
173

Chapter 4
Higher Level Protocols

Gangolf Feiter, Lars-Berno Fredriksson, Karsten Hoffmeister, Joakim Pauli
and Holger Zeltwanger

W. Lawrenz (ed.), CAN System Engineering, DOI 10.1007/978-1-4471-5613-0_4,
© Springer-Verlag London 2013

G. Feiter ()
Concepts & Services Consulting, Alte Landstrasse 34,
52525, Heinsberg, Germany
e-mail: gangolf.feiter.csc@online.de

L.-B. Fredriksson
Kvaser AB, Aminogatan 25 A,
43153, Mölndal, Sweden

K. Hoffmeister
Elektrobit Automotive GmbH, Max-Stromeyer-Strasse 172,
78467, Konstanz, Germany

J. Pauli
Volvo Powertrain Corporation, Gropegårdsgatan,
SE-405 08, Göteborg, Sweden

H. Zeltwanger
CAN in Automation (CiA) GmbH, Kontumazgarten 3,
90429, Nuremberg, Germany

4.1 CANopen

CANopen is a standardized communication system that specifies communication
profiles for the two lowest International Organization for Standardization (ISO)/
Open Systems Interconnect (OSI) layers as well as protocols for the ISO/OSI trans-
port and application layers. Furthermore, CANopen provides device and applica-
tion profiles in which transmitted process and configuration parameters as well as
diagnostic information are specified.

The basic idea of CANopen was developed within an Elite Sport Performance
Research in Training (ESPRIT) project. The registered association CAN in Automa-
tion (CiA) took over the first specification in 1994. Since then, the members of this
international users and manufacturers association extend and maintain the CANo-
pen specifications. Some of these specifications are freely available on the Internet,
while the remaining specifications are only available for CiA members. Within the
scope of this book, not all CANopen functionalities can be described. Further in
depth going special literature is available.

174 G. Feiter et al.

Originally, CANopen was considered for usage in “embedded” networks in ma-
chine control systems. Meanwhile CANopen is used in a variety of industrial sec-
tors as an “embedded” communication system. This also includes particular special
purpose vehicles, trains, lifts and medical devices (e.g. computed tomography (CT)
scanners) as well as ships.

4.1.1 Profiles for the Lower Layers

Currently, CANopen uses mainly the physical transmission according to ISO
11898-2. Alternative physical interfaces (ISO 11898-3 and Powerline) are being de-
veloped for specific applications. However, the bit timing is not explicitly specified
in ISO 11898-1 and ISO 11898-2. Out of this reason, the CANopen communication
profile (EN 50325-4 respectively CiA 301) defines sample points for several bit
rates. Table 4.1 shows an overview of the bit timing parameters. Other bit rates are
not allowed. Bit rates less than 50 kbit/s are not supported by all Controller Area
Network (CAN) transceivers.

Table 4.2 shows the achievable bus length, on the basis of the recommended
sample points, if direct current (DC) and alternating current (AC) voltage param-
eters for cables and connectors compliant to ISO 11898-2 are used. The actual

Table 4.1  Location of sampling point for several bit rates
Bit rate Nominal bit time tb

(µs)
Valid range for location
of sample point (%)

Recommendation location
of sample point (%)

1 Mbit/s 1 75–90 87.5
800 kbit/s 1.25 75–90 87.5
500 kbit/s 2 85–90 87.5
250 kbit/s 4 85–90 87.5
125 kbit/s 8 85–90 87.5
50 kbit/s 20 85–90 87.5
20 kbit/s 50 85–90 87.5
10 kbit/s 100 85–90 87.5

Table 4.2  Maximal recommended bus and stub length
Bit rate Bus length (m) Stub length (max; m) Accumulated stub

length (max; m)
1 Mbit/s 25 1.5 7.5
800 kbit/s 50 2.5 12.5
500 kbit/s 100 5.5 27.5
250 kbit/s 250 11 55
125 kbit/s 500 22 110
50 kbit/s 1,000 55 275
20 kbit/s 2,500 137.5 687.5
10 kbit/s 5,000 275 1,375

1754 Higher Level Protocols

achievable bus length depends also on the internal delay times of the CAN control-
ler and the CAN transceiver. For the exact design of the physical transmission, the
formulae for line theory or appropriate empirical formulae should be used.

Basically, a linear bus topology with a 120-Ω termination resistor is required.
Longer bus lengths may require the usage of a higher termination resistor. Not ter-
minated bus lines are tolerable only to a certain degree, due to the reflections that
could lead to a falsification of the bit value.

There are no detailed regulations on which bus cables or connectors should be
used. However, there are recommendations for the pin assignments for a variety of
connectors available. One of the widely used connectors is the nine-pin DIN-Sub-D
connector (DIN41652). Table 4.3 shows the pin assignment given in the recom-
mendation CiA 303-1.

CANopen uses the CAN protocol as described in ISO 11898-1. Although usage
of remote frames is not recommended, they are basically allowed in some CANo-
pen protocols. The various implementations of remote frames in CAN controllers
could lead to problems when using CANopen protocols.

Some CANopen protocols use the base frame format (11-bit identifier) exclu-
sively for data and remote frames, whereas other CANopen protocols allow the us-
age of the extended frame format (29-bit identifier). Error and overload frames are
transparent for CANopen protocols. They are automatically processed by the CAN
controller and lead, in case of an error frame, to an automatic retransmission of the
interrupted frame or to a shutdown of the device (bus-off). Under rare conditions,
it is to be kept in mind that a frame can be sent twice. Because of this situational
condition, relative data or toggle commands shall not be transmitted.

4.1.2 Device Model

A CANopen-compatible field device features, from the hardware point of view,
at least one CAN driver module and a CAN controller which implements the
CAN protocol. Every CANopen device has to have its own object dictionary.

Table 4.3  CANopen pinning for the nine-pin DIN-Sub-D connector
Pin Signal Description
1 – Reserved
2 CAN_L CAN_L bus line (dominant low)
3 CAN_GND CAN ground
4 – Reserved
5 (CAN_SHLD) Optional CAN shield
6 (GND) Optional ground
7 CAN_H CAN_H bus line (dominant high)
8 – Reserved
9 (CAN_V+) Optional CAN external positive supply (dedicated for supply of

transceiver and optocouplers, if galvanic isolation of the bus node
applies)

176 G. Feiter et al.

Table 4.4 shows the structure of this parameter list. Table 4.5 shows the structure of
the communication profile parameters. The single parameters of the object diction-
ary are addressable through a 16-bit index and an 8-bit sub-index.

If a field device implements several CANopen devices, it contains several object
dictionaries as well. Additionally, it can provide bridge or gateway functionality.
For example, the specification CiA 302-7 describes a CANopen-to-CANopen gate-
way with up to 32 CANopen devices, each having its own interface.

Three of the general communication parameters are mandatory:

• Device type (Object 1000h)
• Error register (Object 1001h)
• Identity object (Object 1018h)

Table 4.4  Structure of CANopen object dictionary
Index range Object
0000h Not used
0001h–001Fh Static data types
0020h–003Fh Complex data types
0040h–005Fh Manufacturer-specific complex data types
0060h–025Fh Device profile-specific data types
0260h–03FFh Reserved
0400h–0FFFh Reserved
1000h–1FFFh Communication profile area
2000h–5FFFh Manufacturer-specific profile area
6000h–67FFh Standardized profile area 1st logical device
6800h–6FFFh Standardized profile area 2nd logical device
7000h–77FFh Standardized profile area 3rd logical device
7800h–7FFFh Standardized profile area 4th logical device
8000h–87FFh Standardized profile area 5th logical device
8800h–8FFFh Standardized profile area 6th logical device
9000h–97FFh Standardized profile area 7th logical device
9800h–9FFFh Standardized profile area 8th logical device
A000h–AFFFh Standardized network variable area
B000h–BFFFh Standardized system variable area
C000h–FFFFh Reserved

Table 4.5  Structure of the communication parameters
Index range Object
1000h–1029h General communication parameters
1200h–12FFh SDO parameters
1300h–13FFh CANopen safety parameters
1400h–1BFFh PDO parameters
1F00h–1F11h SDO manager objects
1F20h–1F27h Configuration manager parameters
1F50h–1F58h Parameters for program control
1F80h–1F91h NMT parameters

1774 Higher Level Protocols

Only the vendor ID has to be implemented in the identity object; all other param-
eters (product code, revision number and serial number) are optional. CiA uniquely
assigns the vendor ID. Together with the other manufacturer-managed identity sub-
parameters, every CANopen device can be addressed uniquely. The error register
provides information if an error occurred in the device. The device type indicates
which device or application profile is supported by the interface. The device-type
parameter is a 32-bit value with the structure illustrated in Fig. 4.1. If the device
does not support a standardized device or application profile, the profile number
field shows a zero. If the CANopen device implements a standardized profile from
CiA, it is shown through a number in the profile number field.

The value FFFFh in the additional information field indicates that this CANopen
device supports several profiles. All other values are interpreted as profile specific.

The object dictionary provides space for eight logical devices (see Table 4.4). In
case of several logical devices, the device type of the first logical device is imple-
mented in index 67FEh. Each logical device has an 800h address section available
for profile parameters. The device-type object of the second logical device has the
index 6FFEh.

Every logical device could contain several virtual devices. A minimum imple-
mentation of a virtual device may exist out of only one process date. More complex
virtual devices comprise various process data and provides (if necessary) configura-
tion data. The internal structure of a field device with several CANopen devices is
illustrated in Fig. 4.2.

Every CANopen device must be assigned by the system developer with a unique
7-bit node ID. Because the node ID zero is reserved, a maximum of 127 devices
is addressable in a CANopen network. The CAN identifiers, used in a variety of
communication profiles to transmit and receive data frames, derive out of these
node IDs. The setting and allocation of the node ID is not generally standardized
in CANopen. The device manufacturer could, e.g. use a dual inline package (DIP)
switch or provide an additional configuration interface. Another possibility is the
coding of the connector: The device receives its node ID through an additional
plug-in connection. In the CANopen profile for building door control systems, the
patented node ID claiming procedure is used. When the CANopen interface is ex-
clusively available, the Layer Setting Service (LSS), described in the specification
CiA 305, can be used.

Every CANopen device must implement a communication state machine also
referred to as network management (NMT) finite state automation (FSA) machine.
Additional device-specific state machines could be necessary in the virtual devices.
The NMT-FSA is part of the NMT, which is explained in the next subsection.

Fig. 4.1  Structure of the
device-type parameter

178 G. Feiter et al.

4.1.3 Network Management

The NMT is based on the master/slave principle. Only one active NMT master
exists per CANopen network. The master controls all NMT-FSAs (referred to as
NMT slave state machine) of the NMT slave devices. This also includes the FSA
of its own CANopen NMT slave. To avoid misunderstanding, even the CANopen
manager, which contains the NMT master, has to have an NMT slave state machine
and an object dictionary. The so-called CANopen masters that do not have their own
object dictionary are by definition not a CANopen device!

The NMT slave state machine supports four states (see Fig. 4.3): the volatile state
“initialization” as well as the “pre-operational”, “operational” and “stopped” states.
The state transition from initialization to pre-operational takes place automatically.
When the device reaches the pre-operational state, it starts its boot-up protocol, i.e.
it sends its boot-up message, a single CAN data frame with a CAN identifier built-
up out of the 4-bit function code (most significant CAN-ID bits) 1110b as well as
the 7-bit node ID (least significant CAN-ID bits). The boot-up message has a 1-byte
data field that contains a zero. It is used to introduce the device after power-on or
reset to the other members in the network. The same data frame is used in pre-oper-
ational and operational states to send the periodical heartbeat protocol. It contains

Fig. 4.2  Field device model

1794 Higher Level Protocols

in 6 bits of the 1-byte data field the NMT state in which the device is situated at the
moment (see Fig. 4.4). The frequency of the heartbeat could be configured in the
producer-Heartbeatheartbeat-time (1017h) parameter. If a CANopen device shall
receive a heartbeat from another device, it has to be configured in the parameter
set consumer-heartbeat-time (1016h). Of course, the consumer time always has to
be bigger than the corresponding producer time; otherwise, the device is always
considered to be “lost”.

If the consumer heartbeat time expires without reception of the corresponding
heartbeat message, it will lead to an event (heartbeat event) in the heartbeat ap-
plication of the device. The action is taken because this event is device or profile
specific.

The state transitions are normally commanded by the CANopen device with
NMT master functionality. For this purpose, the NMT master sends the CAN data
frame with the highest prior identifier (CAN ID = 0). In this 2-byte message, the first
byte contains the command (command specifier) and the second byte contains the
node ID of the device that shall perform the state transition. In case of an error, the
devices are able to change their states autonomously. The value 0 is interpreted as
broadcast command, meaning all nodes have to perform this command. The execu-
tive state transition could be configured in the error-behaviour (1029h) parameter.

For applications where no master/slave NMT is allowed due to safety issues,
flying master solutions, as specified in CiA 302, are available. The protocols, speci-
fied in this standard, allow that if a device with NMT master functionality has a
failure another device activates its NMT master functionality. In fact, it is possible
that more than one device with “sleeping” NMT masters are located in the network.
If the NMT master with the highest priority returns into a functional state, after a
temporary failure, it could reclaim the NMT with the help of the specified protocols.

Fig. 4.3  CANopen NMT slave state

180 G. Feiter et al.

4.1.4 Transport Protocols

The CANopen specification (EN 50325-4 respectively CiA 301) does not explicitly
describe transport protocols. However, implicitly the service data object (SDO)
protocols could be regarded as transport protocols in terms of the ISO/OSI refer-
ence model. The SDO protocols always work after the client/server model. The
communication initiative always comes from the client and the server reacts to
the “customers’ wishes”. SDO communication is allowed in pre-operational and
in operational state. With SDO protocols, it is possible to write or read an object
dictionary entry. Addressing takes place through the 16-bit index and the 8-bit sub-
index. The two 8-byte data frames making an SDO are needed for: one, that the
client could send his commands (command specifier) and if necessary the param-
eter data, and, the second one, so that the server could reply if the command was
executed and could transmit in case of a read access the desired parameter data.

