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Preface

This textbook provides an introduction to Computational Social Science (CSS), an
emerging field at the intersection of traditional social science disciplines, computer
science, environmental science, and engineering sciences. CSS is inspired by 20th-
century pioneers such as Herbert A. Simon, who saw essentially a new way of doing
social science enabled by computational science and technology. Scientist and vi-
sionary Peter J. Denning once said that “the science of the 21st century will be
computational,” so this book is proof of that idea in social science domains.

As a textbook, this is intended as a systematic introductory survey to familiarize
the reader with the overall landscape of CSS, including its main concepts, principles,
applications, and areas of research. CSS investigates social complexity at all levels
of analysis—cognitive, individual, group, societal, and global—through the medium
of computation, as we will examine in greater detail in Chap. 1. This book is not
intended as an advanced, specialized monograph to develop deep expertise.

The need for this book arose from the lack of unified treatment of the various
areas of theory and research in CSS. As a consequence, those of us involved in
teaching this new subject have been constrained to use a disparate library of read-
ings without a single, unified framework. This book aims to be both comprehen-
sive (include all major areas of CSS) and scientifically integrated by an overarching
framework inspired by the paradigm of complex adaptive systems, as developed by
Simon and his contemporaries in what may now be called the Founders’s Generation
(described in Chap. 1).

This project originated from the course on Introduction to CSS that has been
taught at George Mason University for the past ten years. It is the core course in
CSS, required of all students entering our graduate program in the Department of
Computational Social Science. Initially, I taught the course, then other colleagues
joined. Approximately ten students have taken the course each year, mostly from the
CSS program, but also from other departments across the social sciences, computer
science, environmental science, and engineering sciences.

This book is intended for two types of readers, which reflect the diverse student
communities who have taken this course over the years. Some students will use it
as a one-time, comprehensive exposure to the field of CSS. Other students might
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viii Preface

use it as foundation for further study through more advanced, specialized work in
one or more of the areas surveyed here. This book should also be helpful to students
preparing for their doctoral examination in CSS, as a review of basic ideas and a
way to integrate knowledge.

The background assumed of the reader consists of some familiarity with one
or more of the social sciences at a level equivalent to undergraduate study, basic
knowledge of programming in any language (nowadays Python has become quite
popular and is an excellent language for learning about computation), and some
ability to follow mathematical modeling using logic, elementary probability, and
basic calculus. Higher mathematics are unnecessary for introducing CSS.

The plan of the book is as follows: Chapter 1 provides an introduction, focusing
primarily on the meaning of complex adaptive systems in social domains, including
the significance of Herbert A. Simon’s seminal theory and the paradigm it provides
for CSS. This initial chapter also explains the main areas of CSS covered in this
textbook, which are taken up in Chaps. 3 to 10. Chapter 2 provides a review of basic
ideas in computing from a social science perspective, or computation as a paradigm
for developing social science; it is not intended as a substitute for formal instruction
on computation and programing for social scientists.

The following chapters cover major areas of CSS, corresponding to four distinct
methodological approaches, as summarized in Sect. 1.6:
• Automated information extraction (Chap. 3)
• Social networks (Chap. 4)
• Social complexity:

– Origins and measurement (Chap. 5)
– Laws (Chap. 6)
– Theories (Chap. 7)

• Social simulation:
– Methodology (Chap. 8)
– Variable-based models (Chap. 9)
– Object-based (Chap. 10)
Each chapter contains a brief opening section introducing and motivating the

chapter. This is followed by a section summarizing some of the history of CSS in
the chapter’s area, based on significant milestones. The purpose of these historical
chronologies associated with each chapter’s theme is to make the reader aware of
significant scientific roots of the field of CSS, including its braided development
with related disciplines; it does not provide a systematic history. Each chapter also
includes a list of Recommended Readings, primarily intended as a guide for deep-
ening understanding of each chapter, not as exhaustive bibliographies.

The style of the textbook attempts to strike a balance between an informal,
reader-friendly, narrative tone, and a more formal tone that is necessary for high-
lighting rigorous concepts and results. Concept formation is a major emphasis, as
is the statement of laws and principles from theory and research in quantitative so-
cial science, especially formal theory and empirically validated models. Along these
lines, an effort is made, beginning in Chap. 2, to provide CSS with systematic, sci-
entific, graphic notation that has been so sadly lacking in traditional social science.



Preface ix

This is done by adopting the Unified Modeling Language (UML) as a viable sys-
tem for describing social complexity through graphic models that have powerful
analytical meaning, as well as having direct correspondence with computation and
code. Mathematical notation used in this book is standard and aims at maintaining
consistency across chapters.

Finally, in terms of possible uses of this textbook, instructors may consider the
following options. The ten chapters of this textbook are normally more than suffi-
cient for a one-semester course, because some chapters will require more than one
week to work through. Chapter 1 is best covered in a single session. Chapter 2 can
easily be covered in two sessions, by dedicating the second session to UML. Chap-
ters 4, 5, 6, 7, 9, and 10 can also each be covered in two sessions, by dividing the
material into the main sections composing each chapter. Hence, another option is
to use this textbook for a two-semester sequence, as is done in many other fields.
This extended format would also permit more use of Recommended Readings, sup-
plemented by additional bibliography, and spending more time analyzing examples
to deepen understanding of concepts and principles. Readers are strongly encour-
aged to use the list of Recommended Readings to study the classic works, which are
highlighted in the historical section at the beginning of each chapter.

This book has benefited from significant feedback from students, so I welcome
future suggestions for corrections and improvements. I hope you, the reader, enjoy
learning from this book at least as much as I have enjoyed writing it.

Claudio Cioffi-RevillaWashington, DC
September 2013
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1Introduction

The goal of this chapter is to present foundational concepts and some operational
definitions in the field of Computational Social Science (CSS for short) by intro-
ducing the main assumptions, features, and research areas. A key feature of CSS
is its interdisciplinary nature. Computational modeling enables researchers to lever-
age and integrate knowledge from many different disciplines, not just the social
sciences. This chapter also provides an overview of the whole textbook by provid-
ing a “peek” into each chapter. The purpose is not to enter into many details at this
stage, but to provide a preview of some of the main ideas examined in subsequent
chapters.

One of the key challenges in the field of Computational Social Science is that
several relatively subtle or complicated ideas need to be introduced simultaneously.
Social complexity, complex adaptive systems, computational models, and similar
terms are introduced in this chapter, and later elaborated upon in greater depth. What
we need for now are some initial concepts so that we may get started in establishing
foundations. There is no attempt in this chapter to provide an exhaustive treatment
of each and every term that is introduced.

1.1 What Is Computational Social Science?

The origin of social science—in the pre-computational age—can be traced back to
Greek scholars, such as Aristotle, who conducted the first systematic investigations
into the nature of social systems, governance, and the similarities and differences
among monarchies, democracies, and aristocracies. In fact, Aristotle is often con-
sidered the first social science practitioner of comparative social research. Modern
social science, however, is usually dated to the 17th century, when prominent French
social scientists such as Auguste Comte first envisioned a natural science of social
systems, complete with statistical and mathematical foundations and methods to
enhance traditional historical and earlier philosophical approaches. Since then, the
social sciences have developed a vast body of knowledge for understanding human
and social behavior in its many forms (Bernard 2012). This is how modern anthro-
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pology, economics, political science, psychology, and sociology—the so-called Big
Five (Bernard 2012; Horowitz 2006; Steuer 2003)—were born four centuries ago.

The new field of Computational Social Science can be defined as the interdisci-
plinary investigation of the social universe on many scales, ranging from individual
actors to the largest groupings, through the medium of computation. This working
definition is somewhat long and will be refined later as we examine many topics
involved in the practice of CSS and the variety of computational approaches that
are necessary for understanding social complexity. For example, the “ many scales”
of social groupings involve a great variety of organizational, temporal, and spatial
dimensions, sometimes simultaneously. In addition, computation or computational
approaches refer to numerous computer-based instruments, as well as substantive
concepts and theories, ranging from information extraction algorithms to computer
simulation models. Many more will be invented, given the expansive character of
computational tools. In short, CSS involves a vast field of exciting scientific re-
search at the intersection of all social science disciplines, applied computer science,
and related disciplines. Later in this chapter we will examine some analogues in
other fields of knowledge.

Another useful clarification to keep in mind is that CSS is not limited to Big
Data, or to social network analysis, or to social simulation models.1 That would be
a misconception. Nor is CSS defined as any one of these relatively narrower areas. It
comprises all of these, as well as other areas of scientific inquiry, as we will preview
later in this chapter.

1.2 A Computational Paradigm of Society

Paradigms are significant in science because they define a perspective by orient-
ing inquiry. A paradigm is not really meant to be a theory, at least not in the strict
sense of the term. What a paradigm does is provide a particularly useful perspec-
tive, a comprehensive worldview (Weltanschauung). Computational social science
is based on an information-processing paradigm of society. This means, most ob-
viously, that information plays a vital role in understanding how social systems and
processes operate. In particular, information-processing plays a fundamental role in
explaining and understanding social complexity, which is a subtle and deep concept
to grasp in CSS as well as in more traditional social science.

The information-processing paradigm of CSS has dual aspects: substantive and
methodological. From the substantive point of view, this means that CSS uses
information-processing as a key ingredient for explaining and understanding how
society and human beings within it operate to produce emergent complex systems.
As a consequence, this also means that social complexity cannot be understood

1Big Data refers to large quantities of social raw data that have recently become available through
media such as mobile phone calls, text messaging, and other “social media,” remote sensing, video,
and audio. Chapter 3 examines CSS approaches relevant to Big Data.
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without highlighting human and social processing of information as a fundamen-
tal phenomenon. From a methodological point of view, the information-processing
paradigm points toward computing as a fundamental instrumental approach for
modeling and understanding social complexity. This does not mean that other ap-
proaches, such as historical, statistical, or mathematical, become irrelevant. On the
contrary, computational methods necessarily rely on these earlier approaches—
and other methodologies, such as field methods, remote sensing, or visualization
analytics—in order to add value in terms of improving our explanations and under-
standing of social complexity. In subsequent chapters we shall examine many exam-
ples pertaining to these ideas. For now, the best way to understand the information-
processing paradigm of CSS is simply to view it as a powerful scientific perspective
that enables new and deep insights into the nature of the social universe.

1.3 CSS as an Instrument-Enabled Science

CSS is by no means alone in being an instrument-enabled scientific discipline. Con-
sider astronomy, a science that was largely speculative and slow in developing be-
fore the invention of the optical telescope in the early 1600s. What Galileo Galilei
and his contemporaries discovered through the use of telescopes enabled astronomy
to become a real science in the modern sense. In particular, the optical telescope
enabled astronomers to see and seek to explain and understand vast areas of the uni-
verse that had been previously unknown: remote moons, planetary rings, sun spots,
among the most spectacular discoveries. Centuries later, the radio telescope and in-
frared sensors each enabled subsequent revolutions in astronomy.

Or, consider microbiology, prior to the invention of the microscope in the late
1600s. Medical science was mostly a descriptive discipline filled with untested theo-
ries and mysterious diseases that remained unexplained by science. The microscope
enabled biologists and other natural scientists, such as Anton von Leeuwenhoek
and Louis Pasteur, to observe and explore minuscule universes that were entirely
unknown. Later it was discovered that the majority of living species are actually
microorganisms. Centuries later, another kind of microscope, the electron micro-
scope, enabled biologists and other scientists to see even smaller scales of life and
beyond, down to the molecular and atomic levels. Nano-science was also born as an
instrument-enabled field, which also includes an engineering component, as does
biology in the form of bioengineering.

Linguistics is a human science that experienced a similar phenomenon, through
the application of mathematics. Prior to mathematical and computational linguistics
the study of human languages was more like a humanistic discipline, where vari-
ous interpretations and traditions contended side by side without each generation
knowing much more than the previous, since the main tradition was to offer new
perspectives on the same phenomena—not exploring and attempting to understand
entirely new phenomena. Mathematical and computational linguistics propelled the
discipline into the modern science that it is today.
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Much the same can be said of physics. Greek and medieval scientists viewed the
physical universe as consisting of substances with mysterious “essential” proper-
ties, such as a heavy object belonging at rest—a state caused by its essence. Physics
became a modern, serious science through the application of mathematical instru-
ments, especially the infinitesimal calculus of Newton and Leibniz, in addition to
the empirical method. The empirical approach alone would have been insufficient,
since theory was enabled by mathematical structures responsible for the main thrust
of the hypothetic-deductive method.

What all of these and numerous other cases share in common in the long and
well-documented history of science is quite simple: in every culture, science is al-
ways enabled and revolutionized by instruments, not just by new concepts, theories,
or data. Instruments are the main tools that science uses to create new science. As
computers have revolutionized all fields of science since the invention of digital
computing machines in the 1950s, and many humanities disciplines in recent years
(from the fine arts to history), so the social sciences have been transformed by com-
puting. Moreover, such transformations are irreversible, as has been the case for
other instruments in other fields. CSS is in great company; it is not alone in being
an instrument-enabled science.

1.4 Examples of CSS Investigations: Pure Scientific Research
vs. Applied Policy Analysis

Another stimulating characteristic of CSS is that it encompasses both pure science
and policy analysis (applied science). It is not a purely theoretical science such as,
for instance, mathematical economics, rational mechanics, or number theory.2 This
means that CSS seeks fundamental understanding of the social universe for its own
sake, as well as for improving the world in which we live. In fact, as we discuss later
in this chapter, CSS has a lot to do with improvement of the human condition, with
building civilization. These are obviously large claims, but they are not different
from those found in other scientific disciplines that attempt to better understand
the world both for its own sake and to improve it. It is a misconception to think
that pure/basic science and applied/engineering science are somehow opposed or
incompatible pursuits. Again, the history of science is replete with synergies at the
intersection of pure and applied knowledge. Examples of pure scientific research in
CSS include:
1. Investigating the theoretical sensitivity of racial segregation patterns in societies

of heterogeneous agents.
2. Modeling how leaderless collective action can emerge in a community of mo-

bile agents with radially distributed, robot-like vision and autonomous decision-
making.

2Number theory actually has very concrete application in cryptology, a highly applied field in
national security and internet commerce.
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3. Understanding how crowds may behave in a crisis when interacting with first
responders and their respective support systems.

4. A project on the impact of natural extreme hazards of a generic variety to assess
risk and the potential for causing catastrophes and plan for mitigation.
A parallel set of applied policy examples would read more or less as follows:

1. A high-fidelity agent-based model of New York City neighborhoods to mitigate
racial segregation without relying exclusively on laws.

2. Modeling how the Arab spring may have originated, based on an empirically
calibrated social network model of countries in the Middle East and North Africa.

3. Understanding how the population of New Orleans responded when Hurricane
Katrina hit the city and first responders and their respective support systems were
activated.

4. A geospatially referenced agent-based model of the Eastern coast of the United
States to prepare for seasonal hurricanes and changing weather patterns caused
by climate change.
The use of proper nouns is often (not always!) a give-away in applied policy anal-

ysis. However, there is more to applied CSS than the use of proper nouns. In partic-
ular, high-quality applied CSS must add value to other policy analysis approaches—
it must provide insights or knowledge significantly and demonstrably beyond that
which can be provided by other analytical tools. Another distinctive feature of ap-
plied CSS analysis is that it contributes to a better understanding of situations that
are too complex to analyze by other methods, even when prediction or forecasting is
not involved. For example, a good use of applied CSS might be the use of computer
simulations to better understand and prepare for unintended consequences—or what
are called negative externalities—of policies.

The pure-applied synergy in science is also present in CSS in another respect: this
has to do with pure research that occasionally generates applications for improving
policies, and, conversely, a so-called wicked problem in the policy arena inspiring
fundamental research questions in pure research. Examples of the former kind of
synergy (basic science improving policy) would include:
• Better understanding how crowds of panicky individuals “flow” in an emergency

in order to improve building design and evacuation procedures.
• Comparing formal properties of organizational structures to improve the work-

place.
• Inventing a new algorithm to improve security of communication in complex

infrastructure systems and their management interface with humans.
• Deeper understanding of the formal properties of distributions to design better

queuing systems, such as those used by air traffic controllers and similarly com-
plex systems.
Conversely, examples of the latter kind (policy needs informing basic research)

would include:
• Developing the social theory of communication in racially mixed communities

out of the policy need to create a high-fidelity model of a refugee camp.
• Deepening our understanding of complex network structures based on the need

to model transnational organized crime in trafficking of persons.
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• Improving a theory of origins of civilization while attempting to improve anti-
looting laws and regulations that govern world heritage archaeological sites.

• Working on formulating and testing a new theory of learning in individuals and
collectives of agents while trying to revise public policy in health care and edu-
cation.
The synergies highlighted by these examples are not contrived or invented for

pedagogical purposes. They are real in the sense that they have either already oc-
curred, or are likely to occur in the not-so-distant future. In other words, they are
not purely notional examples. Moreover, such synergies are likely to grow as the
field develops through more mature stages—as has happened in many other areas of
science.

The powerful and fascinating synergy between science and policy notwithstand-
ing, it is also fair to say—indeed, be emphasized—that basic scientific research and
applied policy analysis are different activities along numerous dimensions, such that
they generate different professions:
Expectations: Basic science is expected to produce new knowledge and under-

standing, whereas applied policy analysis is more results-oriented in a practical
sense. People built bridges across rivers centuries (perhaps millennia) before
the fundamental laws of mechanics were discovered.

Training: Scientists and practitioners train in different concepts, tools, and
methodologies, even when they may share training in some common disci-
plines, such as in the use of simple statistics.

Incentives: Pure scientists and policy analysts have different incentives, such as
academic rewards for the former and promotions to higher organizational roles
for the latter.

Facilities: Pure science is best conducted in labs and research centers; think tanks
are specialized venues for conducting policy analysis. Both kinds of venues
can be academic, private, or governmental; what matters is the main mission
and associated support infrastructure.

Publicity: Pure scientific research is most frequently highly publicized, espe-
cially when it touches on public issues, such as climate change, health, com-
munication, the economy, or national security. Moreover, open sources are
more typical of academic CSS research, except when researchers impose a
temporary embargo in order to publish first. Applied policy research is of-
ten less public, especially when it concerns sensitive information pertinent to
public issues, or when private consulting firms protect intellectual property by
requiring and enforcing nondisclosure agreements.

Some features that are common to both pure and applied research in CSS include
the need for terminological clarity (not the “Tower of Babel” decried by Giovanni
Sartori), systematic concept formation, respect for evidence, rigorous thinking, and
thorough documentation. Also, in both areas one can find excellent, mediocre, and
outright awful work—“the good, the bad, and the ugly,” as in the proverbial phrase.

Throughout this textbook we will encounter cases of both pure CSS research as
well as applied policy applications. Similarities and differences between the two
are significant and instructive on the role of each and the synergy between the two
orientations or activities.
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1.5 Society as a Complex Adaptive System

Society is often said to be complex. What does that mean? In this section we ex-
amine this idea for the first time, developing deeper understanding in subsequent
chapters.

1.5.1 What Is a CAS in CSS?

At the very beginning of this chapter we mentioned complex adaptive systems as
being one of the key, fundamental ideas in the foundations of CSS. For now, we
can define a complex adaptive system as one that changes its state, including its
social structure and processes, in response to changing conditions. Later, especially
in Chaps. 5–7, we will develop more rigorous definitions. A cybernetic system is an
instance of a rudimentary CAS, whereas a system of government, an ecosystem, an
international regulatory agency (such as World Bank or the International Monetary
Fund), or a complex organization (such as NASA or the Intergovernmental Panel on
Climate Change, IPCC), are more complete examples.3 An essential aspect of this
initial definition is to note that a complex adaptive system operates through phase
transitions (significantly different states and dynamics) in the operating regime of
the system in order to maintain overall performance in the face of changing envi-
ronmental conditions or evolving goals or changes in resources.

A family is a social organization that can be viewed as a complex adaptive sys-
tem, one based on kinship relations that undergo numerous changes throughout the
life cycle of individuals who are members of the family, when viewed as a human
grouping. Everyone in the family ages, and some mature successfully into old age,
experiencing many different situations, acquiring new knowledge, in the face of nu-
merous opportunities and challenges. In spite of many changes, the overall system
of kin-based relations in some families can endure for decades; in other cases that
is not the case and the system breaks down. Adaptation in the history of a given
family manifests itself in numerous ways: children grow up and must adapt to go-
ing to school; parents might change jobs or occupations, having to adapt to labor
market conditions or to changing priorities; social mobility also requires adaptation,
perhaps to new norms or new locations; making and losing friends also requires
adaptation. Adaptation is common and frequent in many social systems because in-
ternal components and relations are willing and able, even required, to change in
order for the open systems to endure, sometimes improving or prospering.

Adaptation in social systems is best seen as a multi-stage process, not as a single
event. As such, several occurrences are required for adaptation to operate success-
fully. We may view this as consisting of several events, which later we will refine in

3The example of a cybernetic system as a CAS is not by chance. In fact, the Greek etymology of
the term government, or γ υβερνη′της (kybernētēs), means the rudder or steering mechanism in
a ship. It’s the same in Italian (governo), Spanish (gobierno), French (government), and in other
languages.
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more formal ways. First, the system, or the actors within the system, must be aware
that there is a need to adapt—to undertake adaptive behavior. Second, there must be
an intent to adapt, which is separate from the recognized need to adapt. Third, there
must be capacity to adapt, since adaptation costs in terms of resources, be they tan-
gible or intangible. Finally, adaptive behavior must be implemented in some form,
which may involve executing plans or overcoming various kinds of difficulties and
challenges. A key idea to understand regarding adaptation in social systems is that it
is never automatic or deterministic, at least in the most interesting or nontrivial situ-
ations. Whether a person, a family, a group, an economy, an entire society, a whole
nation, or even a global society adapts to change, such a process always consists of
several stages.

A particularly noteworthy aspect of complex adaptive systems from a computa-
tional perspective is the key role played by information-processing:
1. Information is necessary for assessing the need for a complex system to require

adaptation.
2. The activity of determining resources also requires information.
3. Information flows in the form of interpersonal and inter-group communication

when adaptation is decided on, prepared for, implemented, or subsequently mon-
itored for its effects on restoring a viable state for the system.
This is obviously a sparse and simple summary of the role of information in CAS,

which serves to highlight the usefulness of the information-processing paradigm dis-
cussed earlier. Information-processing is pervasive and critical in complex adaptive
systems; it is not a phenomenon of secondary importance. An interesting aspect
of information in CAS is that it has many other interesting properties, as well as
insightful connections to other essential ideas in CSS, such as complexity, com-
putability, and sustainability, as we will examine later.

1.5.2 Tripartite Ontology of Natural, Human, and Artificial Systems

Another important distinction in CSS is among natural, human, and artificial
systems—an ontological or categorical distinction that is different or does not exist
at all, at least not to the same degree, in other fields of knowledge. The first compu-
tational social scientist to introduce this idea of a tripartite classification of entities
was Herbert A. Simon, who used it as foundation for his theory of artifacts and so-
cial complexity through the process of adaptation. We will examine this soon, but
the tripartite distinction is needed now. Complex adaptive systems of interest in CSS
often combine all three categories of systems, so understanding the composition of
each, as well as their similarities and differences, is important before entering more
theoretical territory.
1. A natural system consists of biophysical entities and dynamics that exist in na-

ture, mainly or completely independent of humans and their artifacts. Common
examples are wilderness landscapes, animals other than humans, regional ecosys-
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tems, and the biochemistry of life, including the biology of the human brain as a
natural organ (not just mental phenomena).4

2. A human system is an individual person, complete with thoughts and body.
Decision-makers, actors, agents, people, and similar terms denote human sys-
tems. The complexity-theoretic perspective highlights the human ability to create
artifacts.

3. An artificial system is one conceived, designed, built, and maintained by hu-
mans. Artificial systems consist of engineered or social structures that act as
adaptive buffers between humans and nature.
These initial conceptual definitions serve as building blocks that for now are

sufficient for our initial purpose of establishing foundations. We shall return to these
ideas to develop a better understanding of their properties and interrelationships.

1.5.3 Simon’s Theory of Artifacts: Explaining Basic Social
Complexity

Laws describe; theories explain. Having presented and discussed the first conceptual
building blocks, now our main task is to move forward by providing an initial state-
ment of Herbert A. Simon’s theory of artifacts for providing an initial explanation
of social complexity. Simon presented most of these ideas in his classic monograph,
The Sciences of the Artificial, which first appeared in 1969, followed by a third and
last edition in 1996.

From the previous ideas, it is important to note that artifacts exist because they
have a function: they serve as adaptive buffers between humans and nature. This
is the essence of Simon’s theory of artifacts and social complexity. Humans en-
counter challenging and often complex environments, relative to their own simple
abilities or capacities. In order to adapt to these circumstances, and not be over-
whelmed by or succumb to them, humans pursue the strategy of building artifacts
that enable their goals.
• Roads were first invented for moving armies and other military and political per-

sonnel from one location to another. They were also used for commercial and
communications purposes. Without a proper road it is either very difficult or im-
possible to achieve such goals.

• Bureaucratic systems, and in some cases writing (e.g., Mesopotamia, China),
were first created for maintaining records related to the governance and economy
of a city. This enabled the first urban populations to attain the goals of becoming
established and developed.

4The wording here is intentionally and necessarily cautious and precise. The paradigm being pre-
sented here separates humans from the rest of nature, based on the human ability to build artifacts,
some of which are used to build other artifacts, especially intelligent, autonomous artifacts, using
mental, cognitive, and information-processing abilities that are far more complex than those found
in any other natural living organism. Ants might build colonies, corals build reefs, bees build hives,
beavers build dams, but none of these or other examples of “animal-made artifacts” compares to
human artifacts.
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• The first large aqueducts, built by the Romans, required careful planning, engi-
neering, and maintenance in order to provide water for large urban populations
located at great distances from the sources (springs, rivers, lakes, or reservoirs).

• The International Space Station (ISS) is an engineering structure of unprece-
dented complexity, operating in the challenging environment of space, managed
by a ground crew in coordination with the station’s crew.
As already suggested by the previous examples, the artifacts that humans have

been building for thousands of years, across all societies, can be tangible (engi-
neered, i.e., physical) or intangible (organizational, i.e., social), as required by the
goals being sought. Some adaptive strategies require tangible, engineered artifacts,
such as dwellings, bridges, roads, and various kinds of physical infrastructure sys-
tems. At other times, an adaptive strategy may require planning for and creating an
organization, such as a governing board or committee, that is to say, a social system
of a given size and complexity to enable attainment of the goal being pursued.5

A fascinating aspect of this tightly coupled synergy between tangible and in-
tangible, or engineered and organizational artificial systems, is that they often re-
quire each other—as in a symbiotic relationship between humans and their arti-
facts, where the latter enable human attainment of desired goals. This feature of so-
cial complexity is supported by historical and contemporary observation. To build a
road or a bridge it is also necessary to create teams of workers supervised by man-
agers, who depend on supply chains for the provision of building materials and other
necessities: the tangible artifact (bridge) cannot be built without the intangible one
(organization). Modern cities provide another excellent example of the same sym-
biotic relationship between engineered and social artifacts. The complex infrastruc-
ture that supports the life of humans in cities (as opposed to cave dwellers) requires
numerous, specialized buildings and artificial systems—especially when cities are
built in mostly inhospitable environments. This was also true of the earliest cities,
which were supported by an organizational bureaucracy of managers, city workers,
and other social components, working in tandem as a coupled socio-technological
system to support urban life. For example, the capital of the USA, Washington, is
built on a swamp, as is the Italian city of Venice. Both are enabled by physical and
organizational infrastructure.

In sum, what does Simon’s theory explain? It explains why artifacts exist, why
humans build artifacts, and the fact that artifacts are adaptive strategic responses
for solving the many challenges faced by humans in societies everywhere since the
dawn of civilization.6

5This idea prompted Simon to suggest—in The Sciences of the Artificial—that social scientists,
lawyers, and engineers should undergo university-level training of a similar kind, perhaps under a
common College of the Artificial Sciences.
6Herbert A. Simon’s work in the social sciences is widely known for its contributions to the study
of organizations and bureaucracy. In computer science his work is equally well known for contri-
butions to artificial intelligence and related areas. His theory of social complexity grew out of an
interdisciplinary interest across these domains.
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1.5.4 Civilization, Complexity, and Quality of Life: Role of Artificial
Systems

Simon’s theory of artifacts and adaptation goes a long way toward explaining the
genesis and development of social complexity. It also explains important aspects of
the same patterns that endure to this very day and will likely continue into the future.
Humans everywhere pursue goals that are often sought in challenging environments,
so in order to accomplish those goals they build artifacts—both engineered and
social systems that are tangible and intangible, respectively.

However, thus far the story is incomplete, because sometimes humans seek goals
that are not necessarily linked to challenging environments. For example, they may
already live in a city that is quite viable, but they simply wish to live in a better way,
such as enjoying better services and amenities, living longer or more comfortably, or
enjoying culture and the fine arts. An additional, essential ingredient for developing
a more complete theory of social complexity, one that explains a broader range of
social complexity, is based on the empirical observation that humans everywhere
prefer to live a better life. This is also a purpose of government: “The care of human
life and happiness, and not their destruction, is the first and only legitimate object
of good government” (Thomas Jefferson, American President, 1809).

A significant variation on the very same theme would be, for example, to wish
that their descendants or friends enjoy a higher quality of life. The pursuit of a higher
quality of life is a goal for many humans, which may occur independent of or in
combination with taming a given environment. The strategic adaptive response is the
same or isomorphic: artificial systems are conceived, planned, built, and maintained
in the form of physical or social constructs. Complexity in all these forms increases
in each case. Therefore, both challenging environments and human aspirations—
and quite frequently the interaction of both—cause social complexity in a generative
sense.

Sometimes complex systems come and go in a transient way; at other times they
become permanent artifacts that can endure for very long periods of human his-
tory. Systems of government, infrastructure systems, monetary systems, and cul-
tural norms provide examples of long-term artifacts that have increased in complex-
ity over the millennia. Civilization is the result of this process, from the theoret-
ical perspective of CSS. The dawn of civilization in all parts of the world where
humans have created and developed social complexity is marked by the earliest
engineered and organizational artifacts. Contemporary civilization in the 21st cen-
tury is no different from the earliest civilizations, as seen from this universal the-
oretical perspective. Societies in the earliest days of Mesopotamia, China, South
America, and Mesoamerica built the first irrigation canals, structures for communal
worship, villages, towns and cities, the earliest infrastructure systems and systems
of government and bureaucracies that supported them. All these artificial systems
and many others that have since been invented persist to this day, and spacefaring
civilization—if we manage to launch and mature it—will demonstrate comparable
patterns in the evolution of social complexity.
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Information-processing, goal-seeking behavior, adaptation, artifacts—engineered
as well as organizational—and the resulting social complexity that they cause are
the main ingredients of this interdisciplinary theory. Its purpose is to explain how
and why natural, human, and artificial systems interact in the creation of history.
The theory is causal, in a strict scientific sense, because it proposes an empirically
demonstrable process that links together—not in a superficial correlational way de-
void of causation—the elements thus far presented in this chapter and examined in
greater detail across areas of CSS.

1.6 Main Areas of CSS: An Overview

Computational social science is an interdisciplinary field composed of areas of con-
centration in terms of clusters of concepts, principles, theories, and research meth-
ods. Each area is important for its own sake, because each represents fertile terrain
for conducting scientific inquiry, as basic science as well as policy analysis. In ad-
dition, these areas can build on each other and be used synergistically, as when net-
work models of social complexity are used in simulation studies, or through many
other possible combinations of scientific interest.

The chapters of this book are dedicated to each of these areas, which we will
now survey by way of introduction. The main purpose in this section is to provide
an overview, not a detailed presentation of each area. By way of overview, it should
be mentioned that these areas of CSS are also supported by statistical and mathemat-
ical approaches, and in some cases other methodologies as well, such as geospatial
methods, visualization analytics, and other computational fields that are valuable for
understanding social complexity.

1.6.1 Automated Social Information Extraction

CSS is an interdisciplinary field where data play numerous and significant roles,
similar to those in other sciences. The area of automated information extraction
refers to computational ideas and methodologies pertaining to the creation of sci-
entifically useful social information based on raw data sources—all of which used
to be done manually. Other names for this area of CSS might be computational
content analysis, social data analytics, or socio-informatics, in a broad sense. For
example, whereas in an earlier generation social scientists would gather data from
sources such as census records, historical sources, radio broadcasts, or newspapers
and other publications, today much of the work that takes place in order to generate
social science research data is carried out by means of computational tools. As we
will see, these tools consist of computational algorithms and related procedures for
generating information on many kinds of social, behavioral, or economic patterns.

Social information extracted through automated computational procedures has
dual use in CSS. For instance, sometimes it is used for its own sake, such as for
analyzing the content of data sources in terms of affect, activity, or some other set
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of dimensions of interest to the researcher. An example of this would be a study
to extract information concerning the political orientation of leaders or other gov-
ernmental actors based on computational content analysis of speeches, testimony
before legislative committees, or other public records.

Besides being used for analyzing the direct content of documents and other
sources, information extraction algorithms can also be used to model networks and
other structures present in raw data, but impossible to detect through manual pro-
cedures performed by humans. An example of this would be a model of organized
crime organizations and their illegal activities, based on computational content anal-
ysis and text mining of court cases and other evidentiary legal documents that de-
scribe individuals, dates, locations, events, and attributes associated with criminal
individuals. Another example would be automated information extraction applied
to modeling correlations across networks, based on Internet news websites.

An extension of automated information extraction could also be used for build-
ing computer simulation models that require high fidelity calibration of parameters,
such as models of opinion dynamics, international trade, regional conflicts, or hu-
manitarian crises scenarios. The extraction of geospatial social data through com-
putational algorithms represents a significant step forward in the development of
CSS.

These and other examples illustrate how automated information extraction is
sometimes seen as a foundational methodology in CSS: it can be used for devel-
oping models and theories in all of the other main areas of CSS, besides its intrinsic
value.

1.6.2 Social Networks

Social network analysis is another major area of CSS, given the prominence of net-
works of many types in the study of social complexity. This area has become very
popular in recent years, especially through the development of social media and In-
ternet websites such as Facebook, Twitter, and numerous others. However, the anal-
ysis of networks in just about every domain across the social sciences—certainly in
all the Big Five disciplines—predates computing by many years, so we should be
examining the area of social network analysis from its historical roots. Social net-
work analysis is the only area of CSS that has a well-documented history (Freeman
2004).

The advent of digital computing and CSS has transformed the study of social
complexity through network analysis and modeling, expanding the frontiers of re-
search at an unprecedented rate while advancing our understanding along many
fronts in this area. There are numerous reasons for the exciting progress that this
area is experiencing. For one, based on decades of pioneering research on networks,
by the time computers became part of their methodological toolkit, social scientists
had already developed a powerful set of concepts, statistical tools, and mathemati-
cal models and procedures, including formal theories, which enabled them to exploit
computational approaches. Another reason for the explosion of progress on theory
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and research in this area of CSS is that computational tools, especially the most re-
cent generation of computer hardware and software systems, now enable efficient
processing of high-dimensionality data and large matrices necessary for understand-
ing complex social networks.

Social network analysis has intrinsic value, and it also contributes to the other
areas of CSS theory and research. We shall examine examples of these synergies,
but before that it is necessary to gain familiarization with basic concepts, theories,
and research methods in this area—almost as if it had no applications in other areas
of CSS!

1.6.3 Social Complexity

In this introductory chapter we have already previewed some initial ideas for under-
standing social complexity, because this is such a defining, foundational theme for
CSS. However, there is much more to understanding social complexity and its many
exciting scientific and policy implications, besides the preliminary introduction that
has been provided thus far. For example, research in the area also requires an under-
standing of origins of social complexity in regions where the earliest civilizations
emerged, and their subsequent, long-range historical development. The study of ori-
gins of social complexity should be seen in much the same way as a science course
in astronomy examines the cosmology of the physical universe, in terms of how the
physical universe originated and how and why the earliest structures and systems
emerged—the formation of stars, planets, moons, planetary systems, galaxies, and
clusters of galaxies that span the cosmos. Traditionally—and perhaps not so sur-
prisingly, given the standard (read: “turf-based”) territorial disciplinary divisions of
academic labor—most, albeit not all, of the study on origins of social complexity has
been conducted by a relatively small community of archaeologists, mostly working
in isolation from other social scientists. However, this is changing and CSS is play-
ing an increasingly significant role in our scientific understanding of the origins of
social complexity and civilizations.

In addition to understanding the origins of social complexity—just as as-
tronomers are familiar with cosmology and contemporary theories and research for
understanding the current universe—in this area of CSS it is also essential to de-
velop a better understanding of interdisciplinary concepts and theories of social
complexity. For example, whereas concepts such as information-processing, adap-
tation, and socio-technical artifacts provide some explanation of the phenomenon,
CSS theory draws upon a broad array of other social science concepts, such as
decision-making, coalition theories, collective action, and others. The Canonical
Theory of social complexity provides a formal and empirically valid framework for
describing, explaining, and understanding social complexity origins and develop-
ment. Moreover, CSS investigation of social complexity also includes key concepts
from complexity science, including the theory of non-equilibrium distributions,
power laws, information science, and related ideas in contemporary science. This
is another highly interdisciplinary area of CSS, bringing together quantitative and
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computational social scientists, as well as ideas and methods from other disciplines
across the physical, geospatial, and environmental sciences.

1.6.4 Social Simulation Modeling

The CSS area of social simulation modeling can be characterized as foundational,
multi- as well as inter-disciplinary, and diverse, meaning it is based on many differ-
ent methodologies in modeling and simulation disciplines. The area is increasingly
significant and mature for conducting both basic science and applied policy analy-
sis. Like social network analysis, this area is sometimes confused with the totality
of CSS, whereas it is only an area, not the whole field of CSS.

The simulation modeling tradition began in social science many decades ago,
during the earliest days of digital computing. There are several different kinds of
social simulation modeling frameworks, as we shall discuss. Regardless of the spe-
cific type, all social simulation models share a set of common characteristics. Ev-
ery simulation model is always designed and built around a set of research ques-
tions, which may concern basic science or applied policy analysis, sometimes both.
Research questions provide essential guidance for simulation models, just as in
other models (for example, in formal mathematical models). Another character-
istic shared by social simulation models is that they are developed through a set
of developmental stages, not as a single methodological activity, especially in the
case of complex modeling projects or those involving teams of investigators. Such
stages include model verification and validation, among others. In addition, spe-
cific types of models often require additional stages in their development. It should
be pointed out that each of the social simulation modeling traditions is sufficiently
large to include specialized journals, conferences, and other institutional compo-
nents in communities of practitioners that often number in the thousands of re-
searchers.

The earliest kind of simulation models in CSS are the system dynamics models,
which gained highly significant international notoriety through the global models of
the Club of Rome in the 1960s and 1970s.7 These social simulations built on the
pioneering work of Jay Forrester and his group at MIT. From a computational per-
spective, these are equation-based models that employ systems of difference equa-
tions or systems of differential equations, as the situation and data might require.
This class of models has been very significant for many decades—indeed, for half
a century—because so many social systems and processes are properly amenable to
representation in terms of stocks and flows, or levels and rates, respectively. Arms
races, stockpile inventories in business enterprises, the dynamics of economic de-
velopment, and numerous other domains of pure and applied analysis have been
modeled through system dynamics simulations. A significant feature of theory and

7The Club of Rome is an international non-governmental organization founded in 1968 and dedi-
cated to scientific analysis of the future and sustainable development.
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research in system dynamics simulation models has been the availability of excel-
lent software support systems, such as Forrester’s DYNAMO, followed by the Stella
system, and presently Vensim.

Another major tradition in social simulation models is represented by queuing
models. As their name indicates, these models are used for social systems and pro-
cesses where lines or queues of entities (such as customers, patients, guests, or other
actors) are “serviced” by various kinds of stations or processing units. Banks, mar-
kets, transportation stations of all kinds, and similar systems that provide a variety of
services are some examples. From a formal and computational point of view, these
models are based on queuing theory, and various kinds of probability distributions
are used to represent the arrival of entities at service stations, how long the service
might take, and other statistical and probabilistic features of these processes. Hence,
queuing models also belong to the class of equation-based models.

By contrast, the following kinds of social simulation models move towards the
object-based orientation of modeling and simulation, rather than the equation-
based paradigm. Of course, this is not to say that object-based models are devoid
of equations; it simply means that the building blocks of this other class of models
are object-like, as classes or entities. Their variables and equations are said to be
“encapsulated” within the objects themselves.

The simplest kinds of object-based social simulation models are cellular au-
tomata, which generally consist of a grid or landscape of sites adjacent to one an-
other, as in a checkerboard. The actual shape of the sites or cells can take on many
different forms, square, hexagonal, or triangular cells being the most commonly
used. The earliest work in cellular automata was pioneered by John von Neumann,
who also invented game theory. The basic idea of social simulations based on cel-
lular automata is to study emergent patterns based on purely local interactions that
take place between neighboring cells on a given landscape. One of the most impor-
tant and well-known applications of this kind of model has been the study of racial
segregation in cities and neighborhoods, showing how segregation can emerge even
among relatively unprejudiced neighbors.

Another major class of social simulation models is represented by agent-based
models, often abbreviated as ABMs.8 In this case the actors being simulated en-
joy considerable autonomy, specifically decision-making autonomy, often including
physical movement from one place to another, which is why they have had so much
success in modeling social systems and processes having a geospatial dimension.
Agent-based models can be spatial or organizational, or both combined, depend-
ing on what is being represented in the model. Spatial agent-based models can also
use a variety of data for representing landscapes, such as GIS (Geographic Infor-
mation Systems) or remote sensing data. Organization agent-based models are akin
to dynamic social networks, where nodes represent agents and links represent var-
ious kinds of social relations that interact and evolve over time. These kinds of
social simulation models have become increasingly significant for solving theoreti-
cal and research problems that require representation of heterogeneous actors and a

8The computer science terminology for these models is multi-agent systems, or MAS.
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spectrum of interaction dynamics that are simply intractable through mathematical
approaches that require closed-form solutions. They are also particularly appealing
for investigation of emergent patterns indicative of complex adaptive systems. For
example, a significant application of agent-based models is the study of complex
crises and emergencies, given their ability to represent human communities in en-
vironments prone to natural, technological, or anthropogenic hazards. In another
important application, as we shall see, agent-based models provide the first viable
methodology for modeling entire societies, polities, and economies, as well as na-
tional, regional, and global scales of these social systems.

Finally, evolutionary computation models represent the class of social simula-
tions based on notions and principles from Darwinian evolution, such as evolution-
ary algorithms. Although evolutionary computation models are still relatively new
in CSS, they already have shown great promise. For example, they allow us to derive
patterns of social dynamics that are not well understood, so long as the simulation
model can be made to match empirical data. This use of evolutionary models in a
“discovery mode” is characteristic of this particular kind of simulation.

Each of the preceding types of social simulation models can, at least in principle,
include ideas and components from other areas of CSS, such as results from auto-
mated information extraction, social network analysis, complexity-theoretic ideas,
and the like. Conversely, social simulation models can provide significant input and
improvements pertinent to research in these other areas.

This brief survey of simulation models in CSS covers most of the areas that have
been developed during recent decades. No doubt other social simulation methodolo-
gies will emerge in the future, either as outgrowths of current modeling approaches
(as agent-based models originated from cellular automata models) or as novel inven-
tions to analyze problems or investigate research questions that remain intractable
by the current types of simulation models.

1.7 A Brief History of CSS

Each of the areas of CSS that we have introduced in this chapter has its own, more
detailed, history, the main highlights of which are provided in each of the chapters
to follow. The purpose in this section is to provide an overall, albeit brief, history of
the entire field of CSS, beginning with its historical roots.

How, when, why, and who began the field of CSS as a systematic area of inquiry
is similar in some respects to the history of other scientific fields. The historical
origins of CSS are to be found in the Scientific Revolution that occurred in Europe
during the late Renaissance and early Enlightenment periods. This was the epoch
when the social sciences began to adapt universally held concepts and principles
of positive scientific methodology (not just particular quantitative methods, such as
statistics), specifically with regard to measurement of observations, systematic test-
ing of hypotheses, and development of formal mathematical theories for explaining
and understanding social phenomena. Human decision-making and voting behav-
ior (i.e., the foundations of social choice theory) were among the earliest areas of
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inquiry. Statistics, initially intended to be the scientific discipline to study the state
and improve policy analysis, was also invented during this period. Statistical and
mathematical methods were introduced throughout the 18th and the 19th century by
famous luminaries such as Denise Poisson, Adolphe Quételet, William Petty, Daniel
Bernoulli, Pierre de Fermat, Jean Marie de Condorcet, Corrado Gini, and Vilfredo
Pareto, among many others. The most important result of this formative period in
the history of the social sciences was the adoption of a scientific culture concerning
the quest for knowledge and understanding, a tradition that endures to this day.

For our purposes it is useful to mark the beginnings of CSS, in a strict sense,
with the invention of digital computing during the closing days of World War II and
the early days of the Cold War. This major milestone in the world history of sci-
ence and technology affected the social sciences in two transformative ways, each
of which is interesting in its own right. First, the modern digital computer enabled
the emergence of CSS by providing the key instrument that would fuel and expand
its research horizons in a way that would have seemed unimaginable just a few
years earlier. For the first time social scientists were able to analyze vast amounts of
data, test many novel scientific hypotheses, and explore the dimensions and struc-
tures of social space—from the human mind to the global system, with numerous
levels of analysis in between. An early example of this was the invention of factor
analysis—a powerful inductive, dimensionality-reduction methodology that led to
many discoveries across the social sciences—by early CSS pioneers such as Charles
Spearman, Rudolf Rummel, and L. Thurnstone. Among these was the discovery of
the dimensionality of human cognitive spaces, as well as the structure of spaces
wherein international interactions occur. Yet another example was the invention of
the General Inquirer, a computational content analysis system that allowed social
researchers for the first time to explore and test hypotheses concerning the content
of an unprecedented volume of qualitative text data. Within the span of a single
generation the volume of knowledge across the social sciences increased by many
orders of magnitude thanks to the advent of the modern digital computer.

The second truly major, transformative way in which the modern digital com-
puter affected the social sciences was as an inspiring metaphor that shed new light
on classical and modern areas of investigation. Social scientists had known for some
time the significance of communication and information-processing for understand-
ing human and social dynamics. For example, the study of media and text data, as
well as radio broadcasts and propaganda, had begun in earnest many decades before
the advent of the computer. However, the digital computer inspired new concepts,
hypotheses, principles, models, and theories about the vast array of systems and
processes in the social universe. For instance, political scientists who became famil-
iar with ideas from cybernetics and general systems theory (new fields pioneered
by scientists such as W. Ross Ashby, Norbert Wiener, Ludwig von Bertalanfy, and
Anatol Rapoport, among others) began viewing the structure and functioning of
polities and other forms of political systems by highlighting the role of information-
processing, goal-seeking behavior, social computing, and emergent phenomena. An
example of this was the novel cybernetic theory of government formulated by Karl
W. Deutsch and others, who played a leading role during the Behavioral Revolution
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of the 1960s. A polity, as we will see in subsequent chapters, can be described and
understood as a complex adaptive system that carries out numerous, coordinated
computations, such as voting and policymaking. Herbert A. Simon’s theory of so-
cial complexity through adaptation and artifacts—published for the first time in the
1969 edition of The Sciences of the Artificial—was another result of the influence
of digital computing machines. Harold Guetzkow developed innovative computer
simulation approaches, as well as hybrid simulations (so-called man-machine sim-
ulations) that are still highly influential to this day. 1969 was also a seminal year
in which Hayward Alker and Ron Brunner published the first paper on comparative
simulation research.

All areas of CSS have experienced remarkable growth since the early days of the
field. Progress in social theory and research, as well as remarkable advances in all
areas of computing, particularly applied computational approaches and methodolo-
gies, have contributed to the current body of knowledge in CSS. Today CSS is also
beginning to reap the benefits of interactions and synergies among its main areas, as
they fertilize and stimulate each other each other in new and exciting ways. For ex-
ample, the early history of social network analysis, or even automated information
extraction, developed in relative isolation or autonomy—by endogenous develop-
ment. Today, by contrast, these areas experience frequent overlays and mutually
beneficial collaborations, as witnessed by the application of text-mining algorithms
to populate social network models. Another example is the application of network
models to improve the specification of social structures represented in agent-based
models for the study of emergence in complex social systems. The history of CSS as
an emergent field is still in its infancy. However, the field has already demonstrated
significant capacity and promise for contributing to new understanding across all
areas of social science theory and research.

1.8 Main Learning Objectives

This textbook has a set of main learning objectives intended to be pedagogically ap-
propriate as an introduction to the field of CSS. As indicated in the preface, these ob-
jectives include learning basic concepts, models, theories, and methodologies used
in CSS. These objectives are designed to serve two purposes: a basic exposure to
the field of CSS, as well as building foundations for further study at more advanced
levels.

The following scientific learning objectives are among the most important. Ex-
amples are provided as illustrations.
• Basic understanding of key CSS concepts, including all those highlighted in

boldface and included in the Index, to a level where the reader can provide addi-
tional examples. Conceptual proficiency is fundamental, including concept for-
mation in CSS.

• Familiarization with the scope and content of each area of CSS, grounded in ele-
ments of computing, including areas of automated information extraction, social
networks, complexity-theoretic understanding of social systems and processes,
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and various kinds of social simulations. Examples include complex adaptive sys-
tems, coupled systems, multi-scale processes, bifurcation, criticality, metastabil-
ity, phase transitions, autonomous agents, verification, and validation.

• Understanding of main theories that are part of the CSS paradigm as causal ex-
planatory frameworks that shed new light on the nature of human and social
dynamics. Examples include Simon’s Theory of Artifacts, the Canonical The-
ory of Social Complexity, the Theory of Social Networks, the Theory of Non-
equilibrium Social Processes, and others.

• Ability to distinguish and analyze the different levels of analysis of social com-
plexity using computational approaches, ranging from mental phenomena to
decision-making, social groups and their interactions, to the global system.

• Ability to work with one or more of the methodological tools covered in one or
more of the chapters. Examples include extracting entities from text data, com-
puting social network indices, testing a power law hypothesis, and building a
basic agent-based model in a programming language such as Python or a simu-
lation toolkit such as Netlogo.

• Familiarization with the main classes of entities, objects, and relations that are
most common in computational analyses of social complexity. Examples include
various types of actors, associations, attributes, and methods.

• Proficiency in the interdisciplinary integration of knowledge in the context of
social phenomena, including the synergistic nexus between social science and
computational methodologies.

• Basic knowledge of the history of each area of CSS, including prominent pio-
neers, with an understanding of roots in early development of the social sciences
and computer science, at least to the level detailed in the brief histories provided
in each chapter.
This minimal set of learning objectives applies throughout chapters in this text-

book, ideally independent of the content of each area of CSS. In addition, each
chapter contains its own set of main learning objectives that are more specific to the
scope and content of each area.

Motivated readers will benefit from further study of the supplementary reading
materials provided at the end of each chapter under the heading of Recommended
Readings. These are intended to provide more advanced foundations and knowl-
edge that extends beyond the scope of this introductory textbook. The bibliography
contains additional sources that interested readers will wish to look up, both early
classic literature in CSS, as well as some of the most current and influential contri-
butions.

Recommended Readings

H.R. Alker Jr., R.D. Brunner, Simulating international conflict: a comparison of three approaches.
International Studies Quarterly 13(1), 70–110 (1969)

H.R. Bernard, The science in social science. Proceedings of the National Academy of Science
109(51), 20796–20799 (2012)
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C. Cioffi-Revilla, Computational social science. Wiley Interdisciplinary Reviews (WIREs): Com-
putational Statistics, paper no. 2. Available online (2010)

D. Collier, J. Gerring, Concepts and Method in Social Science: The Tradition of Giovanni Sartori
(Routledge, New York, 2009)

R. Conte, G.N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffaunt, J. Kertesz, D. Helbig, Mani-
festo of computational social science. European Physical Journal Special Topics 214, 325–346
(2012)

F. Fernandez-Armesto, Civilizations: Culture, Ambition, and the Transformation of Nature (Simon
& Schuster, New York, 2001)

A.M. Greenberg, W.G. Kennedy, N.D. Bos (eds.), Social Computing, Behavioral-Cultural Model-
ing and Prediction (Springer, Berlin, 2012)

J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann
Arbor, 1975)

I.L. Horowitz, Big Five and Little Five: measuring revolutions in social science. Society 43(3),
9–12 (2006)

M. Kline, Mathematics and the Search for Knowledge (Oxford University Press, Oxford, 1985)
J.H. Miller, E. Page Scott, Complex Adaptive Systems: An Introduction to Computational Models

of Social Life (Princeton University Press, Princeton, 2007)
H.A. Simon, The Sciences of the Artificial, 3rd edn. (MIT Press, Cambridge, 1996)
L. Spinney, History as science. Nature 488, 24–26 (2012)
M. Steuer, The Scientific Study of Society (Kluwer Academic, Dordrecht, 2003)
C. Williford, C. Henry, A. Friedlander (eds.), One Culture: Computationally Intensive Research

in the Humanities and Social Sciences—A Report on the Experiences of First Respondents to
the Digging into Data Challenge (Council on Library and Information Resources, Washington,
2012)
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2.1 Introduction and Motivation

Computation is a formal discipline used by scientists—in the social, physical, and
biological disciplines—to uncover new insights and advance the frontiers of knowl-
edge. It also informs the Computational Paradigm of Social Science introduced in
Chap. 1. Social processes are algorithmic, and social systems are supported by al-
gorithms, in the sense defined in this chapter. What are the elements of computation
with the greatest significance for CSS? How is computation used to better under-
stand social systems and processes? What are the core concepts and principles of
social computation? Problem-solving, design, and programming are core elements
of computation and the computational approach to social science. Similar activities
are also foundational to understanding social systems.

The role of computation in CSS is comparable to that of mathematics in physics:
it is used as a language to formalize theory and empirical research to express, study,
and develop our understanding of social complexity in ways that are not accessi-
ble through other means. By contrast, pure computer scientists use computation to
study computing, just as pure mathematicians use mathematics to study mathemat-
ics. This instrumental or utilitarian motivation does not prevent computational social
scientists from developing deep interest in computation; there is much a computa-
tional social scientist can learn from the pattern of thinking of a computer scien-
tist, a musician, a mathematician, or an historian. However, CSS is more like ap-
plied computer science or applied mathematics:1 the formal approach (mathemati-
cal languages or programming languages) is used to gain substantive, domain-based
knowledge about social complexity in all its rich forms.

This chapter uses the Python programming language for illustrative purposes,
though not for providing tutorials. The notational graphic system known as the Uni-
fied Modeling Language (UML) is used for representing and better understanding

1For example, applied computer scientists work on areas such as robotics, data analysis, and opti-
mization, to name some of the major areas of research in computer science.
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social systems and processes—including those with significant theoretical or real-
world complexity. Importantly, UML is also used in subsequent chapters to describe
social systems and processes, such as decision-making by actors, polities and their
institutions, socio-environmental dynamics, and other entities of social science re-
search interest.2

2.2 History and First Pioneers

Computation has a long, interesting history in social science. Computational So-
cial Science (CSS) began with the first applications of computation during the early
1960s, with pioneers such as Harold Guetzkow (1963), Herbert A. Simon (1969),
Karl W. Deutsch (1963), John C. Loehlin (1968), and Samuel J. Messick (1963),
roughly a decade after von Neumann’s (1951) pioneering Theory of Automata. That
was during the age of punched tape, 80-column IBM cards, and long hours spent at
the university’s computer center awaiting output results, often in vain due to some
syntactical glitch in the program, which often caused another day’s worth of work. In
spite of such early difficulties, the advent of computation in social science came at an
auspicious time, because theoretical and methodological advances were taking place
along numerous frontiers across disciplines. Field Theory (Lewin 1952), Function-
alist Theory (Radcliffe-Brown 1952), Conflict Theory (Richardson 1952a, 1952b),
the Theory of Groups (Simon 1952), Political Systems Theory (Easton 1953), as
well as Decision-making Theory (Allais 1953), among others, required new for-
malisms that could treat conceptual and theoretical complexity of human and social
dynamics, beyond what could be accomplished through systems of mathematical
equations solved in closed form.

Each of the social sciences (Anthropology, Economics, Political Science, Social
Psychology, and Sociology) and related fields (Geography, History, Communica-
tion, Linguistics, Management Science) witnessed the introduction of computation
into its own frontiers of theory and research within a few years. However, formal
training in computation did not begin until decades later through high-level software
packages for statistical applications (SPSS, SAS, Stata), followed by true program-
ming languages (S and R), as well as computational applications to content analysis,
network models, and social simulations. Many of these computational contributions
will be examined in subsequent chapters of this book.

Those were the origins of CSS, a fledging field that has evolved from pioneer-
ing roots that began with primitive algorithms running on archaic computers with
(mostly) historical interest, to today’s object-oriented models running on modern
and more powerful computers that would have seemed like science fiction even to
Isaac Asimov’s psychohistorian Hari (“The Raven”) Seldon in Foundations. What
about the future? The future of CSS will be written in the language of advanced dis-
tributed computing, graphic processing units (GPU), quantum computing, and other
information technologies still at the frontiers of computational science.

2The material in this chapter assumes a level of computer science knowledge comparable to Eric
Grimson and John Guttag’s famous MIT course (Grimson and Guttag 2008) or Guttag (2013).
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2.3 Computers and Programs

2.3.1 Structure and Functioning of a Computer

All computers are information-processing systems: they compute, as the term in-
dicates, based on a set of instructions called a program. Programs are written as
a series of instructions, not unlike a recipe, in computer code. The code must be
written so that it conforms to the format of the programing language, or syntax.

All computation can be seen as a problem-solving system consisting of subsys-
tems of hardware and software components. While hardware provides the physi-
cal means for information processing (i.e., computing machines, or computers, in a
narrow sense), software provides the algorithmic instructions that tell the hardware
what to do (i.e., what to do with the information being processed) in some pro-
gramming language. In computer science, software is also known as code, not to be
confused with the same term as used in social science measurement and empirical
research to represent the value of some variable (usually a nominal variable). Com-
putationally speaking, code is distinct from data, which are processed by code.3

These initial ideas have resonance in social science, where information-process-
ing systems are ubiquitous, significant, and highly consequential: individuals,
groups, and institutions ranging from local neighborhoods to the global system
of international organizations process information following procedures, engage in
problem-solving, and use institutions (akin to hardware?) as well as established and
adaptive systematic processes (software?) to address and solve problems pertain-
ing to the full spectrum of societal issues. The mapping between computers and
social systems is not exact, nor is it necessary for computation to be useful in so-
cial science, but it can be insightful in pointing out significant features of social
complexity that extant social theories have neglected or simply been unable to ex-
plain. Metaphors are often useful in science, but for computation to be a powerful
paradigm and methodology in CSS it is necessary to look deeper into its concepts
and principles.

As illustrated in Fig. 2.1, in its most fundamental structure, a computer is a ma-
chine (hardware system) composed of five types of components, each designed to
perform a specific function. There are two core components: a central processing
unit (CPU) and main memory. The CPU carries out the most basic computations,
such as arithmetic operations, comparisons, or Boolean true/false operations. Data
and programs are stored in main memory (or RAM, random access memory), which
has a tightly coupled interactive relationship with the CPU for performing compu-
tations (i.e., executing instructions).

Secondary memory (Fig. 2.1, lower center), in larger and typically slower form
than main memory (e.g., a disk), is used to store information more permanently (as
programs and data files) when a computer is turned off. When a computer is turned

3In social science, data and information denote different concepts. Data (the lower-level concept)
normally refers to raw observations, such as field data or census data, whereas information (higher-
level) is based on or is derived from data and provides a basis for knowledge. Data is the plural of
datum (or fact, in Latin), so the correct phrases are “one datum” and “several data.”
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Fig. 2.1 A computer with its
functional components (the
five boxes) based on a bus
architecture (fast-speed data
connections)

on, secondary memory is accessed to retrieve data and programs that are executed
by the CPU using main memory.

Input and output devices are for us humans to interact with the three com-
ponents just described, as human-machine interfaces (Fig. 2.1, left and right). In-
put devices include keyboard, mouse, microphones, cameras, joysticks, and many
kinds of sensors ranging from relatively simple (e.g., a thermostat fixed to a wall) to
highly complex (biohazard sensors mounted on an unmanned autonomous vehicle
or UAV). Output devices include printers, speakers, electromechanical devices (e.g.,
robots), and other devices. The earliest monitors were output devices, whereas today
some monitors serve a dual function as input devices as well (e.g., a touch-sensitive
video screen).

Fast data connections (called “internal buses”) link core components (CPU and
main memory) between themselves and, via other connections (also called “expan-
sion buses”), with external components (I/O devices). The overall architecture of
internal components with relations among them, versus external devices in the envi-
ronment of a computer, bears resemblance to Herbert A. Simon’s model of a com-
plex adaptive system consisting of an inner system and an external environment—a
paradigmatic model and theory that we will examine in much closer detail later,
given its significance for explaining and understanding social complexity. This im-
portant approach is still mostly unknown in the social sciences, 40 years after Si-
mon’s pioneering work, and Simon is remembered mostly for his work on bureau-
cracy and incrementalism.

When a computer is turned on and a program (of any kind) is asked to run,
the operating system handles what is called the load-fetch-decode-execute cycle,
or fetch-execute cycle for short—and it is something a CSS researcher needs to
know. Understanding this is helpful for deciding, for instance, whether a model
can be implemented to run on a single processor, or whether some form of paral-
lel processing is necessary. First, program instructions are loaded (“fetched”) from
secondary memory, where they reside (almost) permanently, onto the main mem-
ory (RAM). Second, the CPU accesses the first instruction from RAM, decodes that
instruction, and executes it. When finished executing the first instruction, the same
fetch-execute cycle is repeated as many times as there are instructions in the pro-
gram. A well-written program will organize this cycling process in such a way as
to take advantage of the fast cycling time of the CPU, subject to available RAM
capacity. Knowledge of this cycling process is not necessary for most programing
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tasks, but becomes increasingly important with parallelization, especially GPU pro-
gramming. Most multithreading is handled at a higher level of abstraction.

A significant feature of the fetch-execute cycle is that it consists of discrete
events that are (i) critically necessary (i.e., conjunctive), (ii) sequential in a strict
order (sequential conjunction), and (iii) each event takes time that cumulatively de-
termines total cycle duration. While this is common knowledge for computer sci-
entists, few social scientists have paid close attention at the deep properties and
principles of such systems and processes of sequential conjunction for explaining
and understanding social complexity. On time scales that are many orders of mag-
nitude slower than computers, human cognition, decision-making by individuals
and groups, policy-making, and numerous other social processes examined in this
book—especially in Chaps. 6 and 7—share significant isomorphic features with fun-
damental patterns in computation, such as the sequential conjunction of the fetch-
execute cycle and others.

DID YOU KNOW THAT . . . ? Comparing the time-scales of computers
with that of individual humans and human institutions adds perspective to
information-processing under different architectures of complexity. A Mac-
Book Pro laptop computer has a 2.66 GHz Intel Core i7 CPU and four GB
1067 MHz DDR3 RAM chips. CPU speed is measured in cycles per second
(or hertz), so this means that the CPU of the MacBook Pro laptop can exe-
cute 2,660,000,000 = 2.66 × 109 instructions per second. High speeds such
as these allow a modern computer to execute many instructions in background
mode while a relatively idle program, such as a word processor, is in use.
Suppose we compare an instruction execution by a CPU to a policy decision
by a national legislative body. No one has yet estimated the number of de-
cisions made each year by such institutions, but it is clearly many orders of
magnitude slower. By contrast, human individual decision-making takes place
on a scale of tens of milliseconds.

2.3.2 Compilers and Interpreters

A CPU understands only its own machine language, whereas most computer pro-
grams are written in a high-level language. In order for a computer to run a program
written in a given high-level language (i.e., a program in other than low-level ma-
chine language), the program must first be either compiled or interpreted. The
difference between these two processes is fundamental, subtle, consequential, and
important for CSS researchers to understand. A compiler is a program that literally
translates source code written in a high-level programming language (e.g., Fortran,
C++, Pascal, Python) into machine code that is specific to and executed by the com-
puter’s CPU. Once compiled, a program can then be run many times without having
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to recompile the source code. Compiled code is machine-specific binary code, ready
for execution by the CPU; it provides a complete translation of all instructions, line
by line.

By contrast, other languages that are not compiled use an interpreter that is
specific to the high-level language for communicating the program’s instructions to
a computer. An interpreter is a specialized, low-level program that enables hardware
to execute the high-level software. A language requiring an interpreter must use its
associated interpreter every time the program is executed; otherwise the CPU will
not understand the program’s instructions.

In sum, a compiler translates a program into machine code, line by line, to exe-
cute; an interpreter reads all the source code and directly communicates its instruc-
tions in machine code to the CPU without compiling a new program (as the com-
piler does). The main difference is similar to knowing a foreign language (compil-
ing) versus translating one line at a time (interpreting). Comparing the two types of
high-level languages, compiled programs run relatively faster but have drawbacks,
whereas interpreted programs run somewhat slower but they can run interactively.
The difference is important for a CSS researcher to understand, because it can mean
choosing one programming language over another, depending on what model or
algorithm is being implemented.4

2.4 Computer Languages

Social science uses mathematics as a language to formalize theory and investigate
features of social complexity that are exclusively accessible through the medium of
mathematical structures, such as sets, probability, game theory, or dynamical sys-
tems. The same is true when using computer languages in CSS. A computer lan-
guage is a structured, formal grammar for communicating with and controlling what
a computer does. Like all languages, including mathematical structures used by so-
cial scientists, computer languages consist of syntax, semantics, and pragmatics.5

Syntax refers to the proper rules for writing instructions, the correct sentences of
a properly written program. Semantics refers to the meaning of symbols; i.e., what
various code elements stand for. Pragmatics refers to the primary purpose, function,
or paradigmatic orientation of a language. Computer languages differ by intent, just
like different symbolic systems or mathematical structures are created for various
purposes (e.g., music notation or game theory).

Social science has used a significant array of mathematical structures over the
past two hundred years, but formal instruction in mathematics has lagged behind
statistics. Now, in addition to statistics and mathematics, social scientists require

4The case of Java is somewhat hybrid: Java is technically compiled into Java byte code, and
then just-in-time compiled into machine code by the Java Virtual Machine (JVM)—which can
be viewed as a byte code interpreter.
5Linguists would also add genetics, the origin of a specific language. For example, the Python
programming language was created by Guido van Rossum in the late 1980s and has since evolved
into version 3 (as of this writing), supported by a global community.
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Table 2.1 Comparison of computer programming languages. Paradigm types are explained in the
text. Source: Wikipedia, “Comparison of programming languages: General comparison”

Assembly language Imperative

BASIC Imperative, procedural

C Imperative, procedural

C++ Imperative, object-oriented, procedural

Fortran Imperative, object-oriented, procedural

Java Imperative, object-oriented, reflective

Lisp Imperative, functional

Mathematica Imperative, functional, procedural

MATLAB Imperative, object-oriented, procedural

Pascal Imperative, procedural

Python Aspect-oriented, functional, imperative, object-oriented, reflective

S and R Functional, imperative, object-oriented, procedural

training in programming languages, which is essential for CSS theory and research
on social complexity.

Every computer language has features that make it more or less effective in im-
plementing human and social dynamics, just as is true for different modeling lan-
guages used in mathematical social science. Specifically, each programing language
has its own syntax, semantics, and pragmatics, which results in features such as
those listed in Table 2.1.

Python is a programming language with several desirable features for learning
Computational Social Science: it is easy to learn and can be used to learn some of
the best computer programming habits, such as consistent style, modularity, de-
fensive coding, unit testing, and commenting.6 A drawback of Python is that it can
slow down considerably with increasing program complexity, such as when used for
social simulations such as those examined later in this book. A recommended strat-
egy is to learn how to program using Python, then learn a more advanced language,
such as Java or C++.

Several other specifically technical features of Python include:
• Object-orientation: Python is a language that supports the object-orientation to

programming (OOP), meaning that the basic building blocks of a Python pro-
gram can represent social entities (e.g., actors, relations, groups), similar to the
building blocks of many social theories. In turn, social entities (objects and as-
sociations) contain within them (“encapsulate”) variables and dynamics that de-
termine the state of the overall social entity or phenomenon being modeled. By
contrast, earlier programming languages required direct modeling of variables

6By contrast, bad programming habits include lack of modularity, hazardous loops that can easily
spin forever, “stringy” code, and comments that are unclear, unhelpful, quirky, or plain absent.
Good coders avoid these and other bad habits and strive to develop an excellent, “tight” style, as
discussed later in this chapter.
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and equations, which is sometimes too difficult, cumbersome, or impractical for
many social theories.7

• Interpreted code: Python code is interpreted, not compiled, so it can be run
interactively. This is helpful for several purposes: developing a program as it
grows from simple to more complicated; verification and debugging; running
simulation experiments. Python code runs from a command line terminal or from
a shell editor, as well as interactively or as an executable file.

• Imperative style: As an imperative language, a program written in Python can
contain statements that change the state of the program. This means that a Python
program can implement a series of commands or instructions that the computer
can execute to change the state of social objects, constructs, or entities repre-
sented in the program.8 Assignment statements, looping statements, and condi-
tional branching are important features of imperative programing.

• Function libraries: As with other popular programing languages, Python sup-
ports the use of functions that are evaluated in terms of specific arguments. Given
a function f(x) with argument x, the evaluation of f always returns the same
result as long as x does not change. Functions are used to implement many kinds
of social processes, such as utility functions in decision-making, interaction dy-
namics, and other behavioral features. Functions need not always be mathemati-
cal equations. For example, they can be table functions.

Python can be used for many scientific purposes in CSS, running in both interactive
and batch modes. As a calculator, Python can be used to compute results, such as a
probability value or an expected value, just like a hand calculator. More complicated
functions are best analyzed in batch mode.

Example 2.1 (Interaction Between Human Communities) In human and so-
cial geography, the potential for many modes of human interactions between
two communities (marriages, migrations, and phone calls, among others) is
approximated by the so-called gravity model:

I ≈ P1P2

Dα
, (2.1)

where I is the interaction potential, and P1 and P2 are the populations of the
two communities separated by distance D. The exponent α denotes the diffi-
culty involved in realizing interactions (costs, terrain, transportation opportu-
nities, and similar), such that I decays rapidly with increasing α. Suppose two

7This is a significant advantage of OOP that will arise again in various chapters. The main idea of
the object-orientation to programming is that basic social entities and relations are identified first;
all the rest (variables, data, parameters, equations) comes later.
8By contrast, a so-called declarative style of programming emphasizes the desired result of a
program, not the instructions necessary to produce results.
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communities with 20,000 and 30,000 inhabitants are 120 miles away from
each other. To appreciate the effect of difficulty α on the interaction poten-
tial I , we can compute the potential with α = 2 (standard assumption) and 3
(greater difficulty), respectively:

>>> print((30000)*(20000)/(120**2))
41666.666666666664
>>> print((30000)*(20000)/(120**3))
347.22222222222223

We see immediately how a single unit difference in difficulty α (2 vs. 3)
causes a drop in interaction potential of two orders of magnitude (104 vs.
102).

Example 2.2 (Terrorist Attacks) Terrorists face a daunting challenge when
planning an attack, mainly because the probability of success in carrying out
an attack (technically called a compound event, as we will examine later in
greater detail) is contingent on many things going well: planning, recruitment
of confederates (e.g., scouts, suppliers, operatives, etc.), training in weapons
and tactics, proper target selection, execution, and overcoming target pas-
sive and active defenses, among other requisites. Assuming N = 10 criti-
cal requirements for a successful attack, each being solved with probability
q = 0.99, we get:

>>> print(.99**10)
0.9043820750088044

Under somewhat more realistic (but still generous) assumptions, with a lower
0.90 probability of requirement-level success:

>>> print(.90**10)
0.3486784401000001

In fact, as demonstrated in subsequent chapters, the partial derivative
∂(qN)/∂q is highly sensitive to the probability of individual task success
q (more than to N ). This explains why counterterrorism strategies aimed at
hindering individual tasks are quite effective, without having to target every
single stage of a potential attack process.

Python can be used as a simple calculator for exploring, analyzing, and learn-
ing more about social models as in these and other examples. Note that typing
print() is not necessary, strictly speaking, but it is a good habit because when
running a batch script it is always necessary to use print to output results.
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Alternatively, and more interestingly from a research perspective, Python can be
used for running programs for investigating a large spectrum of social models—
from individual decision-making to global dynamics in the international system—
that have been analyzed only through closed form solutions, without using the power
of simulation and other CSS approaches. However, due to speed limitations men-
tioned earlier, running social simulations or network models in Python can be prob-
lematic in terms of speed, so a better methodological approach in some cases is
to implement models in other, faster languages, such as Java or C++. This is why
Java is a common language for multi-agent simulation systems or “toolkits,” such as
MASON and Repast, and why C++ is often used in parallel, distributed computing.
For example, Repast-HPC is based on C++.

The following are other features or types of programming languages mentioned
in Table 2.1:
• Procedural programming: This refers to the programming paradigm based on

procedure calls (in high-level languages) or subroutines (low-level). Routines
and methods are procedure calls containing some sequence of computations to
be executed.

• Reflective programming: The ability of a programming language to read and
alter the entire structure of the object at compile time is called reflection.
Why should a CSS researcher know about different features (or paradigms, as

they are called in computer science) of programming languages? The reasons are
similar to why a mathematical social scientist needs to know about what each
formal language is capable of modeling. For example, classic dynamical systems
can model deterministic interactions, whereas a Markov chain can model proba-
bilistic change, game-theoretic models capture strategic interdependence, and so
on for other mathematical languages. Reliance on the same mathematical struc-
ture every time (e.g., game theory, as an example), for every research prob-
lem, is unfortunately a somewhat common methodological pathology that leads
to theoretical decline and a sort of inbreeding visible in some areas of social
science research. Dimensional empirical features of social phenomena—such as
discreteness-continuity, deterministic-stochastic, finite-infinite, contiguous-isolated,
local-global, long-term vs. short-term, independence-interdependence, synchronic-
diachronic, among others—should determine the choice of mathematical struc-
ture(s). Similarly, different programming languages provide different features, so
they should be selected in accordance with the nature of the social phenomena to
be modeled. The same is true of using programming languages in CSS, for the very
same reason: not all problems can (or should!) be solved with the same scientific
tool.

2.5 Operators, Statements, and Control Flow

The examples in the previous section used the interactive mode in Python, which
works well for simple calculations or short code snippets that are brief and are used
just once or a small number of times. When the calculations are more complex, when
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instructions need to be executed several times, or when the sequence of instructions
is longer than just a few lines, it makes more sense to create a separate file containing
a program consisting of statements. Then the program can be written, edited, and
saved, just like any text file. The program is then executed any number of times
by running (or calling) it from the command line or from Python’s own shell (e.g.,
IDLE).

The following program illustrates a number of ideas concerning operators, state-
ments, and control flow.

Example (Chaotic Process (Zelle 2010: 13)) This example is taken from a
leading textbook on Python, illustrating the nature of chaotic processes. Write
the following simple program in a text file (say, chaos.py) and run it from
the Python shell.

>>> def main():
print("This program illustrates a chaotic function")
x = eval(input("Enter a number between 0 and 1: "))
for i in range(10):

x = 3.9 * x * (1 - x)
print(x)

main()

When main() runs, it should return the following result:

This program illustrates a chaotic function
Enter a number between 0 and 1:

Next, enter a number between 0 and 1, and the program should return a se-
quence of 10 values. Change the range from 10 to N , call main() again, and
now N values will be returned. The coefficient can also be changed to a value
different from 3.9, which will generate a different chaotic series.

The example just discussed contains a number of points worth noting from a
CSS perspective. First, it takes relatively little in terms of program sophistication to
opt for a program, rather than using the interactive mode. Or we may wish to run
a program with variations for conducting computational experiments. Most social
models require some statements that warrant a program, even when the number of
lines of code (LOC) is relatively small (i.e., less than a dozen), as in the example.
Copying and pasting in interactive mode helps, but calling a program (e.g., as in
>>> import filename) is even easier, and that is what most researchers would
do.9

9Computer programs are artifacts—in the sense of Simon—which sometimes, in turn, provide sup-
port to other artifacts. An example of this is a spacecraft. As of early 2012 the International Space
Station orbiting Earth—one of the world’s most complex adaptive artifacts—was supported by
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Second, the structure of a program is always a function of “The Question” (or
set of questions) being asked in a given investigation. In this case, the question con-
cerned the behavior of a chaotic process; specifically, which series would be gen-
erated by a given initial value, assuming a specific coefficient. A different program
would be necessary to address closely related but different questions, such as:
• What happens when noise is introduced?
• What if the coefficient varies as a function of some other parameter affecting the

process?
• What is the correlation between series of values generated by different initial

conditions (or different coefficients)?
• How can we graph the process, as in a time-series plot, rather than observe a list

of numbers?
None of these questions can be addressed by the same program, especially the last,
which requires calling additional facilities, such as Python’s graphics library.
Each program is designed to address a specific question.

