
6Social Complexity II: Laws

6.1 Introduction and Motivation

In science, laws describe and theories explain. Laws provide understanding of
“how” social complexity occurs; theories answer questions of “why” it occurs. Laws
are like mappings between variables; theories are causal stories that account for ob-
served social complexity. Which patterns of social complexity have empirical valid-
ity as universal laws that hold cross-culturally and across domains of social science
research? How is social complexity explained in terms of existing theories?

This chapter develops the analysis of social complexity by presenting theoretical
and empirical laws that describe emergence and subsequent dynamics. The main
emphasis in this chapter is on formal description for understanding social complex-
ity. The next chapter progresses toward explanatory theories of social complexity.
Understanding of basic patterns in laws of social complexity is necessary for devel-
oping viable computational models.

6.2 History and First Pioneers

The history of laws of social complexity dates to the early twentieth century, when
pioneers such as Vilfredo Pareto, Max O. Lorenz, Corrado Gini, and Felix Auerbach
demonstrated the first power laws in human and social domains of science, half
a century before power laws entered physics. These early discoveries were soon
followed by social power laws discovered by Alfred Lotka, George K. Zipf, Lewis F.
Richardson, Herbert A. Simon, and Manus I. Midlarksy. Most recent work on these
and other non-equilibrium distributional models focuses on discovering additional
domains (e.g., the Internet) as well as replicating earlier discoveries with newly
available and better data.

By contrast, research on structural laws of social complexity is more recent,
beginning in the Cold War years with the pioneering work of Albert Wohlstetter,
William Riker, Martin Landau, Jeffrey L. Pressman, Aaron Wildavsky, Elinor Os-
trom, and John W. Kingdon. Research on both types of laws of social complexity is
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still active and promises new discoveries as CSS researchers expand the domains of
universal patterns.
1896 Economist Vilfredo Pareto [1848–1923] pioneers power laws through his

comparative research on income and wealth in his classic textbook, Cours
d’economie politique.

1905 Max Otto Lorenz [1876–1959] publishes his seminal paper on the curve
named after him in the Journal of the American Statistical Association,
while still a doctoral student at the University of Wisconsin.

1912 Sociologist Corrado Gini [1884–1965] proposes his classic coefficient of
inequality in Mutabilitá e Variabilitá.

1913 Physicist Felix Auerbach [1856–1933] discovers the rank-size law of human
settlement sizes, published in Das Gesetz der Bevölkerungskonzentration
(The Law of Population Concentration), rediscovered years later by Zipf.

1926 Statistician Alfred Lotka [1880–1949] publishes his discovery of the
inverse-square law in the “The Frequency Distribution of Scientific Pro-
ductivity,” Journal of the Washington Academy of Sciences.

1935 Linguist George Kingsley Zipf [1902–1950] publishes his first papers on
the rank-size distribution of settlements.

1941 Meteorologist Lewis Fry Richardson [1881–1953] discovers the scaling
power-law of conflicts, inaugurating the modern scientific study of war
through a series of papers in 1941, 1945, and 1948. His first monograph
dates to 1919, on “The Mathematical Psychology of War.”

1955 Herbert A. Simon publishes his classic paper “On a Class of Skew Distribu-
tions” in the journal Biometrika, followed in 1958 by his first paper on the
power-law distribution of business firms in the American Economic Review.

1958 Gutenburg-Richter Law for earthquakes is discovered, arguably the first true
power law in the physical sciences.

1959 Albert Wohlstetter publishes his classic paper on Deterrence Theory, “The
Delicate Balance of Terror,” based on the Conjunctive Principle examined
in this chapter and the next, in the influential policy journal Foreign Affairs.

1960 Richardson’s Statistics of Deadly Quarrels is published posthumously.
1962 William H. Riker formalizes the Theory of Political Coalitions and demon-

strates the Conjunctive Law for minimal-winning coalitions.
1969 Martin Landau explicitly identifies conjunctive redundancy in his seminal

paper published in the Public Administrative Review, followed in 1972 by
his classic Political Theory and Political Science: Studies in the Methodol-
ogy of Political Inquiry.

1973 Jeffrey L. Pressman and Aaron Wildavsky publish the classic Implementa-
tion: How Great Expectations in Washington Are Dashed in Oakland, based
on the Conjunctive Law.

1978 Gabriel Almond and Bingham Powell publish their influential input-output
model of a complex polity, where policies in the outcome space follow a
sequential conjunctive law.

1984 John W. Kingdon publishes his classic Agendas, Alternatives, and Public
Policies, demonstrating the sequential conjunctive law for policy-making
processes in complex polities.
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1985 Elinor Ostrom [1933–2012] and colleagues from Indiana University (Vin-
cent Ostrom, Roger Parks, Harvey Starr), the University of Illinois (Claudio
Cioffi-Revilla, Richard L. Merritt, Robert Muncaster, and Dina A. Zinnes),
and the University of Iowa (Robert Boynton) establish the Triple-I Seminar
on Complex Systems.

Since 1990 Power laws are replicated in numerous domains of social science re-
search, such as elections, budgetary processes, finance, terrorism, and the
Internet.

1999 Cioffi-Revilla discovers that civil wars scale across the global system,
demonstrating long-range spatio-temporal correlations.

2003 Economist Christian Kleiber and statistician Samuel Kotz [1930–2010]
publish Statistical Size Distributions in Economics and Actuarial Sciences,
the first comprehensive treatise on the Pareto Law and related distributions
of social complexity.

2003 The same year Cioffi-Revilla and Midlarsky demonstrate that a uniform dis-
tribution can be critically misjudged as a power law (Type II error) when di-
agnostic bending in the lower and upper tails is ignored. In the same paper
they demonstrate power law scaling for the deadliest wars.

6.3 Laws of Social Complexity: Descriptions

In this section we examine descriptive laws of social complexity. These are grouped
into two main categories, structural and distributional, each of which consists of
a variety of models. The comparative statics of these laws are interesting, because
most equations are nonlinear in nature. This often results in non-intuitive or counter-
intuitive consequences on the emergent behavior of social complexity. Both share
two additional, scientifically deep properties: they are related to one another, as well
as being universal across domains of social complexity.

