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For my parents, who made it possible



“Surely there is nothing more basic to
thought and language than our sense of
similarity. [. . . ]
And every reasonable expectation depends on
resemblance of circumstances, together with
our tendency to expect similar causes to have
similar effects.”

Willard V.O. Quine



Foreword

The SIMBAD project was a Future and Emerging Technologies (FET) project
funded by the European Commission between 2008 and 2011. It brought together
an extraordinary group of talented researchers with a broad spectrum of different
perspectives on the central theme of using non-Euclidean similarity functions as
the basis for learning. This approach was in contrast with the use of kernel func-
tions that had become the de facto standard at the time of the project’s launch
in 2008.

The SIMBAD project took a broad view of the problem of so-called non-
Euclidean learning: analysing the extent to which this was essential in a particu-
lar problem, developing alternative learning strategies that could successfully learn
from non-Euclidean similarity functions, developing methods of learning Euclidean
representations from probabilistic models and similarity data, and so on. These ap-
proaches were not studied just in the abstract but rather were grounded in a series of
concrete problems from application domains where it was known or suspected that
the Euclidean assumption was unrealistic.

The number and depth of the papers that arose from this research agenda was
very impressive, with significant innovations made on all of the fronts listed above.
However, the research was not merely a shotgun attack on several divergent fronts,
but rather represented the coherent development of the leitmotiv of the project: the
use of similarity functions in learning.

Given the breadth of the reach and impact of the research, the project reviewers
were fearful that this coherence might be lost in the variety of journals, conferences,
and particular problems considered, hence risking that the main message become
lost in the plethora of individual results.

It was therefore proposed that a book bringing together the themes of the project
and its main results could help champion and communicate the SIMBAD message in
one coherent volume. This carefully constructed book is the result of that proposal.
It is a distillation of the main themes and results of the project into an accessible
and cross-referenced volume. For those interested in learning about the potential
and importance of learning from similarity functions, this work is undoubtedly the
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key reference from which to begin their study and it is likely to remain so for many
years to come.

John Shawe-TaylorVirginia Water
June 2013



Preface

This book provides a thorough description of a selection of results achieved within
SIMBAD, an EU FP7 project which represents the first systematic attempt at bring-
ing to full maturation a paradigm shift that is just emerging within the pattern recog-
nition and machine learning domains, where researchers are becoming increasingly
aware of the importance of similarity information per se, as opposed to the classical
(feature-based) approach.

SIMBAD started in April 2008 and ended in September 2011, and involved the
following six partners:

• University of Venice, Italy (scientific coordinator)
• University of York, UK
• Delft University of Technology, The Netherlands
• Instituto Superior Tecnico, Lisbon, Portugal
• ETH Zurich, Switzerland
• University of Verona, Italy.

The very end of the project marked also the launch of the SIMBAD workshop series
http://www.dsi.unive.it/~simbad

whose first edition was held in Venice, in September 2011, in conjunction with the
project’s final review meeting. These biennial workshops aim to consolidate and
promote research efforts in this area and to provide and informal discussion forum
for researchers and practitioners.

Within the SIMBAD project we undertook a thorough study of several aspects
of purely similarity-based pattern analysis and recognition methods, from the the-
oretical, computational, and applicative perspective. We covered a wide range of
problems and perspectives. We considered both supervised and unsupervised learn-
ing paradigms, generative and discriminative models, and our interest ranged from
purely theoretical problems to real-world practical applications. The chapters col-
lected in this book aim to provide a coherent overview of our main achievements
and to serve as a starting point for graduate students and researchers interested in
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xii Preface

this important, yet diverse subject. More details on the project’s activities can be
found on our website

http://simbad-fp7.eu
and in the published papers referenced in this book.

A project like SIMBAD could not have been done without the help and support
of many people and institutions, and it is a pleasure to take this opportunity to ex-
press my gratitude to them. In the first place, I’d like to acknowledge the Future
and Emerging Technology (FET) Programme of the 7th Framework Programme for
Research of the European Commission which funded the SIMBAD project, and I
am very grateful to our project officer, Teresa De Martino, and to the reviewers,
Georgios Sakas, Christoph Schnörr and John Shawe-Taylor, whose insightful sug-
gestions and constant encouragement have been instrumental to make SIMBAD a
better project.

It has been my good fortune to collaborate for almost four years with a fantastic
group of people, whose genuine enthusiasm and exceptional professional compe-
tence made SIMBAD a unique, intellectually stimulating experience. In particular,
I’m grateful to my fellow principal investigators who coordinated the activities of
the various research units: Joachim Buhmann, Bob Duin, Mario Figueiredo, Ed-
win Hancock, and Vittorio Murino; to their deputies: Manuele Bicego, Umberto
Castellani, Ana Fred, Marco Loog, Volker Roth, and Richard Wilson; and to all
PhD students and postdocs who have worked within the project.

In Venice, I’ve been helped by many people in my group, and I’d like to thank
them all for their support. In particular, I wish to thank Andrea Torsello for the assis-
tance he gave me at various stages of the project, and Veronica Giove for her valu-
able work concerning all administrative aspects. Special thanks are due to Samuel
Rota Bulò for his constant support throughout the project and for helping me assem-
ble this book.

I’d like to thank the editorial staff at Springer, in particular Wayne Wheeler for
supporting the idea of publishing this book, and Simon Rees for his advice through-
out the production of the volume and for gently tolerating my procrastinations.

My deepest gratitude, however, go to my wife, Rosanna, and my children, Clau-
dia and Valerio, without whose endless patience and understanding the SIMBAD
project, and hence this book, would have not seen the light.

Marcello PelilloVenice
July 2013

http://simbad-fp7.eu
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Chapter 1
Introduction: The SIMBAD Project

Marcello Pelillo

Abstract This introductory chapter describes the SIMBAD project, which repre-
sents the first systematic attempt at bringing to full maturation a paradigm shift
that is just emerging within the pattern recognition and machine learning domains,
where researchers are becoming increasingly aware of the importance of similarity
information per se, as opposed to the classical (feature-based) approach.

1.1 Motivations

The challenge of automatic pattern analysis and recognition (or machine learning)
is to develop computational methods which learn, from examples, to distinguish
among a number of classes, with a view to endow artificial systems with the ability
to improve their own performance in the light of new external stimuli. This ability
is widely recognized to be instrumental in building next-generation artificial cogni-
tive systems (ACSs) which, as opposed to traditional machine or computer systems,
can be characterized “as systems which cope with novel or indeterminate situa-
tions, which aim to achieve general goals as opposed to solving specific problems,
and which integrate capabilities normally associated with people or animals.”1 The
socio-economic implications of this scientific endeavor are enormous, as ACSs will
have applications in a wide variety of real-world scenarios ranging from industrial
manufacturing to vehicle control and traffic safety, to remote and on-site (environ-
mental) sensing and monitoring, and to medical diagnostics and therapeutics.

As a matter of fact, despite their technological applications, pattern recognition
and machine learning can arguably be considered as a modern-day incarnation of
an endeavor which has challenged mankind since antiquity. Fundamental questions
pertaining to categorization, abstraction, generalization, induction, etc. have, in fact,
been on the agenda of mainstream philosophy, under different names and guises,

1From: Artificial Cognitive Systems in FP7: A Report on Expert Consultations for the EU Seventh
Framework Programme 2007–2013 for Research and Technology Development.
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2 M. Pelillo

since its inception. Indeed, as pointed out in [7], the very foundations of pattern
recognition can be traced back to Aristotle and his mentor Plato who were among the
firsts to distinguish between an “essential property” from an “accidental property”
of an object, so that the whole field of pattern recognition can naturally be cast as the
problem of finding such essential properties of a category. As Watanabe put it [20,
p. 21]: “whether we like it or not, under all works of pattern recognition lies tacitly
the Aristotelian view that the world consists of a discrete number of self-identical
objects provided with, other than fleeting accidental properties, a number of fixed
or very slowly changing attributes. Some of these attributes, which may be called
‘features,’ determine the class to which the object belongs.” Accordingly, the goal of
a pattern recognition algorithm is to discern the essences of a category, or to “carve
the nature at its joints.” In philosophy, this view is known as essentialism and has
contributed to shape mainstream machine learning research in a such a way that it
seems legitimate to speak about an essentialist paradigm.

During the nineteenth and the twentieth centuries, the essentialist world-view
was subject to a massive assault from several quarters and it became increasingly
regarded as an impediment to scientific progress. Strikingly enough, this conclusion
was arrived at independently in at least three different disciplines, namely physics,
biology, and psychology. In physics, anti-essentialist positions were held (among
others) by Mach, Duhem, Poincaré, and in the late 1920s Bridgman, influenced by
Einstein’s achievements, put forcefully forward the notion of operational definitions
precisely to avoid the troubles associated with attempting to define things in terms
of some intrinsic essence [4]. For example, the (special) theory of relativity can
be viewed as the introduction of operational definitions for simultaneity of events
and of distance, and in quantum mechanics the notion of operational definitions
is closely related to the idea of observables. This point was vigorously defended
by Popper [15], who developed his own form of anti-essentialism and argued that
modern science (and, in particular, physics) was able to make real progress only
when it abandoned altogether the pretension of making essentialist assertions, and
turned away from “what-is” questions of Aristotelian-scholastic flavor.

In biology, the publication of Darwin’s Origin of Species in 1859 had a devastat-
ing effect on the then dominating paradigm based on the static, Aristotelian view of
species, and shattered 2000 years of research which culminated in the monumental
Linnaean system of taxonomic classification. According to Mayr [14], essentialism
“dominated the thinking of the western world to a degree that is still not yet fully
appreciated by the historians of ideas. [. . . ] It took more than two thousand years
for biology, under the influence of Darwin, to escape the paralyzing grip of essen-
tialism.”

More recently, motivated by totally different considerations, cognitive scientists
have come to a similar discontent towards essentialist explanations. Indeed, it has
become increasingly clear that the classical essentialist, feature-based approach to
categorization is too restrictive to be able to characterize the intricacies and the mul-
tifaceted nature of real-world categories. This culminated in the 1970s in Rosch’s
now classical “prototype theory” which is generally recognized as having revolu-
tionized the study of categorization within experimental psychology; see [13] for an
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extensive account, and the recent paper by von Luxburg et al. [19] for a machine
learning perspective.

Nowadays, anti-essentialist positions are associated with various philosophical
movements including pragmatism, existentialism, decostructionism, etc., and is also
maintained in mathematics by the adherents of the structuralist movement, a view
which goes back to Dedekind, Hilbert and Poincaré, whose basic tenet is that “in
mathematics the primary subject-matter is not the individual mathematical objects
but rather the structures in which they are arranged” [16, p. 201]. Basically, for an
anti-essentialist what really matters is relations, not essences. The influential Amer-
ican philosopher Richard Rorty nicely sums up this “panrelationalist” view with the
suggestion that there are “relations all the way down, all the way up, and all the way
out in every direction: you never reach something which is not just one more nexus
of relations” [17]. As an aside, we note that a similar dissatisfaction with the essen-
tialist approach can also be found in modern link-oriented approaches to network
analysis [8, 12].

Now, it is natural to ask: What is the current state of affairs in pattern recognition
and machine learning? As mentioned above, the fields have been dominated since
their inception by the notion of “essential” properties (i.e., features) and traces of
essentialism can also be found, to varying degrees, in modern approaches which
try to avoid the direct use of features (e.g., kernel methods). This essentialist atti-
tude has had two major consequences which have greatly contributed to shape the
fields in the past few decades. On the one hand, it has led the community to focus
mainly on feature-vector representations. Here, each object is described in terms of
a vector of numerical attributes and is therefore mapped to a point in a Euclidean
(geometric) vector space, so that the distances between the points reflect the ob-
served (dis)similarities between the respective objects. On the other hand, this has
led researchers to maintain a reductionist position, whereby objects are seen in iso-
lation and which therefore tends to overlook the role of relational, or contextual,
information.

Feature-vector representations are indeed extremely attractive because geomet-
ric spaces offer powerful analytical as well as computational tools that are simply
not available in other representations. In fact, classical pattern recognition meth-
ods are tightly related to geometrical concepts and numerous powerful tools have
been developed during the last few decades, starting from linear discriminant anal-
ysis in the 1920s, to perceptrons in the 1960s, to kernel machines in the 1990s.
However, there are numerous application domains where either it is not possible
to find satisfactory features or they are inefficient for learning purposes. This mod-
eling difficulty typically occurs in cases when experts cannot define features in a
straightforward way (e.g., protein descriptors vs. alignments), when data are high
dimensional (e.g., images), when features consist of both numerical and categorical
variables (e.g., person data, like weight, sex, eye color, etc.), and in the presence of
missing or inhomogeneous data. But, probably, this situation arises most commonly
when objects are described in terms of structural properties, such as parts and rela-
tions between parts, as is the case in shape recognition [3]. This led in 1960s to the
development of the structural pattern recognition approach, which uses symbolic
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data structures, such as strings, trees, and graphs for the representation of individ-
ual patterns, thereby, reformulating the recognition problem as a pattern-matching
problem.

It is clearly open to discussion to what extent the lesson learnt from the historical
development of other disciplines applies to machine learning and pattern recogni-
tion, but it looks at least like that today’s research in these areas is showing an
increasing propensity towards anti-essentialist/relational approaches. Indeed, in the
last few years, interest around purely similarity-based techniques has grown consid-
erably. For example, within the supervised learning paradigm (where expert-labeled
training data is assumed to be available) the now famous “kernel trick” shifts the
focus from the choice of an appropriate set of features to the choice of a suitable
kernel, which is related to object similarities. However, this shift of focus is only
partial as the classical interpretation of the notion of a kernel is that it provides an
implicit transformation of the feature space rather than a purely similarity-based rep-
resentation. Analogously, in the unsupervised domain, there has been an increasing
interest around pairwise algorithms, such as spectral and graph-theoretic clustering
methods, which avoid the use of features altogether. Other attempts include Balcan
et al.’s theory of learning with similarity functions [2], and the so-called collective
classification approaches, which are reminiscent of relaxation labeling and similar
ideas developed in computer vision back in the 1980s (see, e.g., [18] and references
therein).

Despite its potential, however, presently the similarity-based approach is far from
seriously challenging the traditional paradigm. This is due mainly to the sporadic-
ity and heterogeneity of the techniques proposed so far and the lack of a unifying
perspective. On the other hand, classical approaches are inherently unable to deal
satisfactorily with the complexity and richness arising in many real-world situa-
tions. This state of affairs hinders the application of machine learning techniques to
a whole variety of relevant, real-world problems.

The main problem with purely similarity-based approaches is that, by departing
from vector-space representations, one is confronted with the challenging problem
of dealing with (dis)similarities that do not necessarily possess the Euclidean behav-
ior 2 or not even obey the requirements of a metric. The lack of the Euclidean and/or
metric properties undermines the very foundations of traditional pattern recognition
theories and algorithms, and poses totally new theoretical/computational questions
and challenges. In fact, this situation arises frequently in practice. For example,
non-Euclidean or non-metric (dis)similarity measures are naturally derived when
images, shapes or sequences are aligned in a template matching process. In com-
puter vision, non-metric measures are preferred in the presence of partially occluded
objects [27]. Other non-metric examples include pairwise structural alignments
of proteins that focus on local similarity [5], variants of Hausdorff distance [18],

2A set of distances D is said to be Euclidean (or geometric) if there exists a configuration of
points in some Euclidean space whose interpoint distances are given by D. In the sequel, the terms
geometric and Euclidean will be used interchangeably. The term (geo)metric is an abbreviation to
indicate the case of a distance that satisfies either the Euclidean or the metric properties.
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normalized edit-distances [5], and also some probabilistic measures such as the
Kullback–Leibler divergence. As argued in [27], the violation of the metric prop-
erties is often not an artifact of poor choice of features or algorithms, and it is in-
herent in the problem of robust matching when different parts of objects (shapes)
are matched to different images. The same argument may hold for any type of local
alignments. Corrections or simplifications may therefore destroy essential informa-
tion.

In summary, there is an urgent need to bring to full maturation a paradigm shift
that is just emerging within the pattern recognition and machine learning domains,
where researchers are becoming increasingly aware of the importance of similarity
information per se, as opposed to the classical feature-based (or vectorial) approach.
Indeed, the notion of similarity (which appears under different names such as prox-
imity, resemblance, and psychological distance) has long been recognized to lie at
the very heart of human cognitive processes and can be considered as a connection
between perception and higher-level knowledge, a crucial factor in the process of
human recognition and categorization [9, 10].

1.2 The Structure of SIMBAD

SIMBAD represented the first systematic attempt towards the goal alluded to above.
Within the project, we undertook a thorough study of several aspects of similarity-
based pattern analysis and recognition methods, from the theoretical, algorithmic,
and applicative perspective, with a view to substantially advance the state of the art
in the field and contribute towards the long-term goal of organizing this emerging
field into a more coherent whole.

We focused on two main themes, which basically correspond to the two funda-
mental questions that arise when abandoning the realm of feature-vector represen-
tations, namely:

1. How can one obtain suitable similarity information from object representations
that are more powerful than, or simply different from, the vectorial?

2. How can one use similarity information in order to perform learning and classi-
fication tasks?

Although the two issues are clearly interrelated, it is advantageous to keep them
apart as this allows one to separate the similarity generation process (a data mod-
eling issue) from the learning and classification processes (a task modeling issue).
According to this perspective, the very notion of similarity becomes the pivot of
non-vectorial pattern recognition in much the same way as the notion of feature-
vector plays the role of the pivot in the classical (geometric) paradigm. This results
in a useful modularity, which means that all interactions between the object repre-
sentation and the learning algorithm are mediated by the similarities, which is where
the domain knowledge comes into the scene.
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An important part of the project concerned the application of the developed tech-
niques. To this end, we focused mainly on biomedical problems, which lend them-
selves particularly well to similarity-based approaches. Specifically, we applied the
new methods developed within the project to inference tasks in the field of med-
ical image analysis, i.e., to Tissue Micro Array (TMA) analysis and to Magnetic
Resonance (MR) brain imaging.

Accordingly, the project (and hence this book) was structured around the follow-
ing strands:

• Foundational issues
• Deriving similarities for non-vectorial data
• Embedding and beyond
• Applications

which we now briefly describe.

1.2.1 Foundational Issues

One of the first objectives within SIMBAD was to explore the causes and origins of
non-Euclidean (dis)similarity measures and how they influence the performance of
classical classification algorithms. In particular, we distinguished between the situ-
ation where the informational content associated with the violation of the geometric
properties is limited, or is simply an artifact of the measurement process, and that
where this is not the case. This distinction is important as, depending on the ac-
tual situation, two different strategies can be pursued: the first attempts to impose
geometricity by somehow transforming or re-interpreting the similarity data, the
second does not and works directly on the original similarities. Chapter 2 provides
a comprehensive summary of our findings. It also discusses several techniques to
convert non-Euclidean data into Euclidean and provides real-world examples which
show that the non-geometric part of the data might be essential for building good
classifiers.

A second line of investigation within this strand concerned fundamental ques-
tions pertaining to the very nature of the pattern recognition endeavor. Indeed, the
search for patterns in data requires a mathematical definition of structure and a com-
parison function to rank different structures, thereby providing insights into the
invariances in the problem class at hand. Motivated by an analogy between com-
munication and learning, Chap. 3 describes an information-theoretic perspective to
the problem and attempts to address the question of model selection and validation
or, in other words, the tradeoff between informativeness and robustness. Accord-
ing to the proposed view, the notion of a pattern is interpreted as an element of
an interpretation space (the “hypothesis class”) endowed with a “natural” neigh-
borhood system, or topology. By generalizing Shannon’s random coding concept,
the framework is able to determine which hypotheses are statistically indistinguish-
able due to measurement noise and how much we have to coarsen the hypothesis
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class. The framework is thought to be applicable to more general questions arising
in computer science concerning algorithm evaluation as well as (robust) algorithm
design.

1.2.2 Deriving Similarities for Non-vectorial Data

The goal here was to develop suitable similarity measures for non-vectorial data. We
focused primarily on structured data (e.g., strings, graphs, etc.), because of their ex-
pressive power and ubiquity, and on geometric measures as they allow one to employ
the whole arsenal of powerful techniques available in the geometric pattern recogni-
tion literature. We pursued our goal by developing suitable kernels, which are known
to be in correspondence with geometric (dis)similarities and considered in particular
information-theoretic kernels. These are based on the assumption that the objects
of interest are generated by some probabilistic mechanism (a source, in informa-
tion/coding theoretic terms) and then proceed by defining (dis)similarity measures
or kernels between (or among) models of these probabilistic sources. Chapter 4
reviews a recent approach which exploits the probabilistic nature of the so-called
generative embeddings, by using information-theoretic kernels defined on proba-
bility distributions. This leads to a new class of hybrid generative/discriminative
methods for learning classifiers whose effectiveness has been tested on two medical
applications (see also Chaps. 9 and 10).

An alternative to this “kernel tailoring” approach consists in learning good simi-
larities directly from training data. Within SIMBAD we investigated a strategy based
on the evidence accumulation clustering paradigm, which aims to combine the re-
sults of multiple clusterings into a single data partition by viewing each cluster-
ing result as an independent evidence of data organization. Chapter 5 describes an
approach which exploits the duality of similarity-based and probabilistic interpreta-
tions of the learned co-association matrix in order to produce robust and informative
consensus solutions. This leads to two clustering methods: a “hard” method which
explores embeddings over learned pairwise associations, and a unified probabilistic
approach that we called PEACE (Probabilistic Evidence Accumulation for Cluster-
ing Ensembles), leading to soft assignments of objects to clusters.

1.2.3 Embedding and Beyond

Within this research strand, we aimed at developing computational models that do
not depend on the actual object representation and rely only on (available) similarity
information. As pointed out above, the analysis carried out in Chap. 2 suggests two
complementary approaches. On the one hand, when the information content of non-
geometricity is limited or simply caused by measurement errors, it is a plausible
strategy to perform some correction on the similarity data (or finding an alternative



8 M. Pelillo

vectorial representation) in an attempt to impose geometricity, and then use con-
ventional geometric techniques. On the other hand, when the information content
of non-geometricity is relevant, one needs brand new tools, as standard approaches
would not work in this case.

The former approach is known as “embedding,” which is a well-established tech-
nique for vector-based representations, and is the subject of Chaps. 6 and 7. In par-
ticular, Chap. 6 focuses on two contrasting approaches to the problem. In the first
part, it describes spectral methods for embedding structured data such as weighted
graphs in a geometrically meaningful way. The resulting embeddings are then used
to construct generative models for graph structure. To this end, the chapter explores
the idea of “spherical” embedding, whereby data is embedded onto the surface of
sphere of optimal radius. Instead of approximating the original (dis)similarities by
Euclidean distances, the second approach tries to preserve the underlying group
structure of the data. Within this context, the second part of Chap. 6 shows that a
polynomial characterization derived from the Ihara zeta function leads to an embed-
ding of hypergraphs which captures interesting structural properties.

Chapter 7 also focuses on these “structure-preserving” embeddings and restricts
the discussion to the case of partition-based clustering problems. It is shown that a
classical pairwise clustering cost function possesses an interesting shift-invariance
property which amounts to saying that the choice of a partition is not influenced
by additive constant shifts in the off-diagonal elements of the affinity matrix. An
approximate version of this property is shown to hold in a more general probabilistic
setting which is capable of selecting the number of clusters in a data-adaptive way.
These findings raise intriguing questions concerning the role of structure-preserving
embedding in the context of a theory of similarity-based pattern recognition.

When there is significant information content in the non-(geo)metricity of the
data one has to resort to algorithms that work directly on the original similarity
function. To this end, Chap. 8 describes an approach based on game theory which is
shown to offer an elegant and powerful conceptual framework that serves well our
purpose. The main point made by game theorists is to shift the emphasis from opti-
mality criteria to equilibrium conditions, namely to the search of a balance among
multiple interacting forces. Interestingly, the development of evolutionary game the-
ory in the late 1970s offered a dynamical systems perspective, an element which was
totally missing in the traditional formulation. From our perspective, one of the main
attractive features of game theory is that it imposes no restriction whatsoever on the
structure of the similarity function. Chapter 8 describes our attempts at formulating
classical pattern recognition problems from a purely game-theoretic perspective. In
particular, the chapter focuses on data clustering and structural matching and dis-
cusses some successful computer vision applications.

1.2.4 Applications

Pattern recognition and machine learning are essentially application-oriented fields
with well-established validation techniques. These were used to quantitatively eval-
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uate the success of the proposed research on large-scale applications with clear
societal impact. In particular, within SIMBAD we devoted substantial effort to-
wards tackling two large-scale biomedical imaging applications. With the direct in-
volvement of leading pathologists and neuroscientists from the University Hospital
Zurich and the Verona–Udine Brain Imaging and Neuropsychology Program, we
contributed towards the concrete objective of providing effective, advanced tech-
niques to assist in the diagnosis of renal cell carcinoma, one of the ten most fre-
quent malignancies in Western countries, as well as of major psychoses such as
schizophrenia and bipolar disorders. The results of our research are summarized in
Chaps. 9 and 10, respectively. These problems are not amenable to be tackled with
traditional machine learning techniques due to the difficulty of deriving suitable
feature-based descriptions. For instance, image segmentation and shape alignment
problems often produce non-(geo)metric dissimilarity data in both application do-
mains, a feature which is indeed present in many other biomedical problems.

1.3 Conclusion and Outlook

There is an increasing awareness of the importance of similarity-based approaches
to pattern recognition and machine learning, and research in this area has gone past
the proof-of-concept phase and is now spreading rapidly. In fact, traditional feature-
based techniques are felt as inherently unable to deal satisfactorily with the com-
plexity and richness arising in many real-world situations, thereby hindering the ap-
plication of machine learning techniques to a whole variety of relevant, real-world
problems. Hence, in general, progress in similarity-based approaches will surely
be beneficial for machine learning as a whole and, consequently, for the long-term
enterprise of building intelligent systems.

We do believe that SIMBAD has contributed substantially towards the advance-
ment of the state of the art in this area. In fact, we have introduced fresh perspectives
to old problems, we have provided a thorough analysis of foundational issues, and
we have demonstrated the applicability of our methodologies in real-world applica-
tions. In conclusion, we went far beyond our original expectations. Of course, we
think there is room for improvement. In this respect, it might probably be useful
to involve people from “external” fields such as cognitive psychology and/or algo-
rithmics, thereby making the research more interdisciplinary. Also, as a matter of
future work, there are promising application areas, such as chemometrics, bioinfor-
matics, social network analysis, etc., which would certainly benefit from the work
done within the project. We do hope that the availability into a single coherent book
of the main results achieved within SIMBAD will foster further progress in this
important emerging field.

References

1. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J.: Basic local alignment search
tool. J. Mol. Biol. 215, 403–410 (1990)



10 M. Pelillo

2. Balcan, M.F., Blum, A., Srebro, N.: A theory of learning with similarity functions. Mach.
Learn. 72(1–2), 89–112 (2008)

3. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol.
Rev. 94, 115–147 (1987)

4. Bridgman, P.W.: The Logic of Modern Physics. MacMillan, New York (1927)
5. Bunke, H., Sanfeliu, A.: Syntactic and Structural Pattern Recognition: Theory and Applica-

tions. World Scientific, Singapore (1990)
6. Dubuisson, M.P., Jain, A.K.: Modified Hausdorff distance for object matching. In: Proc. Int.

Conf. Pattern Recognition (ICPR), pp. 566–568 (1994)
7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)
8. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets. Cambridge University Press, Cam-

bridge (2010)
9. Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge (1999)

10. Goldstone, R.L., Son, J.Y.S.: In: Holyoak, K., Morrison, R. (eds.) The Cambridge Handbook
of Thinking and Reasoning, pp. 13–36. Cambridge University Press, Cambridge (2005)

11. Jacobs, D.W., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances: Image
retrieval and class representation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 583–600 (2000)

12. Kleinberg, J.: Authoritative sources in a hyperlink environment. In: Proc. 9th ACMSIAM
Symposium on Discrete Algorithms, pp. 668–677 (1998)

13. Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal About the Mind.
University of Chicago Press, Chicago (1987)

14. Mayr, E.: The Growth of Biological Thought. Harvard University Press, Cambridge (1982)
15. Popper, K.R.: Conjectures and Refutations: the Growth of Scientific Knowledge. Routledge,

London (1963)
16. Resnik, M.D.: Mathematics as a Science of Patterns. Clarendon, Oxford (1997)
17. Rorty, R.: A world without substances and essences. In: Philosophy and Social Hope, pp. 47–

71. Penguin, London (1999)
18. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classifi-

cation in network data. AI Mag. 29(3), 93–106 (2008)
19. von Luxburg, U., Williamson, R.C., Guyon, I.: Clustering: Science or art? In: JMLR: Work-

shop and Conference Proceedings, vol. 27, pp. 65–79 (2012)
20. Watanabe, S.: Pattern Recognition: Human and Mechanical. Wiley, New York (1985)



Part I
Foundational Issues



Chapter 2
Non-Euclidean Dissimilarities:
Causes, Embedding and Informativeness

Robert P.W. Duin, Elżbieta Pękalska, and Marco Loog

Abstract In many pattern recognition applications, object structure is essential for
the discrimination purpose. In such cases, researchers often use recognition schemes
based on template matching which lead to the design of non-Euclidean dissimilarity
measures. A vector space derived from the embedding of the dissimilarities is de-
sirable in order to use general classifiers. An isometric embedding of the symmetric
non-Euclidean dissimilarities results in a pseudo-Euclidean space. More and better
tools are available for the Euclidean spaces but they are not fully consistent with the
given dissimilarities.

In this chapter, first a review is given of the various embedding procedures for the
pairwise dissimilarity data. Next the causes are analyzed for the existence of non-
Euclidean dissimilarity measures. Various ways are discussed in which the measures
are converted into Euclidean ones. The purpose is to investigate whether the original
non-Euclidean measures are informative or not. A positive conclusion is derived as
examples can be constructed and found in real data for which the non-Euclidean
characteristics of the data are essential for building good classifiers. (This chapter is
based on previous publications by the authors, (Duin and Pękalska in Proc. SSPR &
SPR 2010 (LNCS), pp. 324–333, 2010 and in CIARP (LNCS), pp. 1–24, 2011; Duin
in ICEIS, pp. 15–28, 2010 and in ICPR, pp. 1–4, 2008; Duin et al. in SSPR/SPR,
pp. 551–561, 2008; Pękalska and Duin in IEEE Trans. Syst. Man Cybern., Part C,
Appl. Rev. 38(6):729–744, 2008) and contains text, figures, equations, and experi-
mental results taken from these papers.)
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2.1 Introduction

Automatic recognition systems work with objects such as images, videos, time sig-
nals, spectra, and so on. They are built in the process of learning from a set of object
examples labeled with the desired pattern classes. Two main steps can be distin-
guished in this procedure:

Representation: Individual objects are characterized by a set of suitable mathemati-
cal descriptors such as vectors, strings of symbols or graphs. A good representation
is the one in which objects can easily be related to each other in order to facilitate
the next step.

Generalization/Discrimination: The representations of the object examples should
enable the mathematical modeling of object classes or class discriminants such that
a good class estimate can be found for new, unseen and, thereby, unlabeled objects
using the same representation.

The most popular representations, next to strings and graphs, encodes objects as
vectors in Euclidean vector spaces. Instead of single vectors, also sets of vectors may
be considered for representing individual objects, as studied, e.g., in [32, 33, 46, 48].
For some applications, representations defined by strings of symbols and attributed
graphs are preferred over vectors as they model the objects more accurately and
offer more possibilities to include domain expert knowledge [6].

On the other hand, representations in Euclidean vector spaces are well suited for
generalization. Many tools are available to build (learn) models and discriminant
functions from sets of object examples (also called training sets) that may be used
to classify new objects into the right class. Traditionally, the Euclidean vector space
is defined by a set of features. These should ideally characterize the patterns well
and be relevant for class differences at the same time. Such features have to be
defined by experts exploiting their knowledge of the application.

The use of features has one important drawback. Features often represent the ob-
jects just partially because they encode their limited characteristics. Consequently,
different objects may have the same representation, i.e., the same feature vector,
when they differ by properties that are not expressed in the chosen feature set.
This results in class overlap: in some areas of the feature space, objects of differ-
ent classes are represented by the same feature vectors. Consequently, they cannot
be distinguished any longer, which leads to an intrinsic classification error, usually
called the Bayes error.

An alternative to the feature representation is the dissimilarity representation de-
fined on direct pairwise object comparisons. If the entire objects are taken into ac-
count in the comparison, then only identical objects will have a dissimilarity zero (if
the dissimilarity measure has the property of ‘identity of indiscernibles’). For such a
representation class, overlap does not exist if the objects are unambiguously labeled,
which means that there are no real world objects in the application that belong to
multiple classes.

Some dissimilarity measures used in practice do not have the property that a
zero dissimilarity can only arise for identical objects. An example is the single-
linkage distance used in clustering: the dissimilarity between two clusters is defined
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as the distance between the two most neighboring vectors. This distance measure
corresponds to defining the smallest distance between the surfaces of two real world
objects as the distance between the objects. A zero value, however, does not imply
that the objects are identical; they are just touching.

Distance measures such as the above, and many others, cannot be perfectly em-
bedded in a Euclidean space. This means that there is no set of vectors in a vector
space of any dimensionality for which the Euclidean distances between the objects
are identical to the given ones. In particular, it holds for non-metric distances, which
are just an example from a large set of non-Euclidean distance measures. As we
want to include non-metric distances (such as the single-linkage distance) we will
use the more general term of dissimilarities instead of distances. They refer to pos-
sibly improper distance measures in the mathematical sense. We will still assume
that dissimilarities are non-negative and that they have a monotonic relation with
object differences: if two given objects are made more different, their dissimilarity
increases.

Non-Euclidean symmetric dissimilarity data can be perfectly embedded into
pseudo-Euclidean spaces. A proper embedding of non-Euclidean dissimilarities and
the training of classifiers in the resulting space are, however, not straightforward.
There are computational as well as fundamental problems to be solved. The question
thereby arises whether the use of non-Euclidean dissimilarity measures is strictly
necessary. Finding the causes of such measures, see Sect. 2.2, is a first step to an-
swer this question. This will be more extensively discussed in Sect. 2.6. We will
investigate whether such measures are really informative and whether it is possi-
ble to make Euclidean corrections or approximations by which no information is
lost.

Two main vectorial representations of the dissimilarity data, the dissimilarity
space and the pseudo-Euclidean embedded space, are presented in Sect. 2.3. Sec-
tion 2.4 discusses classifiers which can be trained in such spaces. Transformations
which make the dissimilarity data Euclidean are briefly presented in Sect. 2.5. Next,
numerous examples of artificial and real dissimilarity data are collected in Sect. 2.7.
Oftentimes, they illustrate that linear classifiers in the dissimilarity-derived vector
spaces are much more advantageous than the traditional 1-NN rule. Finally, we sum-
marize and discuss our findings in Sect. 2.8.

The issue of informativeness of the non-Euclidean measures is the main topic of
this chapter. We will present artificial and real world examples for which the use
of such measures is really informative. We will, however, also make clear that for
any given classifier defined in a non-Euclidean space an equivalent classifier in a
Euclidean space can be constructed. It is a challenge to do this such that the training
of good classifiers in this Euclidean space is feasible. In addition, we will argue that
the dissimilarity space as proposed by the authors [37, 55] is a Euclidean space that
preserves all non-Euclidean information and enables the design of well performing
classifiers.
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2.2 Causes of Non-Euclidean Dissimilarities

In this section, we shortly explain why non-Euclidean dissimilarities frequently
arise in the applications. This results from the analysis of a set of real world objects.
Let D be an N ×N dissimilarity matrix describing a set of pairwise dissimilarities
between N objects. D is Euclidean if it can be perfectly embedded into a Euclidean
space. This means that there exists a Euclidean vector space with N vectors for
which all Euclidean distances are identical to the given ones.

There are N2 free parameters if we want to position N vectors in an N -dimen-
sional space. The dissimilarity matrix D has also N2 values. D should be symmetric
because the Euclidean distance is. Still, there might be no solution possible as the
relation between vector coordinates and Euclidean distances is nonlinear. More on
the embedding procedures is discussed in Sect. 2.3. At this moment, we need to
remember that the matrix D is Euclidean only if the corresponding vector space
exists.

First, it should be emphasized how common non-Euclidean measures are. An
extensive overview of such measures is given in [55], but we have often encountered
that this fact is not fully recognized. Most researchers wrongly assume that non-
Euclidean distances are equivalent to non-metric ones. There are, however, many
metric but non-Euclidean distances, such as the city-block or �1-norm.

Almost all probabilistic distance measures are non-Euclidean by nature. This im-
plies that by dealing with object invariants, the dissimilarity matrix derived from the
overlap between the probability density functions corresponding to the given ob-
jects is non-Euclidean. Also the Mahalanobis class distance as well as the related
Fisher criterion is non-Euclidean. Consequently, many non-Euclidean distance mea-
sures are used in cluster analysis and in the analysis of spectra in chemometrics and
hyperspectral image analysis as spectra can be considered as one-dimensional dis-
tributions.

Secondly, what is often overlooked is the following fact. One may compare pairs
of real world objects by a (weighted) Euclidean distance, yet the complete set of N
objects giving rise to an N ×N dissimilarity matrix D is non-Euclidean. In short,
this is caused by the fact that different parts or characteristics of objects are used
per pair to define the object differences. Even if the dissimilarity is defined by the
weighted sum of differences, as long as there is no single basis of reference for the
comparison of all pairs, the resulting dissimilarity matrix D will be non-Euclidean.
These types of measures often result from matching procedures which minimize
the cost or path of transformation between two objects. Fundamental aspects of this
important issue are extensively discussed in Sect. 2.2.2.3.

In shape recognition, various dissimilarity measures are based on the weighted
edit distance, on variants of the Hausdorff distance or on nonlinear morphing. Usual
parameters are optimized within an application w.r.t. the performance based on tem-
plate matching and other nearest neighbor classifiers [14]. Almost all have non-
Euclidean behavior and some are even non-metric [14].

In the design and optimization of the dissimilarity measures for template match-
ing, their Euclidean behavior is not an issue. With the popularity of support vector
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machines (SVMs), it has become important to design kernels (similarities) which
fulfill the Mercer conditions [12]. This is equivalent to a possibility of an isomet-
ric Euclidean embedding of such a kernel (or dissimilarities). Next sections discuss
reasons that give rise to violations of these conditions leading to non-Euclidean dis-
similarities or indefinite kernels.

2.2.1 Non-intrinsic Non-Euclidean Dissimilarities

Below we identify some non-intrinsic causes that give rise to non-Euclidean dis-
similarities. In such cases, it is not the dissimilarity measure itself, but the way it is
computed or applied that causes the non-Euclidean behavior.

2.2.1.1 Numeric Inaccuracies

Non-Euclidean dissimilarities arise due to the numeric inaccuracies caused by the
use of a finite word length. If the intrinsic dimensionality of the data is lower than
the sample size, the embedding procedure that relies on an eigendecomposition of a
certain matrix, see Sect. 2.3, may lead to numerous tiny negative eigenvalues. They
should be zero in fact, but become nonzero due to numerical problems. It is thereby
advisable to neglect dimensions (features) that correspond to very small positive and
negative eigenvalues.

2.2.1.2 Overestimation of Large Distances

Complicated measures are used when dissimilarities are derived from raw data
such as (objects in) images. They may define the distance between two objects as
the length of the path that transforms one object into the other. Examples are the
weighted edit distance [4] and deformable templates [31]. In the optimization pro-
cedure that minimizes the path length, the procedure may approximate the transfor-
mation costs from above. As a consequence, too large distances are found. Even if
the objects are compared by a (weighted) Euclidean distance measure, the resulting
set of dissimilarities in D will often become non-Euclidean or even non-metric.

2.2.1.3 Underestimation of Small Distances

The underestimation of small distances has the same result as the overestimation of
large distances. It may happen when the pairwise comparison of objects is based
on different properties for each pair, as it is the case, e.g., in studies on consumer
preference data. Another example is the comparison of partially occluded objects in
computer vision.
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Fig. 2.1 Vector space with
the invariant trajectories for
three objects O1, O2 and O3.
If the chosen dissimilarity
measure is defined as the
minimum distance between
these trajectories, triangle
inequality can easily be
violated, i.e., d(O1,O2)+
d(O1,O3) < d(O1,O3)

2.2.2 Intrinsic Non-Euclidean Dissimilarities

The causes discussed in the above may be judged as accidental. They result either
from computational or observational problems. If better computers and observations
were available, they would disappear. Now, we will focuss on dissimilarity measures
for which this will not happen. There are three possibilities.

2.2.2.1 Non-Euclidean Dissimilarities

As already indicated at the start of this section, arguments can be given from the
application side to use another metric than the Euclidean one. An example is the
l1-distance between energy spectra as it is related to energy differences. Although
the l2-norm is very convenient for computational reasons and it is rotation invariant
in a Euclidean space, other distance measures may naturally arise from the demands
in applications, e.g., see [47].

2.2.2.2 Invariants

A fundamental reason behind non-Euclidean dissimilarities is related to the occur-
rence of invariants. Frequently, one is not interested in the dissimilarity between
given objects A and B , but in the dissimilarity between their equivalence classes,
i.e., sets of objects A(θ) and B(θ) in which θ controls an invariant. One may define
the dissimilarity between the A and B as the minimum difference between the sets
defined by all their invariants (see Fig. 2.1 for an illustration of this idea):

d∗(A,B)=min
θA

min
θB

(
d

(
A(θA),B(θB)

))
. (2.1)

This measure is non-metric: the triangle inequality may be violated as for different
pairs of objects different values of θ are found minimizing (2.1).
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2.2.2.3 Sets of Vectors

Complicated objects such as multi-region images may be represented by sets of
vectors. Problems like this are investigated in the domain of Multi Instance Learning
(MIL) [13], or Bag-of-Words (BoW) classification [52]. Distance measures between
such sets have already been studied for a long time in cluster analysis. Many are non-
Euclidean or even non-metric, such as the single linkage distance. This measure is
defined as the distance between the two most neighboring points of the two clusters
being compared. It is non-metric. It even holds that if d(A,B)= 0, then it does not
follow that A≡ B .

For the single linkage dissimilarity measure it can be understood why the dis-
similarity space may be useful. Given a set of such dissimilarities between clouds
of vectors, it can be concluded that two clouds are similar if the two sets of dis-
similarities with all other clouds are about equal. If just their mutual dissimilarity is
(close to) zero, they may still be very different.

The problem with the single linkage dissimilarity measure between two sets of
vectors points to a more general problem in relating sets and even objects. In [33],
an attempt has been made to define a proper Mercer kernel between two sets of
vectors. Such sets are in that paper compared by the Hellinger distance derived from
the Bhattacharyya’s affinity between two pdfs pA(x) and pB(x) found for the two
vector sets A and B:

d(A,B)=
[∫ (√

pA(x)−√pB(x)
)2

]1/2

. (2.2)

The authors state that by expressing p(x) in any orthogonal basis of functions, the
resulting kernel K is automatically positive semidefinite (psd). This is only correct,
however, if all vector sets A,B, . . . to which the kernel is applied have the same
basis. If different bases are derived in a pairwise comparison of sets, the kernel may
become indefinite. This occurs if the two pdfs are estimated in a subspace defined
by a PCA computed from the objects of the two classes A and B only.

This makes clear that indefinite relations may arise in any pairwise compari-
son of real world objects if every pair of objects if first represented in some joint
space in which the dissimilarity is computed. These joint spaces may be different
for different pairs! Consequently, the total set of dissimilarities will likely have a
non-Euclidean behavior, even if each comparison relies on the Euclidean distance,
as in (2.2).

The consequence of this observation is huge for pattern recognition applications.
It implies that a representation defined by pairwise dissimilarities between objects
can only be Euclidean if a common basis between all objects, including the future
test objects, is found for the derivation of such dissimilarities. This is naturally,
by definition, the case for feature vector representations, as the joint space for all
objects is already defined by the chosen set of features. For the dissimilarity repre-
sentation, however, which has the advantage of potentially using the entire objects,
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the consequence is that no common representation basis can be found before all ob-
jects are seen. This contradicts the idea of generalization and discrimination: being
able to classify unseen objects.

We emphasize this conclusion as we judge it as very significant: Non-Euclidean
object relations naturally arise for real world object recognition as no Euclidean rep-
resentation can be defined before we have seen (or implicitly considered) all objects,
including the ones to be recognized in future. Transductive inference [49] is the so-
lution: include the objects to be classified in the definition of the representation.

2.3 Vector Spaces for the Dissimilarity Representation

The complete dissimilarity representation is defined as a square matrix with the
dissimilarities between all pairs of objects. Traditionally, in the nearest neighbor
classification scenario, just the dissimilarities between the test objects and training
objects are used. For every test object, the nearest neighbors in the set of training
objects are first found and used by the nearest neighbor rule. This procedure does
not make use of the pairwise relations between the training objects.

The following two approaches construct a new vector space on the basis of the
relations within the training set. The resulting vector space is used for training clas-
sifiers.

In the first approach, the dissimilarity matrix is considered as a set of vectors,
one for every object. They represent the objects in a vector space constructed by the
dissimilarity vectors whose coordinates are dissimilarities to the training objects.
Usually, this vector space is treated as a Euclidean space and equipped with the
standard inner product definition.

In the second approach, an attempt is made to embed the dissimilarity matrix in
a Euclidean vector space such that the distances between the extracted vectors are
equal to the given dissimilarities. This can only be realized without error, of course,
if the original set of dissimilarities is Euclidean. If this is not the case, either an
approximate procedure has to be followed or the objects should be embedded into
a non-Euclidean vector space. This is a space in which the standard inner product
definition and the related distance measure are changed, leading to indefinite inner
products and later to indefinite kernels.

It appears that an exact embedding is possible for every symmetric N ×N dis-
similarity matrix D with zero self-dissimilarity, i.e., a diagonal all of zeros. The
resulting space is the so-called pseudo-Euclidean space.

These two approaches are more formally defined below, using an already pub-
lished description [20].

2.3.1 Dissimilarity Space

Let X = {x1, . . . , xn} be a training set. Given a dissimilarity function and/or dis-
similarity data, we define a data-dependent mapping D(·,R) :X →R

k from X to
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the so-called dissimilarity space (DS) [19, 26, 43]. The k-element set R consists of
objects that are representative for the problem. This set is called the representation
set or prototype set and it may be a subset of X . In the dissimilarity space, each
dimension D(·,pi) describes a dissimilarity to a prototype pi from R.

We initially choose R := X . As a result, every object is described by an
n-dimensional dissimilarity vector D(x,X )= [d(x, x1) · · ·d(x, xn)]T . The result-
ing vector space is endowed with the traditional inner product and the Euclidean
metric.

Any dissimilarity measure ρ can be defined in the Dissimilarity Space. One of
them is the Euclidean distance:

ρDS(x, y)=
(

n∑

i=1

[
d(x, xi)− d(y, xi)

]2

)1/2

(2.3)

This is the distance computed on dissimilarity vectors defined by original dissimi-
larities. For metric dissimilarity measures ρ, it holds asymptotically that the nearest
neighbor objects are unchanged by ρDS. This is, however, not necessarily true for
finite data sets. In that case, the nearest neighbors in dissimilarity space might be
more appropriate for classifications as the distances are defined in the context of the
entire representation set.

The approaches discussed here are originally intended for dissimilarities directly
computed between objects and not resulting from feature representations. It is, how-
ever, still possible to study dissimilarity representations derived from features which
may yield interesting results [40]. In Fig. 2.2, an example is presented that compares
an optimized radial basis SVM with a Fisher linear discriminant computed in the
dissimilarity space derived from the Euclidean distances in a feature space. The ex-
ample shows a large variability of the nearest neighbor distances. As the radial basis
kernel used by SVM is constant it cannot be optimal for all regions of the feature
space.

The Fisher linear discriminant is computed in the complete dissimilarity space,
where the classes are linearly separable. Although the classifier is overtrained (the
dissimilarity space is 100-dimensional and the training set has also 100 objects) it
gives here the perfect result. It should be realized that this example is specifically
constructed to show the possibilities of the dissimilarity space.

2.3.2 Pseudo-Euclidean Space

Before explaining the relation between pseudo-Euclidean spaces and dissimilarity
representation, we start with definitions.

A Pseudo-Euclidean Space (PES) E =R
(p,q) = R

p ⊕R
q is a vector space with

a non-degenerate indefinite inner product 〈·, ·〉E such that 〈·, ·〉E is positive definite
on R

p and negative definite on R
q [24, 55]. The inner product in R

(p,q) is defined
(wrt an orthonormal basis) as 〈x,y〉E = xT Jpqy, where Jpq = [Ip×p0;0− Iq×q ]
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Fig. 2.2 A spiral example with 100 objects per class. Left column shows the complete data sets,
while the right column presents the zoom of the spiral center. 50 objects per class, systematically
sampled, are used for training. The middle row shows the training set and SVM with an optimized
radial basis function; 17 out of 100 test objects are erroneously classified. The bottom row shows
the Fisher Linear Discriminant (without regularization) computed in the dissimilarity space derived
from the Euclidean distances. All test objects are correctly classified
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and I is the identity matrix. As a result, d2
E (x,y) = (x − y)T Jpq(x − y). Obvi-

ously, a Euclidean space R
p is a special case of a pseudo-Euclidean space R

(p,0).
An infinite-dimensional extension of a PES is a Kreı̆n space. It is a vector space
K equipped with an indefinite inner product 〈·, ·〉K : K × K → R such that
K admits an orthogonal decomposition as a direct sum, K =K+ ⊕K−, where
(K+, 〈·, ·〉+) and (K−,−〈·, ·〉−) are separable Hilbert spaces with their correspond-
ing positive and negative definite inner products.

A positive definite kernel function can be interpreted as a generalized inner prod-
uct in some Hilbert space. This space becomes Euclidean when a kernel matrix is
considered. In analogy, an arbitrary symmetric kernel matrix can be interpreted as
a generalized inner product in a pseudo-Euclidean space. Such a PES is obviously
data dependent and can be retrieved via an embedding procedure. Similarly, an arbi-
trary symmetric dissimilarity matrix with zero self-dissimilarities can be interpreted
as a pseudo-Euclidean distance in a proper pseudo-Euclidean space.

Since in practice we deal with finite data, dissimilarity matrices or kernel matri-
ces can be seen as describing relations between vectors in the underlying pseudo-
Euclidean spaces. These pseudo-Euclidean spaces can be either determined via an
embedding procedure and directly used for generalization, or approached indirectly
by the operations on the given indefinite kernel. The section below explains how to
find the embedded PES.

2.3.2.1 Pseudo-Euclidean Embedded Space

A symmetric dissimilarity matrix D :=D(X ,X ) can be embedded in a Pseudo-
Euclidean Space (PES) E by an isometric mapping [24, 55]. The embedding relies
on the indefinite Gram matrix G, derived as G := − 1

2HD�2H , where D�2 = (d2
ij )

and H = I − 1
n

11T is the centering matrix. H projects the data such that X

has a zero mean vector. The eigendecomposition of G leads to G = QΛQT =
Q|Λ| 12 [Jpq;0]|Λ| 12 QT , where Λ is a diagonal matrix of eigenvalues, first decreas-
ing p positive ones, then increasing q negative ones, followed by zeros. Q is the ma-
trix of eigenvectors. Since G=XJpqX

T by definition of a Gram matrix, X ∈ Rn

is found as X =Qn|Λn| 12 , where Qn consists of n eigenvectors ranked according
to their eigenvalues Λn. Note that X has a zero mean and is uncorrelated, because
the estimated pseudo-Euclidean covariance matrix C = 1

n−1X
TXJpq = 1

n−1Λr is

diagonal. The eigenvalues λi encode variances of the extracted features in R
(p,q).

Let x,y ∈ Rn. If this space is a PES R
(p,q), p + q = n, the pseudo-Euclidean

distance is computed as:

ρPES(x,y) =
(

p∑

i=1

[xi − yi]2 −
p+q∑

i=p+1

[xi − yi]2
)1/2

=
(

n∑

i=1

δ(i,p)[xi − yi]2
)1/2

,
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Fig. 2.3 A two-dimensional data set (left) and the NEF as a function of p for various Minkowski-p
dissimilarity measures

where δ(i,p)= sign(p− i+0.5). Since the complete pseudo-Euclidean embedding
is perfect, D(x,y)= ρPES(x, y) holds.

Other distance measures may also be defined between vectors in a PES, depend-
ing on how this space is interpreted. Two obvious choices are:

ρPES+(x,y)=
(

p∑

i=1

[xi − yi]2
)1/2

, (2.4)

which neglects the dimensions corresponding to the negative contributions (derived
from negative eigenvalues in the embedding), and

ρAES(x,y)=
(

n∑

i=1

[xi − yi]2
)1/2

, (2.5)

which treats the vector space R
n as Euclidean R

p+q . This means that the negative
subspace of PES is interpreted as a Euclidean subspace (i.e., the negative signs of
eigenvalues are neglected in the embedding procedure).

To inspect the amount of non-Euclidean influence in the derived PES, we define
Negative EigenFraction (NEF) as:

NEF=
p+q∑

j=p+1

|λj |/
p+q∑

i=1

|λi | ∈ [0,1]. (2.6)

Figure 2.3 shows how NEF varies as a function of p of the Minkowski-p dissimi-
larity measure (k-dimensional spaces) for a two-dimensional example:

ρMinp (x,y)=
(

k∑

i=1

[xi − yi]p
)1/p

. (2.7)
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Fig. 2.4 The Non-Euclidean
Coefficient for various
Minkowski-p dissimilarity
measures as a function of the
dimensionality of a set of 100
points generated by a
standard Gaussian
distribution

This dissimilarity measure is Euclidean for p = 2 and metric for p > 1. The mea-
sure is non-Euclidean for all p 
= 2. The value of NEF may vary considerably with
a changing dimensionality. This phenomenon is illustrated in Fig. 2.4 for 100 points
generated by a standard Gaussian distribution for various values of p. The one-
dimensional dissimilarities obviously fit perfectly to a Euclidean space. For a high
dimensionality, the sets of dissimilarities become again better embeddable in a Eu-
clidean space.

2.3.3 Discussion on Dissimilarity-Based Vector Spaces

Now we want to make some remarks on the two procedures for deriving vector
spaces from dissimilarity matrices, as discussed in previous section.

The dissimilarity space interprets the dissimilarity vectors, defined by the dissim-
ilarities from objects to particular prototypes from the representation set, as features.
The true characteristics behind the used dissimilarity measure is not used when a
general classifier is applied in a dissimilarity space. Special classifiers are needed
to make use of that information. The good side of this ‘disadvantage’ is that the
dissimilarity space can be used for any dissimilarity representation, including ones
that are negative, asymmetric or weird, otherwise.

The embedding procedure is more restrictive. The dissimilarities are assumed
to be symmetric and become zero for identical objects. A pseudo-Euclidean space
is needed for a perfect embedding in case of non-Euclidean data sets. A pseudo-
Euclidean space is however “broader” than the original distance measure in the
sense that it allows negative square distances. Moreover, the requirements of a
proper metric or well-defined distances obeying the triangle inequality are not of
use as they do not guarantee a Euclidean embedding.

A severe drawback of both procedures is that they initially generate vector spaces
that have as many objects as dimensions. Specific classifiers or dimension reduction
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procedures are thereby needed. For the dissimilarity representation, this is more
feasible than for the feature representation: features can vary greatly in their dis-
criminative power, range, costs, or characteristics. Some features may be very good,
others might be useless, or only useful in relation with particular other features.

This is not true for dissimilarities. The initial representation is based on objects
which have similar characteristics. It is not beneficial to use two objects that are
much alike as it leads to highly correlated dissimilarity vectors. Systematic, or even
random procedures that reduce the initial representation set (in fact, prototype se-
lection) can be very effective [38] for this reason.

A relevant topic in the comparison of both procedures is the representation of
new objects in a given space derived from dissimilarities between an earlier set of
objects (“projection”). For the dissimilarity space, this is simple. It is defined by the
dissimilarities with the representation set used to define the space. A “projection”
into a pseudo-Euclidean space is not straight forward. The space itself is found by
the eigenvalue decomposition. Traditionally, new objects are projected into such a
space by determining the point with the shortest distance. For pseudo-Euclidean
spaces, however, this is not appropriate as distances can be negative. The projection
point can thereby be chosen such that it has an arbitrarily large negative distance.
The consequence is that in case new objects are considered the space has to rebuild
from the combined set of old and new objects. This is directly related to the final
observation made in Sect. 2.2.2.3 about the need to use transductive inference for
non-Euclidean data.

2.4 Classifiers

We will discuss here a few well-known classifiers and their behavior in various
spaces. This is a summary of our experiences based on numerous studies and appli-
cations. See [18, 21, 55] and their references.

In order to make a choice between the embedded pseudo-Euclidean space and the
dissimilarity space for classifier training one should take into account the essential
differences between these spaces. Pseudo-Euclidean embedding aims to preserve
the given distances, while the dissimilarity space is not concerned about it. In ad-
dition, there is a nonlinear transformation between these spaces: the dissimilarity
space can be defined by computing the distances to the prototypes in the embedded
space. As a consequence, a linear classifier in the embedded space is a nonlinear
classifier in the dissimilarity space. The reverse holds as well, but it should be kept
in mind that the dissimilarity space is more general. As it is also defined for arbi-
trary, even asymmetric, dissimilarities, classifiers will relate to possible objects that
do not exist in the embedded space.

It is outside the scope of this chapter, but the following observation might be
helpful for some readers. If the dissimilarities are not constructed by a procedure
on a structural representation of objects, but are derived as Euclidean distances in
a feature space, then the pseudo-Euclidean embedding effectively reconstructs the
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original Euclidean feature space (except for orthonormal transformations). So in
that case a linear classifier in the dissimilarity space is a nonlinear classifier in the
embedded space, which is the same nonlinear classifier in the feature space. Such a
classifier, computed in a dissimilarity space, can perform very well [17, 21].

2.4.1 Nearest Neighbor Classifier

The k-nearest neighbor (k-NN) classifier in an embedded (pseudo-)Euclidean space
is based on the distances computed in this space. By definition, these are the origi-
nal dissimilarities (provided that the test examples are embedded together with the
training objects). So without the process of embedding, this classifier can directly
be applied to a given dissimilarity matrix but is simultaneously also a classifier for
the embedded space. This is the classifier traditionally used by many researchers in
the area of structural pattern recognition. The study of the dissimilarity representa-
tion arose because this classifier did not make use of the dissimilarities between the
objects in the training set. Classification is entirely based on the dissimilarities of a
test object to the objects in the training (or representation) set only.

The k-NN rule computed in the dissimilarity space relies on a Euclidean distance
between the dissimilarity vectors, hence the nearest neighbors are determined by
using all dissimilarities of a given object to the representation objects. As explained
in Sect. 2.3.1, it is already mentioned that the distances between similar objects
are small in the two spaces for large training sets and the metric distance. So, it
is expected that learning curves are asymptotically identical. However, for small
training sets the k-NN classifier in the dissimilarity space performs usually better
than the direct k-NN rule as it uses more information.

2.4.2 Parzen Density Classifiers

The class densities computed by the Parzen kernel density procedure are based on
pairwise distance computations between objects. The applicability of this classifier
as well as its performance is thereby related to those of the k-NN rule. The major
difference is that this classifier is smoother, depending on the choice of the smooth-
ing parameter (kernel) and that its optimization involves the entire training set.

2.4.3 Normal Density Bayes Classifiers

Bayes classifiers assume that classes can be described by probability density func-
tions. The expected classification error is minimized by using class priors and the
Bayes’ rule. In case of normal density functions, either a linear classifier (Linear
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Discriminant Analysis, LDA) arises on the basis of equal class covariances, or a
quadratic classifier is obtained for the general case (Quadratic Discriminant Anal-
ysis, QDA). These two classifiers are the best possible in case of (nearly) normal
class distributions and a sufficiently large training set. As mean vectors and covari-
ance matrices can be computed in a pseudo-Euclidean space, see [24, 55], these
classifiers can be re-defined there as well if we forget the starting point of normal
distributions. The reason is that normal distributions are not well defined in pseudo-
Euclidean spaces; it is not clear what a normal distribution is unless we refer to
associated Euclidean spaces.

In a dissimilarity space, the assumption of normal distributions often works very
well. This is due to the fact that in many cases dissimilarity measures are based on,
or related to sums of numerical differences. Under certain conditions, large sums
of random variables tend to be normally distributed. It is not perfectly true for dis-
tances as we often get Weibull [8] or χ2 distributions, but the approximations are
sufficient for a good performance of LDA and QDA. The effect is emphasized if the
classification procedure involves the computation of linear subspaces, e.g., by PCA.
Thanks to projections the aspect of normality is emphasized even more.

2.4.4 Fisher’s Linear Discriminant

In a Euclidean space, the Fisher linear discriminant (FLD) is defined as the lin-
ear classifier that maximizes the Fisher criterion, i.e., the ratio of the between-class
variance to the within-class variance. For a two-class problem, the solution is equiv-
alent to LDA (up to an added constant), even though no assumption is made about
normal distributions. Since variance and covariance matrices are well defined in
pseudo-Euclidean spaces, the Fisher criterion can be used to derive the FLD classi-
fier there. Interestingly, FLD in a pseudo-Euclidean space coincides with FLD in the
associated Euclidean space. FLD is a linear classifier in a pseudo-Euclidean space,
but can be rewritten to FLD in the associated space; see also [29, 42].

In a dissimilarity space, which is Euclidean by definition, FLD coincides with
LDA for a two-class problem. The performances of these classifiers may differ for
multi-class problems as the implementations of FLD and LDA will usually vary
then. Nevertheless, FLD performs very well. Due to the nonlinearity of the dissimi-
larity measure, FLD in a dissimilarity space corresponds to a nonlinear classifier in
the embedded pseudo-Euclidean space.

2.4.5 Logistic Classifier

The logistic classifier is based on a model of the class posterior probabilities as a
function of the distance to the classifier [1]. The distance between a vector and a
linear hyperplane in a pseudo-Euclidean space, however, is an unsuitable concept
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for classification as it can have any value in (−∞,∞) for vectors on the same side
of this hyperplane. We are not aware of a definition and an implementation of the
logistic classifier for pseudo-Euclidean spaces. Alternatively, the logistic classifier
can be constructed in the associated Euclidean space.

In a dissimilarity space, the logistic classifier performs well, although in practice
normal density based classifiers work often better. It relaxes the demands for nor-
mality as made by LDA. It is also more robust in case of high-dimensional spaces.

2.4.6 Support Vector Machine (SVM)

The linear kernel in a pseudo-Euclidean space is indefinite (non-Mercer). The
quadratic optimization procedure used to optimize a linear SVM may thereby
fail [28]. An SVM can, however, be constructed if the contribution of the positive
subspace of the Euclidean space is much stronger than that of the negative sub-
space. Mathematically, it means that the measure is only slightly deviating from
the Euclidean behavior and the solution of the SVM optimization is found in the
positive definite neighborhood. Various researchers have reported good results in
applying this classifier, e.g., see [5]. Although the solution is not guaranteed and the
algorithm (in this case LIBSVM, [10]) does not stop at the global optimum, a good
classifier can be constructed.

In case of a dissimilarity space, the (linear) SVM is particularly useful for com-
puting classifiers in the complete space in which the representations set equals the
training set, R :=X , see Sect. 2.3.1. The given training set X defines therefore a
separable problem. The SVM classifier is well defined. It does not overtrain or only
overtrains just slightly. The advantage of this procedure is that it does not demand a
reduction of the representation set. By a suitable normalization of the dissimilarity
matrix (such that the average dissimilarity is one), we found stable and good results
in many applications by setting the trade-off parameter C in the SVM procedure
[11] to C = 100. Hereby, additional cross-validation loops are avoided to optimize
this parameter. As a result, in an application one can choose to focus on optimizing
the dissimilarity measure.

2.5 Transformations

We will summarize the problem of building vector spaces from non-Euclidean dis-
similarities as discussed so far:

• Non-Euclidean dissimilarities naturally arise in comparing real world objects for
recognition purposes (see Sect. 2.2.2 and in particular Sect. 2.2.2.3).
• The pseudo-Euclidean space (see Sect. 2.3.2) offers a proper isometric embedding

for non-Euclidean data while the dissimilarity space (see Sect. 2.3.1) postulates an
Euclidean space in which just under some conditions, asymptotically, the nearest
neighbor relations may be consistent with the given ones.
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• The definition of classifiers in the pseudo-Euclidean space is not straightforward,
and many of the standard tools developed for statistical pattern recognition and
machine learning are not valid or need to be redesigned. The dissimilarity space,
however, is a standard vector representation that can be used as the traditional
feature space (see Sect. 2.4).
• The representation of new objects for classification purposes is for the pseudo-

Euclidean space not well defined and for the dissimilarity space straightforward
(see Sect. 2.3.3). The only proper existing solution for the pseudo-Euclidean
space is to include these objects in construction of the space, at the cost of re-
training the classifiers. This type of transductive learning [49] is fundamentally
related to non-Euclidean object dissimilarities (see Sect. 2.2.2.3). For the dissim-
ilarity spaces, transduction can be easily realized (at the cost of retraining the
classifiers) or skipped (at the cost of accuracy).

Given the above, the dissimilarity space is preferred in most applications. It is
easy to define and to handle. There is a one-to-one relation with the constituting
dissimilarity matrix between the given objects. Any change in this matrix is reflected
in a change of the representation. Moreover, this change is continuous. It can thereby
be stated that there is no loss of information. The pseudo-Euclidean embedding, on
the other hand, is of fundamental interest as it directly reflects the non-Euclidean
aspects of the data. It is thereby a perfect place to study the question whether the
non-Euclideaness contributes to the recognition performance or disturbs it.

One way to do this is to investigate transformations of the pseudo-Euclidean
space that shrink or remove the non-Euclideaness. We discuss shortly a number of
possibilities. See [20, 22] for more information.

2.5.1 The Dissimilarity Space (DS)

The original pseudo-Euclidean space, based on all eigenvectors, offers an isomet-
ric embedding of the given dissimilarities. So if we compute the distances in this
space between all objects, the original dissimilarity matrix is obtained and thereby
the dissimilarity space. If the pseudo-Euclidean space is first transformed, e.g., by
rescaling or by deleting some axes (eigenvectors of the original embedding), then in
a similar way a dissimilarity space can be obtained. This Euclidean space reflects all
information of such a transformed pseudo-Euclidean space. As the transformation
is continuous, then for any classifier in the pseudo-Euclidean space there exists a
classifier in the dissimilarity space that yields the same classification. The transfor-
mation, however, is nonlinear. So a linear classifier in the pseudo-Euclidean space is
nonlinear in the dissimilarity space and the other way around. Consequently, clas-
sifiers trained in these spaces before and after transformation yield different perfor-
mances.
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2.5.2 The Positive Part of the Pseudo Euclidean Space (PES+)

The most obvious correction for a pseudo-Euclidean space R
(p,q) is to neglect the

negative definite subspace. This results in a p-dimensional Euclidean space Rp with
many-to-one mappings. Consequently, it is possible that the class overlap for the
training set increases. It may, however, be worthwhile if the negative eigenvalues in
the embedding procedure are mainly the result of noise and are not informative for
the class separation. In that case, this correction may improve the classification.

2.5.3 The Negative Part of the Pseudo Euclidean Space (PES−)

In case the positive definite subspace of the pseudo-Euclidean space R
(p,q) is ne-

glected, a q-dimensional Euclidean space R
q is obtained. It is expected for real

world applications that this space will show a bad class separation. As in this space,
however, all information is collected that makes the dissimilarities non-Euclidean,
any separation will indicate that such useful information exists.

2.5.4 The Associated Euclidean Space (AES)

Since R
(p,q) is a vector space, we can equip it with the traditional inner product,

which leads to the so-called associated Euclidean space R
p+q . It means that the

vector coordinates are identical to those of PES, but now we use the norm and
distance measure that are Euclidean. This is consistent with the natural topology
of a vector space. This solution is identical to the one obtained by classical scaling
based on the magnitudes of eigenvalues [25, 55].