Fig. 4.4  Heartbeat protocol

1814 Higher Level Protocols

Figure 4.5 illustrates the protocol for parameter with a maximal length of 4 bytes
(expedited SDO). The 8-byte data field consists of 1-byte command specifier,
3-byte index/sub-index and up to 4 bytes of parameter data.

If data, to be read or written, are larger than 4 bytes, they are segmented and
transmitted with the same CAN data frames (segmented SDO) one after another
(see Fig. 4.6). By doing so, every segment is confirmed. The first segment contains
4-byte parameter data. The following segments consist of up to 7-byte parameter
data. Principally, the parameter data can have any length. An end-identification is
sent in the command specifier of the last transmitted segment.

Fig. 4.5  SDO download protocol for not segmented data (m = index and sub-index)

Fig. 4.6  SDO upload proto-
col for segmented data

182 G. Feiter et al.

To recognize if a segment was sent twice, every segment consists of a toggle bit.
If a segment is sent twice, the server responds with an abort code. Both client and
server are able to send an abort code in their SDO messages that aborts the current
SDO communication, when problems occur.

Every CANopen device has to implement at least one SDO server to assure that
at least one other CANopen device (normally the device with NMT functionality) is
allowed to access (write or read) the object dictionary. The two needed CAN identi-
fiers depend on the allocated node IDs: 1100b + node ID for the to-be-received SDO
message and 1011b + node ID for the responded message. Every device is able to
build up an SDO client and an SDO server relationship with all other devices in the
CANopen network. Because there are no existing predefined CAN identifiers for
these additional SDO connections, the connections have to be configured. Corre-
sponding server and client SDO parameter sets are provided in the object dictionary
(1200h–127Fh or 1280h–12FFh). Figure 4.7 illustrates the format of the configura-
tion parameters for the CAN identifier. The 32-bit value consists of a valid byte
for generating and deleting the data frame. The dyn-bit denotes if it is a static or a
dynamic SDO connection. The frame-bit defines the frame format to be used and
the CAN-ID bits with which the message shall be transmitted or received.

To improve the data throughput, the SDO block transfer exists. By using the
SDO block transfer, only a configurable amount of segments, instead of all seg-
ments, are confirmed.

4.1.5 Application Protocols

Besides the NMT, boot-up, heartbeat and SDO protocols, CANopen also specifies
protocols that uniquely assign the application layer of the ISO/OSI reference model.
These include the process data object ( PDO) protocol used for the transmission of
time critical process data, the emergency protocol used for the notification of device
and application failures, the synchronization ( SYNC) protocol used for the synchro-
nization of data capturing and data actuation as well as the time protocol used to set
the system time.

Every CANopen device can transmit up to 512 PDOs and can receive up to 512
PDOs. PDOs are only allowed to be transmitted and evaluated during the opera-
tional state. PDOs use a CAN data frame and are sent according to the producer/
consumer principle, which means there is always exactly one producer and one or
more consumers of the CAN data frame. The complete 8 bytes of the data field

Fig. 4.7  Structure of the SDO COB-ID sub-parameter

1834 Higher Level Protocols

are available for the, to be transmitted, process data (see Fig. 4.8). Due to this the
PDO does not need an overhead, in contrast to the CAN protocol, and therefore no
additional bus bandwidth is necessary. The PDOs are configured with the help of
two parameter sets: PDO communication parameter and PDO mapping parameter.
The communication object identifier (COB ID), the transmission type, the inhibit
time, the event timer and the SYNC start value belong to the PDO communication
parameters. The 32-bit parameter COB ID consists of besides a few control bits,
similar to the corresponding SDO parameter (see Fig. 4.7), the CAN identifier used
for transmitting or receiving. The parameter transmission type defines how the PDO
is to be transmitted or sent. The transmit PDO (TPDO) differs between a cyclic syn-
chronous and an event-driven (asynchronous) transmission. When using the event-
driven transmission, the event has to be defined in the device or application profile
(transmission type: 255) or by the manufacturer (transmission type: 254). The event
could be a temperature increase of 1°C or the change of a binary signal. The event
could also be the expiration of the event timer. In this case, the PDO is sent periodi-
cally with the time (in milliseconds) configured in the event time parameter. If a
signal-specific event and the event timer are defined, the PDO will be transmitted
directly after the signal-specific event occurs. If no signal-specific event occurs, the
PDO will be transmitted after the event timer has been elapsed. The event timer is
restarted after every PDO transmission.

When a PDO gets transmitted cyclic synchronously (transmission type: 1), the
process data are updated and transmitted after receiving a SYNC message. In order
not to unnecessarily increase the busload with low-frequency signals, the PDO can
be sent with only every second or 240th SYNC message (transmission type: 2–240).
With the parameter SYNC start value, it is possible to configure the counter-value
of the SYNC message ( sync counter) to determine the first transmission. A pos-
sibility of reducing the busload lies in the usage of an acyclic synchronous trans-
mission (transmission type: 0) in which the SYNC message has to be received and
additionally a defined event has to occur. For receive-PDOs (RPDOs), a differentia-
tion is only made with asynchronous or synchronous reception. With asynchronous
reception the process data are immediately handled, whereas with synchronous re-
ception the device waits for the next SYNC message to actuate the received data.

Fig. 4.8  PDO protocol

184 G. Feiter et al.

Figure 4.9 shows the synchronous transmission of PDOs. Synchronous PDO com-
munication is especially common in the electric and hydraulic drive technology and
in data acquisition of time-dependent linked values. The frequency of the SYNC
message and the CAN identifier, on which the message is received or transmitted,
are configurable via SDO.

Requesting PDOs via remote frames is possible in CANopen (transmission type:
252 and 253) but not recommended. Besides the additional busload, the variety of
different implementations in the CAN controllers is problematic.

The inhibit time is the communication parameter in which the transmission of a
PDO can be delayed for a certain time. With this method, the system developer can
prevent the PDO from using the entire bus bandwidth. During the time period in
which the highest priority PDO is not allowed to be sent, the second highest priority
PDO becomes the highest priority PDO. With the usage of inhibit times, it is pos-
sible to achieve a completely deterministic behaviour of the PDO communication.

PDO mapping parameters determine what process data are to be received or
transmitted via PDO. The PDO mapping parameters are defined by the device
manufacturer or they are specified in the CANopen profiles. The entries in the
mapping parameters contain pointers (index and sub-index) and determine which
object dictionary entries are mapped into a PDO. Due to the fact that index and
sub-index are local device addresses, the TPDO could contain pointers other than
the corresponding RPDOs. The process data can be locally stored to different ad-
dresses in the object dictionary when more than one device receives the same PDO.
Principally, the 8-byte data field of a PDO could be organized bitwise: This is the
reason why a maximum of 64 mapping parameters is provided per PDO. If four
16-bit values are packed into a PDO, only four mapping parameters are needed.
Simple CANopen devices only support static PDO mapping, i.e. the mapping set
by the manufacturer is not configurable. When using variable mapping, the user
is able to change the process data transmitted in the PDO, when the device is in
pre-operational state. As a consequence, an optimization of the PDO transfer is
possible. The user is able to group the needed process data for his/her application
in one PDO. If the content of PDOs is changed when the device is in operational

Fig. 4.9  Principle of the synchronous PDO communication

1854 Higher Level Protocols

state (dynamic PDO mapping), the user has to pay attention to the data integrity of
the PDO producer and consumer.

If the 512 TPDOs and the 512 RPDOs per device are not enough, it is possible
to define a PDO as a multiplexed-PDO (MPDO). Similar to an SDO, it is only pos-
sible to transmit one process data in an MPDO. An MPDO contains the source or
destination address of the object dictionary entry. Thus, a protocol overhead exists,
but no confirmation about the reception of the MPDO is sent.

The emergency protocol is a special PDO that could be received by every other
CANopen device if the emergency consumer parameter (1028h) is configured. The
emergency message consists of 8 bytes in which a standardized 2-byte emergency
error code, the 1-byte error register and the manufacturer- or profile-specific 5-byte
error field are transmitted (see Fig. 4.10). The CAN identifier, with which the emer-
gency message is sent, is described in the emergency COB ID parameter (1014h) and
could be reconfigured if desired. The default value of the CAN identifier is 0001b +
node ID. It is reasonable to configure the emergency inhibit time (1015h) to prevent
an overload of emergency messages on the bus. In fact, it could happen that an er-
ror triggers a further error in another device, which could lead to a domino effect
whereby many devices could start transmitting error messages over and over again.

The SYNC message is also transmitted after the producer/consumer principle.
The SYNC message has no data field or a 1-byte data field containing the SYNC
counter. The user can configure the counter (1019h): 0 means that the counter-byte
is not transmitted, and 2–240 represent the highest value that the counter supports.
The other values are reserved. The SYNC message can be configured regarding
the used CAN identifier, for transmitting and receiving (COB ID: 1005h) as well
as for the communication cycle period (1006h) and the synchronous window length
(1007h) in microseconds. The synchronous window length serves as a measure for
the producer and the consumer to indicate if a synchronous PDO was transmitted
or received in the expected time. If the producer is not able to send the PDO (e.g.
because bus access was denied), he could send an emergency message instead of
the PDO. Same applies for the consumer: If a synchronous PDO is not received in

Fig. 4.10  Emergency protocol and structure of the message (EEC = emergency error code and
ER = error register)

186 G. Feiter et al.

the configured time, an emergency message is sent and the delayed reception will be
ignored. The SYNC message is transmitted by default with the CAN identifier 128.

The time message is also based on the producer/consumer principle. The mes-
sage contains a 6-byte value given in milliseconds after the 1 January 1984. The
predefined CAN identifier is 256 and can be configured in the corresponding time
COB ID (1012h). With the time message, it is possible to do a network-wide time
synchronization of the local timer units in the CANopen devices.

For transmission of safety-oriented information, special CANopen safety pro-
tocols, described in CiA 304, are available. The safety-related data object (SRDO)
protocol uses two CAN identifiers that differ in at least 2 bits. Both frames are
transmitted periodically, whereas the time interval between them is not allowed to
exceed a certain value. The data of both frames are bitwise inverted and are double-
checked by the consumers of the data. This concept of serial redundancy with inte-
grated time expectation is able to detect all single faults. Due to this, the CANopen
safety protocol is suitable for a safe data transmission up to Safety Integrity Level
(SIL) 3 according to International Electrotechnical Commission (IEC) 61508.

4.1.6 Device Profiles

CANopen is one of the most standardized communication systems. This does not
only apply to the communication protocols, specified in CiA 301 and CiA 302,
but also apply to a variety of generic and application-specific device profiles (see
Table 4.6). Device profiles specify the interface to the application program of a
device in terms of process data and configuration parameter, which are normally
writable and/or readable, in the range of 6000h–67FFh in the object dictionary.

Table 4.6  Generic and application-specific CANopen device profiles
Number Description Status
CiA 401 Generic I/O modules Free available
CiA 402 Drives and motion control Only for members
CiA 404 Measuring devices and closed-loop controllers Free available
CiA 406 Encoders (rotating and linear) Free available
CiA 408 Fluid power technology Free available
CiA 410 Inclinometer Free available
CiA 412 Medical devices Only for members
CiA 413 J1939-to-CANopen gateways Only for members
CiA 414 Weaving machines Free available
CiA 418 Battery modules Free available
CiA 419 Battery charger Free available
CiA 420 Extruder downstream devices Free available
CiA 425 Medical add-on devices Only for members
CiA 444 Crane add-on devices (e.g. spreader) Only for members
CiA 445 RFID reader Only for members
CiA 446 AS-Interface gateway Only for members

1874 Higher Level Protocols

The device-type object (1000h) is described in detail in the device profiles. It
does not only show which device profile is implemented but also show the avail-
able functions in the device. Figure 4.11 shows the structure of the device-type
parameter for generic input/output (I/O) modules according to CiA 401 (Table 4.7).

The device profiles also determine the PDO communication and the PDO map-
ping parameters. The first four TPDOs as well as the first four RPDOs can each
be assigned with a CAN identifier. The assignment, done in the device profiles,
follows the same scheme as in other CANopen protocols. The four bits with the
highest priority of the CAN identifier correspond to a PDO function (see Table 4.8),
and the seven other identifier bits represent the node ID of the device.

This assignment guarantees that no CAN identifier is assigned twice. In oth-
er words, it is not possible that two CANopen devices send data frames with the
same identifier leading to a not solvable bus access conflict. The CANopen device
with the NMT master functionality is normally a programmable controller that has
the corresponding RPDOs and TPDOs. Thus, per default there is only one master/
slave relation concerning PDOs. If a system developer wants to realize PDO cross-
communication or wants to implement more than one controller in the network, the
configuration of PDO identifiers is necessary. This procedure is also known as PDO
linking and is supported by software tools. In this way, it is even possible to realize
distributed PLC systems.

Fig. 4.11  Structure of a device-type parameter for CiA 401 modules

Table 4.7  I/O parameters for CiA 401 modules
Field name Definition
Device profile number 401d
I/O functionality—Bit 16 1b = digital input(s) implemented

0b = not implemented
I/O functionality—Bit 17 1b = digital output(s) implemented

0b = not implemented
I/O functionality—Bit 18 1b = analog input(s) implemented

0b = not implemented
I/O functionality—Bit 19 1b = analog output(s) implemented

0b = not implemented
I/O functionality—Bit 20 to Bit 22 Reserved
M(apping of PDOs) 1b = device-specific PDO mapping is supported

0b = predefined, generic PDO mapping is supported
Note: Any combination of digital/analog, inputs and outputs is allowed; one of the bits 16–19

shall be 1b

188 G. Feiter et al.

The most frequently implemented device profile is the profile for generic I/O
modules (CiA 401). It supports digital and analog inputs and outputs. The user is
able to parameterize the modules in a standardized way regarding the I/O func-
tionality. With the parameter set “error value output (6207h)”, it is possible to set
the value of the digital outputs that should be used, when an internal device error
occurs. Another example is the parameter set “analog input interrupt trigger selec-
tion (6421h)”. By this parameter set conditions can be defined under which a PDO
transmission is triggered by an analog input, which has been mapped into a TPDO.
These conditions can be exceeding or falling below a certain threshold or the pre-
defined change of a given value. It is also possible to set the limit and delta values
under a fixed address (index and sub-index) in the object dictionary.