Third, note that each statement in a program is intended to control some aspect of
the information being processed. In this case the program began by defining a new
function, called main. Knowing how to define new functions is a basic program-
ming skill and an easy task in Python. Next, the program states that something is to
be printed exactly as specified by the print function. This is optional, but good
practice, since it tells the user what is going on without having to look into details.
The program then contains a core statement about evaluating another function, this
time an input function in response to a query. Next, the program uses a series of
related statements to control the computation of x by means of a loop: for i in
range(10):.... Loops are essential control flow statements along with others,
such as if and while statements.

2.6 Coding Style

Computer programming is a form of formal writing, so style matters and developing
a good style for writing programs is important for a computational social scientist—
just as it is for a computer scientist. General principles of good coding style apply
to all programming, while specific principles or guidelines apply to particular pro-
gramming languages, similar to mathematics in this respect.

The need for general principles of good coding style is motivated by many
factors that operate in any field of modern science, including Computational Social
Science:

computer programs with approximately 2.3 million LOC, a figure always increasing with growing
project complexity until the ISS mission is completed. Unfortunately, however, LOC per se are not
a good proxy measure for algorithmic or software complexity: high LOC may reflect mere lack
of expertise, whereas low LOC may result from overly complicated implementations, instead of
simpler, maintainable versions that would require more LOC.
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• Code is a formal system of writing, so its syntax and semantics are governed by
both technical and esthetic principles, not just the former. The same is true of
mathematics: well-written mathematical papers are also based on technical and
esthetic principles.

• Code is sometimes used by programmers long after it was first written by the
original programmer(s). If it was not well-written to begin with, subsequent pro-
grammers (or even the initial programmer) may have a difficult time understand-
ing it.

• Many multi-disciplinary projects in CSS contain researchers from diverse back-
grounds (social science, computer science, environmental science, or other dis-
ciplines), which increases the communications requirements.
The following are important general principles of good coding style:

1. Readability: Always write code in such a way that others can easily read and
understand it. Code should not be written using short variable names or function
names, such as is common practice in mathematics. “ numberOfRefugees-
intheCamp” is good; “N” or even “NORIC” are not. Incomprehensible code
is not a sign of genius; it is a sign of disrespect toward collaborators, current or
future.

2. Commenting: Writing informative comments is an important way to implement
readability. Uncommented code needs to deciphered, or it may be useless. The
main consumer of comments is often the original programmer, since even a few
days later it is easy to forget what a code segment was intended to do.

3. Modularity: Write in modules, such that the overall program is akin to a nearly-
decomposable system, in the sense of Simon. Object-oriented design patterns
can be useful when separating components that are not so obviously decom-
posable. Functions and their embedding property provide a viable strategy for
modularization.

4. Defensive coding: Writing defensive code means to try to ensure that code does
not malfunction, ending up doing something different from the intended purpose.
An example would be being careful in avoiding loops that can cycle infinitely.
This is achieved by careful coding and by inserting proper tests that will prevent
infinite loops.

These basic principles of good coding style are intended not just for beginners; they
are also practiced by good modelers and software engineers.

2.7 Abstraction, Representation, and Notation

How does science (any science) make fruitful inquiry feasible and tractable, given
the complexity of the real world? The viability of doing science in any field de-
pends on making the subject matter tractable in terms of research that is systematic,
reproducible, and cumulative. Social, physical, and biological scientists render their
substantive fields tractable through simplifications that are sufficient to ensure the
growth of a viable science, but not so simple as to preclude deep understanding of
phenomena. Tractability is therefore a sophisticated strategy of scientific inquiry
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that seeks to simultaneously maximize parsimony and realism—as in a Pareto
frontier. Parsimony ensures causal explanations (theories) and empirical descrip-
tions (laws) that contain a minimal number of factors deemed essential for expla-
nation, understanding, and sometimes prediction. Realism ensures that the science
remains empirically relevant and sufficiently rich in terms of capturing real-world
features. Science seeks to make real-world complexity tractable.

Social complexity in the real world of people, their thoughts, decisions, social
relations, and institutions, is intricate and far more complex than the simple world
of two-body mechanics and equilibrium systems.10 It consists of individual actors
with bounded rationality, interactions that are often hard to predict (even when
they are just dyadic), and the emergent social results generate networks, organi-
zations, systems, and processes that challenge all areas of social science theory
and research—transcending individual disciplines. To solve this challenge, social
science has learned to rely on abstractions, representations, and specialized nota-
tions to advance our understanding of the social universe through concepts, theories,
and models.

For hundreds of years, since the rise of modern social science in the Age of En-
lightenment and the Scientific Revolution, social scientists have used statistical and
mathematical representations based on abstractions of real human and social dynam-
ics. All such models—and the social theories they involve—are formal linguistic
inventions based on systems of specialized notations.11 Just as social scientists have
learned to use abstractions to formulate statistical and mathematical models of the
social world in many domains, today computational social scientists use computer
programs and computational models to abstract, represent, analyze, and understand
human and social complexity. What do abstraction, representation, and notation re-
quire in CSS? How do they work in a coordinated way to produce viable code for
modeling and analyzing complex social systems and processes?

Abstraction
In computer science, abstraction means hiding information. In CSS, abstracting
from the world “reality”—whether directly experienced (observing a riot down-
town) or indirectly learning about it (reading history)—is a process involving stimu-
lus signals, perceptions, interpretation, and cognition. CSS relies on several sources
for abstracting key entities, ideas, and processes from raw stimulus signals from
the real world. These sources span a hierarchy in terms of their social scientific sta-
tus. At the very top of the hierarchy are social theories with demonstrable validity

10A little-known fact among many social scientists is that the theory of mechanics in physics is built
around the abstraction of single- and two-body problems. Already three-body problems are hugely
difficult by comparison; and, most interesting, N -body problems defy mathematical solution in
closed form.
11Interestingly, humanistic fields such as music and ballet also use systems of specialized notation,
far beyond what is used in traditional social science. In music, Guido d’Arezzo [b. A.D. 991 (or
992), d. 1050] is considered the founder of the modern music staff; in ballet, Rudolf von Laban
[b. 1879, d. 1958] invented the symbolic system known as “labanotation” (Morasso and Tagliasco
1986).
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in terms of formal structure (internal validity) and empirical observation (external
validity). Not all existing social theories meet these stringent requirements, although
an increasing number of them do as research progresses. Examples of social theo-
ries that meet internal and external validity standards include Heider’s Theory of
Cognitive Balance in psychology, Ricardo’s Theory of Comparative Advantage in
economics, and Downs’s Median Voter Theory in political science, among others.
Social theories are abstractions that point to relevant social entities, variables, and
dynamics that matter in understanding and explaining social phenomena.

A second source of abstraction consists of social laws. Examples of social laws
include the Weber-Fechner Law in psychometrics, the Pareto Law in economics,
and Duverger’s Law in political science. Theories explain; laws describe (Stephen
Toulmin 1967).12 Some of the most scientifically usefully social laws can be stated
mathematically, as in these examples. Social laws also contain relevant entities, vari-
ables, and functional relations for describing social phenomena.

A third source of abstraction consists of observations that can range from formal
(e.g., ethnography, content analysis, automated information extraction, text mining,
among others) to informal (historical narratives, media, and other sources about
social phenomena). Observations of social phenomena can describe actors, their
beliefs, social relations, and other features ranging from individual to collective.

Finally, a fourth source of abstraction consists of computational algorithms
capable of emulating social phenomena, as in artificial intelligence (AI). Artificial
(i.e., not really human) algorithms do not claim to be causal in the same sense as
social theories. They “work,” but without causal claims in the same sense as social
theories. They are efficient, in the sense that they (sometimes) can closely repli-
cate social phenomena. AI algorithms are typically (and intentionally) efficient and
preferably simple; extreme parsimony in this case comes at the expense of realism.
Examples of AI algorithms include Heatbugs (Swarm, NetLogo, MASON), Boids
(Reynolds 1987), and Conway’s (1970) Game of Life. In spite of their lack of social
realism, AI algorithms can be useful sources for abstracting social entities, ideas, or
processes because they can highlight features that either elude theories or are hard to
observe. An example would be the agglomeration patterns generated in a Heatbugs
model, as a function of varying parameters of “social” interaction among the set of
agents, or the role of apparent “leadership” in a flock of boids.

Representation
Abstraction is a necessary early step in scientific inquiry, whether in the context of
empirical observation, theoretical construction, or model-building. A second step
requires representation of abstractions. In CSS this means representing abstracted
social entities (e.g., actors, relations, institutions) in a way that a computer can un-
derstand sufficiently well to be able to execute a program about such entities.

12The late international relations theoretician Glenn H. Snyder [1924–2013] spoke often about this
dichotomy, which he attributed to the philosopher of science, S. Toulmin.
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Table 2.2 Main data types in Python

Type Description Examples

str Alphanumeric text United Nations, climate change, Leviathan

list Mutable sequence [7.4, ‘stress’, False]

tuple Immutable sequence (7.4, ‘stress’, False)

set Group of unordered elements without
duplicates

{7.4, ‘stress’, False}

dict List of key-value pairs {‘key1’: 2.57, 7: True}

int Integer number 7

float Floating point number 2.71828182845904523536

bool Boolean binary values True, False

Why does representation matter? The short answer is: because a computer can
only understand sequences of the binary digits 0 and 1. In computer science, Don-
ald E. Knuth is credited with playing an influential role in conceptually separating
abstraction from representation (Shaw 2004: 68).

The more complete answer—to the question of why representation matters—
warrants close attention. Earlier in Sect. 2.3.1, we distinguished between code (in-
structions) and data. In turn, data can be either numeric or alphanumeric, and nu-
meric data can be either integer or real. Therefore, the information that needs to
be represented to the computer (i.e., to both CPU and RAM) consists of four basic
types: real numbers, integer numbers (positive or negative whole numbers, which
include ordinal variables), alphanumeric data (including nominal or categorical
variables), and instructions. Numbers, letters, and instructions are all represented
in bits of information, consisting of sequences of the binary digits 0 and 1. More
bits are necessary for representing more information.

Each programming language defines a set of data types as a semantic feature.
The main data types defined in Python are summarized in Table 2.2. From a rep-
resentation perspective, the Python interpreter translates each data type into binary
code; i.e., every symbol in the syntax of a program (number, letter, or symbol) is
represented as a sequence of the binary digits 0 and 1. The most commonly used
data types are str, int, float, and bool.13

Representation can be seen as having two aspects. Effective representation
refers to the choice of data types that helps answering the desired research ques-
tions(s). Efficient representation, on the other hand, refers to the choice of data
types that minimize computational cost in terms of CPU cycles or RAM size.
Achieving both effectiveness and efficiency is challenging.

13A boolean variable is called an “indicator variable” in probability and a “dummy variable” in
social statistics and econometrics. (Dummy? As supposed to what? A strange phrase, don’t you
think?)
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Notation
Notation is necessary to express representations derived from abstraction. While in
statistical and mathematical models, “notation” refers to equations and other formal
structures (e.g., matrices, trees, graphs), in computational science the term refers
to programming languages used to write software code. In 2004 it was observed
that “hundreds of billions of lines of software code are currently in use, with many
more billions added annually” (Aho and Larus 2004: 74). High-level programming
languages (Python, Java, and many others) serve as bridges that span the “semantic
gap” (Aho and Larus 2004: 75) between (a) the abstractions that we wish to in-
vestigate from the real world, and (b) binary notation understandable to computers.
Without high-level programming languages a computational scientist would have
no choice but to write software programs in binary code.

Several notational features of modern high-level programming languages (such
as Python) are noteworthy:
Specificity: A programming language can be specifically dedicated to solving a

narrow range of scientific problems, such as numerical computation, data vi-
sualization, or network dynamics.

Portability: A high-level programing language can be used to write code that ex-
ecutes in different computers, even those running different operating systems.

Reliability: Errors are difficult to avoid when writing low-level assembly lan-
guage code, whereas they are more preventable with higher-level program-
ming languages.

Optimization: While binary code executes at astonishing speeds (recall the ear-
lier example of the MacBook Pro CPU cycling at many MHz), “a program
written in a high-level language often runs faster” (Aho and Larus 2004: 75)
because compiled code is highly optimized. Speed, memory, and energy are
the most common goals of optimization.

Multiple approaches: High-level programming languages provide alternative
and sometimes multiple approaches to programming, with emphasis on fea-
tures such as imperative, declarative, and others.

Automated memory management: Information must be stored in main memory
(recall Fig. 2.1), which is a major programming task when not automated.
Automated memory management is a major useful feature of any high-level
programming language.

Other features of modern high-level programming languages include procedures,
patterns, constructs, advances in modularity, type checking, and other developments
that are constantly being added to facilitate improvements in effectiveness of repre-
sentation and efficiency of computation.

2.8 Objects, Classes, and Dynamics in Unified Modeling
Language (UML)

A fascinating feature of social science is that the subjects of inquiry in the real-
world social universe span a remarkable spectrum of ideas, entities, phenomena,
systems, and processes, and have many ties to numerous other disciplines across the
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Fig. 2.2 A “social world” consists of a social system situated in its environment. This ontology
is foundational for many social theories examined through formal and empirical analysis, includ-
ing Simon’s Theory of Artifacts, the Canonical Theory, and others based on the Complex Adaptive
Systems Paradigm. Unfortunately, this graphic representation is useless although common through-
out social science. Later in this section we introduce UML as a helpful graphic notation system for
representing social worlds

sciences and humanities. The variety is so great that it is difficult to parse the entire
landscape.14 Not surprisingly, social science encompasses not one, but several disci-
plines (the Big Five: anthropology, economics, political science, social psychology,
sociology) and related fields (communication, education, geography, history, law,
linguistics, management), the totality of which is necessary to investigate the social
world to understand it.

The vast landscape of all these disciplines includes an extraordinary variety of
simple, complicated, and complex subject matter, much of which remains unknown
and is poorly understood. So, these exciting scientific opportunities are innumer-
able! How does CSS handle such rich complexity to advance scientific understand-
ing?

2.8.1 Ontology

Ontology refers to “what exists,” or “the landscape of entities of interest,” so to
speak. It can be said that, from a high-level ontological perspective, the entire social
world consists of social systems (which can be simple or complex; adaptive or
not) and their environments, an idea introduced in Chap. 1 as a cornerstone of
computational thinking about society and illustrated in Fig. 2.2. All entities in the
social world (systems and environments) have a key ontological feature in common:
they constitute objects and classes related by associations among them. An object
belongs to a class, similar to the set-theoretic idea that an element is a member of a
set. “Person” and “John Q. Smith,” or “Country” and “Spain,” are class and object,
respectively, from an object-oriented (OO) computational perspective.15

The phrases “object-oriented modeling” (OOM) and “object-oriented program-
ming” (OOP) denote, as the terms suggest, an approach to modeling (abstracting

14Winston Churchill (1948) said: “History is simply one damned thing after another.”
15The idea of a tightly coupled relation between system and environment is also well-captured by
the Spanish maxim, “Yo soy yo y mi circunstancia” (I am I and my circumstance), by José Ortega
y Gasset (1914).
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Fig. 2.3 Ontology across scales of human and social systems complexity: The family is the small-
est kin-based social system (upper left). Teams of people provide assistance in humanitarian crises
and disasters (upper right). Polities are complex social aggregates capable of producing histori-
cal milestones (lower left). Humans in space constitute complex, coupled, socio-technical systems
operating in extreme environments (lower right)

and representing) that uses objects as the fundamental ontological entities. Note
that the building blocks of computational methodology consist of social entities, not
variables. (Variables come later, “encapsulated” in objects.)

Figure 2.3 illustrates people in four different social ontologies or “worlds.” Let
us consider each in some detail, from an “OO” perspective.
Upper left: A family. The first image shows a family consisting of a man, a

woman, and a child as three distinct human entities that constitute a class we
may call “people” or “family members.” The basic association among them is
defined by kinship. The environment is a professional photography studio that
shows a white wall behind the family. From an OOM computational perspec-
tive, people and photo-studio are objects with attributes.16

Upper right: Disaster victims. The second image shows a team of humanitarian
crisis workers and a victim being carried on a stretcher. The environment is
a rural setting in the aftermath of a hurricane in Indonesia. The associations
here are somewhat more complicated, involving collaboration among the aid

16For now, we don’t care about the various features of entities. We’ll explore that in the next
section.
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Table 2.3 Human entities and selected associations in socio-technical systems. Environments are
named, not detailed

“World” Classes Objects Associations Environments

Family Wife,
daughter,
husband

Sally J. Smith,
Mary Smith,
John Q. Smith

Mother-child,
child-father,
mother-father

Photo studio

Disaster situation Aid workers,
victim

J. Eno, T. Abij,
unknown

Co-workers,
assisted

Rural road

Leadership summit Political
leaders, aides

R. Reagan,
M. Gorbachov,
others

Speaker-
audience

Urban location

Orbiting astronauts Astronauts J. Uko, K. Oli Collaboration Low Earth orbit

workers and assistance provided by aid workers to the victim. Here the objects
consist of people, artifacts, and natural environment.

Lower left: Leadership summit. The third image shows a political gathering of
heads of states and governments. Here the associations are even more complex,
involving relations among people, polities, symbols, and historical events. The
environment is urban, in 1980s Berlin, Germany. Still, the objects are the same:
people and artifacts situated in some environment. In this case the environment
is built (urban), not natural.

Lower right: Orbiting astronauts. The fourth image shows a contemporary
space scene consisting of astronauts and a spacecraft (the International Space
Station). This is arguably the most complex ontology of the four—a scene that
would have been pure fiction just a few years ago. The environment is low
Earth orbit (LEO) between 320 km (199 mi) and 400 km (249 mi) above the
Earth’s surface, orbiting at an average speed of 7,706.6 m/s (27,743.8 km/h,
17,239.2 mph). The objects are still people, artifacts (spacesuits, spacecraft),
and nature (“empty” space and planet Earth).

The main purpose of OOM is to facilitate the abstraction of the most relevant set
of classes, objects, and relations (associations among classes and objects) that we
are interested in. After all, we can’t represent the whole world, nor do we want or
need to. We call the abstracted set a model or abstracted system, whereas the system
in the real world is called the referent system, focal system, or target system.17

In spite of their diversity along numerous dimensions, from a computational
perspective the four human situations or “social worlds” in Fig. 2.3 share a com-
mon ontology in terms of entities and relations. The entities, relations, and en-
vironments in Fig. 2.3 can be summarized as in Table 2.3 in terms of a socio-
environmental perspective (Sect. 1.5.2). Note that this table is based on the process
of abstraction, discussed earlier in Sect. 2.7. Obviously, each of the four social sit-
uations contains (much!) more detail than is abstracted in the table. But what really

17The three terms are synonymous. Target system is more common in simulation research, as we
will see later. All three terms mean the same: the system-of-interest in the real, empirical world.
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Table 2.4 Social, artifactual, and natural components of coupled systems

“World” Social Artifactual Natural

Family Family members White wall in back Indoors
Disaster situation Relief workers and

victims
Road, stretcher Countryside

Indonesia
Leadership summit Leaders, staff Monuments, flags, public address

systems
Outdoors in
Berlin

Orbiting astronauts Astronauts International Space Station Near Earth
orbit

matters is that three abstract categories alone (classes, objects, and associations) are
universal across all social worlds. This fundamental ontology of CSS is consistent
with classical social theory from ancient (Aristotle, Socrates, Plato) to modern (Par-
sons, Easton, Moore) and contemporary perspectives (including “constructivists”).

The idea that objects of the same class share all common class-level features is
called inheritance in object-oriented modeling. Thus, all wives are female, all hus-
bands are male, all daughters have a mother, all disaster victims experience some
level of stress, all political leaders govern through some base of support, all astro-
nauts undergo many years of specialized training, and so on. Each object may also
possess idiosyncratic features, but in order for it to belong to a class they must all
share or “inherit” one or more features. Inheritance links classes and objects as a
fundamental form of association.

Table 2.3 highlighted humans and associations among them, with only a coarse
identification of the environments in which humans (social systems) are situated.
A more complete abstraction, one based on the earlier socio-artifactual-natural per-
spective, is shown in Table 2.4. Now each type of “world” is decomposed (parsed)
into three main components: the social (sub-)world is composed of the set of peo-
ple and the set of social relations among them; the artificial component consists of
built or engineered systems; and the natural component consists of the biophysical
environment where the first two components (social and artificial) are embedded.

The buffering, adaptive, or interface character of artificial systems is highlighted
by the ontological abstraction: Artifacts mediate between humans and nature, as the
former adapt to the latter, following Simon’s theory. In reference to Table 2.4 we
see that:
1. The family is in a photographic studio room and only the white wall in the back

is visible. Such an artificial room situation with highly controlled lighting condi-
tions is necessary to ensure a high-quality portrait, as opposed to a more natural
setting that cannot be as easily controlled.

2. The disaster situation is mitigated by the use of artifacts such as a re-opened
road and medical equipment, in this case a special field stretcher. The uniforms
of the relief workers are also functional artifacts, to protect the workers, to carry
additional items, and to distinguish them from other members of the population.

3. The monuments, flags, and other stimulating symbols are used by leaders as ar-
tifacts to convey significance and power. Other artifacts consist of equipment for
broadcasting and other communications infrastructure.
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4. Astronauts use hugely complex artifacts such as spacesuits and the ISS to be able
to function in the natural environment of orbital space, which would instantly kill
them without such adaptive infrastructure.

In general: Artifact A is created for humans in social system S to perform in natural
environment N. Symbolically, we might summarize this tripartite functional ontol-
ogy as A : S � N .

2.8.2 The Unified Modeling Language (UML)

Pictures and narratives, such as those used thus far, and other sources such as doc-
uments and data, can be informative, but they are usually insufficient for scientific
purposes. They may tell us something about the focal world we are attempting to
analyze, but are not very helpful in specifying the exact entities in terms of classes,
objects, and their associations. Tables and other data can help, but can also be cum-
bersome for representing some features, such as complex relationships. The Unified
Modeling Language (UML) is a standardized notational system for graphically rep-
resenting complex systems consisting of classes, objects, associations among them,
dynamic interactions, and other scientifically important features. Unlike most dia-
grams that appear in the social science literature, UML diagrams are rigorous, spe-
cialized graphics with specific scientific meaning—similar to a flowchart or a Gantt
chart, where each symbol has specific meaning (semantics) and the arrangement of
symbols is dictated by rules (syntax).

Although UML was created for representing systems of any kind, it is a valuable
system for representing social systems and processes, given the lack of a standard-
ized graphical notation system in the social sciences. There are different kinds of
UML diagrams, because complex systems require alternative, complementary ways
of modeling them—as is the case for any multi-faceted problem. There are three
most useful UML diagrams for modeling social systems and processes: class dia-
grams, sequence diagrams, and state diagrams.18 The first is used for represent-
ing statics while the other two represent dynamics.

Why, when, and how? UML was invented in the 1990s by a group of
computer scientists and engineers that included James E. Rumbaugh, Grady
Booch, and Ivar Jacobson. The Object Management Group (OMG) is the
UML governance body that meets periodically to review and set standards.
The original (and arguably still most prevalent) use of UML diagrams was
to ensure that a diverse community of computer programmers and software
engineers working on complicated code projects in large organizations (e.g.,
NASA, IBM, Boeing, Google) could work with a common understanding of
a given programming project and collaborate effectively. Multidisciplinarity,

18The “state diagram” is also known as a “state machine diagram.” We will use the simpler term
“state diagram,” without loss of meaning.
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Fig. 2.4 UML class diagram
of a basic world ontology
consisting of a social system
and its environment. Note
that this graph is intended to
represent the same as
Fig. 2.2, but it conveys much
more inforamtion

personnel turnover, multi-lingual requirements, and other complicating fac-
tors conspire against producing and maintaining excellent and sustainable
code. UML diagrams help a modeler and programmer by providing graphic
representations, of key aspects of a complex computational project, that are
more inter-subjective than, for instance, narratives. The current UML standard
is version 2.0, which is found at http://www.uml.org/.

2.8.2.1 Static Diagrams: UML Class Diagrams
A class diagram in UML is a graphic representation of the main entities and rela-
tions in a given social world or situation of interest. Figure 2.4 shows a simple class
diagram of the general kind of social worlds we have been analyzing in the four
instances discussed in this section (family, disaster, summit, astronauts): all four
“worlds” consisted of a social system of some scale (small scale, as in the family,
or large, as in the summit and space cases) and an environment of varying levels of
complexity where the system was situated or embedded.

A UML class diagram consists of two main parts in terms of notation: rectangles,
representing classes or objects, and links between them, representing associations,
the labels and annotations of both are important. Rectangles are labeled by the name
of each class or object (e.g., “world,” “system,” “environment”). Each association
between entities (classes and objects) is also labeled by three elements: (1) an ar-
rowhead symbol, (2) a descriptive verb describing the association (i.e., the role or
function that one entity plays in terms of another), and (3) the multiplicity of the
association, as defined below. In Fig. 2.4 the association between a system and its
environment is denoted by the active but very general verb “affects;” the model does
not include a reverse specification of anthropogenic effects (i.e., system feedback)
on the environment, although in principle it could.

Dual graphic representations in UML. As with any graphic notation sys-
tem in science, UML diagrams can be used to represent either the abstracted
system (i.e., the model of reality) or a real-world system in greater detail than
the abstracted model—for instance, as a reference of what is being omitted,
if it is to added later. For example, there might be a UML diagram of a coali-

http://www.uml.org/
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Table 2.5 Multiplicity values in UML class diagrams

Value Meaning Example Mathematical notation

0..1 A range between no instances
and one, meaning none or just
one object

Number of prime
ministers in a
government

[0, 1]

1 One and only one instance Each system has one
environment

1

0..* or * Range between 0 and
unspecified many

Number of children in a
family

[0, +∞]

1..* Range between 1 and
unspecified many

Number of cities in a
country

[1, +∞]

0..N or N Range between 0 and exactly N Number of midlevel
managers in a firm

[0, N]

1..N Range between 1 and exactly N Number of provinces in a
polity

[1, N]

tion being modeled, as well as a more detailed UML diagram of a real-world
cabinet system with details on support from the multi-party system. The most
common use of a UML diagram is for representing a model in terms of its ab-
stracted components, not the real world. However, nothing prevents the use of
a UML diagram for describing a real target system of interest if that is help-
ful. This may happen for a number of reasons, as when we wish to highlight
the difference between a target system and a simulation model of such a sys-
tem. The difference between a model diagram (abstract) and realistic diagram
(empirical) would highlight all those elements omitted by the abstraction.

The concept of multiplicity is fundamental in computational modeling, although
it is often neglected or left mostly undefined or it is implicit in more traditional social
science theory and research. Multiplicity refers to the precise number of instances
of a class or object. The notation in Table 2.5 is standard for specifying the multi-
plicity of entities in UML diagrams. We will be using this notation throughout this
textbook, so it is important to master it, although it may be omitted in a summary
diagram. Note that the symbol “..” (two periods) is used in computational UML
notation to signify a range of values, rather than the more traditional mathematical
notation “...” (called ellipsis).

For example, in Fig. 2.4 there is one World entity (a class) consisting of one or
more (up to N ) System entities and one or many (up to an indefinite number, rep-
resented by the asterisk symbol “*”) of Environment entities affecting the System.
The multiplicity of World is implicitly one in this case, so the value of 1 is nor-
mally omitted because it is redundant (unnecessary). Later we will examine other
examples.

Social Science dedicates a great deal of effort attempting to describe and under-
stand social relations among various entities (actors, their beliefs, institutions, and
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Fig. 2.5 Associations among classes or objects are drawn in UML using arrows with different
arrowheads that denote different types of relations (e.g., social relations, socio-environmental in-
teractions, or others). Unlike the informal and widespread use of arrows in many social science
illustrations, the notation for social relations modeled with a class diagram is formal and strictly
defined, making meanings inter-subjective and reliable from a conceptual and terminological per-
spective. Examples of each type of social relation are provided in the main text

their environments, among others). In UML the type of association that is assumed
to exist between entities is denoted by the special form of the link’s arrowhead. (As
we will see, this is not arbitrary or esthetic, as in most traditional social diagrams!
The form of an arrowhead has precise meaning in UML.) In the case of Fig. 2.4 the
association between World and Environment is one of aggregation (hence the white
diamond-head, as explained below), because the World class is being modeled or
specified as consisting of two component classes: the social System of interest and
the Environment in which such a system is situated, with the latter “affecting” the
former. (For now we need not worry about the meaning of the term “affects”; the
common meaning will suffice.)

The four most common types of association are called “inheritance,” “aggre-
gation,” “composition,” and “generic,” which are distinct types of social relations
denoted by the symbols illustrated in Fig. 2.5.

Earlier we encountered inheritance (empty arrowhead symbol) when discussing
the association between classes and objects, in the sense that an object is an instance
of a class, such that all objects belonging to the same class are said to share or
“inherit” a common set of characteristics. The inheritance association is also called
the “is a” relation. It is denoted by an arrow with a blank arrowhead. In Fig. 2.4 we
saw an example of aggregation and a generic association relationship (“affects”).

The following are examples of the inheritance association (one from each of the
Big Five social science disciplines):
• Politics: Political regimes. Consider the class “Political Regimes.” It contains

classes such as “democracies” and “autocracies,” both of which represent partic-
ular forms of political regimes but also share in common many features having
to do with the relationship between society and government. Thus, both democ-
racies and autocracies are said to inherit the properties of the class “Political
Regimes.”

• Anthropology: Social complexity. The classes “band,” “tribe,” “chiefdom,” and
“state,” from anthropological archaeology represent ordinal forms of social com-
plexity. All these forms inherit the features of a broader class that may be called
“Polity.” All polities—and therefore all chiefdoms, states, and empires—include
a “society” (population, community) and a “system of government.” In turn,
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all systems of government share some common features, such as constitutional
regime (defining the society-government relationship), bureaucratic structure,
support mechanism, public finance (resource base), policy-making process, and
other constituent or defining features.

• Psychology: Cognitive balancing (Abelson 1959). The objects “Differentia-
tion,” “Bolstering,” “Denial,” and “Transcendence,” are instances of the broader
class of “Cognitive Balancing Mechanisms.” All four mechanisms serve the pur-
pose (have the function) of resolving or mitigating cognitive inconsistencies that
arise in human complex belief systems.

• Economics: Goods. The classes “commodity goods” and “luxury goods” inherit
the features of the broader class of “private goods.” An instance of the private
good-class, such as a 2012 Ferrari racing car, is an object, due to its concretely
empirical specificity. All private goods share some common features, such as, for
example, quantity produced, price, provenance, production method, and useful
life, among others. In turn, “private goods” belong to the superclass of “economic
goods,” which also comprises “public goods,” such as “clean air” and “public
security.”

• Sociology: Organizations. The class “organizations” comprises “private orga-
nizations” and “public organizations.” Both types (whether private or public) in-
herit all the features of the former, such as mission, size, structural features, age,
and domain of activity, among others. In addition to class-level features, both
private and public organizations have other features, such as membership char-
acteristics for private organizations or public finance for public organizations.

• Aristotle’s Classification of Governments. Aristotle [384–322 B.C.] was the
first comparative social scientist of whom we have a surviving record. The Aris-
totelian classification of governments distinguishes between normal and degen-
erate forms of government. The three normal forms are monarchies, aristocra-
cies, and democracies, while the degenerate forms are tyrannies, oligarchies, and
ochlocracies, respectively. Thus, an abusive monarchic ruler yields a tyranny; de-
generative rule by an elite produces an oligarchy; and extreme democracy yields
an ochlocracy (literally, “mob rule”). Representative government (e.g., as in a
parliamentary system) is a regime that attempts to implement democracy to avoid
ochlocracy (as occurred during the Reign of Terror, A.D. 1793–1794, in France).
All six types inherit all the features of the class Government, with each type
having additional characteristics.

These examples illustrate the inheritance association, which is represented by the
empty arrowhead in Fig. 2.5. A UML class diagram of each example would include
the main entities and the inheritance association link annotated with the multiplicity
of each entity (class or object).

The next two types of association—called “aggregation” and “composition”—
apply to compound social entities.19 Committees, belief systems, organizations,

19A compound social entity C may be thought of in a similar way as a compound event in probabil-
ity theory. Accordingly, C consists of several smaller parts or subsystems “smaller” than C, similar
to the way in which a compound event is defined as a function of its conjunctive elementary events
(sample points).
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and whole polities, economies, and societies are prominent examples of compound
social entities. CSS examines these compound entities by distinguishing between
those that are structured by aggregation versus those that are structured by compo-
sition.

The second type of association is called aggregation (empty diamond arrow-
head), which has the conceptual meaning of “consists of” in natural language. Ag-
gregation is also called the “has a” relation. This is a loose type of collection, which
in some cases may just be ad hoc (as opposed to the stronger form of membership
rule implied by the composition association, discussed below). The following are
examples of aggregation in compound social entities:
• A human belief system consists of concepts (represented as nodes) and associa-

tions among them (valued links).
• A family is a social aggregate consisting of parents and children.
• A society is comprised of individuals that share a set of commonly held attributes.
• An economy is composed of producers, consumers, and lenders.
• A coupled socio-techno-natural system consists of interacting social, artifactual,

and biophysical components in interaction with one another.
A key feature of aggregation is that the members can survive without the aggre-

gate, as in the examples above. Parents and children do not cease to be such when
a divorce occurs. Concepts that are part of a belief system can endure after a belief
system is no longer accepted. Producers, consumers, and lenders can endure even
after an economy disintegrates.

Aggregation is denoted by the empty diamond arrowhead in a UML class dia-
gram (Fig. 2.5), with the arrowhead pointing to the higher-order class (superclass).

The third type of association is called composition (solid diamond head sym-
bol), which is a stronger form of aggregation. Composition is used instead of ag-
gregation when member classes have a constituent relationship with respect to the
superclass; i.e., when the set of member classes cannot exist without the superclass.
Accordingly, composition can also be called the “is constituted by” relation, similar
to “is a” and “has a” for inheritance and aggregation. Under composition the super-
class compound is said to “own” the member classes of the compound entity, in the
sense that if the superclass dies—or somehow is destroyed—so do the classes under
it.

The following are examples of association by composition in compound social
entities:
• A bureaucracy is an organization composed of bureaus or administrative units.

The units exist by virtue of their contribution to the overall organization.
• The provinces, counties, and other administrative units of a country are associ-

ated to the larger country by composition.
• As a compound social entity or “body,” a given committee with members playing

various functional roles, as in the case of a ministerial cabinet, is linked to its
members by composition. A cabinet minister does not exist without there being
a cabinet. This is normally defined by a constitution.
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• The institutions of international governmental organizations, such as the General
Assembly and the Security Council of the United Nations Organization, or the
Commission and Parliament of the European Union, are associated to the orga-
nization by composition, not just aggregation.
Many aggregate entities of common interest in social science are in fact composi-

tions, not mere aggregations, because component classes are defined as a function of
some superclass (compound social entity), such that parts are meaningless without
the whole. When social scientists speak of “the importance of context,” they often
have in mind the composition association of compound social entities, rather than
mere aggregation. Context can matter, precisely because some constituent social
entities are fundamentally (constitutionally) dependent on larger compound entities
only through association by composition.

The key difference between aggregation and composition is conceptually subtle,
significant (theoretically and empirically), and unfortunately quite often left implicit
in social science theory and research on compound entities of all kinds, which con-
sist of actors, events, systems, and processes. The multiplicity of aggregation can
assume any value (i.e., the natural numbers or positive integers 1..N ), whereas the
multiplicity of composition is zero or one on the compound, higher-order class (the
superclass). Testing this idea with examples is good for understanding the differ-
ence. Whether associations or relationships in a compound social entity are either
by aggregation or by composition is something that should be decided and denoted
accordingly in a well-specified UML class diagrams, or the unresolved ambigu-
ity can result in confusion leading to modeling errors in implementation. Formally,
composition spans a tree, whereas aggregation forms a net (Eriksson et al. 2004:
113).

Some compound social systems have hybrid associations, as shown in Fig. 2.6.
An example is a polity P, which consists of a given society S and a system of gov-
ernment G for addressing issues I that affect members of S. Whereas G is “owned”
by P (hence composition specifies the polity-government association), in the sense
that it makes no sense to think of a governmental system except within the context
of some polity, society S is an aggregate that has autonomy regardless of whether
or not P exists (aggregation specifies the polity-society association), since S is an
association among people in terms of identity and other features (whether members
of some elite or the mass public). The class of issues I is also related to P and G by
association, because issues affecting S can persist regardless of P and G. The com-
pound social system P is therefore a hybrid of compositions (in G) and associations
(in S and I).

Inheritance, aggregation, and composition have their own special ad hoc symbols
because they are so common. Finally, a fourth type of association is called generic
(plain arrow symbol), which is a category intended to represent any association in
terms of a verb connecting any two entities. Generic association is symbolized by a
simple arrowhead and the verb that best describes the association. For example, the
association between Environment and System in Fig. 2.4 is represented by the sim-
ple arrow from E to S and the verb “affects” describing the association. Similarly,
in Fig. 2.6 there are three generic associations represented: Public Issues affect So-
ciety, causing stress; Society places demands on Government to deal with issues;
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Fig. 2.6 UML class diagram of the standard model of a polity in political science. The diagram
consists of four entities and three types of associations that denote different kinds of social rela-
tions, as explained in the main text. Diagrams such as these, and subsequent versions with more
details, are valuable for communicating between social science modelers and computer program-
mers in charge of code implementation. Adapted from Cioffi-Revilla (2008)

and Government deals with issues by issuing (i.e., formulating and implementing)
policies that mitigate stress on Society.

2.8.2.2 Dynamic Diagrams: UML Sequence and State Diagrams
In addition to the static diagrams introduced so far, the Unified Modeling Language
also provides standardized graphics for representing dynamical aspects of social en-
tities; i.e., social processes. Two of the most common dynamic diagrams are those
called “sequence diagram” and the “state machine diagram.” Other dynamic dia-
grams include “activity diagrams” and “communications diagrams” (Eriksson et al.
2004).

A sequence diagram portrays dynamic interactions that take place in a social
process among entity components. Figure 2.7 shows a UML sequence diagram
for the standard model of a polity represented earlier in Fig. 2.6. There are three
main components in a sequence diagram: (1) a set of separate vertical “lanes,” each
representing the main interacting entities in the compound superclass (e.g., in this
case PublicIssues, Society, and Government); (2) arrows indicating various activi-
ties among entities; and (3) a summary natural language chronology of main events
of interest (left), which should say in plain English what the sequence diagram is
intended to graphically represent.

Several features of the UML sequence diagram are noteworthy from the example
in Fig. 2.7:
1. UML symbolic notation is standardized and systematically developed, not arbi-

trary. This enables researchers to communicate using a common set of universal
symbols that have been agreed upon. By contrast, most traditional social science
diagrams are drawn using ad hoc symbols often invented by an author and used
by no one else.
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Fig. 2.7 UML sequence diagram of basic dynamic processes in a simple polity

2. A diagram like this cannot be drawn without fairly precise understanding of the
social process being represented. At a minimum, a researcher needs to stipulate
or hypothesize some parts of the process where theoretical explanation or empir-
ical descriptions are missing in the basic relevant science.

3. The basic space-time ontology of the social process is discretized—in terms of
classes and objects (social space) and events (time)—not continuous. This en-
ables the specification of precise interactions and their sequence within an overall
framework.

4. The diagram is ordered by time, flowing from top to bottom, as in an historical
timetable or a flowchart. Thus, addition or deletion of events requires shifting
down or shrinking everything downstream.20

5. The information dimensionality of the basic notation is simple, so much room is
available for increasing the information content of the diagram by use of color,
tones, patterns, and additional shapes.

6. A potentially significant drawback of the sequence diagram is its tendency to
become too cluttered when more than a few objects or classes (“lanes”) must be
represented. Having to represent a process with many objects or classes almost
guarantees an unreadable or messy diagram, so the sequence diagram does not
scale well with respect to the cardinality of the ontology being modeled.
Another type of dynamic UML diagram is the state diagram, which represents

transitions between macroscopic states of a system during its typical operating or
life cycle. Figure 2.8 shows the state diagram for a polity, based on the standard
model that we introduced previously. This diagram consists of three components:
(1) a set of start-end states, represented by large black dots; (2) a set of labeled
possible contingencies represented as transitions between states; and (3) a set of
labeled states representing the condition of the system as a result of each transition.

20By contrast, archaeologists draw timelines from bottom to top, consistent with stratigraphic anal-
ysis, such that the oldest date is at the base.
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A UML state diagram depicts various states of the system and possible transi-
tions between states. In this case the polity starts out in an unstressed state, which
we may call a ground state, since Society S is not initially affected by any issues—
everything is fine. When S is in an unstressed state, two things can happen: either
some issue arises or it does not. If no issue arises, then the state of S remains un-
stressed (shown by the loop arrow labeled “No issue”). However, if an issue arises,
then the state of S transitions to being stressed (by the issue). When S is stressed,
two things can happen: either Government G pays attention and produces policy, or
G fails and policy is not produced (the “No policy loop arrow”). When G produces
policy, two things can happen: either policy fails, or it works. If policy works, then
S is again unstressed. The process continues or ends after policy is produced.

This single-issue account of the standard polity and policy process is intention-
ally simplified (abstracted) for illustrative purposes. One simplifying assumption is
that public issues affect S without any anticipation on behalf of G, which is some-
times (not always!) unrealistic. For example, in the case of many domestic policies,
G often prepares by producing anticipatory mitigating policies. Another simplifying
assumption is the direct, unmediated pressure of S on G, without intermediaries. In
fact, interest groups and other intermediary groups (e.g., lobbies, unions) act be-
tween S and G, producing more transitions and additional intermediary states before
policies are produced. Finally, another assumption in Fig. 2.8 is that the policy-
making process is finite, rather than going on forever.

The UML state diagram is characterized by a set of features, as seen from
Fig. 2.8:
1. The diagram is read from left to right, with various possible transitions and loops

as the state of the system evolves to the end of each cycle.
2. The diagram is reminiscent of a Markov model representing the states of a system

and possible transitions, minus the start and end states. Unlike a Markov model,
however, transition probabilities are not generally represented.

3. The diagram is also reminiscent of a flowchart, but with exclusive emphasis on
the state or condition of the system.

4. Classes or objects (entities) do not appear in a state diagram. Instead, this type
of diagram focuses on the state or condition of the system, given the possible
interactions among entities.

5. Each transition is specified by asking “what can happen next?” given some state.
6. The state diagram is formally a graph. Specifically, it is a directed graph. It can

also be weighted, if transition probabilities (or other measures associated with
the links between states) are known.
State diagrams such as the one in Fig. 2.8 are sometimes difficult to specify in a

way that is sufficiently complete or precise, in part because the detailed dynamics
of a social system and process may not be clearly understood. In that case, resort to
other sources such as narratives or other diagrams may prove useful. For example, a
classical flowchart may be helpful for uncovering the information needed for a state
diagram.

When attempting to specify a detailed state diagram, it is always good practice
to begin with a simple version with the fewest possible number of states and transi-
tions.
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Other UML diagrams include activity diagrams and use case diagrams. We will
use UML diagrams throughout this book for two main purposes: increasing sci-
entific clarity and enabling computational specificity. Both uses are new in social
science.

2.8.3 Attributes

Now that we have covered the basics of classes, objects, and associations, we must
take a closer look at them by focusing on two key computational aspects: their defin-
ing attributes and operations. We will do this assisted by some further UML notation
created precisely for dealing with attributes and their operations, as in Fig. 2.9.

We will approach the parts of Fig. 2.9 in sequence, with the last part (e) being the
most complete in terms of specification. To begin, note that the following notational
details in Fig. 2.9 are standard and important, not arbitrary:
1. Class and object names are written in the center of the first compartment of each

diagram, with initial capital letter (as in a proper noun), preferably in boldface
(e.g, Class, Object, Polity, Switzerland).

2. The name of an object is underlined (Object,Province,County,City).

3. Attributes are written with the first letter in lowercase, followed by additional
words without spacing (e.g., classAttribute1, classAttribute2, popSize, capital-
City, numberOfiPhones, inflationRate), always left-justified.

4. The data type of each attribute is written after the attributeName.
5. Operations are written in a similar way, followed by left and right parentheses.
6. The so-called “visibility” or “accessibility” of attributes and operations is de-

noted by plus and minus signs, representing their public or private status, respec-
tively, as explained further below.
A feature, variable, or parameter that characterizes a social entity is called an

attribute in CSS. Attributes are familiar concepts in Social Science, often under the
name of “variables” or “parameters.” The following are some illustrative attributes,
based on earlier examples in this chapter. In the case of a coupled socio-techno-
natural system, we may model the natural environment as consisting of ecosystems
with biophysical attributes such as biomass distribution, climate variables, topog-
raphy, and others. Similarly, social attributes are often used to characterize various
actors and groups abstracted in a model, such as economic, political, and social vari-
ables. In the case of a polity, commonly specified attributes include population size,
size of its economy, territorial extent, cultural indicators, military capabilities, and
other numerous features. Each social object or class is always defined in terms of
some set of attributes.

In Figs. 2.9(b)–(e) we saw how attributes are annotated in the second compart-
ment of a UML class diagram. Figure 2.10 shows how this is done in a more com-
plete UML class diagram, as part of each class or object, in this case using the Polity
model discussed earlier. In this case we have chosen to abstract the following class
attributes: the name, continent in which it is located, territorial size, and name of
the polity’s capital city; the population size and amount of resources of the society
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Fig. 2.10 UML class
diagram of the standard polity
model, with specified
attributes (variables). Note
that each attribute is denoted
by a uniquely designated
name and corresponding data
type

of that polity; the government’s gross capacity and net capacity for policy-making
and implementation; and the type, salience, cost, and onset and resolution dates of
public issues that arise in the polity.

Figures 2.9(d) and (e) also show the visibility or accessibility of each attribute
by using plus and minus signs. This is a feature of attributes and operations that
defines the status of information in relation to other classes. Specifically:
1. An attribute is private when it can be accessed only from its own class, denoted

by the minus sign −.
2. An attribute is public when it can be used and viewed by any other class, denoted

by the plus sign +.
3. An attribute is protected when it can be accessed only by its class or subclasses,

denoted by the pound sign #.
The attribute of an object is called a object variable, to distinguish it from the

class-level feature. This nomenclature is consistent with the earlier idea that an ob-
ject belongs to a class. Similarly, the attribute of a class is also called a class vari-
able.

2.8.4 Operations

We saw earlier (Fig. 2.9(b)) how attributes and operations define a class. An op-
eration changes the value of one or more attributes, and consequently the state of
objects and classes. At the object level, an operation is called a method. Operations
and methods are implemented by functions in Python. A common example of an op-
eration is a function that would specify how the population of a polity changes each
year. Operations specify dynamics, whereas attributes define statics; both determine
the state of classes and objects.
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Figure 2.11 shows how operations are added to the third compartment of a
classes’s box to complete the model in greater detail, extending the earlier model
in Fig. 2.10. This is the same familiar model of Polity, only now we have added
some operations that tell us how attributes are supposed to change in each class. For
example, in the Polity class, the attribute (or class variable in this case) called age-
OfPolity will change as specified by a function called agingRate(), which is defined
in the third compartment of Polity. This is presumably a simple function that returns
an annual increment of 1.0. Similarly, the attribute called corruptionRate in the
Government class is driven by corruptionChange(), which is a more complicated
operation defined in the third compartment of Government. For example, corrup-
tionChange() might be specified or modeled as a function of other attributes, such
as levels of foreign investment, literacy, rule of law, and other variables (i.e., the
known determinants or drivers of governmental corruption reported in the empirical
literature) that are located in the same or other classes.

In any social system some associations are more important than others. For ex-
ample, note the “manages” association between Government and PublicIssues in
Fig. 2.11(left). This is a very significant relation between two major entities of a
polity, which in this case abstracts the notion of a policy. It is through policies that
governments address public issues. Thus, the seemingly simple association between
Government and PublicIssues should be elevated to the higher status of having a
class by itself, as association class named Policy. As shown in Fig. 2.11(right), an
association class is denoted by the same class notation, joined to the association
link by a dashed link. To decide whether a given association warrants the status of
being modeled as an association class, rather than a mere association, the following
heuristic questions are helpful:
1. Does the association in question have significant attributes that can be specified?
2. If so, what are they?
3. Moreover, do such attributes have operations that can be similarly specified?
If the answer is yes to questions 1 and 3, then the association in question is a can-
didate for promotion to association class status. For example, in the previous case
it is certainly, true that a policy has attributes, such as type (economic, social, po-
litical, environmental, or other), effectiveness (degree to which it is likely to solve
the issue), efficiency (cost/benefit), and other features. However, whether promo-
tion to the status of association class, rather than mere association, is warranted is a
different question, which depends on research questions and not just our ability to
identify relevant attributes.

Both attributes and operations are said to be “encapsulated” within a class or ob-
ject. “This process of packaging some data along with the set of operations that can
be performed on the data is called encapsulation” (Zelle 2010: 418). Encapsulation
is a powerful, defining feature of all OOM and OOP. In UML modeling terms this
means that all attributes and operations must always appear contained within the
second or third compartments, respectively, of some class or object entity—never
unassociated, by themselves. More importantly in OOP, encapsulation means that
classes and objects can interact without having to access inner components or com-
putations that can be hidden within entities. All fully OOP languages implement
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encapsulation, whereas most procedural languages do not. Hence, implementing
social models comprised of entities that encapsulate attributes is best accomplished
in an OOP language so as not to risk breaking encapsulation.

Python implements encapsulation as a convention, as part of proper program-
ming style, and is not an absolute requirement of the language. By contrast, encap-
sulation is a required feature of abstraction in Java.

Encapsulation implies that variables and methods/operations are always defined
as belonging to some object or class, never by themselves. Other common language
phrases used to signify encapsulation are “in the context of,” “with respect to,” and
“in relation to,” among others. For example, the context for the variable inflation is
an economy, the context for corruption is government (or business), voting behavior
is associated with a polity, and so forth. From an OO perspective in Computational
Social Science, variables or parameters make no sense by themselves, in isolation.
Hence, they are always encapsulated within some class or object. Understanding
this idea also provides a powerful principle for turning a variable-based model into
a potentially more powerful object-based model.

2.9 Data Structures

Classes and objects represent one form of data that encapsulates a set of at-
tributes/variables and operations/methods for changing the value of attributes/
variables. However, data come in many forms—not a surprise in social science!
We have already seen various value types for variables, such as integer, string, and
boolean. The term data structures refers to the various ways in which data are or-
ganized for purposes of computation. Sometimes the same information is organized
in different ways, so it will be structured differently, depending on computational
need. When it comes to data structures, remember the famous design principle from
architecture: “Form follows function” (Louis Sullivan, American architect, 1896).

The following are the most common data structures, listed in order of general-
ization:21

Tuple: A tuple is similar to a record structure, the main difference being that
individual records need not be arranged as in the 2-dimensional structure typ-
ical of a spreadsheet. Elements of a tuple must all have the same type. Ex-
amples: calendar dates expressed by year, month, and day; N -dimensional
Cartesian (or other coordinate system) n-tuple of coordinate values for a point
(x1, x2, x3, . . . , xN); payoff values (u, v) in a 2 × 2 normal form game Γ ,
where u and v are the payoffs for each player. The elements of a tuple are
ordered.

Array: An array has elements of the same type accessible by some index. Ex-
amples: all vectors and matrices; input-output table of sectors in an economy;
adjacency matrix of a network. A vector is a one-dimensional array, whereas

21There are as many kinds of data structures as there are ways in which information can be orga-
nized. The US National Institute of Standards and Technology (NIST) provides a comprehensive,
encyclopedic online survey (Black 2004).
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a matrix is a 2-dimensional array. A vector is a datum with both scalar value
and direction (whereas a scalar lacks direction). A “data cube” is a 3-dim ar-
ray (e.g., countries × attributes × years). A sparse array is one where many
entries are zero or missing, which may be better structured as a list.

List, or sequence: A list is a mutable tuple of variable length, with the first ele-
ment called the head or header, and the ones that follow are called the tail.
Examples: Cities ranked by population size, the head being the largest; con-
flicts or disasters ordered by severity, the head being the worst case; network
nodes arranged by the number of links with other nodes (called degree), the
head being the node with highest degree.

Queue: A list of items where the head is accessed first. Examples: legislative bills
in a calendar for voting; items on a formal agenda; refugees arriving at a camp
site; military units being deployed. Operations defined on a queue include ad-
dition (new value is added to the tail), deletion (from the head), as well as
others. A queue is also called a FIFO (first-in-first-out) list, or pushup list.
Queues are also a significant social process, so half of Chap. 9 is dedicated to
them.

Stack: A stack is a data structure consisting of an ordered list of data such that the
datum inserted last gets drawn first. Examples: location visited most recently;
the most recent acquaintance; the most recent course taken by a student or
taught by an instructor, from among a complete list of courses taken or taught,
respectively. Chronological order of entry into the data structure is a key idea
in a stack.

Bag: A bag is a set of values that can contain duplicates. Examples: the set of
all countries that have experienced civil war during the past τ years; a list of
individuals who have voted in the past N elections; the set of terrorist orga-
nizations that have launched suicidal bombing attacks since 9/11. The term
multi-set is synonymous with bag.

Set: A collection of elements in no particular order with each element occurring
only once. Examples: The set of cities in a given country; coalition members;
candidates in an election; budget priorities; major powers in the international
system (polarity); nodes in a network; legislative bill proposals in the “hop-
per.” This is a general and powerful mathematical concept with broad applica-
bility across the social sciences.

Hash table: Also known as a dictionary, a hash table is a data structure in which
values and keys are assigned by a function, called the hash function. A hash
table is an array of 2-tuples consisting of values and associated keys, such that
there is a one-to-one mapping between values and keys (binary relation). The
list of values is also called a hash table. Examples: a telephone directory; a list
of voters and their voting precincts; administrative units (counties, provinces,
states, countries) and abbreviations or codes; items and barcodes; geographic
gazetteers; organizational charts; course catalogues. A hash table provides a
fast way to lookup data.

Tree: A tree is a data structure consisting of a root element with subtrees branch-
ing out to terminal nodes called leaves. Nodes located between the root and
leaves (i.e., “crotches,” in common language) are called internal nodes. A tax-
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onomy has the structure of a tree. Examples: classification of social enti-
ties; extensive form games; tree of phone calls for emergencies; hierarchal
organization in business and public administration; star network; population
settlement pattern (capital [root], provincial centers, town, villages, hamlets
[leaves]). Tree-like data structures are ubiquitous in social systems and pro-
cesses, but they are rarely analyzed as such.

Graph: A graph is a generalization or extension of a tree, in which nodes and
links (also called arcs or edges) can be arranged in any way, as we discuss in
detail in Chap. 4.

Note that data structures do not contain any code; they just contain data organized
in various ways.

A record is like a composite data type rather than a true data structure, in a
strict sense. It consists of information fields or members comprising a set. Exam-
ples: a person with contact information (address, telephone, email, Skype address);
a polity profile (country name, capital city, total population, and other attributes);
a bibliographic entry (author, title, place and date of publication); events data (actor,
target, date, descriptive verb, other event attributes). A spreadsheet entry is often
like a set of records, with columns representing various fields, as is a common in
social science datasets.

All of these data structures can be used in the Python and Java programming
languages (and many more). Python can handle lists of many types, including stacks,
queues, matrices (a list of lists), tuples, and sets, among others. A set of operations
(functions and methods) is defined for various data structures in each programming
language.

2.10 Modules and Modularization

In all but the simplest cases, a computer program usually requires “parsing” into
main components and subcomponents. This is because writing a long, “monolithic”
program is impractical as soon as the program requires more than just a few lines of
code (LOC). Modularization is not just a programming style; it matters greatly in
terms of overall program performance.

One way to think of modularity is in terms of performance: how should a given
computer program be written in order to maximize its speed? Intuitively, there may
be many ways in which a computer program could be modularized. For example,
computation and visualization could be separated; but so could various stages of
execution, in sequential fashion, as derived from a flowchart. The way in which a
given program should be modularized into parts is not necessarily obvious. David
Parnas (1972), a famous computer scientist, introduced the influential Principle of
Decomposition by Information Hiding. Given a program P, the Parnas Princi-
ple states that P should be structured in nearly-decomposable modules, such that
each module encapsulates a nearly self-contained (encapsulated) cluster of instruc-
tions and the interface between modules is such that it minimizes “communication
overhead.”
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Direct quote: “. . . one begins with a list of difficult design decisions or design
decisions which are likely to change. Each module is then designed to hide
such a decision from the others. Since, in most cases, design decisions tran-
scend time of execution, modules will not correspond to steps in the process-
ing. To achieve an efficient implementation we must abandon the assumption
that a module is one or more subroutines, and instead allow subroutines and
programs to be assembled collections of code from various modules” (Parnas
1972: Conclusions).

The following are significant advantages of Parnas-modularity:
• Modules are easier to understand.
• Independent programmers can work on different modules.
• The program can be more easily changed.
• Sensitive information may be more easily protected.

The overall structure of a modular program is that of a network composed of any
number of communicating clusters, as in a cellular network (similar to the Horton
or Tutte graphs), such that most of the communication takes place within clusters
and minimal communication across them.22

2.11 Computability and Complexity

Consider the following questions:
1. A leader needs to form a coalition in order to ensure security against a powerful

adversary. Given a set of potential allies, what are the possible combinations that
might produce successful, winning coalitions?

2. A person involved in a disaster faces a set of competing priorities (safety, family,
shelter, neighbors, supplies), which can induce severe frustration, compounded
by fear and uncertainty. Which course of action is best, or at least satisfactory?

3. A country affected by climate change must choose from among a set of compet-
ing policies, finite resources, and imperfect information. How can policy analysts
arrive at defensible recommendations for policy-makers?

Questions such as these require complex social computations, not just in terms of
crude costs and benefits, but also in probabilistic assessments, alternative combina-
torial arrangements, fitness assessments with respect to known empirical patterns,
and other computational features. The necessary science (social or natural) may also
be incomplete, so allowance must be made for deep uncertainty—not just risk with
known probability distributions. And yet, as scientists we wish to obtain computable
answers to questions such as the three listed above.

22Interestingly, the structure of a terrorist organization is also that of a cellular network, as we
shall see later on. What does Parnas’ Principle suggest in the context of terrorist organizations,
terrorism in general, or counterterrorism policy analysis? Which of those insights derived from a
CSS approach are also available from traditional social science perspectives?
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Computation is feasible over an immense and expanding problem-space, but it is
not universal. Computability has to do with the effective ability to compute an algo-
rithm, given some functions/methods/operations and data. More precisely, effective
computability requires two conditions:
1. The algorithm must consist of a finite and relatively simple set of functions ar-

ranged in some proper way; and
2. Each function must execute in finite time.
Given these two requirements, a problem is not computable if either condition is not
met.

Informally, computational complexity refers to the degree of difficulty involved
in solving a computational problem of size N , in terms of space or time resources
required. Formally, let T (n) and M(n) denote separate measures of computational
complexity with respect to time and memory, respectively, where n ∈ N denotes the
size of the problem. For example, N may refer to the number of possible alliances in
Problem 1, the number of alternatives in Problem 2, or similar features that measure
size. In general, computational complexity has to do with how computability scales
with respect to a given size. A problem that scales as a polynomial is said to be
computationally tractable, whereas one that scales exponentially is not. A problem
is said to be intractable when it cannot be solved in polynomial time.

2.12 Algorithms

So far we have used the term algorithm more or less as synonymous with “code”
or “program.” Stated more precisely, a program is a formalization of an algorithm,
similar to the way in which an equation specifies a function. According to the Dic-
tionary of Algorithms and Data Structures published by the National Institute of
Standards and Technology (NIST), an algorithm is defined as follows:

Definition 2.1 (Algorithm; Black 2007) An algorithm is a computable set of steps
to achieve a desired result.

In this chapter we have already seen several initial examples of algorithms, rang-
ing from chaos to elections. We should now be able to have a better appreciation of
how the concept of algorithm relates to the Computational Paradigm of CSS dis-
cussed earlier in Chap. 1. Such a perspective views a social system (on any scale)
as an information-processing entity; i.e., as algorithmically structured. How is this
possible? The information processed by social systems is structured in many ways,
as discussed in Sect. 2.9. Information can be in the form of records, arrays, trees, or
other data structures. Algorithms involve search, comparisons, maximization, sort-
ing, and other fundamental and compound forms of processing information.

Algorithms are implemented in social systems using many different real-world
processes. The following are some examples of significant social processes viewed
in terms of “desired results” and “sets of computational steps,” consistent with Def-
inition 2.1:
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Cognitive balancing (Psychology): As humans, we maintain overall cognitive
coherence in our belief systems by adjusting beliefs through Abelsonian mech-
anisms (discussed in Chap. 4).

Census (Sociology): Every complex society (chiefdoms, states, empires) counts
the size of its population by conducting surveys and other procedures for gath-
ering data on individuals and households.

Economic transaction (Economics): Economic agents conduct a sale by ex-
changing information and agreeing on terms.

Election (Politics): A democratic polity determines a leader by counting votes
according to some set of rules.

Legislate (Politics): Policymakers enact laws by aggregating preferences follow-
ing constitutionally established procedures.

CSS requires us to examine social processes from an algorithmic perspective and
social systems as supported by functionally significant algorithms, following the
Computational Paradigm. Obviously, each of these complex processes has far more
real-world complexity than can be reasonably stated in a single sentence. However,
the fact that each descriptive sentence has the same algorithmic form as in Defini-
tion 2.1 is interesting and insightful. Formally, this kind of similarity is called an
isomorphism.23 The Computational Paradigm discussed earlier in Chap. 1 is about
a general isomorphic perspective, whereby social systems are designed as adapta-
tions (Simon’s Principle) to perform complex algorithms of many kinds.

Algorithms matter greatly in CSS because through improved design of algo-
rithms we can develop better models of social complexity and—in doing so—
advance our understanding of human and social dynamics. Learning how to de-
sign and implement efficient algorithms requires both technical skill and experi-
ence through practice. Key steps involve understanding search, sort, and recur-
sive algorithmic structures. For example, there are significant differences in the effi-
ciency of various search routines (e.g., linear vs. binary) depending on input size and
other considerations. Binary search—an example of what are called divide-and-
conquer algorithms—is often desirable as an algorithm because it only requires
time in logarithmic (i.e., less than linear) proportion to the size of a list. By contrast,
linear search is much more time consuming (hence less computationally efficient)
for relatively long lists, but is usually better for searching items in short lists. The
exact tradeoff between the two strategies depends on data structures, code used, and
hardware, but, in general, linear and binary search strategies are best for short and
long lists, respectively.

23The term isomorphism comes from mathematics, where it means having the same formalism
or equation in different domains. For example, a cannonball shot (physics) and a parabolic de-
mand function (economics) are said to be isomorphic since both are described by a second degree
polynomial, y(x) = a + bx + cx2. Similarly, social transactions between two populations (hu-
man geography) and gravitational attraction between two masses (physics) follow an isomorphic
inverse-square law, y = kS1S2/D

2, where S and D denote sizes (for populations and masses) and
distance between them, respectively. Two systems are said to be isomorphic if the relevant equa-
tions obey the same mathematical form.
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Unfortunately, a binary search usually requires a pre-sorted list, which can be a
problem for sorting. Recursive functions for sorting come to the rescue! Different
sorting algorithms include select sort and merge sort. Select sorting requires time
that is proportional to the square of collection size (cardinality). By contrast, merge
sorting is a divide-and-conquer algorithm that sorts in n logn time.
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3Automated Information Extraction

3.1 Introduction and Motivation

In the previous chapter we defined an algorithm as a computable set of steps to
achieve results. The goal of this chapter is to introduce algorithms used for extract-
ing information from data, what social scientists have traditionally called content
analysis. The idea is to leverage computing in such a way as to minimize human,
manual handling of data. Why? For multiple reasons:
• Information extraction by humans (called “coders” in this context) is very labor-

intensive, requiring long periods of training and preparation.
• Even when well-trained, coders make mistakes that are difficult to correct.
• The universe of data sources has recently expanded beyond what is feasible to

analyze by human coders, including many Internet sources.
• Algorithms specialized in information extraction can detect patterns that humans

are not well equipped to handle, such as network structures and time-dependent
features, or latent properties.

Traditionally, text data was the main target of content analysis, but increasingly
these methods are also aimed at graphics, imagery, video, and audio data signals.
Decades ago this was all done manually, by training coders and using manual oper-
ations that produced coded data after many months of training. The Age of Big Data
has begun, with several quintillion bytes of data produced each day (1 quintillion =
1018 on the US short scale = 1030 on the EU long scale). Today the goal is to ex-
tract information from data (whether “small” or “big”) using automated algorithms
and systems. This expands scientific analysis to better comprehend the increasing
volume of social data (so-called Big Data), the greater diversity of data signals, the
increased accuracy, and new and exciting frontiers of cross-cultural research, among
others.

3.2 History and First Pioneers

Social scientists have always been interested in the meaning of signs and other lin-
guistic and non-linguistic (e.g., behavioral) symbols used in social interaction. The
Greeks were arguably the first to ponder the meaning of signs through the study of

C. Cioffi-Revilla, Introduction to Computational Social Science,
Texts in Computer Science, DOI 10.1007/978-1-4471-5661-1_3,
© Springer-Verlag London 2014
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Fig. 3.1 Example of a manual coding form used to record an event based on a newspaper source.
Forms such as these were used in the early days of computational content analysis to record news
into machine-readable format and enable statistical analysis of large amounts of data

etymology (the study of the roots of words) and related disciplines, as shown by
surviving records.1

Figure 3.1 shows a so-called “coding sheet” for producing a simple event data set
developed from newspaper sources. Coding sheets such as these—and more elab-
orate ones—were common to many social science data projects based on content
analysis.

Automated information extraction, under the initial name of quantitative content
analysis, was invented in the 1960s, when, for the first time, digital computers made
it possible to use computer algorithms to replace manual coding. However, these
methods have a long history! The following are significant historical milestones and
pioneers in this area of Computational Social Science:
18th century First well-documented quantitative analyses of text in Sweden

(Dovring 1954; cited in Krippendorf 2013: 18).
1893 G.J. Speed publishes the “first quantitative newspaper analysis” (Krippen-

dorf 2013: 53), to be followed by modern events data analysis many decades
later (beginning in the 1960s).

1903 Eugen Löbl publishes “an elaborate classification scheme for analyzing the
‘inner sources of content’ according to the social functions that newspapers
perform” (Krippendorf 2013: 11).

1910 Sociologist Max Weber proposes the first large-scale content analysis (Krip-
pendorf 2013: 11).

1912 Tenney proposes the first “large-scale and continuous survey of press con-
tent” to monitor “social weather” (Krippendorf 2013: 12).

1913 Mathematician and linguist Andrey Markov (after whom the Markov “chain
model” is named) publishes his statistical analysis of Pushkin’s Eugene
Onegin (Markov 1913).

1Much of modern science is said to have roots in the ancient Greeks. This is quite true, but others
before them may have contributed earlier scientific ideas contained in media that have been lost
(manuscripts, inscriptions) due to the destruction of many large ancient libraries, such as those
of Alexandria, Antioch, Baghdad, Córdoba, and Damascus, just to mention some of those in the
Mediterranean world. India and China also experienced the destruction of many libraries during
their early history.
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Fig. 3.2 Major pioneers of content analysis: Max Weber, sociologist, proposed the first large-scale
content analysis in 1910 (upper left). Andrey Markov, mathematician, pioneered computational
linguistics (upper right). Harold Lasswell pioneered computational content analysis (lower left).
Charles E. Osgood discovered and quantified semantic space (lower right)

1934 Woodward publishes his influential “Quantitative Newspaper Analysis as a
Technique of Opinion Research” (Woodward 1934).

1937 The Institute for Propaganda Analysis, founded in New York City by social
scientists to counter Nazi propaganda, publishes a list of devices commonly
used by extremists and propagandists.

1938 Albig publishes the first content analysis of radio media, followed by movies
and television (Albig 1938).

1941 The term “content analysis” is used for the first time (Waples and Berelson
1941: 2; cited in Berelson and Lazarsfeld 1948).
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1942 Psychologists Allport and Baldwin separately publish the first applications
of content analysis on personality and cognitive structure, respectively (All-
port 1942; Baldwin 1942).

1947 Psychologist R. K. White pioneers the application of content analysis on
values (White 1947).

1948 Berelson and Harold D. Lasswell publish their pioneering and influential
mimeographed text, The Analysis of Communication Content, published in
1952 as Berelson’s Content Analysis in Communications Research. “This
first systematic presentation codified the field for years to come” (Krippen-
dorf 2004: 8).

1949 Claude Shannon and Warren Weaver publish their Mathematical Theory of
Communication, formalizing the concepts of signal, message, channel, and
noise (Shannon and Weaver 1949).

1949 Lasswell publishes his methodological essay on “Why Be Quantitative?”
(Lasswell 1949).

1950 Sociologist Bales pioneers the application of content analysis in small-
group research (Bales 1950).

1952 Berelson publishes the first integrated survey of content analysis, spreading
across the social sciences (Berelson 1952).

1955 First major conference on content analysis, is sponsored by the Social Sci-
ence Research Council’s (SSRC) Committee on Linguistics and Psychology
(de Sola Pool 1959).

1957 Charles E. Osgood [1916–1991] and collaborators publish the first semantic
differential scales derived through computer-based factor analysis (Osgood
et al. 1957).

1959 Osgood’s contingency analysis and “cloze procedure” (Osgood 1959).
1962 Philip J. Stone [1937–2006] and collaborators publish the first paper on the

General Inquirer in the journal Behavioral Science (Stone et al. 1962).
1964 Political scientist Kenneth Janda (Janda 1964; Janda and Tetzlaff 1966) cre-

ates the TRIAL (Technique for Retrieval of Information and Abstracts of
Literature) system for text processing and mining of scientific literature, in-
cluding use of KWIC (keywords in context) and KWOC (keywords out of
context) indexing.

1972 Ward Goodenough applies content analysis in anthropology in his seminal
book Culture, Language and Society.

1975 Charles E. Osgood and collaborators publish Cross-Cultural Universals of
Affective Meaning, the first large comparative analysis of semantic differen-
tials produced by computational content analysis (Osgood et al. 1975).

1997 The journal Social Science Computer Review publishes a special issue on
“Possibilities in Computer Content Analysis” (Fan 1997).

2004 Klaus Krippendorf publishes the first edition of his classic textbook, Content
Analysis.

2013 Kalev Leetaru, Philip Schrodt, and Patrick Brandt release the first version
of GDELT (Global Data on Events, Location, and Tone), the first computer-
coded big-data collection on world events, containing over 200 million ge-
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olocated events from 1979 to the present. By summer 2013 GDELT was
generating over 120,000 machine-coded events per day, roughly three orders
of magnitude more than a team of humans could code manually, following
months of intense training.

This is quite a history of scientific accomplishments that continues to expand the
frontiers of social research. Today, computer-based or automated content analysis
is taught in many social science departments, summer institutes, and special work-
shops, as well as in business schools (public relations and marketing), computer
science departments (text and data mining), and communications and linguistics
programs. To begin exploring these powerful methods we will also need some ba-
sic relevant background in related areas, such as linguistics, communications, and
social psychology.

3.3 Linguistics and Principles of Content Analysis: Semantics
and Syntax

Linguistics is the science of human language. Linguists distinguish among the fol-
lowing key concepts pertaining to major language components (along with many
others that lie beyond this introductory survey):
Grammar: The study of rules of natural human language, which determine how

a given language is spoken. There are as many grammars as there are natural
human languages, a number that has been decreasing to approximately 7,000
languages that exist today, of which approximately 500 are considered nearly
extinct (Lewis 2009).

Syntax: Part of grammar, which refers to how phrases and sentences are to be
properly composed. Rules of syntax determine how words are arranged to con-
vey meaning.

Semantics: The meaning of terms or words. From a concept formation perspec-
tive, semantics refers to the definiens of a term, while the term itself is called
the definendum, as in a glossary. In communication theory, the term “mes-
sage” denotes the meaning of a given “signal.” Thus, a message (analogous to
definiens) is said to be encoded into a signal (definendum) in order for it to be
transmitted or conveyed, according to the Shannon and Weaver (1949) theory
of communication. Formally, message:signal::definiens:definendum.

These basic ideas are significant for automated information extraction because,
after all, we are dealing with how information is obtained from basic raw data in the
form of text or other media (for example, graphics). Parsing is the process whereby
a sentence of text is analyzed into syntactical components, such as object, subject,
and verb. Counting the frequency of words and syntactical components is a basic
procedure in automated content analysis.

Consider the following example. A simple algorithm for counting and visualizing
word frequencies is WordleTM. Figure 3.3 illustrates the results of analyzing Her-
bert Simon’s (1992) autobiography using Wordle. Each word in the autobiography
is shown by size proportional to word frequency, with only “stop words” omitted
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Fig. 3.3 Word frequencies automatically extracted from Herbert A. Simon’s autobiography using
the WordleTM algorithm. Source: Simon (1992)

(“a,” “the,” “of,” and other such frequently used words that don’t add information
to the results). Numbers are also stopped by this particular algorithm, but could be
included when they are of interest.

In the previous example all words were counted separately. This is fine for many
words, but not all. For instance, from a semantic perspective, the phrase “University
of Chicago” makes more sense as a compound term than as three separate words.
To do this, the algorithm should process a prepared version of the raw text data that
links such words together, using either a tilde character (~) or the Unicode “non-
breaking space” character (U+00A0) inserted between those words that should re-
main linked. How would this refinement change our results? This is left as an exer-
cise!

“Context matters,” as the saying goes. Word frequencies alone, out of context, are
said to provide a KWOC (or “keywords out of context”) result. By contrast, a KWIC
(keywords in context) analysis shows the neighboring words of each occurrence.

In computer programming, profiling code is a procedure for analyzing software
performance by counting the frequency with which each method is called, the time
required for each method, and other frequency-related features of code. Profiling is
carried out through various systems called profilers, which can be passive or active.
Profilers rely on program counters inside a CPU and provide a form of automated
content analysis for better understanding how code works.

3.4 Semantic Dimensions of Meaning: From Osgood to Heise

Earlier we saw how semantics refers to the meaning of words. There is also a com-
mon and unfortunate misconception that semantic diversity (ambiguity) impedes or
even prohibits the development of social science, due to lack of agreement on the
meaning of many terms used across the social science disciplines. As shown in this
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section, however, social scientists have made great strides in gaining deep under-
standing of the meaning of words and signs, in no small way through the systematic
application of computational approaches.

How do people assign meaning to words in natural language? What dimensions
of meaning do we use for understanding what words mean? What do we care mostly
about in terms of assigning meaning? Do we care about the source? The time of oc-
currence? Its location? Which attributes of a word matter most to us? These have
been deeply significant, longstanding, and highly challenging questions, not just
for linguists but for many other social scientists, such as anthropologists, sociolo-
gists, political scientists, and psychologists. Today this research is conducted with
automated extraction algorithms. But before we address these questions we must
understand what algorithms look for in terms of the structure of human information
processing.

