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        Introduction 

 Pulmonary hypertension (PH) is defi ned as a mean pulmo-
nary artery pressure (PAP) of greater than or equal to 
25 mmHg. This simple defi nition belies the complexity and 
variety of pathophysiologic situations that can cause PH in 
critically ill pediatric patients. Moreover, pulmonary vascu-
lar dysfunction can complicate the course of patients before 
the defi nition of PH is satisfi ed. This chapter will provide a 
brief overview of the disease processes associated with PH, 
review the key pathophysiologic principles, and describe a 
general therapeutic approach, with an emphasis on the criti-
cal care setting.  

   Clinical Classifi cation and Etiology 

 Over the past 40 years, clinical classifi cation schemes have 
evolved in order to keep pace with the expanding number of 
disease processes identifi ed to be associated with PH. The 
initial classifi cation endorsed by the World Health 
Organization in 1973 divided PH into only two categories – 
primary and secondary PH. The most recent classifi cation, 
which followed the 5th World Symposium on PH in 2013, 
divided PH into 5 groups, with 28 subgroups (Table  15.1 ) [ 1 ].

   The prevalence of PH in pediatric patients is not known 
precisely. A French registry estimated the prevalence of PH 
to be 3.7 cases/million [ 2 ]. In that cohort, the majority (60 %) 
had idiopathic PH, 24 % had PH associated with congenital 
heart disease, and 10 % had familial PH [ 2 ]. An earlier report 
from the UK Pulmonary Hypertension Service for Children 
from 2001 to 2006 described 216 children with PH [ 3 ]. In 
that cohort, 28 % of the patients had idiopathic PH, 31 % had 
Eisenmenger physiology, 30 % had postoperative PH, 19 % 
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    Abstract  

  Neonates, infants, and children may present to critical care settings primarily due to pulmo-
nary hypertension, or pulmonary hypertension may complicate the course of another ill-
ness. In advanced pulmonary hypertension, progressive pulmonary vascular functional and 
structural changes ultimately cause increased pulmonary vascular impedance, increased 
right ventricular afterload, right ventricular failure, and death. In addition, in the setting of 
certain critical illnesses severe pulmonary hypertension can develop rapidly (i.e. pulmonary 
hypertensive crisis) or pulmonary vascular dysfunction can complicate the course, even in 
the absence of preexisting frank pulmonary hypertension. Management includes: the pre-
vention and/or treatment of active pulmonary vasoconstriction, the support of right ven-
tricular function, and treatment of the underlying disease, if possible. Most available 
therapies that target the pulmonary vasculature promote vascular relaxation by augmenting 
or inhibiting factors, or mediators of their downstream signaling cascades, that originate in 
the pulmonary vascular endothelium. These pathways include: nitric-oxide-cGMP, prosta-
cyclin, and endothelin-1. This chapter will provide a brief overview of the disease processes 
associated with pulmonary hypertension, review the key pathophysiologic principles, and 
describe a general therapeutic approach, with an emphasis on the critical care setting.  
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had PH associated with lung disease, 9 % had PH associated 
with miscellaneous disorders including HIV, bone marrow 
transplant and metabolic disease, 6 % had connective tissue 
disease, and 5 % had PH associated with complex un- 
operated or palliated congenital heart disease [ 3 ]. 

 In the neonatal population, persistent pulmonary hyper-
tension of the newborn (PPHN) warrants particular attention. 
The incidence of PPHN has been estimated to be approxi-
mately 2 per 1,000 live births [ 4 ]. PPHN may occur as a pri-
mary disorder of the fetal pulmonary circulation, or may be 
secondary to pathologic processes that cause a maladaptive 
transition from the fetal to neonatal circulation, such as sep-
sis, meconium aspiration or surfactant defi ciency, or diseases 
that result in abnormalities of lung development, such as 
congenital diaphragmatic hernia [ 5 ]. Furthermore, PH is also 
associated with chronic lung disorders, including broncho-
pulmonary dysplasia [ 6 – 9 ]. 

 It is important to recognize that patients may have signifi -
cant pulmonary vascular disease without resting PAPs that 
meet the defi nition of PH [ 10 ]. For example, patients with 
congenital cardiac defects resulting in either increased pul-
monary blood fl ow or impaired pulmonary venous drainage 
are prone to episodes of acute reactive pulmonary vasocon-
striction, even when baseline PAPs are normal, that can 
result in catastrophic cardiopulmonary collapse, particularly 
in the postoperative period after exposure to cardiopulmo-
nary bypass [ 11 ,  12 ]. In addition, certain disease processes 
can create pulmonary vascular disease in patients without 
preexisting abnormalities. For example, acute lung injury 
(ALI) is associated with pulmonary vascular endothelial 
injury, that can lead to vascular obstruction from intravascu-
lar thrombi, segmental atelectasis, and/or increased hypoxic 
pulmonary vasoconstriction [ 13 ,  14 ]. In some patients this 
can progress to PH and right ventricular failure [ 13 – 16 ]. In a 

   Table 15.1    Clinical classifi cation of pulmonary hypertension 1    

 1. Pulmonary arterial hypertension (PAH) 
  1.1 Idiopathic PAH 
  1.2 Heritable 
  1.2.1 BMPR2 
  1.2.2 ALK1, ENG, SMAD9, CAV1, KCNK3 
  1.2.3 Unknown 
  1.3 Drug- and toxin-induced 
  1.4 Associated with 
  1.4.1 Connective tissue disease 
  1.4.2 HIV infection 
  1.4.3 Portal hypertension 
  1.4.4 Congenital heart diseases 
  1.4.5 Schistosomiasis 
 1′. Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis 
 1″. Persistent pulmonary hypertension of the newborn (PPHN) 
 2. Pulmonary hypertension owing to left heart disease 
  2.1 Systolic dysfunction 
  2.2 Diastolic dysfunction 
  2.3 Valvular disease 
  2.4 Congenital/acquired left heart infl ow/outfl ow tract obstruction and congenital cardiomyopathies 
 3. Pulmonary hypertension associated with lung disease and/or hypoxemia 
  3.1 Chronic obstructive pulmonary disease 
  3.2 Interstitial lung disease 
  3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 
  3.4 Sleep-disordered breathing 
  3.5 Alveolar hypoventilation disorders 
  3.6 Chronic exposure to high altitude 
  3.7 Developmental abnormalities 
 4. Chronic thromboembolic pulmonary hypertension (CTEPH) 
 5. Pulmonary hypertension with unclear multifactorial mechanisms 
  5.1 Hematologic disorders: chronic hemolytic anemia, myeloproliferative disorders, splenectomy 
  5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis 
  5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 
  5.4 Other: tumoral obstruction, fi brosing mediastinitis, chronic renal failure, segmental PH 