Figure 4.12 shows the block diagram of a digital output module, and Fig. 4.13
shows the block diagram of an analog input module. The device profile CiA 401

Table 4.8  Default CAN identifiers for TPDOs and RPDOs
Name Function code Resulting CAN-IDs
TPDO1 0011b 385 (181h)–511 (1FFh)
RPDO1 0100b 513 (201h)–639 (27Fh)
TPDO2 0101b 641 (281h)–767 (2FFh)
RPDO2 0110b 769 (301h)–895 (37Fh)
TPDO3 0111b 897 (381h)–1023 (3FFh)
RPDO3 1000b 1025 (401h)–1151 (47Fh)
TPDO4 1001b 1153 (481h)–1279 (4FFh)
RPDO4 1010b 1281 (501h)–1407 (57Fh)

Fig. 4.12  Block diagram of a digital output module according to CiA 401

1894 Higher Level Protocols

Fi
g.

 4
.1

3 
B

lo
ck

 d
ia

gr
am

 o
f a

 d
ig

ita
l i

np
ut

 m
od

ul
e

ac
co

rd
in

g
to

 C
iA

 4
01

190 G. Feiter et al.

also defines a default PDO mapping. According to the defined PDO mapping, 8 × 8
digital input signals are located in the first TPDO and 4 × 16-bit analog input values
in the following three TPDOs. In the first RPDO 8 × 8 digital output signals and
in the three following RPDOs 4 × 16-bit digital output values are located. Further
digital and analog I/O signals could be placed in manufacturer-specific PDOs. All
default PDOs are valid and have a predefined CAN identifier. They are transmitted
event driven (transmission type: 255). The event is a configured trigger condition.
Furthermore, all TPDOs that are not switched off generally are transmitted when a
transition from pre-operational state into operational state occurs.

The device profile CiA 401 supports a digital granularity of 8 bytes per default.
1-bit, 16-bit and 32-bit accesses are optionally provided. Analog modules have a

16-bit resolution specified per default. Alternatively, analog 8-bit values, 32-bit val-
ues as well as floating-point arithmetic and manufacturer-specific analog formats
can be implemented.

Some of the CANopen device profiles also specify application-specific state ma-
chines. The state machine, shown in Fig. 4.14, is described in the drives and mo-
tion control profile CiA 402 (see IEC 61800-7). It is controlled by a control word
(6040h) received via RPDO. After a state transition, the CANopen device transmits
the status word (6041h) to the host controller for purpose of acknowledgement on
the application level.

Fig. 4.14  State machine of an electrical drive according to CiA 402

1914 Higher Level Protocols

In the drives and motion control profile, all necessary parameters for operation
are listed in the object dictionary as defined addresses (index and sub-index). Even
setpoints or actual values are transmitted via PDOs. The drives and motion control
profile CiA 402 is suitable for simple frequency converters as well as for complex
servo controller and stepper motor controls.

For some industries, specific device profiles were developed. Such profiles sim-
plify in particular system integration in modular mechanical engineering. The sys-
tem developer does not have to link generic digital and analog inputs and outputs
together but is able to integrate a complete subsystem on a higher level. Typical ex-
amples are collimators and dosimeters in the field of medical devices, thread-feeding
equipment in weaving machines or spreaders in crane systems. The members of CiA
will keep publishing generic and branch-specific device profiles in the future.

4.1.7 Application Profiles

With the approach of the device profiles, the system developer is allowed to in-
tegrate devices from various manufacturers in a CANopen network with one or
several programmable controllers. By doing so, the plug and play functionality is
limited to a master/slave relation concerning the PDO communication. Although it
is possible to configure a PDO cross-communication between any of the devices,
cross-communication is not predefined. Out of this reason, branch-specific applica-
tion profiles were made particularly to meet these requirements.

Application profiles describe all interfaces of a CANopen application in an ob-
ject dictionary. The object dictionary entries have identical meaning in all devices.
Application profiles specify functional units, also referred to as virtual devices. A
CANopen device is able to integrate up to eight application profiles (each located
in a logical device). Each logical device, on the other hand, contains a number of
virtual devices. The information on what virtual devices are implemented could
be found in the device-type parameter (1000h) or in an application profile-specific
parameter. With the concept of virtual devices, it is possible to describe transparent
CANopen bridges/gateways in an easy way.

Furthermore, the concept of the application profiles opens the possibility of
implementing, in an extreme case, only one virtual device in a single CANopen
device and all other virtual devices in another CANopen device as well as the com-
bination of both of these devices through a CANopen network. It is also possible
to implement every virtual device in a CANopen device and let them communicate
through CANopen. It is not possible to spread a virtual device over more than one
CANopen device. Out of this reason, it is very important to ensure, when creating
an application profile, that the granularity of the virtual devices is suitable for future
requirements. Table 4.9 shows the already published application profiles and the
application profiles that are still in development.

The application profile for lift control systems (CiA 417) specifies several virtual
devices (see Table 4.10). The object dictionary (range 6000h–9FFFh) is divided into

192 G. Feiter et al.

800h segments. Every segment could represent a lift control, i.e. it is possible to
describe a group control containing up to eight lift shafts with this profile. Every
virtual device has several configuration parameters that are readable or writable via
SDO as well as process data, that is transmitted or received, in PDOs.

Every CANopen device according to CiA 417 supports a Transmit-MPDO and
up to 127 Receive-MPDOs as well as, depending on the implemented virtual de-
vice, further dedicated TPDOs and RPDOs. Due to the fact that all PDOs have an
assigned CAN identifier (see Fig. 4.15), the system developer must not assign any
CAN identifiers. However, if the devices support PDO linking, he/she is able to
optimize the PDO communication in his/her lift application with regard to priority
and data content.

The CANopen lift application profile supports up to 254 floors per lift control. In
total, 32 times 254 digital inputs per lift control are addressable. When using eight
lift controls, a total of 65,024 digital inputs are available.

Table 4.9  CANopen application profiles
Number Description Status
CiA 415 Road construction machine sensors Only for members
CiA 416 Building door control systems Only for members
CiA 417 Lift control systems Free available
CiA 421 Train vehicle control networks Only for members
CiA 422 Municipal vehicles Only for members
CiA 423 Rail vehicle power drive systems Only for members
CiA 424 Vehicle door control systems Only for members
CiA 426 Exterior rail vehicle lighting Only for members
CiA 430 Auxiliary rail vehicle lighting Only for members
CiA 433 Interior rail vehicle lighting Only for members
CiA 436 Construction machineries Only for members
CiA 437 Grid-based photovoltaic systems Only for members
CiA 447 Special-purpose car add-on devices Only for members
CiA 455 Drilling machines Only for members

Table 4.10  Virtual devices of the CANopen lift application profile
Virtual device Function
Call controller Receives all call requests
Input panel unit In-car call panel or floor call panel
Output panel unit In-car display panel or floor display panel
Car door controller Transmits commands to the car door unit
Car door unit Cabin doors
Light barrier unit Light barrier in the cabin doors
Car position unit Position measurement of the car (according to CiA 402)
Car drive controller Transmits commands to the car drive unit
Car drive unit Drive unit (according to CiA 406)
Load measuring unit Measuring of current load of the car
Sensor unit Glass breakage, smoke, pressure, temperature sensor, etc.

1934 Higher Level Protocols

It is possible to implement up to eight application profiles in a single CANopen
device, if the object dictionary entries of a logical device are used for the applica-
tion profile. This possibility could be used in the application profiles for train ve-
hicle control systems. From a logical point of view, it is a hierarchically arranged
virtual network that can be mapped one-to-one on the physical CANopen network.
However, it is also possible to represent up to eight virtual networks on a CANopen
interface. The implementation flexibility of the application profiles allows the pos-
sibility of using the same specification in a simple and in a complex system. The
“bridges” needed for the implementation of several physically separate CANopen
networks are PDO transparent, i.e. the PDOs are just reached further due to their
system-wide validity. If it is wished to configure the entire system from one single
point via SDO, it is necessary to implement CiA400, which enables remote SDO
communication. It is therefore necessary to assign every network with a unique
network ID.

4.2 AUTOSAR

4.2.1 Introduction

4.2.1.1 AUTOSAR Foundation

“AUTOSAR” is the abbreviation for “AUTomotive Open System Architecture”.
The organization of the AUTOSAR standard was founded in 2003 as a development
partnership of international automobile manufacturers and supplier industry. The
goal is to develop a standardized software architecture and standardized software
interfaces for automotive electronic systems.

The development of such standards for software development in the automotive
industry was long overdue. The software functionality within vehicles increases a

Fig. 4.15  PDO assignment in a CANopen-lift network system compliant to CiA 417

194 G. Feiter et al.

lot and the complexity is growing. At the same time there is a high demand to deliv-
er high-quality software, partly also due to the growing amount of functional safety-
related systems. Some of the original equipment makers (OEMs) react to this global
trend with own standardized software platforms, for example, the BMW Standard
Core.1 This software platform was provided by BMW to the Tier 1 already in 1998.
Because of the existence of different OEM-specific automotive middleware, the
Tier 1 always needs to adapt their application software to these quasi-standards.
The integration costs of these adaptations are sometimes beyond the application
development costs. In parallel to these technical requirements, there is a change
in the market environment. The major sales regions are saturated. This forces the
OEM to change their strategy for vehicle production. In addition, niche markets will
be addressed with special vehicle models and the model change will be faster. The
pressure for vehicle development, and hence also for automotive software develop-
ment, increases.

The only way to develop more complex system in a shorter time—and still con-
trol them—is to standardize a horizontal basic software while reusing the applica-
tions more and more. A first step to the right direction is the AUTOSAR standard.

The following pages will give a brief overview about the AUTOSAR standard
by focusing the CAN-based communication path through the layered software ar-
chitecture.

4.2.1.2 AUTOSAR Concept

One of the main ideas of AUTOSAR is the clear separation of hardware-dependent
software from hardware-independent software. Therefore, an abstraction layer is
placed between the microcontroller hardware and the application software. The
AUTOSAR runtime environment (RTE) is on top of the layered architecture. It is
the only visible interface from the application point of view. Below the RTE several
software layers exist, from services via operating system (OS) down to the lowest
software layer, the microcontroller abstraction layer (MCAL). Figure 4.16 shows an
AUTOSAR compliant software architecture.

The AUTOSAR RTE defines the interface from the application to the basic soft-
ware. For data exchange, the RTE implements, e.g. a client–server and/or a sender/
receiver communication model.

All interactions of application software, called “application software compo-
nents” in the AUTOSAR language, run via the RTE. This results in a hardware-
independent application. This enables the exchange of applications among the dif-
ferent electronic control units (ECUs). If there is a lack of resources on one ECU,
e.g. no more random access memory (RAM) left to run a special RAM-intensive

1 Standard Core is a typical name for a complete automotive middleware respectively for the soft-
ware between application and hardware of an electronic control unit (ECU). Additional to the pure
runtime software a Standard Core contains support functions like a generic make environment or
complex configuration tools.

1954 Higher Level Protocols

application algorithm, it can be executed on another ECU if the input and output
signals of these application software component are also available on the other
ECU.2 With this independence from hardware it is in addition possible to reuse
the application software component on another hardware architecture, e.g. on the
next generation of the ECU. Software will become also a “carry-over part” for the
automotive development.

The basic software itself is also structured in hardware-dependent and hardware-
independent software parts. The only real hardware-related software part is the OS
and the MCAL—all other software can be reused, too. With this portability major
parts of the basic software can become a carry-over part with all the benefits of
reused standard software.

4.2.1.3 New Methodology

After the successful separation of application software and hardware-dependent
software, new methodologies within the automotive vehicle development can be
applied. Function-oriented development will replace ECU-oriented development.
AUTOSAR defines a complete methodology for the function-oriented develop-
ment. The methodology is not a complete process description, this was never the
goal of AUTOSAR, but it gives a brief structure in the overall development process.
In brief, the AUTOSAR methodology starts with the pure software functions, which
are represented by the application software components. The inputs and outputs of
these functions, the signals, are defined and the connections are known. All this
information is collected in a so-called “System Configuration Description”, which

2 And the timing requirements to the signals are fulfilled (e.g., availability and, maximum jitter).

Fig. 4.16  The layered architecture of an AUTOSAR Standard Core. (Elektrobit Automotive
GmbH, AUTOSAR—Getting Started)

196 G. Feiter et al.

is an Extensible Markup Language (XML)-based data structure defined by the AU-
TOSAR meta-model. The system configuration description contains the description
of all software components, the ECU resources and the system constraints for a
complete vehicle. The next step, after the definition of many system parameters,
the configuration of one ECU is extracted from this global vehicle description. This
extract of the system configuration forms together with the configuration of the ba-
sic software the so-called ECU configuration description. Within this ECU-specific
configuration, the exact definition, e.g. of OS tasks is done. System configuration
and ECU configuration are two processes with high interaction and are done usually
by two different developer groups.

With AUTOSAR, the role model of the automotive industry might change. The
classic supplier pyramid will be replaced by a network of suppliers because the
tasks, especially the software related, can be done in future a little bit more inde-
pendently and in parallel. The software companies will play an important role; they
provide the software platforms where all the applications will run on top. In addi-
tion, the same or different software suppliers can provide pure software functions as
a product. If the standard is established, these software can be used in several cars,
independent of the OEM.

