
Chapter 4
Deformable Models in Medical Image
Segmentation

Matthias Becker and Nadia Magnenat-Thalmann

4.1 Introduction

Medical imaging nowadays is part of the routine in hospitals. The acquired images
get better in quality and improvements are made to reduce the exposure of patients to
radiation. Modern techniques allow to capture small details and to differentiate be-
tween kinds of soft tissue. But with the increased number of images and their higher
resolution, interpretation has become a more complex task. Nonetheless, medical
image segmentation is required for applications like radiotherapy, preoperative plan-
ning and postoperative evaluation. Medical image segmentation, as described by
Elnakib et al. [1] in a survey, is the process of identifying regions of interest in
images. Approaches range from simple ones that only exploit intensity values or
region information to model-based ones that include a priori knowledge. The images
often suffer from noise, aliasing and anomalies or may contain gaps in boundaries,
providing challenges that are hard to handle with non model-based approaches.

Deformable models have been first proposed by Terzopoulos et al. in 1987 [2].
They provide a robust segmentation approach that uses bottom-up image-based con-
straints and top-down constraints from prior knowledge. Deformable models can be
curves or surfaces (or of higher dimension, e.g. for temporal segmentation). They
evolve under the influence of internal and external energies. The internal energy con-
trols the curves smoothness and the external energy aims to attract the model towards
boundaries in the image domain. Deformable models are an interesting approach as
they combine geometry (to describe the shape), physics (to simulate the behavior)
and approximation theory (for model fitting).
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Deformable models have a broad range of possible applications. They have been
used in computer graphics [3], to calculate the deformation of clothes [4] and in
image composition [5]. Other uses include optical flow analysis for facial animation
[6] and the determination of vehicle types [7].

Due to their power and robustness, deformable models are often used in medical
applications. For example, Deserno et al. [8] presented an application for segment-
ing the bony orbit while Heimann et al. [9] proposed a grand challenge for knee
segmentation. Schmid [10] presented the segmentation of the hip bone, Snel et al. [11]
used a deformable model for wrist segmentation and Rafai et al. [12] proposed a
method for skull segmentation. Another medical use is surgery simulation which
has been reviewed by Meyer et al. [13]. Medical simulation approaches that use
deformable models to describe the mechanical behavior need proper evaluation.
Marchal et al. [14] proposed a new and open framework to combine several metrics
and models to compare different algorithms.

Several surveys on deformable models have been published, e.g. by McInerney
et al. [15] in 1996,Montagnat et al. [16] in 2001 andHegadi et al. [17] in 2010.Moore
et al. [18] provided a general survey on deformable models while Jain et al. [19]
have reviewed deformable template models, which are used for segmentation, image
retrieval and video tracking.

Deformable models can be divided into discrete and continuous representations
[16]. The discrete models can be split into particle systems and meshes. Contin-
uous representations can have either an explicit (snakes) or implicit (level sets)
description of their surface. These different classes of deformable models will be sur-
veyed in this overview. First we will introduce active contour models, also known as
snakes (Sect. 4.2). Next, several approaches to the level sets methodwill be discussed
(Sect. 4.3), followed by a description of discrete deformable models (Sect. 4.4).
We take a look at knowledge-based deformable models (Sect. 4.5) that are a spe-
cialization and at some alternative approaches (Sect. 4.6). An overview of external
forces (Sect. 4.7) and approaches for segmentation initialization will also be given
(Sect. 4.8). In the conclusion, the most important aspects are summarized and future
prospects are briefly discussed.

4.2 Snakes

Active contour models, usually called snakes, are a class of deformable models
with a continuous representation based on an explicit surface description. They have
been originally proposed by Kass et al. [20] in 1988 and have been applied as a
method for edge detection [21], motion tracking [22], stereo matching [23] and
interactive image interpretation [20]. Other applications are shape modeling [24, 25]
and segmentation [21, 26].

The main concept is to use an energy-minimizing parametric curve or a spline,
reducing the problem to aminimization problem. Snakes need to be initialized closely
to the final shape to ensure that they are attracted to the correct features.
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The energy of a snake α(s) can be written as

Esnake(α(s)) = Eext(α(s)) + Eint(α(s)). (4.1)

The external energy Eext represents external constraints and image influence to
get the contour pulled towards desired image features.