   1 Adapted from Simonneau et al. [ 1 ]. With permission Elsevier  
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cohort of 23 children with ALI, Katz and colleagues found 
that PAP, pulmonary vascular resistance (PVR), and intra-
pulmonary shunt fractions were higher in non-survivors than 
in survivors [ 17 ]. More recently, Bull and colleagues evalu-
ated the transpulmonary gradient (PAP – pulmonary capil-
lary wedge pressure) and the PVR index in 475 and 470 
(respectively) adult patients with ALI, and found that pulmo-
nary vascular dysfunction was common and independently 
associated with poor outcome [ 18 ].  

   Diagnosis 

 Invasive and noninvasive techniques are used in order to 
diagnose, classify, and manage PH. Indwelling pulmonary 
artery catheters provide the most direct information, allow-
ing for measurements of vascular pressures and cardiac out-
put, and calculations of PVR. However, these catheters are 
used infrequently in critically ill pediatric patients, owing to 
size limitations and a lack of evidence that justifi es their rou-
tine use. 

 Standard noninvasive studies include ECG and transtho-
racic echocardiography. The chief fi nding of interest on an 
ECG is evidence of right ventricular hypertrophy, although 
studies of patients with known PH have demonstrated that 
ECG alone lacks adequate sensitivity and specifi city [ 19 ,  20 ]. 

 The important data that may be obtained by echocardiog-
raphy are: an estimate of systolic pulmonary arterial pressure 
(sPAP), right and left ventricular function, and cardiac anat-
omy, including determinations of chamber sizes, valvular 
function, and intracardiac shunts. In general, the sPAP is 
considered equivalent to the right ventricular systolic pres-
sure (RVSP), unless there is right ventricular outfl ow tract 
obstruction or pulmonary valve stenosis. With the use of 
Doppler echocardiography, RVSP is estimated by determin-
ing the velocity of fl ow across the tricuspid valve during sys-
tole (tricuspid regurgitation jet, TR jet). A modifi cation of 
the Bernoulli equation is used to estimate the RVSP, as fol-
lows: RVSP = 4ν 2  + RAP, where ν is the velocity of the TR jet 
in meters per second, and RAP is the right atrial pressure that 
is ether standardized or estimated by echocardiography. 
Multiple studies have validated estimates of sPAP  determined 
by echocardiography using right-heart catheterization as 
confi rmation [ 21 – 29 ]. In the absence of a measurable TR jet, 
parameters related to right ventricular outfl ow patterns and 
time intervals could be assessed by Doppler echocardiogra-
phy with demonstrated accuracy compared to right- heart 
catheterization [ 30 – 33 ]. Recently, Arkles and colleagues 
found that the shape of the right ventricular Doppler enve-
lope predicted hemodynamics and right heart function in 
adult PH patients [ 34 ]. The same group in an earlier study 
demonstrated that another echocardiographic estimate of 
right heart function, the tricuspid annular plane systolic 

excursion (TAPSE), was refl ective of RV function when 
compared to right heart catheterization, and predicted sur-
vival in a cohort of 63 adult PH patients [ 35 ]. 

 Cardiac catheterization remains the “gold standard” for 
the diagnosis of pulmonary hypertension. In addition to mea-
suring PAP and PVR, cardiac catheterization can assess for 
intracardiac and extracardiac shunts, evaluate the pulmonary 
vascular anatomy (such as assessments of pulmonary venous 
abnormalities), and measure intracardiac pressures and car-
diac output. Furthermore, pulmonary vascular reactivity test-
ing is essential in selecting appropriate therapy. Indeed, 
children who are responsive to acute vasodilator testing 
(evoked by short acting agents such as inhaled nitric oxide 
(iNO) or iloprost, and intravenous epoprostenol or adenos-
ine) which is defi ned as a ≥20 % decrease in PAP without a 
decrease in cardiac output, have been shown to have 
improved survival [ 36 ]. In addition, responsiveness to acute 
vasodilator testing predicts a favorable response to long-term 
therapies, such as calcium channel blockers [ 37 ,  38 ]. 
Conversely, calcium channel blockers may be deleterious for 
patients not responsive to vasodilator therapy, which exem-
plifi es the value of this information [ 39 ,  40 ]. However, the 
timing of cardiac catheterization is often less clear. Indeed, 
catheterization may not be safe in critically ill patients suf-
fering from severe acute PH. 

 Other diagnostic modalities include V/Q scan, CT scan, and 
MRI. Thromboembolic disease may present with pulmonary 
hypertension, and can be evaluated by V/Q scan. Several stud-
ies found that V/Q scanning was highly sensitive and specifi c 
in differentiating between idiopathic pulmonary hypertension 
and thromboembolic disease [ 41 – 43 ]. Contrast enhanced CT 
scan and/or MRI can help identify causes of pulmonary hyper-
tension. Thromboembolic disease may be visualized by both 
modalities [ 44 ]. In addition, both imaging techniques can help 
identify other pulmonary pathology, such as interstitial disease, 
masses or vasculitis [ 45 ]. Findings on CT scan, such as pulmo-
nary artery size, may contribute to the diagnosis of pulmonary 
hypertension, but do not replace Doppler echocardiography 
[ 46 – 49 ]. MRI can better delineate the cardiac anatomy, partic-
ularly chamber sizes and wall thickness, and MRI measure-
ments can detect PH [ 50 – 52 ]. However, like CT, it is not clear 
that MRI offers signifi cant advantages for diagnosis compared 
to Doppler echocardiography.  

