is known as the Cori cycle. Under hypoxic conditions of 
tissue injury or infection, glucose is transformed into lactate 
which is further converted within liver into glucose, before 
returning to the injured area. This process resulted in a net 
loss of 4 mol of adenosine triphosphate per cycle which may 
explain in part the drainage of energetic reserve. In the most 
severely ill patients, muscle protein breakdown with con-
sumption of branched amino acids and increased nitrogen 
urinary losses, may lead to muscular cachexia, atrophy of 
intestinal epithelium, abnormal wound healing and second-
ary immune dysfunction.  

    Cellular Dysoxia 

 Compromised oxygen delivery in shock is a major determi-
nant of organ failures. Inducible nitric oxide synthase (iNOS) 
triggered by the infl ammatory response liberates large con-
centrations of nitric oxide (NO), far exceeding the regional 
production [ 109 ]. This may lead to abnormal regional vascu-
lar blood fl ow and would contribute to inadequate oxygen 
delivery [ 109 ]. The severity of arterial hypotension in 
 pediatric sepsis is correlated with serum concentrations of 
nitrites and nitrates [ 74 ]. Neuroendocrine and infl ammatory 
factors can exacerbate hypoperfusion as discussed. Although 
organ failure is classically believed to result from hypoxia 
and cellular damage, histological inspection of dysfunctional 
organs is often normal [ 110 ]. This would suggest a func-
tional rather than a structural defi cit. 

 Cytopathic dysoxia is therefore potentially important to 
the pathogenesis of MODS. Mitochondrial respiration gen-
erally increases in the acute phase of critical illness, but 
tends to fall with prolonged infl ammation [ 111 ]. The pres-
ence of glucocorticoids and thyroid receptors on  mitochondria 
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[ 112 ] suggests the integration of neurohormonal demands 
with corresponding energy supply at the cellular level. 
However, NO and cytokines have been shown to inhibit 
enzymes of the mitochondrial respiratory chain, which cur-
tails energy production [ 113 ]. Markers of oxidative and 
nitrosative stress also correlate with decreased mitochondrial 
respiratory chain activity (mainly Complex I) [ 114 ]. Despite 
reduced ATP production from cytopathic dysoxia, ATP lev-
els are largely maintained in surviving septic patients, 
thereby implying a state of diminished cellular energy con-
sumption [ 115 ]. Based on these observations, Singer et al. 
have argued that multiorgan failure is a survival mechanism 
instating a dormant state analogous to hibernation that may 
increase the chances of survival when faced with a poten-
tially overwhelming insult [ 116 ].   

    Organ Dysfunctions in Critically Ill Children 

    Cardiovascular Dysfunction and Septic Shock 

 Hemodynamic profi les noted in critically ill children with 
septic shock are more unpredictable than initially recognized 
[ 117 – 119 ]. Indeed, only 20 % of children with fl uid refrac-
tory septic shock presented the classical picture of high car-
diac index and low systemic vascular resistance [ 120 ]. 
Nearly 60 % of patients showed low cardiac index with high 
systemic vascular resistance, and both parameters might 
even be decreased [ 120 ]. During shock, sympathetic stimula-
tion preferentially directs blood fl ow toward the brain and 
myocardium, diverting it from the splanchnic circulation 
(the so-called “dive refl ex”). This may lead to increased 
serum lactate concentrations [ 121 ,  122 ]. In contrast to adults, 
most studies performed in critically ill children did not fi nd 
the gastric pH to be predictive of developing MODS or death 
[ 121 ,  123 – 126 ]. However, decreased intestinal pH in very 
low birth weight infants was associated with a higher risk of 
developing necrotizing enterocolitis [ 127 ].  

    Acute Lung Injury (ALI) and Acute 
Respiratory Distress Syndrome (ARDS) 

 Pulmonary congestion with protein-rich pulmonary edema is 
a cardinal feature of the acute respiratory distress syndrome 
(ARDS) [ 26 ,  128 ], which has been associated with a 20 % 
mortality rate in children [ 129 ]. This can be due to a direct 
pulmonary insult such as infection (so-called “direct ARDS”) 
or secondary to systemic infl ammation (so-called “indirect 
ARDS”). Abnormally increased vascular pulmonary perme-
ability has been associated with platelet activation, neutro-
phils and macrophage infi ltration [ 128 ], as well as with fi brin 
exudate resulting in hyaline membrane formation [ 128 ]. 

During the early phase of pulmonary injury, a restrictive 
 pattern is noted with a decrease in respiratory system 
 compliance and forced vital capacity [ 130 ]. The natural 
course of ARDS has been characterized by inadequate gas 
exchanges requiring more aggressive mechanical ventila-
tion. This leads to the production of infl ammatory mediators 
that would further increase pulmonary capillary permeability 
and generates deleterious mechanical forces that leads to fur-
ther damage of the alveolar-capillary membrane [ 131 ].  