2.5.5 Dissimilarity Enlargement by a Constant (DEC)

Instead of modifying the embedding procedure, the dissimilarity matrix may be
adapted such that it is embeddable into a Euclidean space. A simple way to avoid
the negative eigenvalues is to increase all off-diagonal elements of the dissimilar-
ity matrix such that d2

c (xi, xj ) = d2(xi, xj ) + 2c, ∀i 
=j . The value of c is chosen
such that c ≥−λmin, where λmin is the smallest negative eigenvalue in the pseudo-
Euclidean embedding of D. As a result, all eigenvalues are increased by c [55].

In our experiments, we set c=−λmin. Since the eigenvalues reflect the variances
of the embedded data, the dimensions of the resulting Euclidean space are unevenly
scaled by

√
λi + c. Note that the dimension with the largest negative contribution

in PES has now a zero variance. In this way, dimensions related to noisy negative
eigenvalues are more pronounced [55].
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2.6 Are Non-Euclidean Dissimilarity Measures Informative?

The question about informativeness of non-Euclidean dissimilarity measures is dif-
ferent than the question whether non-Euclidean measures are better than Euclidean
ones. The later question cannot be answered, in general. After studying a set of in-
dividual problems compared for a large set of dissimilarity measures, it might be
found that for some problems the best measure is non-Euclidean. Such a result,
however, is always temporary. A new Euclidean measure that outperforms the ear-
lier ones may be invented later.

The question of informativeness, on the other hand, may be answered in an ab-
solute sense. Even if a particular measure is not the best one, its non-Euclidean con-
tribution can be judged as informative if the performance deteriorates by removing
it. Should this result also be found by a classifier constructed in the non-Euclidean
space? If a Euclidean correction can be found for an initially non-Euclidean rep-
resentation that enables the construction of a good classifier, is the non-Euclidean
dissimilarity measure then informative? We answer this question positively as any
transformation can be included in the classifier and thereby effectively a classifier
for the non-Euclidean representation has been found.

We will therefore state that the non-Euclidean character of a dissimilarity mea-
sure is non-informative if the classification result improves by removing its non-
Euclidean contribution. The answer may be classifier dependent.

The traditional way of removing the non-Euclidean contribution is by neglecting
the negative eigenvectors that define dimensions of the pseudo-Euclidean embed-
ding. This is the PES+ defined in Sect. 2.5. The PES− can be used as a check to see
whether there is any class separability in the negative part of the embedded space.
The below experiments are entirely based on the dissimilarity spaces of the various
spaces; see Sect. 2.5.

We analyze a set of public domain dissimilarity matrices used in various ap-
plications, as well as a few artificially generated ones. See Table 2.1 for some
properties: size (number of objects), (number of) classes, non-metric (fraction of
triangle violations, if zero the dataset is metric), NEF (negative eigenfraction, see
Sect. 2.3.2.1) and Rand Err (classification error by random assignment). Every dis-
similarity matrix is made symmetric by averaging with its transpose and normalized
by the average off-diagonal dissimilarity. We compute the linear SVM in the dis-
similarity spaces based on the original pseudo-Euclidean space (PES), the positive
space (PES+) and the negative space (PES−). Error estimates are based on the
leave-one-out crossvalidation. These experiments are done in a transductive way:
test objects are included in the derivation of the embedded space as well as the
dissimilarity representations.

The four Chickenpieces datasets are the averages of 11 dissimilarity matrices
derived from a weighted edit distance between blobs [4]. FlowCyto is the average
of four specific histogram dissimilarities including an automatic calibration correc-
tion. WoodyPlants is a subset of the shape dissimilarities between leaves of woody
plants [30]. We used classes with more than 50 objects. Catcortex is based on the
connection strength between 65 cortical areas of a cat [26]. Protein measures pro-
tein sequence differences using an evolutionary distance measure [27]. Balls3D is
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Table 2.1 Classification errors of the linear SVM for several representations using the leave-one-
out crossvalidation

Size Classes Non-
metric

NEF Rand
Err

PES→
DS

PES+→
DS

PES−→
DS

Chickenpieces45 446 5 0 0.156 0.791 0.022 0.132 0.175

Chickenpieces60 446 5 0 0.162 0.791 0.020 0.067 0.173

Chickenpieces90 446 5 0 0.152 0.791 0.022 0.052 0.148

Chickenpieces120 446 5 0 0.130 0.791 0.034 0.108 0.148

WoodyPlants50 791 14 5e–4 0.229 0.928 0.075 0.076 0.442

CatCortex 65 4 2e–3 0.208 0.738 0.046 0.077 0.662

Protein 213 4 0 0.001 0.718 0.005 0.000 0.634

Balls3D 200 2 3e–4 0.001 0.500 0.470 0.495 0.000

GaussM1 500 2 0 0.262 0.500 0.202 0.202 0.228

GaussM02 500 2 5e–4 0.393 0.500 0.204 0.174 0.252

CoilYork 288 4 8e–8 0.258 0.750 0.267 0.313 0.618

CoilDelftSame 288 4 0 0.027 0.750 0.413 0.417 0.597

CoilDelftDiff 288 4 8e–8 0.128 0.750 0.347 0.358 0.691

NewsGroups 600 4 4e–5 0.202 0.733 0.198 0.213 0.435

BrainMRI 124 2 5e–5 0.112 0.499 0.226 0.218 0.556

Pedestrians 689 3 4e–8 0.111 0.348 0.010 0.015 0.030

an artificial dataset based on the surface distances of randomly positioned balls of
two classes having a slightly different radius. GaussM1 and GaussM02 are based
on two 20-dimensional normally distributed sets of objects for which dissimilarities
are computed using the �p-norm (Minkowski) distances with p = 1 (metric, non-
Euclidean) and p = 0.2 (non-metric). The three Coil datasets are based on the same
sets of SIFT points in the COIL images compared by different graph distances.
BrainMRI is the average of 182 dissimilarity measures obtained from MRI brain
images. Pedestrians is a set of dissimilarities between detected objects (possibly
pedestrians) in street images of the classes ‘pedestrian’, ‘car’ and ‘other’. They are
based on cloud distances between sets of feature points derived from single images.

The table shows examples of non-Euclidean datasets for which the non-
Euclideaness is informative, as well datasets for which it is non-informative. In
all cases where the error of the PES− is significantly better than the error of random
assignment, the negative space is informative. It contributes clearly to the classifica-
tion performance based on the entire space for the Chickenpieces datasets as in these
cases the error for just the positive space, PES+ is clearly worse than for the entire
space, PES. BrainMRI is an example of a dataset for which the non-Euclideaness is
non-informative as the negative part of the space does not contribute. The artificial
dataset Balls3D has been successfully constructed such that all information is in
the negative part of the space: classes can be entirely separated by PES− and the
positive part, PES+, can be better removed.
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Fig. 2.5 (Left) Some examples of the Chickenpieces dataset. (Right) The error curves as a function
of the segment length L

2.7 Examples

In this section, we will discuss a few examples that are typical for the use of dissim-
ilarities in structural pattern recognition problems. They have been published by us
before [18] and are repeated here as they may serve well as an illustration.

2.7.1 Shapes

A simple and clear example of a structural pattern recognition problem is the recog-
nition of blobs: 2D binary structures. An example is given in Fig. 2.5. It is an object
out of the five-class Chickenpieces dataset consisting of 445 images [2]. One of
the best structural recognition procedure uses a string representation of the contour
described by a set of segments of the same length [4]. The string elements are the
consecutive angles of these segments. The weighted edit distances between all pairs
of contours are used to compute the pairwise dissimilarities. This measure is non-
Euclidean.

A (γ,L) family of problems is considered depending on the specific choice for
the cost of one editing operation γ as well as for the segment’s length L used in the
contour description. As a result, the classification performance depends on the pa-
rameters used, as shown in Fig 2.5, right. 10-fold cross-validation errors are shown
there for the 1-NN rule directly applied on the dissimilarities as well as the results
for the linear SVM computed by LIBSVM (see [10]) in the dissimilarity space. In
addition, the results are presented for the average of the 11 dissimilarity matrices.
We can observe that the linear classifier in the dissimilarity space (SVM-1) improves
the traditional 1-NN results and that combining of the dissimilarities improves the
results further on.
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2.7.2 Histograms and Spectra

Histograms and spectra offer very simple examples of data representations that are
judged by human experts on their shape. In addition, also the sampling of the bins
or wavelengths may serve as a useful vector representation for an automatic analy-
sis. This is thanks to the fact that the domain is bounded and that spectra are often
aligned. Below we give an example in which the dissimilarity representation out-
performs the straightforward vector representation based on sampling because the
first can correct for a wrong calibration (resulting in an imperfect alignment) in a
pairwise fashion. Another reason to prefer dissimilarities for histograms and spectra
over sampled vectorial data is that a dissimilarity measure encodes shape informa-
tion. See the papers by Porro [44, 45] for more details.

We will consider now a dataset of 612 FL3-A DNA flowcytometer histograms
from breast cancer tissues in a resolution of 256 bins. The initial data were ac-
quired by M. Nap and N. van Rodijnen of the Atrium Medical Center in Heerlen,
The Netherlands, during 2000–2004, using the four tubes 3–6 of a DACO Galaxy
flow cytometer. Histograms are labeled into three classes: aneuploid (335 patients),
diploid (131) and tetraploid (146). We averaged the histograms of the four tubes
thereby covering the DNA contents of about 80000 cells per patient. We removed
the first and the last bin of every histogram as here outliers are collected, thereby
obtaining 254 bins per histogram. Examples of histograms are shown in Fig. 2.6.
The following representations are used:

Histograms. Objects (patients) are represented by the normalized values of the his-
tograms (summed to one) described by a 254-dimensional vector. This represen-
tation is similar to the pixel representation used for images as it is based on just a
sampling of the measurements.

Euclidean distances. These dissimilarities are computed as the Euclidean distances
in the vector space mentioned above. Every object is represented by a vector of
distances to the objects in the training set.

Calibrated distances. As the histograms may suffer from an incorrect calibration in
the horizontal direction (DNA content), for every pairwise dissimilarity we com-
pute the multiplicative correction factor for the bin positions that minimizes their
dissimilarity. Here we used the �1-distance. This representation makes use of the
shape structure of the histograms and removes an invariant (the wrong original
calibration).

A linear SVM with a fixed trade-off parameter C is used in learning. The learning
curves for the three representations are shown in the bottom right of Fig. 2.6. They
illustrate how for this classifier the dissimilarity representation leads to better re-
sults than the vector representation based on the histogram sampling. The use of the
background knowledge in the definition of the dissimilarity measure improves the
results further on.
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Fig. 2.6 Examples of some flowcytometer histograms: aneuploid, diploid and tetraploid. Bottom
right shows the learning curves

2.7.3 Images

The recognition of objects on the basis of the entire image can only be done if these
images are aligned. Otherwise, earlier pre-procession or segmentation is necessary.
This problem is thereby a 2-dimensional extension of the histogram and spectra
recognition task.

We will show an example of digit recognition by using a part of the classic NIST
database of handwritten numbers [50] on the basis of random subsets of 500 digits
for the ten classes 0–9. The images were resampled to 32× 32 pixels in such a way
that the digits fit either horizontally or vertically. Figure 2.7 shows a few examples:
black is ‘1’ and white is ‘0’. The dataset is repeatedly split into training and test
sets and hold-out classification is applied. In every split, the ten classes are evenly
represented.

The following representations are used:

Features. We used 10 moments: the seven rotations invariant moments and the mo-
ments [00], [01], [10], measuring the total number of black pixels and the centers
of gravity in the horizontal and vertical directions.
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Fig. 2.7 (Left) Examples of the images used for the digit recognition experiment. (Right) The
learning curves

Pixels. Every digit is represented by a vector of the intensity values in 32 ∗ 32 =
1024 dimensional vector space.

Dissimilarities to the training object. Every object is represented by the Euclidean
distances to all objects in the training set.

Dissimilarities to blurred digits in the training set. As the pixels in the digit images
are spatially connected, blurring may emphasize this. In this way, the distances be-
tween slightly rotated, shifted or locally transformed but otherwise identical digits
become small.

The results are shown in Fig. 2.7 on the right. They show that the pixel representa-
tion is superior for large training sets. This is to be expected as this representation
stores asymptotically the universe of possible digits. For small training sets, a suit-
able set of features may perform better. The moments we use here are very gen-
eral features. Better ones can be found for digit description. As explained before,
a feature-based description reduces the (information on the) object: it may be insen-
sitive for some object modifications. For sufficiently large representation sets, the
dissimilarity representation may see all object differences and may thereby perform
better.

2.7.4 Sequences

The recognition of sequences of observations is in particular difficult if the se-
quences of a given class vary in length, but capture the same ‘story’ (information)
from the beginning to the end. Some may run faster, or even run faster over just a
part of the story and slow down elsewhere. A possible solution is to rely on Dynamic
Time Warping (DTW) that relates the sequences in a nonlinear way, yet obeys the
order of the events. Once two sequences are optimally aligned, the distance between
them may be computed.

An example in which the above has been applied successfully is the recognition
of 3-dimensional gestures from the sign language [35] based on an statistically op-
timized DTW procedure [3]. We took a part of a dataset of this study: the 20 classes
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Fig. 2.8 PCA and learning curves for the 20-class Delft Gesture Dataset

(signs) that were most frequently available. Each of these classes has 75 examples.
The entire dataset thereby consists of a 1500× 1500 matrix of DTW-based dissim-
ilarities. The leave-one-out 1-NN error for this dataset is 0.041, which is based on
the computation of 1499 DTW dissimilarities per test object. In Fig. 2.8, left, a scat-
terplot is shown of the first two PCA components showing that some classes can
already be distinguished with these two features (linear combinations of dissimilar-
ities).

We studied dissimilarity representations consisting of just one randomly drawn
example per class. The resulting dissimilarity space has thereby 20 dimensions.
New objects have to be compared with just these 20 objects. This space is now
filled with randomly selected training sets, containing between 2 and 50 objects per
class. Remaining objects are used for testing. Two classifiers are studied, the linear
SVM (using the LIBSVM package [10]) with a fixed trade-off parameter C = 100
(we used normalized dissimilarity matrices with the average dissimilarities set to
100) and LDA. The experiment was repeated 25 times and the results averaged
out.

The learning curves in Fig. 2.8, right, show the constant value of the 1-NN clas-
sifier performance using the dissimilarities to the single training examples per class
only, and the increasing performances of the two classifiers for a growing number of
training objects. Their average errors for 50 training objects per class is 0.07. Recall
that this is still based on the computation of just 20 DTW dissimilarities per ob-
ject as we work in the related 20-dimensional dissimilarity space. Our experiments
show that LDA reaches an error of 0.035 for a representation set of three objects
per class, i.e., 60 objects in total. Again, the training set size is 50 examples per
class, i.e., 1000 examples in total. For testing new objects, one needs to compute
a weighted sum (linear combination) of 60 dissimilarity values giving the error of
0.035 instead of computing and ordering 1500 dissimilarities to all training objects
for the 1-NN classifier leading to an error of 0.041.
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2.7.5 Graphs

Graphs1 are the main representation for describing structure in observed objects.
In order to classify new objects, the pairwise differences between graphs have to
be computed by using a graph matching technique. The resulting dissimilarities are
usually related to the cost of matching and may be used to define a dissimilarity
representation. We present here classification results obtained with a simple set of
graphs describing four objects in the Coil database [36] described by 72 images for
every object. The graphs are the Delaunay triangulations derived from corner points
found in these images; see [51]. They are unattributed. Hence, the graphs describe
the structure only. We used three dissimilarity measures:

CoilDelftSame Dissimilarities are found in a 5D space of eigenvectors derived from
the two graphs by the JoEig approach; see [34].

CoilDelftDiff Graphs are compared in the eigenspace with a dimensionality deter-
mined by the smallest graph in every pairwise comparison by the JoEig approach;
see [34].

CoilYork Dissimilarities are found by graph matching, using the algorithm of Gold
and Ranguranjan; see [23].

All dissimilarity matrices are normalized such that the average dissimilarity is 1. In
addition to the three dissimilarity datasets, we used also their averaged dissimilarity
matrix.

In a 10-fold cross-validation experiment, with R := T , we use four classifiers: the
1-NN rule on the given dissimilarities and the 1-NN rule in the dissimilarity space
(listed as 1-NND in Table 2.2), LDA on a PCA-derived subspace covering 99 %
of the variance and the linear SVM with a fixed trade-off parameter C = 1. All
experiments are repeated 25 times. Table 2.2 reports the mean classification errors
and the standard deviations of these means in between brackets. Some interesting
observations are:

• The CoilYork dissimilarity measure is apparently much better than the two
CoilDelft measures.
• The classifiers in the dissimilarity space however are not useful for the CoilYork

measure, but they are for the CoilDelft measures. Apparently, these two ways of
computing dissimilarities are essentially different.
• Averaging all three measures significantly improves the classifier performance in

the resulting dissimilarity space, even outperforming the original best CoilYork
result. It is striking that this does not hold for the 1-NN rule applied to the original
dissimilarities.

1Results presented in this section are based on a joint research with Prof. Richard Wilson, Univer-
sity of York, UK, and Dr. Wan-Jui Lee, Delft University of Technology, The Netherlands.
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Table 2.2 10-fold cross-validation errors averaged over 25 repetitions

Dataset 1-NN 1-NND PCA-LDA SVM-1

CoilDelftDiff 0.477 (0.002) 0.441 (0.003) 0.403 (0.003) 0.395 (0.003)

CoilDelftSame 0.646 (0.002) 0.406 (0.003) 0.423 (0.003) 0.387 (0.003)

CoilYork 0.252 (0.003) 0.368 (0.004) 0.310 (0.004) 0.326 (0.003)

Averaged 0.373 (0.002) 0.217 (0.003) 0.264 (0.003) 0.238 (0.002)

2.8 Discussion

The dissimilarity representation discussed in this chapter is in particular useful for
applications in structural pattern recognition as it is a way the represent objects in
their entirety. This may result in non-Euclidean or even non-metric dissimilarities.
We have presented ways how to handle them, analyzed possible causes of the non-
Euclideaness, and answered the question whether such dissimilarity measures can
be informative. Finally, we presented a set of examples on real world data.

We will repeat and emphasize some significant observations and additionally
touch a few topics that could not be treated.

In our analysis on the causes of non-Euclidean dissimilarities, we made the obser-
vation that may be caused naturally in the process of comparing real world objects
(Sect. 2.2), in particular when vector spaces are defined on just a subset of the ob-
jects of interest. This implies that objects to be classified may have to be included
in the analysis together with the training set (Sect. 2.2.2.3), so called transductive
inference or transductive learning [49].

The non-Euclideaness is a problem when it is attempted to build vector spaces
from given dissimilarity data. This bridges the fields of structural and statistical
pattern recognition [5, 16, 18, 21]. Before this problem was faced, researchers just
used dissimilarities for template matching or approximated the non-Euclidean dis-
similarities by Euclidean ones. In this chapter, examples are given that show that
the non-Euclidean part of the data (reflected in the so-called negative part of the
pseudo-Euclidean space used for an isometrical embedding the dissimilarities; see
Sect. 2.3.2.1) can be informative for the classification, see Sect. 2.6.

In Sect. 2.7, a number of real world examples has been given that show that the
dissimilarity approach can contribute significantly to the solution of pattern recogni-
tion problems. The use of the dissimilarity space is thereby advantageous. It avoids
the computational complexity of embedding dissimilarities in a pseudo-Euclidean
space as well as the Euclidean correction of this space or the problems of con-
structing classifiers. We judge the study of pseudo-Euclidean embedding especially
of interest for studying the informativeness of the non-Euclidean characteristics.
The dissimilarity space preserves all non-Euclidean information but is itself Eu-
clidean (see Sect. 2.5). There are many interesting issues related to the dissimilarity
approach discussed in this chapter. A number of them are discussed elsewhere or
hardly investigated so far. A first, obvious question is that relating all objects to all
other objects results into a computational explosion. Moreover, it may seem that
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there is not really a need to determine the dissimilarities to vary similar objects,
which will become the case for growing training sets. Prototype selection is thereby
of interest to reduce to size of the representation set. See [9] for some results and
earlier references. Directly related to this is the question whether dissimilarities are
useful for very large training sets. How to find the optimal set of prototypes for such
cases? Is it possible to guarantee some asymptotically optimal result?

At this point, it is relevant to realize the following. If objects show a zero distance
if and only if they are identical and if they are labeled unambiguously then classes
do not overlap and a zero-error classifier is possible. What is the best way to reach
this? Most classifiers assume class overlap. The study of classifiers that make use of
the fact that classes do not overlap didn’t make much progress after the definition of
the original perceptron rule. The assumption of non-overlapping classes may also
have a significant impact on the collection of training data and the definition of
classifier performance. If classes do not overlap there is no need use a statistical
approach based on density distributions. The definition of class domains may be
sufficient. Training sets should in that case be representative for the domains and not
for the distributions. This implies that it will be allowed to ask application experts
for typical examples instead of selecting an i.i.d. dataset representative for the data
distribution.

For most practical applications there will be many ways to define dissimilar-
ity measures that are zero if and only if the objects are identical. Combining such
measures usually improves the results. In particular, a straightforward averaging as
applied in Sect. 2.7 is very interesting as is does not introduce additional parameters
but just combines different types of information resulting in dissimilarity matrices
of the same size and spaces of the same dimensionality in which data is better sep-
arable.

A new and significant application domain, next to structural pattern recognition,
is the design of classification procedures for sets points in a feature space represent-
ing different parts of objects to be recognized, see Sect. 2.2.2.3. It is a generalization
of the Multi-Instance Learning (MIL) problem and the bag-of-words classifiers. The
proper design of dissimilarity measures between two sets of feature vectors repre-
senting two objects, adapted to the characteristics of the problem at hand is a fasci-
nating issue [13, 33, 48, 52].

Once the basic tools for dissimilarity based classification are established, the next
question will be to define the basic set of dissimilarity measures for various data
types like for the above mentioned sets of feature vectors. For every more general
domain of objects like images, spectra, time signals, a set of basic dissimilarity
measures should be available to define an initial solution for most problems. Like
for the areas of feature extraction and classifiers, the optimal approach should be
tuned to the application, but the availability of a set of tools and examples may
contribute to good solution of the pattern recognition problem at hand.
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39. Pękalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foun-
dations and Applications. World Scientific, Singapore (2005)
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Chapter 3
SIMBAD: Emergence of Pattern Similarity

Joachim M. Buhmann

Abstract A theory of patterns analysis has to suggest criteria how patterns in data
can be defined in a meaningful way and how they should be compared. Similarity-
based Pattern Analysis and Recognition is expected to adhere to fundamental prin-
ciples of the scientific process that are expressiveness of models and reproducibility
of their inference. Patterns are assumed to be elements of a pattern space or hypoth-
esis class and data provide “information” which of these patterns should be used to
interpret the data. The mapping between data and patterns is constructed by an infer-
ence algorithm, in particular by a cost minimization process. Fluctuations in the data
usually limit the precision that we can achieve to uniquely identify a single pattern
as interpretation of the data. We advocate an information-theoretic perspective on
pattern analysis to resolve this dilemma where the tradeoff between informativeness
of statistical inference and their stability is mirrored in the information-theoretic
optimum of high information rate and zero communication error. The inference al-
gorithm is considered as a noisy channel which naturally limits the resolution of the
pattern space given the uncertainty of the data.

3.1 Pattern Theory

Ulf Grenander has started the field of general pattern theory in the 1960s to for-
malize the notion of patterns in precise mathematical terms [12, 13]. Patterns are
perceived as regular structures behind the data sources, i.e., “the underlying deep
regular structures are descriptions of the source, which are hidden via the sensing
channel” [13, p. 2]. Grenander’s General Pattern Theory combines algebra, geome-
try and statistics to explain the nature of data sources and, thereby, depicts a gener-
ative modeling perspective on pattern analysis. This philosophy argues for a distinct
generative viewpoint to infer the probability law governing the data source.

In many real-world situations, the data are generated and represented in a high
dimensional space and the information processing task focusses on a low dimen-
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sional interpretation space. The analysis of visual data like images or videos pro-
vides a very convincing example of such a situation: intensity patterns that are
sensed by a camera are mathematically represented as points in a space with
#{intensities}#{pixels} dimensions. When segmenting an image in semantically dis-
tinct regions, the interpretation space contains #{segments}#{sites} elements where
the range of intensities significantly exceeds the number of distinct segments and
the number of sites is often much smaller than the number of pixel. The reader
should note that the space of admissible segmentations is still exponentially large
in the number of sites, but this pattern space is much smaller than the data space.
This discrepancy between the complexity of the data space and the expressiveness
of the hypothesis class hints at a common situation in inference where we acquire
too little information for estimating the data source, but we can harvest enough in-
formation from the data source to select a set of “desirable” patterns given the data.
Consequently, we adopt a discriminative view of pattern recognition: patterns that
are inferred from the data are elements of an interpretation space called hypothesis
class. These patterns constitute abstractions from the data generating mechanism
and they are more or less closely related to the data source. In image segmentation,
for example, the segments are related to object parts in a semantically meaningful
way, but they do not characterize the intensity generating mechanism of light re-
flecting surfaces. Furthermore, the hypothesis class often also reflects information
about the aim of pattern analysis, i.e., what the patterns are used for in subsequent
information processing.

Pattern analysis requires more mathematical structure than solely a hypothesis
class, i.e., a set of possible patterns. In addition to a hypothesis class, we would
like to derive a “natural” neighborhood system or topology for the pattern space.
Furthermore, most algorithmic search procedures for patterns in data require metric
information to structure the pattern space. How can we discover this topological
and metric structure of pattern spaces given data? Which mathematical theory can
serve as a prototypical framework for this scientific program? I am convinced that
the data have to tell us which patterns are indistinguishable or are very similar and
what data properties allow us to differentiate between patterns. Stochastic influences
in the data generation process often erase the distinguishability between patterns
in the hypothesis class and render them equivalent, thereby providing topological
information on the pattern space.

The inference of patterns from data is formulated as an algorithmic search for
a stable subset of the underlying hypothesis class. Stability is required to guaran-
tee that the pattern analysis process would yield an equivalent outcome for the same
structure of the data source but a different realization of the noise process. A second,
antagonistic requirement of the pattern analysis process is its specificity or informa-
tiveness: a small subset of the hypothesis class and in the noise free limit, a single
hypothesis should be selected which poses a tradeoff to the stability requirement.
Both design principles mirror the reproducibility and specificity requirement of sci-
entific reasoning [31].

Pattern analysis algorithms often follow an optimization principle. Desired pat-
terns are assigned a high score or low costs and undesirable patterns are discarded



3 SIMBAD: Emergence of Pattern Similarity 47

by assigning a low score or high costs. In the following, we adopt the terminology
of cost minimization rather than score maximization. A cost function defines a par-
tial order of hypotheses where the most preferred hypotheses are distinguished by
minimal costs. The noise in the data, however, may introduce fluctuations in the
costs, and the hypotheses with minimal costs for one realization of the data may no
longer minimize costs for a second realization of the data. Therefore, we advocate
to stabilize the set of cost-minimal hypotheses by expanding it to a set of hypotheses
with near-optimal costs, also called approximation set. The size of such an approxi-
mation set is determined by information theoretic considerations. Hypotheses in the
approximation set are considered to be statistically indistinguishable.

3.2 Statistical Learning for Pattern Analysis

3.2.1 Objects, Measurements and Hypotheses

Pattern Analysis quantifies structures in data which usually relate to a set of ob-
jects. To mathematically characterize this problem domain, we have to define
what we mean by measurements and hypotheses. Given is a set of objects O(n) =
{O1, . . . ,On} ⊂O , n ∈N. Individual objects can be characterized by measurements
either relative to an external reference frame, e.g., a coordinate system in a feature
space, or by comparison to other objects. A measurement X is defined as a mapping
of an object configuration in a measurement space, i.e.,

X :O1 × · · · ×Or→K, (O1, . . . ,Or) �→XO1,...,Or . (3.1)

The object configurations are often specified as collections of objects taken from
the same object set O1 = · · · = Or . The most often used measurement type are
feature vectors X : O→ R

d (r = 1), denoted as XO ∈ Rd . Relational data (r = 2,
O1 =O2) arise often in bioinformatics applications and in network analysis prob-
lems. They are defined as X : O × O → R, where XO1,O2 denotes a proxim-
ity/similarity value between object O1 and O2, both out of the same object space.
For dyadic data (r = 2, O1 
= O2), the first and the second object set can differ
O1 
= O2, e.g., when we analyse user× website or patient× gene data sets. More
complicated data structures than vectors or relations, e.g., three-way (r = 3) data or
(hyper)graphs, are occasionally employed in various applications.

In the following, we use the generic notation X(n) ∈X (n) for a set of measure-
ments to characterize these n objects O(n). X (n) denotes the corresponding mea-
surement space of n objects. To simplify notation we omit the superscript (n) when-
ever the dependence on problem size is clear.

A hypothesis c(·) of a pattern recognition problem is a function that assigns a set
of objects or a set of object configurations to a pattern out of a pattern space P , i.e.,

c :O1 × · · · ×Os→P, (O1, . . . ,Os) �→ c(O1, . . . ,Os). (3.2)
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The definition of hypotheses does not depend on the measurements XO1,...,Or but
potential patterns that are denoted by hypotheses are defined prior to any measure-
ments. The reader should note that the notion of a “feasible solution” in applied
mathematics and optimization often depends on constraints that are determined by
measurements contrary to the definition in (3.2). Such situations can be modeled by
unconstraint solution spaces with infinite costs for those solutions that violate the
constraints.

The hypothesis class for a pattern recognition problem is defined as the set of
functions assigning an object or an object configuration1 to an element of the pattern
space, i.e.,

C (O)= {
c(O) :O ∈O

}
. (3.3)

A well-known example of a hypothesis class are the space of partitions or classi-
fication functions c : O → {1, . . . , k} which we use in classification or clustering.
When clustering n objects into k clusters, then we restrict the space of all possible
partition functions to P(n) = {1, . . . , k}n for the object set O(n). The corresponding
hypothesis class is denoted by C (n) = C (O(n)). For parameter estimation problems
like PCA or SVD, the patterns are possible values of the orthogonal matrices and
the pattern space is a subset of the d-dimensional Euclidean rotations.

3.2.2 Empirical Risk Approximation

The hypothesis class is a set of functions that map objects or object configurations
to patterns. Pattern analysis requires to assess the quality of hypotheses c ∈ C . We
adopt a cost function (risk) viewpoint in this paper which attributes a non-negative
cost value

R : C (n) ×X (n)→R+,
(
c,X(n)

) �→R
(
c,X(n)

)
(3.4)

to each hypothesis given the measurements (R+ := [0,∞)). The non-negativity as-
sumption does not restrict the choice of cost functions since we can always replace
R̃(c,X(n)) := R(c,X(n)) − infc∈C R(c,X(n)) for effectively computable minimal
costs.

The classical theory of statistical learning [18, 19] advocates to use the empiri-
cal minimizer as the solution of the inference problem. The best empirical pattern
denoted by c⊥(X(n)) minimizes the empirical risk (ERM) of the pattern analysis
problem given the measurements X(n), i.e.,

c⊥
(
X(n)

) ∈ arg min
c∈C (n)

R
(
c,X(n)

)
. (3.5)

1In the following, we restrict hypotheses to map an object to a pattern. The more general situa-
tion of object configurations can be analyzed in an analogous way but involves a more complex
notation.
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Although hypotheses map objects into a pattern space, the empirical risk minimizer
c⊥(X(n)) depends on measurements.

The ERM theory requires for learnability of classifications that the hypothesis
class is not “too complex” (i.e., finite VC-dimension) and, as a consequence, the
ERM solution c⊥(X(n)) converges to the optimal solution which minimizes the ex-
pected risk. A corresponding criterion has been derived for regression [1].

This classical learning theory is not applicable when the size of the hypothesis
class grows exponentially with the number of objects like in clustering or other
optimization problems of combinatorial nature. Without strong regularization, we
cannot hope to identify a single solution which globally minimizes the expected
risk in the asymptotic limit n→∞. Hypothesis classes of combinatorial problems
often have an infinite VC dimension and, therefore, are not learnable in the classical
VC sense. Therefore, we replace the concept of a unique function as the solution of
a learning problem with a weighted set of functions. The challenge of learning then
amounts to determine a weight measure which is concentrated on few solutions to
achieve precision. The weights w are defined as functions which map triplets of a
hypothesis, measurements and a resolution parameter to the unit interval, i.e.,

w : C (n) ×X (n) ×R+ → [0,1], (
c,X(n), β

) �→wβ

(
c,X(n)

)
. (3.6)

The set of weights is denoted as Wβ(X(n))= {wβ(c,X(n)) : c ∈ C (n)}.
How should we choose the weights wβ(c,X(n)) that large weights are only as-

signed to functions with low costs? The partial ordering constraint

R
(
c,X(n)

)≤R
(
c̃,X(n)

) ⇔ wβ

(
c,X(n)

)≥wβ

(
c̃,X(n)

)
, (3.7)

ensures that functions with minimal costs R(c⊥,X(n)) assume the maximal weight
value. Weights are normalized to one w.l.o.g., i.e., 0 ≤ wβ(c,X(n)) ≤ 1. The non-
negativity constraint of weights allows us to write the weights as wβ(c,X(n)) =
exp(−βf (R(c,X(n)))) with the monotonic function f (x). Since f (x) amounts to a
monotone rescaling of the costs R(c,X(n)) we resort w.l.o.g. to the common choice
of Boltzmann weights with the inverse computational temperature β , i.e.,

wβ

(
c,X(n)

) = exp
(−βR(

c,X(n)
))
. (3.8)

It is worth mentioning that standard approximation sets as introduced in the theory
of (additive) approximation algorithms would correspond to binary weights

wbin
β

(
c,X(n)

)=
{

1 if R(c,X(n))≤R(c⊥,X(n))+ 1/β,

0 otherwise.
(3.9)

The weight wβ(c,X(n)) of a given hypothesis c is a random variable of the mea-
surements X(n). We consider the quantity

Zβ

(
X(n)

) :=
∑

c∈C (n)

wβ

(
c,X(n)

)
, (3.10)
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which measures the total weight of hypotheses with low costs. The weight sum is
also known as the partition function in statistical physics when we use Boltzmann
weights. In case of binary weights, Zβ(X(n)) denotes the number of solutions that
are 1/β close to the optimum.2

3.2.3 Generalization and the Two-Instance Scenario

To determine the optimal regularization of a pattern recognition method, we have to
define and estimate the generalization performance of hypotheses. We adopt the
two-instance scenario with training and test data described by respective object
sets O′, O′′ and corresponding measurements X′,X′′ ∼ P(X). Both sets of mea-
surements are drawn i.i.d. from the same probability distribution P(X). The training
and test data X′, X′′ define two optimization problems R(·,X′), R(·,X′′). The two-
instance scenario or two-sample-set scenario is widely used in statistics and statisti-
cal learning theory [18], i.e., to bound the deviation of empirical risk from expected
risk, but also for two-terminal systems in information theory [10].

Statistical pattern analysis requires that inferred patterns have to generalize from
training data to test data since noise in the data might render the ERM solution
c⊥(X′) 
= c⊥(X′′) unstable. How can we evaluate the generalization properties of so-
lutions to a pattern recognition problem? Before we can compute the costs R(·,X′′)
on test data of approximate solutions c(O′) ∈ C (O′) on training data, we have to
identify a pattern c(O′′) ∈ C (O′′) which corresponds to c(O′). A priori, it is not
clear how to compare patterns c(O′) for objects O′ with patterns c(O′′) for ob-
jects O′′. Therefore, we define a bijective mapping

ψ :O ′ →O ′′, O′ �→ψ ◦O′. (3.11)

The mapping ψ allows us to identify a pattern hypothesis for training set of objects
c′ ∈ C (O′) with a pattern hypothesis for a test set of objects c′′ ∈ C (ψ ◦O′). The
reader should note that such a mapping ψ might change the object indices. In cases
when the objects O′,O′′ are elements of an underlying metric space, a natural choice
for ψ is the nearest neighbor mapping.

The mapping ψ enables us to evaluate pattern costs on test data X′′ for patterns
c(O′) selected on the basis of training data X′. Consequently, we can determine how
many training patterns with large weights share also large weights on test data, i.e.,

ΔZβ

(
X′,X′′

) :=
∑

c∈C (O′′)
wβ

(
c,ψ ◦X′

)
wβ

(
c,X′′

)
. (3.12)

A large subset of hypotheses with jointly large weights indicates that low cost hy-
potheses on training data X′ also perform with low costs on test data. The tradeoff

2For binary weights, Zβ(X(n)) corresponds the microcanonical partition function by assuming that
almost all solutions cost close to R(c⊥,X(n))+ 1/β .
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between stability and informativeness for Boltzmann weights (3.8) is controlled by
maximizing β for given risk function R(·,X) under the constraint of large weight
overlap ΔZβ(X′,X′′)/

√
Zβ(X′)Zβ(X′′) ≈ 1. A quantitative statement how close

this ratio should approach unity requires a statistical decision theory as provided
by Shannon’s approach to information transmission.

3.2.4 Typicality of Instances

A natural question in statistical inference arises from asymptotic considerations
in the large n-limit. What is the asymptotic behavior of the log weight sum
logZβ(X(n)) dependent on the problem/instance size n? As remarked above, the
measurements X(n) of a particular pattern recognition instance depend on the
value n.

In analogy to information theory (see [9, p. 58]), we assume that the log-weight
sums converge according to an asymptotic equipartition property, i.e.,

F ′ := lim
n→∞−

logZβ(X′(n))
log |C (O′(n))| , (3.13)

F ′′ := lim
n→∞−

logZβ(X′′(n))
log |C (O′′(n))| , (3.14)

ΔF := lim
n→∞−

logΔZβ(X′(n),X′′(n))
log |C (O′′(n))| . (3.15)

These assumptions (3.13)–(3.15) require that the log-weight sums normalized by
the size of the hypothesis class converge towards deterministic limits. The quan-
tities F ′,F ′′ are known as the free energies (up to a factor β−1) for the in-
stances R(·,X′),R(·,X′′) in statistical physics. The factor log |C (n)| denotes the
problem size of the optimization problem, i.e., it is O(n) for clustering problems
with maximally kn different partitions and O(n logn) for sorting problems with
log |C (n)| = log(n!).

Definition 3.1 The set A(n)
ε of jointly typical instances w.r.t. p(X′(n),X′′(n)) is the

set of instance pairs (X′(n),X′′(n)) ∈X (n)×X (n) with empirical log partition func-
tions close to the respective free energies

A(n)
ε =

{(
X′(n),X′′(n)

) ∈X (n) ×X (n) :
∣∣∣
∣−

logZβ(X′(n))
log |C (O′(n))| −F ′

∣∣∣
∣ < ε,
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Fig. 3.1 Generation of a set of M code problems by, e.g., permuting the object indices

∣∣∣∣−
logZβ(X′′(n))
log |C (O′′(n))| −F ′′

∣∣∣∣ < ε,

∣∣∣
∣−

logΔZβ(X′(n),X′′(n))
log |C (O′′(n))| −ΔF

∣∣∣
∣ < ε

}
. (3.16)

The reader should note that the weak law of large numbers guarantees conver-
gence of empirical entropies towards their expectation values in Shannon’s informa-
tion theory. Due to the dependence of the weights wβ(c,X(n)) on the cost function
R(·,X(n)), convergence has to be required for a cost function. We also conjecture
that cost functions which violate this convergence behavior cannot be used to define
predictive models.

3.3 Coding by Approximation

In the following, we describe an information-theoretic framework to determine
which hypotheses are statistically indistinguishable due to noise in the measure-
ments, and consequently, how much we have to coarsen the hypothesis class. Shan-
non’s random coding concept suggests a model theory to determine the maximal
number of distinguishable n-bit strings in the Hamming space when the bit strings
are exposed to noise in a communication channel. We develop a generalization
of this idea for solution spaces of optimization problems. The weight distribution
wβ(c,X(n)), c ∈ C over the hypothesis class C corresponds to the subsets of bit
strings assigned to a specific codebook vector in information theory. Noise perturbs
the measurements, and therefore, the weight distribution fluctuates. An algorithm
to approximately minimize a cost function and the measurements as input to this
algorithm define a noisy channel in a hypothetical communication scenario3 with
a sender S, a receiver R, and a problem generator PG (Fig. 3.1). The problem
generator connects the sender with the receiver by posing an optimization problem
given a cost function or an algorithm. Communication takes place by approximately
optimizing a given cost function, i.e., by calculating weight sets Zβ(X′),Zβ(X′′).
This coding concept will be referred to as approximation set coding (ASC) since the

3The reader should keep in mind that we are not interested in deriving a new principle for coding,
but we exploit the communication metaphor to derive a quantitative criterion of how precisely we
can approximate the global minimizer of a cost function by an approximation set.
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weights are concentrated on approximate minimizers of the optimization problem.
The noisy channel is characterized by a pattern cost function R(c,X) which deter-
mines the channel capacity of the ASC scenario. Selection and validation of pattern
recognition models are then achieved by maximizing the channel capacity over a set
of cost functions Rθ(·,X), θ ∈Θ where θ indexes the various cost functions or pat-
tern recognition objectives. In a more general setting, an arbitrary algorithm which
does not necessarily minimize a cost function can be considered to define a weight
distribution and thereby, to play the role of a noisy channel [7] due to fluctuations
in the input or in the execution path.

3.3.1 Code Design by Transformations

Before we describe the communication protocol, we have to define the code for com-
munication. Shannon introduced his random coding theory to demonstrate the limits
of asymptotically error free communication over a noisy channel. Random coding
refers to the fact that messages in Shannon’s random coding model are selected as a
set of bit strings {ξ (j) = (ξ

(j)

1 , . . . , ξ
(j)
n ),1≤ j ≤M} with length n= | logC (O(n))|

that are drawn i.i.d. according to a probability distribution p(ξ). For sufficiently
large n, the codewords all have mutual distances which are highly concentrated
around the expected distance 2np(1− p) with the probability p = P(ξ (1) = 1). In
the asymptotic limit n→∞ for p = 1/2, the random codewords uniformly partition
the Hamming space of n-bit sequences into subsets of bit strings which can be de-
coded without errors. In an analogous way, we cover the hypothesis class by weight
distributions. To generate a uniform cover of the hypothesis class, we introduce a
transformation

τ :O→O, O �→ τ ◦O. (3.17)

The set of all possible transformations is denoted as T. Transformations that are
restricted to object sets O(n) of n objects are denoted by τ (n) ∈ T

(n). A random
cover of the hypothesis class is then generated by selecting a set of transformations
T = {τ (n)

j ∈ T(n) : 1 ≤ j ≤M,τ
(n)
j ∼ P(τ (n))} with a rate ρ := logM/ log |T(n)|.

A natural choice of the probability distribution for transformations is the uniform
distribution P(τ (n)) = 1/|T(n)|. The intuition behind the transformations is the
following:4 When a transformation is applied to an object set O then the respec-
tive hypotheses c(O) and the measurements XO are transformed accordingly. Fur-
thermore, the weights wβ(c,X) are transformed by applying τ to c and X, i.e.,
τ ◦wβ(c,X) :=wβ(τ ◦ c, τ ◦X).

4Superscript (n) dropped for readability.
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3.3.2 Typicality of Transformations

Analogous to Shannon’s random coding strategy, we generate the transformations
τ (n) ∼ P(τ (n)) in a random way. The probability distribution P(τ (n)) is defined
over the set of possible transformations T(n). An asymptotic equipartition property
depends on the entropy density of the transformation set

H (τ ) := lim
n→∞−

logP(τ (n))

log |T(n)| . (3.18)

For coding, we choose ε-typical transformations τ (n) ∈ T
(n)
ε with the typical set

T
(n)
ε being defined in the following way:

Definition 3.2 The set T
(n)
ε of typical transformations w.r.t. p(τ (n)) is the set of

transformations τ (n) ∈ T(n) with the property

T (n)
ε =

{
τ (n) ∈ T(n) :

∣∣∣∣−
logP(τ (n))

log |T(n)| −H (τ )

∣∣∣∣ < ε

}
. (3.19)

Special cases of such transformations τ̃ (n) are random permutations when opti-
mizing combinatorial optimization cost functions like clustering models or graph
cut problems. In parametric statistics, the transformations are parameter grids of,
e.g., rotations when estimating the orthogonal transformations of PCA or SVD.

3.3.3 Communication Protocol

Sender S and receiver R agree on a cost function for pattern recognition R(c,X′)
and on a mapping function ψ . The following procedure is then employed to generate
the code for the communication process:

1. Sender S and receiver R obtain data X′ from the problem generator PG.
2. S and R calculate the weight set Wβ(X′).
3. S generates a set of (random) transformations T := {τ1, . . . , τM}. The trans-

formations define a set of optimization problems R(c, τj ◦ X′),1 ≤ j ≤ M to
determine weight sets Wβ(τj ◦X′),1≤ j ≤M .

4. S sends the set of transformations T to R who determines the set of weight sets
{Wβ(τj ◦X′)}Mj=1.

The rationale behind this procedure is the following: Given the measurements X′,
the sender has randomly covered the hypothesis class C (O′) by respective weight
sets {Wβ(τj ◦ X′) : 1 ≤ j ≤M}. Communication can take place if the weight sets
are stable under the stochastic fluctuations of the measurements. The criterion for
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Fig. 3.2 Communication process: (i) the sender selects transformation τs , (ii) the problem gener-
ator draws X′′ ∼ P(X) and applies τ̃s = ψ ◦ τs ◦ ψ−1 to it, and the receiver estimates τ̂ based on
X̃= τ̃s ◦X′′

reliable communication is defined by the ability of the receiver to identify the trans-
formation which has been selected by the sender. After this setup procedure, both
sender and receiver have a list of weight sets available.

How is the communication between sender and receiver organized? During com-
munication, the following steps take place as depicted in Fig. 3.2:

1. The sender S selects a transformation τs as message and send it to the problem
generator PG.

2. PG generates a new data set X′′ and establishes correspondence ψ between X′
and X′′. PG then applies the selected transformation τs , yielding X̃ = ψ ◦ τs ◦
ψ−1 ◦X′′.

3. PG send X̃ to the receiver R without revealing τs .
4. R calculates the weight set Wβ(X̃).
5. R estimates the selected transformation τs by using the decoding rule

τ̂ ∈ arg max
τ∈T

∑

c∈C (O′′)
wβ

(
c,ψ ◦ τ ◦X′

)
wβ(c, X̃). (3.20)

In the case of discrete hypothesis classes, then the communication channel is
bounded from above by the cardinality of C (X) if two conditions hold: (i) the chan-
nel is noise free X′ ≡ X′′; (ii) the transformation set is sufficiently rich that every
hypothesis can be selected as a global minimizer of the cost function.

3.4 Error Analysis of Approximation Set Coding

To determine the optimal approximation precision for an optimization prob-
lem R(·,X), we have to derive necessary and sufficient conditions which have to
hold in order to reliably identify the transformations τs ∈ T . The parameter β ,
which controls the concentration of weights and thereby the resolution of the hy-
pothesis class, has to be adapted to the size of the transformation set |T |. Therefore,
we analyze the error probability of the decoding rule (3.20) which is associated with
a particular cost function R(·,X) and a rate ρ. The maximal value of β under the
condition of zero error communication is defined as approximation capacity since
it determines the approximation precision of the coding scheme.
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A communication error occurs if the sender selects τs and the receiver decodes
τ̂ = τj , j 
= s. To estimate the probability of this event, we introduce the weight
overlaps

ΔZβ
j :=

∑

c∈C (O′′)
wβ

(
c,ψ ◦ τj ◦X′

)
wβ(c, X̃), τj ∈T . (3.21)

The quantity ΔZβ
j measures the number of hypotheses which have jointly low

costs R(c,ψ ◦ τj ◦X′) and R(c, X̃).
The probability of a communication error is given by a substantial overlap ΔZβ

j

induced by τj ∈T \ {τs},1≤ j ≤M,j 
= s, i.e.,

P(τ̂ 
= τs | τs) = P

(
max

1≤j≤M
j 
=s

ΔZβ
j ≥ΔZβ

s
∣∣ τs

)

(a)≤
∑

1≤j≤M
j 
=s

P
(
ΔZβ

j ≥ΔZβ
s | τs

)

(b)≤
∑

1≤j≤M
j 
=s

EX′,X′′ET \{τs }
[
ΔZβ

j

ΔZβ
s

∣∣∣ τs

]

(c)= (M − 1)EX′,X′′
[
Eτj :j 
=s[ΔZβ

j |X′,X′′]
ΔZβ

s

∣
∣∣ τs

]
. (3.22)

The expectation ET \{τs } is calculated w.r.t. the set of random transformations τj ,
1 ≤ j ≤M,j 
= s where we have conditioned on the sender selected transforma-
tion τs . The joint probability distribution of all transformations P(T )=∏M

j=1 P(τj )

decomposes into product form since all transformations are randomly drawn from
the set of all possible transformations {τj }. It corresponds to the Shannon’s random
codebook design in information theory.

The inequality (a) results from the union bound, and (b) is due to Markov’s in-
equality. The identity (c) exploits the fact that the transformations τ ∈ T are i.i.d.
drawn according to the product measure P(T )=∏

j≤M P(τj ).

The expected overlap Eτj ΔZβ
j , j 
= s with any other message τj , j 
= s for

given training data X′ and test data X′′ conditioned on τs is defined by

Eτj :j 
=s
[
ΔZβ

j |X′,X′′
]

=
∑

τj∈T
P(τj )

∑

c∈C (O′′)
wβ

(
c,ψ ◦ τj ◦X′

)
wβ(c, X̃)

=
∑

τj∈T (n)
ε

P (τj )
∑

c∈C (O′′)
wβ

(
c,ψ ◦ τj ◦X′

)
wβ(c, X̃)+ term for

{
τj 
∈ T (n)

ε

}
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(d)≤
∑

c∈C (O′′)
wβ(c, X̃) exp

(− log |T|(H (τ )− ε
)) ∑

τj∈T
wβ

(
τ−1
j ◦ψ−1 ◦ c,X′

)

︸ ︷︷ ︸
≤Zβ(X′)

(e)≤ exp
(− log |T|(H (τ )− ε

))
Zβ

(
X′

)
Zβ

(
X′′

)
. (3.23)

The inequality (d) results from the typicality of P(τj ). The terms for atypical trans-

formations τj /∈ T
(n)
ε are neglected since the probability P(τj ) converges to the

entropy H (τ ). The last inequality (e) holds since the set {τ−1
j ◦ ψ−1 ◦ c : c ∈

C (O′′), τj ∈ T} ⊂ C (O′) and extending the sum
∑

τj∈T to
∑

c∈C (O′) only adds
positive terms. Effectively, the sum over a random transformation τj decouples the
two sums into a product of weight sums. The expectation over the data X′,X′′ in
Eq. (3.22) yields

EX′,X′′
Zβ(X′)Zβ(X′′)

ΔZβ
s

(f)= E(X′,X′′)I
{(

X′,X′′
) ∈A(n)

ε

}Z′βZ′′β
ΔZβ

s +EX′,X′′I
{(

X′,X′′
)
/∈A(n)

ε

}Z′βZ′′β
ΔZβ

s

= exp
(−F ′ log

∣∣C
(
O′

)∣∣− (
F ′′ −ΔF

)
log

∣∣C
(
O′′

)∣∣

+ ε
(
log |T| + log

∣∣C ′
∣∣+ 2 log

∣∣C ′′
∣∣))+ term for

{(
X′,X′′

)
/∈A(n)

ε

}
(3.24)

with the abbreviation Z′β = Zβ(X′), Z′′β = Zβ(X′′). The equality (f) for the expec-

tation EX′,X′′ is split into typical contributions (X′,X′′) ∈A(n)
ε and negligible terms

for atypical measurements (X′,X′′) /∈ A
(n)
ε . The term proportional to ε can be ne-

glected since it becomes arbitrarily small in the limit limn→∞ due to the assumed5

asymptotic equipartition property (3.13)–(3.15).
Inserting result (3.24) into equation (3.22) yields

P(τ̂ 
= τs | τs)
≤ exp

(
log |T|(ρ −H (τ )

)− log
∣∣C ′

∣∣F ′ − log
∣∣C ′′

∣∣(F ′′ −ΔF
))
, (3.25)

where we have introduced the rate definition ρ = logM/log |T|. Often, the assump-
tion |C (O′)| = |C (O′′)| = |T| is justified and the bound (3.25) simplifies to

P(τ̂ 
= τs | τs)≤ exp
(− log |C |(Iβ − ρ − 4ε)

)

with Iβ :=H (τ )+F ′ +F ′′ −ΔF . (3.26)

The quantity Iβ plays the role of the mutual information in communication. Error
free communication requires ρ < Iβ , i.e., the rate ρ should not exceed H (τ ) +
F ′ +F ′′ −ΔF .

5Please note that AEP has to be proved for a selected cost function R.
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How can this upper bound (3.26) with the quantity Iβ be interpreted? A close
look at equation (3.25) reveals that the bound depends on the term

EX′,X′′
Zβ(X′)Zβ(X′′)
|T|ΔZβ

s

= EX′,X′′ exp

(
− log

|T|
Z′β
− log

|C ′′|
Z′′β
+ log

|C ′′|
ΔZβ

s

)
. (3.27)

The term log(|T|/Z′β) counts the number of ways you can form statistically
distinguishible subset of the complete transformation class T, the second term
log(|C ′′|/Z′′β) measures the same property on the receiver side, and the last term
log(|C ′′|/Z′′β) accounts for double counting of the overlap. The three terms together
define a mutual information between the selected message τs and the reconstructed
message τ̂ .

3.5 Information-Theoretical Model Selection

The analysis of the error probability suggests the following inference principle for
controlling the appropriate regularization strengths which implements a form of
model selection: The approximation precision is controlled by β which has to be
maximized to derive more precise solutions or patterns. For small β the rate ρ will
be low since we resolve the space of solutions only in a coarse grained fashion.
For too large β the error probability does not vanish which indicates confusions
between τj , j 
= s and τs . The optimal β-value is given by the largest β or, equiva-
lently, the highest approximation precision

β� ∈ arg max
β∈[0,∞)

Iβ(τs, τ̂ ). (3.28)

Another choice to be made in modeling is to select a suitable cost function
R(·,X) for the pattern recognition problems at hand. Let us assume that a number of
cost functions {Rθ(·,X), θ ∈ Θ} are considered as candidates. The approximation
capacity Iβ(τs, τ̂ | Rθ) depends on the cost function through the Gibbs weights.
Therefore, we can rank the different models according to their Iβ(τs, τ̂ | Rθ) val-
ues. Robust and informative cost functions yield a higher approximation capacity
than simpler or more brittle models. A rational choice is to select the cost function

Rθ�(c,X) with θ� ∈ arg max
θ∈Θ Iβ(τs, τ̂ |Rθ), (3.29)

where both the random variables τs and τ̂ depend on Rθ(c,X), θ ∈Θ . The selection
rule (3.29) prefers the model which is “expressive” enough to exhibit high informa-
tion content (e.g., many clusters in clustering) and, at the same time, robustly resists
to noise in the data set. The bits or nats which are measured in the ASC communi-
cation setting are context sensitive since they refer to a hypothesis class C (X), i.e.,
how finely or coarsely hypotheses can be resolved in C .
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3.6 Minimizing Hamming Distance

To demonstrate the approach to regularized optimization we will apply it to an al-
most trivial optimization problem, i.e., minimizing the Hamming distance to a refer-
ence bit string ξ ′ = (ξ ′1, ξ ′2, . . . , ξ ′n) ∈ {−1,1}n of n bits.6 This optimization problem
describes the decoding step in classical communication theory. The cost function for
communication measures the difference between a bit string s ∈ {−1,1}n and a ref-
erence codeword ξ ′, i.e.,

R
(
s, ξ ′

)=
n∑

i=1

I
{
si 
= ξ ′i

}= 1

2

(

n−
n∑

i=1

siξ
′
i

)

. (3.30)

The variable s has to be optimized and the empirical minimum is s = ξ ′. However,
ξ ′ is exposed to channel noise and, in the spirit of approximation set coding, we
should only approximate it. The weights of approximate solutions are defined by

Wβ

(
ξ ′

)=
{
wβ

(
s, ξ ′

)= exp

(
−β

2

(
n−

∑

1≤i≤n
siξ
′
i

))}
. (3.31)

The sender uses this measurement ξ ′ and permutes the bits according to one of the
randomly selected transformations T := {τ1, . . . , τ2M }. Permutations which leave
ξ ′ invariant are excluded. This set of randomly selected transformations generates a
codebook with code vectors {τ1 ◦ ξ ′, . . . , τ2M ◦ ξ ′}.

During communication, a second bit string ξ ′′ is generated by the problem gener-
ator. The receiver then receives the message ξ̃ = τs ◦ ξ ′′ when the sender decides to
communicate with transformation τs . This process defines the approximation prob-
lem R(s, ξ̃ )= 1

2 (n− s · ξ̃ ) on the receiver side. Based on the data ξ̃ , the receiver has
to estimate the transformation τs which has been communicated by the sender.

Let us assume that the probability δ := P(ξ ′i 
= ξ ′′i ) characterizes the communica-
tion channel. Therefore, a fraction δ̂n bits are different between the first bit sequence
ξ ′ and the second bit sequence ξ ′′, i.e., δ̂ = 1

n
|{i : ξ ′i 
= ξ ′′i }|.

The weight sums Zβ(ξ), ξ ∈ {ξ ′, ξ ′′} are given by

Zβ(ξ) =
∑

s∈C (ξ)

exp

(
−β

2

(
n−

∑

i≤n
siξi

))

= exp

(
−β n

2

) ∏

i≤n

∑

si∈{−1,1}
exp

(
β

2
siξi

)

= exp

(
−nβ

2

)
2n

(
cosh

β

2

)n

. (3.32)

6W.l.o.g. we use the symmetric encoding {−1,1} rather than {0,1} to simplify the calculations.
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The number of jointly approximating bit strings is determined by

ΔZβ =
∑

s∈C (ξ ′′)
exp

(
−β

(
n− 1

2

∑

i≤n
si

(
ξ ′i + ξ ′′i

)))

= exp(−βn)
∏

i≤n

(
exp

(
β

2

(
ξ ′ + ξ ′′

))
+ exp

(
−β

2

(
ξ ′ + ξ ′′

)))

= exp(−βn)2n(coshβ)n(1−δ̂). (3.33)

The mutual information (3.27) for the special case of minimizing Hamming dis-
tances is determined by

Iβ =H (τ )+F ′ +F ′′ −ΔF

= ln 2− lim
n→∞

1

n

(
lnZβ

(
ξ ′

)+ lnZβ

(
ξ ′′

)− lnΔZβ

)

= (1− δ) ln coshβ − 2 ln cosh
β

2
= ln 2+ (1− δ) ln coshβ − ln(coshβ + 1), (3.34)

where we have estimated the size of the set of possible random transformations as
|T| = 2n. In the case of a biased sequence with π := P(ξ ′i = 1) 
= 1/2, the cardi-
nality of the transformation set is |T| = 2H (π) with the binary entropy H (π) =
−π log2 π − (1− π) log2(1− π).

The optimal value for β is determined by the maximum of Iβ , i.e.,

dIβ

dβ
= (1− δ)

sinhβ

coshβ
− sinhβ

coshβ + 1
= 0 (3.35)

⇒ coshβ = 1− δ

δ
, coshβ + 1= δ−1. (3.36)

Inserting these values into Eq. (3.34) yields

Iβ = ln 2+ (1− δ) ln
1− δ

δ
− ln

1

δ

= ln 2+ (1− δ) ln(1− δ)+ δ ln δ

= ln 2−H (δ). (3.37)

Equation (3.37) shows that optimally approximating the Hamming distance of bit
strings by approximation set coding yields the channel capacity of the binary sym-
metric channel with bit error probability δ.
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The expected generalization error, when the bit string s is drawn from the Gibbs
distribution p(s | ξ ′), is given by

Eξ ′,ξ ′′R
(
ξ ′, ξ ′′

)= Eξ ′,ξ ′′
∑

s∈C (ξ)

p
(
s | ξ ′)1

2

(

n−
n∑

i=1

siξ
′
i

)

= n

2

(
1− (1− 2δ) tanh

β

2

)

with p
(
s | ξ ′)=

∏

i≤n

exp(βsiξ ′i /2)

2 cosh(β/2)
. (3.38)

It is worth noting that the resolution of the model with minimal expected generaliza-
tion error is achieved by limβ→∞Eξ ′,ξ ′′R(ξ ′, ξ ′′) = n

2 δ, i.e., by the empirical risk
minimizer. The information theoretically optimal solution with β� = arccosh 1−δ

δ
defines a lower resolution of the hypothesis class than the optimal generalization
error would suggest with β→∞.

3.7 Discussion and Conclusion

Pattern analysis explores the questions how similar different patterns are and how
we should compare them. The underlying topology and metric of a hypothesis class
are often chosen ad hoc in applications and usually do not reflect properties of the
data source, e.g., characteristics of a noise model. Approximation set coding as a
model validation principle establishes a notion of pattern equivalence by consid-
ering them as statistically indistinguishable when the pattern differences cannot be
exploited for coding. Patterns with the same or similar weights are considered to
be equally acceptable solutions and these weights directly depend on the objective
or cost function. To justify a natural topology and metric, we have to validate the
underlying objective function for the pattern analysis problem. The reader should
realize that the assumption of an objective function assumes a lot of information
about the hypothesis class, it essentially establishes a partial order of all hypothesis.

Model selection and validation requires to estimate the generalization ability of
models from training to test data. “Good” models show a high expressiveness and
they are robust w.r.t. noise in the data. This tradeoff between informativeness and
robustness ranks different models when they are tested on new data and it quanti-
tatively describes the underfitting/overfitting dilemma. In this chapter, we have ex-
plored the idea to use approximation sets of clustering solutions as a communication
code. The approximation capacity of a cost function provides a selection criterion
which renders various models comparable in terms of their respective bit rates. The
number of reliably extractable bits of a pattern analysis cost function R(·,X) defines
a “task sensitive information measure” since it only accounts for the fluctuations in
the data X which actually have an influence on identifying an individual pattern or
a set of patterns.
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The maximum entropy inference principle suggests that we should average over
the statistically indistinguishable solutions in the optimal approximation set. Such
a model averaging strategy replaces the original cost function with the free energy
and, thereby, it defines a continuation methods with maximal robustness. Algorith-
mically, maximum entropy inference can be implemented by annealing methods
[3, 15, 17]. The urgent question in many data analysis applications, which regu-
larization term should be used without introducing an unwanted bias, is naturally
answered by the entropy. The second question, how the regularization parameter
should be selected, in answered by ASC: Choose the parameter value which maxi-
mizes the approximation capacity! The link to robust optimization is analyzed from
a theoretical computer science viewpoint in [5].

ASC for model selection can be applied to all combinatorial or continuous op-
timization problems which depend on noisy data. The noise level is characterized
by two sample sets X′,X′′. ASC has been empirically explored by model validation
problems for model based clustering [4] of high dimensional Gaussian distributed
data and of Boolean data. The well-known spin glass phase of maximum likelihood
estimations for Gaussian sources is identified as a structure with zero information
content for coding. ASC can also be used to select models for spectral clustering [8].
For a correlation matrix of gene expression data gathered from the mussel Mytilus
Galloprovincialis, pairwise clustering produced a more informative clustering than
both normalized cut and correlation clustering. In a similar spirit, Han et al. [14]
used ASC to cluster graphs and to control the selection of clusters and prototypes.
Furthermore, denoising of Boolean matrices guided by the generalization capacity
of SVD suggests a cutoff rank for the SVD spectrum [11].

One fundamental question for computer science remains unanswered so far:
How can we validate algorithms?

The reader should realize that we only require an objective R(·,X) to define a weight
distribution. Any other mechanism to arrive at such a concept of approximate so-
lutions will serve the same purpose. In a recent PhD thesis [6], Ludwig Busse has
explored approximation set coding to measure the sensitivity of sorting algorithms
to erroneous computations in pairwise comparisons of items. Various sorting algo-
rithms like MergeSort, SelectionSort, BubbleSort, InsertionSort,
QuickSort show different sensitivities to errors in the comparison subroutine.
Each algorithm is then characterized by a capacity [7] which specifies a bit rate of
extracted information per computation step, e.g., per comparison in the case of sort-
ing. The study clearly demonstrates that robust algorithms like BubbleSort invest
their excess comparisons in averaging to compensate for fluctuations. This compu-
tational redundancy increases the capacity of the algorithm and yields an improved
localization ability in the hypothesis class. Computationally efficient methods like
MergeSort perform superior in the noiseless case but sacrifice capacity for com-
putational speed in the highly noisy case.

In principle, this concept of measuring the generalization performance of algo-
rithms can be applied to algorithm evaluation and also to robust algorithm design. It
endows the space of algorithm with a topology since two algorithms are neighbors if
their approximation sets for the same input distributions share a high overlap. Such
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methods to measure the robustness of algorithms to errors in the computation or in
the input will be in high demand to program novel hardware that trades energy con-
sumption against precision of computation [16]. So far we are completely lacking
design principles for algorithm engineering which consider this tradeoff between
energy usage and correctness. We are also convinced that the information theoretic
analysis of algorithms will shed new light on the relation between computational
complexity and statistical complexity—the two faces of complexity science whose
relation is far from being understood.
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Chapter 4
On the Combination of Information-Theoretic
Kernels with Generative Embeddings

Pedro M.Q. Aguiar, Manuele Bicego, Umberto Castellani,
Mário A.T. Figueiredo, André T. Martins, Vittorio Murino,
Alessandro Perina, and Aydın Ulaş

Abstract Classical methods to obtain classifiers for structured objects (e.g., se-
quences, images) are based on generative models and adopt a classical generative
Bayesian framework. To embrace discriminative approaches (namely, support vec-
tor machines), the objects have to be mapped/embedded onto a Hilbert space; one
way that has been proposed to carry out such an embedding is via generative models
(maybe learned from data). This type of hybrid discriminative/generative approach
has been recently shown to outperform classifiers obtained directly from the gener-
ative model upon which the embedding is built.

Discriminative approaches based on generative embeddings involve two key
components: a generative model used to define the embedding; a discriminative
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learning algorithms to obtain a (maybe kernel) classifier. The literature on genera-
tive embedding is essentially focused on defining the embedding, and some standard
off-the-shelf kernel and learning algorithm are usually adopted. Recently, we have
proposed a different approach that exploits the probabilistic nature of generative
embeddings, by using information-theoretic kernels defined on probability distribu-
tions. In this chapter, we review this approach and its building blocks. We illustrate
the performance of this approach on two medical applications.

4.1 Introduction

Most approaches to the statistical learning of classifiers belong to one of two clas-
sical paradigms: generative and discriminative [2, 53], also known in the statis-
tics literature as sampling and diagnostic, respectively [3]. Generative approaches
are based on probabilistic class models and a priori class probabilities, learnt from
training data and combined via Bayes law to yield posterior probability estimates.
Discriminative methods aim at learning class boundaries or posterior class probabil-
ity estimates directly from data, without the intermediate step of learning generative
class models.

Discriminative approaches received a formidable boost with the introduction
of kernel-based methods, namely the support vector machine (SVM), in the early
1990s [4]. Kernels had a great impact in machine learning and were used for
many learning tasks besides classification, including regression, principal compo-
nent analysis, clustering, and many others [5, 6]. Their great popularity derives
mainly from two facts: (i) kernels extend linear methods (e.g., classifiers) that de-
pend only on inner products between pairs of objects to the nonlinear realm, by
replacing each inner product by a kernel evaluation; (ii) kernels considerably widen
the applicability of many learning algorithms from the classical vector spaces to a
much wider range of sets of objects (images, sequences, trees, functions, probability
distributions) [6].

In the past decade, several hybrid generative–discriminative approaches have
been proposed with the goal of combining the best of both paradigms [8, 39]. In
a nutshell, the idea is to take into account, when defining/building a kernel, any
available knowledge/model about how objects are generated. In this context, the so-
called generative embeddings (or generative score space methods) have exploited
generative models to map the objects to be classified into a feature space, where dis-
criminative techniques (e.g., kernel-based SVMs) can be used. This is particularly
well suited for dealing with non-vectorial data, since it maps objects that may have
different dimensions (e.g., strings of different lengths) into a (fixed, maybe infinite-
dimensional) Hilbert space.

