
Chapter 10
Discrete-Event Simulation

David Goldsman and Paul Goldsman

D. Goldsman ()
Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, USA
e-mail: sman@gatech.edu

P. Goldsman
Syracuse, NY, USA
e-mail: pgoldsman@gmail.com

10.1 Introduction

A discrete-event simulation (DES) is characterized by changes in the simulation’s
state at discrete time points. Examples of systems that might be evaluated using
DES include:

•	 Any	queueing	system,	such	as	a	bank	service	counter,	where	customers	arrive	
occasionally, wait in lines for service, eventually receive service, and depart.

•	 Manufacturing	systems,	where	parts	are	processed	in	various	sequences	at	differ-
ent stations, after which they leave the plant.

•	 Inventory	systems,	where	random	quantities	of	a	certain	product	are	purchased	
by customers each day at a store, and where resupplies of the product move from
stage to stage of the supply chain before being purchased at the store.

The above examples are driven by various events that occur at discrete times and
change the state of the simulation. Event times correspond to, for example, custom-
er arrivals, customer departures from a server or from the system, machine break-
downs, and even an “end-of-simulation” event. DES contrasts with the so-called
continuous-time simulation modeling, in both the nature of the systems studied and
the methods by which the systems are analyzed. Examples of continuous-time mod-
els include:

•	 Weather	systems	and	other	natural	phenomena
•	 Electronic	circuit	systems
•	 Vehicular	traffic	movement

103© Springer-Verlag London 2015
M. L. Loper (ed.), Modeling and Simulation in the Systems Engineering Life Cycle,
Simulation Foundations, Methods and Applications,
DOI 10.1007/978-1-4471-5634-5_10

104 D. Goldsman and P. Goldsman

Continuous-time systems are often modeled via sets of differential equations. In
this chapter, we will give a high-level description of how a DES works, followed
by a running example illustrating the salient concepts, and then a brief discussion
of specialty DES software.

10.2 How Does a DES Work?

Discrete-event simulations almost always maintain what is known as a future events
list (FEL), which keeps track of the set of upcoming events. The simulation evolves
over time by proceeding from event to event on the FEL, which is ordered by the
simulation clock time. Each time an event occurs, we update the state of the simula-
tion, any appropriate statistics, and finally the FEL. Then we go to the next event
on the updated FEL. The FEL is usually handled as a linked list, so insertions and
deletions of events on the list are easy to carry out.

For example, consider a trivial FEL that is initialized at the start of a simple
queueing simulation. We will assume that customers arrive to be served by a single
server, in a first-in-first-out (FIFO) manner. The random variables corresponding to
customer arrival and service times are generated by well-known algorithms (see, for
instance, Law 2014).

Suppose that we have the following situation at time 0:

•	 System	state	and	FEL	initialization—the	system	starts	out	with	no	one	in	the	sys-
tem. Our minimalist FEL consists of two events: (i) start the simulation at time 0
and (ii) generate the first customer arrival at time 3.

•	 Statistics	initialization—we	create	a	statistic	to	keep	track	of	the	average	number	
of customers in the system (initialized to 0).

•	 FEL	update—at	time	0,	the	simulation	starts,	and	the	start	event	is	removed	from	
the FEL.

The simulation clock then jumps to the next event (and in this case the only event)
on the FEL: the first customer’s arrival at time 3. At this point:

•	 System	state	update—the	first	customer	starts	getting	served	by	the	single	server.
•	 Statistics	update—the	average	number	of	customers	in	the	system	up	to	time	3	is	

still 0.
•	 FEL	update—delete	 the	 arrival	 at	 time	3	 from	 the	FEL,	but	we	now	can	add	

two more events to the FEL: the next customer arrival at time 7, and the service
completion of the first customer, scheduled to occur at time 11.

The simulation clock then jumps to the next event at time 7, and the cycle of tasks
repeats itself. This sequence of events continues until the end-of-simulation event
occurs.

10510 Discrete-Event Simulation

10.3 Queueing Example

Perhaps the nature of a DES can be best understood by way of a simple example
whose evolution can actually be carried out by hand. To this end, suppose that we
are interested in evaluating a single-server queueing system. Our system in this
case is a fast-food restaurant, where customers arrive one at a time, according to
some stochastic (i.e., random) process. Typically, the times between arrivals are
independent and identically distributed (IID; for instance, from a Poisson process),
though violations of this IID assumption can easily be accommodated in practice.
In any case, upon arrival, customers line up in a FIFO queue and are eventually
processed by the server. Service times are also stochastic and often IID from some
service–time distribution.