Eext(α(s)) =
∫

−ω1|∇α(s)|ds (4.2)

The internal energy expresses smoothness and tension constraints:

Eint(α(s)) = 1
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(4.3)

where ω2 is the weight for the influence of stretching on the contour and ω3 weighs
the bending.

Xu et al. [27] have proposed the gradient vector flow (GVF, see Sect. 4.7.2.5) as
a new external image force to improve segmentation results. This concept has been
extended by Cheng et al. [28] to a directional GVF. In 1993 Ivbins and Porril [29]
have shown a region growing segmentation that exploits a snake with pressure force
and statistical characteristics of the image. Mitrea et al. [30] have reviewed snakes
and proposed an iterative method for snake calculation. Wang et al. [31] showed
a method for muscle extraction from the leg using snakes. Kauffmann et al. [32]
proposed a snake-based method to quantify cartilage thickness and volume in MR
images.

Ip and Shen [33] proposed affine invariant active contour models (AI snakes) in
1998. AI snakes are an efficient method of establishing correspondence between
model and data. The basis for their energy function is formed by local and global
affine-invariant features.

In 1999, Vemuri and Guo [34] presented hybrid geometric active models. They
introduced a hybrid geometric snake to allow for topology changes. Their model
allows for the representation of global shapes with local details.

Another approach to topology adaptive snakes has been proposed by McInerney
and Terzepoulos in 2000 [35]. Their T-Snakes offer topological flexibility and sig-
nificantly extend conventional snakes. This approach has been extended further by
others [36, 37].

4.3 Level Sets

Level sets have been introduced in 1988 by Osher and Sethian [38] to overcome the
difficulties that snakes havewith changes in topologies. Their work has proven to be a
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powerful tool in segmentation. The ability of level sets to perform automatic topology
changes can be useful in many cases, especially for the segmentation of objects with
high shape variations. Implementations can be found in tools like ITK-SNAP [39]
and YaDiV [40] or libraries like LSMLib.1

Like snakes, level sets can be regarded as continuous deformable models. To
overcome the drawbacks of snakes and to allow topology changes, level sets make
use of an implicit representation. A deformable surface S is implicitly represented
as an iso-surface of a time-varying scalar function, embedded in 3D.

Let Φ:Ω ×R → R,Ω ∈ R
3. A level set S can be defined as an iso-hypersurface

on Φ as follows:
S = {x ∈ Ω|Φ(x) = 0} (4.4)

We assumeΦ to be a distance map that is negative inside the level set and positive
outside. To integrate a temporal evolution we iteratively modify Φ and get

∂Φ

∂t
+ F |∇Φ | = 0 (4.5)

with F as speed function. The speed function controls the image influence on the
evolution of the level set surface. This formulation leads to the need to solve partial
differential equations (PDE). To define the speed functionwe use the surfaces normal
N and curvature k, defined as:

N = ∇Φ

|∇Φ| , k = div

( ∇Φ

|∇Φ|
)

. (4.6)

Common approaches for speed functions are edge stopping and energy minimiza-
tion, which we will present in the following sections.

4.3.1 Edge Stopping Level Sets

Osher and Sethian [38] proposed a level set approach that exploits edges. To slow
down the expansion of the model, image gradients are used. The speed function is
defined as the sum of a curvature force and an expansion force. This force is scaled by
a stopping function that makes use of the image gradient at this point. The following
equation is an example of a stopping function:

g(x) = 1(
1 + √|∇x |)p

1 http://ktchu.serendipityresearch.org/software/lsmlib/index.html

http://ktchu.serendipityresearch.org/software/lsmlib/index.html
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Fig. 4.1 Example of an edge stopping level set for segmentation of the patella after a 10, b 20,
c 30, d 40, e 60 and f 80 steps

Using these speed values, the new distance map can be updated. The resulting con-
tour is the input for the next iteration step. This approach does not stop the contour
at high gradient completely but only slows it down. Therefore it is possible that
after a large number of steps, the contour could overcome high gradients. This is a
behavior that should always be considered. Figure4.1 shows an example of patella
segmentation using an edge stopping level set approach.