3.4.1 EPA-Space and the Structure of Human Information
Processing and Meaning

A pioneer in investigating how humans think and communicate was psychologist
Charles E. Osgood, who together with his colleagues made one of the most remark-
able scientific discoveries of the 20th century, concerning how humans subjectively
perceive the meaning of words and signs. Osgood and his collaborators at the In-
stitute for Communication Research (ICR) at the University of Illinois at Urbana-
Champaign discovered that all words used in natural language are decomposed by
the human cognitive process into mostly three dimensions that he called Evaluation,
Potency, and Activity. This 3-dimensional space or EPA-space, for short, consists
of three continuous ranges with the following affective values (see Fig. 3.4):
1. Good-Bad (evaluation)
2. Strong-Weak (potency)
3. Fast-Slow (activity)

These three dimensions are the first three orthogonal factors extracted from a
large corpus of words using standard data reduction procedures from factor analysis
(Osgood et al. 1957, 1975). Roughly speaking, this means that, for each input signal
(word, event, term) we perceive, we as individuals first assign a value in terms of
whether the concept denoted by the input is “good” or “bad” in a normative, affec-
tive sense. This is the evaluation dimension. We then assess its potency in terms of
the word or object being “strong” or “weak,” as an impression. Finally, we assess the
word in terms of being “fast” (dynamic) or “slow” (static), which somehow refers to
its motion. This semantic space was unknown prior to Osgood’s discovery—indeed,
it seems remarkable that such a space exists at all, since there is nothing intrinsically
necessary about its existence. The null hypothesis would be that we assign meaning
in completely personal, subjective ways that are incomparable across individuals,
but this is not the case, as Osgood and his collaborators discovered. We may think
we assign meanings in highly personal ways, but—as social science in this area has
demonstrated—in fact we use the same inter-personal or inter-subjective system of
meaningful dimensions: Osgood’s EPA-space.
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Fig. 3.4 Osgood’d 3D
Semantic Differential
EPA-space. The cognitive
dimensions of evaluation E

(ranging from good to bad),
potency P (strong to weak),
and activity A (fast to slow)
span a 3-dimensional
semantic space. In
Osgood-space each term or
word w is located by a triplet
(e,p, a) or vector
w = ei + pj + ak with norm
given by |w| =√

e2 + p2 + a2

Why these three dimensions exist, as opposed to another system, remains quite a
mystery—an unsolved scientific puzzle. Regardless, Osgood’s semantic space gives
us an exceptional and intriguing glimpse into how the human mind operates.2 As
it turns out, these particular three semantic dimensions of EPA-space also provide
robust cognitive foundations for explaining and understanding patterns of social be-
havior, which is the subject of Affect Control Theory (Heise 1987). The core prin-
ciple of affect control theory is that individuals maintain relatively stable affective
impressions of others and situations, which regulates their behavior accordingly.

For example, the word “missile” would be bad, strong, and fast, whereas the
word “house” would be closer to good, strong, and slow. EPA-space dictionaries
now exist for many words in many languages (Osgood et al. 1975; Heise 2001).
Based on this system of Cartesian coordinates, every word can be represented as a
triplet of coordinates w(e,p, a) in 3-dimensional EPA-space.

A significant consequence of the discovery of EPA-space is that for the first time
in the history of social science it enabled measuring semantic distance between
any pair of words, terms, or objects, assuming component coordinates (e,p, a) are
known. In turn, these discoveries open the way to computational vector analysis and
other directional multivariate techniques, as suggested by the system in Fig. 3.4.

3.4.2 Cross-Cultural Universality of Meaning

Do people in different cultures think differently? In many ways they do, using dif-
ferent metaphors and schema. But what about in terms of the semantic EPA-space
used to assign meaning? Does the structure of semantic space vary cross-culturally?

2By contrast, John von Neumann’s (1958) computer model of the human brain-mind phenomenon
turned out to be wrong. Unlike von Neumann’s, the EPA-space model of the human mind is em-
pirically validated, even if it still lacks deep theoretical explanation.



3.4 Semantic Dimensions of Meaning: From Osgood to Heise 75

Even within the same culture or language, could gender, age, or education (SES,
or socioeconomic status) make a difference? It turns out that, for the most part, an-
swers to these and similar questions are generally “no,” as social scientists have
been finding out in recent decades.

Much more has been investigated about 3-dimensional semantic EPA-space in
the years since Osgood’s seminal discovery in the 1950s. The most important excit-
ing discovery arguably has been the cross-cultural validity of this remarkable struc-
ture about how we as humans think: the cross-cultural universality of meaning
(Osgood et al. 1975; Heise 2001). EPA-space is a universal structure not only for
words in the English language; it is universal across many other languages and cul-
tures, including Spanish, Malay, Serbo-Croatian, Turkish, Chinese, Italian, Hebrew,
Arabic, Thai, Farsi, German, French, and Japanese, among others. Gender accounts
for some differences, but these are quantitatively known and measurable through the
same basic methods employed by Osgood and his collaborators.

Project Magellan, based at Indiana University, is an international scientific re-
search project aimed at automated information extraction of cross-cultural EPA rat-
ings and related information. It employs an online Java applet system called Sur-
veyor, which collects EPA ratings via the World Wide Web according to the follow-
ing process (Heise 2001):3

Respondents with a computer connection to the Internet go to a WWW
page that fetches the Java applet and its associated stimuli files. The ap-
plet presents stimuli, and the respondent rates the stimuli with the com-
puter’s mouse, by dragging a pointer along bipolar adjective scales. The ap-
plet records the respondent’s ratings in numerical form and sends the data to
a central computer for storage when the respondent finishes the ratings. The
Surveyor measuring instrument can be revised to work in any indigenous lan-
guage. [. . . ] At the end of each session the respondent’s data are transmitted
electronically via the Internet to the USA In the USA the data automatically
are assembled into cleanly coded data sets. Authorized researchers, including
researchers in the country of the data’s origin, can download the data from the
USA at any time via the Internet. [. . . ] Ratings are recorded as decimal num-
bers with 430 increments from one end of the scale to the other, rather than the
seven increments of early semantic differential scales, or the 80 increments of
the Attitude program.

What are the main implications of these discoveries in automated information
extraction and human semantic space for CSS? How do they fit within the broader
field of CSS knowledge and research? There are many important CSS implications
of the Osgood semantic space spanned by EPA dimensions. Automated information
extraction must be informed by the nature and structure of human cognition in terms
of EPA-space, regardless of source data, but especially in the case of analyzing text

3The predecessor of Surveyor was called Attitude, which was also developed by David Heise
(1982) as the first computer-based extractor of EPA ratings, replacing the old paper-based forms
used since Charles E. Osgood and his collaborators.
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corpora. In practice, this means that CSS researchers need not “start from scratch”
or invent semantic spaces based just on naive speculation, as if this were unexplored
territory in social science. Rather, CSS researchers should know what has been dis-
covered thus far—the corpus of knowledge in positive social science—and build on
earlier foundations to develop the field. In the next section we will examine how
CSS researchers “mine data” to extract information. EPA-space provides a natu-
ral framework for mapping such information, given what we now know about the
structure of human cognition and information processing.

3.5 Data Mining: Overview

The process of automated information extraction using as input a variety of complex
or unstructured data sources—a typical situation in social science—for the purpose
of extracting information or patterns of various kinds is called data mining in com-
puter science.4 Extraction may pertain to monitoring, discovering, modeling, com-
paring, or replicating patterns in the data. Text, social media, audio, and imagery
represent broad classes of data that can be mined to extract information. In a true
computational sense, the pioneering work of Osgood and his successors involved
data mining for the purpose of discovering the structure of human cognition and
our natural semantic space used for computing overall meaning. Other instances of
data mining, beyond exploration of the human semantic EPA-space, take as input
many other classes of data and employ algorithms based on other data processing
procedures besides factor analysis.

Who mines data? Data mining has been practiced by quantitative and computa-
tional social scientists since the dawn of computing, and by computer scientists and
software engineers since the early 1980s. It is a major and growing area of research
across the social sciences (and humanities), with research projects ranging from
anthropology (Fischer et al. 2013) to political science (Schrodt 2000), and from ar-
chaeology to history (Williford et al. 2012). In computer science the Special Interest
Group on Knowledge Discovery and Data Mining (SIGKDD) of the Association for
Computing Machinery (ACM) was established for this purpose in the 1980s, offer-
ing as resources an annual international conference and proceedings, as well as a
biannual academic journal entitled SIGKDD Explorations. There are numerous CS
conferences on data mining, including the ACM Conference on Information and
Knowledge Management (CIKM), the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD),
the IEEE International Conference on Data Mining, and the SIAM International
Conference on Data Mining, among others.

4Unfortunately, in social science the term “data mining” has quite a negative connotation, since
it is understood as lacking in theoretical understanding and symptomatic of so-called “barefoot
empiricism,” akin to “a fishing expedition.” CSS assigns high priority to theory—the basis of
understanding—while recognizing the scientific value of inductive data mining.



3.6 Data Mining: Methodological Process 77

Fig. 3.5 General Data Mining Methodological Process. Data mining for automated information
extraction involves several stages, the most important being the six highlighted here and discussed
below. The core is Analysis for answering research questions, but the other five stages are just as
critical for overall quality of the scientific investigation. Each of the six stages involves a variety of
procedures, most of them dependent on the research questions being addressed

Data mining is a methodological process used for a variety of research purposes
and in numerous domains of CSS, as we will examine in greater detail in the next
section. At the core of data mining lie two fundamental analytical approaches that
play major roles. Let’s highlight them here in advance of a more in-depth discussion
in Sect. 3.6.4:
• Categorization: Also known as classification, this type of analysis in data min-

ing aims at producing an output set of categorized information using some degree
of human intervention in the analysis; hence, categorization is a form of so-called
supervised machine learning, computationally speaking.

• Clustering: By contrast, clustering is a type of data mining analysis that is far
more inductive and is a form of unsupervised machine learning.

Both types of analysis can be considered part of similarity analysis within the gen-
eral process of data mining, as detailed in the next section.

In computer science “data mining” also includes other algorithms for extracting
associations, correlations, multivariate regression models, and other empirical data
structures that are quite common in quantitative social science research. However,
from the perspective of CSS those techniques would fall more commonly under
traditional statistical procedures provided by software systems such as SPSS, SAS,
Stata, or R—in order of increasing computational power.

3.6 Data Mining: Methodological Process

Data mining is a rapidly developing field of interdisciplinary research that has ex-
panded from text-based documents in the initial years to social media, imagery,
audio/sound, and other media in recent years (Feldman and Sanger 2007; Hsu et al.
2008; Leetaru 2011; Monroe and Schrodt 2008; Tang and Liu 2010; Hermann and
Ritter 1999; Hermann et al. 2011). Regardless of the data being mined, as with most
major areas of CSS, data mining for automated information extraction is a method-
ological process composed of a sequence of stages or phases—it is not a single,
uniform activity or even a set of activities that can be carried out in arbitrary order.
As always in science, the process of data mining (see Fig. 3.5) begins with the for-
mulation of research questions and ends with communication of results. In between
are other major, critical stages, such as those pertaining to source raw data inputs,
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preprocessing, and—finally—analysis proper, the latter being impossible without
previous stages. The overall process cycles back to the first stage involving research
questions, because analytical progress and communicating results often generate
new research questions—as fertile scientific projects should do! Spiraling is an-
other useful metaphor for understanding the general data mining process, because
a project often begins with an intentionally limited corpus of data—perhaps just a
sample—to test the overall procedure up to some basic analysis, after which the ini-
tial test data is gradually, incrementally, scaled up to its full final size (e.g., a whole
data archive consisting of corpora of data) as determined by the research questions
and data availability.

Remember: the actual media of data in a given research project can be of many
different kinds, such as text, numeric, social media, geospatial, imagery, audiovi-
sual, or other. The same general process will apply, as detailed below.

3.6.1 Research Questions

In CSS—as everywhere in science—everything begins with research questions, as
we already discussed in Chap. 1. A very broad range of research questions has be-
come feasible through data mining—and the range seems to be forever expanding,
as whole new classes of questions are enabled by new theory, new data, or new
methods. At one end are projects defined mostly by data-driven or inductive re-
search questions of an exploratory and discovery nature. In this highly empirical
mode of investigation the CSS researcher intentionally seeks to extract information
in ways that are unbiased by previous theories, biases, or preconceptions. A clas-
sical (even dramatic!) early example of this would be Allen Newell and Herbert
A. Simon’s inductive rediscovery of Kepler’s Third Law—also known as the Law
of Harmonies—using Pat Langley’s BACON.3 computer program (Langley 1981,
2004; Simon 1996; Gorman 1992). BACON found Kepler’s law in three algorith-
mic steps, given exactly the same data used by Kepler (gathered by the 16th century
Danish astronomer Tycho Brahe). In BACON’s case Newell and Simon asked the
research question: what is the relationship between distances of planets from the
sun R and their periods of revolution T ? The answer is the constant ratio T 2/R3.
It took Kepler ten years to discover the law of harmonies; BACON took seconds,
although it took Simon and Newell several years to invent BACON. Another exam-
ple of data-driven research was Charles E. Osgood’s discovery of EPA-space using
factor analysis, where the research question was: are there significant dimensions to
human affective perception (semantic dimensions for the meaning of word phrases)
and, if so, what are they? The answer is yes and the dimensions are three: eval-
uation E (good-bad), potency P (strong-weak), and activity A (fast-slow). Other
dimensions don’t matter or matter far less than these three. Note that in both cases
answers were provided by data-driven algorithms without resort to prior theories or
other domain-specific knowledge, just using a raw data input and algorithms that
lacked theoretical direction.
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At the opposite end of the spectrum are theory-driven, deductive research ques-
tions aimed at testing specific hypotheses and similar investigations in the more clas-
sical hypothetico-deductive mode. Many uses of data mining fit this pattern as well.
An example would be Osgood’s subsequent ground-breaking comparative research,
where he and his collaborators sought to test the EPA-space hypothesis to confirm its
cross-national validity. In this case the research questions were informed by theory
and prior knowledge on the dimensionality of human semantics using factor anal-
ysis. This type of research is also known as confirmatory factor analysis, since it
is based on some prior theory, model, or hypothesis about the dimensionality struc-
ture of the data space being investigated, as opposed to being mostly data-driven.
A further example from the same domain of CSS would be David Heise’s research
program using Osgood’s EPA-space to conduct comparative research across human
languages and cultures (Project Magellan; Heise 2001).

In between the above two poles are numerous blends of data- vs. theory-driven
research questions that provide great flexibility between inductive and deductive
ends of the continuum. Typically, a research project may cover a range of questions,
some of which are more inductive or deductive than others. Independent of orien-
tation, the formulation of research questions should frame every well-designed data
mining investigation because research questions condition each of the subsequent
stages of the process.

3.6.2 Source Data: Selection and Procurement

The second stage in a data mining investigation focuses on the source data input
itself, once research questions have been selected on the inductive-deductive contin-
uum. Text, electronic media (including so-called social media), imagery, video, and
sound are among the major classes of interest. Sensor data of many different kinds
across diverse domains is also increasingly being collected and analyzed—recall the
daily production of quintillions of bytes of data mentioned at the beginning of this
chapter.

Data selection and procurement pose separate albeit related challenges. Research
questions should guide and inform data selection. Today the Internet offers numer-
ous sources of data—many of which can easily be found through search engines—in
addition to long-standing data repositories such as those of the Inter-University Con-
sortium for Political and Social Research (ICPSR) at the University of Michigan,
US, and the European Consortium for Political Research (ECPR) at the University
of Essex, UK. The Social Science Research Network (SSRN)—the world’s largest
open access repository—is an online archive containing references to numerous data
sources across the social sciences. CSS research is increasingly interdisciplinary,
based on the complex adaptive systems paradigm of coupled human, natural, and
artificial systems, thereby requiring data sources from the physical and life sciences,
engineering, and humanities. In each case, the primary principle for data selection
regards the primacy of research questions in guiding or determining the choice of
data. Issues regarding intellectual property rights, ethics, public vs. private funding,
rights of human subjects, privacy, and similar issues are among the most prominent
aspects encountered in terms of selection and procurement of source data.
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3.6.3 Preprocessing Preparations

Once data has been selected and procured it almost always requires preprocess-
ing preparation before it can be analyzed. Scanning, cleaning, filtering, initial con-
tent extraction (identifying the main body of interest), and similar preparations are
among the most common preprocessing activities:
Scanning: Original texts may require OCR (optical character recognition) scan-

ning to generate machine-readable files that can be analyzed.
Cleaning: Extracting headlines, bylines, dates, and similar information fields

may also be necessary.
Filtering: Initial filtering may involve some form of preprocessing categoriza-

tion, necessary for distinguishing among different actors or behaviors of inter-
est, given the research questions. Filtering may also involve selecting elements
above some selected thresholds (e.g., trade transactions above some monetary
value; population centers above a given size; behaviors comprised within spe-
cific ranges).

Reformatting: A single data source, such as a whole document, often requires
dividing into smaller individual component units to conduct both aggregate
and desegregated analyses.

Content proxy extraction: Sometimes proxy elements in the source corpus can
be used for subsequent focused analyses, as is the case for actors, locations, or
events that denote or imply latent entities. An example would be certain terms
(e.g., “axis of evil” in political texts or racial slurs that tag individuals).

3.6.4 Analysis

The core stage of data mining consists of one or more forms of analysis, given
a properly prepared set of data. Again, analytical modes are always a function of
research questions, whether the investigation is theory-driven or data-driven.

There are many kinds of analyses performed in data mining and their variety and
power increase as a function of both formal methods and information technology.
All of them have been in use by social scientists since the quantitative method-
ological revolution, but each analytical approach has undergone quantum improve-
ments with recent computational developments. The following analytical methods
are among the most widely used in CSS:
Vocabulary analysis: This is one of the most basic forms of algorithmic informa-

tion extraction and aims at obtaining a catalog of words or other signs (sym-
bols, numbers, icons, glyphs, among others) contained in the data source be-
ing analyzed. Focusing on signs irrespective of precise meaning (semantics)
or grammar (syntax) is typical of vocabulary analysis, so this basic form of
analysis takes a “bag of words” approach to data mining. Word counts are an
example (Fig. 3.3, analyzing words in Simon’s autobiography), as when an-
alyzing text to assess a baseline, examining histograms, trends over time, or
indices of readability; or testing hypotheses about their frequency distributions
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Table 3.1 Measures of association depending on levels of measurement

Level of
measurement

Nominal Ordinal Interval Ratio

Nominal Lambda λ Kramer’s V , φ (only for 2 × 2 tables) Kramer’s V Kramer’s V

Ordinal Kramer’s V Gamma γ , Somer’s D, Kendall’s τb

(only square tables) and τc

(rectangular tables), Spearman’s ρ

Pearson’s r Pearson’s r

Interval Kramer’s V Spearman’s ρ Pearson’s r Eta η

Ratio Kramer’s V Spearman’s ρ Pearson’s r Pearson’s r

(e.g., Zipf’s Law, discussed later in Chap. 6). In turn, vocabulary analysis pro-
vides foundations for more advanced kinds of data mining analysis.5

Correlational analysis: A somewhat more complex form of analysis in data min-
ing consists of looking for (data-driven) or testing (theory-driven) various
kinds of associations between or among terms or signs. An association is al-
ways a mapping from one domain or set of terms to another. For example,
data can be mined to establish associations between terms and any set of other
features or items, such as locations, dates, contexts, or other aspects of source
data. Formally, there are many kinds of associations ranging from simple con-
currences or co-occurrences to more complex quantitative forms of correla-
tional and causal relations (e.g., Granger causality). Measures of association
are defined for all pairwise combinations of nominal, ordinal, interval, and
ratio variables. It is important to pay close attention to this when choosing
which measure to use, because the choice is not arbitrary, but most depend on
the highest level of measurement supported by the data being analyzed. Ta-
ble 3.1 shows proper choices and uses for measures such as Spearman’s ρ,
Pearson’s R, and Kendall’s τ , along with others commonly used.

Lexical analysis: The creation of additional lookup files, such as lexicons, the-
sauri, gazetteers (lexicons that associate geographic coordinates to locations),
and other systematically defined auxiliary collections of entities is called lex-
ical analysis. This form of analysis in data mining enables researchers to an-
alyze source data files in ways that enhance the information potential of orig-
inal data. Lexical analysis is used for a variety of purposes, including but not
limited to named entity recognition and extraction (NER), categorization
(part of what is called similarity analysis, discussed below), disambiguation,
and various mapping and cartographic applications. From a computational per-
spective, lexical analysis (including NER and other procedures) is a form of
semi-supervised learning, where some manual annotation of training data is

5Besides its scientific value in CSS research, the popular media also uses basic forms of vocabulary
analysis when counting the frequency of words used by politicians, such as in inaugural addresses
or similar major speeches. The value of such anecdotal uses is rather limited, sometimes even
misleading, since speechwriters and communication experts are well-versed in scientific principles
of applied linguistics and human information processing, including sophisticated understanding of
semantic differentials and other affect control, marketing, and propaganda devices.
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still necessary, in spite of significant advances in recent decades. Another chal-
lenge is posed by differences among human languages, such as English, Span-
ish, Mandarin, or Arabic; each human language has its own NER challenges
and mappings are still incomplete, inaccurate, or unreliable. The good news is
that lexical analysis continues to improve in both effectiveness and efficiency.
An important application of lexical analysis is with social, political, or eco-
nomic event data, a field where machine coding has marked significant
progress and is now considered equal to or more accurate than human manual
coding. The GDELT events data set (Global Data on Events, Location and
Tone; Leetaru and Schrodt 2013) was created thanks to a combination of data
mining techniques that rely on lexicons or dictionaries for actors, gazetteers for
locations, and other lexical analysis tools—as well as other components men-
tioned later—to enable computational events data analysis far beyond what
was previously imaginable. While mining large data sets (� 1 million events)
is by itself a great improvement over what was feasible only a few years ago,
the application of lexical analysis serves as a multiplier that greatly amplifies
the range of qualitative and quantitive results by several orders of magnitude.
The GDELT data set contains nearly a quarter-billion event records; updates
are produced daily, 365 days a year, at a rate of more than 100,000 events
per day, each record containing 58 fields of information machine-coded from
scores of raw sources from many countries.

Spatial analysis: Besides being part of lexical analysis—through the role played
by gazetteers—data mining techniques such as geocoding, geographic clus-
tering, and similar geospatial techniques are used in spatial analysis. All of
them can be related to earlier analyses in quantitative human geography.
For example, spatial analysis applied to events data can be used to produce
maps with various projections to examine distributions of phenomena such as
social movements, migrations, disasters, and other patterns. The centroid of a
spatial actor or location of an event or attribute is often used rather than its
actual territorial shape. For example, the map in Fig. 3.6 illustrates the state
of the world in terms of conflict and cooperation events on October 7, 2013,
based on the previous 24 hours. GDELT is the most recent, global, largest,
most comprehensive data set in CSS. It is also a project-in-progress. Every
event data set produced by data mining must address many demanding sci-
entific challenges such as continuous improvements in selection of raw data
sources (newswire services), event coding scales (Goldstein’s or other, includ-
ing use of multiple scales), categorization algorithms, and error propagation
management, among others.

Semantic analysis: While vocabulary and lexical analysis focus attention mainly
on signals, semantic analysis focuses on meaning and actual content in terms
of what various terms and entities stand for. Semantic analysis includes ma-
chine parsing the various parts of speech by means of tagging nouns, verbs,
and other ontological components in source data. The results of semantic anal-
ysis typically consist of noun phrases and verb phrases. Semantic analy-
sis complements lexical analysis in the construction of dictionaries such as
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Fig. 3.6 Spatial analysis using event data. This Google map of the world shows the top 2,000
political events on October 7, 2013, based on the GDELT data set (Leetaru and Schrodt 2013).
Color-coded events indicate degrees of conflict (red and yellow) or cooperation (green and blue).
Source: GDELT website, downloaded October 8, 2013

CAMEO and the TABARI core extraction algorithm used in GDELT. Machine
translation and other natural language processing (NLP) applications also play
major roles in semantic analysis, such as entity and relationship recognition-
extraction, fact and claim extraction, pronoun coreference resolution, and ge-
ographic disambiguation, among others.

Sentiment analysis: Emotional content is the main focus of sentiment analysis,
a form of analysis based on Osgood’s pioneering work demonstrating the pri-
macy of the evaluation dimension E. Evaluative judgment (subjective assess-
ment of good/bad) is also the basis for cognitive schema in human reasoning
and belief systems (as shown in Chap. 4). Sentiment analysis is therefore a
component of EPA-analysis (Azar and Lerner 1981), especially when com-
bined with other dimensions, and is conducted at multiple levels of analysis,
such as an entire document, sections of a document, or single objects/entities
in the source data—all of which can be mapped onto E-space using appropriate
lexicons.

Similarity analysis: Comparing and contrasting content is called similarity anal-
ysis in data mining and automated content analysis. We have already briefly
mentioned two major forms of analysis that are part of similarity analysis—
categorization and clustering—as (mostly) supervised and (mostly) unsuper-
vised modes of machine learning, respectively. (This is a very rough pairing;
in practice there is considerably more overlap.)

Categorization: This is a procedure that aims at classifying data based on a train-
ing set or data sample. A significant application of classification in CSS is
for the purpose of ontology extraction (or ontology generation) from input
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data. This has several important applications, of which two in particular stand
out: events data analysis, where actors and their behaviors matter greatly, and
agent-based modeling, especially in early phases of model development such
as design and implementation. In this section we examine the first, while re-
serving the latter for Chap. 10. A data mining algorithm that extracts this kind
of information is called a classifier, which is also the technical name given
to the actual mathematical function that implements the mapping onto the
category space. Some of the simplest algorithms are the naive Bayes clas-
sifier and the K-nearest neighbor classifier. In CSS, categorization analysis
was pioneered in political events data analysis by Philip Schrodt (1989) us-
ing a Holland classifier invented by computer scientist pioneer John Holland
(1975, 1989). CAMEO (Conflict and Mediation Event Observations), the re-
sult of algorithmic entity extraction, is an example of a coding scheme for
actors and verbs that describes their behaviors (Gerner et al. 2002; Schrodt
et al. 2005). As demonstrated by the CAMEO-coded GDELT data set, cate-
gorization has become a major tool in events data research using online and
archival data sources, now that manual human coding of newspapers and other
printed sources has become mostly obsolete. Categorization is a major area
of computer science and machine learning algorithms. Human supervision of
categorization algorithms takes place in terms of selecting training data, estab-
lishing significant features for evaluation, selecting parameters such as thresh-
olds, and other decisions.

Clustering: This is another type of similarity analysis for discovering low-
dimensionality data structures or groupings of information, based on compu-
tational aggregation from high-dimensionality raw data. Osgood’s discovery
of EPA-space is an example of this use, where clusters are extracted by the
factor analytic procedure. Another example of automated information extrac-
tion for clustering was the discovery of a similar 3-dimensional space spanned
by national attributes such as the size S, level of economic development D,
and military capability C of polities in the modern inter-state system, or SDC-
space. This computational discovery confirmed Quincy Wright’s (1942) ear-
lier Social Field Theory on the existence of such a space. Note how in both
cases clustering is used to uncover hidden or latent structures contained but
not directly visible in the raw and “noisy” high-dimensionality data—in these
cases researchers uncovered 3-dimensional Cartesian spaces that are easier to
understand and visualize than the original high-dimensionality space spanned
by the raw data. Clustering is considered a form of unsupervised learning
in computer science. A common feature of clustering is the use of a large
input archive of raw data from which clustering dimensions are extracted in
several ways, such as optimal clustering, partitional clustering (decomposi-
tion into disjoint clusters), and hierarchical clustering (dendrograms). In ad-
dition to categorization and clustering, other important components of sim-
ilarity analysis include distance and proximity measures (computed among
data being compared), time warp plots (matching time-series input and target
data), path distances (computed over time-warped input and target data), vec-
tor fields, difference maps, and similarity vectors and matrices. Various data
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mining software systems include algorithms that implement these components
of similarity analysis.

Network analysis. Data mining methodology also plays an important role in the
analysis of networks that arise in coupled human-natural-technological sys-
tems. Even within the confines of a purely human network, data mining can
be used for extracting social communities (Tang and Liu 2010). As we saw
in the Introduction chapter, network analysis is a major field of CSS, which
we shall examine in the next chapter. A network consists of nodes and links
(called arcs, edges, or vertices in graph theory, the branch of mathematics that
studies networks). Data mining is used for extracting information pertinent to
nodes and relations that constitute networks present in source data. For ex-
ample, news media can be mined to automatically extract various kinds of
societal network structures of interest, such as actors of various kinds (lead-
ers, opinion-makers, supporters), roles (governmental, informal, occupational,
among others), or locations, all of them linked by various kinds of social ties
(Moon and Carley 2007). Network analysis enabled by data mining can also
be spatial and temporal, which results in dynamic social networks that are spa-
tially referenced.

Sequence analysis. Temporally indexed data, such as (but not limited to) time-
series, lends itself to sequence analysis, a kind of data mining methodology
for extracting information about the states of a given process and dynamic
transitions, including phase transitions (Hsu et al. 2008). For example, finan-
cial data, political events data, opinion data, and others extracted through data
mining algorithms can be analyzed for extracting temporal patterns. Among
the most significant state-space representations of time series data are hidden
Markov models (HMM), which are similar to classical Markov chains except
that the state space consists of latent states, roughly similar to the idea of latent
variables or invisible dimensions extracted by means of factor analysis. The
states of an HMM are only approximately observable by proxies, since they
cannot be directly observed. Markov models—whether classical or hidden—
are similar to UML state machine diagrams in computing. If the main (most
active) actors or entities are added to a sequence analysis, then the dynamic
representation extracted from mined data may resemble a UML sequence dia-
gram.

Intensity analysis: Source data can also be mined to extract intensities of ob-
served or latent variables. For example, all kinds of size variables can be ex-
tracted from events data to produce size distributions and other quantitative
features. In turn, these can be used as input for conducting subsequent analy-
ses, as with information-theoretic measures or complexity-theoretic models—
e.g., testing for power laws and other features of interest in complex systems.
(We shall introduce these in a more complete way later, in Chap. 6.) From this
perspective, sentiment analysis can be seen as a form of intensity analysis, ex-
cept that it hardly ever goes beyond simple trends; instead, it could go much
farther, to look for patterns or test hypotheses concerning generative dynamics.
(Again, more on this is introduced in Chap. 6.)
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Anomaly detection analysis: Some of the forms of data mining analysis seen
thus far enable another form: data mining analysis for detecting anomalies
or changes of some kind. In order to detect an anomaly it is first necessary
to establish a base or “normal range,” an idea pioneered in CSS by the late
Lebanese-American political scientist Edward E. Azar (Ramsbotham 2005):
the normal relations range (NRR) for a given series of events observed over
time is defined as behavior within two standard deviations from prior average
(arithmetic mean) behavior.6 In addition, it must be assumed that the source
data exhibits a significant degree of stability or persistence, in the sense that
fundamental distribution moments (central tendency, dispersion, and others)
do not undergo significant change during the test phase; otherwise it is difficult
or impossible to detect an anomaly, unless it is many deviations away from the
recent past. Time scales also matter, because what may seem an anomaly on a
short time scale may be quite normal on a longer scale, which illustrates how
anomaly detection analysis can be a very challenging procedure. Borrowing
from linguistics, we can detect two forms of change: synchronic change and
diachronic change. Both can be used to assess anomalies, but their dynamic
context differs. Synchronic change refers to anomalies within a stationary or
more or less structurally stable process or system. By contrast, diachronic
change refers to much deeper anomalies being detected in the fundamental
structure or generative dynamics of the process. An example of synchronic
anomaly would be a change in the frequency of terms in a recurring speech
pattern, as opposed to a diachronic anomaly caused by a deeper change in the
actual vocabulary or grammar of the discourse. The same applies to events
data analysis: some anomalies pertain to changes in the frequency of common
events (synchronic anomalies), while other, much deeper, changes occur when
the variety or vocabulary of events (what sociobiologists and ethologists call
an ethogram) changes distribution.

Sonification analysis: We as humans have multiple senses, but most scientific
analysis relies on vision. Data sonification analytics is the use of sound to learn
new information or draw novel inferences on patterns in source data (Hermann
et al. 2011), including Big Data. The basic idea of “sonifying” data is to listen
to data features that may not be so apparent from traditional data analysis pro-
cedures. For example, the tone of multivariate time series rendered in sound
(communicated by speakers) can produce harmonics that are difficult or im-
possible to detect in the source data. Data sonification is a form of “auditory
display” (Kramer 1994) and for Big Data of interest to social scientists it is a

6The operationalization of the NRR in terms of two standard deviations from the process mean
was suggested to political scientist and events data pioneer Edward E. Azar [1938–1991] by the
mathematician Anatol Rapoport [1911–2007]. It was first applied to international relations events
data series to study protracted conflicts in the Middle East. Azar was founder and director of the
Conflict and Peace Data Bank (COPDAB), founded at the University of North Carolina at Chapel
Hill in the 1970s and moved to the Centre for International Development and Conflict Management
(CIDCM) of the University of Maryland at College Park in the 1980s.



Recommended Readings 87

new methodology that will likely find many applications—for example, using
the recent GDELT data set to, quite literally, listen to the sound of global activ-
ity, as produced by >105 daily events worldwide. (The Smithsonian National
Museum of Natural History, in Washington, DC, has an exhibit that sonifies
earthquake data to communicate to the visitor seismic events around the Ring
of Fire surrounding the Pacific Ocean.)

3.6.5 Communication

The final step in data mining focuses on communication of results, including im-
plications of specific findings, broader implications for the field or research area,
and perhaps also policy implications. These are very demanding communications
requirements, each with its own challenges. The field of communication of informa-
tion extracted from Big Data, including visual analytics (Thomas and Cook 2005),
has become a vast area of scientific and technological research that has grown sig-
nificantly in recent years—just as the Age of Big Data began to unfold. Some of the
most influential concepts and principles have been contributed by political scien-
tist Edward Tufte (www.edwardtufte.com/tufte/courses) and by the pioneering ap-
proaches developed at the US National Visualization Analytics Center (NVAC) un-
der the leadership of visionary computer scientist James (“Jim”) J. Thomas [1946–
2010]. These and related efforts have recently evolved into the Visual Analytics
Community, which sponsors conferences and workshops. The field of visual ana-
lytics is now considered an essential methodology for improving communication of
data mining results and procedures.
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4Social Networks

4.1 Introduction and Motivation

“Social network analysis is inherently an interdisciplinary endeavor. The concepts of social
network analysis developed out of a propitious meeting of social theory and application
with formal mathematical, statistical, and computing methodology.”—Stanley Wasserman
and Katherine Faust (1994: 10).

“Social network analysis is neither a theory nor a methodology. Rather, it is a perspective or
a paradigm. It takes as its starting point the premise that social life is created primarily and
most importantly by relations and the patterns they form.”—Alexandra Marin and Barry
Wellman (2011: 22).

This chapter introduces the fundamentals of social network analysis (SNA) as a
major field of CSS, and builds on previous chapters by examining social networks
from the paradigmatic perspective of emergent social structures and graph theory,
supported by social theory drawn from one or more of the social sciences.1

Social networks consisting of actors and social relations are ubiquitous across
the social science disciplines. Networks are consequential and frequent in anthro-
pology, economics, sociology, political science, and psychology—the Big Five so-
cial sciences—as well as in interdisciplinary areas such as communication, man-
agement science, international relations, history, and geography, especially human
geography. Social networks have been recorded in human history since writing was
invented in the ancient Middle East over 5,000 years ago. As we shall see, social
networks actually originated much earlier— at the very dawn of humanity, most
likely in East Africa.

Social network analysis consists of a paradigmatic view of the social universe; it
is a theoretical perspective, not just a collection of methods. Social network analy-
sis also provides a formal language for developing the science of social networks,

1The field of social networks modeling and analysis is different from “the science of networks”
developed by physicists. This chapters deals with social networks modeling and analysis as a field
of CSS. This is because the subject matter of social networks always involves social entities, al-
though, as in other areas of CSS, the origin of the methodologies may come from a variety of
disciplines.

C. Cioffi-Revilla, Introduction to Computational Social Science,
Texts in Computer Science, DOI 10.1007/978-1-4471-5661-1_4,
© Springer-Verlag London 2014
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including a perspective that enables and facilitates Computational Social Science.
Moreover, SNA supports and extends the analysis of complex coupled human-
natural-artificial systems by providing useful concepts, notation, and applied prin-
ciples. The content of this chapter is intentionally selective in order to highlight the
main ideas and their scientific value. Also, a word on notation: while every effort has
been made to respect prevailing usage among social network analysts, inconsisten-
cies or ambiguities present in the literature require the introduction of mathematical
notation coordinated with the object-based orientation of CSS, as opposed to the
more variable-based orientation of traditional social science.

4.2 History and First Pioneers

The history of contemporary social network science, which comprises analysis,
modeling, and theorizing, is the result of contributions from the social, mathemati-
cal, computational, and physical sciences—with the latter as the most recent contri-
butions and still rather tentative and hypothetical, but nonetheless intriguing.

The following chronology of social network science provides a brief history of
milestones:2

1736 Mathematician Leonard Euler [1707–1783] solves the Königsberg bridges
problem—by proving that it had no solution!—thereby initiating the field
of graph theory, the principal mathematical structure employed by social
network science.3

1856 Nobleman and comparative political scientist Alexis de Tocqueville coins
the term “social structure” in his classic work The Old Regime and the
French Revolution. In the United States and among political scientists
worldwide, de Tocqueville is best known for his monograph, Democracy
in America, where he discusses the significance of civic organizations for
the performance of democratic political systems.

1930s The sociogram—the first graph-theoretic mathematical model of a social
group—is invented by psychiatrist Jacob L. Moreno [1889–1974], founder
of sociometric analysis as a modern field of social science.

1937 The journal Sociometry is founded with J. L. Moreno as its first editor. The
aim of the journal was no less than the integration of all the social sciences
through the mathematical medium of graphs for modeling social relations.

2Freeman (2004, 2011) provides an extensive and highly recommended history of social network
analysis. In addition, most major works in SNA include historical essays or notes. However, other
significant connections to applied mathematics or complexity science have often been missed.
3This is the gist of the Königsberg bridges problem: is it possible to follow a path that crosses
each of the seven city bridges exactly once, returning to the same point of departure? The answer
is no, due to the presence of odd-degree nodes (a term defined later in this chapter). Note that the
referent system for the Königsberg bridge problem is an interesting example of a coupled socio-
natural-technological system composed of denizens, land, river, and bridges, respectively.
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1940 Anthropologist Alfred Radcliffe-Brown [1881–1955], founder of the The-
ory of Structural Functionalism, develops the term social structure—
defined as a complex network of social relations—and calls for develop-
ment of discrete mathematical models.

1944–1946 The foundations of Causal Attribution Theory and the Theory of
Structural Balance are established by social psychologist Fritz Heider, fol-
lowed in 1953 by the pioneering work of Theodore M. Newcomb [1903–
1984].

1946 The matrix-based approach to social network analysis is pioneered by
Elaine Forsyth Coke and Leo Katz (Forsyth and Katz 1946), followed by
many others.

1948 The earliest definition of “network centrality” is proposed by Alex Bavelas
(1948, 1950), including pioneering applications in laboratory experiments
on communications networks.

1950s and 60s Social network concepts such as density, span, connectedness,
multiplex, and others are introduced as SNA experiences significant growth
across the social sciences.

1951 Anatol Rapoport (1957, 1959, 1983), one of the greatest mathematical
social scientists of the 20th century, publishes the first paper on random
graphs (Solomonoff and Rappaport 1951), a decade ahead of Erdős’s and
Rényi’s (1960) more influential paper.4

1953 The formalization of Cognitive Balance Theory using graph–theoretic
models is pioneered by Frank Harary [1921–2005], one of the most promi-
nent graph-theoretic mathematicians of the 20th century.

1954 The term “social network” is first used by anthropologist John A. Barnes
[1918–2010].

1956 Heider’s Theory of Structural Balance is formalized and significantly ex-
tended and generalized by Dorwin Cartwright and Frank Harary (Cart-
wright and Harary 1956).

1957 Anatol Rapoport publishes the first of what is now called the “preferential
attachment mechanism” in biased networks: well-connected nodes (with
high degree) attracting yet more connections—as in a snowballing effect—
a stochastic process pioneered by statistician George U. Yule in 1925.5 In
the same year the US Navy invents PERT (Program Evaluation and Re-
view Technique), a network method for complex project management of
the Polaris nuclear submarine program—an artifact, in the sense of Simon,
of unprecedented complexity.

4In 1960 mathematicians Paul Erdős and Alfréd Rényi published their own paper on random
graphs, reinventing the wheel nine years after Rapoport’s seminal publication, and proposing new
results.
5In 1999 the same mechanism of preferential attachment was re-proposed for the emergence of
scaling in random networks (Barabasi and Albert 1999), decades after Anatol Rapoport’s work on
biased networks.
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1958 The so-called “small world phenomenon” is conjectured for the first time
using a mathematical model to predict how the world population is inter-
related (de Sola Pool and Kochen 1978). The original paper was published
20 years later in the inaugural issue of the journal Social Networks.

1960s American sociologist Harrison White, from Harvard’s Department of So-
cial Relations, establishes social network analysis as a field in its own right.

1961 The first social network analysis of international relations, based on
empirically-referenced graph–theoretic models applied to the Middle East,
is published by Frank Harary in the Journal of Conflict Resolution.

1963 Mathematical foundations for the formal theory of roles and positions in
social networks are established in the anthropological study of kinship sys-
tems by White (1963) and Boyd (1969).

1965 Thomas Saaty, one of the greatest applied mathematicians of the 20th
century, publishes his influential monograph on Finite Graphs and Net-
works: an Introduction with Applications, followed in 1968 by his essay
“On Mathematical Structures in Some Problems in Politics.” First demon-
stration of the power law in networks of scientific collaborators (de Solla
Price 1965).

1967 Social psychologist Stanley Milgram demonstrates the so-called small
world phenomenon conjectured ten years earlier by de Sola Pool and
Kochen, showing that a random sample of the US population was sepa-
rated by approximately six links.

Mid-1970s Social network analysts and graph theoretic modelers begin the study
of networks over time, what is now called dynamic networks (Wasserman
and Faust 1994: 16; Breiger et al. 2003).

1971 The concept of social role is formalized by social network analysts
François Lorrain and Harrison White. The computer program SOCPAC
I for structural analysis of sociometric data, written in Fortran IV, is pub-
lished in the journal Behavioral Science by S. Leinhart.

1977 The International Network for Social Network Analysis (INSNA), the
world’s leading professional social science SNA organization, is founded
by Barry Wellman.

Early 1980s The SNA computer software UCINET 1.0 is released by Linton Free-
man.

1981 The First International Sunbelt Social Network Conference of the IN-
SNA (Sunbelt I) is held in Tampa, Florida, with anthropologist H. Russell
Bernard (2012) as keynote speaker.

1983 Sociologist Mark Granovetter discovers “the strength of weak ties.”
1991 M. Granovetter initiates the Cambridge University Press monograph series

on Structural Analysis in the Social Sciences.
1994 Stanley Wasserman and Katherine Faust publish the first (and to this day

most) comprehensive SNA textbook, consisting of 825 pages.
1996 B. Wellman and collaborators initiate the study of computer-supported so-

cial networks (CSSNs) as a new domain generated by the Internet.
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1998 A small-world model, based on the exponential random graph model, is
proposed as a highly abstract model of a simple social network with g

nodes and uniform constant node degree d (the number of links attached
to a node), to enable analytical approaches from statistical physics (Watts
and Strogatz 1998).6

1999 The power law or scale-free structure of both the Internet and the World
Wide Web network are demonstrated (Faloutsos et al. 1999; Albert et al.
1999).

2000 A new measure of clustering, the clustering coefficient C, is introduced by
Barrat and Weigt (2000: 552).

2001 Swedish sociologist Fredrik Liljeros and collaborators demonstrate that
sexually promiscuous individuals span a scale-free network, such that sex-
ually transmitted deceases spread quickly through high-degree nodes.

2002 A binary decision model of so-called “global cascades” in d-regular ran-
dom networks is proposed (Watts 2000).

2003 The first comprehensive survey of dynamic networks is published by the
US National Academy of Sciences (Breiger et al. 2003).

2004 Computer simulations of a logit-type p∗ exponential random graph (ERG)
network model demonstrate how combinations of parameter values can
lead to a variety of network structures, including small worlds (Robins et
al. 2005, 2007).

2011 The SAGE Handbook of Social Network Analysis is published as “the first
published attempt to present, in a single volume, an overview of the social
network analysis paradigm” (Carrington and Scott 2011: 1).

HOW DID SOCIAL NETWORKS ORIGINATE? Between ca. 100,000
years ago and ca. 10,000 years ago—i.e., for most of our common his-
tory as a species—humans lived exclusively in kin-based networks or fam-
ily, household, and extended family networks. Migratory flows of these
primary social networks wandered “out of Africa” ca. 100,000 years ago
maintaining the same social structure for tens of thousands of years. Begin-
ning just 10,000 years ago the very first non-kin networks emerged from
social dynamics in hunter-gatherer societies in the form of simple chief-
doms—the first networks-of-networks. Some networks of chiefdoms even-
tually evolved shortly after into states, forming the first social networks-
of-networks-of-networks, where State = networkOf(Chiefdom =
networkOf(Family)). States formed the first interstate networks by

6The Watts-Strogatz model is d-regular with Var(d) = 0, a class of very rare social networks
(Wasserman and Faust 1994: 100–101). Terminology and notation are confused by physicists using
the symbol k to denote node degree δ. Other physics terms for node degree δ include number of
neighbors, node connectivity, nearest neighbors, wired vertices, and so on, which is reminiscent of
the Tower of Babel lamented by social scientists (Sartori 1970; Collier and Gerring 2009). Node
degree δ is the standard terminology of SNA used here.
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Table 4.1 Origin and evolution of the earliest social networks between 100,000 and 5,000 years
ago (100–5 kya) according to system-of-systems network order O(N)

Year (B.C.) Network N Composition Network order O(N)

3,000 Alliances Groups of statesa 4
4,000 States Groups of non-kin-based groups 3

10,000 Chiefdoms First non-kin-based groups 2
100,000 Families Kin-related individuals 1

aOrganizations of states, known in contemporary social (political) science terminology as interna-
tional organizations, did not form until the 19th century A.D., following a phase transition (a term
explained in Chap. 6) initiated by the 1815 Congress of Vienna

Fig. 4.1 A social network
consisting of nodes and links.
In this network g = 4 nodes
and L = 4 links

ca. 6,000 years ago in the Middle East during the so-called Middle Uruk
period (ca. 3750–3500 BC; Rothman 2001; Algaze 2008). These phase tran-
sitions have marked what may be called “The World History of Human Social
Networks,” summarized in Table 4.1.

4.3 Definition of a Network
A social network consists of several constituent parts which include entities (actors,
values, sentiments, ideas, locations, attributes), relations (links, ties, associations,
affiliations, interactions, evaluations), and aggregations (dyads, triads, groups, and
subgroups). In this section we examine these ideas before introducing some nec-
essary quantitative, mathematical, and computational aspects. Graph theory, alge-
braic methods, matrix algebra, and probability theory provide the main mathemat-
ical foundations of social network analysis. Together they represent a scientifically
fertile and powerful suite of ideas, which explains why social network models play
such a prominent role in computational social science. In particular, “graph theory
provides both an appropriate representation of the social network and a set of con-
cepts that can be used to study formal properties of social networks” (Wasserman
and Faust 1994: 15). Formally, graphs are to networks as decision-theoretic models
are to decision-making, differential equations are to dynamical systems, and game-
theoretic models are to strategic interactions.
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Fig. 4.2 UML class diagram
of a social network as an
object composed of node
objects associated to the
network by composition

A network N consists of a finite set N of entities (called nodes or vertices), de-
noted by {n1, n2, n3, . . . , ng}, and a set of relations L (called lines, links, or edges),
{�1, �2, �3, . . . , �L} defined on the set of nodes N.7 Note that g is the cardinality of
N or total number of nodes in N . The cardinality of L is L = (

g
2

) = g(g − 1) for
directional pairs. A directional relation between node i and node j is denoted by
ni → nj or xij . Figure 4.2 shows a simple example.

This is a fundamental concept upon which many other kinds of network con-
cepts, models, and methods are built. As we shall see, the possibilities are prac-
tically infinite—and, most important, scientifically insightful—for advancing our
understanding of social networks.

4.3.1 A Social Network as a Class Object

As we just saw, the classical formal definition of a social network is as a finite graph,
a tradition dating back to the founding pioneers in the late 1950s and early 1960s, be-
fore the origins of the object-orientation to modeling. Recall the distinction between
composition (denoted by a solid diamond-head �) and aggregation (blank diamond-
head ♦), introduced in Chap. 2. Based on the same definition of a social network N
as a graph, from a computational perspective we can also view a network as a class,
a very general type of social object that is composed (i.e., not merely an aggregation)
of nodes of various kinds that can have any number of relations among them.

This idea of a social network as a class having object instances is illustrated in
Fig. 4.2 using a UML class diagram. We use the class diagram in short form (no
attributes or methods are specified yet) to focus attention just on the main entities of
interest: the network N with its nodes N and relations L (later we examine more
closely the attributes of each). In other words, the self-association of nodes has ar-
bitrary multiplicity in a network. This is an insightful perspective for understanding

7Note the formal mathematical translation of social entities into graph-theoretic nodes and social
relations into edges.
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Fig. 4.3 Types of social networks according to their social relations L{�1,2,...,L}. Upper left: a di-
rected graph or digraph D . Upper right: a signed graph S with valences. Lower left: a weighted
network W . Lower right: a multiplex M with various kinds of social relations possible between
nodes

the essence of a social network, one that is not apparent from a graph-theoretic per-
spective. This object model of a social network complements the graph model in the
same way as alternative models of the same phenomenon complement each other.8

Note also that the type of association between a node and its network is one of
composition, not mere aggregation. Why? Because a node has no social meaning
outside a network; a node is socially meaningful only within the context of some
network, even if it is isolated from other nodes in the network, in which case it is
called an isolate node.

4.3.2 Relational Types of Social Networks

Several interesting variations on the core concept of a social network N are highly
significant in terms of the nature of social relations and the state of a network (see
Fig. 4.3).

8A classic example of complementary models of the same phenomenon are the wave model and
the particle model of light.
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A directed network or digraph D (in Fig. 4.3, upper left) is a social network
with directional social relations. While in a simple network the links between nodes
lack specific direction, in a digraph or directed graph each line or association has a
definite orientation or direction. This large class of social networks in social science
includes the vast variety of transaction networks, such as those consisting of flows
between nodes. Transaction flows typically refer to persons (e.g., flows of migrants,
tourists, refugees, diplomats, or international students), money or goods (trade trans-
actions), or other resources (imports/exports, information). All directional data is
generally susceptible to social network analysis using digraphs.

A signed network or valued network S is a social network where the links
have valence signs: +,−,0 (see Fig. 4.3, upper right). For example, in politics,
allies, adversaries, and neutrals have these kinds of relations. In psychology, belief
systems are composed of ideas that are congruent, opposed, or unassociated—which
are states marked by signs. Affect Control Theory is based on valence networks
and the logic of cognitive consistency pioneered by F. Heider, L. Festinger, and
R. Abelson.

A weighted network W is one where the links have weight or intensity of some
kind (in Fig. 4.3, lower left). For example, a network of cities is related by pairwise
distances between them, as shown by tables in travelers’ maps. Similarly, airports
are linked by flying times between them. Other weighted networks include volume
of trade between countries, strength of friendship ties, and many other common
social networks.

A multiplex M is a social network with one or more multiple/parallel associa-
tions between node pairs (in Fig. 4.3, lower right). In other words, the set of social
relations L contains multiple social ties or links between nodes. For example, let
N denote a small company with a set of employees N. In this case, employees
may be related/associated in a variety of ways, not just in a single way through
their working association in the same small company. For instance, they may be re-
lated by kin relations, residential neighborhood, shared enthusiasm for the goals or
products of the company, or through friendship ties, among many other interesting
social possibilities. Empirically, many real-world networks of interest—from fam-
ilies and other “simple” networks to large and complex networks such as interna-
tional organizations—are multiplexes. In practice, however, most SNA is confined
to single-relation networks.

Paths are of interest in social network analysis. An Eulerian path is one that
crosses each link exactly once. A Hamiltonian path is one that visits each node only
once. Hamiltonian distance is defined by the number of nodes along a Hamiltonian
path.

4.3.3 Level of Analysis

The level of analysis is a significant aspect in the architectural structure of a social
network. Several levels of analysis are distinguishable and insightful. From micro-
to macro-level (“bottom up”):
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• Nodal level: The most detailed level of social network analysis focuses on at-
tributes of node-entities, such as nodal degree, centrality, prominence, status, and
other significant roles, such as being a bridge or an isolated entity. We have al-
ready seen that a node is an object, so attributes are encapsulated in nodes. Nodal
attributes come in all kinds of data types (integer, string, Boolean, and so on,
or corresponding values on the Stevens scale: nominal, ordinal, interval, and ra-
tio). Nodal level analysis of a social network often involves statistical frequency
distributions and their associated mathematical models: probability distributions.
We will examine these in Sect. 4.6.

• Dyadic level: A relational pair can be analyzed as a binary unit from a number of
perspectives, including but not limited to the attributes of the relationship. All the
networks in Fig. 4.3 contain dyads. Given the different types of networks already
seen in Sect. 4.3.2, the fundamental significance of the dyadic level should be
clear: the qualitative type of dyads comprised in a social network can determine
the very character of the network.

• Triadic level: Social triads are often significant, given the role they can play in
balancing processes and transitive relationships, among others. Network triads
are significant at all scales of social networks, from cognitive balance in psycho-
logical belief systems (“the friend of my enemy is my enemy”) to international
relations and political dynamics in alliance systems. Triads can also be the build-
ing blocks of more complex social networks.

• N-adic level: By induction, social network analysis can examine any aggregation
of unit nodes and relations, up to the entire size of the network. If N = g denotes
the total number of nodes in a network, then the g-adic level of analysis is the
same as analyzing the whole social network N . These N-adic levels of analysis
are significant in the field of communication research, among others, where au-
diences of various kinds can be defined in terms of sub-networks ranging from
dyads to the complete network, with combinations in between.

• Network level: A set of concepts, measures, and properties is also defined for
the most aggregate level of a network, which examines macro-level, aggregate
attributes such as size, diameter, connectedness, centralization, density, and oth-
ers. Analysis at the network level can involve aggregate or emergent properties
and phenomena. For this reason, the network level is most commonly associated
with complex systems analysis.
Most of what we know today about social networks is at the node level and the

network level. However, a set of measures is defined for each of these other interme-
diate levels, as we shall examine further below, so in principle, any social network
can be described in great quantitative detail, given sufficient data, regardless of the
specific structure of the network. In fact, such detailed quantitative descriptions are
important for understanding network structure.

Cross-level analysis, which, as the name indicates, investigates properties and
dynamics involving multiple network levels, is also of significant scientific interest
in computational social science. An example of this are critical changes in prop-
erties at the level of nodes that are consequential for inducing phase transitions at



4.4 Elementary Social Network Structures 99

the global network level. These and other network dynamics will be examined sub-
sequently, after we have learned more about the properties and structures of social
networks.

4.3.4 Dynamic Networks

So far we have considered social networks examined from a static perspective. Such
a perspective is legitimate for situations when network composition or structure are
relatively invariant, stable, stationary, or static within a given time period (epoch).
Obviously, that is not always the case in the system of interest. A dynamic net-
work N (t) is a social network whose state changes as a function of time t . Dy-
namic networks can exhibit many interesting forms of behavior: nucleation, growth,
evolution, transformation, disintegration, decay, or termination, among other pat-
terns. The history of a dynamic network can range from relatively simple to highly
complex, depending on the social network in question and its circumstances. For ex-
ample, the history of a small group with fixed start and termination times, such as an
airline flight with passengers or a ceremony with organizers and participants, spans
a relatively simple dynamic network. By contrast, the evolution of international or-
ganizations, from the Concert of Europe to the United Nations system today, or the
evolution of global terrorist networks such as al-Qaeda and affiliate organizations,
represent hugely complex dynamic networks. Historically, the most ancient non-
kin-based dynamic networks were trade networks that originated in Asia, perhaps
as long as 5,000 years ago, and—somewhat later—in the Americas. We shall return
to dynamic networks in the next chapter.

Note that all these important ideas about the concept of a social network N are
defined independently of the specific structure or special features of a network. That
is to say, these and many other properties of social networks hold true regardless of
the specific nature of the social network being investigated.

4.4 Elementary Social Network Structures

Social networks in the real world vary significantly according to structure or “archi-
tecture.” However, certain types of structural patterns—we may call these “elemen-
tary structures”—are significant for their properties and recurrence, either in pure
form or in combination with others. In this section we define and illustrate these
different types of social networks and in the next section we introduce quantitative
methods for measuring their properties at various levels of analysis.

Graphs of different types of networks are illustrated in Fig. 4.4, together with
their associated matrices and attribute measures—which are explained in the next
sections.9 The social networks in all figures are shown without reference to their

9The first four network structures represented in Fig. 4.4—known as the chain, the wheel, the Y,
and the circle—can be called Bavelas networks, after the MIT social psychologist who first inves-
tigated their properties in the context of communication networks.
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Fig. 4.4 Structural types of social networks according to their architecture. Upper left: chain or
line network. Upper right: star network. Middle left: Y network. Middle right: circle network.
Lower left: complete network. Lower right: cellular network. Each structural type is represented
by its associated graph, adjacency matrix A and geodesic matrix G

relational type (i.e., directed, valued, weighted, or multiple); each of them can have
any relational type, depending on the nature of its dyads. Moreover, all six networks
in the figure have the same size (number of nodes = 5, a property defined later in
this chapter), but most other structural features vary across the six cases.

Later in this chapter we will examine the attributes of each in greater detail. The
purpose right now is to understand the variety of structural types, by moving from
the simplest to some of the most complex. The following is a brief description of
some of the most important structures in social networks. Familiarity with the termi-
nology of network structures is important for communicating and discussing their
characteristics and properties. These are among the most common, in approximate
order of increasing complexity:
Simple network: A network without loops or parallel/multiple links. All social

networks in Fig. 4.4 are simple.
Chain network: A string of nodes, also known as a line network. Supply chains

and multi-stage processes of many kinds are common social examples.
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Star network: Central node is radially linked to all the other nodes around it.
Also known as a wheel network. This network has a more centralized struc-
ture. Hierarchical organizations have this common structure.

Y-network: A chain with split or frayed terminal path. This structure is also
known as a tree network. Social examples include many organizational charts,
all games in extensive form, and branching processes, among others. A tree
structure is also common in computational algorithms.

Forest network: Set of disconnected trees. Although disconnected, a social net-
work can be composed of a set of trees or other networks.

Circle network: A closed chain where nodes are linked in a circle fashion. This is
also known as a circle and it resembles the chain network but without terminal
nodes. This is the least hierarchical of the structures seen so far.

Cyclic network: A graph containing one or more cycles. The smallest cycle is a
triad. The complete network and the cellular network in Fig. 4.4 are cyclic.

Acyclic network: Contains no cycles. The chain network, the star, and the Y net-
work are all instances of acyclic networks.

Connected network: Every pair of nodes is joined by at least one chain. All six
social networks in Fig. 4.4 are connected.

Component network: A disconnected subgraph. A tree is a component of a for-
est.

Complete network: Every node is connected to all others. A complete network
is shown in Fig. 4.4. A complete network has maximum communication and
may or may not indicate lack of hierarchy, depending on the nature of nodes.

Bipartite network: A network with a node set that can be partitioned into two
disjoint sets, N1 and N2, such that every link has one end in N1 and the other
in N2. Political party affiliations, a list of refugee camps and countries where
they are located, phone directories, a price list, and a list of countries and
capitals are common examples of bipartite networks.

Cellular network: A network in which one or more nodes has a complete graph
attached to it. The last example in Fig. 4.4 is a cellular network. Terrorist
networks are often organized this way.

Nonplanar network: A network that cannot be drawn on only two dimensions.
Most social networks are nonplanar, as is typical of “hair-ball” graphs in the
popular media. All five Bavelas networks are planar, as are all forest networks
and composites of these.

Random network: A network model with the property that the probability of
links forming between nodes is governed by some probabilistic process. Social
examples include networks of relations in which people become acquainted by
chance; social networks containing dyads intentionally drawn from a lottery;
and a variety of growth processes.
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Small-world network: Social structure in which most nodes are not adjacent to
one another, but can be reached from other nodes by just a small number of
links. This social structure lies more or less between a complete network and
a much simpler network structure having only neighbors.10

Scale-free network: Social structure in which degree distribution follows a
power law, such that most nodes in the network have few neighbors, some
have many more neighbors, and just a few nodes have a huge number of links.

Broad-scale network: Same as a scale-free network but with sharp cutoff, such
that there are not as many highly connected nodes as would be expected by a
power law.

Single-scale network: Social structures with degree distribution characterized by
a fast decaying tail; i.e., not power law.

The Internet and the World Wide Web are two distinct networks. The former
refers to the physical network of computers, while the latter is a network of hyper-
links via URLs. The more social of the two is the World Wide Web, since people
are more closely associated with URLs (e.g., social media websites, personal pages,
and so forth), whereas the Internet is mainly a network of servers linked by commu-
nications systems and related hardware.

4.5 The Network Matrix

The relational structure of a given social network N is represented by a matrix
MN . Several graph matrices can provide formal canonical definitions of a social
network. When a social network is defined in terms of linked or adjacent neighbors,
the network matrix A is called a sociomatrix (Moreno 1934) or adjacency matrix,
where aij denotes an element of the binary g × g sociomatrix Ar . The sociomatrix
is defined strictly in terms of the node set. Other social network matrices of interest
can also be defined by selecting different sets of interest (e.g., L) and combinations
thereof.11

Social network analysis uses both conventional matrix notation from linear alge-
bra and simple tabular notation to represent a sociomatrix in full form:

Ag×g =

⎛

⎜⎜⎜
⎝

a11 a12 . . . a1g

a21 a22 . . . a2g

...
...

. . .
...

ag1 ag2 . . . agg

⎞

⎟⎟⎟
⎠

=

n1 n2 . . . ng

n1 a11 a12 . . . a1g

n2 a21 a22 . . . a2g

...
...

...
. . .

...

ng ag1 ag2 . . . agg

. (4.1)

The distance matrix DN is defined in terms of minimal path distances between
all connected nodes, where each element dij ∈ Dg×g denotes the minimal number
of links between node ni and node nj .

10See Amaral et al. (2000) for an excellent survey of the main classes of small-world networks.
11From a graph-theoretic perspective, see Busacker and Saaty (1965: Chap. 5), Wilson (1985).
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Fig. 4.5 Long-form UML
class diagram of a social
network modeled as an object
composed of node objects
associated to the network by
composition. This model
highlights the nodal
composition of networks
while placing network links
in the background

4.6 Quantitative Measures of a Social Network

There are two main classes of social network measures: micro-level nodal measures,
which are attributes of nodes, and macro-level network measures, which are aggre-
gate attributes that characterize features of network structure as a whole. Sub-group
or sub-network measures (e.g., for cliques) are just constrained versions of the latter
(e.g., the size or density of a clique). A computational way of thinking about these
measures at various levels of analysis is as attributes of their respective object, be it
the nodal or the network level of analysis. This idea is summarized in Fig. 4.5 and
each of the attribute-measures is examined in this section.

4.6.1 Nodal Measures: Micro Level

The following nodal measures are all defined with respect to node ni ∈ N . Each
nodal measure is an attribute of the node object, so each node has all of these
measures—plus any number of others that may be of interest. New measures are
being invented all the time, some more significant than others. Historically, the first
nodal measure is the so-called “degree” of a node. While some of these measures
have intrinsic value, they are also used to define macro-level measures for the net-
work as a whole.
Degree δ(ni) = δi =∑

j aij . Number of links incident on a node. Sum of a
node’s aij elements in the sociomatrix. Number of incident alter nodes. De-
gree is a measure of centrality, sometimes called degree centrality (as opposed to
other kinds of centrality defined below).

Distance between ni and nj = d(ni, nj ) = dij . The minimal (so-called geodesic)
number of links in any chain connecting ni and nj . Thus, d(ni, ni) = 0 for all
ni ∈ N .

Eccentricity ε(ni) = εi . Maximum geodesic (i.e., shortest-path) distance be-
tween node ni and any other node nj . Nodal eccentricity is a measure of how
far the node is from the most remote terminal node (boundary) of the entire net-
work. A graph has as many eccentricities as there are nodes, since eccentricity is
a nodal attribute.
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Eigenvector centrality ce(ni) = λ
∑

j aij ej , where λ is the eigenvalue and ej

is the eigenvector centrality score. Same as nodal degree but weighted by the
centrality of each incident/adjacent node. Measure of a node’s influence. Has
inspired the model for Google’s PageRank measure, which is a version of eigen-
vector centrality. Given two nodes with the same degree, the one linked to other
nodes with high degree will have greater influence (eigenvalue centrality).

Betweenness centrality. Number of times that a node is a bridge in the shortest
path between two other nodes. Number of geodesic paths from all vertices to all
other paths that pass through that node.

4.6.2 Network Measures: Macro Level

The following are macro-level measures defined with respect to a given network
N (N,L), consistent with previous notation. These are illustrated in Fig. 4.4 for the
six elementary network structures.
Size S = card(N) = |N|. Total number of nodes in N. Note that the size of all the

elementary networks in Fig. 4.4 is the same (S = 5). Social networks vary
greatly by size, from small to large (e.g., Big Data networks).

Length L = card(L) = |L|. Total number of links in L.
Density Q = L/S(S − 1) = L/(S2 − S) ≈ L/S2 for large S. Number of actual

links relative to total number of possible links in N. Thus, network density
is linearly proportional to network length and inversely proportional to the
square of network size. Interestingly, for networks of equal length (same num-
ber of links), Q ∝ 1/S2, which is a power law and a universal property because
it emerges independent of network structure.

Diameter D = maxni∈N ε(ni). Maximum nodal eccentricity. Maximum geodesic
distance in the network.

Radius R = ∈ni∈Nε(ni). Minimum nodal eccentricity. Minimum geodesic dis-
tance in the network.

Average degree δ = 2L/S = Q(S − 1). Measures the general connectedness of
nodes in the network. This is perhaps the most common network statistic be-
sides size, which is informative so long as its distribution is fairly well-behaved
(e.g., not multi-modal or highly skewed).

Degree skewness Skew(δ) = (δ − δ̂)/σδ (following Pearson’s equation). Signifi-
cant for detecting non-equilibrium distributions, because the distribution of
degree can have many forms.

Average eccentricity ε̄. Measures the general “width” of a network. As with all
averages, it should be interpreted conditionally upon information about its dis-
tribution.

Compactness C. Defined by the equation

C =
∑

i 	=j (1/dij )

S(S − 1)
, (4.2)
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Fig. 4.6 UML class diagram
of a dynamic social network
represented as a ternary
association class with
multiplicities. Each link in the
association corresponds to a
membership in one or more
(up to q) concurrent networks
over a period of n time units

where dij are the dyadic distances in the network. Note inverse distances must
be computed using the geodesic distance matrix G to derive G∗ = {1/dij }. The
elementary social structures in Fig. 4.4 vary in compactness from 0.642 (chain
network) to 1.0 (complete network, as expected).

4.7 Dynamic (Actually, Kinetic) Networks as Ternary
Associations

All the networks we have discussed so far in this chapter have been formally static,
in the sense that we have been assuming that their basic structural features do not
change over time. A dynamic network is one that experiences change in the number
of nodes or links.12

Earlier we saw how a social network could be seen as a binary association—
i.e., between a network and node objects (recall Sect. 4.3.1 and Fig. 4.2). In the
real social world, binary associations—as between N and N—are quite common.
However, sometimes social systems and processes are best modeled as ternary or
higher associations. A dynamic network is a membership type of ternary associa-
tion among the network, its nodes, and time.

An n-ary association consists of a relationship among n classes. A set of con-
current dynamic networks is an example of this for n = 3, as shown in Fig. 4.6.
Note that the association in this case does not belong exclusively to any of the
three classes. Rather, the association depends on all three classes simultaneously.
In Fig. 4.6 the multiplicities are constrained as follows: (1) A node (actor) may be-
long to as many as q networks at any given time; (2) each network can have between
one and g nodes in a given year; and (3) a node (actor) may belong between zero
and n time units in any given network.

12Etymologically speaking, the term “dynamic” should be reserved for analysis of change as a
function of forces of some kind, as indicated by the Greek root dynamos—which means force.
The term kinematic or kinetic also means change, but without attribution to or explicit treatment
of causal forces. Loosely speaking, unfortunately, it has become common in social science to call
dynamic anything that changes with time. The proper term in “kinetic” or “kinematic.”
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4.8 Applications

Networks are ubiquitous and highly significant throughout social science. In this
section we look at several classic and contemporary applications in a variety of
domains. A useful way to approach such a large number of applications across do-
mains of the social universe is to examine them from “micro” or individual-based
models, which exist in the minds of actors, to “macro” or global-based models that
form among collective social groups, such as nations and international organiza-
tions. This is also a consilient or hierarchical approach, in the sense of E.O. Wilson
(1998), since most micro models are in some sense embedded in macro models,
although they are not always explicitly treated as such.

4.8.1 Human Cognition and Belief Systems

We as humans form mental images of the world we perceive. Such images are sig-
nificant to recognize and understand, for we use them all the time for judgment and
decisionmaking, rather that basing our decisions on direct, unmediated data from
the real world. In other words, we perceive the world through our personal receivers
(senses, paradigms, schemata, theories, and similar cognitive structures), and then
form a mental image of such a world. Images support human decisionmaking and
subsequent actions. Another term for the concept of image is individual belief sys-
tem, which is useful for highlighting the complexity of these constructs.

A belief system may be more or less realistic, depending on its empirical valid-
ity. What matters most is that images exist—whether real or imaginary—and we
use them all the time. In a sense, therefore, the degree of realism of images or be-
lief systems is secondary (an attribute among many others) relative to the fact that
they exist. Belief systems are also a cross-cultural universal of humans, a feature
not unique to any particular group or culture. Of course, different cultures develop
different, sometimes even conflicting images of the same phenomenon—but the fact
that all human decisionmaking is based on individual-based belief systems is a valid
assumption about the social world.

Another salient feature of a belief system is that it is often shared. Collective
belief systems are those shared among a group of people, such as beliefs about
social identity, cultural norms and traditions, or national history. Clearly, collective
belief systems are highly consequential and also universal across human cultures.
For example, the concept of political culture can be defined as the set of beliefs that
members of a given polity hold with respect to issues such as governance, fairness,
equity, social role, and justice.

An image consists of a set of conceptual entities (nodes), which may be tangible
or intangible, connected by various kinds of mental associations (links). Some ex-
amples of simple beliefs are shown in Fig. 4.7. In some cases nodes refer to actors
(USA, North Korea) that contain attitudinal values (also called affective valua-
tions), whereas in others they may represent ideas or concepts (friend, ally, freedom,
tyranny).
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Fig. 4.7 Some simple beliefs modeled as valued networks

Two computationally remarkable and highly challenging properties of human
belief systems are their sheer size and evolutionary dynamics. Moreover, our un-
derstanding of their full complexity remains rather incomplete, due to both of these
features, among others. Human belief systems consist of networks that can span
many orders of magnitude in size (no one has measured this with much precision)—
a feature that is true with regard to both individual and collective belief systems. We
all hold simple beliefs, such as those in Fig. 4.7. However, those are only small
components (subgraphs) that are part of vast networks of ideas. Linguists estimate
that the average person knows somewhere in the order of 104 words. Although this
is less than 100,000 words, the number of possible associations and higher-order
connections is of the order of 108, or tens of millions of dyadic links, not counting
triads and higher-order (N-ary) associations. Collective belief systems are arguably
orders of magnitude larger still. If each node and link holds a certain amount of
information (say, in some proportion to the person’s education or knowledge), it is
easy to see how the total amount of information held by a human belief system is
staggering.

There is another feature of human belief systems that is remarkable: in addition
to being huge, belief systems are also dynamic, not static, as discovered almost a
century ago by social psychologists such as Fritz Heider and, subsequently, Robert
Abelson. Belief systems change over time because valuations can change, perhaps
as a result of new information, or because new nodes and links are added to prior
beliefs. For example, the simple belief self+friend changes when a person learns
about a friend’s other friends or enemies, resulting in self+friend+friendOfFriend
or self+friend−EnemyOfFriend, as the case might be. What is remarkable about
this change is that the overall belief system maintains consistency, an important
property or principle that is also known as cognitive balance.
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In fact, cognitive balance obeys the logic of the algebra of signs:

+ · + = + (4.3)

− · − = + (4.4)

+ · − = − (4.5)

− · + = − (4.6)

This can be easily verified by the simple examples in Fig. 4.7, where positive
links are denoted by solid lines and negative by dashed. In each case the algebra
of signs yields a positive result, even in cases of multiple links, not just in dyadic
cases. The same is generally true for much larger belief systems—both individual
and collective belief systems—as has been demonstrated by numerous studies. The
overwhelming cognitive structure of human belief networks is balanced.

How does this occur? How do humans maintain overall cognitive consistency as
their belief systems evolve? This is apparently due to the existence of four cognitive
balancing mechanisms, as discovered by Robert Abelson, who called them “modes
of resolution of belief dilemmas” in one of the most famous papers of 20th-century
social science:
1. Denial. The simplest way to balance an imbalanced belief is to deny or simply

ignore any problematic parts. For example, one may choose to ignore the fact
that a friend’s friend is one’s adversary and simply carry on normal good relations
with the neighbor. This is quite common. The denial mechanism is not a true form
of balancing because the inconsistency is not actually resolved, only ignored.
Denial is sometimes referred to as a psychological defense mechanism.

2. Bolstering. A somewhat more sophisticated mechanism consists of emphasiz-
ing the balanced parts of a belief system and upholding those as being more
important. For example, one might choose to highlight one’s friendship with a
neighbor as being more important than the fact that the neighbor is a relative of
one’s adversary. Again, this is quite common and not a true process for resolving
inconsistency.

3. Transcendence. A third way is to appeal to a higher principle that—as the term
suggests—transcends an imbalanced inconsistency. During the Cold War it be-
came necessary to avoid nuclear war among the superpowers in spite of deeply
conflictive relations. When truth is the victim of peace, “in the interest of peace”
is a common form of balancing by transcendence, as is the principle of main-
taining sociality “for the common good.” Transcendence is a common, powerful,
and important balancing mechanism for maintaining social cohesion, and it is
frequently invoked, especially in times of crisis.

4. Differentiation. The most interesting mechanism works by splitting a concept
into two (or more) newly derived concepts with a resulting structure that is some-
what more complex but also balanced and hence more stable. For example, one
(+) may dislike some group (−) but for some reason it seems necessary to main-
tain good relations (+), which produces cognitive imbalance: +·+·− = −. This
can be balanced by distinguishing between the “bad leaders of the group” (−),
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Fig. 4.8 Cognitive balancing by Abelson’s differentiation mechanism. Left: Having positive rela-
tions with a country that is disliked results in an imbalanced cognition. This belief is balanced by
differentiating between evil rulers and good people, and reassigning valuations to each of the new
relations

whom we dislike, and the “good members of the group” (+) that are “oppressed”
(−) by the nasty leaders. This differentiated structure is now balanced, as shown
in Fig. 4.8.
Several features of the four cognitive balancing mechanisms are particularly

noteworthy. First, they differ with respect to producing true balance, with differ-
entiation producing complete balance and the other three maintaining some degree
of inconsistency or pseudo-balance. Second, as a result of this first property, dif-
ferentiation is a powerful mechanism because it produces highly stable, persistent
beliefs that are more complex than the original imbalanced system but are more
enduring. This explains its widespread occurrence. Third, all four mechanisms are
cross-cultural universals found in all societies. Fourth, all four cognitive balancing
mechanisms are also significant instruments of social control, as effective leaders
understand. They can be used individually as well as in combination. Finally, from
a computational perspective, relatively little use has been made of these mecha-
nisms, although they are highly relevant and profoundly human. For example, they
can and should be more extensively used in agent-based models and social simu-
lations, as well as investigated in terms of complexity-theoretic properties since all
four produce emergent phenomena.

4.8.2 Decision-Making Models

Going beyond the cognitive level, to the level where actors make decisions, we can
also view human decision-making as a network. A decision can be defined as a
choice within a set of alternatives, each of which has a set of outcomes associated
with each alternative. In turn, each outcome has two significant attributes: the utility
or value of the outcome and its probability of occurrence. Utilities and probabilities
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are then used to compute the expected value of each alternative, in order to choose
the alternative having the highest expected value. In rational choice theory this is
known as the Bayesian decision model, which is the basis for a large literature across
the social sciences.

Figure 4.9 illustrates the network structure of the classic Rational Choice Model.
Note that the overall network structure is that of a set of line subnetworks of equal
length joined at the root (the decision D, so to speak), as in a tree or n-star with
embedded circle leaves.

Note that even a model of bounded rationality, with a limited set of alternatives
and outcomes, as well as imperfectly known utilities and probabilities, will still
span a network. Or, put somewhat differently, bounded rationality decision-making
can still be usefully viewed as a network structure by modeling its components and
associations in terms of nodes and links. In contrast with complex belief systems
at the lower level of analysis, decision networks are relatively simple, especially
those under assumptions of bounded rationality. The network structure of human
decision-making is recognizable and remarkable.

