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20.1 Introduction

Research on design adopts many perspectives ranging from anthropology to
neurobiology to philosophy. The various research paradigms produce not only
different theories and models of different aspects of design, but also different types
of theories and models. For a quarter of a century, our research laboratory has
explored design from the perspectives of artificial intelligence, cognitive science,
and human-centered computing. Design research in these paradigms produces
information-processing theories and computational models of aspects of design, as
well as computer programs that implement and test the theories and models. These
products in turn often form the basis for the development of interactive technol-
ogies for supporting aspects of design practice as well as pedagogical techniques
for teaching elements of design theory and methods.

We have three main goals in this chapter. First, we want to briefly describe the
perspectives of knowledge-based artificial intelligence, computational cognitive
science, and human-centered computing, and in particular, the types of theories,
models, programs, and tools they produce. Second, we want to illustrate some of
the methods and artifacts of our research through a case study of problem–solution
coevolution in biologically inspired design. Starting with the extant Structure-
Behavior-Function model for expressing knowledge of technological and biolog-
ical systems, we develop a knowledge model of design problems called SR.BID
that is grounded in empirical data about biologically inspired design practice.
Third, we want to present the SR.BID model that captures problem descriptions as
well as problem–solution relationships in biologically inspired design. SR.BID
forms the basis for ongoing development of new interactive tools for supporting
biologically inspired design practice as well as new pedagogical techniques for
learning about problem formulation.
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20.2 Artificial Intelligence, Cognitive Science, and Human-
Centered Computing

Artificial intelligence has several research paradigms. In this work, we are inter-
ested in the paradigm of knowledge-based artificial intelligence that has twin goals
[22, 31]: to computationally understand human intelligence and to build intelligent
systems with human-level intelligence. Theories and models in knowledge-based
artificial intelligence typically use knowledge constructs to unify memory, rea-
soning, and learning processes, and thus address issues concerning the content,
representation, organization, use, and acquisition of knowledge.

We are interested in computational cognitive science that seeks to computa-
tionally understand animal cognition [43]. A classical paradigm in computational
cognitive science is human information processing that seeks to understand human
behavior in terms of information processing in the human mind [37]. Another
paradigm popular in modern cognitive science is situated cognition [6, 10] that
seeks to understand human behavior in terms of interaction with the physical and
social worlds.

Human-centered computing is an emerging interdiscipline within modern
computing [29]. Human-centered computing takes human experience and its
sociocultural context into consideration in the design of computational artifacts. In
practical terms, human-centered computing is the next stage in the evolution of
human–computer interaction as a discipline. As Fig. 20.1 shows, we are interested
in human-centered computing at the intersection of artificial intelligence, cognitive
science, and human–computer interaction. In particular, we are interested in
research on artificial intelligence and cognitive science that produces interactive
tool for supporting human designers in their work. Although not shown in
Fig. 20.1, we are also interested in research on artificial intelligence, cognitive
science, and human-centered computing that results in pedagogical techniques for
teaching and learning design theory and methods.

20.3 Information-Processing Theories, Computational
Models, Computer Programs, and Interactive Tools

We use the terms ‘‘theory’’ and ‘‘model’’ here in the sense of a scientific theory
and a scientific model [11, 12, 32, 36]. A scientific theory is (i) based on testable
hypotheses and makes falsifiable predictions, (ii) internally consistent and com-
patible with extant theories, (iii) supported by evidence, and (iv) modifiable as new
evidence is collected. An important cognitive feature of a scientific theory is that it
suggests a process or method for building, evaluating, revising, and accepting
(or abandoning) a theory.

As indicated above, we are interested in information-processing theories of
design. As an example, for a quarter of century the design research community has
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been developing Information-processing theories of analogical design (e.g., [17,
21, 35, 49]). In our own earlier work on analogical design, we have developed
normative artificial intelligence theories, techniques, and tools for analogical
design ranging from case-based design [18, 19] to cross-domain analogies [3, 20].
These theories are based on testable hypotheses about case-based design and cross-
domain analogies in design, respectively, and some of their predictions have been
evaluated through computational and experimentation.

A scientific model is an interpretation of a target system, process, or phe-
nomenon that proposes or elaborates on the processes and mechanisms that
underlie it. Like scientific theories, scientific models too have important cognitive
features. First, models are abstractions of reality. They productively constrain
reasoning by simplifying complex problems and thus suggest a course of analysis.
Second, models are cognitive tools for generating explanations. They serve as
tools both for specifying and organizing the current understanding of a system and
for using that understanding for explanation and communication.