Thus, we will create customers who:

•	 Enter	the	restaurant
•	 Wait	in	the	line	(if	there	is	one)	in	front	of	the	single	server
•	 Order	their	food	when	their	turn	comes
•	 Leave	after	their	food	is	prepared	by	the	server

Some obvious goals of our DES are to estimate:

•	 Expected	customer	waiting	times
•	 Expected	number	of	people	in	the	system	(in	line	and	being	served)
•	 Percentage	of	time	that	the	server	is	busy

Customer waiting times are important measures related to customer satisfaction—
customers are in a hurry at a fast-food restaurant, and simply do not like to wait.
Management also does not like long lines—in addition to annoying the customers,
long lines take up limited space that could be better utilized. One way to reduce
queue length is to hire more workers, but this can get expensive. So management
needs to look simultaneously at customer waiting times, queue lengths, and server
utilizations, in order to strike some sort of synergistic balance between pleasing the
customers and getting the most out of its workers.

We can illustrate these performance criteria via a hand simulation. Let us sup-
pose that there are a total of six customers who show up starting at 4:00 p.m. We
will start by defining some useful notation:

•	 i	=	the	customer	number,	by	order	of	arrival	( i		=	1,…,6)
•	 Ai = customer i’s arrival time
•	 Si = customer i’s service time

Suppose	the	customer	arrival	times	( Ai)	and	service	times	( Si) shown in Table 10.1
are, for notational convenience, all given in whole minutes. In order to carry out
the hand simulation, we will also assume that no other customers are in the system
when customer 1 arrives (so he will not have to wait in line), and that no one besides
our six customers arrives in the system until after customer 6 departs. Notice that
this system has two sources of randomness: the arrival times and the service times.

106 D. Goldsman and P. Goldsman

Lastly, we need to define a little more notation that will be useful for bookkeep-
ing purposes:

•	 Ti = the time that customer i starts service
•	 Wi = Ti – Ai = the amount of time customer i has to wait in line before getting

served
•	 Di = Ti + Si = customer i’s departure time

In general, if customer i shows up and nobody else is in the system, then he is served
immediately (i.e., Ti = Ai). Otherwise, the system is not empty when customer i ar-
rives, and he must wait until customer i-1 (the customer just ahead of him) com-
pletes service (i.e., Ti = Di). Thus, we immediately see that

With this piece of the puzzle in hand, we can come up with Table 10.2, which tells
the entire story of customer arrivals and departures.

Customer 1’s arrival event is at time A1 = 4:03 p.m.; he does not have to
wait in line, since he is the only customer in the system. He uses the server for
S1 = 7 min and therefore his departure event occurs at time Di = 4:10 p.m. Cus-
tomer 2 shows up at time A2 = 4:04 p.m. and finds that she must wait until time
T max A D2 2 1 4 10= =(,) : p.m. to begin service. Thus, she has to wait W2 = 6 min.
Her service time is S2 = 6 min, so she will leave at time D2 = 4:16 p.m. This exercise
continues until the sixth customer departs at time 4:29 p.m., which is the end of the
simulation.

T max A D ii i i= = …(,), , , .1 6

Table 10.2  Summary of customer arrivals and departures
i Ai Ti Wi Si Di

1 4:03 4:03 0 7 4:10
2 4:04 4:10 6 6 4:16
3 4:06 4:16 10 4 4:20
4 4:10 4:20 10 6 4:26
5 4:15 4:26 11 1 4:27
6 4:20 4:27 7 2 4:29

i Ai Si

1 4:03 7
2 4:04 6
3 4:06 4
4 4:10 6
5 4:15 1
6 4:20 2

Table 10.1  Customer arrival
and service times

10710 Discrete-Event Simulation

Note that we can produce the complete hand simulation table; let us turn our at-
tention to the question of studying the performance of the restaurant. For now, we
are primarily interested in customer waiting times and the number of customers in
the system at any given time.

The calculation of the average waiting time for the six customers is trivial:

What remains is to calculate the average number of customers in the system; this
includes those in line as well as those being served over the time period 4:00–4:29
(the time when customer 6 departs).

Let L( t) denote the number of people in the system at time t. Note that L( t)
can only change when customers arrive or depart, i.e., at the discrete event times.
Table 10.3 shows the various events that can result in a change in L( t).