    Gut Mucosal Barrier Dysfunction 

 Gut injury and infl ammation have been proposed as the 
“motor of MODS” [ 132 ]. The mechanism was thought to be 
related to intestinal bacteria and/or endotoxin translocating 
to the systemic circulation via the portal vein. However, nei-
ther clinical studies nor animal studies demonstrated bacte-
rial translocation via the portal vein [ 133 ]. Instead it appears 
that mesenteric lymph translocates factors which activate 
neutrophils and injure endothelial cells [ 133 ]. In neonates, 
the development of necrotizing enterocolitis resulted in 
increased plasma endotoxin levels [ 134 ]. Endotoxemia was 
more severe at the onset of illness among infants with necro-
tizing enterocolitis and play a critical role in the development 
of MODS [ 134 ]. Theorically, measures to improve gut epi-
thelial barrier may improve or prevent MODS. 

 MODS is a signifi cant risk factor to develop upper gastro-
intestinal bleeding [ 135 – 137 ]. Clinically signifi cant upper 
gastrointestinal bleeding occurs in 2 % of PICU admissions 
[ 137 ]. It is most frequently observed among mechanically 
ventilated patients with a PRISM score higher than 10, and 
with evidence of systemic coagulopathy [ 137 ].  

    Neuromuscular Syndromes 

 Neuromuscular syndromes, including critical illness poly-
neuropathy, pure motor polyneuropathy, thick-fi lament 
myopathy, and necrotizing myopathy have been described 
[ 138 – 141 ]. Prolonged weakness has been identifi ed in 2 % 
of critically ill children studied prospectively, of whom 63 % 
had MODS and 57 % had transplantation [ 142 ]. SIRS has 
been proposed as a common underlying pathogenic process, 
which may have been potentiated by the use of corticoste-
roids or neuromuscular blocking agents [ 138 ]. Patients 
showed fl accid quadriplegia with the inability to wean from 
ventilatory support [ 138 ]. In most severe cases, deep tendon 
refl exes were abolished. Electrophysiological abnormalities 
usually showed a pattern of axonal polyneuropathy or abnor-
malities of neuromuscular transmission [ 138 ]. Recovery in 
strength most frequently occurred over a period of weeks to 
months.   

F. Proulx et al.



467

    Outcome of Pediatric MODS 

 Development of MODS is associated with greater resource 
use and an increased length of stay in the PICU [ 28 ]. A nor-
mal quality of life with minimal health problems is reported 
in 60 % of children with MODS, while 32 % indicated a fair 
quality of life with ongoing health, emotional, social, physi-
cal or cognitive problems that required some intervention or 
hospitalization; 2 % had a poor quality of life [ 143 ]. The 
return of organ function in children who developed MODS 
has not been examined in a systematic manner. There are few 
small case series in children with ARDS or those with MODS 
after cardiac surgery [ 144 ,  145 ]. In one study, 78 % of chil-
dren who left the hospital after acute renal failure in the ICU 
survived beyond 24 months [ 146 ].  

    Treatment of Pediatric MODS 

 The care of children with MODS is best performed by a mul-
tidisciplinary team that carefully balances multiple therapeu-
tic modalities. These modalities include general supportive 
care and organ specifi c therapeutics. The patient clinical con-
dition should be reassessed periodically as for the need to 
perform complementary exams or invasive procedures in 
order to distinguish between possible, probable or defi nitive 
diagnosis. 

    General Supportive Care 

 Control of the infectious focus is of major importance. 
 Antibiotic therapy  should be started early with appropriate 
resection of infected or necrotic tissue. However, the pro-
longed use of large spectrum antibiotic therapy should be 
avoided when cultures are negative, and the risk-benefi t of 
invasive catheters must be re-evaluated periodically. The use 
of recombinant human activated protein C reduced mortality 
and improved organ dysfunction among adults with severe 
sepsis [ 147 ]. However, in the RESOLVE trial, a pediatric 
trial in which children with sepsis-induced cardiovascular 
and respiratory failure were randomly assigned to receive 
placebo or recombinant human activated protein, there was 
no difference between treatment groups in either organ fail-
ure resolution or mortality [ 148 ]. While overall bleeding 
events were not different between groups, there was an 
increased incidence of central nervous system bleeding in 
the treated group among children younger than 2 months. 
Based upon follow-up trials in adults showing no benefi t, the 
manufacturer removed activated protein C from the market 
and it is no longer available for clinical use [ 149 ]. Results of 
the CORTICUS trial in adults suggest that although shock 
reversal may occur more rapidly with corticsteroids, overall 

survival is not improved, apparently due to an increased rate 
of infections [ 150 ]. In the case of a transplanted patient with 
active systemic infection,  immunosuppressive therapy 
should be minimized . Lymphopenia may occur with the pro-
longed use of dopamine or steroids, and prolonged lympho-
penia has been associated with secondary infection and 
MODS [ 65 ]. 