We are interested in two closely related kinds of models in design. First, we are
interested in knowledge models. A knowledge model in design provides an
ontology (i.e., a vocabulary) for representing the knowledge and a structure for
organizing the knowledge in a design domain. For example, in our work on case-
based design, we developed the Structure-Behavior-Function (SBF) knowledge
model of the working of technological systems. The SBF knowledge model pro-
vides an ontology for expressing the knowledge of the system and a schema for
organizing the knowledge [23, 24, 38]. The SBF model enables retrieval, adap-
tation, evaluation, and storage of design cases in addressing new design problems
[19]. Similarly, in our work on cross-domain analogies in design, we developed
Behavior-Function (BF) abstractions of SBF models that provide a vocabulary for
representing teleological design patterns. The BF design patterns enable cross-
domain analogies in designing new technological systems [3, 20].

Second, we are interested in computational models of design. While an infor-
mation-processing theory of design is based on testable hypotheses and makes
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Fig. 20.1 Human-centered computing (HCC) at the intersection of artificial intelligence,
cognitive science, and human–computer interaction
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falsifiable predictions, a computational model of design provides architectures,
algorithms, and knowledge models for the theory. As Fig. 20.2 shows, computa-
tional models are more detailed and precise than information-processing theories.
Thus, our computational model of cross-domain analogies in design [3, 20] pro-
vides an architecture that integrates memory, reasoning, and learning processes,
SBF knowledge models of technological systems and BF knowledge models of
design patterns, as well as algorithms for accessing, using, learning, and storing the
design patterns.

The artificial intelligence paradigm also develops computer programs. A
computer program is an experiment that implements the computational model and
evaluates the information-processing theory. A computer program adds enough
detail and precision to the computational model to be executable on a computer, as
shown in Fig. 20.2. Thus, the Kritik [18, 19] and the Ideal [3, 20] computer
systems implement our computational models and evaluated the information-
processing theories of case-based design and cross-domain analogies, respectively.

The paradigm of human-centered computing also develops interactive tech-
nologies for supporting design practice. Indeed, interactive technologies have
revolutionized design practice over the last generation, and insofar as we can see
into the future, this trend likely will continue.

20.4 Problem–Solution Coevolution in Biologically
Inspired Design: An Illustrative Case Study
of Knowledge Modeling

The perspectives of artificial intelligence, cognitive science, and human-centered
computing on design are mutually compatible. Thus, a design researcher can move
from one paradigm to another depending on the research goal and the design
context.

Further, knowledge models are common to all three paradigms. However, our
discussion of knowledge models so far has been quite general and abstract. We now
illustrate knowledge modeling through a case study of problem–solution coevo-
lution in biologically inspired design (also known as biomimicry, biomimetics, and
bioinspiration) [1, 2, 46, 48]. Over the last decade or so, the design research
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community has been studying biologically inspired design from the perspectives of
artificial intelligence, cognitive science, and human-centered computing (e.g., [7,
41]). Our own interest in biologically inspired design spawned in part because it
entails cross-domain analogies from biological systems to technological systems
and thus provides an arena for further exploration of analogical design.

However, our work on biologically inspired design differs from our earlier work
on analogical design in three fundamental ways. First, unlike the earlier normative
artificial intelligence theories and models, our new work develops cognitive,
descriptive theories, and models of analogical design (e.g., [28, 44]). Second, our
work now has the additional goal of using our theories and models to develop
interactive technologies (e.g., [25]; http://dilab.cc.gatech.edu/dane/) and peda-
gogical techniques for aspects of design. Third, our empirical studies have found
that biologically inspired design entails not only cross-domain analogies but also
problem–solution coevolution [26, 27]. Problem–solution coevolution is a well--
known characteristic of creative design [14, 15, 33], but, insofar as we know,
biologically inspired design has not been previously studied as entailing prob-
lem–solution coevolution. In traditional problem solving, the problem remains
fixed even as solutions to the problem are generated. In problem–solution
coevolution, the problem evolves as solutions are generated, with the current
problem formulation influencing solution generation, and the current candidate
solutions influencing problem formulation. Perhaps more interestingly, we found
that biological analogies not only help generate solutions to a design problem, but
also support inception and evolution of design problems [26, 27].