4.2.2 The AUTOSAR Platform

4.2.2.1 Overview

The legacy software platforms from each OEM differ in interfaces and content. The
goal of the AUTOSAR standardization is to form a universal standard which need
not have to be adapted for each OEM.

The AUTOSAR specifications deal with many software modules, needed for an
ECU development. Old standards, like the OSEK/VDX “Offene Systeme und deren
Schnittstellen für die Elektronik im Kraftfahrzeug / Vehicle Distributed eXecutive”
standard, comprised less functionality, e.g. the mentioned OSEK standard only
defines an OS, a communication model and NMT. The implementation of these
standard modules found their way into many cars of many OEM, but AUTOSAR
is going beyond; Fig. 4.16 shows a much broader approach and shows much more
standardized modules of the AUTOSAR-layered architecture.

In principle, every module can be assigned to one of the four layers: the ap-
plication abstraction layer, service layer, ECU abstraction layer and MCAL. The
application abstraction layer forms the only interface to the applications. The imple-
mentation of this layer is the RTE, and the RTE is the “glue code” which connects
the applications to the lower layers. The service layer implements system services,
memory access services, communication services and the OS services. The ECU
abstraction layer is used to implement an abstraction of the peripheral I/O, mem-
ory (e.g. flash memory or electrically erasable programmable read-only memory
(EEPROM)) and communication. The services are based on this abstraction layer
and the abstraction layer itself connects, e.g. different communication channels by

1974 Higher Level Protocols

using the lowest layer, the MCAL. In this lowest layer, the drivers for accessing the
hardware are implemented. This lowest layer has to be developed for each new mi-
crocontroller—it is the only piece of software which is not hardware independent.

4.2.2.2 Microcontroller Abstraction Layer

As mentioned above, the MCAL is the only layer which depends on the hardware.
The above layers have no dependency any more, except the OS. This principle is the
basis for an easy adaptation of the basic software to new hardware architecture or a
new derivative; only this deepest layer will be exchanged. The layers above will be
tested together with the exchanged lower layers in an integration test system. There
are exceptions within the higher levels of software if special hardware features shall
be used there, too. If these features are not able to be implemented only in the
MCAL, a hardware dependency is placed in the higher level software—the supplier
of this basic software has to check if this dependency is maintainable and/or if the
costs for hardware dependency are less than the, e.g. speed advantage gained by
using special hardware features.

The drivers, of the MCAL, can be subdivided into the following four groups:

• Microcontroller drivers—they contain software to control the microcontroller
core (Micro-Controller Unit (MCU) driver), timer modules (General Purpose
Timer (GPT) driver) and on-chip watchdog (watchdog driver).

• Memory drivers—these are the drivers to access EEPROM and FLASH memory.
• Communication drivers—these are used to connect bus systems like Serial Pe-

ripheral Interface (SPI) bus for inter-ECU communication, e.g. to connect an
external SPI EEPROM device, and to access common used bus systems like
CAN, Local Interconnect Network (LIN), FlexRay and also Ethernet.

• I/O drivers—these drivers connect the on-chip peripherals like digital I/O, ana-
log digital converter (ADC), input capture unit, pulse width modulation (PWM)
and the port driver for the configuration of each port pin functionality.

Within the AUTOSAR architecture, hardware access will be enabled by two soft-
ware modules: the driver of the MCAL and the corresponding interface of the layer
above—the ECU abstraction layer.

4.2.2.3 ECU Abstraction Layer

For almost each driver of the hardware-dependent layer exists an interface to en-
capsulate the lowest layer. The access to this interface layer is always identical for
all layers above. For example, multiple CAN modules can be summed-up abstract
by the interface layer, e.g. by controlling several CAN drivers. The AUTOSAR
COM module in the service layer can access the CAN interface always in a same
way, sending only a protocol data unit (PDU)3 to the interface. The interface is

3 PDU: protocol data unit.

198 G. Feiter et al.

configured to forward the PDU to the dedicated bus system—in this example, to a
dedicated CAN bus. An exception to this driver/interface relationship is the group
of the I/O driver. There exists no interface layer for the I/O drivers—instead there
is an “I/O hardware abstraction” module to implement the bridge between the low-
level hardware-dependent driver and the highest layer of the application abstraction
layer. The specification of this I/O hardware abstraction is more like a guideline for
the implementation than a real implementation with application program interface
(API) specification, etc. The reason is the various possibilities of connecting I/O to
a microcontroller; hence, the implementation of this I/O hardware abstraction is in
many cases project specific and peripheral specific. There could be, for example,
power switches which need already a combination of two I/O (ADC plus PWM)
or an algorithm implemented in this I/O hardware abstraction (e.g. debouncing of
digital input).

4.2.2.4 Service Layer

The service layer of an AUTOSAR-based software architecture provides many ser-
vices which can be accessed from the applications via the RTE. The modules of
this layer are complex state machines, e.g. the ECU state manager which controls
the state of the ECU like OFF, RUN and SLEEP. The module groups of the service
layer are as follows:

• State manager—it manages all the states of an ECU, communication and, e.g. of
the Watchdog.

• Memory manager—it controls the access to persistent memory. The non-vol-
atile RAM manager (NVRAM-Manager) is a core module of the memory ser-
vices. This module manages the non-volatile memory blocks of an EEPROM, a
FLASH–EEPROM emulation or other external memory devices. The tasks are,
for example, write, read access, initialization of memory-mapped blocks and
check if the cyclic redundancy check (CRC) is still valid.

• Vehicle communication services—services of this service module group enable
the communication across the border of the ECU. The lower layers support the
known protocols like CAN, LIN and FlexRay—in future also Ethernet. The jobs
of these services are the abstraction of the access via standardized interfaces and
data encapsulation via abstract PDUs instead of protocol-specific messages, con-
trol of the network by support of NMT services and access to diagnostic services.

• OS services—the OS provides several services. For example, the management
of the central processing unit (CPU) time for tasks and interrupt service routines.
There are event mechanisms and protection mechanisms for time and memory
access if provided by hardware. The memory protection is only possible if the
controller has a memory management unit (MMU) or memory protection unit
(MPU). The AUTOSAR OS also provides mechanism for time synchroniza-
tion—e.g. to synchronize the internal schedule with an external clock, provided
by FlexRay.

1994 Higher Level Protocols

4.2.2.5 Application Abstraction Layer

The highest layer of the AUTOSAR-layered architecture is the interface to the appli-
cation. This application abstraction layer is the only interface of an AUTOSAR ap-
plication to the AUTOSAR basic software. No AUTOSAR application shall access
functions from the basic software direct. Out of the application perspective, there are
no tasks or interrupts anymore and basic software interfaces do not exist. This high-
est layer will be implemented only by one software module: the AUTOSAR RTE.

The RTE implements the connection of all communication paths and the ab-
straction of the runtime management. An AUTOSAR compliant application—
application software component—implements a software function. This application
software component consists out of a formal description in XML, the Software
Component Description (SWC-D) and the implementation in C source code. The
RTE itself will be generated with XML input data of the ECU configuration and all
the application software component descriptions. The API of the RTE depends on
the software components, their signal names and internal structure. The RTE is the
implementation of the virtual function bus (VFB), which is the core element of the
AUTOSAR architecture.

The VFB is the communication medium for all functions and provides sender/
receiver or client/server communication methods. In the world of the VFB, it is
not relevant where the function is executed and how the data are transported. The
“mapping” of functions to ECUs is part of the system design process—the result of
this process is the system description. The path for the signals will be defined by
the distribution of the application software components to real physical ECUs. For
the application it is irrelevant how the data are transported; this will be done by the
configured basic software and the RTE. A signal could be a direct result of a digital
input line or it could be a part of a CAN message (Fig. 4.17).

4.2.2.6 AUTOSAR Applications

AUTOSAR compliant applications are connected via the RTE to the basic software
platform. The API of the RTE provides many possibilities of designing an applica-
tion. In principle, the communication is running via “ports” and the activation of
runtime parts is done by the execution of the so-called “runnable entities”. The
communication ports can be of the type sender/receiver or client/server. The client/
server type represents the typical function call, which is needed to call, e.g. library
functions (e.g. mathematical functions). As already mentioned, the information
from where the RTE gets the data is part of the RTE configuration (which is part
of the ECU configuration). With this method it is possible to develop application
software and define later the final communication path for each input or output
signal. This is the basis for shifting application functions within the vehicle ECU
topology—one of the goals of AUTOSAR. An ECU is in future AUTOSAR systems
only one piece of the whole platform which host application software.

200 G. Feiter et al.

The requirements of the software components to their host environment are
described in a standardized formal format. This format, the software component
description, contains all information about the internal structure of the software
component: Communication ports are described with their interfaces as well as the
internal implementation details of the runtime parts. These runtime parts are called
runnable entities and part of the description is how they are executed respectively
by the event that triggers them. Trigger events can be set, e.g. by a cyclic clock or
by the reception of a signal (data-received event).

The goal of the RTE is to hide all lower software layers. As such RTE hides the
I/O driver layer and the communication layers as well as the access to the operating
system. The application developer shall not write source code with direct access
to counter, alarms and semaphores anymore. It is no longer necessary to define
tasks and control respectively configure the task activation in the OS configuration.
Instead, all runtime components of the applications will be represented by the run-
nable entities. It is the job of the RTE to manage all runnable entities, to map them
into OS tasks and hence to predefine parts of the OS configuration. With this ab-
straction, it is possible to design, develop and test application software components

Fig. 4.17  From model to implementation. (Elektrobit Automotive GmbH, AUTOSAR—RTE
User’s Guide)

2014 Higher Level Protocols

independent of the final architecture. The configuration of the RTE, with all the
architecture information, will be done later by the integration engineers (Fig. 4.18).

4.2.3 AUTOSAR Communication—An Example

4.2.3.1 Overview

The communication within an AUTOSAR architecture is running only across the
ports of the application software components. The characteristic of a port is defined
by its interface description. Available communication models are sender/receiver
model for the transport of signals and client/server model for the execution of (re-
mote) function calls. The receiver respectively the server can be on the same ECU
(the so-called intra-ECU communication) or on different ECUs (the so-called inter-
ECU communication). If the signals are shared across ECUs the data will be trans-
ported by the known automotive bus systems CAN, LIN and FlexRay.

With the abstraction of the communication channels, the bus protocols become
invisible for the application developers. These developers do not need to know the
details of the protocols or the register structure of the communication hardware mod-
ule. The CAN module will be controlled by the CAN driver, and the “packaging”
of the signals into CAN messages will be done by the COM module respectively by
the CAN interface. These standard modules will be partly configured by the system
configuration—there are communication parameters which have global validity. The
CAN identifier and the position of signals in CAN frames (FlexRay, etc.) for all
ECUs are the same and hence part of the system configuration. The message buffer
configuration of the CAN hardware (e.g. used in first in, first out (FIFO) mode, ring-

Fig. 4.18  Principle of a software component with ports and runnable entities (Elektrobit Automotive
GmbH, AUTOSAR—RTE User’s Guide)

202 G. Feiter et al.

buffer or other) is part of the ECU configuration and will be defined by an integration
expert who is integrating basic software with the application software.

4.2.3.2 Communication Path Through the Basic Software

AUTOSAR defines several modules which are taking part to send or receive a sig-
nal. On a first view, the modularity is complex and oversized. The advantages of the
clear separation of functionality seem to be bought very costly—if at each module
border, e.g. a buffer is needed to store the data temporarily. If each module is devel-
oped to be 100 % exchangeable the buffers may be needed, and if the modules are
bundled it is possible to apply optimizations across the borders with the result that
resources are not wasted. This can be done also if the configuration tooling has a
clear view to the overall configuration, knowing all the facts and hence be able to
provide an optimized configuration.

The following example shows how a signal will run through the AUTOSAR-
layered architecture from a sender to a receiver application software component.
The example refers to the CAN stack.

4.2.3.3 AUTOSAR Application

Within the application, information will be represented as a signal. For example, the
actual vehicle speed could be an 8-bit value from 0 to 255, representing the speed
in km/h. The port of the application, through which the signal is sent, is defined by
an interface containing an 8-bit data element. The interface and the data type are de-
fined within the software component description (XML). The generation of the RTE
will also generate a component header (C-code) where these data types are defined.
The RTE has two modes for the generation: In the contract phase, all c-headers with
all data definitions are generated which are needed by the application software com-
ponents (data types, constants, interface structures, function prototypes of the RTE
API, etc.). In the second phase, the RTE generation phase, also the implementation
of the functions will be generated. This is only possible if the complete path of the
signal is known, i.e. the receiver and the medium for transport are defined (another
software component on the same ECU, an output port of the microcontroller or
something on another ECU).

If the interface and data types are defined in the software configuration descrip-
tion, the port can be configured. The name of the port is later a part of the RTE-send-
API within the application software component. A runnable entity with the name
MyRunnable can call the send function of the port pPortname with the value Value
and data element Speed like shown in the following code-fragment:

2034 Higher Level Protocols

void MyRunnable (Rte_Instance self)
{
 static SpeedValueType Value = 0;
/* Compute Value */
…
/* Send Value */
 Rte_Send_pPortname_Speed(self, Value)
}4

The parameter self is the instance handle of the runnable entity which is calling this
function. This is needed to implement a methodology to use multiple instantiation
of one (code) identical application software component. It is similar to the “this”
pointer of a C++ class.

Calling the RTE send function will forward the value—depending on the con-
figuration—to the lower software layers of the AUTOSAR architecture.

4.2.3.4 AUTOSAR RTE

The RTE contract phase generates prototypes of the send function. The RTE genera-
tion phase will generate the content of the send function. The RTE generator knows
now the path of the signal. In this example, we assume that the signal shall be sent
to another software component on another ECU by using the CAN bus. Hence, the
RTE will forward the signal to the AUTOSAR COM module, which is responsible
for all external communication. At the “sender signal mapping” (part of the ECU
configuration), the interface data element of the port is mapped to a signal of the
COM module (in the example the signal with the name COM_SIGNAL_1). The
names can be different, but the data types have to be identical.