4.8.3 Organizations and Meta-Models

A classic application of social networks, and one of the areas that originated the
analysis of networks in social science, is to human organizations of many different
kinds—from small groups or teams to large corporations and international organiza-
tions, global or regional. This is a very natural application of social network analysis,
because human organizations lend themselves to multiple representations in terms
of individuals and roles or functions within an organization. The well-known visual
example of this is the organizational diagram, also known as an organigram(me) or
organizational chart.

Another network model of organizations defines the set of nodes as consisting
of various subsets that include people (agents), goals, knowledge, tasks, locations,
resources, organizations, and the like. This type of heterogeneous network model—
originally proposed by David Krackardt and Kathleen Carley—is called an organi-
zational meta-matrix model or meta-network (Carley 2001). Figure 4.10 shows an
example of a meta-model network of leaders, locations, and other relevant features.
From a computational perspective these network models constructed by means of
specialized algorithms, such as ORA (see Sect. 4.9 below), can process large cor-
pora of text and other media.

4.8.4 Supply Chains

A supply chain is a linear array of sequential operations required to produce an end
result. Complex societies (and even those that are not so complex) rely on supply
chains of many different kinds to provide a vast array of goods and services. Such
goods and services may be private or public. Some of these chains originated thou-
sands of years ago, at the dawn of civilization. In fact, it is no exaggeration to note
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Fig. 4.9 Network structure of the Rational Choice Model. Left: A decision D consists of choosing
an alternative A∗ ∈ {Ai} that has the maximum expected utility over the entire set of n alternatives

that the rise of civilization was rendered possible thanks to the design, implemen-
tation, and maintenance of complex supply chains. For example, the production of
bronze—which occurred for the first time in the ancient Near East (Mesopotamia,
present-day Iraq) during the 4th millennium B.C.—is an excellent example of a sup-
ply chain network that required the coordinated extraction of minerals, such as cop-
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Fig. 4.10 Meta-network
model of a social event
involving actors, locations,
resources, and other entities
denoted by nodes and links of
various shapes and colors.
Produced by the ORA
software at the Center for
Computational Analysis of
Social and Organizational
Systems (CASOS), Carnegie
Mellon University.
A complex humanitarian
crisis can be represented by a
meta-network linking victims
affected by the disaster, relief
workers, supplies and
equipment, locations, and
responder activities. Similar
examples include financial
crises and conflicts of various
kinds, all of them consisting
of data n-tuples that can be
extracted from raw sources

per, tin, zinc, and lead, involving hundreds and in some cases thousands of workers
organized in a systematic way so as to produce the desired bronze artifacts. Today,
modern manufacturing processes, as well as all kinds of services, involve supply
chains. A particularly important class of supply chains involves those that support
critical infrastructure and emergency services that are essential for the operational
performance of contemporary societies.

The first-order network structure or basic organization of the supply chain is
obviously a line or chain network. However, in almost all real-world examples, at
least one and often all nodes require some degree of parallelization. Hence, the com-
posite structure of complex supply chains involves a combination of serial and par-
allel networks. The field of systems science that studies such networks is called sys-
tems reliability and the mathematical foundations for developing models of com-
plex supply chains and similar networks is very well developed.
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Supply chains can be modeled through a variety of mathematical approaches.
One particularly useful approach is to view the outcome of the supply chain—the
end result—as a probabilistic outcome. Since the outcome depends on the success-
ful completion of all prior, necessary stages in the production process, we may view
the outcome of a supply chain as a compound event in the sense of elementary prob-
ability theory. Let P denote the probability of the outcome and P1,P2,P3, . . . ,PN

the probabilities associated with each of the necessary stages. Then,

P = P1 × P2 × P3 × · · · × PN. (4.7)

Equation (4.7) is based on the probability of a compound event and models the
first-order network structure of a supply chain.

Now let Q denote the probability of a parallelized activity associated with one
or more of the serial nodes, and let Q1,Q2,Q3, . . . ,QM denote individual parallel
activities. Then,

Q = 1 − (1 − q1)(1 − q2)(1 − q3) · · · (1 − qm). (4.8)

Equation (4.8) models the second-order network structure, or substructure, of the
supply chain. Combining both equations by substituting Pi component probabilities
in Eq. (4.7) by their respective Q-equation, it is possible to derive a second-order
equation for the probability of performance or production in a serial-parallel supply
chain—as we examine later, in Chaps. 6 and 7.

Modeling real-world supply chains in social systems and processes often requires
many levels of embedded serial and parallel components. Not surprisingly, this also
is an area where computational approaches are essential and provide powerful and
often counterintuitive results. In particular, human intuition is a very poor guide
when it comes to understanding emergent patterns in serial and parallel systems such
as supply chains and similar organizations. For example, human judgment almost
always overestimates the overall reliability of the supply chain or serial system. The
common saying that “a chain is as strong as its weakest link” is erroneous and can be
very misleading. The correct saying should be “ the chain is always less strong than
the weakest of its links.” This is because probabilities are values between 0 and 1,
so, when they are multiplied, the resulting probability is always smaller—most times
much smaller!—than the smallest probability in the chain. The opposite is true for
parallel systems: the reliability of a parallelized system is always greater than the
highest of the component probabilities. Given the supply chain system and that it
combines various patterns of serial and parallel structures, the only way to really
understand how the system will behave is to mathematically model the composite
structure and conduct a computer simulation.

4.8.5 The Social Structure of Small Worlds

Earlier in Sect. 4.1 we saw how Stanley Milgram was the pioneering discoverer of
the so-called small-world structure of social networks. In recent years others have
rediscovered the same phenomenon in different social domains (as well as outside
the social sciences, such as in biology, physics, and computer science).
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A small-world network is a rather sparse network structure situated somewhere
between a fully connected, complete network where every node is connected to
every other node, and a random network that has minimal density. In a small-world
network most nodes are not directly connected, but can be reached from other nodes
by a small number of links.

An intriguing characteristic property of a small-world S at the network level of
analysis is that the geodesic distance dij between two randomly chosen nodes ni

and nj is proportional to the logarithm of the size S of the network:

dij = k logS, (4.9)

where k is a constant. This regularity may be called the Watts-Strogatz Law, after
the discoverers Duncan J. Watts and Steven H. Strogatz. Given Eq. (4.9), it follows
that the greatest increases in geodesic distance occur as a small network increases its
initial size (as in a club that grows from just two or three friends), since ∂d/∂S < 0.
Similarly, the logarithmic effect vanishes in proportion to S, so large networks have
typical distances largely insensitive to their size.

Why do small-world structures matter from a social perspective? Basically it is
because things can propagate very quickly in small worlds, relative to more sparsely
linked networks. For example, infectious diseases spread far more rapidly in a small-
world community than in a society with higher “degrees of separation.” The small-
world phenomenon also explains the frequent occurrence of discovering friends in
common, especially among people who do not know each other.

4.8.6 International Relations

Networks are also ubiquitous in the field of international relations—as already im-
plied by the term itself. Some of the most common and well-known examples in-
clude trade networks (one of the most ancient forms of social networks); diplomatic
relations that link foreign ministries to embassies, consulates, and other foreign
posts; and politico-military alliances and international organizations. Networks in
international relations are well documented since the 4th millennium BC, although
it was not until recently that full data coverage became available for recent centuries.

Trade networks are usually modeled by sets of nodes that represent countries or
economies and links that represent exports and imports. However, trade networks
can also include much more detail. For example, nodes can be described in terms of
various sectors of an economy, and links can represent detailed flows of raw materi-
als, semi-manufactured and manufactured goods, and all kinds of services. Whereas
trade networks used to be modeled by transaction matrices, today they are modeled
using SNA as well as complexity-theoretic methods and related approaches.

Diplomatic networks in the international system can be of two kinds. A national
diplomatic network is spanned by the Ministry of Foreign Affairs as the hub, and
embassies and other diplomatic missions as end nodes, with regional offices or bu-
reaus in between the two. Therefore, a national diplomatic network has the classical
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structure of a tree or star. By contrast, the international diplomatic network con-
sists of all the countries and sovereign entities as nodes, and two-way, reciprocal
diplomatic ties linking the nodes. Obviously, such a network is not complete, since
not every country in the world has relations with all other members of the inter-
national system. In addition, countries have diplomatic relations with international
organizations, such as the United Nations and a host of other international govern-
mental organizations in the UN family, the European Union, NATO, and others.
There is also a vast network of working relations among nongovernmental organi-
zations in numerous fields that cover social, economic, cultural, and political affairs.
The number of international organizations, including governmental and nongovern-
mental varieties, has skyrocketed since the first ones were established in the 19th
century.

A particularly important type of international network consists of alliances in
the global system. Well-known historical examples include the Triple Alliance and
the Dual Entente during World War I, and the contemporary NATO alliance, among
numerous others that have existed in the international system since the formation
of early states and empires. A complete record of all alliances that have existed in
history is not yet available, but in principle it should be possible to compile such
a dataset, based on historical sources. Some of the earliest alliances documented
in the historical record pertain to the so-called Amarna period in the 2nd millen-
nium BC, involving Egypt, the Hittite Empire, and Assyria. Today, thanks to the
increasing availability of empirical data on alliances, it has been possible to trace
the international structure of alliance networks since 1815.

4.9 Software for SNA

When social network analysis was invented in the 1930s by Jacob Moreno and his
contemporaries, computers did not yet exist. Even until a few decades ago, most
researchers had limited access to computing resources necessary for manipulating
large matrices—a much-needed facility in social network analysis, as we have seen
in this chapter. It wasn’t until a few years ago that computational social network
analysis became practical for matrices of meaningful size. For example, computa-
tional social network analysis of small groups of size up to, say, a dozen or so mem-
bers (like a team), has been feasible since the 1960s. However, social networks with
hundreds or thousands of nodes, as they occur in many domains across the social
sciences (for example, in international relations, where just the number of countries
in the international system has size in the order of 102), were not very tractable. The
good news is that the situation today has vastly improved because the computational
brawn available to computational social scientists is much greater than even just a
few years ago.

A critical computational consideration in the theory and practice of social
network analysis concerns computation time, data structures, algorithms, and
tractability—topics already covered in Chap. 3. While most small social networks
are computable in polynomial time, many larger networks are not. Wallis (2000:
Chap. 13) provides background and an overview of these issues.
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Today, one of the most widely utilized software packages for social network
analysis is UCINET (Borgatti et al. 2002), which was developed at the University
of California-Irvine. It comes complete with useful tutorials and a large and growing
users’ group with many international members, and is a system recommended for
social network analysis for up to approximately 5,000 nodes. Moreover, UCINET is
well illustrated in several textbooks on social network analysis, including Analyzing
Social Networks (Borgatti, Everett, and Johnson 2013) as well as other monographs
and textbooks.

Pajek software, winner of the 2013 W. Richards, Jr. Software Award of the In-
ternational Network for Social Network Analysis (INSNA), is another commonly
used SNA software program. Pajek is also free and has an online wiki (URL:
pajek.imfm.si).13 Along with UCINET, Pajek is frequently featured in leading so-
cial network analysis journals, including Connections and Social Networks, both
published by INSNA.

AutoMap, which is Java-based and developed at Carnegie Mellon University,
is described as a “text-mining tool that supports the extraction of relational data
from texts. [It] distills three types of information: content analysis, semantic net-
works, [and] ontologically coded networks. In order to do this, a variety of natural
language processing/information extraction routines is provided (e.g., stemming,
parts of speech tagging, named-entity recognition, usage of user-defined ontolo-
gies, reduction and normalization, anaphora resolution, email data analysis, feature
identification, entropy computation, reading and writing from and to default or user-
specified databases)” (Carley 2013).

ORA, another system from CMU designed for dynamic network analysis, is de-
scribed as “a dynamic meta-network assessment and analysis tool containing hun-
dreds of social networks, dynamic network metrics, trail metrics, procedures for
grouping nodes, identifying local patterns, comparing and contrasting networks,
groups, and individuals from a dynamic meta-network perspective. ORA has been
used to examine how networks change through space and time, contains proce-
dures for moving back and forth between trail data (e.g. who was where when)
and network data (who is connected to whom, who is connected to where . . . ),
and has a variety of geo-spatial network metrics, and change detection techniques.
ORA can handle multi-mode, multi-plex, multi-level networks. It can identify key
players, groups and vulnerabilities, model network changes over time, and perform
COA analysis. It has been tested with large networks. Distance-based, algorithmic,
and statistical procedures for comparing and contrasting networks are part of this
toolkit” (Carley et al. 2013).

NodeXL by Microsoft is a free computational tool based on solid SNA founda-
tions. Useful for learning with social media data, such as Twitter and Flickr, but can
be used for analyzing and visualizing any network dataset. The companion book by
Hansen et al. (2011) is a must and very well-prepared.

13“Pajek” means spider in Slovenian, referring to the web-like metaphor of a social network.

http://pajek.imfm.si
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In addition to specialized social network analysis software, there are several other
sources of computational tools for social network analysis. For example, Mathemat-
ica, R, NetworkX library for Python, Stata, SAS, and SPSS all have social network
analysis facilities.
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5Social Complexity I: Origins and Measurement

5.1 Introduction and Motivation

What is social complexity? How did it originate in human societies thousands of
years ago? How is social complexity measured? How is the emergence of complex-
ity detected in a previously simple society? What do we know about the long-term
evolution of social complexity? What does current knowledge about social com-
plexity tell us about the likely features or plausible trajectory of future trends? This
chapter covers both the “Cosmology” or “Big Historical Picture” of social com-
plexity, as well as underlying foundations in CSS. It introduces facts, methods and
theories about social emergence and subsequent dynamics, starting with the sim-
plest social systems that originated in early antiquity and their long-term evolution.
The chapter leverages materials from previous chapters, showing how ideas learned
in previous chapters are essential for a deeper understanding of how social systems
operate and can be modeled computationally.

There are concepts, measurement methods, and theoretical models of social com-
plexity in early, contemporary, and future societies. Accordingly, this generates
something like a 3 × 3 matrix of topics. These are presented from a scientific per-
spective (i.e., the main sections of this chapter) rather than by historical epochs.
The chapter ends with an overview of measurement, which leads to more formal
approaches to description (laws) and explanation (theory) in the next chapters.

5.2 History and First Pioneers

The first extant systematic study of social complexity was arguably the one by Greek
philosopher Aristotle, who conducted the first comparative research on what we
would now call “critical phase transitions” between different regimes of govern-
ment (which he called stable and degenerative forms) in three types of political

C. Cioffi-Revilla, Introduction to Computational Social Science,
Texts in Computer Science, DOI 10.1007/978-1-4471-5661-1_5,
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systems:

Monarchy � Tyranny (5.1)
Aristocracy � Oligarchy (5.2)
Democracy � Ochlocracy, (5.3)

where the symbol “�” denotes decay.
The modern roots of the scientific study of social complexity date to the time of

the French Enlightenment, as do so many other areas of systematic social science
research. In this case the history and pioneers of social complexity origins and mea-
surement are intertwined through developments across political science, anthropol-
ogy, and computational science. Moreover, many milestones are relatively recent,
since the core concept of social complexity became a focus of scientific investiga-
tion in large part during the past half-century. The following pertain to origins and
measurement of social complexity. (Laws and theories are discussed in the next two
chapters.)
18th century Archaeologists begin uncovering material evidence of early social

complexity through excavations in Asia and elsewhere.
1944 Anthropologist Bronislaw Malinowski publishes his classic, A Scientific

Theory of Culture and Other Essays, where he conceptualizes human in-
stitutions as instrumental in achieving basic human needs.

1952–1958 Archaeologist Kathleen Kenyon excavates the ancient neolithic and
walled settlement of Jericho, Palestine, dating it to ca. 7000 B.C.; it is still
among the earliest known sites of primary social complexity.

1962 Social scientist Elman R. Service publishes his influential monograph on
Primitive Social Organization with the ordinal-level scale of rank values of
tribe-band-chiefdom-state that is still in common use today.

1968 Anthropologist Lewis L. Binford publishes his influential paper on “Post-
pleistocene Adaptations.”

1972 Anthropological archaeologist Kent V. Flannery of the University of Michi-
gan publishes his influential paper on the cultural evolution of civilizations.

1973 Political scientist Giovanni Sartori of the University of Florence publishes
his paper on “What Is ‘Politics”’ in the inaugural issue of the journal Politi-
cal Theory.

1989 Anthropological archaeologist Timothy Earle of Northwestern University
publishes his paper on the evolution of chiefdoms in Current Anthropology,
followed by other influential work on the theory of chiefdoms during the
1990s (1991, 1997).

1994 Archaeologist Henry Wright of the University of Michigan publishes his
influential paper on pre-state political formations.

1995 Douglas T. Price and Anne Birgitte Gebauer publish Last Hunters—First
Farmers, a highly influential collection of papers on the emergence of agri-
culture and social complexity, including the important paper by Patty Jo
Watson.

1995 The same year Smithsonian scholar Bruce D. Smith publishes his classic
monograph on The Emergence of Agriculture.
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1996 Political scientists Yale H. Ferguson and Richard Mansbach propose the
concepts of vertical and horizontal polities in Polities: Authority, Identities,
and Change, a conceptual innovation for understanding complex societies
and political systems.

1997 Archaeologist Joe W. Saunders and collaborators publish their paper on ini-
tial social complexity at the site of Watson Break, Louisiana, the oldest
mound complex in North America, dated to the 4th millennium B.C., in
the journal Science.

1998 Archaeologists Gary Feinman and Joyce Marcus publish their influential
edited volume on Archaic States, including the first comparative, cross-
cultural analysis of Marcus’ “Dynamic Cycles Model” of chiefdoms, and
other important papers on early social complexity.

2001 Oxford historian Felipe Fernández-Armesto publishes his comprehensive
monograph on Civilizations, a descriptive world history in remarkable har-
mony with Simon’s computational theory of social complexity through
adaptation to challenging environments in ecosystems.

2001 The earliest origins of primary social complexity in South America are dated
to the late 3rd millennium B.C. at Aspero and Caral, in the Supe River Val-
ley, a short distance north of Lima in present-day Peru.

2005 Computational social scientists and other scholars hold the first international
conference on sociogenesis in St. Petersburg, Russia, inviting mathemati-
cians, computer scientists, historians, and social scientists from the various
disciplines.

This braided history of social complexity science demonstrates how diverse dis-
ciplinary strands have finally begun to interact in more systematic fashion only in
recent years. The main result of this process is that today there exists a critical mass
of facts and measurement methodologies for conducting research on social com-
plexity, including specific scientific knowledge about origins thousands of years ago
in a few and quite special regions of the world. Modeling and theoretical milestones
are highlighted in the next two chapters.

5.3 Origins and Evolution of Social Complexity

The primary purpose of this section is to provide an empirical, factual base to
learn about the precise geographic locations and specific historical epochs—i.e., the
space-time coordinates—of social complexity origins within the broader context of
global history. This brief long-range survey has intrinsic value in addition to provid-
ing foundations for better appreciating the significance of concepts, measurements,
models, and theories presented later in this chapter. A long-range perspective is also
needed for understanding the substantive, interdisciplinary, and methodological de-
mands on CSS theories and research on social complexity.

When, where, and how did social complexity originate in the global history of hu-
man societies? For now, by social complexity we mean simply the extent to which
a society is governed through non-kin-based relations of authority. In simple, pre-
complex societies (e.g., in hunter-gatherer groups before the invention of agricul-
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ture) individuals are governed by kin-based authority, such as the older member
of a household. At the other extreme of social complexity, a modern democracy is
governed by elected officials who exercise authority through the executive power
of large state bureaucracies comprised of government agencies and specialized gov-
ernment workers. This initial definition of social complexity, based on relations of
authority, is sufficient for now. Later we will use a more precise definition.

As we shall see later in this chapter, the chiefdom represents the simplest form
of complex society, one that is governed by rulers who derive their authority from
a source that is different from family ties (although the latter never quite disappear
entirely from the scene).1 Hence, the previous, general, and more abstract questions
concerning social complexity origins now translate into the more specific, and hence
more scientifically tractable, quest for the origins of the earliest chiefdoms.

The Service scale is named after American anthropologist Elman R. Service,
who was the first to propose the following ordinal-level scale of social complexity:

band ≺ tribe ≺ chiefdom ≺ state ≺ empire, (5.4)

where the symbol ≺ denotes an ordinal relation on ranked values of social com-
plexity.2 The Service scale of social complexity in expression (5.4) is extended to
empires, which are polities that display significantly greater social complexity than
states. We shall examine this scale and others more closely later in this chapter.

Specifically, we are most interested in those chiefdoms that eventually developed
into states. By state, for now, we mean a polity more developed than a chiefdom, in
the sense that (1) authority relations are sanctioned by institutions and (2) govern-
ment operates through a system of public administration that carries out specialized
functions. (Later we will also examine the concept of empire as a polity that is
significantly more complex than a mere state).

5.3.1 Sociogenesis: The “Big Four” Primary Polity Networks

The earliest developmental stage of social complexity—what is often called “ pri-
mary” social complexity—consists of the formation of the earliest polities or “chief-
doms,” a major social milestone that occurred after the great Ice Age in their most
simple form approximately 10,000 years ago (the early Holocene Period) in both
northern and southern hemispheres. These early polities were not yet “states,” but
rather societies that departed from egalitarian norms in public activities (e.g., in
communal worship, warfare, and major monumental works, among others) through
non-kin relations of authority. As a consequence, a chiefdom polity is also central-
ized in the person of a paramount leader, chief, or strongman (an individual who is

1A more formal definition of “chiefdom” and “state” is provided later in Sect. 5.4.
2This is the same notation used to denote preferences, since they too are usually expressed on an
ordinal-level scale. In LaTeX, these are written as backslash-prec for ≺ and backslash-succ for �.
Symbols such as greater than or less than should be avoided for ordinal relations, because they
imply interval- and ratio-levels of measurement.
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Fig. 5.1 Global geo-chronology of origins of social complexity in the four “cradles of civiliza-
tion.” Source: Adapted from Cioffi-Revilla (2006)

primus inter pares, or first among equals, relative to other local leaders); governance
is hierarchically organized (the leader commanding local sub-leaders or confeder-
ates); and it has a ranked social order (the family of a leader, whether paramount and
confederate, being more important and richer than a commoner family). A chiefdom
is an intermediary society between an egalitarian simple society and a state. There-
fore, the formation of a chiefdom in a region previously populated by a set of simple
egalitarian societies marks a distinctive phase transition on the Service scale, and
understanding the origins of social complexity—that is to say, when, where, and
how the simplest chiefdoms emerged for the first time in human history—is fun-
damental for understanding not just the origin but also the evolution of complex
societies.

Complex societies originated in four separate regions of the world thousands of
years ago, during the early Neolithic Period, as summarized in Fig. 5.1. In each re-
gional case a set of local polities generated the first regional interaction network for
that part of the world. The description of each region of original social complexity—
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based on the evidence currently available for each case (which will certainly in-
crease due to current and future archaeological research!)—is described in terms of
first-generation chiefdoms, which were the earliest polities to appear, followed by
first-generation states, in chronological order by region. Numerous other states and
empires later followed in these regions during subsequent epochs.

How do we know all this? Or, more specifically, how were these determinations
of space and time in the initial social complexity of each region, and globally, arrived
at in the first place? We will answer questions like these in the next section when we
examine the measurement of social complexity from a methodological perspective.

5.3.1.1 West Asia
The earliest chiefdoms in human history formed in the ancient near East (Mesopota-
mia and the Levant), in the region presently occupied by the countries of Iraq, Israel,
Palestinian Territories, Jordan, Iran, Lebanon, Syria, and Turkey—the region known
as the Levantine Fertile Crescent. This occurred about 8,000 years ago (8 kya),3

or by the middle of the sixth millennium B.C.. Early polities centered at Jericho,
Çatal Hüyük, and other Neolithic sites in this region are among the oldest extant
manifestations of social complexity or individual chiefdom-level polities. Although
the Pre-pottery Neolithic-B (PPNB) polity of Jericho (7500 B.C.) once stood in
relatively temporal isolation from the earliest West Asian chiefdoms of the ’Ubaid
period (5500–4000 B.C.), archaeological investigations have uncovered other pre-
’Ubaid polities chronologically situated between PPNB-Jericho and ’Ubaid. Umm
Dabaghiya (Iraq) and Ain Ghazal (Jordan) are two examples. Therefore, it is quite
possible that the antiquity of the West Asian system of regional polities may some
day be pushed back to ca. 7000 B.C., or almost two thousand years earlier than the
current dating.

The earliest West Asian system of polities formed between ca. 5800 and
4000 B.C., or during the ’Ubaid period, and consisted exclusively of chiefdoms
involved in trade, warfare, and other regional interaction relations. Eridu, Ur, Uruk,
Kish, Umma, and Haggi Muhammad were among the most important chiefdoms in
Lower Mesopotamia, with Susa [Sush in Persian], Boneh Fazili, Choga Mish, and
Farukhabad to the East, and Brak, Gawra, Hacilar, Gian Hasan, and Mersin to the
north and northwest.

The first true inter-state system formed in Lower Mesopotamia by ca. 3700 B.C.
(Middle Uruk period). Although the exact complete composition of this pristine
inter-state system is still unknown, some of the most important states were Uruk and
its neighbors in Lower Mesopotamia (Rothman 2001; Algaze 2008); Mish, Susa,
and Fanduweh in the eastern regions (present-day Iran); and a number of Anatolian
states to the northwest (present-day Turkey).

5.3.1.2 East Asia
The second original polity system emerged in East Asia after ca. 7000 kya, approxi-
mately 1,000 years after the formation of the West Asian polity system in the Fertile
Crescent. This system emerged pristine, not by any known direct process of diffu-

3The acronym “kya” has the standard meaning of “thousands of years ago.”
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sion from West Asia (ex nihilo). This hypothesis might change, as investigations
uncover previously unknown links between West and East Asia, but for now we
continue to assume socially disjoint separation between the two Asian polity net-
works. Whereas the traditional Chinese paradigm (Han ideology)—based largely
on Confucian culture—has been to view the origins of social complexity in East
Asia as centered solely in the Yellow River basin, this belief has now been proven to
be a misconception. Today, archaeological investigations are documenting the ori-
gins of the East Asian polity system in a multitude of regions across China, not just
in the traditional Han homeland. Future investigation will no doubt further clarify
the social complexity landscape and show a multi-cultural spectrum of societies at
the dawn of East Asian history, perhaps a more diverse social landscape than the
spectrum of societies that generated the earlier West Asian system a thousand years
earlier.

The first East Asian polity system probably formed over a large area during the
Early Banpo to Yangshao and Dawenkow periods (ca. 5000–3000 B.C.), among
chiefdoms such as Banpo, Chengzi, Jiangzhai, Dawenkou, Daxi, Hutougou and
other Hongshan chiefdoms (4500–3000 B.C.). During the subsequent Longshan pe-
riod (3000–2000 B.C.) the East Asian polity system already consisted of numerous
chiefdoms scattered across a vast area in virtually all regions of present-day China—
not just the north.

The Erlitou period (ca. 2000–1500 B.C.) and early Shang period (1900–
1700 B.C.) witnessed the emergence of the first interstate system in East Asia, with
a core area comprising the polities of Xia (capital at Erlitou) and Shang (capital at
Xiaqiyuan), as well as other states that emerged soon after nearby. Traditionally,
this is when the Xia dynasty is supposed to have ruled, but today the evidence for
these polities is established by anthropological and dirt archaeology, not by epigra-
phy alone, as we shall examine in the next section. In addition to the state of Shang
and the state of Xia, other states also formed, probably at Panlongcheng (Hubei)
and Suixian (Wuhan), although the complete system composition is still unknown.

5.3.1.3 South America
The third oldest polity system emerged in South America after 5 kya, or Late Pre-
ceramic period, ca. 2500–1800 B.C., and was centered in present-day Peru. A well-
known characteristic of this network system is that it functioned for over three-
thousand years without a written language, which remains a puzzle from a politi-
cal science perspective. Another remarkable feature of the South American social
complexity is the highly constrained natural environment in which it emerged and
evolved for thousands of years, specifically its north-south linear form, in contrast to
the more diversified natural environments of the other three original polity regions.

The first phase of South American social complexity took place with the emer-
gence of interacting chiefly polities located up and down the Peruvian coastal re-
gions irrigated by numerous mountain valleys and river basins draining from the
Andes: Aspero (Supe river drainage, 2700 B.C.), El Paraíso (near Lima 2000 B.C.),
La Galgada (Santa river basin, 2400–1900 B.C.), Río Seco, Salinas de Chao, and
other polities.
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According to most Andean specialists the first state in the South American
region—Moché or Mochica—emerged in the first centuries B.C. from this land-
scape of warring chiefdoms. However, the material and cultural influence of the
much earlier Chavín de Huántar polity (900–300 B.C.) could support an alterna-
tive hypothesis that Chavín—earlier than Moché—may have been the first state of
the Andean region, given additional evidence besides its own monumentality, as we
shall examine later.

The first true interstate system in South America probably emerged after the
fall of the Moché state (ca. A.D. 600, after the Middle Horizon period), when two
powerful contemporary states emerged—Wari in the north (centered in the Peruvian
highlands) and Tiwanaku in the south (centered in northern Bolivia)—and competed
for primacy. This was also the first bipolar system of the Western Hemisphere. Both
Wari and Tiwanaku were extensive territorial states governed from large capitals
and powerful provincial administrative centers.

5.3.1.4 Mesoamerica
Last but not least, Mesoamerican social complexity occurred most recently, hav-
ing emerged only approximately three thousand years ago, perhaps 3.5 kya. Simi-
lar to the oldest polity system in the Old World—the West Asian world system—
Mesoamerican social complexity also had a highly diversified set of cultural origins:
Olmec, Zapotec, Maya, and other major early Amerindian cultures that shared some
common attributes but also differed in significant respects. Another commonality
with both Old World primary systems—West Asia and East Asia—lies in the va-
riety of ecotopes (natural environments) in which the Mesoamerican polity system
originated and subsequently evolved.

The earliest Mesoamerican polity network that formed was arguably among
Olmec chiefdoms, such as those centered at La Venta, San Lorenzo, and others
nearby, but regional clusters of chiefdoms developed early in the Zapotec and Maya
areas as well. In fact, prior to the emergence of a true interstate system, Mesoamer-
ica was politically organized into chiefdom clusters or subgraphs of chiefdoms with
weak links among clusters. Calakmul and El Mirador provide examples in the Maya
area; San José Mogote and other Zapotec chiefdoms are examples in the Oaxaca
Valley.

The earliest Mesoamerican state probably formed in the Valley of Oaxaca—the
Zapotec state, ca. A.D. 400—and had its capital at Monte Albán. On a much larger
regional scale, the first interstate system of Mesoamerica was formed by no later
than the Late Formative period, and consisted of the Zapotec state, the state of Teoti-
huacan to the northwest, and the cluster of powerful Maya states to the southeast.
After ca. A.D. 500, the composition of this system included Tula in the Mexican
central highlands, El Tajín in the Gulf of Mexico, and the post-Classic Maya states
in the Yucatán Peninsula. The polity of Teotihuacán may have been an empire dur-
ing the period A.D. 200–600, with colonial outposts as far south as Kaminaljuyú in
present-day Guatemala City (reminiscent of Uruk’s Tell Brak in Mesopotamia) and
possibly others.
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5.3.2 Social Complexity Elsewhere: Secondary Polity Networks

In other regions of the ancient world besides the four original ones we have just
discussed—in Africa, Europe, North America, and Oceania—systems or networks
of polities also developed. However, such systems were not pristine and persistent
in terms of having produced original social complexity extending to large-scale im-
perial complexity. For example, the Indus Valley region gave rise to the polities of
Harappa, Mohenjo-daro, and others in the same region, but most likely these polities
were inspired by or at least influenced by the much earlier and powerful polities of
West Asia, in Mesopotamia, and in the Levant. Similarly, the network of Egyptian
polities in the Nile Valley was also influenced by earlier and more complex devel-
opments in Mesopotamia and the Levant. Both cases—the Indus Valley polities and
the Nile Valley polities—were linked by trade networks (and possibly migration as
well) to the pre-existing West Asian polity network.

In Africa (excluding Egypt) the emergence of social complexity came much later,
perhaps as late as the 11th century A.D. during the late Iron Age. In Europe, chief-
doms formed earlier, but they formed states much later than in the near East, as in
Greece and Italy and elsewhere, or they were conquered by nearby Asian polities.

Social complexity also originated in North America, but only after A.D. 600. The
most complex polities before the European invasion and conquest were centered at
Chaco Canyon (New Mexico) and Cahokia (Illinois). The scientific consensus today
is that both were chiefdoms, not states. A complex chiefdom is a term that would
best describe them, because they may have been at the threshold of the phase tran-
sition to statehood. The history of the two largest and most complex North Ameri-
can polities overlapped chronologically, but there’s no evidence of contact between
them. Both had declined by the time of the arrival of the Europeans in their former
territories. We shall return to these later, after some further ideas that are necessary
to appreciate their great significance from a CSS perspective.

5.3.3 Contemporary Social Complexity: Globalization

How do we arrive at the state of contemporary social complexity in the global sys-
tem from the four original regional networks that we have just examined? In terms
of social complexity, most of the history between those early origins and the present
consists of second-generation polities, both chiefdoms and states, as well as em-
pires, which we shall examine later.

Globalization, defined as a significant and relatively rapid increase in the size
(network diameter) and connectivity of a world system of polities, is an ancient
social complexity phenomenon that began thousands of years ago, not a recent or
unprecedented occurrence that is unique to modern history. In a certain sense, glob-
alization began in conjunction with the very origins of social complexity, because
each of the four primary polity systems began to globalize almost as soon as it orig-
inated.
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Two quantitatively and qualitatively distinct classes of globalization events are
observable in world history. Endogenous globalization occurs as a process of
growth or expansion that takes place within a given polity region (e.g., the expan-
sion of the Uruk polity in Mesopotamia, Rome in the Mediterranean basin, or Chaco
in the American Southwest), while exogenous globalization occurs between geo-
graphically distant polity network systems that had been previously disjoint as iso-
lated subgraphs (e.g., the 16th century A.D. merging of Eurasian, South American,
and Mesoamerican world systems during the European expansion to the Western
Hemisphere).

As shown by the evolutionary model in Fig. 5.1, four disjoint and distinct
politico-military polity network systems were evolving in parallel—i.e., each of
these systems was oblivious of the other since the time that each had originated—
around the end of the third century B.C. By this time, several episodes of endoge-
nous globalization had occurred in world history, as we have just seen. By contrast,
there have been only two events of exogenous globalization in world history.

The first true episode of exogenous globalization began with the emergence of
the Silk Road, which for the first time linked the already vast Euro-Afro-West Asian
world system with the equally vast East Asian system by 200 B.C. This new large-
scale network of interacting polities was unprecedented, creating an Afro- Eurasian
world system in the Eastern Hemisphere and unleashing a set of social and envi-
ronmental transformations with aftershocks that are still reverberating in today’s
world system. The formation of the Silk Road and its subsequent development was
by no means a linear or uniform process, because it experienced several phases of
growth and decline, but its significance cannot be overstated in terms of having
caused the first truly massive collapse of world systems—in this case the merging
of the Euro-Afro-West Asian world system and the East Asian world system into a
single Eastern Hemisphere world system. Thus, only three of the original four truly
autonomous world systems remained after the rise of the Silk Road.

The second and last exogenous globalization event occurred when the Euro-Afro-
Asian (or eastern hemispheric) world system became linked by politico-military
conquest and commercial expansion with the two separate world systems of the
Western Hemisphere, around 500 years ago. This time the fusion or catalytic event
was the European conquest of the Americas, an event in important ways system-
ically analogous to the emergence of the Silk Road more than a thousand years
earlier. This time the fusion was even greater than it had been with the emergence
of the Euro-Afro-Asian world system (which collapsed two systems into one), since
this time a single and truly global world system emerged from the previous three
that had existed in isolation.

After A.D. 1600 the global world system has greatly increased its connectedness
and further reduced its connectivity diameter—down to the “small world” compact
structure observable today; no further exogenous globalization is possible. The con-
temporary world in which we live today consists of a vast, relatively compact or
dense network of socially complex units, which range in scale from tiny countries
to huge superpowers linked by governmental and non-governmental international
and transnational organizations. The recent emergence of networks of international
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organizations is especially significant from a social complexity perspective, be-
cause it indicates that global society has begun to produce structures of governance
that exercise some degree of authority and policymaking activity beyond the state
level—especially since their dismantling is increasingly unthinkable. Viewed from
this long-range perspective, the contemporary global system could either (1) en-
dure in its present level of social complexity (with a hybrid ecology of states and
international and transnational organizations, as it has during the past 200 years);
(2) continue to grow towards the emergence of world government at some future
point (which would mark another major phase transition); or (3) recede toward a
prior situation of autonomous nation states linked by relatively weak international
organizations that are purely technical and lack any authority—such as, for example,
the international system prior to World War I, or before 1914.

5.3.4 Future Social Complexity

The inventor and social philosopher Charles Franklin Kettering [1876–1958] once
said that he was interested in the future because he was going to spend the rest of
his life there. (He also said that “the whole fun of living is trying to make some-
thing better,”4 which is consistent with the drive to improve quality of life, which
generates increasing social complexity.) Future social complexity is uncertain in its
details, of course, but its general features are not difficult to sketch out. The best
scientific way to predict future social complexity is to understand its causes, based
on proven principles informed by data. Based on this approach, the current state
of social complexity indicates that human societies will continue to develop artifi-
cial systems, both engineered and institutional, to address threatening challenges,
exploit opportunities, or enhance our quality of life.

A highly significant feature of contemporary human civilization—from a social
complexity perspective—has been the development of the space program, which has
been in progress for many decades. The space program is an excellent example of
how humans have generated a remarkable array of complex systems and processes
within the same logic of strategic adaptation to meet the challenges of space explo-
ration, travel, and eventually colonization away from the earth. The space program
that exists today can be considered an embryonic form of spacefaring civilization,
both in the form of (1) vehicles and their engineered physical facilities that con-
stitute a complex network of infrastructure systems, as well as (2) in the human
organizations and institutions that have been decided, planned, and implemented
to support space missions. In August, 2012, NASA confirmed that the spacecraft
Voyager 1 became the first man-made artifact to reach interstellar space.

A future spacefaring civilization is entirely compatible with the history of human
social complexity, as we will see in greater detail following the examination of some
additional concepts and theories that are necessary in order to assess its plausibility.

4As quoted in Dynamic Work Simplification (1971: 12), by W. Clements Zinck.
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However, the incipient spacefaring civilization that we already have today displays
a large number of features related to social complexity.
1. Computation and information-processing not only play a major role in the cur-

rent space program but also provide critical infrastructure for maintaining and
enhancing performance.

2. Highly complex artifacts, such as space vehicles (capsules, shuttles, and stations),
have enabled the performance of human activities of unprecedented complexity
in environments with extreme by hostile physical conditions for humans. Such
conditions include the vacuum of space, exposure to intense solar radiation, and
small and large asteroids while in orbit, in addition to re-entry and landing fail-
ures, among the most common lethal hazards.

3. Societal dependence on an increasingly complex and vast array of space-based
systems (both orbiting and geostationary systems of systems), ranging from GPS
to highly sophisticated remote-sensing satellites, among others, is arguably ir-
reversible. All critical infrastructure systems in the majority of countries in the
world now rely on essential links to space assets.

4. A space-based economic sector is already in its formative stage, with examples
such as commercial weather satellites, private navigational systems that support
surface and airline travel, soon to be followed by other economic activities al-
ready making the headlines.

5. Numerous and unprecedented challenges in design, implementation, manage-
ment, and integration of complex human organizations and technical systems
(i.e., coupled socio-techno systems) have been overcome, and there is no
indication— at least not judging from all relevant evidence from university train-
ing programs, the manufacture of vehicles and systems, professional conferences
and associations—that such a trend will end anytime soon.
The dependence of contemporary civilization on spaced-based systems today

may be quite unobtrusive—and it is admittedly so for most members of society, con-
cerned as they are with issues in everyday life—but from a scientific point of view
that does not make it less real. Solar flares and electromagnetic storms are also real,
and space weather has major effects on our planet. These and other indicators do
not seem easily reversible patterns, barring some extreme, catastrophic event. Even
the threat of major hazards posed by such catastrophic events, such as near-Earth
objects and asteroids, provide, further impetus toward a spacefaring civilization by
generating new programs, economic growth, and international collaboration, under
at least some imaginable set of reasonable conditions. Understanding future social
complexity, with or without a spacefaring civilization, requires further development
in our conceptual, methodological, and theoretical foundations.

5.4 Conceptual Foundations

In this section we take a closer look at key concepts in the study of social complexity
in ways that are more specific than discussed so far. Several of these have already
been introduced, but require more powerful definition, while others are new and
introduced here for the first time.
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5.4.1 What Is Social Complexity?

Earlier we introduced the concept of social complexity in the context of Si-
mon’s theory, which applies universally to societies both ancient and contempo-
rary, and more recently discussed it in our survey of how the first sociopolitical
systems formed in early human history (sociogenesis), based on the Service scale—
specifically as the extent to which a society is governed through non-kin-based re-
lations of authority.

These ideas already suggest basic features of social complexity that merit high-
lighting:
Goal-seeking behavior: Humans are goal-seeking actors, not purely passive

agents.
Basic goals sought: Basic goals sought by humans, and society as a whole, in-

clude survival and improvement. The former includes meeting existential
challenges while the latter refers to the human desire to improve one’s quality
of life, if not for oneself then for one’s kin, friends, or descendants. Both goals
are universal cross-cultural drives.

Adaptation: Goal-seeking behavior generally requires adaptation, because indi-
vidual and collective environments in which humans are situated can be chal-
lenging or shifting. Quite commonly the goals being sought are pursued in
difficult environments or adverse circumstances.

Artifacts: Implementing adaptive behavior requires the activities of planning and
constructing artifacts which, as we have already discussed, can be tangible or
intangible, generally corresponding to engineered and organizational systems,
respectively.

Polity: The complexity of a society is expressed by its polity and economy, which
represent the way it is governed and sustained.

Ordinal scale of social complexity C: Let a(C) ≺ b(C) denote an ordinal rela-
tion defined with respect to social complexity C, such that the complexity of
b is greater than the complexity of a. A society’s level of complexity is ex-
pressed by the ordinal level of its polity (band/tribe ≺ chiefdom ≺ state ≺
empire ≺ world system) and economy (barter ≺ monetary), which represent
the way it is governed and sustained, respectively. Other ordinal features of
social complexity include the authority of leaders (decentralized ≺ central-
ized), territorial control (putative ≺ effective), tax extraction ability (null ≺
effective), among others.

5.4.2 Defining Features of Social Complexity

We use these basic ingredients of social complexity to understand other facets of this
concept. Among these are the fundamental notions of bounded rationality, emer-
gence, near-decomposability, modularity, and hierarchy.
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5.4.2.1 Bounded Rationality
Goal-seeking behavior by humans situated in real-world conditions or normal cir-
cumstances —i.e., the context where social complexity occurs—is never completely
based on rational choices, often not even remotely. Humans make decisions and be-
have according to what is known as bounded rationality. This is best understood by
briefly examining the model of perfect rationality in terms of its main assumptions
when compared to assumptions of human bounded rationality. The basic ingredients
of the rational choice model consists of goals, alternatives, outcomes, utilities, and
probabilities.
Assumption 1—Goals: Decision-making goals are clear/precise. By contrast,

humans often have an imprecise understanding of the goals they seek, par-
ticularly when deciding under stress.

Assumption 2—Alternatives: The complete set of available alternatives is
known. Similarly, humans usually have an incomplete understanding of avail-
able alternatives. This problem is compounded by numerous circumstances,
including the presence of stress, incomplete information, and similar factors.

Assumption 3—Outcomes: Each alternative entails a set of known outcomes.
The estimation of outcomes that can follow from alternatives is difficult, to say
the least, since it involves prediction. This is further compounded by human bi-
ases, such as wishful thinking, group-think, and many other well-documented
biases.

Assumption 4—Probabilities: Each outcome occurs with known probability.
Probabilities derive from a mathematical theory, whereas we humans normally
employ intuition, which is well-known as a poor guide for estimating true
probabilities.

Assumption 5—Expected utilities: Expected utilities can be computed for each
outcome and integrated for each alternative. Human reasoning is incapable of
conducting expected utility computations except in the simplest circumstances
or through extraordinary efforts.

Assumption 6—Utility maximization: The alternative with the highest expected
utility is chosen. By contrast, humans often decide to act by what they feel ob-
ligated to do, which may not be in their best interest, or by what their friends
appear to be doing, or they choose a course of action through some other prin-
ciple that may not bring the highest expected utility.

Since the rational choice model is critically dependent on these six stringent
assumptions—both individually and as a set, since they are formulated as jointly
necessary conditions—perhaps it is not so difficult to understand why the model
fails to meet even a mildly realistic test, especially because each assumption is dif-
ficult if not impossible to obtain.

Behavioral social science is founded on the bounded rationality model.5 It
is interesting to note that violations of the perfect rationality model occur be-
cause humans have imperfect information or they experience faulty information-

5Herbert A. Simon, Daniel Kahnemann, and other social, behavioral, and economic scientists have
been recognized for their pioneering work in this area by receiving the Nobel Prize.



5.4 Conceptual Foundations 133

processing even when the quality of the information itself may be excellent. Hu-
man processing of information— analysis and reasoning—is not fault-free, because
it, too, is affected by biases and other cognitive effects. This is another instance in
which information-processing is highlighted in CSS, this time specifically in the
context of social complexity.

The estimation of outcomes and probabilities, by individual humans and groups,
constitutes a large area of research in behavioral science. Experimental work in this
area has now documented literally scores if not possibly hundreds of human biases
caused by our incapacity, under common circumstances, to correctly estimate true
outcomes and probabilities. Besides wishful thinking and group-think, other biases
include referencing and other distortions.

The bounded rationality that is natural in humans also has significant institu-
tional consequences: humans often create institutions (i.e., organizational artifacts)
precisely for the purpose of managing or attempting to overcome their faulty ratio-
nality. For example, the purpose of deliberative bodies and agencies in contempo-
rary polities (such as legislative or executive branches of government) is to discuss,
discern, and agree on goals, explore alternative options, and conduct assessments
of outcomes and probabilities in order to improve cost-benefit analyses that support
policymaking—from legislation to implementation. Hence, increased social com-
plexity through creation of institutions and procedures, often in the form of large
bureaucracies, is explained by social complexity theory as simply an adaptation
strategy for coping with our innate lack of perfect rationality. In other words, social
institutions are causally explained by bounded rationality. Institutional growth and
development is also a major occurrence of “emergent” phenomena.

5.4.2.2 Emergence
The term emergence denotes the processes whereby aggregate, macroscopic phe-
nomena result from individual, microscopic behaviors. The study of social com-
plexity comprises many forms of emergence. Social complexity itself is an emer-
gent phenomenon, because it results from goal-seeking decisions under bounded
rationality conditions and adaptive behaviors on the part of many individuals or
groups. All artifacts, whether engineered or institutional, are emergent phenomena.
Networks, polities, economies, and culture itself, among many other macroscopic
phenomena in the social universe, represent instances of emergence.

An emergent phenomenon is particularly interesting and well-defined when the
aggregation association among micro-level components is strong, in the sense of
composition, rather than mere aggregation, in an object-oriented sense. (Recall the
earlier discussion of the aggregation association in Sect. 2.8.2.1.) This is because in
the case of association by composition the component objects or entities are strictly
defined in terms of the aggregate, macro-level entity. Instances of this include poli-
ties, networks, organizations, social movements, public moods, all forms of collec-
tive behavior including the significant class of collective action phenomena, and
numerous other significant entities in the study of social complexity. By contrast,
simple aggregation is not considered a form of emergence in the strict scientific
sense of the term (e.g., a meeting of persons without a collective action outcome
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is an instance of simple aggregation but not an emergent phenomenon; collective
action would turn the meeting into an instance of an emergent phenomenon).

5.4.2.3 Near-Decomposability
The structural organization of social systems and processes is highly significant,
because not all structural forms are characteristic of social complexity. For exam-
ple, a fully connected network may be considered complicated—such as when in
a given group everyone is speaking with everyone else—but it is not complex. At
the other extreme, a network composed exclusively of singletons is also not com-
plex. Social complexity lies at a specially structured location in between these two
extremes, specifically when the organizational structure in question is said to be
“near-decomposable.” Near-decomposability refers to a system having subsystem
components interacting among themselves as in clusters or subgraphs, and interac-
tions among subsystems being relatively weaker or fewer but not negligible. A clas-
sic example of a near-decomposable structure is a hierarchical organization that is
divided into divisions and department units.

High-level descriptions of social systems and processes often conceal near-
decomposability in their social complexity. For example the near-decomposability
of a polity system is not revealed by its first-order composition in terms of a societal
component (Society) and a governance subsystem component (Government) inter-
acting for managing Public Issues through Policies. Society and Government are
subsystems that compose a polity system, such that Polity is a system-of-systems.
However, each major component of a polity is, in turn, composed of strongly con-
nected components. Society is composed of individuals, households, and groups
that interact among themselves in terms of numerous social relations. Similarly,
Government is composed of numerous agencies and entities (e.g., legislative, ex-
ecutive, judicial) that are linked by numerous tightly coupled interactions. Hence,
while the first order composition of a Polity does not appear to be decomposable,
its second- and higher-order structures, especially those of the operational level, are
decomposable.

The property of near-decomposability applies equally to the complexity of social
systems and processes, not just the former. Accordingly, a process is nearly decom-
posable when each of its subsequent stages is, in turn, composed of multiple activi-
ties. An example of this is the legislative process within a given polity, whereby the
enactment of law consists of several major stages (such as caucusing, drafting, bar-
gaining, initial voting, reconciliation, final voting), each of which entails numerous
other intermediate interactions. Policy implementation is another classic example of
near- decomposability in social processes, as a policy cascades down from the cen-
tral administration to local agencies to the point where policy consequences reach
individuals and groups that are part of society.

A nearly-decomposable structure is also said to be modular or modularized.
Therefore, modularity or modularization is a defining feature of social complexity.
A related feature of modular organizational structure is the presence of hierarchy
as a characteristic of social complexity. This explains why so many forms of so-
cial organization are also hierarchical: chiefdoms, states, and empires, as well as
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the structure of social relations and bureaucratic institutions that support them vary
according to scale, but they are all hierarchical and modular in their organization.

5.5 Measurement of Social Complexity

Social complexity is a latent variable, which means that it is a property (i.e., a vari-
able or attribute) that is measurable but not directly observable. Although we may
not be able to measure social complexity directly, we are certainly able to measure
it, assuming we are clever enough to use appropriate proxy indicators or empiri-
cal, operational measures for recording it. For example, the size of artificial systems
that support a given society, such as the size of the bureaucracy (measured, say,
by the number of public employees), among other dimensions, is a proxy measure
of social complexity. This is also true for the size and sophistication of infrastruc-
ture systems, which are highly indicative of social complexity. Latent variables are
common throughout the social sciences, not just in CSS and the study of social
complexity: social status, literacy, wealth and poverty, inequality, unemployment,
socioeconomic development, the size of wars, or something even as seemingly ob-
servable and countable as voter turnout, all refer to latent variables that rely upon
proxy indicators for purposes of measurement. All theoretical concepts are latent,
by definition, since they rely on operational variables or empirical indicators for as-
sessing their values. The Service scale (expression (5.4)) is defined in terms of latent
values, because data-based proxies are needed to determine the ordinal-level polity
value of a given society on the basis of all available empirical evidence.

Social complexity is measured by means of proxy indicators defined at various
Stevens-levels,6 which can be qualitative (nominal or categorical) and quantitative
(ordinal, interval, ratio). In this section we present both types, and later in this chap-
ter others will be added.

5.5.1 Qualitative Indicators: Lines of Evidence

Six important and relatively independent lines of evidence are used for detecting
and measuring social complexity, especially for detecting original formation in the
earliest societies (sociogenesis), although these are also applicable to contemporary
society.
Structural: The built environment constitutes structural evidence of social com-

plexity, especially structures intended for collective or public use as opposed
to private. Temples, plazas, fortifications (walls, gates, towers, barracks, and
other types of military engineering), storehouses, cisterns, irrigation canals
and networks, monumental tombs, and palaces are examples used to estab-
lish emergence of complexity in the earliest societies. Today, airports, public

6The Stevens level of measurement of a given variable refers to whether it is a nominal-, ordinal-,
interval-, or ratio-scale variable.
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buildings, metropolitan transportation systems, and the coupled network of
critical infrastructure systems, are common examples of structural evidence
of 21st-century social complexity. Structural evidence is among the strongest
signals of social complexity, because it is often large, sometimes massive, and
long-lasting.7

Pictorial: Imagery depicting leaders, ceremonies, or places of government, and
similar visual representations indicative of social complexity, constitute an-
other line of evidence. Court scenes, formal processions, depictions of con-
querors and vanquished, portraits of leaders, including those on coins, and
heraldry, among others, are diagnostic of initial social complexity. Leaders
of ancient polities often used extravagant imagery and exotic pictorial repre-
sentations of themselves or their allies or territories for propaganda purposes.
This is another universal, cross-cultural pattern, not unlike that observed in
many modern leaders today. In more modern times, similar evidence persists,
in addition to imagery associated with social complexity in a large variety of
information media.

Artifactual: Artifacts made by humans are diagnostic of social complexity when
their production or technological process requires organization beyond the pri-
vate, household, or strictly kin-based level. Handmade household pottery for
daily utilitarian purposes is not indicative of social complexity; however, an
elaborate jade artifact or, even more so, a bronze vessel, are both diagnostic of
social complexity. This is because both jade and bronze artifacts require con-
siderable social organization and proven technology in their respective pro-
duction processes, including specialized knowledge of production, sourcing
the appropriate raw materials (minimally copper, tin, and lead in the case of
bronze, often from different sources found only at remote locations), special-
ized workers and facilities (high temperature ovens), warehousing, and a sys-
tem of accounting. Today, some typical examples of artifacts indicative of con-
temporary social complexity include computers, cell phones, airplanes, satel-
lites, and other artifacts that, in turn, require hugely complex organizations and
supply chains in order to produce them. The global world economy is based
on organizational and technological systems with unprecedented complexity.

Epigraphic: Written evidence in the form of many types of documents or in-
scriptions can provide direct evidence of social complexity. In ancient soci-
eties some of the earliest forms of epigraphic evidence was provided by clay
tablets written in the cuneiform system of writing for purposes of accounting,
teaching, correspondence, and maintaining court records. The Mesopotamian
government produced a large quantity of historical chronicles and other epi-
graphic records. Epigraphic evidence is also abundant in the form of inscrip-
tions on artifacts and buildings, providing compound evidence of social com-
plexity. In modern times, history books and a panoply of media, both in print

7A classic example of this is the Great Wall of China, but there are also numerous other examples
of similar long-lasting structures, such as irrigation canals in ancient Mesopotamia, road networks
in Mesoamerica, among others that are only visible through modern satellite imagery and remote
sensing.
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and electronic form, provide clear examples of epigraphic evidence of social
complexity.

Forensic: The condition of human skeletal remains provides another line of evi-
dence for measuring social complexity. In ancient times such practices as cra-
nial deformations, encrustations (such as onyx decoration of the front teeth
among the Maya aristocrats of early Mesoamerica), and features of bone tis-
sue indicative of particular diets available only to elites, provide evidence of
initial social complexity. In modern times, human remains are relatively less
susceptible to forensic analysis that is specifically diagnostic of social com-
plexity.

Locational: Finally, the geographic location of human settlements can be another
line of evidence for measuring social complexity. Defensible locations, as on
high ground or places with difficult access, are often indicative of widespread
warfare, which in turn can imply complex social organization. Numerous
chiefdoms and early states were established on such locations, often requir-
ing organizations and infrastructure to render them sustainable. Even in mod-
ern times, cities located in inhospitable environments, such as deserts or high
mountain regions, require extraordinary complexity in terms of urban support
systems.

The level of confidence in the measurement of social complexity is proportional
to the number of lines of evidence that provide positive support—the more the bet-
ter, because the probability of a false positive decreases exponentially with the num-
ber of lines that provide evidence of social complexity. A single line of evidence is
generally viewed as insufficient, although it may be useful because it suggests that
additional lines of evidence may be found. This is because social complexity ex-
hibits numerous manifestations which should be measurable by all available data
from multiple lines of evidence, rather than confined to a single source of informa-
tion.

It should be stressed that lines of evidence for measuring social complexity are
relevant not only for establishing initial, formative stages—such as identifying the
phase transition from egalitarian to ranked societies in chiefdoms (and later states
and empires)—but are also necessary for measuring the complexity of modern soci-
eties, such as different levels of social, economic, and political development. There
is much more than a simple, nominal difference between advanced and develop-
ing societies; the difference can also be quantified in terms of numerous indicators
such as critical infrastructure systems, especially when viewed as coupled socio-
technological systems.

5.5.2 Quantitative Indicators

We have already been using Service’s ordinal-level scale of social complexity, which
measures and ranks polities using the ordered values of chiefdom (base level) and
state, to which one can add subsequent ordinal values of empire and global system.
Other quantitative indicators of social complexity include, for instance, the size and
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structural features of infrastructure present in a given society, since infrastructure is
a proxy diagnostic measure of social complexity. The percentage of the population
that is not involved in basic subsistence activities (such as individuals involved in
education, government, national defense, and a host of others that rely upon that por-
tion of the population not engaged in the production of food and similar basic needs)
is increasingly large in advanced, contemporary societies. It too can be considered
a proxy measure of social complexity.

Quantitative measures of social complexity can be divided into two broad cat-
egories, based on the nature of operational independent variables used to define
each measure: formal measures and substantive measures. These should be viewed
as heuristic, complementary categories, not necessarily mutually exclusive. They
should also be used for comparative purposes.

5.5.2.1 Formal Measures of Social Complexity
Formal measures of social complexity are based on mathematical approaches, such
as network-based or graph-based metrics, or information-theoretic measures, among
others, all of which use formally defined independent variables. These measures
assume that a network matrix is available for computing appropriate indices.

Near-decomposability, a defining feature of social complexity (Sect. 5.4.1), is a
latent variable that can be measured by a clustering coefficient proxy. In general,
a clustering coefficient measures the number of nodes that are linked by triangles
forming subgraphs of various size. Several clustering coefficients have been defined
in the context of various near-decomposable structures. The standard undirected
network clustering coefficient is the average of the clustering coefficient of nodes
in an undirected network (such as in an organizational diagram), where the node
clustering coefficient Ci of node i is defined as

Ci = 2λi

δi(δi − 1)
, (5.5)

where λi is the number of connected pairs between all neighbors of node i and δi is
the degree of i (number of neighbors, defined in Sect. 4.6.1). Therefore, the network
clustering coefficient CN of network N is given by

CN = C̄i (5.6)

= 1

g

g∑

i=1

2λi

δi(δi − 1)
, (5.7)

where g = card(N) = |N| is the total number of nodes in network N , or the size S

of N .
The Barrat-Weigt clustering coefficient is defined as

CBW = 3(g − 1)

2(2g − 1)
(1 − p)3, (5.8)
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where g is the number of linked neighbors (degree) and p is the probability of
rewiring (Barrat and Weigt 2000: 552).

Another quantitative proxy measure of social complexity is Shannon’s en-
tropy H , which can be measured over the degree of nodes. In this case,

H(δ) = −
g∑

i=1

P(δi) log2
[
P(δi)

]
, (5.9)

where P(δi) is the probability that node ni has degree δ. A structure consisting
mostly of singletons will have high entropy, and hence not be near-decomposable.
At the other extreme, a fully connected graph will have maximum entropy, be-
cause the degree distribution will have a single peak given by δ = g − 1. A near-
decomposable complex system indicative of clustering and hierarchy will have an
intermediate value of entropy somewhere in between.

The comparative statics of each of these formal measures of social complexity
are interesting, because they are mostly nonlinear functions.

5.5.2.2 Substantive Measures of Social Complexity
By contrast, substantive measures of social complexity are based on specific so-
cial, economic, political, or other cultural variables. Traditional social science meth-
ods can be used to construct proxy measures of social complexity. For example,
multi-dimensional scaling (MDS) is one such method widely used for comparing
scores on multiple indicators that measure dimensions of latent social phenomena.
Both classical and nonparametric versions are available in the R programming lan-
guage. Classical MDS uses Euclidean distances across objects aimed at plotting low
dimensional graphs.

The Peregrine-Ember-Ember ordinal Guttman scale of social complexity is
used for measuring the earliest phase transitions into chiefdoms and states.8 It con-
tains the following items ranked from minimum to maximum values:

1. Ceramic production
2. Presence of domesticates
3. Sedentarism
4. Inegalitarian (status or wealth) differences
5. Population density > 1 person/mi2

6. Reliance on food production
7. Villages > 100 persons
8. Metal production
9. Social classes present

10. Towns > 400 persons

8The Peregrine-Ember-Ember (2004) scale of social complexity is one of the current Guttman
scales developed by anthropologists. It is based on the most comprehensive sample of early human
cultures, based on the worldwide Outline of Archaeological Traditions from the Human Relations
Area Files (HRAF), based at Yale University, and builds on earlier scales of social complexity
developed by R.L. Carneiro, L. Freeman, G.P. Murdock, and C. Provost, among others.
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11. State (3+ levels of hierarchy)
12. Population density > 25 person/mi2

13. Wheeled transport
14. Writing of any kind
15. Money of any kind

Chiefdoms form between levels 3 and 7, whereas states form between levels 8
and 11. A defining feature of a Guttman scale is that each ordinal value includes
all previous value–traits. For example, villages consisting of 100 or more persons
(level 7) also rely on food production (level 6), have population density of more
than one person per square mile (level 5), experience marked inequality (level 4),
and so forth down to level 1 (ceramic production). Similarly, states consist of towns
with more than 400 persons, have social classes and metal production, in addition
to traits associated with lower scale values.

For modern polities, the United Nation’s Human Development Index DH is a
specific example of a proxy measure of social complexity at the country or polity
level, designed to assess aggregate socioeconomic conditions (Table 5.1).

The Human Development Index is a composite indicator consisting of three other
indices: life expectancy L∗, education level E∗, and national income per capita I ∗.
These three components are strongly associated with significant levels of social
complexity, individually but especially in combination. Simple or primitive soci-
eties generally score very low across all three indices. Life expectancy is high in
all countries where social complexity is also highest, such as in the advanced in-
dustrialized economies. High levels of education are attainable only in societies that
can sustain the most expensive universities. High income indicators are similarly
observed only in complex societies, where cost of living is also highest. Simple
societies measure the lowest scores in lifetime expectancy, level of education, and
income-related indices. Formally, DH is defined as the geometric mean of the three
component indicators

DH = (
L∗ · E∗ · I ∗)1/3 (5.10)

= 3

√
L − α1

α2
·
√

S · 〈S〉
β

· ln(I/P ) − γ1

γ2 − γ1
, (5.11)

Table 5.1 Social complexity according to the polity-level Human Development Index DH (2012)
in the top fifteen countries. Source: United Nations Development Programme, 2013 Human Devel-
opment Report

Rank Country DH Rank Country DH Rank Country DH

1 Norway 0.955 6 New Zealand 0.919 11 Canada 0.911

2 Australia 0.938 7 Ireland 0.916 12 South Korea 0.909

3 United States 0.937 8 Sweden 0.916 13 Hong Kong 0.906

4 Netherlands 0.921 9 Switzerland 0.913 14 Iceland 0.906

5 Germany 0.920 10 Japan 0.912 15 Denmark 0.901
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where independent variables and constants are operationally defined as follows:9

L = life expectancy at birth
S = mean years of schooling multiplied by a factor of 1/13.2, or “mean years of

schooling index”
〈S〉 = expected years of schooling by a factor of 1/20.6, or “expected years of

schooling index”
I = gross national income
P = populations
α1 = 20 years
α2 = 62.3 years
β = 0.951 years−1

γ1 = 100 dollars/inhabitants
γ2 = 107,721 dollars/inhabitants
Several aspects of the human development index are noteworthy as a quantitative
measure of social complexity. The geometric mean in Eq. (5.11) defines a cubic
function for DH with respect to its three component indices. It also defines DH

as a function of five independent variables and parameters, in terms of multiple
nonlinear dependencies. Therefore, the comparative statics are interesting also in
this case of measuring social complexity. Empirically, all countries in Table 5.1 are
also well-known for operating advanced infrastructure systems, which are necessary
for adaptation and achieving high quality of life in complex environments.

Numerous measures of complexity have been proposed for generic systems. For
example, the minimal description necessary to describe the features of a system
(such as an algorithm) can be viewed as a measure of the system’s complexity. In the
context of a social system’s complexity, we can define a lexical measure of social
complexity based on the length of the minimal description of its functional struc-
ture. Rigorous definitions of chiefdoms, states, and contemporary polities, written
with minimally necessary and systematic vocabulary, based on comparative social
science terminology, provide viable examples. Another operational approach of the
same lexical measurement procedure could be based on formal graphic notation,
such as UML class, sequence, and state diagrams for describing specific social sys-
tems, such as a chiefdom, a state, or a contemporary polity.

Let S denote a social system with complexity C(S). A lexical measure of C can be
defined as the minimal number of characters κ , including spaces, that is minimally
necessary to describe S. For example, later in Chap. 7 we will examine the for-
mal, theoretically based definitions of a chiefdom and a state. Definition 7.9 (chief-
dom) yields C(chiefdom) = 289 characters, whereas Definition 7.10 (state) yields
C(state) = 339 characters, consistent with the fact that a state is more complex than
a chiefdom.

Different definitions of the same social system S can be expressed in somewhat
different number of characters (κ1, κ2, κ3, . . . , κN ). However, since they are all de-
scribing the same system S, only in different words, and all descriptions are assumed

9Notation here is different from the original UN annual report, which uses abbreviations and
acronyms rather than proper mathematical symbols.
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to be minimally necessary, the number of characters can be assumed to be normally
distributed. Therefore, the simple arithmetic mean taken over the set of κi values
provides a composite lexical indicator of social complexity:

C(S) =
N∑

i=1

κi . (5.12)

Alternatively, if S is defined in terms of graphic models—such as when using a set
of associated UML class, sequence, and state diagrams of S—then the set of features
contained in the graphics can be used as information to define C(S). For example,
suppose the UML class diagram of social system S consists of a number of objects
and a number of associations among objects, denoted by discrete variables O and A,
respectively, where O = 1,2,3, . . . , o and A = 1,2,3, . . . , a. Similarly, the UML
sequence diagram of S consists of O objects and S sequential interactions among
objects in separate “lanes,” where S = 1,2,3, . . . , s. Finally, suppose the UML state
diagram of S has X states and Φ transitions among states, where X = 1,2,3, . . . , x

and Φ = 1,2,3, . . . , φ. Then, social complexity based on the three graphic models
can be defined by functions of these metrics. For instance, the graphic complexity
measure

C(S) = (O + A) + (O + S) + (X + Φ) (5.13)

= O(A + S) + X + Φ (5.14)

provides a simple but viable aggregate indicator, as do other similar functions de-
fined in terms of graphic features that specify the complexity of social system S.
For example, the norm of a vector C(S) consisting of graphic values in the UML
diagrams,

|C(S)| =
√

o2 + a2 + s2 + x2 + φ2, (5.15)

is another viable graphic-based measure of social complexity.
Social complexity is also measurable on a temporal scale, where long-range cor-

relations are diagnostic of complexity in social processes. The Hurst parameter is
a temporal indicator for measuring the complexity of a time series of social data in
terms of its long-range dependence (LRD). Let X1,X2,X3, . . . denote a time series
of values at times t1, t2, t3, . . . with mean μ and variance σ 2. The Hurst parameter
is defined by the autocorrelation function ρ(k) of a time series as

ρ(k) = E(Xt − μ) · E(Xt+k − μ)

σ 2
(5.16)

∼ Cρ |k|−2(1−H), (5.17)

where |k| denotes time lags or leads of length 0,1,2,3, . . . in either direction, the
symbol ∼ denotes asymptotic equality as k → ∞, and Cρ > 0 is a scale parameter.
Note that ρ(k) decays algebraically as a power law, so the autocorrelations are
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Fig. 5.2 Long-range dependence (LRD) or memory structure in time series measured by the Hurst
parameter H . Source: Adapted from Gao et al. (2013: 16)

scale-free and, therefore, the process is said to be self-similar, that is, fractal. We
shall examine these properties more closely later, when we focus on power laws
of social complexity. Spatial autocorrelation is similarly characteristic of social
complexity.

The value of the Hurst parameter estimated from empirical data is indicative of
process complexity as determined by the following ranges:10

Case 1: When 0.5 < H < 1 the process has long-term memory, or LRD, so the
process is also called persistent.

Case 2: When H = 0.5 the process is standard Brownian motion with normal or
Gaussian distribution, mean μ = 0, variance E[(BH (t))2] = t2H , and power
spectral density 1/f 2H+1. This is not a case indicative of complexity, but
rather one of equilibrium dynamics.

Case 3: When 0 < H < 0.5 the process is anti-persistent, meaning that it is sig-
nificantly more jagged than the Gaussian process.

Cases 1 and 3 are driven by non-equilibrium dynamics typical of complex sys-
tems and processes, as shown in Fig. 5.2. Standard Brownian motion is a base
process or phase transition boundary (critical bifurcation value, H = 0.5) for
the temporal complexity of a social process. Above the critical value the process
has persistent memory (H > 0.5), indicative of the status quo or dynamic stabil-
ity, the process looks increasingly smooth as the autocorrelation length increases,
and the distribution of X is heavy-tailed (extreme events have a significant likeli-
hood)). By contrast, below the critical value the process has anti-persistent memory
(H < 0.5) indicative of high volatility or dynamic instability, and the process looks

10Many estimators of the Hurst parameter are available, as reviewed by Gao et al. (2007).
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more jagged. The “jaggedness” of a time series is inversely related to the Hurst
exponent.

If policy is based on assumptions other than those warranted by a time series
analysis of the Hurst exponent for temporal complexity, then the provision of pub-
lic goods will be misguided. The causes of LRD are often difficult to determine.
Sometimes it is related to the cumulative effect of prior processes responsible for
generating a time series.

Spatio-temporal autocorrelation is diagnostic of social complexity. By contrast,
it is noteworthy that traditional data analysis in social science research generally
dislikes spatio-temporal autocorrelation, because it violates standard assumptions
of correlational analysis of data. The use of various transformations (logarithmic,
inverse, square, among others) to obtain “normal” Gaussian-distributed data de-
stroys information necessary for measuring social complexity and should therefore
be avoided in social complexity analysis. The same is true for skewed distributions,
as we shall see in the next chapter.
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6Social Complexity II: Laws

6.1 Introduction and Motivation

In science, laws describe and theories explain. Laws provide understanding of
“how” social complexity occurs; theories answer questions of “why” it occurs. Laws
are like mappings between variables; theories are causal stories that account for ob-
served social complexity. Which patterns of social complexity have empirical valid-
ity as universal laws that hold cross-culturally and across domains of social science
research? How is social complexity explained in terms of existing theories?

This chapter develops the analysis of social complexity by presenting theoretical
and empirical laws that describe emergence and subsequent dynamics. The main
emphasis in this chapter is on formal description for understanding social complex-
ity. The next chapter progresses toward explanatory theories of social complexity.
Understanding of basic patterns in laws of social complexity is necessary for devel-
oping viable computational models.

6.2 History and First Pioneers

The history of laws of social complexity dates to the early twentieth century, when
pioneers such as Vilfredo Pareto, Max O. Lorenz, Corrado Gini, and Felix Auerbach
demonstrated the first power laws in human and social domains of science, half
a century before power laws entered physics. These early discoveries were soon
followed by social power laws discovered by Alfred Lotka, George K. Zipf, Lewis F.
Richardson, Herbert A. Simon, and Manus I. Midlarksy. Most recent work on these
and other non-equilibrium distributional models focuses on discovering additional
domains (e.g., the Internet) as well as replicating earlier discoveries with newly
available and better data.

By contrast, research on structural laws of social complexity is more recent,
beginning in the Cold War years with the pioneering work of Albert Wohlstetter,
William Riker, Martin Landau, Jeffrey L. Pressman, Aaron Wildavsky, Elinor Os-
trom, and John W. Kingdon. Research on both types of laws of social complexity is
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still active and promises new discoveries as CSS researchers expand the domains of
universal patterns.
1896 Economist Vilfredo Pareto [1848–1923] pioneers power laws through his

comparative research on income and wealth in his classic textbook, Cours
d’economie politique.

1905 Max Otto Lorenz [1876–1959] publishes his seminal paper on the curve
named after him in the Journal of the American Statistical Association,
while still a doctoral student at the University of Wisconsin.

1912 Sociologist Corrado Gini [1884–1965] proposes his classic coefficient of
inequality in Mutabilitá e Variabilitá.

1913 Physicist Felix Auerbach [1856–1933] discovers the rank-size law of human
settlement sizes, published in Das Gesetz der Bevölkerungskonzentration
(The Law of Population Concentration), rediscovered years later by Zipf.

1926 Statistician Alfred Lotka [1880–1949] publishes his discovery of the
inverse-square law in the “The Frequency Distribution of Scientific Pro-
ductivity,” Journal of the Washington Academy of Sciences.

1935 Linguist George Kingsley Zipf [1902–1950] publishes his first papers on
the rank-size distribution of settlements.

1941 Meteorologist Lewis Fry Richardson [1881–1953] discovers the scaling
power-law of conflicts, inaugurating the modern scientific study of war
through a series of papers in 1941, 1945, and 1948. His first monograph
dates to 1919, on “The Mathematical Psychology of War.”

1955 Herbert A. Simon publishes his classic paper “On a Class of Skew Distribu-
tions” in the journal Biometrika, followed in 1958 by his first paper on the
power-law distribution of business firms in the American Economic Review.

1958 Gutenburg-Richter Law for earthquakes is discovered, arguably the first true
power law in the physical sciences.

1959 Albert Wohlstetter publishes his classic paper on Deterrence Theory, “The
Delicate Balance of Terror,” based on the Conjunctive Principle examined
in this chapter and the next, in the influential policy journal Foreign Affairs.

1960 Richardson’s Statistics of Deadly Quarrels is published posthumously.
1962 William H. Riker formalizes the Theory of Political Coalitions and demon-

strates the Conjunctive Law for minimal-winning coalitions.
1969 Martin Landau explicitly identifies conjunctive redundancy in his seminal

paper published in the Public Administrative Review, followed in 1972 by
his classic Political Theory and Political Science: Studies in the Methodol-
ogy of Political Inquiry.

1973 Jeffrey L. Pressman and Aaron Wildavsky publish the classic Implementa-
tion: How Great Expectations in Washington Are Dashed in Oakland, based
on the Conjunctive Law.

1978 Gabriel Almond and Bingham Powell publish their influential input-output
model of a complex polity, where policies in the outcome space follow a
sequential conjunctive law.

1984 John W. Kingdon publishes his classic Agendas, Alternatives, and Public
Policies, demonstrating the sequential conjunctive law for policy-making
processes in complex polities.
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1985 Elinor Ostrom [1933–2012] and colleagues from Indiana University (Vin-
cent Ostrom, Roger Parks, Harvey Starr), the University of Illinois (Claudio
Cioffi-Revilla, Richard L. Merritt, Robert Muncaster, and Dina A. Zinnes),
and the University of Iowa (Robert Boynton) establish the Triple-I Seminar
on Complex Systems.

Since 1990 Power laws are replicated in numerous domains of social science re-
search, such as elections, budgetary processes, finance, terrorism, and the
Internet.

1999 Cioffi-Revilla discovers that civil wars scale across the global system,
demonstrating long-range spatio-temporal correlations.

2003 Economist Christian Kleiber and statistician Samuel Kotz [1930–2010]
publish Statistical Size Distributions in Economics and Actuarial Sciences,
the first comprehensive treatise on the Pareto Law and related distributions
of social complexity.

2003 The same year Cioffi-Revilla and Midlarsky demonstrate that a uniform dis-
tribution can be critically misjudged as a power law (Type II error) when di-
agnostic bending in the lower and upper tails is ignored. In the same paper
they demonstrate power law scaling for the deadliest wars.

6.3 Laws of Social Complexity: Descriptions

In this section we examine descriptive laws of social complexity. These are grouped
into two main categories, structural and distributional, each of which consists of
a variety of models. The comparative statics of these laws are interesting, because
most equations are nonlinear in nature. This often results in non-intuitive or counter-
intuitive consequences on the emergent behavior of social complexity. Both share
two additional, scientifically deep properties: they are related to one another, as well
as being universal across domains of social complexity.