As much as the scope, focus, and methodology of our work have evolved over
the years, our emphasis on grounding design processes in design knowledge has
remained constant. The question then becomes what is a good knowledge model
that can capture problem–solution coevolution in biologically inspired design? As
one might expect, different researchers in biologically inspired design have
developed different knowledge models, depending on the goal, scope, focus, and
methodology of their work. Thus, Biomimicry 3.8 Institute has developed an
ontology of functions of biological systems that purports to support its design
model for generating design solutions [4]. Vincent and his colleagues have
developed an ontology of biological systems that promises to support a TRIZ-like
model of biologically inspired design [45]. Stone, McAdams and their colleagues
have proposed the use of the extant function-flow ontology of Functional Basis for
the task of concept generation in biologically inspired design [34]. Chakrabarti and
his colleagues have developed a detailed SAPPhIRE knowledge model to support
biologically inspired design [40]. All these knowledge models are normative, even
if some of them are based on notions of best practices in biologically inspired
design. Perhaps more importantly, all these models focus on design ideation in
conceptual design (and thus do not address problem–solution coevolution).

In contrast, in this work we are interested in developing a knowledge model of
design problems that can capture the process of problem–solution coevolution in
biologically inspired design. We start with textual data from the practice of bio-
logically inspired design in an educational setting and then derive the knowledge
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model of design problems called SR.BID. We validate the SR.BID model through
comprehensive and repeatable categorization of unstructured textual data collected
in the biologically inspired design practice.

20.5 Methodology and Data

Since 2006, we have observed ME/ISyE/MSE/PTFe/BIOL 4740, an interdisci-
plinary, project-based class taught yearly and jointly by biology and engineering
faculty at Georgia Institute of Technology. In this course, mostly senior-level
design students work in small interdisciplinary teams of 4–5 on open-ended design
projects over the course of a semester. The extended, collaborative design projects
typically involve identification of a design problem of interest to the team and
conceptualization of a biologically inspired solution to the identified problem. Yen
et al. [47] describe the course and the design projects in detail.

We use three data sets collected from observations of the design projects in the
biologically inspired design class. The first set of data consisted of the project
submissions of one design team in Fall 2008 that focused on capture of solar
energy for use in homes. The project was selected as a typical example of bio-
logically inspired design. The data consisted of four individual problem description
assignments, a team mid-term presentation, and the team final presentation. We
shall refer to this as the 2008 data set. The following is an excerpt from a problem
description:

I think this is a big gap between the static and fragile solar panels that we have so far
engineered. So far, most solar panels are set up on a grid basis acting together especially
when moving to the sun rather than as individual. Continuing off that tangent I think it
would be interesting to have an individual solar panel that can stand alone and still
function. The snail shell structure is stand alone and has the ability to passively dissipate
heat by using the heat gradient so that it is cooler within the shell than the outside air and
ground this would be helpful for allowing the interior of a structure with solar panels to
remain cool.

The second set of data consisted of individual assignments given to students in
Fall 2010, and collected in the third week of class. This assignment asked students
to provide a short 1–2 page design problem description suitable for the biologically
inspired design context. A total of 38 assignments were collected (one of which
was eliminated as it belonged to a member of our research laboratory who was
taking the class at the time). We shall refer to this as the Week 3 2010 data set.

The third set of data consisted of an individual assignment given to students in
Fall 2010 and collected during the eighth week of class. This assignment consisted
of problem descriptions between one quarter of a page and one full page in length.
A total of 32 assignments were collected (the assignment from the member of our
laboratory was again eliminated). We shall refer to this as the Week 8 2010 data set.
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To analyze these data sets, we used a variation on the methodology of
Grounded Theory [16, 42]. In the Grounded Theory methodology, a theory about
any phenomenon is derived (solely) from data. In a recent variation, the theory is
derived from data but the initial coding scheme is seeded with a predefined
ontology [30]. As indicated above, we use the SBF knowledge model as a seed,
and then derive the SR.BID model from the data about biologically inspired
design.

20.5.1 Brief Review of the SBF Knowledge Model

SBF is a family of knowledge models that includes not only SBF models of
biologically and technological systems, but also BF models of design patterns (as
well as other models not described here) [19, 38]. Here, we briefly summarize the
basic SBF model that consists of three nested high-level schemas, the structure,
behavior, and function schemas [23]. The structure schema consists of a set of
elements, which may be classified as elements such as substances or components,
and connections among them. Elements may have associated properties and val-
ues, while connections express the relationship type (e.g., hinged) between
elements.