6.3.1 Structural Laws: Serial, Parallel, and Hybrid Complexity

The structure of social complexity refers to the way systems and processes
are organized across social domains, including coupled socio-techno-natural sys-
tems and components within them, as we have already seen in the case of near-
decomposability. Figures 6.1 and 6.2 illustrate isomorphic examples of structural
configurations found in social systems and processes, which can often (not always!)
be expressed in terms of networks or trees, respectively. A salient feature of struc-
tural laws of social complexity is that they have dual isomorphic representation as
logic and probabilistic formalism, which facilitates computational modeling. Here
we examine more closely the character of causal structures and how they generate
emergent social complexity.
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Fig. 6.1 Structural patterns
of social complexity by causal
necessity and sufficiency.
(a) Serial complexity by
causal conjunction;
(b) parallel complexity by
causal disjunction; and
(c) a case of hybrid
serial-parallel complexity
with some parallelized
disjunctive components
within an overall serialized
3-conjunctive structure

Fig. 6.2 Structural patterns
of social complexity by logic
conjunction and disjunction.
(a) Serial complexity by
causal conjunction;
(b) parallel complexity by
causal disjunction; and
(c) a case of hybrid
serial-parallel complexity
with some parallelized
disjunctive components
within an overall serialized
3-conjunctive structure

6.3.1.1 Serial Complexity by Conjunction
The fundamental structure of complexity in social systems and processes is gener-
ated by compound events, which emerge from the conjunction of causal events.
For example, in the standard model of a polity, the occurrence of successful gov-
ernance is an emergent compound event generated by a sequential process that
begins with (1) an issue collectively affecting a significant sector of society; fol-
lowed by (2) pressure groups placing demands on government to act; followed by
(3) decision-makers doing something to relieve societal stress by enacting policies;
and, finally, (4) the public issue being mitigated.

The example just seen is that of a serial system (Figs. 6.1(a) and 6.2(a) with
4 components rather than just 2), which is based on necessary causal events oc-
curring as a conjunction (by Boolean logic AND operator) and emergent overall
probability Ys given by its associated indicator structure function Ψ∩ according to
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the following set of related equations:

Ys = Ψ∩(X1,X2,X3, . . . ,Xn) (6.1)
⇐ X1 ∧ X2 ∧ X3 ∧ · · · ∧ Xn (6.2)

Ys = p1 · p2 · p3 · · ·pn =
n∏

i=1

pi (6.3)

= P Θ, (6.4)

where Ys denotes the compound event for overall conjunction with necessary causal
conditions, Xi are the n causal events, the symbol ∧ denotes conjunction (Boolean
AND), pi are the probabilities of the causal events, P is their probability when they
are all the same, and Θ = 1,2,3, . . . , n denotes the number of causal events.

An important variation of serial conjunction is when necessary conditions oc-
cur in sequence, called sequential conjunction, equivalent to Boolean logic SE-
QAND. Note that probabilities are conditional for sequential causal events. In this
case Eqs. (6.1)–(6.4) are simply edited to take into account conditional probabilities,
which still require multiplication.

Regardless of whether causal probabilities are conditional or unconditional, over-
all probability Ps is always decreased when social complexity is serialized. Hy-
poprobability, defined by the inequality Ys < minpi , is a fundamental property
of serial social complexity. It means that serially structured social systems have an
overall probability of performing that is smaller than that of the most poorly per-
forming component. Accordingly, the popular aphorism of a chain being as strong
as its weakest link (P = minpi ) is objectively wrong, because it overestimates over-
all serial probability.1

6.3.1.2 Parallel Complexity by Disjunction
By contrast, at other times a social system or process may operate according to con-
current activities, as when policy is based on a set of multiple public programs. For
example, anti-inflationary policies used by governments are often based on a mix
of (1) price controls, (2) subsidies of various kinds (for food, housing, medicines),
and (3) other programs that are implemented simultaneously. This example is repre-
sented in Figs. 6.1(b) and 6.2(b) with three as opposed to just two causal component
events.

This is an example of a parallel system, which is based on sufficient causal events
occurring as a disjunction (by Boolean logic OR operator) and emergent overall
probability Yp given by its associated indicator structure function Ψ∪ and the fol-
lowing set of related equations:

Yp = Ψ∪(Z1,Z2,Z3, . . . ,Zm) (6.5)
⇐ Z1 ∨ Z2 ∨ Z3 ∨ · · · ∨ Zm (6.6)

1The correct aphorism should be that a chain is weaker than its weakest link, which is an even
worse condition than being as weak as the weakest link.
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Yp = 1 − (1 − q1) · (1 − q2) · (1 − q3) · · · (1 − qm) = 1 −
m∏

j=1

(1 − qj ) (6.7)

= 1 − (1 − Q)Γ , (6.8)

where notation follows the same conventions as for Eqs. (6.1)–(6.4). By De Mor-
gan’s Law, it can be easily demonstrated that parallelization equations (6.5)–(6.8)
follow from serialization equations (6.1)–(6.4).

An important variation of parallel disjunction occurs when sufficient conditions
are mutually exclusive, called exclusive disjunction, equivalent to the Boolean logic
XOR operator and the common language phrase “either.” In this case the probabili-
ties of causal events must add up to 1, so the parallel complexity equations we just
presented now become

Pp = Ψ (Y1,Y2,Y3, . . . ,Ym) (6.9)

⇐ Y1 � Y2 � Y3 � · · · � Ym (6.10)

Pp = q1 + q2 + q3 + · · · + qm =
m∑

j=1

qj (6.11)

= mq. (6.12)

There is a symmetrical result for hypoprobability. Regardless of whether causal
disjunctive probabilities are inclusive (OR) or exclusive (XOR), overall probability
Pp is always increased when social complexity is based on a parallel structure—
which is also common at the second- and higher-order of causation. Hyperproba-
bility, defined by the inequality Yp > maxqj , is the fundamental property of paral-
lel social complexity. It means that parallel structured social systems have an overall
probability of performance that is greater than that of the best performing compo-
nent.2

6.3.1.3 Hybrid Structural Complexity
Most social systems and processes in the real world operate through some com-
bination of serial and parallel structure, especially those that are complex artifacts
or complex policies. Examples of this kind of structural complexity are shown in
Figs. 6.1(c) and 6.2(c), which show first-order 3-conjunction that embeds 2- and
3-disjunctions of the second-order.

The following two kinds of symmetrical patterns (serial-parallel and parallel-
serial) serve as building blocks for modeling far more complex social forms, to any
desirable degree of structural complexity.

2Popular culture is silent about an analog of the serial chain metaphor for the case of a parallel
structure. If it existed, it should say: a parallelized system is stronger than its strongest component.
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A serial-parallel system has first-order Θ-degree serialization, second-order Γ -
degree parallelization, and overall probability equation given by

Ysp = [
1 − (1 − Q)Γ

]Θ
. (6.13)

This is the kind of structural complexity shown earlier in Figs. 6.1(c) and 6.2(c).
In this instance, we may have a 3-stage social process where the first and second
stages are carried out by two and four parallel activities, respectively. Alternatively,
the same structure may represent a social system that requires three operating com-
ponents to undertake action (e.g., legislative, executive, judicial branches of gov-
ernment), the first of which relies on two parallel components (say, a senate and
an assembly), and the second relies on four agencies (e.g., such as for policies on
security, economics, health, and infrastructure).