/* Rte_Send API function for DemoComponent */
Rte_StatusType Rte_Send_pPortname_Speed (SpeedType value)
{
 Status = Com_SendSignal (COM_SIGNAL_1, (void*) &value);
/* error handling, etc. */
}

If the receiver of this Speed-Signal would be on the same ECU, the implementation
of this function could write direct into the memory of the receiver component. If
this signal would be sent to a physical output port of the microcontroller, the I/O
hardware abstraction would be called. This makes visible how deep the implemen-
tation of the RTE depends on the configuration. The RTE is simply the C-code
representation of the configuration and unique for each ECU. In this example, the
path continues at the AUTOSAR COM module.

4 All used code examples are taken from the EB tresos AutoCore—they are only fragments and
not complete.

204 G. Feiter et al.

4.2.3.5 AUTOSAR COM

The COM module receives the signal from the RTE and executes the “packaging”
of the signal into a PDU. A PDU bundles several signals and will be forwarded to
the lower layers. In the opposite way, the COM receives PDUs, extracts the sig-
nals and triggers actions of the RTE (e.g. by calling COM-callback-functions which
fire an RTE event). The COM module implements many additional functions like
timeout monitoring, byte conversion, different notification mechanisms, different
transfer mode and so on. The lower levels of the communication stack do not know
“signals” any more—they only handle PDUs.

The C-code of the application function and the RTE was straightforward and
simple. The Com_SendSignal function of the COM module is very complex and
does not fit to one page of paper. The core functionality of this function is the
correct packaging of the signals into the PUD and the final triggering of the send
mechanism of lower layers. Depending on the signal type, the packaging is complex
or simple. A bool signal is easy; the correct placement of a byte array is more com-
plex. For all operations, it is important to keep the data consistency, and the access
shall be atomic. Hardware-specific library functions provide this atomic operation
by using microcontroller-specific atomic functions.

If the signals are placed at the correct position of the corresponding PDU, two
scenarios exist: If the PDU is send cyclic, it is sufficient to update the data—the
function returns without further actions. In another context of the COM module
all cyclic send operations will be processed independent, and the PDU will be sent
to the configured time slot respectively with the configured cycle time. If the user
defined, within the configuration, an instant sending of the signal or PDU, the lower
layers will be called direct. From the COM module the path continues to the PDU
router; the PduId for the message to be sent and a pointer to a complex data struc-
ture will be given to the transmit function:

PDU RouterPduR_ComTransmit(PduId, &pduinfo);

4.2.3.6 PDU Router

The job of the PDU router is to abstract the physical communication bus systems
from the higher software layers. By using static routing tables the PDU router trans-
fers PDUs from higher layers (e.g. the COM module) to lower layers (e.g. the CAN
interface) and vice versa. The static routing tables, e.g. for the Tx-PDUs, contain for
each PDU a target send function of the interface layer.

This is the first point in time where the concrete physical bus is relevant. The
example signal shall be sent via the CAN bus; hence, the PDU will be handed over
to the CAN interface. Defined by the configuration there exists a routing table
entry for this PDU with a send function pointer to the CAN interface function
CanIf_Transmit. The function PduR_ComTransmit itself is small and simple; it
collects some information out of the configuration data structures and forwards all

2054 Higher Level Protocols

to the correct interface function. In this example, it is called the CanIf_Transmit
function.

CanIf_Transmit(CanTxPduId, &pPduInfoPtr);

4.2.3.7 CAN Interface

The CAN interface is the last hardware-independent module in the AUTOSAR-layered
architecture; it has the job to connect the hardware-dependent CAN driver. The CAN
interface gets the PDUs from the above layers, adds the data the CAN driver needs
and implements buffering functions (if the hardware is occupied) and acknowledge-
ment functions for the send and receive signalling. Furthermore, the CAN interface
controls the operating modes of the CAN controller (sleep mode and error modes) and
signals changes of these modes to the higher layers (wake-up and bus-off).

The function CanIf_Transmit, which is called by the PDU router, takes the cor-
responding configuration for the given PduId and calls the CAN driver. The mini-
mal configuration-related information is, for example, on which CAN channel the
message shall be sent and which CAN ID shall be used. After assembling these
data the driver function is called. It is possible that the CAN interface is able to call
several drivers—e.g. if an external CAN module is used. In general, the on-chip
CAN modules will be supported by one single CAN driver; hence, the use case with
several CAN drivers is rare. The CAN driver function gets as parameter the unique
hardware transmit handle ( Hth) and a pointer to the data structure PduInfo, where
the CAN ID, DLC and a pointer to the payload data are stored.

Can_Write(CanIf_CTxPdus[txPduIndex].hth, &canPduInfo);

4.2.3.8 CAN Driver

The CAN driver is the last piece of the communication path of an AUTOSAR com-
pliant software platform. The driver initializes the register of the CAN module with
correct values and sets the right bits for actions or data transfer. The access to these
control and data registers will be provided by standardized functions to the higher
software layers. Another important functionality is the implementation of all inter-
rupt service routines Receive (Rx), Transmit (Tx), error, etc.). The driver receives
the data to be transmitted by the CAN interface, copies it into a hardware-mailbox
of the CAN controller and triggers the sending process. In the opposite direction,
the CAN driver signals the reception of a new CAN message via callback mecha-
nism, e.g. triggered by the receive interrupt.

Today’s CAN controller provides complex, intelligent mechanisms implemented
in hardware, for example, FIFO buffering or filtering mechanisms. Universal drivers,
easy to port and maintainable on various hardware platforms, use these hardware func-
tions not very often. For example, FIFO buffering implemented in software is not effi-

206 G. Feiter et al.

cient; respectively, the valuable resource CPU-time of the microcontroller is dissipated
in this case. With AUTOSAR, the hardware will become more comparable: With stan-
dardized interfaces, it is possible to do a benchmark test easier on the driver layer than
on the direct hardware layer. With this comparability on driver layer, it becomes more
important to have a highly optimized driver, which uses the available CAN control-
ler hardware mechanisms perfect to save other resources. This is also valid for other
protocol drivers, like the FlexRay driver, and of course for the peripheral drivers at all.

4.2.3.9 Conclusion

The AUTOSAR standard enables the possibility of microcontroller manufacturers
to provide highly optimized driver for their hardware. These drivers can be used by
the software vendors within their basic software platforms. With an overall accepted
AUTOSAR standard, the huge investment into the drivers and higher software layers
is safe—there is a chance to get a return on the investment. The CAN driver is now
a piece of a much bigger picture and standalone nothing special, but together with
the overall AUTOSAR concept, the model of a layered architecture makes sense.
A legacy software was able to access direct the lowest software layer—the drivers.
It prepares the data, implements all needed mechanisms and calls, e.g. Can_Write
direct. This direct access was implemented in the past ECU development very often.
Some developers already use quasi-standards for the driver layer to avoid double de-
velopment of the same functionality. Within the higher software layers some modules
were standardized, e.g. the OS was OSEK/VDX compliant. In future, it is needed to
get a high total reuse rate for each single piece of software. A standardized platform
like the described AUTOSAR platform gets more and more important for efficient
software development. The use of this platform pays off as soon as there are first
applications which can be completely reused for a second vehicle generation—not
to be developed again due to a “simple” hardware change (due to cheaper hardware
availability). Another contribution for cost reduction will be the reduction of integra-
tion effort for each single project: Due to standardized methods and increasing AU-
TOSAR knowledge in the overall development community, the integration will be
faster. This cost reduction will only take effect if the AUTOSAR standard is used by
many and every Tier 1 can use the same basic software platform for various OEMs.
The success or failure of this standardization of automotive software architecture is in
the hand of the AUTOSAR core members, especially the OEM. Only if all OEMs use
the AUTOSAR standard “as it is”, the overall AUTOSAR project will be successful.

4.3 Automotive Diagnostic Implementations on CAN

ISO 15765 Road vehicles—Diagnostic communication over Controller Area Net-
work (DoCAN) was initially developed in the late 1990s. The purpose of the docu-
ment set is to standardize the diagnostic communication-related OSI layers for the
purpose of diagnostic and normal message communication.

2074 Higher Level Protocols

ISO 15765 consists of the following parts, under the general title Road vehicles—
DoCAN:

• Part 1: General information and use case definition.
• Part 2: Transport protocol and network layer services.
• Part 3: UDS on CAN implementation (UDSonCAN; will be replaced by

ISO 14229-3 in 2010).
• Part 4: Requirements for emission-related systems.

Table 4.11 shows the relevant ISO and SAE standards as they are applicable to the
OSI layers and how they relate to the following categories (columns in Table 4.1):

• Vehicle manufacturer-enhanced diagnostics.
• Legislated On-Board Diagnostics (OBD).
• Legislated World-Wide Harmonized On-Board Diagnostics (WWH-OBD):

shows the legislator-approved ISO and Society of Automotive Engineers (SAE)
implementations.

The application layer (OSI 7) services for the:

• Vehicle manufacturer-enhanced diagnostics are defined in ISO 14229-3 UDSon-
CAN (former ISO 15765-3). This part of ISO 14229-1 is an implementation of
Part 1 onto CAN.

• Legislated OBD are defined in ISO 15031-5 Road vehicles—Communication
between vehicle and external equipment for emission-related diagnostics—
Part 5: emission-related diagnostic services. This standard is referenced by the
European Commission (EC) directives for EURO 4, 5, 6 (passenger cars and

A
pp

lic
ab

ili
ty

OSI
layers

Vehicle
manufacturer
enhanced di-

agnostics

Legislated OBD
(On-Board Diag-

nostics)

Legislated WWH-OBD
(World Wide Harmonized On-

Board Diagnostics)

Se
ve

n
la

ye
r a

cc
or

di
ng

 to
 IS

O
74

98
-1

 a
nd

IS

O
/IE

C
 1

07
31

Application
(layer 7)

ISO 14229-1
ISO 14229-3 ISO 15031-5 ISO 27145-3

ISO°14229-1
SAE J193
9, -71, -73

Presentation
(layer 6)

Vehicle
Manufacturer

specific
or ISO 22901

ODX

ISO 15031-2, -5, -
6,

SAE°J1930-DA,
SAE°J1979-DA,
SAE°J2012-DA

ISO 27145-2,
SAE °1930-DA,
SAE°J1979-DA,
SAE°J2012-DA,

SAE°J1939 Top Level

SAE J193
9 Top
Level

Session
(layer 5) ISO 14229-2 N/A

Transport
(layer 4)

ISO 15765-2
ISO°

15765-
2

ISO
15765-4

ISO 15765-4
/

ISO°15765-
2 ISO°

27145-
4

SAE J193
9-21

Network
(layer 3)

SAE J193
9-31

Data link
(layer 2) ISO 11898-1 ISO°

11898-
1, -2

ISO 15765-4
/

ISO°11898-
1, -2

SAE J193
9-21

Physical
(layer 1)

ISO°11898-2,
-3, -4, -5

SAE J193
9-15

Table 4.11  Enhanced and legislated OBD diagnostic specifications applicable to the OSI layers

208 G. Feiter et al.

light-duty vehicles (LDV)) and directives for EURO IV, V, VI (heavy-duty ve-
hicles (HDVs)). The technical equivalent standard of ISO 15031-5 is SAE 1979
E/E diagnostic test modes, which is referenced by the California Air Resources
Board (ARB) and Environmental Protection Agency (EPA) for the federal states.

• Legislated WWH-OBD is defined in ISO 27145 Road vehicles—Implementa-
tion of emission-related WWH-OBD communication requirements. This upcom-
ing standard is still under development (2010) and will long term replace the
ISO 15031-5/SAE J1979 standards. The legislators in Europe and the USA have
also approved several parts of SAE J1939 Recommended Practice for a Serial
Control and Communications Vehicle Network:
– SAE 1939-73, Application Layer—Diagnostics (includes DM—diagnostic

modes and data items: parameter group numbers (PGNs) and suspect param-
eter numbers (SPNs).

– SAE 1939-71, Vehicle Application Layer (includes normal in-vehicle com-
munication messages and data items: SPNs).

The presentation layer (OSI 6) services for the:

• Vehicle manufacturer-enhanced diagnostics are:
– either specific to the manufacturer or
– the manufacturer defines the diagnostic data according to ISO 22901, Road

vehicles—Open Diagnostic data eXchange (ODX).
• Legislated OBD are defined in:

– ISO 15031-2, Road vehicles—Communication between vehicle and exter-
nal equipment for emission-related diagnostics—Part 2: Guidance on terms,
definitions, abbreviations and acronyms with reference to the Digital Annex
of SAE°J1930-DA, electrical/electronic systems diagnostic terms, defini-
tions, abbreviations and acronyms (includes all standardized terms and
abbreviations).

– ISO 15031-5, Road vehicles—Communication between vehicle and external
equipment for emission-related diagnostics—Part 5: Emission-related diag-
nostic services with reference to the Digital Annex of SAE°J1979-DA E/E
diagnostic test modes (includes all standardized data items: parameter identi-
fiers (PIDs), test identifiers (TIDs), monitor identifiers (MIDs) and infoType
identifiers (ITIDs).

– ISO 15031-6, Road vehicles—Communication between vehicle and exter-
nal equipment for emission-related diagnostics—Part 6: with reference to the
Digital Annex of SAE°J2012-DA, diagnostic trouble codes (includes all stan-
dardized DTCs).

• Legislated WWH-OBD are defined in:
– ISO 27145-2 Road vehicles—Implementation of WWH-OBD communication

requirements—Part 2: Common data dictionary (CDD). This standard refer-
ences the same SAE Digital Annexes as ISO 15031 (emission-related OBD):

 ○ SAE°J1930-DA, electrical/electronic systems diagnostic terms, defini-
tions, abbreviations and acronyms (includes all standardized terms and
abbreviations).

2094 Higher Level Protocols

 ○ SAE°J1979-DA, E/E diagnostic test modes (includes all standardized data
items: PIDs, TIDs, MIDs, ITIDs).