The behavior schema consists of states and transitions between the states.
States consist of a set of elements, and a set of property—value for the element.
Each transition is annotated by causal explanations for the transition. Since one
kind of causal explanation pertains to a function of a component, behaviors act as
indices to functions of components.

The function schema consists of a given or prerequisite state, and one or more
makes or resultant states. It also specifies one or more external stimuli. Also, it
specifies the behavior that accomplishes the function. Thus, functions act as
indices to behaviors. Functions can be of several types including accomplishment,
maintenance, prevention, and negation.

20.5.2 Construction of the SR.BID Knowledge Model

We started with a single coder to map the problem description text data in the 2008
data set to concepts in the SBF knowledge model. During initial coding, our goal
was to align the SBF ontology with the data and add new conceptual categories as
they emerged from the data.

Figure 20.3 shows SR.BID’s high-level ontology that emerged from our analysis.
The ontology consists of six main concepts: function, performance criteria, solution,
deficiencies/benefits, constraints/specification, and operating environment. Solution
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here refers to existing systems for achieving the given function, and deficiencies/
benefits pertain to negative/positive assessments of the solution. Performance cri-
teria act as qualifiers on the Function (e.g., dissipate heat passively), and constraints/
specification describe constraints on the solution (e.g., cost).

Fig. 20.3 The problem schema in SR.BID including both the main concepts and relationships
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20.5.3 Refinement of the SR.BID Model

Following the construction of the initial SR.BID model, we used two coders to
refine and validate the model using the Week 3 2010 data set, which consisted of
37 design problem statements between one and two pages in length. The first coder
was an author on this chapter (Helms) and was well versed with the coding
process. The second coder was a third year undergraduate biology student new to
the field of biologically inspired design, and without prior background knowledge
in design or cognition, SBF, or SR.BID. We allocated half of the data (17 problem
statements, selected at random) to training and refinement and used the remaining
to draw samples for testing and validation.

This phase led to the identification of relationships among the six concepts in
SR.BID’s problem model, as shown in Fig. 20.3. This phase also led to identifi-
cation of additional subcategories of the six categories in the model. Appendix 1
(Detailed Description of the SR.BID Knowledge Model), provides a complete
listing and description of each category and subcategory. Note that as required of a
knowledge model, the SR.BID model of design problems provides both an
ontology for representing knowledge of design problems and a schema for orga-
nizing the knowledge, which allows capture of descriptions of specific problems
such as the one on page 420.

After two passes on refinement and training, a random sample of five was pulled
from the remaining problems to be used for validation. Each coder independently
coded each test sample. We found the Cohen’s Kappa measure of inter-coder
reliability that adjusts for chance agreement to be 0.778. (Generally Cohen’s Kappa
values close to and above 0.8 are deemed acceptable.) After initial comparison, the
two coders entered a negotiation phase, in which they attempted to resolve coding
discrepancies. As expected, post-negotiation agreement levels were at significantly
higher Cohen’s Kappa values: 0.962 of concepts and 0.976 for relationships.

20.5.4 SR.BID Validation

To further test the conceptual soundness and potential usefulness of SR.BID, we
applied it to the 2010 Week 8 data set, consisting of 31 brief problem statements.
In this test we used a conservative dual-coding strategy over the entire data set.
During dual-coding, each of the two coders is present during the session, and while
one coder takes the lead, the second coder may question coding decisions leading
to discussion and negotiation until a code is agreed upon. This ensures reliability
much closer to the post-negotiated numbers shown in the previous test, with the
additional cost of requiring two coders to code all documents. Tests of intra-coder
reliability, conducted on the recoding of five problem statements selected at ran-
dom 12 weeks after initial coding, demonstrate an agreement of 0.878 and 0.872
for coding concepts and relationships, respectively.
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We found that the function concept is pervasive in most problem descriptions,
occurring in 72.7 % of all conceptual relationships. The solution concept too is
quite common, occurring in about half of the relationships. The function-solution
relationship is the most common relationship, representing about one-fourth of all
conceptual relationships in the observed sample. It is noteworthy that nearly 70 %
of the function-solution relationships in our sample pertained to existing solutions
rather than conjectured solutions. Understanding the role and influence of existing
solutions such as biological analogs is of particular interest in biologically inspired
design.