The symmetrical opposite is a parallel-serial system, which has first-order par-
allelization, second-order serialization, and overall probability equation

Yps = 1 − (
1 − P Θ

)Γ
. (6.14)

The origin of chiefdoms (sociogenesis) provides an excellent example of hybrid
social complexity. Within the overall formative process, a first-order structure of the
compound event P (“the potential for sociogenesis occurs”) is given by the follow-
ing conjunction of necessary causal events:

P = Ψ (Xkin,Xcom,Xnorm, . . . ,Xca), (6.15)
⇐ 〈Xkin ∧ Xcom ∧ Xnorm ∧ · · · ∧ Xca〉, (6.16)

where Xi denote various necessary conditions for chiefdom formation, such as ex-
istence of kinship knowledge Xkin, communicative ability Xcom, normative knowl-
edge Xnorm, and collective action ability Xca , among others as examined in the next
chapter. Thus, the first-order probability equation is simply

P = Xkin · Xcom · Xnorm · · ·Xca =
ca∏

i=kin

Xi (6.17)

= XΘ, (6.18)

consistent with earlier notation. In turn, collective action ability is satisfied through
a variety of Γ strategies (e.g., providing incentives, exercising authority, among oth-
ers), not in just one unique way.3 Accordingly, the second-order probability equation
in terms of Γ strategies is:

P = XΘ−1Xca (6.19)

= XΘ−1 · [1 − (1 − Q)Γ
]
, (6.20)

3We will examine collective action theory more closely in the next chapter.
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where Q now represents the probability of individual collective action strategies
being known.

A more contemporary example consists of modeling the probability of crisis
management policies in issue domains such as humanitarian disasters, financial
crises, or cybersecurity. First-order complexity is typically serial,

P = X1 · X2 · X3 · · ·Xn (6.21)

=
n∏

i=1

Xi (6.22)

=
n∏

i=1

[
1 −

m∏

j=1

(1 − Zj )

]

i

, (6.23)

because n requirements (e.g., accurate intelligence, available capacity, implemen-
tation plans, among others) must occur in conjunction. In the case of humanitarian
disaster response, supply chain management is also a prominent serialized structure,
as are lines of communication. In the case of financial crisis management, passage of
legislation and other regulatory procedures have similar serialized structures. How-
ever, second-order complexity is often parallelized, as each requirement is ensured
through m different approaches or strategies. Alternative locations are often used
for dropping humanitarian relief in affected zones, whereas financial crisis policies
employ multiple interventions, rather than a single act of government.

From a computational perspective, hybrid social complexity is modeled with
code that makes extensive use of functions as subprograms. For example, separate
functions can be defined for computing each structural component. This also results
in a program being more modular, which is almost always a desirable feature and a
real necessity when dealing with algorithmic complex.

6.3.2 Distributional Laws: Scaling and Non-equilibrium
Complexity

Social complexity is also characterized by statistical and probability distributions,
specifically by non-equilibrium distributions and power laws. As suggested ear-
lier in this chapter by the historical overview of milestones and pioneers, over the
past century power laws have been shown to exist across multiple domains of social
complexity. In almost all cases these distributions are about size variables, not du-
rations, which is a intriguing feature that remains somewhat of a scientific mystery.
To better appreciate and understand this area of CSS it is best to begin by defining a
power law.
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Fig. 6.3 The power law in (a) untransformed hyperbolic form and (b) linearized or log-linear
form in log-log space

Definition 6.1 (Power Law) Let X be a real variable with a set of values x ∈ 
.
A power law is a function of x that is inversely proportional to x itself. Formally,

f (x) ∝ xb

= axb, (6.24)

where a > 0 and b > 0.

In purely mathematical terms, a power law refers to any equation of the form

y = axb, (6.25)

where constants a and b can assume any value, such that f (x) in Eq. (6.24) can be
either increasing (b > 0), decreasing (b < 0), or constant (b = 0) in x, as well as
positive (a > 0) or negative (a < 0). However, within the context of social complex-
ity theory the term “power law” always implies a negative exponent (b < 0) and a
positive function (a > 0), which in algebraic terms makes Eq. (6.25) the same as a
hyperbolic function that is asymptotic in both Cartesian axes, as in Fig. 6.3(a).

For reasons that will become apparent in Sect. 6.3.2.1, the general functional
equation (6.25) can be and often is linearized by applying a base-10 logarithmic
transformation to both sides of the equation, which yields

logf (x) = a′ + b logx, (6.26)

where a′ = loga and b now represent an intercept and a slope, respectively
(Fig. 6.3(b)), in log-log space. Note that the slope b is an elasticity in log-log space,
since

ηy,x = ∂ logy

∂ logx
= ∂y

∂x

x

y
.
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Fig. 6.4 The power law and other distribution models

The log-linear form of Eq. (6.26) is useful from an empirical perspective, because
values of x can be plotted on log-log space to examine the form of the distribution,
although strictly speaking the term “power law” refers to Eq. (6.25) (with a > 0 and
b < 0), not Eq. (6.26) in log-linear form. For reasons shown below, Eq. (6.25) is the
more theoretically relevant equation.

Social scientists familiar with regression analysis will readily recognize Eq. (6.26)
as a log-linear regression equation, where both dependent (y) and independent (x)
variables have been log-transformed using base 10. In power law analysis the main
purpose of log-linearization is not to be able to apply ordinary least square (OLS)
methods, but to observe how linear the resulting empirical x-y scattergram is and
how constant the value of an observed slope b̂ is.

Each form of a power law—linear or non-linear, in log-log or linear Cartesian
space, respectively—highlights different properties of social complexity, similar
to the way in which different forms of the same game in a game-theoretic model
(i.e., normal or extensive forms) highlight different features of strategic interaction,
or different probability functions (density, cumulative, intensity) provide different
views on the uncertainty properties of the same random variable. In addition, each
power-law function can also be related to other probability functions, as we shall
examine.

Figure 6.4 shows a power law in the context of other distributions. Compared to
the so-called normal, Gaussian, or bell-shaped distribution, a power law distribution
has many small values, some (fewer) medium-range values, and a few rare extreme
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Fig. 6.5 Taxonomy of power law models according to types of dependent variables

values. By contrast, in a Gaussian distribution both smallest and largest values are
extremely rare (with vanishingly small probability) and mid-range values are the
norm.