 ○ SAE°J2012-DA, diagnostic trouble codes (includes all standardized DTCs).
 ○ SAE°J1939, top level (includes all standardized SPNs and PGNs).

The session layer (OSI 5) services are defined in ISO 14229-2 Road vehicles—
Unified diagnostic services (UDSs)—Part 2: Session layer services. This standard
provides a protocol-independent standardized service primitive interface between
application layer services and transport protocol/network layer services. This stan-
dard is not limited to the standards as listed in Table 4.11.

The transport protocol layer (OSI 4) and network layer (OSI 3) services are de-
fined in:

• ISO 15765-2 Road vehicles—DoCAN—Part 2: Transport protocol and network
layer services. This part of the standard is applicable to all three categories. The
legislated categories (OBD and WWH-OBD) have additional requirements de-
fined in ISO 15765-4, which are related to CAN identifier definition, transport
protocol timing, etc.

• SAE 1939-21, transport protocol is only applicable to WWH-OBD.
• SAE 1939-31, network layer is only applicable to WWH-OBD.

The data link layer (OSI 2) requirements are defined in:

• ISO 11898-1, Road vehicles—Controller area network (CAN)—Part 1: Data
link layer and physical signalling. This standard is applicable to all CAN net-
works independent of the upper OSI layer implementations.

• SAE 1939-21, Data link layer is only applicable to WWH-OBD.

The physical layer (OSI 1) requirements are defined in various parts of ISO 11898.

• Vehicle manufacturer-enhanced diagnostics can be implemented on any of the
following physical layer standards:
– ISO°11898-2, Road vehicles—Controller area network (CAN)—Part 2:

High-speed medium access unit (majority of automotive implementations).
– ISO°11898-3, Road vehicles—Controller area network (CAN)—Part 3: Low-

speed, fault-tolerant, medium-dependent interface.
– ISO°11898-4, Road vehicles—Controller area network (CAN)—Part 4:

Time-triggered communication.
• Legislated OBD is only allowed on ISO°11898-2, Road vehicles—Controller

area network (CAN)—Part 2: High-speed medium access unit.
• Legislated WWH-OBD is allowed on:

– ISO°11898-2, Road vehicles—Controller area network (CAN)—Part 2:
High-speed medium access unit.

– SAE J1939-15, Reduced Physical Layer, 250K bits/sec, Un-Shielded Twisted
Pair (UTP).

Figure 4.19 illustrates the most applicable application implementations utilizing the
DoCAN protocol.

210 G. Feiter et al.

Fig. 4.19  Diagnostic communication over CAN document reference according to OSI model

2114 Higher Level Protocols

4.3.1 OBDonCAN—ISO 15031 emissions-related OBD
on ISO 15765-4 DoCAN

With the introduction of ISO 15765 DoCAN as a legislator-approved emission-re-
lated system OBD data link the ISO 15031-5/SAE J1979 emission-related diagnos-
tic services/test modes have been slightly modified to benefit from the ISO 15765-
2 DoCAN transport protocol and network layer services standard. ECU response
messages, which used to be split into multiple response message for the non-CAN
protocols (SAE J1850, ISO 9141-2 and ISO 14230-4), are now assembled into one
response message, consisting of multiple CAN frames. The payload data of the
PDU are identical between all ISO 15031-5/SAE J1979-defined diagnostic mes-
sages (DMs).

The requirements and features of the OBDonCAN protocol can be summarized
as follows:

• Tester can request up to sic PIDs in a single functionally addressed request mes-
sage. Non-CAN protocols allow only for one PID in the request message.

• Either baud rate is allowed:
– 250 kBit/s
– 500 kBit/s

• A maximum of eight emission-related OBD ECUs is allowed to respond on ISO
15031-5 requests.

• Tester is only allowed to send functionally addressed request messages (11 bit
CAN ID = 0 × 7DF). Flow control from the tester and response messages from the
ECU use the physical request and response CAN IDs (Table 4.12).

• Vehicle manufacturer, which decides to use 29-bit CAN IDs on their CAN bus,
must use the 29-bit CAN IDs as specified in ISO 15765-4 (Table 4.13).

• The ISO 15765-2 DoCAN transport protocol and network layer services stan-
dard supports up to 4.095 bytes in a message. Reception of messages up to six (6)
or seven (7) data bytes is performed via reception of a unique N_PDU (Figs. 4.20
and 4.21).

• The ISO 15765-2 DoCAN multiple-frame message transfer. The flow control
mechanism allows the receiver to inform the sender about the receiver’s capa-
bilities. Since different nodes may have different capabilities, the flow control
sent by the receiver informs the sender about its capabilities. The sender shall
conform to the receiver’s capabilities (Fig. 4.22).

• The ISO 15765-2 DoCAN—Transport protocol and network layer services
timeout and performance requirements are more stringent in ISO 15765-4
(Table 4.14).

• The external test equipment shall use the following network layer parameter val-
ues for its FlowControl frames, sent in response to the reception of a FirstFrame
(Table 4.15 and 4.16).

212 G. Feiter et al.

4.3.2 UDSonCAN—ISO 14229-3

As mentioned earlier, UDSonCAN is originally based on ISO 15765-3. The revi-
sion of ISO 15765-3 currently under work at ISO will be published as ISO 14229-
3. The reason for the renumbering of the well-established standard in the automo-
tive industry is based on the fact that ISO 14229-1 UDS shall be implemented
on many different protocols and data links (CAN, FlexRay, Internet Protocol,
K-Line, etc.) according to the OSI model. Fig. 4.23 illustrates the implementation
concept of UDS.

ISO 14229-1 UDS specifies the DMs in a protocol-independent manner. This
document is currently under revision by the ISO TC22/SC2/WG1/TF5 diagnostic
requirements task force. All lessons learnt and implementation feedback from sys-
tem suppliers, vehicle manufacturers and tool suppliers is under implementation.

Table 4.12  11-bit legislated OBD/WWH-OBD CAN identifiers
CAN identifier Description
0 × 7DF CAN identifier for functionally addressed request messages sent by external

test equipment
0 × 7E0 Physical request CAN identifier from external test equipment to ECU #1
0 × 7E8 Physical response CAN identifier from ECU #1 to external test equipment
0 × 7E1 Physical request CAN identifier from external test equipment to ECU #2
0 × 7E9 Physical response CAN identifier from ECU #2 to external test equipment
0 × 7E2 Physical request CAN identifier from external test equipment to ECU #3
0 × 7EA Physical response CAN identifier from ECU #3 to external test equipment
0 × 7E3 Physical request CAN identifier from external test equipment to ECU #4
0 × 7EB Physical response CAN identifier ECU #4 to the external test equipment
0 × 7E4 Physical request CAN identifier from external test equipment to ECU #5
0 × 7EC Physical response CAN identifier from ECU #5 to external test equipment
0 × 7E5 Physical request CAN identifier from external test equipment to ECU #6
0 × 7ED Physical response CAN identifier from ECU #6 to external test equipment
0 × 7E6 Physical request CAN identifier from external test equipment to ECU #7
0 × 7EE Physical response CAN identifier from ECU #7 to external test equipment
0 × 7E7 Physical request CAN identifier from external test equipment to ECU #8
0 × 7EF Physical response CAN identifier from ECU #8 to external test equipment
While not required for current implementations, it is strongly recommended (and may be

required by applicable legislation) that for future implementations the following 11-bit CAN
identifier assignments be used:

0 × 7E0/0 × 7E8 for engine control module (ECM)
0 × 7E1/0 × 7E9 for transmission control module (TCM)

Table 4.13  Summary of 29-bit CAN identifier format—normal fixed addressing
CAN-Id ID bit position 28 24 23 16 15 8 7 0
Functional CAN IDId 0 × 18 0xDB TA SA
Physical CAN IDId 0 × 18 0xDA TA SA
Note: The CAN identifier values given in this table use the default value for the priority informa-

tion in accordance with ISO 15765-2

2134 Higher Level Protocols

ISO 14229-2 UDS specifies common session layer services to provide inde-
pendence between UDS (Part 1) and all network/transport protocols (ISO 15765-2
CAN, ISO/WD 10681-2 FlexRay, ISO/CD 13400-2 DoIP, ISO 14230-2 K-Line,
LIN, MOST, etc.).

Fig. 4.20  Example of a single-frame (SF) transmission

Fig. 4.21  Example of a multiple-frame transmission (segmentation and reassembly)

214 G. Feiter et al.

A common service primitive interface is specified between OSI layer 4 (Transport)
and layer 5 (Session) via the so-called service request/confirmation/indication primi-
tives. This interface allows seamless implementation of ISO°14229-1 UDSs with
any communication protocol titled “DoXYZ/CoXYZ” like ISO°15765 DoCAN—
diagnostic communication over controller area network, ISO°13400 DoIP—diag-
nostic communication over Internet protocol, ISO°10681 CoFlexRay—communica-
tion over FlexRay, ISO°14230 DoK-Line—diagnostic communication over K-line.

ISO 14229-3 UDSonCAN is based on a common document template for UDS
implementations on a specific protocol like ISO 15765 DoCAN. This specific part
of ISO 14229 specifies implementation requirements related to the following:

• The diagnostic services to be used for diagnostic communication over CAN.
• The server memory programming for all in-vehicle servers connected to a CAN

network with an external test equipment.

Fig. 4.22  Flow control (FC) mechanism

2154 Higher Level Protocols

It does not contain information related to any requirement for the in-vehicle CAN
bus architecture.

Figure 4.24 illustrates all referenced documents according to the OSI layers.

4.3.2.1 UDSonCAN Services Overview

The purpose of Table 4.17 is to reference all UDSs as they are applicable for an
implementation of UDSonCAN. The table contains the sum of all applicable ser-
vices. Certain applications using this part of ISO 14229 to implement UDSonCAN
may restrict the number of useable services and may categorize them in certain
application areas/diagnostic sessions (default session, programming session, etc.).

Table 4.14  Network layer timeout and performance requirement values
Parameter Timeout value Performance requirement value
N_As/N_Ar 25 ms –
N_Bs 75 ms –
N_Br – (N_Br + N_Ar) < 25 ms
N_Cs – (N_Cs + N_As) < 50 ms
N_Cr 150 ms –

Table 4.15  External test equipment network layer parameter values
Parameter Name Value Description
N_WFTmax WaitFrame

transmission
0 No FlowControl wait frames are allowed for

legislated OBD/WWH-OBD. The FlowCon-
trol frame sent by the external test equipment
following the FirstFrame of an ECU response
message shall contain the FlowStatus FS set
to 0 (ClearToSend), which forces the ECU to
start immediately after the reception of the
FlowControl frame with the transmission of the
ConsecutiveFrame(s)

BS BlockSize 0 A single FlowControl frame shall be transmitted
by the external test equipment for the duration
of a segmented message transfer. This unique
FlowControl frame shall follow the FirstFrame
of an ECU response message

STmin SeparationTime 0 This value allows the ECU to send Consecutive-
Frames, following the FlowControl frame sent
by the external test equipment, as fast as possible

If a reduced implementation of the ISO°15765-2 network layer is done in a legislated OBD/
WWH-OBD ECU, covering only the above-listed FlowControl frame parameter values (BS,
STmin), then any FlowControl frame received during legislated OBD/WWH-OBD communi-
cation and using different FlowControl frame parameter values as defined in this table shall be
ignored by the receiving legislated OBD/WWH-OBD ECU (treated as an unknown network
layer PDU)

216 G. Feiter et al.

Service Id Description
0 × 01 Request current powertrain diagnostic data

The purpose of this service is to allow access to current emission-related data
values, including analog inputs and outputs, digital inputs and outputs and
system status information. The request for information includes a parameter-
identification (PID) value that indicates to the on-board system the specific
information requested. PID specifications, scaling information and display
formats are included in SAE J1979-DA

0 × 02 Request powertrain freeze frame data
The purpose of this service is to allow access to emission-related data values in

a freeze frame. This allows expansion to meet manufacturer-specific require-
ments not necessarily related to the required freeze frame, and not necessar-
ily containing the same data values as the required freeze frame. The request
message includes a parameter identification (PID) value that indicates to
the on-board system the specific information requested. PID specifications,
scaling information and display formats for the freeze frame are included in
SAE J1979-DA

0 × 03 Request emission-related diagnostic trouble codes
The purpose of this service is to enable the external test equipment to obtain

“confirmed” emission-related DTCs
Send a Service 0 × 03 request for all emission-related DTCs. Each ECU that has

DTCs shall respond with one (1) message containing all emission-related DTCs.
If an ECU does not have emission-related DTCs, then it shall respond with a
message indicating no DTCs are stored by setting the parameter of DTC to 0 × 00

0 × 04 Clear/reset emission-related diagnostic information
The purpose of this service is to provide a means for the external test equipment

to command ECUs to clear all emission-related diagnostic information. This
includes the following:

• MIL and number of diagnostic trouble codes (can be read with Service 0 × 01,
PID 0 × 01)

• Clear the inspection/maintenance (I/M) readiness bits (can be read with Ser-
vice 0 × 01, PID 0 × 01)

• Confirmed diagnostic trouble codes (can be read with Service 0 × 03)
• Pending diagnostic trouble codes (can be read with Service 0 × 07)
• Diagnostic trouble code for freeze frame data (can be read with Service

0 × 02, PID 0 × 02)
• Freeze frame data (can be read with Service 0 × 02)
• Status of system monitoring tests (can be read with Service 0 × 01, PID 0 × 41
• On-board monitoring test results (can be read with Service 0 × 06)
• Distance travelled while MIL is activated (can be read with Service 0 × 01,

PID 0 × 21)
• Number of warm-ups since DTCs cleared (can be read with Service 0 × 01,

PID 0 × 30)
• Distance travelled since DTCs cleared (can be read with Service 0 × 01, PID

0 × 31)
• Engine run time while MIL is activated (can be read with Service 0 × 01, PID