6.3.1 Structural Laws: Serial, Parallel, and Hybrid Complexity

The structure of social complexity refers to the way systems and processes
are organized across social domains, including coupled socio-techno-natural sys-
tems and components within them, as we have already seen in the case of near-
decomposability. Figures 6.1 and 6.2 illustrate isomorphic examples of structural
configurations found in social systems and processes, which can often (not always!)
be expressed in terms of networks or trees, respectively. A salient feature of struc-
tural laws of social complexity is that they have dual isomorphic representation as
logic and probabilistic formalism, which facilitates computational modeling. Here
we examine more closely the character of causal structures and how they generate
emergent social complexity.
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Fig. 6.1 Structural patterns
of social complexity by causal
necessity and sufficiency.
(a) Serial complexity by
causal conjunction;
(b) parallel complexity by
causal disjunction; and
(c) a case of hybrid
serial-parallel complexity
with some parallelized
disjunctive components
within an overall serialized
3-conjunctive structure

Fig. 6.2 Structural patterns
of social complexity by logic
conjunction and disjunction.
(a) Serial complexity by
causal conjunction;
(b) parallel complexity by
causal disjunction; and
(c) a case of hybrid
serial-parallel complexity
with some parallelized
disjunctive components
within an overall serialized
3-conjunctive structure

6.3.1.1 Serial Complexity by Conjunction
The fundamental structure of complexity in social systems and processes is gener-
ated by compound events, which emerge from the conjunction of causal events.
For example, in the standard model of a polity, the occurrence of successful gov-
ernance is an emergent compound event generated by a sequential process that
begins with (1) an issue collectively affecting a significant sector of society; fol-
lowed by (2) pressure groups placing demands on government to act; followed by
(3) decision-makers doing something to relieve societal stress by enacting policies;
and, finally, (4) the public issue being mitigated.

The example just seen is that of a serial system (Figs. 6.1(a) and 6.2(a) with
4 components rather than just 2), which is based on necessary causal events oc-
curring as a conjunction (by Boolean logic AND operator) and emergent overall
probability Ys given by its associated indicator structure function Ψ∩ according to
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the following set of related equations:

Ys = Ψ∩(X1,X2,X3, . . . ,Xn) (6.1)
⇐ X1 ∧ X2 ∧ X3 ∧ · · · ∧ Xn (6.2)

Ys = p1 · p2 · p3 · · ·pn =
n∏

i=1

pi (6.3)

= P Θ, (6.4)

where Ys denotes the compound event for overall conjunction with necessary causal
conditions, Xi are the n causal events, the symbol ∧ denotes conjunction (Boolean
AND), pi are the probabilities of the causal events, P is their probability when they
are all the same, and Θ = 1,2,3, . . . , n denotes the number of causal events.

An important variation of serial conjunction is when necessary conditions oc-
cur in sequence, called sequential conjunction, equivalent to Boolean logic SE-
QAND. Note that probabilities are conditional for sequential causal events. In this
case Eqs. (6.1)–(6.4) are simply edited to take into account conditional probabilities,
which still require multiplication.

Regardless of whether causal probabilities are conditional or unconditional, over-
all probability Ps is always decreased when social complexity is serialized. Hy-
poprobability, defined by the inequality Ys < minpi , is a fundamental property
of serial social complexity. It means that serially structured social systems have an
overall probability of performing that is smaller than that of the most poorly per-
forming component. Accordingly, the popular aphorism of a chain being as strong
as its weakest link (P = minpi ) is objectively wrong, because it overestimates over-
all serial probability.1

6.3.1.2 Parallel Complexity by Disjunction
By contrast, at other times a social system or process may operate according to con-
current activities, as when policy is based on a set of multiple public programs. For
example, anti-inflationary policies used by governments are often based on a mix
of (1) price controls, (2) subsidies of various kinds (for food, housing, medicines),
and (3) other programs that are implemented simultaneously. This example is repre-
sented in Figs. 6.1(b) and 6.2(b) with three as opposed to just two causal component
events.

This is an example of a parallel system, which is based on sufficient causal events
occurring as a disjunction (by Boolean logic OR operator) and emergent overall
probability Yp given by its associated indicator structure function Ψ∪ and the fol-
lowing set of related equations:

Yp = Ψ∪(Z1,Z2,Z3, . . . ,Zm) (6.5)
⇐ Z1 ∨ Z2 ∨ Z3 ∨ · · · ∨ Zm (6.6)

1The correct aphorism should be that a chain is weaker than its weakest link, which is an even
worse condition than being as weak as the weakest link.
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Yp = 1 − (1 − q1) · (1 − q2) · (1 − q3) · · · (1 − qm) = 1 −
m∏

j=1

(1 − qj ) (6.7)

= 1 − (1 − Q)Γ , (6.8)

where notation follows the same conventions as for Eqs. (6.1)–(6.4). By De Mor-
gan’s Law, it can be easily demonstrated that parallelization equations (6.5)–(6.8)
follow from serialization equations (6.1)–(6.4).

An important variation of parallel disjunction occurs when sufficient conditions
are mutually exclusive, called exclusive disjunction, equivalent to the Boolean logic
XOR operator and the common language phrase “either.” In this case the probabili-
ties of causal events must add up to 1, so the parallel complexity equations we just
presented now become

Pp = Ψ (Y1,Y2,Y3, . . . ,Ym) (6.9)

⇐ Y1 � Y2 � Y3 � · · · � Ym (6.10)

Pp = q1 + q2 + q3 + · · · + qm =
m∑

j=1

qj (6.11)

= mq. (6.12)

There is a symmetrical result for hypoprobability. Regardless of whether causal
disjunctive probabilities are inclusive (OR) or exclusive (XOR), overall probability
Pp is always increased when social complexity is based on a parallel structure—
which is also common at the second- and higher-order of causation. Hyperproba-
bility, defined by the inequality Yp > maxqj , is the fundamental property of paral-
lel social complexity. It means that parallel structured social systems have an overall
probability of performance that is greater than that of the best performing compo-
nent.2

6.3.1.3 Hybrid Structural Complexity
Most social systems and processes in the real world operate through some com-
bination of serial and parallel structure, especially those that are complex artifacts
or complex policies. Examples of this kind of structural complexity are shown in
Figs. 6.1(c) and 6.2(c), which show first-order 3-conjunction that embeds 2- and
3-disjunctions of the second-order.

The following two kinds of symmetrical patterns (serial-parallel and parallel-
serial) serve as building blocks for modeling far more complex social forms, to any
desirable degree of structural complexity.

2Popular culture is silent about an analog of the serial chain metaphor for the case of a parallel
structure. If it existed, it should say: a parallelized system is stronger than its strongest component.
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A serial-parallel system has first-order Θ-degree serialization, second-order Γ -
degree parallelization, and overall probability equation given by

Ysp = [
1 − (1 − Q)Γ

]Θ
. (6.13)

This is the kind of structural complexity shown earlier in Figs. 6.1(c) and 6.2(c).
In this instance, we may have a 3-stage social process where the first and second
stages are carried out by two and four parallel activities, respectively. Alternatively,
the same structure may represent a social system that requires three operating com-
ponents to undertake action (e.g., legislative, executive, judicial branches of gov-
ernment), the first of which relies on two parallel components (say, a senate and
an assembly), and the second relies on four agencies (e.g., such as for policies on
security, economics, health, and infrastructure).

The symmetrical opposite is a parallel-serial system, which has first-order par-
allelization, second-order serialization, and overall probability equation

Yps = 1 − (
1 − P Θ

)Γ
. (6.14)

The origin of chiefdoms (sociogenesis) provides an excellent example of hybrid
social complexity. Within the overall formative process, a first-order structure of the
compound event P (“the potential for sociogenesis occurs”) is given by the follow-
ing conjunction of necessary causal events:

P = Ψ (Xkin,Xcom,Xnorm, . . . ,Xca), (6.15)
⇐ 〈Xkin ∧ Xcom ∧ Xnorm ∧ · · · ∧ Xca〉, (6.16)

where Xi denote various necessary conditions for chiefdom formation, such as ex-
istence of kinship knowledge Xkin, communicative ability Xcom, normative knowl-
edge Xnorm, and collective action ability Xca , among others as examined in the next
chapter. Thus, the first-order probability equation is simply

P = Xkin · Xcom · Xnorm · · ·Xca =
ca∏

i=kin

Xi (6.17)

= XΘ, (6.18)

consistent with earlier notation. In turn, collective action ability is satisfied through
a variety of Γ strategies (e.g., providing incentives, exercising authority, among oth-
ers), not in just one unique way.3 Accordingly, the second-order probability equation
in terms of Γ strategies is:

P = XΘ−1Xca (6.19)

= XΘ−1 · [1 − (1 − Q)Γ
]
, (6.20)

3We will examine collective action theory more closely in the next chapter.
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where Q now represents the probability of individual collective action strategies
being known.

A more contemporary example consists of modeling the probability of crisis
management policies in issue domains such as humanitarian disasters, financial
crises, or cybersecurity. First-order complexity is typically serial,

P = X1 · X2 · X3 · · ·Xn (6.21)

=
n∏

i=1

Xi (6.22)

=
n∏

i=1

[

1 −
m∏

j=1

(1 − Zj )

]

i

, (6.23)

because n requirements (e.g., accurate intelligence, available capacity, implemen-
tation plans, among others) must occur in conjunction. In the case of humanitarian
disaster response, supply chain management is also a prominent serialized structure,
as are lines of communication. In the case of financial crisis management, passage of
legislation and other regulatory procedures have similar serialized structures. How-
ever, second-order complexity is often parallelized, as each requirement is ensured
through m different approaches or strategies. Alternative locations are often used
for dropping humanitarian relief in affected zones, whereas financial crisis policies
employ multiple interventions, rather than a single act of government.

From a computational perspective, hybrid social complexity is modeled with
code that makes extensive use of functions as subprograms. For example, separate
functions can be defined for computing each structural component. This also results
in a program being more modular, which is almost always a desirable feature and a
real necessity when dealing with algorithmic complex.

6.3.2 Distributional Laws: Scaling and Non-equilibrium
Complexity

Social complexity is also characterized by statistical and probability distributions,
specifically by non-equilibrium distributions and power laws. As suggested ear-
lier in this chapter by the historical overview of milestones and pioneers, over the
past century power laws have been shown to exist across multiple domains of social
complexity. In almost all cases these distributions are about size variables, not du-
rations, which is a intriguing feature that remains somewhat of a scientific mystery.
To better appreciate and understand this area of CSS it is best to begin by defining a
power law.
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Fig. 6.3 The power law in (a) untransformed hyperbolic form and (b) linearized or log-linear
form in log-log space

Definition 6.1 (Power Law) Let X be a real variable with a set of values x ∈ �.
A power law is a function of x that is inversely proportional to x itself. Formally,

f (x) ∝ xb

= axb, (6.24)

where a > 0 and b > 0.

In purely mathematical terms, a power law refers to any equation of the form

y = axb, (6.25)

where constants a and b can assume any value, such that f (x) in Eq. (6.24) can be
either increasing (b > 0), decreasing (b < 0), or constant (b = 0) in x, as well as
positive (a > 0) or negative (a < 0). However, within the context of social complex-
ity theory the term “power law” always implies a negative exponent (b < 0) and a
positive function (a > 0), which in algebraic terms makes Eq. (6.25) the same as a
hyperbolic function that is asymptotic in both Cartesian axes, as in Fig. 6.3(a).

For reasons that will become apparent in Sect. 6.3.2.1, the general functional
equation (6.25) can be and often is linearized by applying a base-10 logarithmic
transformation to both sides of the equation, which yields

logf (x) = a′ + b logx, (6.26)

where a′ = loga and b now represent an intercept and a slope, respectively
(Fig. 6.3(b)), in log-log space. Note that the slope b is an elasticity in log-log space,
since

ηy,x = ∂ logy

∂ logx
= ∂y

∂x

x

y
.
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Fig. 6.4 The power law and other distribution models

The log-linear form of Eq. (6.26) is useful from an empirical perspective, because
values of x can be plotted on log-log space to examine the form of the distribution,
although strictly speaking the term “power law” refers to Eq. (6.25) (with a > 0 and
b < 0), not Eq. (6.26) in log-linear form. For reasons shown below, Eq. (6.25) is the
more theoretically relevant equation.

Social scientists familiar with regression analysis will readily recognize Eq. (6.26)
as a log-linear regression equation, where both dependent (y) and independent (x)
variables have been log-transformed using base 10. In power law analysis the main
purpose of log-linearization is not to be able to apply ordinary least square (OLS)
methods, but to observe how linear the resulting empirical x-y scattergram is and
how constant the value of an observed slope b̂ is.

Each form of a power law—linear or non-linear, in log-log or linear Cartesian
space, respectively—highlights different properties of social complexity, similar
to the way in which different forms of the same game in a game-theoretic model
(i.e., normal or extensive forms) highlight different features of strategic interaction,
or different probability functions (density, cumulative, intensity) provide different
views on the uncertainty properties of the same random variable. In addition, each
power-law function can also be related to other probability functions, as we shall
examine.

Figure 6.4 shows a power law in the context of other distributions. Compared to
the so-called normal, Gaussian, or bell-shaped distribution, a power law distribution
has many small values, some (fewer) medium-range values, and a few rare extreme
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Fig. 6.5 Taxonomy of power law models according to types of dependent variables

values. By contrast, in a Gaussian distribution both smallest and largest values are
extremely rare (with vanishingly small probability) and mid-range values are the
norm.

Crucially, in terms of understanding complexity, extreme events are many times
more “normal” in a power law distribution than in a Gaussian distribution. There are
also other significant differences with respect to other major types of distributions,
such as exponential, uniform, and lognormal, as examined in the next sections.

6.3.2.1 Systematics of Social Power Laws
It would appear from the preceding formalization that power law models are all an-
alytically or formally similar (Eq. (6.25)), in the same sense that all hyperbolas are
similar, in that they would differ only by the numerical value of the coefficients a

and b. However, that is not the case, because the term on the left side of a power
law—the function f (x) that is inversely proportional to a given variable x—often
denotes widely different quantities when examined in different disciplines and dif-
ferent empirical domains. In addition, as in the case of Zipf’s Law, the independent
variable can sometimes assume rank-ordinal values, such that the independent vari-
able is not ratio-level.

Given such confusing practices in the literature, it is useful to identify and sys-
tematize the most common types of power laws, because the (seemingly) simple
form of the linear log-log plots that are commonly reported in publications often
conceal interesting subtle differences that stem from quite different quantities being
plotted in vertical and horizontal axes, i.e., dependent and independent variables.
Similarities and differences among various types of power laws of social complex-
ity are meaningful and should be understood. The taxonomy shown in Fig. 6.5 spans
five types of power laws across various social and natural phenomena.

As illustrated in Fig. 6.5, power law models are a class composed of two
distinct—albeit related—subclasses or sets of models according to the level of mea-
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surement of the independent variable x (ordinal or ratio).4 In turn, ratio-level power
laws comprise several subtypes, as explained in the next sections. In spite of these
differences, it must be stressed that all power law models are mathematical repre-
sentations of extreme skewed variability that are scale-free, in the sense discussed
below.

6.3.2.2 Type I: Rank-Size or Zipfian Models
The first (and oldest) type of power law model is Zipf’s Law of harmonic sizes,
also known as a Rank-Size Law (geography, linguistics) or rank-size rule (an-
thropological archaeology). Given an ordered set of values 〈x1, x2, x3, . . . , xn〉 of a
variable X, where the subscript i denotes rank from highest (i = 1 or first) to lowest
(i = n or last), the power law for values of X with respect to rank i of each value
xi ∈ X is given by the equation

xi = a

ib
(Type I power law), (6.27)

where a = x1 (the largest value) and b ≈ 1. Note that from Eq. (6.27) it also follows
that for this type of distribution the product of any value xi ∈ X times its rank i

always equals (or approximates) the constant a (the largest value x1). Therefore, the
largest value determines all other values of the distribution. Such a decreasing series
of values is also known as a harmonic series, wherein the second largest value is
1/2 the size of the largest, the third largest value is 1/3 the size of the largest, . . . ,
and the last (the nth value) is 1/n the size of the largest. From Eq. (6.27) it also
follows that

logxi = a′ − log i, (6.28)

which is commonly used for analyzing empirical data with log-log plots. By defini-
tion, therefore, this type of power law has elasticity equal to 1.

Felix Auerbach was the first to discover this type of power law in the harmonic
frequency of population concentrations. Perhaps somewhat unfairly, the model is
commonly named after the Harvard linguist George Kingsley Zipf [1902–1950] be-
cause it was he who popularized it. This type of power law may be of unique interest
in the social sciences and the life sciences (laws of so-called “allometry” or propor-
tion), and perhaps they remain undiscovered in the physical sciences.

As shown in Fig. 6.5, the next three types of power laws consider different distri-
butions of values of X in terms of various frequency measures: absolute frequency
(Type II), relative frequency (Type III), and cumulative frequency (Type IV). All
three distribution types of power laws—which are canonical variations on the com-
mon theme of modeling scale-free inequality—occur in both the social sciences and
the natural sciences.

4Using the Stevens level of measurement as a classification criterion is useful for distinguishing
formally different mathematical forms that are analyzed through different statistical and mathe-
matical methods (discrete vs. continuous). The same classification might be less useful in physical
power laws, where ranks and ordinal variables are not as common as they are in social science.
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6.3.2.3 Type II: Absolute Frequency Models
In the second type of power law the absolute frequency φ of a given value x ∈ X is
inversely proportional to x. Thus,

φ(x) = a

xb
(Type II power law). (6.29)

From Eq. (6.29) it follows that

logφ(x) = a′ − b logx, (6.30)

where a′ = loga is the intercept and b is the slope (exponent in Eq. (6.29)). Recall
that b is also in this case the elasticity η of logφ(x) with respect to logx.

In the social sciences this type of power law has been frequently reported for
variables as diverse as the size of archaeological sites in a given region, personal
income, number of Internet routers, network links, and the number of fatalities that
have occurred in warfare on all scales in modern history. Lewis Fry Richardson’s
Law of War Severity, describing the skewed distribution of fatalities generated by
conflicts of all magnitudes, is a power law of this type. In the natural sciences, this
type of power law has been reported for the size of species, the lifespan of genera,
earthquake energy releases, meteor diameters, and the relative sizes of avalanches
in Conway’s Game of Life (a cellular automata model examined in Chap. 7).

The next two types of power laws are somewhat similar, since they are both based
on probability functions, but different in several interesting, crucial details that are
easy to overlook.

6.3.2.4 Type III: PDF Models
The third and closely related type of power law is stated in terms of relative fre-
quency, which in the statistical limit approximates a probability density. Formally,
this is the hyperbolic probability density function (p.d.f.)

p(x) = a

xb
(Type III power law). (6.31)

(In physics, Eq. (6.31) is often called a “distribution function,” which is a mathemat-
ical misnomer that can cause confusion. The term “distribution function” refers to
the cumulative density function �(x), or “mass function,” as in the next section.)5

5For example, Bak (1996), Jensen (1998), and Barabasi (2002) misname these functions
repeatedly—c.d.f., p.d.f., and complementary c.d.f.—as if they were synonymous, whereas each
function refers to the probability of a different event: Pr(X ≤ x),Pr(x < X ≤ x + dx), and
Pr(X > x), respectively. The obvious but important point is simply that probability functions that
refer to different events should be named differently and consistently.
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The log-linear form for the Type III power law is easily derived, from Eq. (6.31),
as

logp(x) = a′ − b logx, (6.32)

with a′ = loga, and, again, b is the elasticity of logφ(x) with respect to logx.6

This type of power law also has strong empirical support across social domains.
It has been reported for the size of firms in terms of employees (Simon’s Law),
the number of publications by scholars (Lotka’s Law), the number of collaborations
by movie actors, the size of commodity price fluctuations (Mandelbrot’s Law), and
other social variables. In the natural and engineering sciences, this same Type-III
power law has been reported for the size of species, the connectivity of the US power
grid, the size of forest fires (Turcotte’s Law), and the size of sandpile avalanches
(Bak’s Law).

6.3.2.5 Type IV: Log-Survival or Log-CCDF Models
A fourth type of power law is based on the complementary cumulative density func-
tion, or 1 − Φ(x) = Pr(X > x), abbreviated as CCDF. When X denotes time T , the
CCDF is called a survival function, or S(t).7 In a log-log linear graph this model
has the form

log
[
1 − Φ(x)

]= a′ − (b − 1) logx, (6.33)

with a′ = loga, which yields the c.d.f.

Φ(x) = 1 − a

x(b−1)
= 1 − ax1−b (6.34)

and corresponding p.d.f. given by

p(x) = a(b − 1)

xb
(Type IV power law). (6.35)

Note that in this type of power law the elasticity in Eq. (6.33) is η = (b − 1), not
just b as in previous models—a critical difference to remember! Table 6.1 provides
a comparison of the defining probability functions of a Type IV power law model
(top row) with respect to other distribution models of social phenomena. Note that
the negative exponential p.d.f. also corresponds to a Poisson process, which is com-
mon in many social phenomena such as riots, onsets of warfare, and organizational

6Note that Type II (absolute frequency) and Type III (relative frequency) yield the same slope b,
although the functions on the left side are not mathematically identical.
7Also, strictly speaking, the event “X ≥ x” makes more sense than “X > x” when X is a discrete
(count) variable. This is because 0.99999 . . . is not computable and 0 is mathematically impossi-
ble, so 1 is the base count for social processes such as events, riots, wars, and other social count
processes.



6.3 Laws of Social Complexity: Descriptions 159

Table 6.1 The Type IV power law model of social complexity compared to other common social
processes and distributions

Model p.d.f. p(x) c.d.f. Φ(x) h.f.f. H(x) Mean E(x)

Power law a(b−1)

xb 1 − axb−1 b−1
x

a(b−1)
2−b

x2−b|∞xmin

Exponential λe−λx 1 − e−λx λ 1
λ

Weibull λγ xγ−1 exp(−λxγ ) 1 − exp(−λxγ ) λγ xγ−1 λ−1/γ Γ ( 1
γ

+ 1)

Lognormal 1
σx

√
2π

×
exp [−(ln(x/m))2/(2σ 2)]

1 − 1
σ
√

2π

∫∞
x

p(u)
u

du
p(x)

1−Φ(x)
exp (0.5σ)

Gaussian 1
σx

√
2π

exp (− 1
2 (

x−μ
σ

)2) 1 − 1√
2π

×
∫∞
x

exp [− 1
2 (

u−μ
σ

)2]du

p(x)
1−Φ(x)

μ

turnover. The intensity or hazard force functions (h.f.f.) corresponding to power
law, exponential, and Weibull models are of major interest in practical applications.
The lognormal and Gaussian cases are also computed as p(x)/[1 − Φ(x)] but are
omitted from the table due to space constraints and infrequent use. The graphs of
probability density functions in Table 6.1 were shown earlier in Fig. 6.4.

Equation (6.35) looks deceptively similar to a Type III power law (compare with
Eq. (6.31)), with the crucial difference that the proportionality constant is partially
dependent on the exponent (b) or slope (b − 1). This fourth type of power law,
based on the complementary c.d.f., has been reported for the size of firms in terms
of revenue, for fatalities that occur in warfare (both civil wars and international
wars), as well as for a variety of natural phenomena including the magnitude of
earthquakes (Gutenberg-Richter Law).

An important result that links this type of power law model to other classical
distributions models (e.g., Weibull) is given by the following theorem:

Theorem 6.1 (Intensity Function of a Power Law) Given a Type IV power law
with p.d.f. as in Eq. (6.35) and c.d.f. as in Eq. (6.34), then the associated intensity
function or hazard force function H(x) is given by

H(x) = b − 1

x
, (6.36)

where H(x) is defined as p(x)/[1 − Φ(x)], which is:
1. linear in b

2. hyperbolically decreasing in x with power law exponent 1 (scale-free),
3. independent of a

4. a special case of the Weibull distribution for γ (shape) = −1 and λ(scale) =
b − 1, or slope of the CCDF in log-log space

5. has an associated stress or load function Λ(x) given by

Λ(x) =
∫ x

0
H(u)du = (b − 1) lnx. (6.37)
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Proof By substituting Eqs. (6.34) and (6.35) into the definition of H(x) and simpli-
fying the resulting expression to obtain Eq. (6.36). �

Theorem 6.1 is interesting because it provides a simple and direct link between
social complexity theory on the one hand, and risk analysis and uncertainty on the
other. The principle says that all complex social phenomena are generated by in-
verse intensity. The Weibull model includes one such instance of an inverse func-
tion, as do other stochastic processes with hyperbolically decreasing intensity or
hazard rate. Conversely, using Eq. (6.36), the intensity function theorem allows us
to express a power law as a function of the many features associated with H(x),
such as moments and other characteristics.

Types III and IV power laws should never be referred to as “Zipf’s Law for
b = 1,” because such terminology implies that these models contain ranked vari-
ables; they do not.

6.3.2.6 Type V: Algebraic Models
Finally, a fifth type of power law model found in the literature is based on the linear
plot of two ordinary ratio-level variables, so

logy(x) = a′ − b logx (6.38)

and

y(x) = a

xb
. (6.39)

Note that in this case there is no difference between the log-linear slope and
the hyperbolic exponent—a property that differs from the previous cases. Al-
though most social scientists do not think of ordinary algebraic expressions such
as Eq. (6.39) as a power law, in the natural sciences (and in elementary mathemat-
ics) the study of power laws includes these models as well. For example, the relation
between the number of routers y and the number of nodes x in the Internet is gov-
erned by Eq. (6.38) with b ≈ 1.9 (Faloutsos’s Law). If the class of power laws in-
cludes these algebraic relationships or hyperbolic models (type V), then all inverse
empirical relationships that are linear in log-log space also qualify as power laws
(e.g., Polachek’s Law of international conflict and trade, and social gravity models
in human geography and regional economics).

It should be reiterated that the preceding five types of power laws share a great
deal in common—the right side of the equation is always a term inversely propor-
tional to a given variable x—but the mappings are different because what is modeled
on the left side of each equation varies across types. Such variations are sometimes
relatively minor, as between Type II (absolute frequencies) and Type III (relative
frequencies). Other times they are more significant, as between Type III (p.d.f.-
based) and Type IV (c.d.f.-based), or between ratio variables, frequency-based, and
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variable-based models.8 Beyond the formal differences highlighted by the preced-
ing taxonomy, all power laws are susceptible to empirical analysis, as discussed in
the next section.

6.4 Power Law Analysis

Power laws of social complexity are susceptible to various forms of empirical, data-
oriented analysis, as well as theoretical, mathematically-oriented analysis. Both ap-
proaches are necessary and synergistic for understanding complexity in social phe-
nomena.

6.4.1 Empirical Analysis: Estimation and Assessing Goodness of Fit

Suppose a given data sample or set of observations {x} of a variable X yields a
power law of some type (I–IV). From an empirical perspective a review of current
practices in the extant literature shows that there are two common procedures for
assessing the goodness of fit of a power law model in relation to empirical data:
(1) visual inspection of the log-log plot to see if it approximates a straight line, and
(2) judging goodness of fit on the basis of a high value for the R2 statistic. These
procedures deserve close scrutiny, because they can be misused, resulting in false
inferences.

6.4.1.1 Visual Assessments
Visual assessments are useful, informal, and always subjective. A common problem
that is often highlighted by data plotted on log-log scales is “bending” away from
the log-linear model at lower and upper ranges of the distribution (see Fig. 6.6).

Bending of an empirical distribution at lower quantiles can occur because there
might be missing observations for small values that are lost or hard to measure. For
example, in a dataset of war magnitudes the smallest wars may not be recorded.
This is a form of measurement error that can arise for many reasons. Bending at
the lower quantiles can be acceptable if the claim that the smallest observations are
incomplete can be supported; otherwise, lower quantile bending presents a serious
problem with accepting the research hypothesis that the observed data conforms to
a power law.

Bending can be found in empirical data that approximate a power law, but can
also be diagnostic of an exponential or lognormal tail. Also, a uniform distribution
(which is far from being a power law!) plotted on log-log space yields a curved pat-
tern with both lower and upper quantile bending, so the problem in such cases may
not be due to missing observations or finite size—it may be because the distribution
is close to uniform, not at all a power law or even exponential.

8The basic point is that care must be taken to specify which type of power law model is being dis-
cussed or presented; this should not have to be deciphered from poorly labeled plots or misnamed
equations.
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Fig. 6.6 “Bending” is frequently observed in visual assessment of empirical power law distribu-
tions

6.4.1.2 R-Squared
In much of the extant literature, goodness of fit is often assessed using the coefficient
of determination, R2. However, R2 is best avoided as a measure of goodness of fit
and the most recent specialized statistical works on size distributions do not discuss
it. Other statistics and methods, such as the standard error of the coefficients or the
Anderson-Darling test, are preferable when necessary. Still, a good use of the R2

statistic is for comparing different empirical models that have the same functional
form but are estimated using different data samples.

6.4.1.3 Good Practices: Multiple Lines of Evidence
As is normally the case for various estimators, goodness of fit also should be as-
sessed on the basis of multiple methods that provide diverse lines of evidence: small
standard errors, large t-ratios, the Kolmogorov-Smirnov test, the Anderson-Darling
test, among other methods. The estimation of power law models using maximum
likelihood methods is recommended, such as based on the Hill estimator. Table 6.2
compares various statistical assessments for power laws.

By way of summary, some good practices in the empirical analysis of power laws
with statistical data include the following:
1. Use disaggregated data values {x} of the observed variable X to construct the

relevant frequency distribution plots ensuring that all axes and units of measure-
ment are properly labeled. Report the standard errors of all coefficients when
conducting an estimation. Specifically:
(a) For the Type I power law (Eq. (6.27)), data values are ordered from largest to

smallest and the resulting plot should resemble a simple harmonic function
with a long upper tail. In log-log space the same data should approximate a
straight line with slope value of 1.

(b) For Type II (Eq. (6.29)), the data values should be used directly to construct
a histogram of value frequencies and the results plotted in log-log space. The
plot should approximate a straight line, as in Eq. (6.30). Note that in this case
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Table 6.2 Goodness of fit statistics used for assessment of an empirical power law

Statistic Pros Cons References

Hill estimator MLE Can be unstable for
small sample size

Alfarano et al. (2008);
Hill (1975)

Anderson-Darling Sensitive to upper tail
values

Rarely used; not well
known; Type I error
risk

Anderson and Darling
(1954)

Kolmogorov-Smirnov Widely known Insensitive to upper tail
values; Type II error
risk

Chakravarti et al.
(1967, pp. 392–394)

R2 Commonly used; good
for comparing samples

Not a proper goodness
of fit statistic

King (1986)

the estimated slope b̂ in Eq. (6.30) is exactly the value of the exponent b in
Eq. (6.29)—i.e., without the (+1) transformation that is necessary with the
Type IV law.

(c) For Type III (Eq. (6.31)), the procedure is the same as for the Type II power
law, except that it is necessary to compute relative as opposed to absolute
frequencies.

(d) For Type IV (Eq. (6.35)), which is arguably the most important case, the data
values are again used directly, this time to construct the normalized comple-
mentary cumulative frequencies—i.e., the values of the function [1 − Φ(x)],
without binning.9 The log-log plot should then approximate a straight line
with slope (b + 1). Accordingly, a slope of (b + 1) for the distribution of the
complementary c.d.f [1 − Φ(x)] in log-log space yields an exponent of b in
the Type IV power law (Eq. (6.35)).10 That is: slope (b + 1)	 exponent b.

2. Inspect the upper and lower quantiles for excessive bending. Significant bending
should be accounted for (e.g., are there missing observations? is finite size some-
how involved?). Otherwise, the power law model simply may not fit the data and
other models should therefore be considered (e.g., lognormal?).

3. Inspect the number of orders of magnitude (sometimes called “decades”) covered
by the domain of values. In general, the larger the number of orders of magnitude
the more interesting the model because the scale-free property (discussed in the
next section) will extend over several orders. Ensure that the range of orders of
magnitude is not an artifact of the units of measurement.

9“Binning” refers to the procedure of classifying values into equal and finite intervals, which cre-
ates problems when the distribution of the underlying population is unknown. It is unnecessary
in power law analysis that uses raw data. The direct construction of the histogram of normalized
cumulative frequencies is often feasible and always preferable because no binning is necessary.
However, sometimes binning is unavoidable when using official statistics such as provided by gov-
ernment agencies.
10The exact value of the exponent b is of great theoretical relevance, as explained below in
Sect. 6.4.2.1, so reporting the standard error of b is another good practice.
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4. Rely on the most valid and reliable data available, especially when N is not very
large, because other issues such as bending and goodness of fit can be greatly
affected by data quality.

5. Use the standard errors to assess the coefficient estimates, as well as other meth-
ods for assessing goodness of fit, such as the Hill estimator. (Ignore significance
tests for the slope estimates of Type IV models, since, by definition, cumulative
data will always yield slopes greater than zero.)

6. Avoid the R2 for purposes of assessing goodness of fit, but use it to compare
models that have the same functional form—as a comparative measure.11

7. Develop familiarization with standards and methods in various fields where
power laws are used to gain a better perspective and improve the quality of em-
pirical analysis in social power law modeling.

These good practices—based on multiple lines of evidence and complementary ap-
proaches demonstrated over the past century—are susceptible to improvement as
social scientists and other modelers gain experience with empirical applications of
power law models. Important scientific goals will be achieved as good practices
emerge.

6.4.2 Theoretical Analysis: Deriving Implications

A power law is important, inter alia, because of the set of intriguing theoretical
implications it can generate, not just because it establishes an empirical regularity
based on empirical evidence. This is increasingly relevant as social scientists gain
experience in the exploitation of synergies between formal models and empirical
data. Among the theoretical implications that can be drawn from finding a power
law in a given set of data, the following are especially significant in terms of under-
standing social complexity.

6.4.2.1 Average Size
The first moment (average or mean value) of a power law distribution exhibits some
unusually interesting behavior. This is given by

E(x) =
∫ ∞

min{x}
xp(x)dx = a(b − 1)

∫ ∞

min{x}
x1−bdx (6.40)

= a(b − 1)

2 − b
x2−b

∣∣∣∣
∞

min{x}
= xmin(b − 1)

b − 2
, (6.41)

which goes to infinity when b ≤ 2. In other words, there is no mean size (no ex-
pected value E(x) exists) for social phenomena that are governed by a power law
with exponent in the range 0 < b < 2, or (b − 1) < 1 (below unit elasticity). This
is an insightful theoretical result for social patterns such as organizational sizes,

11However, recall that the standard error of estimates contains essentially the same information.
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fatalities in warfare, and terrorist attacks. The threshold b = 2 is therefore theoreti-
cally critical, as it marks the boundary between social phenomena that have a finite
average and computable size (b > 2) and those phenomena that lack an expected
value or mean size (b ≤ 2). This is a theoretical insight derived directly from the
empirically estimated value of the power law exponent b.

6.4.2.2 Inequality
By definition, a power law is a model of inequality (the “many-some-rare” pat-
tern discussed earlier in this chapter), so every power law model has an associated
Lorenz curve given by:

L(Φ) = 1 − [
1 − Φ(x)

]1−1/(b−1) (6.42)

and a corresponding Gini index given by

G(b) = 1 − 2
∫ 1

0
L(Φ)dΦ = 1

2b − 3
, (6.43)

which can be estimated by the empirical equation (Kleiber and Kotz 2003: 35):

Ĝ = 1

n2E(x)

n∑

i=1

n∑

j=1

|xi − xj |. (6.44)

These interesting and insightful theoretical links between the exponent b of a
power law and its corresponding Gini index G of inequality can be summarized by
the following two relations in reference to the tail of a distribution:

heavy tail
(b → 0)

⇐⇒
{

more inequality
less equality

}
⇐⇒

{
smaller b

larger G

thin tail
(b → ∞)

⇐⇒
{

more equality
less inequality

}
⇐⇒

{
larger b

smaller G

6.4.2.3 Entropy
By extension, the greater inequality of a heavy tail also implies greater Shannon
entropy in the distribution of values, or

U(b) = ln

(
b − 1

min{x}
)

− 1

b − 1
− 1, (6.45)

where min{x} is the smallest value in the distribution of X. This last expression es-
tablishes a direct connection between complexity theory and information theory by
linking Shannon’s entropy U to the power law exponent b. Equation (6.45) guar-
antees the existence of as yet unknown information-theoretic properties of social
power laws.
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6.4.2.4 Self-Similarity
When a given variable X obeys a power law, a recurring pattern of constant pro-
portion occurs across the entire range of values of X, as highlighted earlier by the
linear graph in Fig. 6.3(b). The graph of the transformed function f ∗(x) = logf (x)

is as linear in the low range of values as it is in the high range and everywhere in
between. This type of global symmetry is called self-similarity in complexity the-
ory. Self-similarity is also said to be an “emergent” property, because it applies to a
whole set of values, not to individual values or elements.

Self-similarity is also a property of structural laws of social complexity. For ex-
ample, a system of first-order conjunctions (or disjunctions) embedded by higher-
order conjunctions (or disjunctions) is self-similar. A policy process is a classical
example of self-similar structural social complexity in terms of overall policy re-
sponse (first-order), programs (second-order), activities (third-order), down to the
smallest required events (nth-order) that produce policy results.

6.4.2.5 Scaling
The property of self-similarity is also known as scaling, which has prompted the
term “scale-free phenomena.” Vilfredo Pareto discovered that wealth and income
scale. Lewis F. Richardson discovered in the late 1940s (possibly earlier) that war-
fare (“deadly quarrels”) scales with respect to magnitude μ. Since then, it has been
shown that not just international wars but civil wars also scale, as do certain fea-
tures of terrorism. “Artificial” wars generated by agent-based models also scale. Do
other dimensions besides war fatalities, such as time of onset and conflict duration,
scale? The answer is: generally, no. Time durations are more often exponentially or
Weibull-distributed, as we will discuss in Chap. 9.

Scaling is empirically demonstrated for numerous other dimensions of social
phenomena, but remains a deep theoretical notion. Scaling means that dichotomies
of small versus large wars are false, because of the scale invariance given by the
global power law. Scaling also means that it is a misconception to think that small
and large wars share little or nothing in common; they are all—small and large—
part of the same overall pattern, just different ranges of a power law governed by an
identical set of parameter values. Note that scaling occurs if and only if a variable
obeys a power law. (Most biological organisms do not scale.)

6.4.2.6 Fractal Dimension
If the exponent b of a power law equation were allowed to assume only integer val-
ues (1, 2, 3, 4, . . . ) then the frequencies associated with each value would decrease
inversely by the power of such integer proportions. However, when b assumes frac-
tional values (as many exponents reported in the empirical literature) the range of
proportions is itself continuous and no longer discrete as in Euclidean space. This
is why the b-value in a power law is often called Mandelbrot’s fractal dimension.
Note that scaling vanishes as b → 0, because all values of X assume the same fre-
quency when b = 0, so from a scaling perspective a uniform random variable ex-
ists in a 0-dimensional space. A Zipfian power law (b = 1) yields a 1-dimensional
space. A quadratic power law (b = 2 or critical value) yields a 2-dimensional space.
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In general, a b-power law yields a b-dimensional space and fractional values of b

yield fractal dimensions embedded within Euclidean space. Thus, for 0 < b < 1 the
fractal dimensionality is between a point and a line; for 1 < b < 2 it is between a
line and a plane; for 2 < b < 3 it is between a plane and a solid; and so on. Thus, the
fractal dimension also offers another new classification scheme for social phenom-
ena, an idea that physics has begun to exploit with intriguing insights (e.g., Sornette
2003).

6.4.2.7 Criticality and Driven Threshold Systems
Scaling phenomena can be produced by an underlying process that is driven to
a phase of criticality by slowly evolving input forces that stress the system. Al-
though the input driving the system can behave continuously, the state variables
can change abruptly inside a critical region known as a bifurcation set, producing
scaled phenomena. A precursor to this important insight was contributed over three
decades ago by Catastrophe Theory, pioneered by mathematician René Thom
[1923–2002]. Complexity theory supports and extends Catastrophe Theory by pro-
viding a new interpretation of bifurcation dynamics and metastability. For instance,
when a power law is reported for a given social phenomenon, such a finding should
prompt a set of catastrophe-theoretic questions that would otherwise not arise:
• Is the phenomenon governed by a driven threshold system in the sense of Com-

plexity Theory?
• How is the bifurcation set of critical, metastable states to be interpreted?
• What is the form of the associated potential function P(x) defined over the

state-space?
The demonstration of extensive scaling in warfare, demography, and economics pro-
vides significant support for the idea of criticality and related insights on social
complexity, such as metastability, long-range interactions, and universality.

6.4.2.8 Metastability
Social events never “come out of the blue”—they must develop potential before
they can occur. Another important theoretical inference that can be drawn from the
empirical demonstration of a power law in a given social domain is the complexity-
theoretic condition known as “metastability.” A system (or, more precisely, a given
state x ∈ X of a system) is said to be Lyapunov-stable if it is able to maintain its
equilibrium under a range of perturbations. For instance, a positive social relation
(e.g., a marriage, a friendship, an alliance) is stable in this sense if it is able to en-
dure in spite of stresses that commonly affect social relations. By contrast, a social
system is unstable it if falls apart when stressed, such as a polity or an alliance that
ends under the pressure of conflict or unresolved issues. A broad range of social sys-
tem theories—such as in the work of Pareto, Parsons, Samuelson, Deutsch, Easton,
Flannery, Dahl and other social systems theorists—employ this Lyapunov concept
of stability.

By contrast, a system is said to develop metastability when there exist one or
more potential states x′ ∈ X or potential operating regimes (with x 	= x′), other
than the extant state, to which the system could transition, given the realization
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of certain conditions. Metastability is common in many social systems, given their
capacity for change. For example, a domestic political system or polity becomes
metastable during an election or, even more dramatically, during a constitutional
convention. State failure occurs when a polity that has first become metastable then
loses governance capacity relative to accumulated or unresolved stresses. Similarly,
an international system becomes metastable—sometimes increasingly so—in a time
of crisis, because an alternate state of overt hostility or actual violence grows as
the potential for war increases. In economics, financial markets become metastable
when they develop a “bubble” capable of bringing about a market crash. Similarly,
from a more positive viewpoint, a state of warfare becomes metastable when the po-
tential for a return to peace increases; domestic turmoil and civil unrest also become
metastable—as in state-building operations—as the state potential for governance
(capacity) increases relative to stresses. Power laws are diagnostic of metastability
because they model social situations where a broad range of states—not just the
extant equilibrium or observed status quo—has the potential of being realized. The-
ories of social change should leverage the concept of metastability inherent in power
laws.

6.4.2.9 Long-Range Interactions
Scaling phenomena are produced by systems that evolve into a critical phase where
long-range interactions become possible and sometimes occur. A system gov-
erned by only nearest-neighbor interactions will tend to produce mostly normal or
Gaussian-distributed phenomena, or other non-power law phenomena with signifi-
cantly shorter or thinner tails in the upper (and lower) quantiles.

By contrast, a “globalized” system governed by long-range spatio-temporal in-
teractions is subject to non-equilibrium dynamics and processes that produce power
laws. In such systems the occurrence of extreme events is orders of magnitude
higher (not just greater) than in “normal” (Gaussian) equilibrium systems. The spa-
tial dimension of long-range interactions is fairly straightforward in terms of social
or physical distance among social actors. Temporal long-range interactions refer to
persistent memory of the past as well as future expectations, as already seen for the
Hurst parameter in Sect. 5.5.2.2, Fig. 5.2.

The main purpose of these theoretical observations has been to alert readers to
several significant potential implications that go beyond the demonstration of an
empirical power law. This is not to suggest that each one of these theoretical im-
plications is valid in every instance of an empirical power law, so these potential
implications should be seen as a theoretical heuristic for discovering properties of
social phenomena, not as proven properties.

6.5 Universality in Laws of Social Complexity

The social sciences have evolved from an initially unified tradition seeking to un-
cover universal scientific principles of human and social dynamics—which was the
original spirit of the Age of Enlightenment and the rise of modern positive science



Recommended Readings 169

in recent centuries—to today’s condition of significant fragmentation along multiple
dimensions: differences in empirical domains, disciplinary cultures, methodologies,
even epistemologies. For those intrigued or motivated by the prospect of a unified
science of the social universe, structural laws and power laws examined in this chap-
ter offer robust and encouraging grounds for uncovering further universal principles
to better understand human dynamics and social complexity based on a common set
of empirical and theoretical features, such as those discussed in this chapters.

Self-similarity, scaling, fractal dimensionality, self-organized criticality, metasta-
bility, long-range interactions, and universality are all new perspectives surrounding
power laws of social phenomena, based on Complexity Theory. These properties
and insights were unknown at the time when the first power laws were discovered
by Pareto, Zipf, Richardson, and other pioneers. Complexity Theory contains other
properties of power laws that may prove insightful for the social sciences. In turn,
discovery of power laws in the social sciences may contribute new insights for Com-
plexity Theory and non-equilibrium dynamics.12
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7Social Complexity III: Theories

7.1 Introduction and Motivation

This chapter takes a more formal approach to social complexity ideas introduced in
earlier chapters, as required by theoretical analysis. The focus in this chapter is on
explanatory theories of social complexity, given the empirical evidence and patterns
discussed in Chaps. 5 and 6, respectively. To do this in a systematic way, this chapter
highlights elements of causal explanation that are necessary for supporting viable
theoretical explanations, in Sect. 7.3. These foundations are then used as a common
framework for presenting theories that explain initial social complexity, in Sect. 7.4,
as well as more general theories of social complexity that have universal application,
in Sect. 7.5.

Based on what has been covered in the previous two chapters, it is essential to
recall the primary function of theories: to explain observed phenomena. Laws de-
scribe, lines of evidence measure, concepts provide building blocks, and so forth.
Hence, each argument that claims to be a theory must conform to a pattern of sci-
entific explanation. A theory is a causal account of observed phenomena based on
antecedents or precursor events.

7.2 History and First Pioneers

Contemporary models and theories of social complexity have roots in the 18th
century, when social science began to formalize accumulated knowledge through
the medium of mathematics. Elementary probability, decision models, and graph-
theoretical models were among the earliest mathematical structures used, soon to
be followed by dynamical systems of differential equations, game theory, difference
equations, stochastic processes, fuzzy sets, and computational models for conduct-
ing social simulations and developing theory.

Since the formation and development of polities and social systems has been
a subject of intense interest across the social sciences, it is not surprising to learn
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that “theories of the origin of government” or even “theories of the origin of civiliza-
tions” have been appearing since the 18th century. In fact, until the 1950s the first in-
troductory chapter of many political science textbooks focused on origins questions.
However, since the behavioral or quantitative revolution of the early post-World War
II years, it was mostly anthropology that continued to examine the causes of ori-
gins of government, not by design, but by default. Nonetheless, the subject matter
remains distributed across the social sciences, so the integrative approach of CSS
has acquired increased salience in recent years, especially in the light’s of Simon’s
paradigm.
1762 Political philosopher Jean-Jacques Rousseau [1712–1778] publishes one of

the earliest theories of the origin of social complexity in his classic treatise,
Du Contrat Social; Ou Principes du Droit Politique.

1961, 1963 Robert Dahl of Yale University publishes Who Governs? and the first
edition of Modern Political Analysis, providing foundations for the current
standard model of a polity.

1962 Political scientist William H. Riker of the University of Rochester, New
York, publishes The Theory of Political Coalitions, the first mathematical
theory of alliances, based on N -person game theory.

1965 Lofti Zadeh publishes his seminal paper on fuzzy sets, creating a new math-
ematical approach for formalizing ambiguity in complex systems, including
human reasoning and decision-making.

1965 Political scientist David Easton of the University of Chicago, another leader
of the Behavioral Revolution, publishes the first edition of A Systems Anal-
ysis of Political Life, the first systems theory of a polity.

1967 Anthropologist Morton Fried [1923–1986] highlights the significance of as-
serting elite property rights in the theory of chiefdom formation.

1968 Mathematician and mathematical biologist Nicolas Rashevsky publishes the
first mathematical model of chiefly formation in an appendix to his pioneer-
ing monograph, Looking at History Through Mathematics.

1969, 1996 Herbert A. Simon proposes his Artifactual Theory of Social Com-
plexity for the first time in the first edition of his classic work, The Sciences
of the Artificial.

1969 In the same year Martin Landau publishes his first pioneering paper on re-
dundancy in organizational complexity, demonstrating the so-called hyper-
probability effect.

1971 Robert Dahl publishes Polyarchy, the first theory to explicitly account for
contending political authorities within the same polity.

1972 Anthropologist Robert Carneiro proposes his influential Theory of Circum-
scription for explaining the origin of early states.

1977 Anthropologist Timothy Earle begins contributing to the theory of chiefdom
formation, based on control over sources of power; Henry Wright publishes
his influential paper on “Recent Research on the Origin of the State.”
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1978 Simon is awarded the Nobel Memorial Prize in Economics “for his pioneer-
ing research into the decision-making process within economic organiza-
tions.”

1983, 1989 Archaeologist Joyce Marcus proposes the Dynamic Theory of Chief-
dom Cycling for explaining the origin of early states.

1987 Carol Crumley introduces the concept of heterarchy in anthropology, mean-
ing the same as polyarchic (Dahl 1971) and polycentric systems (Ostrom et
al. 1961) in political science.

1994 The EOS Project on modeling Upper Paleolithic social change is published
in the UK by computer scientist Jim Doran and collaborators.

1996 Nobel laureate Herbert A. Simon publishes the third and last edition of The
Sciences of the Artificial, adding a new chapter on social complexity and
near-decomposability.

1997 Timothy Earl publishes his synthesis of social complexity theory and case
studies in How Chiefs Come to Power.

1997 Computational social scientists Lena Sanders and Denise Pumain of the
University of Paris-Sorbonne publish the SIMPOP model, the first hexagon-
based cellular automata model of early urbanization, in the journal Environ-
ment and Planning B: Planning and Design.

1998 Archaeologist Charles S. Spencer publishes a paper on “A Mathematical
Model of Primary State Formation” in the journal Cultural Dynamics.

2002, 2005 The Canonical Theory of Social Complexity is proposed (2002) and
published (2005) in the Journal of Mathematical Sociology as a general the-
ory for explaining original emergence and historical development of social
complexity.

2003 American computational social scientist Peter Turchin publishes one of the
first cellular automata models of a system of chiefdoms in his seminal book
Historical Dynamics.

2007 The first empirically calibrated agent-based model of early states in ancient
Mesopotamia is published by Tony Wilkinson, John Christensen, and col-
laborators from the University of Chicago and Argonne National Labora-
tory. Charles Stanish and collaborators at UCLA publish the first agent-
based model of social complexity in ancient Peru and Bolivia.

2009 Behavioral scientists David Lewis-Williams and David Pearce publish In-
side the Neolithic Mind: Consciousness, Cosmos and the Realm of the Gods,
a theory explaining the role of shamans and religion in the origins of social
complexity.

2010 A formal model for the cycling of complexity in early societies appears in
the online journal Cliodynamics: Journal of Theoretical and Mathematical
History.

2011 Political scientist Francis Fukuyama of Stanford University publishes a the-
ory of political complexity based on the rule of law.
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7.3 Theories of Social Complexity: Elements of Explanation

A defining characteristic of a scientific theory is that it must always contain a story
or causal narrative that links antecedents (causes) to consequences (effects).1 The-
ories of social complexity must explain its emergence through a causal process or
mechanism, the hallmark of which is the ability of the process to account for ob-
served facts or empirical patterns in available data.

The object of explanation—what is being explained, or explanandum—is the
emergence of social complexity. The explanation, or explanans, is a theory. A more
formal definition of emergence of social complexity, one that is mathematically
tractable, is therefore desirable in order to develop theoretical explanations and un-
derstanding.

Definition 7.1 (Emergence of Social Complexity) The emergence of social com-
plexity is a compound event C at a given macro-level of reference consisting of a
specific combination of more elemental events (sample points) at a lower micro-
level in a sample space Ω produced by human decisions � and natural lotteries �
involved in adaptation via the creation of artifacts.

Emergence of social complexity is well defined if the following two compo-
nents—what constitutes a compound event—are specified: (a) a set of more elemen-
tal micro-level events (sample points consisting of decisional outcomes and states
of nature associated with adaptation) and (b) an operational rule that causally links
such events. The use of decisional outcomes and states of nature as elementary oc-
currences grounds theory on micro-foundations.2 Based on elementary probability
theory, the sample points that are used to define an event are axiomatic, left unde-
fined. Similarly, at some point, the elemental events composing the emergence of
social complexity are left undefined. At which point? The answer is: at some point
beyond which we do not care. Given that social complexity emerges as a result of
human decisions (as opposed to being mostly the result of states of nature), a nat-
ural resting place for modeling and explaining the occurrence of social complexity
is at the level of decisional outcomes. In turn, the elements of a choice situation
are generally, albeit not always, considered to be states of nature, no longer deci-
sional outcomes. This approach also allows the theory to rest on micro-foundations
of decision-making performed by agents.

What explains the emergence of social complexity is a causal logic that makes the
event occur, based on how other causal events from the background sample space oc-
cur or fail to occur. For example, for a state to be created from a pre-existing system

1Charles A. Lave and James G. March explain the character of theories as causal “stories” in their
social science classic, An Introduction to Models in the Social Sciences (1993).
2By convention, events are written in uppercase hollow letters (e.g., C); variables are in uppercase
italics (e.g., C). Event C is defined on the sample space Ω , variable C is defined on the set of
values. Each realization of a variable constitutes an event; a variable is a set of realizations. These
conceptual distinctions are critical for developing a unified theory linking macro and micro levels
of analysis.
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of rival chiefdoms, prior related events connected with strategic decision-making,
leadership, procurement of capabilities, enlistment of allies, and so on, must occur
or fail to occur in a given combination, or sometimes in one of several equally ef-
fective combinations. Causal events must occur in non-arbitrary ways in order for
social complexity to emerge. For collective action to take place, a critical combina-
tion of causal events must occur in a specific way; otherwise collective action will
not occur. Today, as was true thousands of years ago, the process of state forma-
tion is caused by specifiable causal events; it does not just happen. In general, the
emergence of social complexity is caused by more elementary and sometimes unob-
servable states of nature and decisional outcomes. The next tool we need to explain
social complexity is a way of mapping causal events onto its emergence.

Definition 7.2 (Event Function) Given a compound event Y and a set of other
events {X} causally connected to the occurrence or failure of Y, the mapping
Ψ : {X} → Y is called the event function of Y. Thus, Y = Ψ {X}.

An event function Ψ (·) defines any causal explanation, which in practice means
modeling a function of functions of functions . . . to whatever desired depth in a
theory’s causal argument {X}. From a computational perspective, this means writing
code with many embedded functions down to the desired resolution. Based on this
definition, the event function for emergence of social complexity can be defined as
follows.

Definition 7.3 (Event Function for Emergence of Social Complexity) Given a com-
pound event C of emergent social complexity and a set of other events {X} causally
connected to the occurrence or failure of C, the mapping Ψ : {X} → C is called the
event function of C. Thus, C = Ψ {X}.

Formally, the argument of an event function spells out in specific detail the exact
causal logic explaining how a compound event is produced. Which event functions
exist and how do different event functions explain the occurrence of a compound
event? How does an event function determine the probability of a compound event?
To answer these questions, and others like them, we must now examine the logic
of social complexity at the micro level to identify two causal modes of explanation
based on sequential logic and conditional logic.

7.3.1 Sequentiality: Modeling Processes. Forward Logic

In sequential logic mode, the emergence of social complexity as a compound event
is explained by providing a temporal succession or path of prior events that leads to
emergence as an outcome.3 In this mode the emergence of social complexity C is

3The popular idiom according to which “nothing simply comes out of the blue” provides an apt
description of so-called forward logic.
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explained as an outcome—one among several possible events—which takes place
in the sample space Ω of a branching process P that passes through several lotteries
and decisions. Sequential logic generally places most of the explanatory emphasis
on a process-oriented causal argument with several intervening contingencies, look-
ing toward the future from the vantage point of the past—hence the term forward
logic. The occurrence of a compound event in sequential logic mode is explained
more as a possible outcome, among several alternative outcomes, rather than as a
given that must occur.
Example: Polity formation. Polities at any level of complexity cannot form

without prior occurrence of necessary events, such as certain kinds of shared
knowledge and sets of skills, including leadership-related events. Polity forma-
tion is only one of several outcomes; others may be continued disaggregation
or warfare.

Example: Hazards and humanitarian disasters. Hazards are natural, anthro-
pogenic, or technological occurrences that can cause damage to humans, espe-
cially when people fail to prepare for them or actually increase risk by ignoring
warnings or increasing exposure, such as settling in seismically or volcanically
active zones.

Example: Financial crises and recessions. Severe economic conditions origi-
nate with earlier events, such as irresponsible policies, institutional failures,
abusive legal practices, fraud, over-consumption, indebtedness, and similar an-
tecedents.

Example: Contentious crises and war. Conflicts of all kinds result from esca-
lation of violence that originates in antecedent events such as unresolved
grievances, adversarial decisions, and other root events.

Example: Political crises and collapse. Polities do not simply collapse for no
reason. They do so when earlier events begin to detract capability and other
factors increase stress to a point where the polity is no longer viable.

Forward logic is reminiscent of extensive form games, including the use of se-
quential event trees to describe the causal process. The initiating event I marks
the start of a sequential process PN(I → C) leading to some event C after N

branching nodes, where I is chosen as a base state, such that the occurrence of
C is remote or even impossible unless a number of future contingencies occur. For
example, in the previous examples, initiating events are given by base states such
as a pre-complex polity, society unaffected by significant hazards, an economy in
good health, a peaceful society with insignificant risk of warfare, and a viable polity
with surplus capacity, respectively. Branching nodes between I and outcomes in
the space Ω are given by decisional outcomes, generated by human choices, and
states of nature, generated by lotteries, where both choices and lotteries are cases
of contingencies.4 Thus, based on sequential, forward logic, social complexity oc-

4Note the dichotomous taxonomy of events as either “decisional outcomes” or “states of nature.”
The former are generated by human decisions, whereas the latter are produced by lotteries. “In-
flation increases by 1.2 percent” is a state of nature, because it is not an event that is decided by
anyone; so, its generative mechanism is called a lottery. “Humanitarian assistance will be provided
to Kenya” is a decisional outcome generated by a human choice, not a product of any lottery.
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curs through a contingent, evolutionary sequence of prior events initiating from a
base state.

Assumption 7.1 (Sequential Causal Logic of Social Complexity) Social complex-
ity C emerges as a future outcome at time τ in the sample space Ω of a branching
process that begins at τ − n. Formally,

C occurs iff “Xτ−1 | all necessary events since Xτ−n,” so C ⇐ Xτ−1 ⇐ Xτ−2 ⇐
·· · ⇐ Xτ−n+1 ⇐ Xτ−n.

Theorem 7.1 (Sequential Probability of Social Complexity) The emergence of so-
cial complexity C with event function given by

C = Xτ−1 ∧ Xτ−2 ∧ · · · ∧ Xτ−n+1 ∧ Xτ−n, (7.1)

where the time index τ denotes time before the occurrence of C and each event is
dependent on the previous event, has sequential probability given by the product of
conditional probabilities

Pr(C) = p−n · p−n+1 · p−n+2 · · ·p−1 =
n−1∏

i=0

pi (7.2)

= P Λ, (7.3)

where Λ = 0,1,2,3, . . . , n − 1, and:

p−n = Pr(X−n), for the first (initiating) event (7.4)

p−n+1 = Pr(X−n+1 | X−n), for the second event (7.5)

p−n+2 = Pr(X−n+2 | X−n ∧ X−n+1), for the third event (7.6)
... (7.7)

p−1 = Pr(X−1 | all prior events), for the last event prior to C (7.8)

Λ = number of prior events leading to C, or length of the process, (7.9)

and P = pn = p−n+1 = p−n+2 = · · · = p−1, when the individual probability of
each event is taken as the same.

In general, all events prior to an outcome of interest C, such as the sequential
priors Xi in Eq. (7.1), constitute a potential for C, or “a potential for the realization
of C.”

Theorem 7.2 (Sequential Hypoprobability of Social Complexity) When prior
events of an emergent social complexity outcome C have not yet occurred, the a pri-
ori probability of C (the “out-of-the-blue probability”) is always: (i) smaller than
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the individual probability P , and (ii) smaller than the smallest of the probabilities
of the prior events. Formally,

Pr(C) < min〈p−n,p−n+1,p−n+2, . . . , p−1〉 (7.10)

< P. (7.11)

Looking at the probability of any of the Λ prior causal events leading to C is al-
ways misleading, because such probabilities always overestimate the objective value
of Pr(C). Moreover, in sequential logic a compound event such as C always occurs
with probability lower than the least probable of the priors.5

Another interesting theoretical property of social complexity, from a forward
logic perspective, has to do with different effects of changes in prior events and
in the length of the branching process. Which of the two has greater effect? In other
words, what has greater effect on Pr(C): changes in pi ∈ P or changes in Λ? The
precise answer is developed by the following principles.

Theorem 7.3 (Dependence of Sequential Probability on the Probability of Priors)
The rate of change in the sequential probability of a social complexity outcome C
with respect to change in the probability of prior events P is given by the expression

∂ Pr(C)

∂P
= ΛP Λ−1, (7.12)

which is always positive, so Pr(C) is concave with respect to P.

Theorem 7.4 (Dependence of Sequential Probability on Length of Process) The
rate of change in the sequential probability of a social complexity outcome C with
respect to change in the number of prior events Λ is given by the expression:

�Pr(C)

�Λ
= P Λ+1 − P Λ, (7.13)

which is always negative, so Pr(C) is convex with respect to Λ.

Both dependence equations are non-linear, consistent with the complexity of
emergent compound events, such as C. These theorems serve as building blocks
for answering the previous question.

5Hypoprobability has nothing to do with incomplete information. The effect emerges from the fun-
damental character of uncertainty as expressed by the sequential probability theorem. No amount
of additional information or intelligence can narrow the gap between the probability of prior events
and the sequential probability of a compound outcome.
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Theorem 7.5 (Sequential Dominance Principle) The sequential probability of so-
cial complexity outcome C is more sensitive to the probability P of prior causal
events in the branching process than to the number of events Λ. Formally,

sP > sΛ, (7.14)

because

∂ Pr(C)

∂P

P

Pr(C)
>

�Pr(C)

�Λ

Λ

Pr(C)
. (7.15)

For many, the dominance principle is counter-intuitive, because intuition would
have us place greater causal attention on cardinality than on probability—exactly
the opposite is true. Informally, we might say something like “prior causal events
leading up to C count more individually than in their total number” or “it matters
more to change the probability of causal priors than to alter their total number.” This
answer is not straightforward without formal analysis, which can be verified com-
putationally. In terms of social complexity, this is often good news, because policies
can affect probabilities whereas the cardinality of prior causes usually depends on
nature:
Example: Polity formation Changes in the probability of polity formation an-

tecedents matter more than changes in the total number of antecedents.
Example: Hazards and humanitarian disasters The probability of experienc-

ing a disaster is influenced more by the probability of hazards, preparations,
and other antecedents than by their total number.

Example: Financial crises and recessions Averting a financial crisis depends
more on ensuring the quality of policies than on increasing their total num-
ber.

Example: Contentious crises and war Conflict prevention is more sensitive to
the probability of escalation, retaliation, and other interactions, than it is to the
length of the road to war.

Example: Political crises and collapse The collapse of polities is more affected
by the probability of critical failures, such as significant losses in human cap-
ital, state resources, infrastructure, and other debilitating failures, than by the
total number of possible failures.

7.3.2 Conditionality: Modeling Causes. Backward Logic

The emergence of social complexity C as a compound event in conditional logic
mode is explained by providing necessary or sufficient conditions, where the “or”
means “and/or.” Conditional logic places explanatory emphasis on the Boolean
structure of a causal argument, looking toward background conditions from the van-
tage point of the present—hence the term backward logic. The occurrence of a
compound event in conditional logic mode is best explained as a given that must
somehow be accounted for, not as a possible process outcome.
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In Chap. 6 we examined descriptive laws of social complexity by introducing se-
rial, parallel, and hybrid structures for compound events such as emergence of social
complexity C. We also introduced the dual concepts of hypo- and hyper-probability
as emergent properties of conjunctive/serial and disjunctive/parallel structures, re-
spectively. Here we look at these more closely.

Assumption 7.2 (Conditional Causal Logic of Social Complexity) Social com-
plexity C emerges in dual causal modes: either by joint occurrence of necessary
conditions (intersection of events X1,X2,X3, . . . ,Xn, by Boolean logic conjunctive
AND); or by occurrence of one among several sufficient conditions (union of events
Z1,Z2,Z3, . . . ,Zm, by Boolean logic disjunctive OR). Formally,

CX = Ψ∩(X1,X2,X3, . . . ,Xn) (7.16)

= X1 ∧ X2 ∧ X3 ∧ · · · ∧ Xn (7.17)

for a conjunctive (AND-caused) event CX , and

CZ = Ψ∪(Z1,Z2,Z3, . . . ,Zm) (7.18)

= Z1 ∨ Z2 ∨ Z3 ∨ · · · ∨ Zm (7.19)

for a disjunctive (OR-caused) event CZ .

The fundamental theoretical reason why the conditional logic assumption on dual
causality is true for social complexity events C, as it is for all compound events, is
because the sample space Ω of causal events can always be partitioned in logically
orthogonal but causally equivalent ways to generate the same compound event C.

Backward logic explanations of social complexity are universally based on two
conditional operators (conjunction/intersection/AND and disjunction/union/OR)
and a variation on each of them (sequential and exclusive extensions, respectively).
These four backward logic operators are examined next.

7.3.2.1 Serialized Complexity: Logic Conjunction ∼ Set Intersection
∼ Boolean AND

The following principle of Social Complexity Theory follows from application of
the fundamental theorem for the probability of a compound event.

Theorem 7.6 (Conjunctive Principle of Social Complexity) The probability of so-
cial complexity C by conjunction is given by the product of probabilities of its n
necessary events. Formally,

Pr(CX) = Pr
(∧

Xi

)
=

n∏

i=1

Pr(Xi ) (7.20)

= p1p2p3 · · ·pn = P Θ, (7.21)
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where Θ denotes the number of necessary causal events for C to occur (2 < Θ < n)

and P is the probability of these events.

Theorem 7.6 is the cornerstone of Social Complexity Theory when emergence
is understood as a macro-level compound event generated by micro-level causal
events. Comparing Eqs. (7.21) and (7.11) we can see immediately that the sequen-
tial logic mode was a special case of conjunction, also called sequential Boolean
AND, or conjunction by sequential conditionality. Hence, some of the properties of
sequential forward models of social complexity also apply to conditional backward
models based on conjunction. Hypoprobability, dependence, and dominance princi-
ples are among the most significant. (They are not repeated here in the interest of
space.)

7.3.2.2 Parallelized Complexity: Logic Disjunction ∼ Set Union
∼ Boolean OR

The next principle follows from Theorem 7.6.

Theorem 7.7 (Disjunctive Principle of Social Complexity) The probability of so-
cial complexity C by disjunction is given by the following equations:

Pr(CZ) = Pr
(∨

Zj

)
= 1 −

m∏

j=1

[
1 − Pr(Zj )

]
(7.22)

= 1 − (1 − q1)(1 − q2)(1 − q3) · · · (1 − qm) (7.23)

= 1 − (1 − Q)Γ , (7.24)

where Γ denotes the number of sufficient causal events for C to occur (2 < Γ < m)

and Q is their probability.

The proof of Theorem 7.7 is easily seen by noting that the disjunctive failure of
social complexity to emerge, event ¬CZ , has probability 1 − Pr(CZ), which is

[
1 − Pr(Zj )

]= (1 − Q)Γ . (7.25)

The following principle follows from Theorem 7.7.

Theorem 7.8 (Hyperprobability Principle) When emergence of social complexity C
occurs by disjunction of other causal events, the probability of C is always: (i) larger
than the individual probability Q of individual causal events, and (ii) larger than the
largest of the probabilities of the causal events. Formally,

Pr(C) > max{q1, q2, q3, . . . , qm} (7.26)

> Q. (7.27)



182 7 Social Complexity III: Theories

Hyperprobability and hypoprobability principles highlight precise and symmet-
rically opposite properties of social complexity generated by disjunctive and con-
junctive causal structures, respectively.

How is the probability of disjunctive social complexity affected by changes in the
probability and number of redundancies? Which effect is dominant? The following
dependence, sensitivity, and dominance principles for disjunctive social complexity
follow from Theorem 7.7, with similar multivariate analysis as for the conjunctive
mode.

Theorem 7.9 (Dependence on Probability of Redundancies Q) The rate of change
in the probability of a disjunctive social complexity event C with respect to change
in probability of causal events Q is given by the expression

∂ Pr(C)

∂Q
= Γ (1 − Q)Γ −1, (7.28)

which is always positive, so Pr(C) is concave with respect to Q.

Theorem 7.10 (Dependence on Number of Redundancies Γ ) The rate of change
in the probability of a disjunctive social complexity event C with respect to change
in the number of causal events Γ is given by the expression

�Pr(C)

�Γ
= Q(1 − Q)Γ , (7.29)

which is always positive, so Pr(C) is concave with respect to Γ .

Both dependence equations are non-linear, as expected by the compound event
probability theorem, consistent with previous results. However, note that redun-
dancy/sufficiency Γ has an opposite effect from necessity Λ. These theorems serve
as building blocks for answering the previous question on the dominant effect of
redundancies on overall disjunctive probability of a social complexity event C.

Theorem 7.11 (Dominance Principle for Disjunctive Social Complexity) The
probability of a disjunctive social complexity event C is more sensitive to the prob-
ability Q of redundant/sufficient causal events than to the number of events Γ . For-
mally,

sQ > sΓ , (7.30)

because

∂ Pr(C)

∂Q

Q

Pr(C)
>

�Pr(C)

�Γ

Γ

Pr(C)
. (7.31)
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All previous results for parallelized social complexity are valid under the stan-
dard Boolean OR, also called inclusive disjunction, meaning “and/or” in common
language. Logically, X ∨ Z = (X � Z) ∧ (X ∧ Z), where the latter conjunction is
inclusive. A variation on this is the exclusive disjunction, also known as Boolean
XOR, which is defined as X �Z = (X ∨ Z) ∧ ¬(X ∧ Z).

7.3.3 Hybrid Bimodal Social Complexity: Several-Among-Some
Causes

The previous two causal situations—conjunction and disjunction—represent pure
causal modes, in the sense that social complexity C is modeled as requiring ei-
ther necessary or sufficient causes. However, between these two causal extremes
lie many cases of social complexity caused by partial necessity or partial suffi-
ciency. This happens when several causes (more than one) must occur from among
a broader set. An example of this occurs in collective action, which is initiated not
by the totality of individuals in a society, or by a single individual acting alone, but
rather by some core subgroup—which, in turn, may consist of a single leader plus a
few close followers.

Another example is in public policy for addressing complex issues. Typically,
a set of programs is prepared and implemented, hoping that some measures will
work, knowing that all will probably not work, and that one alone is insufficient to
obtaining desired results.

Many voting bodies also share this form of social complexity. For instance, this is
the case when unanimity is not required but some minimal set of votes is prescribed
for approving a decision. In the United Nations Security Council, for example, 5 out
of 10 non-permanent members must vote with all five permanent members to pass
a resolution.

The several-among-some structure of social complexity is generalized by the
binomial combination of a number ν of minimally necessary requirements among
m that are available, where m > ν > 1. This means that the number of causal com-
binations that can support C—even if not all are equally feasible—is given by

(
m

ν

)
= m!

(m + ν)!ν! , (7.32)

where m! = m(m − 1)(m − 2) · · ·1 is the factorial of m. Several-among-some com-
plexity is significant because, formally, it reduces to
(i) the pure conjunctive case as ν → m (by Theorem 7.6) and

(ii) the pure disjunctive case as ν → 1 (by Theorem 7.7).
The cardinal number ν is therefore a critical modal variable: toward the upper

bound (ν → m), complexity is caused by conjunction of necessary causes (with
hypoprobability), whereas toward the lower bound (ν → 1) causation is disjunctive
(with hyperprobability).
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An oversized coalition experiences hyperprobability when excess members be-
long to the coalition. If members begin to leave and the coalition reaches minimal
winning size, then hypoprobability begins to set in until the critical threshold is
reached, beyond which the coalition collapses.

Theorem 7.12 (Several-Among-Some Principle) The probability of a social com-
plexity event C caused by a minimum ν conditions from among a set of m that are
possible or available, with a ν-out-of-m event function, is given by the equation

Pr(C) =
m∑

i=ν

(
m

ν

)
P i(1 − P)m−i , (7.33)

where P is the probability of the causal events and i = 1,2,3, . . . , ν, . . . ,m.

Numerous aspects of political complexity are due to combinatorial complexity.
This principle of partial necessity/sufficiency reduces to the simpler conjunctive
principle (7.6) and to the disjunctive principle when ν → m and ν → 1, respectively.
This is a powerful result in Social Complexity Theory, because it encompasses both
conjunctive and disjunctive causal structures. The principle is strongly non-linear
in P , as each binomial term induces hypoprobability as determined by the exponents
i and m − i in Eq. (7.33).

The preceding theoretical principles provide foundations for explaining initial
and subsequent emergence of social complexity, as seen in the remaining sections
of this chapter.

7.4 Explaining Initial Social Complexity

Amoebae, mammals, and entire biomes are living systems that form through differ-
ent processes, just as planets, moons, stars, and galaxies are generated by different
processes of formation. Different formative processes are explained in terms of dif-
ferent theories. At the same time, some general theories also exist to account for
cross-level or multi-scale phenomena, such as gravitational theory, relativity theory,
and the theory of evolution.

The same is true of social systems: different human aggregates require different
theories to account for their formation. Chiefdoms, states, markets, trade networks,
empires, and world systems are characterized by different formative processes for
emergence of social complexity, some of which are better known than others.

In each case it is essential to understand exactly what is being explained: the ex-
planandum. Chiefdoms, states, empires, and global systems are all instances of
the class of complex social entities known as polities. Specifically, they are not
“societies” or “cultures” (which are other, quite different, social entities), but spe-
cific types of political systems with distinct patterns of authority and government.
In Chap. 2 we introduced the concept of a polity and examined it in some detail
using UML diagrams to specify its constituent entities and associations. Now it is
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necessary to formalize some earlier definitions in order to provide a more rigorous
theoretical explanation of initial social complexity (in this section) and its subse-
quent development (next).

Definition 7.4 (Polity) A polity is a complex adaptive system consisting of a soci-
ety and a system (or subsystem) of government for managing collective issues that
affect members of society in the normal course of history. Management of collec-
tive issues is done through public policies prepared, implemented, and monitored
by government.

Understanding how and why a polity forms for the first time—i.e., politogene-
sis—requires what anthropologists call an etic approach and other social scientists
call a nomothetic approach: a precise understanding of what a polity consists of (as
well as what it is not)—including all main component entities and relations among
components—and how it operates under a range of conditions or operating modes
(stable, unstable, failing, recovering, failed). The etic approach has a universal, erga
omnes orientation. Understanding any real-world polity also requires an emic ap-
proach, for mapping or “fitting” the theoretical model onto empirical data. Entities,
variables/attributes are etic; instances and values are emic. The simplest polity is
already complex, because of the presence of goal-seeking and adaptation, both non-
linear, not simple processes, as we have seen and will re-examine in greater detail
below. Now, we need a more formal understanding grounded on etic-based theoret-
ical principles.

From an emic perspective, polities in the initial epochs of social complexity, in
all four regions discussed in Chap. 5, had the complete set of features in Defini-
tion 7.4—although many proper nouns and details remain unknown.
• Mesopotamian polities consisted of Sumerian, Elamite, and neighboring soci-

eties (Amorites, Gutians, among others) governed by assemblies of elites and
rulers, who dealt with public issues such as flooding of the Tigris and Euphrates
rivers, trade regulation, religious worship, industrial-scale textile production, and
protracted border conflicts, among others. Some of the early capitals included
’Ubaid, Uruk, Susa, Choga Mish, and Arslantepe, among many others.

• In northeast Asia, Shang society and neolithic predecessors were ruled by elites
who resided in superior dwellings and managed issues such as irrigation and salt
mining, production of refined jade and, later, bronze artifacts, which required
collective action. Early capital centers included Erlitou and Angyang.

