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Abstract The SIMBAD project puts forward a unified theory of data analysis un-
der a (dis)similarity based object representation framework. Our work builds on the
duality of probabilistic and similarity notions on pairwise object comparison. We ad-
dress the Evidence Accumulation Clustering paradigm as a means of learning pair-
wise similarity between objects, summarized in a co-association matrix. We show
the dual similarity/probabilistic interpretation of the co-association matrix and ex-
ploit these for coherent consensus clustering methods, either exploring embeddings
over learned pairwise similarities, in an attempt to better highlight the clustering
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structure of the data, or by means of a unified probabilistic approach leading to soft
assignments of objects to clusters.

5.1 Introduction

The goal of clustering algorithms is to organize a set of unlabeled objects into groups
or clusters such that objects within a cluster are more similar than objects in dis-
tinct clusters. Clustering techniques require the definition of a similarity measure
between patterns, geometrical or probabilistic, which is not easy to specify in the
absence of any prior knowledge about cluster shapes and structure. On the other
hand, clustering solutions unveil or induce pairwise similarity, when grouping ob-
jects in a same cluster. Given the diversity of clustering algorithms, each one with
its own approach for estimating the number of clusters, imposing a structure on the
data, and validating the resulting clusters, we are faced with a myriad of potential
similarity learners.

Clustering ensemble methods obtain consensus solutions from a set of base clus-
tering algorithms, thus constituting a step towards the goal of assumption-free clus-
tering. Several authors have shown that these methods tend to reveal more robust and
stable cluster structures than the individual clusterings in the Clustering Ensemble
(CE) [9, 10, 39].

There is a close connection between the concepts of pairwise similarity and prob-
ability in the context of unsupervised learning. It is a common assumption that, if
two objects are similar, it is very likely that they are grouped together by some
clustering algorithm; the higher the similarity, the higher the probability of co-
occurrence in a cluster. Conversely, if two objects co-occur very often in the same
cluster (high co-occurrence probability), then it is very likely that they are very
similar. This duality and correspondence between pairwise similarity and pairwise
probability within clusters forms the core idea of the clustering ensemble approach
known as Evidence Accumulation Clustering (EAC) [9, 11].

The idea of evidence accumulation clustering is to combine the results of mul-
tiple clusterings into a single data partition by viewing each clustering result as an
independent evidence of data organization. This evidence is accumulated in a co-
associations matrix, the intrinsic learned pairwise similarity, which constitutes the
core of the method. A consensus solution is obtained by applying a clustering algo-
rithm over this matrix.

In this chapter. we build on the EAC paradigm, exploring the duality of
similarity-based and probabilistic interpretations of the learned co-association ma-
trix in order to produce robust and informative consensus solutions. Interpreting
co-associations as new data representations, we propose to use embeddings over
this matrix, as an intermediate step in the consensus clustering process, in order to
extract relevant information into lower dimensional spaces. Consensus (hard) data
partitions are obtained from the later by applying hierarchical clustering algorithms.
By assuming a probabilistic re-interpretation of the co-association matrix, we then
propose a fully probabilistic formulation of the clustering problem, leading to soft
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consensus solutions. The method, that we denote as PEACE (Probabilistic Evi-
dence Accumulation for Clustering Ensembles), obtains probabilistic cluster assign-
ments through an optimization process that maximizes the likelihood of observing
the empirical co-associations given the underlying object to cluster probabilistic
assignment model.

The chapter is organized as follows. We start we a brief review of related work
on clustering ensemble methods in Sect. 5.2. The notation and basic definitions
are provided in Sect. 5.3. The EAC paradigm is reviewed in Sect. 5.4, while the
proposed methods based on embeddings and probabilistic modeling are presented
in Sects. 5.5 and 5.6, respectively. Results of the application of these methods to
real and synthetic benchmark data, in a comparative study with the baseline EAC
method, is provided in Sect. 5.7. Conclusions are drawn in a final section.

5.2 Related Work

Clustering is one of the central problems in Pattern Recognition and Machine Learn-
ing. Hundreds of clustering algorithms exist, handling differently issues such as
cluster shape, density, noise. k-means is one of the most studied and used algorithms
[17, 18, 41].

Recently, taking advantage of the diversity of clustering solutions produced by
clustering algorithms over the same dataset, an approach known as Clustering En-
semble methods, has been proposed and gained an increasing interest [2, 9, 22, 39].
Given a set of data partitions—a clustering ensemble (CE)—these methods propose
a consensus partition based on a combination strategy, having in general a leverag-
ing effect over the single data partitions in the CE.

The topic of clustering combination and consensus clustering are completing the
first decade of research.

Different paradigms were followed in the literate: (i) similarity between objects,
induced by the clustering ensemble [9, 11, 39]; (ii) similarity between partitions
[2, 7, 33, 42–44]; (iii) combining similarity between objects and partitions [8];
(iv) probabilistic approaches to cluster ensembles [42, 45, 46].

Strehl and Ghosh [39] formulated the clustering ensemble problem as an opti-
mization problem based on the maximal average mutual information between the
optimal combined clustering and the clustering ensemble exploring graph theoret-
ical concepts, and presenting three algorithms to solve it: Cluster-based Similarity
Partitioning Algorithm (CSPA), Hyper Graph Partitioning Algorithm (HGPA) and
Meta CLustering Algorithm (MCLA). CSPA, uses a graph partitioning algorithm,
METIS [20], for extracting a consensus partition from the co-association matrix.
In [33], this approach was extended to allow soft clusterings on the clustering en-
semble. Hyper Graph Partitioning Algorithm (HGPA) and Meta CLustering Algo-
rithm (MCLA) are based on hyper-graphs, where vertices correspond to objects, and
the hyperedges correspond to the clusters of the clustering ensemble. HGPA obtains
the consensus solution using an hyper-graph partitioning algorithm, HMETIS [21];
MCLA uses another heuristic which allows clustering clusters.
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Topchy et al. [43, 44] proposed the Quadratic Mutual Information Algorithm
(QMI) based on similarities between the partitions on the ensemble rather than sim-
ilarities between objects. It is based on the notion of median partition defined as the
partition that best summarizes the partitions of the ensemble and is optimized using
an algorithm based on a squared error criterion.

Ayad and Kamel [2], following [7], proposed the idea of cumulative voting as a
solution for the problem of aligning the cluster labels. Each clustering of the clus-
tering ensemble is transformed into a probabilistic representation with respect to a
common reference clustering. Three voting schemes are presented: Un-normalized
fixed-Reference Cumulative Voting (URCV), fixed-Reference Cumulative Voting
(RCV), and Adaptive Cumulative Voting (ACV).

Fern and Brodley [8] proposed the Hybrid Bipartite Graph Formulation (HBGF),
where both data points and clusters of the ensemble are modeled as vertices retain-
ing all of the information provided by the clustering ensemble, and allowing to con-
sider the similarity among data points and clusters. The partitioning of this bipartite
graph is produced using the multi-way spectral graph partitioning algorithm pro-
posed by Ng et al. [32], which seeks to optimize the normalized cut criterion [37],
or as alternative a graph partitioning algorithm, METIS [20].

In [42, 44], Topchy et al. proposed a probabilistic interpretation of the cluster-
ing combination problem, formulation the problem as a multinomial mixture model
(MM) over the labels of the clustering ensembles. In Wang et al. [45], this idea was
extended, introducing a Bayesian version of the multinomial mixture model, entitled
Bayesian cluster ensembles (BCE). Using a strategy very similar to Latent Dirichlet
Allocation (LDA) models [38], but applied to a different input space, features are
now the labels of the ensembles, the posterior distribution being approximated using
variational inference or Gibbs sampling. More recently, a nonparametric version of
BCE was proposed [46].