0 × 4D)
• Engine run time since DTCs cleared (can be read with Service 0 × 01, PID

0 × 4E)
• Reset misfire counts of standardized test ID 0 × 0B to zero (can be read with

Service 0 × 06)

Table 4.16  Emission-related diagnostic service definition OBDonCAN (ISO 15031-5 on ISO
15765-4)

2174 Higher Level Protocols

Service Id Description
0 × 05 Request oxygen sensor monitoring test results

Service 0 × 05 is not supported for ISO 15765-4. The functionality of Service
0 × 05 is implemented in Service 0 × 06

0 × 06 Request on-board monitoring test results for specific monitored systems
The purpose of this service is to allow access to the results for on-board diag-

nostic monitoring tests of specific components/systems that are continuously
monitored (e.g. misfire monitoring for gasoline vehicles) and non-continuously
monitored (e.g. catalyst system)

0 × 07 Request emission-related diagnostic trouble codes detected during current or last
completed driving cycle

The purpose of this service is to enable the external test equipment to obtain
“pending” diagnostic trouble codes detected during current or last completed
driving cycle for emission-related components/systems. Service 0 × 07 is
required for all DTCs and is independent of Service 0 × 03. The intended use of
this data is to assist the service technician after a vehicle repair, and after clear-
ing diagnostic information, by reporting test results after a single driving cycle.
If the test failed during the driving cycle, the DTC associated with that test shall
be reported. Test results reported by this service do not necessarily indicate a
faulty component/system. If test results indicate a failure after additional driv-
ing, then the MIL will be illuminated and a DTC will be set and reported with
Service 0 × 03, indicating a faulty component/system. This service can always be
used to request the results of the latest test, independent of the setting of a DTC

0 × 08 Request control of on-board system, test or component
The purpose of this service is to enable the external test equipment to control the

operation of an on-board system, test or component
The data bytes will be specified, if necessary, for each test ID in SAE J1979-DA,

and will be unique for each test ID
Possible uses for these data bytes in the request message are as follows:
• Turn on-board system/test/component ON
• Turn on-board system/test/component OFF
• Cycle on-board system/test/component for ‘n’ seconds
Possible uses for these data bytes in the response message are as follows:
• Report system status
• Report test results

0 × 09 Request vehicle information
The purpose of this service is to enable the external test equipment to request

vehicle-specific vehicle information such as vehicle identification number
(VIN) and calibration IDs. Some of this information may be required by regu-
lations and some may be desirable to be reported in a standard format if sup-
ported by the vehicle manufacturer. InfoTypes are defined in SAE J1979-DA

0 × 0A Request emission-related diagnostic trouble codes with permanent status
The purpose of this service is to enable the external test equipment to obtain all

DTCs with “permanent DTC” status. These are DTCs that are “confirmed”
and are retained in the non-volatile memory of the server until the appropriate
monitor for each DTC has determined that the malfunction is no longer present
and is not commanding the MIL on

Service 0 × 0A is required for all emission-related DTCs. The intended use of this
data is to prevent vehicles from passing an in-use inspection simply by discon-
necting the battery or clearing DTCs with a scan tool prior to the inspection. The
presence of permanent DTCs at an inspection without the MIL illuminated is an
indication that a proper repair was not verified by the on-board monitoring system

Table 4.16 (continued)

218 G. Feiter et al.

4.3.3 Development Trends

4.3.3.1 History

Today two CAN-based protocols exist which are legislator-approved protocols for
emission-related OBD:

• ISO 15031-5 on ISO 15765-4 OBDonCAN
• SAE J1939

ISO 15031-5 is technically identical with SAE J1979 and defines specific services/
test modes to exchange data with the emission-related system in the vehicle. The
services support the request of current PID information, stored freeze frame data,
readout of DTC: current, pending and permanent status, clearing of DTC-related
data, readout of monitoring test results, request control of on-board system (test or
component) and request of vehicle information.

Service Id Description

Permanent DTCs shall be stored in non-volatile memory (NVRAM) and may not
be erased by any diagnostic services (generic or enhanced) or by disconnecting
power to the ECU

A confirmed DTC shall be stored as a permanent DTC no later than the end of the
ignition cycle and subsequently at all times that the confirmed DTC is com-
manding the MIL on (e.g. for currently failing systems but not during the 40
warm-up cycle self-healing process)

Permanent DTCs may be erased if:
• The OBD system itself determines that the malfunction that caused the per-

manent fault code to be stored is no longer present and is not commanding the
MIL on, e.g. three consecutive complete driving cycles with no malfunction,
or as specified by the OBD regulations

• After clearing fault information in the ECU (i.e. through the use of a diagnos-
tic service or battery disconnect):

• For monitors subject to minimum in-use ratio requirement, the diagnostic
monitor for the malfunction that caused the permanent DTC to be stored has
fully executed (i.e. has executed the minimum number of checks necessary
for MIL illumination) and determined the malfunction is no longer present,
e.g. one complete driving cycle with no malfunction or as specified by the
OBD regulations

• For monitors not subject to minimum in-use ratio requirement, the diagnostic
monitor for the malfunction that caused the permanent DTC to be stored has
fully executed (i.e. has executed the minimum number of checks necessary
for MIL illumination) and determined the malfunction is no longer present,
e.g. one complete driving cycle with no malfunction or as specified by the
OBD regulations and the vehicle has completed a standard driving cycle used
to increment the in-use general denominator

• Permanent fault codes may be erased when the ECU containing the perma-
nent DTCs is reprogrammed if the readiness status for all monitored compo-
nents and systems is set to “not complete” in conjunction with the reprogram-
ming event

Table 4.16 (continued)

2194 Higher Level Protocols

Fig. 4.23  Implementation concept of unified diagnostic services (UDSs)

Fig. 4.24  Overview of unified diagnostic services to the OSI layers

220 G. Feiter et al.

Diagnostic service name
(ISO 14229-1)

SID value SFID value Sub-function name

Diagnostic and communication management functional unit
DiagnosticSessionControl 0 × 10 0 × 01 defaultSession

0 × 02 programmingSession
0 × 03 extendedSession
0 × 04 safetySystemDiagnosticSession

ECUReset 0 × 11 0 × 01 hardReset
0 × 02 keyOffOnReset
0 × 03 softReset
0 × 04 enableRapidPowerShutDown
0 × 05 disableRapidPowerShutDown

SecurityAccess 0 × 27 0 × 01 requestSeed
0 × 02 sendKey

CommunicationControl 0 × 28 0 × 00 enableRxAndTx
0 × 01 enableRxAndDisableTx
0 × 02 disableRxAndEnableTx
0 × 03 disableRxAndTx

TesterPresent 0 × 3E 0 × 00 zeroSubFunction
SecuredDataTransmission 0 × 84 N/A N/A
ControlDTCSetting 0 × 85 0 × 01 on

0 × 02 off
ResponseOnEvent 0 × 86 0 × 00 stopResponseOnEvent

0 × 01 onDTCStatusChange
0 × 02 onTimerInterrupt
0 × 03 onChangeOfDataIdentifier
0 × 04 reportActivatedEvents
0 × 05 startResponseOnEvent
0 × 06 clearResponseOnEvent
0 × 07 onComparisonOfValues

LinkControl 0 × 87 0 × 01 verifyModeTransitionWithFixed-
Parameter

0 × 02 verifyModeTransitionWith-Specific-
Parameter

0 × 03 transitionMode
Data Transmission Functional Unit
ReadDataByIdentifier 0 × 22 – N/A
ReadMemoryByAddress 0 × 23 – N/A
ReadScalingDataByIdentifier 0 × 24 – N/A
ReadDataByPeriodicIdentifier 0 × 2A – N/A
DynamicallyDefineData-

Identifier
0 × 2C 0 × 01 defineByIdentifier

0 × 02 defineByMemoryAddress
0 × 03 clearDynamicallyDefinedDataIdenti-

fier
WriteDataByIdentifier 0 × 2E – N/A
WriteMemoryByAddress 0 × 3D – N/A
Stored data transmission functional unit
ReadDTCInformation 0 × 19 0 × 01 reportNumberOfDTCByStatusMask

Table 4.17  Overview of applicable ISO 14229-1 unified diagnostic services and data ranges

2214 Higher Level Protocols

Diagnostic service name
(ISO 14229-1)

SID value SFID value Sub-function name

0 × 02 reportDTCByStatusMask
0 × 03 reportDTCSnapshotIdentification
0 × 04 reportDTCSnapshotRecordByDTC-

Number
0 × 05 reportDTCSnapshotRecordByRecord-

Number
0 × 06 reportDTCExtendedDataRecordBy-

DTCNumber
0 × 07 reportNumberOfDTCBySeverityMas-

kRecord
0 × 08 reportDTCBySeverityMaskRecord
0 × 09 reportSeverityInformationOfDTC
0 × 0A reportSupportedDTC
0 × 0B reportFirstTestFailedDTC
0 × 0C reportFirstConfirmedDTC
0 × 0D reportMostRecentTestFailedDTC
0 × 0E reportMostRecentConfirmedDTC
0 × 0F reportMirrorMemoryDTCByStatus-

Mask
0 × 10 reportMirrorMemoryDTCExtend-

edDataRecordByDTCNumber
0 × 11 reportNumberOfMirrorMemoryD-

TCByStatusMask-
0 × 12 reportNumberOfEmissions-Relate-

dOBDDTCByStatusMask
0 × 13 reportEmissionsRelatedOBD-

DTCByStatusMask
0 × 14 reportDTCFaultDetectionCounter
0 × 15 reportDTCWithPermanentStatus
0 × 41 reportWWHOBDNumberOfDTCBy-

MaskRecord
0 × 42 reportWWHOBDDTCByMaskRecord
0 × 55 reportWWHOBDDTCWithPerma-

nentStatus
ClearDiagnosticInformation 0 × 14 – N/A
Input/output control functional unit
InputOutputControlByIdentifier 0 × 2F – N/A
Remote activation of routine functional unit
RoutineControl 0 × 31 0 × 01 startRoutine

0 × 02 stopRoutine
0 × 03 requestRoutineResults

Upload/download functional unit
RequestDownload 0 × 34 – N/A
RequestUpload 0 × 35 –
TransferData 0 × 36 –
RequestTransferExit 0 × 37 –

Table 4.17 (continued)

222 G. Feiter et al.

The ISO 15031-5 diagnostic services are very specific to emission-related OBD
systems. The automotive industry has developed the so-called enhanced diagnostic
protocols like ISO 14230 Keyword Protocol 2000 and SAE J2190 E/E Enhanced
diagnostic test modes to be able to diagnose non-emission-related OBD systems as
well as the functionality beyond the requirements included in the legislation.

At the time when the emission-related systems of the HDVs were referenced in
the legislation (with EURO IV), the SAE J1939 protocol became an allowed data
link in addition to ISO 15031-5. Both protocols support the CAN bus but are very
different in their messages and functionality.

Since that time the HDV manufacturers have two choices to fulfil the emission-
related OBD regulations. Two different diagnostic tester implementations are re-
quired to diagnose the HDV’s emission-related OBD systems.

4.3.3.2 Requirements of the Legislators

The passenger car industry has harmonized the requirements for emission-related
systems in the vehicle (connector, diagnostic services, trouble codes, communica-
tion protocol, etc.) during the past two decades.

The HDVs are using two alternative communication protocols:

• ISO 15765-4
• SAE J1939/73

Both will exist in parallel for some period of time.
The United Nations Economic Commission for Europe (UNECE) World Fo-

rum for Harmonization of Vehicle Regulations (WP.29) decided to develop a global
technical regulation (GTR) concerning emission-related OBD systems for HDVs
and engines (UNECE GTR No 5—Technical requirements for OBD systems for
road vehicles). Consequently, a single OBD protocol is required to fulfil the com-
munication requirements of this future regulation.

The emissions control systems on highway vehicles are not the only systems
with OBD capability. The non-standardized diagnostics in all other systems in the
vehicle cause negative implications on maintenance and inspection procedures.
This was one of the driving factors of the WWH-OBD working group to design a
modular structure of the GTR such that further OBD functionalities for, e.g. safety-
related systems could be added any time in the future when appropriate.

The GTR consists of a base module (general requirements) and an emission-
related system module.

4.3.3.3 ISO 27145 WWH-OBD

WWH-OBD is one of the objectives of the GTR No 5. A single protocol solution is
highly desired by the legislators to be developed by the automotive industry.

2234 Higher Level Protocols

ISO TC22/SC3/WG1 Data Communication, SAE and JSAE (Japanese SAE) set-
up a joint task force to define the principles and concept for a future single protocol
solution. This activity started in early 2003 with a document from the WWH-OBD
informal group called:

GENERAL PERFORMANCE CRITERIA FOR HDV EMISSION-RELATED
OBD

Communication protocols
WWH-OBD meeting 6/7 November 2002—DECISION 10
This document included requirements related to the following topics:

1. Needs for a common HDV OBD Communication Protocol:
– Today, there exist two competing communication protocols for the applica-

tion of OBD to HDVs—SAE J1939 and ISO 15765.
– In the short term, it seems that both communication standards will exist in

parallel but the primary aim must be to have one common protocol, which
would be to the benefit of all sectors operating under the umbrella of “the
automotive industry”.

2. Needs for the legislator:
– The scope of the standard must include both current chassis control and emis-

sion control systems and must provide for the seamless addition of further
control systems (both simple and complex) as the market develops.

– The standard must offer the capability to react to the wishes of the legislator
in a quick and effective manner. This particularly encompasses the following
likely future requests:
a. the standard should be extendable to passenger cars and light commercial

vehicles and
b. the standard should offer the ability to retrieve the data necessary for in-

use compliance testing, e.g. to identify vehicle operation in/out of a “Not
to Exceed” (NTE) zone (if NTE remains a valid concept in the future),
cumulative time/distance travelled in/out of an NTE zone, operation of
auxiliary control devices, torque/load readings for engine testing or to
enable the use of portable emission measurement systems (PEMS).