Crucially, in terms of understanding complexity, extreme events are many times
more “normal” in a power law distribution than in a Gaussian distribution. There are
also other significant differences with respect to other major types of distributions,
such as exponential, uniform, and lognormal, as examined in the next sections.

6.3.2.1 Systematics of Social Power Laws
It would appear from the preceding formalization that power law models are all an-
alytically or formally similar (Eq. (6.25)), in the same sense that all hyperbolas are
similar, in that they would differ only by the numerical value of the coefficients a

and b. However, that is not the case, because the term on the left side of a power
law—the function f (x) that is inversely proportional to a given variable x—often
denotes widely different quantities when examined in different disciplines and dif-
ferent empirical domains. In addition, as in the case of Zipf’s Law, the independent
variable can sometimes assume rank-ordinal values, such that the independent vari-
able is not ratio-level.

Given such confusing practices in the literature, it is useful to identify and sys-
tematize the most common types of power laws, because the (seemingly) simple
form of the linear log-log plots that are commonly reported in publications often
conceal interesting subtle differences that stem from quite different quantities being
plotted in vertical and horizontal axes, i.e., dependent and independent variables.
Similarities and differences among various types of power laws of social complex-
ity are meaningful and should be understood. The taxonomy shown in Fig. 6.5 spans
five types of power laws across various social and natural phenomena.

As illustrated in Fig. 6.5, power law models are a class composed of two
distinct—albeit related—subclasses or sets of models according to the level of mea-
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surement of the independent variable x (ordinal or ratio).4 In turn, ratio-level power
laws comprise several subtypes, as explained in the next sections. In spite of these
differences, it must be stressed that all power law models are mathematical repre-
sentations of extreme skewed variability that are scale-free, in the sense discussed
below.

6.3.2.2 Type I: Rank-Size or Zipfian Models
The first (and oldest) type of power law model is Zipf’s Law of harmonic sizes,
also known as a Rank-Size Law (geography, linguistics) or rank-size rule (an-
thropological archaeology). Given an ordered set of values 〈x1, x2, x3, . . . , xn〉 of a
variable X, where the subscript i denotes rank from highest (i = 1 or first) to lowest
(i = n or last), the power law for values of X with respect to rank i of each value
xi ∈ X is given by the equation

xi = a

ib
(Type I power law), (6.27)

where a = x1 (the largest value) and b ≈ 1. Note that from Eq. (6.27) it also follows
that for this type of distribution the product of any value xi ∈ X times its rank i

always equals (or approximates) the constant a (the largest value x1). Therefore, the
largest value determines all other values of the distribution. Such a decreasing series
of values is also known as a harmonic series, wherein the second largest value is
1/2 the size of the largest, the third largest value is 1/3 the size of the largest, . . . ,
and the last (the nth value) is 1/n the size of the largest. From Eq. (6.27) it also
follows that

logxi = a′ − log i, (6.28)

which is commonly used for analyzing empirical data with log-log plots. By defini-
tion, therefore, this type of power law has elasticity equal to 1.

Felix Auerbach was the first to discover this type of power law in the harmonic
frequency of population concentrations. Perhaps somewhat unfairly, the model is
commonly named after the Harvard linguist George Kingsley Zipf [1902–1950] be-
cause it was he who popularized it. This type of power law may be of unique interest
in the social sciences and the life sciences (laws of so-called “allometry” or propor-
tion), and perhaps they remain undiscovered in the physical sciences.

As shown in Fig. 6.5, the next three types of power laws consider different distri-
butions of values of X in terms of various frequency measures: absolute frequency
(Type II), relative frequency (Type III), and cumulative frequency (Type IV). All
three distribution types of power laws—which are canonical variations on the com-
mon theme of modeling scale-free inequality—occur in both the social sciences and
the natural sciences.

4Using the Stevens level of measurement as a classification criterion is useful for distinguishing
formally different mathematical forms that are analyzed through different statistical and mathe-
matical methods (discrete vs. continuous). The same classification might be less useful in physical
power laws, where ranks and ordinal variables are not as common as they are in social science.
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6.3.2.3 Type II: Absolute Frequency Models
In the second type of power law the absolute frequency φ of a given value x ∈ X is
inversely proportional to x. Thus,

φ(x) = a

xb
(Type II power law). (6.29)

From Eq. (6.29) it follows that

logφ(x) = a′ − b logx, (6.30)

where a′ = loga is the intercept and b is the slope (exponent in Eq. (6.29)). Recall
that b is also in this case the elasticity η of logφ(x) with respect to logx.

In the social sciences this type of power law has been frequently reported for
variables as diverse as the size of archaeological sites in a given region, personal
income, number of Internet routers, network links, and the number of fatalities that
have occurred in warfare on all scales in modern history. Lewis Fry Richardson’s
Law of War Severity, describing the skewed distribution of fatalities generated by
conflicts of all magnitudes, is a power law of this type. In the natural sciences, this
type of power law has been reported for the size of species, the lifespan of genera,
earthquake energy releases, meteor diameters, and the relative sizes of avalanches
in Conway’s Game of Life (a cellular automata model examined in Chap. 7).

The next two types of power laws are somewhat similar, since they are both based
on probability functions, but different in several interesting, crucial details that are
easy to overlook.

6.3.2.4 Type III: PDF Models
The third and closely related type of power law is stated in terms of relative fre-
quency, which in the statistical limit approximates a probability density. Formally,
this is the hyperbolic probability density function (p.d.f.)

p(x) = a

xb
(Type III power law). (6.31)

(In physics, Eq. (6.31) is often called a “distribution function,” which is a mathemat-
ical misnomer that can cause confusion. The term “distribution function” refers to
the cumulative density function �(x), or “mass function,” as in the next section.)5

5For example, Bak (1996), Jensen (1998), and Barabasi (2002) misname these functions
repeatedly—c.d.f., p.d.f., and complementary c.d.f.—as if they were synonymous, whereas each
function refers to the probability of a different event: Pr(X ≤ x),Pr(x < X ≤ x + dx), and
Pr(X > x), respectively. The obvious but important point is simply that probability functions that
refer to different events should be named differently and consistently.
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The log-linear form for the Type III power law is easily derived, from Eq. (6.31),
as

logp(x) = a′ − b logx, (6.32)

with a′ = loga, and, again, b is the elasticity of logφ(x) with respect to logx.6

This type of power law also has strong empirical support across social domains.
It has been reported for the size of firms in terms of employees (Simon’s Law),
the number of publications by scholars (Lotka’s Law), the number of collaborations
by movie actors, the size of commodity price fluctuations (Mandelbrot’s Law), and
other social variables. In the natural and engineering sciences, this same Type-III
power law has been reported for the size of species, the connectivity of the US power
grid, the size of forest fires (Turcotte’s Law), and the size of sandpile avalanches
(Bak’s Law).