The seminal work on generative embeddings is due to Jaakola and Haussler [39],
where the so-called Fisher score was introduced. In that work, the features of a given
object are the derivatives of the log-likelihood function under the assumed genera-
tive model, with respect to the model parameters, computed at that object. Other
examples of generative embeddings can be found in the work of Bicego et al. [9],



4 On the Combination of Information-Theoretic Kernels with Generative 69

Bosch et al. [12], and Perina et al. [57]. In this chapter, and following recent work
on generative embeddings, we focus on the use of the so-called pLSA (probabilistic
latent semantic analysis) as a generative model, the usefulness of which has been
recently shown in several applications [12–14, 56].

Typically, the vectorial representations resulting from the generative embedding
are used with some standard kernel-based classifier with a simple linear or radial
basis function (RBF) kernel. We have recently proposed an alternative route [15–
17]: instead of relying on standard kernels, we use the information-theoretic (IT)
kernels introduced by Martins et al. [52] as a similarity measure between objects
in the generative embedding space. The main idea is that the IT kernels are well
suited to the probabilistic nature of the generative embeddings, thus expected to
improve the performance of hybrid approaches. The kernels proposed by Martins
et al. [52] extend and subsume previous IT kernels based on Shannon’s information
theory [19, 21, 24], by adopting a non-extensive version of information theory, and
are defined on both unnormalized or normalized (i.e., probability) measures. Those
kernels were successfully used in text categorization tasks, based on multinomial
text representations (e.g., bags-of-words, character n-grams) [52].

We illustrate the performance of the proposed methodology on two different
medical applications: colon cancer detection from gene expression data and renal
cell cancer classification from tissue microarray data. The experimental results tes-
tify for the adequacy and state-of-the-art performance of the combination of IT ker-
nels with generative embeddings.

The remaining sections of this chapter are organized as follows. In Sect. 4.2,
the fundamental ideas of generative embeddings are reviewed, together with the
basics of the schemes herein investigated. Section 4.3 reviews the IT kernels to be
used in combination with the generative embeddings. The proposed way of using
the IT kernels with the generative embeddings is formalized in Sect. 4.4. Details
on applications and experimental results are reported in Sect. 4.5, and Sect. 4.6
concludes the chapter.

4.2 Generative Embeddings

The underlying motivation for pursuing principled hybrid discriminative–generative
classifiers is their clear complementarity and the fact that, asymptotically, the clas-
sification error of discriminative methods is lower than that of generative ones
[53]. On the other hand, generative methods are effective in handling scarce data
and allow for an easier handling of missing data and inclusion of prior knowl-
edge about the data. Among hybrid generative–discriminative methods, “generative
embeddings” (also called generative score spaces) have seen considerable interest
in recent years, as is testified by an increasing literature on this class of methods
[11, 12, 39, 49, 56, 71, 79].

Carrying out a generative embedding involve three steps: (i) a generative model
(or a family thereof) is adopted and learned from the data; (ii) this learned model
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is used to obtain a mapping between the set of original objects and a Hilbert space
(often called the score space); (iii) the objects in the training set are mapped into the
score space and fed into some discriminative learning technique. The key idea is to
map objects (e.g., sequences, possibly with different lengths) into fixed-dimensional
feature vectors, using a model of how these objects are generated. This opens the
door to the use of discriminative learning techniques, such as SVMs or logistic
regression [26], and has been shown to achieve higher classification accuracy than
purely generative or discriminative approaches [56].

Once a generative embedding is obtained, in order to use a kernel-based dis-
criminative learning approach, it is necessary to adopt a kernel expressing similarity
between pairs of points in the score space, maybe also derived from the generative
model. The most famous example is the Fisher kernel [39], which is simply a Rie-
mannian inner product, using the inverse Fisher matrix of the generative model as
the underlying metric. In this chapter, we will use kernels defined on the score space
that are independent of the generative model.

The following sections review the generative embeddings considered in this
chapter, and the pLSA generative model based on which they are built.

4.2.1 Probabilistic Latent Semantic Analysis (pLSA)

Consider a set of documents1 D = {d1, . . . , d|D |}, each containing an arbitrary num-
ber of words, all taken from a vocabulary of W = {w1, . . . ,w|W |}. Without loss of
generality, we may simply refer to the documents and words by their indices, thus
we simplify the notation by writing D = {1, . . . , |D |} and W = {1, . . . , |W |}. The
collection D is summarized by a bag-of-words description (i.e., ignoring word or-
der) into a |W |×|D | occurrence matrix C= [Cij , i = 1, . . . , |W |, j = 1, . . . , |D |],
where Cij is the number of occurrences of the ith word in the j th document.

Introduced by Hofmann [38], pLSA is a generative mixture model for matrix C,
where the presence of each word in each document is mediated by a latent ran-
dom variable, Z ∈Z = {1, . . . , |Z |} (known as the topic or aspect variable). More
specifically, pLSA is a mixture model for the joint distribution of the pair of random
variables D ∈D and W ∈W , where the event (W = i,D = j) means that there is
an occurrence of the ith word in the j th document; pLSA expresses the joint prob-
ability distribution P(W = i,D = j) as a mixture of distributions such that, in each
component of the mixture (i.e., for each topic), the random variables W and D are
independent (i.e., P(W = i,D = j | Z = z)= P(W = i | Z = z) P(D = j |Z = z));

1We use the term document to refer to a finite sequence of objects from some finite set, simply be-
cause LSA and pLSA have their roots in the field of natural language processing (NLP). Recently,
pLSA has been used, not only in NLP, but in other areas, such as computer vision, bioinformatics,
and image analysis [10, 12, 28]. In image analysis problems, the idea is to use pLSA to model the
occurrence of image features (visual words) [12, 28].
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formally,

P(W = i,D = j)=
|Z |∑

z=1

P(Z = z)P(W = i |Z = z)P(D = j | Z = z). (4.1)

The pLSA model is parameterized by a set of 1 + 2|Z | multinomial distribu-
tions: the distribution of the latent topic variable (P(Z = 1), . . . ,P(Z = |Z |)) ∈
Δ|Z | (where ΔK denotes the standard probability simplex in R

K ); the distribu-
tions of words (P(W = 1 | Z = z), . . . ,P(W = |W | | Z = z)) ∈ Δ|W |, for each
z ∈ {1, . . . , |Z |}; and the distributions of documents (P(D = 1 |Z = z), . . . ,P(D =
|D | | Z = z)) ∈Δ|D |, for each z ∈ {1, . . . , |Z |}. Let us write these parameters com-
pactly in a vector p= [p1, . . . , p|Z |], where pz ≡ P(Z = z) and a pair of matrices
Q and R, where Qzw ≡ P(W =w | Z = z) and Rzd ≡ P(D = d |Z = z). Of course,
both Q and R are stochastic matrices: Qzw ≥ 0, Rzw ≥ 0,

∑|W |
w=1 Qzw = 1, and

∑|D |
d=1 Rzd = 1.
Given a collection of N independent samples (w1, d1), . . . , (wN,dN) from this

generative model, it is easy to show that the log-likelihood function (based on which
the parameters p, Q, and R can be estimated) can be written as

L (p,Q,R) = logP
(
(w1, d1), . . . , (wN,dN) | p,Q,R

)

=
|W |∑

w=1

|D |∑

d=1

Cwd log
|Z |∑

z=1

pzQzwRzd, (4.2)

where Cwd is the number of times the pair (w,d) co-occurs in the set of obser-
vations. This shows that matrix C contains the sufficient statistics to estimate the
parameters of the pLSA model. Of course, maximizing (4.2) with respect to p, Q,
and R cannot be done in closed form, but can be naturally addressed via the EM
algorithm [38].

Given estimates of the model parameters, p̂, Q̂, and R̂, it is possible to estimate
quantities such as the probability that a given topic is present in a given document:

P̂(Z = z |D = d)= P̂(D = d | Z = z)̂P(Z = z)
∑|Z |

s=1 P̂(D = d |Z = s)̂P(Z = s)
= R̂zd p̂z

∑|Z |
s=1 R̂sd p̂s

. (4.3)

It is important to note that the random variable D takes values exclusively in the
list of documents in the training set. For this reason, pLSA is not a full generative
model of documents, in the sense that it has no way to assign a probability to a
previously unseen document.
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4.2.2 pLSA-Based Generative Embeddings

Generative embeddings based on latent variable models (such as pLSA) can be di-
vided into two families: those based on the model parameters and those based on
the latent/hidden variables.

4.2.2.1 Parameter-Based Generative Embeddings

In this section, we review three of the best-known generative embeddings based on
the generative model parameters

• The Fisher score (FS), or Fisher embedding, was the first proposal of a gener-
ative embedding [39]; it consists in using as feature vector the tangent of the
log-likelihood with respect to the model parameters. For the pLSA model [37],
each document d ∈ {1, . . . , |D |} is mapped into the gradient of its log-probability
w.r.t. the model parameters, which we collect into a vector θ ≡ (p,Q,R). The
log-probability of a document d ∈ {1, . . . , |D |}, denoted as l(d | θ), is obtained
by marginalization,

l(d | θ)= log
|W |∑

w=1

P(W =w,D = d | θ)= log
|W |∑

w=1

|Z |∑

z=1

pzQzwRzd . (4.4)

The pLSA-based Fisher score maps each document d into a vector of dimen-
sion |Z | − 1+ |Z |(|D | + |W | − 2) (the number of free parameters in the pLSA
model), containing the derivatives of l(d | θ) w.r.t. to the elements of θ . In this
score space, we may define the kernel simply as the Euclidean inner space. Al-
ternatively (although we do not consider that choice here), the kernel could be
defined as the Riemannian inner product, using the inverse Fisher matrix as the
metric [39].
• The TOP (Tangent Of Posterior log-odds) embedding [79], was designed for

two-class problems and is based on the gradient of the posterior log-odds ratio.
Given parameter estimates of two pLSA models for two classes, θ (−1) and θ (+1),
a given document d is mapped into the gradient of the posterior log-odds ratio
logP(C =+1 | d, θ)− logP(C =−1 | d, θ) w.r.t. θ = (θ (−1), θ (+1)).
• The LLR (log-likelihood ratio) embedding [72] is similar to the Fisher score, ex-

cept that it uses one generative model per class, rather than a single model. For-
mally, for a C-class problem, the LLR embedding maps a given document d into
the concatenation of the gradients of logP(d | θ (1)), . . . , logP(d | θ (C)) w.r.t. the
respective parameters. Consequently, the dimensionality of the LLR embedding
is C times that of the Fisher embedding.

4.2.2.2 Latent-Variable-Based Embeddings

This class of methods was proposed by Perina et al. [56] and is based on the hidden
variables of the model, rather than on its parameters.
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• The free energy score space (FESS) is based on the observation that the free en-
ergy bound on the complete log-likelihood decomposes into a sum of terms [56];
the mapping of a given document is the vector containing the terms in this de-
composition. The details of the free energy bound and the resulting embedding
are too long to include here, so the reader is referred to the work of Perina et al.
[56] for a detailed description.
• The posterior divergence (PD) embedding is a modification of the FESS embed-

ding [49], which also takes into account how much each sample affects the model.
Details on the pLSA-based PD embedding and on its relationship with FESS case
can be found in the work of Li, Lee, and Liu [49].
• The mixture of topics (MT) embedding simply maps a given document d into

the |Z |-dimensional vector containing the conditional probabilities P(Z = 1 |
D = d), . . . ,P(Z = |Z | | D = d). Recall that these probabilities (given the pa-
rameter estimates) are computed according to (4.3).

4.2.2.3 Some Remarks

One obvious question is how to select the number of topics |Z |. In our applica-
tions, we estimate this number using the well-known Bayesian information crite-
rion (BIC) [67], which penalizes the likelihood with a term that depends on the
number of model parameters. In the pLSA model, the number of free parameters
is |Z | − 1 + |Z |(|D | + |W | − 2). Thus, the number of topics is chosen as the
minimizer w.r.t. |Z | of the penalized log-likelihood:

−L (p,Q,R)+ [|Z | − 1+ |Z |(|D | + |W | − 2
)]

log(
√
N).

In our experiments, we consider two versions of the FESS and MT embeddings.
In the first version, we train one pLSA model per class and concatenate the resulting
feature vectors (we will refer these as FESS-1 and MT-1); in the second version,
we train a pLSA model for the whole data, ignoring the class label (we will refer
these as FESS-2 and MT-2). In summary, we will consider eight different generative
embeddings: MT-1, MT-2, FESS-1, FESS-2, LLR, FS, TOP, and PD.

4.3 Information-Theoretic Kernels

This section briefly reviews the information theoretic kernels proposed by Martins
et al. [52] and introduces relevant notation. These kernels will be combined with the
generative embeddings described in the previous section.

4.3.1 Positive Definite Kernels

We start by very briefly recalling the definition of positive definite (pd) kernel
(for comprehensive accounts on kernel theory and methods, see, e.g., the books by
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Schölkopf and Smola [5] and Shawe-Taylor and Cristianini [6]); in the following,
X denotes a nonempty set.

Definition 4.1 Let ϕ : X × X → R be a symmetric function (i.e., satisfying
ϕ(y, x) = ϕ(x, y), for all x, y ∈ X). ϕ is called a positive definite (pd) kernel if
and only if

n∑

i=1

n∑

j=1

cicjϕ(xi, xj )≥ 0

for all n ∈N, x1, . . . , xn ∈X and c1, . . . , cn ∈R.

The fact that pd kernels “correspond” to inner products, via embedding in a
Hilbert space (as expressed by the next theorem), is at the heart of the use of kernels
in machine learning.

Theorem 4.1 Let ϕ :X ×X→ R be a symmetric function. The function ϕ corre-
sponds to an inner product in an Hilbert space H , in the sense that

ϕ(x, y)= 〈
ψ(x),ψ(y)

〉
,

where ψ : X→H is the feature map (or Hilbert space embedding) and 〈·, ·〉 de-
notes inner product, if and only if ϕ is a pd kernel.

4.3.2 Suyari’s Entropies

As proposed by Suyari [33], both the classical Shannon–Boltzmann–Gibbs (SBG)
entropy [34] and the Tsallis entropy [35] are particular cases of functions Sq,φ that
obey a certain set of axioms. Let Δn be the standard probability simplex in R

n and
q ≥ 0 be a fixed quantity (the so-called entropic index). The function Sq,φ :Δn→R

has the form

Sq,φ(p1, . . . , pn)=
{

k
φ(q)

(1−∑n
i=1 p

q
i ) if q 
= 1,

−k∑n
i=1 pi lnpi if q = 1,

(4.5)

where φ : R+ → R is a continuous function with certain properties [33], and k > 0
is an arbitrary constant, henceforth set to k = 1. As is clear in (4.5), for q = 1, we
recover the SBG entropy, while setting φ(q)= q − 1 yields the Tsallis entropy

Sq(p1, . . . , pn)= 1

q − 1

(

1−
n∑

i=1

p
q
i

)

=−
n∑

i=1

p
q
i lnq pi, (4.6)

where

lnq(x)=
(
x1−q − 1

)
/(1− q)

is called the q-logarithm function.
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4.3.3 Jensen–Shannon (JS) Divergence

Consider two measure spaces (X ,M , ν), and (T ,J , τ ), where the second is used
to index the first. Let H denote the SBG entropy, and consider the random variables
T ∈ T and X ∈X , with densities π(t) and p(x) �

∫
T p(x | t)π(t). The Jensen

divergence [52] is defined as

Jπ(p)� Jπ
H (p)=H

(
E[p])−E

[
H(p)

]
. (4.7)

When X and T are finite with |T | = m, Jπ
H (p1, . . . , pm) is called the Jensen–

Shannon (JS) divergence of p1, . . . , pm, with weights π1, . . . , πm [36, 37]. In par-
ticular, if |T | = 2 and π = (1/2,1/2), p may be seen as a random distribution
whose value in {p1,p2} is chosen by tossing a fair coin. In this case, J (1/2,1/2) =
JS(p1,p2), where

JS(p1,p2)�H

(
p1 + p2

2

)
− H(p1)+H(p2)

2
,

which will be used in Sect. 4.3.5 to define JS kernels.

4.3.4 Jensen–Tsallis (JT) q-Differences

As is clear in (4.6), Tsallis’ entropy can be written as Sq(X) = −Eq [lnq p(X)],
where Eq denotes the unnormalized q-expectation, which, for a discrete random
variable X ∈X with probability mass function p :X →R, is defined as

Eq [X]�
∑

x∈X
xp(x)q;

(of course, E1[X] is the standard expectation).
As in Sect. 4.3.3, consider two random variables T ∈T and X ∈X , with den-

sities π(t) and p(x)�
∫
T p(x | t)π(t). The Jensen q-difference is the nonextensive

analogue of (4.7) [52],

T π
q (p)= Sq

(
E[p])−Eq

[
Sq(p)

]
.

If X and T are finite with |T | =m, T π
q (p1, . . . , pm) is called the Jensen–Tsallis

(JT) q-difference of p1, . . . , pm, with weights π1, . . . , πm. In particular, if |T | = 2
and π = (1/2,1/2), define Tq = T

1/2,1/2
q as

Tq(p1,p2)= Sq

(
p1 + p2

2

)
− Sq(p1)+ Sq(p2)

2
,

which will be used in Sect. 4.3.5 to define the so-called JT kernels. Naturally, the JT
1-difference T1 coincides with the JS divergence.
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4.3.5 Jensen–Shannon and Jensen–Tsallis Kernels

The JS and JT differences underlie the kernels proposed by Martins et al. [52], which
apply to normalized or unnormalized measures.

Definition 4.2 (Weighted Jensen–Tsallis (WJT) kernels) Let μ1 and μ2 be two (not
necessarily probability) measures; the kernel k̃q is defined as

k̃q (μ1,μ2)�
(
Sq(π)− T π

q (p1,p2)
)
(ω1 +ω2)

q,

where p1 = μ1
ω1

and p2 = μ2
ω2

are the normalized counterparts of μ1 and μ2 (which

have total masses ω1 and ω2, respectively), and π = (ω1+ω2)
−1[ω1,ω2]. The ker-

nel kq is defined as

kq(μ1,μ2)� Sq(π)− T π
q (p1,p2).

Notice that if ω1 = ω2, k̃q and kq coincide up to a scale factor. In the par-
ticular case of q = 1, k1 is the so-called Jensen–Shannon kernel, kJS(p1,p2) =
ln 2− JS(p1,p2).

The following proposition (proved by Martins et al. [52]) characterizes the posi-
tive definiteness these kernels.

Proposition 4.1 The kernel k̃q is positive definite, for q ∈ [0,2]. The kernel kq is
positive definite, for q ∈ [0,1]. The kernel kJS is pd.

4.4 Proposed Approach

The approach herein proposed consists in defining a kernel between two observed
objects x and y as the composition of a generative embedding with one of the infor-
mation theoretic kernels presented in the previous section. Formally,

k(x, y)= kq
(
φ(x),φ(y)

)
, (4.8)

where kq one of the Jensen–Tsallis kernels defined in the previous section and φ is
one of the generative embeddings defined in Sect. 4.2.

We consider two types of kernel-based classifiers: K-NN and SVM. Recall that
positive definiteness is a key condition for the applicability of a kernel in SVM
learning. Standard results from kernel theory [69, Proposition 3.22] guarantee that
the kernel k defined in (4.8) inherits the positive definiteness of kq , thus can be
safely used in SVM learning algorithms.
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Table 4.1 Summary of two
datasets and the
corresponding numbers of
“words” and “documents”

Problem # classes # documents # words

Renal cancer classification 2 474 168

Colon cancer classification 2 62 500

4.5 Experimental Evaluation

We have applied the proposed approach to two (binary) classification problems in
the medical domain: cancer detection in tissue microarray (TMA) images, and colon
cancer detection in gene expression microarray data (see Chaps. 9 and 10, respec-
tively, for more details). All the accuracies are computed using the averaged hold
out cross validation (30 repetitions). The value of parameter q of the IT kernels is
estimated using 5-fold cross validation on the training set. As a baseline, we con-
sider also the linear kernel (which is the most common choice when using generative
embeddings). As classifiers, we use support vector machines (SVM), with the well-
known parameter C adjusted by 5-fold cross validation on the training set, as well as
the K-nearest neighbors classifier, with K = 1, i.e., the nearest neighbor (NN) rule.
When possible, the classifiers have been applied also in the original domain (i.e.,
without the generative embedding)—this will be made clear in each application.

4.5.1 Application Details

We will now describe the two applications in more detail. In particular, we will
describe how the pLSA model is used in each problem, that is, what is the meaning
of terms “words” and “documents” in each particular type of data. The datasets used
in the experiments are summarized in Table 4.1.

4.5.1.1 Renal Cancer Classification via Tissue Microarray

In the first application, the aim is to analyze tissue microarray (TMA) images in
order to identify whether a given renal cell nucleus is malignant or benign. For
this purpose, the TMA images are normalized and segmented for nuclei; finally
the true labels are assigned by a pool of pathologists (see Fig. 4.1). To build the
“visual words,” features are extracted from the segmented nuclei (as in the work of
Schüffler et al. [39]) and then quantized into 168 bins. In particular, we used the
pyramid histograms of oriented gradients (PHOG, see the work of Bosch et al. [27]
for details) computed over a 2-level pyramid of patches.

In our experiments, we use a set of three patients (more details can be found in
the work of Schüffler et al. [39]), from which 474 nuclei (i.e., “documents” in pLSA
terms) were segmented; 321 (67 %) benign and 153 (33 %) malignant.
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Fig. 4.1 (Top) One quadrant
(1500× 1500 pixels) of a
TMA spot image; (Bottom)
A pathologist exhaustively
labeled all cell nuclei and
classified them into malignant
(black) and benign (red)

4.5.1.2 Colon Cancer Classification from Gene Expression Microarray Data

In the second application, the goal is to analyze gene expression microarray data in
order to distinguish between healthy people and people affected by colon cancer.
The starting point is a microarray gene expression matrix, where the element at po-
sition (i, j) represents the expression level of the ith gene in the j th subject/sample.
Topic models (of which pLSA is an instance) have been recently and successfully
applied in this context [10, 41]. Actually, it is possible to establish an analogy be-
tween a word–document pair and a gene–sample pair; it seems reasonable to inter-
pret samples as documents and genes as words. In this way, the gene expression
levels in a sample may interpreted as the word counts in a document. Consequently,
we can simply take a gene expression matrix and (of course, after a preprocessing
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Table 4.2 Accuracy rates on the renal cancer classification task; see the main text for details. The
best overall result is shown in bold; accuracies within 5 % of the best are shown in italic

Embedding Linear Jen–Shan Jen–Tsal W-Jen–Tsal

NN SVM NN SVM NN SVM NN SVM

MT-1 0.646 0.690 0.648 0.742 0.612 0.741 0.632 0.742

MT-2 0.644 0.735 0.660 0.742 0.595 0.733 0.625 0.743

FESS-1 0.643 0.709 0.643 0.706 0.619 0.688 0.630 0.702

FESS-2 0.655 0.737 0.653 0.736 0.609 0.743 0.625 0.744

LLR 0.641 0.713 0.640 0.765 0.577 0.765 0.607 0.763

FS 0.651 0.740 0.660 0.760 0.581 0.745 0.611 0.754

TOP 0.637 0.694 0.632 0.684 0.616 0.686 0.620 0.687

PD 0.973 0.976 0.987 0.986 0.425 0.984 0.652 0.987

ORIG 0.631 0.734 0.640 0.742 0.627 0.736 0.607 0.734

step, for example, to remove possibly negative numbers [10]) interpret it as a count
matrix C from which a pLSA model can be estimated.

The experiments were carried out on the dataset of Alon et al. [42], which is
composed of 40 colon tumor cases and 22 normal colon tissue samples, each char-
acterized by the expression level of 2000 genes. As is common in gene expression
microarray data analysis, a beneficial effect may be obtained by selecting a sub-
group of genes, using prior knowledge that genes varying little across samples are
less likely to be informative. Hence, we decided to perform the experiments by re-
taining the top 500 genes ranked by decreasing variance [41].

4.5.2 Results and Discussion

The results are displayed in Tables 4.2 and 4.3, where NN and SVM indicate the
results of the nearest neighbor and SVM classifiers, respectively. “Linear” denotes
the linear kernel, whereas “Jen–Shan”, “Jen–Tsal” and “W-Jen–Tsal” stands for the
Jensen–Shannon, Jensen–Tsallis and weighted Jensen–Tsallis kernels, respectively,
as described in Sect. 4.3. The acronyms of the generative embeddings follow the no-
tation described in Sect. 4.2.2: “MT-1” is the mixture topics embedding for a single
pLSA, “MT-2” is the posterior topic mixture with one pLSA per class, “FESS-1” is
the free energy score space for a single pLSA, while “FESS-2” is the FESS using
one pLSA per class, “LLR” is the log-likelihood ratio embedding, “FS” is the Fisher
space, “TOP” refers to the TOP kernel, and “PD” is the posterior divergence embed-
ding. Finally, “ORIG” refers to the results obtained without generative embedding.
The standard errors of means, in all runs, were all less than 0.0032 and 0.0179, for
the renal cancer and the colon cancer classification tasks, respectively.

From the tables different observations may be done:
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Table 4.3 Accuracy rates on the colon cancer classification task; see the main text for details. The
best overall results is shown in bold; accuracies within 5 % of the best are shown in italic

Embedding Linear Jen–Shan Jen–Tsal W-Jen–Tsal

NN SVM NN SVM NN SVM NN SVM

MT-1 0.732 0.624 0.775 0.816 0.739 0.861 0.768 0.857

MT-2 0.773 0.842 0.774 0.862 0.772 0.868 0.800 0.878

FESS-1 0.720 0.709 0.711 0.675 0.683 0.635 0.700 0.670

FESS-2 0.748 0.829 0.744 0.822 0.717 0.826 0.726 0.830

LLR 0.722 0.682 0.713 0.778 0.676 0.755 0.688 0.774

FS 0.771 0.852 0.777 0.862 0.773 0.856 0.800 0.875

TOP 0.700 0.704 0.705 0.669 0.672 0.676 0.692 0.674

PD 0.812 0.814 0.814 0.863 0.743 0.862 0.859 0.863

ORIG 0.760 0.753 0.758 0.769 0.660 0.842 0.659 0.816

Table 4.4 Comparison with
the state-of-the-art: renal
cancer classification on TMA
images

Method/Reference Protocol Accuracy

ITK on ORIG (Jen–Shan+SVM) Hold out 0.742

Lin on GE (PD+SVM) Hold out 0.976

ITK on GE (PD+W-Jen–Tsal+SVM) Hold out 0.987

[43] 10-fold CV 0.797

• In almost all the cases, the use of IT kernels with generative embeddings outper-
forms the linear kernel over the same embeddings; the difference is quite clear in
some cases.
• Using a generative embedding is almost always beneficial with respect to the use

of linear and IT kernels on the original space.
• It is clear from the tables that the best generative embedding is the very recent

posterior divergence (PD), which is outperformed only in one case by the MT
and FESS embeddings. Moreover, it seems that this generative embedding has a
slight preference to be used with the IT kernels.
• There is no significant difference among the various IT kernels, even if it may be

argued that the weighted Jensen–Tsallis seems to have a slight advantage over the
others.
• A summary of the best combination over the different schemes, together with

some state-of-the-art results, is reported in Tables 4.4 and 4.5. Even if the other
results were obtained with a different protocol, it is evident that the proposed
approach is in line with the best results reported in the literature.
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Table 4.5 Comparison with the state-of-the-art methods: colon cancer classification

Method/Reference Protocol Accuracy

ITK on ORIG (Jen–Tsal+SVM) Hold out 0.842

Lin on GE (FS+SVM) Hold out 0.852

ITK on GE (MT2+W-Jen–Tsal+SVM) Hold out 0.878

[44] 10-fold CV 0.888

[45] Leave One Out 0.887

[46] Leave One Out 0.935

[47] 0.7/0.3 CV 0.873

4.6 Conclusions

This chapter reviewed our recent proposal of combining several generative em-
beddings with information theoretical kernels, to obtain a new class of hybrid
generative/discriminative methods for learning classifiers. The generative embed-
dings herein considered are based on pLSA (probabilistic latent semantic analysis),
whereas the information theoretic kernels are based on a non-extensive version of
information theory. We have tested the proposed approach on two medical classifi-
cation problems; the reported experimental results are competitive with other state-
of-the-art methods, showing that the proposed approach is promising and deserves
further research.
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Chapter 5
Learning Similarities from Examples
Under the Evidence Accumulation
Clustering Paradigm

Ana L.N. Fred, André Lourenço, Helena Aidos, Samuel Rota Bulò,
Nicola Rebagliati, Mário A.T. Figueiredo, and Marcello Pelillo

Abstract The SIMBAD project puts forward a unified theory of data analysis un-
der a (dis)similarity based object representation framework. Our work builds on the
duality of probabilistic and similarity notions on pairwise object comparison. We ad-
dress the Evidence Accumulation Clustering paradigm as a means of learning pair-
wise similarity between objects, summarized in a co-association matrix. We show
the dual similarity/probabilistic interpretation of the co-association matrix and ex-
ploit these for coherent consensus clustering methods, either exploring embeddings
over learned pairwise similarities, in an attempt to better highlight the clustering
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structure of the data, or by means of a unified probabilistic approach leading to soft
assignments of objects to clusters.

5.1 Introduction

The goal of clustering algorithms is to organize a set of unlabeled objects into groups
or clusters such that objects within a cluster are more similar than objects in dis-
tinct clusters. Clustering techniques require the definition of a similarity measure
between patterns, geometrical or probabilistic, which is not easy to specify in the
absence of any prior knowledge about cluster shapes and structure. On the other
hand, clustering solutions unveil or induce pairwise similarity, when grouping ob-
jects in a same cluster. Given the diversity of clustering algorithms, each one with
its own approach for estimating the number of clusters, imposing a structure on the
data, and validating the resulting clusters, we are faced with a myriad of potential
similarity learners.

Clustering ensemble methods obtain consensus solutions from a set of base clus-
tering algorithms, thus constituting a step towards the goal of assumption-free clus-
tering. Several authors have shown that these methods tend to reveal more robust and
stable cluster structures than the individual clusterings in the Clustering Ensemble
(CE) [9, 10, 39].

There is a close connection between the concepts of pairwise similarity and prob-
ability in the context of unsupervised learning. It is a common assumption that, if
two objects are similar, it is very likely that they are grouped together by some
clustering algorithm; the higher the similarity, the higher the probability of co-
occurrence in a cluster. Conversely, if two objects co-occur very often in the same
cluster (high co-occurrence probability), then it is very likely that they are very
similar. This duality and correspondence between pairwise similarity and pairwise
probability within clusters forms the core idea of the clustering ensemble approach
known as Evidence Accumulation Clustering (EAC) [9, 11].

The idea of evidence accumulation clustering is to combine the results of mul-
tiple clusterings into a single data partition by viewing each clustering result as an
independent evidence of data organization. This evidence is accumulated in a co-
associations matrix, the intrinsic learned pairwise similarity, which constitutes the
core of the method. A consensus solution is obtained by applying a clustering algo-
rithm over this matrix.

In this chapter. we build on the EAC paradigm, exploring the duality of
similarity-based and probabilistic interpretations of the learned co-association ma-
trix in order to produce robust and informative consensus solutions. Interpreting
co-associations as new data representations, we propose to use embeddings over
this matrix, as an intermediate step in the consensus clustering process, in order to
extract relevant information into lower dimensional spaces. Consensus (hard) data
partitions are obtained from the later by applying hierarchical clustering algorithms.
By assuming a probabilistic re-interpretation of the co-association matrix, we then
propose a fully probabilistic formulation of the clustering problem, leading to soft
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consensus solutions. The method, that we denote as PEACE (Probabilistic Evi-
dence Accumulation for Clustering Ensembles), obtains probabilistic cluster assign-
ments through an optimization process that maximizes the likelihood of observing
the empirical co-associations given the underlying object to cluster probabilistic
assignment model.

The chapter is organized as follows. We start we a brief review of related work
on clustering ensemble methods in Sect. 5.2. The notation and basic definitions
are provided in Sect. 5.3. The EAC paradigm is reviewed in Sect. 5.4, while the
proposed methods based on embeddings and probabilistic modeling are presented
in Sects. 5.5 and 5.6, respectively. Results of the application of these methods to
real and synthetic benchmark data, in a comparative study with the baseline EAC
method, is provided in Sect. 5.7. Conclusions are drawn in a final section.

5.2 Related Work

Clustering is one of the central problems in Pattern Recognition and Machine Learn-
ing. Hundreds of clustering algorithms exist, handling differently issues such as
cluster shape, density, noise. k-means is one of the most studied and used algorithms
[17, 18, 41].

Recently, taking advantage of the diversity of clustering solutions produced by
clustering algorithms over the same dataset, an approach known as Clustering En-
semble methods, has been proposed and gained an increasing interest [2, 9, 22, 39].
Given a set of data partitions—a clustering ensemble (CE)—these methods propose
a consensus partition based on a combination strategy, having in general a leverag-
ing effect over the single data partitions in the CE.

The topic of clustering combination and consensus clustering are completing the
first decade of research.

Different paradigms were followed in the literate: (i) similarity between objects,
induced by the clustering ensemble [9, 11, 39]; (ii) similarity between partitions
[2, 7, 33, 42–44]; (iii) combining similarity between objects and partitions [8];
(iv) probabilistic approaches to cluster ensembles [42, 45, 46].

Strehl and Ghosh [39] formulated the clustering ensemble problem as an opti-
mization problem based on the maximal average mutual information between the
optimal combined clustering and the clustering ensemble exploring graph theoret-
ical concepts, and presenting three algorithms to solve it: Cluster-based Similarity
Partitioning Algorithm (CSPA), Hyper Graph Partitioning Algorithm (HGPA) and
Meta CLustering Algorithm (MCLA). CSPA, uses a graph partitioning algorithm,
METIS [20], for extracting a consensus partition from the co-association matrix.
In [33], this approach was extended to allow soft clusterings on the clustering en-
semble. Hyper Graph Partitioning Algorithm (HGPA) and Meta CLustering Algo-
rithm (MCLA) are based on hyper-graphs, where vertices correspond to objects, and
the hyperedges correspond to the clusters of the clustering ensemble. HGPA obtains
the consensus solution using an hyper-graph partitioning algorithm, HMETIS [21];
MCLA uses another heuristic which allows clustering clusters.
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Topchy et al. [43, 44] proposed the Quadratic Mutual Information Algorithm
(QMI) based on similarities between the partitions on the ensemble rather than sim-
ilarities between objects. It is based on the notion of median partition defined as the
partition that best summarizes the partitions of the ensemble and is optimized using
an algorithm based on a squared error criterion.

Ayad and Kamel [2], following [7], proposed the idea of cumulative voting as a
solution for the problem of aligning the cluster labels. Each clustering of the clus-
tering ensemble is transformed into a probabilistic representation with respect to a
common reference clustering. Three voting schemes are presented: Un-normalized
fixed-Reference Cumulative Voting (URCV), fixed-Reference Cumulative Voting
(RCV), and Adaptive Cumulative Voting (ACV).

Fern and Brodley [8] proposed the Hybrid Bipartite Graph Formulation (HBGF),
where both data points and clusters of the ensemble are modeled as vertices retain-
ing all of the information provided by the clustering ensemble, and allowing to con-
sider the similarity among data points and clusters. The partitioning of this bipartite
graph is produced using the multi-way spectral graph partitioning algorithm pro-
posed by Ng et al. [32], which seeks to optimize the normalized cut criterion [37],
or as alternative a graph partitioning algorithm, METIS [20].

In [42, 44], Topchy et al. proposed a probabilistic interpretation of the cluster-
ing combination problem, formulation the problem as a multinomial mixture model
(MM) over the labels of the clustering ensembles. In Wang et al. [45], this idea was
extended, introducing a Bayesian version of the multinomial mixture model, entitled
Bayesian cluster ensembles (BCE). Using a strategy very similar to Latent Dirichlet
Allocation (LDA) models [38], but applied to a different input space, features are
now the labels of the ensembles, the posterior distribution being approximated using
variational inference or Gibbs sampling. More recently, a nonparametric version of
BCE was proposed [46].

5.3 Notation and Definitions

Sets are denoted by uppercase calligraphic letters (e.g., O , E , . . . ) except for R and
R+ which represent the sets of real numbers and nonnegative real numbers, respec-
tively. The cardinality of a set is written as | · |. We denote vectors with lowercase
boldface letters (e.g., x, y, . . . ) and matrices with uppercase boldface letters (e.g.,
X, Y, . . . ). The ith component of a vector x is denoted as xi and the (i, j)th com-
ponent of a matrix Y is written as yij . The transposition operator is given by the
symbol �. The �p-norm of a vector x is written as ‖x‖p and we implicitly assume
a �2 (or Euclidean) norm, where p is omitted. We denote by 1n an n-dimensional
column vector of all 1’s and by e(j)n the j th column of the n-dimensional identity
matrix. The trace of matrix M ∈Rn×n is given by Tr(M)=∑n

i=1 mii .
A probability distribution over a discrete set {1, . . . ,K} is an element of the

standard simplex ΔK , which is defined as

ΔK =
{
x ∈RK+ : ‖x‖1 = 1

}
.
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The support σ(x) of a probability distribution x ∈ ΔK is the set of indices corre-
sponding to positive components of x, i.e.,

σ(x)= {
i ∈ {1, . . . ,K} : xi > 0

}
.

Random variables (r.v.) are represented by uppercase letters (e.g., X), and realiza-
tions of the later by corresponding lowercase letters. The probability on an event is
denoted as Pr(·) The expected value of a random variable X is denoted by E(X).

The entropy of a probability distribution x ∈ΔK is given by

H(x)=−
K∑

j=1

xj log(xj )

and the Kullback–Leibler divergence between two distributions x,y ∈ΔK is given
by

DKL(x ‖ y)=
K∑

j=1

xj log

(
xj

yj

)
,

where we assume log 0≡−∞ and 0 log 0≡ 0.
Let S = {s1, . . . , sn} denote a data set with n objects or samples. Let O =

{1, . . . , n} be the indices of the set of n objects, and let Ou ⊆O represent a subsam-
pling (without replacement) from O , with |Ou|< n. When objects are represented
in vector form in a d-dimensional feature space, we denote by O = [o1, . . . ,on]
the d × n matrix of object vectors, column i corresponding to the vector repre-
sentation, oi , of the ith object. An alternative to the feature representation is the
(dis)similarity representation defined on direct pairwise object comparisons. We de-
note the dissimilarity representation by a n× n matrix D, where dij = d(si, sj ) is
the dissimilarity value between samples i and j .

The goal of clustering is to organize the objects into K groups or clusters. We
distinguish between hard and soft clusterings. A hard clustering is a function pu :
Ou→ {1, . . . ,Ku} assigning a class label, out of Ku available ones, to data points
in Ou ⊆O . The result of this clustering is a data partition, written as a vector p(u) =
pu(Ou)= [p(u)

i ]i=1:n, p(u)
i = p(u)(i) ∈ {1, . . . ,Ku}, or alternatively, on cluster sets

representation: Pu = {C1,C2, . . . ,CKu}, where Cl denotes the lth cluster (the set
of object indices composing cluster l), each object belonging to only one cluster.
A soft clustering is a function su mapping each object i ∈ Ou into a probability
distribution γ

(u)
i ∈ΔKu , γ (u)

i denoting the soft assignment or degree of membership
of object i to each of the Ku clusters. The result of a soft clustering su is thus a
matrix γ (u) = [γ (u)

kj ]j=1:n
k=1:Ku

, γ (u)
kj denoting the degree of membership of object j to

cluster k in clustering u.
In this chapter, pairwise similarities are to be learnt from clustering commit-

tees. Without loss of generality, we will consider committees of hard clusterings.
We define E = {pu}Nu=1 = {P1,P2, . . . ,PN } a clustering ensemble, i.e., a set of
N clusterings (partitions) obtained by applying different algorithms (i.e., different
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parameterizations and/or initializations) on (possibly) sub-sampled versions of the
objects set.

Since each clustering in the ensemble may stem from a sub-sampled version of
the original data set O , some pairs of objects may not appear in all clusterings. Let
Ωij ⊆ {1, . . . ,N} denote the set of clustering indices where both objects i and j

have been clustered, i.e., (u ∈Ωij )⇔ ((i ∈ Ou) ∧ (j ∈ Ou)), and let Nij = |Ωij |
denote its cardinality.

According to the EAC paradigm, and following the vector notation for the rep-
resentation of partitions, the ensemble of clusterings is summarized in the n × n

co-association matrix C= [cij ], where

cij =
∑

l∈Ωij

1
p
(l)
i =p(l)

j

, cij ∈ {0, . . . ,Nij } (5.1)

is the number of times objects i and j are co-assigned the same cluster label over the
ensemble E (1p is the indicator function, giving 1 if p holds true, and 0 otherwise).
An alternative summarization is the normalized co-association matrix, Ĉ = [ĉij ],
where

ĉij = cij

Nij

, ĉij ∈ [0,1] (5.2)

represents the percentage of times objects i and j are gathered in a same cluster
over the clustering ensemble.

5.4 The Evidence Accumulation Paradigm (EAC)

The EAC paradigm can be summarized in the following three steps method:

EAC
1. Build a clustering ensemble E . A diversity of clustering solutions is achieved

by running several algorithms, or the same algorithm with different parameter
values and/or initializations, on possibly sub-sampled versions of the data set.

2. Accumulate evidence from E in a pairwise co-association matrix. Evidence on
pairwise associations are accumulated from the individual clusterings in E . The
summary of these associations are given either by:

– Computing C and {Nij }, as given in Sect. 5.3, Eq. (5.1);
– Determining Ĉ using Eq. (5.2).

This voting mechanism is the key issue of the method, subsuming the problem
of class correspondence in consensus clustering.

3. Extract the consensus clustering from the co-associations. By applying a cluster-
ing algorithm over the learned pairwise associations between objects, a consen-
sus clustering is obtained.
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The object of the EAC method is the CE, on which it is built, not the actual
objects. As such, it is a clustering method that intrinsically preserves data privacy:
Individual descriptions of the underlying data are not required in order to produce a
clustering combination solution. Furthermore, it effectively fuses information from
multiple views of the data, exploring single or hybrid representations, either feature-
based or similarity-based. Some of its steps and characteristics are detailed next.

5.4.1 Building Clustering Ensembles

Clustering ensembles can be generated by following two main approaches: (i) choice
of data representation and (ii) choice of clustering algorithms or algorithmic param-
eters.

In the first approach, different partitions of the objects under analysis may be
produced by (a) employing different preprocessing and/or feature extraction mech-
anisms, which ultimately lead to different pattern representations (vectors, strings,
graphs, correlations, dissimilarities, etc.) in different feature spaces, or dissimilarity
spaces, (b) exploring subspaces of the same data representation, such as using sub-
sets of features, or embeddings, and (c) perturbing the data, such as in bootstrapping
techniques (like bagging), or sampling approaches, as, for instance, using a set of
prototype samples to represent huge data sets.

In the second approach, we can generate clustering ensembles by (i) applying
different clustering algorithms, exploring different concepts of clustering structure,
(ii) using the same clustering algorithm with different parameters or initializations,
and (iii) exploring different dissimilarity measures for evaluating inter-pattern rela-
tionships, within a given clustering algorithm.

A combination of these two main mechanisms for producing clustering ensem-
bles leads to exploration of distinct views of inter-pattern relationships. From a com-
putational perspective, clustering results produced in an “independent way” facili-
tate efficient data analysis by utilizing distributed computing, and reuse of results
obtained previously.

5.4.2 Properties of the Normalized Co-association Matrix Ĉ

Given the overall general formulation of the EAC paradigm, the method explicitly
produces as intermediate result a matrix accumulating evidence on pairwise associ-
ations. The later can be given different interpretations, as presented next.

5.4.2.1 EAC as a Kernel Method

The most direct and intuitive interpretation of the normalized co-association ma-
trix, Ĉ, is as a measure of pairwise similarity between objects, as put in evidence
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in pairwise associations provided by the individual clusterings in the ensemble E .
In fact, it is expected that very similar objects are very often put in a same cluster
by clustering algorithms. The use of different algorithms and/or parameter config-
urations for each clustering algorithm enables the derivation of similarity between
patterns without the use of a priori information about the number of clusters or the
tuning of parameter values. As such, the EAC method, mapping the individual ev-
idence of pairwise similarity in the clustering ensemble into a learned similarity
matrix, i.e., by computing a similarity between objects, further used within some
consensus clustering algorithm, can be formalized as a kernel method in unsuper-
vised learning.

5.4.2.2 Co-associations as Pairwise Stability Indices and Multi-EAC

Data subsampling has largely been explored in clustering ensemble methods with
the purpose of increasing diversity in the CE, as well as a means to handle the
problem of missing data; however, it can also be used as a mechanism for data
perturbation in order to evaluate the stability of clustering solutions.

When a clustering ensemble is produced by applying the same clustering algo-
rithm (with the same parameter(s) value(s)) over subsampled versions of the original
data, the matrix Ĉ summarizes the replicability of clustering solutions in terms of
stability of pairwise associations, measured in the interval [0;1].

Taking as basic premise that spurious clusters generated by a clustering algorithm
are not likely to be stable, the pairwise stability interpretation of Ĉ, under these CE
construction conditions, has been explored in an extension of the EAC methodol-
ogy, known as Multi-EAC, that incorporates diverse criteria clustering ensembles
in a selective combination strategy at the cluster level, as opposed to the overall
partition level. This approach has proven to better unveil the intrinsic data organi-
zation in the learned pairwise similarity [12], leading to better consensus clustering
solutions [27].

5.4.2.3 Ĉ as a Pairwise Probability Estimator

Let us denote by Xij a random variable indicating if objects i and j belong to the
same cluster. Xij is a Bernoulli distributed r.v. with parameter θij =E(Xij ):

Xij =
{

1 with probability θij ,

0 with probability (1− θij ).
(5.3)

For each pair of objects i and j , we collect from E , the clustering ensemble,
Nij independent realizations x

(u)
ij of Xij , given by

x
(u)
ij =

⎧
⎪⎨

⎪⎩

1 if p(u)
i = p

(u)
j

(objects i and j have the same cluster label in partition Pu),

0 otherwise,

(5.4)
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for u ∈ Ωij . The maximum likelihood (ML) estimate θ̂ij of the parameter θij of
each r.v. Xij is given by the empirical mean x̄ij , i.e.,

θ̂ij = x̄ij = 1

Nij

∑

u∈Ωij

x
(u)
ij ≡

cij

Nij

≡ ĉij . (5.5)

Thus, the normalized co-association matrix, Ĉ, corresponds to the maximum like-
lihood estimate of the probability of pairs of objects being in the same cluster, as
assessed by the clustering committee E .

5.4.3 From Co-associations to Consensus Clustering

As delineated in Sect. 5.4, consensus clustering solutions are obtained by applying a
clustering algorithm over the (normalized) co-association matrix. Given the possible
different interpretations of the normalized co-association matrix, Ĉ, as described in
Sect. 5.4.2, different classes of algorithms can be explored for deriving the consen-
sus solution. We categorize them according to the underlying assumption about data
representation:

• (Dis)similarity-based Data Representation The interpretation of Ĉ as a similarity
representation of objects, where intrinsic structure is enhanced through the ev-
idence accumulation process, enables the determination of consensus partitions
through a variety of clustering algorithms that explicitly use similarities as input,
such as in graph-based techniques (e.g., hierarchical linkage methods). Examples
of these have largely been explored in the literature, as in the seminal work [9].
• Vector-based Object Description The consensus matrix Ĉ can also be used as

data, rather than as similarity, each line i in the matrix corresponding to a feature
vector representation of object i, as its similarity to all objects in the data set.
It has been noted [23] that consensus solutions based on this interpretation of Ĉ
often lead to better results, as compared to similarity-based counterparts.
• Co-occurrence Probability The probabilistic interpretation of matrix Ĉ as a ML

estimate of the probability of pairs of objects being in the same cluster forms
the basis of a new class of probabilistic consensus clustering solutions. Starting
from the observation that co-occurrences are a special type of dyads, the work
in [29] proposes a generative aspect model for dyadic data, as for the normalized
co-association matrix; building on the framework of learning from dyadic data by
statistical mixture models [16], the authors further explore this generative model
for devising consensus clustering solutions under the EAC paradigm. Assuming a
multi-labeling framework, where each object has an (unknown) probability of be-
ing assigned to each cluster, and exploring Ĉ as empirical co-association matrix,
the work in [34] formalizes the problem of consensus clustering as an optimiza-
tion in probability domain, thus obtaining the soft class assignments. The later
basic probabilistic formulation is further explored in Sect. 5.6, proposing a new
objective function and optimization mechanism.
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The above similarity-based and vector-based data descriptors interpretations of
co-associations can be explored as input for a clustering algorithm to extract the
consensus solution. In addition, they can be seen as data representations in high
dimensional spaces, the structure of interest possibly being better described on an
embedded manifold. This leads to the application of embedding techniques over the
matrix Ĉ, as an additional intermediate step in the process of deriving a consensus
clustering. This approach was first put forward in [1], being further explored in
Sect. 5.5.

5.5 Finding Consensus Data Partitions by Exploring
Embeddings

We propose to apply embedding methods, also called dimensionality reduction (DR)
methods, over the normalized co-association matrix, Ĉ, interpreting it in two ways:
(i) as a feature space, and (ii) as a similarity space. In the first case, we reduce the
dimensionality of the feature space; in the second case, we obtain a representation
constrained to the similarity matrix Ĉ. The overall consensus clustering method,
hereafter named as DR-EAC, produces consensus solutions by applying a clustering
algorithm over the embedded space.

5.5.1 Embedding Methods

In the following, we assume that objects are represented in d-dimensional feature
spaces, a data set being represented by the matrix O. The goal is to find a new data
representation, X, assuming that the data of interest lie on an embedded linear or
nonlinear manifold within the higher-dimensional space. To perform embeddings
we will use several unsupervised dimensionality reduction (DR) methods, namely
Locality Preserving Projections (LPP) [14], Neighborhood Preserving Projections
(NPE) [15], Sammon’s mapping [36], Curvilinear Component Analysis (CCA) [6],
Isomap [40], Curvilinear Distance Analysis (CDA) [25], Locally Linear Embed-
ding (LLE) [35] and Laplacian Eigenmap (LE) [3] (see Chaps. 2, 6 and 7 for other
approaches). We now briefly introduce each of these algorithms.

5.5.1.1 Nonlinear Methods

Locally Linear Embedding (LLE) The working hypothesis of LLE [35] is that
the data manifold is smooth and sampled densely enough such that, in the neigh-
borhood of each data point, the manifold can be well approximated by its tangent
hyperplane. This hyperplane will usually be dependent of the point on which one is
approximating the manifold, hence the word Locally Linear Embedding. It should
be noted that the name can be misleading—this method is nonlinear.
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LLE makes a locally linear approximation of the whole data manifold; it be-
gins by estimating a local coordinate system for each object i, represented by the
vector oi , from its k-nearest neighbors. To produce the embedding, LLE finds low-
dimensional coordinates that preserve the previously estimated local coordinate sys-
tems as well as possible.

Technically, LLE first minimizes the reconstruction error e(W) = ∑
i ‖oi −∑

j wijoj‖2 with respect to the coefficients wij , under the constraints that wij = 0
if i and j are not neighbors, and

∑
j wij = 1. After finding these weights, the low-

dimensional configuration of points is next found by minimizing e(X)=∑
i ‖xi −∑

j wijxj‖2 with respect to the low-dimensional representation xi of each object.

Laplacian Eigenmap (LE) The Laplacian Eigenmap [3] uses a graph embedding
approach. It begins by constructing a graph where each data point is a node, and each
node is connected to k other nodes corresponding to the k nearest neighbors of that
point. Points i and j are connected by an edge with weight wij = 1 if j is among
the k nearest neighbors of i, otherwise the edge weight is set to zero; this simple
weighting method has been found to work well in practice [3].

To find a low-dimensional embedding of the graph, the algorithm tries to put
points that are connected in the graph as close to each other as possible and does not
care about what might happen to the other points.

Technically, LE minimizes
∑

i,j ‖xi − xj‖2wij = Tr(XT LX) with respect to the
low-dimensional object representations xi , where L = D−W is the graph Lapla-
cian and D is a diagonal matrix with elements dii =∑

j wij . This cost function has
an undesirable trivial solution: having all points in the same position would have
a cost of zero, which would be a global minimum of the cost function. To avoid
this problem, the low-dimensional configuration is found by solving the general-
ized eigenvalue problem Lxi = λiDxi [3]. The smallest eigenvalue corresponds to
the trivial solution, but the next smallest eigenvalues yield the desired LE solution
(X being the matrix with the corresponding eigenvectors).

Isomap Isomap [40] is a variant of Multidimensional Scaling (MDS) [24], which
attempts to find output coordinates that match a given distance matrix. This dis-
tance matrix is not computed using simple Euclidean distances; instead, geodesic
distances along the manifold of the data are used.1

Given these geodesic distances, the output coordinates are found by standard
linear MDS.

Let oi and xi denote the coordinates of point i on the input (high-dimensional)
space and output (low-dimensional) space, respectively. MDS attempts to find the xi

for all i which minimizes the squared difference between distances in the input space
and output space:

∑
i,j (d(oi ,oj )−d(xi ,xj ))

2. In simple terms, MDS is attempting
to find the low-dimensional representation of the data which makes the distances
between data points as close as possible to the distances in the original space.

1Technically, these distances are computed along a graph formed by connecting all k-nearest neigh-
bors.
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Curvilinear component analysis CCA [6] is a variant of MDS [24] that tries to
preserve only distances between points that are near each other in the embedding.
This is achieved by weighting each term in the MDS cost function by a coefficient
that depends on the corresponding pairwise distance in the embedding; this coef-
ficient is simply 1 if the distance is below a predetermined threshold and 0 if it is
larger. This approach is similar to Isomap, but the determination of whether two
points are neighbors is done in the output space in CCA, rather than in the input
space as in Isomap.

Curvilinear distance analysis CDA [25] is a variant of CCA. Whereas MDS
measures distances in the original space using the Euclidean distance, in CDA dis-
tances in the original space are measured with geodesic distances, like in Isomap.
In all other aspects, CDA is similar to CCA.

5.5.1.2 Linear Methods

Locality Preserving Projections LPP [14] is a linear dimensionality reduction
method which attempts to preserve local neighborhood information. It shares many
properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear
Embedding, since it is a linear approximation of the nonlinear Laplacian Eigenmaps.

Neighborhood Preserving Projections NPE [15] is a linear dimensionality re-
duction method that preserves the local structure of the data. It has similar properties
to LPP, but it is a linear approximation of Locally Linear Embedding (LLE).

5.5.2 The DR-EAC Method

We now present the proposed methodology called Dimensionality Reduction in Ev-
idence Accumulation Clustering (DR-EAC). It extends the three step EAC method
described previously (see Sect. 5.4) with an additional intermediate step: instead of
applying a clustering algorithm directly to the normalized co-association matrix, we
apply a DR technique to it. As detailed below, we propose two ways to do this, de-
pending on how one interprets the co-association matrix. This DR technique outputs
a low-dimensional data representation, which is then fed into a clustering algorithm,
deriving the consensus partition. The DR-EAC method is thus summarized in the
following four steps:

DR-EAC
1. Build the clustering ensemble E . As discussed before (see Sect. 5.4.1), this can

be accomplished in a variety of ways.
2. Obtain the normalized co-association matrix, Ĉ, as per expression (5.2)—see

Sect. 5.3. Then, we interpret this matrix in one of two possible ways (see
Sect. 5.4.2):
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– Co-associations viewed as Features: the ith row of Ĉ represents a new set
of features for the ith object, an idea originally proposed by Kuncheva et al.
[13]. Each object is now represented by the percentage of times it was grouped
together with each of the other objects.

– Co-associations viewed as Similarities. Since many DR methods can take as
input a matrix of pairwise distances (or dissimilarities), if we transform this
similarity matrix Ĉ into a matrix of dissimilarities D, we can exploit this
property. Since the elements of Ĉ take values in the interval [0,1], we use
a very simple transformation: the new dissimilarity matrix D has the element
dij given by 1− ĉij .

3. Apply Dimensionality Reduction techniques. We apply DR techniques, according
to either of the interpretations above, to obtain a new representation of the data,
preserving the topology of the original data.

4. Extract the consensus partition. After we get the embedded data, we apply a
clustering algorithm to the later in order to extract the consensus solution.

For the DR methods, in step 3, we need to choose a target dimension to reduce
the data to and, in some cases, we also have to choose a parameter of the method
(usually the number of nearest neighbors to consider). The target dimension is cho-
sen using a Maximum Likelihood Estimator [26]. This MLE assumes that the data
points follow a Poisson process (i.e., they are drawn independently from a uniform
distribution over the data manifold) and constructs hyperspheres of growing radii r .
It then checks how quickly the number of neighbors inside that hypersphere grows
with r ; this dependence conveys information about the intrinsic dimension of the
data.

For example, if the data lies on a 2-dimensional manifold, the number of neigh-
bors inside a hypersphere of radius r should grow approximately with r2, even if
the input space has a higher dimension d� 2.

In all cases, we let each algorithm choose the most suitable parameter of the
DR method by an intrinsic criterion. This intrinsic criterion can be the value of
the cost function that each algorithm has to minimize, or the reconstruction error.
For example, in Isomap we chose the parameter (which is the number of nearest
neighbors used to construct a graph) which minimizes the residual variance [40]. It
is beyond the scope of this chapter to detail how these parameters should be chosen;
the relevant information can be found in the references cited in Sect. 5.5.1.

5.6 PEACE: Probabilistic Evidence Accumulation for Clustering
Ensembles

In this section, we propose a probabilistic formulation and solution of the consensus
clustering extraction that fully exploits the probabilistic interpretation of the nor-
malized co-association matrix, Ĉ, presented in Sect. 5.4.2.3.
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5.6.1 Problem Formulation

Consider a general probabilistic multi-labeling framework, where each object has
an (unknown) probability of being assigned to each cluster. Define the vector

yi = [y1i , . . . , yKi]T ∈ΔK (5.6)

representing the probability distribution over the set of class labels {1, . . . ,K}which
characterizes object i ∈O , that is, yki = Pr(i ∈ Ck), where Ck denotes the kth clus-
ter. Let Y= [y1, . . . ,yn] ∈Δn

K be a K × n matrix collecting all objects class labels
probability distributions.

In our model, we assume that objects are assigned to clusters independently, i.e.,
Pr(i ∈ Ck, j ∈ Ck) = Pr(i ∈ Ck)Pr(j ∈ Ck). Following this independence assump-
tion and definition (5.6), the probability of objects i and j being assigned to the
same cluster is given by

K∑

k=1

Pr(i ∈ Ck, j ∈ Ck)=
K∑

k=1

ykiykj = y�i yj . (5.7)

Let Cij be a binomial random variable (r.v.) representing the number of times
that objects i and j are co-clustered; from the modeling assumptions above, we
have that Cij ∼ Binomial(Nij ,y�i yj ), that is,

Pr(Cij = c | yi ,yj )=
(
Nij

c

)(
y�i yj

)c(1− y�i yj

)Nij−c.

Each element cij of the co-association matrix C is interpreted as a sample of
the r.v. Cij , and the different Cij ’s are all assumed independent. Consequently, the
probability of observing C, given the class probabilities Y, is given by

Pr(C |Y)=
∏

i,j∈O
i 
=j

(
Nij

cij

)(
y�i yj

)cij (
1− y�i yj

)Nij−cij .

We therefore formulate the probabilistic consensus clustering problem as an es-
timation of the unknown class assignments Y, by maximizing the log-likelihood
log Pr(C |Y) with respect to Y. This yields the following maximization problem

Ŷ= arg max
Y∈Δn

K

f (Y), (5.8)

where

f (Y)=
∑

i,j∈O
i 
=j

cij log
(
y�i yj

)+ (Nij − cij ) log
(
1− y�i yj

)
(5.9)

(constant terms have been dropped).
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It’s interesting to notice that f (Y) can be written in terms of the Kullback–
Leibler divergence DKL(· ‖ ·) as

f (Y)=−
∑

i,j∈O
i 
=j

Nij

[
H(zij )+DKL

(
zij ‖wij (Y)

)]
,

where zij = (cij /Nij ,1 − (cij /Nij ))
� ≡ (ĉij ,1 − ĉij )

� ∈ Δ2, wij (Y) = (y�i yj ,

1− y�i yj )
� ∈Δ2, ĉij are elements of the normalized co-association matrix Ĉ, and

H(·) is the entropy.

5.6.2 Optimization Algorithm

The optimization method described in this chapter belongs to the class of primal
line-search procedures. This method iteratively finds a direction which is feasible,
i.e., satisfying the constraints, and ascending, i.e., guaranteeing a (local) increase
of the objective function, along which a better solution is sought. The procedure is
iterated until it converges, or a maximum number of iterations is reached.

The first part of this section describes the procedure to determine the search di-
rection in the optimization algorithm. The second part is devoted to determining an
optimal step size to be taken in the direction found.

5.6.2.1 Computation of a Search Direction

Consider the Lagrangian of (5.8):

L (Y,λ,M)= f (Y)+ Tr
(
M�Y

)− λ�
(
Y�1K − 1n

)
,

where M = (μ1, . . . ,μn) ∈ RK×n+ and λ ∈ Rn are the Lagrangian multipliers (re-
lated to positiveness and simplex constraints), and Y ∈ dom(f ). By differentiating
L with respect to yi and λ and considering the complementary slackness condi-
tions, we obtain the first order Karush–Kuhn–Tucker (KKT) conditions [30] for
local optimality:

⎧
⎪⎪⎨

⎪⎪⎩

gi(Y)− λi1n +μi = 0, ∀i ∈O,

Y�1K − 1n = 0,

Tr(M�Y)= 0,

(5.10)

where gi(Y), the partial derivative of f (Y) with respect to yi , is given by

gi(Y)=
∑

j∈O\{i}
cij

yj

y�i yj

− (Nij − cij )
yj

1− y�i yj

,
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and 1n denotes a n-dimensional column vector of all 1’s. We can express the La-
grange multipliers λ in terms of Y by noting that

y�i
[
gi(Y)− λi1n +μi

]= 0,

yields λi = y�i gi(Y) for all i ∈O .
Let ri(Y) be given as

ri(Y)= gi(Y)− λi1K = gi(Y)− y�i gi(Y)1K,

and let σ(yi ) denote the support of yi , i.e., the set of indices corresponding to
(strictly) positive entries of yi . An alternative characterization of the KKT condi-
tions, where the Lagrange multipliers do not appear, is

⎧
⎪⎪⎨

⎪⎪⎩

[ri(Y)]k = 0, ∀i ∈O,∀k ∈ σ(yi ),

[ri(Y)]k ≤ 0, ∀i ∈O,∀k /∈ σ(yi ),

Y�1K − 1n = 0.

(5.11)

The two characterizations (5.11) and (5.10) are equivalent. This can be verified by
exploiting the non-negativity of both matrices M and Y, and the complementary
slackness conditions.

The following proposition plays an important role in the selection of the search
direction. Hereafter, we denote by (yj )k the kth component of cluster assignment yj .

Proposition 5.1 Assume Y ∈ dom(f ) to be feasible for (5.8), i.e., Y ∈ Δn
K ∩

dom(f ). Consider

j ∈ arg max
i∈O

{[
gi(Y)

]
k+i
− [

gi(Y)
]
k−i

}
,

where

k+i ∈ arg max
k∈{1···K}

[
gi(Y)

]
k

and

k−i ∈ arg min
k∈σ(yj )

[
gi(Y)

]
k
.

Then the following holds:

• [gj (Y)]k+j ≥ [gj (Y)]k−j and

• Y satisfies the KKT conditions for (5.8) if and only if [gj (Y)]k+j = [gj (Y)]k−j .

Proof We prove the first point by simple derivations as follows:

[
gj (Y)

]
k+j
≥ y�j gj (Y) =

∑

k∈σ(yj )
(yj )k

[
gj (Y)

]
k
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≥
∑

k∈σ(yj )
(yi )k

[
gj (Y)

]
k−j
= [

gj (Y)
]
k−j

.

By subtracting y�j gj (Y), we obtain the equivalent relation

[
rj (Y)

]
k+j
≥ 0≥ [

rj (Y)
]
k−j

, (5.12)

where equality holds if and only if [gj (Y)]k−j = [gj (Y)]k+j .

As for the second point, assume that Y satisfies the KKT conditions. Then
[rj (Y)]k−j = 0 because k−j ∈ σ(yj ). It follows by (5.12) that also [rj (Y)]k+j =
0 and therefore [gj (Y)]k−j = [gj (Y)]k+j . On the other hand, if we assume that

[gj (Y)]k−j = [gj (Y)]k+j then, by (5.12) and by definition of j , we have that

[ri(Y)]k+i = [ri(Y)]k+i = 0 for all i ∈O . By exploiting the definition of k+i and k−i ,
it is straightforward to verify that Y satisfies the KKT conditions. �

Given Y a non-optimal feasible solution of (5.8), we can determine the in-
dices k+j , k−j and j as stated in Proposition 5.1. The next proposition shows how
to build a feasible and ascending search direction by using these indices. Later on,
we will point out some desired properties of this search direction. We denote by e(j)n

the j th column of the n-dimensional identity matrix.

Proposition 5.2 Let Y ∈Δn
K ∩dom(f ) and assume that the KKT conditions do not

hold. Let D= (ek
+

K − ek
−

K )(ejn)�, where j , k+ = k+j and k− = k−j are computed as
in Proposition 5.1. Then, for all 0≤ ε ≤ (yj )k− , we have that Zε =Y+ εD belongs
to Δn

K , and for all small enough, positive values of ε, we have f (Zε) > f (Y).

Proof Let Zε =Y+ εD. Then for any ε,

Z�ε 1K = (Y+ εD)�1K =Y�1K + εD�1K = 1n + εejn
(
ek
+

K − ek
−

K

)�1K = 1n.

As ε increases, only the (k−, j)th entry of Zε , which is given by (yj )k− − ε,
decreases. This entry is nonnegative for all values of ε satisfying ε ≤ (yj )k− . Hence,
Zε ∈Δn

K for all positive values of ε not exceeding (yj )k− as required.
As for the second point, the Taylor expansion of f at Y gives, for all small

enough positive values of ε:

f (Zε)− f (Y) = ε

[
lim
ε→0

d

dε
f (Zε)

]
+O

(
ε2)

= (
ek
+

K − ek
−

K

)�
gj (Y)+O

(
ε2)

> 0

= [
gj (Y)

]
k+ −

[
gj (Y)

]
k− +O

(
ε2)

> 0.

The last inequality comes from Proposition 5.1 because if Y does not satisfy the
KKT conditions then [gj (Y)]k+ − [gj (Y)]k− > 0. �
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5.6.2.2 Computation of an Optimal Step Size

Proposition 5.2 provides a direction D that is both feasible and ascending for Y with
respect to (5.8). We will now address the problem of determining an optimal step ε∗
to be taken along the direction D. This optimal step is given by the following one
dimensional optimization problem:

ε∗ ∈ arg max
0≤ε≤(yj )k−

f (Zε), (5.13)

where Zε =Y+ εD. This problem is concave as stated in the following proposition.

Proposition 5.3 The optimization problem in (5.13) is concave.

Proof The direction D is everywhere null except in the j th column. Since the sum
in (5.9) is taken over all pairs (i, j) such that i 
= j we have that the argument of ev-
ery log function (which is a concave function) is linear in ε. Concavity is preserved
by the composition of concave functions with linear ones and by the sum of concave
functions [5]. Hence, the maximization problem is concave. �

Let ρ(ε′) denote the first order derivative of f with respect to ε evaluated at ε′,
i.e.,

ρ
(
ε′

)= lim
ε→ε′

d

dε
f (Zε)=

(
ek
+

K − ek
−

K

)�
gj (Zε′).

By the convexity of (5.13) and Kachurovskii’s theorem [19], we have that ρ is non-
increasing in the interval 0≤ ε ≤ (yj )k− . Moreover, ρ(0) > 0 since D is an ascend-
ing direction as stated by Proposition 5.2. In order to compute the optimal step ε∗
in (5.13), we distinguish 2 cases:

• If ρ((yj )k−)≥ 0 then ε∗ = (yj )k− for f (Zε) is non-decreasing in the feasible set
of (5.13);
• If ρ((yj )k−) < 0 then ε∗ is a zero of ρ that can be found by dichotomic search.