20.6 Discussion

In our perspective, knowledge models in design are intimately connected to
information-processing theories and computational models of design tasks. As we
study new design tasks, we develop new knowledge models appropriate to the
task. Thus, as we studied memory, reasoning, and learning tasks in analogical
design a generation ago, the SBF model logically evolved out of Chandrasekaran’s
Functional Representation [8, 9]: SBF representations supported the inferences
required by the memory, reasoning, and learning tasks in analogical design. In a
similar manner, as we study problem–solution coevolution in biologically inspired
design, the SR.BID model of design problems is evolving out of the SBF model of
the working of technological and biological systems.

The SR.BID model allows us to capture problem descriptions more deeply than
the SBF model. In the basic SBF schema [23], a system’s interaction with its
external environment is captured in terms of system’s functions and external
stimuli from the environment to the system. Prabhakar and Goel [38] did describe
the external and internal environments of a system but those ideas were not fully
developed. SR.BID specifies operational environment explicitly. Similarly, per-
formance criteria establish the metrics against which the functions of a design of a
system may be evaluated. The frequency of occurrence of the operating envi-
ronment and performance criteria concepts in our study seems to highlight their
important role of problem formulation: they provide additional information needed
to evaluate whether a solution satisfies the desired function. Dinar et al. [13]
provide an alternative schema for representing problem descriptions.

As we noted above, the coded textual descriptions of biologically inspired
design frequently refer to biological analogies and other existing solutions. This
may have to do with the way in which design problem formulation occurs in
biologically inspired design. Given a need, one method for problem formulation is
to look to existing solutions that have been used to solve the need, or similar needs,
in past. An existing solution provides a base case, a plan, or a pattern from which
the designer might abstract key concepts, such as functions, which provide the
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points of traction necessary to begin formulating the design problem. This has
deep implications for biologically inspired design because it shows that biological
analogies may serve to help (re-)formulate problems as well as solve them.

20.7 Uses of SR.BID

Currently, we are using the SR.BID model in four ways. First, we are using it as a
coding scheme to analyze additional data on problem–solution coevolution in
biologically inspired design. In particular we are studying the influence of bio-
logical analogies on problem formulations and reformulations over time.

Second, we are using SR.BID as part of a pedagogical technique to help stu-
dents in formulating design problems in the Georgia Tech ME/ISyE/MSE/PTFe/
BIOL 4740 course on biologically inspired design. In past, problem formulation
has been an extremely difficult task for students in the class [47]. In our peda-
gogical technique, students define their problems in terms of ‘‘four boxes:’’
operational environment, function, constraints/specifications, and performance
criteria.

Third, we are developing an interactive technology for aiding students in
evaluating cross-domain analogies in design. Designers in general lack a tool for
systematic evaluation for cross-domain analogies. Thus, evaluation of analogies
often is ad-hoc, and suffers from confirmation bias effects. Our tool uses the same
‘‘four-box’’ method to evaluate analogies in biologically inspired design. Students
compare their four-box problem description against a four-box representation
constructed for their biological analog, and then use this to frame a discussion of
how their analogy is similar and dissimilar.

Finally, where most search engines for biologically inspired design focus on
indexing by functions, we are using SR.BID to structure a knowledge base of
design problems and biological systems to help facilitate search across the breadth
of concepts found in the problem schema shown in Fig. 20.3.

20.8 Conclusions

Methodologies for research in design are receiving much needed attention (e.g.,
[5]). Our methodology for design research constructs information-processing
theories, computational models, and computer programs of design. It also produces
knowledge models, interactive tools, and pedagogical techniques for design.

Current information-processing theories of analogical design, including bio-
logically inspired design, typically focus on use of analogy for generation of
design ideas, and concepts for a given design problem. However, in tracing col-
laborative, extended, open-ended episodes of biologically inspired design we
found that biological analogies often help not only in generating design ideas for a
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given formulation of the design problem, but also in (re-)formulating the problem
itself. In fact, problem reformulation appears to have been the primary role of
some biological analogies since the biological systems were not part of either the
preliminary or final design solutions.