6.3.2.5 Type IV: Log-Survival or Log-CCDF Models
A fourth type of power law is based on the complementary cumulative density func-
tion, or 1 − Φ(x) = Pr(X > x), abbreviated as CCDF. When X denotes time T , the
CCDF is called a survival function, or S(t).7 In a log-log linear graph this model
has the form

log
[
1 − Φ(x)

] = a′ − (b − 1) logx, (6.33)

with a′ = loga, which yields the c.d.f.

Φ(x) = 1 − a

x(b−1)
= 1 − ax1−b (6.34)

and corresponding p.d.f. given by

p(x) = a(b − 1)

xb
(Type IV power law). (6.35)

Note that in this type of power law the elasticity in Eq. (6.33) is η = (b − 1), not
just b as in previous models—a critical difference to remember! Table 6.1 provides
a comparison of the defining probability functions of a Type IV power law model
(top row) with respect to other distribution models of social phenomena. Note that
the negative exponential p.d.f. also corresponds to a Poisson process, which is com-
mon in many social phenomena such as riots, onsets of warfare, and organizational

6Note that Type II (absolute frequency) and Type III (relative frequency) yield the same slope b,
although the functions on the left side are not mathematically identical.
7Also, strictly speaking, the event “X ≥ x” makes more sense than “X > x” when X is a discrete
(count) variable. This is because 0.99999 . . . is not computable and 0 is mathematically impossi-
ble, so 1 is the base count for social processes such as events, riots, wars, and other social count
processes.



6.3 Laws of Social Complexity: Descriptions 159

Table 6.1 The Type IV power law model of social complexity compared to other common social
processes and distributions

Model p.d.f. p(x) c.d.f. Φ(x) h.f.f. H(x) Mean E(x)

Power law a(b−1)

xb 1 − axb−1 b−1
x

a(b−1)
2−b

x2−b|∞xmin

Exponential λe−λx 1 − e−λx λ 1
λ

Weibull λγ xγ−1 exp(−λxγ ) 1 − exp(−λxγ ) λγ xγ−1 λ−1/γ Γ ( 1
γ

+ 1)

Lognormal 1
σx

√
2π

×
exp [−(ln(x/m))2/(2σ 2)]

1 − 1
σ
√

2π

∫ ∞
x

p(u)
u

du
p(x)

1−Φ(x)
exp (0.5σ)

Gaussian 1
σx

√
2π

exp (− 1
2 (

x−μ
σ

)2) 1 − 1√
2π

×
∫ ∞
x

exp [− 1
2 (

u−μ
σ

)2]du

p(x)
1−Φ(x)

μ

turnover. The intensity or hazard force functions (h.f.f.) corresponding to power
law, exponential, and Weibull models are of major interest in practical applications.
The lognormal and Gaussian cases are also computed as p(x)/[1 − Φ(x)] but are
omitted from the table due to space constraints and infrequent use. The graphs of
probability density functions in Table 6.1 were shown earlier in Fig. 6.4.

Equation (6.35) looks deceptively similar to a Type III power law (compare with
Eq. (6.31)), with the crucial difference that the proportionality constant is partially
dependent on the exponent (b) or slope (b − 1). This fourth type of power law,
based on the complementary c.d.f., has been reported for the size of firms in terms
of revenue, for fatalities that occur in warfare (both civil wars and international
wars), as well as for a variety of natural phenomena including the magnitude of
earthquakes (Gutenberg-Richter Law).

An important result that links this type of power law model to other classical
distributions models (e.g., Weibull) is given by the following theorem:

Theorem 6.1 (Intensity Function of a Power Law) Given a Type IV power law
with p.d.f. as in Eq. (6.35) and c.d.f. as in Eq. (6.34), then the associated intensity
function or hazard force function H(x) is given by

H(x) = b − 1

x
, (6.36)

where H(x) is defined as p(x)/[1 − Φ(x)], which is:
1. linear in b

2. hyperbolically decreasing in x with power law exponent 1 (scale-free),
3. independent of a

4. a special case of the Weibull distribution for γ (shape) = −1 and λ(scale) =
b − 1, or slope of the CCDF in log-log space

5. has an associated stress or load function Λ(x) given by

Λ(x) =
∫ x

0
H(u)du = (b − 1) lnx. (6.37)



160 6 Social Complexity II: Laws

Proof By substituting Eqs. (6.34) and (6.35) into the definition of H(x) and simpli-
fying the resulting expression to obtain Eq. (6.36). �

Theorem 6.1 is interesting because it provides a simple and direct link between
social complexity theory on the one hand, and risk analysis and uncertainty on the
other. The principle says that all complex social phenomena are generated by in-
verse intensity. The Weibull model includes one such instance of an inverse func-
tion, as do other stochastic processes with hyperbolically decreasing intensity or
hazard rate. Conversely, using Eq. (6.36), the intensity function theorem allows us
to express a power law as a function of the many features associated with H(x),
such as moments and other characteristics.

Types III and IV power laws should never be referred to as “Zipf’s Law for
b = 1,” because such terminology implies that these models contain ranked vari-
ables; they do not.

6.3.2.6 Type V: Algebraic Models
Finally, a fifth type of power law model found in the literature is based on the linear
plot of two ordinary ratio-level variables, so

logy(x) = a′ − b logx (6.38)

and

y(x) = a

xb
. (6.39)

Note that in this case there is no difference between the log-linear slope and
the hyperbolic exponent—a property that differs from the previous cases. Al-
though most social scientists do not think of ordinary algebraic expressions such
as Eq. (6.39) as a power law, in the natural sciences (and in elementary mathemat-
ics) the study of power laws includes these models as well. For example, the relation
between the number of routers y and the number of nodes x in the Internet is gov-
erned by Eq. (6.38) with b ≈ 1.9 (Faloutsos’s Law). If the class of power laws in-
cludes these algebraic relationships or hyperbolic models (type V), then all inverse
empirical relationships that are linear in log-log space also qualify as power laws
(e.g., Polachek’s Law of international conflict and trade, and social gravity models
in human geography and regional economics).