Suppose the second case holds, i.e., assume ρ((yj )k−) < 0. Then ε∗ can be found
by iteratively updating the search interval as follows:

(
�(0), r(0)

)= (
0, (yj )k−

)
,

(
�(t+1), r(t+1))=

⎧
⎪⎪⎨

⎪⎪⎩

(�(t),m(t)) if ρ(m(t)) < 0,

(m(t), r(t)) if ρ(m(t)) > 0,

(m(t),m(t)) if ρ(m(t))= 0,

(5.14)

for all t > 0, where m(t) denotes the center of segment [�(t), r(t)], i.e., m(t) =
(�(t) + r(t))/2.

We are not in general interested in determining a precise step size ε∗ but an
approximation is sufficient. Hence, the dichotomic search is carried out until the
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interval size is below a given threshold. If δ is this threshold, the number of iterations
required is expected to be log2((yj )k−/δ) in the worst case.

5.6.2.3 Algorithm and Computational Complexity

Consider a generic iteration t of our algorithm (shown in Algorithm 1) and assume
A(t) =Y�Y and g

(t)
i = gi(Y) given for all i ∈O , where Y=Y(t).

The computation of ε∗ requires the evaluation of function ρ at different values
of ε. Each function evaluation can be carried out in O(n) steps by exploiting A(t)

as follows:

ρ(ε)=
∑

i∈O\{j}
cji

d�j yi

A
(t)
j i + εd�j yi

+ (Nji − cji)
d�j yi

1−A
(t)
ji − εd�j yi

, (5.15)

where dj = (ek
+

K − ek
−

K ). The complexity of the computation of the optimal step size
is thus O(nγ ) where γ is the average number of iterations needed by the dichotomic
search.

Next, we can efficiently update A(t) as follows:

A(t+1) = (
Y(t+1))�Y(t+1) =A(t) + ε∗

(
D�Y(t) +Y(t)�D+ ε∗D�D

)
. (5.16)

Indeed, since D has only two nonzero entries, namely (k−, j) and (k+, j), the terms
within parenthesis can be computed in O(n).

The computation of Y(t+1) can be performed in constant time by exploiting the
sparsity of D as Y(t+1) =Y(t) + ε∗D.

The computation of g
(t+1)
i = gi(Y(t+1)) for each i ∈ O \ {j} can be efficiently

accomplished in constant time (it requires O(nK) to update all of them) as follows:

g
(t+1)
i = g

(t)
i + cij

( y(t+1)
j

A
(t+1)
ij

− y(t)
j

A
(t)
ij

)

+ (Nij − cij )

( y(t+1)
j

1−A
(t+1)
ij

− y(t)
j

1−A
(t)
ij

)
. (5.17)

The complexity of the computation of g
(t+1)
j , on the other hand, requires O(nK)

steps:

g
(t+1)
j =

∑

i∈O\{j}
cji

y(t+1)
i

A
(t+1)
j i

− (Nji − cji)
y(t+1)
i

1−A
(t+1)
j i

. (5.18)

By iteratively updating the quantities A(t), g(t)
i and Y (t) according to the afore-

mentioned procedures, we can keep a per-iteration complexity of O(nK), that is
linear in the number of variables in Y.
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Algorithm 1: PEACE
Require: E : ensemble of clusterings
Require: Y(0) ∈Δn

K ∩ dom(f ): starting distribution
Compute C and {Nij } from E

Initialize A(0)
i ← (Y(0))�Y(0)

Initialize g
(0)
i ← gi(Y(0)) for all i ∈O , as per Eq. (5.17)

t← 0
while termination-condition do

Compute k+, k−, j as in Proposition 5.1
Compute D as in Proposition 5.2
Compute ε∗ as described in Sect. 5.6.2.2/5.6.2.3
Update A(t+1) as per Eq. (5.16)
Update Y(t+1) =Y(t) + ε∗D
Update g

(t+1)
i as per Eq. (5.17)

Update g
(t+1)
j as per Eq. (5.18)

t← t + 1
end while
return Y(t)

Iterations stop when the KKT conditions of Proposition 5.1 are satisfied under a
given tolerance τ , i.e., ([gj (Y)]k+j − [gj (Y)]k−j ) < τ .

5.7 Results and Discussion

We evaluated the previous methods on both real and synthetic datasets, in a com-
parative study with the EAC method. In the later, we explored three hierarchical
algorithms for the computation of the consensus solution from the normalized co-
association matrix, namely single-link (SL), average link (AL), and Wards link
(WL). In this study, we assume known the true number of clusters, K . In order to as-
sess the quality of consensus results, we compute the consistency index (CI) between
the consensus partition and the ground-truth labeling of the data. The consistency
index, also called H index [31], gives the accuracy of the obtained partitions and
is obtained by matching the clusters in the consensus partition P i with the ground
truth partition PGT:

CI
(
P i ,PGT)= 1

n

∑

k′=match(k)

mk,k′ , (5.19)

where mk,k′ denotes the contingency table, i.e., mk,k′ = |C (i)
k ∩ C (GT)

k′ |. It corre-
sponds to the percentage of correct labelings when the number of clusters in P i

and PGT is the same.
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5.7.1 Experimental Setup

We conducted experiments on synthetic datasets (see Fig. 5.1), and on real-world
datasets from the UCI Irvine and UCI KDD Machine Learning Repository: iris,
wine, house-votes, ionosphere, std-yeast-cell, breast-cancer, and optidigits. Ta-
ble 5.1 summarizes the experimental setting, indicating the number of clusters, K ,
and the size, n, of each data set.

Two different types of clustering ensembles were created, exploring different
strategies:

• E -Split—implementing a split strategy [28] (splitting “natural” clusters into small
clusters), the K-means was used as base clustering algorithm, with K randomly
chosen in an interval {Kmin,Kmax} = {"√n/2#, "√n#}. The size of each CE was
N = 100.
• E -Hybrid—a combination of multiple algorithms (agglomerative hierarchical al-

gorithms: single, average, ward, centroid link; k-means; spectral clustering [32])
with different number of clusters Ki , as specified in Table 5.1 (last column). For
each clustering approach and each parametrization of the same, we generated
N = 100 different subsampled versions of the data-set (90 % resampling percent-
age).

5.7.2 Clustering Results Using Embeddings

We applied the DR-EAC method to the clustering ensembles E -Split and E -Hybrid,
in the two interpretations of the normalized co-association matrix: as similarity,
hereafter denoted as Similarity Space; and as features, denoted as Feature Space.
This leads to four experimental scenarios. For each scenario, we applied each of the
dimensionality reduction methods described in Sect. 5.5.1, namely LPP, NPE, LLE,
LE, Sammon, CCA, Isomap, and CDA. For extracting the consensus partition, we
used the same three hierarchical agglomerative methods used with EAC: single-link,
average-link, and Wards-link.

Figure 5.2 summarizes the overall performance of the several variants of the
method, in direct comparison with EAC. In this figure, each sub-figure plots the four
scenario matrices for a given DR method, as indicated at the top. For each scenario,
lines correspond to data sets, and columns to the consensus extraction algorithm, SL,
AL, and WL. Within each cell, a color scheme is used to code the comparative per-
formances of the DR-EAc vs. EAC methods, as measured by the consistency index,
with white corresponding to equal performance, warm color meaning a superiority
of DR-EAC over EAC (in a gradient where red corresponding to high/significantly
increased performance values); and cool colors (in a gradient of blue) represent a
decrease in performance of DR-EAC in comparison with EAC.

Figures 5.3 and 5.4 present the best consistency index obtained for each data
set (indicated on the left of each plot), and each consensus clustering method (in-
dicated at the bottom), for the four combinations of interpretations of the matrix Ĉ
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Fig. 5.1 Sketch of the synthetic data sets

and clustering ensemble types. For the DR-EAC method, the variant associated with
the DR method is indicated by the corresponding DR designation. On each cell, the
best consistency index value obtained by comparing results from the three cluster-
ing extraction algorithms is shown over a background color that reveals the wining
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Table 5.1 Benchmark
datasets and Ki parameter
values for the clustering
ensembles E -Hybrid

Data-Sets K n Ki—Ensemble

spiral 2 200 2–9

cigar 4 250 4–9

rings 3 450 2–6

image-c 7 739 8–15,20

image-1 8 1000 7–15,20

iris 3 150 3–10

wine 3 178 4–10,15,20

house-votes 2 232 4–8

ionsphere 2 351 4–10

std-yeast-cell 5 384 5–10

breast-cancer 2 683 2–10

optdigits 10 1000 10, 12, 15, 20

Fig. 5.2 Comparison of various DR methods with EAC using the consistency index. The top-left
sub-figure, labeled “LPP-EAC”, compares the DR method LPP with the EAC baseline. Four sce-
narios are depicted in this sub-figure: feature space vs. similarity space and E -Split vs. E -Hybrid.
Each of the four scenarios presents a 12 × 3 matrix, corresponding to the 12 datasets and the 3
clustering methods in the following order: SL, AL, and WL. A white cell means that LPP and EAC
yielded roughly the same performance. Warm colors mean that LPP yielded better performance,
whereas cool colors mean that it yielded worse performance. Darker tones mean that the difference
between the two methods was larger in absolute value. The other seven sub-figures show similar
information for the seven remaining DR methods
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Fig. 5.3 Results on the feature spaces. (Top) Consistency index for E -Split for each dataset (ver-
tical axis), DR method (horizontal axis), for the best clustering method (color). Each cell shows
the value of the best consistency index obtained for the corresponding dataset and DR method out
of the three clustering algorithms tested. A blue cell indicates that the best value came from using
single-link, a red cell corresponds to average-link, and a green cell to Ward-link. Color addition is
used to present ties: if both single-link and average-link yielded the maximum value, that cell is
shown in magenta, etc. (Bottom) Same as before, but for E -Hybrid
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Fig. 5.4 Results on the similarity spaces. The meaning of plots are as in Fig. 5.3

algorithm, according to the color scheme presented on the right of each figure. In ad-
dition, for each data set, we circle the best consensus clustering result obtained over
the four combinations of spaces interpretations and CEs, as plotted in Figs. 5.3(a),
5.3(b), 5.4(b), and 5.4(a).
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Figure 5.2 yields some interesting conclusions. The most immediate one is that
blindly performing DR is a bad idea since there are many more blue–cyan cells
than orange–yellow ones, randomly choosing a DR method for a certain dataset and
clustering method is likely to decrease the performance. However, this should not
discourage us from using DR. In fact, for some cases the improvement in the results
is considerable, such as for certain cells of LPP in E -Split.

Overall, Isomap is the method that more consistently produced better results than
EAC (notice the high percentage of positive colors), with rare situations of (mild)
decreased performance; however, improvements are also in general moderate to low
(there are large white areas). LPP is a method that in general leads to good results;
improvements are in some instances quite significant, as indicated in reddish tones.
This is further corroborated by the analysis of Figs. 5.3 and 5.4, where we can notice
the high number of best CI scores obtained for instance in the combination of the
Similarity Space with the E -Split CE (see Fig. 5.4(a)).

LLE, except for point-wise situations, is the method that overall performed
worse, immediately followed by LE, with many dark blue areas.

CCA and CDA perform poorly on the feature space, having a more adequate
behavior on the similarity space, in particular with the E -Split CEs. This can be
further observed in Fig. 5.4(a).

NPE is better suited for data with complex structure, namely the synthetic data
sets; it nevertheless performs reasonably well on real data, in particular on E -
Hybrid CEs. Sammon mapping, on the other hand, performs better with E -Split
CEs, achieving moderate improvements.

Concerning best obtained results per data set and embedding method (Figs. 5.3
and 5.4), it is clear the overall better performance of the single-link algorithm for
the extraction of the combined partition over the synthetic data sets (see the large
areas of blue, pink and brown on all maps, in particular on the similarity space).

On the other hand, the Wards-link was the best performing method on the real
data (green, yellow and brown areas).

5.7.3 Probabilistic Clustering

For each data set, the PEACE algorithm was applied to the clustering ensembles
E -Split and E -Hybrid, leading to corresponding probabilistic cluster assignments.

Figure 5.5 illustrates the empirical co-association matrices, Ĉ, and corresponding
estimated co-occurrences probabilities, Y�Y, on both clustering ensembles, for the
iris dataset. In these images, ĉij values are represented in a gradient of colors from
dark blue (corresponding to 0) to red (corresponding to 1). While a block structure
of three clusters is apparent in all figures, it is more clear and less noisy in the true
co-association Y�Y. The corresponding soft cluster assignments, Y, are plotted in
Fig. 5.6, were object indices are on the x-axis, and probabilities for each cluster
assignment (on the y-axis) are given in color, in a gradient from dark blue to red.

For the direct comparison with the ground-truth hard-partition, PGT, the prob-
abilistic consensus clusterings are converted into hard-partitions by assigning each
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Fig. 5.5 Iris data set. Co-association matrices and corresponding estimated co-occurrences prob-
abilities, as given by the PEACE algorithm. The top row corresponds to the clustering ensemble
E -split, while the bottom row corresponds to E -Hybrid

object oi to the class with the highest estimated probability in yi , i.e., according
to the ML rule: i ∈ Cj : j = arg maxk yik . Given different initializations in the op-
timization process, it is possible to obtain different consensus solutions with the
proposed algorithm. We thus performed several runs of the algorithm, and evalu-
ated the performances in terms of the consistency index, CI(P i ,PGT). Tables 5.2
and 5.3 summarize the obtained results, indicating minimum, maximum, average,
and standard deviation of the CIs for each data set. In addition, the first column
(“selected”) refers to the CI of the selected consensus solution over the several runs,
according to the intrinsic optimization criterion, i.e., highest value of Pr(C |Y). The
last three columns in these tables register the results with the EAC method with
three consensus extraction clustering algorithms: single-, average-, and Wards-link.
Highest CI values for each data set are highlighted in bold.

From the analysis of Tables 5.2 and 5.3, it is apparent that the PEACE algorithm
performs poorly in data sets exhibiting complex structure, where clusters are defined
by connectedness as opposed to compactness properties, such as in most of the syn-
thetic data sets. For these, the EAC method, in combination with the SL algorithm,
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Fig. 5.6 Iris data set—probabilistic cluster assignments given by the PEACE algorithm on the
clustering ensembles E -split and E -Hybrid

Table 5.2 Consistency indices of consensus solutions for the clustering ensemble E -Split

Data set PEACE EAC

selected av std max min SL AL WL

cigar 0.636 0.628 0.020 0.640 0.592 1.000 0.816 0.708

rings 0.509 0.526 0.018 0.551 0.509 1.000 1.000 0.729

spiral 0.505 0.505 0.000 0.505 0.505 0.505 0.500 0.525

image-c 0.499 0.503 0.002 0.505 0.499 0.582 0.583 0.433

image-1 0.555 0.570 0.025 0.613 0.550 0.666 0.590 0.465

breast-cancer 0.734 0.923 0.106 0.971 0.734 0.657 0.971 0.734

house-votes 0.901 0.892 0.012 0.901 0.879 0.668 0.871 0.853

ionosphere 0.632 0.632 0.000 0.632 0.632 0.667 0.541 0.613

iris 0.907 0.864 0.095 0.907 0.693 0.747 0.893 0.893

optdigits 0.894 0.871 0.042 0.898 0.798 0.618 0.798 0.899

std-yeast-cell 0.544 0.543 0.001 0.544 0.542 0.526 0.688 0.542

wine 0.961 0.961 0.000 0.961 0.961 0.674 0.927 0.961

performs the best, in particular when adopting the split strategy for building the CE,
i.e., in E -Split.

On the real data sets, however, the proposed algorithm shows an overall superior
performance, positively correlated with the more dense block diagonal structure of
the empirical co-association matrices. Corroborating this conclusion, we can notice
the increased number of best results (as compared with EAC) in the E -Hybrid CEs
(Table 5.3), were this block structure is promoted by the use of lower K values for
building the CEs. A notable exception to this conclusion on real data sets is the case
of the optidigits, for which much better results are obtained by both PEACE and
EAC methods when using the split strategy on the CE. It should be noted, however,



5 Learning Similarities from Examples under EAC 113

Table 5.3 Consistency indices of consensus solutions for the clustering ensemble E -Hybrid

Data Set PEACE EAC

selected av std max min SL AL WL

cigar 0.688 0.688 0.000 0.688 0.688 1.000 0.820 0.708

rings 0.318 0.320 0.006 0.331 0.318 1.000 0.349 0.351

spiral 0.510 0.510 0.000 0.510 0.510 0.550 0.505 0.515

image-c 0.593 0.533 0.034 0.593 0.517 0.514 0.583 0.559

image-1 0.625 0.625 0.001 0.626 0.625 0.677 0.620 0.606

breast-cancer 0.968 0.968 0.000 0.968 0.968 0.652 0.944 0.944

house-votes 0.901 0.901 0.000 0.901 0.901 0.530 0.530 0.918

ionosphere 0.718 0.718 0.000 0.718 0.718 0.644 0.658 0.715

iris 0.913 0.913 0.000 0.913 0.913 0.747 0.907 0.900

optdigits 0.497 0.419 0.072 0.499 0.366 0.499 0.716 0.855

std-yeast-cell 0.677 0.677 0.000 0.677 0.677 0.359 0.672 0.680

wine 0.944 0.939 0.003 0.944 0.938 0.393 0.371 0.927

that for this dataset the E -Split CE does not explore a severe splitting strategy:
as indicated in Table 5.1, this data set has 10 classes and 1000 samples, leading
to and interval {Kmin,Kmax} = {15,31} for E -Split, while the E -Hybrid uses the
values {10,12,15,20} for K . This suggests that the “mild” split strategy favors the
revelation of the intrinsic organization structure of the dataset. This is apparent when
we compare the empirical and “true” co-associations in the E -Split with the ones
in the E -Hybrid in Fig. 5.7, where the intrinsic 10-class structure is more clear in
E -Split. This leads to considerably better probabilistic cluster assignments from the
E -Split CE, as seen in Fig. 5.8. If we reorder samples within each “natural” cluster
in the co-association matrix, based on pairwise similarities, using for instance the
VAT algorithm [4], we obtain the matrix in Fig. 5.9. In this figure, we can observe
“microstructure” within each cluster, supposedly associated with writing styles; this
can justify the better adequacy of the split strategy for this data set.

5.8 Conclusions

In this chapter, we addressed the Evidence Accumulation Clustering paradigm as
a means of learning pairwise similarity between objects, summarized in a co-
association matrix. We revised the EAC as a kernel method for extracting rela-
tions between objects. We discussed several possible interpretations for the learned
co-associations, in particular the duality between similarity/data representation and
probabilistic interpretations, and exploited these in two consensus clustering meth-
ods: DR-EAC, a hard clustering method exploring embeddings over learned pair-
wise associations; and PEACE, a unified probabilistic approach leading to soft as-
signments of objects to clusters.
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Fig. 5.7 Optidigits data set. Co-association matrices and corresponding estimated co-occurrences
probabilities, as given by the PEACE algorithm

Fig. 5.8 Optidigits data set—probabilistic cluster assignments given by the PEACE algorithm on
the clustering ensembles E -Split and E -Hybrid
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Fig. 5.9 Optidigits data
set—reordered empirical
co-association matrix Ĉ for
the E -Split clustering
ensemble, evincing
micro-structure within each
digit class

The DR-EAC method was evaluated in comparison with the EAC, several di-
mensionality reduction techniques being studied. Although no DR algorithm con-
sistently outperformed all the others, this study showed that the use of dimensional-
ity reduction techniques in clustering ensembles presents interesting advantages in
accuracy and robustness. Future work is needed to study the influence of different
strategies to construct the clustering ensemble, and criteria for the choice of DR and
clustering algorithms.

PEACE obtains probabilistic cluster assignments through an optimization pro-
cess that maximizes the likelihood of observing the empirical co-associations given
the underlying object to cluster assignment model, which was shown to be equiv-
alent to minimizing the Kullback–Leibler divergence between the empirical co-
associations and the estimated “real” co-association distribution. When converting
soft assignments to hard clusterings, the method performed favorably as compared
with the EAC method for handling real data sets, and data with homogeneous clus-
ters. In addition, PEACE, by providing probabilistic cluster assignments to objects,
yields a richer level of information about cluster structure. Its poor performance on
complex structure data sets is the object of current investigation.
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Chapter 6
Geometricity and Embedding

Peng Ren, Furqan Aziz, Lin Han, Eliza Xu, Richard C. Wilson,
and Edwin R. Hancock

Abstract In this chapter, we compare and contrast two approaches to the problem
of embedding non-Euclidean data, namely geometric and structure preserving em-
bedding. Under the first heading, we explore how spherical embedding can be used
to embed data onto the surface of sphere of optimal radius. Here we explore both
elliptic and hyperbolic geometries, i.e., positive and negative curvatures. Our results
on synthetic and real data show that the elliptic embedding performs well under
noisy conditions and can deliver low-distortion embeddings for a wide variety of
datasets. Hyperbolic data seems to be much less common (at least in our datasets)
and is more difficult to accurately embed. Under the second heading, we show how
the Ihara zeta function can be used to embed hypergraphs in a manner which re-
flects their underlying relational structure. Specifically, we show how a polynomial
characterization derived from the Ihara zeta function leads to an embedding which
captures the prime cycle structure of the hypergraphs.

6.1 Introduction

A particularly interesting case in which the use of similarity-based representations
is highly relevant is when the data is abstracted in terms of graphs, a data structure
that is used extensively throughout computer science to represent relational data. For
instance, genomic data, shape/image data and documents can all be abstracted using
relational graphs [124]. Each of these applications can potentially involve large data
sets of tens of thousands or even millions of graphs. One of the challenges that
arise is that of knowledge discovery from large graph data sets. The tools that are
required in this endeavor are robust algorithms that can be used to organize, query
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and navigate such databases. Unfortunately, the manipulation of relational data has
proven more elusive than that of vectorial data. Also, lacking a canonical order or
correspondence between nodes, relational structures do not have a natural map to
a uniform feature space, and this makes the application of traditional feature-based
approaches problematic. On the other hand, it is quite natural to provide suitable
notions of distance (or similarity) between them, thereby making similarity-based
techniques particularly attractive.

The term “embedding” refers to any procedure that takes a set of (dis)similarities
as input and produces a vectorial representation of the data as output, such that the
proximities are either locally or globally preserved. This is an (approximate or ideal)
isometric mapping which finds a set of vectors in an instances-specific Euclidean
space that are capable of describing the data satisfactorily. One of the earliest and
best-known attempts towards this goal is multi-dimensional scaling (MDS) [125].
In MDS, the coordinates are assigned in such a way that a given set of dissimilarity,
similarity, or ordinal relations is preserved as closely as possible by the embedded
points. More recent approaches try to reduce the curse of dimensionality by infer-
ring a low dimensional manifold in which the data resides. The focus is either on
the local preservation of Euclidean distances [66] or by an approximation of suitably
re-defined (dis)similarities [7, 82]. However, here the emphasis is on finding a low-
dimensional representation of the feature space (often for visualization purposes)
rather than correcting non-geometric effects. There are conflicting reports of the
viability of these embedding procedures as a means to correcting non-(geo)metric
behavior [103, 126]. Other approaches to correcting the non-(geo)metricity of the
similarities range from changing the signature of the non-Euclidean directions mak-
ing it Euclidean [105, 109], to transforming all off-diagonal elements of the dissim-
ilarity matrix by a concave function [109, 127, 128], to adding a suitable constant
to all off-diagonal elements of the dissimilarity matrix to make it embeddable in
a Euclidean space [45, 105, 129]. Finally, we mention the “dissimilarity represen-
tation” introduced by Pekalska and Duin [109], described also in Chap. 2, which
is not based on corrections or approximations, but attempts instead to arrive at a
vectorial representation with a different interpretation of the given similarities. The
graph-drawing community [130] has made considerable progress in understanding
how to visualize complex graphs. This is a problem of generic importance, since
its solution involves embedding a graph in a low-dimensional space. In fact, the
topic of how to embed a graph in a low-dimensional manifold, although studied for
several decades by mathematicians [131], has recently attracted renewed interest
because of the need to visualize complex relational structures such as the internet.
Recently, there has been a significant convergence of effort with the machine learn-
ing, graphical models, algorithms and pattern recognition communities focusing on
the commonality of the task at hand. Despite this effort aimed at developing discrete
algorithms for manipulating large sets of graph-data, the problem of learning prob-
abilistic generative models from sets of relational data has received less attention.
Early efforts concentrated on how to extend ideas from string matching to graphs,
and led to the definition of similarity measures based on graph edit distance [84].
An alternative approach is to use graph-spectral approaches to replace the structural
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characterization of graphs with a geometric one. The first steps here were to explore
whether the spectrum of the Laplacian matrix could be used to characterize graphs
for the purposes of clustering [120]. More recently, ideas from spectral geometry
have been exploited in the manifold learning community to understand the rate of
convergence of the discrete and continuous Laplacians [132].

Despite the growing interest around embedding, the search for robust embed-
dings procedures on structured data such as weighted graphs has proven elusive,
and their geometric and probabilistic characterizations still remains to be explored
in depth. In a prior work [108], we have explored the link between the curvature
associated with an edge and the embedding coordinates of nodes. The first approach
to this problem involved estimating the curvature of edges, using the difference be-
tween geodesic and Euclidean distances for standard embeddings. This has been
explored using both the Laplacian embedding and the heat-kernel embedding, and
the latter provides more flexibility due to the inclusion of a time parameter. The sec-
ond approach to the problem has been to embed nodes of a graph onto a manifold
of fixed Gaussian curvature using Kruskal coordinates. However, while the former
approach is spectral and hence simple, it does not allow the curvature of the mani-
fold to be controlled. The second approach, on the other hand, allows curvature to
be specified but does not have a spectral realization. In the SIMBAD project, we ex-
plored in depth the geometric nature of the embeddings that result from the spectral
analysis of graphs. To this end, we drew on ideas from spectral geometry to extract
differential invariants from the graph-spectra. With the geometric characterization
to hand, we aimed to construct probabilistic models that can account for the distri-
butions of the invariants. Within this strand, we also investigated approaches that,
instead of approximating the original (dis)similarities by Euclidean distances, try to
preserve the underlying group structure of the data, thereby bringing us back to the
geometric domain and hence allowing us to apply standard methods.

The overall goal of the work described in this chapter is that, given some dissim-
ilarity data describing objects of interest, we wish to develop algorithms for trans-
forming them into instance-specific spatial representations (embeddings) that are
suitable for geometric learning algorithms. In particular, we focus on the following
classes of method:

• Spectral and geometric manifold embedding
• Structure-preserving embedding

Under the first bullet, within SIMBAD our aim was to develop spectral methods for
embedding weighted graphs in a geometrically meaningful way, and using the re-
sulting embeddings to construct generative models for graph structure. In particular,
we aimed at developing spectral methods for embedding with guaranteed curvature
properties. The route is provided by the spherical embeddings, where we analyze the
links between the radius of curvature and the statistics of the dissimilarity data. This
idea has its routes in recently developed methods for representing the statistics on
manifolds [121]. With the embedding to hand, we use Principal Geodesic Analysis
(PGA) [116] to construct classifiers for the embedded data.
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The second bullet implies a category of embedding methods with a fundamen-
tally different focus: instead of approximating the original (dis)similarities by Eu-
clidean distances, these approaches try to preserve the underlying group structure
of the data. Here we turn a the Ihara zeta function to capture invariances of graphs
at the level of prime cycles. We aim at devising model-specific embedding proce-
dures that preserve the underlying structure of the graphs and hypergraphs. Such
embeddings then allow us to apply the whole arsenal of data preprocessing methods
that have been developed for vectorial data over the last decades. The next chap-
ter describes another approach to structure-preserving embedding in the context of
clustering.

6.1.1 Curvature Dependent Embedding

Many pattern recognition problems can be posed in terms of measuring the dissim-
ilarities between a set of objects. This is a very general approach, as it is a superset
of the classic feature-based approach. Nearly all approaches to recognition involve
measuring a dissimilarity or distance and classifying on this basis. One approach to
this problem is to embed objects into a vector-space using techniques such as mul-
tidimensional scaling or ISOMAP [102]. Once embedded in such a space then the
objects can be characterized by their embedding co-ordinate vectors, and analyzed
in a conventional manner using Euclidean distance.

There are, however, some limits to this paradigm; Euclidean distances are al-
ways definite and are intrinsically unable to represent dissimilarities which are in-
definite. We discuss the issue of indefinite dissimilarities in more detail in the next
section. In practice, many dissimilarity measures are indefinite; examples include
shape-similarities, and distance measures used in gesture interpretation and graph
comparison, but there are many more. Any method of comparison which relies on
local alignment or variable local control parameters has the potential to produce
indefinite (non-Euclidean) dissimilarities.

One alternative is to ‘correct’ the data to remove the indefinite part. However,
as the analysis of Chap. 2 has shown (see also [103]), there is potentially useful
information in the non-Euclidean part of the dissimilarities, and removing this can
result in worse performance. Another alternative is to embed the data in a pseudo-
Euclidean space, i.e., one where certain dimensions are characterized by negative
eigenvalues and the squared-distance between objects has positive and negative
components which sum together to give the total distance. A pseudo-Euclidean
space is, however, non-metric, which makes it difficult to correctly compute the
geometric quantities required by many classifiers. This is because locality is not
preserved in this space; two points which are far apart can both be close to a third
point.

A third alternative, which we explore here, is to use a non-Euclidean, but metric,
embedding space. A Riemannian manifold is curved, and the geodesic distances are
metric. However, they can also be indefinite and so can represent indefinite dissim-
ilarities. In this chapter, we explore the embedding of objects onto the hypersphere
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with its associated spherical geometry. Non-Euclidean embeddings have been re-
ported elsewhere in the literature. For example, Lindman and Caelli have studied
both spherical and hyperbolic embeddings in the context of interpreting psycholog-
ical data [104]. Cox and Cox [105] describe multidimensional scaling constrained
to a spherical space and optimize the stress to find a good embedding. Shavitt and
Tankel have used the hyperbolic embedding as a model of internet connectivity
[106]. Hubert et al. have investigated the use of unidimensional embeddings on cir-
cles [107]. Robles-Kelly and Hancock [108] preprocess the available similarity data
so that it conforms either to elliptic or hyperbolic geometry. In practice, the former
corresponds to a scaling of the distance using a sine function, and the latter scaling
the data using a hyperbolic sine function.

6.1.2 Graph Characteristics and Zeta Functions

Various statistical methods are available for learning patterns represented by vec-
tors. However, these statistical methods are not suitable for structured data such as
trees, graphs and hypergraphs. This is because structural patterns cannot be easily
converted into vectors, and the difficulties arise in several aspects. First, there is no
natural ordering for the vertices in an unlabeled structure, and this is in contrast
to vector components that have a natural order. Second, the variation within a par-
ticular graph class may result in subtle changes in structures of individual graphs.
This may involve different vertex set and edge set cardinalities for graphs drawn
from the same class. Moreover, subspaces (e.g., eigenspaces) spanned by the matrix
representations of graphs with different vertex set cardinalities are of different di-
mensions, and thus pattern vectors residing in the resulting subspaces would be of
different lengths. All these difficulties need to be addressed if we want to apply the
existing statistical methods to learning with structural patterns.

The task of structural characterization is to characterize classes of structural pat-
terns into a feature space where statistical learning methods can be readily applied.
To this end, the key issue is to extract from structural patterns a set of characteris-
tics which not only exactly describe the individual structures but also capture the
variations between/within the structure classes. In this regard, the most straight-
forward characteristics for graphs are the topological properties, such as vertex set
cardinality, edge density, graph perimeter and volume [48]. Furthermore, by mea-
suring the topological difference between graphs, graph edit distance can be neatly
defined [67]. Bunke et al. [28, 57, 58] embed graphs into a feature space by us-
ing kernel strategies which adopt edit distance as a similarity measure. Within such
graph characterization frameworks, graphs can be easily classified by using sta-
tistical learning approaches such as SVM. Although the topological features have
a straightforward meaning concerning the structures, they are hard to enumerate
for objects with a considerable size. The computational complexity for edit dis-
tance is exponential to the cardinality of the vertex set and is usually computa-
tionally prohibitive in practice, unless approximations are made subject to certain
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constraints [57]. These shortcomings limit the direct use of topological properties
for the purpose of structural characterization.

Another approach to graph characterization is to extract alternative vertex per-
mutation invariant characteristics straightforwardly from the matrix representations
of graphs. Here the initial matrix representation M can be based either on the adja-
cency matrix, the Laplacian matrix or the signless Laplacian [22]. The definition of
the adjacency matrix A for a graph G(V,E) is as follows

Auv =
{
w(u,v) if {u,v} ∈E;
0 otherwise;

(6.1)

where w(u,v) is the weight attached to the edge {u,v}. For an unweighted graph,
w(u,v) is 1 if there is an edge between vertices u and v. The degree of a vertex
u ∈ V , denoted by d(u), is defined as

d(u)=
∑

v:{v,u}∈E
w(u, v). (6.2)

For an unweighted graph, the degree of a vertex is simply the number of vertices
adjacent to it. For a graph G(V,E) with |V | =N , the matrix

D = diag
(
d(v1), d(v2), . . . , d(vN)

)
,

with the vertex degrees on the diagonal and zeros elsewhere is referred to as the
degree matrix.

The Laplacian matrix L of a graph G(V,E) is defined as L = A − D, with
entries

Luv =
⎧
⎨

⎩

W(u,v) if {u,v} ∈E;
−d(u) if u= v;
0 otherwise.

(6.3)

The matrix representation can be characterized using its eigenvalues sp(M) and
eigenvectors (i.e., using spectral graph theory). For instance, Luo, Wilson and Han-
cock [48] have made use of graph spectra to construct a set of handcrafted per-
mutation invariant spectral features for the purpose of clustering graphs. Kondor
et al. [42] have presented an approach to extracting the skew spectrum from the ad-
jacency matrix of a graph up to a combinatorial transformation, and incorporated
it into SVM kernels for the classification of chemical molecules. Furthermore, the
same authors have refined their spectral method by considering the number as well
as the position of labeled subgraphs in a given graph [43]. Though the spectral fea-
tures appear to be less related to graph topology than the straightforward topological
characteristics, the Laplacian spectra give a competitive performance in clustering
graphs over various alternative methods [92].

For the graph matrix representation M , the coefficients of its characteristic poly-
nomial det(λI −M) can also be taken as graph characteristics. These coefficients
are closely related to the eigenvalues of M , i.e., the graph spectrum. Brooks [11]
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has generalized the computation of the coefficients of the characteristic polynomial
using three different methods. His first method is to express the coefficients in terms
of the eigenvalues of the matrix representation, his second method uses the relation-
ship between the coefficients and the kth derivative of the associated determinant,
and the third method is a brute force method using matrix elements. Thus, it is clear
that the eigenvalue-based and polynomial-based approaches are closely related to
each other and can lead to a number of practical graph characterizations. In this
regard, pioneering research can be found in Wilson, Hancock and Luo’s work [91]
which shows how to extract a rich family of permutation invariants from a graph by
applying elementary symmetric polynomials to the elements of the spectral matrix
derived from the Laplacian matrix.

An alternative possible characterization method that has received relatively little
attention in the computer vision and pattern recognition community is provided by
the zeta functions. In number theory, the Riemann zeta function is determined by
the locations of the prime numbers. Bai, Wilson and Hancock [3] have explored the
use of a modified version of the Riemann zeta function as a means of characterizing
the shape of the heat kernel trace of a graph. They have also shown that the deriva-
tive of the zeta function at the origin is related to the determinant of the Laplacian
matrix. Another natural extension of the Riemann zeta function from prime num-
bers to graphs is the Ihara zeta function. The Ihara zeta function is determined by
the set of prime cycles on a graph, and is detailed in [39] and [40]. Hashimoto [35]
subsequently deduced explicit factorizations for bi-regular bipartite graphs. Bass
[6] has generalized Hashimoto’s factorization to all finite graphs. Stark and Terras
[78–80] have published a series of articles on the topic. They commence by present-
ing a survey of the Ihara zeta function and its properties. Their novel contribution
is to generalize the Ihara zeta function to develop edge and path based variants.
Recently, Storm has further developed and refined the Ihara zeta function for hyper-
graphs [81].

The Ihara zeta function draws on the reciprocal of a polynomial associated with
a graph and is hence akin to methods from algebraic graph theory. However, it also
relies upon a graph transformation. This is an interesting observation since the quest
for improved alternatives to the adjacency and Laplacian matrices has been a long-
standing quest in spectral graph theory. Recently, the signless Laplacian (i.e., the
degree matrix plus the adjacency matrix) has been suggested. However, Emms et al.
[25–27] have recently drawn on ideas from quantum computing [32, 72] and have
shown that a unitary matrix characterization of the oriented line graph can be used to
reduce or even completely lift the cospectrality of certain classes of graph, includ-
ing trees and strongly regular graphs [15]. This points to the fact that one poten-
tially profitable route to improving methods from spectral graph theory may reside
in graph transformation.

Although the Ihara zeta function has been widely investigated in the mathematics
literature [5, 44, 51, 68, 70, 97], it has received little attention as a means of charac-
terizing graphs in machine learning. Furthermore, to be rendered tractable for real
world problems in pattern recognition, the issue of how to generate stable pattern
vectors from the Ihara zeta function must be addressed. Zhao et al. [100] have re-
cently used Savchenko’s formulation of the zeta function [69], expressed in terms
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of cycles, to generate merge weights for clustering over a graph-based representa-
tion of pairwise similarity data. Their formulation is based on a representation of
oriented line graphs, which is an intermediate step in the development of the Ihara
zeta function studied in this work. Watanabe et al. [89] have presented an approach
to the analysis of Loopy Belief Propagation (LBP) by establishing a formula that
connects the Hessian of the Bethe free energy with the edge Ihara zeta function.

In this chapter, we turn to the Ihara zeta function as a tool for structure-preserving
embedding. The motivation here is twofold: first, the Ihara zeta function is deter-
mined by cycle frequencies, and thus capable of reflecting graph topologies; sec-
ond, the Ihara zeta function can be expressed in a polynomial form of a transformed
graph such that certain polynomial and spectral analysis can be done based on it.
These properties of the Ihara zeta function allow it to naturally incorporate topolo-
gies, spectra and polynomials into a unifying representation, and thus enable it to
have the potential to result in a rich family of structural characteristics.

6.1.3 Graph Representations for Pattern Recognition

This section reviews the various graph representations used in pattern recognition,
not restricted to graph characterization. Graph-based methods are widely used in
solving problems in computer vision and pattern recognition at different levels of
feature abstraction. Early work related to graph-based representations focuses on
identifying subgraph isomorphism [85] or measuring edit distance [67] for the pur-
pose of structural pattern recognition. These methods enumerate the node attributes
to obtain an optimal solution to certain cost functions. Therefore, graphs are not
characterized in a mathematically consistent way by using these methods. How-
ever, this shortcoming can be overcome by adopting graph spectral methods [20]
for graph characterization. In addition to representing graphs in terms of vertex set
and edge set, another graph representation used in spectral graph theory is adja-
cency matrix or Laplacian matrix. Each entry of the matrix is associated with the
pairwise relationship between two vertices, and the indices of the entry represent
labels for the two vertices. By using the matrix representations, graphs can be pro-
cessed in a computationally efficient and consistent way, because existing comput-
ing algorithms for matrices can be straightforwardly applied to graphs. Therefore,
many statistical pattern recognition algorithms can directly work on graph-based
data once the matrix representations are established. One good example is to for-
mulate the problem of clustering as that of computing the principal eigenvector of
the normalized affinity matrix for a graph [90]. Furthermore, Zass et al. [98] have
shown how to provide a probabilistic interpretation for this formulation by develop-
ing a completely positive factorization scheme. On the other hand, Shi et al. have
[77] presented a method based on the normalized Laplacian matrix rather than the
normalized affinity matrix. Their method is referred to as normalized cut because
it is capable of balancing the cut and the association. Robles-Kelly et al. [59] have
introduced a probabilistic framework based on a Bernoulli model which adopts EM
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algorithm for extracting the leading eigenvector as the cluster membership indica-
tors. Pavan and Pelillo [53] have formulated the problem of pairwise clustering as
that of extracting the dominant set of vertices from a graph (see also Chap. 8). Based
on this notion, Rota Bulò et al. have developed game-theoretic approaches [4, 12] to
partial clique enumeration [62] and hypergraph clustering [63, 64]. Qiu et al. [54]
have characterized the random walk on a graph using the commute time between
vertices and proved that the commute time matrix is a more robust measure of the
proximity of data than the raw proximity matrix. Behmo et al. [8] have exploited
the formulation based on commute times as a manner of image representation. Fur-
thermore, some researchers have investigated the problem of graph based learning
by incorporating the path-based information between vertices as a replacement of
pairwise similarity. Representative work includes Path-Based Clustering [29] and
the sum-over-paths covariance kernel [49].

Different from clustering graph vertices, the research on graph embedding aims
to seek a low dimensional coordinates for the vertices. This is often conducted in
a manifold learning scenario, where certain local features of the manifold under-
lying the original data are preserved. Based on a similar notion to normalized cut,
Belkin et al. [7] have presented a graph embedding framework called Laplacian
eigenmaps for dimensionality reduction. Other notable manifold learning methods
include ISOMAP [82] and LLE [66]. These manifold learning methods adopt dif-
ferent cost functions and thus result in different local structure preservations. Re-
cently, Yan et al. [94] have generalized traditional embedding methods such as PCA
by using a graph embedding framework and extended it into non-negative versions
[47, 88, 96]. Shaw et al. [75] have introduced an embedding strategy which pre-
serves the global topological properties of an input graph.

A preliminary step for all these graph-based methods (both for clustering and em-
bedding) is to establish a graph over the training data. Data samples are represented
as vertices of the graph and the edges represent the pairwise relationships between
them. The methods for establishing a graph and measuring vertex similarities (i.e.,
edge weights) have a great influence on the subsequent graph-based learning al-
gorithms. Therefore, the process of graph construction has recently attracted much
research interest [23, 41, 50] as it remains only partially solved.

In addition to representing the pairwise relationship within a training data set
(i.e., normalized cut, ISOMAP and LLE), graph-based methods also play an impor-
tant role in learning with structured data. Problems of this kind arise when training
data are not represented in vectors but in terms of relational structures such as trees
and graphs. In this case, learning algorithms which admit structured data are needed.
For example, the problem of discovering shape and object categories is frequently
posed as one of clustering a set of graphs. This is an important process since it
can be used to organize large databases of graphs in a manner that renders retrieval
efficiency [71].

The strategies for learning with structured data can be roughly classified into two
categories. The first is the graph characterization methods reviewed in Sect. 6.1.2.
The second is to develop specific learning algorithms which admit individual graphs
or trees as input. For the second category, a similarity between structured data sam-
ples is defined and traditional learning schemes are applied based on the pairwise
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similarities between structured data samples. For example, graph similarities can be
computed by using tree or graph edit distance and structured objects are assigned to
classes using pairwise clustering [14, 83]. However, the use of pairwise similarities
alone is a rather crude way to capture the modes of variation present in graphs of
a particular class. Moreover, it requires the computation of vertex correspondences
which is sometimes an unreliable process. The graph kernels [55, 87] overcome this
problem to a certain degree by naturally incorporating vertex correspondences into
the process of learning. This is effected by the learning process in which every pair
of vertices drawn separately from two graphs are compared to obtain an entry of
the kernel matrix. However, the process of vertex enumeration gives rise to com-
putational inefficiency. Although fast computational scheme [76] has recently been
proposed, these methods still undergo heavy computational overheads. In contrast
to the graph kernel strategies, graph characterization methods would be more effi-
cient if pattern vectors are suitably established, because it avoids enumerating the
comparisons between every pair of vertices.

6.1.4 Hypergraph Representations for Pattern Recognition

There has recently been an increasing interest in hypergraph-based methods for
representing and processing structures where the relations present are not simply
pairwise [19, 122, 123]. The main reason for this trend is that hypergraph represen-
tations allow vertices to be multiply connected by hyperedges and can hence cap-
ture multiple relationships between features. Due to their effectiveness in represent-
ing multiple relationships, hypergraph-based methods have been applied to various
practical problems such as partitioning netlists [33] and clustering categorial data
[30]. For visual processing, to the best of our knowledge, the first attempt at repre-
senting visual objects using hypergraphs dates back to Wong et al.’s [93] framework
for 3D object recognition. In this work, a 3D object model based on a hypergraph
representation is constructed, and this encodes the geometric and shape informa-
tion with polyhedrons as vertices and hyperedges. Object synthesis and recognition
tasks are performed by merging and partitioning the vertex and hyperedge set. The
method is realized using set operations and the hypergraphs are not characterized in
a mathematically consistent way. Later, Bretto et al. [10] introduced a hypergraph
model for image representation, where they successfully and simultaneously solved
the problems of image segmentation, noise reduction and edge detection. However,
their method also relies on a crude form of set manipulation. Agarwal et al. [1] have
performed visual clustering by partitioning a weighted graph transformed from the
original hypergraph by a weighted sum of its hyperedges into the graph edge. Re-
cently, Rota Bulò et al. [61] have established a hypergraph model for estimating
affine parameters in vision problems. Bunke et al. [13] have developed a hypergraph
matching algorithm for object recognition, where consistency checks are conducted
on hyperedges. The computational paradigm underlying their method is based on
tree search operations. Zass et al. [99] and Duchenne et al. [24] have separately ap-
plied high-degree affinity arrays (i.e., tensors) to formulating hypergraph matching
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problems up to different cost functions. Both methods address the matching process
in an algebraic manner but must undergo intractable computational overheads if hy-
peredges are not suitably sampled. Shashua et al. [73, 74] have performed visual
clustering by adopting tensors for representing uniform hypergraphs (i.e., those for
which the hyperedges have identical cardinality) extracted from images and videos.
Their work have been complemented by He et al.’s algorithm for detecting number
of clusters in tensor-based framework [38]. Similar methods include those described
in [16–18, 31, 63, 64], in which tensors (uniform hypergraphs) have been used to
represent the multiple relationships between objects. Additionally, tensors have re-
cently been used to generalize dimensionality reduction methods based on linear
subspace analysis into higher orders [36, 37, 86, 95]. However, the tensor repre-
sentation considers all possible permutations of a subset of vertices and establishes
hyperedges with cardinality consistent with the relational order. Therefore, tensors
can only represent uniform hypergraphs, and are not suited for nonuniform hyper-
graphs (i.e., hypergraphs with varying hyperedge cardinalities).

One common feature of these existing hypergraph representations is that they ex-
ploit domain specific and goal directed representations. Specifically, most of them
are confined to uniform hypergraphs and do not lend themselves to generalization.
The reason for this lies in the difficulty in formulating a nonuniform hypergraph in a
mathematically neat way for computation. There has yet to be a widely accepted and
consistent way for representing and characterizing nonuniform hypergraphs, and
this remains an open problem when exploiting hypergraphs for machine learning.
Moreover, to be easily manipulated, hypergraphs must be represented in a mathe-
matically consistent form, using structures such as matrices or vectors.

Since Chung’s [21] definition of the Laplacian matrix for K-uniform hyper-
graphs, there have been several attempts to develop matrix representations of hyper-
graphs. To establish the adjacency matrix and Laplacian matrix for a hypergraph,
an equivalent graph representation is often required. Once the graph approximation
is at hand, its graph representation matrices (e.g., the adjacency matrix (6.1) and
the Laplacian matrix (6.3)) are referred to as the corresponding hypergraph repre-
sentation matrices. It is based on these approximate matrix representations that the
subsequential processes of hypergraphs (e.g., high order clustering and matching)
take place. Agarwal et al. [2] have compared a number of alternative graph rep-
resentations [9, 30, 46, 60, 101] for hypergraphs and explained their relationships
with each other in machine learning. One common feature for these methods, as
well as the method in [1], is that a weight is assumed to be associated with each
hyperedge. Additionally, the graph representations for a hypergraph can be clas-
sified into two categories: (a) the clique expansion [1, 9, 30, 60] and (b) the star
expansion [46, 101]. The clique expansion represents a hypergraph by construct-
ing a graph with all pairs of vertices within a hyperedge connecting to each other.
The star expansion represents a hypergraph by introducing a new vertex to every
hyperedge, and constructing a graph with all vertices within a hyperedge connect-
ing to the newly introduced vertex. In both strategies, each edge in each individual
graph representation is weighted in a manner determined by the corresponding hy-
peredge weight in a task-specific way that is different from others. Moreover, these
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graph-based representations for hypergraphs are just approximations and give rise
to information loss, as reported in [1]. This deficiency may result in ambiguities
when the approximation methods are used to distinguish structures with different
relational orders.

To address these shortcomings, an effective matrix representation for hyper-
graphs is needed, such that the ambiguities of relational order can be overcome.
To this end, trivial graph approximations should be avoided for hypergraph repre-
sentation. In the mathematics literature, the definitions of the Ihara zeta function has
recently been extended from graphs to hypergraphs [81]. In the determinant form of
the Ihara zeta function, a graph representation is also used for describing the hyper-
graph. However, this graph representation uses color edges to capture the hyperedge
connectivity and does not result in information loss regarding relational order. We
will make a polynomial analysis of the hypergraph Ihara zeta function and develop a
family of features that readily characterize hypergraphs into a feature space suitable
for hypergraph clustering.

6.2 Spherical Embedding

In this section, we detail work undertaken in SIMBAD aimed at developing a
curvature-dependent embedding of dissimilarity data. The idea is to embed the data
on an hypersphere of optimal radius, and then perform pattern analysis tasks such
as variance analysis and classification in the tangent space to the sphere.

6.2.1 Indefinite Spaces

We begin with the assumption that we have a set of objects of interest and have
measured a set of dissimilarities or distances between all pairs of objects in our
problem. This is denoted by the matrix D, where Dij is the distance between objects
i and j . We can define an equivalent set of similarities by using the matrix of squared
distances D′, where D′ij = D2

ij . This is achieved by identifying the similarities as

− 1
2 D′ and centering the resulting matrix:

S=−1

2

(
I− 1

n
J
)

D′
(

I− 1

n
J
)
. (6.4)

Here J is the matrix of all-ones, and n is the number of objects. In a Euclidean space,
this procedure gives exactly the inner-product or kernel matrix for the points.

If S is positive semi-definite, then the original distances are Euclidean and we
can use the kernel embedding to locate positions xi for the points in a Euclidean
space as follows:

S = USΛΛΛSUT
S =XXT , (6.5)
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X = USΛΛΛ
1
2
S , (6.6)

where US and ΛΛΛS are the eigenvector and eigenvalue matrices of S, respectively.
The position-vector xi of the ith point corresponds to the ith row of X.

If S is indefinite, which is often the case, then the objects cannot exist in a Eu-
clidean space with the given distances. This does not necessarily mean the distances
are non-metric; metricity is a separate issue. One measure of the deviation from def-
initeness which has proved useful is the negative eigenfraction (NEF) which mea-
sures the fractional weight of eigenvalues which are negative [109]:

NEF=
∑

λi<0 |λi |∑
i |λi |

. (6.7)

If NEF= 0, then the data is definite and can be represented by points in a Euclidean
space. We can measure the non-metricity of the data by counting the number of
violations of metric properties. It is very rare to have an initial distance measure
which gives negative distance, so we will assume than the distances are all positive.
The two measures of interest are then the fraction of triples which violate the triangle
inequality (TV) and the degree of asymmetry of the distances (γ ) [103]:

γ =
∑

i 
=j

|d̃(i, j)− d̃(j, i)|
|d̃(i, j)+ d̃(j, i)| , (6.8)

where d̃(·, ·) is the dissimilarity scaled so that the average dissimilarity is one.
If the data is metric (or, in practice, close to metric) but indefinite then we must

use a curved space to embed the points.

6.2.2 Spherical Space

A spherical space is an example of a Riemannian manifold. On the manifold, dis-
tances are measured by geodesics (the shortest curve between points), and geodesic
distances are metric. Spherical space is curved, however, and so the distances are
fundamentally non-Euclidean and in general the similarity matrix of points in spher-
ical space will be indefinite. This makes it a potential choice for representing non-
Euclidean datasets.

A manifold embedding is important because it allows the use of geometric and
statistical tools on the embedded points. On a Riemannian manifold, distances are
defined between any pair of points in the manifold in a consistent way (not just
between the sample data-points). Geodesic distance is defined as the length of the
shortest curve which joins two points (the curve is known as a geodesic), and is a
metric. Geodesics are the equivalent of straight lines in Euclidean space, and allow
us to construct a geometry in curved space. We can also compute statistics such as
the mean in a way consistent with the normal Euclidean definition. This means that
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all the standard classifiers can be applied (at least in theory) to the data, but the exact
formulation will differ from vector-space classifiers.

The spherical manifold in 2D is isomorphic to the 2D surface of a sphere embed-
ding in 3D space, which has a well-known parametric form. Here r is the radius of
the sphere, u is the azimuth angle and v is the zenith angle;

x= (r sinu sinv, r cosu sinv, r cosv)T . (6.9)

This geometry generalizes to an (n− 1)-dimensional hypersphere embedded in
an n-dimensional Euclidean space. The surface can be defined implicitly using the
constraint

∑

i

x2
i = r2 (6.10)

where r is the radius of the hypersphere. This surface is curved and has a constant
sectional curvature of K = 1/r2 everywhere.

The geodesic distance between two points in curved space is the length of the
shortest curve lying in the space and joining the two points. On the hypersphere,
the geodesic is a great circle. The distance is the length of the arc of the great circle
which joins the two points. If the angle subtended by two points at the center of the
hypersphere is θij , then the distance between them is

dij = rθij . (6.11)

With the coordinate origin at the center of the hypersphere, we can represent a point
by a position vector xi of length r . Since the inner product is 〈xi ,xj 〉 = r2 cos θij ,
we can also write

dij = r cos−1 〈xi ,xj 〉
r2

. (6.12)

6.2.3 The Exponential Map

Our procedure for embedding points on a sphere requires one important tool of
Riemannian geometry, which is the exponential map. The exponential map is a map
from points on the manifold to points on a tangent space of the manifold. As the
tangent space is flat (i.e., Euclidean), we can calculate quantities in a straightforward
way. The map has an origin, which defines the point at which we construct the
tangent space of the manifold. The formal definition of the exponential map is the
map which connects the Lie algebra on the tangent space to the Lie group which
defines the manifold. We will not concern ourselves with the technical details here,
but the map has an important property which simplifies geometric computations; the
geodesic distance between the origin of the map and a point on the manifold is the
same as the Euclidean distance between the images of the two points on the tangent
space. Formally, the definition of these properties as follows: Let TM be the tangent
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space at some point M on the manifold, P be a point on the manifold and X a point
on the tangent space. We have

X = LogM P, (6.13)

P = ExpM X, (6.14)

dg(P,M) = de(X,M). (6.15)

The Log and Exp notation defines a log-map from the manifold to the tangent space
and an exp-map from the tangent space to the manifold. This is a formal notation
and does not imply the normal log and exp functions—although they do coincide
for some types of data, they are not the same for the spherical space. M is the origin
of the map and is mapped onto the origin of the tangent space. The distance dg(·, ·)
is the geodesic distance on the manifold and de(·, ·) the Euclidean distance on the
tangent space.

For the spherical manifold, the exponential map is as follows. We define a point
P on our manifold as a position vector p with length r (the origin is at the center of
the hypersphere). Similarly, the point M is represented by the vector m, and M is
the origin of the map. The maps are then

x = θ

sin θ
(p−m cos θ), (6.16)

p =m cos θ + sin θ

θ
x, (6.17)

dg(P,M) = de(X,M)= |x| = rθ, (6.18)

where θ = cos−1〈p,m〉/r2. The vector x is the image of P in the tangent space, and
the image of M is at the origin of the tangent space.

6.2.4 Spherical Embedding

Given a dissimilarity matrix D, we want to find the embedding of a set of points on
the surface of a hypersphere of radius r , such that the geodesic distances are as sim-
ilar as possible to D. Unfortunately, this appears to be a hard problem, and therefore
we use an approximate optimization-based approach. We simplify the problem by
considering just the distances to a single point at a time. Let the point of interest
be pi ; we then want to find a new position for this point on the hypersphere such
that the geodesic distance to point j is d∗ij where ∗ denotes that this is the target
distance. We formulate the estimation of position as a least-squares problem which
minimizes

E =
∑

j 
=i

(
d2
ij − d∗2ij

)2
, (6.19)
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where dij is the actual distance between the points. This is a similar formulation to
[105] and other approaches to non-Euclidean multidimensional scaling, who seek to
minimize the ‘stress’. Direct optimization on the sphere is complicated by the need
to restrict points to the manifold. However, as we are considering a single point
at a time, we can construct a linear embedding using the log-map and optimize in
the Euclidean space. This is a different approach to that of [105]. If the current
point-positions on the hypersphere are pj , ∀j , we can use the log-map to obtain
point-positions for each object in the tangent space of xj , ∀j as follows:

xj = Logpi
pj = θij

sin θij
(pj − pi cos θij ) (6.20)

with xi = 0.
We have found standard optimization schemes to be infeasible on larger datasets,

so here we propose a gradient descent scheme with optimal step-size. In this iterative
scheme, we update the position of the point xi in the tangent space to obtain a better
fit to the given distances. At iteration k, the point is at position x(k)

i . Initially, the

point is at the origin, so x(0)
i = 0. Since the points lie in tangent space, which is

Euclidean, we then have d2
ij = (xj − xi )

T (xj − xi ) and gradient of the error is

∇E = 4
∑

j 
=i

(
d2
ij − d∗2ij

)
(xi − xj ), (6.21)

and our iterative update procedure is

x(k+1)
i = x(k)

i + η∇E. (6.22)

Finally, we can determine the optimal step size as follows: let Δj = d2
ij − d∗2ij

and αj =∇ET (xi − xj ), then the optimal step size is the smallest root of the cubic

n|∇E|2η3 + 3|∇E|2
(∑

j

αj

)
η2 +

(
2

∑

j

α2
j + |∇E|2

∑

j

Δj

)
η+

∑

j

αjΔj .

(6.23)
This step-size is optimal in the sense that it minimizes the error in the direction of
the gradient.

After finding a new point position xi , we apply the exp-map to locate the new
point position on the spherical manifold

p′i = pi cos θ + sin θ

θ
xi . (6.24)

6.2.4.1 Classifiers in the Manifold

As well as embedding distances on the spherical manifold, it is important to be able
to perform operations such as classification in the manifold. Some classifiers are
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trivially implemented on a spherical manifold, for example, the nearest-neighbors
(NN). Others which utilize geometry must be modified to incorporate the non-
Euclidean geometry of curved space. Here we discuss the nearest mean classifier
(NMC) in a non-flat manifold.

The intrinsic mean of a set of points on the manifold may be computed via the
generalized mean [116]

P̄ = arg min
P

∑

i

dg(P,Pi). (6.25)

We can solve for the mean of a set of points in a manifold using the following
iterative procedure involving the exponential map [116]:

m(k+1) = Expm(i)

1

n

∑

i

Logm(i) pi . (6.26)

While the convergence of this process is not guaranteed in a general manifold, it is
well behaved on the hypersphere [116]. As a result, we can compute the means of
each class m1, . . . ,mC and implement the NMC:

c∗ = arg min
c

[
r cos−1 〈x,mc〉

r2

]
. (6.27)

6.2.5 Experimental Results

We have applied our embedding method to a number of indefinite datasets. These
are summarized in Table 6.1, along with their degree of indefiniteness, as measured
by the negative eigenfraction (Eq. (6.7)). These datasets are produced by dissim-
ilarity measures applied to a variety of real world problems. The Coil datasets are
produced by graph-matching algorithms applied to corner-graphs of some of the ob-
jects in the COIL database [52, 119], using graduated assignment [118] (CoilYork)
and the JoEig approach [110] (CoilDelftDiff and CoilDelftSame). The CatCortex
data gives the similarity between different cortical regions in terms of connectivity
[111]. The DelftGestures dataset consists of the dissimilarities computed from a set
of gestures in a sign-language using a dynamic time warping procedure [112]. The
FlowCyto series of datasets is based on the L1-norm dissimilarities between flow-
cytometer histograms of breast cancer tissues. The data were acquired by M. Nap
and N. van Rodijnen of the Atrium Medical Center in Heerlen, The Netherlands,
during 2000–2004. Newsgroups is a small subset of the 20 Newsgroups data of
Roweis. The ProDom dataset is a set of dissimilarities derived from the structural
matching of protein domain sequences [113]. WoodyPlants50 is a dataset of shape
dissimilarities between plant leaves [114]. The Zongker dissimilarities are based on
deformable template matching between 2000 handwritten digits in 10 classes [115].
Finally, the Chickenpiece dataset is another set of shape dissimilarities derived from
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Table 6.1 Properties of datasets used

Dataset Size NEF Triangle violations Asymmetry

CoilYork 288 0.258 1/23639616 0.009

DelftGestures 1500 0.308 14798/3368253000 0

FlowCyto-1 612 0.275 272052/228098520 0

FlowCyto-2 612 0.268 161517/228098520 0

FlowCyto-3 612 0.275 272879/228098520 0

FlowCyto-4 612 0.272 268991/228098520 0

Newsgroups 600 0.202 4643/214921200 0

Chickenpieces-5 446 0.216 0/88120680 0.044

Chickenpieces-10 446 0.257 1/88120680 0.046

Chickenpieces-15 446 0.286 74/88120680 0.051

Chickenpieces-20 446 0.307 695/88120680 0.057

Chickenpieces-25 446 0.320 1375/88120680 0.063

Chickenpieces-30 446 0.331 3188/88120680 0.067

Chickenpieces-35 446 0.339 4834/88120680 0.073

Chickenpieces-40 446 0.345 7549/88120680 0.076

CatCortex 65 0.272 286/262080 0

CoilDelftDiff 288 0.128 1/23639616 0

CoilDelftSame 288 0.027 0/23639616 0

WoodyPlants50 791 0.229 115253/493038210 0

ProDom 2604 0.043 136/17636907624 0

Zongker 2000 0.419 6583656/7988004000 0.051

string-edit distance on the contours of chicken piece silhouettes [103]. This data
has a number of controllable parameters which influence the indefinite nature of
the dissimilarities. Here we use and edit cost of 45 and a variety of contour lengths
(5,10,15,20,25,30,35,40).

We characterize the accuracy of our embeddings in two different ways. Firstly,
we measure the RMS fractional error of the embedded distances:

RMS Error=
(

1

n

∑

ij

Dij −D∗ij
D̄

)
, (6.28)

where D̄ is the average dissimilarity between objects in the original data. Sec-
ondly, we measure the 1NN classifier error, both before and after embedding. This
demonstrates whether the embedding preserves the local structure of the classes ad-
equately. In the final column, we show the performance of the NMC classifier on
the hypersphere.
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Table 6.2 Embedding results for the datasets (in order of increasing error)

Dataset Size 1NN (orig) Error Radius 1NN (emb) NMC

Newsgroups 600 0.269± 0.015 0.022 0.6298 0.279± 0.012 0.208± 0.015

CoilDelftDiff 288 0.487± 0.033 0.030 0.0277 0.479± 0.022 0.467± 0.034

Chickenpieces-5 446 0.350± 0.022 0.030 66.9 0.417± 0.022 0.407± 0.02

WoodyPlants50 791 0.101± 0.008 0.034 0.4362 0.147± 0.015 0.197± 0.016

Chickenpieces-10 446 0.170± 0.016 0.039 33.4 0.249± 0.018 0.338± 0.022

DelftGestures 1500 0.042± 0.0048 0.039 3.9826 0.135± 0.009 0.104± 0.004

Chickenpieces-15 446 0.079± 0.011 0.049 20.73 0.116± 0.018 0.249± 0.028

Chickenpieces-20 446 0.069± 0.012 0.052 17 0.109± 0.011 0.202± 0.022

Chickenpieces-25 446 0.048± 0.01 0.057 13.1 0.086± 0.013 0.21± 0.025

FlowCyto-2 612 0.366± 0.019 0.059 12132 0.378± 0.017 0.389± 0.028

Chickenpieces-30 446 0.048± 0.009 0.062 11.01 0.091± 0.013 0.197± 0.015

CoilYork 288 0.278± 0.025 0.063 177.8 0.307± 0.024 0.471± 0.029

FlowCyto-3 612 0.413± 0.013 0.072 13078 0.421± 0.021 0.4± 0.015

Chickenpieces-35 446 0.065± 0.011 0.073 10.12 0.069± 0.007 0.178± 0.023

Chickenpieces-40 446 0.087± 0.014 0.078 8.14 0.099± 0.012 0.2± 0.015

FlowCyto-1 612 0.369± 0.013 0.078 12794 0.425± 0.008 0.385± 0.02

CatCortex 65 0.095± 0.034 0.084 2.33 0.111± 0.04 0.047± 0.025

FlowCyto-4 612 0.425± 0.023 0.090 11761 0.413± 0.018 0.436± 0.026

ProDom 2604 0.002± 0.001 0.122 471.1 0.038± 0.003 0.21± 0.011

CoilDelftSame 288 0.636± 0.031 0.134 0.0577 0.674± 0.040 0.433± 0.038

Zongker 2000 0.372± 0.016 0.233 0.2887 0.043± 0.005 0.109± 0.009

The result in Table 6.2 show that we obtain an accuracy spherical embedding for
nearly all the data. Of the 21 datasets, only three have more than 10 % RMS error on
the embedding. This demonstrates the effectiveness of our embedding technique at
locating optimal embeddings. For ten of the datasets, we see virtually identical 1NN
performance both before and after embedding, and for one a large improvement
(Zongker). We do not know the cause of this unexpected behavior, but it seems to be
a feature of this particular dataset. For the other ten sets, we see deterioration in the
1NN classification, indicating that the local structure has been changed somewhat.
This is particularly evident in the Chickenpieces data, for which six of the eight
examples give worse 1NN scores. It seems that this data series is unsuitable for
spherical embedding.

The NMC classifier shows a far wider range of performance. The Chickenpieces
data series, CoilYork, WoodyPlants50 and ProDom show a substantially worse per-
formance with the NMC than with the original 1NN classifier, whereas Newsgroups,
CatCortex, CoilDelftSame and Zongker show a substantial improvement.
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6.2.6 Section Summary

In this section, we have shown how spherical embedding can be used as a solution to
the problem of indefinite, non-Euclidean dissimilarities. This embedding preserves
some of the non-Euclidean nature of the dissimilarities which may be important
in other tasks such as classification. We developed an optimization-based proce-
dure for embedding objects on hyperspherical manifolds which uses the Lie group
representation of the hypersphere and its associated Lie algebra to define the ex-
ponential map between the manifold and its local tangent space. The optimization
is then solved locally in Euclidean space. This process is efficient enough to allow
us to embed datasets of several thousand objects. We also defined the nearest mean
classifier on the manifold.

Experiments on a variety of non-Euclidean datasets show that we can obtain ac-
curate embeddings representing the dissimilarities on the hypersphere. The classifi-
cation results show that the embedding of some datasets is very useful (for example,
the Newsgroups data), and for others not effective (the Chickenpieces data).

6.3 Embeddings from the Ihara Zeta Function

In this section, we will illustrate an alternative use of embedding methods and will
show how to characterize and embed irregular unweighted hypergraphs using Ihara
coefficients. The proposed hypergraph representation proves to be a flexible tool
in learning the structure of irregular unweighted hypergraphs with different rela-
tional orders. Our contributions are two-fold. First, we propose a vectorial represen-
tation, which naturally avoids the ambiguity induced by the matrix representations
such as the hypergraph Laplacian, for irregular unweighted hypergraphs. We con-
struct pattern vectors using the Ihara coefficients, i.e., the characteristic polynomial
coefficients extracted from Ihara zeta function for hypergraphs. Second and more
importantly, we propose an efficient method for computing the Ihara coefficient
set, which renders the computation of the coefficients tractable. We use the pattern
vectors consisting of Ihara coefficients for clustering hypergraphs extracted from
images of different object views and demonstrate their effectiveness in hypergraph
characterization.