Evaluating our information-processing theory of biologically inspired design
requires the construction of a computational model that specifies the architecture,
algorithms, and knowledge model for problem–solution coevolution, where the
knowledge model specifies the ontology and the schema for representing and
organizing knowledge of design problems. In this chapter, we focused on the
knowledge model. In particular, we used the SBF schema for representing
knowledge of biological and technological systems as a seed for developing the
SR.BID schema for representing problem descriptions in biologically inspired
design. The conceptualization of the SR.BID problem schema was data driven, and
grounded in the verbal descriptions designers provided for their designing. As
measured by standard tests of coder reliability and coverage, the SR.BID con-
structs seem to provide comprehensive and reliable encoding of the verbal
descriptions of interdisciplinary design teams engaged in biologically inspired
design.

The SR.BID problem schema allows us to capture the problem descriptions
design teams construct in collaborative, extended, open-ended biologically
inspired design; it also enables us to capture the relationships between the problem
and the solutions, as well as systematically trace the influence of the problem on
the solution and vice versa in problem–solution coevolution in biologically
inspired design. The SR.BID problem schema forms the basis of both pedagogical
techniques for teaching about problem formulation and interactive tools for
assessing cross-domain analogies for addressing a given design problem.
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Appendix 1: Detailed Description of the SR.BID
Knowledge Model

The following tables describe the ontology of the SR.BID knowledge model of
design problems that emerged from analyzing problem statements in the Week 3
2010 and Week 8 2010 data sets. These tables refine the high-level ontology of
concepts and relationships of Fig. 20.3.
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Solution Description

Primary type
Biological The solution is a naturally occurring biological component, organism, or

system
Man-made The designers refer to a system which someone already built or created, or

for which they generated prototypes or specifications
New design

solution
The designers who are working on the problem are conjecturing a new design

(or a design they think is new) to solve the problem
Secondary type
Sub-solution A sub-solution consists of many parts that together perform a specific

function within the context of a larger solution
Subtype A subtype solution expresses a ‘‘kind-of’’ relationship with another solution

Function Description

Primary type
Accomplishment The default function type, accomplishment functions change the state of the

world in an intended way
Preventative Preventative functions keep a state OR another function from occurring
Maintenance Functions that maintain a state are considered maintenance for example ‘‘the

thermostat regulates temperature’’ is a maintenance function
Allow Allow functions enable a state OR another function to occur
Negation Negative functions are stated as NOT performing another function, for

instance this application does not produce light
Secondary type
Sub-function,

AND
When there are multiple sub-function relationships for a given function,

AND-type relationships that specify that the related sub-functions must
all be accomplished in order to achieve the parent function

Sub-function, OR When there are multiple sub-function relationships for a given function, the
OR-type relationship specifies that one of the functions must be
accomplished to achieve the parent function

Operating
environment

Description

Primary type
Location The places in which the system is intended to operate
Condition-

qualitative
Qualitative conditions under which the system is intended to operate

Condition-
quantitative

High/low-end values, expected values, or ranges

Time The time during which the system must operate for example, ‘‘at night.’’
Words like ‘‘when,’’ ‘‘after,’’ ‘‘while,’’ ‘‘as,’’ and ‘‘during’’ are often used
to express a temporal environment

User The phrase describes an intended user or class of users for the system
Entity The phrase describes an entity, often biological but sometimes technological,

that interacts with the system
System The phrase describes another system within which the system is intended to

work or connect
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Constraints and
specifications

Description

Primary type
Material The material of which one or more components of the design will be

composed
Information Information can be in the form of energetic signals, bits and bytes, or may be

encoded in the physical structure of a thing
Energy Energy can be found throughout a system in many forms; the energy subtype

is used when a specified form of energy is discussed within the confines
of the system

Time Includes timeframes not related to the operation of the design
Component Includes descriptions of specific parts of a solution or design, or groups of

parts
Property/value Concerns the properties of the system as a whole or their values
Shape Includes the shape of the components or of the design
Spatial orientation These specify the spatial relationship or orientation between or among one or

many components, systems, or subsystems
Structural

relationship
Any phrase specifying which components are related by means of connecting

joints and contacts points
Cost Usually in monetary terms, but this could also be in terms of any resource of

concern; absolute; or relative
Secondary type
Limiting Limiting specifications/constraints are those which require a designer to use a

smaller subset of design elements
Enabling Enabling specifications/constraints offer new possibilities for design elements

without enforcing their use
Existing Existing specifications/constraints discuss the specific properties of an

existing design

Performance
criteria

Description

Primary type
Specific States the specific value or range of the performance criteria
Relative Uses comparative terms such are ‘‘quieter than solution X,’’ without

explicitly stating the performance of the compared to solution
Actual States the performance of an existing solution