5.3 Notation and Definitions

Sets are denoted by uppercase calligraphic letters (e.g., O , E , . . . ) except for R and
R+ which represent the sets of real numbers and nonnegative real numbers, respec-
tively. The cardinality of a set is written as | · |. We denote vectors with lowercase
boldface letters (e.g., x, y, . . . ) and matrices with uppercase boldface letters (e.g.,
X, Y, . . . ). The ith component of a vector x is denoted as xi and the (i, j)th com-
ponent of a matrix Y is written as yij . The transposition operator is given by the
symbol �. The �p-norm of a vector x is written as ‖x‖p and we implicitly assume
a �2 (or Euclidean) norm, where p is omitted. We denote by 1n an n-dimensional
column vector of all 1’s and by e(j)

n the j th column of the n-dimensional identity
matrix. The trace of matrix M ∈ R

n×n is given by Tr(M) = ∑n
i=1 mii .

A probability distribution over a discrete set {1, . . . ,K} is an element of the
standard simplex ΔK , which is defined as

ΔK = {
x ∈ R

K+ : ‖x‖1 = 1
}
.
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The support σ(x) of a probability distribution x ∈ ΔK is the set of indices corre-
sponding to positive components of x, i.e.,

σ(x) = {
i ∈ {1, . . . ,K} : xi > 0

}
.

Random variables (r.v.) are represented by uppercase letters (e.g., X), and realiza-
tions of the later by corresponding lowercase letters. The probability on an event is
denoted as Pr(·) The expected value of a random variable X is denoted by E(X).

The entropy of a probability distribution x ∈ ΔK is given by

H(x) = −
K∑

j=1

xj log(xj )

and the Kullback–Leibler divergence between two distributions x,y ∈ ΔK is given
by

DKL(x ‖ y) =
K∑

j=1

xj log

(
xj

yj

)

,

where we assume log 0 ≡ −∞ and 0 log 0 ≡ 0.
Let S = {s1, . . . , sn} denote a data set with n objects or samples. Let O =

{1, . . . , n} be the indices of the set of n objects, and let Ou ⊆ O represent a subsam-
pling (without replacement) from O , with |Ou| < n. When objects are represented
in vector form in a d-dimensional feature space, we denote by O = [o1, . . . ,on]
the d × n matrix of object vectors, column i corresponding to the vector repre-
sentation, oi , of the ith object. An alternative to the feature representation is the
(dis)similarity representation defined on direct pairwise object comparisons. We de-
note the dissimilarity representation by a n × n matrix D, where dij = d(si, sj ) is
the dissimilarity value between samples i and j .

The goal of clustering is to organize the objects into K groups or clusters. We
distinguish between hard and soft clusterings. A hard clustering is a function pu :
Ou → {1, . . . ,Ku} assigning a class label, out of Ku available ones, to data points
in Ou ⊆ O . The result of this clustering is a data partition, written as a vector p(u) =
pu(Ou) = [p(u)

i ]i=1:n, p
(u)
i = p(u)(i) ∈ {1, . . . ,Ku}, or alternatively, on cluster sets

representation: Pu = {C1,C2, . . . ,CKu}, where Cl denotes the lth cluster (the set
of object indices composing cluster l), each object belonging to only one cluster.
A soft clustering is a function su mapping each object i ∈ Ou into a probability
distribution γ

(u)
i ∈ ΔKu , γ (u)

i denoting the soft assignment or degree of membership
of object i to each of the Ku clusters. The result of a soft clustering su is thus a
matrix γ (u) = [γ (u)

kj ]j=1:n
k=1:Ku

, γ
(u)
kj denoting the degree of membership of object j to

cluster k in clustering u.
In this chapter, pairwise similarities are to be learnt from clustering commit-

tees. Without loss of generality, we will consider committees of hard clusterings.
We define E = {pu}Nu=1 = {P1,P2, . . . ,PN } a clustering ensemble, i.e., a set of
N clusterings (partitions) obtained by applying different algorithms (i.e., different
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parameterizations and/or initializations) on (possibly) sub-sampled versions of the
objects set.

Since each clustering in the ensemble may stem from a sub-sampled version of
the original data set O , some pairs of objects may not appear in all clusterings. Let
Ωij ⊆ {1, . . . ,N} denote the set of clustering indices where both objects i and j

have been clustered, i.e., (u ∈ Ωij ) ⇔ ((i ∈ Ou) ∧ (j ∈ Ou)), and let Nij = |Ωij |
denote its cardinality.

According to the EAC paradigm, and following the vector notation for the rep-
resentation of partitions, the ensemble of clusterings is summarized in the n × n

co-association matrix C = [cij ], where

cij =
∑

l∈Ωij

1
p

(l)
i =p

(l)
j

, cij ∈ {0, . . . ,Nij } (5.1)

is the number of times objects i and j are co-assigned the same cluster label over the
ensemble E (1p is the indicator function, giving 1 if p holds true, and 0 otherwise).
An alternative summarization is the normalized co-association matrix, Ĉ = [ĉij ],
where

ĉij = cij

Nij

, ĉij ∈ [0,1] (5.2)

represents the percentage of times objects i and j are gathered in a same cluster
over the clustering ensemble.

5.4 The Evidence Accumulation Paradigm (EAC)

The EAC paradigm can be summarized in the following three steps method:

EAC
1. Build a clustering ensemble E . A diversity of clustering solutions is achieved

by running several algorithms, or the same algorithm with different parameter
values and/or initializations, on possibly sub-sampled versions of the data set.

2. Accumulate evidence from E in a pairwise co-association matrix. Evidence on
pairwise associations are accumulated from the individual clusterings in E . The
summary of these associations are given either by:

– Computing C and {Nij }, as given in Sect. 5.3, Eq. (5.1);
– Determining Ĉ using Eq. (5.2).

This voting mechanism is the key issue of the method, subsuming the problem
of class correspondence in consensus clustering.

3. Extract the consensus clustering from the co-associations. By applying a cluster-
ing algorithm over the learned pairwise associations between objects, a consen-
sus clustering is obtained.
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The object of the EAC method is the CE, on which it is built, not the actual
objects. As such, it is a clustering method that intrinsically preserves data privacy:
Individual descriptions of the underlying data are not required in order to produce a
clustering combination solution. Furthermore, it effectively fuses information from
multiple views of the data, exploring single or hybrid representations, either feature-
based or similarity-based. Some of its steps and characteristics are detailed next.

5.4.1 Building Clustering Ensembles

Clustering ensembles can be generated by following two main approaches: (i) choice
of data representation and (ii) choice of clustering algorithms or algorithmic param-
eters.

In the first approach, different partitions of the objects under analysis may be
produced by (a) employing different preprocessing and/or feature extraction mech-
anisms, which ultimately lead to different pattern representations (vectors, strings,
graphs, correlations, dissimilarities, etc.) in different feature spaces, or dissimilarity
spaces, (b) exploring subspaces of the same data representation, such as using sub-
sets of features, or embeddings, and (c) perturbing the data, such as in bootstrapping
techniques (like bagging), or sampling approaches, as, for instance, using a set of
prototype samples to represent huge data sets.

In the second approach, we can generate clustering ensembles by (i) applying
different clustering algorithms, exploring different concepts of clustering structure,
(ii) using the same clustering algorithm with different parameters or initializations,
and (iii) exploring different dissimilarity measures for evaluating inter-pattern rela-
tionships, within a given clustering algorithm.

A combination of these two main mechanisms for producing clustering ensem-
bles leads to exploration of distinct views of inter-pattern relationships. From a com-
putational perspective, clustering results produced in an “independent way” facili-
tate efficient data analysis by utilizing distributed computing, and reuse of results
obtained previously.