4.3.2 Energy Minimizing Level Sets

Instead of a gradient stopping function, an alternative approach defines an energy
potential that is consequently minimized. The foundational work on this approach
has been done by Mumford and Shah in 1989 [41]. The area and volume covered
by the level set S are important in this approach and can be determined using the
Heaviside function, which needs to be smoothed as described by Zhao et al. in [42].
The calculation is performed in three steps. First the average image intensity for
voxels inside and outside the segment is calculated. The next step is to compute the
energy of each voxel using the weighted area, volume and image intensities inside
and outside the region of interest. Finally the distances are being updated using these
energies.
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4.3.3 Extensions

Over the years several extensions to level sets have been proposed. Sethian [43]
developed an extension for fast marching, allowing the contour to move more than
one voxel per iteration step. This was previously prevented by numerical instabilities.
In 2001 Chan and Vese [44] have presented an approach to level sets that is not based
on an edge-function and can operate on very noise, unsmoothed images. Zhang
et al. [45] showed a hybrid approach that uses both boundary and region information
to get accurate results by reducing leaking problems. Yeo et al. [46] have proposed a
new external force in 2009. Their geometric potential force is based on hypothesized
interaction between relative geometry and image gradients. Caselles et al. [47] have
proposed geodesic active contours as a connection between snakes and geometric
curves. Unger et al. [48] have extended this approach with GPU usage to improve
performance.

Other extensions focus on performance optimizations. In 1999, Adalsteinsson
and Sethian [49] have proposed to only calculate the speed function for a narrow
band around the current contour. Whitaker [50] showed a computational method
(sparse-field algorithm) that combines the level sets approach with the efficiency and
accuracy of parametric representation. A solution to use level sets without the need
of solving PDEs has been proposed by Shi and Karl in 2005 [51]. Meziou et al. [52]
have presented an approach that uses fractional entropy applicable for cell nuclei
segmentation.

4.4 Discrete Deformable Models

Unlike snakes and level sets, discrete deformable models do not use a continuous
representation of their surface. Instead, they are modeled using particles or meshes
(see Sect. 4.4.2). In a discrete deformable model, forces are calculated in an iterative
process and applied to the particles or vertices in the mesh. Several physical and
numerical schemes can be used for this purpose, while an abort criterion terminates
the segmentation. When dealing with meshes, special attention has to be paid to
local resampling, topology adaptation and the avoidance of (self-) intersections and
collisions. Kainmueller et al. [53] proposed coupled deformable models. They ex-
ploited redundant structures that appearwhen segmentingmultiple connected objects
in parallel. They demonstrated a model for femur and ilium that reduces the need for
expensive self-intersection testing. In their approach, the logical relationship can be
retained using combined intensity profiles.

Bredno et al. [54] gave a description of the components needed for a discrete
deformable model. It consists of a surface, forces, a surface resolution adjustment
approach and an abort criterion. In an iterative process, forces are calculated and
applied. Afterwards the surface is adjusted. The iteration end is defined by the abort
criterion. This process is illustrated in Fig. 4.2. The calculation of forces, e.g. the
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Fig. 4.2 Process of the iterative deformation of a surface using forces

ones described in Sect. 4.7, is the first step. If a force is calculated for an edge or a
triangle, it has to be distributed to the corresponding vertices. The next step is the
movement of the vertices. The translation of each vertex is determined according to
the selected numerical implementation. If the volume or shape of the models changes
significantly, resampling processes are often needed. They adjust the mesh to ensure
the geometrical quality of the triangles and modify the mesh in a way that triangles
are small enough to fit through the desired structures. For example, the segmentation
of a small vein needs a constant refinement as the model grows along the tubular
structure. In a final step, a check is performed to see if the iteration process should
be terminated. This can be triggered for example after a certain number of steps or
once the vertices have reached equilibrium.

4.4.1 Implementation

There are several possibilities to implement the physical properties of a discrete de-
formable model. The forces may be modeled directly or as hookean spring forces,
as presented by Gilles and Magnenat-Thalmann [55] and Schmid [10]. In their for-
mulation, a translation from the point xi to x j is weighted by a factor αh :

Fh = αh(x j − xi ) (4.7)

A common approach to describe the forces is by applying Newtonian physics, but
a popular alternative is to use Lagrangian dynamics [11]. Other approaches include
the Finite Difference Methods (FDM) [2] and Finite Element Methods (FEM) [25,
56–58].