6.3.1 Hypergraph Laplacian

A hypergraph is a generalization of a graph. Unlike the edge of a graph, which can
connect only two vertices, the hyperedge in a hypergraph can connect any number
of vertices. A hypergraph is normally defined as a pair H(V,EH ) where V is a
set of elements, called nodes or vertices, and EH is a set of non-empty subsets of
V called hyperedges. The representation of a hypergraph in the form of sets, con-
cretely captures the relationship between vertices and hyperedges. However, it is
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difficult to manipulate this form in a computationally uniform way. Thus one alter-
native representation of a hypergraph is in the form of a matrix. For a hypergraph
H(V,EH ) with I vertices and J hyperedges, we establish an I ×J matrix H which
is referred to as the incidence matrix of the hypergraph. H has element hi,j equal
to 1 if vi ∈ ej and 0 otherwise.

The incidence matrix can be more easily manipulated than its equivalent set rep-
resentation. To obtain a vertex-to-vertex representation, we need to establish the
adjacency matrix and Laplacian matrix for a hypergraph. To this end, a graph repre-
sentation for the hypergraph is required. Agarwal et al. [2] have classified the graph
representations for a hypergraph into two categories, namely (a) the clique expan-
sion and (b) the star expansion. The clique expansion represents a hypergraph by
constructing a graph with all the pairs of vertices within a hyperedge connecting
each other. The star expansion represents a hypergraph by introducing a new vertex
to every hyperedge and constructing a graph with all vertices within a hyperedge
connecting the newly introduced vertex. The common feature of these methods is
that each edge in a graph representation is weighted in terms of the correspond-
ing hyperedge weight subject to certain conditions. For example, the normalized
Laplacian matrix L̂H = I −D

−1/2
v HDeH

T D
−1/2
v introduced in [117] is obtained

from the star expansion of a hypergraph, and its individual edges are weighted by
the quotient of the corresponding hyperedge weight and cardinality. Here Dv is the
diagonal vertex degree matrix whose diagonal element d(vi) is the summation of
the ith row of H , De is the diagonal vertex degree matrix whose diagonal element
d(ej ) is the summation of the j th column of H , and I is a |V | × |V | identity ma-
trix. In this case, even edges derived from an unweighted hyperedge are assigned a
nonunit weight. On the other hand, rather than attaching a weight to each edge in
the graph representation, the adjacency matrix and the associated Laplacian matrix
for an irregular unweighted hypergraph can be defined as AH =HH T −Dv and
LH =Dv − AH = 2Dv −HH T , respectively [56]. In practice, these two defini-
tions are obtained in terms of the clique expansion without attaching a weight to
a graph edge. The eigenvalues of LH are referred to as the hypergraph Laplacian
spectrum and can be used in a straightforward way as hypergraph characteristics.

Although the vertex-to-vertex matrix representations for hypergraphs described
above naturally reduce to those for graphs when the relational order is two, there are
deficiencies for these representations in distinguishing relational structures. When
relational structures have the same vertex cardinality but different relational orders,
these vertex-to-vertex matrix representations become ambiguous. For example, for
the graph in Fig. 6.1(a) and the hypergraph in Fig. 6.1(b), the adjacency matrices of
the two hypergraphs are identical, and so are the associated Laplacian matrices. The
adjacency matrix and Laplacian matrix are as follows:

AH =
⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ , LH =
⎛

⎝
2 −1 −1
−1 2 −1
−1 −1 2

⎞

⎠ .

It is clear that the unweighted adjacency matrix and Laplacian matrix cannot dis-
tinguish these two hypergraphs. The reason for this deficiency is that the adjacency



142 P. Ren et al.

Fig. 6.1 Hypergraph examples and their graph representations

matrix and the Laplacian matrix only record the adjacency relationships between
pairs of nodes and neglect the cardinalities of the hyperedges. In this regard, they
induce certain information loss in representing relational structures and cannot al-
ways distinguish between pairwise relationships and high order relationships for the
same set of vertices. The normalized Laplacian matrices for Figs. 6.1(a) and 6.1(b)
are L̂H1 and L̂H2, respectively:

L̂H1 =
⎛

⎝
2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

⎞

⎠ , L̂H2 =
⎛

⎝
1/2 −1/4 −1/4
−1/4 1/2 −1/4
−1/4 −1/4 1/2

⎞

⎠ .

Since L̂H2 = 3
4 L̂H1, the eigenvalues of L̂H2 are found by scaling those of L̂H1

by a factor 3/4, and both matrices have the same eigenvectors. Thus the normal-
ized Laplacian matrices for different hypergraphs may yield spectra that are just
scaled relative to each other. This hinders the hypergraph characterization when the
eigenvectors are used. One important reason for the limited usefulness of the above
hypergraph matrix representations is that they result in information loss when re-
lational orders of varying degree are present. To overcome this deficiency, we use
characteristic polynomials extracted from the Ihara zeta function as a means of rep-
resenting hypergraphs. In the next section, we commence by showing that the Ihara
zeta function can be used to represent this type of relational structure in hyper-
graphs. We use the Ihara coefficients, i.e., the characteristic polynomial coefficients
extracted from the Ihara zeta function, as hypergraph characteristics. We show that
the Ihara coefficients not only encode the relational structural in a consistent way
but also overcome the deficiencies listed above.
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6.3.2 Ihara Zeta Function from Graphs to Hypergraphs

The rational expression of the Ihara zeta function for a graph is as follows [6]:

ZG(u)= (
1− u2)χ(G)det

(
I |V (G)| − uA+ u2Q

)−1
, (6.29)

where χ(G) = |V | − |E|, A is the adjacency matrix of the graph, and Q = D −
I |V (G)| where I |V (G)| is the identity matrix and D is the degree matrix, which can
be generated by placing the column sums as the diagonal elements while setting the
off-diagonal elements to zero.

To formulate the Ihara zeta function for a hypergraph in a similar form
with (6.29), the bipartite graph representation of the hypergraph is needed. To this
end, we use a dual representation in which each hyperedge is represented by a new
vertex. The new vertex is incident to each of the original vertices in the correspond-
ing hyperedge. The union of the new vertex set and the original vertex set constitute
the vertex set of the associated bipartite graph. The new vertices corresponding to
hyperedges are on one side and the original hypergraph vertices on the other side.
Thus the bipartite graph and star expansion for a hypergraph share the same form,
although they are defined for different purposes. For instance, the bipartite graphs
associated with the example hypergraphs in Figs. 6.1(a) and 6.1(b) are shown in
Figs. 6.1(c) and 6.1(d), respectively (BG stands for bipartite graph).

The Ihara zeta function of the hypergraph H(V,EH ) can be expressed in a ratio-
nal form as follows:

ζH (u)= (1− u)χ(BG)det(I |V (H)|+|EH (H)| −
√
uABG + uQBG)

−1
, (6.30)

where χ(BG) is the Euler number of the associated bipartite graph, ABG is the adja-
cency matrix of the associated bipartite graph, and QBG =DBG− I |V (H)|+|EH (H)|.
Further details on the arguments leading from (6.29) to (6.30) can be found in [81].

The adjacency matrix of the associated bipartite graph can be formulated using
the incidence matrix H of H(V,EH ):

ABG =
[

0|EH (H)|×|EH (H)| H T

H 0|V (H)|×|V (H)|

]

. (6.31)

The hypergraph Ihara zeta function in the form of (6.30) provides an alterna-
tive method for the function value computation, as well as an efficient method of
computing the Ihara coefficients, which will be discussed later on in Sect. 6.3.4.

6.3.3 Determinant Expression for Hypergraph Zeta Function

Although the Ihara zeta function can be evaluated efficiently using (6.30), the task
of enumerating the coefficients of the polynomial appearing in the denominator of



144 P. Ren et al.

the Ihara zeta function is difficult, except by resorting to software for symbolic cal-
culation. To efficiently compute these coefficients, a different strategy is adopted.
The hypergraph is first transformed into an oriented line graph. The Ihara zeta func-
tion is then the reciprocal of the characteristic polynomial for the adjacency matrix
of the oriented line graph. Our novel contribution here is to use the existing ideas
from hypergraph theory to develop a new hypergraph representation, which can be
used in machine learning to distinguishing hypergraphs with the same vertex set but
different relational orders.

6.3.3.1 Oriented Line Graph

To establish the oriented line graph associated with the hypergraph H(V,EH ), we
commence by constructing a |ei |-clique, i.e., clique expansion, by connecting each
pair of vertices in the hyperedge ei ∈ EH through an edge. The resulting clique
expansion graph is denoted by GH(V ,EG). For GH(V ,EG), the associated sym-
metric digraph DGH(V ,Ed) can be obtained by replacing each edge of GH(V ,EG)

by an arc (oriented edge) pair in which the two arcs are inverse to each other. For
the example hypergraphs in Figs. 6.1(a) and 6.1(b), their DGH(V ,Ed) are shown in
Figs. 6.1(e) and 6.1(f), respectively, where the oriented edges derived from the same
hyperedge are colored the same while from different hyperedges are colored differ-
ently. Finally, the oriented line graph of the hypergraph can be established based on
the symmetric digraph. The vertex set Vol and edge set Eol of the oriented line graph
are defined as follows [81]:

Vol =Ed(DGH),

Eol =
{(
ed(u, v), ed(v,w)

) ∈Ed ×Ed;u,w 
⊂EH

}
.

(6.32)

One observation that needs to be made here is that the adjacency matrix AH

and Laplacian matrix LH for a hypergraph introduced in Sect. 6.3.1 are actually
those of the graph established on the clique expansion, but without an edge-weight
attachment. These matrix representations can induce ambiguity when representing
relational structures with different relational orders. This point is illustrated by the
two example hypergraphs in Figs. 6.1(a) and 6.1(b) which have the same clique
graph and thus the same adjacency matrix and Laplacian matrix. The reason for this
is that the clique expansion only records adjacency relationships between pairs of
nodes and cannot distinguish whether or not two edges in the clique are derived
from the same hyperedge. Thus the clique graph representations for hypergraph
result in loss of information concerning relational order. However, the Ihara zeta
function overcomes this deficiency by avoiding the interaction between two edges
derived from the same hyperedge. This is due to the constraint in (6.32) that the
connecting oriented edge pair in the same clique of DGH cannot establish an ori-
ented edge in the oriented line graph. According to these properties, the example
hypergraphs with the same adjacency matrix and Laplacian matrix in Figs. 6.1(a)
and 6.1(b) produce oriented line graphs with totally different structures as shown in
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Figs. 6.1(g) and 6.1(h), respectively (OLG stands for oriented line graph), where the
constraint in (6.32) prevents connections between any nodes with the same color in
Figs. 6.1(g) and 6.1(h). The adjacency matrix T H of the oriented line graph is the
Perron–Frobenius operator of the original hypergraph. For the (i, j)th entry of T H ,
T H (i, j) is 1 if there is one edge directed from the vertex with label i to the vertex
with label j in the oriented line graph, otherwise it is 0. Unlike the adjacency ma-
trix of an undirected graph, the Perron–Frobenius operator for a hypergraph is not
a symmetric matrix. This is because of the constraint described above that arises in
the construction of oriented edges. Specifically, it is the fact that the arc pair with
two arcs that are derived from the same hyperedge in the original hypergraph is
not allowed to establish an oriented edge in the oriented line graph that causes the
asymmetry of T H .

6.3.3.2 Characteristic Polynomial

With the oriented line graph to hand, the Ihara zeta function for a hypergraph can be
written in the form of a determinant using the Perron–Frobenius operator [81]:

ζH (u)= det(IH − uT H )−1 = (
c0 + c1u+ · · · + cM−1u

M−1 + cMuM
)−1

, (6.33)

where M is the highest order of the polynomial. The polynomial coefficients c0, c2,

. . . , cM are referred to as the Ihara coefficients. From (6.33), we can see that M is
the dimensionality of the square matrix T H . To establish pattern vectors from the
hypergraph Ihara zeta function for the purposes of characterizing hypergraphs in
machine learning, it is natural to consider taking function samples as the elements.
Although the function values at most of the sampling points will perform well in
distinguishing hypergraphs, there is the possibility of sampling at poles giving rise to
meaningless infinities. Hence, the pattern vectors consisting of function samples are
potentially unstable representations of hypergraphs, since the distribution of poles
is unknown beforehand. The characteristic polynomial coefficients, i.e., the Ihara
coefficients, do not give rise to infinities. From (6.33), it is clear that each coefficient
can be derived from the elementary symmetric polynomials of the eigenvalue set
{λ1, λ2, λ3, . . .} of T H as cr = (−1)r

∑
k1<k2<···<kr

λk1λk2 · · ·λkr .
Furthermore, the Ihara coefficients relate strongly to the hypergraph-structure

since the Ihara zeta function records information about prime cycles in the hyper-
graphs. We can construct pattern vectors using a dominant subset of the Ihara co-
efficients v = [cr1cr2 · · · crN ]T for a hypergraph and then apply them to clustering
hypergraphs.

6.3.4 Numerical Computation

The formation of T H and its eigen-decomposition tend to be computationally ex-
pensive for practical problems, because the matrix T H are usually of big size. To
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overcome the deficiency of computing the Ihara coefficients using (6.33), we de-
velop a straightforward, yet efficient method which starts from the associated bi-
partite graph. Instead of constructing the oriented line graph for a hypergraph, we
establish the oriented line graph for the bipartite graph. Considering the rational
expression (6.30) based on the associated bipartite graph, we have

ζ−1
H (u)= Z−1

BG(
√
u)= det(IBG −√uT BG), (6.34)

where T BG is the Perron–Frobenius operator of the associated bipartite graph, of
which the Ihara zeta function (according to its original definition [6]) is represented
as

Z−1
BG(u)=

∏

p∈PBG

(
1− u|p|

)= (
1− u|p1|)(

1− u|p2|)(
1− u|p3|) · · · , (6.35)

where pi is the ith prime cycle in the set PBG of prime cycle equivalence classes of
the bipartite graph. Note that every cycle in a bipartite graph has an even length, i.e.,
|pi | is always an even number for a bipartite graph. Let {c̃0, c̃1, c̃2, c̃3, c̃4, c̃5, c̃6, . . .}
denote the Ihara coefficient set of the bipartite graph. It is clear that Z−1

BG(u) is a
polynomial with the odd coefficients equal to zero:

Z−1
BG(u) = det(IBG − uT BG)= c̃0 + c̃1u+ c̃2u

2 + c̃3u
3 + c̃4u

4

+ c̃5u
5 + c̃6u

6 + · · ·
= c̃0 + c̃2u

2 + c̃4u
4 + c̃6u

6 + · · · . (6.36)

Taking
√
u as the argument of the bipartite graph Ihara zeta function instead of u,

ζ−1
H (u) = Z−1

BG(
√
u)= det(IBG −√uT BG)

= (
1− (
√
u)|p1|)(

1− (
√
u)|p2|) · · ·

= c̃0 + 0
√
u+ c̃2(

√
u)2 + 0(

√
u)3 + c̃4(

√
u)4

+ 0(
√
u)5 + c̃6(

√
u)6 + · · ·

= c̃0 + c̃2u+ c̃4u
2 + c̃6u

3 + · · ·
= c0 + c1u+ c2u

2 + c3u
3 + · · · . (6.37)

As we can see in (6.37), the Ihara coefficients of a hypergraph can be efficiently ob-
tained by selecting just the even-indexed Ihara coefficients of the associated bipartite
graph. This is much more efficient than the computation based on the oriented line
graph of the hypergraph, because T BG is much smaller in size than T H , especially
for large hypergraphs. The size of the Perron–Frobenius operator of an irregular hy-
pergraph tends to be difficult to enumerate. Here we thus use the K-regular hyper-
graph, i.e., hypergraph with every hyperedge containing K vertices, for analyzing
the computational complexity of the Perron–Frobenius operators T H and T BG. Sup-
pose there are in total N hyperedges in the K-regular hypergraph. To obtain T H , the
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clique expansion and its digraph of the K-regular hypergraph need to be established
according to the transform introduced in Sect. 6.3.3.1. This procedure produces an
oriented line graph with K(K − 1)N vertices and a Perron–Frobenius operator of
size (K − 1)KN × (K − 1)KN . To obtain T BG, the bipartite graph and its di-
graph of the K-regular hypergraph need to be established. This procedure produces
an oriented line graph with 2KN vertices and a Perron–Frobenius operator of size
2KN × 2KN . For regular hypergraphs K is greater than 2, and the relation always
holds for 2KN < (K − 1)KN . As a result, the size of T BG is smaller than that
of T H when K > 3. The computational complexity of obtaining the Ihara coeffi-
cients is governed by the eigen-decomposition of the Perron–Frobenius operator.
This requires O(n3) operations where n is the size of the Perron–Frobenius oper-
ator. Therefore, the computational overheads of eigen-decomposition on T BG are
lower than those of T H . We refer to [65] for an efficient way of computing the Ihara
coefficients given the eigenvalues of T BG.

6.3.5 Experimental Evaluation

To establish hypergraphs on the visual objects, we first extract feature points using
the Harris detector [34] as the vertices of hypergraphs. Let c(vi) denote the spatial
coordinate of the feature point vi in an image, and I (vi) denote the intensity of vi .
For each image, we construct the hypergraph using the method introduced in [56],
where the element H(i, j) of incidence matrix is 1 if ‖c(vi)− c(vj )‖ ≤ Thj1 and
|I (vi)− I (vj )| ≤ Thj2, and 0 otherwise. Here Thj1 is the neighborhood threshold
set to 1/4 the size of the image and Thj2 is the similarity threshold determined by
the standard deviation of the intensities of neighboring feature points.

We first test the Ihara coefficient pattern vector in the form of vH = [c3, c4,

ln(|cM−3|), ln(|cM−2|), ln(|cM−1|), ln(|cM |)]T in characterizing within-class hyper-
graphs. We establish hypergraphs on ten images of a model house in the Chalet data
set [56]. The images are taken consecutively as the camera pans around the model
house in regular angular increments. Figure 6.2 shows the PCA projections of the
hypergraphs based on the truncated Laplacian spectrum, i.e., the leading six nonzero
Laplacian eigenvalues, and the Ihara coefficients. The Laplacian spectra produce an
erratic trajectory. The Ihara coefficients produce a much smoother trajectory and
the neighboring images in the sequence are generally Euclidean neighbors in the
eigenspace.

Figure 6.3 compares the performance of the largest Laplacian eigenvalue and
the final Ihara coefficient for hypergraphs extracted from four objects in the COIL
dataset [56]. The Ihara coefficients give clearer class separability than the Laplacian
eigenvalues.

Finally, we test the Ihara coefficients for clustering both unweighted graphs and
unweighted hypergraphs. The graphs and hypergraphs are extracted from the images
in the COIL dataset. We establish a Delaunay graph on the feature points of each im-
age, and construct the pattern vectors in the form of vGs = [c3, c4, ln(|c2M |)]T for
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Fig. 6.2 Within-class trajectory

Fig. 6.3 Ihara coefficient plot

graphs. We evaluate the clustering performance obtained with different numbers of
object classes. After performing PCA on the pattern vectors both for graphs and hy-
pergraphs, we locate the clusters using the K-means method and calculate the Rand
index, which is plotted as a function of class number in Fig. 6.4. We use Laplacian
spectra for graphs and hypergraphs for comparison. From this set of experiments, it
is clarified that for both graphs and hypergraphs, the Ihara coefficients outperform
the Laplacian spectra.

6.3.6 Section Summary

We have pointed out the deficiency of the vertex-to-vertex matrix representations
for learning hypergraph-structure and applied the Ihara coefficients to hypergraph
characterization to overcome these problems. The Ihara coefficients are a flexible
tool which can be computed in a consistent manner for both graphs and hypergraphs.
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Fig. 6.4 Rand index

They can effectively overcome the ambiguity in distinguishing high order relational
structures when matrix representations fail to work. Furthermore, we have proposed
an efficient method for computing the Ihara coefficient set. Experimental results
show that the Ihara coefficients are superior to spectral methods, both for graphs
and hypergraphs.

6.4 Chapter Summary

In this chapter, we have illustrated two contrasting approaches to the problem of
embedding non-Euclidean data. The first was based on the idea of spherical em-
bedding, where data is embedded onto the surface of sphere of optimal radius. The
second is a method designed to preserve elements of the structure of hypergraphs.

Turning first on the spherical embedding, our results on synthetic and real data
show that the elliptic embedding performs well under noisy conditions and can
deliver low-distortion embeddings for a wide variety of datasets. Hyperbolic data
seems to be much less common (at least in our datasets) and is more difficult to ac-
curately embed. Nevertheless, in low-noise cases and for some datasets, the hyper-
bolic space can also be used to accurately embed non-Euclidean dissimilarity data.
While accurate embedding is our goal here, it is natural to want to apply pattern
recognition techniques to the embedded data. Unfortunately, many methods rely,
either explicitly or implicitly, on an underlying kernel space which is Euclidean.
We believe that much more work needs to be done on applying such techniques in
non-flat spaces.

In the case of the Ihara coefficients, we have performed a characteristic polyno-
mial analysis on hypergraphs and characterized (irregular) unweighted hypergraphs
based on the Ihara zeta function. We have used the Ihara coefficients as the elements
of pattern vectors for a hypergraph. Experimental results show the effectiveness
of the proposed method. Further research will focus on investigating the possibil-
ity of using Ihara zeta function for the characterization of weighted hypergraphs.
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K-regular hypergraphs with weighted hyperedges have recently been found to be a
powerful tool in representing data with high-order relations. In the light of its po-
tential in revealing high-order structure, we will investigate developing methods for
improving the accuracy of clustering and matching data with high-order affinities
by involving the Ihara zeta function.
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22. Cvetković, D., Rowlinson, P., Simić, S.K.: Eigenvalue bounds for the signless Laplacian.

Publ. Inst. Math. (Belgr.) 81(95), 11–27 (2007)



6 Geometricity and Embedding 151

23. Daitch, S.I., Kelner, J.A., Spielman, D.A.: Fitting a graph to vector data. In: Proceedings of
International Conference on Machine Learning, pp. 201–208 (2009)

24. Duchenne, O., Bach, F.R., Kweon, I.S., Ponce, J.: A tensor-based algorithm for high-order
graph matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1980–1987 (2009)

25. Emms, D.: Analysis of graph structure using quantum walks. Ph.D. Thesis, University of
York (2008)

26. Emms, D., Hancock, E.R., Severini, S., Wilson, R.C.: A matrix representation of graphs and
its spectrum as a graph invariant. Electron. J. Comb. 13(R34) (2006)

27. Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospec-
trality of graphs and trees. Pattern Recognit. 42(9), 1988–2002 (2009)

28. Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph com-
putation by means of graph embedding in vector spaces. Pattern Recognit. 43(4), 1642–1655
(2010)

29. Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 513–518 (2003)

30. Gibson, D., Kleinberg, J., Raghavan, P.: Clustering categorical data: an approach based on
dynamical systems. VLDB J. 8(4–3), 222–236 (2000)

31. Govindu, V.M.: A tensor decomposition for geometric grouping and segmentation. In: Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1150–1157
(2005)

32. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the
28th Annual ACM Symposium on the Theory of Computation, pp. 212–219 (1996)

33. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 11(9), 1074–1085 (1992)

34. Harris, C.G., Stephens, M.J.: A combined corner and edge detector. In: Proceedings of Fourth
Alvey Vision Conference, pp. 147–151 (1994)

35. Hashimoto, K.: Artin-type L-functions and the density theorem for prime cycles on finite
graphs. Adv. Stud. Pure Math. 15, 211–280 (1989)

36. He, X., Cai, D., Niyogi, P.: Tensor subspace analysis. In: Proceedings of Advances in Neural
Information Processing Systems, pp. 507–514 (2005)

37. He, X., Cai, D., Liu, H., Han, J.: Image clustering with tensor representation. In: Proceedings
of ACM Multimedia, pp. 132–140 (2005)

38. He, Z., Cichocki, A., Xie, S., Choi, K.: Detecting the number of clusters in n-way probabilis-
tic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2006–2021 (2010)

39. Ihara, Y.: Discrete subgroups of PL(2, kϕ). In: Proceedings of Symposium on Pure Mathe-
matics, pp. 272–278 (1965)

40. Ihara, Y.: On discrete subgroups of the two by two projective linear group over p-adic fields.
J. Math. Soc. Jpn. 18, 219–235 (1966)

41. Jebara, T., Wang, J., Chang, S.F.: Graph construction and b-matching for semi-supervised
learning. In: Proceedings of International Conference on Machine Learning, pp. 441–448
(2009)

42. Kondor, R., Borgwardt, K.M.: The skew spectrum of graphs. In: Proceedings of International
Conference on Machine Learning, pp. 496–503 (2008)

43. Kondor, R., Shervashidze, N., Borgwardt, K.M.: The graphlet spectrum. In: Proceedings of
International Conference on Machine Learning, pp. 529–536 (2009)

44. Kotani, M., Sunada, T.: Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7(1), 7–25
(2000)

45. Lerman, G., Whitehouse, J.T.: On d-dimensional d-semimetrics and simplex-type inequali-
ties for high-dimensional sine functions. J. Approx. Theory 156(1), 52–81 (2009)

46. Li, W., Sole, P.: Spectra of regular graphs and hypergraphs and orthogonal polynomials. Eur.
J. Comb. 17, 461–477 (1996)

47. Liu, X., Yan, S., Jin, H.: Projective nonnegative graph embedding. IEEE Trans. Image Pro-
cess. 19(5), 1126–1137 (2010)



152 P. Ren et al.

48. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognit.
36(10), 2213–2223 (2003)

49. Mantrach, A., Yen, L., Callut, J., Francoisse, K., Shimbo, M., Saerens, M.: The sum-over-
paths covariance kernel: a novel covariance measure between nodes of a directed graph. IEEE
Trans. Pattern Anal. Mach. Intell. 32(6), 1112–1126 (2010)

50. Maier, M., von Luxburg, U., Hein, M.: Influence of graph construction on graph-based clus-
tering measures. In: Proceedings of Advances in Neural Information Processing Systems,
pp. 1025–1032 (2008)

51. Mizuno, H., Sato, I.: Bartholdi zeta function of graph coverings. J. Comb. Theory, Ser. B
89(1), 27–41 (2003)

52. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical
Report CUCS-005-96 (1996)

53. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal.
Mach. Intell. 29(1), 167–172 (2007)

54. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE Trans. Pat-
tern Anal. Mach. Intell. 29(11), 1873–1890 (2007)

55. Ramon, J., Gartner, T.: Expressivity versus efficiency of graph kernels. In: Proceedings of
First International Workshop on Mining Graphs, Trees and Sequences, pp. 65–74 (2003)

56. Ren, P., Wilson, R.C., Hancock, E.R.: Spectral embedding of feature hypergraphs. In: Pro-
ceedings of Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pat-
tern Recognition, pp. 308–317 (2008)

57. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite
graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

58. Riesen, K., Bunke, H.: Graph classification by means of Lipschitz embedding. IEEE Trans.
Syst. Man Cybern., Part B, Cybern. 39(6), 1472–1483 (2009)

59. Robles-Kelly, A., Hancock, E.R.: A probabilistic spectral framework for grouping and seg-
mentation. Pattern Recognit. 37(7), 1387–1405 (2004)

60. Rodriguez, J.A.: On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear
Multilinear Algebra 51, 285–297 (2003)

61. Rota Bulò, S., Albarelli, A., Pelillo, M., Torsello, A.: A hypergraph-based approach to affine
parameters estimation. In: Proceedings of the International Conference on Pattern Recogni-
tion, pp. 1–4 (2008)

62. Rota Bulò, S., Torsello, A., Pelillo, M.: A game-theoretic approach to partial clique enumer-
ation. Image Vis. Comput. 27(7), 911–922 (2009)

63. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. In: Proceed-
ings of Neural Information Processing Conference, vol. 22, pp. 1571–1579 (2009)

64. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans.
Pattern Anal. Mach. Intell. 35(6), 1312–1327 (2013)

65. Rota Bulò, S., Hancock, E.R., Aziz, F., Pelillo, M.: Efficient computation of Ihara coefficients
using the Bell polynomial recursion. Linear Algebra Appl. 436(5), 1436–1441 (2012)

66. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000)

67. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern
recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)

68. Sato, I.: A new Bartholdi zeta function of a graph. Int. J. Algebra Comput. 1(6), 269–281
(2007)

69. Savchenko, S.V.: The zeta function and Gibbs measures. Russ. Math. Surv. 48(1), 189–190
(1993)

70. Scott, G., Storm, C.K.: The coefficients of the Ihara zeta function. Involve—J. Math. 1(2),
217–233 (2008)

71. Sengupta, K., Boyer, K.L.: Organizing large structural modelbases. IEEE Trans. Pattern
Anal. Mach. Intell. 17(4), 321–332 (1995)

72. Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Plenum, New York (1994)



6 Geometricity and Embedding 153

73. Shashua, A., Levin, A.: Linear image coding for regression and classification using the
tensor-rank principle. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 623–630 (2001)

74. Shashua, A., Zass, R., Hazan, T.: Multi-way clustering using super-symmetric non-negative
tensor factorization. In: Proceedings of the European Conference on Computer Vision,
pp. 595–608 (2006)

75. Shaw, B., Jebara, T.: Structure preserving embedding. In: Proceedings of International Con-
ference on Machine Learning, pp. 937–944 (2009)

76. Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Proceedings of Ad-
vances in Neural Information Processing Systems, pp. 1660–1668 (2009)

77. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 22(8), 888–905 (2000)

78. Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings. Adv. Math. 121,
124–165 (1996)

79. Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings, II. Adv. Math. 154,
132–195 (2000)

80. Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings, III. Adv. Math.
208(2), 467–489 (2007)

81. Storm, C.K.: The zeta function of a hypergraph. Electron. J. Comb. 13 (2006)
82. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear

dimensionality reduction. Science 290(5500), 2319–2323 (2000)
83. Torsello, A., Robles-Kelly, A., Hancock, E.R.: Discovering shape classes using tree edit

distance and pairwise clustering. Int. J. Comput. Vis. 72(3), 259–285 (2007)
84. Torsello, A., Hancock, E.R.: Learning Shape-Classes Using a Mixture of Tree-Unions. IEEE

Trans. Pattern Anal. Mach. Intell. 954–967 (2006)
85. Tsai, W.H., Fu, K.S.: Subgraph error-correcting isomorphism for syntactic pattern recogni-

tion. IEEE Trans. Syst. Man Cybern. 13(1), 48–62 (1983)
86. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear analysis of image ensembles: tensorFaces.

In: Proceedings of the European Conference on Computer Vision, pp. 447–460 (2002)
87. Vishwanathan, S.V.N., Borgwardt, K.M., Kondor, I.R., Schraudolph, N.N.: Graph kernels.

J. Mach. Learn. Res. 11, 1201–1242 (2010)
88. Wang, C., Song, Z., Yan, S., Zhang, L., Zhang, H.J.: Multiplicative nonnegative graph em-

bedding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pp. 389–396 (2009)

89. Watanabe, Y., Fukumizu, K.: Graph zeta function in the Bethe free energy and loopy belief
propagation. In: Proceedings Neural Information Processing Systems, pp. 2017–2025 (2009)

90. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proceedings of International
Conference on Computer Vision, pp. 975–982 (1999)

91. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE
Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

92. Wilson, R.C., Zhu, P.: A study of graph spectra for comparing graphs and trees. Pattern
Recognit. 41(9), 2833–2841 (2008)

93. Wong, A.K.C., Lu, S.W., Rioux, M.: Recognition and shape synthesis of 3D objects based
on attributed hypergraphs. IEEE Trans. Pattern Anal. Mach. Intell. 11(3), 279–290 (1989)

94. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extension:
a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell.
29(1), 40–51 (2007)

95. Yan, S., Xu, D., Yang, Q., Zhang, L., Tang, X., Zhang, H.J.: Discriminant analysis with
tensor representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 526–532 (2005)

96. Yang, J., Yan, S., Fu, Y., Li, X., Huang, T.S.: Non-negative graph embedding. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (2008)

97. Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for the graph matching
problem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2227–2242 (2009)



154 P. Ren et al.

98. Zass, R., Shashua, A.: A unifying approach to hard and probabilistic clustering. In: Proceed-
ings of International Conference on Computer Vision, pp. 294–301 (2005)

99. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (2008)

100. Zhao, D., Tang, X.: Cyclizing clusters via zeta function of a graph. In: Proceedings of Ad-
vances in Neural Information Processing Systems, pp. 1953–1960 (2008)

101. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification,
and embedding. In: Proceedings of Advances in Neural Information Processing Systems,
pp. 1601–1608 (2007)

102. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear
Dimensionality Reduction. Science 2319–2323 (2000)

103. Pekalska, E., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-Euclidean or non-
metric measures can be informative. In: Proceedings of SSPR/SPR, pp. 871–880 (2006)

104. Lindman, H., Caelli, T.: Constant curvature Riemannian scaling. J. Math. Psychol. 89–109
(1978)

105. Cox, T.F., Cox, M.A.A.: In: Multidimensional Scaling on a Sphere, pp. 2943–2953 (1991)
106. Shavitt, Y., Tankel, T.: Hyperbolic embedding of Internet graph for distance estimation and

overlay construction. In: IEEE/ACM Transactions on Networking, pp. 25–36 (2008)
107. Hubert, L., Arabie, P., Meulman, J.: Linear and circular unidimensional scaling for symmet-

ric proximity matrices. Br. J. Math. Stat. Psychol. 253–284 (1997)
108. Robles-Kelly, A., Hancock, E.R.: A Riemannian approach to graph embedding. Pattern

Recognit. 1042–1056 (2007)
109. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foun-

dations and Applications. World Scientific, Singapore (2005)
110. Lee, W.J., Duin, R.P.W.: An inexact graph comparison approach in joint eigenspace. In:

Proceedings of SS+SPR2008 (2008)
111. Scannell, J., Blakemore, C., Young, M.: Analysis of connectivity in the cat cerebral cortex.

J. Neurosci. 1463–1483 (1995)
112. Lichtenauer, J., Hendriks, E.A., Reinders, M.J.T.: Sign language recognition by combin-

ing statistical DTW and independent classification. IEEE Trans. Pattern Anal. Mach. Intell.
2040–2046 (2008)

113. Roth, V., Laub, J., Buhmann, J.M., Mueller, K.-R.: Going metric: denoising pairwise data.
In: Advances in Neural Information Processing Systems, pp. 841–856 (2003)

114. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern
Anal. Mach. Intell. 286–299 (2007)

115. Jain, A.K., Zongker, D.: Representation and recognition of handwritten digits using de-
formable templates. IEEE Trans. Pattern Anal. Mach. Intell. 1386–1391 (1997)

116. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of
nonlinear statistics of shape. IEEE Trans. Med. Imaging 995–1005 (2004)

117. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification,
and embedding. In: NIPS (2007)

118. Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE
Trans. Pattern Anal. Mach. Intell. 377–388 (1996)

119. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100), Technical
Report CUCS-006-96 (1996)

120. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. In: Pattern Recogni-
tion, pp. 2213–2230 (2003)

121. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. In: In-
ternational Journal of Computer Vision, pp. 41–66 (2006)

122. Bretto, A., Cherifi, H., Aboutajdine, D.: Hypergraph imaging: an overview. In: Pattern
Recognition, pp. 651–658 (2002)
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Chapter 7
Structure Preserving Embedding
of Dissimilarity Data

Volker Roth, Thomas J. Fuchs, Julia E. Vogt, Sandhya Prabhakaran,
and Joachim M. Buhmann

Abstract Partitioning methods for observations represented by pairwise dissimi-
larities are studied. Particular emphasis is put on their properties when applied to
dissimilarity matrices that do not admit a loss-free embedding into a vector space.
Specifically, the Pairwise Clustering cost function is shown to exhibit a shift invari-
ance property which basically means that any symmetric dissimilarity matrix can
be modified to allow a vector-space representation without distorting the optimal
group structure. In an approximate sense, the same holds true for a probabilistic
generalization of Pairwise Clustering, the so-called Wishart–Dirichlet Cluster Pro-
cess. This shift-invariance property essentially means that these clustering methods
are “blind” against Euclidean or metric violations. From the application side, such
blindness against metric violations might be seen as a highly desired feature, since
it broadens the applicability of certain algorithms. From the viewpoint of theory
building, however, the same property might be viewed as a “negative” result, since
studying these algorithms will not lead to any new insights on the role of metricity
in clustering problems.
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7.1 Introduction

For several major applications in data mining, data is often not available as feature
vectors in a vector space. For instance, genomics typically produce data represented
as strings from some alphabet, psychology yields sets of similarity judgments, yet
other fields like social sciences measure so-called preference data. The missing vec-
tor space representation precludes the use of well established machine learning tech-
niques such as Principal Component Analysis [1] or Support Vector Machines [2].

A common approach to handling non-vectorial datasets is to replace the initial
data by a collection of real numbers representing some “comparison” among the el-
ements of the dataset (see Chaps. 2 and 6). This procedure yields a matrix gathering
the pairwise relations between the original objects, which may be the starting point
of further data analysis.

The clustering approaches discussed in this chapter aim at identifying subsets or
clusters of objects represented as “blocks” in a permuted dissimilarity matrix. The
underlying idea is that objects grouped together in such a cluster can be reasonably
well described as a homogeneous sub-population. Our focus on dissimilarity matri-
ces implies that we do not have access to a vectorial representation of the objects,
and in general, no such representation will exist, since we do not assume that the
dissimilarity matrix fulfills the axioms of a valid metric.

In this chapter, we summarize our studies on embedding strategies in the context
of clustering. In the first part, we will mainly summarize our results for the pairwise
k-means clustering cost function as outlined in [3]: we begin with a short overview
of proximity-based data grouping, and then we focus on reformulating such prob-
lems with vectorial data representations. For the class of pairwise clustering meth-
ods that are related to minimizing a shift-invariant cost function, the constant shift
embedding procedure is presented. A surprising property of this embedding is the
complete preservation of group structure. The original non-metric pairwise cluster-
ing problem can be restated as a grouping problem over points in a vector space,
yielding identical assignments of objects to clusters. Using the constant-shift em-
bedding principle, we then demonstrate the equivalence between the pairwise clus-
tering cost function and the classical k-means grouping criterion in the embedding
space. The conclusion is that the k-means cost function (or its dissimilarity-based
counterpart) is essentially “blind” against metric violations.

In the second part, we will analyze a more general setting where the hard-
clustering scenario with fixed number of clusters is replaced by a probabilistic ap-
proach which is capable of selecting the number of clusters in a data-adaptive way.
We show that this probabilistic model is shift invariant only in an approximate sense,
and in particular we show that exact shift invariance and data-adaptive selection of
the number of clusters define two conflicting goals.

We conclude this chapter with a (sober) discussion about the role of structure
preserving embeddings for the overall goal in the SIMBAD project, namely for
building a novel theory for similarity-based pattern recognition.
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7.2 Constant Shift Embedding for Pairwise Clustering

7.2.1 Proximity-Based Clustering

Unsupervised grouping or clustering aims at extracting hidden structure from
data [4]. The term data refers to both a set of objects and a set of corresponding
object representations resulting from some physical measurement process. Differ-
ent types of object representations are possible, the two most common of which are
vectorial data and pairwise proximity data. In the first case, a set of n objects is
represented as n points in a d-dimensional vector space, whereas in the second case
we are given an n× n pairwise proximity matrix.

The problem of grouping vectorial data has been widely studied in the literature,
and many clustering algorithms have been proposed [4, 5]. One of the most popular
methods is k-means clustering. It derives a set of k prototype vectors which quantize
the data set with minimal quantization error.

Partitioning proximity data is considered a much harder problem, since the inher-
ent structure is hidden in n2 pairwise relations. This datatype, however, is abundant
in many applications, such as molecular biology, psychology, linguistics, etc. In gen-
eral, the proximities can violate the requirements of a distance measure, i.e., they
may be non-symmetric and negative, and the triangle inequality does not necessarily
hold. Thus, a loss-free embedding into a vector space is not possible, so that group-
ing problems of this kind cannot directly be transformed into vectorial problems by
means of classical embedding strategies.

Among several methods for clustering proximity-based data, in this first part
of this chapter we will focus on those techniques that explicitly minimize a cer-
tain cost function. This subset of clustering methods includes, e.g., graph-theoretic
approaches like several variations of Cut criteria [6], and several methods derived
from an axiomatization of pairwise cost functions in [7]. From a theoretical view-
point, cost-based clustering methods are interesting insofar, as many properties of
the grouping solutions can be derived by analyzing invariance properties of the cost
function.

Among the class of cost-based criteria, the main focus of this work concerns
those cost functions which are invariant under constant additive shifts of the pair-
wise dissimilarities. For this subset of clustering criteria, we show that there always
exists a set of vectorial data representations such that the grouping problem can be
equivalently restated in terms of Euclidean distances between these vectors. A spe-
cial cost function of this kind is the pairwise clustering cost function. It is of particu-
lar interest, since it combines the properties of additivity, scale- and shift-invariance,
and statistical robustness, see [7]. In [8], this grouping problem is stated as a com-
binatorial optimization problem, which is optimized in a deterministic annealing
framework after applying a mean-field approximation.

According to Theorem 7.2, we can always find a vectorial data representation
such that the optimal partitioning w.r.t. the pairwise cost function is identical to
k-means partitioning in the embedding space. This property demonstrates that the
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embedding method is optimal w.r.t. to distortions of the data partition. This dis-
tortion preserving embedding has to be contrasted with alternative, in our view not
consistent, approaches that are optimal w.r.t. some a priori chosen MDS distortion
measure.

Formulating pairwise clustering as a k-means problem yields several advantages,
both of theoretical and technical nature: (i) the availability of prototype vectors de-
fines a generic rule for using the learned partitioning in a predictive sense, (ii) we can
apply standard noise- and dimensionality-reduction methods in order to separate the
“signal” part of the data from underlying “noise”, (iii) fast and efficient local search
heuristics for optimizing the clustering cost functional often work much better in
low dimensional embedding spaces.

7.2.2 The Pairwise Clustering Cost Function

The modeling idea behind the Pairwise Clustering cost function is to minimize the
sum of pairwise intra-cluster distances, emphasizing compact clusters. Optimizing
a compactness criterion is certainly a very intuitive meta-principle for exploratory
data analysis. It should be noticed, however, that other such meta-principles have
been proposed, such as separation measures, mixed compactness/separation mea-
sures or connectivity measures. In order to formalize Pairwise Clustering, we define
for each object a binary assignment variable that indicates its cluster membership.
Let these variables be summarized in the n× k binary stochastic assignment matrix
M ∈ {0,1}n×k :∑k

ν=1 Miν = 1. Given an n×n dissimilarity matrix D, the Pairwise
Clustering cost function reads:

H pc = 1

2

k∑

ν=1

∑n
i=1

∑n
j=1 MiνMjνDij

∑n
l=1 Mlν

. (7.1)

The optimal assignments M̂ are obtained by minimizing H pc. The minimization
itself is an N P hard problem [9], and some approximation heuristics have been
proposed: in [8], a mean field annealing framework has been presented. In [7], it has
been shown that the time-honored Ward’s method can be viewed as a hierarchical
approximation of H pc.

7.2.3 A Special Case: k-Means Clustering

For the special case of squared Euclidean distances between vectors {xi}ni=1,
xi ∈Rd , it is well known that H pc is identical to the classical k-means cost func-
tion, see [4]. We now briefly review this relationship. The k-means cost function is
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defined as

H km =
k∑

ν=1

n∑

i=1

Miν‖xi − yν‖2. (7.2)

It measures the sum of squared intra-cluster distances to the prototype vectors

yν :=
∑n

i=1 Miνxi

nν
, (7.3)

where nν :=∑n
l=1 Mlν denotes the number of objects in cluster ν. H km can be

written in a pairwise fashion by exploiting a simple algebraic identity for squared
Euclidean distances:

‖xi − yν‖2 = 1

nν

n∑

j=1

Mjν‖xi − xj‖2 − 1

2n2
ν

n∑

j=1

n∑

l=1

MjνMlν‖xj − xl‖2,

n∑

i=1

Miν‖xi − yν‖2 = 1

2nν

n∑

j=1

n∑

l=1

MjνMlν‖xj − xl‖2.
(7.4)

Substituting the latter identity into (7.2), we obtain

H km = 1

2

k∑

ν=1

∑n
i=1

∑n
j=1 MiνMjν‖xi − xj‖2

∑n
l=1 Mlν

=H pc. (7.5)

From this viewpoint, k-means clustering can be interpreted as a method for mini-
mizing the sum of squared pairwise intra-cluster distances Dij = ‖xi − xj‖2. The
reader should notice, however, that in the general case of arbitrary dissimilarities
Dij a direct algebraic re-transformation of H pc into H km is not possible. Despite
this fact, we will show in the remainder of this paper that it is still possible to obtain
the optimal assignment variables M̂ with respect to H pc(M) by minimizing a suit-
ably transformed k-means problem. The key ingredient will be the shift invariance
property of the Pairwise Clustering cost function: H pc is invariant (up to a constant)
under additive shifts of the off-diagonal elements of the dissimilarity matrix:

D̃ij =Dij + d0(1− δij ) ⇒ H̃ =H + (1/2) · (n− k)d0 =H + const. (7.6)

Note that the optimal assignments of objects to clusters are not influenced by adding
a constant to the cost function, i.e., M̂(D̃)= M̂(D).

7.2.4 Constant Shift Embedding

We have introduced the cost function H pc as a special instance of pairwise clus-
tering problems. Due to the shift-invariance property (7.6), the partitioning of the
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dataset (i.e., the assignments of a set of n objects to k clusters) is not affected by
a constant additive shift on the off-diagonal elements of the pairwise dissimilarity
matrix D = (Dij ) ∈ Rn×n. In the remainder of this paper, we will consider general
symmetric dissimilarity matrices D, restricted only by the constraint that all self-
dissimilarities are zero, i.e., that D has zero diagonal elements. We show that by ex-
ploiting the above shift invariance we can always embed such data into a Euclidean
space without influencing the cluster structure. An off-diagonal shifted dissimilarity
matrix reads

D̃ =D + do
(
ene

t
n − In

)
, (7.7)

where en = (1,1, . . . ,1)t is an n-vector of ones and In the n× n identity matrix. In
other words, (7.7) describes a constant additive shift D̃ij =Dij + do for all i 
= j .

Before developing the main theory, we have to introduce the notion of a central-
ized matrix. Let P be an n× n matrix and let Q= In − 1

n
ene

t
n. Q is the projection

matrix on the orthogonal complement of en. Define the centralized P by

P c =QPQ. (7.8)

A centralized matrix has row- and column-sum equal to zero, which can easily be
seen by looking at the components of P c

P c
ij = Pij − 1

n

n∑

k=1

Pik − 1

n

n∑

k=1

Pkj + 1

n2

n∑

k,l=1

Pkl. (7.9)

Let us now consider symmetric dissimilarity matrices. Given such a symmetric and
zero-diagonal matrix D, we decompose it the following way by introducing a new
matrix S:

Dij = Sii + Sjj − 2Sij . (7.10)

It is clear that this decomposition is not unique unless we specify the diagonal ele-
ments of S. Let SD denote the equivalence class of all S yielding the same D. The
following lemma states that for all members S ∈ SD the centralized version Sc is
identical and uniquely defined by the given matrix D:

Lemma 7.1 For any symmetric and zero-diagonal matrix D, the following holds:

Sc =−1

2
Dc, with Dc =QDQ.

The matrix Sc is a particularly interesting member of SD , since the following
theorem holds:

Theorem 7.1 D derives from a squared Euclidean distance, i.e., Dij = ‖xi−xj‖2,
if and only if Sc is positive semi-definite.
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Proof See [10] referring to [11]. �

For general dissimilarities, Sc will be indefinite. By shifting its diagonal ele-
ments, however, we can transform it into a positive semi-definite matrix: the fol-
lowing lemma states that for any matrix A, a positive semi-definite matrix Ã can be
derived by subtracting the smallest eigenvalue from all of its diagonal elements:

Lemma 7.2 Let Ã = A − λn(A)In, where λn(·) is the minimal eigenvalue of its
argument. Then Ã is positive semi-definite.

Proof Due to the diagonal shift, the smallest eigenvalue becomes zero. �

We can now summarize the above results: given a matrix D, there exists a unique
matrix Sc by Lemma 7.1. If Sc is not positive semi-definite, Lemma 7.2 states
that by subtracting λn(S

c) from its diagonal elements, we obtain a positive semi-
definite S̃. Returning to (7.10) with our fixed matrix Sc, such a diagonal shift of Sc

corresponds to an off-diagonal shift of the dissimilarities

D̃ij = S̃ii + S̃jj − 2S̃ij ⇔ D̃ =D− 2λn
(
Sc

)(
ene

t
n − In

)
. (7.11)

In other words, if we were given D̃ instead of our original D, then S̃ would be
a positive semi-definite member of the equivalence class S

D̃
of matrices fulfilling

the decomposition D̃ij = S̃ii + S̃jj − 2S̃ij . Theorem 7.1 then tells us that this off-
diagonally shifted matrix D̃ derives from a squared Euclidean distance. Since every
positive semi-definite matrix is a dot product (or Gram) matrix in some vector space,
there exists a matrix X of vectors such that S̃ = XXt . The matrix D̃ then contains
squared Euclidean distances between these vectors. We can now insert D̃ into our
clustering procedure (which is assumed shift-invariant), and we will obtain the same
partition of the objects as if we had clustered the original matrix D. Contrary to
directly using D, however, the matrix D̃ now contains squared Euclidean distances
between a set of vectors {xi}ni=1. The vectors themselves can be reconstructed by
way of kernel PCA, see [12].

A k-Means Formulation for Pairwise Clustering It is well-known that for the
special case of squared Euclidean distances, the Pairwise cost function and the
k-means cost function can be transformed into each other by using a simple al-
gebraic identity, see above. The invariance property in Eq. (7.6), however, implies
that a similar relationship between both cost functions holds in the general setting:

Theorem 7.2 Given an arbitrary n × n dissimilarity matrix D with zero self-
dissimilarities, there exists a transformed matrix D̃ such that

(i) The matrix D̃ can be interpreted as a matrix of squared Euclidian distances
between a set of vectors {xi}ni=1 with dimensionality dim(xi)≤ n− 1;
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(ii) The original pairwise clustering problem defined by the cost function H pc(D) is
equivalent to the k-means problem with cost function H km in this vector space,
i.e., the optimal cluster assignment variables M̂iν are identical in both prob-
lems: M̂pc(D)= M̂km(D̃).

7.3 A Probabilistic Generalization: the Wishart–Dirichlet
Cluster Process

Despite its elegance, the approach described above is particularly tailored to certain
hard-clustering cost functions like the pairwise k-means function. Here we go one
step further and reformulate the matrix partitioning problem in a fully probabilistic
framework. Clustering with such models can be viewed as a low-rank matrix ap-
proximation, and approximate shift invariance can be explained as a natural conse-
quence of assuming a white noise term capturing the deviations from the low-rank
model. In the hard-clustering limit, the k-means model with its known invariance
properties appears as a special case of this class of models.

This section is structured as follows: we first review the partitioning model for
Gaussian mixtures introduced in [13], which is then extended to a partitioning pro-
cess on matrices. Connections to multi-dimensional scaling are shown which help
to explain the clustering process as a low-rank matrix approximation. Finally, shift
invariance properties are analyzed, and the model is tested both on synthetic and
real-world data. For further technical details the reader is referred to [14, 15].

7.3.1 Gauss–Dirichlet Cluster Process

Let [n] := {1, . . . , n} denote an index set, and Bn the set of partitions of [n]. A parti-
tion B ∈ Bn is an equivalence relation B : [n]×[n]→ {0,1} that may be represented
in matrix form as B(i, j)= 1 if x(i)= x(j) and B(i, j)= 0 otherwise, with x being
a function that maps [n] to some label set L. Alternatively, B may be represented as
a set of disjoint non-empty subsets called “blocks” b. A partition process is a series
of distributions Pn on the set Bn in which Pn is the marginal distribution of Pn+1.
Such a process is called exchangeable if each Pn is invariant under permutations of
object indices, see [16] for details.

A Gauss–Dirichlet cluster process consists of an infinite sequence of points
in R

d , together with a random partition of integers into k blocks. A sequence
of length n can be sampled as follows, cf. [13, 17, 18]: fix the number of mix-
ture modes k, generate mixing proportions π = (π1, . . . , πk) from an exchangeable
Dirichlet distribution Dir(λ/k, . . . , λ/k), generate a label sequence (x1, . . . , xn)

from a multinomial distribution, and forget the labels introducing the random
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partition B of [n] induced by x. Integrating out π , one arrives at a Dirichlet–
Multinomial-type prior over partitions:

Pn(B|λ, k)= k!
(k − kB)!

Γ (λ)
∏

b∈B Γ (nb + λ/k)

Γ (n+ λ)[Γ (λ/k)]kB , (7.12)

where kB ≤ k denotes the number of blocks present in the partition B and nb is
the size of block b. The limit as k→∞ is well defined and known as the Ewens
process (a.k.a. Chinese Restaurant process); see, for instance, [19–21]. Given such
a partition B , d-dimensional observations Y = (Y1, . . . , Yn) are generated from a
zero-mean Gaussian distribution with covariance matrix

ΣB = In ⊗Σ0 +B ⊗Σ1, with cov(Yir ,Yjs |B)= δijΣ0rs +BijΣ1rs , (7.13)

where Σ0 is the usual within-class covariance matrix and Σ1 the between-class
matrix, respectively. Since the partition process is invariant under permutations,
we can always think of B being block-diagonal. For spherical covariance matri-
ces, Σ0 = αId,Σ1 = βId , the columns of Y contain independent copies distributed
according to a normal distribution with covariance matrix ΣB = αI + βB . Further,
the distribution also factorizes over the blocks b ∈ B . Introducing for each block an
nb × nb-matrix of ones Enb , the joint distribution of data and partitions reads

p(Y,B|α,β,λ, k)=
[

∏

b∈B

d∏

j=1

N(Yibj |αInb + βEnb)

]

· P(B|λ, k), (7.14)

where the symbol ib defines an index-vector for all objects assigned to block b.

7.3.2 Wishart–Dirichlet Cluster Process

We now extend the Gauss–Dirichlet cluster process to a sequence of inner-product
and distance matrices. Assume that the random matrix Yn×d follows the zero-mean
Gaussian distribution specified in (7.13), with Σ0 = αId,Σ1 = βId . Then, condi-
tioned on the partition B , the inner product matrix S =Y Y t /d follows a (possibly
singular) Wishart distribution with d degrees of freedom, S ∼Wd(ΣB) [22]. If we
directly observe S = S (i.e., if we measure similarities expressed as a Mercer ker-
nel matrix), it suffices to consider the conditional probability of partitions, Pn(B|S),
which has the same functional form for ordinary and singular Wishart distributions.
Due to the block structure in B , Pn(B|S) factorizes over the blocks b ∈ B:

Pn(B|S,α,β,λ, k)∝
[∏

b∈B
|Σb|− d

2 exp

(
−d

2
tr

(
Σ−1

b Sb
))]
· Pn(B|λ, k), (7.15)

where Σb,Sb denote the submatrices corresponding to the bth block.
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Often, however, we do not directly observe S, but only a matrix D of squared
distances with components Dij = Sii + Sjj − 2Sij . Note that S determines D,
but not vice versa, since D is constant on equivalence classes of S resulting from
the arbitrariness of the mean vector. A squared distance matrix D is character-
ized by the property of being negative definite on contrasts, which means that
xtDx =− 1

2xt Sx < 0 for any x : xt1= 0. The distribution of D has been formally
studied in [23], where it was shown that if S ∼ Wd(ΣB), −D follows a general-
ized Wishart distribution, −D ∼Wd(1,Δ) defined with respect to the transforma-
tion kernel 1, where Δij = ΣBii +ΣBjj − 2ΣBij . As before, the transformation
kernel has the effect that the distribution of D is constant on equivalence classes.
Since we are interested in studying the partition B given an observed matrix D, it is
convenient to forego the equivalence classes by explicitly choosing a representation
S which fulfills Dij = Sii + Sjj − 2Sij . We can again use the projection Q with
Qij = δij − 1

n
to transform D into centered inner product form via S =− 1

2QDQ,
which eliminates contributions of the mean vector while preserving the distances.
Formally, this choice is justified by the observation that D is a matrix of squared
distances if and only if S =− 1

2QDQ is positive semi-definite [10].

Relation to Multi-Dimensional Scaling Classical multi-dimensional scaling [24]
can be interpreted as using a distance model

−D ∼W (1,Δ) with Δ=Δ0 −M − σ 2I, (7.16)

where Δ0 stems from the transformation kernel 1, M is a low-rank matrix used
to approximate the observed matrix D, and σ 2I is a white noise term accounting
for deviations from the low-rank model, see [23]. As before, the transformation
S =−QDQ eliminates the contribution of the kernel and transforms the data into
inner product form. The matrix M is then computed as the best low-rank approx-
imation to S, which is the rank-constrained maximum likelihood solution in the
Wishart model, see [23]. The above expression Σ = σ 2I +M is essentially the
same as our covariance model ΣB = αI + βB . The only difference is that B is not
an arbitrary low-rank matrix, but additionally constrained to be a binary partition
matrix. Thus, our partitioning model can be understood as a binarized version of
multi-dimensional scaling. The white noise term αI corresponding to the within-
class covariance has the role of absorbing the deviations from the low-rank model.

Shift Invariance The expected value of S ∼ Wd(ΣB) is E[S ] = ΣB . Adding
an additional noise term δI shifts the expected value to ΣB + δI . Reversing this
argument for inference problems in which we observe the inner product matrix S,
additive shifts of the diagonal elements of S might be absorbed by the white noise
term. Note that such additive diagonal terms appear when shifting the off -diagonal
elements of D. Using sufficiently large shifts ensures that there exists an embedding
space in which the transformed dissimilarities D′ can be represented as squared Eu-
clidean distances. The idea behind additive shifts is the following: if we observe a
matrix D which gives rise to an indefinite matrix S =− 1

2QDQ, there are basically
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two options: either we can directly use S, irrespective of negative eigenvalues, or we
can try to “heal” the negative eigenvalues. Concerning the first option, it is unclear
what bias is introduced due to the model mismatch. “Healing” the negative eigen-
values, on the other hand, introduces another sort of bias. In the ideal case, we can
find a transformation which exploits some invariance of the analysis model. If the
model is invariant under additive shifts, we can safely transform any (symmetric)
matrix D in such a way that it will be inside the model space. Note that for our
clustering model, even symmetry is not required, since all conditionals are invariant
under S← 1/2(S + St ). We first show that exact shift invariance is possible, but
only under assumptions that eliminate the probabilistic nature of the model.

The inverse matrix Σ−1
b = (αInb + βEnb)

−1 can be analytically computed as

1

α

(
I − β

α+ nbβ
Enb

)
= 1

α

(
I − θ

1+ nbθ
Enb

)
with θ := β/α. (7.17)

Denoting by d
2A the argument of the exponential function in (7.15), a shift S′ =

S + δIn implies

αA′ := −α tr
(
(αInb + βEnb)

−1(Sb + δI )
)

= nbθ

1+ nbθ
(nbS̄b + δ)− tr(Sb)− nbδ, (7.18)

where S̄b denotes the mean value of the bth block of S. For α→ 0, it follows that

αA′ ≈ nbS̄nb − tr(Sb)− (nb − 1)δ

⇒
∑

b∈B
αA′ ≈ − tr(S)− (n− kB)δ +

∑

b∈B
nbS̄b

(7.19)

with kB being the number of blocks in the partition B . This result implies that for
fixed α, θ, kB , the conditional posterior of partitions is approximately shift invari-
ant. In the hard-clustering limit as α→ 0, this statement becomes exact. The price
for exact shift invariance is the problem of estimating kB . The restriction to hard as-
signments precludes an intrinsic measure of “clusterability”: the model degenerates
to an combinatorial optimization problem in which we need to fix k. The optimal
solution will then automatically include all kB = k blocks. Note that the limit α→ 0
defines the pairwise clustering cost function [8] whose invariance properties have
been studied in [3].

Here, we consider more realistic situations in which both the covariance param-
eters and kB are estimated. Intuitively, we assume that shifts are “absorbed” in the
within-class term, i.e., α′ = α+ δ. Analytically studying the effects on the partition
when both α and θ are varying is complicated, in particular due to the influence
of the normalization term |Σb|−(d/2) in (7.15). Thus, we only consider an ideal-
ized scenario in which the matrix S has a distinct cluster structure which is con-
sistent with our model. In such a case, there will be a matrix Σ ′ = α′I + βB ′ that
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is reasonably close to the observed S, and the ML-estimate of the covariance ma-
trix in the Wishart model is Σ̂B ≈ Σ ′ = α′I + βB ′. If there is an additional shift
Sshifted = S + δI , the ML-estimate will be Σ̂ shifted

B ≈ (α′ + δ)I + βB ′. The normal-
ization term, however, decreases, indicating that the distribution is smeared out due
to the increased noise term. Note that we have neglected the influence of the prior
Pn(B) defined in Eq. (7.12). For moderate shifts, however, the deviations from “lo-
cal” uniformity might be reasonably small. Despite the approximate nature of this
plausibility argument, our simulation experiments nicely corroborate the intuition
that moderate shifts can be absorbed in the white-noise term—at least if the data ex-
hibits a clear cluster structure. In practice, however, observed matrices only rarely
show a distinct block structure, and the additional noise component introduced by
large shifts severely hampers the estimation of a stable partition, both for our prob-
abilistic model and for the hard-clustering counterpart. Thus, the real benefit of any
form of shift invariance might be a justification for first transforming the data into
inner product form and then applying (kernel-)PCA-denoising to eliminate the ad-
ditional noise, which is exactly the approach suggested in [25].

Inference via Gibbs Sampling The main idea in Gibbs sampling is to iteratively
sample parameter values from the full conditionals, For the sake of simplicity, we
only consider the update equations for the partition B . Assume that n objects in S

have already been partitioned according to B . Conditioning on S and B , we want to
compute the assignment probabilities for a new object o∗, characterized by an addi-
tional row and column in the augmented matrix S∗. Due to permutation invariance,
we can always assume that S∗ is ordered according to blocks in B and that the ad-
ditional row/column is the last one in some block. Either the new object is assigned
to an existing block b, i.e., o∗ → b ∈ B , or it is assigned to a new block which will
be denoted by o∗ → ∅.

Consider first the case o∗ → b ∈ B . Assume that the new row/column is the last
one in this block. The number of objects in block b is increased by one, i.e., n∗b =
nb + 1, and the new block mean is denoted by S̄∗b . With a slight abuse of notation,
we write S∗j for S∗nb+1,j and S∗∗ for S∗nb+1,nb+1. All symbols without (∗) refer to

the old state with n objects. Denote by d
2A
∗(b) the new argument in the exponential

function in (7.15). Then,

A∗(b)=A+ 1

α

(
(nb + 1)θ

1+ (nb + 1)θ
(nb + 1)S̄∗b −

nbθ

1+ nbθ
nbS̄b + S∗∗

)
. (7.20)

Consider now the case of assigning o∗ to a new cluster, i.e., o∗ → ∅. A new single-
ton cluster is added, i.e., k∗B = kB + 1. The associated argument in the exponential
function becomes A∗(∅)=A+ 1

α
( θ

1+θ S∗∗ + S∗∗). For the conditionals, we need to
multiply the exponentiated terms above with the contributions of both the normal-
ization term in (7.15) and the prior. Denoting these terms by N∗(b) and N∗(∅), and
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Fig. 7.1 Toy example for analyzing shift invariance. Linearly increasing red circles denote the
mean values of estimated α-parameter under variation of the shift δ. Almost horizontal black
squares show the mean values of estimated β-parameter (scaled by a factor of 10 for better visu-
alization). Color-coded histogram provides differences between true and sampled partition. Right
panel presents three sampled partitions

using Γ (x + 1)= xΓ (x) in (7.12), we find

N∗(b)∝
[

1+ θnb

1+ θ(1+ nb)

](d/2)

· (nb + λ/k),

N∗(∅)∝ (1+ θ)−
d
2 · λ(1− kB/k).

(7.21)

7.3.3 Experiments

In a first experiment, we analyze the shift-invariance based on a matrix sampled
from W (ΣB) with a two-block partition (30 %/70 %) and α = 1, θ = 20. Using
relatively uninformative priors on α and θ , we add increasing shifts δI to S. To
compensate for δ, we adjust the priors over α and θ by shifting their expected value
accordingly. Figure 7.1 shows that over a large range of δ-values, the shift is indeed
absorbed in α, and the estimate for β = α · θ is roughly constant. Deviations from
the “true” partition are summarized in the expression

∑
ij (B

true
ij − B

sampled
ij ). Note

that even for large shifts (δ = 1000 is roughly 25 % of the largest eigenvalue of S),
the partition remains rather stable. It is clear that we consider an idealized scenario,
but nevertheless we conclude that our intuition about absorbing shifts seems to be
correct. In this experiment, the influence of λ is extremely small: λ can be changed
over at least 10 orders of magnitude without affecting kB .

In the two following experiments, we quantitatively investigate the clustering
performance in terms of the size-normalized within-sum-of-squared errors (dis-
tances), SSE =∑

b∈B nbD̄b , and compare the outcome with the Affinity Propa-
gation (AP) method based on two datasets described in [26]. The first dataset con-
tains similarities between 900 face images from the Olivetti database, available at
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Fig. 7.2 Clustering the face dataset (top row) and text dataset (bottom row) from [26]. (Left)
Within SSE obtained from Affinity Propagation with different affinity-parameter values (blue cir-
cles) and from our algorithm under variation of the prior on θ (color-coded histogram). (Right)
Sampled θ values (blue) and range of possible θ values in the discretized prior (reddish-shaded
area)

http://www.psi.toronto.edu/index.php?q=affinity%20propagation. AP has been re-
ported to exhibit some advantages over other centroid-based approaches on this
dataset. The results in Fig. 7.2 (top row) show that our model consistently outper-
forms AP, which means that better centroids have been found (note, however, that in
this comparison our model has the advantage of not being restricted to choosing ex-
emplars as centroids). Nevertheless, we conclude that in terms of optimization qual-
ity, the Wishart–Dirichlet model is a strong competitor to AP. Even more important,
however, is the observation that all partitions with kB < 100 are very implausible,
because such a low number of clusters can only be obtained by “forcing” the model
to use a very low θ -value via the prior, see the right panel: sampled values “hitting”
the upper boundary of admissible values indicate that the model is entirely forced
into a certain direction by the prior. Note that θ is the quotient of between-class to

http://www.psi.toronto.edu/index.php?q=affinity%20propagation
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within-class variance, and θ < 1 means that there is hardly any cluster structure in
the data.

Using the AP model, on the other hand, we can simply “slide” through all
kB -values by changing the “affinity”-parameter from −74 to −15. From the AP
model alone, we find it difficult to see why one of these results should be preferred
over any other one (in [26], the model with kB = 62 has been chosen for further
analysis). The computational workload is not really an issue in this example, since
even several millions of Gibbs sweeps can be computed reasonably fast (i.e., over
night). A similar situation occurs for another dataset containing KL-divergences be-
tween sentences in a manuscript, which was used in [26] to demonstrate the perfor-
mance of AP in situation where metric axioms are violated. Figure 7.2 (bottom row)
clearly shows that (after symmetrizing an shifting) our model is a strong competitor
in terms of optimization quality. The right panel again indicates that models with a
low number of clusters (say < 70) are not very plausible due very small θ -values.

7.3.4 Wishart–Dirichlet Partitioning for Quality Control in
Computational Pathology

Motivation A main challenge in computational pathology is the automated anal-
ysis of tissue microarrays (TMA). TMAs consist of tissue samples from hundreds
of patients which can be stained with various antibodies for protein expression anal-
ysis. An automated analysis pipeline consists of three major steps: (i) cell nuclei
detection, (ii) nuclei classification into malignant and benign, and (iii) staining es-
timation (see Chap. 9 for details). The resulting estimation per patient can then be
used to correlate marker expression with the survival times or other clinical vari-
ables.

The most crucial step in the analysis pipeline is the classification of nuclei into
malignant and benign, because the subsequent staining estimation has to be per-
formed only on the subgroup of cancerous nuclei. Proliferation markers like MIB-1
(Ki-67) stain cell nuclei shortly before and after mitosis. The percentage of stained
cancerous nuclei is one of the best prognostic factors for the survival of cancer pa-
tients [27], due to the fact that it directly relates to aggressiveness of the disease.
As a consequence the differentiation between malignant and benign nuclei directly
affects the final survival model for cancer patients. Stained benign nuclei, which
were falsely classified, can considerably worsen the survival prediction in a domain,
where small differences in the low percentage regime have a large impact on the
progression of the disease.