• The earliest South American polities consisted of societies composed mostly of
fishermen and later also farmers and artisans governed by leaders who man-
aged public issues such as disasters caused by natural hazards (El Niño, earth-
quakes, flooding, and mudslides, among the most common). Aspero, Caral, and
El Paraíso were among the earliest polity centers.

• In Mesoamerica the earliest polities consisted of pre-classic societies—such
as Zapotec, Olmec, and Maya—in several regions of present-day Mexico,
Guatemala, and Honduras, governed by chiefs and ruling elites who dealt with
public issues such as endemic conflict (internal and external), natural hazards
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(flooding, earthquakes, wildfires), and infrastructure systems (canals, terracing,
among the earliest, followed by roads and urban sanitation infrastructure). San
José Mogote, Monte Albán, San Lorenzo, La Venta, El Mirador, Copán, and
Kaminaljuyu were among the earliest polity centers.
In summary, all four politogenic regions had identifiable societies, public issues,

governments, and policies—all the components of the standard model of a polity—
based on lines of evidence discussed earlier in Sect. 5.5.1. Collective action (exam-
ined more closely later in this chapter) for monumental works (agricultural, funer-
ary, military, civic, or religious monumental structures), specialized production (ini-
tially fine pottery, jade, and bronze) requiring surplus production, trade networks,
and increasingly organized conflict, with formal armies by the time of the first state
formations, emerged in all four regions, as well as elsewhere in less complete form.

Another social science term for a polity is a political system, in the same sense
as:

polity ≡ political system

society ≡ social system

economy ≡ economic system

In turn, each main component of a polity needs an explicit definition that is uni-
versally applicable across time and space. The following etic-based definitions—as
the definition of a polity—are made empirically specific, or emic-based, as neces-
sary.

Definition 7.5 (Society) A society is a collectivity of persons that interact through
social relations and share one or more identities in common. Attributes of a society
include its size, location, composition, identities, authorities, stratification, wealth,
and associated statistics and distributions, including social network features.

Computationally, the state of society is defined by the tuple of societal attributes.
In particular, the level of stress of a society is given by the effect of public is-
sues, as defined below. Social identity (which can be kin-based, ethnic, linguistic,
or geographic, among most common forms) determines authority or, in common
language, “whom people listen to/obey.” In any given society, multiple identities
map onto multiple authorities, as in a bipartite graph, because identities and author-
ities are disjoint sets. The social entity “society” consists of individuals, groups,
social relations, and norms; it does not include other entities, such as institutions of
authority or government, which form part of a different component of a polity.6

6Advanced polities, such as democracies, also include intermediary structures (e.g., political par-
ties, lobbying groups, labor unions) located between society and government. These are not re-
quired for explaining initial social complexity, so we examine them later.
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The society of most early polities was rather uniform, but neighboring polities
were often populated by culturally different societies. Sumerians dominated early
Mesopotamian polities in West Asia, but neighboring polities to the East were pop-
ulated by Elamite societies. In East Asia, the ancestors of what later became the
Han people, as well as other neolithic cultures (e.g., Xinle, Yangshao, Dadiwan,
Longshan, Dawenkow, Daxi, among others), composed the society of early polities.
Names for pre-Moche societies of the earliest South American polities (Aspero,
Caral, El Paraíso, among many others) are unknown. Zapotec, Olmec, Maya, and
Teotiuacano societies populated the earliest Mesoamerican polities. The powerful
polity of Teotihuacán had a heterogeneous, multi-cultural society, consisting of local
and foreign residents (Maya, Zapotec, Otomi, Mixtec) in segregated neighborhoods.
All early empires (Akkad, Shang, Moche, Teotihuacán) comprised heterogeneous
societies.

Definition 7.6 (Public Issue) A public issue is a collective concern that affects
members of a society in some consequential way, which can be positive (opportuni-
ties) or negative (threats, hazards).

Issues are public, as opposed to private, when they affect a collectivity of persons
in a given society, as opposed to individual or internal household matters. The main
effect that public issues have on society is to cause stress on one or more groups,
which is a situational change that must be dealt with to eliminate or mitigate the
stress. Public issues define the realm of the political and provide causal motivation
for generating systems of government. Examples of public issues vary with epochs.
Security, leadership succession, transportation, migrations, technological innova-
tions, public health, and trade standards are among the oldest public issues that the
earliest polities engaged with in all primary politogenic regions and elsewhere. Edu-
cation, consumer protection, and management of the economy are more recent. The
need to solve public issues—to enjoy a better life—is the main generative source for
first emergence and subsequent long-range evolution of social complexity. Public
issues justify government, which produces policies for managing issues.

Definition 7.7 (Government) The government of a polity consists of the organi-
zational system of institutions and procedures for managing societal issues through
public policies.

The association between society and government is known as regime or, more
specifically, constitutional regime, because the relationship between society and its
respective government is defined by constitutional code or custom. Democracy,
dictatorship, and monarchy, are modes of regimes. From a computational object-
oriented perspective, regime is an association class with encapsulated attributes
such as
• typeOfRegime [string]
• dateOfFormation [tuple]
• constitutionSource [string]
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• legislativeInstitutions [list]
• executiveInstitutions [list]
• judiciaryInstitutions [list]
among others, and operations (implementation, amendment, suspension, abroga-
tion, and other).

From a governmental and computational information-processing perspective,
chiefdoms have undifferentiated institutions of government (the chief or paramount
leader carries out all functions of governance, with maximum centralization of
information-processing), whereas states have specialized institutions (federated
information-processing). Early forms of government in Sumerian polities included
assemblies and authoritative rulers, and later, bureaucracies comprising systems
of public administration. Similar forms emerged in East Asia, South America, and
Mesoamerica. Governance and information-processing in all four areas, with the ex-
ception of South America, were supported by systems of writing (cuneiform, glyphs,
and other logographic writing systems). Andean polities used a recording system for
storing information called quipu since ca. 2000 BC (thus, quipu was invented much
earlier than the Inca empire), consisting of sets of chords with knots denoting vari-
ous base-10 values for encoding information. From a computational perspective, a
system of writing provides much greater information-processing capacity, as well
as memory, which explains the emergence of states concurrent with the invention of
writing.

Definition 7.8 (Policy) A policy is a program of actions intended to manage (i.e.,
define and resolve or mitigate) a public issue.

Computationally, a policy is an association class with encapsulated attributes
such as
• targetIssue [string]
• targetSocialGroup [string]
• dateOfFormulation [tuple]
• dateInitialImplementation [tuple]
• cost [int]
• effectiveness [float]
• efficiency [float]
• popularity [float]
• implementingActors [list]
among others, and operations such as fundingRate(), changePopular-
ity(), and others. Trade policy was among the earliest forms of policy in primary
polities, used for regulating commerce and possession of luxury items (precious and
semi-precious stones and metals) and intended to provide rulers with unique control.
Territorial deterrence and defense policies, first putatively under chiefdoms and later
much more reliably under states, were also among the first policies to be enacted by
rulers. Fiscal policies provided tax revenue and other forms of income to pay for
other policies and government programs (e.g., infrastructure construction and main-
tenance, dating back to the earliest chiefdoms), including the cost of government
itself.
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As a social complexity event P, policy requires conceptualization based on need
(X1), design (X2), implementation (X3), monitoring (X4), and (optionally) adjust-
ments (X5). This minimal, first-order, five-event (Λ = 5 causal requirements) gen-
erative process has event function Ψ (·) and probability equations given by

P = X1 ∧ X2 ∧ X3 ∧ X4 ∧ X5 (7.34)

Pr(P) = p1 · p2 · p3 · p4 · p5 =
5∏

i=1

pi (7.35)

= P 5 (7.36)

< min〈p1,p2,p3,p4,p5〉 (7.37)

< P, (7.38)

where P denotes the probability of sequentially conjunctive causal events taken
across stages of the policy process. Chiefdoms and states have relatively low and
high values of P , respectively, because of differences in policy-making capacity
and reliability. For example, chiefdoms struggle to defend territory because they
lack many of the attributes that states have: state rulers have access to more reli-
able intelligence, and a bureaucracy and system of public administration to support
policy design, implementation, monitoring, and adjustments, to name a few. In de-
velopmental terms, chiefdoms and states are “rudimentary” and “mature” forms of
complex adaptive systems, respectively.

States also have capacity to build redundancy into policies to increase their over-
all reliability. A state policy P∗ with 2nd-order, ν-out-of-m partial redundancies for,
say, implementation, monitoring, and adjustments, has event function Ψ (·)∗ and
probability equations given by

P∗ = X1 ∧ X2 ∧
(

m∨

i=α

Zi

)

∧
(

n∨

j=β

Zj

)

∧ X5 (7.39)

Pr
(
P∗)=

∏

k=1,2,5

pk ·
[
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m

α

)
Qi(1 − Q)m−i

]

·
[

n∑

j=β

(
n

β

)
Rj (1 − R)n−j

]

(7.40)

> Pr(P), (7.41)

where Q and R are the disjunctive probabilities, and α < m and β < n are bino-
mial parameters for partial redundancies in implementation and monitoring, respec-
tively. Note that the 1st-order conjunction in Eq. (7.40) still requires a product of
all five policy process probabilities, which induces overall hypoprobability. How-
ever, implementation and monitoring redundancies, represented by the disjunctive-
binomial expressions, induce some local hyperprobability, which is helpful and is
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entirely absent in the policies of chiefdoms due to their inferior capacity. This is
one way in which greater complexity of a state produces higher policy performance
(Eq. (7.41)). Imperial polities, characterized by quantum greater governance com-
plexity, can attain extremely high levels of policy performance when operating at
maximum capacities.

In the next sections we examine theories of social complexity pertaining to chief-
doms and states. Social complexity theories of empires represent an exciting but
relatively undeveloped research frontier, especially from a CSS perspective.

7.4.1 Emergence of Chiefdoms

7.4.1.1 What Kind of Polity is a Chiefdom?
A chiefdom must be defined in sufficient scientific detail before explaining how one
forms.

Definition 7.9 (Chiefdom) A chiefdom is a polity with stratified and ranked so-
ciety (minimally elite members and commoners), public authority exercised by a
chief (paramount leader, strongman) and subordinate village rulers (sub chiefs), and
putative control over a regional territory comprising several villages.

For commoners, chiefly authority is a function of local identity and ability to pro-
vide basic public goods (security, basic well-being). For elite members, it is based
on rewards, as explained below. Territorial control by government (the chief) is pu-
tative, and not highly reliable (as for a state), due to lack of capacity to establish
and defend boundaries. Chiefdoms lack permanently staffed institutions (public ad-
ministration, judicial system, military forces, among others), but have specialized
craftsmen that do not depend on elaborate supply chains for producing elite goods.
Shamans or religious leaders (temple priests) specializing in spiritual life through
private and public rituals are members of the non-commoner group.

Hunter-gatherer, pre-complex societies began building shrines—temporary, non-
residential places of worship, often at remote locations—but not temples. Chiefly
elites constructed temples for worshiping the community’s deities, as in a three-
way, “win-win-win” or mutually reinforcing triadic social relation:
1. Chiefs gain authoritative legitimacy and approval from commoners by building

and dedicating temples; they also gain support from religious authorities as spon-
sors.

2. Commoners support temple projects because they provide a place of worship and
a link to the afterlife, and because the community is reinforced and energized.

3. Priests play a key role as intermediaries between this life and the afterlife by
constraining chiefs and elites, consoling commoners, and highlighting commu-
nity identity.

Such a simple triad is also cognitively balanced, in the sense of Abelson (Sect. 4.8.1),
and it supports the belief system in Fig. 7.1. The six nodes and eleven relations
are all balanced, making this a powerful, stable, and shared belief system for the
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Fig. 7.1 An
Abelson-balanced belief
system relating multiple
aspects of communal worship

community—and the temple is the physical venue for the communal practice of
worship.

As measured by the Peregrine-Ember-Ember scale of social complexity discussed
earlier in Sect. 5.5.2, chiefdoms are empirically characterized by mostly sedentarism
(nomadic chiefdoms do exist, as among steppe societies in Central and Inner Asia
and desert regions of the Middle East, but are exceptional), inegalitarian (status or
wealth) differences, population density greater than 1 person/mi2, reliance on food
production, and villages with population greater than 100 persons.

The political economy or public finance of a chiefdom has the following charac-
teristics:
1. Coalition government: Government by the paramount chief depends on a polit-

ical coalition with local chiefs who lead commoners at the village level. The
paramount chief is not the sole ruler who governs in the polity. The governing
coalition is the main social artifact, since a chiefdom lacks other institutions.

2. Side-payments: Every political coalition entails costs, both tangible and intangi-
ble. By Riker’s theory, side-payments (gifts, bribes, rewards, honors, and other
benefits) are used by the paramount chief to gain, maintain, or strengthen the
allegiance of confederate subordinate chiefs and their villages.

3. Resource flows: Local village rulers exact taxes from commoners, keeping some
for themselves and providing some to the paramount chief, while some is spent
on local provision of private and public goods (e.g., building temples and defen-
sive works).
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4. Private property: Elites (secular and religious) have property rights over tangible
(land, labor, animals, water wells, among others) and intangible (symbols, status,
sacred attributes) resources, which they assert vis-à-vis commoners.

5. Interdependencies: Similar to the win-win-win triadic relationship noted earlier,
a paramount chief depends on his ability to extract resources from subordinates,
as well on his capacity to deliver public goods, such as defense and security
against neighboring chiefdoms; on participation in periodic rituals and major
events in the spiritual and social life of the community; and on administration
of justice. Elite members and local chiefs depend partly on the paramount chief
for their livelihood and prestige, and partly on local commoners. In turn, local
commoners depend on rulers for defense against aggressors and for organizing
other forms of collective action, including temple construction.

6. Monumental structures: Large-scale monumental structures in chiefdoms—such
as construction of temples and spiritual structures that are perceived to provide
rewards in the afterlife, or utilitarian infrastructure such as irrigation systems for
agriculture or flood control systems—are financed by forced and voluntary labor.

7. Energy budget (energetics): A chiefdom must maintain a neutral (minimally) or
positive (preferably) energy balance in order to be sustainable, just as in any
other polity. In particular, food production (agricultural, maritime, or foraged)
must yield sufficient surplus to support all persons who are not producing, such
as rulers and all elite members, craftsmen, and clergy.7

8. More public structures: A corollary of this is the construction of communal ar-
tifacts such as storage facilities, and defensive structures to protect increased
wealth coveted by neighboring chiefdoms.

9. Environmental conditions: Features of the natural environment, including natural
hazards present in the region, provide costs/threats and benefits/opportunities that
are an integral part of the overall political economy of a chiefdom. Some of these
are fixed, others are variable; some are periodic, others are random.

10. Precious stones and metals: Control over exotic materials, such as precious
stones (jade, turquoise, obsidian, lapis lazuli, carnelian, pearls) and metals (gold,
silver, copper), is sought by chiefs because these materials provide distinction
and are also used as rewards for obedient subordinates. Elaborate forms of these
materials, such as jewelry and other status symbols, require provisioning of raw
materials, specialized craftsmen, secure workshops, inventory control, and viable
distribution.
A chiefdom, unlike a state, lacks a palace for rulers because while a chief can get

commoners and allied elites to finance and build a temple, a chief lacks sufficient
power to have them build a palace for himself and his entourage. Temples are dedi-
cated to local deities, so they belong to the community, not to the chief. The palace

7The term energetics is used in archaeology to demote the caloric budget of a community in terms
of energy produced and consumed. For example, a community of a given size, producing so many
surplus tons of barley per year, is able to build during so many days of the year. Conversely,
when archaeological excavation reveals a given number of structures, the total energy necessary
to construct them must be accounted for in terms of population available and food to sustain the
required labor force.
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would be different, because as a private dwelling, in addition to being a place of
public government business, it would belong to the paramount chief and his family
and friends. That requires a state-level polity, as we shall see in the next section.

A simple chiefdom has a minimal version of all the features we have discussed
so far: a few villages distributed in a relatively small territory, totalling around
1,000 inhabitants or less, with governance provided by a strong leader and subordi-
nate confederates. Basic artifacts include rudimentary defensive structures (moats,
berms, ditches, palisades), a temple in the paramount chief’s village (smaller ones
are also possible in other villages), and a small political coalition as the sole insti-
tution to support governance. A complex chiefdom will have an additional level of
elite hierarchy, which acts as a multiplier of social complexity in the polity, while
still lacking specialized institutions or permanent bureaucracy. Both kinds of chief-
dom have temples; neither has palaces.

Finally, all chiefdoms are unstable polities, which cycle through integration and
disintegration for multiple reasons:
• The paramount chief has to struggle constantly to secure resources necessary to

provide side-payments for confederate chiefs; otherwise the coalition may fall
apart.

• Subordinate chiefs decide strategically, so they may change allies, causing civil
war.

• Reserves and other resource buffers for ensuring against inevitable and unpre-
dictable natural hazards (droughts, floods, mudslides, earthquakes, El Niño) are
unreliable, when they exist at all.

• Neighboring chiefdoms pose a constant threat through raids and attempted con-
quests.

• Rulers depend on the manipulation of the spiritual realm and communal deities,
as well as priestly consent, to maintain authority.

• Absence of permanent institutions makes all governmental operations precarious
at best, including the assertion of elite property rights.
From this theoretical perspective, chiefdoms are always in a metastable state,

on the brink of either disintegrating, being conquered by a neighbor, or—in rare
cases—undergoing a phase transition in a state-level polity by conquering other
neighboring chiefdoms (discussed in the next section). In short, in a chiefdom there
is never sufficient reliable capacity for managing emerging public issues with high
probability of success.

7.4.1.2 How do Chiefdoms Emerge?
Politogenesis—the first emergence of chiefly social complexity—is explained by
considering antecedent conditions and their realization through time, including sys-
tematic, specifiable sets of conjunctive and disjunctive events in the causal process
of polity formation. Specifically, the dynamic phase transition from a simple, purely
kin-based society to initial social complexity at time τ involves the realization of a
potential that developed in such societies at time τ − �τ .
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Fig. 7.2 Forward sequential causal logic tree for initial sociopolitical complexity, denoted as the
contingent process P3(Ω) of politogenesis with three antecedents

Assumption 7.3 (Potential as Antecedent Condition) Initial social complexity oc-
curs (event C) if and only if (i.f.f.) a prior potential P emerges or forms in the state
space S of a previously simple society, such that C occurs when P is realized. Con-
versely, complexity cannot occur without prior formation and subsequent realization
of an associated potential.

Figure 7.2 shows the forward-sequential causal logic tree for occurrence of initial
complexity C within the social outcomes space Ω , according to Assumption 7.3.
Given a society in a simple state with only kin-based organization (event S), the
potential for sociopolitical complexity may or may not occur (events P and ∼ P, re-
spectively). If ∼ P, then the potential cannot be realized (since it does not exist) and
the outcome in Ω is that society does not change. If P occurs, in terms of knowledge
and ability conditions 1–9 (examined below), then such a potential may or may not
be realized (events R and ∼ R, respectively). If ∼ R, then the polity becomes and re-
mains metastable (event S∗ ∈ Ω). If R, then the outcome is the occurrence of initial
sociopolitical complexity (event C).

Thus, Ω = {S,S∗,C}, where C is an outcome in the contingent process P3(Ω)

of politogenesis with three antecedents. In causal logic form, initial complexity C at
time τ implies an associated prior potential P at some prior time τ −δ as a necessary
condition, C(τ ) ⇒ P(τ − δ), but not conversely, for some δ < τ .

Assumption 7.4 (Potential as Compound Event) The emergence of potential for
initial social complexity P is a compound event, not a singleton or elementary event,
as specified by an event function Ψ (·) in terms of a set {X1,X2,X3, . . . ,Xn} of more
elementary events causally linked to the occurrence of P. Formally,

Ψ : P ⇐ {X1,X2,X3, . . . ,Xn}, (7.42)

so

P = Ψ (X1,X2,X3, . . . ,Xn), (7.43)

where Xi denotes the ith causal event for i = 1,2,3, . . . , n.
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Assumptions 7.3 and 7.4 lead to the following two key questions:
1. Exactly what constituted such potential for initial social complexity?
2. Under which conditions would such potential be realized?

The first question translates into: What knowledge and abilities did community
members have before they formed the simplest chiefdoms? What did they have to
know? The following minimal ensemble of necessary conditions (conditio sine qua
non) possessed by members of simple bands in pre-complex societies created the
potential—albeit not the certainty—for emergence of initial social complexity:
1. Kinship knowledge. People had knowledge of their kin, which supported ex-

tended households beyond a family nucleus, as well as enabling collective action
based on deontic (obligation-based) norms or for advancing other goals.

2. Communicative ability. Humans began using language to communicate be-
tween ca. 100,000 and 50,000 years ago. Communicative ability was necessary
for collective action (both planning and execution), such as in large-scale hunt-
ing.

3. Normative sociality. Cooperative social norms were known to people in pre-
complex societies via biological evolution, specifically norms of kin selection
and reciprocal altruism.

4. Social identification ability. The ability to classify others into in-group vs. out-
group status was essential for detecting potential threats and opportunities, as
well as for norm use or invocation. In-out group identification generated cogni-
tive complexity and balancing.

5. Environmental knowledge. Awareness concerning the biophysical landscape
was necessary for finding resources and detecting significant change, such as
in local species, “normal” climate, and other aspects.

6. Knowledge of normal vs. rare events. Ability to detect situational change, such
as emergent threats or opportunities, beyond the biophysical environment, was
necessary for assigning levels of urgency, significance, or priority.

7. Food procurement ability. Hunting, gathering, fishing, herding, farming, or
preying on others (stealing) was necessary for maintaining sustenance through-
out seasons of the year and longer time spans, especially in temperate regions far
from the Equator, where seasonal variations determine the basic food supply.

8. Homicidal ability. Originally derived from the hunting skill-set, homicidal abil-
ity was a necessity in some modes of collective action (while remaining a tabu
among group members), such as when facing lethally aggressive adversaries.
Deterrence also requires credible homicidal action.

9. Collective action ability. People knew how to organize for collective action (i.e.,
how to lead and how to follow, and other modes of collective action) before
chiefdoms formed. Collective action was invented and perfected through ancient
activities such as hunting large mammals.

None of these abilities or kinds of knowledge per se necessarily produced social
complexity; they were merely abilities among others. Also, not all ancient societies
met these conditions everywhere at the same time. In fact, in vast areas of the world
these conditions were never met, or were met much later.
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Fig. 7.3 Forward sequential
causal logic tree for initial
politogenesis C grafted with
a first-order backward
conditional causal tree for
complexity potential P
(Conditions 1–9;
Sect. 7.4.1.2)

Assumption 7.5 (Specific Requirements for Chiefdom Formation) The event func-
tion Ψ for the compound event P includes the following minimally necessary causal
events Xi of required knowledge and abilities (conditions 1–9 detailed above):
1. Xkin = Kinship knowledge,
2. Xcom = Communicative ability,
3. Xnorm = Normative knowledge,
4. Xid = Social identity knowledge,
5. Xenv = Environmental knowledge,
6. Xrare = Knowledge of normal vs. rare events,
7. Xf ood = Food procurement ability,
8. Xkill = Homicidal ability, and
9. Xca = Collective action ability.

Based on these assumptions, the potential P for chiefdom formation is given by
the conjunctive event equation

P = Ψ (Xkin,Xcom,Xnorm, . . . ,Xca), (7.44)

⇐ (Xkin ∧ Xcom ∧ Xnorm ∧ · · · ∧ Xca), (7.45)

which specifies the conjunction (
∧

i Xi ) of causal events that generate P. Equation
(7.45) is used in Fig. 7.3, which extends Fig. 7.2 by specifying preconditions 1–9
for P.

Similarly, event R, which consists of the actual realization of P, (see Fig. 7.2), is
specified by the conjunctive event equation

R = O ∧ W ∧ I, (7.46)

where O,W, and I denote the occurrence of willingness, opportunity, and implemen-
tation.
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Theorem 7.13 (First-Order Probability of Chiefdom Formation) Let X = Pr(X).
The probability of initial social complexity (event C ∈ Ω in Fig. 7.3) is given by

C = S · P · R =
R∏

i=S

Xi (7.47)

= c3, (7.48)

where c denotes some uniform probability on the closed interval [0,1] taken across
causal events S, P, and R.

Theorem 7.14 (Probability of Potential for Chiefdom Formation) The probabil-
ity of potential for politogenesis P ∈ P3(Ω) as a function of first-order causal
events Xi (Assumption 7.5) is given by

P = Xkin · Xcom · Xnorm · · ·Xca =
ca∏

i=kin

Xi (7.49)

= xΘ, (7.50)

where x denotes some uniform probability taken across Θ causal events, which are
nine assuming Xkin to Xca (causal necessary conditions 1–9, Assumption 7.5).

Theorem 7.15 (Probability of Realization) The probability of realizing a polito-
genic potential R ∈ P3(Ω) as a function of first-order causal conditions for oppor-
tunity O, willingness W, and implementation I is given by

R = O · W · I (7.51)

= r3, (7.52)

where r denotes some uniform probability taken across O, willingness W, and im-
plementation W events.

The following second-order principles extend previous principles. These are
stated in terms of more specific causal events, which is useful because second-order
conditions are closer to observation and operational events than the more abstract,
theoretical first-order conditions.

Theorem 7.16 (Second-Order Probability of Chiefdom Formation) The second-
order probability of initial chiefdom formation is given by

C = Ψ (S;Xkin,Xcom,Xnorm, . . . ,Xca;O,W, I), (7.53)

⇐ 〈
S ∧ (Xkin ∧ Xcom ∧ Xnorm ∧ · · · ∧ Xca) ∧ O ∧ W ∧ I

〉
, (7.54)
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and

C = S

(
ca∏

i=kin

Xi

)

O · W · I (7.55)

= yΓ , (7.56)

where y is some uniform probability taken across the set of Γ second-order causal
events for C and Γ > Θ .

Note that Γ = 13 in Eq. (7.56), w.r.t. second-order conditions. In fact, Γ � 13,
because much more conjunction is involved before reaching the operational be-
havioral level. For example, implementation I is itself a compound event (i.e., ac-
tually enforcing elite property rights, creating the chiefly coalition, building the
temple, and other necessary and difficult collective action strategies that the chief,
elites, and commoners must accomplish) produced by highly contingent processes.
Theorem 7.16 explains why politogenesis was such a rare occurrence in history
(early Holocene). Since Γ � Θ + 4 (by Eq. (7.54)) and Θ = 9, it follows that
C(y;Γ ) � y13, which yields a relatively minuscule probability C of chiefdom for-
mation for arbitrary values of y. If Assumption 7.5 is incomplete (Θ > 9), then
politogenesis, as well as its potential, are even rarer events!

The following sensitivity results follow from multivariate analysis of the preced-
ing principles.

Theorem 7.17 (Gradient of the Potential for Chiefdom Formation) The gradient
of the probability P of potential for politogenesis is given by

∇·P = ΘxΘ−1x̂ + (
xΘ+1 − xΘ

)
ϑ̂, (7.57)

so P is increasing in x and decreasing in Θ;and

|∇·P | ≈ ΘxΘ−1, (7.58)

so ∇·P points mainly in the direction of x.

Theorem 7.18 (Gradient of the Probability of Chiefdom Formation) The gradient
of the probability C of chiefdom formation is given by

∇·P = ΓyΓ −1ŷ + (
yΓ +1 − yΓ

)
γ̂ , (7.59)

so C is increasing in y and decreasing in Γ ;and

|∇·C| ≈ ΓyΓ −1, (7.60)

so ∇·C points mainly in the direction of y.
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7.4.2 Emergence of States

We now turn attention to a more precise specification of the state polity and the
theoretical explanation of its primary formation. This section parallels the earlier
analysis of chiefdoms.

7.4.2.1 What Kind of Polity Is a State?
“A state is not a chiefdom on hormones,” the American archaeologist Joyce Marcus
(1992) once wrote.

Definition 7.10 (State) A state is a polity with a stratified and ranked society (elite
members, civil servants, traders, military, and commoners), a system of government
composed of specialized, differentiated institutions with authoritative decision-
making, capacity to collect taxes as government revenue, and reliable control over
territory and its resources.

Stately authority is a function of local identity, monopoly over the use of force,
and ability to reliably provide public goods beyond defense and security. Govern-
ment offices are held through ascriptive (hereditary) as well as achieved (merito-
cratic) modes. Territorial control by government is dependable, enforced by perma-
nent standing military forces, and highly reliable (unlike a chiefdom), due to suf-
ficient capacity to defend boundaries. States have permanently staffed institutions
(public administration, judicial system, military forces, among others), and indus-
trial organizations with specialized craftsmen that are dependent on supply chains
for producing elite and utilitarian goods. Religious leaders (temple priests) are gen-
erally also part of the elite, non-commoner group, but play a less essential role than
in a chiefdom, due to greater political autonomy of state rulers and institutions rel-
ative to chiefdom rules.

As measured by the Peregrine-Ember-Ember scale of social complexity, states
are empirically characterized by metal production, social classes, towns with more
than 400 persons, three or more levels of settlement hierarchy, population density
> 25 person/mi2, wheeled transport, writing of any kind, and money of any kind.

The political economy or public finance of a state has the following characteris-
tics, which are fundamentally different from a chiefdom:

1. Public issues: Members of society who live in a state have an expectation that
government policy will address public issues; this expectation generally in-
creases over time (well-being has positive feedback), rather than decreases.

2. Policymaking: Problem-solving to address public issues through policies is a
formal, institutionalized process.

3. Coalition: Rulers still depend on a support coalition, often called nobility, with
side-payments provided to supporters, but on a scale greater than in chiefdoms.

4. Taxation: Government operations are financed primarily by tax revenues ex-
tracted from commoners and merchants, as well as by the spoils of warfare
(e.g., used for paying military forces).
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5. Bureaucracy: The system of public administration plays a critical role in the
provision of public goods and in tracking state revenue streams.

6. Cost of government operations: Maintaining a ruling elite that decides policy
and a bureaucracy that implements it is a permanent, recurring cost that some-
how must be financed.

7. Private property: Right over private property is enforced by rule of law and
judiciary institutions.

8. Interdependencies: The state leader (now a king, as opposed to a paramount
chief) depends on his ability to extract resources from the nobility in exchange
for titles and rights, as well as on the capacity of government to deliver an array
of public goods (defense, justice, public sanitation, policing, markets, roads,
port facilities). Members of the nobility depend partly on the state leader for
their livelihood and prestige, and partly on compliance from local commoners.
In turn, commoners depend on members of the local nobility for policing, de-
fense against aggressors, and for organizing other forms of collective action,
including public works.

9. Monumental structures: Large-scale monumental structures in states are cre-
ated by paid and forced labor (including slaves, captives). These include of
palaces and monumental tombs, road networks, aqueducts, military fortifica-
tions of many kinds (from sophisticated and massive city walls to regional fron-
tier walls still visible from space), industrial factories (e.g., bronze, requiring
complex supply chains and thousands of workers and specialized managers),
among the most costly. Temples and spiritual structures are not neglected by
the state; they are built bigger, since they are still perceived to provide rewards
in the afterlife.

10. Energy budget (energetics): Food production in a state polity is organized to
yield surplus on a large scale, because the number of persons who are not pro-
ducing food is a much greater proportion of the population.8

11. More public structures: A corollary of the above feature is the construction of
non-residential office space in palaces to support operations of public adminis-
tration, judicial courts, and military barracks and forts.

12. Environmental conditions: The environment, including natural hazards in the
state territory, has even greater significance, because of greater population size
and increasingly complex infrastructure systems exposed to a broader spectrum
of risks; some of them interdependent or “cascading,” linked via infrastructure.

13. Precious stones, metals, textiles: Consumption of jewelry, all forms of elabo-
rate ornaments, and sumptuous clothing by state elites (secular, military, and
religious) is exuberant, compared to wares in chiefdoms. All of these must be
financed.

14. Military expenditures: The cost of a permanent, on-demand military force (per-
sonnel, armor, weapons, facilities) is a major component of a state budget.

8Hence the significance of the invention of agriculture and related technologies (e.g., official seals,
measures, laws).
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Indeed, paraphrasing Marcus, a state is quantum more than a chiefdom! The
palace of rulers is diagnostic of a state polity, as is the population settlement hi-
erarchy in three or more levels, and other large-scale complex artifacts, such as
government bureaucracy and infrastructure systems.

An archaic state generally refers to primary and secondary states, in a chrono-
logical sense, as well as subsequent feudal states. A modern state refers to state
polities beginning during the early modern period of European history, or what is
known in the World History tradition as the end of the Postclassical Period (500–
1500) and the start of the Early Modern Period (1500–1800). Both kinds of states
have palaces, bureaucracies, tax and legal systems, territorial control, and monopoly
over use of force, unlike chiefdoms, which lack all of these.

Finally, all states can be stable polities (chiefdoms cannot, for reasons already
discussed), but they can also cycle through integration and disintegration for multi-
ple reasons:
• Growth of the bureaucracy can bankrupt the budget of the state.
• Mass movements can detract legitimacy of governmental authority, toppling a

regime.
• Rebellion in one or more provinces can fragment a state.
• Natural disasters can cause irreparable damage to infrastructure and bring about

regime collapse.
• Neighboring polities pose a constant threat through raids and attempted con-

quests.
• Invasion and conquest by more powerful rivals can end in subjugation.
• Corruption, failure in rule of law, and other institutional pathologies can bring

about state failure.
From this theoretical perspective, a state can be either stable (avoiding the above
hazards), unstable/metastable, failing/collapsing, or failed/collapsed. In short, in a
stable state there is sufficient reliable capacity for managing emerging public issues
with high probability of policy success.

7.4.2.2 How Do States Emerge?
Social science has produced more theories of the origin of the state (both archaic
and modern) than of other ordinal ranks of complex polities, such as chiefdoms,
empires, or world government. The following two theories of state formation are
among the better known.
Carneiro’s Theory of Circumscription (1970). This theory explains state for-

mation as resulting from warfare among small villages, and eventually among
chiefdoms, under conditions of circumscription.9 Success in agricultural pro-
duction enabled demographic growth, requiring more arable land, as in a pos-
itive feedback process producing increasing pressure for territorial expansion.
When a circumscribed society is attacked by another seeking scarce land to

9A polity is said to be circumscribed when surrounding territories prevent migration in time of
crisis. Circumscription may be caused by neighboring mountains (Peru’s Andean coastal region),
deserts (Near East west of the Tigris-Euphrates basin), and similar obstacles.
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cultivate (a common condition among chiefdoms), the defender is either vic-
torious or defeated, being unable to escape. The winner either destroys or sub-
jugates the vanquished, through a process of fusion until “the political unit thus
formed [sic] was undoubtedly sufficiently centralized and complex to warrant
being called a state” (p. 736).

The idea of a positive feedback process between agricultural success (food sur-
plus, wealth) and demographic growth had been formally theorized by N. Rashevsky
since 1947. Carneiro’s theory makes a valuable contribution by highlighting the
role of circumscription in preventing migration. However, the theory is deficient in
specifically explaining how “the political unit thus formed.” A winner could just
become a bigger chiefdom, not a state. How do the institutions of a state emerge?
Carneiro’s theory does not explain the critical organizational difference between a
chiefdom and a state, but simply views the latter as a larger version of the former.
Marcus’s Dynamic Model (1989, 1992, 1998). Prior to the formation of a state

in a given region, there exist chiefdoms with local populations governed
through two or at most three levels of hierarchy, corresponding to simple and
complex chiefdoms (as discussed earlier in Sect. 7.4.1.1). Competition and
rivalries among chiefdoms cause conflicts that result in some chiefdoms grow-
ing more than others. At some point this process leads to the largest complex
chiefdom in a region annexing its weaker neighbors and creating an additional
level of hierarchy to control the conquered chiefdoms. The new state—a four-
(possibly five-) level regional system—is composed of provinces consisting
of former simpler chiefdoms, and the state capital is the central place of the
former complex chiefdom.

Marcus’s theory, which has been demonstrated for multiple regions around the
world, uses the same conflict-ridden overture as Carneiro’s, but the theory explains
more because it tells us why a state generates more levels of governance and pub-
lic administration than a chiefdom. It is because the aggregation of former chief-
doms requires one or two new levels of government in order to reliably consolidate
and regulate its functions. Attention to institutional development marks theoretical
progress. A key aspect that remains unexplained by both Carneiro’s and Marcus’s
earlier theories is functional differentiation in the institutions of a state.

Most theories assume that a set of neighboring chiefdoms exists in a given region
prior to a state forming, consistent with the archaeological record. However, chief-
doms were challenged by many other public issues besides conflict, such as natural
hazards and endogenous stresses. This and related ideas are examined in this sec-
tion within the formal Theory of Politogenesis and later as part of the more general
Canonical Theory.

All known cases of primary states have emerged from regional systems of un-
stable rival chiefdoms. Politogenesis of states—the first emergence of stately social
complexity—is also explained by considering antecedent conditions and their real-
ization through time, including systematic, specifiable sets of conjunctive and dis-
junctive events in the causal process of polity formation. In this case, the dynamic
phase transition from chiefly to stately social complexity at a given time τ involves
the realization of a potential that developed during the chiefdom phase at time
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τ − �τ . Accordingly, the same theoretical framework we have already discussed
(Assumption 7.3) holds true for explaining and understanding state formation.

In a chiefly society at time τ −�τ , the potential for state-level complexity may or
may not occur (events Ps and ∼ Ps , respectively). If ∼ Ps , then the potential cannot
be realized (since it does not exist) and the outcome in Ωs is that the polity does
not change. If Ps occurs, this time in terms of additional, state-relevant knowledge
and ability conditions 1–15 (examined below), then the potential may or may not be
realized (events Rs and ∼ Rs , respectively). If ∼ Rs , then the polity becomes and
remains metastable as a chiefdom (event C∗ ∈ Ω). If Rs , then the outcome is the
occurrence of a phase transition into state-level sociopolitical complexity (event S).
Note that in this section S denotes the event of state formation, not a simple, pre-
chiefdom polity in regard to chiefdom formation.

Thus, now Ω = {C,C∗,S}, where S is an outcome in the contingent process
P3(Ω) of state formation with three antecedents. In causal logic form, state forma-
tion S at time τ implies an associated prior potential Ps at some prior time τ − δ as
necessary condition, S(τ ) ⇒ P(τ − δ), but not conversely, for some δ < τ .

Following Assumption 7.4, the potential for state formation is similarly assumed
to be compound, not a singleton or elementary event, as specified by an event func-
tion Ψ (·) in terms of a set {X1,X2,X3, . . . ,Xn} of more elementary events causally
linked to the occurrence of P. Formally,

Ψs : Ps ⇐ {X1,X2,X3, . . . ,Xn}, (7.61)

so

Ps = Ψs(X1,X2,X3, . . . ,Xn), (7.62)

where Xi denotes the ith causal event and i = 1,2,3, . . . , n.
So we must now ask

1. What constitutes the potential for state formation?
2. Under which conditions would such a potential be realized?

Again, the first question translates into: What knowledge and abilities did com-
munity members in a chiefdom have before they established the first states?

Life in a chiefdom, especially a successful one that eventually evolved into a state
(very few of them did!), produced numerous quantum gains in knowledge, abilities,
and institutions of community members, both rulers and commoners.

1. Non-kinship knowledge. Beyond kinship knowledge, people had knowledge
of significant non-kin members of society and government, especially chiefs
(paramount and local) and priests (or shamans).

2. Strategic ability. Based on their coalition-based government experience, lead-
ers (paramount and local, as well as priests) possessed strategic ability; i.e.,
they understood the interdependent nature of outcomes, including strategic sig-
naling, as we would say today in game-theoretic terminology.

3. Commons sociality. Living in a chiefly village community, people understood
the basics of The Tragedy of the Commons, including the role of sanctions for
maintaining cooperation in the use of common pool resources (pastures, rivers,
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wells, defensive structures) and inter-personal record-keeping in some unwrit-
ten form, all of which contributed to public administration skills, even in em-
bryonic or rudimentary form.

4. Residential skills. Life in a chiefly village was in permanent house dwellings
(regardless of building quality, structure, or materials: round or square; sunken,
level, or raised; poles or bricks), not temporary hunter-gatherer camps. This
also implied knowledge of basic sanitation needs and related infrastructure, in-
cluding communal systems for waste management, such as ditches and piped
drainage systems.

5. Conflict memory. Having experienced conflicts with neighboring chiefdoms,
people in pre-state societies knew how to classify friends and foes with some
precision, which was a significant refinement beyond the simpler in-group vs.
out-group classification of more primitive societies.

6. Environmental engineering knowledge. Beyond empirical environmental
knowledge, chiefly societies possessed environmental engineering knowledge
in the form of animal exploitation, agriculture, and related engineered structures
(e.g., communal irrigation systems, terracing).

7. Village security ability. Ability to defend against raids, even if not always suc-
ceeding, nonetheless produced significant skills in military affairs. Planning,
building, and maintaining permanent defensive structures—such as palisades,
ditches, baffled gates, towers, berms, bridges, raised roads—was common in
many chiefdom villages.

8. Food-processing ability. Village dwellers processed food by blending and
cooking ingredients procured through hunting, gathering, fishing, herding,
farming, or preying. Food-processing required portable as well as permanent
utilitarian artifacts, such as sieves, and ovens, and the knowledge to design,
build, and maintain them.

9. Military ability. Raiding was common in chiefdoms, and the most successful
chiefdoms raided better and were capable of conquering and absorbing neigh-
boring chiefdoms through superior strategy, tactics, and logistics, even if at a
rudimentary level.

10. Complex collective action ability. Pre-complex forms of collective action,
used for hunting large animals, were significantly perfected by chiefly soci-
eties. Large monumental construction, elaborate rituals, communal feasting, ba-
sic communal sanitation, and effective raiding, among other activities required
in a sustainable village, all required increasingly sophisticated skill in planning
and executing collective action—quantum more than for hunting large animals.

11. Supply chains. Some activities required supply chains, in addition to collective
action, such as in the construction of large monumental structures. Supply chain
management also required discipline, precision, and coordination in the public
domain, as well as planning, execution, and maintenance.

12. Political autonomy. Village dwellers, both rulers and commoners, became ac-
customed to enjoying political autonomy as a whole society, with “home rule,”
so to speak. They did not answer to any higher polity authority beyond their
own local and paramount chiefs and community priests.
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13. Political culture. Village life also produced specific instances of political cul-
ture, which is a community’s shared set of values, beliefs, expectations, and
practices with regard to what is just, proper, and taboo in all aspects of pri-
vate and (especially) public life. Human sacrifice, slavery, revenge, obedience
to authority, cannibalism, gifting, the paramount as chief judge, and sumptuous
feasting were features of chiefly political culture, with local (emic) variations.

14. Private property. Elites enjoyed private property, including slaves, land, build-
ings, and livestock, so villagers gained familiarity with the idea and practice of
private property, including bargaining and negotiation in resolution of claims,
adjudication, and compensation.

15. Chronic stress. Life in a chiefly village community was highly stressful, due to
the unstable nature of the polity, constant warfare with neighbors, insufficient
food surplus to support more needed collective activities, and unsolved collec-
tive action problems that required political solutions on a broader regional scale
than rulers and commoners were able to provide (environmental degradation,
endemic warfare, migrations, natural disasters, among others).

Societies with these and related kinds of knowledge and abilities did not automati-
cally evolve into states, but all those who did possessed these capabilities because
they were necessary. Creating a state, based on this prior potential, requires cre-
ative use of these and other conditions. The exact number of initial conditions is not
essential; what matters is that they are multiple and finite.

Assumption 7.6 (Specific Requirements for State Formation) The event function
Ψs for the compound event Ps includes the following minimally necessary causal
events Xi on required knowledge and abilities (conditions 1–15 detailed above):

1. Xnonkin = Non-kinship knowledge,
2. Xstrategic = Strategic ability,
3. Xcommons = Commons sociality,

...

15. Xstress = Chronic stress condition.

Based on these assumptions, the potential Ps for state formation is given by the
conjunctive event equation

Ps = Ψs(Xnonkin,Xstrategic,Xcommons, . . . ,Xstress), (7.63)

⇐ (Xnonkin ∧ Xstrategic ∧ Xcommons ∧ · · · ∧ Xstress), (7.64)

which specifies the conjunction (
∧

i Xi ) of causal events that generate Ps . Equa-
tion (7.64) yields a forward sequential logic tree similar to Fig. 7.2 by specifying
preconditions 1–15 for Ps .

Similarly, event Rs , which consists of the actual realization of Ps for state for-
mation, is specified by the conjunctive event equation

Rs = O ∧ W ∧ I, (7.65)
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where O,W, and I denote the occurrence of willingness, opportunity, and implemen-
tation of state formation, given a prior potential Ps .

Theorem 7.19 (First-Order Probability of State Formation) Let X = Pr(X). The
probability of state-level complexity (event S ∈ Ωs ) is given by

S = C · Ps · Rs =
Rs∏

i=C

Xi (7.66)

= s3, (7.67)

where s denotes some uniform probability on the closed interval [0,1] taken across
causal events C, Ps , and Rs .

Theorem 7.20 (Probability of Potential for State Formation) The probability of po-
tential for state formation Ps ∈ P3(Ωs) as a function of first-order causal events Xi

(Assumption 7.5) is given by

Ps = Xnonkin · Xstrategic · Xcommons · · ·Xstress =
stress∏

i=nonkin

Xi (7.68)

= xΘ, (7.69)

where x denotes some uniform probability taken across Θ causal events, which
are fifteen assuming Xnonkin to Xstress (causal necessary conditions 1–15 for state
formation).

Theorem 7.21 (Probability of Realization) The probability of realizing a state for-
mation potential Rs ∈ P3(Ωs) as a function of first-order causal conditions for
opportunity O, willingness W, and implementation I is given by

Rs = O · W · I (7.70)

= r3
s , (7.71)

where rs denotes some uniform probability taken across O, willingness W, and im-
plementation W events.

The following second-order principles extend previous principles of state forma-
tion.

Theorem 7.22 (Second-Order Probability of State Formation) The second-order
probability of initial state formation is given by

S = Ψ (C;Xnonkin,Xstrategic,Xcommons, . . . ,Xstress;O,W, I), (7.72)

⇐ 〈
C ∧ (Xnonkin ∧ Xstrategic ∧ Xcommons ∧ · · · ∧ Xstress) ∧ O ∧ W ∧ I

〉
, (7.73)
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and

S = C

(
stress∏

i=nonkin

Xi

)

O · W · I (7.74)

= yΓ , (7.75)

where y is some uniform probability taken across the set of Γ second-order causal
events for C and Γ > Θ .

Note that, in the case of state formation, Γ = 19 in Eq. (7.75), w.r.t. second-
order conditions. In fact, Γ � 19, due to more conjunctions toward the operational
level. For example, in this case implementation I requires further development of
potential capacities into state-level forms and functionalities, such as creating an-
other layer of public administration (supporting provincial government, villages,
and a central capital) in the form of bureaucratic institutions, appointing and man-
aging public officials (political, judicial, military), building elite palaces, and other
necessary and difficult collective action strategies that state leaders, elites, and com-
moners must accomplish—all produced by highly contingent processes and exoge-
nous shocks (e.g., environmental conditions over a greater territory). Theorem 7.22
explains why primary state formation was such a rare occurrence in world history
(early Holocene), even rarer than formation of primary chiefdoms. Since Γ � Θ +4
(by Eq. (7.73)) and Θ = 15, it follows that S(y;Γ ) � y19, which yields a vanish-
ingly small (but > 0) probability S of state formation for arbitrary values of y. If
Assumption 7.6 is incomplete (i.e., if Θ > 15), then primary state formation, as well
as its potential, are even rarer events.

7.5 General Theories of Social Complexity

Thus far we have seen theories of social complexity focused on chiefdoms and
states, which are significant but particular instances of a much broader class of sys-
tems. In this section we expand the theoretical scope to explain emergence and de-
velopment of social complexity in a more general way. These broader theories are
universal in the sense of being applicable to explaining origin, development, and
decay of social complexity in all organizational forms.

7.5.1 Theory of Collective Action

The Theory of Collective Action was first formulated by economist Mancur Olson in
his 1965 classic monograph, The Logic of Collective Action. It has since undergone
milestone developments, including:
• Ecologist Garrett Hardin’s 1968 game-theoretic formulation of “The Tragedy of

the Commons” (collective action as an N -person Prisoners’ Dilemma game)
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• Economist Albert O. Hirschman’s 1970 classic trifurcation, Exit, Voice, and Loy-
alty

• Nobel laureate Elinor Ostrom’s discovery of the role of local traditional gover-
nance for sustainable management of common pool resources (and public goods
and services in general)

• Political scientist Mark I. Lichbach’s 1996 generative mechanisms for collective
action

• Economist Todd Sandler’s 1992 comprehensive synthesis of Collective Action
Theory
Paul Samuelson’s seminal 1954 paper on “The Pure Theory of Public Expendi-

ture” was a key scientific precursor that established the Theory of Public Goods.
Hirschman’s trifurcation of Exit, Voice, and Loyalty anticipated the Theory of Cir-
cumscription examined in the previous section: a circumscribed chiefdom popula-
tion cannot escape (no exit), so it can only offer resistance (voice) or submit (pledge
loyalty). Collective Action Theory ranks among the most important areas of the-
ory and research in social science, integrating psychological, political, economic,
cultural, and social dynamics.

Collective action theory seeks to explain why and how humans solve collective
action problems, which is a core aspect of social complexity.

Definition 7.11 (Collective Action Problem) A condition where members of a
group or society recognize a need to act in a coordinated way in order to overcome
a situation, but collective action is hampered because no one perceives an individual
incentive to cooperate.

Even if someone would want to solve a collective action problem on his own, it
would be impossible for a single individual to produce what is needed for the group,
hence the need for coordination of behavior with others. Producing a public good
or public service for a given group or society presents a collective action problem.
Classic examples are public sanitation, clean air and water, national defense, neigh-
borhood safety, emergency health services, technical standards and measures, and
systems of transportation and communication.

Why humans solve collective action problems is fairly easy to explain: because
they recognize a need or desire. Safety from hazards, as well as improvements in
quality of life, are universally recognized as desirable outcomes. No one wants to
be worse off just for the sake of it.

How humans solve collective action problems, in specific, causal detail, is not so
straightforward. Significant theoretical progress toward answering this question lies
in the mechanisms for collective action problem-solving.

Definition 7.12 (Collective Action Coordination Mechanisms; Lichbach 1996)
There are four mechanisms for generating coordinated behavior aimed at solving
a collective action problem:
1. Market: Providing personal incentives to individual or group participants in col-

lective action. Paramount chiefs provide payoffs to their confederate local chiefs,
consistent with Riker’s theory, and side-payments in ruling coalitions.
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2. Community: Invoking norms of solidarity among community members. Deontic
obligation based on shared values provides a powerful, intangible incentive that
often trumps rational utilitarian choice.

3. Contract: Invoking agreements that obligate members to undertake collective
action. Contracts can range from enforceable legal documents to private agree-
ments.

4. Hierarchy: Exercising authority over community or group members. Besides au-
thority in a narrow sense (“do X”), deterrence (“do not do X or else Y”), and
compellence (“do X or else Y”) are related forms of exercising power.

Each mechanism has significant implications for explaining social complexity.
The market-based mechanism—or market solution, for short—requires significant
capacity for providing rewards to participants in collective action. Community solu-
tions require cognitive references (such as in the community shrine/temple worship
discussed earlier (Fig. 7.1)) as well as social communication. Contract solutions re-
quire enforcement to have credibility. Hierarchy solutions require social capital and
capabilities, both, in turn, requiring planning, acquisition, and maintenance to be
effective.

The level of difficulty of a collective action problem can be measured by the
number of mechanisms required for solution, which can be used to classify collec-
tive action problems into four classes:
Class I The simplest collective action problems are amenable to solution via a

single mechanism. For example, tax compliance is generally ensured through
state authority. Similarly, a social or humanitarian emergency can sometimes
be overcome via a community solution.

Class II Two mechanisms are required for solving more challenging collective
action problems. National defense is assured through community and market
mechanisms.

Class III More difficult collective action problems require use of three mecha-
nisms. Adding a third solution can add resilience, such as when compulsory
military service is added through state authority.

Class IV All four mechanisms are required for the most difficult collective action
problems. Examples include: adapting to climate change on spatial scales from
local to global; carrying out certifiably valid elections in an emerging democ-
racy; solving or mitigating major issues in peace and security, whether domes-
tic, transnational, or international; responding to humanitarian assistance and
disaster relief challenges; or managing large financial crises by engaging pro-
ducers, consumers, lenders, and financial government institutions. The most
difficult Class IV problems are called wicked problems in policy analysis and
management science.

Simply choosing a mechanism and implementing it does not guarantee success
in solving a collective action problem. The preceding scale suggests the following
result.
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Theorem 7.23 (Collective Action Via Several-Among-4 Mechanisms) The proba-
bility of collective action C via a necessary number ν of mechanisms from among
the total of 4 possible or available, with a ν-out-of-4 event function, is given by the
binomial equation

Pr(C) =
4∑

i=ν

(
4

ν

)
Mi(1 − M)4−i , (7.76)

where M is the probability of individual mechanisms solving the collective action
problem and i = 1,2,3,4 denotes each mechanism.

Note that ν is the class.
Leadership plays a critical role in collective action, because it can leverage any

and all of the above mechanisms for solving collective action problems. Depending
on circumstances, leaders can provide incentives (Market), invoke norms (Com-
munity), remind others of existing agreements-in-force (Contract), or order them
to coordinate behavior (Authority). Leaders known for their ability to enable col-
lective action also develop reputation, which facilitates future collective action, as
examined more closely through Canonical Theory.

Leadership can be a sufficient condition for collective action, but it is not always
a necessary condition. This is because a collective action problem might be solved
in a leaderless mode, spontaneously. For example, members of a community may be
so norm-compliant that they coordinate behavior without requiring leadership. The
iconic example is when neighbors help each other in a disaster. What does not occur
is collective action without solution mechanisms; one or more is always operant
(Lichbach’s Law).

Collective action is a ubiquitous, significant, and uncertain phenomenon for un-
derstanding social complexity. Besides its intrinsic scientific interest, it also pro-
vides foundations for the general theories that follow in the next two sections.

7.5.2 Simon’s Theory of Adaptation Via Artifacts

Simon’s Theory of Social Complexity—his “Big CSS Idea” based primarily on The
Sciences of the Artificial (1969, 1981, 1996) and related work—has been introduced
and used from a conceptual perspective since the first chapter (Sect. 1.5.3). Social
complexity is the result of human adaptations to complex environments via artifi-
cial systems, not because we humans are intrinsically complex; we are not, it’s the
environment that is complex. This theory explains social complexity in human civ-
ilization since ca. 10,000 years ago. In social science Simon’s theory is an idea as
big as Copernican Theory, the Big Bang, Relativity Theory, or Darwin’s Theory of
Evolution in natural science. The theory can be verified, tested, validated, analyzed,
and extended to numerous domains across social science (anthropology, economics,
political science, sociology, psychology) and allied disciplines (geography, commu-
nications, linguistics, management, history).
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Simon never explicated his Big Idea in a formal sense, in spite of much other
work in mathematical social science. To do so it is necessary to draw on his own
concepts and as little else as possible. The key concepts of Simon’s theory also
reflect his main theoretical assumptions:
Environmental complexity Humans, both individual and collectively in groups

or whole societies, are always situated in environments that are often challeng-
ing. Numerous natural environments are hazardous or even lethal to humans,
even when they appear beautiful to human sensory experience. Environmental
complexity, especially in natural systems, exists independently of humans and
across the Universe. Climate change is today an iconic example of increasingly
challenging environmental complexity. So is the broader policy environment
of domestic and global public issues.

Goal-seeking behavior Humans seek goals; they don’t just act. Goals, beliefs,
desires, and intentions are related entities that are also used in implement-
ing cognitive models of human actors—a framework known as BDI (beliefs-
desires-intentions).

Bounded rationality Unlike earlier economic theories of human decision-making,
we now know that humans decide using bounded, not perfect, rationality. This
means, inter alia:
• Humans use imperfect information when making decisions. Noise, impreci-

sion, ambiguity (Zadeh’s fuzziness), and uncertainty are common. Bayesian
updating is a valuable aid to human decision-making (not just for robots).

• Limited cognitive capacity, faulty information-processing, low band-width,
small and imperfect memory, and multiple types of biases are characteris-
tics of human decision-making.

• Satisficing is the principal heuristic used in human decision-making. Opti-
mizing is intractable.

• Computing machines can help improve human bounded rationality by mit-
igating its limitations, but they cannot support perfect rationality due to
intrinsic operating characteristics of human reasoning.

Adaptation Humans adapt to their environments by using whatever bounded ra-
tionality they have as they seek goals. Successful adaptation means that a cho-
sen strategy works. Adaptation is therefore conditional upon the environment,
goal, and strategy of the circumstance. Successful adaptation requires both
implementation and maintenance.

Artifacts Humans build artifacts or artificial systems as interfaces to achieve sat-
isfactory adaptation. Artificial systems are disjoint albeit connected with nat-
ural systems. Couplings occur through sensors and effectors. In turn, artifacts
can be physical (tangible, built, engineered systems, up to the scale of the
largest infrastructure systems) or social (beliefs, norms, institutions, proce-
dures).

Near-decomposability The architecture of human social complexity relies on
nearly decomposable structures. Such a design is based on modularity and
hierarchy, with a formal network structure similar to a tree or star. The span of
a nearly decomposable structure is the number of subsystems or modules into
which the system is partitioned.
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Fig. 7.4 Forward sequential causal logic tree for Simon’s theory of adaptation and emergence of
social complexity

Emergence Under some circumstances order can emerge through a multitude of
local individual decisions, without any central planning.

Based on these concepts and assumptions from Simon’s theory, the process of
adaptation and complexity generation can be modeled by a sequential tree in for-
ward causal logic, as in Fig. 7.4. At some initial time τ0 a society is situated in
a given environment (event E). Given that the environment is challenging or diffi-
cult, at some subsequent time τ1 humans may or may not decide to adapt (event D),
based on bounded rationality. If they do not decide (¬D) then they continue to en-
dure the same environmental consequences as before at τ0, whatever those may be
(outcome E). If they do decide to adapt, then at some time τ2 they may or may not
actually carry out their decision and implement an adaptive response (event A) by
means of some artificial system, which may be social or physical. If they fail to
deploy the artifact (event ¬A), then they still endure environmental consequences,
only this time more time has passed (outcome E∗). Arguably, E ≈ E∗.

If they do respond via some artifact, then at some time τ3 the response may
or may not work. If it works (event W) then the outcome is success and greater
complexity, because now the artificial system has to be maintained (outcome C). If
the response fails (event ¬W), then the outcome still entails enduring environmental
consequences, this time after experiencing failure (outcome E∗∗). Arguably, now
S(E∗∗) � S(E), where S(X) denotes stress or disutility associated with event X.

The model in Fig. 7.4 provides a first-order representation of Simon’s theory. The
main result is that each outcome in the Ω-space is produced by conjunction. In par-
ticular, the emergence of social complexity C requires minimally four sequentially
necessary conditions, implying significant hypo-probability; otherwise it fails to oc-
cur. The other outcomes (failures E, E∗, and E∗∗) are relatively less hypo-probable,
hence more probable.

A second-order model would also include conditional backward logic for causal
occurrence of each event in the first-order model. Accordingly, the environment
operates under some set of conditions that may or may not persist, causing it to be-
come more or less challenging, depending on a structure function Ψ∧(E). Similarly,
the decision to respond requires its own set of conditions (e.g., bounded rationality
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requirements), which is specified by a conjunctive structure function Ψ∧(D). Im-
plementing the response via an artificial system is another highly conjunctive event
(design, procurement of resources and components, site preparation, construction,
initial operation) with its own structure function Ψ∧(A). Finally, whether or not
the adaptive response works depends on a conjunctive structure function Ψ∧(W).
Therefore, a second-order model would also be strictly conjunctive and, from this
perspective, exponentially more hypo-probable.

These concepts and assumptions yield the following principles of Simon’s The-
ory of Social Complexity.

Theorem 7.24 (Simon’s Complexity-Simplicity Hypothesis) “Human beings,
viewed as behaving systems, are quite simple. The apparent complexity of our be-
havior over time is largely a reflection of the complexity of the environment in which
we find ourselves.” (Herbert A. Simon, The Sciences of the Artificial 1996, p. 53)

Theorem 7.25 (Artifactual Complexity) Every successful artificial system has
complexity proportional to its associated environmental complexity, with some
added complexity as a margin of safety. Symbolically: CA ∝ CE + δ.

The following principle follows from application of the general conjunctive prin-
ciple (Theorem 7.6).

Theorem 7.26 (First-Order Probability Principle for Social Complexity by Adapta-
tion) The probability of social complexity C by adaptation to a challenging environ-
ment is given by the product of probabilities of its four necessary events. Formally,

Pr(C) = Pr
[
E ∧ (D | E) ∧ (A | D) ∧ (W | A)

]
(7.77)

= E · D · A · W = P 4, (7.78)

where P is the probability of these events.

The next principle follows from the structure of second-order events in Simon’s
theory, as described earlier.

Theorem 7.27 (Second-Order Probability Principle for Social Complexity) The
second-order probability of social complexity C in Simon’s process (Fig. 7.4) is
given by the equation

Pr(C) = Pr
(∧

Ei

)
· Pr
(∧

Dj

)
· Pr
(∧

Ak

)
· Pr
(∧

Wl

)
(7.79)

=
m∏

i=1

Pr(Ei ) ·
n∏

j=1

Pr(Di ) ·
r∏

k=1

Pr(Ai ) ·
s∏

l=1

Pr(Wi ) (7.80)

= Em · Dn · Ar · Ws = P m+n+r+s , (7.81)

where P is a probability value taken across all second-order events.
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If each of the four main events requires a minimum of two second-order causal
events (i.e., m = n = r = s = 2), then Pr(C) = P 8, which makes emergence of so-
cial complexity quite hypoprobable and, consequentially, even more rare than w.r.t.
first-order events.

These results, particularly the last two, imply that significant structures of redun-
dancies must exist at third and higher causal orders; otherwise the probability of
successful adaptations would be vanishingly small. Simon did discuss redundancy
in The Sciences of the Artificial, but unfortunately not in the same depth as other
social theorists (e.g., M. Landau and J. Bendor) who were not directly concerned
with investigating social complexity.

Other results will no doubt follow from future analyses of Simon’s theory. The re-
sults presented here facilitate computational analysis by highlighting agents (actors
and environments), behavioral rules (adaptation and other patterns), and dynamics
(interactions among main entities). Additional insights based on Simon’s rich theory
await implementation through variable-based and object-based social simulations.
The theory can also be used in combination with others, to develop new theories, as
examined in the next section.

7.5.3 Canonical Theory as a Unified Framework

The Canonical Theory of Social Complexity is based on elements from behavioral
and collective action theory, Simon’s theory, and related concepts on causes, origins,
and evolution of social systems. It represents a reinterpretation and synthesis of ear-
lier ideas, guided by the application of the General Theory of Political Uncertainty
in the context of explaining social complexity.

The first distinction drawn by the Canonical Theory of Social Complexity con-
cerns dual time-scales of social complexity, as stated by the following formal as-
sumption.

Assumption 7.7 (Dual Time-Scales of Social Complexity) Time has dual scales
in social complexity processes: fast and slow modes. The slow process is marked by
relatively low-frequency, long-term emergence and development of social complex-
ity as observed by succession of polities and macro historical dynamics (e.g., rise
and fall of polities), approximately on an annual to decadal or longer scale. The
fast process is marked by relatively high-frequency, short-term events associated
with problem-solving and adaptation and micro historical dynamics, approximately
on an hourly or daily to weekly scale.

Another way to understand these dual time-scales of social complexity is to view
them as metrics for counting coarse- and fine-grained events that occur in history,
using events data analysis terminology.

The precise theoretical relationship between dual time processes of social com-
plexity is critical and given by the following premise.
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Assumption 7.8 (Inter-Temporal Synchronization of Social Complexity) The slow
process of change in social complexity on a long-range, macro scale is generated by
accrual of complexity-related consequences (externalities) of outcomes generated
by fast process iterations.

More specifically, as illustrated in Fig. 7.5, the fast process is a sequential branch-
ing process (event tree) spanned by states of Nature and human acts generated
by lotteries (denoted by triangle-nodes) and decisions (square-nodes), respectively.
The outcome space Ω of a fast process consists of all resulting compound events
(Oj ∈ Ω) generated by the process. In this case, n(Ω) = 5, so

Ω = {
A,Z,X,X∗,E∗}, (7.82)

as shown in Fig. 7.5. Specifically, social complexity changes—by increasing, de-
creasing, or remaining constant—as a direct result of outcomes realized in the fast
process, as we will now examine in closer detail.

A fast process with potential (not certainty) for social complexity begins at an
initial time τ0, when a given society or social group is in some ground state x0
(event K in the left of the graph). What happens next explains whether social com-
plexity increases, decreases, or remains unchanged.
1. At some later time τ1 a situational change may or may not occur (events C and

¬C, respectively). If situational change does not occur, then the society persists
without much change in social complexity (outcome E∗ is generated, which is
roughly comparable to K except for the passage of some time interval �τ =
τ1 − τ0).

2. The interesting process begins when a situational change does occur—one that
has significant effect on a society, whether immediate or potential. Such an oc-
currence may be a threat or an opportunity, corresponding to negative or positive
consequences. Regardless, if C occurs, then societal members may or may not
recognize a need for action at time τ2 (events N and ¬N, respectively). Since
the situational change is societal, not private to an individual, then, by definition,
the action required is collective, requiring coordination. If need for action is not
recognized when it is objectively necessary, then the outcome will be detrimental
consequences (outcome X∗).

3. If N occurs, then societal members may or may not undertake action at time
τ3 (events U and ¬U, respectively). If action need is not undertaken, then this
outcome will entail detrimental consequences (outcome X), even if the need was
recognized.

4. If U occurs, then collective action may or may not work at time τ4 (events S and
¬S, respectively). If collective action fails, then this outcome will carry detri-
mental consequences (outcome Z), even if action was undertaken.

5. If S occurs, then the outcome is successful adaptation at time τ4 + δ (outcome
A ∈ Ω , which is a compound event).
The theory is called “canonical” because the same fast process cycles through

unlimited iterations each time with only finite and identifiable variations.
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How do fast process iterations generate change in social complexity in the slow
process? Formally, each fast process resulting in outcome Oi (τ ) ∈ Ω generates a
set of associated consequences κτ (O) relevant to social complexity (externalities,
as they are called in economics). Obviously, not all outcomes generate the same
complexity-related consequences, as shown by the Ω-space in Fig. 7.5. In turn,
consequences of the outcome from time τ generate change in social complexity
C(τ + 1).

Thus, on the long-range scale of the slow process, social complexity at time
τ = m, denoted by C(m), is generated by the integration (summation, in discrete
time) over all iterative fast process cycles

C(m) =
m∑

τ=0

κτ (O) − L(τ), (7.83)

where L(τ) is a loss function representing some inevitable decay in complexity.
Examples of the latter include faulty information-processing, imperfect or deficient
learning, loss of memory, and similar individual or collective occurrences that, over
the long-term, act to the detriment of social complexity. Bounded rationality has
long-range societal effects on multiple spatial and temporal scales, not just local
effects on individual decisions.

For example, consider successful adaptation (outcome A in Fig. 7.5), the most
successful outcome of a fast process. This can have the following consequences
κτ (A) in terms of capacity-building for further social complexity at time τ + 1:
1. Members of the group enjoy success as a result of overcoming adversity, increas-

ing their confidence in problem-solving.
2. Neighbors (local or distant) may take note of the group’s success.
3. New values, beliefs, norms, procedures, or institutions emerge in the process of

realizing each intermediary event and cumulatively with respect to the overall
outcome (compound event).

4. New specific, practical experience in problem-solving is acquired, including abil-
ity in:
• Recognizing need for collective action
• Planning one or more actionable solutions to the problem
• Implementing the plan by coordinating its execution

5. Leaders and followers experience each others’ performance, learning whom to
trust, who has which skills, who behaved well or dishonestly, and other valuations
of actor attributes and behaviors.

6. Members’ reputations and their perceptions are updated.
These cognitive and relational consequences to participants amount to increased
social complexity in terms of larger and more informative belief systems, increased
memory, development of social relations, and (sometimes) creation of new norms
or institutions. Accordingly, κ(A) > 0. The next time a situational change occurs at
some τ

′
0 (i.e., at start of the next fast process iteration), the group or society will

have greater complexity with new capacities for problem-solving.



218 7 Social Complexity III: Theories

Other fast process outcomes produce different sets of consequences. For exam-
ple, when collective action need is not recognized (¬N) and situational changes
remain completely unmanaged, or when action is not undertaken (¬U) or when it
fails (¬S), all such outcomes (X∗, X, or Z, respectively) have detrimental conse-
quences ranging from mild to catastrophic, resulting in short-term degradation of
social complexity (κ < 0). Failure, if not catastrophic, can define the new societal
situation, generating a new fast process on the slow process time-scale, at τ +1, and
iterating through the same canonical cycle. Successful adaptation often comes after
an initial failure.

Success in a fast process may increase the probability of future success, pro-
vided societal members learn lessons from experience, future situational changes
fall within the range of experience, and experience is properly used. Experience
in problem-solving decays as a function of time, so the frequency of situational
changes matters: high frequency can overwhelm society’s capacity or ability to
adapt successfully; low frequency can induce memory loss and decrease the proba-
bility of success.

Canonical Theory explains a significant range of complex phenomena of inter-
est in basic and applied social science research. A more specific example pertains
to explaining and understanding disasters, especially those affecting coupled, com-
plex socio-techno-natural systems. Figure 7.6 illustrates this by applying Canonical
Theory to the classical hazards-disasters conundrum, whereby disasters are not
considered “natural,” but instead are caused by failures to adapt or prepare for haz-
ards. Hazards are natural or technological events; disasters are social consequences,
which at least to some degree can be mitigated, if not entirely eliminated. The fast
process in this case initiates with societal exposure to some set of hazards. Given
such a ground state, preparedness may or may not occur, depending on awareness
(NP ), decisions (DP ), and preparations taking place (AP ). If preparedness fails, haz-
ards may or may not occur, and other contingencies concerning incident response
will determine a range of detrimental outcomes.

If preparedness takes place (event P in Fig. 7.6), a hazard may or may not occur,
preparations may or may not work, incident responses may or may not be under-
taken, and they may succeed or fail. These first-order events of the more complex
fast process generate a larger but identifiable outcome space. Each outcome is a
compound event, as before for the purely theoretical process, so each can be mod-
eled by a probability equation given by the Sequential Conjunctive Principle.

As a society cycles through fast processes, the outcome of each iteration yields
consequences directly determined by the path taken. This explains why social com-
plexity is path-dependent: different paths generate different individual and collec-
tive consequences. Hazards-disasters fast processes are notorious for shaping the
landscape of societies from a world history perspective.

Moreover, fast processes are multiple, concurrent, and asynchronous social pro-
cesses, having parallel lanes and interdependent activity lanes on a Gantt chart or in
Ganttian space. In the asymptotic limit the slow process is generated by the integra-
tion of fast processes over time, which explains how historical continuity emerges
from statistical ensembles of discrete event-based fast processes.
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Some significant advantages of Canonical Theory can be summarized as fol-
lows:

1. The theory explains significant aspects of social complexity, including new phe-
nomena and new links among previously unrelated ideas, going beyond earlier
theories.

2. Canonical Theory includes elements of several valuable, earlier theories, such
as Carneiro’s, Marcus’s, Dahl’s, and Lichbach’s, among others, as special cases
within a broader and more general explanatory framework.

3. From a computational perspective, the explanatory mechanism of the theory is
iterative and the fast process generates complexity, in the sense of von Neu-
mann.

4. The theory is testable through a variety of approaches, including case studies,
comparative analysis, and statistical assessment.

5. The theory is applicable from a long-range spatio-temporal perspective, in the
sense that it explains social complexity in past, current, and future history.

6. Both the quest for survival and improvement in quality of life can serve as initi-
ating events of a fast process, as reactive and proactive responses, respectively.

7. The dual time-scales allow the theory to provide integrated explanations of mi-
cro phenomena as well as macro trends in social complexity.

8. The fast process, in particular, offers a systematic template for conducting com-
parative research using cases across space and time as analyzed through a com-
mon framework.

9. The theory is applicable to social, socio-technical, socio-natural, and socio-
techno-natural systems, including explanations of how and why natural, tech-
nological, and anthropogenic hazards cause disasters.

10. The event-based or discrete modeling approach allows the theory to be imple-
mented in computational models, such as a multi-agent system, and makes full
use of probability theory and related calculus for deriving analytical results.

11. By distinguishing between actors and other entities, as well as between de-
cisions and lotteries, Canonical Theory leverages significant ideas and results
from decision theory and game theory.

12. The theory can be improved by others, as further formal analyses and compu-
tational implementations uncover previously unknown formative and develop-
mental processes.

13. Basic science questions as well as policy-oriented analyses can be addressed
through Canonical Theory.

Social simulations provide computational implementations of social complexity
theories, as examined in the next chapters.
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8Simulations I: Methodology

8.1 Introduction and Motivation

This chapter provides an introduction to social simulation as a major area of CSS
research—independent, or almost independent, of the specific type of implemen-
tation. The core questions addressed in this chapter concern computer modeling
and simulation in social science. Why use computer simulation as a methodology
for scientific investigation of social complexity? The answer is—in brief—because
formal theories of social complexity are sometimes more viable via computational
modeling than through closed-form solutions. What unique insights on social com-
plexity are gained through social simulation that are not available through other
methodological approaches, such as statistical, mathematical, or historiographic?
A major one is improved understanding of social complexity as an emergent phe-
nomenon. What are the main limitations of social simulations? Full descriptions of
social simulations are not as straightforward as thorough descriptions of other for-
mal and statistical models, which sometimes can have significant consequences for
replicating results. Another limitation is the relative shelf life of computer code as
compared to mathematical models.

The main motivation for social simulation is based on the first two of these ques-
tions. Social simulations are capable of representing social systems and coupled
socio-techno-natural systems in ways that other methodological approaches are not.
Computer code in a well-chosen programming language or simulation system—
such as those discussed in this and the next two chapters—provides a powerful
formalism for theorizing, experimenting, and ultimately understanding social com-
plexity.

8.2 History and First Pioneers

The following is a brief history of milestones and pioneers of social simulation
research in CSS, with main emphasis on methodological concepts, principles, and
practice—especially the founders’ generation. Similar sections in the next two chap-

C. Cioffi-Revilla, Introduction to Computational Social Science,
Texts in Computer Science, DOI 10.1007/978-1-4471-5661-1_8,
© Springer-Verlag London 2014
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ters focus more specifically on models. Some overlap between these summaries is
unavoidable, since they are not completely disjunct.
1959 Oliver Benson at the University of Oklahoma pioneers the methodology of

computer simulation in political science with his Simple Diplomatic Game
Model.

1961–1971 Jay Forrester, founder of the System Dynamics Group at MIT, estab-
lishes the methodology of system dynamics theory and research through
his classic monographs: Industrial Dynamics, Principles of Systems, Ur-
ban Dynamics, and World Dynamics.

1962 Psychologist and information science pioneer Harold Borko [1922–2012]
publishes the edited volume Computer Applications in the Behavioral
Sciences, possibly the first of its kind, including Julian Feldman’s sem-
inal chapter on “Computer Simulation of Cognitive Processes”, Sydney
and Beatrice Rome’s computer simulation of large organizations, R. Clay
Sprowls’s “Business Simulation”, and Benson’s model.

1963 Political scientist Karl W. Deutsch [1912–1992] publishes The Nerves of
Government: Models of Political Communication and Control, pioneering
the information-processing paradigm of CSS, as a precursor to Simon’s
work. The same year Harold Guetzkow and collaborators publish the influ-
ential Simulation in International Relations: Developments for Research
and Teaching, which soon becomes the new frontier.

1968 The Club of Rome, a major promotor of global carrying capacity model-
ing and simulation, is founded by Italian industrialist Aurelio Peccei and
Scottish scientist Alexander King.

1969 Political scientists Hayward Alker and Ron Brunner publish the first com-
parative analysis of social simulation models in the journal International
Studies Quarterly.

1970 Computer scientist James E. Doran publishes one of the earliest papers
on the application of simulation methodology to archaeology, “Systems
Theory, Computer Simulations and Archaeology”, in the first volume of
the journal World Archaeology.

1970s In Europe, social scientist Urs Luterbacher and collaborators at the Grad-
uate Institute of International Studies in Geneva develop SIMPEST, the
first numerical simulation model of political, economic, and strategic in-
teractions based on a dynamical system of integral-differential equations,
implemented in MINUIT. This model of the US-USSR-PRC triad correctly
predicted the fall of the Soviet Union in late 1980s.