Deficiency/
Benefit

Description

Primary type
Deficiency Deficiencies can relate to any element of an existing solution or proposed

design, highlighting an unfavorable aspect of that element
Benefit Benefits can relate to any element of an existing solution or proposed design,

highlighting a favorable aspect of that element

430 A. K. Goel and M. E. Helms



References

1. Bar-Cohen Y (ed) (2011) Biomimetics: nature-based innovation. CRC Press, Boca Raton
2. Benyus J (1997) Biomimicry: innovation inspired by nature. William Morrow, New York
3. Bhatta S, Goel A (1997) Learning generic mechanisms for innovative strategies in adaptive

design. J Learn Sci 6(4):367–396
4. Biomimicry 3.8 Institute (2008) AskNature. http://www.asknature.org/. Accessed on 25 Apr

2011
5. Blessing L, Chakrabarti A (2009) DRM: A design research methodology. Springer, London
6. Brown J, Collins A, Duguid P (1989) Situated cognition and the culture of learning.

Educational Researcher 18(1):32–42
7. Chakrabarti A, Shu L (2010) Biologically inspired design. AIEDAM 24:453–454
8. Chandrasekaran B (1994) Functional representation: a brief historical perspective. Appl Artif

Intell 8(2):173–197
9. Chandrasekaran B, Goel A, Iwasaki Y (1993) Functional representation as design rationale.

IEEE Comput 26:48–56
10. Clancey W (1997) Situated cognition: on human knowledge and computer representations.

Cambridge University Press, Cambridge
11. Clement J (2008) Creative model construction in scientists and students: the role of imagery,

analogy, and mental simulation. Springer, Dordrecht
12. Darden L (1998) Anomaly-driven theory redesign: computational philosophy of science

experiments. In: Bynum T, Moor J (eds) The digital phoenix: how computers are changing
philosophy. Blackwell Publishers, New York, pp 62–78

13. Dinar M, Shaj J, Hunt G, Campana E, Langley P (2011) Towards a formal representational
model of problem formulation in design. In: Proceedings of ASME 2011 IDETC/CIE
Conference, Washington DC

14. Dorst K (2003) The problem of design problems. In: Cross N, Edmonds E (eds) Expertise in
design. Creativity and Cognition Studio Press, Sydney

15. Dorst K, Cross N (2001) Creativity in the design process: co-evolution of problem-solution.
Des Stud 22(5):425–437

16. Glaser B, Strauss A (1967) The discovery of grounded theory: strategies for qualitative
research. Aldine, Chicago

17. Gebhardt F, Voß A, Gräther W, Schmidt-Belz B (1997) Reasoning with complex cases.
Kluwer, Norwell, MA

18. Goel A (1992) Representation of design functions in experience-based design. In: Brown D,
Waldron M, Yoshikawa H (eds) Intelligent computer aided design. North-Holland,
Amsterdam, pp 283–308

19. Goel A, Bhatta S, Stroulia E (1997) Kritik: an early case-based design system. In: Maher M,
Pu P (eds) Issues and applications of case-based reasoning in design. Mahwah, Erlbaum,
pp 87–132

20. Goel A, Bhatta S (2004) Design patterns: a unit of analogical transfer in creative design. Adv
Eng Inform 18(2):85–94

21. Goel A, Chandrasekaran B (1988). Integrating model-based reasoning with case based
reasoning for design problem solving. In: Proceedings of AAAI-88 workshop on AI in
design, Minneapolis

22. Goel A, Davies J (2011) Artificial Intelligence. In: Sternberg R, Kaufman S (eds) Cambridge
handbook of intelligence, 3rd edn. Cambridge University Press, Cambridge

23. Goel A, Rugaber S, Vattam S (2009) Structure, behavior and function of complex systems:
the SBF modeling language. Artif Intell Eng Des Anal Manuf 23:23–35

24. Goel A, Stroulia E (1996) Functional Device Models and Model-Based Diagnosis in
Adaptive Design. Artif Intell Eng Des Anal Manuf 10:355–370

20 Theories, Models, Programs and Tools of Design 431

http://www.asknature.org/


25. Goel A, Vattam S, Wiltgen B, Helms M (2012) Cognitive, collaborative, conceptual and
creative—four characteristics of the next generation of knowledge-based CAD systems: a
study in biologically inspired design. Comput Aided Des 44(10):879–900