   Pathophysiology 

 The pathophysiology of PH is multifactorial, complex, and 
incompletely understood. Various etiologies are associated 
with different particular mechanisms of disease, and a unify-
ing construct has not been identifi ed. However, several path-
ways common to a number of etiologies have been 
elucidated. 
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   Hemodynamics and Morphology 

 From a hemodynamic standpoint, the morbidity and mortal-
ity associated with PH relates to increased right ventricular 
afterload. Over some period of time, compensatory mecha-
nisms fail leading to right heart failure and death. It is impor-
tant to note that the tempo of this clinical sequence varies 
across etiologies and individual patients. For example, right 
ventricular failure can develop rapidly in an infant following 
cardiac surgery (i.e. postoperative pulmonary hypertensive 
crisis) or may progress over years in other patients (e.g. 
Eisenmenger’s). 

 Although right ventricular failure is a common potential 
endpoint for patients with PH, the location of the disease 
within the pulmonary vasculature depends upon the particular 
etiology. This is important when considering available thera-
pies, since therapies appropriate for one group of patients 
may be deleterious for another. For example, iNO may be 
effective for patients suffering from acute pulmonary arterio-
lar constriction (e.g. pulmonary arterial hypertension (PAH); 
or PH owing to lung diseases and/or hypoxia), but may be 
entirely ineffective or even harmful in patients with pulmo-
nary veno-occlusive disease or left heart failure [ 53 – 55 ]. 

 Among the various PH groups, the mechanisms that result 
in increased right ventricular afterload are best understood in 
PAH. However, left heart disease is a common cause of PH, 
at least in adults [ 56 ]. In these patients, elevations in PAP 
relate to the transmission of elevated left atrial pressures. 
PVR may be normal. Although subsets of patients with left 
heart disease develop PAH, the associated mechanisms are 
less well understood and specifi c therapies for these patients 
have not been adequately studied [ 57 – 60 ]. Likewise, the pul-
monary vascular changes associated with pulmonary veno- 
occlusive disease, pulmonary capillary hemangiomatosis, 
and congenital cardiac defects associated with pulmonary 
venous obstruction are less well studied, but the initial eleva-
tions in PAP relate to the backward transmission of pressure 
across the pulmonary vasculature, a situation that is not 
likely to benefi t from pharmacologic pulmonary arteriolar 
dilation [ 61 – 63 ]. 

 In PAH, increased right ventricular afterload relates to 
increased PVR and decreased compliance [ 64 ,  65 ]. 
Traditionally, hemodynamic assessments focused on measur-
ing PAP and calculating PVR in PH patients, but more recent 
data have demonstrated value in measuring pulmonary vascu-
lar impedance, which combines resistance and compliance 
[ 66 – 68 ]. Increased PVR and decreased compliance in PAH 
relates to several basic mechanisms: increased pulmonary 
vascular reactivity, sustained pulmonary vasoconstriction, 
vascular remodeling, and luminal obstruction, due to  in situ  
thrombosis and/or obstructive neointimal and plexiform 
lesions. In 1958, Heath and Edwards fi rst described the histo-
pathology of pulmonary vascular changes associated with 

congenital cardiac defects, and devised a six grade classifi ca-
tion [ 69 ]. In their classifi cation, changes progress from medial 
hypertrophy (Grade I) to intimal hyperplasia (Grade II), 
lumen occlusion (Grade III), arterial dilatation (Grade IV), 
angiomatoid formation (Grade V) and fi brinoid necrosis 
(Grade VI). Rabinovitch and colleagues followed with a mor-
phometric classifi cation system, based on lung biopsies taken 
from patients (aged 2 days to 30 years, with a median age of 
1 year) with congenital cardiac defects [ 70 ]. This morpho-
metric analysis showed progression of disturbed arterial 
growth and remodeling of the pulmonary vascular bed that 
correlated with the aberrant hemodynamic state of the pulmo-
nary circulation. These changes were characterized by: (i) 
abnormal extension of vascular smooth muscle into small 
peripheral pulmonary arteries and mild medial hypertrophy 
of normally muscular arteries (Grade A), (ii) severe medial 
hypertrophy of normally muscular arteries (Grade B) and (ii) 
decreased pulmonary arterial number (Grade C) (Fig.  15.1 ). 
These vascular changes tend to  progress in a stepwise fash-
ion, and in severe disease obliterate portions of the pulmonary 
circulation at the level of the distal precapillary resistance 
arterioles. It is recognized that this sequence represents a 
pathologic framework, but that signifi cant heterogeneity 
exists in terms of the precise pathology of PAH [ 71 ]. 
Furthermore, the degree to which these changes are reversible 
remains unclear, but likely depends in part upon the etiology, 
and may be infl uenced by age [ 72 ]. For example, in a seminal 
study, Rabinovitch and colleagues demonstrated that age at 
surgery, lung morphometric analysis, and the Heath-Edwards 
system grade predicted the reversibility of structural and 
functional pulmonary vascular changes secondary to congen-
ital cardiac defects with increased pulmonary blood fl ow after 
surgical repair [ 73 ]. In addition, it must be remembered that 
even early reversible pulmonary vascular disease can contrib-
ute to morbidity and mortality. An important study by 
Celermajer and colleagues, for example, demonstrated that 
children with increased pulmonary blood fl ow due to intra-
cardiac shunting had a selective impairment of endothelium-
dependent pulmonary vascular relaxation, before their 
baseline PAP or PVR increased signifi cantly [ 10 ].