4.4.2 Mesh Types

Simple segmentation algorithms often create point clouds as a result. To initialize a
deformable model, an initial shape has to be provided, which can be derived from
point clouds. The conversion from a point cloud can be done using the marching
cube algorithm as proposed by Lorensen and Cline [59] in 1987. The resulting mesh
will be closed but also will contain a high number of faces, higher than needed in
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Fig. 4.3 Triangle (a) and
simplex (b) meshes

most cases. In this case, reduction techniques can be applied, but they will have an
impact on the mesh quality. Miller et al. [60] have proposed another approach, the
Geometrically Deformable Model (GDM) in which the mesh of a deformable model
is grown into the point cloud. This results in a lower number of triangles while pre-
serving the topology and details. Most discrete deformable models use traditional
triangle meshes. Delingette [61, 62] proposed to use a simplex representation to
store the model geometry. A n-simplex mesh contains vertices that all have n+1
distinct neighbors. Using 2-simplex meshes (each vertex has exactly 3 neighbors),
arbitrary topologies can be represented. Faces can have an arbitrary number of ver-
tices and can be non-planar. A comparison between simplex and triangle meshes is
shown in Fig. 4.3. Simplex meshes have been used for example in the segmentation
of cardiac structures by Montagnat et al. [63] and for musculoskeletal structures in
the lower limb by Gilles [64].

To improve iteration performance, Lachaud and Montanvert [65] proposed a
coarse to fine model while Snel et al. [11] have demonstrated a multi-resolution
scheme. Pons et al. [66] demonstrated an implicit triangular mesh that performs a
delauney triangulation on-the-fly when needed. A permanent connection through
tessellation has been presented by Gilles et al. [67].

4.4.3 Particle Systems

A different approach to discrete deformable models are particle systems which oper-
ate mesh-less. A collection of independent particles get assigned physical properties,
such asmass, position, speed and acceleration and evolve according to classical New-
tonian mechanics.

Particle system can represent arbitrary topologies but pose a great challenge when
it comes to visualization and the definition of surfaces. Szeliski and Tonnensen [68]
have proposed to use oriented particles to represent surfaces. They use several tech-
niques to derive a surface from the particles. This approach has been extended by
Lombardo [69] to define curvature and to get an implicit surface description.
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4.5 Knowledge-Based Deformable Models

Deformable models require initial shape information to achieve better results.
Knowledge-based deformable models are a group of approaches that aim to invoke
more prior knowledge through additional features. This increases the flexibility in
poor images and the robustness against inaccurate initializations. A comprehensive
overview of knowledge-based deformable models has been given by Schmid [10]
in 2011. A simple approach would be assigning labels with an associated behavior
to the model. Other models use the statistical or probabilistic variation of selected
features. In this section, possibilities for feature selection are discussed, followed by
the alignment process and construction of the statistical model.We conclude with the
description of the two main approaches: active shape models and active appearance
models.

4.5.1 Feature Selection

Features select the property of themodels that will be exploited. They can be summed
up in three categories: shape-, appearance- and transformation-based features.

4.5.1.1 Shape-Based Features

Cootes et al. [70, 71] have proposed shape-based features in 1994. They use prior
shape information to improve results and limit shapevariability to the shapevariations
from training data. A set of points, called landmarks, represents image features. They
have to be (usually manually) selected from a large number of training data. Another
approach for these point distributionmodels (PDM) can be used to replace landmarks
with parameters of a medial axis [72].

4.5.1.2 Appearance-Based Features

To exploit image properties, appearance-based features can be intensity, gradient,
texture, momentum, etc. Intensity profiles (IP, see Sect. 4.7.2.1) are very important
and commonly used. In 3D, appearance-based features suffer from an increased
complexity (highly increased memory consumption and computational effort).
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4.5.1.3 Transformation-Based Features

A third group of not very common approaches are transformation-based features.
They exploit transformation parameters that can be used for the statistical deforma-
tion model. They have been extended to also support non-rigid transformations.

4.5.2 Construction

The creation process of statistical or probabilistic models of feature variation can be
divided into two parts. Initially, the training models have to be aligned before the
construction can be performed.

The alignment process aims at eliminating pose changes that are not feature re-
lated. To do this, commonly the iterative generalized Procrustes approach [73] is
applied.

T ∗ = argmin
T

∑
i

||yi − T (x)||2 (4.8)

The transformation T ∗ is obtained by finding a transformation that minimizes the
distance between a model x and all other models yi . The resulting transformation T ∗
is combination of a translation, a rotation and scaling. Once this transformation is
applied, all models are in a common coordinate frame: the model space of the point
distribution model. Although aligned, these models still have a substantial amount
of shape variability.