5.4.2 Properties of the Normalized Co-association Matrix Ĉ

Given the overall general formulation of the EAC paradigm, the method explicitly
produces as intermediate result a matrix accumulating evidence on pairwise associ-
ations. The later can be given different interpretations, as presented next.

5.4.2.1 EAC as a Kernel Method

The most direct and intuitive interpretation of the normalized co-association ma-
trix, Ĉ, is as a measure of pairwise similarity between objects, as put in evidence
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in pairwise associations provided by the individual clusterings in the ensemble E .
In fact, it is expected that very similar objects are very often put in a same cluster
by clustering algorithms. The use of different algorithms and/or parameter config-
urations for each clustering algorithm enables the derivation of similarity between
patterns without the use of a priori information about the number of clusters or the
tuning of parameter values. As such, the EAC method, mapping the individual ev-
idence of pairwise similarity in the clustering ensemble into a learned similarity
matrix, i.e., by computing a similarity between objects, further used within some
consensus clustering algorithm, can be formalized as a kernel method in unsuper-
vised learning.

5.4.2.2 Co-associations as Pairwise Stability Indices and Multi-EAC

Data subsampling has largely been explored in clustering ensemble methods with
the purpose of increasing diversity in the CE, as well as a means to handle the
problem of missing data; however, it can also be used as a mechanism for data
perturbation in order to evaluate the stability of clustering solutions.

When a clustering ensemble is produced by applying the same clustering algo-
rithm (with the same parameter(s) value(s)) over subsampled versions of the original
data, the matrix Ĉ summarizes the replicability of clustering solutions in terms of
stability of pairwise associations, measured in the interval [0;1].

Taking as basic premise that spurious clusters generated by a clustering algorithm
are not likely to be stable, the pairwise stability interpretation of Ĉ, under these CE
construction conditions, has been explored in an extension of the EAC methodol-
ogy, known as Multi-EAC, that incorporates diverse criteria clustering ensembles
in a selective combination strategy at the cluster level, as opposed to the overall
partition level. This approach has proven to better unveil the intrinsic data organi-
zation in the learned pairwise similarity [12], leading to better consensus clustering
solutions [27].

5.4.2.3 Ĉ as a Pairwise Probability Estimator

Let us denote by Xij a random variable indicating if objects i and j belong to the
same cluster. Xij is a Bernoulli distributed r.v. with parameter θij = E(Xij ):

Xij =
{

1 with probability θij ,

0 with probability (1 − θij ).
(5.3)

For each pair of objects i and j , we collect from E , the clustering ensemble,
Nij independent realizations x

(u)
ij of Xij , given by

x
(u)
ij =

⎧
⎪⎨

⎪⎩

1 if p
(u)
i = p

(u)
j

(objects i and j have the same cluster label in partition Pu),

0 otherwise,

(5.4)
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for u ∈ Ωij . The maximum likelihood (ML) estimate θ̂ij of the parameter θij of
each r.v. Xij is given by the empirical mean x̄ij , i.e.,

θ̂ij = x̄ij = 1

Nij

∑

u∈Ωij

x
(u)
ij ≡ cij

Nij

≡ ĉij . (5.5)

Thus, the normalized co-association matrix, Ĉ, corresponds to the maximum like-
lihood estimate of the probability of pairs of objects being in the same cluster, as
assessed by the clustering committee E .

5.4.3 From Co-associations to Consensus Clustering

As delineated in Sect. 5.4, consensus clustering solutions are obtained by applying a
clustering algorithm over the (normalized) co-association matrix. Given the possible
different interpretations of the normalized co-association matrix, Ĉ, as described in
Sect. 5.4.2, different classes of algorithms can be explored for deriving the consen-
sus solution. We categorize them according to the underlying assumption about data
representation:

• (Dis)similarity-based Data Representation The interpretation of Ĉ as a similarity
representation of objects, where intrinsic structure is enhanced through the ev-
idence accumulation process, enables the determination of consensus partitions
through a variety of clustering algorithms that explicitly use similarities as input,
such as in graph-based techniques (e.g., hierarchical linkage methods). Examples
of these have largely been explored in the literature, as in the seminal work [9].

• Vector-based Object Description The consensus matrix Ĉ can also be used as
data, rather than as similarity, each line i in the matrix corresponding to a feature
vector representation of object i, as its similarity to all objects in the data set.
It has been noted [23] that consensus solutions based on this interpretation of Ĉ
often lead to better results, as compared to similarity-based counterparts.

• Co-occurrence Probability The probabilistic interpretation of matrix Ĉ as a ML
estimate of the probability of pairs of objects being in the same cluster forms
the basis of a new class of probabilistic consensus clustering solutions. Starting
from the observation that co-occurrences are a special type of dyads, the work
in [29] proposes a generative aspect model for dyadic data, as for the normalized
co-association matrix; building on the framework of learning from dyadic data by
statistical mixture models [16], the authors further explore this generative model
for devising consensus clustering solutions under the EAC paradigm. Assuming a
multi-labeling framework, where each object has an (unknown) probability of be-
ing assigned to each cluster, and exploring Ĉ as empirical co-association matrix,
the work in [34] formalizes the problem of consensus clustering as an optimiza-
tion in probability domain, thus obtaining the soft class assignments. The later
basic probabilistic formulation is further explored in Sect. 5.6, proposing a new
objective function and optimization mechanism.
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The above similarity-based and vector-based data descriptors interpretations of
co-associations can be explored as input for a clustering algorithm to extract the
consensus solution. In addition, they can be seen as data representations in high
dimensional spaces, the structure of interest possibly being better described on an
embedded manifold. This leads to the application of embedding techniques over the
matrix Ĉ, as an additional intermediate step in the process of deriving a consensus
clustering. This approach was first put forward in [1], being further explored in
Sect. 5.5.

5.5 Finding Consensus Data Partitions by Exploring
Embeddings

We propose to apply embedding methods, also called dimensionality reduction (DR)
methods, over the normalized co-association matrix, Ĉ, interpreting it in two ways:
(i) as a feature space, and (ii) as a similarity space. In the first case, we reduce the
dimensionality of the feature space; in the second case, we obtain a representation
constrained to the similarity matrix Ĉ. The overall consensus clustering method,
hereafter named as DR-EAC, produces consensus solutions by applying a clustering
algorithm over the embedded space.

5.5.1 Embedding Methods

In the following, we assume that objects are represented in d-dimensional feature
spaces, a data set being represented by the matrix O. The goal is to find a new data
representation, X, assuming that the data of interest lie on an embedded linear or
nonlinear manifold within the higher-dimensional space. To perform embeddings
we will use several unsupervised dimensionality reduction (DR) methods, namely
Locality Preserving Projections (LPP) [14], Neighborhood Preserving Projections
(NPE) [15], Sammon’s mapping [36], Curvilinear Component Analysis (CCA) [6],
Isomap [40], Curvilinear Distance Analysis (CDA) [25], Locally Linear Embed-
ding (LLE) [35] and Laplacian Eigenmap (LE) [3] (see Chaps. 2, 6 and 7 for other
approaches). We now briefly introduce each of these algorithms.

5.5.1.1 Nonlinear Methods

Locally Linear Embedding (LLE) The working hypothesis of LLE [35] is that
the data manifold is smooth and sampled densely enough such that, in the neigh-
borhood of each data point, the manifold can be well approximated by its tangent
hyperplane. This hyperplane will usually be dependent of the point on which one is
approximating the manifold, hence the word Locally Linear Embedding. It should
be noted that the name can be misleading—this method is nonlinear.
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LLE makes a locally linear approximation of the whole data manifold; it be-
gins by estimating a local coordinate system for each object i, represented by the
vector oi , from its k-nearest neighbors. To produce the embedding, LLE finds low-
dimensional coordinates that preserve the previously estimated local coordinate sys-
tems as well as possible.