   In addition, extravascular forces also infl uence PAP and 
pulmonary vascular impedance. The relationship between 
intravascular pressures and alveolar pressures are well 
described [ 74 ,  75 ]. Pulmonary vessels are termed extra- 
alveolar, corner, or intra-alveolar. Extra-alveolar and corner 
vessels increase their size with lung expansion, due to radial 
traction placed on their walls by the lung parenchyma. Intra- 
alveolar vessels, however, are directly associated with alveoli 
and thus are subject to compression with alveolar expansion. 
This results in the classic U-shaped curve describing the rela-
tionship between PVR and lung infl ation, wherein PVR is 
lowest at functional residual capacity, but increased with 
under- and over-infl ation of the lung (Fig.  15.2 ). West further 
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characterized this relationship by dividing the lung into three 
theoretical zones, which move down the lung from the apex 
to the base, in an upright subject. These zones are based on 
the relationship between pulmonary artery pressure (PAP), or 
infl ow pressure, alveolar pressure (P av ), and pulmonary 
venous pressure (P ven ), or outfl ow pressure. In theory, no 
blood fl ows to zone I because P av  exceeds PAP, or 
P av  > PAP > P ven . In this zone, intra-alveolar vessels are col-
lapsed. Clinically, zone I conditions are negligible in a healthy 
lung, as pulmonary blood fl ow does occur at the apex. The 
fact that extra-alveolar and corner vessels are patent in this 
zone may help maintain blood fl ow. In Zone II, PAP exceeds 
P av  and blood fl ow occurs independent of outfl ow pressures, 
or PAP > P av  > P ven . In this zone, blood fl ow increases down the 
lung, since PAP, but not P av , is infl uenced by gravity. In Zone 
III, blood fl ow is dictated by the normal relationship of PAP 
to P ven , or infl ow pressure minus outfl ow pressure. In this 
zone, blood fl ow does not change dramatically down the lung 
as it does in zone II because gravity affects PAP and P ven  
equally, or PAP > P ven  > P av . Subsequently, an additional zone, 
zone IV, has been described where pulmonary blood fl ow 
decreases at the extreme base of the lung. This is due to the 
impact of the weight of the lung on the extra-alveolar and 
corner vessels, which causes compression thereby increasing 
resistance to fl ow; furthermore, the decrease in ventilation 

that occurs at the base results in areas of relative hypoxia with 
resultant hypoxic pulmonary vasoconstriction.

   Under normal conditions, pulmonary blood fl ow is largely 
determined by zone III conditions. It is important to stress 
that these zones are conceptual and that in disease states a 
number of factors in addition to gravity infl uence V/Q match-
ing; in addition, critically ill patients are rarely upright, but 
rather are supine or prone [ 76 ]. Particularly pertinent to pedi-
atric critical care are the effects of positive pressure ventila-
tion with high levels of peak end expiratory pressure. 
Increased alveolar pressure, may expand zone II and allow 
zone I conditions to be realized, resulting in mismatching of 
ventilation and perfusion and intrapulmonary shunting with 
hypoxia and hypercapnia. Likewise, pathology such as pneu-
mothorax, hemothorax, pleural effusion, pneumonia and pul-
monary edema, along with other conditions, can increase 
zone IV conditions within the lung. Finally, hypotension 
from multiple etiologies, such as hemorrhage, can expand 
zone I and zone II conditions.  

   Pulmonary Vascular Endothelium 

 It is now accepted that increased pulmonary vasoconstriction 
and impaired relaxation in PH is mediated in large part by 

a b

  Fig. 15.1    Examples of morphometric analysis done on lung biopsies 
taken from a patient with a small ventricular septal defect ( a ) and a 
patient with an atrioventricular septal defect and pulmonary hyperten-
sion ( b ). A cross section from arteries at the same level are shown 

(Elastic Van Geison stain, magnifi cation × 100). The wall thickness is 
increased in the patient with pulmonary hypertension ( b ).  Arrows  indi-
cate wall thickness and external diameter (Reprinted from Rabinovitch 
et al. [ 70 ]. With permission from Wolter Kluwers Health.)       
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aberrant endothelial function, wherein endogenous vasodila-
tors, such as nitric oxide (NO) and prostacyclin (PGI 2 ), are 
decreased while endogenous vasoconstrictors, such as endo-
thelin (ET-1) and serotonin (5-HT), are increased (Fig.  15.2 ) 
[ 77 – 82 ]. Indeed, the majority of approved therapies for PH 
target these endothelial-derived factors or their signaling 
pathways in some way (Fig.  15.3 ).

   NO is produced in the vascular endothelium by the 
enzyme endothelial NO synthase (eNOS), from the precur-
sor L-arginine. Once formed, NO diffuses into the adjacent 
smooth muscle cell and activates soluble guanylate cyclase 
(sGC), producing cGMP. cGMP results in smooth muscle 
cell relaxation through protein kinase G (PKG). cGMP is 
broken down by a family of phosphodiesterases (PDE), with 
PDE5 being prominent in the pulmonary vasculature 
(Fig.  15.2 ). 

 Arachidonic acid metabolism within vascular endothelial 
cells, results in the production of PGI 2  and thromboxane 
(TXA 2 ). PGI 2  activates adenylate cyclase, resulting in 
increased cAMP production, activation of protein kinase A, 
and subsequent vasodilation, whereas TXA 2  results in vaso-
constriction via phospholipase C signaling (Fig.  15.2 ). PGI 2  
also binds to platelet receptors, which inhibits their 
activation. 

 ET-1 is a 21 amino acid polypeptide also produced by 
vascular endothelial cells [ 83 ]. The vasoactive properties of 
ET-1 are complex [ 84 – 88 ]. However, its most striking prop-
erty is its sustained hypertensive action. The hemodynamic 
effects of ET-1 are mediated by at least two distinct receptor 
populations, ET A  and ET B  [ 89 ,  90 ]. The ET A  receptors are 
located on vascular smooth muscle cells, and mediate vaso-
constriction, whereas the ET B  receptors are located on endo-
thelial and smooth muscle cells, and thus may mediate both 
vasodilation and vasoconstriction, respectively (Fig.  15.2 ). 
In addition, ET B  receptors are involved in the clearance of 
ET-1. 