The table shows that L( t) = 0 between times 4:00 and 4:03 p.m., when customer 1
arrives. L( t) = 1 between times 4:03 and 4:04 p.m., because he is the only customer
in the system. Customer 2 arrives at time 4:04 p.m., and, between times 4:04 and
4:06 p.m., there are two customers in the system—customer 1, who is still being
served, and customer 2, who now has to wait in line. At time 4:06 p.m., customer 3
arrives, so that there are now three people in the system (two in line and one being
served). At time 4:10 p.m., customer 1 departs, while customer 4 simultaneously
arrives (so L( t) remains at 3). And so on. The arrival and departure events con-
tinue until time 4:29 p.m., when the last customer (customer 6) leaves the system.
Fig. 10.1 represents these details pictorially.

Using either Table 10.3 or Fig. 10.1, we see that:
L( t) = 0, from times t = 4:00 to t = 4:03 (a total of 3 min)
L( t) = 1, from 4:03 to 4:04, and from 4:27 to 4:29 (3 min)
L( t) = 2, from 4:04 to 4:06, and from 4:26 to 4:27 (3 min)
L( t) = 3, from 4:06 to 4:15, and from 4:16 to 4:26 (19 min)
L( t) = 4, from 4:15 to 4:16 (1 min)

W W W Wavg = + + + =() / .1 2 6 7 33 6 min.

Table 10.3  How events affect the number of customers in the system
Time t Event L( t)
4:00 Simulation begins 0
4:03 Customer 1 arrives 1
4:04 Customer 2 arrives 2
4:06 Customer 3 arrives 3
4:10 Cust. 1 departs; cust. 4 arrives 3
4:15 Customer 5 arrives 4
4:16 Customer 2 departs 3
4:20 Cust. 3 departs; cust. 6 arrives 3
4:26 Customer 4 departs 2
4:27 Customer 5 departs 1
4:29 Cust. 6 departs; simulation ends 0

108 D. Goldsman and P. Goldsman

Let Ti represent the amount of time during the interval t = 4:00 to t = 4:29 in which
there are exactly i customers in the system. From the above calculations, we have:

Thus, there are exactly zero customers for precisely 3 min, one customer in the
system for 3 min, two customers for 3 min, etc. The average value of L( t) is now
simply:

Therefore, on average, there were 2.41 people in the system (in the waiting line or
being served) between 4:00 and 4:29 p.m.

Figure 10.1 can also be used to determine the proportion of time that the serv-
er is being used. Since customers are in service continuously from 4:03 p.m. to
the end of the simulation at 4:29 p.m., we immediately see that the server is busy
26/29 = 89.7 % of the time.

T T T T and T0 1 2 3 43 3 3 19 1= = = = =, , , , .

L T T T T Tavg = + + + + =[] / . .0 1 2 3 4 29 2 410 1 2 3 4

Fig. 10.1  The first six customers at the restaurant

10910 Discrete-Event Simulation

10.4 Generalizations and Beyond

The simple hand simulation that we conducted only hints at what lies under the sur-
face of an actual simulation language. Such languages can handle multiple streams
of customer arrivals into large queueing networks, with complicated waiting-line
behavior (e.g., balking when a line is perceived to be too large, jockeying between
lines, etc.) and service disciplines (e.g., last-in-first-out services, service by priority,
etc.). These languages all maintain an FEL that can process almost any set of events.

For further information on DES, one should consult the standard references:
(Banks et al. 2010; undergraduate level), (Law 2014; masters level), and (Nelson
2013; advanced). In addition, the yearly Proceedings of the Winter Simulation Con-
ference, archived at www.wintersim.org, contain a wealth of articles on DES, in-
cluding relevant tutorials on DES theory, applications, and languages. With regard
to the many DES languages on the market, the reader is advised to consult James
Swain’s Simulation Software Survey, which appears periodically in OR/MS Today,
the trade magazine of The Institute for Operations Research and the Management
Sciences (INFORMS; www.informs.org).

Acknowledgments The first author was partially supported by National Science Foundation
grants CMMI-0927592 and CMMI-1233141.

References

Banks J, Carson JS, Nelson BL, Nicol DM (2010) Discrete-event system simulation, 5th edn.
Prentice Hall, Englewood Cliffs

Law AM (2014) Simulation modeling and analysis, 5th edn. McGraw-Hill, New York
Nelson BL (2013) Foundations and methods of stochastic simulation: a first course. Springer-

Verlag, New York

www.informs.org

	Part II
	Methods and Methodologies
	Chapter-10
	Discrete-Event Simulation
	10.1 Introduction
	10.2 How Does a DES Work?
	10.3 Queueing Example
	10.4 Generalizations and Beyond
	References