1970s In America, economist and strategist Thomas Schelling establishes foun-
dations for a new methodological chapter in social simulations via cellular
automata, and eventually agent-based modeling, through his study of racial
segregation. John Casti, who later joined the Santa Fe Institute, coded the
first implementation of Schelling’s model while the two were at The Rand
Corporation.
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1972 Springer publishes the first edited volume on CSS in Europe, by Lucien
Kern and collaborators, entitled Simulation internationaler prozesse, con-
taining Jeffrey Krend’s chapter on a replication of Oliver Benson’s pioneer-
ing model.

1977 CSS pioneer Stuart Bremer [1943–2002] advances the methodology of so-
cial simulation with Simulated Worlds: A Computer Model of National De-
cision Making, published by Princeton University Press.

1980s Computer scientist Christopher Langton coins the term “artificial life”.
1999 Computational social scientists Nigel Gilbert and Klaus Troiztch publish

the first edition of the influential textbook, Simulation for Social Scientists.
2013 Computational social scientists Bruce Edmonds and Ruth Meyer edit

the 754-page comprehensive handbook, Simulating Social Complexity by
Springer. The same year both Springer and Wiley inaugurate specific series
on Computational Social Science.

8.3 Purpose of Simulation: Investigating Social Complexity
Via Virtual Worlds

The core scientific purpose of social simulation modeling and analysis is to investi-
gate social complexity in ways that go beyond—often way beyond!—what is possi-
ble using other methodologies, such as historical, ethnographic, statistical, or math-
ematical approaches. This is accomplished by building a computer model of the
social system or process under investigation—a virtual world representing relevant
aspects of reality—and using that model to perform many kinds of analyses, as de-
tailed in this and the next two chapters.

Reasons for using virtual worlds that simulate social complexity are numerous,
including but not limited to the following:
Versatility: Many more complex social systems and processes can be investigated

through simulation than through statistical or mathematical modeling. While
every statistical or mathematical model can be simulated, the inverse is not
true. Not every simulation model can be represented in mathematical form.1

High dimensionality: A common feature of social complexity, as we have seen
in previous chapters, is having to analyze large numbers of variables, and in-
teractions among them, a property called high-dimensionality. For example,
emergence of collective action is a process involving numerous entities and
variables, including situational parameters, goals, leadership characteristics,
and resources, among numerous others. High-dimensional systems are com-
mon across domains of social complexity.

Non-linearities: Dynamic interactions among social entities are often nonlin-
ear, independent of their dimensionality. Simple, low-dimensional systems are
sometimes amenable to closed-form solutions, but that is generally not the case

1This is obviously not a blank criticism of statistical and mathematical models, which continue to
play an essential role in CSS, as already shown in previous chapters.



226 8 Simulations I: Methodology

for complex systems with high-dimensionality and nonlinear dynamics. Hu-
man perceptions, interaction as a function of physical distance, and patterns of
cooperation and conflict are examples of nonlinear interactions. Social simu-
lations can handle complex nonlinear dynamics, bound only by computational
resources (which keep increasing).

Coupled systems: Another distinctive feature of social complexity is coupling
among human, natural, and artificial systems, which virtually always implies
high-dimensionality and nonlinear interactions. Computer simulation models
provide an effective and efficient way of representing coupled socio-natural-
artificial systems, as we will examine. For example, a computer model can be
used to represent coupled dynamics among social institutions, the biophysical
world of a society, and critical infrastructure.

Stochasticity: Randomness is ubiquitous and consequential in social systems and
processes, as we have already examined. Stochasticity also comes in many
forms, as defined by probability distributions. Examining the effects of diverse
stochastic dynamics—how they generate patterns of social complexity—is an-
other major reason for using simulations.

Incompleteness: Social science is incomplete, in the sense that not all parts of
the social universe are known with the same degree of completeness. Social
simulations are also used for testing alternative theories to advance our under-
standing of real-world social complexity.

Experimentation: The experimental method is a cornerstone of all science, but
running experiments on complex social systems is not feasible for numerous
reasons, including practical and ethical. Experimentation is rendered feasible
through social simulations, including all classical features of this approach:
treatments, control groups, and many different experimental designs. For ex-
ample, computational experiments can be used to explore and test hypotheses
concerning aspects of collective action, group dynamics, and governance un-
der various assumptions of governance and public issues.

Policy analysis: Computer simulations of social complexity enable forms of pol-
icy analysis that are not available through other methodologies, including anal-
ysis of so-called “wicked problems”—the hallmark of hard challenges in pol-
icy analysis. For example, economic policies to mitigate inflation can be ana-
lyzed by modeling various actions such as wage subsidies or price controls.

These are powerful and compelling reasons! Interestingly, most of them are the
same for scientists in other domains who use simulations—including astronomy,
biology, and chemistry, among others—“Science in the 21st century is computa-
tional”, as computer scientist Peter Denning once remarked.

8.4 Basic Simulation Terminology

Social simulation research employs a rich technical vocabulary that includes na-
tive CSS terms as well as terminology from computational science, such as object-
oriented modeling and programming, UML, and related formal languages. For now
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Fig. 8.1 Basic terminology and general methodology of social simulation. Social simulation
methodology is an iterative process that begins with a referent system (explanandum) in the real
world. Abstraction, formalization, programming, and appropriate data are used to develop a viable
simulation model (explanans). This general process is independent of the specific kind of simula-
tion model

we only need to clarify some initial terms; others will be presented as they are
needed.

We shall use the following terms as synonyms:
• social simulation
• simulation model
• computer model
• machine simulation
• computational model
• simulated system
Hence, by “simulation”, for short, we shall always refer to some kind of computer
model of a social system or process, reserving the term “game” or “gaming” to
human simulations solely based on role-playing.

The ontology of social simulation research includes the following basic terms,
some of which are shared by other formal approaches, such as mathematical models.
Consider Fig. 8.1, starting with the referent system (explanadum), in the bottom left
and proceeding clockwise. Later we will use these initial building blocks to explain
the methodology of modeling complex social systems as a systematic process.

Definition 8.1 (Referent System) A real-world system or process that is an object
of investigation (explanadum) is called a referent system. Synonyms: target system,
focal system, empirical or historical world.

Referent systems in CSS comprise the full universe of social entities, systems,
and processes: the human mind, cognitive processes, decision-making, individual
and group behavior, and societal, international, and global domains, including the
World Wide Web. Some of the most complex referent systems in CSS are arguably



228 8 Simulations I: Methodology

coupled socio-techno-natural systems, although a referent system of any degree of
complexity may focus on a purely human/social system, or pairwise combinations
of socio-technical and socio-natural subsystems.

A referent system is defined or specified by the specific research questions being
investigated; it is not open-ended or all-inclusive, simply because it is located in the
real-world. “Reality” is infinitely detailed and vast, objectively speaking. Scientific
research always focuses attention on some selected subset of reality—i.e., a given
referent system defined by research questions.

The following definition uses the term “abstract” as a verb to describe a key
modeling activity.

Definition 8.2 (Abstraction) The process of selecting a given set of features from
a referent system for modeling purposes is called abstraction.2

Thus, abstraction produces a simplified conceptual representation of the referent
system, consisting of elements such as entities, variables/attributes, associations,
and other patterns that provide specificity to the referent system being investigated.
Sometimes the conceptual model is formalized into an intermediate mathematical
model to better understand some properties of interest—as is typical in formal social
theory.3 The conceptual model is actually formalized into a simulation model when
it is rendered in code. A simulation model may be written in native code, using one
or more programming languages, or using some pre-existing simulation system.

Definition 8.3 (Simulation System) A computational toolkit or code library for
building simulation models is called a simulation system.

A simulation system is a highly sophisticated computational artifact for building
other advanced computational artifacts (specific models), which can be highly com-
plex and inefficient/ineffective to build in native code. Netlogo, DYNAMO, Stella,
Vensim, Swarm, MASON, Repast, and their predecessors, among many others, are
examples of computational simulation systems. A social simulation model is to a
simulation system/toolkit as a car is to a car factory; the former is made using the
latter. You can also build a car on your own (good luck!), rather than buying one
made in a factory—which would be the equivalent of writing a social simulation
model in native code—but its performance and reliability will probably not come
even close to a factory-made car. An important reason for using one of the latest
existing simulation systems (Vensim, MASON, Repast, among others) is to reach
levels of model performance and reliability that are unattainable by relying exclu-
sively on purely native code. This is, emphatically, not an argument against building

2Note that the term “abstraction” has a different meaning in the context of computation, where it
means hiding information, as discussed in Chap. 2.
3The full and powerful family of mathematical structures is available for this, including continuous,
discrete, and hybrid formalisms.
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simulation models; sometimes they are the best solution to a given set of research
questions.

Multi-purpose computational mathematical systems, such as Mathematica and
Matlab, are also used as simulation systems, to build and analyze models.

Some common (albeit not universal) facilities of simulation systems include the
following:
Frequently used primitives: Code library of common primitives or basic build-

ing blocks for building a model. Examples: mathematical functions, distribu-
tions, simple agents, landscapes, schedulers, common data fields, constructor
methods.

Random number generator: Simulation models require random number gen-
erators to represent processes, either substantive or procedural, with various
forms of randomness (uniform, Poisson, power-law, among many others).

GUI: A graphic user interface is standard in most simulation systems, especially
those intended for beginners and intermediate programmers, such as Netlogo,
Repast, and Vensim.

Visualization tools: Used to draw histograms, time-series graphs, network dia-
grams, maps, and other visual aids for understanding simulation output.

More specialized facilities are usually added by model developers. These might in-
clude, for example, autocorrelograms and spectral diagrams, difference maps, heat
maps, dynamic networks, Lorenz-curve graphs, and various non-Cartesian coordi-
nate systems (e.g., spherical, cylindrical). All major simulation systems today have
active user communities and some hold regular conferences or workshops.

Finally, a simulation model is implemented in code (explanans), as highlighted in
Fig. 8.1, in the upper right, diagonally opposite the referent system (explanandum).

Definition 8.4 (Simulation Model) A model of a referent system that is formalized
by code written in a given computer programming language (native or toolkit) is
called a simulation model.

In the next chapters we will discuss different types of simulation models and
examples of each. To do so in a systematic way, however, it is necessary to develop
a viable classification of simulation models, given how many exist.

Figure 8.1 and the preceding definitions provide a first, high-level pass through
the general methodology of simulation research in CSS. A more in-depth presen-
tation is necessary, but several other distinctions are needed before delving into
methodological details of actual simulation development or model construction.

8.5 Fidelity of Representation and Implications

Social simulations differ by the fidelity with which the computational model at-
tempts to replicate or resemble a given referent system. The following ordinal scale
distinguishes social simulations by increasing level of empirical specificity, which
approximately follows a pure-applied science continuum:
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1. At one end of the basic-applied continuum are highly abstract simulations that
bear only sparse qualitative resemblance to a referent system, without attempt to
replicate any quantitative features at all. Theoretical analysis as basic science is
the main use of these models, not operational policy analysis.

2. At the next level toward “the plane of empirical observation” of the referent
system—as philosopher of science Carl G. Hempel would have said—are simu-
lation models that show convincing qualitative fit and some quantitative calibra-
tion. These models are still mostly theoretical, but they are capable of providing
some applied insights. Since policies should not ignore basic science, findings
from this class of social simulations may have valuable implications that policy-
makers ignore at their own peril. A good example of this is the classical Schelling
segregation model (examined in Chap. 10), which is a rather abstract theoretical
model that nonetheless sheds significant light on emergent patterns of social seg-
regation and contributes key insights for policymakers.

3. Next are models with extensive qualitative and significant quantitative fit. This
class of social simulations is of maximal interest for conducting empirically
grounded CSS research. We shall examine several examples of this.

4. Finally, we come to social simulations that “look closest at the plane of observa-
tion” (in the sense of Hempel), such that quantitative and qualitative fit between
simulation output and empirical data is the closest. High-fidelity simulations are
calibrated to a referent system along multiple dimensions, which can be spatial
(including numerous and detailed geographic features, down to a given scale of
resolution, rendered through GIS and remote sensing data), temporal (defined
to small time increments, such as decades, years, seasons, months, weeks, days,
hours, minutes, and so on, down to the smallest scale of interest), or organiza-
tional (matching detailed network patterns at node, subgraph, and graph levels of
analysis), among the most universal. Relatively fewer of these models are found
in an academic context, but they are abundant in business and governmental or-
ganizations.4

This scale is totally unrelated to the merits or value of a simulation model, which
is a different matter that has to do with scientific quality.5 The fidelity scale is merely
a heuristic way to locate a simulation model along a realistic-abstract continuum in
order to understand its value and limitations.

There are numerous implications that follow from a model’s representational fi-
delity. Perhaps the most obvious is that a simulation at one level cannot be expected
to perform well at a different level. Thus, operational, high-fidelity models may have

4Part of the reason for this is that operational, high-fidelity models often require sensitive or pro-
prietary information not normally used in academic CSS research.
5DARPA—the Defense Advanced Research Projects Agency of the US Department of Defense—
uses a scale for classifying projects, ranging from “basic science“ (called “6.1 projects”, named so
after the section in the relevant law) to more applied and operational research, labeled 6.2, 6.3, 6.4,
etc., all the way up to fully operational systems deployed in the field for combat or humanitarian
missions. The 6.X nomenclature is helpful and commonly used by other agencies.
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significant policy value, but have little or no theoretical interest. Conversely, theo-
retical models can provide deep scientific insights and understanding, but offer little
by way of actionable results as far as policy contributions are concerned.

A somewhat less obvious implication of the fidelity scale is that CSS researchers
must make an effort to clarify as best as possible the desirable resolution of a model,
given the research questions.

8.6 Types of Social Simulation: From System Dynamics
to Agent-Based Models

Social simulation models constitute several major superclasses, the two largest be-
ing variable-oriented models and object-oriented models, with a third superclass
of hybrid social simulations at their intersection. In turn, each superclass encom-
passes several significant classes, which can be characterized as follows. (Each class
is examined in the next two chapters.)

Variable-based social simulations use systems of mathematical equations to im-
plement the conceptual model abstracted from the referent system of interest. His-
torically, these were the earliest forms of simulations in CSS. System dynamics
simulations and queuing models constitute major classes, both based on variables
and deterministic or stochastic systems of equations for representing dynamic in-
teractions.6 The most distinctive feature of a system dynamics model (or SD, for
short) is the representation of the state and dynamics of the referent system in terms
of levels and rates, or “stocks and flows”, respectively, in the form of a system of
difference equations in discrete time. Hence, social systems that are abstracted as
networks of states and rates of change are eminently suitable to this kind of simula-
tion model. An SD system may be completely deterministic or partly stochastic.

A queuing model is more appropriate for rendering a referent system that receives
some stream of inputs and releases the entities after some processing. The iconic
example of this is a commercial bank, where customers arrive and wait in line while
those ahead get served and depart the bank when they are finished. These models
are stochastic, because waiting time and service time are generally stochastic, not
deterministic. Accordingly, probability distributions play a major role in this class
of social simulations.

These two classes of models are called variable-oriented because the modeling
orientation upon which the abstraction is based looks first at the identification of
key variables, such as levels of some stock and waiting time in a queue. Neither of
these two classes of simulation models makes an effort to render the social entities
(actors) explicitly; they are simply implied by state equations.

By contrast, object-oriented simulation models are based on an abstraction strat-
egy that looks first of all at entities in the referent system. Cellular automata social
simulations (or CA models, for short) consist of cells related to each other by neigh-
boring relations on a landscape, such as in a city grid consisting of blocks, or a

6Note the exact terminology: “system dynamics”, not systems dynamics (both plural) or dynamical
systems (which refer to systems of differential equations).
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patchwork of farms in the country. CA models look first at entities—the cells and
their topology—and then at attributes/variables. Agent-based models are somewhat
similar, as detailed in Chap. 10.

8.7 Development Methodology of Social Simulations

All social simulations, whether simple or complex, abstract or empirical, variable-
oriented or object-oriented, are developed by systematic steps that begin with some
core research motivation and end with a viable model. Although the specifics of
each class sometimes matter, in general all social simulations follow a similar de-
velopmental methodology.7 This section provides a second pass (spiral) through the
cycle in Fig. 8.1.

8.7.1 Motivation: What Are the Research Questions Addressed
by a Given Model?

The first step in social simulation modeling consists of careful formulation of viable
research questions. Every social simulation is intended to address one or more re-
search questions defined in terms of the referent system. In fact, a referent system
is in large part defined by research questions; there is a synergistic relationship be-
tween the two. In an abstract SD model of inter-group rivalry the research questions
may concern phase portraits and qualitative dynamical features. The same kind of
model calibrated with historical data would be able to address research questions on
the timing and magnitude of real-world conflicts. Similarly, research questions in
an agent-based model will vary by level of fidelity, ranging from abstract, theoret-
ical questions that may have to do with thresholds, elasticities, gradient fields, and
similar theoretical concepts, to empirically referenced questions that might concern
specific locations, actors, parameter values, or historical epochs.

Since research questions are a major engine for scientific inquiry, they largely
define the level of fidelity and, therefore, also the scope of the referent system to
be investigated. That being said, practical considerations may affect decisions on
exactly how research questions are formulated.
• The relevant social science may be incomplete, so research questions may require

adjustment in order to gain scientific coherence. The same is true for incomplete-
ness in natural science or technology when modeling coupled referent systems.

• Empirical data necessary for initial research questions may be incomplete, poor,
or downright nonexistent. This is a common situation in CSS research because
researchers often pose questions that are tractable through computational tools,
but no one has collected data necessary to verify or validate the models, thereby
requiring adjustments to obtain viable research questions.

7The same is generally true of mathematical social science models, and also to some degree of
econometric and other statistical models.
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• Computational resources may be insufficient for an original set of research
questions. This is another common occurrence, especially for overly ambitious
projects that fail to estimate the correct amount or types of computational re-
sources. This too usually requires limiting the scope of research questions asked.

• Other practical considerations, such as deadlines, and available personnel, may
also condition the formulation of research questions.
The non-computational literature in social science may or may not provide ad-

equate guidance in terms of research questions. This is because the computational
approach in general, and the social complexity paradigm in particular, offer dif-
ferent human and social dynamics that are invisible from the perspective of non-
computational literature. For example, vast areas of social science are practically
defined in terms of a single methodology, such as statistical multivariate models, or
game theory models, or general equilibrium models. By contrast, social simulation
models address research questions that require any combination of formalisms. That
being said, CSS researchers would do well in seeking to address research questions
that are recognized as significant by non-computational scientists, as well as other
CSS researchers.

Failure to begin with clear and viable research questions guarantees that sub-
sequent complications will require backtracking until proper research questions are
posed. This is sometimes inevitable, especially when new territory is being explored.
However, such false starts should be avoided when possible, because they can be
wasteful along multiple dimensions: time, costs, personnel, and missed opportuni-
ties. Scientific discipline and experience are valuable assets in the formulation of
research questions in CSS, as in all domains.

A remark on interdisciplinary research in CSS: Research questions addressed
through social simulations are frequently interdisciplinary because of multiple rea-
sons. Social complexity respects no disciplinary boundaries! Coupled systems are
multidisciplinary by definition. Complex social simulations, in particular, require
interdisciplinary research.

8.7.2 Conceptual Design: What Does the Abstraction Look Like?

Given a set of viable research questions, the next step in developing a social sim-
ulation is to conduct a process of abstraction that will yield a conceptual model of
the referent system. The abstraction itself should be informed and guided by the
research questions.

Ideally, the abstraction for producing a conceptual model of a referent system
should be guided exclusively by research questions and conducted without regard
to consideration of subsequent implementation.

In practice, the abstraction and resulting conceptual model will be influenced by
the known implementation resources. This is the tyranny of a hammer looking only
for nails. If you know or use only method M, then both abstraction and resulting
conceptual model will be shaped (and perhaps completely determined) by M, rather
than by research questions, as it should be.



234 8 Simulations I: Methodology

This methodological pathology in CSS research is similar to what happens in
non-computational social science when researchers conduct abstractions and pro-
duce conceptual models guided primarily by those methods they know or prefer,
rather than by what the research questions actually require. This methodological er-
ror should be avoided by gaining familiarity with different simulation approaches
and a broad range of human and social phenomena—not easy, but well worth it.
The abstraction and resulting conceptual model should contribute to answering the
research questions, no matter what tools are required.

There is a history lesson to be learned here. A major source of methodological in-
novation comes from not having the proper computational tools to answer research
questions. Isaac Newton was led to the invention of infinitesimal calculus because
he wished to answer research questions for which there were no tools. He refused
to adapt the research questions to existing tools or provide only tool-driven answers
(like everyone else was trying to do). Likewise, John von Newman did the same by
inventing game theory; he wanted to answer research questions having to do with
interdependent choices (strategic entanglement), and the extant theory of decisions
established by Bayes for answering questions of choice against nature was insuf-
ficient. Like Newton and others before him, he became a mathematician, invented
game theory as a novel branch of mathematics, and then returned to the social sci-
ence of interdependent decision-making and formalized it through game-theoretic
models. He also invented cellular automata, examined in Chap. 10, which we now
use for developing a broad class of social simulations. Simulation systems—from
DYNAMO to MASON—were invented with the same science motivation: to enable
us to expand scientific frontiers by answering an increasing number of challenging
questions.

Different graphic systems have been invented to facilitate specification of a con-
ceptual model. Flowcharts, Forrester diagrams, and UML diagrams are some ex-
amples. These are useful for refining ideas and they are indispensable in interdisci-
plinary projects when specialists from various domains need to develop consensus
and common understanding. They will be examined in the context of each model
class. No doubt, others will be invented as CSS research increases demand to create
clearer conceptual models.

8.7.3 Implementation: How Is the Abstracted Model Written
in Code?

The third step in developing a social simulation involves implementing the concep-
tual model into code. This is where a major decision is made in terms of imple-
menting the conceptual model using native code or a simulation system such as one
of those mentioned earlier. The choice is based on multiple considerations, which
should include:
Research question Again, research questions should inform implementation, not

just the conceptual model. The character of research questions and the result-
ing conceptual model should first determine whether the simulation model
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should be variable-oriented (attributes are most prominent) or object-oriented
(entities are most prominent) and, second, whether native code or a toolkit
should be used.

Expertise Excellence in some implementation solutions may also bring novel an-
swers to research questions. For example, a CSS team highly skilled in build-
ing SD models can make significant contributions to a given domain, even if
alternative OO (object-oriented) models are possible. Different formalisms of
the same referent system almost always bring to light different aspects that
advance understanding.

Future use Consideration should be given to future uses that may be envisioned.
Such uses include further research, use in teaching, or policy analysis or
problem-solving.

The main result of this third step is an initial version of a simulation model,
which will likely evolve through subsequent versions. By convention, the initial
version of a simulation model is labeled 0.1 or lower. Relatively small, incremental
changes prompt decimal increases in version numbers, whereas relatively large or
major changes prompt integer increases—a protocol similar to numbering versions
of “the same” software. In general, there are more decimal increases than integer
increases.

A social simulation implemented in code should abide by all the principles dis-
cussed in Chap. 2 concerning best practices, such as commenting, modularity, de-
fensive programing, multiple backups, and similar guidelines. Code that can no
longer be understood even a year after it was written is useless.

In all cases, model code must be committed to some depository. Sourceforce,
Googlecode, the Harvard-MIT Data Center (Dataverse), and OpenABM provide ex-
amples of online, open-source, code depositories. Besides code files, documentation
must also be provided, including all supplementary supporting files. A great deal of
effort goes into producing a high-quality model, as we will discuss later in this chap-
ter. However, simulation code is highly perishable, far more so than mathematical
or statistical models. Unfortunately, it is not uncommon for social simulations—
even famous ones—to be lost within a relatively short span of time following their
creation. Often all that remains is the conceptual model and some mathematical
features.

8.7.4 Verification: Does the Simulation Perform as Intended?

The process of finding out whether a simulation model is working as intended by
the conceptual model is known as verification, a procedure that also involves de-
bugging. This is equivalent to what is traditionally called internal validity in non-
computational social science formal methodology. An unverified model cannot be
used for analysis. Verification is accomplished through multiple procedures, as de-
tailed below. All of them typically unveil bugs hidden in the initial simulation code.
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8.7.4.1 Code Walk-Through
Reading code line by line, commenting and refactoring it as necessary, is an indis-
pensable procedure to ensure a simulation is working as intended by both model
designers and programmers. Modularization facilitates this procedure, as well as
providing other benefits. Code walk-through (also written as walkthrough) should
be done while also consulting all relevant prior documentation, including concep-
tual narratives and diagrams. Again, good programming style resulting from best
practices facilitates the code walk-through procedure.

8.7.4.2 Profiling
Another procedure for verifying code is to “profile” it. Profiling means to count the
frequency with which key code elements are used, such as various methods or oper-
ations in OOP (object-oriented programming) code, or functions in other program-
ming languages. In a sense, profiling is a form of quantitative, automated content
analysis or information extraction procedure conducted on code—a means of min-
ing code to detect possible errors. The result of profiling is a quantitative summary
of findings, such as a frequency histogram of methods or functions called. Formally,
the result of profiling code is a rank-size distribution, which resembles the idea be-
hind a Type I Zipfian power-law model. Often it is impossible to draw inferences on
the sole basis of profiling results; however, when added to other information from
code walk-through, profiling can be a valuable procedure.

8.7.4.3 Parameter Sweeps
Social simulation models typically include large numbers of parameters. Such a
large set of space parameters can be used for verification purposes by evaluating the
model as a single parameter changes in values while others are held constant. Thus,
results from a parameter sweep will provide a response surface which can be plotted
and examined for possible anomalies indicative of bugs or other patterns that should
not appear. Parameter sweeps can reveal special properties within a range, such as
singularities, asymptotic behaviors, oscillations, or other quantitative and qualitative
patterns.

8.7.5 Validation: Can We Trust the Results?

The process of finding out whether results from simulation model runs match what is
known from empirical data is known as validation. Essentially, validation involves
pattern matching between simulation output and observed patterns in the referent
system.

There are a variety of ways in which simulation validation is conducted. Among
the most important and common ones are:
Histograms: Frequency distributions obtained from simulation runs can be

matched with empirical histograms—for example, income distributions, the
size of spatial distributions, and similar.
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Distribution moments: All distributions are characterized by moments, so
matching moments generated by simulation runs with real data is another
strategy.

Time series: Dynamic social simulations typically produce time-series data from
simulation runs, which can be compared with empirical time series.

Special indices: Specific measures, such as the Gini coefficient, entropy, the
Hurst coefficient, and similar indices can also be used.

Other: Results from simulation runs produce numerous statistics and patterns
that are often characterized by the specific subject matter and can be used
to compare with real-world data.

Sometimes an existing simulation system, such as Netlogo, MASON, or Repast,
will already have some of these facilities for conducting model validation tests.
However, it may be necessary to develop such facilities in the case of frequently
used validation tests that are not provided by the simulation system being used.

Ideally, validating a social simulation model is facilitated by pre-existing em-
pirical data that can be used to match results from simulation runs. This is often
the case when data from simulation runs also exists in reference to actual empirical
data. However, it is not uncommon to discover that simulation results produce data
that has never been measured in the real world. In this case, there is no choice but
to attempt to collect additional data as necessary. An interesting scientific situation
arises when a social simulation produces results that no one has looked for before!

Validating a social simulation model also involves estimating and calibrating pa-
rameter values to their appropriate ranges. This is often done by beginning with ex-
isting empirical parameter values or informed guesses within a justifiable domain.
In the end, validation always involves matching simulated, virtual data, with real,
empirical data.

8.7.6 Virtual Experiments and Scenario Analyses: What New
Information Does the Simulation Generate?

Earlier we discussed how virtual experiments are a major scientific contribution
of social simulation models. Conducting virtual experiments, such as by analyzing
alternative scenarios, is an intriguing and exciting use of computational modeling.

Computational experiments using social simulation models can be based on basic
scientific research, as well as on applied policy analysis. Analyzing virtual experi-
ments and alternative scenarios is a social simulation tradition that goes back to the
earliest days of computer simulation modeling in the social and behavioral sciences.
For example, the earliest system dynamics global models were used to analyze in-
dustrial development policies and global environmental trends under a variety of
future scenarios. While many of the assumptions used in these initial models during
the 1970s proved to be incorrect, the methodology itself was powerful and continues
to develop to this day.

Conducting virtual experiments through simulation models is also common in
other computational disciplines ranging from biology to astronomy. The reason for
this affinity between CSS and computational biophysics and the earth and space
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sciences is the common problem of being unable to conduct real experiments on the
referent systems of interest. The only way to understand what happens when two
galaxies collide is to conduct computational experiments, much the same as is the
case for conducting virtual experiments in computational biology.

8.8 Assessing the Quality of a Social Simulation

Social simulation methodology has begun to generate proposals for assessing and
promoting quality across diverse and related areas.8 For instance, proposals exist
in the area of communicating social simulation models, assessing complex projects
that involve large interdisciplinary teams (Sect. 8.9), and comparing models (see
Sect. 8.10). A strong consensus on a universal set of quality standards in social
simulation research has not yet emerged, but such a debate has already begun in the
global CSS community.

8.8.1 General Principles for Social Modeling Assessment

The criteria of “Truth”, “Beauty”, and “Justice” have been proposed by Charles
A. Lave and James G. March in the classic Introduction to Models in the Social Sci-
ences (1993). These criteria are widely used for discerning quality in social science
formal models, mainly mathematical in kind. The three terms “Truth”, “Beauty”,
and “Justice” (or TBJ, for short) are labels for quality dimensions referring to fun-
damentally good—i.e., normatively desirable—features of social science modeling.
Accordingly, the TBJ terms must be interpreted not literally but as labels.

Truth refers to the empirical explanatory content of a model—i.e., its contribution
to improving causal understanding of social phenomena—in the sense of develop-
ing positive theory. For example, truth is normally judged by internal and external
validation procedures, corresponding to axiomatic coherence and empirical verac-
ity, respectively. Truthfulness is the main, classical criterion for evaluating empirical
science, whether a model is statistical, mathematical, or computational. Truth must
be a constituent feature in a social science model; without it, a model has no overall
quality contribution.

Beauty refers to the esthetic quality of a model, to its elegance in terms of
properties such as parsimony, formal style, syntactical structure, and similar fea-
tures. Beauty is about art and form. For example, the mathematical beauty of some
equations falls within this criterion, including features such as the style of a well-
annotated system of equations where notation is clear, well-defined, and elegant.

8This section focuses on social simulations, so the broader field of CSS (e.g., social data algorithms
or socioinformatics, complexity models, social networks, social GIS, and related areas of social
computing) lies beyond the scope of this section. Quality research in those other areas is subject to
its own standards, as discussed in previous chapter.
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Fig. 8.2 UML class diagram illustrating the hierarchy of scientific models (left), social science
models (center), and social simulations (right), each having increasingly specific standards for
judging quality (moving from left to right). Source: Cioffi-Revilla (2013)

Unlike truth, beauty is not necessarily a constituent attribute, but is certainly a de-
sirable scientific quality.

Justice refers to the extent to which a model contributes to a better world—to
improvement in the quality of life, the betterment of the human condition, or the
mitigation of unfairness. Justice is a normative criterion, unlike the other two that
are positive and esthetic. For example, a model may improve our understanding of
human conflict, inequality, refugee flows, or miscommunication, thereby helping
to mitigate or improve social relations and well-being through conflict resolution,
poverty reduction, humanitarian assistance, or improved cross-cultural communica-
tion, respectively. Policy analysis can be improved by social simulation models that
are properly validated.

These Lave-March criteria of truth, beauty, and justice are useful for evaluating
the quality of social simulation models. For example, in the classic Schelling model
of segregation all three criteria are well-recognized. This is a fundamental reason
why Schelling’s model is so highly appreciated.

However, a further challenge exists because social simulations have features that
render truth, beauty, and justice insufficient as criteria for assessing quality. This is
because social simulation models are instantiated or rendered in code (a computer
program in some language), so one can easily imagine a social simulation that would
be of high quality in terms of truth, beauty, and justice, but fail in overall quality
because simulation models pose additional challenges beyond other social science
models (i.e., beyond the features of statistical or mathematical models).

As illustrated in Fig. 8.2, social simulations have properties that are shared with
all models in science generally and social science in particular, based on inheritance
as a specialized class, in addition to having other features of their own. For example,
the specific programming language of an agent-based model (Java, C++, or other),
or that of a system dynamics model, would be a defining feature.

The inheritance relation between social science models and social simulations
readily suggests several key features that distinguish the latter from the former, as
illustrated in Table 8.1.

Additional criteria for social simulations—i.e., criteria beyond classical stan-
dards for social science models—should allow us to judge quality in terms of “The
Good, The Bad, and The Ugly”.
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Table 8.1 Quality criteria for evaluating models in domains of science

Models in . . . Truth Beauty Justice Additional criteria

Science Yes Yes No No

Social science Yes Yes Yes No

Social simulation Yes Yes Yes Yes

Source: Cioffi-Revilla (2013)

Common required practices, such as verification and validation, are well-known
quality control procedures for assessing scientific models in general. However, ver-
ification and validation are insufficient criteria for assessing the quality of social
science models, specifically for social simulations. An important implication is that
current emphasis on model verification and validation is warranted, but verification
and validation are insufficient by themselves for judging the quality of a social sim-
ulation model (agent-based or other).

Therefore, a key methodological question concerning quality is: which additional
criteria—i.e., beyond truth, beauty, and justice—could or should be used to assess
the quality of a social simulation model? We shall now address this question based
on a set of dimensions for evaluating the quality of a given social simulation model.

8.8.2 Dimensions of Quality in Social Simulation Models

The quality of any complex artifact—whether a social simulation model or the Inter-
national Space Station—is a multifaceted property, not a single dimension. Dimen-
sions of quality can be used for evaluation and can also provide a master checklist of
desirable attributes for building and developing a social simulation model. Arguably,
there are two levels of quality assessment for computational social simulations cor-
responding to the concepts of a model and modeling, respectively.

First, from a model’s perspective, any set of quality dimensions for evaluating
a social simulation must be based on its specific attributes or uniquely constituent
features as a computational artifact in the sense of Simon. Moreover, whether the
overall quality of a given model should be an additive or a multiplicative function of
individual qualitative features is less important than the idea that overall quality de-
pends on a set of dimensions or desirable features beyond the Lave-March criteria,
not on some single preeminent feature (e.g., simulation environment or program-
ming language).

Second, from a modeling perspective, quality assessment should cover the
broader modeling or model-building process as such, beyond the social simulation
model that is produced in a narrow sense. This is because a computational model in
final (i.e., committed) instantiated code is the result of a sequence of earlier model-
ing stages that precede the model itself, such as the critical stage of model design
prior to implementation. Quality in design affects quality in the product of imple-
mentation, even when implementation per se is carried out in a proper manner (i.e.,
competently, with effectiveness and efficiency).
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The following Lifecycle Framework for quality assessment combines both
perspectives—the model and its developmental process—by focusing on the classi-
cal methodological stages of social simulation modeling, as we discussed earlier in
this chapter, with only minor modifications:
1. Formulation
2. Implementation
3. Verification
4. Validation
5. Analysis
6. Dissemination

Such a framework provides a viable checklist of quality dimensions to consider,
based on the preceding methodological principles for social simulation research.
Note that verification and validation constitute only two contexts for assessing qual-
ity and, as shown below, some of the others involve quite a number of additional
aspects regarding quality evaluation.
1. Formulation. Quality can be assessed starting from the formulation of a re-

search problem that a given social simulation is supposed to solve. A first set
of quality assessments regards research questions. Is the research question or
class of research questions clearly formulated? Is the focal or referent empirical
system well-defined? Beyond clarity, is the research question original and sig-
nificant? Originality should be supported by complete and reasoned surveys of
prior, extant literature to assess scientific progress. Every computational simula-
tion model is designed to address a research question, so clarity, originality, and
significance are critical. Motivation is a related aspect of problem formulation.
Is the model properly motivated in terms of relevant extant literature? Or, is the
simulation model the very first of its kind? If so, are there prior statistical or
mathematical models in the same domain? Literature reviews in published social
simulation research should not be incomplete, poorly argued, or totally missing.

2. Implementation. Rendering an abstracted model in code involves numerous
aspects with quality-related implications, starting with aspects of instantiation
selection. Does the code instantiate relevant social theory? Is the underlying
social theory instantiated using a proper program or programming language?
Code quality brings up other aspects that may be collectively referred to as the
Grimson-Guttag standards: Is the code well-written? Is the style safe/defensive?
Is it properly commented? Can it be understood with clarity one year after it was
written? In addition, what type of implementation strategy is used? I.e., is the
model written in native code or using a toolkit? If a toolkit is used, which one,
why, and how good is the application? Is the choice of code (native or toolkit)
well-justified, given the research questions? In terms of “nuts and bolts”, quality
questions include such things as: What is the quality of the random number gen-
erator (RNG)? Is it Mersenne Twister, MT19937, or other PRNG? Which types
of data structures are used, given the semantics? Are driven-threshold dynamics
used? If so, how are the firing functions specified? In terms of algorithmic effi-
ciency, what is the implementation difficulty of the problem(s) being addressed
by the model? How efficient is the code in terms of implementing the main de-
sign ideas? In terms of computational efficiency, how efficient is the code in
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terms of using computational resources? This aspect differs from algorithm effi-
ciency. From the perspective of architectural design, is the code structured in a
proper and elegant manner commensurate with the research question? In terms of
object ontology, does the model instantiate the object-based ontology of the fo-
cal system for the chosen level of abstraction? Note that all these quality-related
questions precede verification and validation.

3. Verification. Which passive and active tests were conducted to verify that the
model is behaving in the way it is intended to behave? Social scientists also call
this internal validity. Verification tests include but are not limited to the follow-
ing: code walk-through, debugging, unit testing, profiling, and other common
procedures used in software development, as we have already seen, and will ex-
amine more closely in the next chapters. What were the results of such verifi-
cation tests? Quality assessment should cover investigation of which verification
procedures were used, since results can range widely depending on the extent
of verification methods employed. Unfortunately, most social simulations are re-
ported without much (or any) information regarding verification procedures, as
if it were true that “results speak for themselves”—quite often they do not.

4. Validation. Similarly, validation of a social simulation, what social scientists call
external validation (or establishing a model’s external validity), consists of a suite
of tests, not a single procedure. Such tests are important for assessing quality in
a social simulation. Which tests (histograms, RMSE for assessing goodness of
fit, time series, spatial analysis, network structures, and other forms of real vs.
artificial pattern matching tests) were conducted to validate the model? What
were the results? Validation tests are often the focus of reporting results at the
expense of all other phases in the life cycle of a social simulation model.

5. Analysis. The preceding aspects provide a basis for establishing overall con-
fidence in a given model. What is the level of confidence in the model’s re-
sults, given the combined set of verification and validation tests? If networks
are present and significant in the focal system, does the model exploit theory and
research in social network analysis (Chap. 4)? Does the model facilitate analy-
sis of complexity as a system of non-linear interactions and emergent properties
(Chap. 6)? Which features of complexity (emergence, phase transitions, power-
laws or other heavy-tailed distributions, criticality, long-range dynamics, near-
decomposability, serial-parallel systems, or other structural features) are relevant
to the particular model? If spatial features are significant, does the simulation
employ appropriate spatial metrics and statistical tools for spatial data? What
is the overall analytical plan in terms of simulation runs and how is it justified?
How does computational analysis advance fundamental or applied understanding
of social systems? In terms of overall effectiveness, does the model render what
is necessary for answering the initial research question(s) or class of research
questions? This differs from efficiency. In terms of the simulation’s computa-
tional facilities, does the model possess the necessary functionality for conduct-
ing extensive computational analysis to answer the research questions or even go
beyond? How powerful is the model in terms of enabling critical or insightful
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experiments, for example in terms of parameter exploration (evolutionary com-
putation) and record-keeping? What is the quality of the physical infrastructure
that renders the most effective simulation experience?

6. Dissemination. Finally, the quality of a social simulation should be assessed in
terms of its “life-beyond-the-lab”. For instance, in terms of pedagogical value:
Does the model teach well; i.e., does it teach efficiently and effectively? In terms
of communicative clarity and transparency, are useful flowcharts and diagrams of
various kinds (e.g., UML class, sequence, state, and use case diagrams) provided
for understanding the model? Are they drawn with graphic precision and proper
style? In terms of replicability, what is the model’s replication potential or feasi-
bility? How is reproducibility facilitated? Aspects related to a model’s graphics
are also significant for assessing quality, not just “eye candy”. In terms of GUI
functionality, is the user interface of high quality according to its main users? Is
the GUI foundational for answering the research questions? More specifically, in
terms of visualization analytics, is visualization implemented according to high
standards? This does not concern only visual quality, but analytics for drawing
valid inferences as well. From a perspective of “long-term care”, what is the
quality of the model in terms of curatorial sustainability? How well is the model
supported in terms of being easily available or accessible from a long-term per-
spective? In which venue (Google Code, Sourceforge, OpenABM, Harvard-MIT
Data Center/Dataverse, or documentation archives such as the Social Science
Research Network SSRN) is the model code and supplementary documentation
made available? Finally, some social simulations are intended as policy analysis
tools. Is the model properly accredited for use as a policy analysis tool, given the
organizational mission and operational needs of the policy unit? Does the model
add value to the overall quality of policy analysis? Does it provide new action-
able information (new insights, plausible explanations, projections, margins of
error, estimates, Bayesian updates) that may be useful to decision-makers?
The quality of a social simulation is proportional to the number of dimensions

on which it is highly rated. Although these basic dimensions are not independent
among themselves, their total contribution is what matters in terms of a comprehen-
sive quality assessment.

8.9 Methodology of Complex Social Simulations

Some social simulations are called toy models because they represent a very sim-
ple referent system based on research questions that investigate a relatively narrow
range of entities and dynamics. Some of the earliest social simulation models be-
long to this class, and they are still important today because they provide a unique
way of understanding fundamental human and social dynamics. For example, toy
models such as Heatbugs, Segregation, Hawks and Doves, or Boids—as well as
many others provided by Netlogo—have significant pedagogical value for teaching
the fundamentals of social simulation science.
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Other models consist of complex social simulations and are characterized by
numerous interacting entities, typically heterogenous in several respects, governed
by multiple and typically nonlinear dynamics. Complex social simulations are nor-
mally built by interdisciplinary teams with distributed expertise among members.
Typical cases in this group include coupled socio-techno-natural systems that re-
quire integrated application of knowledge across multiple domains. Such models
also typically require years of development work, most often involving multiple
research institutions.

The methodology of complex social simulation models requires special consider-
ation in order to exploit the richness of such models while at the same time manag-
ing multiple challenges. A viable approach to complex social simulation modeling
is to view model development as a spiraling, multi-stage process that proceeds from
an initial, simple model and moves toward the much more complex final model.
A famous example of this in the history of physical science was none other than
Isaac Newton’s research program on planetary dynamics (what prompted him to in-
vent infinitesimal calculus), which has been studied in detail by the late Hungarian
philosopher of science and mathematics, Imre Lakatos [1922–1974]. As described
by Lakatos, Newton worked through a progressive sequence of models—not a sin-
gle large model—before he arrived at his final, full model of the whole planetary
system, complete with planets, moons, and the sun at its center. The initial simple
model investigated by Newton bore no resemblance to the final model, except as a
minuscule component. His first model consisted of a single perfect sphere rotating
around its axis. Subsequent models in a cleverly chosen sequence of “progressive
problemshifts” added moons, tilting axes of rotation, elliptical orbits, and numerous
other carefully chosen empirical features as Newton approximated his final model
of the planetary system. The entire movement from the initial, simple model to
the final, complex model resembled the masterfully orchestrated music of Maurice
Ravel’s Boléro, which starts with a single, lonely drum and ends with a huge, full
orchestra.

An example of a complex social stimulation, in many ways similar to Newton’s
final model of the planetary system, would be a coupled socio-techno-natural sys-
tem. In order to develop such a simulation as a final model of a referent system
representing some geographic region, the first initial model would represent a sin-
gle territorial entity with minimal dynamics included in the simulation. Once such
an initial model is well understood, additional features would be added. For exam-
ple, the second model in the sequence would have heterogeneous agents, in order
to understand more realistic cultural dynamics. A third model would add some sim-
ple weather dynamics, to further understand biophysical interactions between, say,
precipitation and land cover used by agents. The fourth model could include mul-
tiple societies over a broader region. Subsequent models would add infrastructure
systems and other technological artifacts.

The idea of a sequence of models for developing a complex simulation research
program should not be misinterpreted as being a strictly linear process. Occasion-
ally, it is necessary to make corrections and return to an earlier model that over-
looked something important, or it may be necessary to develop deeper understanding
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of simpler dynamics. That being said, the methodology of complex social simula-
tions should have a definite forward thrust, moving from simple (initial model) to
complex (final model).

There are several distinctive features of the methodology of complex simula-
tions.
1. It is necessary to identify an initial model that is simple enough to understand in

full detail, while at the same time representing a core element of the envisioned
final model of the referent system. Note that the very first model may not bear
much resemblance to empirical entities, just as in Newton’s case a perfect sphere
did not represent any real planet.

2. The sequence of models leading up to the final simulation is not arbitrary; it
must be carefully designed in order to provide cumulative insights as work pro-
ceeds toward the final model. The sequence of simulation models should follow
a theoretically meaningful plan, not simply proceed by random accretion and
incremental changes without theoretical justification.

3. Verification is an essential activity throughout the whole development process
from one model to the next. However, validation should proceed in a very ju-
dicious way, lagging behind verification, because if the model is tested through
validation procedures that are premature with respect to the final model, what
happens is that theoretically significant models might be rejected because they
lack sufficient empirical support. This was the case with Newton’s initial models
in the sequence, which is why he was not as concerned with empirical tests early
on in the research program.

4. Defining a final simulation model for the referent system is essential, because a
progressive sequence of models can go on indefinitely.

Again, a clear focus on core research questions is essential for governing the devel-
opment of complex simulations, just as it is for simpler models.

8.10 Comparing Simulations: How Are Computational Models
Compared?

Comparative research is a well-developed and fruitful endeavor with a rich history
across the social sciences. In fact, the theory and practice of comparative methodol-
ogy is viewed by many as a defining feature of social science. Systematic compari-
son of social simulations is insightful and instructive for multiple reasons:
1. Research questions investigated through social simulation are clearly highlighted

when comparing simulation models because research questions define the simu-
lations themselves.

2. Analyzing similarities and differences among social simulation models provides
a deeper, more comprehensive way of understanding them.

3. Comparative analysis of two or more social simulations can help identify features
such as overlaps, gaps, or questions in need of further research.

4. Insights from comparative analysis of social simulations can also be used to clar-
ify and refine fundamental dynamics, such as key properties of emergent phe-
nomena in social complexity.
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Keeping in mind the three main types of models used across the social sciences—
i.e., statistical, mathematical, and computational varieties—it is safe to say that so-
cial scientists have learned a great deal from comparing statistical and mathematical
models. For example, social scientists often compare various types of statistical re-
gression models, such as when deciding which type to use given a set of hypotheses
being tested, or when analyzing results from alternative functional specifications.
Another example is provided by comparing game theoretic models, such as the clas-
sic taxonomy of 2 × 2 games pioneered by the late Russian-American mathematical
social scientist Anatol Rapoport. Comparing social simulation models is a newer
endeavor when compared to statistical and mathematical models.

A first approach to comparing social simulations is based on generic character-
istics such as their referent system, type of implementation, level abstraction, and
basic science versus applied uses. Each of these features provides ample room for
examining similarities and differences among models being compared. Moreover,
depending on the purpose of comparison, these features can be investigated in var-
ious degrees of detail. For instance, comparing social simulations by type of im-
plementation is something that can be done in coarse terms by simply identifying
the programming languages or simulation systems, or it can be much more detailed,
comparing architectural features and interaction networks captured by each imple-
mentation. Comparison by generic characteristics can also focus on behavioral dy-
namics, distributions and stochastic processes, forms of emergent complexity, and
long-term asymptotic equilibria.

The more advanced comparison of social simulations should focus on detailed
examination of ontologies (including details provided in technical diagrams), dy-
namic processes (for example, by comparing UML sequence diagrams and state
diagrams, in the case of agent-based models), as well as numerous other software
features.

Comparing social simulation models is also sometimes referred to as model-to-
model comparison, or M2M for short. In the next two chapters we shall examine
several examples.
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9.1 Introduction and Motivation

This chapter examines the superclass of variable-oriented social simulation mod-
els, also called equation-based social simulations. Historically, these were the first
types of social simulations and they have formal roots in differential equation mod-
els of social dynamics. Today, these social simulation models consist primarily of
system dynamic (SD) models and queueing models. Each class is examined using
the MDIVVA social simulation methodology (Motivate-Design-Implement-Verify-
Validate-Analyze) developed in Chap. 8.

Both of these social simulation models focus on complex social systems over
time, which makes them applicable to theoretical application for basic science as
well as policy analysis. Historically, however, applications to applied operational
and management issues have prevailed. Hence, their use for advanced theoretical
analysis awaits many fruitful applications, especially in light of experience acquired
through practical uses in management, industrial, and operational settings.

9.2 History and First Pioneers

Social simulation models examined in this chapter have scientific roots in Isaac
Newton’s theory of dynamical systems and Girolamo Cardano’s theory of events in
probability—a prestigious pedigree. The following summary of major milestones
includes developments in SD and queueing models as well as closely related ad-
vances in dynamic simulation models more broadly.
1909 Mathematician and engineer Agner Krarup Erlang pioneers scientific re-

search on queuing systems by modeling the Copenhagen telephone ex-
change.

1953 Statistician and mathematician David G. Kendall proposes the standard for-
mal notation still in use for queueing systems, published in The Annals of
Mathematical Statistics.

C. Cioffi-Revilla, Introduction to Computational Social Science,
Texts in Computer Science, DOI 10.1007/978-1-4471-5661-1_9,
© Springer-Verlag London 2014
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1958 Richard Bennett at MIT creates SIMPLE (Simulation of Industrial Man-
agement Problems with Lots of Equations), the first system dynamics com-
puter modeling language.

1959 DYNAMO (DYNAmic MOdels) v. 1.0, an improved version of SIMPLE, is
invented by Phyllis Fox and Alexander Pugh. DYNAMO quickly becomes
the formal lingua franca of management science and operations simulation
models.

1960s SD models become widely adopted in operations research of complex so-
cial systems and management science, remaining prominent today.

1961 Engineering scientist Jay Forrester from MIT’s Sloan School of Manage-
ment publishes his pioneering book, Industrial Dynamics, the first in a se-
ries of SD classics.

1961 Applied mathematician Thomas L. Saaty publishes the queueing theory
classic, Elements of Queueing Theory with Applications. In the same year
J.D.C. Little publishes his famous law of queueing systems in the journal
Operations Research, and J.F.C. Kingman publishes his equally famous
law in Mathematical Proceedings of the Cambridge Philosophical Society.

1969 Urban Dynamics is published by Jay Forrester and John Collins (former
mayor of Boston), expanding system dynamics simulation to social com-
plexity and CSS in a proper sense.

1970 Forrester and his group at MIT create the first socio-environmental global
models, WORLD1 and WORLD2, published as World Dynamics, of what
eventually became the famous Club of Rome model.

1972 The Limits to Growth, the classic book that will make SD famous world-
wide, is published by Donella Meadows under the sponsorship of engineer
Aurelio Peccei’s Club of Rome. It is immediately translated into many lan-
guages.

1972 Cultural anthropologist Linda S. Cordell pioneers the first social simula-
tion of Puebloan (Anasazi) polities in the American Southwest with her
Ph.D. dissertation on “The Whetherill Mesa Simulation” at the University
of California at Santa Barbara. Cordell received the Lifetime Achievement
Award from the Society for American Archaeology and the A.V. Kidder
Medal from the American Anthropological Association, becoming a mem-
ber of the US National Academy of Sciences in 2005.

1975 Political scientist Dieter Ruloff, disciple of CSS pioneer Daniel Frei from
the University of Zürich, Switzerland, demonstrates the first application of
SD to simulating insurgency and political stability. In the following years
he publishes the first SD models of the collapse of Classic Maya polities
and Soviet–Taliban insurgency dynamics in Afghanistan.

1975 Political scientists Nazli Choucri and Robert North publish Nations in Con-
flict, the first discrete-time simulation in international relations, modeling
the onset of World War I .

1979 Political scientists Urs Luterbacher and Pierre Allan from the Graduate In-
stitute of International Studies in Geneva, Switzerland, create SIMPEST,
the first dynamic simulation model of USA-USSR-PRC strategic triad dy-
namics during the Cold War, correctly predicting the disintegration of the
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Soviet Union. Their paper was presented at the World Congress of the In-
ternational Political Science Association, Moscow, USSR.

1979 Archaeologists Colin Renfrew and K.L. Cooke co-edit the volume Trans-
formations: Mathematical Approaches to Culture Change, another early
pioneering collection.

1981 Archaeologist Jeremy Sabloff publishes Simulation in Archaeology, one of
the first edited volumes of its kind. The same year Nazli Choucri publishes
International Energy Futures, the first SD modeling book on the world
energy market from an economic and politics perspective.

1984 The SD scientific journal, System Dynamics Review, is founded.
Mid-1980s Political scientist Michael Wallace publishes a paper demonstrating

the implementation of Lewis F. Richardson’s theory of arms races in SD
models using DYNAMO.

1985 The Stella version 1.0 software for system dynamics modeling is released
by the isee systems company.

1998 Nazli Choucri and her MIT students publish the first SD model of state
stability in the System Dynamics Review.

2000 American management scientist John D. Sterman publishes Business Dy-
namics: Systems Thinking and Modeling for a Complex World, the first
major, comprehensive textbook in SD.

9.3 System Dynamics Models

This section introduces the superclass of social simulations based on system dy-
namic (SD) models, used in significant social science applications, and examines
their main features for understanding social complexity. SD models are introduced
within the broader context of dynamical systems, which span an even larger class of
formal models. The emphasis of SD is on discrete-time systems as the main formal-
ism for characterizing social dynamics of various types observed in referent social
systems. Mathematical aspects are important, especially for learning how qualita-
tively different dynamical processes—i.e., different forms of dynamic behavior—
are modeled through different model specifications.

The following terms must be distinguished in the interest of clarity, since they
are easily confused when not used with precision:

Definition 9.1 (System Dynamics Model) A system dynamics (SD) simulation is
a variable-based computational model for analyzing complex systems containing
feedback and feedforward dependencies among variables and rates of change, often
with high-dimensionality.

Formally, an SD model consists of a system of discrete-time difference equations
with forward or backward differencing. SD models can be purely deterministic or
contain stochastic noise as defined by random variables. A complete SD social sim-
ulation model consists of causal diagrams explaining the network of dependencies
and associated code implementation.
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Fig. 9.1 Major pioneers of system dynamics models: Jay Forrester, founder of SD modeling (up-
per left); Dennis Meadows, director of the Club of Rome Project on the Predicament of Mankind,
The Limits to Growth (upper right); Linda Cordell, pioneer in dynamical systems models in ar-
chaeology, elected to the National Academy of Sciences in 2005 (lower left); Nazli Choucri, MIT
pioneer SD modeler of energy, conflict, and state stability dynamics (lower right)

Definition 9.2 (Dynamical System Model) A dynamical system (DS) is a variable-
based mathematical model composed of a set of differential equations or differential
and integral equations.

Dynamical system models in social science date to the first pioneering appli-
cations to the study of conflict, demographic, and economic dynamics almost a
hundred years ago—i.e., they were used in mathematical social science much ear-
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lier than computational SD models. Formally, a DS model consists of a system
of continuous-time equations. DS models can be purely deterministic or contain
stochastic noise defined by random variables. Both SD and DS are formal models
(computational and mathematical, respectively), and can be purely deterministic or
contain stochastic components. The main difference lies in the discrete and contin-
uous time domains, as well as the presence of forward and backward time delays in
the former.

9.3.1 Motivation: Research Questions

SD models address research questions in numerous domains of CSS, especially
those where the following features are present in a given referent system of interest:
1. Variables and their respective time trajectories are of immediate interest as

stocks, sizes, or quantities of some kind. (State variables are later abstracted as
levels, as detailed in the next stage of the modeling process.)

2. Causal relations among variables are responsible for observed changes in terms
of temporal dependencies; they don’t just occur for unknown reasons or through
purely random mechanisms. (Change is later abstracted as caused by rates.)

3. Noise can affect resulting trajectories at various points in the causal network.
(Noise is later abstracted as probability distributions.)

4. At the macroscopic system level trajectories of change can include stationar-
ity, escalation, dampening, cycling, oscillations, asymptotic behaviors, and other
temporal qualitative patterns.

5. Emergent properties of social complexity at the systemic level result from inter-
actions at the level of variables at the lowest causal levels.

9.3.2 Design: Abstracting Conceptual and Formal Models

Given some referent system of interest S, a conceptual model CS, consisting of a set
of state variables and their respective rates of change, is abstracted by a two-stage
process rendered through causal loop diagrams and stock and flow diagrams.

9.3.2.1 Causal Loop Diagrams
The first stage in SD abstraction to produce a conceptual model focuses on elemen-
tary causal relations called loops.

Definition 9.3 (Causal Loop) A causal loop is a feedback relation between a given
variable x and its rate of change.

Causal loops are the basic elements of an SD model. In turn, feedback can be
positive or negative, depending on whether it promotes or impedes a given variable.

Definition 9.4 (Positive Feedback) A positive feedback loop is a causal relation
that increases the value of a variable.
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Positive feedback is viewed as a reinforcement dynamic in SD terminology,
producing an increasing effect: growth, expansion, gains, amplification, increases,
improvements, enlargements, proliferation, or escalation, or other increasing pat-
terns in the time trajectory of a variable, depending on the appropriate semantics of
the referent system.

Definition 9.5 (Negative Feedback) A negative feedback loop is a causal relation
that decreases the value of a variable.

Negative feedback is a said to be a balancing dynamic in SD terminology, pro-
ducing a decreasing effect: fatigue, decline, reduction, loss, diminution, mitigation,
depletion, contraction, restraint, decay, or other decreasing patterns in the time tra-
jectory of a variable, again depending on appropriate semantics of the referent sys-
tem.

Definition 9.6 (Causal Loop Diagram) A causal loop diagram is a graphic abstrac-
tion that describes positive and negative feedback in the behavior of a given variable.

Norm adoption by members of a community is an example of an emergent so-
cial phenomenon that can be represented by a causal loop diagram. This is useful
for understanding how a new norm may be adopted as a social process from an
SD perspective, as shown in Fig. 9.2. The figure shows two feedback loops operat-
ing simultaneously. The positive feedback loop R, on the right, denotes how social
conformity tends to produce new norm adopters by peer pressure as the number of
new adopters grows. This is a reinforcement dynamic. The more people conform-
ing to the new norm, the greater the pressure to adopt it, which is abstracted as a
positive feedback loop. The feedback loop B, on the left, represents negative rein-
forcement or “balancing” because the community has finite size, so the number of
potential adopters decreases as more community members adopt a new norm. The
higher the proportion of conformity with the new norm the lower the number of the
non-conformists, so the loop on the left represents negative feedback. Related ex-
amples of social norms are fashions, opinions, technological innovations, attitudes,
and behavioral patterns, so the norm adoption process has broad applicability across
domains of social science.

A similar example is found in the domain of inter-group conflict, based on
Richardson’s two-group rivalry model of arms race dynamics, shown in Fig. 9.3.
(Although this is sometimes referred to as a two-nation arms race model, Richard-
son intended it to be a general model for conflict between rival groups of any kind,
nations and non-state actors alike, as reflected by his term “deadly quarrels.”) In this
case the rate of arms acquisition by each group is affected by two opposite dynamics
produced by feedback loops. On one hand, there is an escalation dynamic because
the rate of arms acquisition is driven by a rival’s current (and threatening!) level of
arms; the higher that is, the greater the need to catch up by increasing one’s own
rate. On the other hand, there is a mitigating dynamic driven by the cost of main-
taining what one already has, so the higher the level of one’s own armaments, the
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Fig. 9.2 Causal loop diagram for a system dynamics model of norm adoption

Fig. 9.3 Causal loop diagram for a system dynamics model of inter-group rivalry

greater the economic burden, so the more difficult it is to procure further increases.
Today, organization complexity required to support advanced capabilities must be
added to direct economic cost. Richardson called this restraining force “fatigue.”

A system as a whole is represented by coupled causal loops representing how all
elementary causal loops are related to one another. Note that in the last two examples
overall system structure is the same, but the signs are not—the balancing signs of
the mitigation dynamic are reversed. In the norm diffusion process in Fig. 9.2, the
two feedback loops are assumed to be coupled, acting simultaneously. As shown in
the diagram, the rate of norm adoption is a function of both the number of potential
norm adopters and the number of norm adopters. Potential norm adopters and actual
norm adopters are decreased and increased by the adoption rate, respectively. The
result is that at different times the two coupled dynamics behave differently. During
the early stages of the process, growth in the population of adopters will be greater
than in latter stages when fewer non-conformists remain in the community.

In the rivalry process in Fig. 9.3, the two feedback loops are also assumed to be
coupled, so they operate simultaneously. The rate of arms acquisition is a function of
both the rival’s arms level and the group’s (own) arms level. The escalation dynamic
on the right is a self-reinforcing drive (positive feedback). The mitigation dynamic
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Fig. 9.4 SD stock and flow
diagram for representing
variables (stocks represented
as rectangles) and rates of
change (flow represented as
valves)

on the left is a balancing drive (negative feedback). However, unlike the previous
example, this case assumes two different kinds couplings, both acting on the rates of
arms acquisitions:
1. Feedback couplings: positive and negative feedback processes are coupled, as in

the norm emergence example.
2. Actor couplings: the two rivals are coupled through strategic interaction, in a

game-theoretic sense, since the outcome for each (arms levels) is determined not
only by what one decides, but also by what the rival decides.
These two coupled dynamics in the rivalry process in this case also behave dif-

ferently at different times, depending on which dynamic drive prevails.
In sum, causal loop diagrams can contribute to building a conceptual SD model

from a qualitative perspective by abstracting positive and negative feedback loops
corresponding to reinforcing/escalating and dampening/mitigating drives, respec-
tively. However, more is needed to build a sufficiently complete conceptual model
of a referent system that can be computationally implemented in code.

9.3.2.2 Stock and Flow Diagrams
The second stage of abstraction in SD model development is to provide a more
quantitative way of representing system structure and dynamics using stock and flow
diagrams, as shown in Fig. 9.4. In this second kind of SD diagram, variables become
stocks (rectangles) and rates become flow valves (bow ties). Unlike a feedback loop
diagram, a stock and flow diagram can be directly translated into code.

The top of Fig. 9.4 shows a generic stock and flow diagram with its basic nota-
tion, where the source on the left represents a variable with realization determined
by the flow valve that controls the stock or level on the right. The bottom of the
figure uses the same notation applied to the case of the reinforcement loop or esca-
lation dynamic of a conflict process (right portion of Fig. 9.3), where a group’s rate
of acquisition in military capabilities is determined by the level of its rival. The fully
coupled conflict system is shown in Fig. 9.5.
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Fig. 9.5 Stock and flow
diagram for a system
dynamics model of a
two-group rivalry interaction

Figure 9.5 specifies how rival actors and feedback loops are mutually dependent
on each other, to formalize the concept of strategic interaction. The figure uses the
same basic stock and flow components as in Fig. 9.4, with the added element of
background hostility acting as a parameter that also affects the rate of change, so
now the dynamic process of each rival is driven by three factors:
1. The rival’s current arms level (representing positive feedback, escalation force)
2. The group’s own arms level (negative feedback, mitigation force) and
3. Background hostility acting as a constant background force, which captures the

idea that a group would acquire some minimal military capabilities as insurance,
regardless of a rival’s arms level.
Diagrams such as these—usually involving many more stocks/variables, flows/

rates, and parameters—are used in SD methodology for representing a conceptual
model of a given referent system. Noise, stochastic shocks, and other elements are
also added as necessary.

The main result of the design stage in system dynamics is a conceptual model
of the referent social system specified by a set of equations. For example, in the
conflict model, the following system of equations in continuous time specifies the
rivalry dynamics:

dX

dt
= aY − bX + g (9.1)

dY

dt
= αX − βY + h, (9.2)
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where a and α are reaction coefficients, b and β are mitigation coefficients, g and
h are hostility coefficients, and X and Y are levels of armaments. The following
system of equations is in discrete time:

X(t + 1) = aY (t) − bX(t) + g (9.3)

Y(t + 1) = αX(t) − βY(t) + h. (9.4)

In this case, the system of equations can be analyzed to obtain closed form so-
lutions, since the system is simple. Solutions to these systems of equations yield
time trajectories containing exponential terms, which can be easily verified. In most
cases this is not possible, which is why simulation is required.

9.3.3 Implementation: System Dynamics Software

Given a sufficiently complete conceptual model of a referent system, the next stage
in SD methodology consists of implementing the model in code using a simula-
tion system. The key milestone activity in the implementation stage is marked by
the transition from mathematical equations in the conceptual model to code in the
simulation model.

The current, most utilized simulation system for implementing SD models is
called VENSIM, which is the current successor to earlier DYNAMO and STELLA
simulation systems software. Vensim PLE is an education version that is made avail-
able free of charge. The classic textbook by John D. Sterman, Business Dynamics,
includes a CD (for PC and Macintosh) containing simulation software and models,
including ithink, Powersim, and Vensim software. A major advantage of systems
such as these is their close association with the SD community, specifically the Sys-
tem Dynamics Society. The Vensim website has numerous resources for beginning
and advanced users, including tutorials and other helpful materials.

Figure 9.6 shows a screenshot of the Vensim system while implementing a con-
ceptual stock and flow model of a simple customer base in a company. While
Dynamo was a programing language that required writing code, Vensim can be
used by selecting facilities for defining variables, equations, and other components
by clicking options, using drop-down menus, and other features of the user inter-
face.

Another option for developing SD social simulation is to implement the concep-
tual model in simulation systems such as Netlogo or Repast. Although these sim-
ulation systems were not originally designed to run SD models, they do have such
facilities in addition to the agent-based models for which they were originally de-
signed. For example, Netlogo has demonstration SD models for exponential growth,
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Fig. 9.6 Screenshot while implementing an SD social simulation using the Vensim system

logistic growth, prey-predator (wolf-sheep) dynamics (based on the classic Lotka-
Volterra model), as well as other effective examples.

9.3.4 Verification

Recall the difference between verification and validation: the former is about ensur-
ing a model is running the way it is supposed to, as guided by the conceptual model
and any other simulation design specifications; the latter is about ensuring that the
simulation model is a good representation of the referent system.

Once an SD social simulation model has been implemented, the next step in-
volves verification procedures. Systems such as Vensim provide a number of facil-
ities for verifying a model, such as checking that the right units are specified, rates
are using the proper dependencies, and similar steps to ensure that the model is
running the way it was intended by the conceptual model. Since an SD conceptual
model, complete with stock and flow diagrams, uses the iconic metaphor of levels
and flow valves, verifying an SD implementation essentially means checking that all
“the plumbing” is working as it should according to the most minute details in the
blueprints (stock and flow diagrams). Each element must be checked for accurate
implementation, as well as every rate, feature, and connection. Facilities provided
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by whatever simulation system is chosen should be used in the context of the verifi-
cation procedures examined in Chap. 8.

9.3.5 Validation

Validating an SD social simulation model that has been verified is accomplished
from two main perspectives. Structure validity refers to internal features of the
model, including all assumptions, relevant variables and their units, and the system
of equations in all its component stocks and flows. The following are recommended
tests of structure validity for SD models:
Empirical tests of validation: This is aimed at validating the specification of

equations used in the model as well as parameter values being used. For ex-
ample, in the case of the conflict model discussed earlier, this part of the val-
idation process would focus on parameters such as the equation’s coefficients
being assumed, as well as constants, such as background hostility that affects
armament rates. The equations themselves require validation, since different
specifications will yield different results. The classic rivalry model assumes
additive and symmetrical armament levels, which is an assumption that re-
quires validation through using empirical tests. It is also assumed that reaction
coefficients and hostility parameters are constant. These all add up to an over-
all assumption of structural stationarity, in the sense that all equations specified
do not undergo significant change over time—i.e., the standard model assumes
that the basic clockwork mechanism does not change as history evolves, which
may or may not be a valid assumption.

Theoretical tests of validation: Model assumptions should also be confirmed by
the extant theories being used, since even the simplest SD model assumes
theoretical mechanisms that justify its causal structure. This is a broader per-
spective than empirical tests of structural validity, since it is based on funda-
mental causal arguments that are difficult if not impossible to quantify. For
example, in the case of the conflict model, the overall structure is grounded
on Richardson’s theory of how rivalry between two groups is explained. The
fundamental theory is based on three factors or dynamics driving the conflict
process: escalation forces driven by positive feedback from a rival’s stock of
weapons; mitigation forces driven by fatigue and negative feedback from one’s
own stockpile of armaments; and some background constant force generated
by hostility over disagreements and insecurity. Is this theory valid? Are there
other factors as important or even more significant than these? The theory also
assumes perfect symmetry between rivals; both make arms procurement de-
cisions in the same way. Is it possible that the rivals in question decide with
different goals, such as one trying to “catch up” with the other, so it reacts
to the gap between its own level and the rival’s [i.e., dX/dt ∝ (X − Y)], not
simply to the rival’s level (dX/dt ∝ Y as in Eq. (9.1))?

As with any other kind of social simulation model, tests of structural validity for
SD models are complex and require considerable attention. The empirical literature
is of great value in navigating through these procedures.



9.3 System Dynamics Models 261

By contrast, behavior validity concerns the actual results of simulation runs, pri-
marily in terms of qualitative and quantitative features such as patterns of growth,
decay, and oscillation, among others. Many of these procedures involve various
forms of time-series analysis and extensions. Some of these were mentioned during
the general methodological discussion in the previous chapter, including analyzing
trends, comparing periodicities by means of autocorrelation functions, comparing
distribution moments, and computing global statistics such as the discrepancy coef-
ficient between simulated and observed time-series data (Barlas 1996: 207–208).

9.3.6 Analysis

The main goal of simulation research in CSS is to obtain qualitative and quantitative
results to better understand the referent system. The previous forms of qualitative
and quantitative analysis are primarily procedural, for purposes of gaining confi-
dence in the veracity of a model by conducting verification and validation proce-
dures. Obviously, the main goal of developing an SD social simulation—the rea-
son for going through all the trouble—is to analyze it in substantive ways. Formal
analysis, asking what-if questions, and scenario analysis constitute major forms of
analyzing SD social simulations.

Formal analysis of an SD model yields results, such as time trajectories for all
level variables (stocks), phase portraits in parameter spaces, sensitivity analysis,
comparative statics, and similar sets of results in dynamical systems analysis. For
example, the conflict model results from formal analysis would show the time tra-
jectories of levels of armaments in the evolution of conflict between groups, phase
portraits of trajectories as a function of parameter combinations, and similar qual-
itative and quantitative results. Results from formal analysis can reveal properties
such as orbits, singularities, asymptotes, attractors, gradient fields, periodicities,
chaos, bifurcations, ergodicities (equality between time averages and space aver-
ages), phase transitions, stability properties, and other significant dynamic features
of social complexity that are typically not apparent from the model structure.

Asking what-if questions is another major approach to analyzing SD social sim-
ulations. For example, in the conflict model we may ask what happens when the
hostility of one group versus its rival is some multiple of the other’s hostility. Or,
what happens when reaction coefficients differ significantly across the two groups?
What-if questions can also extend to analysis of an SD model with alternative spec-
ifications of equations to explore what happens when rates of change are governed
by different dynamics. For example, as was suggested earlier, in the conflict model
we may wish to have a rival responding to the gap (Y − X) in armament levels, as
opposed to the original assumption of responding to just level Y .

A more comprehensive form of analysis used with SD social simulations is sce-
nario analysis, which typically involves a suite of related questions defining a given
scenario, rather than analyzing one question at a time. For example, in the conflict
model we may wish to examine a scenario in which reaction coefficients are rel-
atively small, mitigation coefficients are several times larger than reaction coeffi-
cients, and hostility coefficients are weak. Intuitively, such a scenario should lead
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toward lowering of the conflict by de-escalation and disarmament. The opposite
scenario would have the set of coefficients changed in opposite ranges, leading to
escalation and the system spiraling out of control (blowing up). Within these two
extreme scenarios lie many others with interesting qualitative and quantitative prop-
erties, some of which are previously known through analytical methods that yield
a closed-form solution—many more are not known and remain to be explored, es-
pecially in high-dimensionality systems with many actors and different structural
specifications in terms of reaction dynamics.

These and other forms of analysis are used in SD simulation to investigate basic
CSS questions as well as applied policy issues. SD can also be used in combination
with other simulation models, such as agent-based models examined in the next
chapter.

9.4 Queueing Models

This section examines the superclass of social simulations that use queuing models,
covering their significant social applications and main features. The emphasis is
on distributions as the main feature for characterizing queues of various types of
processes observed in referent social systems. As always, mathematical aspects are
foundational, especially for learning how qualitatively different process structures,
representing different forms of randomness, are modeled by different probability
distribution laws.

Definition 9.7 (Queue) A system consisting of one or more units or stations that
service or process a stream of incoming demands or requests is called a queue. For-
mally, using Kendall’s notation, a given queue Q is denoted by a triplet A/S/C,
where A describes time between arrivals to the queue, S describes servicing or pro-
cessing, and C is the number of processors, where C = 1,2,3, . . ..

This initial definition is useful by itself, and provides the basis for more complex
systems with multistage queues, as we will demonstrate with examples.

9.4.1 Motivation: Research Questions

Queue-like systems are ubiquitous and significant across domains of social science.
Consider the following examples:
1. A bank (the classic example given in many queueing theory textbooks) is a

queueing system where customers arrive with frequency A; they are served by
tellers in time S; and there are C teller windows to service customers. If a teller
cannot satisfy the customer, there would be another queue for speaking with a
bank manager or supervisor. Supermarkets, fueling stations, hospitals (including
emergency rooms embedded within), and registration desks are other common
everyday examples.
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Fig. 9.7 Major pioneers of queueing systems models: Agner Krarup Erlang, founding pioneer of
queueing models (upper left); David George Kendall, inventor of the standard notation for queue-
ing system models (upper right); Thomas L. Saaty (lower left), author of classic works in applied
discrete mathematics, including queueing theory, and inventor of the Analytic Hierarchy Process;
John Dutton Conant Little, discoverer of the law of mean arrival times and a founder of modern
marketing research (lower right)

2. An airport check-in counter (and many other transportation nodes) is a queueing
system where passengers arrive with a certain pattern A; the airline staff at the
counter, or check-in machine, process passenger identification, flight informa-
tion, and provide boarding passes in time S; and there are C counters with staff
to assist passengers. Flight operations consist of other queuing systems, which
are separate, albeit coupled, for processing arriving airplanes from entering the
air space to the arrival gate. Modern airports are highly sophisticated, complex
queuing systems.
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3. A polity can be modeled as a queueing system where public issues arise with
some temporal pattern A; each issue is addressed with policies S involving re-
sources, processing time for decision-making, and implementation; and which
uses a set C of agencies.

4. When a disaster occurs in a given society, demand for relief A increases signif-
icantly, which requires the immediate activation of emergency response services
and humanitarian assistance supply chains S through multiple organizations C.
The results are significant for societal welfare and even governmental stability,
as seen in Haiti following the 2010 earthquake.

5. A legislative body is a queueing system where bills are introduced with frequency
A and laws are passed in time S supported by C legislators and staff members.

6. Human information processing can be viewed as a queueing system where in-
formation arrives at rate A, is processed (decoded and interpreted) at rate S, and
makes use of C cognitive elements (values, goals, belief systems, and heuristics,
among other elements of bounded rational actors).
The key to recognizing queuing systems in human and social dynamics is iden-

tifying the A/S/C pattern in a referent system of research interest. Courts, mar-
kets, organizations, and a vast array of institutions provide additional examples.
Queuing systems are abundant in social systems and processes. Note that the enti-
ties processed or serviced by a queue can be human agents (customers, passengers,
shoppers) as well as other socially relevant entities, such as laws and public issues,
among many others, as suggested by the examples above.

The most obvious research questions that arise in queueing systems concern pat-
terns of arrival A and servicing S, which are typically expressed in the form of
distributions, as well as the organizational arrangement among the C processing
components. Given some queuing system Q,
• What are the patterns of arrival and service times in terms of distributions and

moments?
• Does the system have sufficient capacity for processing demands within reason-

able time?
• Are patterns of arrival and service stationary with respect to epochal time τ?
• If non-stationary patterns exist, how can they be described?