 An important area of active research is focused on under-
standing the mechanisms responsible for endothelial injury 
or dysfunction in PH. Some important mechanisms include: 
alterations in mechanical forces (such as increased pulmo-
nary blood fl ow associated with congenital cardiac defects, 
or altered fl ow velocities that are associated with areas of 
luminal narrowing) that result in increased vascular wall 
shear stress, hypoxia, oxidative stress, and infl ammation 
[ 91 – 99 ]. Additional factors that contribute to endothelial 
injury in some patients include, infection, such as HIV and 
Schistosomiasis, as well as injury from drugs or toxins 
[ 100 – 102 ]. 
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  Fig. 15.2    A schematic of some endothelial derived factors. These 
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guanylate cyclase,  GTP  guanosine-5′-triphosphate,  cGMP  guanosine-
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 Moreover, it is known that endothelial derived factors, such 
as NO, PGI 2 , and ET-1, are integral to processes beyond the 
regulation of vascular smooth muscle cell tone. Nitric oxide 
and PGI 2  are key regulators of vascular homeostasis, having 
antithrombotic and antiproliferative properties, in addition to 
their effects on vascular tone. Conversely, the mitogenic prop-
erties of ET-1 are well described. Indeed, endothelial injury or 
dysfunction likely contributes to alterations in infl ammatory 
cascades, growth factors, and transcriptional factors that are 
increasingly recognized as key mediators of the vascular 
remodeling associated with PH [ 99 ].  

   Pulmonary Vascular Smooth Muscle 

 Considerable efforts have been made to understand the pro-
cesses responsible for smooth muscle cell hypertrophy and 
proliferation that accompany PH. It is clear that a complex 
interplay exists between endothelial and smooth muscle 
cells. Some known mechanisms include: increased pericyte 
differentiation, smooth muscle cell migration, endothelial 
cell transdifferentiation, smooth muscle cell proliferation, 
smooth muscle cell hypertrophy, and infl ammation [ 103 , 
 104 ]. The extracellular matrix and matrix metalloproteinases 
(MMPs) are known to participate in these processes, with a 
cascade that involves the release of mitogens, such as basic 
fi broblast growth factor [ 105 – 107 ]. Multiple putative mecha-
nisms and mediators are currently under investigation, many 
of which involve abnormalities in apoptosis with some shar-
ing features with neoplastic processes [ 108 ]. In addition, 

genetic abnormalities participate in the development of PH 
in some patients, most prominently, mutations in bone mor-
phogenetic protein receptor 2 (BMPR2) [ 109 – 114 ].   

   Management Strategies and Therapeutic 
Options 

 The basic elements of PH management include: the 
 prevention and/or treatment of active pulmonary vasocon-
striction, the support of right ventricle function and, when 
possible, treatment of the underlying disease. The ultimate 
treatment would involve the regression of advanced pulmo-
nary vascular structural remodeling, but to date this remains 
an unattained goal. 

 In the critical care setting, avoidance, recognition and 
treatment of pulmonary hypertensive crises are paramount. 
Pulmonary hypertensive crises are most commonly observed 
in susceptible patients after cardiac surgery, but can occur in 
a number of settings. These life-threatening events involve: 
acute elevations in pulmonary vascular impedance, that 
cause an increase in right ventricular afterload, right ventric-
ular ischemia, and decreased cardiac output [ 115 ,  116 ]. 
Decreased cardiac output results from the associated increase 
in right ventricular end diastolic volume that shifts the intra-
ventricular septum to the left, decreasing left ventricular end 
diastolic volume and stroke volume. Decreased cardiac out-
put results in decreased systemic oxygen delivery and meta-
bolic acidosis. In addition, decreased pulmonary blood fl ow 
increases dead space ventilation. Distention of the  pulmonary 
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arteries and perivascular edema produce large and small air-
way obstruction, respectively, which further impairs 
ventilation- perfusion matching and decreases lung compli-
ance. In fact, the decrease in lung compliance can be so dra-
matic that chest wall movement is impaired, even with 
manual ventilation. A cycle of worsening hypoxemia, hyper-
capnia, and acidosis (metabolic and/or respiratory) that 
results in further increases pulmonary vascular impedance 
develops that ultimately ends with right heart failure and 
death if left untreated (Fig.  15.4 ) [ 117 – 121 ].

     Prevention and/or Treatment of Active 
Pulmonary Vasoconstriction 

 Increased pulmonary vascular reactivity is an early feature of 
PH, which manifests clinically as augmented pulmonary 
vasoconstriction in response to such stimuli as hypoxia, aci-
dosis, catecholamine-mediated α 1 -adrenergic stimulation 
associated with pain and/or agitation, and increases in intra-
thoracic pressure [ 121 – 123 ]. 

 In critical care settings, acute PH is often fi rst treated with 
pain control, sedation, oxygenation, and alkalinization. 

Indeed, recently published clinical practice guidelines for the 
hemodynamic support of pediatric and neonatal septic shock, 
specifi cally addressed the risk of elevated PAP/PVR and 
right heart failure in neonates with sepsis, and the potential 
need for metabolic and respiratory alkalinization as a part of 
the initial resuscitative strategy [ 124 ]. Decreasing oxygen 
tension and decreases in pH elicit pulmonary vasoconstric-
tion. Alveolar hypoxia constricts pulmonary arterioles, 
diverting blood fl ow away from hypoxic lung segments, 
toward well-oxygenated segments, thus enhancing 
ventilation- perfusion matching. This response to hypoxia is 
unique to the pulmonary vasculature. Indeed, in all other 
 vascular beds hypoxia is a potent vasodilator. The exact 
mechanism of hypoxic pulmonary vasoconstriction remains 
incompletely understood, but likely involves changes in the 
local concentration of reactive oxygen species that in turn 
regulate voltage-gated potassium channels and calcium 
channels [ 125 ]. Acidosis potentiates hypoxic pulmonary 
vasoconstriction, while alkalosis reduces it [ 126 ]. The exact 
mechanism of pH-mediated pulmonary vascular reactivity 
also remains incompletely understood, but appears to be 
independent of PaCO2. Recent data suggest that potassium 
channels play an important role in mediating these responses 
as well [ 127 ]. 

   Vasodilator Therapy 
 The most widely used therapies for PH work by altering one 
of three endothelial signaling cascades: NO-cGMP, PGI 2 , 
and ET-1. Figure  15.3  is a simplifi ed depiction of the various 
sites of action of the therapies. In the critical care setting, 
augmentation of NO-cGMP signaling is most common, but 
the use of PGI 2  analogs is increasing. For the treatment of 
chronic PH, combination therapy is often required, and in 
fact may also be necessary in severe PH in the critical care 
setting [ 128 – 132 ]. Calcium channel blockers have demon-
strated effi cacy in the chronic treatment of subsets of PH 
patients, although their use may be decreasing [ 37 ,  40 ]. 
However, in the acute care setting the effects on the systemic 
circulation are of great concern, particularly in the face of 
right heart failure, and thus they are rarely used [ 133 ].   