Previous approaches [28] to automatic TMA analysis demonstrated that reason-
able nuclei detection and staining estimation is possible and approaches the per-
formance of trained pathologists. The main drawback of these models is the re-
quirement for (almost) perfectly processed TMA spots. The predominant problem in
clinical practice is the high variability between and within single spots, respectively
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patients. Noise and variations are not only imposed by biology but also by techni-
cal preprocessing which comprises error prone steps like micro-cutting, punching
of TMA spots and staining, which involves applying antibodies and microwaving of
the tissue. The final step comprises scanning of the microscope slides and tiling of
the TMA into single spots. All these steps lead to biological, technical and digital
artifacts in the images resulting in distorted, blurred or obfuscated regions. Thus,
trained pathologists do not take into account the whole spot when manually ana-
lyzing TMAs, but restrict themselves to regions of high quality only. This prefer-
ence could also be observed during extensive labeling experiments for generating
a “gold standard”. Forcing pathologist to classify randomly drawn nuclei led not
only to high inter-pathologist variability but also to high intra-pathologist variabil-
ity (∼25 %). To this end, the main goal in this application scenario is to create an
algorithm which is robust to tissue variations by mimicking the work-flow of trained
domain experts. The technical tool used for developing such an algorithm is a prob-
abilistic model for partitioning dissimilarily matrices. The next section contains a
detailed description of this model.

Quality Control in Computational Pathology The dataset consists of 500 can-
cerous nuclei and 500 normal nuclei sampled from TMA spots of 9 clear cell renal
cell carcinoma patients (ccRCC). The spots were exhaustively labeled by a trained
pathologist to generate a gold standard.

To differentiate between malignant and benign cell nuclei a Random Forest (RF)
classifier [12] is trained. Each sample consists of a patch of size 65×65 pixels, cen-
tered at the nucleus. Local Binary Patterns (LBP) [30] are extracted from the gray
scale images to form a feature vector of size 256 for each sample. LBPs have the
advantage of illumination invariance, i.e., they are invariant with respect to mono-
tonic gray-scale changes. A random forest classifier consists of a collection of tree-
structured classifiers {h(x,Θk), k = 1, . . .} where {Θk} are independent identically
distributed random vectors and each tree casts a unit vote for the most popular class
at input x. One beneficial property of RFs is the internal out-of-bag (OOB) error
which provides an unbiased estimate of the generalization error and which is re-
ported in the following evaluation.

Learning an RF on the whole data set leads to an OOB error of 36 % (Fig. 7.3).
Hence every third subsequent staining estimation is performed on a falsely classified
nucleus. To enhance these results, we follow the analysis strategy of pathologists
by excluding detection regions with poor quality. To this end, we use our matrix
partitioning model to find subgroups of cell nuclei. A 1000×1000 similarity matrix
is generated by measuring the proximity of nuclei in the tree ensemble [12]. All
training samples and OOB samples are put down each tree of the ensemble. If two
samples end up in the same terminal node, their proximity is increased by one.
Finally, the similarities are normalized by the number of trees. The resulting matrix
shows some negative eigenvalues, which are dealt with by using the shift-embedding
trick, followed by PCA-denoising (Fig. 7.4).

Our clustering model reveals five stable clusters shown in Fig. 7.5. Most of the
clusters can be interpreted semantically. For instance, cluster 3 contains large nuclei
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Fig. 7.3 Out-of-bag (OOB) error of the random forest classifier for the whole dataset. The error
converges after approximately 300 trees to an average classification error (black) of approximately
36 %: (red) OOB error of the malignant class; (green) OOB error of the benign class

Fig. 7.4 Multidimensional
scaling of the random forest
proximity matrix. Visually
there are no discernible
clusters of cancerous (red) or
normal (blue) nuclei

which are clearly distinguishable from background. Such morphology is articulated
in cancerous nuclei which are no longer embedded in cohesive tissue. Cluster 2,
on the other hand, comprises small and elongated nuclei on cluttered background.
This is characteristic for benign nuclei in healthy tissue and for endothelial cells in
connective tissue. These observation are consistent with the observed distribution
of labels (Fig. 7.6). In contrast, the patches in cluster 5 are either blurred, distorted
or show no clear structure. This lack of sematic meaning is mainly caused by tech-
nical processing flaws which result in regions, which cannot be classified reliably,
although the pathologists detected remnants of nuclei. Cluster 1 and 4 vary largely
in tissue morphology and image quality. Consequently, these three clusters show an
almost uniform distribution of malignant and benign cells. A computational TMA
analysis tool should reject such nuclei, in the same manner as a domain expert would
go about it to avoid contamination of the whole patient sample (Fig. 7.7). Proceed-
ing at these lines, an RF classifier is trained on the subset of nuclei from cluster
2 and 3, resulting in an OOB error of 19.4 %. This significant reduction nicely
demonstrates the importance of quality assessment preceding classification. We are
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Fig. 7.5 Cluster of cell nuclei from renal cell carcinoma patients. (Left) Randomly drawn nuclei
from the five cluster revealed by W–D-clustering. (Right) Within-cluster distribution of cancerous
and benign nuclei. For most cluster the semantic interpretation of pathologists is in agreement with
the class distribution, e.g., cluster 3 consists mainly of large nuclei which are clearly distinguish-
able from background. This kind of morphology is articulated in cancerous cells which are no
longer embedded in cohesive tissue. Cluster 2, on the other hand, comprises small and elongated
nuclei on cluttered background. This is characteristic for benign nuclei in healthy tissue and for en-
dothelial cells in connective tissue. In contrast, the patches in cluster 5 are either blurred, distorted
or show no clear structure which is mainly due to technical processing flaws which lead to image
regions of poor quality. In addition, clusters 1 and 4 show no interpretable pattern and vary largely
in tissue morphology and image quality. These three cluster also exhibit a uniform distribution of
malignant and benign cells

convinced that this data cure approach is the key to solving one of the most severe
problems in the design of computational TMA analysis tools.

7.4 Conclusion

A partitioning model is called shift invariant, if the choice of a partition is not in-
fluenced by additive constant shifts of the off-diagonal elements in D. If a model
exhibits this invariance property, it is always possible to construct an underlying
Euclidean embedding space without altering the partition, a situation which we de-
scribe as “structure preserving embedding”.

We have shown that the pairwise k-means cost function exhibits strict shift invari-
ance, which—in terms of group structure– defines a structure preserving embedding
model. However, this analysis is restricted to a certain cost function, and in particu-
lar to considering scenarios in which the number of clusters k is defined in advance.
The latter requirement must be considered a severe shortcoming in most real appli-
cations, because information about the number of clusters usually rare. Therefore,
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Fig. 7.6 Label distribution of each cluster per pathologist. Both experts agree that cluster 2 con-
sists predominantly of normal nuclei, while cluster 3 comprises mostly cancerous nuclei

Fig. 7.7 Inter observer misclassification error of two pathologists for each of the five cluster de-
termined by Wishart–Dirichlet partitioning

we tried to broaden our viewpoint on pairwise clustering by considering a prob-
abilistic version of the pairwise k-means model. The main idea is to construct a
stochastic process on similarity matrices ad use a Dirichlet process prior to estimate
the number of “blocks” in a partition matrix. Concerning structure preserving em-
beddings defined by constant-shift embeddings, we have shown that the clustering
model induced by this Wishart–Dirichlet model can absorb “moderate” shifts in the
white-noise term. However, a particular problem of this model is that the process
of estimating the number of clusters in a data-adaptive fashion is also affected by
the shift: shifting increases the tendency to introduce new clusters, since under the
shift the mutual similarities between all objects decrease. It seems that strict shift
invariance can only be achieved if the number of clusters is fixed, which somehow
contradicts our efforts to generalize the k-means setting.

Considering the relevance of structure preserving embedding for the overall goal
of the SIMBAD project, namely the development of a new theory of similarity-
based pattern recognition, our current view is ambivalent: strict structure preser-
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vation could be proved only for a small set of clustering methods, like pairwise
k-means and certain graph-based cut/association algorithms. All these algorithms
require the user to fix the number of clusters in advance. A “relaxed” version of
shift invariance holds for a probabilistic version of the pairwise k-means method,
but we have to admit that shift invariance and estimation of the number of clusters
might be two conflicting goals. As an alternative the number of clusters k can be
estimated by the information theoretic approach to cluster validation using approx-
imation set coding (ASC) (see Chap. 3 and [31]).

When it comes to building a theory on similarity-based pattern recognition, all
these algorithms may be seen as “negative results”, since they are essentially blind
against Euclidean or even metric violations. In other words, if one wants to learn
something about clustering similarity data, one should look at different clustering
procedures. While this result may be considered an interesting insight, it is still a
very limited result due to the small number of algorithms that could be identified to
fall into this category.
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Chapter 8
A Game-Theoretic Approach to Pairwise
Clustering and Matching

Marcello Pelillo, Samuel Rota Bulò, Andrea Torsello, Andrea Albarelli,
and Emanuele Rodolà

Abstract Clustering refers to the process of extracting maximally coherent groups
from a set of objects using pairwise, or high-order, similarities. Traditional ap-
proaches to this problem are based on the idea of partitioning the input data into
a predetermined number of classes, thereby obtaining the clusters as a by-product
of the partitioning process. In this chapter, we provide a brief review of our recent
work which offers a radically different view of the problem and allows one to work
directly on non-(geo)metric data. In contrast to the classical approach, in fact, we
attempt to provide a meaningful formalization of the very notion of a cluster in
the presence of non-metric (even asymmetric and/or negative) (dis)similarities and
show that game theory offers an attractive and unexplored perspective that serves
well our purpose. To this end, we formulate the clustering problem in terms of a
non-cooperative “clustering game” and show that a natural notion of a cluster turns
out to be equivalent to a classical (evolutionary) game-theoretic equilibrium con-
cept. Besides the game-theoretic perspective, we exhibit also characterizations of
our cluster notion in terms of optimization theory and graph theory. As for the algo-
rithmic issues, we describe two approaches to find equilibria of a clustering game.
The first one is based on the classical replicator dynamics from evolutionary game
theory, the second one is a novel class of dynamics inspired by infection and immu-

M. Pelillo (B) · A. Torsello · A. Albarelli
DAIS, Università Ca’ Foscari, Venezia, Italy
e-mail: pelillo@dais.unive.it

A. Torsello
e-mail: torsello@dais.unive.it

A. Albarelli
e-mail: albarelli@dais.unive.it

S. Rota Bulò
Fondazione Bruno Kessler, Povo, Trento, Italy
e-mail: samyrota@gmail.com

E. Rodolà
Intelligent Systems and Informatics Lab, University of Tokyo, Tokyo, Japan
e-mail: rodola@isi.imi.i.u-tokyo.ac.jp

M. Pelillo (ed.), Similarity-Based Pattern Analysis and Recognition,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-5628-4_8, © Springer-Verlag London 2013

179

mailto:pelillo@dais.unive.it
mailto:torsello@dais.unive.it
mailto:albarelli@dais.unive.it
mailto:samyrota@gmail.com
mailto:rodola@isi.imi.i.u-tokyo.ac.jp
http://dx.doi.org/10.1007/978-1-4471-5628-4_8


180 M. Pelillo et al.

nization processes which overcome their limitations. Finally, we show applications
of the proposed framework to matching problems, where we aim at finding cor-
respondences within a set of elements. In particular, we address the problems of
point-pattern matching and surface registration.

8.1 Introduction

Clustering is the problem of organizing a set of data elements into groups in a way
that each group satisfies an internal coherency and external incoherency property.
Researchers have focused their attention on this problem for many decades due to
its broad applicability, and recently a new wave of excitement has spread across
the machine learning community mainly because of the important development of
spectral methods. At the same time, there is also growing interest around funda-
mental questions pertaining to the very nature of the clustering problem (see, e.g.,
[1, 31, 60]). Yet, despite the tremendous progress in the field, the clustering problem
remains elusive and a satisfactory answer even to the most basic questions is still to
come.

The vast majority of the existing approaches deal with a very specific version of
the problem, which asks for partitioning the input data into coherent classes. Even
the classical distinction between hierarchical and partitional algorithms [28] seems
to suggest the idea that partitioning data is, in essence, what clustering is all about
(as hierarchies are but nested partitions). The partitional paradigm is attractive as it
leads to elegant mathematical and algorithmic treatments and allows us to employ
powerful ideas from such sophisticated fields as linear algebra, graph theory, opti-
mization, statistics, information theory, etc. However, there are several (far too often
neglected) reasons for feeling uncomfortable with this oversimplified formulation.
Probably the best-known limitation of the partitional approach is the typical (algo-
rithmic) requirement that the number of clusters be known in advance, but there is
more than that.

To begin, the very idea of a partition implies that all the input data will have to get
assigned to some class. There are various applications for which it makes little sense
to force all data items to belong to some group, a process which might result either in
poorly-coherent clusters or in the creation of extra spurious classes. As an extreme
example, consider the classical figure/ground separation problem in computer vision
which asks for extracting a coherent region (the figure) from a noisy background
[24, 49]. More recently, motivated by practical applications arising in document
retrieval and bioinformatics, a conceptually identical problem has attracted some
attention within the machine learning community and is generally known under the
name of one-class clustering [16, 23].

The second intrinsic limitation of the partitional paradigm is even more severe
as it imposes that each element cannot belong to more than one cluster. There are
a variety of important applications, however, where this requirement is too restric-
tive. Examples abound and include, e.g., clustering micro-array gene expression
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data (wherein a gene often participate in more than one process), clustering docu-
ments into topic categories, perceptual grouping, and segmentation of images with
transparent surfaces. Typically, this is solved by relaxing the constraints imposed by
crisp partitions in such a way as to have “soft” boundaries between clusters.

Finally, stemming from a natural assumption for central clustering frameworks,
clustering approaches have traditionally worked under the assumption that the sim-
ilarities satisfy metric properties, i.e., they are symmetric, non-negative, and satisfy
the triangle inequality. However, recently there has been a strong interest in relaxing
these requirements [27, 46, 59]. This is due to the fact that in many applications non-
metric similarities arise naturally [25, 58]. More fundamentally, some researches
argue that human perception does not satisfy metric properties [27]. While the lit-
erature presents many approaches that lift the assumption of non-negativity and tri-
angle inequality [27, 46], little progress has been made in relaxing the symmetry
constraint. Note, however, that the limited progress in grouping with asymmetric
affinities is not due to the lack of interest. In fact, there are many practical applica-
tions where asymmetric (or, more generally, non-metric) similarities do arise quite
naturally. For example, such (dis)similarity measures are typically derived when im-
ages, shapes or sequences are aligned in a template matching process. In image and
video processing, these measures are preferred in the presence of partially occluded
objects [27]. Other examples include pairwise structural alignments of proteins that
focus on local similarity [5], variants of the Hausdorff distance [18], normalized
edit-distances, and probabilistic measures such as the Kullback–Leibler divergence.
A common method to deal with asymmetric affinities is simply to symmetrize them,
but in so doing we might lose important information that reside in the asymmetry
(see, e.g., [12]). As argued in [27], the violation of metricity is often not an ar-
tifact of poor choice of features or algorithms, but it is inherent in the problem of
robust matching when different parts of objects (shapes) are matched to different im-
ages (compare this with the analysis presented in Chap. 2 concerning non-Euclidean
data). The same argument may hold for any type of local alignments. Corrections or
simplifications of the original affinity matrix of the type described in the previous
chapters may therefore destroy essential information, and is therefore important to
devise algorithms which are able to work directly on the original data.

Although probabilistic model-based approaches do not suffer from several of the
limitations mentioned above, here we suggest an alternative strategy. Instead of in-
sisting on the idea of determining a partition of the input data, and hence obtaining
the clusters as a by-product of the partitioning process, we propose to reverse the
terms of the problem and attempt instead to derive a rigorous formulation of the
very notion of a cluster. We found that game theory offers a very elegant and gen-
eral perspective that serves well our purposes. Hence, in this chapter we describe a
game-theoretic framework for clustering [38, 43, 52] which has found applications
in fields as diverse as computer vision and bioinformatics. The starting point is the
elementary observation that a “cluster” may be informally defined as a maximally
coherent set of data items, i.e., as a subset of the input data C which satisfies both
an internal criterion (all elements belonging to C should be highly similar to each
other) and an external one (no larger cluster should contain C as a proper subset).
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We then formulate the clustering problem as a non-cooperative clustering game,
where the notion of a cluster turns out to be equivalent to a classical equilibrium
concept from (evolutionary) game theory, as the latter reflects both the internal and
external cluster conditions mentioned above. The clustering game is defined as fol-
lows: Assume a pre-existing set of objects O and a (possibly asymmetric and even
negative) matrix of affinities A between the elements of O . Two players with com-
plete knowledge of the setup play by simultaneously selecting an element of O .
After both have shown their choice, each player receives a payoff, monetary or oth-
erwise, proportional to the affinity that the chosen element has with respect to the
element chosen by the opponent. Clearly, it is in each player’s interest to pick an ele-
ment that is strongly supported by the elements that the adversary is likely to choose.
As an example, let us assume that our clustering problem is one of figure/ground
discrimination, that is, the objects in O consist of a cohesive group with high mu-
tual affinity (figure) and of non-structured noise (ground). Being non-structured, the
noise gives equal average affinity to elements of the figures as to elements of the
ground. Informally, assuming no prior knowledge of the inclination of the adver-
sary, a player will be better-off selecting elements of the figure rather than of the
ground.

Within this framework, clusters correspond to the ESSs of our non-cooperative
game. The hypotheses that each object belongs to a cluster compete with one-
another, each obtaining support from compatible edges and competitive pressure
from the others. Competition will reduce the population of individuals that as-
sume weakly supported hypotheses, while allowing populations assuming hypothe-
ses with strong support to thrive. Eventually, all inconsistent hypotheses will be
driven to extinction, while all the surviving ones will reach an equilibrium whereby
they will all receive the same average support, hence exhibiting the internal co-
herency characterizing a cluster. As for the extinct hypotheses, they will provably
have a lower support, thereby hinting to external incoherency. The stable strategies
can be found using replicator dynamics, a classic formalization of a natural selection
process [26, 57], or more powerful algorithms.

Our game-theoretic formulation of the clustering problem overcomes the afore-
mentioned limitations of the majority of the clustering approaches in the literature.
Indeed, it makes no assumption on the underlying (individual) data representation:
like graph-based clustering, it does not require that the elements to be clustered be
represented as points in a vector space; it makes no assumption on the structure of
the affinity matrix, being able to work with asymmetric and even negative similarity
functions alike; it does not require a priori knowledge on the number of clusters
(since it extracts them sequentially); it leaves clutter elements unassigned; it allows
extracting overlapping clusters [53]; it generalizes naturally to hypergraph cluster-
ing problems, i.e., in the presence of high-order affinities [44], in which case the
clustering game is played by more than two players.

Outline The chapter is organized as follows. We provide basic game-theoretic
notions and notation in Sect. 8.2. Section 8.3 presents the idea of the clustering game
and provides different characterizations thereof. In Sect. 8.4, we describe algorithms
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that can be used to find clusters according to the proposed framework. In Sects. 8.5
and 8.6, we present two effective applications of our clustering framework to the
problem of matching, which is central to any recognition task where the object to
be recognized is naturally divided into several parts, and the problem of surface
alignment, which is a fundamental step in the reconstruction of three-dimensional
objects.

8.2 Notations and Theoretical Background

According to classical game theory [21], a game of strategy between two players can
be formalized as a triplet Γ = (P,S,π), where P = {1,2} is the set of two “players”
(or agents), S = {1, . . . , n} is a set of pure strategies (or actions) available to each
player, and π : S2→R is a payoff function, which assigns a utility to each strategy
profile (s1, s2) ∈ S2, which is an (ordered) pair of pure strategies played by the
different players.1 The payoff function can also be represented as a 2-dimensional
matrix A= (aij ) ∈Rn×n such that aij = π(i, j).

Evolutionary game theory originated in the early 1970s as an attempt to apply
the principles and tools of game theory to biological contexts, with a view to model
the evolution of animal, as opposed to human, behavior (see the classical work by
J. Maynard Smith [35] who pioneered the field). It considers an idealized scenario
whereby individuals are repeatedly drawn at random from a large, ideally infinite,
population to play a two-player game. In contrast to classical game theory, here
players are not supposed to behave rationally or to have complete knowledge of the
details of the game. They act instead according to an inherited behavioral pattern, or
pure strategy, and it is supposed that some evolutionary selection process operates
over time on the distribution of behaviors. Here, and in the sequel, an agent with
preassigned strategy j ∈ S will be called a j -strategist. The state of the population
at a given time t can be represented as an n-dimensional vector x(t), where xj (t)

represents the fraction of j -strategists in the population at time t . Hence, the initial
distribution of preassigned strategies in the population is given by x(0). The set of
all possible states describing a population is given by

Δ=
{

x ∈Rn :
∑

j∈S
xj = 1 and xj ≥ 0 for all j ∈ S

}

which is called the standard simplex. Points in the standard simplex are also referred
to as mixed strategies in game theory. As time passes, the distribution of strategies in
the population changes under the effect of a selection mechanism which, by analogy
with Darwinian process, aims at spreading the fittest strategies in the population

1We note that although we restrict ourselves to games where all players share the same set of pure
strategies and payoff function, in more general settings each agent can well be associated to its
own pure strategy set and payoff function.
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to the detriment of the weakest ones which, in turn, will be driven to extinction
(we postpone the formalization of one such selection mechanism to Sect. 8.4). For
notational convenience, we drop the time reference t from a population state and we
refer to x ∈Δ as a population rather than population state. Moreover, we denote by
σ(x) the support of x ∈Δ:

σ(x)= {j ∈ S : xj > 0}
which is the set of strategies that are alive in a given population x.

We will find it useful to define the following function u :Rn ×R
n→R:

u
(
y(1),y(2))=

∑

(s1,s2)∈S2

π(s1, s2)
∏

i∈{1,2}
y(i)
si
= y(1)�Ay(2). (8.1)

We will also write ej to indicate the n-vector with xj = 1 and zero elsewhere. Now,
it is easy to see that the expected payoff earned by a j -strategist in a population
x ∈Δ is given by

u
(
ej ,x

)= (Ax)j =
∑

s∈S
ajs, xs,

while the expected payoff over the entire population is given by

u(x,x)= x�Ax=
∑

j∈S
xj (Ax)j .

Given a population x, we denote by τ−(x) the set of pure strategies that perform
worse than average, i.e.,

τ−(x)=
{
j ∈ S : u(

ej ,x
)
< u(x,x)

}
,

by τ+(x) the set of strategies performing better than the average, i.e.,

τ+(x)=
{
j ∈ S : u(

ej ,x
)
> u(x,x)

}
,

and finally by τ0(x) the set of strategies performing as the average, i.e.,

τ0(x)=
{
j ∈ S : u(

ej ,x
)= u(x,x)

}
.

A fundamental notion in game theory is that of an equilibrium [57]. Intuitively,
an evolutionary process reaches an equilibrium x ∈Δ when every individual in the
population obtains the same expected payoff and no strategy can thus prevail upon
the other ones. Formally, x ∈Δ is a Nash equilibrium if

u
(
ej ,x

)≤ u(x,x), for all j ∈ S. (8.2)

In other words, at a Nash equilibrium every agent in the population performs at most
as well as the overall population expected payoff. This can also be compactly written
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as τ+(x) ∩ S = ∅. A Nash equilibrium x ∈Δ can be equivalently characterized by
the condition that

u(y,x)≤ u(x,x) (8.3)

for all y ∈ Δ. We say that a Nash equilibrium x is strict if (8.3) holds with strict
inequality for all y ∈Δ \ {x}.

Within a population-based setting, the notion of a Nash equilibrium turns out to
be too weak as it lacks stability under small perturbations. This motivated J. May-
nard Smith, in his seminal work [35], to introduce a refinement of the Nash equilib-
rium concept generally known as an Evolutionary Stable Strategy (ESS). Formally,
assume that in a population x ∈Δ, a small share ε of mutant agents appear, whose
distribution of strategies is y ∈Δ. The resulting post-entry population is then given
by wε = (1− ε)x+ εy. Biological intuition suggests that evolutionary forces select
against mutant individuals if and only if the expected payoff of a mutant agent in the
postentry population is lower than that of an individual from the original population,
i.e.,

u(y,wε) < u(x,wε). (8.4)

Hence, a population x ∈Δ is said to be evolutionary stable if inequality (8.4) holds
for any distribution of mutant agents y ∈ Δ \ {x}, granted the population share of
mutants ε is sufficiently small. It can be shown [57] that x is an ESS equilibrium if
and only if it is a Nash equilibrium and the additional stability property u(x,y) >
u(y,y) holds for all y ∈Δ \ {x} such that u(y,x)= u(x,x).

8.3 Clustering Games

An instance of the clustering problem can be described by an edge-weighted graph,
which is formally defined as a triplet G = (V ,E,ω), where V = {1, . . . , n} is a
finite set of vertices, E ⊆ V × V is the set of oriented edges and ω : E→ R is
a real-valued function which assigns a weight to each edge. Within our clustering
framework, the vertices in G correspond to the objects to be clustered, the edges
represent neighborhood relationships among objects, and the edge-weights reflect
similarity among linked objects. Note that in our framework no assumption is made
on the similarity function.

Given a graph G= (V ,E,ω), representing an instance of a clustering problem,
we cast it into a two-player clustering game Γ = (P,V,π) where the players’ pure
strategies correspond to the objects to be clustered and the payoff function π is
proportional to the similarity of the objects/strategies (v1, v2) ∈ V 2 selected by the
players:

π(v1, v2)=
{
ω(v1, v2) if (v1, v2) ∈E,

0 otherwise.
(8.5)
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Our clustering game will be played within an evolutionary setting wherein the
two players, each of which is assumed to play a pre-assigned strategy, are repeat-
edly drawn at random from a large population. Here, given a population x ∈ Δ,
xj (j ∈ V ) represents the fraction of players that is programmed to select j from
the objects to be clustered. A dynamic evolutionary selection process, as the one
described in Sect. 8.4, will then make the population x evolve according to a Dar-
winian survival-of-the-fittest principle in such a way that, eventually, the better-
than-average objects will survive and the others will get extinct. It is clear that the
whole dynamical process is driven by the payoff function π which, in our case, has
been defined in (8.5) precisely to favor the evolution of highly coherent objects. Ac-
cordingly, the support σ(x) of the converged population x does represent a cluster,
the non-null components of x providing a measure of the degree of membership of
its elements. Indeed, the expected population payoff u(x,x) can be regarded as a
measure of the cluster’s internal coherency in terms of the average similarity of the
objects forming the cluster, whereas the expected payoff u(ej ,x) of a player select-
ing object j ∈ V in x measures the average similarity of object j with respect to the
cluster.

We claim that, within this setting, the clusters of a clustering problem instance
can be characterized in terms of the ESSs of the corresponding (evolutionary) clus-
tering game, thereby justifying the following definition.

Definition 8.1 (ESS-cluster) Given an instance of a clustering problem G =
(V ,E,ω), an ESS-cluster of G is an ESS of the corresponding clustering game.

For the sake of simplicity, when it will be clear from context, the term ESS-
cluster will be used henceforth to refer to either the ESS itself, namely the member-
ship vector x ∈Δ, or to its support σ(x)= C ⊆ V .

The motivation behind the above definition resides in the observation that ESS-
clusters do incorporate the two basic properties of a cluster, i.e.,

• Internal coherency: elements belonging to the cluster should have high mutual
similarities;
• External incoherency: the overall cluster internal coherency decreases by intro-

ducing external elements.

The rest of this section is devoted to provide support to this claim.

8.3.1 A Combinatorial Characterization

In this section, we provide a complete combinatorial characterization of the clus-
ters under our game-theoretic framework, or more generally of evolutionary stable
strategies of two-person symmetric games, which we derived from the dominant set
framework [38].
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Let S = {1, . . . } be the set of the objects to be clustered, let A be the objects’
similarity matrix and let C ⊆ S be a non-empty subset of objects. The (average)
weighted in-degree of i ∈ S with respect to C is defined as:

awindegC(i)=
1

|C|
∑

j∈C
aij ,

where |C| denotes the cardinality of C. Moreover, if j ∈ C we define

φC(i, j)= aij − awindegC(j),

which is a measure of the similarity of object i with object j with respect to the
average similarity of object j with elements in C. The weight of i with respect to C

is

WC(i)=
{

1 if |C| = 1,
∑

j∈C\{i} φC\{i}(i, j)WC\{i}(j) otherwise,

while the total weight of C is defined as

W(C)=
∑

i∈C
WC(i).

Intuitively, WC(i) gives us a measure of the support that object i receives from the
objects in C \ {i} relative to the overall mutual similarity of the objects in C \ {i}.
Here positive values indicate that i has high similarity to C \ {i}.

A non-empty subset of objects C ⊆ S such that W(T ) > 0 for any non-empty
T ⊆ C is said to be a dominant set if:

1. WC(i) > 0, for all i ∈ C,
2. WC∪{i}(i)≤ 0, for all i /∈ C.

The two previous conditions correspond to the two main properties of a cluster:
the first regards internal homogeneity, whereas the second regards external hetero-
geneity. The above definition represents our formalization of the concept of a cluster,
when A is the similarity matrix describing the clustering problem.

The weighted characteristic vector xC of a set C ⊆ S is defined as

xC
i =

{
WC(i)
W(C)

if i ∈ C,

0 otherwise.

Theorem 8.1 If C ⊆ S is a dominant set with respect to affinity matrix A, then xC

is an ESS for a two-player game with payoff matrix A.
Conversely, if x is an ESS for a two-person game with payoff matrix A, then

C = σ(x) is a dominant set with respect to A, provided that C = τ0(x).
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Proof See [52]. �

This result provides a generalization of the dominant set framework [38] to asym-
metric affinities.

8.3.2 A Link to Optimization Theory

If we restrict our attention to symmetric payoff functions, then the notions of Nash
equilibrium and ESS have a natural interpretation in terms of optimization theory.
Let A be a symmetric payoff matrix and consider the following constrained pro-
gram, also known as standard quadratic program [9]:

maximize u(x,x)= xT Ax

subject to x ∈Δ⊂R
n.

(8.6)

A point x satisfies the Karush–Kuhn–Tucker (KKT) conditions for problem (8.6),
i.e., the first-order necessary conditions for local optimality [34], if there exists n+1
real constants (Lagrange multipliers) μ1, . . . ,μn and λ, with μi ≥ 0 for all i =
1, . . . , n, such that

(Ax)i − λ+μi = 0,

and
∑n

i=1 xiμi = 0. Note that, since both xi and μi are nonnegative for all i =
1, . . . , n, the latter condition is equivalent to saying that i ∈ σ(x) implies μi = 0.
Hence, the KKT conditions can be rewritten as

u
(
ei ,x

)= (Ax)i

{= λ if i ∈ σ(x),
≤ λ otherwise,

for some real constant λ.
It is immediate to see that λ= u(x,x). In fact,

u(x,x)=
∑

i∈σ(x)
xiu

(
ei ,x

)=
∑

i∈σ(x)
xiλ= λ.

Therefore, we have that x satisfies the KKT condition if for all i = 1, . . . , n,
u(ei ,x) ≤ u(x,x), which indeed corresponds to the Nash equilibrium condition.
Hence, under symmetric payoff matrices, the Nash condition is equivalent to the
necessary condition for local optimality in (8.6). Moreover, as shown in the follow-
ing theorem, ESS equilibria can be characterized in terms of strict local solutions
of (8.6).

Theorem 8.2 Strict local maximizers of (8.6) are ESS equilibria of a two-player
game with payoff matrix A and vice versa.

Proof See [26]. �
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8.3.3 A Link to Graph Theory

Let G= (V ,E) be an undirected graph without self-loops, where V = {1,2, . . . , n}
is the set of vertices and E ⊆ V ×V the set of edges. We define the order of a graph
G as the cardinality of V . Two vertices u,v ∈ V are adjacent if (u, v) ∈E. A subset
C of vertices in G is called a clique if all its vertices are mutually adjacent. It is a
maximal clique if it is not a subset of other cliques in G. It is a maximum clique if it
has maximum cardinality. The cardinality of a maximum clique of G is also called
clique number and it is denoted by ω(G). The adjacency matrix of G is the n× n

symmetric matrix AG = (aij ), where aij = 1 if (i, j) ∈E, aij = 0 otherwise.
The adjacency matrix of an undirected graph can be regarded to as the similarity

matrix of a clustering problem, and therefore our framework can be used to find the
clusters. Due to this link to graph theory, it is interesting to see the interpretation of
our game-theoretic notion of cluster in this context.

Consider the following constrained quadratic program:

maximize fα(x)= xT (AG + αI)x

subject to x ∈Δ⊂R
n,

(8.7)

where n is the order of G, I the identity matrix, α is a real parameter, and where Δ

is the standard simplex of the n-dimensional Euclidean space.
In 1965, Motzkin and Straus [36] established a connection between the maxi-

mum clique problem and the program in (8.7) with α = 0. Specifically, they related
the clique number of G to global solutions x∗ of the program through the formula
ω(G) = (1 − f0(x∗))−1, and showed that a subset of vertices C is a maximum
clique of G if and only if its characteristic vector xC ∈Δ is a global maximizer of
f0 on Δ.2 Pelillo and Jagota [40] extended the Motzkin–Straus theorem by provid-
ing a characterization of maximal cliques in terms of local maximizers of f0 in Δ.

A drawback of the original Motzkin–Straus formulation is the existence of “spu-
rious” solutions, i.e., maximizers of f0 over Δ that are not in the form of charac-
teristic vectors. This was observed empirically by Pardalos and Phillips [37] and
formalized later by Pelillo and Jagota [40]. In principle, spurious solutions repre-
sent a problem since, while providing information about the order of the maximum
clique, they do not allow us to easily extract its vertices. Fortunately, there is a
straightforward solution to this problem which has been introduced by Bomze [8].
He, indeed, suggested to adopt the formulation in (8.7) and basically proved that for
0 < α < 1 all local maximizer of (8.7) are strict and in one-to-one correspondence
with the characteristic vectors of the maximal cliques of G.

There is an interesting relation between our notion of cluster and graph theory
that arises if we consider AG + αI as the similarity matrix. As seen in the previous
section, the first order necessary conditions for x to be a local maximizer of (8.7)

2In the original paper, Motzkin and Straus proved the “only-if” part of this theorem. The converse,
however, is a straightforward consequence of their result [40].



190 M. Pelillo et al.

coincide with the conditions for x to be a Nash equilibrium. Hence, local maximizers
of (8.7) are indeed Nash equilibria, but the converse does not necessarily hold. On
the other hand, we have that x is an ESS if and only if it is a strict local maximizer
of (8.7). Since strict local maximizer are in one-to-one correspondence with the
maximal cliques of G, we have that the support of an ESS is indeed a maximal
clique. Consequently, there exists a one-to-one relation between maximal cliques of
a graph G and ESS-clusters of a clustering game with payoff matrix AG+αI when
0 < α < 1 as stated by the following proposition.

Proposition 8.1 Let G= (V ,E) be an undirected graph with adjacency matrix AG

and 0 < α < 1. A mixed strategy x is an ESS of a symmetric two-player game with
payoff matrix AG + αI if and only if it is the characteristic vector of a maximal
clique of G.

Proof ESSs of AG+αI are in one-to-one correspondence with the strict local max-
imizers of (8.7) [26] and x is a strict local maximizer of fα(x) if and only if it is the
characteristic vector of a maximal clique of G [8]. Hence, the result follows. �

Finally, an extension of this result to the case of directed graphs can be found
in [52].

8.4 Algorithms

In the previous section, we introduced a game-theoretic notion of cluster, but we
only mentioned at the way clustering effectively takes place. Summarizing, the in-
tuition is to let non-rational individuals play the clustering game under an evolution-
ary setting, until the distribution of strategies reaches an equilibrium, which in turn
provides us with a cluster. In order this to work, however, we have to specify some
selection mechanisms that effectively drives the population to equilibrium, which,
resembling a Darwinian process, spreads the fittest strategies in the population to the
detriment of the weakest one, which in turn will be driven to extinction. The section
starts introducing the replicator dynamics, i.e., the standard dynamics developed in
evolutionary game theory. Afterwards, we present a new class of dynamics that have
several desired features and are computationally more appealing than the replicator
dynamics.

8.4.1 Replicator Dynamics

In evolutionary game theory, the assumption is made that the game is played over
and over, generation after generation, and that the action of natural selection will
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result in the evolution of the fittest strategies. A general class of evolution equations
is given by the following set of ordinary differential equations [57]:

ẋi = xi(t)gi(x) (8.8)

for i = 1, . . . , n, where a dot signifies derivative with respect to time and g =
(g1, . . . , gn) is a function with open domain containing Δ. Here, the function gi
(i ∈ S) specifies the rate at which pure strategy i replicates. It is usually required
that the growth function g is regular [57], which means that it is Lipschitz contin-
uous and that g(x)�x = 0 for all x ∈ Δ. The former condition guarantees us that
the system of the differential equation (8.8) has a unique solution through any initial
population state. The latter condition, instead, ensures that the simplex Δ is invariant
under (8.8), namely, any trajectory starting in Δ will remain in Δ.

A point x is said to be a stationary (or equilibrium) point for our dynamical
systems, if ẋi = 0 (i ∈ S). A stationary point x is (Lyapunov) stable if for every
neighborhood U of x there exists a neighborhood V of x such that x(0) ∈ V implies
x(t) ∈ U for all t ≥ 0. A stationary point is said to be asymptotically stable if any
trajectory starting in its vicinity will converge to it as t→∞.

Payoff-monotonic game dynamics represent a wide class of regular selection dy-
namics for which useful properties hold. Intuitively, for a payoff-monotonic dynam-
ics the strategies associated to higher payoffs will increase at a higher rate. Formally,
a regular selection dynamics (8.8) is said to be payoff-monotonic if

gi(x) > gj (x) ⇔ u
(
ei ,x

)
> u

(
ej ,x

)

for all x ∈Δ and i, j ∈ S.
Although this class contains many different dynamics, it turns out that they share

a lot of common properties. To begin, they all have the same set of stationary points.
Indeed, x ∈ Δ is a stationary point under any payoff monotonic dynamics if and
only if u(ei ,x)= u(x,x) holds for all i ∈ σ(x) [57].

A well-known subclass of payoff-monotonic game dynamics is given by

ẋi = xi

(
f

(
u

(
ei ,x

))−
∑

j∈S
xjf

(
u

(
ej ,x

)))
,

where f (u) is an increasing function of u. These models arise in modeling the
evolution of behavior by way of imitation processes, where players are occasionally
given the opportunity to change their own strategies [57].

When f is the identity function, that is, f (u) = u, we obtain the standard
continuous-time replicator equations,

ẋi = xi
(
u

(
ei ,x

)− u(x,x)
)
, (8.9)

whose basic idea is that the average rate of increase ẋi/xi equals the difference
between the average fitness of strategy i and the mean fitness over the entire popu-
lation.
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Another popular model arises when f (u)= eku, where k is a positive constant.
As k tends to 0, the orbits of this dynamics approach those of the standard, first-order
replicator model, slowed down by the factor k; moreover, for large values of k, the
model approximates the so-called best-reply dynamics [26].

The replicator dynamics, and more in general any payoff monotonic dynamics,
have the following properties[26, 57]:

Theorem 8.3 Under any payoff monotonic dynamics the following hold true:

• A Nash equilibrium is a stationary point;
• A strict Nash equilibrium is asymptotically stable;
• A stationary point x∗ that is the limit of an interior orbit, i.e., such that σ(x(t))=

S for all t ≥ 0 and limt→∞ x(t)= x∗, is a Nash equilibrium;
• A stable stationary point is a Nash equilibrium;
• An ESS is asymptotically stable.

In general, the converses of the implications in Theorem 8.3 do not hold.
Furthermore, if we restrict our focus to symmetric payoff matrices, i.e., A=A�,

then stronger properties hold, as stated in the following theorem.

Theorem 8.4 If A=A� then the following hold:

• u(x,x) is strictly increasing along any non-constant trajectory of (8.9). In other
words, for all t ≥ 0 we have u̇(x,x) > 0, unless x is a stationary point. Further-
more, any such trajectory converges to a (unique) stationary point;
• x is asymptotically stable if and only if x is an ESS.

In order to implement the continuous-time replicator dynamics, one can resort
to some iterative method like, e.g., the Runge–Kutta method, to find an approxi-
mate solution to the ordinary differential equations. Alternatively, one can adopt
the discrete-time counterpart of (8.9), known as discrete-time replicator dynamics,
which (assuming non-negative payoffs) is given by

xi(t + 1)= xi(t)
u(ei ,x)
u(x,x)

,

for i ∈ S. This equation is known to possess many of the dynamical properties of
the continuous-time dynamics [57].

8.4.2 Infection and Immunization Dynamics

In order to overcome some computational problems afflicting standard evolutionary
dynamics, we introduce a new class of evolutionary dynamics, inspired by infection
and immunization processes.
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Let x ∈Δ be the incumbent population state, y be the mutant population invading
x and let z= (1−ε)x+εy be the population state obtained by injecting into x a small
share of y-strategists. Then the score function of y versus x (introduced in [10]) is
given by

hx(y, ε)= u(y, z)− u(x, z)= εu(y− x,y− x)+ u(y− x,x).

Following [11], we define the (neutral) invasion barrier bx(y) of x ∈Δ against any
mutant strategy y as the largest population share εy of y-strategists such that for all
smaller positive population shares ε, x earns a higher or equal payoff than y in the
post-entry population z. Formally,

bx(y)= inf
{
ε ∈ (0,1) : hx(y, ε) > 0

}∪ {1}.
Given populations x,y ∈Δ, we say that x is immune against y if bx(y) > 0. Triv-

ially, a population is always immune against itself. Note that x is immune against y
if and only if either u(y− x,x) < 0 or u(y− x,x)= 0 and u(y− x,y− x) ≤ 0. If
u(y− x,x) > 0, we say that y is infective for x. Hence, the set of infective strategies
for x is given by

Υ (x)= {
y ∈Δ : u(y− x,x) > 0

}
.

Consider y ∈ Υ (x); clearly, this implies bx(y)= 0. If we allow for an invasion of
a share ε of y-strategists as long as the score function of y versus x is positive, at
the end we will have a share of δy(x) mutants in the postentry population, where

δy(x)= inf
{
ε ∈ (0,1) : hx(y, ε)≤ 0

}∪ {1}.
Note that if y is infective for x, then δy(x) > 0, whereas if x is immune against y,
then δy(x) = 0. Further note that all the above concepts can be straightforwardly
extended to contests with more than two participants and/or correlated individual
behavior, where the score functions may be nonlinear in ε; see, e.g., [11] and refer-
ences therein. In our two-person context, score functions are (affine-)linear, so that
there is a simpler expression for δy(x):

δy(x)=
{

min{ u(x−y,x)
u(y−x,y−x) ,1} if u(y− x,y− x) < 0,

1 otherwise.
(8.10)

It can be proven [42] that if we allow a population x to be invaded by an infective
strategy y, and the extent of this infection is δy(x), then the postentry population will
become immune against y. In formal terms, given y ∈ Υ (x) and z= [1− δy(x)]x+
δy(x)y, we have that z is immune against y. The core idea of our method consists
in selecting a strategy y which is infective for the current population x. By allowing
for invasion as shown before, we obtain a new population z which is immune to y.
This idea suggests the following class of new dynamics which for evident reasons
is called Infection and Immunization Dynamics (InImDyn):

x(t + 1)= δS (x)(x)
[
S (x)− x

]+ x, (8.11)
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where x should be regarded to as x(t) and S :Δ→Δ is a strategy selection func-
tion, which returns an infective strategy for x if it exists, or x otherwise:

S (x)=
{

y for some y ∈ Υ (x) if Υ (x) 
= ∅,
x otherwise.

(8.12)

By reiterating this process of immunization, we aim at reaching a population state
x that cannot be infected by any other strategy. If this is the case then x is a fixed
point under dynamics (8.11), but also a Nash strategy:

Theorem 8.5 Let x ∈ Δ be a strategy. Then the following statements are equiva-
lent:

(a) Υ (x)= ∅, i.e., there is no infective strategy for x;
(b) x is a Nash strategy;
(c) x is a fixed point under dynamics (8.11).

Proof See [42]. �

The following result shows that the average payoff is strictly increasing along
any non-constant trajectory of the dynamics (8.11), provided that the payoff matrix
is symmetric.

Theorem 8.6 Let {x(t)}t≥0 be a trajectory of (8.11). Then for all t ≥ 0,

u
(
x(t + 1),x(t + 1)

)≥ u
(
x(t),x(t)

)
,

with equality if and only if x(t)= x(t + 1), provided that the payoff matrix is sym-
metric.

Proof See [42]. �

Theorem 8.6 shows that by running INIMDYN, under a symmetric payoff func-
tion, we strictly increase the population payoff unless we are at a fixed point, i.e.,
have already reached Nash equilibrium. This, of course, holds for any selection
function S (x) satisfying (8.12). However, the way we choose S (x) may affect
the efficiency of the dynamics. The next section introduces a particular selection
function that leads to a well-performing dynamics for our purposes.

Depending on how we choose the function S (x) in (8.11), we may obtain differ-
ent dynamics. One in particular, which is simple and leads to nice properties, con-
sists in allowing only infective pure strategies or their respective co-strategies. This
way, our equilibrium selection process closely resembles a vertex-pivoting method,
as opposed to interior-point approaches like replicator dynamics or best-response
dynamics [26].

If x is not fixed under (8.11), i.e., is not a Nash strategy, straightforward intuition
renders selection of an infective strategy in a way easier than it could seem at first
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Fig. 8.1 Example of a
co-strategy of the pure
strategy e1 with respect to x

glance. Let x be the current population and let y be a strategy. The co-strategy of y
with respect to x is given by

yx = (1− ε̄)x+ ε̄y,

where

ε̄ =min
{
ε ∈R : (1− ε)x+ εy ∈Δ}≤ 0.

For any strategy y, if both u(y− x,x) and ε̄ are nonzero, then either y ∈ Υ (x) or
yx ∈ Υ (x) in an exclusive sense.

In Fig. 8.1, we can see that the co-strategy of ei with respect to x is the inter-
section between the simplex boundary and the half line originated in ei and passing
through x. In this case, ε̄ = xi/(xi − 1).

Consider the strategy selection function SPure(x), which finds a pure strategy i

maximizing |u(ei − x,x)|, and returns ei , eix or x according to whether i ∈ τ+(x),
i ∈ τ−(x)∩ σ(x) or i ∈ τ0(x): Let M (x) be a (randomly or otherwise selected) pure
strategy such that

M (x) ∈ arg max
{
u

(
ei − x,x

) : i ∈ τ+(x)
}∪ {

u
(
x− ei ,x

) : i ∈ τ−(x)∩ σ(x)
}
.

Then SPure(x) can be written as

SPure(x)=

⎧
⎪⎪⎨

⎪⎪⎩

ei if i =M (x) ∈ τ+(x),
eix if i =M (x) ∈ τ−(x)∩ σ(x),
x otherwise.

For obvious reasons, we refer to InImDyn with selection function SPure(x) as
Pure InImDyn.

Note that the search space for an infective strategy is reduced from Δ to a finite
set. Therefore, it is not obvious that SPure(x) is a well-defined selection function,
i.e., it satisfies (8.12). However, one can prove [42] than there exists an infective
strategy for x if and only if SPure(x) is infective for x.

Another property that holds for our new dynamics, which is shared also by the
replicator dynamics, is the characterization of ESS equilibria in terms of asymptot-
ically stable points of the dynamics under symmetric payoff matrices.
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Algorithm 1: FindEquilibrium(A,x, τ )
Require: n× n payoff matrix A, x ∈Δ and tolerance τ .

while ε(x) > τ do
y←SPure(x)
δ← 1
if π(y− x) < 0 then

δ←min[π(x−y|x)
π(y−x) ,1]

end if
x← δ(y− x)+ x

end while
return x

Theorem 8.7 A state x is asymptotically stable for INIMDYN with SPure as strat-
egy selection function if and only if x is an ESS, provided that the payoff matrix is
symmetric.

Proof See [42]. �

This selection function exhibits the nice property of rendering the complexity
per iteration of our new dynamics linear in both space and time, as opposed to the
replicator dynamics, which have quadratic space/time complexity per iteration.

Theorem 8.8 Given the iterate x(t) and its linear transformations Ax(t) and
A�x(t), both space and time requirement of one iteration step is linear in n, the
number of objects.

Proof See [45]. �

The only step of quadratic complexity is the first one, where we need to compute
Ax(0) and A�x(0). Even this can be reduced to linear complexity, if we start from
a pure strategy ei , in which case we have Ax(0) = Ai and A�x(0) = (A�)i . Note
that the latter is impossible, e.g., for the replicator dynamics.

The algorithmic procedure for finding an equilibrium using INIMDYN with SPure

is summarized in Algorithm 1. Note that as stopping criterion we compute the fol-
lowing quantity:

ε(x)=
∑

i

min
{
xi,π

(
x− ei |x)}2

< τ, (8.13)

which measures the degree of violation of the Nash conditions. Indeed, ε(x)= 0 if
and only if x is a Nash equilibrium.
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8.5 Game-Theoretic Matching

The problem of finding correspondences within a set of elements, or features, is cen-
tral to any recognition task where the object to be recognized is naturally divided
into several parts. In this context, graph-based representations have been used with
considerable success due to their ability to capture concisely the relational arrange-
ment of object primitives, in a manner which can be invariant to changes in object
viewpoint. However, applications in which estimating a set of correspondences is a
central task toward the solution range from object recognition, to 3D registration, to
feature tracking, to stereo reconstruction [7, 30, 33]. Several matching algorithms
have been proposed in the literature. Some can just be classified as ad hoc solutions
to specific problems, but the vast majority cast the problem into an energy minimiza-
tion framework and extract approximate optimizers of an objective function within
a set of feasible correspondences. In general, the overall goal is to maximize the
global or local coherence of the matched pairs with respect to some compatibility.
In most cases, the objective function can be written as a monotonic transformation
of the sum of pairwise interactions between matching hypotheses. This can be either
the similarity between matched features, as in the graph-matching case [4, 19, 55],
and often the set of feasible correspondences can be defined using only unary and
binary relations. For instance, it is possible to guarantee a global one-to-one match
and structural coherence using the association graph technique described by Barrow
and Burstall [6]. Also adjacency and hierarchical constraints can be enforced on a
local pairwise basis, as shown by the many techniques that cast the matching prob-
lem to an equivalent clique search in an auxiliary association graph [39, 41, 51].
Formulations that satisfy these conditions range from bipartite matching, to sub-
graph isomorphism, to quadratic assignment, to edit-distance, and include a dual
form of parameter estimation approaches such as Hough transform and RANSAC.

The previous sections introduced a novel game-theoretic clustering approach. In
this section, we will build from that framework to introduce a matching approach
based on the game-theoretic selection of correspondences between features to be
matched. The first part will be devoted to the introduction of the novel selection
process, while the second and third part will show applications of this frameworks
to two important computer vision tasks.

We present a game-theoretic approach to correspondence estimation derived
from the clustering approach presented in the previous section. The proposed ap-
proach is quite general since it can be applied to any formulation where both the
objective function and the feasible set can be defined in terms of unary and pair-
wise interactions. The main idea is to model the set of possible correspondences as
a set of game strategies. Specifically, we formulate the matching problem as a non-
cooperative game where the potential associations between the items to be matched
correspond to strategies, while payoffs reflect the degree of compatibility between
competing hypotheses. A distinguishing feature of the proposed framework is that
it allows one to naturally deal with general many-to-many matching problems even
in the presence of asymmetric compatibilities.
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8.5.1 Matching as a Non-cooperative Game

Before going into the details of the proposed framework, we need to introduce some
notations and definitions that will be used throughout. Let O1 and O2 be the two
sets of features that we want to match, we define the set of feasible associations
A ⊆ O1 × O2 the set of relations between O1 and O2 that satisfy the unary con-
straints. Hence, each feasible association represents a possible matching hypothesis.
We assume that we can compute a set of pairwise compatibilities C :A×A→R

+
that measure the support that one association gives to the other. Here, the self com-
patibilities, i.e., the compatibilities that an association gives to itself, are assumed to
be zero.

In this formulation, a submatch (or simply a match) is intuitively a set of associa-
tions, which satisfies the pairwise feasibility constraints, and two additional criteria:
high internal compatibility, i.e., the associations belonging to the match are mu-
tually highly compatible, and low external compatibility, i.e., associations outside
the match are scarcely compatible with those inside. This definition of match al-
lows us to abstract from the specific problem, since domain-specific information is
confined to the definition of the compatibility function. Further, we are able to deal
with many-to-many, one-to-many, many-to-one, and one-to-one relations in a uni-
form way, as we do not impose restriction on the way the associations are selected,
but incorporate the constraints with the compatibilities.

The proposed approach generalizes the association graph technique described by
Barrow and Burstall [6] to a context where structural constraints are continuous.
Further, the approach can be seen as a proper generalization of [39] since, in case
of symmetric 0,1 supports, the solutions of the ESSs maximize the same objective
function.

We define a matching game as a clustering game over the associations. Assume
that we have two sets of objects O1 and O2, and a compatibility function C. Let
O = {1, . . . , n} be the enumeration of the set of associations A , where n = |A |.
In the matching game, the set of feasible correspondences O forms the set of pure
strategies (in the language of game-theory) available to the players and A = (aij )

is an n × n payoff (or utility) matrix [56], where cij is the payoff that a player
gains when playing the strategy i against an opponent playing strategy j . Within our
matching setting, Nash equilibria are good candidates for a match, as they satisfy
both the internal and external compatibility criteria. In fact, any association i ∈ σ(x)
of a Nash equilibrium x receives from x the same expected payoff (Ax)i = xT Ax,
while associations not in σ(x) receive a lower or equal support from associations of
the match. Note, however, that the external criterion is not strict: there could exist
associations not in σ(x) that earn a payoff equal to xT Ax like associations in the
group, which may lead to a non-isolated Nash equilibrium and, thus, to an ambigu-
ous match. Therefore, here we undertake an evolutionary game-theoretic analysis of
the possible strategies available to each player.
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8.5.1.1 Enforcing Hard Constraints

A main characteristic of the proposed approach is that associations pairs that have
zero compatibility cannot be in the same selected submatch. This means that pair-
wise constraints can be enforced by forcing to zero the compatibility between asso-
ciations that do not satisfy the constraints.

Theorem 8.9 Consider a matching-game with compatibilities A = (aij ) with
aij ≥ 0 and aii = 0. If x ∈Δ is an ESS then aij > 0 for all i, j ∈ σ(x).

For a proof see [3].
Theorem 8.9 shows that if we set a non-positive compatibility between two as-

sociations, then there exists no match containing them. This provides a way for
expressing hard constraints in our matching framework such as one-to-one or one-
to-many correspondences.

8.5.2 Point-Pattern Matching

In this set of experiments, our goal is to test the ability of the proposed framework
to match corresponding features points between two instances of the same image
with modified scale and orientation. The feature points are extracted from each im-
age with the SIFT algorithm [33]. SIFT features are known to be highly repeatable
under a large class of affine transformations and are very resilient to splitting or
joining. Under these conditions, we need a very selective matcher which enforces a
common global transformation to all the matched features. In [33], Lowe gauges the
coherence of the transformation using RANSAC. This, however, requires a global
threshold for the consensus, which limits the precision of the estimation.

The experiments were performed on the Aloi database [22]. For each run we se-
lected 20 images and randomly deformed them with an affine transformation with
a scale variation between 0.5 and 2 and a rotation between 0.5 and 2.0 radians. We
extracted the SIFT features from the original and transformed image and picked as
candidate associations all the pairs with sufficiently similar descriptors. Each can-
didate association represents a single transformation and supports only associations
with similar transformations. To measure the support between two associations, we
project the first point of one association with the transformation of the other asso-
ciation. Then we measure the distance between the transformed point and the cor-
responding point in the first association. We repeat the operation reversing the role
of the two associations obtaining the two distances d1 and d2. The support is, then,
e−max(d1,d2). Once the best match is extracted, we have two alternatives to compute
the final transformation: the first is an unweighted approach where we compute a
simple average of the transformation parameters related to the associations in the
match. The second approach weighs the transformation parameters with the propor-
tion of the population playing the related strategy at equilibrium.
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Fig. 8.2 Point pattern matching: the first two columns show the original images, the third and
fourth columns show the extracted features, and the fourth and fifth show the allineation error
using the transforms estimated using RANSAC (fifth) and our approach (sixth)

We compare our approach with RANSAC, where we determine the associations
to agree within tolerance if max(d1, d2) < 5 pixels. the value of 5 pixels was ex-
perimentally determined to be the one which gave the best results. Note that this
threshold on the error limits the accuracy of RANSAC, while our approach, being
parameter-less, does not suffer from this drawback.

Figure 8.2 shows the original images (first two columns), the extracted features
(third and fourth columns), and the transformation error obtained using the two ap-
proaches (last two columns). The error is the difference between the original image
transformed with the estimated transformation and the second image. The fifth col-
umn shows the error obtained using the transformation estimated with RANSAC,
while the sixth column shows the difference using the transformation estimated us-
ing the weighted version of our approach. As can be seen our approach estimates
the transformation with higher accuracy than RANSAC. So much so that the differ-
ence images are almost completely black. This is mainly due to the lack of a lower
bound on the precision of the transformation, which for RANSAC is enforced by
the consensus threshold.

Figure 8.3 plots the error in the estimation of translation, scale and rotation as
we increase the variations in scale and orientation. The average and standard devia-
tions are computed over 140 images. As can be seen, the weighted and unweighted
versions of our approach have similar performance, with the weighted version ex-
hibiting slightly lower error. On the other hand RANSAC show errors an order of
magnitude larger in all conditions.

In an attempt to quantify the sensitivity of the approach to noise, we added an
increasing amount of Gaussian noise to the rotated and scaled images before we
computed the SIFT features. This introduces an increasing number of outliers as
well as missing feature points. Figure 8.4 plots the Frobenius norm of the difference
between the ground truth and the estimated transformation matrices as the standard
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Fig. 8.3 Point pattern matching: error in the estimation of translation, scale and rotation as we
increase the variations in scale and orientation. The plots in the first column show the error in
rotation angle, scale and translation as a function of the rotation angle. The plots in the second
column show the errors as a function of the scale factor

deviation of the Gaussian noise increases. For each noise level we selected 20 im-
ages and randomly deformed them with an affine transformation with a scale varia-
tion between 0.5 and 2 and a rotation between 0.5 and 2.0 radians. From the plot we
can see that our approach maintains a much lower error as compared to RANSAC
even at high noise levels. Further, we can see that, while the rate with which the
error increases with noise is similar for RANSAC and the unweighted version of
our approach, the weighted version appears to provide much lower error even with
a high level of noise.
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Fig. 8.4 Point pattern
matching: sensitivity to noise.
The plot displays the
Frobenius norm of the
difference between exact and
estimated transformation
errors under an increasing
amount of Gaussian noise

8.6 Game-Theoretic Surface Alignment

Surface registration is a fundamental step in the reconstruction of three-dimensional
objects. This is typically a two step process where an initial coarse motion estima-
tion is followed by a refinement.

Coarse registration techniques can be roughly organized into three main classes:
global methods, feature-based methods and technique based on RANSAC [20] or
PROSAC [14] schemes. Global methods, such as PCA [15] or Algebraic Surface
Model [50], exploit some global property of the surface and thus are very sensitive
to occlusion. Feature-based approaches aim at the localization and matching of in-
teresting points on the surfaces. They are more precise and can align surfaces that
exhibit only partial overlap. Nevertheless, the unavoidable localization error of the
feature points prevents them from obtaining accuracies on par with fine registration
methods.

A completely different coarse registration approach is the one taken by
RANSAC-based techniques. DARCES [13] is based on the random extraction of
sets of mates from the surfaces and their validation based on the accuracy of the
estimated transformation. The more recent Four Points Congruent Sets method [2]
follows a similar route, but filters the data to reduce noise and performs early check
in order to reduce the number of trials.

A recent and extensive review of many different methods can be found in [48].
In this section, we present a novel technique that allows obtaining a fine sur-

face registration in a single step, without the need of an initial motion estimation.
The main idea of our approach is to cast the selection of correspondences between
points on the surfaces in a game-theoretic framework. This process yields a very
robust inlier selection scheme that does not depend on any particular technique for
selecting the initial strategies as it relies only on the global geometric compatibility
between correspondences. This context diverges from the general matching scheme
presented in the previous section in that only a few correspondences a sought. In
fact, contrary to the tradition of graph matching, inlier selection processes are tuned
to very low false positive correspondences, admitting in converse a large amount of
false negatives.
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Fig. 8.5 Example of the two basic Surface Hashes proposed

In principle, by adopting our matching approach, all the points from both surfaces
to registered could be used to build the matching strategies; in practice, however,
this would lead to a very big set of candidates with a huge portion of outliers. We
solve the problem by adopting very loose yet repeatable descriptors, and by adopting
a game-theoretic approach to select only the distinctive points. In the remaining of
this section, we will introduce the point selection process, then the matching process
used to perform surface alignment and finally we will experimentally characterize
its performance with respect to the state-of-the-art.

8.6.1 Interest Point Selection

Given the large number of points contained in typical 3D objects, it is not practical
for any matching algorithm to deal with all of them. In addition, the isolation of a
relatively small number of interest points can enhance dramatically the ability of
the matcher to avoid false correspondences. We do this using a novel set of robust
descriptors and a game-theoretic feature-selection approach. The Normal Hash (see
Fig. 8.5(a)) is obtained by setting a reference on the average surface normal over a
patch that extends to the largest scale (red arrow in figure) and then, for each smaller
scale, calculating the dot product between the reference and the average normal over
the reduced patches (blue arrows in figure). The rationale behind this measure lies
in the observation that at the largest scale the average normal is more stable with re-
spect to noise and that the dot product offers a concise representation of the relation
between the vectors obtained at various scales. The Integral Hash (see Fig. 8.5(b)) is
similar in spirit to the Normal Hash. In this case, we search for the best fitting plane
(in the least squares sense) with respect to the surface patch associated to the largest
scale. Then we calculate the volume enclosed between the surface and such a plane.
In practice, it is not necessary to evaluate this volume accurately: even naive approx-
imations, such as the sum of the distances of the surface points from the plane, have
been shown empirically to provide a reasonable approximation. Note that Normal
Hashes evaluated over n scales yield descriptor vectors of length n− 1 (since the
larger scale is used only to calculate the reference normal), while Integral Hashes
provide n-dimensional vectors. In Fig. 8.6, a Normal Hash of dimension 3 (respec-
tively from (a) to (c)) evaluated over 4 scales is shown. Note that the descriptor is



204 M. Pelillo et al.

Fig. 8.6 Example of a 3-dimensional Normal Hash and the related detection process

not defined at the points for which the larger support is not fully contained in the
surface, i.e., points close to the surface boundary.

In order to obtain discriminant descriptors, we screen out features exhibiting de-
scriptors that are too common over the surface. This is in essence an anomaly de-
tection problem and it is done eliminating the common strategy detected through a
clustering game where the strategy set S corresponds to the set of all the surface
points and the payoff matrix is defined by

πij = e−α|di−dj |, (8.14)

where di and dj are the descriptor vectors associated to surface point i and j , and
α is a parameter that controls the level of selectivity. We can initialize the set of
retained features to the whole surface and run a sequence of Matching Games, elim-
inating the extracted clusters, until the desired number of points are left. At this
point, the remaining features are those characterized by less-common descriptors
which are more likely to represent good cues for the matching. It should be noted
that by choosing large values for α the payoff function decreases more rapidly with
the growth of the distance between the Surface Hashes, thus the Matching Game
becomes more selective and fewer points survive. In the end, this results in a blan-
der decimation and thus in a larger ratio of retained interest points. By converse,
a small value for α leads to a more greedy filtering and thus to a more selective
interest point detector. In Fig. 8.6 (from (d) to (f)), we show three steps of the evo-
lutive interest point selection with respect to the 3-dimensional Normal Hash shown
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from (a) to (c). In Fig. 8.6(d), we see that after a single pass of the Matching Game
most of the surface points are still considered interesting, while after respectively
two and three passes only very distinctive points (belonging to areas with less com-
mon curvature profile) are left.

8.6.2 Isometry-Enforcing Game

We will refer to the points belonging to the first surface with the term model points,
while we will use the term data points with respect to the second surface. This
distinction is captious since there is no actual difference in role between the two
surfaces; however, it is consistent with the current registration literature and helps
in defining an order within matches.

Given the set of all model points M and the set of all data points D, we need
to construct a set of matching strategies S ⊂M × D constructed on the selected
interest points. To this end, we perform a discriminative point selection from the
model surface, and from this we create the set S by selecting the k most similar
points from the whole data model D, where the similarity is gauged through the
Euclidean distance of the descriptors. There is, thus, an asymmetry in the role of
the surfaces, where only the model M is sub-sampled through the discriminative
point selection process, and than it drives the creation of the strategy S. When not
otherwise stated, in our experiments we set k to be equal to 5. Limiting the number
of correspondences per source feature to a constant value, we limit the growth of
the number of strategies to be linear with the number of model points selected.

Since the set of strategies S is built by proposing several attainable matches for
each considered model point, while the correct match is not guaranteed to be within
the best k selected matches, it is obvious that the number of outliers in S will be far
superior to the number of correct correspondences. In order to extract this minority
of correct matches buried into S, our framework must exploit the consistency of any
pair of those strategies with respect to some property.

In order to define a suitable payoff function, we need to assign to each pair of
matching strategies a payoff that is inversely proportional to a measure of viola-
tion of the rigid-transformation constraint. This violation can be expressed in sev-
eral ways, but since all the rigid transformations preserve Euclidean distances, we
choose this property to express the coherence between matching strategies. Clearly,
this isometry constraint is looser than the rigid-transformation constraint as it can-
not prevent specular flips of the surfaces, but the global consistency provided by the
game-theoretic framework ensures that only rigid alignments will prevail.

Definition 8.2 Given a function π : S × S→ R
+, we call it an isometry-enforcing

payoff function if for any ((a1, a2), (b1, b2)) and ((c1, c2), (d1, d2)) ∈ S×S we have
that ||a1 − b1| − |a2 − b2||> ||c1 − d1| − |c2 − d2|| implies π((a1, a2), (b1, b2)) <

π((c1, c2), (d1, d2)).
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An isometry-enforcing payoff function is a function that is monotonically de-
creasing with the absolute difference of the Euclidean distances between respective
model and data points of the matching strategies compared. In other words, given
two matching strategies, their payoff should be high if the distance between the
model points is equal to the distance between the data points, and it should decrease
as the difference between such distances increases.

Given a set of matching strategies S and an enumeration O = {1, . . . , |S|} over
it, an isometry-enforcing game is a clustering game where the population is defined
as a vector x ∈ Δ|S| and the payoff matrix A = (aij ) is defined as aij = π(si, sj ),
where si , sj ∈ S are enumerated by O and π is a symmetric one-to-one isometry-
enforcing payoff function. Intuitively, xi accounts for the percentage of the popula-
tion that plays the ith matching strategy.

In theory, any rigidity-enforcing payoff function can be used to perform surface
registration. Throughout the experimental section, we adopted

π
(
(a1, b1), (a2, b2)

)=
(

min(|a1 − a2|, |b1 − b2|)
max(|a1 − a2|, |b1 − b2|)

)λ

, (8.15)

where a1, a2, b1, and b2 are respectively the two model (source) and data (destina-
tion) points in the compared matching strategies. This is derived from a Lipschitz
distance, providing a relative measure of distortion of the global Euclidean metric.
Parameter λ allows making the enforcement of the conservation of the Euclidean
distance more or less strict.

Since, contrary to the matching setup, in the inlier selection framework we are
only interested in a few good correspondences, even after converging to an ESS,
we select only a small set of the support to estimate the rigid transformation. In
particular, we keep only strategies whose population proportion is more than a given
ration of the maximum surviving population.