 A large-scale multicenter clinical trial in PICU patients 
who were hemodynamically stable, the TRIPICU study, 
showed that a  restrictive transfusion strategy  based on an 
hemoglobin transfusion threshold of 70 g/L, was not inferior 
to a liberal approach (threshold: 95 g/L) with regard to the 
number of patients with “new or progressive MODS or 
death” [ 151 ]. The incidence rate of “new and/or progressive 
MODS” in the TRIPICU study was 12 %, while the death 
rate was, as expected, only 4 %. 

 Critically ill children should receive  appropriate sedation 
and analgesia . Vet et al. have recently shown that increased 
disease severity resulted in lower clearance of midazolam 
(decreased cytochrome 3A activity), without decreasing 
midazolam dose requirements [ 152 ]. Several drugs used in 
critical care have a narrow therapeutic index. Caution should 
be applied when using nephrotoxic or hepatotoxic drugs, 
with a special emphasis on timely drug dosages, metabolic 
clearance and drug interaction. Iatrogenic complications 
may typically occur due to diffi cult vascular catheterization, 
or overactive cardio-respiratory support usually based on a 
blind treatment of numbers. 

 While inadequate oxygen delivery to tissues results in 
organ dysfunction initially, MODS itself may well occur as 
a result of mitochondrial dysfunction [ 153 ]. As children 
with septic shock have better outcomes than adults, it is 
suggestive that their mitochondrial functions are relatively 
preserved compared to that of adults. This is a new area of 
research as therapies are being developed to affect mito-
chondrial function in sepsis [ 154 ]. There is some evidence 
that  blood glucose control  can improve mitochondrial dys-
function in patients with sepsis [ 155 ]. What remains 
unclear at this point is whether therapy aimed at reversing 
the  metabolic response is helpful in critically ill patients 
[ 156 ]. In medical or surgical adult ICUs, tight glycemic 
control with intensive insulin therapy has been reported to 
decrease morbidity or mortality; other studies suggested 
no benefi t or potential harm due to hypoglycemia 
[ 157 – 159 ].  

    Organ Therapeutic Management 

 In this section, only some specifi cities of organ dysfunction 
management are reported. For more details in the manage-
ment, readers should refer to the appropriate and relevant 
chapters later in this textbook. 
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    Hemodynamic Management 
 Early goal-directed therapy has been shown to decrease mor-
tality and the severity of MODS in adults with sepsis [ 160 ]. 
Guidelines developed in 2002 proposed a time-dependent 
fl ow diagram in the hemodynamic support of children with 
sepsis [ 161 ].  

    Lung Protective Ventilation 
 There is no clear data in children. Expert opinions recom-
mend to keep positive inspiratory pressures below 30 cmH 2 O 
and consider small tidal volume ventilation (physiologic tidal 
volumes in a normal subject are in the range of 6–8 ml/kg). 
The other therapies such as endotracheal surfactant, high- 
frequency oscillatory ventilation, prone positioning, bron-
chodilators or corticosteroids for lung infl ammation and 
fi brosis need further research before they can be recom-
mended in clinical practice [ 162 ].  

    Renal Failure Management 
 Renal replacement therapy can be continuous or intermittent 
according to team experience and patient tolerance. High 
dialysis dose did not demonstrate any benefi ts in adults [ 163 , 
 164 ] and no data are available in children. Although, fl uid 
overload is a risk factor of death in adults [ 165 ,  166 ] and 
children [ 90 ,  167 ,  168 ], no data are available on the impact 
of negative fl uid balance on critically ill children outcome 
[ 169 ]. Such aggressive ultrafi ltration needs to be balanced 
with the risk of hypovolemia.  

    Nutritional Support 
 Nutritional support may allow suffi cient protein-calorie 
intake. Early enteric feeding has been proposed to prevent 
intestinal disuse with secondary mucosal atrophy, decreasing 
the susceptibility to bacterial translocation and systemic 
infl ammation. Indeed, the capacity to tolerate enteral feed-
ings, as for the mobilization of third space and peripheral 
edema, usually represent a trend for clinical improvement.  

    Withdrawal of Curative Care 
 Despite the willingness to provide as good as possible inten-
sive care to children with MODS, several patients simply per-
sistently fail to improve or spontaneously further deteriorate, 
presenting several complications, that may ultimately be 
viewed as an inexorable pathway to death. Therefore, the issue 
of medical futility and palliative care is frequently encoun-
tered in children with MODS. The pro’s and con’s of not esca-
lating the level of care, the withdrawal of cardiopulmonary 
resuscitation (CPR), or discontinuing some of the therapeutic 
modalities, are usually evaluated by the members of the mul-
tidisciplinary team. With the aim of reaching a consensus 
between the medical team and family, honest clinical informa-
tion should be provided at least daily to the family, including 
when standard of medical care fails to lead to recovery.       
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