It should be reiterated that the preceding five types of power laws share a great
deal in common—the right side of the equation is always a term inversely propor-
tional to a given variable x—but the mappings are different because what is modeled
on the left side of each equation varies across types. Such variations are sometimes
relatively minor, as between Type II (absolute frequencies) and Type III (relative
frequencies). Other times they are more significant, as between Type III (p.d.f.-
based) and Type IV (c.d.f.-based), or between ratio variables, frequency-based, and
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variable-based models.8 Beyond the formal differences highlighted by the preced-
ing taxonomy, all power laws are susceptible to empirical analysis, as discussed in
the next section.

6.4 Power Law Analysis

Power laws of social complexity are susceptible to various forms of empirical, data-
oriented analysis, as well as theoretical, mathematically-oriented analysis. Both ap-
proaches are necessary and synergistic for understanding complexity in social phe-
nomena.

6.4.1 Empirical Analysis: Estimation and Assessing Goodness of Fit

Suppose a given data sample or set of observations {x} of a variable X yields a
power law of some type (I–IV). From an empirical perspective a review of current
practices in the extant literature shows that there are two common procedures for
assessing the goodness of fit of a power law model in relation to empirical data:
(1) visual inspection of the log-log plot to see if it approximates a straight line, and
(2) judging goodness of fit on the basis of a high value for the R2 statistic. These
procedures deserve close scrutiny, because they can be misused, resulting in false
inferences.

6.4.1.1 Visual Assessments
Visual assessments are useful, informal, and always subjective. A common problem
that is often highlighted by data plotted on log-log scales is “bending” away from
the log-linear model at lower and upper ranges of the distribution (see Fig. 6.6).

Bending of an empirical distribution at lower quantiles can occur because there
might be missing observations for small values that are lost or hard to measure. For
example, in a dataset of war magnitudes the smallest wars may not be recorded.
This is a form of measurement error that can arise for many reasons. Bending at
the lower quantiles can be acceptable if the claim that the smallest observations are
incomplete can be supported; otherwise, lower quantile bending presents a serious
problem with accepting the research hypothesis that the observed data conforms to
a power law.

Bending can be found in empirical data that approximate a power law, but can
also be diagnostic of an exponential or lognormal tail. Also, a uniform distribution
(which is far from being a power law!) plotted on log-log space yields a curved pat-
tern with both lower and upper quantile bending, so the problem in such cases may
not be due to missing observations or finite size—it may be because the distribution
is close to uniform, not at all a power law or even exponential.

8The basic point is that care must be taken to specify which type of power law model is being dis-
cussed or presented; this should not have to be deciphered from poorly labeled plots or misnamed
equations.
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Fig. 6.6 “Bending” is frequently observed in visual assessment of empirical power law distribu-
tions

6.4.1.2 R-Squared
In much of the extant literature, goodness of fit is often assessed using the coefficient
of determination, R2. However, R2 is best avoided as a measure of goodness of fit
and the most recent specialized statistical works on size distributions do not discuss
it. Other statistics and methods, such as the standard error of the coefficients or the
Anderson-Darling test, are preferable when necessary. Still, a good use of the R2

statistic is for comparing different empirical models that have the same functional
form but are estimated using different data samples.

6.4.1.3 Good Practices: Multiple Lines of Evidence
As is normally the case for various estimators, goodness of fit also should be as-
sessed on the basis of multiple methods that provide diverse lines of evidence: small
standard errors, large t-ratios, the Kolmogorov-Smirnov test, the Anderson-Darling
test, among other methods. The estimation of power law models using maximum
likelihood methods is recommended, such as based on the Hill estimator. Table 6.2
compares various statistical assessments for power laws.

By way of summary, some good practices in the empirical analysis of power laws
with statistical data include the following:
1. Use disaggregated data values {x} of the observed variable X to construct the

relevant frequency distribution plots ensuring that all axes and units of measure-
ment are properly labeled. Report the standard errors of all coefficients when
conducting an estimation. Specifically:
(a) For the Type I power law (Eq. (6.27)), data values are ordered from largest to

smallest and the resulting plot should resemble a simple harmonic function
with a long upper tail. In log-log space the same data should approximate a
straight line with slope value of 1.

(b) For Type II (Eq. (6.29)), the data values should be used directly to construct
a histogram of value frequencies and the results plotted in log-log space. The
plot should approximate a straight line, as in Eq. (6.30). Note that in this case
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Table 6.2 Goodness of fit statistics used for assessment of an empirical power law

Statistic Pros Cons References

Hill estimator MLE Can be unstable for
small sample size

Alfarano et al. (2008);
Hill (1975)

Anderson-Darling Sensitive to upper tail
values

Rarely used; not well
known; Type I error
risk

Anderson and Darling
(1954)

Kolmogorov-Smirnov Widely known Insensitive to upper tail
values; Type II error
risk

Chakravarti et al.
(1967, pp. 392–394)

R2 Commonly used; good
for comparing samples

Not a proper goodness
of fit statistic

King (1986)

the estimated slope b̂ in Eq. (6.30) is exactly the value of the exponent b in
Eq. (6.29)—i.e., without the (+1) transformation that is necessary with the
Type IV law.

(c) For Type III (Eq. (6.31)), the procedure is the same as for the Type II power
law, except that it is necessary to compute relative as opposed to absolute
frequencies.

(d) For Type IV (Eq. (6.35)), which is arguably the most important case, the data
values are again used directly, this time to construct the normalized comple-
mentary cumulative frequencies—i.e., the values of the function [1 − Φ(x)],
without binning.9 The log-log plot should then approximate a straight line
with slope (b + 1). Accordingly, a slope of (b + 1) for the distribution of the
complementary c.d.f [1 − Φ(x)] in log-log space yields an exponent of b in
the Type IV power law (Eq. (6.35)).10 That is: slope (b + 1)� exponent b.

2. Inspect the upper and lower quantiles for excessive bending. Significant bending
should be accounted for (e.g., are there missing observations? is finite size some-
how involved?). Otherwise, the power law model simply may not fit the data and
other models should therefore be considered (e.g., lognormal?).

3. Inspect the number of orders of magnitude (sometimes called “decades”) covered
by the domain of values. In general, the larger the number of orders of magnitude
the more interesting the model because the scale-free property (discussed in the
next section) will extend over several orders. Ensure that the range of orders of
magnitude is not an artifact of the units of measurement.