   NO-cGMP Cascade 

 Inhaled NO (iNO) is the best-studied and most widely used 
agent for acute selective pulmonary vasodilation. When 
delivered by inhalation, NO diffuses across the alveolus into 
the smooth muscle of the accompanying capillary, resulting 
in relaxation. NO then diffuses into the blood vessel where it 
is rapidly inactivated by its interaction with hemoglobin. In 
this way, the effects of iNO are relatively confi ned to the 
pulmonary circulation and to ventilated areas of the lung, 
thus optimizing VQ matching. In large trials, iNO was found 
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  Fig. 15.4    A schematic of a pulmonary hypertensive crisis. An acute 
increase in pulmonary arterial pressure ( PAP ) results in a decrease in 
pulmonary blood fl ow ( PBF ) and airway obstruction due to distention 
of pulmonary arteries proximal to the maximally constricted resistance 
arterioles and perivascular edema. This results in an increase in dead 
space ventilation and ventilation-perfusion ( V/Q ) mismatch, both of 
which contribute to respiratory acidosis. In addition, right ventricular 
end-diastolic pressure ( RVEDP ) and volume ( RVEDV ) increase, which 
can result in failure of the right ventricle ( RV ) and movement of the 
intraventricular septum leftward, with compromise of left ventricular 
fi lling (decreased left ventricular end-diastolic volume ( LVEDV )). This 
can impair cardiac output, resulting in metabolic acidosis. The resultant 
hypoxia (via hypoxic pulmonary vasoconstriction) and respiratory and 
metabolic acidosis can further increase PAP, causing a downward cycle       
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to decrease the need for extracorporeal life support in neo-
nates with PPHN and hypoxic respiratory failure, and these 
data led to its FDA approval [ 134 – 136 ]. Despite this initial 
indication, iNO is used to treat many other forms of PH and 
for diagnostic purposes. For example, several studies have 
investigated the use of iNO in pediatric patients undergoing 
cardiac surgery [ 12 ,  137 – 140 ]. These studies indicated that 
iNO was effective in lowering PAP and PVR in the postop-
erative period, but the data were less clear about the impact 
on outcome [ 141 ]. Likewise, investigators have examined 
the utility of iNO in the particular situations of bidirectional 
cavopulmonary connections and after Fontan completion 
[ 142 – 144 ]. In these patients, iNO decreased central venous 
pressure and transpulmonary gradient, and increased oxygen 
saturations. In addition, the pulmonary vascular response to 
iNO has been studied as a part of the assessment for opera-
bility in patients with PH associated with congenital heart 
disease [ 145 – 148 ]. These studies found that the combination 
of 100 % oxygen and iNO (80 ppm) produced maximal pul-
monary vasodilation and was more predictive than either 
treatment alone for postoperative outcome [ 145 – 148 ]. 

 Sildenafi l is a PDE5 inhibitor and, as such, its mechanism 
of action is to augment NO-cGMP signaling by inhibiting 
the degradation of cGMP. Increased cGMP results in pulmo-
nary vascular relaxation. It should be noted, however, that 
sildenafi l has both pulmonary and systemic effects. In addi-
tion, the effects of PDE5 inhibition may not be restricted to 
the vasculature. For example, a recent study found that PDE5 
was upregulated in the hypertrophied right ventricle and that 
PDE5 inhibition improved contractility [ 149 ]. Several stud-
ies have demonstrated the effi cacy of sildenafi l for the treat-
ment of chronic PH [ 150 – 154 ]. Despite limited data, the use 
of sildenafi l in infants and children with PH after cardiac 
surgery is increasing. Three small studies found that enteral 
sildenafi l facilitated weaning from iNO in pediatric patients 
with congenital heart disease undergoing therapy for postop-
erative PH [ 155 – 157 ]. Two studies examined the effects of 
intravenous sildenafi l in pediatric patients after cardiac sur-
gery [ 158 ,  159 ]. Both studies found that intravenous silde-
nafi l decreased PAP and PVR either to a greater extent than 
iNO or synergistically, but that its use was associated with 
increased intrapulmonary shunting and decreased systemic 
arterial pressures. 

 The administration of additional substrate for NOS with 
arginine and citrulline is another approach that has been 
taken to augment the NO-cGMP cascade, with some success 
[ 160 – 167 ].  

   Prostanoids 

 Higenbottam and colleagues, fi rst described the long-term 
use of intravenous PGI 2  for the treatment of PH almost 

30years ago [ 168 ]. Despite the many recent advances in ther-
apy, intravenous PGI 2 , epoprostenol, remains the best-proven 
and most effective therapy for chronic PH [ 169 – 173 ]. 
Complications associated with long-term epoprostenol are 
well known and include: thrombosis and infection secondary 
to the required indwelling central venous catheter, the need 
for dose escalation over time, and life threatening rebound 
PH with abrupt discontinuation of the infusion. 

 Given the success of chronic intravenous epoprostenol 
therapy, recent efforts have focused on developing additional 
agents and delivery approaches, in large part in order to 
address the complications and limitations associated with 
chronic intravenous infusions. In order to achieve selective 
pulmonary vascular relaxation, various investigations have 
focused on delivering prostanoids via the inhalational route 
[ 174 – 176 ]. This route (in large part due to the potential for 
selective pulmonary vascular relaxation) is particularly use-
ful in the intensive care setting. Iloprost is a PGI 2  analog that 
is FDA approved for administration by nebulization. Ivy and 
colleagues studied iloprost in 22 children with PH [ 177 ]. 
They found that inhaled iloprost decreased PAP to a degree 
equivalent to iNO with oxygen. Likewise, Rimensberger and 
colleagues administered inhaled iloprost and iNO, alone and 
in combination, to 15 children with PH secondary to con-
genital cardiac defects [ 178 ]. Both agents decreased the 
PVR:SVR ratio to a similar degree, and there was no added 
benefi t from a combination of the treatments. Furthermore, 
in an interesting study by Limsuwan and colleagues done in 
Thailand, which has relatively less access to iNO, inhaled 
iloprost decreased mean PAP and increased systemic satura-
tions without decreasing systemic blood pressure in eight 
children suffering from acute increases in PAP after repair of 
congenital heart disease [ 179 ]. 