8.6.3 Application to Surface Alignment

In order to explore the role of both the discriminant feature detector and the match-
ing technique, we designed a wide range of experimental validations. First, we an-
alyzed the sensitivity of the descriptor to several sources of noise and the influence
of the number of scales (and thus of the size of the descriptor vector). Further, we
studied the sensitivity of the matching algorithm to its parameters, with the goal
of identifying an optimal parameterization (if any) and assess the stability of the
method. Also a number of comparative test were made. Specifically, we analyzed
the performance obtained by using our matcher with different feature detectors and
the overall comparison with respect to other well-know registration pipelines.

All the experiments were performed on a personal computer equipped with an
Intel Core i7 processor and 8 GB of memory. The dataset used, where not differently
stated, was built upon publicly available models; specifically the Bunny [54], the
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Fig. 8.7 Comparison of different descriptors using real and synthetic objects

Armadillo [32], and the Dragon [17] from the Stanford 3D scanning repository. To
further assess the shortcomings of the various approaches, we used two synthetic
surfaces representative of as many difficult classes of objects: a wave surface and
a fractal landscape (see Fig. 8.7). Since a ground truth was needed for an accurate
quantitative comparison, we generated virtual range images from the models and
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then applied additive Gaussian noise to them. The descriptor used was a mixed
Surface Hash with 3 scales.

8.6.3.1 Sensitivity Analysis of the Descriptor

The performance of different descriptors was tested for various levels of noise and
occlusion applied to two surfaces obtained from real range scans (“armadillo” and
“dragon” from Stanford) and two synthetic surfaces designed to be challenging for
coarse and fine registration techniques (“fractal” and “wave”). The noise is a posi-
tional Gaussian perturbation on the point coordinates with its level (σ ) expressed
in terms of the percentage of the average edge length, while occlusion denotes the
percentage of data and model surfaces removed. The RMS Ratio in the charts is the
ratio of the root mean square error (RMS) obtained after registration and the RMS
of ground truth alignment. The Normal and Integral Hashes were calculated over
3 levels of scale and the “Mixed” Hash is simply the juxtaposition of the previous
two.

In Fig. 8.7, we see that all the descriptors obtain good results with real range
images and the registration “breaks” only with very high levels of noise (on the
same order of magnitude of the edge length). Interestingly, the Mixed Hash always
obtains the best performance, even with high level of noise: This higher robustness
is probably due to the orthogonality between the Normal and Integral Hashes. The
behavior with the “fractal” synthetic surface is quite similar, by contrast all the de-
scriptors seem to perform less well with the “wave” surface. This is due to the lack
of distinctive features on the model itself, which indeed represents a challenge for
any feature based registration technique [47]. The performance obtained with re-
spect to occlusion is similar: all the descriptors achieve fairly good results and are
resilient to high levels of occlusion (note that 40 percent occlusion is applied both
to data and model). Overall the Mixed Hash appears to be consistently more ro-
bust. Since we found that the descriptors calculated over 3 levels of scale break at a
certain level of noise, we were interested in evaluating if their performance can be
improved by increasing their dimension.

In Fig. 8.8, we present the results obtained with different levels of scale for the
Mixed Hash. The graphs show the average over all the surfaces and the associated
RMS. It is interesting to observe that by reducing the scale level the technique be-
comes less robust, whereas its performance increases dramatically when the number
of scales increases. With a scale level of 5 our approach can deal even with surfaces
subject to Gaussian positional noise of σ greater than the edge length. Unfortu-
nately, this enhanced reliability comes with a drawback: by using larger levels of
scale the portion of boundary that cannot be characterized grows. In the right half
of Fig. 8.8, the shrinking effect is shown for scale levels from 2 to 5.

8.6.3.2 Sensitivity to the Parameters of the Matcher

The game-theoretic matching technique presented basically depends on four param-
eters:
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Fig. 8.8 Effect of scale on the matching accuracy

Fig. 8.9 Analysis of the sensitivity of the Game-Theoretic Matcher with respect to the parameters
of the algorithm

• The number of points sampled from the model object;
• The number k of neighbors considered when building the initial set of candidates;
• The selectivity λ for the rigidity-enforcing payoff (8.15);
• The quality threshold used to deem a strategy as non-extinct upon convergence.

The first two parameters are related to the building of the set of strategies S. In
Fig. 8.9, it can be seen that optimal results can be achieved with less than 1000
samples and that there is virtually no gain in using more than 6 neighbors.
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The third parameter (λ) is related to the level of strictness with respect to the
enforcement of the rigidity constraint: Higher values for λ will make the payoff
function more steep, thus making the selection process more picky. By contrast,
lowering λ will yield a payoff matrix with smaller variance, up to the limit value
of 0, when the matrix assumes value 1.0 for all the strategies pairs that do not break
the one-to-one constraint and 0 otherwise. As expected, our experiments show that
very low or very high values for λ deliver poor results and, while there is clearly a
larger variance that what has been captured by the experiments, the optimal value
seems to be around 1.

Finally, the fourth parameter sets the ratio (with respect to the most successful
match) used to classify a strategy as surviving or extinct. The last experiment of
Fig. 8.9 shows that all the tested values below 0.8 give similarly good results. This
simply means that there is good separability between extinct and non-extinct strate-
gies, the former being very close to 0.

Overall, we can assess that the matching method has a very limited dependency
on its parameters, which can easily be fixed at values that are both safe and efficient.
The most influent parameter is probably λ; however, a value of 1.0 (that indeed
simplifies equation (8.15) to a simple ratio) appears to be optimal for our test set.

8.6.3.3 Comparison with Full Pipelines

The whole registration algorithm presented can be classified as a coarse method,
since it does not require initialization. For this reason, we compared it with sev-
eral other coarse techniques. Specifically, we implemented the whole Spin Images
pipeline [29] and used the implementation supplied by the authors respectively for
the MeshHOG/MeshDOG [61] and the Four Points Congruent Sets [2] methods.
The latter method was initialized both with the parameters suggested by the authors
and also with values for t and s that we manually optimized to get the best possible
results from our dataset.

In the first row of Fig. 8.10, we present the results of this comparison. In these ex-
periments, the occlusion is measured with respect to each range image and is applied
in opposite directions of the overlapped area. That means that with an occlusion of
10 % the actual overlap is reduced by 20 %. The noise is an additive Gaussian
noise with a standard error expressed as a percentage over the average edge length.
The occlusion test has been made with noise at level 10 % and the noise test was
performed with no occlusion. From the tests our method exhibits better results in
both scenarios and breaks only with high levels of occlusion and noise. Note that
the 4PCS method with parameters t = 0.9 and s = 500 does not always give a fea-
sible solution with any occlusion greater than 10 %. With extreme levels of noise
the 4PCS seems to get better and obtains lower RMS ratios than our method. The
reduction in performance of our method is related to the breaking of the descrip-
tors, that at such high levels of noise do not carry sufficient information any more.
A clarification should finally be made about the apparent improvement that 4PCS
seems to exhibit as noise increases. In fact, at high noise levels the RMS associated
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Fig. 8.10 Comparisons between our Game-Theoretic Registration technique and other widely
used surface registration pipelines

to ground-truth motion is also high. In such conditions the additional error due to
misalignment becomes less relevant in terms of contribution to the overall RMS ra-
tio, which is dominated by random noise. Since 4PCS explores thoroughly the set
of feasible motions until a solution with RMS low enough is found (depending on
the stop criteria), it is expected to test more alignments when surfaces are noisier
and thus yield lower RMS ratio values. However, it is easy to build simple examples
where a solution can obtain a low RMS ratio (even lower than one) and still being
far from the correct alignment. Figure 8.11 shows an example coarse registration
obtained respectively with Spin Images, 4PCS, and the Game-Theoretic registration
technique.

These results only indicate that GTR gives a better coarse registration; how-
ever, to seek a perfectly fair comparison, it is also needed to measure how much
enhancement can be obtained by performing a fine registration step starting from
the obtained coarse initialization. To this end, we applied the ICP algorithm start-
ing from the initial motion estimated with the different methods with no occlusion
and random noise values below 60 %. The results are shown in the bottom row of
Fig. 8.10 with histograms obtained by binning the distance between model points
and data surface along the normal vector. Normals that do not intersect the data
surface are discarded. The size of the bins grows exponentially. The first histogram
shows the distribution obtained from the coarse registration and the second reports
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Fig. 8.11 Examples of surface registration obtained respectively with Spin Images (first row),
MeshDOG (second row), 4PCS (third column) and our Game-Theoretic Registration technique
(last row)

the enhancement obtained by applying ICP. Again, the results are favorable to our
method, with very few points exhibiting large errors after refinement.

8.6.3.4 Quality of Fine Registration

In addition to the full pipeline comparisons, we also investigated how reliable the
proposed approach would be if directly used as a fine registration technique. The
goal of this test is two-fold: we want to evaluate our quality as a complete alignment
tool and, at the same time, find the breaking point of traditional fine registration
techniques.
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Fig. 8.12 Comparison of fine
registration accuracies (the
green dashed line represents
y = x)

The method we used for comparison is a best-of-breed ICP variant, similar to the
one proposed in [54]. Point selection is based on Normal Space Sampling [47], and
point-surface normal shooting is adopted for finding correspondences; distant mates
or candidates with back-facing normals are rejected. To minimize the influence of
incorrect normal estimates, matings established on the boundary of the mesh are also
removed. The resulting pairings are weighted with a coefficient based on compati-
bility of normals, and finally a 5 %-trimming is used. Each test was performed by
applying a random rotation and translation to different range images selected from
the Stanford 3D scanning repository. Additionally, each range image was perturbed
with a constant level of Gaussian noise with standard deviation equal to 12 % of the
average edge length. We completed 100 independent tests and for each of them we
measured the initial RMS error between the ground-truth corresponding points and
the resulting error after performing a full round of ICP (ICP) and a single run of our
registration method (GTR). In addition, we applied a step of ICP to the registration
obtained with our method (GTR + ICP) in order to assess how much the solution
extracted using our approach was further refinable.

A scatter plot of the obtained errors before and after registration is shown in
Fig. 8.12. The final error is on a log-scale, so the dotted curve represent the points
with identical initial and final error. We observe that ICP reaches its breaking point
quite early; in fact, with an initial error above the threshold of about 20 mm it is un-
able to find a correct registration. By contrast, GTR is able to obtain excellent align-
ment regardless of the initial motion perturbation. Finally, applying ICP to GTR
decreases the RMS only by a very small amount.

8.7 Conclusions

In this chapter, we have introduced a game-theoretic formulation of the clustering
problem which is able to work with non-metric (dis)similarities (even asymmetric
and negative ones). Within our framework, the problem of clustering a set of data
elements is viewed as a non-cooperative clustering game and classical equilibrium
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notions from evolutionary game theory turn out to provide a natural formalization of
the notion of a cluster. Our game-theoretic perspective has the following attractive
features: it makes no assumption on the underlying (individual) data representation,
e.g., spectral clustering, it does not require that the elements to be clustered be repre-
sented as points in vector space; it does not require a priori knowledge on the number
of clusters (since it extracts them sequentially); it leaves clutter elements unassigned
(useful, e.g., in figure/ground separation or one-class clustering problems); it allows
extracting overlapping clusters (see, e.g., [53]); and it can naturally handle high-
order similarities. Besides the game-theoretic connotation, we have provided also a
combinatorial characterization of our notion of a cluster and established conditions
under which relations with optimization theory and graph theory exist. Furthermore,
we have focused our attention on the algorithmic aspects of computing equilibria in
our clustering game. Specifically, we have reviewed a class of dynamics developed
within the evolutionary game theory, the replicator dynamics being one represen-
tative, that can be used to find equilibria in clustering games. In addition, we have
proposed a new class of dynamics for the same purpose that overcomes some limi-
tations of the classical evolutionary dynamics.

Finally, the proposed approach was adapted to address generic matching prob-
lems and inlier selection problems, where a low rate of false positive is required,
even at the expense of a high number of false negatives. The approach applied
to point-pattern matching and 3D reconstruction problems provided performance
clearly at the state-of-the-art.
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Chapter 9
Automated Analysis of Tissue Micro-Array
Images on the Example of Renal Cell Carcinoma

Peter J. Schüffler, Thomas J. Fuchs, Cheng Soon Ong, Volker Roth,
and Joachim M. Buhmann

Abstract Automated tissue micro-array analysis forms a challenging problem in
computational pathology. The detection of cell nuclei, the classification into malig-
nant and benign as well as the evaluation of their protein expression pattern by im-
munohistochemical staining are crucial routine steps for human cancer research and
oncology. Computational assistance in this field can extremely accelerate the high
throughput of the upcoming patient data as well as facilitate the reproducibility and
objectivity of qualitative and quantitative measures. In this chapter, we describe an
automated pipeline for staining estimation of tissue micro-array images, which com-
prises nucleus detection, nucleus segmentation, nucleus classification and staining
estimation among cancerous nuclei. This pipeline is a practical example for the im-
portance of non-metric effects in this kind of image analysis, e.g., the use of shape
information and non-Euclidean kernels improve the nucleus classification perfor-
mance significantly. The pipeline is explained and validated on a renal clear cell
carcinoma dataset with MIB-1 stained tissue micro-array images and survival data
of 133 patients. Further, the pipeline is implemented for medical use and research
purpose in the free program TMARKER.
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9.1 Introduction

The clinical workflow of cancer tissue analysis is composed of several estimation
and classification steps which yield a diagnosis of the disease stage and a therapy
recommendation. This subproject of SIMBAD proposes an automated system to
model such a workflow which is able to provide more objective estimates of cancer
cell detection and nuclei counts than pathologists had achieved in this study. Our
image processing pipeline is tailored to renal cell carcinoma (RCC), which is one
of the ten most frequent malignancies in Western societies. The prognosis of renal
cancer is poor since many patients suffer already from metastases at the time of first
diagnosis. The identification of biomarkers for prediction of prognosis (prognostic
marker) or response to therapy (predictive marker) is therefore of utmost importance
to improve patient prognosis. Various prognostic markers have been suggested in the
past, but conventional estimation of morphological parameters is still most useful for
therapeutical decisions.

Clear cell RCC (ccRCC) is the most common subtype of renal cancer and it
is composed of cells with clear cytoplasm and typical vessel architecture. ccRCC
shows an architecturally diverse histological structure, with solid, alveolar and aci-
nar patterns. The carcinomas typically contain a regular network of small thin-
walled blood vessels, a diagnostically helpful characteristic of this tumor. Most
ccRCC samples show areas with hemorrhage or necrosis, whereas an inflammatory
response is infrequently observed. The cytoplasm is commonly filled with lipids and
glycogen, which are dissolved in routine histological processing, creating a clear
cytoplasm surrounded by a distinct cell membrane (Fig. 9.1(d)). Nuclei tend to be
round and uniform with finely granular and evenly distributed chromatin. Depend-
ing upon the grade of malignancy, nucleoli may be inconspicuous and small, or large
and prominent. Very large nuclei or bizarre nuclei may occur [1].

The tissue micro-array (TMA) technology promises to significantly acceler-
ate studies seeking for associations between molecular changes and clinical end-
points [2]. In this technology, tissue cylinders of 0.6 mm in diameter are punched
from primary tumor blocks of hundreds of different patients and these cylinders are
subsequently embedded into a recipient paraffin block (Fig. 9.1(a)–(b)). Slices from
such array blocks can then be used for simultaneous in situ analysis of hundreds
or thousands of primary tumors on DNA, RNA, and protein level (Fig. 9.1(b)–(c)).
These results can then be integrated with expression profile data which is expected
to enhance the diagnosis and prognosis of ccRCC [3–5]. The high speed of array-
ing, the lack of a significant damage to donor blocks, and the regular arrangement
of arrayed specimens substantially facilitates automated analysis.

Although the production of tissue micro-arrays is an almost routine task for most
laboratories, the evaluation of stained tissue micro-array slides remains tedious, time
consuming and prone to error. Furthermore, the significant intratumoral heterogene-
ity of RCC results in high inter-observer variability. The variable architecture of
RCC also results in a difficult assessment of prognostic parameters. Current image
analysis software requires extensive user interaction to properly identify cell pop-
ulations, to select regions of interest for scoring, to optimize analysis parameters,
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Fig. 9.1 Tissue Micro-array Analysis (TMA): Primary tissue samples are taken from a cancerous
kidney (a). Then, small tissue cylinders of 0.6 mm in diameter are punched from the primary tumor
block of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 µm thickness
are cut off the paraffin block and are immunohistochemically stained (c). Image (d) depicts one
TMA spot of clear cell renal cell carcinoma from our test set stained with the MIB-1 (Ki-67)
antigen. Original size detail image is on the bottom right

and to organize the resulting raw data. Because of these drawbacks in current soft-
ware, pathologists typically collect tissue micro-array data by manually assigning a
composite staining score for each spot—often during multiple microscopy sessions
over a period of days. Such manual scoring can result in serious inconsistencies
between data collected during different microscopy sessions. Manual scoring also
introduces a significant bottleneck that hinders the use of tissue micro-arrays in
high-throughput analysis.

The prognosis for patients with RCC depends mainly on the pathological stage
and the grade of the tumor at the time of surgery. Other prognostic parameters in-
clude proliferation rate of tumor cells and different gene expression patterns. Tann-
apfel et al. [6] have shown that cellular proliferation may prove to be another mea-
sure for predicting biological aggressiveness and, therefore, for estimating the prog-
nosis. Immuno-histochemical assessment of the MIB-1 (Ki-67) antigen indicates
that MIB-1 immunostaining (Fig. 9.1(d)) is an additional prognostic parameter for
patient outcome. TMAs are highly representative of proliferation index and histo-
logical grade using bladder cancer tissue [7].

In the domain of cytology, especially blood analysis and smears, automated anal-
ysis is already established [8]. Histological tissue processing typically differs sub-
stantially from blood sample analysis with its homogeneous background. In blood
samples, the cells are clearly distinguishable and vessels and connection tissue are
typically absent. The isolation of cells simplifies the detection and segmentation
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Fig. 9.2 Automated pipeline for tissue micro-array analysis. From left to right: (i) A TMA image
is digitally stored for computational analysis; (ii) With object detection methods from computer
vision, nuclei are identified in the image; (iii) The detected nuclei are subjected to segmentation
algorithms discovering the shape of the nuclei; (iv) The segmented nuclei are conducted to fea-
ture extraction (mainly histogram-like features) and classified according to the clinical labels (here
malignant/benign); (v) Among the cancerous nuclei, the amount of stained nuclei is calculated.
Staining discrimination is done via thresholding in color information; (vi) In a larger patient co-
hort, the pipeline (i.e., staining estimation) is validated regarding a survival analysis. Validation
also comprises the comparison of pathologists’ staining estimation vs. the prediction of the com-
putational pathology algorithm

process of the cells significantly. A similar simplification can be seen in the field
of immunofluorescence imaging [9]. Only the advent of high resolution scanning
technologies in recent years rendered it possible to consider an automated analysis
of histological slices. Cutting-edge scanners are now able to scan slices with reso-
lution, comparable to a 40× lens magnification on a light microscope. In addition,
the automated scanning of staples of slices enables an analysis in a high throughput
manner.

9.2 Automated TMA Processing Pipeline

We propose an automated TMA processing pipeline which is enormously facili-
tated by the use of modern machine learning techniques. The pipeline is composed
of following subsequent steps (cf. Fig. 9.2): (i) identification and detection of cell
nuclei within a high resolution TMA image, (ii) segmentation of the detected nu-
clei, (iii) classification of the nuclei into malignant or benign, (iv) calculation of the
percentage of tumor cells and protein expressing tumor cells. In this whole process,
the biggest challenges for computational image processing and computer vision al-
gorithms are the nucleus detection and segmentation. The automated TMA analy-
sis is difficult, also because (i) the dyes are inhomogeneously dispersed in images;
(ii) the cell nuclei might be located very closely to each other; and (iii) besides the
nuclei, also other tissue fragments are stained in similar color and structure as the
nuclei. The computational TMA assessment will benefit in following ways from
automatic processing: with an automated pipeline, the TMA estimation is repro-
ducible, objective and consistent. Also, grading can be performed cheaper, faster
and with a higher throughput, since pathologists have only to confirm the grad-
ing results and judge uncertain borderline cases, instead of manually go over each
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Fig. 9.3 Screenshot of TMARKER showing an image of MIB-1 stained renal clear cell carcinoma
TMA. On the image, malignant and benign nuclei are marked

TMA image separately. We will outline the single steps of the pipeline in the next
sections.

We also provide a Java implementation of this pipeline, called TMARKER,
which facilitates the cell nuclei counting and staining estimation on immuno-
histochemical pathological tissue images based on the principles introduced in this
chapter. TMARKER is open-source, freely available, and has a user-friendly graph-
ical user interface (see Fig. 9.3). As a Java webstart program, it can be run without
installation from any client on http://www.comp-path.inf.ethz.ch.

Training Data for the Pipeline The training data used in this project for the single
tasks in the pipeline consist in total of 2382 manually detected cell nuclei from
nine different TMA spots [10]. For each of these nuclei, two trained pathologists
marked the center and the approximate radius of the nucleus (see Fig. 9.4). Based
on the results and the exemplars from the classification labeling experiment, 202
cell nuclei out of the 2382 where selected as positive training examples. This set
was increased to 1212 by rotating and flipping the original patches as well as the
transposed patches. Additional 1291 negative examples where collected which do
not contain a nucleus, but background structures and connecting tissue. All nuclei
were scaled to a radius of 15 pixels and image patches of the size 65 × 65 pixels
were extracted with a nucleus in the center of each patch. Therefore, the patches

http://www.comp-path.inf.ethz.ch
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Fig. 9.4 (Left) Two top left quadrants of two ccRCC TMA spots as an example of the train-
ing dataset. (Right) A trained pathologist labeled all cell nuclei and classified them into malig-
nant (black) and benign (red), without or with overlay. Tissue Preparation and Scanning: The
TMA block was generated in a trial from the University Hospital Zürich. The TMA slides were
immuno-histochemically stained with the MIB-1 (Ki-67) antigen and scanned on a Nanozoomer
C9600 virtual slide light microscope scanner from HAMAMATSU Photonics K.K.. The 40×mag-
nification resulted in a per pixel resolution of 0.23 µm. Finally, the spots of single patients were
extracted as separate three channel color images of 3000× 3000 pixels size. The dataset is pub-
lished in [10]

contained a lot of surrounding area compared to the nuclei with a diameter of 30
pixels. In contrast to face detection, the surrounding of the objects is crucial for
the classification. Nuclei often do not differ from connecting tissue by their color
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or texture but only by their shape and their surroundings. Cancerous nuclei, for
example, often show a bright corona around the nucleus membrane.

9.3 Nucleus Detection

The first step of the pipeline comprises the nucleus detection on the tissue images.
Because of the heterogeneous nature of optical tissue images that frequently show a
dense background structure which does not clearly differ from the structure of cell
nuclei, we suggest a machine learning approach for nuclei detection on IHC stained
tissue images. From the raw TMA image, we detect the cell nuclei by learning an
ensemble of binary decision trees, using manually annotated images. This approach
has been introduced in [11].

9.3.1 Tree Induction

The base learners for the ensemble are binary decision trees, designed to take ad-
vantage of large feature spaces. With minor modifications, tree learning follows the
original approach for random forests described in [12]. A recursive formulation of
the learning algorithm is given in procedure LearnTree (Procedure 1). The sub
procedure SampleFeature returns a feature consisting of two rectangles uni-
formly sampled within a predefined window.

In accordance with [12], the Gini Index is used as splitting criterion, i.e., the Gini
gain is maximized. At a given node, the set S = {s1, . . . , sn} holds the samples for
feature fj . For a binary response Y ∈ {false, true} and a feature fj , the Gini Index
of S is defined as

Ĝ(S)= 2
Nfalse

|S|
(

1− Nfalse

|S|
)
, Nfalse =

∑

si

I
(
fj (si)= false

)
, (9.1)

where |S| is the number of all samples at the current node and Nfalse denotes the
number of samples evaluated to false by fj . The Gini indices Ĝ(SL) and Ĝ(SR) for
the left and right subset are defined similarly. The Gini gain resulting from splitting
S into SL and SR with feature fj is then defined as

Δ̂G(SL,SR)= Ĝ(S)−
( |SL|
|S| Ĝ(SL)+ |SR||S| Ĝ(SR)

)
, (9.2)

where S = SL ∪ SR . From this follows that a larger Gini gain is attended by a larger
impurity reduction. Recently, [13] showed that the use of Gini gain can lead to selec-
tion bias because categorical predictor variables with many categories are preferred
over those with few categories. In the proposed framework, this bias is not a prob-
lem due to the fact that the features are relations between sampled rectangles and
therefore evaluate always to binary predictor variables.
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Procedure 1: LearnTree()
Input: set of samples S = {s1, s2, . . . , sn}; depth d ; max depth dmax; features

to sample mTry

1 Init: l̂abel= null; g =− inf; Nleft = null; Nright = null

2 if (d = dmax) OR (isPure(S)) then

3 l̂abel=
{
T if |{sj = T }|> |{sj = F }|; j = 1, . . . , |S|
F otherwise

4 else
5 for (i = 0, i < mTry, i ++) do
6 fi = SampleFeature()
7 SL = {sj |fi(sj )= T }; SR = {sj |fi(sj )= F }; j = 1, . . . , |S|
8 gi = Δ̂G(SL,SR)

9 if gi > g then
10 f ∗ = fi; g = gi
11 end
12 end
13 NL = LearnTree({sj |f ∗(sj )= T })
14 NR = LearnTree({sj |f ∗(sj )= F })
15 end

9.3.2 Multiple Object Detection

For multiple object detection in a gray scale image, every location on a grid with step
size δ is considered as an independent sample s which is classified by the ensemble.
Therefore, each tree casts a binary vote for s being an object or background. The
whole relational detection forests (RDF) ensemble predicts the probability of being
class 1:

RDF(s)=
∑

i|ti (s)=1

1

|{i|ti (s)= 1}| , (9.3)

where ti denotes the ith tree. This procedure results in an accumulator or probability
map for the whole image.

The final centroids of detected objects are retrieved by applying weighted mean
shift clustering with a circular box kernel of radius r . During shifting, the coordi-
nates are weighted by the probabilities of the accumulator map. While this estimate
leads to good results in most cases, homogeneous ridges in the accumulator can
yield multiple centers with a pairwise distance smaller than r . Therefore, we run
binary mean shift on the detection from the first run until convergence. The radius
is predefined by the average object size. If the objects vary largely in size, the whole
procedure can be employed for different scales. In accordance with [14], not the
image but the features (resp., the rectangles) are scaled.



9 Automated Analysis of Tissue Micro-Array Images 227

9.3.3 Performance Measure

One way to evaluate the quality of the nuclei detection is to consider true positive
(TP), false positive (FP), and false negative (FN) rates. The calculation of these
quantities is based on a matching matrix where each Boolean entry indicates if a
machine extracted nucleus matches a hand labeled one or not within the average
nucleus radius. To quantify the number of correctly segmented nuclei, a strategy is
required to uniquely match a machine detected nucleus to one identified by a pathol-
ogist. We model this problem as a bipartite matching problem, where the bijection
between extracted and gold-standard nuclei is sought inducing the smallest detec-
tion error [15]. This tuning prevents overestimating the detection accuracy of the
algorithms. To compare the performance of the algorithms we calculated precision
Prec= TP/(TP+ FP) and recall Rec= TP/(TP+ FN).

9.3.4 Implementation Details

The ensemble learning framework was implemented in C# and the statistical anal-
ysis was conducted in R [16]. Employing a multi threaded architecture, tree en-
sembles are learned in real time on a standard dual core processor with 2.13 GHz.
Inducing a tree for 1000 samples with a maximum depth of 10 and sampling 500
features at each split takes on average less than 500 ms. Classifying an image of
3000× 3000 pixels on a grid with δ = 4 takes approximately ten seconds using the
non-optimized C# code.

Three-fold cross-validation was employed to analyze the detection accuracy of
RDFs. The nine completely labeled patients were randomly split up into three sets.
For each fold, the ensemble classifier was trained on data of six patients and tested
on data of the remaining three. During tree induction, 500 features were sampled
from the feature generator at each split. Trees were learned to a maximum depth of
ten and the minimum leave size was set to one. The forest converges after 150 steps
to an out-of-bag (OOB) error of approximately 2 %. Finally, each pixel on the test
images was classified and mean shift was run on a grid with step size δ = 5.

9.3.5 Detection Results

Figure 9.5 shows a precision/recall plot for single patients and the average result of
the RDF object detector. The algorithm is compared to point estimates of several
state of the art methods: SVM clustering was successfully employed to detect nu-
clei in H&E stained images of brain tissue by [17]. SVMmorph is an unsupervised
supervised support vector machine for filtering [18, 19]. The entry for the mor-
phological approach for detection is combined with pathologists shows the mean
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Fig. 9.5 Precision/Recall
plot of cross validation results
on the renal clear cell cancer
(RCC) dataset. Curves for the
nine single patients and their
average (bold) are depicted
for relational detection forests
(RDF). RDF with the
proposed feature base
outperforms previous
approaches based on SVM
clustering [17], mathematical
morphology, and combined
methods [18]. The
inter-pathologists’
performance is depicted in
the top right corner (red dot)

detection accuracy if alternately one expert is used as gold standard. On average,
the pathologists disagree on 15 % of the nuclei.

Although only gray-scale features were used for RDF, it outperforms all previous
approaches which also utilize texture and color. This observation can serve as a cue
for further research that the shape information captured in this framework is crucial
for good detection results.

9.4 Nucleus Segmentation

The segmentation of the nuclei is mainly used for shape describing feature extrac-
tion. Since malignant and benign nuclei typically differ in shape and size, these fea-
tures promise to have a high discriminative power for classification. See Sect. 9.5.1
for nuclei feature extraction.

Two different ways of nucleus segmentation are introduced: (i) segmentation via
graphcut and (ii) segmentation via superpixels. Both concepts showed promising
results in shape discovery and description.

9.4.1 Segmentation via Graphcut

The cell nuclei within the rectangular image patches were segmented with an ad-
justed graphcut method [20–22]. Technically, we used an adapted version of the
MATLAB graphcut wrapper as introduced in [23]. After gray-scaling the patches,
the gray values of the pixels were bound to the sink node and reciprocally to the
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Fig. 9.6 Two examples of nucleus segmentation with graph cut: (Left) the original nucleus patch;
(Middle) the segmentation via graphcut; (Right) the resulting shape of the nucleus

Fig. 9.7 Five examples of nucleus segmentation with superpixels in TMARKER. The shape of
the nuclei is captured by the segmentation. In some cases, nuclei are cut into several superpixels
(right)

source node. A circular shape prior was used to prefer roundish objects by weight-
ing the binary potentials based on the pixels’ distance to the center. The gray value
difference between two adjacent pixels served as edge weight for the graph. Af-
ter cutting the graph, the biggest connected component in the middle of a patch
represented the nucleus. Some examples of graphcut segmentations can be seen in
Fig. 9.6.

9.4.2 Segmentation via Superpixels

Superpixel algorithms partition a given image in smaller areas (superpixels) each
with homogeneous image content. Therefore, in an optimal case, they are able to
segment cell nuclei and separate them from background structures on TMA images,
assuming that the superpixels are less or equal in size as the nuclei. The use of su-
perpixels drastically reduces the amount of test samples (compared to a pixel-wise
or shifting window algorithm) while simultaneously providing highly accurate seg-
mentations of the nuclei. The superpixel algorithm is used in TMARKER for nuclei
segmentation before nuclei detection, since it is not dependent on a priori detected
nuclei. In fact, the superpixels are the basis in TMARKER of further cell nuclei
detection and classification. We use an adopted version of the SLIC superpixel al-
gorithm as introduced in [24]. Figure 9.7 shows the typical segmentation of an TMA
image with superpixels.
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9.5 Nucleus Classification

Nucleus classification is an important issue in the computer-aided tissue micro-array
analysis. In short, this step comprises the decision that a given image patch shows
a benign or a cancerous nucleus. Of course, such a nucleus classification plays not
only an important role in the automated TMA analysis of renal cell carcinoma, but
also in a high variety of different cancers as well as in the entire clinical field of
tissue pathology.

In the SIMBAD project, we investigated the performance of different nucleus
classification approaches within our dataset of eight TMA image spots of human
renal clear cell carcinomas (see also [25]). The cell nuclei in the images are bluish
stained with hematoxylin. Nuclei that express the proliferation protein MIB-1 are
further stained with a brown agent. Therefore, the cell nuclei to be classified can be
blue or brown. Recall that TMA image analysis is difficult, also because (i) the dyes
are inhomogeneously dispersed in the image; (ii) the cell nuclei might be located
very closely to each other; and (iii) besides the nuclei, also other tissue fragments
are stained in similar color and structure as the nuclei.

For these experiments, the cell nuclei of the eight TMA spots were identified and
labeled by two pathologists, which enabled us to extract small rectangular image
patches around the nuclei as samples. Each patch shows one nucleus in the middle.
The patches are the bases for all classification experiments and serve as feature
sources. After introducing relevant feature representations, we will shortly outline
four papers concerning the nucleus classification via image patches in the following
sections. The last section finally presents an alternative for cell nuclei classification
via superpixels rather than rectangular image patches. This method performs equally
well and is integrated in the implemented Java program TMARKER.

9.5.1 Image Features for Cell Nuclei

Renal cell carcinoma revealed one interesting aspect that the classification of can-
cerous cells can be achieved in a local fashion, i.e., patch-wise. There exist several
identification guidelines of renal cell carcinoma cells for pathologists, as given in
Table 9.1. We used these rules for the design of features employed in the machine
learning approach. The following feature vectors were elaborated:

• FG—Histogram of foreground intensity (nucleus, 32-bin size histogram).
• BG—Histogram of background intensity (environment, 32-bin size histogram).
• PROP—Shape descriptors as derived from MATLAB’s regionprops func-

tion.
• FCC—The Freeman Chain Code describes the cell nucleus boundary shape. The

boundary shape was taken from the graphcut segmentation step (see above).
A subsampling of the boundary with grid size 8 was performed to smooth the
shape. Then, starting from an arbitrary point on the boundary, the boundary was
redrawn in single steps. For each direction one has to go in one step, a number
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Table 9.1 Guidelines used by pathologists for identifying renal clear cell carcinoma nuclei. Ex-
ample image patches show typical nuclei

Benign nucleus Malignant nucleus

Shape Roundish Irregular

Nucleus membrane Regular Thick/thin irregular

Nucleus size Smaller Bigger

Nucleolus None Small dark spot in the nucleus

Nucleus texture Smooth Irregular

from 1 to 8 (for 8 orientations) describes the shape on this place. To be rotation-
ally invariant, an 8-bin histogram of the FCC descriptor has been taken as feature
vector. See [26] for a FCC implementation.
• SIG—The 1D signature has been implemented as described in [26]. From the

center of the shape, a line is drawn to each pixel of the border line. The angles
between the lines form the signature of the shape (with a maximal resolution
of 1 degree). Also here, to be rotationally invariant, a 16-bin histogram of the
signature has been taken as feature vector.
• PHOG—Pyramid histograms of oriented gradients were calculated over a level

3 pyramid and over the shapes as region of interest, as introduced in [27].
• COL—The separate intensity histograms over three color channels are calcu-

lated. The concatenation of all three histogram gives the color histogram.
• LBP—The local binary pattern for the whole superpixel is calculated as his-

togram over the local binary patterns of every pixel.

These features were subjected to train and test support vector machines (SVM).
The training of the models was done either on all samples and labels given by one
pathologist or on the subset of samples, on which both pathologists assigned the
same label. The features as introduced above were concatenated to each other or
taken solely.

9.5.2 Kernel Learning for Cell Nucleus Classification

In this approach, we investigated several distance measures for histogram and vec-
torial data [25]. In short, kernel matrices were calculated between pairwise feature
vectors, with which support vector machines were trained. Since the feature vec-
tors consist of two different types (vectorial and histogram based features), we used
different corresponding kernels or distance measures. Several kernel functions and
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Table 9.2 Commonly used
kernels and distances for two
scalar feature vectors. For the
histogram features all kernels
and distances were employed,
while for the PROP feature
only the top most three
kernels were used

Kernel Distance

Linear Euclidean

Polynomial d ∈ {3,5,7,10} Intersection

Gaussian Bhattacharya

Hellinger Diffusion

Jensen Shanon Kullback–Leibler

Total Variation Earth Mover

χ2 �1

distance measures for histograms have been investigated (see Table 9.2). The PROP
features were only subjected to the linear, polynomial and Gaussian kernels, since
they do not reflect a histogram like feature. The dissimilarity matrices D derived
from the distance functions were centered and transformed to similarity matrices
with zero mean. Also, the matrices where checked for being positive semidefinite,
to serve as kernel matrices K . If needed, negative eigenvalues were mirrored:

Dcentered = −0.5 ∗Q ∗D ∗Q, Q=
⎛

⎜
⎝

1− 1
n

− 1
n

. . .

− 1
n

1− 1
n

⎞

⎟
⎠ , (9.4)

K = V ∗ |Λ| ∗ V ′, (9.5)

where n is the number of samples, V is the eigenvector matrix and Λ the eigenvalue
matrix of Dcentered.

Cell Nuclei Classification We investigated the classification performance of all
different kernels, parameters and features using 10-fold cross-validation (CV) over
all patches. The results clearly demonstrate that the data support automatic classifi-
cation of cell nuclei into benign and malignant at a comparable performance level
as the pathologists (see Fig. 9.8). The best performing kernels utilize all features:
foreground and background histograms, shape descriptors and PHOG. The median
misclassification error is 17 %. To confirm that we did not overfit the models, we
chose the best kernel using a further cross-validation level on the training data. The
found best kernel was then tested on a separate test subset of samples that was never
used for training. This classifier achieved a similar median misclassification error
of 18 %. In 6 out of 10 of the splits in the top level cross-validation, the diffusion
distance (with all histogram features) combined with a linear kernel for the PROP
features was identified as best performing SVM kernel.

Importance of Different Image Features The features that we considered can be
grouped into intensity features (FG and BG), shape features (FCC, SIG and PROP)
and PHOG that combines intensity gradients with a region of interest, i.e., the nu-
cleus shape. To see how the different classes of features affect the performance of
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Fig. 9.8 (Left) The “performance” of the pathologists is computed from the confusion matrix
between the labels of the two pathologists. (Right) Performance of kernels in nucleus classification.
15 best performing and 15 worse performing kernels (blue) are shown. Performance measure is the
misclassification error in a 10-fold CV. The kernels’ names consist of the features involved (see
Sect. 9.5.1) and the kernel or dissimilarity function (for histogram and non-histogram features, if
needed). The orange bar represents the double CV result, indicating non-overfitting and the ability
to classify new samples (see text). The horizontal line shows the mean and standard deviation of
100 permutation tests, indicating random level of prediction

classifiers, we performed a double CV over all kernels, separating the kernels into
these three groups. Two conclusions could be drawn from the result in Fig. 9.9:
(i) shape information improves classification performance, and (ii) the above men-
tioned feature classes measure different qualities of the data; combining these infor-
mation improves the classifiers.

Effect of Classifier Performance on Staining Estimation Recall from the TMA
processing pipeline in Fig. 9.2 that we are ultimately interested in estimating the
fraction of cancerous cell nuclei that are stained. In Fig. 9.10, we document the
absolute difference in error between the predicted fraction of staining (predicted
staining estimation) and the fraction of staining indicated by the pathologists (ob-
served staining estimation). First, we compared the best classifier in Fig. 9.8 to a
random classifier. Our results show that a “good” classifier is also able to estimate
the staining of the cancerous nuclei with higher accuracy than a random classifier
(see Fig. 9.10 left). Since the fraction of stained cancerous nuclei is roughly 7 %
in the data, a classifier that results in an estimate of “no staining” will have an rel-
atively low error of 7 %. Figure 9.10 (right) demonstrates the positive relationship
between nucleus classification and staining estimation. The better the classification,
the lower the staining estimation error.
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Fig. 9.9 Misclassification error of best kernels within a certain feature class (intensity: kernels
using FG, BG; shape: kernels using FCC, SIG, PROP; phog: kernels using PHOG). Each bar
shows the performance of the best kernel using a validation set and a double CV: in the inner CV,
the best kernel in a feature class is chosen based on 90 % the samples. In the outer CV, this kernel
is tested on the remaining 10 %. The plot shows that each additional feature class carries additional
information for classification

Fig. 9.10 Effect of nucleus classification performance on staining estimation. (Left) Comparison
between the best classifier and a random classifier with 100 permutation tests on the staining esti-
mation task. In a 10-fold CV, the classifier was trained and used to predict the fraction of stained
vs. all cancerous nuclei in the test set. The absolute difference of the predicted fractions to the frac-
tions based on the pathologists’ labels is shown in the plot. (Right) Relation between the classifiers’
classification performances and the staining estimation error (shown for the best 100 kernels). The
staining error (absolute difference) of a classifier is calculated in the same way as in the left plot.
The better the classification of a kernel (more left), the better its staining estimation (more down).
The correlation coefficient r = 0.48

9.5.3 Multiple Kernel Learning for Cell Nucleus Classification

The classification accuracy for cell nuclei on TMA images can further be improved,
e.g., with a multiple kernel learning approach, as reported in [28, 29]. Multiple
kernels have the advantage that they combine different features or kernel functions
and weigh these component according to their impact on the classification. In this
section, we shortly outline these two studies that demonstrate linear and nonlinear
MKL classification on our dataset.
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Table 9.3 MKL accuracies (in %). accuracy (± std) of combining all kernels

svl svp svg

SINGLE-BEST 76.5± 3.7 (PHOG) 75.6± 2.6 (PROP) 76.9± 3.6 (PHOG)

MKL 81.3± 3.6 72.0± 3.3 76.9± 3.6

VOTE 70.0± 0.2 71.3± 1.7 72.4± 1.2

Fig. 9.11 Combination
weights in MKL using the
linear kernel. The comparable
height weights of the PHOG

and LBP kernels indicate their
high impact for classification

Nuclei Classification Using Linear MKL In [28], the linear MKL formulation
of Bach [6] has been applied to the nuclei data set to evaluate the performance of
MKL on these type of image data. As a baseline, the best accuracy of a single SVM
was 76.9 %. For most representations (except PHOG and COL), the accuracies of
different kernels were comparable.

In this experiment, a single kernel was used combining all the feature sets ex-
tracted. Three SVM kernels were investigated: svl (linear), svp (polynomial), and
svg (Gaussian). Table 9.3 shows the high accuracy of 81.3 % that was achieved us-
ing the linear kernel combining all representations. This experiment shows that the
combination of information from multiple sources might be important and, by using
MKL, the accuracy can be increased by about 5 %. The table also reveals the de-
crease in accuracy compared to the single best support vector machine, when using
all kernels with svp. This phenomenon is analogous to combining all classifiers in
classifier combination. If only relatively inaccurate classifiers are available, com-
bining them all may decrease accuracy. Instead, it might be better to select a subset.
From a medical viewpoint, this effect also shows that almost all the information
is complementary and should be used to achieve better accuracy. In Fig. 9.11, the
weights of MKL are plotted when using the linear kernel. As expected, the two best
representations PHOG and PROP have high weights. But the representation LBP that
has very low accuracy when considered as a single classifier increases the accuracy
when considered in combination. This shows that when considering combinations,
even a representation which is not very accurate alone may contribute to the combi-
nation accuracy.

Nuclei Classification Using Nonlinear MKL Besides the linear MKL approach,
nonlinear kernel combinations are also possible, which can represent even more
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Table 9.4 MKL classification accuracies on the cell nuclei dataset. The nonlinear combination of
Gaussian kernels had the best classification accuracy of 83.3 %

SVM svl svp svg svl+ svp+ svg

76.0± 3.4 72.7± 3.8 76.9± 2.7 NA

RBMKL 77.3± 4.0 77.2± 2.4 82.7± 3.6 81.8± 3.8

SimpleMKL 77.1± 3.3 77.3± 2.3 81.8± 3.8 81.6± 3.9

GLMKL 77.1± 3.5 76.5± 3.2 81.8± 4.3 81.8± 3.8

NLMKL 77.9± 3.9 79.2± 3.8 83.3± 3.6 83.1± 3.5

flexible structure in the model than linear approaches. The NLMKL approach on
our cell nuclei dataset has been studied by Gönen et al. in [29]. In this experiment,
the nonlinear kernel combination as proposed by Cortes [22] has been employed to
combine the kernels svl, svp (degree 2) and svg. The data of 1273 nuclei samples
(consensus set of the two pathologists) were divided into ten folds (with stratifi-
cation). Using these folds, the SVMs svl, svp, svg, and MKL were trained. Four
different MKL algorithms (RBMKL, SimpleMKL, GLMKL, and NLMKL) were
employed to combine eight kernels calculated on nine feature representations (ALL,
BG, COL, FCC, FG, LBP, PHOG, SIG, and PROP) with the same kernel function. Ta-
ble 9.4 lists the results of best single-kernel SVMs and four MKL algorithms trained.
With NLMKL, a high accuracy of 83.3 % by combining eight GAU kernels could be
achieved. This result is better than all other MKL settings and single-kernel SVMs.
In the last column of Table 9.4, the results of combining all possible feature repre-
sentation and kernel function pairs (i.e., 24 kernels) in a single learner are shown.
NLMKL is still the best MKL algorithm even though the average accuracy decreases
to 83.1 %.

9.5.4 Hybrid Generative–Discriminative Nucleus Classification
of Renal Cell Carcinoma

An exhaustive research on generative–discriminative hybrid models for nucleus
classification has been performed by Ulaş et al. in [32] and Bicego et al. in [33]
(see also Chap. 4).

Classification on the Generative Embedding Space Using pLSA In [32], they
propose a hybrid generative/discriminative classification scheme and they have ap-
plied it to the detection of renal cell carcinoma (RCC) on tissue micro-array (TMA)
images. In particular, they have used probabilistic latent semantic analysis (pLSA)
as a generative model to perform generative embedding onto the free energy score
space (FESS). Subsequently, they use information-theoretic kernels on these embed-
dings to build a kernel based classifier on the FESS. In the obtained space, different
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Table 9.5 Accuracies with SVM. ORIG is the original histogram based feature approach, whereas
PLSA stands for the proposed approach

svl svp svr knn

ORIG PLSA ORIG PLSA ORIG PLSA ORIG PLSA

ALL 68.36 74.26 65.40 75.06 74.47 75.11 72.35 73.44

BG 72.88 70.82 66.79 71.50 74.22 71.92 74.25 71.29

COL 66.90 69.03 56.93 70.32 68.98 68.82 69.41 68.62

FCC 67.30 67.72 66.89 67.92 67.95 68.57 66.66 67.71

FG 70.68 71.97 64.12 72.62 70.49 71.09 69.79 70.48

LBP 68.61 69.43 42.36 70.70 68.79 70.47 71.13 70.29

PHOG 75.45 79.67 63.92 79.22 76.55 76.80 70.71 ∗74.69

SIG 67.72 68.34 58.64 67.69 67.72 67.72 63.50 67.72

classifiers have been tried, which have been compared with corresponding classi-
fiers working on the original histograms (i.e., without the intermediate generative
coding). Following classifiers were employed:

• (svl)—support vector machines with linear kernel (this represents the most widely
employed solution with hybrid generative-discriminative approaches).
• (svp)—support vector machines with polynomial kernel: after a preliminary eval-

uation, the degree p was set to 2.
• (svr)—support vector machines with radial basis function kernel.
• (knn)—k-nearest neighbor classifier based on the Mahalanobis distance.

All results are reported in Table 9.5. The feature representations where the proposed
approach outperforms the original classifiers are marked in bold (statistically sig-
nificant difference with paired t-test, p = 0.05). In particular, results are averaged
over ten runs.

Table 9.5 shows that the best accuracy using an SVM is 75.45 % whereas the
best accuracy on the pLSA features is 79.22 %. For most representations (except
LBP, PHOG and COL), the accuracies of different kernels on the original features do
not exhibit large differences. We also observed that the data set cane classified as a
difficult data set because some classifiers despite training only reached an accuracy
equal to the prior class distribution of the data set (67 %). Except svr, the space
constructed by pLSA always dominates the original space (except BG on svl) in
terms of average accuracy. The bold face in the table shows feature sets where pLSA
space is more accurate than the original space using 10-fold CV paired t-test at
p = 0.05.

Application of IT Kernels on Generative Embedding Spaces Observing the
success on generative embedding spaces, Bicego et al. conducted in [33] some ex-
periments on these spaces using IT kernels developed in the context of non-vectorial
data.



238 P.J. Schüffler et al.

Table 9.6 Average accuracies (in percentage) using pLSA and FESS embeddings with SVMs.
ORIG shows the baseline accuracies on the original feature space

LIN RBF JS JT JT-W1 JT-W2

PLSA 76.78 76.99 79.31 80.17 74.22 80.17

FESS 77.41 76.17 73.21 78.87 72.31 79.96

ORIG 75.45 76.55 N/A

Table 9.7 Average accuracies (in percentage) using pLSA and FESS embeddings with NN classi-
fiers. ORIG shows the baseline accuracies on the original feature space with Mahalanobis distances

MB JS JT JT-W1 JT-W2

PLSA 66.41 68.97 72.53 72.74 68.75

FESS 67.11 67.08 72.53 71.27 71.08

ORIG 64.57 N/A

In this setup, pLSA is trained in an unsupervised way, i.e., the pLSA model is
learned ignoring the class labels. Table 9.6 presents the results using the posterior
distribution (referred to as PLSA) and the FESS embedding with SVM classifica-
tion; these results show that in the proposed hybrid generative-discriminative ap-
proach, the IT kernels outperform linear and RBF kernels. The first and second
columns show the classification results of ψ and FESS scores classified using linear
and RBF kernels which allows us to show the contribution of the IT kernels.

The results of the nearest neighbor (NN) classifier are shown in Table 9.7. Al-
though NN is not a good choice for this experiment (baseline NN accuracy using
Mahalanobis distance on the original data is 64.57 %), there is still an advantage
of the IT kernels on the generative approach. An average accuracy of 72.74 % and
72.53 % using pLSA and FESS embeddings, respectively, can be achieved incorpo-
rating the similarities computed by the IT kernels in the NN classifier.

9.5.5 Cell Nucleus Classification of Renal Cell Carcinoma with
Superpixels

Besides the patch-wise nucleus classification that has been analyzed in the previous
studies, we depict here an alternative superpixel based classification approach as
it is implemented in TMARKER. After having segmented the whole TMA image
into superpixel, every superpixel is classified into malignant or benign. To train a
classifier, the superpixels that overlap with nuclei labeled by the pathologists serve
as training data. TMARKER provides basically three kinds of classifiers: random
forests, support vector machines and Bayesian networks. All are derived from the
Java WEKA package [34].
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Fig. 9.12 Superpixels in TMARKER are used for segmentation, detection and classification. (Left)
Part of the original image. (Middle) The image is segmented into superpixels. (Right) Superpixels
are classified into red and green superpixels. As training set serve the labels of the user (red and
green circles). The color intensity reflects the classification probability

According to the classification probability, the classification of the whole TMA
image results in a probability map that visually discovers confident cases as well as
borderline cases. Also, obviously wrongly classified superpixels can be identified
quickly. Figure 9.12 shows a typical classification heatmap.

Extension to Detection and Classification If no prior nucleus detection algo-
rithm has identified the relevant superpixels that represent a cell nucleus, this classi-
fication algorithm can easily be extended to a two stage classification algorithm. The
first stage then classifies all superpixels into foreground (nucleus) or background.
Afterwards, the second stage classifies all foreground nuclei into malignant or be-
nign. In fact, this implies the use of two classifiers: The first classifier is trained on
background samples and nuclei (both malignant and benign). Note that also a one-
class classifier (e.g., one-class SVM) only trained on the nuclei would be possible
for the first stage. The second classifier is only trained on malignant and benign
nuclei.

Voronoi Sampling for Background Samples To establish a fully supervised
training set for the first stage classifier, one needs background samples, which are
generally not annotated by the domain experts. In our case, we would need locations
in the TMA images that do not correspond to cell nuclei. In this context, we used a
Voronoi sampling algorithm to establish this extra dataset [11]. In this approach, a
Voronoi diagram is drawn with the cell nuclei as midpoints. The resulting diagram
has node points exactly in the middle between the cell nuclei and the superpixels
that include a Voronoi node point are considered background samples.

The extended classification algorithm with nucleus detection and classification
via superpixels is implemented in TMARKER. The graphical user interface benefits
from the visualization of the probability map, which facilitates the classification
correction and user interaction strongly, e.g., an SVM classifier that shows the user
on which superpixels it is unstable (low probability) can specifically be retrained on
the information given by the user on exactly these superpixels.
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Fig. 9.13 Concept for the active learning approach in TMARKER. For given TMA images, ini-
tially 20 nuclei per image (ten per class) were selected as training set for a SVM separating malig-
nant from benign nuclei. The classification accuracy relative to the gold standard to a pathologist
is shown on the y-axis. Consecutively 20 additional nuclei per image were added repeatedly to the
training (x-axis), such improving the classification performance. The additional nuclei were cho-
sen randomly (“acc_r”) or systematically according to the (lowest) classification score (“acc_s”).
The systematic approach saturates much faster. The classification accuracy reaches the range of
the inter-pathologist variability (“acc_pat”)

Active Learning Approach for Detection and Classification In TMARKER,
nucleus detection and classification is implemented in an active learning approach.
After a preprocessing step for superpixel segmentation and feature extraction, the
nucleus detection, classification and staining estimation are instantly performed
while the user is labeling the image. The two stage classifiers for detection and
classification are constantly updated with the user inputs. On the other hand,
TMARKER provides immediate visual user feedback about the detection and clas-
sification result achieved so far as a probability map over the image. Therefore, the
user can preferably label those nuclei that are borderline cases for classification.
Thus, the detection and classification are considerably strengthened even after few
steps of user input. This effect can be seen in Fig. 9.13, where we show that a sys-
tematic labeling of borderline cases leads faster to high classification accuracy than
random labeling.

9.6 Survival Analysis

The reader may recall that the ultimate goal of TMA analysis is to determine the
prognosis of the patient or to diagnose different cancer subtypes. The analysis of
the proliferation marker MIB-1 enables the search for subgroups of patients which
show different survival outcomes. Hence, the results of the previous two steps, cell
detection and classification, can be used to estimate the proportion of cells with
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particular properties (reflected by their staining with different antibodies), and ulti-
mately their effect on patient prognosis.

9.6.1 Staining Classification

To differentiate a stained cell nucleus from a non-stained nucleus, a simple color
model can be learned, when color labels are available. Based on the labeled nuclei,
color histograms are generated for both classes based on the pixels within the aver-
age cell nuclei radius. To classify a nucleus on a test image the distance to the mean
histograms of the both classes is calculated.

Since the dataset used for the development of TMARKER does not contain color
information labels for stained and clear cell nuclei, the staining of a single nucleus is
estimated by the mean color intensity of the red and blue channel of the superpixel
overlaying. If the mean intensity of the red channel is higher than the mean intensity
of the blue channel, the superpixel is considered as stained.

9.6.2 Kaplan–Meier Estimates

The patients are split in two (50 % : 50 %) groups based on the estimated percentage
of cancerous nuclei which express MIB-1. Then the Kaplan–Meier estimator is cal-
culated for each subgroup. This calculation involves first ordering the survival times
from the smallest to the largest such that t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn, where tj is the j th
largest unique survival time. The Kaplan–Meier estimate of the survival function is
then obtained as

Ŝ(t)=
∏

j :t(j)≤t

(
1− dj

rj

)
(9.6)

where rj is the number of individuals at risk just before tj , and dj is the number of
individuals who die at time tj .

To measure the goodness of separation between two or more groups, the log-
rank test (Mantel–Haenszel test) is employed which assesses the null hypothe-
sis that there is no difference in the survival experience of the individuals in the
different groups. The test statistic of the log-rank test (LRT) is χ2 distributed:

χ̂2 = [∑m
i=1 (d1i − ê1i )]2/∑m

i=1 v̂1i where d1i is the number of deaths in the first
group at ti and e1i = n1j

di
ni

where di is the total number of deaths at time t(i), nj is
the total number of individuals at risk at this time, and n1i the number of individuals
at risk in the first group.
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Fig. 9.14 Kaplan–Meier estimators showing significantly different survival times for renal cell
carcinoma patients with high and low proliferating tumors. Compared to the manual estimation
from the pathologist (a) (p = 0.04), the fully automatic estimation from the algorithm (b) performs
better (p = 0.01) in terms of survival prediction on the partitioning of patients into two groups of
equal size

9.6.3 Survival Estimation

One of the most important objectives and undisputed target in the medical domain
relates to the survival of the patient. The experiments described in Sect. 9.1 show the
large disagreement between pathologists for the estimation of staining. Therefore,
the adaptation of an algorithm to the estimates of one pathologist or to a consensus
voting of a cohort of pathologist is not desirable. Hence we validate the proposed
algorithm against the right censored clinical survival data of 133 patients. In addition
these results were compared to the estimations of an expert pathologist specialized
on renal cell carcinoma. He analyzed all spots in an exceptionally thorough manner
which required more than two hours. This time consuming annotation exceeds the
standard clinical practice significantly by a factor of 10–20 and, therefore, the results
can be viewed as an excellent human estimate for this dataset.

Figure 9.14 shows Kaplan–Meier plots of the estimated cumulative survival for
the pathologist and the RDF. The further the survival estimates of the two groups
are separated, the better the estimation. Quantifying this difference with log-rank
test shows that the proposed algorithm is significantly (p = 1.1 · 10−2) better than
the trained pathologist (p = 4.2 · 10−2).

9.7 Description of Software

TMARKER is written in Java v1.6 as a webstart application. It is platform indepen-
dent and can be run from any computer with internet access and a Java Virtual Ma-
chine without installation. The program is published under the GNU general public
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license. Because of the object oriented programming design of Java, TMARKER is
modular and can easily be extended with new sub-pipelines, different image features
or classifiers. It can be downloaded at http://www.comp-path.inf.ethz.ch.

9.8 Conclusion

We have proposed an automated pipeline to achieve objective and reproducible di-
agnosis of renal cell carcinoma. This pipeline involves three main components: cell
nuclei detection from tissue micro-array images, nucleus segmentation and clas-
sification into cancerous and healthy cells, and summarizing this information and
analyzing its effect on patient survival. This pipeline has been developed as open
source software and is available on the SIMBAD website. The publicly available
Java implementation TMARKER, which implements this pipeline, can be down-
loaded at http://www.comp-path.inf.ethz.ch. Further, this pipeline states an exhaus-
tive example of dealing with challenges in medical imaging and computational
pathology [35].

The images and comprehensive annotations by two pathologists provide a rich
resource for future medical imaging research. Our publicly available data enables
objective benchmarking of methods and algorithms. Furthermore, the predictions
can be validated against the human annotations, leading to a deeper understanding
of the variations between pathologists and its impact on designing tools to overcome
this source of uncertainty. The TMA dataset is available at http://www.mldata.org.

Various novel pattern recognition approaches, which have been developed in the
SIMBAD project, have been benchmarked on the dataset or parts of it. New kernel
combination methods for nucleus classification emerged from these studies that have
shed new light on automatic medical image processing in computational pathology.
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Chapter 10
Analysis of Brain Magnetic Resonance (MR)
Scans for the Diagnosis of Mental Illness

Aydın Ulaş, Umberto Castellani, Manuele Bicego, Vittorio Murino,
Marcella Bellani, Michele Tansella, and Paolo Brambilla

Abstract We address the problem of schizophrenia detection by analyzing mag-
netic resonance imaging (MRI). In general, mental illness like schizophrenia or
bipolar disorders are traditionally diagnosed by self-reports and behavioral obser-
vations. A new trend in neuroanatomical research consists of using MRI images to
find possible connections between cognitive impairments and neuro-physiological
abnormalities. Indeed, brain imaging techniques are appealing to provide a non-
invasive diagnostic tool for mass analyses and early diagnoses. The problem is chal-
lenging due to the heterogeneous behavior of the disease and up to now, although the
literature is large in this field, there is not a consolidated framework to deal with it.
In this context, advanced pattern recognition and machine learning techniques can

A. Ulaş · U. Castellani ·M. Bicego (B) · V. Murino
Departimento di Informatica, University of Verona, Verona, Italy
e-mail: manuele.bicego@univr.it

A. Ulaş
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be useful to improve the automatization of the involved procedures and the char-
acterization of mental illnesses with specific and detectable brain abnormalities. In
this book, we have exploited similarity-based pattern recognition techniques to fur-
ther improve brain classification problem by employing the algorithms developed in
the other chapters of this book. (This chapter is based on previous works (Castellani
et al. in Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, MICCAI’11, vol. 6892, pp. 426–433, 2011;
Gönen et al. in Proceedings of the International Workshop on Similarity-Based Pat-
tern Analysis, SIMBAD’11, vol. 7005, pp. 250–260, 2011; Ulaş et al. in Proceed-
ings of the Iberoamerican Congress on Pattern Recognition, CIARP’11, vol. 7042,
pp. 491–498, 2011; in IAPR International Conference on Pattern Recognition in
Bioinformatics, PRIB’11, vol. 7036, pp. 306–317, 2011; and in Int. J. Imaging Syst.
Technol. 21(2):179–192, 2011) by the authors and contains text, equations and ex-
perimental results taken from these papers.)

10.1 Introduction

Brain analysis techniques using Magnetic Resonance Imaging (MRI) are playing
an increasingly important role in understanding pathological structural alterations
of the brain [33, 70]. The ultimate goal is to identify structural brain abnormali-
ties by comparing normal subjects with patients affected by a certain disease. Here,
we focus on schizophrenia. Schizophrenia is a heterogeneous psychiatric disorder
characterized by several symptoms such as hallucinations, delusions, cognitive and
thought disorders [8]. Although genetic and environmental factors play a role in the
disorder, its etiology remains unknown and substantial body of research has demon-
strated numerous structural and functional brain abnormalities in patients with both
chronic and acute forms of the disorder [66, 70].

Our main contribution here is to deal with schizophrenia detection as a binary
classification problem—we have to distinguish between normal subjects and pa-
tients affected by schizophrenia [25]—by applying advanced pattern recognition
techniques by exploiting the capability of similarity-based methods mentioned in
the other chapters of this book to this problem.

We highlight that the problem of schizophrenia detection is very complex since
the symptoms of the disease are different and related to different properties of the
brain. Thus, although the literature has shown a large amount of promising method-
ological procedures to address this disease, up to now a consolidate framework is
not available.

In this chapter, we have exploited different approaches to address schizophrenia
detection. We have defined a general working pipeline composed of the four main
steps: (i) data acquisition, (ii) region selection, (iii) data description, and (iv) clas-
sification. Each step may be instantiated in different ways, each one having pros
and cons. Here, for each stage, we summarize the possible choices we adapted.
Figure 10.1 shows the proposed overall scheme of the working pipeline and the
involved possibilities. In summary:
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Fig. 10.1 Overall scheme of the proposed working pipeline

• Data acquisition regards the imaging technique employed to acquire data. Dif-
ferent acquisition modalities are encoding different brain information. We use
Structural MRI to deal with morphological properties, and Diffusion Weighted
Imaging (DWI) to evaluate functional aspects of the brain. Moreover, in order to
integrate different sources of information, a multimodal approach is exploited.
• Region selection is necessary to focus the analysis on brain subparts. A common

approach is to segment the whole brain among White Matter (WM), Gray Matter
(GM), and Cerebro-Spinal Fluid (CSF). Another approach consists in extracting
one or more Regions of Interest (ROIs) which are strictly related to the analyzed
disease. The brain segmentation in ROIs is in general called brain parcellation.
• Data description aims at extracting the most useful information for the involved

task, in our case brain classification. The standard approach consists in using fea-
tures. According to the overall aim of this book, we exploited the possibility to go
beyond features. Indeed, we have investigated two paradigms, derived from other
chapters of the book, a dissimilarity-based description (Chap. 2) and description
by generative embeddings (Chap. 4).
• Classification is the last step of the proposed pipeline. As simplest approach a

single classifier has been employed. In order to integrate different sources of in-
formation at classification stage, we exploited two paradigms, multi-classifier ap-
proach and multiple kernel learning.

Roadmap The chapter is organized as follows: In Sect. 10.2, we present the state-
of-the-art in schizophrenia detection. In Sects. 10.3 and 10.4, we introduce data
acquisition and region selection, respectively. Then, data description phase is split
into standard features (Sect. 10.5.1), dissimilarity-based description (Sect. 10.5.2),
and description by generative embeddings (Sect. 10.5.3). We define our approaches
of classification using ensembles and Multiple Kernel Learning in Sect. 10.6. We
explain three case studies which utilize the working pipeline in Sects. 10.7, 10.8,
and 10.9; and conclude in Sect. 10.10.
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10.2 Related Work

Several works have been proposed for human brain classification in the context of
schizophrenia research [70]. In the following, we have organized the state-of-the-art
in (i) shape-based techniques and (ii) classification-based techniques.

10.2.1 Shape-Based Techniques

Standard approaches are based on detecting morphological differences on certain
brain regions, namely Region Of Interests (ROIs). Usually, the aim is the obser-
vation of volume variations [7, 59, 70]. In general, ROI-based techniques require
the manual tracing of brain subparts. In order to avoid such an expensive proce-
dure, Voxel Based Morphometry (VBM) techniques have been introduced [4, 41]
for which the entire brain is transformed onto a template, namely the stereotaxic
space. In this fashion, a voxel-by-voxel correspondence is available for comparison
purposes. In [41], a multivariate Voxel Based Morphometry approach method is pro-
posed to differentiate schizophrenic patients from normal controls. Inferences about
the structural relevance of gray matter distribution are carried out on several brain
sub-regions. In [85], cortical changes in adolescent on-set schizophrenic patients
are analyzed by combining Voxel-Based with Surface-Based Morphometry (SBM).
A different approach consists in encoding the shape by a global region descrip-
tor [32, 63, 76]. In [76], a new morphological descriptor is introduced by properly
encoding both the displacement fields and the distance maps for amygdala and hip-
pocampus. In [32], a ROI-based morphometric analysis is introduced by defining
spherical harmonics and 3D skeleton as shape descriptors. Improvement of such a
shape-descriptor-based approach with respect to classical volumetric techniques is
shown experimentally. Although results are interesting, the method is not invari-
ant to surface deformations and therefore it requires shape registration and data
resampling. This pre-processing is avoided in [63], where the so-called Shape-DNA
signature has been introduced by taking the eigenvalues of the Laplace–Beltrami
operator as region descriptor for both the external surface and the volume. Although
global methods can be satisfying for some classification tasks, they do not provide
information about the localization of the morphological anomalies. To this aim, lo-
cal methods have been proposed. In [77], the so called feature-based morphometry
(FBM) approach is introduced. Taking inspiration from feature-based techniques
proposed in computer vision, FBM identifies a subset of features corresponding to
anatomical brain structures that can be used as disease biomarkers.

10.2.2 Classification-Based Techniques

In order to improve the capability of distinguishing between healthy and non-healthy
subjects, learning-by-example techniques [27] are applied (see, for example, [25]).
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Usually, geometric signatures extracted from the MRI data are used as feature vec-
tors for classification purposes [30, 58, 87]. In [87], a support vector machine (SVM)
has been employed to classify cortical thickness which has been measured by calcu-
lating the Euclidean distance between linked vertices on the inner and outer cortical
surfaces. In [30], a new approach has been defined by combining deformation-based
morphometry with SVM. In this fashion, multivariate relationships among various
anatomical regions have been captured to characterize more effectively the group
differences. Finally, in [58], a unified framework is proposed to combine advanced
probabilistic registration techniques with SVM. The local spatial warps parameters
are also used to identify the discriminative warp that best differentiates the two
groups. It is worth to note that in most of the mentioned works, the involved classi-
fier was a Support Vector Machine, but more general approaches are also proposed,
see, e.g., [51]. Here, a set of image features which encode both general statistical
properties and Law’s texture features from the whole brain are analyzed. Such fea-
tures are concatenated onto a very high dimensional vector which represents the
input for a classic learning-by-example classification approach. Several classifiers
are then evaluated such as decision trees or decision graphs. In [15], the authors pro-
posed a neural network to measure the relevance of thalamic subregions implicated
in schizophrenia. The study is based on the metabolite N-acetylaspartate (NAA)
using in vivo proton magnetic resonance spectroscopic imaging. The diffusion of
water in the brain characterized by its apparent diffusion coefficient (ADC), which
represents the mean diffusivity of water along all directions gives potential informa-
tion about the size, orientation, and tortuosity of both intracellular and extracellular
spaces, providing evidence of disruption when increased [64]. DWI has been shown
to be keen in exploring the microstructural organization of white matter, therefore
providing intriguing information on brain connectivity [13, 78].