Each of these questions in fact represents a whole set of research issues that are
investigated through queuing models in CSS. For example, the question concerning
the capacity of a given polity for dealing with a relentless stream of public issues
that arise in the normal life of a society (example 3 in the list above) is anything but
purely theoretical, although it may sound that way at first. A country that is over-
whelmed by unresolved public issues and unattended policy demands will eventu-
ally experience state failure, ceteris paribus (all other variables held constant). In
another example, people get killed when a stampede of panicked individuals seeks
to exit a stadium, church, discotheque, or theater when some frightening event has
occurred within. This happens because all of a sudden A ≫ S, whereas the sys-
tem is normally designed for A � S or, at best, A ≈ S, from a queuing systems
perspective.

From the preceding discussion it should be apparent that there are multiple the-
oretical and policy applications of queuing systems in CSS. That being said, appli-
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cations of queuing systems to social simulation domains have prevailed in applied
areas, such as management science and operations research, with fewer applications
investigating basic theoretical questions in social theory (such as examples 3–6 in
the list above). Such an imbalance is unjustified, as we will demonstrate by exam-
ining the process of social simulation model development from a queuing systems
perspective.

There are also purely technological queueing systems, such as the physical In-
ternet, with which we are not concerned. Queuing systems are also important in the
context of coupled socio-techno-natural systems, especially in terms of social and
technological components and all three coupling interfaces.

9.4.2 Design: Abstracting Conceptual and Formal Models

Given a referent system of interest, the next step toward developing a social queu-
ing system simulation consists of identifying and abstracting relevant information
for purposes of developing a conceptual model of the referent system. Based on
Definition 9.7, the following three variables each require empirical identification
and formal specification:

Definition 9.8 (Arrival Time A) Arrival time A is a continuous random vari-
able defined by a probability density function p(t), or p.d.f., with realizations
{t1, t2, t3, . . . , tn}.

Definition 9.9 (Service Time S) Service time S is a continuous random variable
defined by a p.d.f. p(s) with realizations {s1, s2, s3, . . . , sm}.

Note that:
1. Both A and S are c.r.v.s (continuous random variables) measured in time units.
2. Accordingly, arrival and service are also defined by all probability functions for-

mally derived from a p.d.f. p(x), such as (1) the cumulative probability func-
tion (c.d.f.) Φ(x), (2) the intensity function I (x), also known as the hazard rate
function H(x) or social force function F(x), (3) the stress function Λ(x) as the
integral of I (x), and (4) others, as defined earlier in Chap. 7. These other prob-
ability functions are important because each describes a different, specific facet
of randomness that is important to understand.

3. All probability functions of A and S can be estimated from empirical data, using
various methods, although some purposes require more data than others.

4. Density functions p(t) and p(s) provide precise descriptions of numerous forms
of randomness, including the special case of deterministic arrival or service, as
we shall examine below. Empirical data and social theory should be used for
choosing distributions, not purely mathematical or algorithmic convenience.

5. Statistical moments mi also characterize a given distribution, most importantly
m1 = x (mean), m2 = σ 2 (variance), m3 = skewness, and m4 = kurtosis. The
median and the mode are also useful, especially since many social distributions
are not normal.
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6. Empirically, A is often exponential while S is often normal, at least to a first
approximation. The Weibull distribution is also significant for many social pro-
cesses, as explained below.
The number of service or process components is the third element of a queueing

system, based on Definition 9.7.

Definition 9.10 (Service Components C) The number of service components C in
a queueing system is a discrete variable with finite integer values 1,2,3, . . . , k.

Following Kendall’s notation, the following are important elementary types of
social queueing systems:

Q1 = M/D/1 (9.5)

Q2 = M/M/1, (9.6)

where M denotes a Markovian or memoryless process with simple negative expo-
nential (Poissonian) arrivals, D denotes a deterministic processing time, and C = 1
component processing node. Equation (9.5) specifies a queueing system character-
ized by: Markovian (exponential) M arrivals given by p(t) = λe−kt , where k is the
arrival rate measured in number of arrivals per unit of time; deterministic D (con-
stant) time is required to process each arrival; and a single processing component.
Equation (9.6) defines a similar but different queue with the same arrival and com-
ponent features but processing is Markovian.

The Weibull distribution (Fig. 9.8) is also socially significant, because it includes
the simple exponential distribution, an approximation of the normal distribution,
as well as a variety of qualitatively different intensity functions that are applicable
to many social systems and processes. The Weibull distribution is defined by the
following probability functions:

p(x) = κxα exp

(
−κ

α
xα+1

)
(9.7)

Φ(x) = 1 − exp

(
−κ

α
xα+1

)
(9.8)

I (x) = κxα (9.9)

Λ = κ

α
xα+1, (9.10)

where κ and α are scale and shape parameters, respectively.
Numerous mathematical results exist for queueing systems, although the the-

ory of an M/G/k queue, where G is a generic probability distribution, remains
incomplete—so simulation methods are appropriate for obtaining computational so-
lutions. The following eponymous laws are among the better known for queues with
one or more generic probability distributions G:
Little’s law Average number of units being processed in a G/G/1 queue in

steady-state.
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Pollacsek-Khinchine’s equation Expected waiting time for a M/G/1 queue.
Kingman’s formula Expected waiting time for a G/G/1 queue.

The behavior of processing components in a queue matters greatly and can be
based on various specific scheduling policies. These are usually described in terms
of agents, but they can refer to any entity being processed by a queue.
First-in-first out (FIFO) The agent with longest waiting time is served first.
First-in-last-out (FILO) The agent who arrived first is served last.
Last-in-last-out (LILO) The agent who arrived last is served last.
Last-in-first-out (LIFO) The agent with shortest waiting time is served first, or

stack.
Sharing Processing capacity C is shared equally among agents.
Priority Agents are processed according to some ranking.
Fastest job first The agent with the shortest processing time is served first.
Preemptive Processing is interrupted to permit servicing a priority agent.

Some queuing policies, such as FIFO and LIFO, are also used in accounting
systems. The LIFO stack was discussed in Chap. 2 as a data structure.

Simple, unitary queues are important for understanding how queue-based pro-
cesses operate under various probability distributions. However, it is often the case
that a real-world referent system will contain a network of queues, as well as inter-
nal queues embedded within larger queues as in a system-of-systems. A common
example would be a bookstore where one would enter, browse, select some books,
and then proceed to the cashier for payment. The bookstore as a whole is a queueing
system where one enters, shops, and departs. But within the store, the time spent
browsing, as well as the time spent paying, constitute queues within the “macro”
store-level queue. The same is true in the example of a polity that processes pub-
lic issues, and within governmental institutions, laws and policies have their own,
internal processing dynamics. Assuming an exponential onset of issues as well as
policymaking and implementation—which is a reasonable approximation in many
cases—an abstract queue-based model of a polity can be presented as an M/M/k

system, where k denotes the number of government agencies involved. Hence, a
network of this kind has links provided by probability distributions and nodes by
distributions and service stations.

9.4.3 Implementation: Queuing Systems Software

Social simulations based on queuing models can be implemented in native code or
by using a specialized simulation system. There are scores of simulation software
packages for queueing systems—not counting some ingenious spreadsheet imple-
mentations (not really recommended). Two simulation systems that are frequently
used are the Queuing Package for GNU Octave and a suite of queueing modeling
software in the Java Modeling Tools, both available at Sourceforge.
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9.4.4 Verification

Verifying a social simulation using a queuing model involves several aspects. First,
it is good practice to verify that proper ranges are being used for arrival and service
random variables, as these need to be positive real values. Second, results need to
be consistent with assumed parameter values and at least the qualitative form of
probability distributions being used. For example, a queue that has Weibull arrival
time A with shape parameter value 2.0 should show an intensity function that is
approximately linear, corresponding to the Rayleigh distribution.

More specifically, verifying a social queuing model usually begins with verify-
ing that the entities being processed or serviced (whether they are human agents
or other entities such as public issues, vehicles, or other) are being generated in a
proper way. This means verifying that the relevant probability distribution function
is operating properly. Features to check include low or high arrival frequencies, as
well as any temporal clustering that is deemed significant in the conceptual model.
Arrival volume might also be variable, which should also be verified.

Common sense is one valid way to verify a queue-based model. For instance,
changes in arrival and service times should have direct and measurable effects on
the length of queues, otherwise something is wrong with the implementation. An-
other way is to have the implementation checked by someone other than the coder,
which is a general verification procedure along with others discussed in the previous
chapter.

Another feature of the model to verify concerns the possible presence of bot-
tlenecks, saturation effects, and issues regarding processing capacity. For example,
bottlenecks tend to produce departures at an approximately constant rate. Models
of pedestrian traffic as well as vehicular traffic use many of these considerations in
terms of verification standards. When agents have a choice in terms of which station
or service node to use, decision-making rules must be properly verified. When mul-
tiple components are used, such as in a system of standby backup service stations,
switching mechanisms for engaging backup units must also be carefully verified.

In sum, verification of a social simulation based on a queuing model always de-
pends on the structure and details of the queuing network system. Each component
and the overall organizational structure must be verified at a level of detail required
by the research questions being asked.

9.4.5 Validation

The principal way of validating a social simulation based on a queuing model is to
match simulated distributions with real-world empirical distributions. Face validity,
as always, is a fundamental way of assessing a queueing model, and should be tried
first, just as in all other social simulations. Direct familiarity with the referent system
is fundamental for establishing face validity. Common technical ways of validating
a queueing model include assessing goodness of fit using statistics, regression anal-
ysis, distribution moments, time series analysis, and Monte Carlo (MC) methods.
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9.4.6 Analysis

Analysis of queue-based social systems and processes from a purely theoretical per-
spective is vastly undeveloped in social research. This is because there is a paucity
of social theory that has been implemented in queueing models as opposed to other
areas of social simulation. There are multiple reasons for this. One is that social
scientists have favored other forms of formalization rather than making extensive
use of probability distributions to model randomness. Another is simply lack of fa-
miliarity with the scientific potential offered by queueing systems. Finally, there is a
misconception that this class of models is mostly intended for managers and systems
operators. This is a fertile area for novel forms of analysis in CSS.

By contrast, analysis of queue-based social systems and processes from an ap-
plied, operational perspective is highly developed in management science, opera-
tions research, and related disciplines. Traffic flows, customer servicing systems,
hospitals and healthcare facilities, supply chains, industrial production systems, and
numerous other domains have benefitted from decades of practical applications that
have improved many real-world systems through optimization, increasing resiliency,
and numerous other improvements ranging from trivial to vitally important.

Recommended Readings

On System Dynamics (and Dynamical Systems)

Y. Barlas, Formal aspects of model validity and validation in system dynamics. System Dynamics
Review 12(3), 183–210 (1996)

N. Choucri, R.C. North, Nations in Conflict: National Growth and International Violence (Free-
man, San Francisco, 1975)

N. Choucri, International Energy Futures: Petroleum Prices, Power, and Payments (MIT Press,
Cambridge, 1981)

N. Choucri, D. Goldsmith, S. Madnick, J.B. Morrison, M. Siegel, Using System Dynamics to
Model and Better Understand State Stability. Paper presented at the 25th International Confer-
ence of the System Dynamics Society, Boston, MA. MIT Sloan School working paper 4661–07,
7/1/2007

J.W. Forrester, Industrial Dynamics (MIT Press, Cambridge, 1961)
J.W. Forrester, Principles of Systems (Wright-Allen Press, Cambridge, 1968)
J.W. Forrester, Urban Dynamics (MIT Press, Cambridge, 1969)
J.W. Forrester, World Dynamics (Wright-Allen Press, Cambridge, 1973)
S. Gavrilets, D. Anderson, P. Turchin, Cycling in the complexity of early societies. Cliodynamics:

Journal of Theoretical and Mathematical History 1(1), 58–80 (2010)
R.A. Hanneman, Computer-Assisted Theory Building: Modeling Dynamic Social Systems (Sage,

Newbury Park, 1988)
B.B. Hughes, E.E. Hillebrand, Exploring and Shaping International Futures (Paradigm Publishers,

Boulder, 2006)
C.L. Lofdahl, Environmental Impacts of Globalization and Trade: A Systems Study (MIT Press,

Cambridge, 2002)
U. Luterbacher, Simulation models, global environmental change, and policy, in International Re-

lations and Global Climate Change, ed. by U. Luterbacher, D.F. Sprinz (MIT Press, Cambridge,
2001), pp. 183–197



Recommended Readings 271

D.H. Meadows, D.L. Meadows, J. Randers, W.B. William III., The Limits to Growth: A Report to
the Club of Rome’s Project on the Predicament of Mankind (New American Library, New York,
1974)

J.D. Sterman, Business Dynamics: System Thinking and Modeling for a Complex World (McGraw-
Hill, Boston, 2000)

P. Turchin, Historical Dynamics: Why States Rise and Fall (Princeton University Press, Princeton,
2003)

A. Wils, M. Kamiya, N. Choucri, Threats to sustainability: simulating conflict within and between
nations. System Dynamics Review 14(2–3), 129–162 (1998)

On Queueing Systems

P. Bratley, B.L. Fox, L.E. Schrage, A Guide to Simulation, 2nd edn. (Springer, New York, 1987)
L. Kleinrock, R. Gail, Queueing Systems: Problems and Solutions (Wiley-Interscience, New York,

1996)
W. Kreutzer, System Simulation: Programming Styles and Languages (Addison-Wesley, Sidney,

1986)
T.L. Saaty, Elements of Queueing Theory with Applications (Dover, New York, 1961)
J.A. Sokolowski, C.M. Banks (eds.), Handbook of Real-World Applications in Modeling and Sim-

ulation (Wiley, New York, 2012)
B.P. Zeigler, H. Praehofer, T.G. Kim, Theory of Modeling and Simulation (Academic Press, San

Diego, 2000)



10Simulations III: Object-Oriented Models

10.1 Introduction and Motivation

This chapter examines the superclass of object-oriented social simulation mod-
els, also called object-based social simulations. The main families of simulation
models in this area of CSS consist primarily of cellular automata models and
agent-based models. As in the previous chapter, each will be examined using
the MDIVVA social simulation methodology (Motivate-Design-Implement-Verify-
Validate-Analyze) developed in Chap. 8.

Both families of object-oriented social simulation models use the simplest social
entities (cells or agents, respectively) as elementary units to understand emergent
complexity, rather than variables (as in system dynamics and queueing models).
Both families are applicable to theoretical research for developing basic science, as
well as practical application for policy analysis, as was the case before for variable-
oriented models. Historically, agent-based models have enabled theoretical as well
as policy applications, whereas cellular automata models have been more confined
to theoretical analysis. However, this is a broad generalization regarding the major-
ity of research. Policy applications of cellular automata models also exist, as we will
examine in this chapter.

10.2 History and First Pioneers

Object-oriented social simulation models presented in this chapter have scientific
roots in John von Neumann’s theory of automata and Thomas Schelling’s social
segregation model. The following summary of major milestones includes develop-
ments in cellular automata (CA) and agent-based models (ABM) and some closely
related advances in areas such as organizational and spatial models, including geo-
graphic information systems (GIS). The chronology is unavoidably incomplete after
the late 1990s, when the field exploded (exponentially) with a doubling time of just
a few years.

C. Cioffi-Revilla, Introduction to Computational Social Science,
Texts in Computer Science, DOI 10.1007/978-1-4471-5661-1_10,
© Springer-Verlag London 2014
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1940s John von Neumann [1903–1957] and mathematician Stanislaw Ulam
[1909–1984] pioneer the theory of automata, publicly presented for the
first time in 1948 and published in 1951 as The General and Logical The-
ory of Automata.

1949 Sociologist James M. Sakoda pioneers CA modeling in the social sciences
in his doctoral dissertation on “Minidoka: An Analysis of Changing Pat-
terns of Social Interaction” at the University of California at Berkeley,
published in 1971 in the Journal of Mathematical Sociology, calling it a
“checkboard model.”

1960s Computer scientist Edward Forrest Moore [1925–2003] invents the con-
cept of 8 neighbors surrounding a given cell in a CA landscape, providing
an alternative to the 4-neighbor von Neumann neighborhood.

1966 The University of Illinois Press publishes The Theory of Self-reproducing
Automata by von Neumann.

1969 Mathematician Gustav A. Hedlund publishes his influential CA paper on
symbolic dynamics in the journal Mathematical Systems Theory.

1969 Economist Thomas C. Schelling publishes his first CA segregation model-
ing work in the American Economic Review, among the leading journals in
economics.

1970 Mathematician John Horton Conway invents his famous CA model, Game
of Life, popularized by Martin Gardner in Scientific American.

1970s–1980s Psychologist Bibb Latané formulates his theory of social impact,
a milestone in social CA modeling.

1971 Schelling publishes his seminal paper on a CA of racial segregation by
migration in the Journal of Mathematical Sociology.

1975 Economist Peter S. Albin [1934–2008] approaches checkerboard models
as CA in his seminal book Analysis of Complex Socioeconomic Systems.

1977 Political scientist Stuart A. Bremer [1943–2002] pioneers CA modeling
in political science with a hexagon-based simulation of war and peace in
the international system, “Machiavelli in Machina,” published in Karl W.
Deutsch’s seminal Problems in World Modeling.

1978 Mathematicians J.M. Greenberg and S.P. Hastings develop a true cellular
automaton model of excitable media as a 3-state 2-dimensional CA, pub-
lished in the SIAM Journal of Applied Mathematics.

ca. 1981 Physicist Stephen Wolfram begins work on elementary CA theory and
modeling, publishing his first paper two years later in Reviews of Modern
Physics, and later proposing a general classification of CA models in four
major classes.

1987 Computer scientist James (Jim) E. Doran publishes his seminal agent-
based modeling paper “Distributed Artificial Intelligence and the Mod-
elling of Socio-Cultural Systems.”

1987 Mathematician and theologian Edwin A. Abbott publishes his famous
mathematical fiction book, Flatland, inspiring German computational so-
cial scientists Rainer Hegselmann and Andreas Flache to write their 1998
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seminal paper, “Understanding Complex Social Dynamics: A Plea For Cel-
lular Automata Based Modelling,” in the first volume of the Journal of
Artificial Societies and Social Simulation.

1990 Political scientists Thomas R. Cusack and Richard J. Stoll publish the re-
alpolitik CA hex-based model of inter- and intra-national conflict, building
on S. A. Bremer’s earlier work.

1994 Computational social scientist Nigel Gilbert and computer scientist James
Doran publish one of the earliest collections of papers on computational
applications in social science, Simulating Societies, including chapters by
other pioneers such as Rosaria Conte, Klaus Troitzsch, Francois Bousquet,
Robert Reynolds, Helder Coelho, and Cristiano Castelfranchi.

1995 Computational social scientists Rosaria Conte and Cristiano Castelfranchi
publish their seminal work on Cognitive and Social Action.

1996 Computational social scientists Joshua Epstein and Robert Axtell publish
their influential book on the Sugarscape model, Growing Artificial Soci-
eties.

1996 Rainer Hegselmann publishes his two influential papers, “Cellular Au-
tomata in the Social Sciences” and “Understanding Social Dynamics,” still
considered among the best introductions to CA simulation models in the
social sciences.

1997 Computational social geographer Lena Sanders and her team in Paris pub-
lish a seminal paper on SIMPOP, one of the earliest ABM systems for mod-
eling historical urban growth, in the journal Environment and Planning B:
Planning and Design.

1997 Computational social scientist Robert Axelrod publishes his seminal book
on social agent-based modeling, The Complexity of Cooperation, as well
as his influential paper, “Advancing the Art of Simulation in the Social
Sciences,” in the journal Complexity published by the Santa Fe Institute.

1997 Leigh Tesfatsion at Iowa State University publishes the first newsletter of
ACE, Agent-based Computational Economics, which rapidly becomes a
major resource for the CSS community.

1998 The Journal of Artificial Societies and Social Simulation is founded by
computational social scientist Nigel Gilbert, quickly becoming one of the
most influential CSS journals. Rainer Hegselmann and Andreas Flache
publish their influential paper on CA, and the same year computational
social scientist Domenico Parisi publishes the first CA model of ancient
Mesopotamian empires, collaborating with historian Mario Liverani.

1999 Computational sociologist Kathleen M. Carley of Carnegie Mellon Uni-
versity and computer scientist Les Gasser of the University of Illinois at
Urbana-Champaign publish their seminal paper on “Computational Or-
ganization Theory” in G. Weiss’s influential Multiagent Systems textbook
reader.

1999 Nigel Gilbert and Klaus Troitzsch publish the first edition of the classic
textbook, Simulation for the Social Scientist.
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1999 Chris Langton of the Santa Fe Institute establishes the Swarm Development
Group for developing the eponymous ABM simulation system that later
inspired NetLogo (designed by Uri Wilensky of Northwestern University
the same year), Repast (since 2002), and MASON (2002).

1999 Computational archaeologists Timothy Kohler and George Gummerman
from the Santa Fe Institute co-edit the influential volume Dynamics in Hu-
man and Primate Societies, including the so-called Anasazi model.

2002 Stephen Wolfram publishes A New Kind of Science, his magnum opus in
1280 pages.

2002 The US National Academy of Sciences holds its first Sackler Colloquium
and publishes its first Proceedings dedicated to social ABM, co-edited by
renowned geographer and NAS member Brian L. Berry, L. Douglas Kiel,
and Euel Elliott.

2002 The North American Association for Computational Social and Organi-
zational Sciences (NAACSOS) is founded at its first annual meeting and
Kathleen Carley becomes its first President. Co-founders include Claudio
Cioffi-Revilla (4th president), Charles Macal, Michael North, and David
Sallach (2nd president).

2002 The first semester-long courses in CA and ABM are taught in George Ma-
son University’s Program in Computational Social Science by an initial
faculty consisting of Claudio Cioffi-Revilla (founding chairman, CSS De-
partment), Dawn C. Parker, Robert Axtell, Jacquie Barker, and Timothy
Gulden.

2003 Computer scientist Sean Luke and Claudio Cioffi-Revilla release the first
version of the MASON (Multi-Agent Simulator of Networks or Neighbor-
hoods) system at the Agent 2003 annual conference in Chicago, demon-
strating the new system with the Wetlands ABM and a suite of other classic
models (HeatBugs, Conway’s Life, Flockers, and Boids).

2004 Andrew Ilachinski of the Center for Naval Analysis publishes Artificial
War, the largest multi-agent analysis of conflict thus far.

2005 Thomas Schelling of the University of Maryland and former president of
the International Studies Association is awarded the Nobel Memorial Prize
in Economic Sciences, with Robert Aumann, for his work on conflict the-
ory and social simulations. He is the first computational social scientist to
win such an honor.

2005 The first US National Science Foundation grant for a large-scale ABM-GIS
simulation model of coupled socio-natural systems using remote sensing
and ethnographic methods from field research is awarded to the Mason-
Smithsonian Joint Project on Inner Asia, led by Claudio Cioffi-Revilla
(principal investigator), Sean Luke, and J. Daniel Rogers.

2006 The first issue of the Journal of Cellular Automata is published, with the
goal of disseminating “high-quality papers where cellular automata are
studied theoretically or used as computational models of mathematical,
physical, chemical, biological, social and engineering systems.”
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2010 Computer scientist Andrew I. Adamatzky from the University of the West
of England in Bristol publishes the edited volume Game of Life Cellular
Automata. The same year Alfons G. Hoekstra, Jiri Kroc and Peter M.A.
Stout publish the edited volume entitled Simulating Complex Systems by
Cellular Automata. Both books demonstrate the scientific maturation of
Conway’s seminal model.

2010 Claudio Cioffi-Revilla is elected first president of the Computational Social
Science Society of the Americas (CSSSA), founded as the successor to
NAACSOS.

2010 Princeton University Press publishes Michael Laver and Ernest Sergenti’s
Party Competition: An Agent-Based Model, the first major significant ad-
vance in the computational political science of multi-party systems for
modeling democratic regimes.

10.3 Cellular Automata Models

This section introduces the superclass of social simulations based on cellular au-
tomata (CA) models, used in social science spatial applications, and examines their
unique characteristics for understanding emergent social complexity. CA models
are presented within the broader context of object-oriented models, which includes
an even larger class of computational spatial and organizational models. The em-
phasis of CA is on neighboring cell-like sites interacting in discrete time steps that
resemble a broad variety of social phenomena. Formal aspects involving interaction
topologies and behavioral rules are important.

We begin with the following definition:

Definition 10.1 (Cellular Automaton Model) A cellular automaton (CA) simula-
tion is an object-oriented computational model for analyzing complex systems con-
sisting of neighboring entities (x, y), called cells, that change their state sxy as they
interact in a (typically two-dimensional) grid-like landscape L using some rule set R.

The following are examples of CA social simulation models:
• Sakoda’s Group Attitudinal Model
• Schelling’s Urban Racial Segregation Model
• Conway’s Game of Life
• Hegselman’s Opinion Dynamics Model
• Bremer-Mihalka’s and Cusack-Stoll’s Realpolitik Models
• Axelrod’s Tribute Model
• Parisi’s Model of the Neo-Assyrian Empire
While we cannot examine all of them in detail, we use these examples to explain
basic features of CA social simulations.

Formally, a CA model consists of an array of cells, each of which is in one of a
finite number of states. Neighboring cells are defined with respect to a given cell.
The dynamic behavior of a CA begins at t = 0 when each cell is initialized in a given
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Fig. 10.1 Major pioneers of cellular automata models: John von Neumann, inventor of cellular
automata (upper left); John Horton Conway, inventor of the CA-based Game of Life (upper right);
Stuart A. Bremer, pioneer computational political scientist in the use of CA models of international
conflict (lower left); Nobel prize winner Thomas C. Schelling, famous for his model of racial
segregation (lower right)

state. Given a cell in an initial state s0, the state at the next step t + 1 is determined
by rules specified by some mathematical function(s) that determines st+1 based on
information concerning one or more neighboring cells. Rules are local, in the sense
that they affect cells, not the global landscape where emergent behavior may occur.
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In the simplest CA models all cells are the same and rule sets are homogenous
and constant for all cells. Stochastic cellular automata and asynchronous cellular
automata are different from simple CA models and use non-deterministic and other
rule sets. As suggested by this distinction, CA models can be purely deterministic
or contain stochastic elements defined by probability distributions.

A complete CA social simulation model consists of all elements in Defini-
tion 10.1. Accordingly, these models are appropriate for rendering the following
formal features of a referent social system:
Discreteness: Spatio-temporal discreteness means that a landscape is divided into

cells and time passes in integer units.
Locality: Cells interact only with contiguous neighbors, not with other cells far

away.
Interaction topology: Square cells may interact with their north-south-east-west

neighbors (called a 4-cell von Neumann neighborhood) or with corner neigh-
bors (8-cell Moore neighborhood).

Scheduled updating: All cells update their state after each time step according
to simple rules, resulting in emergent patterns at the macroscopic, global level
of the entire landscape.

CA models in social science date to the first pioneering applications to the
study of racial segregation and opinion dynamics, followed by models of territorial
growth. These models were initially called “checkerboard” and “chicken wire” mod-
els, in reference to square and hexagonal cells, respectively. They are also widely
used in fields closely related to CSS, such as ecology. Figure 10.2 illustrates racial
segregation and territorial growth models, running from initialization at t = 0 to
long-run conditions at some tN .

10.3.1 Motivation: Research Questions

CA models address research questions in many domains of CSS. They are most
appropriate for modeling referent systems with the following features, assuming
unit cells are simple in terms of attributes and rules, as explained earlier:
1. A landscape, physical or conceptual, well describes the referent system. Exam-

ples include urban areas, belief systems, and networks of actors ranging from
small groups of individuals to the international system of nations.

2. Actors located on the landscape have information about neighboring actors and
use it to update their own state.

3. The state of each actor is determined by rules that govern behavior conditional
on information concerning self and relevant neighbors.

4. At the macroscopic system level the landscape of cells might evolve toward some
stationary state, oscillate between different patterns, or show chaotic behavior.

5. Emergent properties of social complexity at the systemic level result from inter-
actions at the level of individual cells—the phenomenon known as emergence.
Research questions commonly addressed by CA social simulations typically in-

clude one or more of the following:
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Fig. 10.2 Examples of cellular automata models: The Schelling model with square cells and
Moore neighborhood is initialized with ethnically mixed population (upper left). Racial segrega-
tion emerges as neighbors become cognizant of their surroundings and decide to move away from
where they started (upper right). The Interhex model with hexagonal cells representing small,
simple polities begins with uniformly distributed capabilities (lower left). As neighboring polities
interact through normal balance of power dynamics, mild stochasticity is sufficient to grow a sys-
tem of countries. Both models shown in this figure were implemented in MASON, discussed in
Sect. 10.3.3

• What is the effect of local cell-level rules on emergent social phenomena?
• Do different interaction topologies (e.g., von Neumann or Moore neighborhoods)

matter significantly?
• Are emergent patterns stationary, fluctuating, or chaotic?
• If stationary or fluctuating, what determines the time period for convergence or

periodicity of fluctuations?



10.3 Cellular Automata Models 281

• Are there patterns of diffusion across the landscape and, if so, how are they char-
acterized?
CA models provide answers to questions such as these through simulation, as

long as cell attributes and rules are kept relatively simple, as in the examples pro-
vided below.

10.3.2 Design: Abstracting Conceptual and Formal Models

Given some referent system of interest S, a conceptual model CS, consisting of a
cellular automaton and its respective cells, topology, and rule set, is abstracted by
a three-stage process consisting of landscape tessellation, interaction topology, and
behavioral rules.

Thinking one step ahead, in the case of CA models there are no major design or
abstraction considerations that have significant consequences for implementation.
All CA models discussed in this chapter and most others in the extant literature
run fast on basic laptops. (By contrast, implementation in agent-based models can
be highly affected by design/abstraction decisions.) Hence, virtually all CA models
are considered “lightweight,” computationally speaking. Even when they are large,
CA models are easy to distribute due to the total absence of global or long-range
interactions.

10.3.2.1 Cellular Tessellation
The first stage in CA abstraction to produce a conceptual model will focus on the
referent system’s landscape, which should consist of actors represented by cells.

Definition 10.2 (Cell) A cell is a tile-like object defined by attributes and located
adjacent to other, similar objects. The state of a cell is given by its attribute values,
where one or more attribute is a function of the state of neighbors.

The procedure of abstracting cells is called tessellation. Cells are the basic ele-
ments of a CA model. They can be square (most common form), triangular, hexag-
onal, or irregular, depending on a landscape’s tessellation and features of the ref-
erent system. Square cells make sense for urban models, whereas hexagonal cells
are sometimes preferable for large territories or open terrain. From a computational
perspective each has advantages and disadvantages, depending on multiple factors
such as number of cells, movement, and scheduling.

For example, in Conway’s Game of Life cells are square in the classic version,
defining a rectangular landscape. In other versions cells can also be hexagonal. Re-
gardless of form, each cell can be in one of two states, alive or dead. What happens
to each cell and the whole population in the simulation depends on the condition of
neighboring cells in the landscape.

As another example, in Schelling’s Segregation Model (Fig. 10.2, upper frames)
each cell represents a person with a given level of racial tolerance (attribute). Each
person is happy or unhappy (the cell’s two states) depending on the race of neigh-
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bors, which, in turn, will determine whether the person moves away from his/her
present neighborhood.

Urban sprawl is a more complex example of a CA-like social phenomenon. Each
area surrounding a city may become suburbanized or not, depending on factors (at-
tributes) such as population growth, cost of land, proximity to work, and other vari-
ables considered by actors who may decide to move away from a downtown urban
center to a suburban neighborhood.

Before the advent of airplanes, when military conquest was mostly land-driven,
territorial polities grew and contracted based on the ability of a population cen-
ter to expand its territory into increasingly large swaths of neighboring territories.
Hexagonal cells—such as those in the Interhex model, Fig. 10.2—are good tessel-
lations for open territory, as demonstrated by tabletop games played by the military
since the German army (Prussian General Staff) pioneered war games in the early
19th century. However, square cells are also used for modeling polity expansion, as
demonstrated by Domenico Parisi in his study of the growth of the Neo-Assyrian
Empire during the 9th–7th centuries BC using a CA model.

A distinctive feature of cells in CA models is that the number of attributes they
contain is relatively small. (By contrast, agent-based models examined in the next
section commonly encapsulate numerous attributes, sometimes in the hundreds, as
well as complex methods for updating attribute values.) In the previous examples
each cell has just one or a few attributes, such as being alive or dead in the Game of
Life, or happy or unhappy in Schelling’s segregation model.

The size of a CA landscape in terms of number of cells also matters, since larger
numbers can often generate emergent phenomena not possible with smaller worlds.
Size is determined by tessellation.

10.3.2.2 Interaction Topology
The second stage of abstraction in developing a CA model consists of specifying
the interaction topology—how cells are “wired” to neighboring cells, so to speak.
Interaction topology defines an array of local, short-range interactions. This step
comes second, because it depends in part on the form of cells. Square cells can have
either von Neumann or Moore neighborhoods, as already mentioned. Hexagonal
cells commonly have six neighbors, although they can also have three by alternating
neighbors. Triangular cells can have the equivalent of von Neumann and Moore
neighborhoods, depending on whether they have three side neighbors or all six,
including apical neighbors (sometimes referred to somewhat imprecisely as “corner
neighbors”).

Another defining feature of interaction topology is neighborhood radius, de-
fined as distance from a cell to its farthest neighbor, normally not more than two or
three cells away. Most CA models operate with an interaction topology of radius 1
to ensure only local, short-range interactions.

In the Game of Life, interaction topology is defined by a Moore neighborhood
of radius 1, thus including all eight surrounding cells, as is also the case for the
Schelling segregation model. CA models of other referent systems can assume dif-
ferent interaction topologies, such as when triangular or hexagonal cells are used
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to represent a landscape. (Compare square cells to hexagonal cells in Fig. 10.2.)
In the interaction topology of the Bremer-Mihalka and Cusack-Stoll inter-state CA
systems of hexagons, all six neighbors affect a cell (country or province). This is
also typically the case in wargaming (tabletop or computational) simulations.

For some global emergent phenomena in a CA model, details of the interaction
topology (cell shapes, neighborhood radius, as examples) may or may not matter.
In fact, an interesting research question to analyze is the sensitivity of results with
respect to interaction topology, a topic to which we shall return later.

10.3.2.3 Rules of Cell Behavior
The third and final stage of abstraction in a CA model development effort is to
specify rules followed by cells. Rules are translated into code when a CA model is
implemented. Simple rules are what make a CA interesting in terms of generating
unexpected emergent patterns.

In the Game of Life, a cell maintains its current state if it has two dead neighbors.
When a cell has three dead neighbors, it too becomes dead. This simple rule gen-
erates many different patterns that are unexpected, including “gliders”—collectives
of cells that move across the landscape.

In Schelling’s segregation model the basic rule is that an agent moves to a differ-
ent neighborhood when it becomes unhappy. The surprising result is that even when
agents have a high level of tolerance for neighbors of different race (i.e., > 50 %
of different ethnicity among surrounding neighbors), segregated neighborhoods still
emerge. In the Interhex model the core rule regards the result of neighboring con-
flicts and what happens to the territory of the vanquished.

In models of opinion formation, rules specify when an agent changes opinion.
Numerous CA models of opinion dynamics show surprising results when seemingly
simple rules give rise to divided, uniform, or fluctuating opinion groups.

Other CA spatial models, such as those simulating territorial polities, have simple
rules capable of generating complex patterns of land borders.

The main result of the design stage of a CA model is a conceptual and formal
model of the referent social system specified by a landscape of cells (specifying
their total number and individual geometry), their interaction topology (specifying
how cells are wired together in an array), and behavioral rules (specifying what each
cell does).

10.3.3 Implementation: Cellular Automata Software

Given a sufficiently complete conceptual or formal model of a referent system as
a CA, the next methodological stage consists of implementing the model in code
using a simulation system. (As always, the model can also be implemented in native
code using an OOP language, such as Python, Java, or C++.) The main milestone in
implementation is the transition from CA diagrams and mathematical equations in
the conceptual model to code in the simulation model.
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Swarm, NetLogo, Repast, and MASON are among the most widely utilized CSS
simulation systems that offer CA implementation facilities. Conway’s Game of Life
and Schelling’s Social Segregation have also served as demonstration models for CA
social simulations. NetLogo offers several already-built CA models that are easy to
use and learn with. In the early 2000’s, Repast and MASON used the segregation
model among the earliest demos to showcase the new simulations systems. They
are still in use today. The choice among these alternative simulation systems for
learning purposes largely depends on access and familiarity. NetLogo is often the
toolkit of choice for learning a new class of models. For research purposes, the
others, especially MASON, assume familiarity with Java.

Figure 10.3 shows a screenshot of a 2-dimensional stochastic CA model running
in NetLogo. Simulation systems such as these offer new users several pre-set analyt-
ical options. In this case NetLogo makes available several neighborhood topology
options, shown by “switches” on the left side of the screen. Screenshots and movies
are easy to produce with appropriate software running on a computer’s operating
system.

In addition to “The Big Four” (Swarm, NetLogo, Repast, and MASON), other
software systems are also available for implementing CA social simulation mod-
els. Mathematica has powerful CA modeling facilities, and many other systems are
included in the Nikolai-Maddey 2009 survey of simulation Tools of the Trade.

10.3.4 Verification

Verifying a CA social simulation model involves ascertaining that cells, interaction
topology, and behavioral rules are all working in the way they are intended accord-
ing to the conceptual model. In the case of square cells, verification is simplest and
relatively straightforward, including checking to see whether landscape borders are
behaving properly (edged or toroidal).1 Behavioral rules are best verified by detailed
tracing of each discrete interaction event within a single simulation step. As always,
all general verification procedures examined earlier in Sect. 8.7.4 also apply to CA
models, including code walkthrough, profiling, and parameter sweeps.

10.3.5 Validation

Validating a CA social simulation model that has been verified involves two main
perspectives. Structure validity refers to internal features of the model, including
main assumptions concerning relevant cell attributes, interaction topology, and be-
havioral rules. The following should be considered when testing structure validity
in a CA model:

1A toroidal landscape is one where the borders wrap around, such that the landscape is continuous,
without an edge.
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Empirical tests of validation The specification of equations used in the model,
as well as parameter values, are features requiring validation. For example,
in the case of Schelling’s segregation model discussed earlier, this part of the
validation procedure would focus on parameters such as an individual’s racial
tolerance being assumed, as well as the number of neighbors taken into con-
sideration. The classic model assumes a Moore neighborhood, which is an as-
sumption that requires validation using empirical tests. It is also often assumed
that coefficients are constant throughout a given simulated run. These are as-
sumptions of structural stationarity, in the sense that cell rules specified do not
change over time; i.e., classical CA models assume that the basic clockwork
among cells in a landscape does not change throughout history, which may
or may not be a valid assumption about the referent system. For example, ed-
ucation may prevent segregation, or household attention may focus more on
neighbors next door rather than across the street or around the block.

Theoretical tests of validation CA model assumptions should also be checked
in terms of theories being used, because the simplicity of these models should
not distract attention from theoretical underpinnings. Again, this is a broader
perspective than empirical tests of structural validity, because it is based on
fundamental, causal arguments that are difficult if not impossible to quantify.
For example, in the case of the segregation model, the overall structure is based
on Schelling’s theory of how interaction between two groups is explained. The
fundamental theory is based on three factors or dynamics driving the cells’
happiness and its decision to stay in the neighborhood or move away: one’s
own identity; the identity of neighbors; and distance from neighbors. Is this
theory valid? Are there other factors as important or even more significant
than these? The theory also assumes perfect symmetry among neighbors; i.e.,
both make residential decisions in the same way. Is it possible that different
neighbors decide based on different criteria, such as, one on racial factors and
another by education levels?

Tests of structural validity for CA social simulation models can be quite com-
plex and require considerable attention, as seen for other kinds of models. Again,
the empirical social science literature is of great value in navigating through these
procedures.

Behavior validity is about actual results from simulation runs, especially in
terms of qualitative and quantitative features such as cellular landscape patterns of
growth, decay, and oscillation, among others. What matters most in the context of
ascertaining behavioral validity in CA models is checking whether simulated spatial
patterns correspond to empirical patterns.

10.3.6 Analysis

Cellular automata social simulations are analyzed in a variety of ways, including
formal analysis, asking what-if questions, and scenario analysis.
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Formal analysis of cellular automata, a tradition begun by von Neumann and
Ulam, is a field that extends far beyond CSS, but one that provides insights for better
understanding social dynamics. For example, Wolfram’s classification of CA into a
small number of types (stable, oscillating, chaotic, complex) highlights similarities
and differences that can be socially meaningful. Formal analysis of rules can also
yield theoretical expectations for testing through simulation.

Asking what-if questions is another way of analyzing CA social simulations.
For example, in a racial segregation model we may ask what happens when tol-
erance coefficients differ significantly across the two groups. Or, what if tolerance
deteriorates as a function of time, as can happen when conflict breaks out in a previ-
ously integrated community when previously peaceful but heterogenous neighbors
no longer trust each other, as happens in many civil wars. What-if questions can also
be used to analyze a CA model using different rule sets. For example, in a racial-
migration model we may wish to have one group responding to a Moore neighbor-
hood while another uses a von Neumann neighborhood, based on different attitudes
toward physical distance.

Scenario analysis provides a more comprehensive analytical approach to CA
simulations by using a set of related questions defining a given scenario, rather than
analyzing one question at a time. For example, in a racial-migration model interest
may lie in examining a scenario in which tolerance coefficients are relatively large,
neighborhood radii are short, and the number of cells is large. Intuitively, such a
scenario should not generate segregated neighborhoods. By contrast, an opposite
scenario would analyze what happens when tolerance is low, radii are long, and the
landscape is smaller. Exploring scenarios between these two extremes can uncover
interesting qualitative and quantitative properties, some of which may not be as
well-known.

CA models are primarily intended for basic CSS research and theoretical analy-
sis, not for developing actionable policy analysis, given their emphasis on simple in-
teraction rules and overall homogeneity of cells, neighborhoods, and rules. Practical
policy analysis can only be obtained through social simulations that allow sufficient
empirical specificity and high-fidelity calibration, which is generally not viable with
CA—but eminently feasible, if not always easy, with agent-based models.

10.4 Agent-Based Models

This section introduces agent-based models (ABM) in CSS, also called social
multi-agent systems in computer science. Social ABM simulations are one of the
largest and most rapidly growing varieties of computational models. Informally, an
ABM can be thought of as a CA with a more sophisticated landscape and actors that
come closer to emulating humans through various aspects of reasoning, decision-
making, and behaviors.

We begin with the following working definition, which we will later use to ex-
amine its main components:
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Fig. 10.4 Pioneers of agent-based models. Joshua Epstein, creator of Sugarscape (with R. Axtell)
(upper left); Robert Axelrod, author of The Complexity of Cooperation and other CSS classics
(upper right); Nigel Gilbert, editor of Journal of Artificial Societies and Social Simulation (lower
left); Hiroshi Deguchi, president of the Pacific-Asian Association for Agent-based Social Science
(lower right)

Definition 10.3 (Agent-Based Model) A social agent-based model (ABM) is an
object-oriented computational model for analyzing a social system consisting of
autonomous, interacting, goal-oriented, bounded-rational set of actors A that use a
given rule set R and are situated in an environment E.
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Table 10.1 Examples of agent-based models in CSS by empirical calibration

Model name Referent system and
research questions

Empirical
calibration

Source
code

Bibliographic
reference

RiftLand model East African coupled
socio-techno-natural
system; hazards and
disaster scenarios

High MASON Cioffi-Revilla et al.
(2012)

Anasazi Long House Valley,
Arizona; population
dynamics and carrying
capacity

High Ascape,
NetLogo

Dean et al. (1999),
Axtell et al. (2002)

Sugarscape Theoretical system of
agents; social
consequences of agent
rules

Medium Ascape,
NetLogo

Epstein and Axtell
(1996)

RebeLand Political stability in a
country; insurgency and
state-failure dynamics

Medium MASON Cioffi and Rouleau
(2010)

GeoSim Balance of power system;
territorial change

Medium Repast Cederman (2003)

FEARLUS Land-use and cover
change; farming dynamics

Medium Swarm Gotts and Polhill
(2010)

SIMPOP Urban systems; growth
dynamics

Medium C++ Sanders et al. (1997)

Heatbugs Abstract social system;
agent happiness and
social proximity

Low Swarm C.G. Langton, Swarm
Development Group

Wetlands Hunter-gatherers affected
by weather; social effects
of memory

Low MASON Cioffi et al. (2004)

Formally, therefore, an ABM consists of the three main components in Defi-
nition 10.3: agents, rules, and environments where agents are situated, as we will
examine more closely below.

Table 10.1 provides some examples of social ABM models in various domains
of CSS. They address a variety of research questions using models calibrated at
different empirical levels and built with various simulation toolkits or programming
languages (Java and C++). We will draw on some of these examples to explain
features of ABM social simulations. Paraphrasing an earlier distinction between a
chiefdom and a state, an agent-based model is not simply a cellular automaton on
hormones—no more so than a jet airliner is a flying bus. The addition of autonomy,
goal-directed behavior, and environmental complexity adds entirely new qualitative
and quantitative features to a social ABM, compared to the relatively simpler class
of cellular automata models.
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The dynamic behavior of an ABM begins at t = 0 when each agent is initialized
in a given state. Given an agent in an initial state s0, the state at the next step t + 1 is
determined by rules applied to each agent’s situation. The next state st+1 will then be
based on information processed by rules. Such dynamic behavior is similar but more
complex than that of a CA model because now agents have (a) autonomy (whereas
cells were strongly dependent on their neighborhood), (b) freedom of movement
(whereas cells had fixed locations), and (c) reason-based behavior, among other
salient differences. None of these were CA features.

Clearly, agents have more human-like features than cellular automata, making
ABMs methodologically appealing and powerful formalisms for social and behav-
ioral science. This is especially so in the case of social theories that are expressed
primarily in terms of actors, including their cognitive and decision-making pro-
cesses, and patterns of social behaviors, including collective behavior and organiza-
tional and spatial dynamics.

In the simplest ABM models (e.g., Heatbugs, Sugarscape, Boids) all agents are
usually the same and rule sets are homogenous and constant for all agents. Stochas-
tic ABM and asynchronous ABM are different from simple models and use non-
deterministic and other rule sets. As suggested by this distinction, ABM models
can be purely deterministic or contain stochastic elements defined by probability
distributions.

The earliest ABM simulations in social science were Heatbugs (late 1980s), Sug-
arscape (1996), SIMPOP (1997), and similar spatial “landscape” models that were
the first to demonstrate the emergence of social complexity in ways never before
seen by social scientists. These pioneer models were followed by many others built
during the past decade. ABM simulations are also widely used in ecology and popu-
lation biology, where they are called individual-based models. Figures 10.5 and 10.6
illustrate behavioral patterns and wealth distribution of agents in Sugarscape, run-
ning from initialization at t = 0 to long-run conditions at some tN .

10.4.1 Motivation: Research Questions

Agent-based simulation models address research questions in many domains of
CSS—whether from basic research or applied policy perspectives. They are most
appropriate for modeling referent systems with the following features, where agents
can range from “light” cognition and decision-making capacity to “heavy” agents
with more detailed cognitive architecture:
Bounded rationality: Agents make decisions under conditions of bounded ratio-

nality, as examined earlier in Sect. 7.5.2.
Decision-based behavior: Agents behave based on choices determined by some

form of reasoning. This is in contrast to the unreasoned, purely rule-based
behavior of cellular automata examined earlier.

Artifacts and artificial systems: When built artifacts such as institutions or in-
frastructure matter in a referent system, those entities can be represented in an
ABM in a number of ways.
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Fig. 10.5 The Sugarscape agent-based model: agent behavior. The Sugarscape model consists of
a society of agents (red dots) situated on a landscape consisting of a grid of square sites where
agents with von Neumann neighborhood-vision feed on sugar (yellow dots). Left: At initialization
agents are assigned a uniform distribution of wealth and they reside in the southwestern region.
Right: After a number of time steps, most agents have migrated away from their original homeland
as they move around feeding on the landscape. This MASON implementation by Tony Bigbee
also replicates the “wave” phenomenon generated by the original (and now lost) implementation
in Ascape, observed here by the northwest-southeast formations of diagonally grouped agents in
the northeast region

Social or physical spaces: Referent systems may contain organizational (e.g.,
social networks), territorial (physical spaces), or other spatial aspects (policy
spaces) that are important to model.

Besides these features, ABMs can also have characteristics shared with CA, in-
cluding various kinds of discreteness, interaction topologies, vision or range, and
scheduled updating. All these are ubiquitous and significant features of social com-
plexity that are difficult or impossible to formalize using other modeling approaches
(e.g., dynamical systems or game-theoretic models).

Some typical research questions commonly addressed by ABM social simula-
tions may include the following:
• What is the effect of local agent-level rules and micro behaviors on emergent

social phenomena at the macro level?
• How do alternative assumptions about human cognition and individual decision-

making affect emergent collective behavior?
• Do different interaction topologies (e.g., von Neumann or Moore neighborhoods)

or the radius of agents’ vision matter significantly?
• Are emergent societal patterns globally stationary, fluctuating, periodic, or

chaotic?
• If stationary or fluctuating, what determines the time period for convergence or

periodicity of fluctuations?
• Are there patterns of diffusion across the landscape and, if so, how are they char-

acterized?
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Fig. 10.6 The Sugarscape agent-based model: emergence of inequality. Lorenz curves (top) and
histograms (bottom) portray the distribution of agents’ wealth. Left: Agents are assigned some
wealth at initialization t = 0, following an approximately uniform distribution, as shown by the
nearly straight Lorenz curve and wealth histogram. Right: After some time, inequality emerges as
a social pattern, as shown by the more pronounced Lorenz curve and much more skewed histogram,
similar to Pareto’s Law and diagnostic of social complexity

• What is the effect of different distance-dependent functions in human and social
dynamics?
Comparing these questions with comparable sets of questions for system dynam-

ics models (Sect. 9.3), queueing models (Sect. 9.4), and cellular automata models
(Sect. 10.3), it is clear that these have significantly broader scientific scope as well
as analytical depth. Questions addressed by social ABMs also have the feature of
being inter-, multi-, or cross-disciplinary, or scientifically integrative, because ABM
methodology lends itself to leveraging knowledge across the social, natural, and
engineering sciences—which is required for understanding complexity in coupled
socio-techno-natural systems. Of all the social simulation methodologies seen thus
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far, ABMs are arguably among the most versatile in terms of the range of feasible
research questions that can be addressed. Research questions in the context of sce-
nario analysis are a major application of ABM social simulations. Asking what-if
questions of social complexity is an excellent way to motivate an agent-based sim-
ulation.

10.4.2 Design: Abstracting Conceptual and Formal Models

Given some referent system of interest S, a conceptual agent-based model CS is
abstracted by identifying relevant agents, environments, and rules, as suggested by
Definition 10.3.

10.4.2.1 Agents
Human actors in an ABM—whether individuals or collectives (e.g., households,
groups, other social aggregates)—are represented as agent-objects that encapsulate
attributes and dynamics (computational methods or operations). The state of an
agent is determined by its attributes, just as in any object.

The following are standard features of agents:
• Each agent is aware of its own state, including its environmental situation.
• An agent is said to be autonomous, in the sense that it can decide what to do

based on endogenous goals and information, much like a social actor, without
necessarily requiring exogenous guidance.

• Besides making decisions based on its own internal state, an agent can also decide
to act in reaction to some perceived environmental situation.

• Moreover, agents can also behave proactively, based on goals.
• Agents can communicate, sometimes generating emergent patterns of sociality

(e.g., collective behavior), by making their attributes visible or actually passing
information.
Accordingly, we can use these features to define an agent.

Definition 10.4 (Agent) An agent is an environmentally situated object with en-
capsulated attributes and methods that enable self-awareness, autonomy, reactivity,
proactivity, and communication with other agents and environments. The state of an
agent is given by its attribute values.

For example, the agents in Sugarscape satisfy each of these properties: they are
aware of being hungry or satisfied; they decide where to move with complete au-
tonomy; they can decide to seek a better patch of sugar, doing so proactively since
they seek to survive; and, based on some additional rules, they can communicate
and exchange sugar for spice, thereby generating a simple market. Similarly, in the
Wetlands model (Table 10.1) agents know their own state: they decide to migrate
with autonomy and use memory about various locations; they react to the distribu-
tion of other agents and food sites; they communicate among members of their own
group, avoiding communication with foreigners. Agents in all models in Table 10.1
share comparable characteristics.
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10.4.2.2 Environments
Agents are situated in an environment, which can consist of any number of compo-
nents related through loose or tight coupling. From a complexity-theoretic perspec-
tive, natural and artificial systems are assumed to be disjoint components of agents’
environment.
• Natural environments generally consist of biophysical landscape, sometimes

including weather. In turn, landscape can consist of topography, land cover, hy-
drology, and other biophysical features, depending on what parts of the referent
system the model needs to render. Natural environments are governed by bio-
physical laws, including thermodynamic laws.

• Artificial environments—what we may call Simon’s environment of artifacts—
can include any number of human-built or engineered systems, such as buildings,
streets, markets, and parks in urban areas, or roads, bridges, and transportation
nodes linking urban areas. Critical infrastructure systems, specifically, are com-
prised of several major components, such as roads, energy, telecommunications,
water supply, public health, and sanitation, among others, depending on a coun-
try’s statutory taxonomy. Artificial environments are also governed by physical
laws, except thermodynamics. This is because artificial systems generate more
order (decreasing entropy) by using resources, which is the reverse of thermody-
namic disorder (increasing entropy).
For example, in terms of ABMs in Table 10.1, Anasazi and Wetlands comprise

natural environments, whereas RiftLand, RebeLand, SIMPOP, and FEARLUS also
include artificial environments.

10.4.2.3 Rules
Agents and environmental components interact among themselves as well as with
each other, generating emergent behavior through the following inter-agent, agent-
environment, and intra-environment interactions. Rules are generally local, in the
sense that they affect agents but not the global landscape where emergent behavior
may occur—similar to micro-motives generating macro-behavior (paraphrasing T.S.
Schelling’s famous 1978 book). In turn, however, agents can also be affected by
global conditions.
• Inter-agent rules govern interactions among agents through communication, ex-

change, cooperation, conflict, migration, and other patterns of social behavior,
including particularly significant patterns such as collective action and social
choice. Generally these rules are grounded in social theory and research. For ex-
ample, in Wetlands, agents communicate among members of the same group; in
RebeLand, government agents and insurgent agents fight each other while gen-
eral population agents express support for or against government or insurgents.

• Agent-environment rules govern effects of environmental conditions on agents
and, vice versa, environmental impacts on agents’ decisions and behaviors (sim-
ulating anthropogenic effects on the environment). These rules are also grounded
in social theory, as well as environmental science and related disciplines. For ex-
ample, in RiftLand farmers are affected by rainfall and land cover, whereas in
GeoSim and similar war-games countries are affected by balance of power pro-
cesses with neighboring rivals.
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• Intra-environmental rules pertain to cause and effect mechanisms within bio-
physical components of the environment, such as effects of rainfall on vegetation,
or effects of natural hazards on infrastructure. This third type of rule is grounded
in the physical, biological, and engineering sciences. For example, in the Wet-
lands model and others like it, rainfall affects vegetation. In Riftland, herds of
animals are also affected. In turn, herd grazing affects ground cover, which can
affect infrastructure by causing erosion and making severe precipitation more
hazardous during rainy seasons.
In the case of abstracting a referent system as being agent-based (unlike the ear-

lier case of cellular automata), there are significant design or abstraction implica-
tions that must be considered in terms of subsequent implementation. Most ABM
models discussed in this chapter and most others in the extant literature run fast
on basic laptops. But some models cannot, requiring distributed computational re-
sources, either through multiple processors or an actual cluster. An effective balance
between high-fidelity and viable computational speed can be difficult to accomplish
in the case of models having more than just local interactions.

The landscape of an ABM can also be tessellated, where sites can be square
(most common form), triangular, hexagonal, or irregular (vector shapes), depend-
ing on a landscape’s features in the referent system. As mentioned for CA, square
cells normally are used for urban landscapes, whereas hexagonal cells are often
preferable for large territories or open terrain. Each geometry has computational ad-
vantages and disadvantages, depending on factors such as total number of agents,
sites, decision-making, behaviors, and scheduling. Needed data structures are also
a consideration, such as preferring square sites over hexes when remote sensing
imagery (using square pixels) is used in a model.

For square grids, agents may have von Neumann, Moore, or other neighborhood
topology. For example, the original Sugarscape used von Neumann neighborhoods,
whereas hexagonal neighborhoods in Wetlands and GeoSim use all six neighbors.
Interaction or visual radii can also vary, depending on what is being abstracted from
the referent system.

The main result of the design stage of an ABM is a conceptual and formal model
of the referent social system specified by agents (social actors), their behavioral rules
(what each agent does), and an environment (where agents are situated). Class, se-
quential, and state diagrams in UML are useful for specifying a conceptual model,
along with traditional flowcharts. Mathematical models are also helpful in specify-
ing a formal model of the referent system of interest.

10.4.3 Implementation: Agent-Based Simulation Systems

Having developed a sufficiently complete conceptual or formal model of a refer-
ent system as an ABM, the next methodological stage consists of implementing the
model in code using a simulation system. As always, the model can also be im-
plemented in native code using an OOP language, such as Python, Java, or C++.
Currently available simulation systems are mostly Java-based. The main milestone
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Fig. 10.7 Pioneers of ABM toolkits. Swarm’s Chris Langton (upper left); NetLogo’s Uri Wilen-
sky (upper right); Repast’s David Sallach (lower left); MASON’s Sean Luke (lower right). All of
them collaborated with others in creating today’s leading simulation systems for building social
ABMs

in implementation is the transition from UML diagrams and mathematical equations
in the conceptual model to code in the simulation model.

The number of agent-based simulation systems (toolkits) today ranges some-
where between fifty and a hundred, with more being created to provide new facil-
ities. Swarm, NetLogo, Repast, and MASON are among the most widely utilized
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ABM simulation systems. The choice among these alternative simulation systems
for learning purposes largely depends on access and familiarity. As was the case ear-
lier for cellular automata, NetLogo is often the toolkit of choice for learning agent-
based modeling, although Python software is becoming increasingly available. For
advanced research purposes, Repast and, in particular, MASON assume familiarity
with Java. Both Repast and GeoMASON can also implement true GIS for devel-
oping spatial ABMs with high-fidelity calibration to represent realistic empirical
features of terrain and other features of a referent system.

Figure 10.8 shows a screenshot of the Sugarscape model implemented in NetL-
ogo.

In addition to “The Big Four” (Swarm, NetLogo, Repast, and MASON), other
software systems are also available for implementing ABM simulation models.
Mathematica has demonstrated several simple ABMs, such as Sugarscape and
Boids. Other ABM simulation systems are included in the Nikolai-Maddey 2009
survey.

10.4.4 Verification

Verifying an ABM social simulation model requires making sure that agents, rules,
and environments are all working the way they are supposed to according to the
conceptual model. In the case of relatively few agents and square cells, verification
is simplest and relatively straightforward. Part of verification must include close
examination of landscape borders (edged or toroidal). Behavioral rules are best ver-
ified by detailed tracing of each discrete interaction event within a single simulation
step. As always, all general verification procedures examined earlier in Sect. 8.7.4
also apply to ABM social simulations, including code walk-through, unit testing,
profiling, and parameter sweeps.

10.4.5 Validation

Validating an ABM social simulation model that has passed its verification tests
involves the same two main perspectives mentioned earlier for other models: struc-
tural and behavioral validity.

Structural validity refers to internal features of the model, including main as-
sumptions concerning relevant agent attributes, interaction rules, and environments.
The following should be considered when testing structural validity in an ABM:
Empirical tests of validation The specification of equations used by object

methods, as well as attribute and parameter values, are features requiring vali-
dation. For example, in the case of the Anasazi and Riftland models, this part
of the validation procedure focused on parameters such as vegetation grow-
back rates, as well as features of weather and land use. The radius of vision
or communication used is another assumption requiring validation using em-
pirical tests. It is also often assumed that coefficients are constant throughout
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a given simulated run. These are assumptions of structural stationarity, in the
sense that agent rules do not change over time; i.e., classical object models
assume that the basic clockwork of agents, rules, and environment does not
change throughout history, which may or may not be a valid assumption in
regards to a given referent system. For example, poverty may impair decision-
making, or conflict may reduce cognitive bandwidth and complicate reasoning
caused by unresolved dissonance (Sect. 4.8.1).

Theoretical tests of validation ABM simulation assumptions must also be check-
ed in terms of theories being used, especially concerning knowledge taken
from various disciplines. This is a broader perspective than empirical tests of
structural validity, as already noted, because it is based on fundamental causal
arguments that are sometimes difficult—if not impossible—to quantify. For
example, in the case of GeoSim and similar models, the overall structure is
based on balance of power and deterrence theory concerning how nations are
supposed to interact in an international system. In this case, the fundamen-
tal theory is based on factors such as objective capabilities untransformed by
perceptions, calendar time undistorted by tension and stress, and other sim-
plifying features. Is such a theory valid? Are there other factors as important
or even more significant than these? The underlying theory used in an ABM
may also assume perfect symmetry among agents, even when they are hetero-
geneous in some respects. Even bounded rationality is often implemented in
simplistic ways. Is it possible that actors decide with time-dependent or other
forms of heterogeneity?

Tests of structural validity for ABM social simulation models can be laborious, but
are always necessary to develop confidence in a model. Again, the empirical litera-
ture is of critical value in conducting these tests.

Behavioral validity is about actual results from ABM simulation runs, especially
in terms of qualitative and quantitative features such as patterns of growth, decay, or
oscillation. What matters most for ascertaining behavioral validity is whether simu-
lated spatial patterns generated by an ABM correspond to known empirical patterns
in its referent system. Time series, histograms, specialized metrics, and similar re-
sults are among the most commonly used. For example, Figs. 10.6 and 10.8 showed
the Lorenz curves and wealth distribution histograms generated by the Sugarscape
model. The long-run patterns of these (shown on the right side of the figure) are
a close match to known empirical patterns in many societies (Pareto’s Law). The
RiftLand model is capable of generating ground cover patterns that are almost indis-
tinguishable from empirical imagery satellite data obtained through remote sensing.
The Anasazi model was among the first empirically referenced ABMs to demon-
strate a close fit between simulated results and empirically measured patterns.

10.4.6 Analysis

ABM social simulations are susceptible to many forms of analysis, including formal
analysis, asking what-if questions, and scenario analysis.
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Formal analysis of ABM, a tradition exemplified by urban dynamics and human
geography, is a major field extending far beyond the confines of CSS. For example,
various gravity models of agent interactions, as well as driven-threshold systems of
agents display significant properties that can be investigated through formal analy-
sis. For the most part, CSS researches have paid relatively little attention to formal
analysis of spatio-temporal interactions of agent communities. For example, dif-
ferent distance or temporal interaction structural specifications, and different types
of driven-threshold mechanisms remain largely unexplored, in spite of their funda-
mental theoretical interest. Formal analysis of agent rules can also yield theoretical
expectations for testing through simulation.

Another way of analyzing ABM social simulations is by asking what-if ques-
tions. For example, in a model such as Sugarscape we may ask what may happen
when a Moore neighborhood is used, as opposed to the standard von Neumann
neighborhood. Or, what if agent vision deteriorates as a function of time, as can
happen also in times of conflict (“fog of war” effect). What-if questions can also
be used to analyze an ABM simulation using different rule sets. For example, in
an agent migration model we may wish to have one group responding to a Moore
neighborhood while another uses a von Neumann neighborhood, perhaps based on
different attitudes toward physical distance. Or, one group may be endowed with
vision having longer range.

Scenario analysis provides a more comprehensive and versatile methodological
approach to analyzing ABM social simulations. A scenario uses a set of related re-
search questions, rather than analyzing one question at a time. For example, in a
model such as RiftLand, it is possible to investigate a scenario such as prolonged
drought in a given country: Given a three-year drought that has been going on in,
say, Kenya, what may happen to crops and herds should the drought continue for
another year or two? How might social relations be affected? Will governmental in-
stitutions of the polity have sufficient capacity to mitigate the societal effects caused
by drought? Will there be displaced persons? Will large-scale refugee flows be gen-
erated by the drought? Will refugee flows remain internal or cross boundaries into
neighboring countries? Can such analyses provide novel insights that may be valu-
able to relief planners and responders? Sets of scenarios can also be used for inves-
tigating natural, engineering, and anthropogenic (human-caused) disasters.

ABM social simulations are still primarily intended for basic CSS and theoretical
analysis, but increasingly they are being called upon to address policy analysis to
provide actionable results. Significant methodological and theoretical advances are
still necessary to satisfy demand, but sustained progress will enable future genera-
tions of CSS researchers to build upon and surpass these recent achievements.
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Instructions, 38
Intangible, 10
Integer, 60
Integer numbers, 38
Intensity analysis, 85
Inter-agent rules, 294
Interaction topology, 279, 282
Interactive mode, 32
International diplomatic network, 115
Interpreted, 27
Interpreted code, 30
Interpreter, 28
Interstate networks, 93
Intra-environmental rules, 295
Intractable, 64
IPCC, xxii, 7
ISIMADE, xxii
Isolate node, 96
Isomorphism, 65
ISS, xxii, 10, 33, 34, 42–44, 240

J
JVM, xxii, 28

K
K-nearest neighbor classifier, 84
Kin-based networks, 93
Kingman’s formula, 268
Kinship knowledge, 195
Knowledge of normal vs. rare events, 195
KWIC, xxii, 70, 72
KWOC, xxii, 70, 72
Kya, xxii, 94, 110, 119, 121, 123–127, 175

L
Latent variable, 135
Leadership summit, 42
Legislate (Politics), 65
Length, 104
LEO, xxii, 42
Level of stress, 186
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Lexical analysis, 81
Lexical measure of social complexity, 141
LIFO (last-in-first-out), xxii, 268
LILO (last-in-last-out), xxii, 268
Line network, 100
Linear search, 65
Lines of evidence, 135
Links, 85
LISP, xxii, 29
List, 61
Little’s law, 266
LOC (lines of code), xxii, 33, 34, 62
Locality, 279
Locational, 137
Long-range correlations, 142
Long-range interactions, 168
Loop, 34
Lorenz curve, 165
Lotteries, 176, 215
LRD (long-range dependence), xxii, 142–144
LUCC, xxii, 289
Lyapunov-stable, 167

M
M2M (model-to-model), xxiii, 246
Machine language, 27
Machine parsing, 82
Main memory, 25
Marcus’s dynamic model, 202
MAS, xxii, 16, 220, 287
MASON, xxiii, 32, 37, 228, 234, 237, 276,

284, 289, 291, 296, 297
MC, xxiii, 269
MDIVVA, xxiii, 249, 273
MDS (multi-dimensional scaling), xxiii, 139
Merge sort, 66
Meta-stable state, 193
Metastability, 167
Method, 57
Military ability, 204
MINUIT, xxiii, 224
MIT, xxiii, 15, 24, 99, 224, 235, 243, 250–252
MLE, xxiii, 162
Model, 42
Model of perfect rationality, 132
Modern state, 201
Modular, 134
Modularity, 35, 134
Modularization, 62
Moore neighborhood, 279
Multiple approaches, 39
Multiplex, 97
Multiplicity, 46

N
N-adic level, 98
NAACSOS, xxiii, 276, 277
Naive Bayes classifier, 84
NASA, xiv, xxiii, 7, 44, 129
National diplomatic network, 114
NATO, xxiii, 115
Natural environments, 294
Natural system, 8
Near-decomposability, 211
Nearly-decomposable system, 35
Negative feedback, 254
Neighborhood radius, 282
NER (named entity recognition and

extraction), xxiii, 81, 82
Network analysis, 85, 89–118
Network level, 98
Network of queues, 268
NIST, xxiii, 60, 64
Nodal level, 98
Node clustering coefficient, 138
Nodes, 85
NodeXL, 116
Nomothetic approach, 145–170, 185
Non-equilibrium distributions, 14, 152; see

also power laws
Non-equilibrium dynamics, 143
Non-kinship knowledge, 203
Non-linearities, 225
Non-planar network, 101
Normative sociality, 195
Notations, 36
Noun phrases, 82
NRR (normal relations range), xxiii, 86
NSF, xiii, xxiii, 276
NVAC, xxiii, 87

O
Object variable, 57
Object-based orientation, 16, 29
Objects, 40
Observations, 37
OCR, xxiii, 80
OMG, xxiii, 44
ONR, xiii, xxiii
Ontological, 40
Ontology extraction, 83
Ontology generation, 83
OO, xxiii, 29, 35, 40, 41, 60, 133, 187, 231,

232, 235, 273, 277, 288
OOM (object-oriented models), xxiii, 24,

40–43, 58, 226, 231, 235, 273, 277
OOP, xxiii, 29, 30, 40, 58, 60, 226, 236, 283,
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OR, xxiii, 149, 150, 180, 181, 183
ORA, xxiii, 110, 112, 116
Orbiting astronauts, 42
Ordinal scale of social complexity C, 131
Organizational, 16
Organizational meta-matrix, 110
Origins of social complexity, 14, 110, 119–144
Other, 237
Outcome space, 215
Outcomes, 132
Output devices, 26

P
Pajek, 116
Parallel, 149
Parallel-serial system, 151
Parnas Principle, 62
Parsimony, 36
Parsing, 71
Parts of speech, 82
Path-dependent, 218
PDF, xxiii, 157–160, 265
Peregrine-Ember-Ember ordinal Guttman scale

of social complexity, 139
Persistent, 143
Phase transition, 7, 94, 123
Phase transition boundary (critical bifurcation

value, H = 0.5), 143
Pictorial, 136
PNAS, xxiii, 93
PNNL, xxiii
Policy, 188
Policy analysis, 226
Political autonomy, 204
Political crises and collapse, 176, 179
Political culture, 205
Political system, 186
Politics: political regimes, 47
Politogenesis, 185; see also Origins of social

complexity
Polity, 131, 185
Polity formation, 176, 179; see also

Politogenesis
Pollacsek-Khinchine’s equation, 268
Polynomial, 64
Portability, 39
Positive feedback, 253
Potency, 73
Potential function, 167, 177
Power law, 14, 142, 153
PPNB, xxiii, 124
Pragmatics, 28

Preemptive, 268
Principle of decomposition by information

hiding, 62
Priority, 268
Private, 57
Private property, 205
PRNG, xxiii, 241
Probability density, 157; see also PDF
Problem solving system, 25
Procedural programming, 32
Profiling, 72; see also Verification
Program, 25, 33
Programming languages, 39
Project Magellan, 75
Protected, 57
Proxy indicators, 135
Psychology: cognitive balancing, 48
Public, 57
Public good, 208
Public issue, 187
Public service, 208
Publicity, 6
Python, 29

Q
Quantitative human geography, 82
Queue, 61. 262
Queueing models, 16, 231, 249

R
Radius, 104
RAM, xxiii, 25, 26, 38
Random network, 101
Rank-size law, 156
Readability, 35
Realism, 36
Realnumbers, 38
Record, 62
Recursive functions, 65, 66
Referent system, 42, 227, 233, 253, 265, 281,

293
Reflective programming, 32
Reformatting, 80
Regime, 187
Reinforcement dynamic, 254
Relations of authority, 122
Reliability, 39, 112
Representations, 36
Research question, 232, 234, 253, 262, 279,

290
Residential skills, 204
RNG (random number generator), xxiii, 229,

241
Rules, 283



Index 319

S
SAS, xxiii, 24, 77, 117
Scale-free, 143, 156, 166; see also power laws
Scale-free network, 102
Scanning, 80
Scenario analysis, 237, 261, 287, 300
Scheduled updating, 279
Scheduling policies, 268
Schelling’s segregation model, 281
SD, xxiii, 224, 231, 232, 235, 237, 249–254,

256–262, 270, 273
SDC, xxiii
SDC-space, 84
Search, 65
Secondary memory, 25
Select sort, 66
Self-similarity, 143, 166
Semantics, 28, 71, 74, 82
Sentiment analysis, 83
SEQAND, xxiii, 149
Sequence, 61
Sequence analysis, 85
Sequence diagram, 44, 51
Sequential Boolean AND, 149, 181; see also

SEQAND
Sequential logic mode, 175
Serial, 148
Serial-parallel system, 151
Service components C, 266
Service scale, 122
Service time S, 265
SES, xxiii, 75
Several-among-some, 183
Shannon’s entropy, 139, 165
Sharing, 268
SIAM, xxiii, 76, 274
SIGKDD, xxiii, 76
Signed network, 97
Similarity analysis, 77, 83
Simon’s theory of artifacts and social

complexity, 9, 210–214
SIMPEST, xxiii, 224, 250
SIMPLE, xxiii, 250
Simple chiefdom, 193
Simple network, 100
Simplifications, 35
SIMPOP, xxiii, 173, 275, 289, 290, 294
Simulation model, 229
Simulation system, 228
Single-scale network, 102
Size, 104
Slow process, 214
Small-world network, 102
Small-world structure, 113

SNA, xxiv, 2, 13–15, 17, 19, 89–94, 97, 98,
102, 110, 114–117, 242

Social complexity, 121, 131
Social field theory, 84
Social identification ability, 195
Social laws, 37
Social or physical spaces, 291
Social simulation modeling, 15
Social systems, 40
Social theories, 36
Society, 186
Sociogram, 90
Sociology: organizations, 48
Sociomatrix, 102
Sociometric analysis, 90
SOCPAC, xxiv, 92
Software, 25
Sonification analysis, 86
Sort, 65
Sorting, 66
Sources for abstracting, 36
Spacefaring civilization, 129
Spatial, 16
Spatial analysis, 82
Spatial autocorrelation, 143
Special indices, 237
Specificity, 39
Spiraling, 78
SPSS, xxiv, 24, 117
SSRC, xxiv, 70
SSRN, xxiv, 79, 243
Stack, 61
Star network, 101
State, 122, 137, 199
State diagram, 44, 52
State of an agent, 293
States, 93
States of Nature, 176, 215
STELLA, xxiv, 228, 251, 258
Stevens level of measurement, 156
Stochastic ABM, 290
Stochastic cellular automata, 279
Stochasticity, 226
Strategic ability, 203
String, 60
Structural, 135
Structural validity, 297, 260, 284
Structure of social complexity, 147
Substantive measures of social complexity, 139
Supervised machine learning, 77
Supply chain, 110, 204
Survival, 131
Syntax, 28, 71
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System dynamics model, 15, 231, 249, 251;
see also SD

System-of-systems, 134, 268
Systems reliability, 39,112

T
TABARI, xxiv, 83
Tagging, 82
Tangible, 10
Target system, 42
TBJ, xxiv, 238–240
Ternary association, 105
Tessellation, 281
Theoretical tests of validation, 260, 286, 299
Time-series, 237
Toroidal, 284
Tractability, 35
Training, 6
Training set, 83
Transcendence, 108
Tree network, 101
Tree, 61
Triadic level, 98
TRIAL, xxiv, 70
Tuple, 60
Types of association, 47

U
UAV, xxiv, 26
UCINET, xxiv, 92, 116
UCLA, xxiv, 173
UML, ix, xxiv, 23, 24, 39, 40, 44–52, 54, 55,

57, 58, 85, 95, 103, 105, 141, 142, 184,
226, 295, 296

UN, xxiv, 38, 50, 99, 115, 140, 141, 183
Undirected network clustering coefficient, 138
Unified modeling language, see UML
Unsupervised learning, 84

Unsupervised machine learning, 77
URL, xxiv, 116
US, xiii, xxiv, 5, 60, 67, 87, 90–93, 140, 158,

224, 230, 250, 276
USSR, xxiv, 224, 250, 251
Utility maximization, 132

V
Validation, 236, 242, 260, 269, 284, 297
Valued network, 97
Variable-oriented models, 231
VENSIM, xxiv, 16, 228, 229, 258, 259
Verb phrases, 82
Verification, 235, 242, 259, 269, 284, 297
Versatility, 225
Village security ability, 204
Visibility, 57
Visual analytics, 87
Visualization tools, 229
Vocabulary analysis, 80
Von Neumann neighborhood, 279

W
Watts-Strogatz Law, 114
Weighted network, 97
What-if questions, 261, 287, 300
Wheel network, 101
WWW, xxiv, 75

X
XOR, xxiv, 150, 183

Y
Y-network, 101

Z
Zipf’s law, 156
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