The actual construction process uses the corresponding and aligned features and
performs a principal component analysis (PCA). PCA has been introduced by Pear-
son [74] in 1901. This technique has been used for the point distribution model
(PDM) by Cootes and Taylor [70]. Given n shapes Y1,Y2,…,Yn , the mean shape can
be defined as

Y = 1

n

n∑
i=1

Yi . (4.9)

The covariance matrix is defined as

S = 1

n − 1

n∑
i=1

(Yi − Y )(Yi − Y )T (4.10)

and its eigenvectors correspond to the largest eigenvalues of S. The eigenvectors
describe the most significant variation modes from which a subset (much smaller
than the number of points) is used.

This approach needs a sufficiently high number of training models. Otherwise a
poor generality is given, leading to poor adaptation to new data and enforcement of
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an over-constrained behavior. Approaches to solve this problem include Bayesian
inference [75], synthetic shape variations [76] or the derivation of new artificial
shapes from existing training shapes [77].

4.5.3 Active Shape Models (ASM) and Active Appearance Models
(AAM)

Active ShapeModels use a statisticalmodel of shape feature variations. To implement
them, a model fitting process constrains movement to the modes defined by the
trained models. In each iteration step of this process, the closest parametric model
to the model X with the deformation d X is searched for and forces are applied to
deform the model towards this shape. Given the model shape Y , the model X can be
represented as follows:

X = MY + Xc (4.11)

with M being the matrix for scaling and rotation and Xc the translation vector of
the center of X . The estimation of the pose adjustment can be done efficiently us-
ing a standard least-squares approach as described in [71]. An example for the
segmentation of lung and cerebellum using ASMs is given by Ginneken et al. [78].
Lamecker et al. [79] presented an approach to use ASMs for the segmentation of the
bony orbit.

ActiveAppearanceModels have been proposed byCootes et al. [80] in 1998. They
combine a statistical model of the shape and the gray-level appearance. This extends
the models for shape Xs with another one for the image texture Xt , assuming that all
textures have been warped to the mean shape. Olabarriaga et al. [81] have presented
the use of AAMs for thrombus segmentation; Shen et al. [82] have extended the
approach to active volume models.

4.6 Other Deformable Models

In this section we will give a short overview of other types of deformable models that
fall outside the classification described so far. We will discuss deformable Fourier
models, the modal analysis, deformable superquadrics and graph-cut approaches.

4.6.1 Deformable Fourier Models

In 1992 Staib and Duncan [83] have proposed to use a Fourier representation for
deformable contours and surfaces. In the following we will take a look at a closed
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Fourier contour, described as:

X (s) =
[

X (s)
Y (s)

]
=

[
a0
c0

]
+

∞∑
k=1

[
ak bk

ck dk

] [
cos 2πks
sin 2πks

]
(4.12)

with the Fourier coefficients a0, c0, ak, bk, ck, dk . They are defined as

a0 = 1

2π

1∫

0

X (s) ds, ak = 1
π

1∫
0

X (s) cos 2πks ds,

bk = 1
π

1∫
0

X (s) sin 2πks ds (4.13)

A smooth representation can be obtained by truncating the series. The shape
translation is defined by the coefficients a0 and c0. The subsequent terms follow
the parametric form of an ellipse and can be mapped to the standard properties of
an ellipse [84]. The parameters follow scale ordering, with low indices for global
properties and high indices describing local deformations.

To incorporate prior knowledge, Staib and Duncan [83] use a Bayesian approach.
A prior probability approach is defined by manual delineation and the consequent
parameterization of Fourier coefficients using a converted ellipse parameter set. In
this way, a mean and variance can be calculated for each parameter.