Technically, LLE first minimizes the reconstruction error e(W) = ∑
i ‖oi −∑

j wij oj‖2 with respect to the coefficients wij , under the constraints that wij = 0
if i and j are not neighbors, and

∑
j wij = 1. After finding these weights, the low-

dimensional configuration of points is next found by minimizing e(X) = ∑
i ‖xi −∑

j wij xj‖2 with respect to the low-dimensional representation xi of each object.

Laplacian Eigenmap (LE) The Laplacian Eigenmap [3] uses a graph embedding
approach. It begins by constructing a graph where each data point is a node, and each
node is connected to k other nodes corresponding to the k nearest neighbors of that
point. Points i and j are connected by an edge with weight wij = 1 if j is among
the k nearest neighbors of i, otherwise the edge weight is set to zero; this simple
weighting method has been found to work well in practice [3].

To find a low-dimensional embedding of the graph, the algorithm tries to put
points that are connected in the graph as close to each other as possible and does not
care about what might happen to the other points.

Technically, LE minimizes
∑

i,j ‖xi − xj‖2wij = Tr(XT LX) with respect to the
low-dimensional object representations xi , where L = D − W is the graph Lapla-
cian and D is a diagonal matrix with elements dii = ∑

j wij . This cost function has
an undesirable trivial solution: having all points in the same position would have
a cost of zero, which would be a global minimum of the cost function. To avoid
this problem, the low-dimensional configuration is found by solving the general-
ized eigenvalue problem Lxi = λiDxi [3]. The smallest eigenvalue corresponds to
the trivial solution, but the next smallest eigenvalues yield the desired LE solution
(X being the matrix with the corresponding eigenvectors).

Isomap Isomap [40] is a variant of Multidimensional Scaling (MDS) [24], which
attempts to find output coordinates that match a given distance matrix. This dis-
tance matrix is not computed using simple Euclidean distances; instead, geodesic
distances along the manifold of the data are used.1

Given these geodesic distances, the output coordinates are found by standard
linear MDS.

Let oi and xi denote the coordinates of point i on the input (high-dimensional)
space and output (low-dimensional) space, respectively. MDS attempts to find the xi

for all i which minimizes the squared difference between distances in the input space
and output space:

∑
i,j (d(oi ,oj )−d(xi ,xj ))

2. In simple terms, MDS is attempting
to find the low-dimensional representation of the data which makes the distances
between data points as close as possible to the distances in the original space.

1Technically, these distances are computed along a graph formed by connecting all k-nearest neigh-
bors.
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Curvilinear component analysis CCA [6] is a variant of MDS [24] that tries to
preserve only distances between points that are near each other in the embedding.
This is achieved by weighting each term in the MDS cost function by a coefficient
that depends on the corresponding pairwise distance in the embedding; this coef-
ficient is simply 1 if the distance is below a predetermined threshold and 0 if it is
larger. This approach is similar to Isomap, but the determination of whether two
points are neighbors is done in the output space in CCA, rather than in the input
space as in Isomap.

Curvilinear distance analysis CDA [25] is a variant of CCA. Whereas MDS
measures distances in the original space using the Euclidean distance, in CDA dis-
tances in the original space are measured with geodesic distances, like in Isomap.
In all other aspects, CDA is similar to CCA.

5.5.1.2 Linear Methods

Locality Preserving Projections LPP [14] is a linear dimensionality reduction
method which attempts to preserve local neighborhood information. It shares many
properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear
Embedding, since it is a linear approximation of the nonlinear Laplacian Eigenmaps.

Neighborhood Preserving Projections NPE [15] is a linear dimensionality re-
duction method that preserves the local structure of the data. It has similar properties
to LPP, but it is a linear approximation of Locally Linear Embedding (LLE).

5.5.2 The DR-EAC Method

We now present the proposed methodology called Dimensionality Reduction in Ev-
idence Accumulation Clustering (DR-EAC). It extends the three step EAC method
described previously (see Sect. 5.4) with an additional intermediate step: instead of
applying a clustering algorithm directly to the normalized co-association matrix, we
apply a DR technique to it. As detailed below, we propose two ways to do this, de-
pending on how one interprets the co-association matrix. This DR technique outputs
a low-dimensional data representation, which is then fed into a clustering algorithm,
deriving the consensus partition. The DR-EAC method is thus summarized in the
following four steps:

DR-EAC
1. Build the clustering ensemble E . As discussed before (see Sect. 5.4.1), this can

be accomplished in a variety of ways.
2. Obtain the normalized co-association matrix, Ĉ, as per expression (5.2)—see

Sect. 5.3. Then, we interpret this matrix in one of two possible ways (see
Sect. 5.4.2):
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– Co-associations viewed as Features: the ith row of Ĉ represents a new set
of features for the ith object, an idea originally proposed by Kuncheva et al.
[13]. Each object is now represented by the percentage of times it was grouped
together with each of the other objects.

– Co-associations viewed as Similarities. Since many DR methods can take as
input a matrix of pairwise distances (or dissimilarities), if we transform this
similarity matrix Ĉ into a matrix of dissimilarities D, we can exploit this
property. Since the elements of Ĉ take values in the interval [0,1], we use
a very simple transformation: the new dissimilarity matrix D has the element
dij given by 1 − ĉij .

3. Apply Dimensionality Reduction techniques. We apply DR techniques, according
to either of the interpretations above, to obtain a new representation of the data,
preserving the topology of the original data.

4. Extract the consensus partition. After we get the embedded data, we apply a
clustering algorithm to the later in order to extract the consensus solution.

For the DR methods, in step 3, we need to choose a target dimension to reduce
the data to and, in some cases, we also have to choose a parameter of the method
(usually the number of nearest neighbors to consider). The target dimension is cho-
sen using a Maximum Likelihood Estimator [26]. This MLE assumes that the data
points follow a Poisson process (i.e., they are drawn independently from a uniform
distribution over the data manifold) and constructs hyperspheres of growing radii r .
It then checks how quickly the number of neighbors inside that hypersphere grows
with r ; this dependence conveys information about the intrinsic dimension of the
data.

For example, if the data lies on a 2-dimensional manifold, the number of neigh-
bors inside a hypersphere of radius r should grow approximately with r2, even if
the input space has a higher dimension d � 2.

In all cases, we let each algorithm choose the most suitable parameter of the
DR method by an intrinsic criterion. This intrinsic criterion can be the value of
the cost function that each algorithm has to minimize, or the reconstruction error.
For example, in Isomap we chose the parameter (which is the number of nearest
neighbors used to construct a graph) which minimizes the residual variance [40]. It
is beyond the scope of this chapter to detail how these parameters should be chosen;
the relevant information can be found in the references cited in Sect. 5.5.1.

5.6 PEACE: Probabilistic Evidence Accumulation for Clustering
Ensembles

In this section, we propose a probabilistic formulation and solution of the consensus
clustering extraction that fully exploits the probabilistic interpretation of the nor-
malized co-association matrix, Ĉ, presented in Sect. 5.4.2.3.
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5.6.1 Problem Formulation

Consider a general probabilistic multi-labeling framework, where each object has
an (unknown) probability of being assigned to each cluster. Define the vector

yi = [y1i , . . . , yKi]T ∈ ΔK (5.6)

representing the probability distribution over the set of class labels {1, . . . ,K} which
characterizes object i ∈ O , that is, yki = Pr(i ∈ Ck), where Ck denotes the kth clus-
ter. Let Y = [y1, . . . ,yn] ∈ Δn

K be a K × n matrix collecting all objects class labels
probability distributions.