 Other dosing strategies for prostanoids include subcuta-
neous and oral routes of administration, although these are 
less likely to be useful in critically ill children [ 180 – 185 ]. In 
children, an important impediment to the use of subcutane-
ous treprostinil relates to pain at the site of injection, but 
nonetheless it has been used successfully in these patients 
[ 186 ,  187 ].  

   Endothelin-1 

 Unlike augmentation of the NO-cGMP and prostanoid cas-
cades, inhibition of ET-1 signaling does not reliably cause 
acute pulmonary vascular relaxation, and thus ET receptor 
antagonists are considered chronic therapies. However, in a 
small study that included seven infants that had undergone 
surgical repair of left-to-right intracardiac shunts, Schulze- 
Neick and colleagues demonstrated that an intravenous infu-
sion of a selective ET A -receptor antagonist resulted in an 
acute decrease in PVR [ 188 ]. Notably, the addition of iNO 
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had no effect, and the decrease in PVR correlated with left 
atrial ET-1 levels. But, currently, intravenous ET receptor 
antagonists are restricted to experimental settings. 

 Presently, the most common ET receptor antagonist is 
bosentan, an oral dual ET receptor antagonist. A number of 
studies have demonstrated the effi cacy of bosentan in patients 
with chronic PAH, including children [ 189 – 192 ]. Bosentan is 
a sulfonamide-based agent metabolized by cytochrome P450 
enzymes and thus monitoring liver function is important due 
to potential hepatic toxicity [ 193 ,  194 ]. Newer agents include 
selective ET A -receptor antagonists [ 195 – 198 ].  

   The Support of Right Ventricular Function 

 Mortality from PH is most directly related to right ventricu-
lar function. The therapies outlined above may improve right 
ventricular function to the extent that they decrease right 
ventricular afterload, although emerging data suggest that 
some of these therapies, such as PDE5 inhibition and ET-1 
receptor antagonism, may also enhance or impair (respec-
tively) contractility of the hypertrophied right ventricle [ 149 , 
 199 ]. However, in addition to afterload reduction, other ther-
apies that support the right ventricle may be necessary, espe-
cially in acute care settings. 

 Under conditions of increased afterload, the contractility 
of right ventricular cardiomyocytes increases initially, due to 
changes in sarcomere length-tension relationships, increased 
Ca +2  sensitivity, and alterations in force-frequency relation-
ships [ 200 ,  201 ]. In addition, the time course over which 
right ventricular afterload increases with the state of the right 
ventricle (in particular, right ventricular mass) together infl u-
ence the degree to which the right ventricle can compensate 
[ 202 ]. For example, patients with Eisenmenger’s syndrome 
tolerate elevated right ventricular afterload far better than 
patients with normal right ventricles who suffer an acute pul-
monary embolism [ 200 ,  203 ]. 

 Nonetheless, over some period of time (acutely or chroni-
cally) compensatory mechanisms fail, leading to elevations 
in right ventricular end-diastolic volume and decreased out-
put. Due to ventricular interdependence, increases in right 
ventricular end-diastolic volume result directly in decreased 
left ventricular fi lling and decreased systemic output [ 204 ]. 
In fact, diastolic ventricular interactions, with decreases in 
left ventricular end-diastolic volumes, have been demon-
strated to be more closely related to stroke volume than PAP 
in patients with PAH [ 205 ]. It is also important to recog-
nize that right and left ventricular contractility are directly 
related. The ventricles share muscle fi bers, the interventricu-
lar septum, and the pericardial space. Based on studies that 
used electrically isolated right heart preparations and experi-
mental aortic constriction, it is estimated that 20–40 % of 
right ventricular systolic pressure is due to left ventricular 

 contraction [ 206 – 208 ]. In addition, right coronary artery per-
fusion is dependent, in large part, on the pressure gradient 
between the aortic root and right ventricle. 

 Taken together, then, the principles of right ventricular 
support are: a reduction in right ventricular afterload (i.e. a 
reduction in pulmonary vascular impedance), optimization 
of right ventricular volume, augmentation of right ventricu-
lar contractility, and maintenance of left ventricular contrac-
tility and systemic vascular resistance. Importantly, this 
strategy requires adequate left ventricular function. The 
physiology associated with PH due to left heart failure, is 
quite different. Left heart failure is associated with elevations 
in left ventricular end-diastolic volume and pressure, the 
reverse situation of right heart failure due to PAH. Moreover, 
in this situation decreased right ventricular afterload and/or 
increased systemic vascular resistance could result in clinical 
deterioration, with pulmonary edema or impaired cardiac 
output [ 53 ,  54 ,  209 ]. Interestingly, however, sildenafi l has 
been shown to increase cardiac output in patients with PH 
secondary to left heart failure, presumably due to reductions 
in pulmonary and systemic vascular resistance [ 210 ,  211 ]. 

 The optimization of right ventricular volume presents a 
signifi cant clinical challenge, as the proper management 
is dependent on the particular situation [ 212 – 217 ]. 
Although volume loading may be necessary in some situ-
ations, excessive volume may provoke adverse diastolic 
ventricular interactions. Management aimed at decreasing 
right ventricular volume (e.g. diuretics) may be necessary 
[ 217 ,  218 ]. 