4.6.2 Deformable Models Using Modal Analysis

Modal analysis has been introduced by Pentland and Horowitz [85]. Deformable
models using it are similar to deformable Fourier models but their basis functions
and nominal values are derived from templates. The objects consist of finite elements,
stacked in the vector X . Displacements are stored in U , so that the new state after
a deformation step is given by X + U . They are constrained using the following
differential equation

M
d2U

dt2
+ C

dU

dt
+ KU = f (4.14)

with M as mass, C as damping and K as stiffness matrix. The vector f contains the
external forces and f and U are defined as functions of time.
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4.6.3 Deformable Superquadrics

To incorporate local and global shape features, Terzopoulos and Metaxas [58] have
proposed deformable superquadrics. These deformable models use a superquadric
surface. While global deformations have a large influence on the global shape char-
acteristics, local deformations capture the details. Local and global deformations
are being performed in parallel. The closed surface x(u) in parametric coordinates
u = [v,w] is expressed as:

x(u) = c + Rp(u) (4.15)

with c a translation vector and R a rotation matrix. The model shape is expressed
by p(u) and is the sum of the reference shape s(u) and the local deformations d(u).
Superquadrics are a popular extension to quadrics and can model many shapes with
few parameters. Examples for superquadrics are superellipsoids, which are described
in Ref. [86].

4.6.4 Graph-Cut-Based Approaches

Graph cuts are used to efficiently solve computer vision problems through global
optimization. A formulation as energy minimizing approach (e.g. in level sets) can
be reduced to the maximum-flow problem. Ababneh et al. [87] have presented an
application of this approach for the segmentation of the knee bones in MR images.
Zhou et al. [88] have presented a graph-cut-based method for industrial image seg-
mentation. Zhu-Jacquot et al. [89] have proposed a method to combine graph-cuts
with statistical shape priors. A similar approach has been presented by El-Zehiry
et al. [90]. Chen et al. [91] have demonstrated a combination of graph-cuts and
active appearance models to get more accurate segmentation results.

Vineet and Narayanan [92] demonstrated how to calculate graph cuts on the GPU.
Their approach achieves a better performance as it exploits the highly parallel struc-
ture of GPUs for concurrent calculation. Another optimization has been proposed
by Delong and Boykov in 2008 [93]. Their approach reduces the memory require-
ments for large data sets and achieves a near linear increase in computational speed
with respect to number of processors in multi-core systems. Lee et al. [94] have pro-
posed Branch-and-MinCut in 2010. This approach combines graph cuts and other
techniques like branch-and-bound to allow a global optimization for a wide class of
energies. This can be used to include shape- or color-distribution priors.
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4.7 External Forces

The deformation of the model is determined by forces. They bridge the gap between
the model with its internal forces and the image domain. Over the years these ex-
ternal forces have evolved from intensity or gradient based image forces to complex
approaches using statistics or vector flow techniques. In this section we will present
some basic forces that are commonly used in deformable models. Advanced forces
follow as an extension. We conclude with the description of interactive forces. All
following forces will be calculated for a vertex x with the normal nx and will be
scaled by a factor α.

4.7.1 Basic Forces

4.7.1.1 Pressure Force

In areas with low image information, the model tends to stay at its current position as
there are no image features to attract it. To overcome this issue and to reduce the need
for very close initialization, Cohen et al. [95] have proposed a balloon or pressure
force.

Fpressure(x) = αpnx (4.16)

It evolves the model along its surface normals and depending on the sign of αp
the model can either shrink or expand.

4.7.1.2 Laplacian Smoothing Force

Image noise or artifacts may stop small parts of the model. To prevent this from
happening, model smoothing can be applied. An example for a common approach
is the Laplacian smoothing:

Fsmooth(x) = αs
1

|Ux (Δ)|
∑

y∈Ux (Δ)

y − x (4.17)

It calculates the centroid of the neighboring vertices and defines a force towards
that point. Improvements have been proposed by Shen et al. [96]. Figure4.4 shows
an example for smoothing (transformation from cube to sphere) and pressure force
(growing).
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Fig. 4.4 The combination of pressure force and smoothing transforms a cube into a sphere

4.7.1.3 Simple Image Force

A simple approach to include image features is the use of normalized intensity
gradients that, for example, can be calculated using central differences. Along the
vertex normal, several gradients are being calculated and the force will be directed
towards the higher gradients:

Fimage(x) = −αinx

δmax∑
δmin

k(δ) ∗ Φ(x + δ · nx ) (4.18)

where k(δ) is a weighting factor with respect to the distance δ and ∗ is the convolution
operator. An image interpretation factorΦ can be calculated, in this case the gradient.

4.7.2 Advanced Forces

The basic forces can be extended by more advanced approaches to improve results
and runtime.