In our model, we assume that objects are assigned to clusters independently, i.e.,
Pr(i ∈ Ck, j ∈ Ck) = Pr(i ∈ Ck)Pr(j ∈ Ck). Following this independence assump-
tion and definition (5.6), the probability of objects i and j being assigned to the
same cluster is given by

K∑

k=1

Pr(i ∈ Ck, j ∈ Ck) =
K∑

k=1

ykiykj = y�
i yj . (5.7)

Let Cij be a binomial random variable (r.v.) representing the number of times
that objects i and j are co-clustered; from the modeling assumptions above, we
have that Cij ∼ Binomial(Nij ,y�

i yj ), that is,

Pr(Cij = c | yi ,yj ) =
(

Nij

c

)
(
y�
i yj

)c(1 − y�
i yj

)Nij −c
.

Each element cij of the co-association matrix C is interpreted as a sample of
the r.v. Cij , and the different Cij ’s are all assumed independent. Consequently, the
probability of observing C, given the class probabilities Y, is given by

Pr(C | Y) =
∏

i,j∈O
i 
=j

(
Nij

cij

)
(
y�
i yj

)cij
(
1 − y�

i yj

)Nij −cij .

We therefore formulate the probabilistic consensus clustering problem as an es-
timation of the unknown class assignments Y, by maximizing the log-likelihood
log Pr(C | Y) with respect to Y. This yields the following maximization problem

Ŷ = arg max
Y∈Δn

K

f (Y), (5.8)

where

f (Y) =
∑

i,j∈O
i 
=j

cij log
(
y�
i yj

) + (Nij − cij ) log
(
1 − y�

i yj

)
(5.9)

(constant terms have been dropped).
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It’s interesting to notice that f (Y) can be written in terms of the Kullback–
Leibler divergence DKL(· ‖ ·) as

f (Y) = −
∑

i,j∈O
i 
=j

Nij

[
H(zij ) + DKL

(
zij ‖ wij (Y)

)]
,

where zij = (cij /Nij ,1 − (cij /Nij ))
� ≡ (ĉij ,1 − ĉij )

� ∈ Δ2, wij (Y) = (y�
i yj ,

1 − y�
i yj )

� ∈ Δ2, ĉij are elements of the normalized co-association matrix Ĉ, and
H(·) is the entropy.

5.6.2 Optimization Algorithm

The optimization method described in this chapter belongs to the class of primal
line-search procedures. This method iteratively finds a direction which is feasible,
i.e., satisfying the constraints, and ascending, i.e., guaranteeing a (local) increase
of the objective function, along which a better solution is sought. The procedure is
iterated until it converges, or a maximum number of iterations is reached.

The first part of this section describes the procedure to determine the search di-
rection in the optimization algorithm. The second part is devoted to determining an
optimal step size to be taken in the direction found.

5.6.2.1 Computation of a Search Direction

Consider the Lagrangian of (5.8):

L (Y,λ,M) = f (Y) + Tr
(
M�Y

) − λ�(
Y�1K − 1n

)
,

where M = (μ1, . . . ,μn) ∈ R
K×n+ and λ ∈ R

n are the Lagrangian multipliers (re-
lated to positiveness and simplex constraints), and Y ∈ dom(f ). By differentiating
L with respect to yi and λ and considering the complementary slackness condi-
tions, we obtain the first order Karush–Kuhn–Tucker (KKT) conditions [30] for
local optimality:

⎧
⎪⎪⎨

⎪⎪⎩

gi(Y) − λi1n + μi = 0, ∀i ∈ O,

Y�1K − 1n = 0,

Tr(M�Y) = 0,

(5.10)

where gi(Y), the partial derivative of f (Y) with respect to yi , is given by

gi(Y) =
∑

j∈O\{i}
cij

yj

y�
i yj

− (Nij − cij )
yj

1 − y�
i yj

,



100 A.L.N. Fred et al.

and 1n denotes a n-dimensional column vector of all 1’s. We can express the La-
grange multipliers λ in terms of Y by noting that

y�
i

[
gi(Y) − λi1n + μi

] = 0,

yields λi = y�
i gi(Y) for all i ∈ O .

Let ri(Y) be given as

ri(Y) = gi(Y) − λi1K = gi(Y) − y�
i gi(Y)1K,

and let σ(yi ) denote the support of yi , i.e., the set of indices corresponding to
(strictly) positive entries of yi . An alternative characterization of the KKT condi-
tions, where the Lagrange multipliers do not appear, is

⎧
⎪⎪⎨

⎪⎪⎩

[ri(Y)]k = 0, ∀i ∈ O,∀k ∈ σ(yi ),

[ri(Y)]k ≤ 0, ∀i ∈ O,∀k /∈ σ(yi ),

Y�1K − 1n = 0.

(5.11)

The two characterizations (5.11) and (5.10) are equivalent. This can be verified by
exploiting the non-negativity of both matrices M and Y, and the complementary
slackness conditions.

The following proposition plays an important role in the selection of the search
direction. Hereafter, we denote by (yj )k the kth component of cluster assignment yj .

Proposition 5.1 Assume Y ∈ dom(f ) to be feasible for (5.8), i.e., Y ∈ Δn
K ∩

dom(f ). Consider

j ∈ arg max
i∈O

{[
gi(Y)

]
k+
i

− [
gi(Y)

]
k−
i

}
,

where

k+
i ∈ arg max

k∈{1···K}
[
gi(Y)

]
k

and

k−
i ∈ arg min

k∈σ(yj )

[
gi(Y)

]
k
.

Then the following holds:

• [gj (Y)]k+
j

≥ [gj (Y)]k−
j

and

• Y satisfies the KKT conditions for (5.8) if and only if [gj (Y)]k+
j

= [gj (Y)]k−
j

.

Proof We prove the first point by simple derivations as follows:

[
gj (Y)

]
k+
j

≥ y�
j gj (Y) =

∑

k∈σ(yj )

(yj )k
[
gj (Y)

]
k
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≥
∑

k∈σ(yj )

(yi )k
[
gj (Y)

]
k−
j

= [
gj (Y)

]
k−
j
.

By subtracting y�
j gj (Y), we obtain the equivalent relation

[
rj (Y)

]
k+
j

≥ 0 ≥ [
rj (Y)

]
k−
j
, (5.12)

where equality holds if and only if [gj (Y)]k−
j

= [gj (Y)]k+
j

.

As for the second point, assume that Y satisfies the KKT conditions. Then
[rj (Y)]k−

j
= 0 because k−

j ∈ σ(yj ). It follows by (5.12) that also [rj (Y)]k+
j

=
0 and therefore [gj (Y)]k−

j
= [gj (Y)]k+

j
. On the other hand, if we assume that

[gj (Y)]k−
j

= [gj (Y)]k+
j

then, by (5.12) and by definition of j , we have that

[ri(Y)]k+
i

= [ri(Y)]k+
i

= 0 for all i ∈ O . By exploiting the definition of k+
i and k−

i ,
it is straightforward to verify that Y satisfies the KKT conditions. �

Given Y a non-optimal feasible solution of (5.8), we can determine the in-
dices k+

j , k−
j and j as stated in Proposition 5.1. The next proposition shows how

to build a feasible and ascending search direction by using these indices. Later on,
we will point out some desired properties of this search direction. We denote by e(j)

n

the j th column of the n-dimensional identity matrix.

Proposition 5.2 Let Y ∈ Δn
K ∩dom(f ) and assume that the KKT conditions do not

hold. Let D = (ek+
K − ek−

K )(ej
n)

�, where j , k+ = k+
j and k− = k−

j are computed as
in Proposition 5.1. Then, for all 0 ≤ ε ≤ (yj )k− , we have that Zε = Y + εD belongs
to Δn

K , and for all small enough, positive values of ε, we have f (Zε) > f (Y).

Proof Let Zε = Y + εD. Then for any ε,

Z�
ε 1K = (Y + εD)�1K = Y�1K + εD�1K = 1n + εej

n

(
ek+
K − ek−

K

)�1K = 1n.