9“Binning” refers to the procedure of classifying values into equal and finite intervals, which cre-
ates problems when the distribution of the underlying population is unknown. It is unnecessary
in power law analysis that uses raw data. The direct construction of the histogram of normalized
cumulative frequencies is often feasible and always preferable because no binning is necessary.
However, sometimes binning is unavoidable when using official statistics such as provided by gov-
ernment agencies.
10The exact value of the exponent b is of great theoretical relevance, as explained below in
Sect. 6.4.2.1, so reporting the standard error of b is another good practice.
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4. Rely on the most valid and reliable data available, especially when N is not very
large, because other issues such as bending and goodness of fit can be greatly
affected by data quality.

5. Use the standard errors to assess the coefficient estimates, as well as other meth-
ods for assessing goodness of fit, such as the Hill estimator. (Ignore significance
tests for the slope estimates of Type IV models, since, by definition, cumulative
data will always yield slopes greater than zero.)

6. Avoid the R2 for purposes of assessing goodness of fit, but use it to compare
models that have the same functional form—as a comparative measure.11

7. Develop familiarization with standards and methods in various fields where
power laws are used to gain a better perspective and improve the quality of em-
pirical analysis in social power law modeling.

These good practices—based on multiple lines of evidence and complementary ap-
proaches demonstrated over the past century—are susceptible to improvement as
social scientists and other modelers gain experience with empirical applications of
power law models. Important scientific goals will be achieved as good practices
emerge.

6.4.2 Theoretical Analysis: Deriving Implications

A power law is important, inter alia, because of the set of intriguing theoretical
implications it can generate, not just because it establishes an empirical regularity
based on empirical evidence. This is increasingly relevant as social scientists gain
experience in the exploitation of synergies between formal models and empirical
data. Among the theoretical implications that can be drawn from finding a power
law in a given set of data, the following are especially significant in terms of under-
standing social complexity.

6.4.2.1 Average Size
The first moment (average or mean value) of a power law distribution exhibits some
unusually interesting behavior. This is given by

E(x) =
∫ ∞

min{x}
xp(x)dx = a(b − 1)

∫ ∞

min{x}
x1−bdx (6.40)

= a(b − 1)

2 − b
x2−b

∣∣∣∣
∞

min{x}
= xmin(b − 1)

b − 2
, (6.41)

which goes to infinity when b ≤ 2. In other words, there is no mean size (no ex-
pected value E(x) exists) for social phenomena that are governed by a power law
with exponent in the range 0 < b < 2, or (b − 1) < 1 (below unit elasticity). This
is an insightful theoretical result for social patterns such as organizational sizes,

11However, recall that the standard error of estimates contains essentially the same information.
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fatalities in warfare, and terrorist attacks. The threshold b = 2 is therefore theoreti-
cally critical, as it marks the boundary between social phenomena that have a finite
average and computable size (b > 2) and those phenomena that lack an expected
value or mean size (b ≤ 2). This is a theoretical insight derived directly from the
empirically estimated value of the power law exponent b.

6.4.2.2 Inequality
By definition, a power law is a model of inequality (the “many-some-rare” pat-
tern discussed earlier in this chapter), so every power law model has an associated
Lorenz curve given by:

L(Φ) = 1 − [
1 − Φ(x)

]1−1/(b−1) (6.42)

and a corresponding Gini index given by

G(b) = 1 − 2
∫ 1

0
L(Φ)dΦ = 1

2b − 3
, (6.43)

which can be estimated by the empirical equation (Kleiber and Kotz 2003: 35):

Ĝ = 1

n2E(x)

n∑

i=1

n∑

j=1

|xi − xj |. (6.44)

These interesting and insightful theoretical links between the exponent b of a
power law and its corresponding Gini index G of inequality can be summarized by
the following two relations in reference to the tail of a distribution:

heavy tail
(b → 0)

⇐⇒
{

more inequality
less equality

}
⇐⇒

{
smaller b

larger G

thin tail
(b → ∞)

⇐⇒
{

more equality
less inequality

}
⇐⇒

{
larger b

smaller G

6.4.2.3 Entropy
By extension, the greater inequality of a heavy tail also implies greater Shannon
entropy in the distribution of values, or

U(b) = ln

(
b − 1

min{x}
)

− 1

b − 1
− 1, (6.45)

where min{x} is the smallest value in the distribution of X. This last expression es-
tablishes a direct connection between complexity theory and information theory by
linking Shannon’s entropy U to the power law exponent b. Equation (6.45) guar-
antees the existence of as yet unknown information-theoretic properties of social
power laws.
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6.4.2.4 Self-Similarity
When a given variable X obeys a power law, a recurring pattern of constant pro-
portion occurs across the entire range of values of X, as highlighted earlier by the
linear graph in Fig. 6.3(b). The graph of the transformed function f ∗(x) = logf (x)

is as linear in the low range of values as it is in the high range and everywhere in
between. This type of global symmetry is called self-similarity in complexity the-
ory. Self-similarity is also said to be an “emergent” property, because it applies to a
whole set of values, not to individual values or elements.

Self-similarity is also a property of structural laws of social complexity. For ex-
ample, a system of first-order conjunctions (or disjunctions) embedded by higher-
order conjunctions (or disjunctions) is self-similar. A policy process is a classical
example of self-similar structural social complexity in terms of overall policy re-
sponse (first-order), programs (second-order), activities (third-order), down to the
smallest required events (nth-order) that produce policy results.

6.4.2.5 Scaling
The property of self-similarity is also known as scaling, which has prompted the
term “scale-free phenomena.” Vilfredo Pareto discovered that wealth and income
scale. Lewis F. Richardson discovered in the late 1940s (possibly earlier) that war-
fare (“deadly quarrels”) scales with respect to magnitude μ. Since then, it has been
shown that not just international wars but civil wars also scale, as do certain fea-
tures of terrorism. “Artificial” wars generated by agent-based models also scale. Do
other dimensions besides war fatalities, such as time of onset and conflict duration,
scale? The answer is: generally, no. Time durations are more often exponentially or
Weibull-distributed, as we will discuss in Chap. 9.

Scaling is empirically demonstrated for numerous other dimensions of social
phenomena, but remains a deep theoretical notion. Scaling means that dichotomies
of small versus large wars are false, because of the scale invariance given by the
global power law. Scaling also means that it is a misconception to think that small
and large wars share little or nothing in common; they are all—small and large—
part of the same overall pattern, just different ranges of a power law governed by an
identical set of parameter values. Note that scaling occurs if and only if a variable
obeys a power law. (Most biological organisms do not scale.)