10.3 Data Acquisition

The data set involves a 124 subject database cared by the Research Unit on Brain
Imaging and Neuropsychology (RUBIN) at the Department of Medicine and Public
Health-Section of Psychiatry and Clinical Psychology of the University of Verona.
The data set is composed of MRI brain scans of 64 patients recruited from the area
of South Verona (i.e., 100,000 inhabitants) through the South Verona Psychiatric
Case Register [2, 3, 82]. Additionally, 60 individuals without schizophrenia (control
subjects) were also recruited.

10.3.1 MRI Data

MRI scans were acquired with a 1.5 T Magnetom Symphony Maestro Class Syngo
MR 2002B (Siemens), and in total, it took about 19 minutes to complete an MR
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Fig. 10.2 Slices acquired by 3D Morphological technique (left) and Diffusion Weighting Imaging
technique (right)

session. A standard head coil was used for radio frequency transmission and re-
ception of the MR signal, and restraining foam pads were used to minimize head
motion. T1-weighted images were first obtained to verify the participants head po-
sition and image quality (TR = 450 ms, TE = 14 ms, flip angle = 90◦, FOV =
230× 230, 18 slices, slice thickness= 5 mm, matrix size= 384× 512, NEX= 2).
Proton density (PD)/T2-weighted images were then acquired (TR= 2500 ms, TE=
24/121 ms, flip angle= 180◦, FOV= 230×230, 20 slices, slice thickness= 5 mm,
matrix size = 410 × 512, NEX = 2) according to an axial plane running paral-
lel to the anterior–posterior (AC–PC) commissures to exclude focal lesions. Sub-
sequently, a coronal 3-dimensional magnetization prepared rapid gradient echo
(MP-RAGE) sequence was acquired (TR = 2060 ms, TE = 3.9 ms, flip angle =
15◦, FOV = 176 × 235, slice thickness = 1.25 mm, matrix size = 270 × 512,
inversion time= 1100) to obtain 144 images covering the entire brain. In Fig. 10.2
(left), we can see a slice of a subject acquired by using MRI.

10.3.2 DWI Data

Diffusion-weighted imaging (DWI) investigates molecular water mobility within
the local tissue environment, providing information on tissue microstructural in-
tegrity. The diffusion of water in the brain is characterized by its apparent diffusion
coefficient (ADC), which represents the mean diffusivity of water along all direc-
tions [75]. Thus, ADC gives potential information about the size, orientation, and
tortuosity of both intracellular and extracellular spaces, providing evidence of dis-
ruption when increased [64]. ADC has also been used to explore regional grey mat-
ter microstructure, being higher in the case of potential neuron density alterations
or volume deficit [62].
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Diffusion-weighted echoplanar images in the axial plane parallel to the AC–PC
line (TR = 3200 ms, TE = 94 ms, FOV = 230× 230, 20 slices, slice thickness =
5 mm with 1.5-mm gap, matrix size= 128× 128, echo-train length= 5; these pa-
rameters were the same for b = 0, b = 1000, and the ADC maps). Specifically,
three gradients were acquired in three orthogonal directions. ADC maps (denoted
by DADC) were obtained from the diffusion images with b= 1000, according to the
following equation:

−bDADC = ln
[
A(b)/A(0)

]
,

where A(b) is the measured echo magnitude, b is the measure of diffusion weight-
ing, and A(0) is the echo magnitude without diffusion gradient applied. In Fig. 10.2
(right), we can see a slice of a subject acquired by using DWI.

10.3.3 Multimodal Approach

A multimodal approach can be applied when different kinds of acquisition proce-
dures are used for the same subject. As can be seen in Fig. 10.2, while MRI images
are more reliable, DWI resolution is very low and it’s hard to segment ROIs from
these DWI images. In order to integrate such data, a co-registration procedure is
necessary.

The co-registration consists in matching high-resolution (also known as T1-w)
and DWI images defined in different coordinate systems. Open source libraries
of National Library of Medicine Insight Segmentation and Registration Toolkit are
adapted for the co-registration procedure, while Tcl/Tk code and VTK open source
libraries are chosen for the graphic interface. Digital Imaging and Communications
in Medicine format (DICOM) tag parameters necessary for the co-registration are:
Image Origin, Image Spacing, Patient Image Orientation, and Frame of Reference.

Assuming the same anatomy topology for different studies, a Mutual Informa-
tion technique based on Mattes algorithm is applied. An in-house software for mul-
timodal registration was developed. The program 3D Slicer,1 a free open source
software for visualization and image computing, is employed for the graphic inter-
face. The process was performed in several steps.

The source DWI study (moving image, see Fig. 10.3) is aligned through a roto-
translational matrix with the T1-w data (fixed image); the two studies are acquired
in straight succession with the same MR unit without patient repositioning; the pa-
rameters related to algorithm implementation are automatically defined; then, by
applying a multi-resolution pyramid, we are able to reach a registration within eight
iterations avoiding local minimal solution.

The results of the registration are visually inspected in a checkerboard, where
each block alternately displayed data from each study, verifying alignment of

1http://www.slicer.org/.

http://www.slicer.org/
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Fig. 10.3 Registration of sMRI to DWI

anatomical landmarks (ventricles, etc.) for confirmation. This procedure is needed
because sMRI images have better resolution and the anatomy can better be seen for
manual ROI segmentation. We use this procedure to extract ADC values for each of
the ROIs instead of the whole image. Once the co-registration is carried out, a direct
voxel-by-voxel comparison between the two data modalities becomes feasible and
therefore any joint feature can be extracted.

10.4 Region Selection

The brain is a complex organ composed of different kinds of tissues related to differ-
ent physiological properties of brain matter. Moreover, the brain can be segmented
into well defined anatomical structures which are associated to specific functions
of the brain. In order to improve the search of brain abnormalities, it is important
to take into account of such kind of brain subdivisions. Two main paradigms are
in general defined: (i) White matter (WM), Gray matter (GM), and Cerebrospinal
Fluid (CSF) segmentation, and (ii) brain parcellation.

10.4.1 WM–GM–CSF Segmentation

WM–GM–CSF segmentation aims at decomposing the brain into its main kinds of
tissues (see Fig. 10.4). In particular, white matter encloses mainly the axons which
connect different parts of the brain, while gray matter contains neural cell bodies.
Cerebrospinal fluid is a clear, colorless bodily fluid that occupies the ventricular
system around and inside the brain and sulci.
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Fig. 10.4 Example of brain segmentation among White Matter (WM), Gray Matter (GM), and
Cerebrospinal Fluid (CSF)

10.4.2 Brain Parcellation

The raw images acquired using a 1.5 T MRI machine have 144 slices and 384 ×
512 resolution. These images are then transferred to PC workstations in order to
be processed for ROI tracing which we adapted. Based on manual identification of
landmarks, these slices are resampled and realigned by the medical personnel using
the Brains22 software. The same software is used to manually trace the ROIs by
drawing contours enclosing the intended region. This was carried out by a trained
expert following a specific protocol for each ROI [7] without knowledge of the class
labels. There are methods which automatically segment the ROIs, but their accuracy
is lower than the manual methods so manual segmentation was preferred. The ROIs
traced are 7 pairs (for the left and the right hemisphere, respectively) of disconnected
image areas:

• Amygdala (lamyg and ramyg, in short)
• Dorso-lateral PreFrontal Cortex (ldlpfc and rdlpfc)
• Entorhinal Cortex (lec and rec)
• Heschl’s Gyrus (lhg and rhg)
• Hippocampus (lhippo and rhippo)
• Superior Temporal Gyrus (lstg and rstg)
• Thalamus (lthal and rthal)

We select these ROIs because they have consistently been found to be impaired in
schizophrenia and in a recent work, some of them have been found to support a spe-
cific altered neural network [21]. The Inter Rater Reliability (IRR) values for each
brain hemisphere and ROI can be seen in Table 10.1 which shows us the reliability
of the segmentation. Higher value means the segmentation is more reliable.

Additionally, another important ROI that is traced is the intracranial volume
(ICV), that is the volume occupied by the brain in the cranial cavity leaving out
the brainstem and the cerebellum. This information is extremely useful for normal-
izing volume values against differing overall brain sizes.

2http://www.psychiatry.uiowa.edu/mhcrc/IPLpages/BRAINS.htm.

http://www.psychiatry.uiowa.edu/mhcrc/IPLpages/BRAINS.htm
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Table 10.1 IRR values for
ROI segmentation ROI left right

amyg 0.91 0.98

dlpfc 0.93 0.98

ec 0.94 0.96

hg 0.96 0.98

hippo 0.96 0.96

stg 0.93 0.99

thal 0.95 0.96

10.5 Data Description

In this section, we show how we describe the data to be used in classification.

10.5.1 Standard Features

In order to encode useful information in a compact representation, data descriptors
are employed. The overall idea consists of representing the brain with a signature
which summarizes brain characteristics, and using such signature for comparison
purposes. We exploited several kinds of brain characteristics; each of them focusing
on a specific aspect of the brain. In particular, we have employed histogram of im-
age intensities to encode tissue characteristics, and geometric features to concentrate
the analysis on shape properties of brain structures. We highlight that, according to
standard feature-based approach, such descriptors could be directly used for brain
classification. Since we aim at going beyond features in this book, we have ex-
ploited the new paradigm to deal with such brain characteristics by proposing new
approaches for data description (as we will explain in Sects. 10.5.2 and 10.5.3).

In the following, we introduce (i) Intensity Histograms of sMRI, (ii) Histograms
of Apparent Diffusion Coefficient values, (iii) basic geometric shape descriptors,
and (iv) spectral shape descriptor.

10.5.1.1 Intensity Histograms of Structural MRI Images

From MRI data we compute scaled histograms of image intensities. In particular,
we compute a histogram for each ROI. A major disadvantage of MRI compared to
other imaging techniques is the fact that its intensities are not standardized. Even
MR images taken for the same patient on the same scanner with the same proto-
col at different times may differ in content due to a variety of machine-dependent
reasons, therefore, image intensities do not have a fixed meaning [54]. This implies
a significant effect on the accuracy and precision of the following image process-
ing, analysis, segmentation, and registration methods relying on intensity similarity.
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A successful technique used to calibrate MR signal characteristics at the time of ac-
quisition employs phantoms [29], by placing physical objects with known attributes
within the scanning frame. Unfortunately, this technique is not always exploited,
which is our present case. Alternatively, it is possible to apply bias correction (using
software like SPM3 or FSL4) for the image intensities, and apply intensity rescaling
afterwards. Here, we rescale intensities based on landmark matching from the ICV
histograms [54] because it is easier to identify landmarks on the histograms that
match the canonical subdivision of intracranial tissue into white matter, gray mat-
ter and cerebrospinal fluid. We select a rescaling mapping that conserves most of
the signal in the gray matter—white matter area, corresponding to the two highest
bumps in the range 60–90, since ROIs primarily contain those kinds of tissue.

10.5.1.2 Histograms of Apparent Diffusion Coefficient values

Although we don’t have manually segmented ROIs for DWI images, we used a co-
registration procedure to segment DWI images into ROIs. For this purpose, every
subject’s DWI image was registered into the corresponding structural MRI image.
Then Apparent Diffusion Coefficient (ADC) values are calculated using these im-
ages. We form the histograms of ADC values and use them in our experiments.
Since the ADC values are already normalized, we don’t need to do another step of
normalization on ADC histograms.

10.5.1.3 Basic Geometric Shape Descriptors

From the set of 2D ROIs of the shapes (slices) the 3D surface is computed as triangle
mesh using marching cubes. A minimal smoothing operation is applied to remove
noise and voxelization effect. We encode geometric properties of the surface using
the Shape Index [44], which is defined as:

si=− 2

π
arctan

(
k1 + k2

k1 − k2

)
, k1 > k2,

where k1, k2 are the principal curvatures of a generic surface point. The Shape In-
dex varies in [−1,1] and provides a local categorization of the shape into primitive
forms such as spherical cap and cup, rut, ridge, trough, or saddle [44]. Shape index
is pose and scale invariant [44] and it has already been successfully employed in
biomedical domain [5]. The shape index is computed at each vertex of the extracted
mesh. Then, all the values are quantized and a histogram of occurrences is com-
puted. Such histograms represent the descriptor of a given subject and it basically
encodes the brain local geometry of a subject, disregarding the spatial relationships.

3http://www.fil.ion.ucl.ac.uk/spm/.
4http://www.fmrib.ox.ac.uk/fsl/.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/
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Fig. 10.5 Geometric feature extraction: 3D surface of the thalamus (left), the surface colored
according with Shape Index values (right), and the histogram of Shape Index occurrences (bottom)

Figure 10.5 shows the 3D surface of the left-Thalamus (left), the surface col-
ored according with Shape Index values (right), and the histogram of Shape Index
occurrences (bottom). It is worth noting that convex regions (in blue) are clearly
distinguished from concave regions (in red) by the Shape Index values. As a further
step we also calculate the mean curvature using the same methodology:

m= k1 + k2

2
.

10.5.1.4 Spectral Shape Descriptor

In this section, we describe a new shape descriptor, which is based on advanced
diffusion geometry techniques. Considering a shape M as a compact Riemannian
manifold [14], the heat diffusion on shape5 is defined by the heat equation:

(
ΔM + ∂

∂t

)
u(t,m)= 0, (10.1)

where u is the distribution of heat on the surface, m ∈ M , ΔM is the Laplace–
Beltrami operator which, for compact spaces, has discrete eigendecomposition of

5In this section, we borrow the notation from [14, 73].
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the form ΔMφi = λiφi . In this way, the heat kernel has the following eigendecom-
position:

ht

(
m,m′

)=
∞∑

i=0

e−λi tφi(m)φi

(
m′

)
, (10.2)

where λi and φi are the ith eigenvalue and the ith eigenfunction of the Laplace–
Beltrami operator, respectively. The heat kernel ht (m,m′) is the solution of the
heat equation with initial point heat source in m at time t = 0, and heat value in
ending point m′ ∈M after time t . The heat kernel is isometrically invariant, it is
informative, and stable [73].

In the case of volumetric representations, the volume is sampled by a regular
Cartesian grid composed by voxels, which allows the use of standard Laplacian
in R

3 as the Laplace–Beltrami operator. We use finite differences to evaluate the
second derivative in each direction of the volume. The heat kernel on volumes is
invariant to volume isometries, in which shortest paths between points inside the
shape do not change. Note that in real applications, exact volume isometries are
limited to the set of rigid transformations [61], however, also non-rigid deformations
can faithfully be modeled as approximated volume isometries in practice. It is also
worth noting that, as observed in [61, 73], for small t the autodiffusion heat kernel
ht (m,m) of a point m with itself is directly related to the scalar curvature s(m) [61].
More formally,

ht (m,m)= (4πt)−3/2
(

1+ 1

6
s(m)

)
. (10.3)

In practice, Eq. (10.3) states that the heat tends to diffuse slower at points with
positive curvature, and vice-versa. This gives an intuitive explanation about the ge-
ometric properties of ht (m,m), and suggests the idea of using it to build a shape
descriptor [73].

Global Heat Kernel Signature Once data are collected, a strategy to encode the
most informative properties of the shape M can be devised. To this end, a global
shape descriptor is proposed, which is inspired by the so-called Heat Kernel Signa-
ture (HKS) defined as:

HKS(x)= [
ht0(x, x), . . . , htn(x, x)

]
, (10.4)

where x is a point of the shape (i.e., a vertex of a mesh or a voxel) and (t0, t1, . . . , tn)

are n time values. To extend this approach to the whole shape, we introduce the
following global shape descriptor:

GHKS(M)= [
hist

(
Ht0(M)

)
, . . . ,hist

(
Htn(M)

)]
, (10.5)

where Hti (M) = {hti (x, x),∀x ∈ M}, and hist(·) is the histogram operator. Note
that our approach combines the advantages of [14, 61] since it encodes the distribu-
tion of local heat kernel values and it works at multiscales. GHKS allows for shape
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Fig. 10.6 GHKS: Each point of the shape is colored according to hti (x, x). Such values are col-
lected into a histogram for each scale ti . Finally, histograms are concatenated leading to the global
signature

comparisons using minimal shape preprocessing, in particular, no registration, map-
ping, or remeshing is necessary. GHKS is robust to noise since it implicitly employs
surface smoothing by neglecting higher frequencies of the shape. Finally, GHKS is
able to encode isometric invariance properties of the shape [73] which are crucial
to deal with shape deformations. Figure 10.6 shows a scheme of the proposed de-
scriptor. Each point of the shape is colored according to hti (x, x). Such values are
collected into a histogram for each scale ti . Finally, histograms are concatenated
leading to the global signature.

10.5.2 Descriptors on Dissimilarity Space

In this section, we describe data descriptors generated by employing similarity-
based approach. In general, similarity-based approach aims at exploiting the dis-
criminative properties of similarity measures per se, as opposed to standard feature-
based approach. In fact, the similarity-based paradigm differs from typical pattern
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recognition approaches where objects to be classified are represented by feature vec-
tors. Devising pattern recognition techniques starting from similarity measures is a
real challenge, and the main idea of this book. Among the different proposed tech-
niques, in this work we investigated the use of the dissimilarity-based representation
paradigm, introduced by Pekalska and Duin [55] and described in Chap. 2. Within
this approach, objects are described using pairwise (dis)similarities to a represen-
tation set of objects. This offers the analyst a different way to express application
background knowledge as compared to features. In a second step, the dissimilar-
ity representation is transformed into a vector space in which traditional statistical
classifiers can be employed. Unlike the related kernel approach, whose application
is often restrained by technicalities like fulfilling Mercer’s condition, basically any
dissimilarity measure can be used.

Similarity-based approach is more versatile in dealing with different data rep-
resentations (i.e., images, MRI volume, graphs, DNA strings, and so on) since for
each kind of data the most suitable (dis)similarity measure can be chosen. In the
following, we introduce several dissimilarity measures and define the dissimilarity
space.

10.5.2.1 Dissimilarity Measures

Up to this level of the pipeline, data are characterized by histograms. Therefore, we
can use histograms to devise similarity measures to be employed in the dissimilarity-
based representation scheme. There are various dissimilarity measures that can be
applied to measure the dissimilarities between histograms [18, 68]. Moreover, his-
tograms can be converted to pdfs and dissimilarity measures between two discrete
distributions can be used as well. All in all, we decided to study measures below.

Given two histograms S and M with n bins, we define the number of elements in
S and M as |S| and |M|, respectively.

Histogram Intersection It measures the number of intersecting values in each
bin [74]:

sim(S,M)=
∑n

i=1 min(Si,Mi)

min(|S|, |M|) .

Since this is a similarity measure, we convert it to a dissimilarity using D =
min(|M|, |S|)× (1− sim(S,M)).

Diffusion Distance In diffusion distance [50], the distance between two his-
tograms is defined as a temperature field T (x, t) with T (x,0)= S(x)−M(x). Us-

ing the heat diffusion equation ∂T
∂t
= ∂2T

∂x2 which has a unique solution T (x, t) =
T (x,0)× φ(x, t) where φ(x, t)= 1

(2φ)1/2t
exp{− x2

2t2 }, we can compute D as:

D =
∫ r

0
k
(∣∣T (x, t)

∣∣)dt,
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where k(·) is the L1-norm.

χ2χ2χ2 Distance This metric is based on the χ2 test for testing the similarity between
histograms. It is defined as

D =
n∑

i=1

(Si −Mi)
2

Si +Mi

.

It is a standard measure for histograms.

Earth Mover’s Distance This distance was originally proposed by Rubner
et al. [65]. It is basically defined as the cost to transform one distribution into an-
other. It is calculated using linear optimization by defining the problem as a trans-
portation problem. For 1D histograms, it reduces to a simple calculation [18] which
was implemented in this study.

Ci =
∣∣
∣∣∣

i∑

j=1

(Sj −Mj)

∣∣
∣∣∣
, D =

n∑

i=1

Ci.

Similarly, we have considered the following dissimilarities between pdfs:

Bhattacharyya It is used to measure the similarity of discrete probability distri-
butions p and q . It is defined as

D(p,q)=− log BC(p, q),

where

BC(p, q)=
∑

x∈X

√
p(x)q(x).

Kullback–Leibler (KL) Divergence Kullback–Leibler divergence is defined as

D(p,q)=
n∑

i=1

qi log
qi

pi

.

This measure is not a distance metric but a relative entropy since D(p,q) 
=
D(q,p), i.e., the dissimilarity matrix is not symmetric. There are various ways
to symmetrize this dissimilarity. We simply used D = D(p,q)+D(q,p) and the
so-called Jensen–Shannon divergence: D = 1

2D(p, r) + 1
2D(q, r), where r is the

average of p and q .
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10.5.2.2 Dissimilarity Space

Suppose that we have n objects and we have a dissimilarity matrix D of size
n × n. And suppose that the dissimilarity between two objects o and ô are de-
noted by D(o, ô). There are several ways to transform an n× n dissimilarity matrix
D with elements D(o, ô) into a vector space with objects represented by vectors
X = {x′1, . . . , x′o, . . . , x′ô, . . . , x′n} [55]. Classical scaling (for proper Euclidean dis-
similarities) and pseudo-Euclidean embedding (for arbitrary symmetric dissimilari-
ties) yield vector spaces in which vector dissimilarities can be defined that produce
the given dissimilarities D. As almost all dissimilarity measures studied here are
non-Euclidean, classification procedures for these pseudo-Euclidean spaces are ill-
defined, as, for instance, the corresponding kernels are indefinite.

A more general solution is to work directly in the dissimilarity space. It postu-
lates an Euclidean vector space using the given dissimilarities to a representation set
as features. As opposed to the previously mentioned techniques, it is not true any-
more that dissimilarities in this space are identical to the given dissimilarities, but
this is an advantage in case it is doubtful whether they really represent dissimilarities
between the physical objects. As this holds in our case we constructed such a dissim-
ilarity space using all available objects by taking X equal to D. In the dissimilarity
space, basically any traditional classifier can be used. The number of dimensions,
however, equals the number of objects in the representation set. Many classifiers
will need dimension reduction techniques or regularization to work properly in this
space.

A further refining of the scheme can be obtained by considering at the same
time different dissimilarities (we have many, linked to different modalities, different
zones of the brain or different methods to compute them), trying to combine them
in a single dissimilarity space. Combined dissimilarity spaces can be constructed by
combining dissimilarity representations. As in normal classifier combination [42,
45], a simple and often effective way is using an (weighted) average of the given
dissimilarity measures:

Dcombined =
∑

αiDi∑
αi

. (10.6)

It is related to the sum-rule in the area of combining classifiers. The weights can be
optimized for some overall performance criterion, or determined from the proper-
ties of the dissimilarity matrix Di itself, e.g., its maximum or average dissimilarity.
Here, we used equal weights while combining multiple dissimilarity matrices and
all the dissimilarity matrices are scaled such that the average dissimilarity is one,
i.e.,

D(o, ô)

1
n(n−1)

∑
o,ô D(o, ô)

= 1. (10.7)

This is done to assure that the results are comparable over the dissimilarities as we
deal with dissimilarity data in various ranges and scales. Such scaled dissimilarities
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are denoted as D̃. In addition, we assume here that the dissimilarities are symmetric.
So, every dissimilarity D̃(i, j) has been transformed by

D̃(i, j) := D̃(i, j)+ D̃(j, i)

2
. (10.8)

10.5.3 Descriptors by Generative Embeddings

In this section, we define a new class of data descriptors based on generative embed-
ding procedure (see Chap. 4). The overall idea consists in fitting a generative model
on training data and using the generative process to define new data-dependent rep-
resentations. Then, such representations can be plugged into a standard discrimi-
native classifier for classification purposes. This approach is pursued by hybrid ar-
chitectures of discriminative and generative classifiers which is currently one of the
most interesting, useful, and difficult challenges for Machine Learning. The under-
lying motivation is the proved complementariness of discriminative and generative
estimations: asymptotically (in the number of labeled training examples), classifica-
tion error of discriminative methods is lower than that of generative ones [53]. On
the other side, generative counterparts are effective with less, possibly unlabeled,
data; further, they provide intuitive mappings among structure of the model and
data features. Among these hybrid generative–discriminative methods, “generative
embeddings” (also called generative score space) have grown in importance in the
literature [11, 12, 39, 49, 56, 71, 72, 79].

Generative score space framework consists of two steps: first, one or a set of
generative models are learned from the data; then a score (namely a vector of fea-
tures) is extracted from it, to be used in a discriminative scenario. The idea is to
extract fixed dimension feature vectors from observations by subsuming the process
of data generation, projecting them in highly informative spaces called score spaces.
In this way, standard discriminative classifiers such as support vector machines, or
logistic regressors have achieved higher performances than a solely generative or
discriminative approach.

Using the notation of [56, 71], such spaces can be built from data by mapping
each observation x to the fixed-length score vector ϕf

F̂
(x),

ϕ
f

F̂
(x)= ϕ

F̂
f

({
Pi(x | θi)

})
, (10.9)

where Pi(x | θi) represents the family of generative models learned from the data,
f is the function of the set of probability densities under the different models, and
F̂ is some operator applied to it. In general, the generative score-space approaches
help to distill the relationship between a model’s parameters θ and the particular
data sample.

Generative score-space approaches are strictly linked to generative kernels fam-
ily, namely kernels which compute similarity between points through a generative
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model—the most famous example being the Fisher Kernel [39]. Typically, a gen-
erative kernel is obtained by defining a similarity measure in the score space, e.g.,
the inner product. Score spaces are also called model dependent feature extractors,
since they extract features from a generative model.

In order to apply the generative embedding scheme to the MRI data, we should
define a generative model able to explain and model what we have. Here, we
adapted as generative model the probabilistic Latent Semantic Analysis (pLSA—
[38]), a tool widely applied in the linguistic and in the computer vision community.

In the following, we first describe the basics of the pLSA, then explain how
this model can be applied to our problem, finally describing the kind of generative
embeddings we exploited.

10.5.3.1 Probabilistic Latent Semantic Analysis

In the Probabilistic Latent Semantic Analysis (PLSA—[38]), the input is a set of D
documents, each one containing a set of words taken from a vocabulary of cardi-
nality W . The documents are summarized by an occurrence matrix of size W ×D,
where n(wj , di) indicates the number of occurrences of the word wj in the docu-
ment di . In PLSA, the presence of a word wj in the document di is mediated by a
latent topic variable, z ∈Z = {z1, . . . , zZ}, also called aspect class, i.e.,

P(wj , di)=
Z∑

k=1

P(zk)P (wj | zk)P (di | zk). (10.10)

In practice, the topic zk is a probabilistic co-occurrence of words encoded by the
distribution β(w) = p(w | zk), w = {w1, . . . ,wN }, and each document di is com-
pactly (usually, Z<W ) modeled as a probability distribution over the topics, i.e.,
p(z | di), z = {z1, . . . , zZ} (note that this formulation, derived from p(di | z), pro-
vides an immediate interpretation).

The hidden distributions of the model, p(w | z), p(d | z) and p(z), are learned
using Expectation Maximization (EM) [26], maximizing the model data log-
likelihood L:

L=
W∏

j=1

D∏

i=1

n(wj , di) log
(
p(wj , di)

)
. (10.11)

The E-step computes the posterior over the topics, p(z | w,d), and the M-step up-
dates the hidden distributions. Even if pLSA is a model for documents, it has been
largely applied in other contexts, especially in computer vision [12, 23] but also in
the medical informatics domain [9, 10, 17].

The idea under its application to the MRI domain is straightforward. In particular,
we can assume that a given brain (or the particular ROI) represents the documents d ,
whereas the words wj are the local features previously described. With such a point
of view, the extracted histograms represent the counting vectors, able to describe
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how much a visual feature (namely a word) is present in a given image (namely a
document).

10.5.3.2 PLSA-Based Generative Embeddings

Once a generative model is trained, different spaces can be obtained. Gener-
ally speaking, we can divide them into two families: parameter-based and hidden
variable-based. The former class derives the features on the basis of differential op-
erations linked to the parameters of the probabilistic model, while the latter seeks to
derive feature maps on the basis of the log-likelihood function of a model, focusing
on the random variables rather than on the parameters.

Parameter-Based Score Space These methods derive the features on the basis of
differential operations linked to the parameters of the probabilistic model.

The Fisher Score The Fisher score for the PLSA model has been introduced
in [37], starting from the asymmetric formulation of PLSA. In this case, the log-
probability of a document di is defined by

l(di) = logP(di,w)
∑

m n(di,wm)

=
W∑

j=1

P̂ (wj | di) log
Z∑

k=1

P(wj | zk)P (di | zk)P (zk), (10.12)

where P̂ (wj | di)≡ n(di,wj )/
∑

m n(di,wm) and where l(di) represents the prob-
ability of all the word occurrences in di normalized by document length.

Differentiating Eq. (10.12) with respect to P(z) and P(w | z), the pLSA model
parameters, we can compute the score. The samples are mapped in a space of di-
mension W ×Z+Z. The Fisher kernel is defined as the inner product in this space.
We will refer to it as FSH.

TOP Kernel Scores Top Kernel and the tangent vector of posterior log-odds
score space were introduced in [79]. Whereas the Fisher score is calculated from
the marginal log-likelihood, TOP kernel is derived from Tangent vectors Of Poste-
rior log-odds. Therefore, the two score spaces have the same score function (i.e.,
the gradient) but different score arguments, which, for TOP kernel f (p(x | θ)) =
logP(c=+1 | x, θ)− logP(c=−1 | x, θ) where c is the class label. We will refer
to it as TOP.

Log-Likelihood Ratio Score Space The log-likelihood ratio score space is in-
troduced in [72]. Its dimensions are similar as for the Fisher score, except that the
procedure is repeated for each class: a model θc per class is learned and the gradient
is applied to each logp(x | θc). The dimensionality of the resulting space is C× the
dimensionality of the original Fisher score. We will refer to it as LLR.



10 Analysis of Brain Magnetic Resonance Scans 267

Random Variable Based Methods These methods, starting from considerations
in [56], seek to derive feature maps on the basis of the log-likelihood function of
a model, focusing on the random variables rather than on the parameters in their
derivation (as done in the parameter-based score spaces).

Free Energy Score Space (FESS) In the Free Energy Score Space [56], the score
function is the free energy while the score argument is its unique decomposition
into the terms that compose it.6 Free energy is a popular score function representing
a lower bound of the negative log-likelihood of the visible variables used in the
variational learning. For pLSA it is defined by the following equation:

F(di) =
∑

w

n(di,w)
∑

z

P (z | d,w) logP(z | d,w)

−
∑

w

n(di,w)
∑

z

P (z | d,w) logP(d,w | z)P (z), (10.13)

where the first term represents the entropy of the posterior distribution and the sec-
ond term is the cross-entropy. For further details on the free energy and on varia-
tional learning, see [31]; for the pLSA’s free energy, see [38].

For pLSA this results in a space of dimension equal to C × 2×Z ×W . In [56],
the authors point out that, if the dimensionality is too high, some of the sums can
be carried out to reduce the dimensionality of the score vector before learning the
weights. The choice of the term to optimize is intuitive but guided by the particular
application. In our case, as previously done in [49, 57], we perform the sums over
the word indices, optimizing the contributing topics. The resulting score space has
dimension equal to C × 2×Z; we will refer to this score space as FESS.

Posterior Divergence Posterior Divergence score space is described in [49]. Like
FESS, it takes into account how well a sample fits the model (cross-entropy terms
in FESS) and how uncertain the fitting is (entropy terms in FESS, Eq. (10.13)) but it
also assesses the change in model parameters brought by the input sample, i.e., how
much a sample affects the model. These three measures are not simply stacked to-
gether, but they are derived from the incremental EM algorithm which, in the E-step
only, looks at one or a few selected samples to update the model at each iteration.
Details on posterior divergence score vector for pLSA and on its relationships with
FESS case can be found in [49]. We will refer to this score space as PD.

Classifying with the Mixture of Topics of a Document Very recently, pLSA has
been used as a dimensionality reduction method in several fields, like computer vi-
sion, bioinformatics, and medicine [10, 12, 17]. The idea is to learn a pLSA model to
capture the co-occurrence between visual words [12, 17], or gene expressions [10],
which represent the (usually) high-dimensional data description; co-occurrences are

6This is true once a family for the posterior distribution is given. See the original paper for details.
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captured by the topics. Subsequently, the classification is performed using the topic
distribution that defines a document as sample descriptor.

Since we are extracting features from a generative model, we are defining a
score space which is the Z-dimensional simplex. In this case, the score argument f ,
a function of the generative model, is the topic distribution P(z | d) (using Bayes’
formula, one can easily derive P(z | d) starting from P(d | z)), while the score
function is the identity. We will refer to this score space as TPM.

In our experiments, for the two score spaces FESS and TPM, we include two
versions. The first version is where we train one pLSA per class and concatenate
the resulting feature vectors (we will refer these as FESS-1 and TPM-1), the second
one is where we train a pLSA for the whole data without looking at the class label
(we will refer these as FESS-2 and TPM-2). All in all, we have eight different score
spaces: TPM-1, TPM-2, FESS-1, FESS-2, LLR, FSH, TOP, PD.

10.6 Classification

After data description step, a learning-by-example procedure is employed for brain
classification in order to discriminate between healthy subjects and patients affected
by schizophrenia. As a basic approach, when a single source of information is con-
sidered, a standard single classifier can be employed. From the medical point of
view, this means that the relevance of a particular source of information is consid-
ered to characterize the brain abnormality. On the other hand, when several factors
can be the possible cause of the disease, a multi-source classification strategy may
be employed. Here, we have exploited two paradigms: (i) multi-classification, and
(ii) Multiple Kernel Learning (MKL).

10.6.1 Multi-classifier

It is a well-known fact that there is no single most accurate classification algo-
rithm, so methods have been proposed to combine classifiers based on different
assumptions [1, 45]. Classifier combination (also called ensemble construction) can
be done at different levels and in different ways: (i) sensor fusion, (ii) representa-
tion fusion, (iii) algorithm fusion, (iv) decision fusion, and others. Each classifier
(〈algorithm/parameter set/data representation〉 triplet) makes a different assumption
about the data and makes errors on different instances and by combining multiple
classifiers; the overall error can be decreased. Classifiers’ making different errors
on different parts of the space is called “diversity” (in a broad definition), and to
achieve diversity different (i) learning algorithms, (ii) hyperparameters, (iii) input
features, and (iv) training sets have been used [45, 83] .

There are various methods to combine classifiers; the simple method is to use
voting [42] (or take an average over the outputs) which corresponds to fixed rules
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which we applied when the classifiers created posterior probability outputs, i.e.,
P(Ck | x,E) =∑L

i=1 P(Ck | x,Mi), where E denotes the ensemble, P(Ck | x,E)

is the posterior of the ensemble for class Ck , L is the number of classifiers to com-
bine, Mi, i = 1, . . . ,L are the individual classifiers to combine, and P(Ck | x,Mi)

is the posterior of classifier Mi . Voting does not require any parameter to be opti-
mized and is simple. Other methods such as weighted averaging or more advanced
methods require the estimation of other parameters. In previous works [20, 80], we
used single classifier and multi-classifier approaches to schizophrenia detection with
correlation analysis which serve as a baseline for our dissimilarity based analysis.

10.6.2 Multiple Kernel Learning (MKL)

The main idea behind SVMs [84] is to transform the input feature space to another
space (possibly with a greater dimension) where the classes are linearly separable.
After training, the discriminant function of SVM becomes f (x) = 〈w,Φ(x)〉 +
b, where w is the vector of weights, b is the threshold, and Φ(·) is the mapping
function. Using the dual formulation and the kernel trick, one does not have to define
this mapping function explicitly and the discriminant function can be written as

f (x)=
N∑

i=1

αiyik(xi ,x)+ b,

where k(xi ,xj )= 〈Φ(xi ),Φ(xj )〉 is the kernel function that calculates a similarity
metric between data instances. Selecting the kernel function is the most important
issue in the training phase; it is generally handled by choosing the best-performing
kernel function among a set of kernel functions on a separate validation set.

In recent years, MKL methods have been proposed [6, 46] (for a review see [35]),
for learning a combination kη of multiple kernels instead of selecting only one:

kη(xi ,xj ;η)= fη
({
km

(
xm
i ,x

m
j

)P
m=1

};η)
, (10.14)

where the combination function fη forms a single kernel from P base kernels using
the parameters η. Different kernels correspond to different notions of similarity and
instead of searching which works best, the MKL method does the picking for us,
or may use a combination of kernels. MKL also allows us to combine different
representations possibly coming from different sources or modalities.

There is significant work on the theory and application of MKL, and most of the
proposed algorithms use a linear combination function such as convex sum or conic
sum. Fixed rules use the combination function in (10.14) as a fixed function of the
kernels, without any training. Once we calculate the combined kernel, we train a
single kernel machine using this kernel. For example, we can obtain a valid kernel
by taking the mean of the combined kernels.
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Instead of using a fixed combination function, we can also have a function param-
eterized by a set of parameters and then we have a learning procedure to optimize
these parameters as well. The simplest case is to parameterize the sum rule as a
weighted sum:

kη(xi ,xj ;η)=
P∑

m=1

ηmkm
(
xm
i ,x

m
j

)

with ηm ∈ R. Different versions of this approach differ in the way they put restric-
tions on the kernel weights [6, 46, 60]. For example, we can use arbitrary weights
(i.e., linear combination), nonnegative kernel weights (i.e., conic combination), or
weights on a simplex (i.e., convex combination). A linear combination may be re-
strictive, and nonlinear combinations are also possible [22, 34, 36, 48].

10.7 Case Study 1: Brain Classification on Dissimilarity Space

After presenting all the possible choices we made in the different parts of the
pipeline, let us present some concrete systems. In particular, here we describe a
method based on the dissimilarity-representation paradigm, whereas in Sect. 10.8 a
method based on the generative embeddings is presented.

Concerning the taxonomies presented in Fig. 10.1, here we are using both sMRI
and DWI approaches (namely a multimodal scheme), starting from the brain parcel-
lation, employing the dissimilarity-based description and dissimilarity combination
by classifying with a single classifier.

In particular, in these experiments [82], we use a 114 subject subset of the orig-
inal data set (59 patients, 55 healthy controls). We used the intensity histograms
from sMRI images (SMRI), ADC histograms from DWI images (ADC), and two ge-
ometric shape descriptors, shape index (SH) and mean curvature (MCUR). We used
all the ROIs and used the dissimilarity space by computing the dissimilarities be-
tween the histograms and their corresponding pdfs. In summary, for each ROI and
representation we use the following 13 measures:

• hist-euclid—Euclidean distance between histograms
• hist-l1—L1-distance between histograms
• hist-intersect—Intersection between histograms
• hist-diffusion—Diffusion distance between histograms
• hist-chi—χ2-distance between histograms
• hist-emd—Earth mover’s distance between histograms
• pdf-euclid—Euclidean distance between pdfs
• pdf-l1—L1-distance between pdfs
• pdf-emd—Earth mover’s distance between pdfs
• pdf-bs—Bhattacharyya distance between pdfs
• pdf-kl—Symmetrized KL divergence between pdfs
• pdf-kl-orig—Original, asymmetric KL divergence
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• pdf-js—Jensen–Shannon divergence between pdfs

All in all, there are 14 ROIs and 13 different dissimilarity measures per modal-
ity, which yields a total of 182× 4 dissimilarity matrices. In addition to these, we
propose to merge the different dissimilarity matrices into one overall dissimilarity
matrix per modality, potentially exploiting complementary information useful to im-
prove the classification accuracy. We also test the accuracy of these combinations
against combining classifiers in the original feature space (histograms and pdfs for
each of the four modalities). For each test we evaluated the leave-one-out error. All
differences in accuracy reported in this case study are significant at p = 0.05 using
the paired t-test. The dissimilarity spaces have been built in a transductive way by
using all available subjects for dissimilarity (of course, labels are ignored in this
phase). Three classifiers are considered to compare the performances:

• Linear SVM classifier on the original feature space (called svm)
• The 1-Nearest Neighbor (NN) rule on the dissimilarity matrices (called 1nn)
• Linear SVM classifier on the dissimilarity space (called sv0)

The linear SVM in dissimilarity space avoids complications that could arise from
the dissimilarity measures being non-Euclidean because we treat the dissimilari-
ties as features in this new space. While combining dissimilarities, we use for αi

in (Eq. (10.6)) the reciprocal of the number of dissimilarity matrices to be com-
bined [47]. On the original feature space, the SVM classifiers produce posterior
probability outputs, and these outputs are combined using the SUM rule [42]. So,
on the original feature space, we combine after training the classifiers, whereas on
the dissimilarity space, we combine before we do classification. The experiments are
carried out using the Matlab package PRTools [28]. We designed three experiments
to show the improvements of dissimilarity-based pattern recognition techniques and
combination of dissimilarities using multiple ROIs and modalities:

1. ROI-based classification—For each modality, we report the highest accuracy that
a classifier reaches without combination (on the original feature space and on the
dissimilarity space). We use these results as a baseline for comparison.

2. Multi-ROI classification—In this set of experiments, for each modality, we fix
the dissimilarity measure and combine all ROIs using this dissimilarity measure.

3. Multimodal classification—In this experiment, we go one step further to combine
information coming from different sources by combining different dissimilarity
matrices from different modalities.

We note that, throughout this section, we will use the following notation: ev-
ery dissimilarity representation will be referred to as MODALITY-roi-dissimilarity
(i.e., SMRI-ldlpfc-pdf-js shows the dissimilarity matrix for the structural MRI of
ROI ldlpfc using the dissimilarity measure of Jensen–Shannon divergence). The
modality, ROI, or the dissimilarity measure will be omitted when it’s clear from
the context.
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Table 10.2 Best accuracies for each dissimilarity measure combining all ROIs on all modalities

Modality SMRI ADC SH MCUR

ROI svm 1nn sv0 svm 1nn sv0 svm 1nn sv0 svm 1nn sv0

lamyg 68.42 64.04 78.07 64.04 57.89 62.28 45.61 68.42 64.91 43.86 61.40 57.02

ramyg 54.39 65.79 66.67 54.39 56.14 59.65 49.12 53.51 57.89 46.49 58.77 57.89

ldlpfc 60.53 62.28 76.32 56.14 51.75 61.40 52.63 62.28 57.89 49.12 53.51 53.51

rdlpfc 64.04 57.89 68.42 54.39 56.14 65.79 54.39 59.65 60.53 56.14 57.02 60.53

lec 64.04 56.14 64.91 53.51 62.28 61.40 46.49 51.75 54.39 47.37 53.51 53.51

rec 64.91 65.79 71.05 64.04 58.77 60.53 52.63 60.53 57.02 52.63 65.79 63.16

lhg 51.75 60.53 63.16 55.26 61.40 54.39 47.37 54.39 65.79 61.40 56.14 62.28

rhg 50.00 63.16 59.65 50.88 58.77 58.77 43.86 55.26 55.26 57.89 64.04 61.40

lhippo 63.16 60.53 72.81 52.63 57.02 59.65 55.26 50.00 57.02 53.51 58.77 62.28

rhippo 60.53 64.04 66.67 48.25 55.26 52.63 47.37 59.65 57.02 54.39 55.26 58.77

lstg 55.26 59.65 69.30 54.39 56.14 60.53 40.35 58.77 52.63 50.00 50.00 51.75

rstg 63.16 57.02 64.91 64.04 60.53 70.18 53.51 55.26 57.89 41.23 63.16 57.89

lthal 58.77 64.91 67.54 57.89 57.89 58.77 46.49 53.51 57.89 53.51 56.14 58.77

rthal 64.91 59.65 64.04 53.51 60.53 59.65 54.39 57.89 59.65 48.25 54.39 67.54

10.7.1 ROI-Based Classification

We evaluate the classification accuracies for each of the original dissimilarity ma-
trices. Table 10.2 summarizes the results for all modalities. For each ROI the best
performance is reported with respect to various dissimilarity measures (for details
see [82]). The first column for each modality reports the accuracy estimates for svm
using the original feature space (histograms and pdfs). The second column reports
the maximum accuracy of 1nn on different dissimilarity measures. The third col-
umn reports the leave-one-out accuracy estimates of the linear SVM in dissimilarity
space. For SMRI, it shows clearly the improvements of our dissimilarity-based ap-
proach. Except for two ROIs (rhg and rthal), SVM classifier in the dissimilarity
space is always better than classifiers in the standard space. While the best accuracy
of standard approaches is 68.42 %, we can reach 78.07 % accuracy on dissimilarity
space and the dissimilarity space accuracies are more stable.

For the other modalities, the results are similar. From the results for the ADC
values extracted from DWI images, we can again see that when we switch to dis-
similarity based classification, we get better accuracies (either 1nn or sv0) except for
two ROIs (lamyg and rec). We can again see that with a single ROI and dissimilarity
measure, we can reach 70.18 % whereas the highest accuracy we can obtain in the
original space is 64.04 %. The same pattern can be observed when we investigate
SH and MCUR. Also in these modalities, the best accuracy can be achieved using
dissimilarities. We can see that on SH, we reach 68.42 % using 1nn and 65.79 %
using sv0. The best accuracy using the features on the original space is 55.26 %.
Also on MCUR, best accuracy is reached using sv0.
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Table 10.3 Best accuracies for each dissimilarity measure combining all ROIs on all modalities

Measure SMRI ADC SH MCUR

1nn sv0 1nn sv0 1nn sv0 1nn sv0

hist-l2 62.28 71.05 50.00 60.53 57.89 57.89 49.12 50.88

hist-l1 62.28 74.56 46.49 64.91 58.77 60.53 50.00 51.75

hist-intersect 66.67 68.42 43.86 61.40 40.35 53.51 53.51 50.88

hist-diffusion 62.28 74.56 46.49 64.91 58.77 60.53 50.00 51.75

hist-chi 57.02 71.05 50.88 55.26 59.65 57.02 55.26 48.25

hist-emd 52.63 58.77 58.77 51.75 55.26 56.14 43.86 53.51

pdf-l2 57.02 74.56 57.02 60.53 50.88 55.26 57.02 51.75

pdf-l1 60.53 76.32 54.39 61.40 50.88 58.77 54.39 46.49

pdf-emd 59.65 75.44 57.89 53.51 60.53 60.53 50.00 52.63

pdf-bc 65.79 69.30 53.51 53.51 48.25 57.89 44.74 52.63

pdf-kl 66.67 70.18 55.26 48.25 52.63 59.65 48.25 49.12

pdf-kl-orig 64.04 64.91 49.12 51.75 57.02 59.65 55.26 46.49

pdf-js 65.79 71.93 52.63 54.39 48.25 60.53 53.51 48.25

average 60.53 76.32 51.75 60.53 54.39 60.53 54.39 49.12

svm 71.93 63.16 51.75 47.37

10.7.2 Multi-ROI Classification

In this section, we will show our experiments where we combine multiple ROIs,
fixing the modality and distance measure. We also conducted experiments by fixing
the ROIs and combining multiple dissimilarity matrices using the same ROI. We
see that the accuracy does not increase as compared to combining ROIs with fixed
dissimilarity measure. This conforms to our previous studies, therefore here, we do
not report on combination of distance measures with fixed ROI.

In this experiment, a multi-ROI approach is adapted to use all ROIs at the same
time. All the dissimilarity matrices for each ROI are combined by averaging the nor-
malized dissimilarity matrices. The second and third columns of Table 10.3 report
the results on intensity histograms, using 1-NN rule on the dissimilarity matrices
and the support vector classifiers in the dissimilarity spaces. Also in this case, the
classification on the dissimilarity space clearly outperforms the standard approach.
Moreover, the multi-ROI approach brings an improvement by confirming the com-
plementary information enclosed onto the different brain subparts when we use sv0
on the dissimilarity space. In most of the cases, the results from the averaged sim-
ilarity matrices are better than the respective best single ROI results. The row av-
erage in Table 10.3 reports the error estimates computed on the overall dissimilar-
ity matrix (combining all the measures and ROIs), which has the highest accuracy
76.32 % (same as combining all ROIs for pdf-l1) for both the standard approach
and dissimilarity-based approach, respectively. The last row reports the accuracy of
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combining all SVM classifiers in the original feature space. When we combine all
the SVM classifiers on the original space, we get 71.93 % accuracy. This shows us
that the dissimilarity space produces better results also when we consider classifier
combination. We repeated the same experiments also with the other modalities. In
Table 10.3, we can also see the results using the other modalities. We observe that
again we get the most accurate results when we combine ROIs in the dissimilarity
space using sv0 except for mean curvature histograms where the best results are
obtained using 1nn (using dissimilarities again).

10.7.3 Combining Different Modalities

As a further step to understand how information from multiple sources can be com-
bined to reach better classification accuracy, we develop another experiment where
we combine information from multiple modalities. We have 182 dissimilarity ma-
trices from each of the four modalities. It is not possible to exhaustively search the
whole solution space to find the best solution (optimum subset for combination), so
instead, we choose the most accurate four ROI-dissimilarity pairs from each modal-
ity and do an exhaustive search on the combination of these matrices to get the
best result. We can see the selected dissimilarity matrices and their base accuracies
in Table 10.4. With a total of 16 dissimilarity matrices (modality-ROI-dissimilarity
triples), we can get the best accuracy 86.84 % (last row in Table 10.4), which con-
tains two dissimilarity matrices from intensities (ldlpfc-pdf-kl-orig and ldlpfc-pdf-
bc both having 75.44 % accuracy) and one dissimilarity matrix from shape index
(rdlpfc-hist-chi with 60.53 % accuracy). This accuracy is the best accuracy, which
has been reached using dissimilarity combination and cannot be reached using only
one modality. Applying the same methodology, we can reach only 76.32 % accuracy
with 1nn and 83.33 % accuracy with svm on the original feature space. This also
shows us why it is important to combine useful information from different sources
to come up with better accuracy. We see that the accuracy can be increased when
complementary information using different modalities are combined.

In a medical application, besides increasing accuracy, the interpretability of the
results is also important. We use this experiment to deduce information on the use
of ROIs, their complementary information, and how each modality relates to the
detection of schizophrenia. For this purpose, we select all the combinations of dis-
tance matrices with accuracies above 82 % (we have 69 different combinations) and
count the occurrences of dissimilarity matrices for every combination. From Ta-
ble 10.4, we can see that most of the combinations include ldlpfc of SMRI and the
shape index of rthal. This shows us that these two modality-ROI pairs contribute
and complement other dissimilarity matrices, and by using these two in combina-
tion, we increase accuracy. After these two dissimilarity matrices, we see that mean
curvature of rthal and shape index of rdlpfc are used in combination the most. These
are followed by ldlpfc of histogram intensities and the mean curvature of rec. With
ADC, we see that most used ROI is rstg, which has been selected 38 times. This
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Table 10.4 Most accurate
four dissimilarity matrices
from each modality, their
single performances, and
number of occurrences in the
combination of most accurate
results

Selected dissimilarity Accuracy Occurrences

SMRI-ldlpfc-pdf-js 76.32 60

SH-rthal-hist-l1 59.65 57

MCUR-rthal-pdf-bc 67.54 52

SH-rdlpfc-hist-chi* 60.53 50

SMRI-ldlpfc-pdf-bc* 75.44 48

SMRI-ldlpfc-pdf-kl-orig* 75.44 48

MCUR-rec-pdf-l1 63.16 47

SMRI-lamyg-pdf-bc 78.07 42

ADC-rstg-hist-l2 65.79 38

SH-lamyg-hist-emd 64.91 38

ADC-rstg-pdf-bc 70.18 20

MCUR-rec-pdf-l2 63.16 17

ADC-rdlpfc-pdf-emd 65.79 14

ADC-rstg-pdf-js 65.79 9

SH-lhg-hist-intersect 65.79 8

MCUR-lhippo-pdf-emd 62.28 1

Dissimilarities with *
in the optimal combination are

86.84

also shows us that the DWI information is the least complementary modality in this
scenario, and one can design experiments without this modality, focusing on the
other modalities. We can use this information to decrease the costs of the operation,
that is, not performing DWI analysis. Also we see that the most accurate dissim-
ilarity matrix (SMRI-lamyg-pdf-bc) is the eighth most used dissimilarity when we
consider combination. This interesting fact shows us that when doing combination,
the complementary information is more important than individual accuracies.

Another interesting fact is that some ROIs are more discriminative when the
structural information is considered, and some are more discriminative when we
consider DWI. The ROIs selected from the structural analysis in this experiment are
those considered crucial for the impaired neural network in schizophrenia and com-
ply with current studies in the literature [21], in contrast DWI is particularly keen
in exploring the microstructural organization of white matter, therefore providing
intriguing information on brain connectivity [13], but does not have complementary
contribution in this context.

With this analysis, we can open a new perspective of how to use each of these
modalities to get better accuracies. One can use this information to setup new ex-
periments considering the contributions of these ROIs on these modalities.
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10.7.4 Discussion

In this case study, a novel approach based on dissimilarity-based pattern recognition
is proposed for the detection of schizophrenic brains. Several dissimilarity measures
are proposed to deal with histograms of different types for different ROIs. ROI-
based classification on the dissimilarity space shows improvements of the standard
NN rule and the support vector classifier on the original space. Moreover, a Multi-
ROI classification strategy is obtained by simply averaging the similarity matrices
observed in each ROI. Such an approach improves the single-ROI one, by highlight-
ing the complementary information enclosed in the several ROIs. This confirms the
benefit of combining dissimilarity information and fusing information from various
regions in the brain.

We investigate further to combine information from multiple modalities such as
intensities, ADC values and geometric information. We can see that some ROIs are
discriminative when we use intensities; some are useful when DWI data is consid-
ered. Geometric properties of some ROIs play a part in schizophrenia detection. We
show that we get the best accuracy when we combine multiple modalities.

We can interpret the results of combining multiple modalities to set up further
experiments in this context. Our results show that the least contributing modality is
the DWI. With this information, one can skip using this modality and focus more on
histograms of intensities and geometric information. Also, one can use this result
to reduce the costs of this operation, by not performing DWI measurements and
without the patient undergoing further medical operations.

We would like to emphasize that in building the (combined) dissimilarities no
parameters are optimized w.r.t. performance. The proposed approach of combining
dissimilarities on the dissimilarity space opens new perspectives in neuroanatomy
classification by allowing the possibility to exploit dissimilarity measures where one
does not have to deal with technical difficulties such as the metric requirements of
distance based classification and kernel restrictions of support vector machines.

10.8 Case Study 2: Brain Classification by Generative
Embeddings

In this case study, we use Heat Kernel Signatures to extract histogram-based fea-
tures from SMRI and use the generative embedding score spaces mentioned in
Sect. 10.5.3 and apply IT kernels [52]. We used average hold out methodology with
30 repetitions using stratification. For estimating the C value of the SVM and q

value for the IT kernels, we used 5-fold cross-validation on the training set. To esti-
mate the number of topics, we used the Bayesian Information Criterion (BIC) [67],
which penalizes the likelihood with a penalty term on the number of free parame-
ters in a way that larger models which do not increase the likelihood significantly
are discouraged. In the pLSA model, the number of free parameters is calculated as
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(D − 1)Z + (W − 1)Z + (Z − 1). Then the BIC becomes

BIC= 1

2

(
(D − 1)Z + (W − 1)Z + (Z − 1)

)
log

W∑

j=1

D∑

i=1

n(di,wj ).

10.8.1 Proposed Approach

Kernels on probability measures have been shown to be very effective in classifica-
tion problems involving text, images, and other types of data [24, 40]. Given two
probability measures p1 and p2, representing two objects, several information the-
oretic kernels (ITKs) can be defined [52]. In this work, we use the Jensen–Shannon
kernel (JS), Jensen–Tsallis kernel (JT), and weighted JT kernel (since results were
similar, we omit the weighted JT kernel (version B) [52]—we will refer to weighted
JT kernel (version A) as JT-W). Once the generative model is estimated, the gener-
ative score spaces are calculated.

The approach herein proposed consists in defining a kernel between two observed
objects x and x′ as the composition of the score function with one of the JT kernels
presented above. Formally,

k
(
x, x′

)= kiq
(
φΘ(x),φΘ

(
x′

))
, (10.15)

where i ∈ {JT,A,B} indexes one of the Jensen–Tsallis kernels, and φΘ is one of
the generative embeddings defined in Sect. 10.5.3. Notice that this kernel is well
defined because all the components of φFE

Θ are non-negative.
We consider two types of kernel-based classifiers: K-NN and SVM. Recall that

positive definiteness is a key condition for the applicability of a kernel in SVM
learning. It was shown in [52] that kAq is a positive definite kernel for q ∈ [0,1],
while kBq is a positive definite kernel for q ∈ [0,2]. Standard results from kernel
theory [69, Proposition 3.22] guarantee that the kernel k defined in (10.15) inherits
the positive definiteness of kiq , thus can be safely used in SVM learning algorithms.

10.8.2 Results

We compare the results of our proposed approach with the linear kernel as a ref-
erence (which is the most used solution in the hybrid generative discriminative ap-
proach case, e.g., the Fisher Kernel). As classifiers we used Support Vector Ma-
chines and K-Nearest Neighbor (with K set to 1, i.e., the nearest neighbor rule).
When possible, the classifiers have been applied also in the original domain (namely
without the application of the generative embedding step).

Results are displayed in Table 10.5. In the table, “NN” stands for nearest neighbor
results, while “SVM” refers to SVM results. “Linear” is the linear kernel, whereas
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Table 10.5 Results on the brain classification task. See text for details

Embedding Linear JS JT JT-W

NN SVM NN SVM NN SVM NN SVM

TPM-1 51.56 50.00 54.22 59.56 50.33 62.67 58.44 64.33

TPM-2 61.00 68.56 58.89 68.89 54.33 65.78 63.11 70.22

FESS-1 56.11 50.00 56.89 50.00 50.00 36.89 58.44 50.00

FESS-2 62.89 50.00 62.67 60.00 50.00 67.44 60.11 72.00

LLR 57.33 50.00 58.78 61.56 50.00 63.78 61.44 63.56

FSH 61.78 50.00 58.44 70.22 55.33 67.33 61.89 69.89

TOP 51.89 50.00 51.89 50.00 50.00 50.00 50.00 50.00

PD 75.22 50.00 74.78 50.00 62.67 80.56 72.56 80.78

ORIG 61.00 77.00 60.22 74.33 50.33 70.56 50.00 73.78

“JS”, “JT” and “JT-W” stand for Jensen–Shannon, Jensen–Tsallis, and Weighted
Jensen–Tsallis kernels, respectively. The acronyms of the generative embeddings
follow the notation described in Sect. 10.5.3: “TPM-1” is the posterior topic mixture
for a single pLSA, “TPM-2” is the posterior topic mixture starting from one pLSA
per class,“FESS-1” is the Free Energy Score Space for a single pLSA, “FESS-2” is
the Free Energy Score Space obtained starting from one pLSA per class, “LLR” is
the Log-Likelihood Ratio score space, “FSH” is the Fisher Score space, “TOP” is
the TOP kernel score space and “PD” is the Posterior Divergence Score space. The
standard errors of means, in all runs, were all less than 2.52.

From the table, different observations may be drawn:

• In almost all cases, the use of IT kernels over generative embeddings outperforms
the linear kernel over the same embeddings, this being really evident in some
cases.
• At the same time, the intermediate use of a generative embedding is almost always

beneficial with respect to use the linear and the IT kernels on the original space.
• It is evident from the table that the best generative embedding is the very recently

proposed Posterior Divergence Score Space. It seems that this generative embed-
ding has a slight preference to be used with the IT kernels.
• There is no significant difference among the various IT kernels, even if it may be

argued that the Weighted Jensen–Tsallis one is the most positive.
• Comparing the classifiers, there is no huge difference between the SVM and the

Nearest Neighbor performances, thus confirming the goodness of the devised sim-
ilarity measure.

10.9 Case Study 3: Scale Selection by MKL

In this case study, we use Heat Kernel Signatures to extract histogram based fea-
tures (see also [16]) using different scales and using these as different sources for
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Multiple Kernel Learning paradigm. The data is extracted from sMRI scans of the
left thalamus of 30 schizophrenic patients and 30 healthy controls. Several kernels
are computed (i.e., one kernel per scale), and a set of weights are estimated for the
kernel combination. In this fashion, we can choose the most discriminative scales
by selecting those associated to the highest weights, and vice versa. Moreover, ker-
nel combination leads to a new similarity measure which increases the classification
accuracy. It is important to note that in our approach we aim at selecting the best
shape characteristics for classification purposes, hence, our selection is driven by
the performance of a Support Vector Machine (SVM) classifier.

10.9.1 Methodology

The contribution of geometric features extracted at each scale are combined by em-
ploying the MKL strategy as described in Sect. 10.6.2. Each shape representation ri
is associated to a kernel km by leading to n= P kernels. Indeed, both the weights
(η1, . . . , ηP ) and the SVM parameters are estimated. In order to obtain the best clas-
sification accuracy, according to the max-margin paradigm an alternating approach
is used between the optimization of kernel weights and the optimization of the SVM
classifier. In each step, given the current solution of kernel weights, MKL solves a
standard SVM optimization problem with the combined kernel. Then, a specific
procedure is applied to update the kernel weights. Once the MKL procedure is com-
pleted, we obtain a two-fold advantage: (i) we can select the best scale contributions
by keeping only the scales associated to the highest weighs, and (ii) we can com-
pose a new kernel from the weighted contributions of the best scales, which can be
evaluated for classification purposes.

10.9.2 Experimental Protocol

In our experiments, we apply leave-one-out (LOO) cross-validation to assess the
performance of the technique. Since LOO is used as the cross-validation technique,
we do not report standard deviations or variances. We compare our results using
k-fold paired t-test at p = 0.05. We collect geometric features at 11 scales gen-
erating different shape representations r01, . . . , r11. In practice, each representation
ri is a feature vector xi which is plugged in the MKL framework. We employ the
dot product as basic kernel function (i.e., linear kernel) since it avoids the estima-
tion of free kernel parameters. Different strategies to combine the different shape
representations have also been evaluated:

• Single Best Kernel (Single-best)—An SVM is trained separately per each
representation. Therefore, the performances of the classification are evaluated
separately at each scale. By doing so, we can evaluate the independent contri-
butions coming from the different sources of information and select the best one.
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Table 10.6 Single-kernel SVM accuracies

r01 r02 r03 r04 r05 r06 r07 r08 r09 r10 r11

75.00 78.33 76.67 76.67 73.33 *66.67 68.33 70.00 76.67 71.67 70.00

Table 10.7 MKL accuracies

SVM SVM-con RBMKL SMKL GLMKL

*78.3 (10, 11.7) 83.3 (8.3, 8.3) *81.7 (10, 8.3) 86.7 (6.7, 6.7) 85.0 (8.3, 6.7)

• Feature concatenation (SVM-con)—The contributions coming from the differ-
ent sources are concatenated into a single feature vector. Then, a single SVM is
employed for classification [19].
• Rule-based MKL (RBMKL)—As baseline MKL approach, the so-called rule-

based method is evaluated: the kernels computed at each scale are combined by
simply taking their average (i.e., ∀m,ηm = 1/P ).
• Simple MKL (SMKL)—A simple but effective MKL algorithm is employed [60]

by addressing the MKL problem through a weighted 2-norm regularization for-
mulation with additional constraint on the weights that encourages sparse kernel
combination.
• Group Lasso MKL (GLMKL)—It denotes the group Lasso-based MKL algorithms

proposed by [43, 86]. A closed form solution for optimizing the kernel weights
based on the equivalence between group-lasso and MKL is proposed. In our im-
plementation, we used l1-norm on the kernel weights and learned a convex com-
bination of the kernels.

10.9.3 Results

The first evaluation scores are shown in Table 10.6, which reports the single-best
kernel accuracies for all feature representations. We can observe that the best per-
formance is obtained at 78.33 % using r02 which is shown as bold face in the table.
The entries marked with “*” show the accuracies which are statistically significantly
less accurate than the best algorithm using k-fold paired t-test at p = 0.05.

Second, concatenating the features in a single vector leads to 83.33 % accu-
racy. Third, using the proposed three different MKL algorithms, we combined the
eleven kernels by introducing the weights ηm. Table 10.7 reports the results of
the best single-kernel SVM, the accuracy of the concatenated feature set, and the
three MKL-based algorithms trained. The values in parentheses show the percent-
age of controls classified as schizophrenia and the percentage of patients classified
as healthy, respectively. We achieve an accuracy of 86.67 %, reached by combining
eleven kernels with the SMKL approach. This result is better than all other MKL
settings and single-kernel SVMs. Further, GLMKL achieves 85 % accuracy which is
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Fig. 10.7 Combination
weights in MKL using the
linear kernel: (top) using
SMKL, (bottom) using GLMKL

still higher than that reached by the feature concatenation method. We can also note
that we cannot overcome SVM-con when we use RBMKL, as the latter gives equal
weight to each kernel. In fact, if there are inaccurate representations in the given set,
the overall mean combination accuracy may be less of that reached using the single
best. Conversely, when the weights are automatically estimated, such as in SMKL
and GLMKL the selection of the most reliable information is carried out by the MKL
procedure and the overall performance improves.

In Fig. 10.7, we plotted the weights of MKL for SMKL and GMKL algorithms
to show the coherency of the weights. As expected, the best representation is r02,
which has the highest weights. Although the other representations with high weights
(r08, r11 and r05) do not provide accurate single-kernel SVMs results, their con-
tributions to the overall accuracy in the combination is higher than those given by
the other kernels. This demonstrates that when considering combinations, even a



282 A. Ulaş et al.

Table 10.8 MKL accuracies on the selected subset of representations

SVM SVM-con RBMKL SMKL GLMKL

*78.3 (10, 11.7) *83.3 (6.7, 10) *83.3 (6.7, 10) 88.3 (6.7, 5) 85.0 (6.7, 8.3)

representation which does not lead to precise results may contribute to raise the
overall combination accuracy. Moreover, we can also deduce that these four repre-
sentations are the most useful in discriminating between healthy and schizophrenic
subjects, and we may focus the attention on these properties only.

Using this information, we also performed the above pipeline using only these
four representations, and we can observe the results in Table 10.8. Using this subset,
we get the highest accuracy with SMKL, reaching 88.33 % of accuracy. We can also
observe an increase in RBMKL.

10.9.4 Discussion

We have shown in general that MKL algorithms perform better than both single-
best kernel SVMs and feature concatenation strategies. We have also observed that
RBMKL (which does not compute weights while combining kernels) does not outper-
form the feature concatenation approach. Conversely, when the kernel combination
is carried out by estimating proper weights, a substantial improvement is instead
obtained. The kernel weights also allow us to extract useful information: it is in-
teresting to observe that, for both MKL algorithms with the highest accuracy, four
representations have the maximum effect (i.e., the highest weights), namely r02,
r08, r11, and r05, with r02 being the best single-kernel. We use this information
to select a smaller number of representations to reduce the costs of the feature ex-
traction phase. Finally, we can also observe that by using such subset we can reach
the best accuracy overall.

10.10 Conclusions

We have defined a set of new approaches to deal with schizophrenia detection from
MRI images. We have proposed a working pipeline which takes into account dif-
ferent aspects of the disease. We have successfully applied the dissimilarity-based
technique described in Chap. 2 to our medical application. In particular, we have
shown that brain classification on dissimilarity space reaches a substantial improve-
ment over standard feature-based approaches. Moreover, we have shown that com-
bining dissimilarities represents a natural and effective approach to merge different
sources of information. In this fashion, we were able to exploit complementary in-
formation about different parts of the brain, different acquisition modalities, and
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different brain properties. Moreover, we have shown that our new paradigm to de-
fine data descriptors by generative embedding (see Chap. 4) is very effective and
works well on our medical application. This research has opened new perspectives
in the medical application which have been envisaged by our work. In particular,
we have shown that a further improvement can be obtained by adapting random
subspace method [81] to create the dissimilarity space.

Furthermore, we are working on employing advanced dissimilarity-based tech-
niques to encode shape properties. Our preliminary results have shown an improve-
ment by using Multiple Kernel Learning to improve the diffusion based shape de-
scription. Finally, we have shown in our experiments that DWI data was not im-
portant to improve the classification accuracy when multimodal approach was em-
ployed. This encourages us to exploit more advanced imaging techniques such as
Diffusion Tensor MRI or Functional MRI to further improve schizophrenia detec-
tion.
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