As ε increases, only the (k−, j)th entry of Zε , which is given by (yj )k− − ε,
decreases. This entry is nonnegative for all values of ε satisfying ε ≤ (yj )k− . Hence,
Zε ∈ Δn

K for all positive values of ε not exceeding (yj )k− as required.
As for the second point, the Taylor expansion of f at Y gives, for all small

enough positive values of ε:

f (Zε) − f (Y) = ε

[

lim
ε→0

d

dε
f (Zε)

]

+ O
(
ε2)

= (
ek+
K − ek−

K

)�
gj (Y) + O

(
ε2) > 0

= [
gj (Y)

]
k+ − [

gj (Y)
]
k− + O

(
ε2) > 0.

The last inequality comes from Proposition 5.1 because if Y does not satisfy the
KKT conditions then [gj (Y)]k+ − [gj (Y)]k− > 0. �
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5.6.2.2 Computation of an Optimal Step Size

Proposition 5.2 provides a direction D that is both feasible and ascending for Y with
respect to (5.8). We will now address the problem of determining an optimal step ε∗
to be taken along the direction D. This optimal step is given by the following one
dimensional optimization problem:

ε∗ ∈ arg max
0≤ε≤(yj )k−

f (Zε), (5.13)

where Zε = Y+ εD. This problem is concave as stated in the following proposition.

Proposition 5.3 The optimization problem in (5.13) is concave.

Proof The direction D is everywhere null except in the j th column. Since the sum
in (5.9) is taken over all pairs (i, j) such that i 
= j we have that the argument of ev-
ery log function (which is a concave function) is linear in ε. Concavity is preserved
by the composition of concave functions with linear ones and by the sum of concave
functions [5]. Hence, the maximization problem is concave. �

Let ρ(ε′) denote the first order derivative of f with respect to ε evaluated at ε′,
i.e.,

ρ
(
ε′) = lim

ε→ε′
d

dε
f (Zε) = (

ek+
K − ek−

K

)�
gj (Zε′).

By the convexity of (5.13) and Kachurovskii’s theorem [19], we have that ρ is non-
increasing in the interval 0 ≤ ε ≤ (yj )k− . Moreover, ρ(0) > 0 since D is an ascend-
ing direction as stated by Proposition 5.2. In order to compute the optimal step ε∗
in (5.13), we distinguish 2 cases:

• If ρ((yj )k−) ≥ 0 then ε∗ = (yj )k− for f (Zε) is non-decreasing in the feasible set
of (5.13);

• If ρ((yj )k−) < 0 then ε∗ is a zero of ρ that can be found by dichotomic search.

Suppose the second case holds, i.e., assume ρ((yj )k−) < 0. Then ε∗ can be found
by iteratively updating the search interval as follows:

(
�(0), r(0)

) = (
0, (yj )k−

)
,

(
�(t+1), r(t+1)

) =

⎧
⎪⎪⎨

⎪⎪⎩

(�(t),m(t)) if ρ(m(t)) < 0,

(m(t), r(t)) if ρ(m(t)) > 0,

(m(t),m(t)) if ρ(m(t)) = 0,

(5.14)

for all t > 0, where m(t) denotes the center of segment [�(t), r(t)], i.e., m(t) =
(�(t) + r(t))/2.

We are not in general interested in determining a precise step size ε∗ but an
approximation is sufficient. Hence, the dichotomic search is carried out until the
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interval size is below a given threshold. If δ is this threshold, the number of iterations
required is expected to be log2((yj )k−/δ) in the worst case.

5.6.2.3 Algorithm and Computational Complexity

Consider a generic iteration t of our algorithm (shown in Algorithm 1) and assume
A(t) = Y�Y and g

(t)
i = gi(Y) given for all i ∈ O , where Y = Y(t).

The computation of ε∗ requires the evaluation of function ρ at different values
of ε. Each function evaluation can be carried out in O(n) steps by exploiting A(t)

as follows:

ρ(ε) =
∑

i∈O\{j}
cji

d�
j yi

A
(t)
j i + εd�

j yi

+ (Nji − cji)
d�

j yi

1 − A
(t)
ji − εd�

j yi

, (5.15)

where dj = (ek+
K − ek−

K ). The complexity of the computation of the optimal step size
is thus O(nγ ) where γ is the average number of iterations needed by the dichotomic
search.

Next, we can efficiently update A(t) as follows:

A(t+1) = (
Y(t+1)

)�Y(t+1) = A(t) + ε∗(D�Y(t) + Y(t)�D + ε∗D�D
)
. (5.16)

Indeed, since D has only two nonzero entries, namely (k−, j) and (k+, j), the terms
within parenthesis can be computed in O(n).

The computation of Y(t+1) can be performed in constant time by exploiting the
sparsity of D as Y(t+1) = Y(t) + ε∗D.

The computation of g
(t+1)
i = gi(Y(t+1)) for each i ∈ O \ {j} can be efficiently

accomplished in constant time (it requires O(nK) to update all of them) as follows:

g
(t+1)
i = g

(t)
i + cij

( y(t+1)
j

A
(t+1)
ij

− y(t)
j

A
(t)
ij

)

+ (Nij − cij )

( y(t+1)
j

1 − A
(t+1)
ij

− y(t)
j

1 − A
(t)
ij

)

. (5.17)

The complexity of the computation of g
(t+1)
j , on the other hand, requires O(nK)

steps:

g
(t+1)
j =

∑

i∈O\{j}
cji

y(t+1)
i

A
(t+1)
j i

− (Nji − cji)
y(t+1)
i

1 − A
(t+1)
j i

. (5.18)

By iteratively updating the quantities A(t), g
(t)
i and Y (t) according to the afore-

mentioned procedures, we can keep a per-iteration complexity of O(nK), that is
linear in the number of variables in Y.
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Algorithm 1: PEACE
Require: E : ensemble of clusterings
Require: Y(0) ∈ Δn

K ∩ dom(f ): starting distribution
Compute C and {Nij } from E

Initialize A(0)
i ← (Y(0))�Y(0)

Initialize g
(0)
i ← gi(Y(0)) for all i ∈ O , as per Eq. (5.17)

t ← 0
while termination-condition do

Compute k+, k−, j as in Proposition 5.1
Compute D as in Proposition 5.2
Compute ε∗ as described in Sect. 5.6.2.2/5.6.2.3
Update A(t+1) as per Eq. (5.16)
Update Y(t+1) = Y(t) + ε∗D
Update g

(t+1)
i as per Eq. (5.17)

Update g
(t+1)
j as per Eq. (5.18)

t ← t + 1
end while
return Y(t)

Iterations stop when the KKT conditions of Proposition 5.1 are satisfied under a
given tolerance τ , i.e., ([gj (Y)]k+

j
− [gj (Y)]k−

j
) < τ .

5.7 Results and Discussion

We evaluated the previous methods on both real and synthetic datasets, in a com-
parative study with the EAC method. In the later, we explored three hierarchical
algorithms for the computation of the consensus solution from the normalized co-
association matrix, namely single-link (SL), average link (AL), and Wards link
(WL). In this study, we assume known the true number of clusters, K . In order to as-
sess the quality of consensus results, we compute the consistency index (CI) between
the consensus partition and the ground-truth labeling of the data. The consistency
index, also called H index [31], gives the accuracy of the obtained partitions and
is obtained by matching the clusters in the consensus partition P i with the ground
truth partition PGT:

CI
(
P i ,PGT) = 1

n

∑

k′=match(k)

mk,k′ , (5.19)

where mk,k′ denotes the contingency table, i.e., mk,k′ = |C (i)
k ∩ C (GT)

k′ |. It corre-
sponds to the percentage of correct labelings when the number of clusters in P i

and PGT is the same.
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5.7.1 Experimental Setup

We conducted experiments on synthetic datasets (see Fig. 5.1), and on real-world
datasets from the UCI Irvine and UCI KDD Machine Learning Repository: iris,
wine, house-votes, ionosphere, std-yeast-cell, breast-cancer, and optidigits. Ta-
ble 5.1 summarizes the experimental setting, indicating the number of clusters, K ,
and the size, n, of each data set.