4.7.2.1 Image Intensity Profiles

Instead of simply using the image gradient, intensity profiles can be used to compare
the intensity curve along the normals. By doing so, the desired structure can be
described more powerful and it allows a distinction between noise-induced gradients
and targeted edges. This approach is commonly used [70, 97, 98]. To reduce the
complexity of the high number of intensity profiles, clustering has been proposed. For
instance, Chung and Delingette [99] have proposed an Expectation-Maximization-
based algorithm for clustering and classification. An example of image intensity
profiles in a magnetic resonance (MR) image of the femur is shown in Fig. 4.5.
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Fig. 4.5 Example of intensity profiles sampled in an MR image of the femur

4.7.2.2 Multiscale Gaussian Potential Force

The Gaussian Potential Force is designed to attract a model towards image features
and is defined as

Fg(x) = αg|∇[Gσ (x) ∗ I (x)]|2 (4.19)

with I(x) the intensity image, Gσ (x) a Gaussian function, αg a weight and ∗ the
convolution operator. This force has been extended by Terzopoulos et al. [100] to
a multi-scale scheme. To overcome the need of an initialization close to the final
contour, they propose to use a large initial value of s to broaden the search space.
Once equilibrium has been reached, σ could be decreased to maintain the accuracy
of the original approach. Until now, no criterion has been established to determine
when to reduce σ , limiting the utility of the multi-scale gaussian potential force.

4.7.2.3 Distance Potential Force

To extend the attraction range, Cohen and Cohen [57] have proposed to use a dis-
tance map in 1993. The values in this map are obtained by using either the Euclidian
distance [101] or Chamfer distance [102] to calculate the distance between a voxel
and the closest boundary point.

4.7.2.4 Dynamic Distance Force

This force extends the distance potential force to include a larger spatial area around
the surface [103, 104]. The dynamic distance has improved handling of boundary
concavities. It is calculated by examining the image for features or gradients along
the surfaces normal. The maximal search distance is limited by a threshold Dmax.

Fdynamic(x) = αd
D(x)

Dmax
n(x) (4.20)
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The resulting force can pull the model towards distant image features. Nonethe-
less, the search is very time consuming and has to be repeated in every step. Lowering
the threshold can shorten the runtime but also reduces the attraction range for image
features.

4.7.2.5 Gradient Vector Flow

In 1998,XuandPrince [27] have proposed a newexternal forcemodel. TheirGradient
Vector Flow (GVF)field is calculated as the diffusion of an intensity image. It allows a
more flexible initialization and supports a more efficient convergence to concavities.

Ng et al. [105] present a medical image segmentation that uses a feature-based
GVF snake. The iteration is stopped once the accuracy is sufficient by exploiting
image features. Zhao et al. [106] have improved the dynamic GVF force field and
introduced a strategy of deformable contour knots for a B-spline based model.

4.7.2.6 Omnidirectional Displacements

When working with deformable surfaces, forces are commonly directed along a line,
usually the surfaces local normal. Kainmueller et al. [107] have proposed omnidirec-
tional displacements for deformable surfaces (ODDS) that consider a sphere around
each vertex. By doing so, a global optimization can be performed. This technique
has been proven to be useful in regions of high curvature, e.g. tips. They have also
proposed a hybrid approach, fast ODDS to overcome the high memory and runtime
requirements.

4.7.3 Interactive Forces

Image artifacts, different protocols and implants can cause problems in automated
segmentation of medical images. In a clinical environment, operators can provide
guidance to the deformable model to overcome these problems. The so called inter-
active forces provide a link between real-time user input and model iteration.

Kass et al. [20] have proposed two interactive forces. Spring forces are designed
to pull the model in the direction of a point p. Their strength is proportional to the
distance from p:

Fspring(x) = αs(p − x) (4.21)

The opposite effect can be achieved using volcano forces. They push a model
away from a point p:

Fvolcano(x) = αv
r

|r |3 (4.22)
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with r = x − p. Interaction forces often are only computed for a small neighborhood
to reduce computational costs. When using all points the complexity is of order
O(n2), while a small neighborhood m with m � n can reduce the complexity to
order O(n · m).

4.8 Initialization

All the previously presented approaches for segmentation require the placement of
an initial model in the proximity of the desired boundaries. In this section we will
present several possible approaches: manual and landmark-based initialization as
well as automatic methods using the general Hough transform and atlas registration.