26. Helms M (2011) Solution based problem evolution and problem inception in biologically
inspired design. Technical report, GVU, Georgia Institute of Technology. GIT-GVU-11-10

27. Helms M, Goel A (2012) Analogical problem evolution in biologically inspired design. In:
Proceedings fifth international conference on design computing and cognition, College
Station, Texas, July 2012. Springer

28. Helms M, Vattam S, Goel A (2009) Biologically inspired design: product and processes. Des
Stud 30(5):606–622

29. Kling R, Star SL (1998) Human centered systems in the perspective of organizational and
social informatics. Comput Soc 28(1):22–29

30. Lamp J, Milton S (2007) Grounded theory as foundations for methods. In: Applied ontology,
Proceedings of the 4th international conference on qualitative research in IT and IT in
qualitative research (QualIT), Victoria University of Wellington

31. Langley P (2012) The cognitive systems paradigm. Adv Cognitive Sys 1:3–13
32. Machamer P, Darden L, Craver C (2000) Thinking about mechanisms. Philos Sci 67:1–25
33. Maher ML, Tang H (2003) Co-evolution as a computational and cognitive model of design.

Res Eng Design 14(1):47–64
34. Nagel J, Nagel R, Stone R, McAdams D (2010) Function-based, biologically inspired concept

generation. Artif Intell Eng Des Anal Manuf 24:521–535
35. Navinchandra D (1991) Exploration and innovation in design. Springer, New York
36. Nersessian N (2008) Creating scientific concepts. MIT Press, Cambridge, MA
37. Newell A, Simon H (1972) Human problem solving. Prentice-Hall, Englewood Cliffs
38. Prabhakar S, Goel A (1998) Functional modeling for enabling adaptive design of devices for

new environments. Artif Intell Eng 12:417–444
39. Russell S, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. PrenticeHall,

Upper Saddle River
40. Sartori J, Pal U, Chakrabarti A (2010) A Methodology for supporting ‘‘transfer’’ in

biomimetic design. AIEDAM 24:483–506
41. Shu L, Ueda K, Chiu I, Cheong H (2011) Biologically inspired design. CIRP Annals Manuf

Technol 60:673–693
42. Strauss A, Corbin J (1990) Basics of qualitative research: grounded theory procedures and

techniques. Sage, Thousand Oaks
43. Thagard P (2005) Mind: introduction to cognitive science, 2nd edn. MIT Press, Cambridge
44. Vattam S, Helms M, Goel A (2010) A content account of creative analogies in biologically

inspired design. Artif Intell Eng Des Anal Manuf 24:467–481
45. Vincent J, Bogatyreva O, Bogatyrev N, Bowyer A, Pahl A (2006) Biomimetics: its practice

and theory. J R Soc Interface 3:471–482
46. Vincent J, Mann D (2002) Systematic technology transfer from biology to engineering. Phil

Trans R Soc Lond 360:156–173
47. Yen J, Weissburg M, Helms M, Goel A (2011) Biologically inspired design: a tool for

interdisciplinary education. In: Bar-Cohen Y (ed) Biomimetics: nature-based innovation.
Taylor & Francis, Boca Raton

48. Yen J, Weissburg M (2007) Perspectives on biologically inspired design: introduction to the
collected contributions. J Bioinspir Biomim 2

49. Zhao F, Maher M (1988) Using analogical reasoning to design buildings. Engineering with
Computers 4:107–122

432 A. K. Goel and M. E. Helms


	20 Theories, Models, Programs, and Tools of Design: Views from Artificial Intelligence, Cognitive Science, and Human-Centered Computing
	20.1…Introduction
	20.2…Artificial Intelligence, Cognitive Science, and Human-Centered Computing
	20.3…Information-Processing Theories, Computational Models, Computer Programs, and Interactive Tools
	20.4…Problem--Solution Coevolution in Biologically Inspired Design: An Illustrative Case Study of Knowledge Modeling
	20.5…Methodology and Data
	20.5.1 Brief Review of the SBF Knowledge Model
	20.5.2 Construction of the SR.BID Knowledge Model
	20.5.3 Refinement of the SR.BID Model
	20.5.4 SR.BID Validation

	20.6…Discussion
	20.7…Uses of SR.BID
	20.8…Conclusions
	Acknowledgments
	A.1. Appendix 1: Detailed Description of the SR.BID Knowledge Model
	References