Two different types of clustering ensembles were created, exploring different
strategies:

• E -Split—implementing a split strategy [28] (splitting “natural” clusters into small
clusters), the K-means was used as base clustering algorithm, with K randomly
chosen in an interval {Kmin,Kmax} = {�√n/2�, �√n�}. The size of each CE was
N = 100.

• E -Hybrid—a combination of multiple algorithms (agglomerative hierarchical al-
gorithms: single, average, ward, centroid link; k-means; spectral clustering [32])
with different number of clusters Ki , as specified in Table 5.1 (last column). For
each clustering approach and each parametrization of the same, we generated
N = 100 different subsampled versions of the data-set (90 % resampling percent-
age).

5.7.2 Clustering Results Using Embeddings

We applied the DR-EAC method to the clustering ensembles E -Split and E -Hybrid,
in the two interpretations of the normalized co-association matrix: as similarity,
hereafter denoted as Similarity Space; and as features, denoted as Feature Space.
This leads to four experimental scenarios. For each scenario, we applied each of the
dimensionality reduction methods described in Sect. 5.5.1, namely LPP, NPE, LLE,
LE, Sammon, CCA, Isomap, and CDA. For extracting the consensus partition, we
used the same three hierarchical agglomerative methods used with EAC: single-link,
average-link, and Wards-link.

Figure 5.2 summarizes the overall performance of the several variants of the
method, in direct comparison with EAC. In this figure, each sub-figure plots the four
scenario matrices for a given DR method, as indicated at the top. For each scenario,
lines correspond to data sets, and columns to the consensus extraction algorithm, SL,
AL, and WL. Within each cell, a color scheme is used to code the comparative per-
formances of the DR-EAc vs. EAC methods, as measured by the consistency index,
with white corresponding to equal performance, warm color meaning a superiority
of DR-EAC over EAC (in a gradient where red corresponding to high/significantly
increased performance values); and cool colors (in a gradient of blue) represent a
decrease in performance of DR-EAC in comparison with EAC.

Figures 5.3 and 5.4 present the best consistency index obtained for each data
set (indicated on the left of each plot), and each consensus clustering method (in-
dicated at the bottom), for the four combinations of interpretations of the matrix Ĉ
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Fig. 5.1 Sketch of the synthetic data sets

and clustering ensemble types. For the DR-EAC method, the variant associated with
the DR method is indicated by the corresponding DR designation. On each cell, the
best consistency index value obtained by comparing results from the three cluster-
ing extraction algorithms is shown over a background color that reveals the wining
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Table 5.1 Benchmark
datasets and Ki parameter
values for the clustering
ensembles E -Hybrid

Data-Sets K n Ki—Ensemble

spiral 2 200 2–9

cigar 4 250 4–9

rings 3 450 2–6

image-c 7 739 8–15,20

image-1 8 1000 7–15,20

iris 3 150 3–10

wine 3 178 4–10,15,20

house-votes 2 232 4–8

ionsphere 2 351 4–10

std-yeast-cell 5 384 5–10

breast-cancer 2 683 2–10

optdigits 10 1000 10, 12, 15, 20

Fig. 5.2 Comparison of various DR methods with EAC using the consistency index. The top-left
sub-figure, labeled “LPP-EAC”, compares the DR method LPP with the EAC baseline. Four sce-
narios are depicted in this sub-figure: feature space vs. similarity space and E -Split vs. E -Hybrid.
Each of the four scenarios presents a 12 × 3 matrix, corresponding to the 12 datasets and the 3
clustering methods in the following order: SL, AL, and WL. A white cell means that LPP and EAC
yielded roughly the same performance. Warm colors mean that LPP yielded better performance,
whereas cool colors mean that it yielded worse performance. Darker tones mean that the difference
between the two methods was larger in absolute value. The other seven sub-figures show similar
information for the seven remaining DR methods
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Fig. 5.3 Results on the feature spaces. (Top) Consistency index for E -Split for each dataset (ver-
tical axis), DR method (horizontal axis), for the best clustering method (color). Each cell shows
the value of the best consistency index obtained for the corresponding dataset and DR method out
of the three clustering algorithms tested. A blue cell indicates that the best value came from using
single-link, a red cell corresponds to average-link, and a green cell to Ward-link. Color addition is
used to present ties: if both single-link and average-link yielded the maximum value, that cell is
shown in magenta, etc. (Bottom) Same as before, but for E -Hybrid
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Fig. 5.4 Results on the similarity spaces. The meaning of plots are as in Fig. 5.3

algorithm, according to the color scheme presented on the right of each figure. In ad-
dition, for each data set, we circle the best consensus clustering result obtained over
the four combinations of spaces interpretations and CEs, as plotted in Figs. 5.3(a),
5.3(b), 5.4(b), and 5.4(a).
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Figure 5.2 yields some interesting conclusions. The most immediate one is that
blindly performing DR is a bad idea since there are many more blue–cyan cells
than orange–yellow ones, randomly choosing a DR method for a certain dataset and
clustering method is likely to decrease the performance. However, this should not
discourage us from using DR. In fact, for some cases the improvement in the results
is considerable, such as for certain cells of LPP in E -Split.

Overall, Isomap is the method that more consistently produced better results than
EAC (notice the high percentage of positive colors), with rare situations of (mild)
decreased performance; however, improvements are also in general moderate to low
(there are large white areas). LPP is a method that in general leads to good results;
improvements are in some instances quite significant, as indicated in reddish tones.
This is further corroborated by the analysis of Figs. 5.3 and 5.4, where we can notice
the high number of best CI scores obtained for instance in the combination of the
Similarity Space with the E -Split CE (see Fig. 5.4(a)).

LLE, except for point-wise situations, is the method that overall performed
worse, immediately followed by LE, with many dark blue areas.

CCA and CDA perform poorly on the feature space, having a more adequate
behavior on the similarity space, in particular with the E -Split CEs. This can be
further observed in Fig. 5.4(a).

NPE is better suited for data with complex structure, namely the synthetic data
sets; it nevertheless performs reasonably well on real data, in particular on E -
Hybrid CEs. Sammon mapping, on the other hand, performs better with E -Split
CEs, achieving moderate improvements.

Concerning best obtained results per data set and embedding method (Figs. 5.3
and 5.4), it is clear the overall better performance of the single-link algorithm for
the extraction of the combined partition over the synthetic data sets (see the large
areas of blue, pink and brown on all maps, in particular on the similarity space).

On the other hand, the Wards-link was the best performing method on the real
data (green, yellow and brown areas).

5.7.3 Probabilistic Clustering

For each data set, the PEACE algorithm was applied to the clustering ensembles
E -Split and E -Hybrid, leading to corresponding probabilistic cluster assignments.

Figure 5.5 illustrates the empirical co-association matrices, Ĉ, and corresponding
estimated co-occurrences probabilities, Y�Y, on both clustering ensembles, for the
iris dataset. In these images, ĉij values are represented in a gradient of colors from
dark blue (corresponding to 0) to red (corresponding to 1). While a block structure
of three clusters is apparent in all figures, it is more clear and less noisy in the true
co-association Y�Y. The corresponding soft cluster assignments, Y, are plotted in
Fig. 5.6, were object indices are on the x-axis, and probabilities for each cluster
assignment (on the y-axis) are given in color, in a gradient from dark blue to red.