 Inotropes are often necessary in order to augment right 
ventricular contractility, however it remains unclear if one 
agent is superior. Although dopamine has been shown to 
increase cardiac output in patients with PH, Liet and col-
leagues found that dopamine increased the PVR to systemic 
vascular resistance ratio in preterm infants with a widely pat-
ent ductus arteriosus [ 219 ,  220 ]. Based on animal studies, 
epinephrine may have a superior hemodynamic profi le in the 
setting of PH compared to dopamine, including a decrease in 
the PVR to systemic vascular resistance ratio, but direct clin-
ical evidence is sparse [ 221 ]. Dobutamine, at low doses, may 
result in a reduction in PVR, while increasing right ventricu-
lar contractility. Several clinical studies have demonstrated 
the effi cacy of dobutamine in adult patients with PH [ 222 –
 224 ]. Likewise, milrinone, a PDE3 inhibitor and inodilator 
that augments ventricular contractility while decreasing 
PVR and systemic vascular resistance, has been shown to 
improve right ventricular output in adult patients with PH 
[ 225 – 227 ]. The decrease in systemic vascular resistance may 
not be desirable and thus may need to be addressed by the 
addition of a vasopressor. Finally, the drug levosimendan, 
which is a Ca 2+  sensitizing agent and PDE3 inhibitor, holds 
great promise. Levosimendan has been shown to decrease 
PVR and improve right ventricular output in adult patients 
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with RV failure secondary to a number of conditions includ-
ing PH [ 228 – 232 ]. 

 The role of vasopressors is to increase systemic vascular 
resistance in order to augment right ventricular output 
through an elevation in left ventricular systolic pressure, and 
to maintain right coronary perfusion. Norepinephrine has 
been validated as a useful agent in a number of animal stud-
ies [ 233 ,  234 ]. Tourneux and colleagues demonstrated that 
norepinephrine increased left ventricular output, systemic 
arterial pressure, and pulmonary blood fl ow, while decreas-
ing the pulmonary to systemic pressure ratio in 18 newborns 
with PPHN [ 235 ]. Phenylephrine has been shown to increase 
right coronary blood fl ow in the setting of increased right 
ventricular pressures, but may also increase PVR [ 236 ,  237 ]. 
Vasopressin, a systemic vasoconstrictor and pulmonary 
vasodilator, has been advocated in the treatment of right ven-
tricular failure secondary to PH, with several positive clinical 
studies [ 238 – 243 ]. 

 Finally, atrial septostomy as a part of management for 
chronic pulmonary hypertension has been advocated in 
order to allow for decompression of the right ventricle due 
to right-to- left shunting [ 231 ,  244 – 249 ]. Severe hypoxemia 
with this approach remains a concern. Recently, 
Labombarda and colleagues described favorable results 
with the placement of a Potts anastomosis (descending 
aorta to left pulmonary artery) in two children with severe 
idiopathic PH, thereby directing desaturated blood to the 
lower body [ 250 ].  

   Treatment of Underlying Disease 

 The ability to impact the course of PH by treating associated 
conditions is highly variable. Early repair of congenital car-
diac defects represents the most successful effort to alter the 
natural history of PH [ 73 ,  122 ,  251 ,  252 ]. Likewise, PH 
related to treatable left heart disease would be expected to 
resolve in most cases, depending on the timing of the repair. 
However, treatment for other associated conditions may not 
decrease the incidence of PH. For example, PH can develop 
with Schistosomiasis and HIV infection despite treatment 
[ 253 ,  254 ]. The reversal of PH associated with portal hyper-
tension after liver transplant has been described, but not in 
large series [ 255 ,  256 ]. Likewise, the reversal of PH associ-
ated with systemic lupus erythematosus after hematopoietic 
stem cell transplantation has been described, but only as case 
reports [ 257 ]. The use of steroids has been successful in the 
treatment of some patients with autoimmune disease, mixed 
connective tissue disease, POEMS syndrome, Langerhans’ 
cell granulomatosis, and sarcoidosis [ 133 ,  258 – 261 ]. 
Advances in the management of sickle cell disease may 
decrease the incidence of associated PH, but defi nitive stud-
ies are lacking [ 262 ]. 

 Subsets of newborns with PPHN are often treatable, 
and can ultimately survive without PH [ 263 ]. Several 
reports have described the reversal of PH after tonsillec-
tomy or adenoidectomy for the treatment of obstructive 
sleep apnea [ 264 ,  265 ,  266 ]. In addition, PH related to 
high altitude can be reversed when patients move to sea 
level [ 267 ]. Home oxygen therapy is a relatively common 
treatment for pediatric patients with PH or at risk for 
developing PH. But, the data are confl icting about whether 
oxygen therapy alters the disease course, likely due to dif-
ferences between the diseases that are studied [ 268 ,  269 ]. 
Finally, an increasing number of metabolic conditions 
have been found to be associated with PH. For example, 
the association between thyroid disorders and PH is now 
well established, and in fact therapy has been shown to 
reverse PH in these patients [ 270 ].   

   Future Directions 

 Right heart failure due to elevated pulmonary vascular 
impedance is the ultimate cause of mortality in most 
patients with PH. The majority of patients with advanced 
disease do not respond to acute pulmonary vasodilators, 
and yet most available therapies either augment pathways 
that cause vasodilation or inhibit pathways that cause vaso-
constriction. Taken together it can be seen that an approach 
aimed at promoting the regression of structural pulmonary 
vascular remodeling may be a fundamentally more effec-
tive paradigm for patients with PH not associated with 
treatable conditions or with advanced PH. For critically ill 
patients with impending right heart failure, novel therapies 
may yet promote acute pulmonary vascular relaxation in 
patients that do not respond to the currently available treat-
ments, by targeting new pathways within endothelial and/
or smooth muscle cells. 

 Novel therapies in various stages of development include: 
direct sGC activators, eNOS couplers, antioxidants, cell- 
based therapy, vasoactive intestinal peptide, adrenomedullin, 
Rho-kinase inhibitors, tyrosine kinase inhibitors, statins, 
peroxisome proliferator–activated receptor agonists, elastase 
inhibitors, epidermal growth factor receptor inhibitors, and 
dichloroacetate.  

   Conclusions 

 Neonates, infants, and children may present to critical 
care settings primarily due to PH, or PH may complicate 
the course of another illness. A basic understanding of 
pulmonary vascular biology, the pathobiology and patho-
physiology of PH, and the therapeutic approach is essen-
tial for intensive care physicians caring for these 
vulnerable patients. Early attention to right heart function 
is absolutely essential.     
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