4.8.1 Manual Initialization

A simple approach to initialization is to ask the user to place the model manually.
This can be done by using several interaction tools such as the mouse, keyboard or
haptic devices. The manual placement is a time-consuming process and requires an
experienced user, depending on the quality of the images. Nonetheless, this approach
is not usable for large-scale applications. It also reduces the reproducibility, as the
results often depend on the initial model and expertise of the user.

4.8.2 Landmarks

The use of landmarks is an extension of the manual approach. Instead of translating
and scaling the whole model, the user selects a set of strong landmarks in the image
and the initial model is automatically adjusted to obtain the best fit. In this way, the
user input and hence the margin of error can be significantly reduced. Landmarks
should be positioned at significant areas that can be easily detected in the image.
Examples would be areas of high curvature, e.g. a fissure in a bone, or a measurable
location, e.g. the middle of the femural shaft. An initialization of a model using
seeds has been proposed by Neuenschwander et al. [108]. The correct scaling and
positioning of the model has to be determined from the seeds. This warping can be
done using the Thin Plate Spine (TPS) transform. If the number of landmarks is very
small and not sufficient for a confident pose estimation, different positions can be
evaluated using a cost function that incorporates a penalty based on image properties.
An example for that can be found in Ref. [10].

Using landmarks at key anatomical positions allows the invocation of prior knowl-
edge. Other approaches extend landmarks with inclusion of spatial knowledge. For
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Fig. 4.6 Example of the Hough Transform for lines. Original image (left) and voting space (right)

example, Fripp et al. [109] proposed a cartilage initialization system that exploits
prior knowledge of the bone location.

4.8.3 General Hough Transform

In 1962, Hough [110] was granted a patent for Method and Means for Recognizing
Complex Patterns. His approach uses templates and a voting space. For each iden-
tified image feature all templates create votes for possible poses. The highest vote
represents a set of parameters of the best corresponding template. An example with
original image and voting space is shown in Fig. 4.6. Illingworth and Kittler [111]
have presented a review of the Hough transform and Khoshelham [112] has demon-
strated an extension to 3D object detection.

The general Hough transform can be used for the initialization of deformable
models. Van der Glas et al. [113] have demonstrated a method to detect ball joints.
Seim et al. have proposed approaches for the hip [114] and the knee [115]. In
2010, Ruppertshofen et al. [116] have proposed a discriminative approach for lower
extremities, which has been extended to a multi-level scheme [117].

4.8.4 Atlas Registration

Rather than using a referencemodel, a reference image (called atlas) can be used. The
atlas contains a specific initialization. A registration step tries to find the transform T ,
that matches the reference image to the actual image. T can then be used to transform
the initialization to the actual image.

Atlas-based initialization requires a registration process, e.g. using ElastiX [118].
Another requirement is the subjects pose, which has to be same in each image to
get satisfactory results. Examples for atlas registration based initialization have been
proposed by Fripp et al. [119, 120].
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4.9 Conclusion

We have presented an overview of the current state of deformable models in medical
image segmentation. They are a powerful tool for the given image conditions and
therefore play an important role. We have surveyed current snakes and level sets
methods that are examples for continues shape representation. These usually two-
dimensionally used approaches achieve good results with high computational costs.
However, they are highly dependent on a good initialization. Contrary to snakes,
level sets are able to adapt to different topology automatically. Discrete deformable
models are three-dimensional approaches, which can be represented as particle sys-
tems or through different mesh types. They can also be based on several physical
foundations. They provide great flexibility and haven proven useful in many cases.
Depending on the structure of interest, deformable models have to be carefully con-
figured and parameterized. An extension to deformable models is the incorporation
of prior knowledge to make them more robust in complex image conditions. These
knowledge-based deformable models exploit prior knowledge on shape and appear-
ance. They need a large training base and complex training but are very robust. We
have presented several forces that cover the tools needed for creating deformable
models. We have also extended the view by presenting other deformable model
approaches. Lastly we have presented the main approaches to the important initial-
ization problem.

A challenge for future research is the development of more general approaches.
Although very sophisticated and robust, deformable model applications are tuned
to specific organs and well-defined image conditions. Knowledge-based models for
example have to be trained with a large database of examples and image forces
like the intensity profiles have to be recreated if imaging sequences are modified.
Depending on the chosen approach, the initialization can be a critical task. Speed
and robustness still can be improved.
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