For the direct comparison with the ground-truth hard-partition, PGT, the prob-
abilistic consensus clusterings are converted into hard-partitions by assigning each



5 Learning Similarities from Examples under EAC 111

Fig. 5.5 Iris data set. Co-association matrices and corresponding estimated co-occurrences prob-
abilities, as given by the PEACE algorithm. The top row corresponds to the clustering ensemble
E -split, while the bottom row corresponds to E -Hybrid

object oi to the class with the highest estimated probability in yi , i.e., according
to the ML rule: i ∈ Cj : j = arg maxk yik . Given different initializations in the op-
timization process, it is possible to obtain different consensus solutions with the
proposed algorithm. We thus performed several runs of the algorithm, and evalu-
ated the performances in terms of the consistency index, CI(P i ,PGT). Tables 5.2
and 5.3 summarize the obtained results, indicating minimum, maximum, average,
and standard deviation of the CIs for each data set. In addition, the first column
(“selected”) refers to the CI of the selected consensus solution over the several runs,
according to the intrinsic optimization criterion, i.e., highest value of Pr(C | Y). The
last three columns in these tables register the results with the EAC method with
three consensus extraction clustering algorithms: single-, average-, and Wards-link.
Highest CI values for each data set are highlighted in bold.

From the analysis of Tables 5.2 and 5.3, it is apparent that the PEACE algorithm
performs poorly in data sets exhibiting complex structure, where clusters are defined
by connectedness as opposed to compactness properties, such as in most of the syn-
thetic data sets. For these, the EAC method, in combination with the SL algorithm,
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Fig. 5.6 Iris data set—probabilistic cluster assignments given by the PEACE algorithm on the
clustering ensembles E -split and E -Hybrid

Table 5.2 Consistency indices of consensus solutions for the clustering ensemble E -Split

Data set PEACE EAC

selected av std max min SL AL WL

cigar 0.636 0.628 0.020 0.640 0.592 1.000 0.816 0.708

rings 0.509 0.526 0.018 0.551 0.509 1.000 1.000 0.729

spiral 0.505 0.505 0.000 0.505 0.505 0.505 0.500 0.525

image-c 0.499 0.503 0.002 0.505 0.499 0.582 0.583 0.433

image-1 0.555 0.570 0.025 0.613 0.550 0.666 0.590 0.465

breast-cancer 0.734 0.923 0.106 0.971 0.734 0.657 0.971 0.734

house-votes 0.901 0.892 0.012 0.901 0.879 0.668 0.871 0.853

ionosphere 0.632 0.632 0.000 0.632 0.632 0.667 0.541 0.613

iris 0.907 0.864 0.095 0.907 0.693 0.747 0.893 0.893

optdigits 0.894 0.871 0.042 0.898 0.798 0.618 0.798 0.899

std-yeast-cell 0.544 0.543 0.001 0.544 0.542 0.526 0.688 0.542

wine 0.961 0.961 0.000 0.961 0.961 0.674 0.927 0.961

performs the best, in particular when adopting the split strategy for building the CE,
i.e., in E -Split.

On the real data sets, however, the proposed algorithm shows an overall superior
performance, positively correlated with the more dense block diagonal structure of
the empirical co-association matrices. Corroborating this conclusion, we can notice
the increased number of best results (as compared with EAC) in the E -Hybrid CEs
(Table 5.3), were this block structure is promoted by the use of lower K values for
building the CEs. A notable exception to this conclusion on real data sets is the case
of the optidigits, for which much better results are obtained by both PEACE and
EAC methods when using the split strategy on the CE. It should be noted, however,
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Table 5.3 Consistency indices of consensus solutions for the clustering ensemble E -Hybrid

Data Set PEACE EAC

selected av std max min SL AL WL

cigar 0.688 0.688 0.000 0.688 0.688 1.000 0.820 0.708

rings 0.318 0.320 0.006 0.331 0.318 1.000 0.349 0.351

spiral 0.510 0.510 0.000 0.510 0.510 0.550 0.505 0.515

image-c 0.593 0.533 0.034 0.593 0.517 0.514 0.583 0.559

image-1 0.625 0.625 0.001 0.626 0.625 0.677 0.620 0.606

breast-cancer 0.968 0.968 0.000 0.968 0.968 0.652 0.944 0.944

house-votes 0.901 0.901 0.000 0.901 0.901 0.530 0.530 0.918

ionosphere 0.718 0.718 0.000 0.718 0.718 0.644 0.658 0.715

iris 0.913 0.913 0.000 0.913 0.913 0.747 0.907 0.900

optdigits 0.497 0.419 0.072 0.499 0.366 0.499 0.716 0.855

std-yeast-cell 0.677 0.677 0.000 0.677 0.677 0.359 0.672 0.680

wine 0.944 0.939 0.003 0.944 0.938 0.393 0.371 0.927

that for this dataset the E -Split CE does not explore a severe splitting strategy:
as indicated in Table 5.1, this data set has 10 classes and 1000 samples, leading
to and interval {Kmin,Kmax} = {15,31} for E -Split, while the E -Hybrid uses the
values {10,12,15,20} for K . This suggests that the “mild” split strategy favors the
revelation of the intrinsic organization structure of the dataset. This is apparent when
we compare the empirical and “true” co-associations in the E -Split with the ones
in the E -Hybrid in Fig. 5.7, where the intrinsic 10-class structure is more clear in
E -Split. This leads to considerably better probabilistic cluster assignments from the
E -Split CE, as seen in Fig. 5.8. If we reorder samples within each “natural” cluster
in the co-association matrix, based on pairwise similarities, using for instance the
VAT algorithm [4], we obtain the matrix in Fig. 5.9. In this figure, we can observe
“microstructure” within each cluster, supposedly associated with writing styles; this
can justify the better adequacy of the split strategy for this data set.

5.8 Conclusions

In this chapter, we addressed the Evidence Accumulation Clustering paradigm as
a means of learning pairwise similarity between objects, summarized in a co-
association matrix. We revised the EAC as a kernel method for extracting rela-
tions between objects. We discussed several possible interpretations for the learned
co-associations, in particular the duality between similarity/data representation and
probabilistic interpretations, and exploited these in two consensus clustering meth-
ods: DR-EAC, a hard clustering method exploring embeddings over learned pair-
wise associations; and PEACE, a unified probabilistic approach leading to soft as-
signments of objects to clusters.
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Fig. 5.7 Optidigits data set. Co-association matrices and corresponding estimated co-occurrences
probabilities, as given by the PEACE algorithm

Fig. 5.8 Optidigits data set—probabilistic cluster assignments given by the PEACE algorithm on
the clustering ensembles E -Split and E -Hybrid
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Fig. 5.9 Optidigits data
set—reordered empirical
co-association matrix Ĉ for
the E -Split clustering
ensemble, evincing
micro-structure within each
digit class

The DR-EAC method was evaluated in comparison with the EAC, several di-
mensionality reduction techniques being studied. Although no DR algorithm con-
sistently outperformed all the others, this study showed that the use of dimensional-
ity reduction techniques in clustering ensembles presents interesting advantages in
accuracy and robustness. Future work is needed to study the influence of different
strategies to construct the clustering ensemble, and criteria for the choice of DR and
clustering algorithms.

PEACE obtains probabilistic cluster assignments through an optimization pro-
cess that maximizes the likelihood of observing the empirical co-associations given
the underlying object to cluster assignment model, which was shown to be equiv-
alent to minimizing the Kullback–Leibler divergence between the empirical co-
associations and the estimated “real” co-association distribution. When converting
soft assignments to hard clusterings, the method performed favorably as compared
with the EAC method for handling real data sets, and data with homogeneous clus-
ters. In addition, PEACE, by providing probabilistic cluster assignments to objects,
yields a richer level of information about cluster structure. Its poor performance on
complex structure data sets is the object of current investigation.
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