6.4.2.6 Fractal Dimension
If the exponent b of a power law equation were allowed to assume only integer val-
ues (1, 2, 3, 4, . . . ) then the frequencies associated with each value would decrease
inversely by the power of such integer proportions. However, when b assumes frac-
tional values (as many exponents reported in the empirical literature) the range of
proportions is itself continuous and no longer discrete as in Euclidean space. This
is why the b-value in a power law is often called Mandelbrot’s fractal dimension.
Note that scaling vanishes as b → 0, because all values of X assume the same fre-
quency when b = 0, so from a scaling perspective a uniform random variable ex-
ists in a 0-dimensional space. A Zipfian power law (b = 1) yields a 1-dimensional
space. A quadratic power law (b = 2 or critical value) yields a 2-dimensional space.
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In general, a b-power law yields a b-dimensional space and fractional values of b

yield fractal dimensions embedded within Euclidean space. Thus, for 0 < b < 1 the
fractal dimensionality is between a point and a line; for 1 < b < 2 it is between a
line and a plane; for 2 < b < 3 it is between a plane and a solid; and so on. Thus, the
fractal dimension also offers another new classification scheme for social phenom-
ena, an idea that physics has begun to exploit with intriguing insights (e.g., Sornette
2003).

6.4.2.7 Criticality and Driven Threshold Systems
Scaling phenomena can be produced by an underlying process that is driven to
a phase of criticality by slowly evolving input forces that stress the system. Al-
though the input driving the system can behave continuously, the state variables
can change abruptly inside a critical region known as a bifurcation set, producing
scaled phenomena. A precursor to this important insight was contributed over three
decades ago by Catastrophe Theory, pioneered by mathematician René Thom
[1923–2002]. Complexity theory supports and extends Catastrophe Theory by pro-
viding a new interpretation of bifurcation dynamics and metastability. For instance,
when a power law is reported for a given social phenomenon, such a finding should
prompt a set of catastrophe-theoretic questions that would otherwise not arise:
• Is the phenomenon governed by a driven threshold system in the sense of Com-

plexity Theory?
• How is the bifurcation set of critical, metastable states to be interpreted?
• What is the form of the associated potential function P(x) defined over the

state-space?
The demonstration of extensive scaling in warfare, demography, and economics pro-
vides significant support for the idea of criticality and related insights on social
complexity, such as metastability, long-range interactions, and universality.

6.4.2.8 Metastability
Social events never “come out of the blue”—they must develop potential before
they can occur. Another important theoretical inference that can be drawn from the
empirical demonstration of a power law in a given social domain is the complexity-
theoretic condition known as “metastability.” A system (or, more precisely, a given
state x ∈ X of a system) is said to be Lyapunov-stable if it is able to maintain its
equilibrium under a range of perturbations. For instance, a positive social relation
(e.g., a marriage, a friendship, an alliance) is stable in this sense if it is able to en-
dure in spite of stresses that commonly affect social relations. By contrast, a social
system is unstable it if falls apart when stressed, such as a polity or an alliance that
ends under the pressure of conflict or unresolved issues. A broad range of social sys-
tem theories—such as in the work of Pareto, Parsons, Samuelson, Deutsch, Easton,
Flannery, Dahl and other social systems theorists—employ this Lyapunov concept
of stability.

By contrast, a system is said to develop metastability when there exist one or
more potential states x′ ∈ X or potential operating regimes (with x �= x′), other
than the extant state, to which the system could transition, given the realization
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of certain conditions. Metastability is common in many social systems, given their
capacity for change. For example, a domestic political system or polity becomes
metastable during an election or, even more dramatically, during a constitutional
convention. State failure occurs when a polity that has first become metastable then
loses governance capacity relative to accumulated or unresolved stresses. Similarly,
an international system becomes metastable—sometimes increasingly so—in a time
of crisis, because an alternate state of overt hostility or actual violence grows as
the potential for war increases. In economics, financial markets become metastable
when they develop a “bubble” capable of bringing about a market crash. Similarly,
from a more positive viewpoint, a state of warfare becomes metastable when the po-
tential for a return to peace increases; domestic turmoil and civil unrest also become
metastable—as in state-building operations—as the state potential for governance
(capacity) increases relative to stresses. Power laws are diagnostic of metastability
because they model social situations where a broad range of states—not just the
extant equilibrium or observed status quo—has the potential of being realized. The-
ories of social change should leverage the concept of metastability inherent in power
laws.

6.4.2.9 Long-Range Interactions
Scaling phenomena are produced by systems that evolve into a critical phase where
long-range interactions become possible and sometimes occur. A system gov-
erned by only nearest-neighbor interactions will tend to produce mostly normal or
Gaussian-distributed phenomena, or other non-power law phenomena with signifi-
cantly shorter or thinner tails in the upper (and lower) quantiles.

By contrast, a “globalized” system governed by long-range spatio-temporal in-
teractions is subject to non-equilibrium dynamics and processes that produce power
laws. In such systems the occurrence of extreme events is orders of magnitude
higher (not just greater) than in “normal” (Gaussian) equilibrium systems. The spa-
tial dimension of long-range interactions is fairly straightforward in terms of social
or physical distance among social actors. Temporal long-range interactions refer to
persistent memory of the past as well as future expectations, as already seen for the
Hurst parameter in Sect. 5.5.2.2, Fig. 5.2.

The main purpose of these theoretical observations has been to alert readers to
several significant potential implications that go beyond the demonstration of an
empirical power law. This is not to suggest that each one of these theoretical im-
plications is valid in every instance of an empirical power law, so these potential
implications should be seen as a theoretical heuristic for discovering properties of
social phenomena, not as proven properties.

6.5 Universality in Laws of Social Complexity

The social sciences have evolved from an initially unified tradition seeking to un-
cover universal scientific principles of human and social dynamics—which was the
original spirit of the Age of Enlightenment and the rise of modern positive science
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in recent centuries—to today’s condition of significant fragmentation along multiple
dimensions: differences in empirical domains, disciplinary cultures, methodologies,
even epistemologies. For those intrigued or motivated by the prospect of a unified
science of the social universe, structural laws and power laws examined in this chap-
ter offer robust and encouraging grounds for uncovering further universal principles
to better understand human dynamics and social complexity based on a common set
of empirical and theoretical features, such as those discussed in this chapters.

Self-similarity, scaling, fractal dimensionality, self-organized criticality, metasta-
bility, long-range interactions, and universality are all new perspectives surrounding
power laws of social phenomena, based on Complexity Theory. These properties
and insights were unknown at the time when the first power laws were discovered
by Pareto, Zipf, Richardson, and other pioneers. Complexity Theory contains other
properties of power laws that may prove insightful for the social sciences. In turn,
discovery of power laws in the social sciences may contribute new insights for Com-
plexity Theory and non-equilibrium dynamics.12
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