– The standard must include the possibility for the application of wireless com-
munication between the OBD system and a remote interrogation unit.

– The standard must offer the ability to retrieve in-use OBD performance data,
e.g. OBD monitoring frequency, vehicle operation frequency and time of
operation.

– Clear and precise specifications within the communication protocol, with
minimal variations that will result in a minimum chance of difference in inter-
pretation that could lead to vehicles being produced that are unable to com-
municate fully with a generic scan tool (note: some vehicles may not actually
utilize hard-wired scan-tools in the future).

– Availability of test equipment that can verify that communication protocol
specifications are being adhered to on production vehicles.

3. Needs for inspection and maintenance (I/M) testing (roadworthiness testing or
roadside spot-checks):

224 G. Feiter et al.

– Clear identification of the class of each malfunction, i.e.:
 ○ Hierarchical safety-related malfunctions.
 ○ Malfunctions that result in pollutant emissions exceeding a pre-set legisla-

tive threshold.
 ○ Malfunctions that do not result in pollutant emissions exceeding a pre-set

legislative threshold, but which could result in pollutant emissions exceed-
ing a pre-set legislative threshold at some time soon.

 ○ Malfunctions that do not need to be covered by legislation but are neces-
sary for an efficient diagnostic and maintenance function.

– Ability to communicate ‘readiness’ data to confirm if the vehicle is ready to
be inspected and has not had its fault memory cleared recently 1 (e.g. key
starts/warm-up cycles/distance travelled since memory cleared, how many
diagnostics have run and been completed, ability to see if a previously active
fault has been cleared by a scan tool but not fixed).

– Ability to transmit roadworthiness-related fault information (e.g. malfunction
indicator (MI) status and MI commanding ‘on’ fault codes, odometer read-
ings, distance travelled with MI on, emission “severity/priority” of fault).

– Ability to transmit vehicle identification information 1 (e.g. vehicle identifi-
cation number (VIN), software version, odometer reading, engine ID, trans-
mission ID, vehicle weight rating/class information).

– Ability to help combat tampering 1 (e.g. unauthorized clearing of diagnostic
information).

– Ability to help identify tampered or corrupted software at the time of
inspection.

– Ability to help identify (potentially) tampered hardware at the time of
inspection.

– Ability to identify and retrieve roadworthiness-related information from all
electronic control modules (ECM, TCM, etc.) through a single process and by
wireless connection.

– Compatibility with I/M equipment ([connector], hardware, software etc.).
– Additional specific inspection needs (e.g. mode $ 08-type commands for

smoke opacity test etc.).
– Compatibility with potential future telematics-based vehicle systems, e.g.

bluetooth, IEEE 802.11b (or later specification).

4. Needs for the technician (i.e. repairer, replacement part maker, tool maker, etc.)
are as follows:
– Data update rates (e.g. how fast can real-time sensor data be displayed for

technicians, communication speed, ability to obtain multiple PID’s with sin-
gle requests etc.).

– Access to established and extendable to non-established chassis control
related fault codes and real-time data in a standardized manner.

– Mode $ 06 test results (data available in a standardized, understandable for-
mat without need to refer to a service book).

2254 Higher Level Protocols

– Freeze frame data (e.g. number of frames supported, data available in the
frame, usefulness of data in the frame to technicians).

– Ability to clear memory and exercise monitors (e.g. post repair) to reset readi-
ness codes for inspection and validation of repairs.

– Cost/compatibility/upgrade potential for new and existing service tools.

4.3.3.4 The WWH-OBD Task Force also Established Requirements Related
to Diagnostics and Flash Programming of ECUs.

Objectives agreed by the task force:

1. To achieve the timetable proposed and have a DIS available by January 2007.
2. To enable the separation of vehicle-level technology and communication stan-

dards from the tool-level technology.
3. Single ‘off-board’ protocol with a single set of services to communicate at a

minimum:
– OBD legislated data
– Enhanced diagnostic data
– Reprogramming

4.3.3.5 Decisions on How to Proceed with the Development Work:

1. The solution must encompass:
– OBD legislated diagnostics
– Enhanced vehicle diagnostics
– Reprogramming functionality

2. There is no desire to mandate something different for OBD legislated diagnostics
than that which is used for other vehicle data access.

3. The benefits this brings are as follows:
– Consistent use of services in development will improve the quality of the

protocol implementation.
– Consistent use of services will alleviate many of the currently identified com-

munication and data-formatting problems.
– Reduced development cost per vehicle module.
– De-proliferation of protocols and service sets across the automotive industry

will result in fewer implementation issues.
4. The combination of these functions will pave the way for the extension of OBD

diagnostics across the whole vehicle and vehicle type (HDV, medium-duty vehi-
cle (MDV) and LDV).

5. Existing automotive and IT standards will be recognized and analysed in deter-
mining the final solution:
– ISO 14229-1 (UDSs), ISO 15765-x and SAE J1939-x.

226 G. Feiter et al.

– Analysis of current IT standards, e.g. for transport and network protocols to
current automotive standards.

6. Recognize the need for common services and data:
– Analyse existing data definitions from SAE J1939–21/71/73 and ISO

15031–5/6.
– Re-use OBD legislated definitions.
– Explore the impact of hierarchical DTC’s.

7. Our vision of a ‘Single Solution’ encompasses the need for CAN, wireless and
wired Ethernet.

8. This vision provides a modular, structured methodology to achieve and support
wireless communications for OBD.

9. Our view of a ‘Single Solution’ across all vehicles is as follows:
– A single communication protocol for all off-board tester applications (e.g.

OBD, enhanced and reprogramming).
– A single set of services to retrieve and download information.
– A single set of OBD legislated data.
– A framework for the consistent ‘look and feel’ for the presentation of OBD

legislated data to the user.

Based on above-mentioned objectives and requirements from all parties involved an
implementation concept based on existing standards was developed and published
09/2006.

ISO/PAS 27145 Road vehicles—Implementation of WWH-OBD communica-
tion requirements consisting of four parts were developed:

• Part 1: General information and use case definition.
• Part 2: Common emission-related data dictionary.
• Part 3: Common message dictionary.
• Part 4: Connection between vehicle and test equipment.

Part 1 specifies three main use cases:

• Use case 1: Information about the emission-related OBD system state—The pur-
pose of this information package is to provide the minimum data set specified
as necessary by the WWH-OBD GTR to obtain the vehicle or engine state with
respect to its emission performance as specified in the WWH-OBD GTR. A typi-
cal use of this information package may be a ‘roadside check’ performed by an
enforcement authority.

• Use case 2: Information about active emission-related malfunctions—The pur-
pose of this information package is to provide access to the expanded data set
specified as necessary by the WWH-OBD GTR to determine vehicle readiness
and characterize the malfunctions detected by the OBD system. A typical use of
this information package may be a periodic inspection by enforcement authori-
ties.

• Use case 3: Information related to diagnosis for the purpose of repair—The pur-
pose of this information package is to provide access to all OBD data required by
the WWH-OBD GTR and available from the OBD system. A typical use of this

2274 Higher Level Protocols

information package may be the diagnostic servicing of the vehicle or system in
a workshop environment.

Part 2: Common emission-related data dictionary defines all regulatory emission-
related data elements of ISO/PAS 27145. A new part may be added in the future
upon availability of new legislated WWH-OBD GTR modules. The data elements
are used to provide the external test equipment with the diagnostic status of the
emission-related system in the vehicle. All data elements are communicated with
the UDSs as defined in ISO/PAS 27145-3 common message dictionary. Data ele-
ments are DTCs, PIDs, MIDs, TIDs/routine identifiers (RIDs) and ITIDs.

Part 2 defines three (3) different sets of data elements:

• A legacy (backward compatible) data set as defined in SAE J1939-71/-73 and
ISO 15031-5/SAE J1979, ISO 15031-6/SAE J2012.

• A unified data set (new data definition according to ISO/PAS 27145-2).
• A manufacturer data set (defined by manufacturer).

Part 3: Common message dictionary definition of ISO/PAS 27145 specifies the
implementation of a subset of UDSs as specified in ISO 14229-1. The diagnostic
services are used to communicate all diagnostic data as defined in “ISO/PAS 27145-
2 Common emissions-related data dictionary”.

The subset of UDSs derives from the requirements stated in the WWH-OBD
GTR. The common message set defined in this part is independent of the underlying
transport, network, data link and physical layer. This document does not specify any
requirements for the in-vehicle network architecture.

Part 3 includes a superset of a modified version of ISO 14229-1. Several sig-
nificant modifications are included in this part in order to support the data set of
SAE J1939, ISO 15031-5/SAE J1979 and ISO 15031-6/SAE J2012.

Part 4: Connection between vehicle and test equipment of ISO/PAS 27145 de-
fines the requirements to successfully establish, maintain and terminate communi-
cation with a vehicle that implements the requirements of the WWH-OBD GTR.
This requires plug and play communication capabilities of the vehicle as well as any
test equipment that intends to establish communication with a vehicle. This docu-
ment details all the OSI layer requirements to achieve this goal.

An ISO Publicly Available Specification (PAS) requires a worldwide ballot after
3 years of publication. The outcome of the ballot was to convert and establish ISO
27145 as an international standard with the addition of a Part 5 conformance test
and Part 6 external test equipment.

Figure 4.25 illustrates all referenced documents according to the OSI layers.
Two protocols are supported:

• ISO 15765 DoCAN (diagnostic communication over CAN).
• ISO 13400 DoIP (diagnostic communication over Internet protocol).

ISO 27145-1 defines the general structure of the documents and the WWH-OBD
applicable use cases as specified in the PAS.

228 G. Feiter et al.

Fig. 4.25  Overview of all referenced UDS or rather WWH-OBD standards

2294 Higher Level Protocols

ISO 27145-2 common data dictionary references the following documents con-
taining emission-related data definitions:

• SAE°J1930-DA, electrical/electronic systems diagnostic terms, definitions, ab-
breviations and acronyms (includes all standardized terms and abbreviations).

• SAE°J1979-DA E/E diagnostic test modes (includes all standardized data items:
PIDs, TIDs, MIDs, ITIDs).

• SAE°J2012-DA, diagnostic trouble codes (includes all standardized DTCs).
• SAE°J1939, top level (includes all standardized SPNs and PGNs).

ISO 27145-3 common message dictionary specifies the implementation of a subset
of ISO 14229-1 UDS diagnostic services.

ISO 14229-2 UDS session layer services define the standardized service primi-
tive interface between the OSI layer 5 (session) and OSI layer 4 (transport). Through
this interface the implementation of the UDS diagnostic services is independent of
the underlying communication protocols (CAN, IP). This is important when the
vehicle manufacturer is required to transition from CAN to Internet protocol based
on future legislation.

Table 4.18 provides an overview of the ISO 15031-5 OBD services and the map-
ping to ISO 27145-3 (ISO 14229-1 UDS) diagnostic services and associated sub-
functions and data ranges.

4.4 SAE J1939

SAE J1939 is a set of standards for both in-vehicle normal ECU to ECU com-
munication protocol and diagnostic communication protocol. The standards cover
relevant OSI layers and specify physical link (cable), how the messages are built
up, NMT, in-vehicle communication with data items, diagnostic communication
with DMs and data, name claiming and conformance test specification. Parts of the
set of standards are used in heavy-duty and medium-duty applications worldwide.

When SAE J1939 was introduced, CAN was not mentioned but it was soon
included. First, the -71 layer was introduced for normal in-vehicle communication
and later the J1939-73 diagnostic layer was introduced.

The protocol is used in HDVs including trailers, agricultural machines, off-road
equipment, boats and stationary engines and it has been discussed for residential
vehicles also. The main reason is that the protocol has been implemented in engine
control modules (ECMs) for medium-duty/heavy-duty diesel engines as a standard.

The situation in the USA is that a truck may be a chassis from an OEM, with an
engine from an engine manufacturer and a transmission from a transmission sup-
plier. It is possible for the customer of the vehicle to equip the vehicle with systems
from different suppliers. A fleet manager maybe have different truck brands (e.g.
Navistar, Volvo and Freightliner) but wants to keep the same engine manufacturer
(e.g. Cummings) for the complete fleet and the same for the different systems, e.g.
transmission and brakes.

230 G. Feiter et al.

O
B

D
 S

ID
IS

O
 1

50
31

-5
/S

A
E

J1
97

9
se

rv
ic

e
W

W
H

-O
B

D
 S

ID
, S

FI
D

IS
O

 2
71

45
-3

/IS
O

 1
42

29
-1

U

D
S

se
rv

ic
e

na
m

e
IS

O
 2

71
45

-3
/IS

O
 1

42
29

-1
 su

b-
fu

nc
-

tio
n

na
m

e/
da

ta
 ra

ng
e

(a
ll

da
ta

 a
re

 re
f-

er
en

ce
d:

 S
A

E
J1

97
9-

D
A

, J
20

12
-D

A
)

0 ×
 01

R
eq

ue
st

 C
ur

re
nt

 p
ow

er
tra

in

di
ag

no
st

ic
 d

at
a

0 ×
 22

, 2
-b

yt
e

D
ID

 (3
 P

ID
s m

ax
.)

R
ea

dD
at

aB
yI

de
nt

ifi
er

PI
D

s:
 0

xF
40

0–
0x

F5
FF

 (l
ow

by

te
 =

 P
ID

#)
0 ×

 02
R

eq
ue

st
 p

ow
er

tra
in

 fr
ee

ze
 fr

am
e

da
ta

0 ×
 19

, 0
 ×

 04
, 3

 b
yt

e
D

TC
#,

Fr

am
e#

 0
 ×

 19
, 0

 ×
 06

, 3
 b

yt
e

D
TC

#,
 E

xt
R

ec
or

d#

R
ea

dD
TC

In
fo

rm
at

io
n

re
po

rtD
TC

Sn
ap

sh
ot

R
ec

or
dB

yD
TC

-
N

um
be

r r
ep

or
tD

TC
Ex

te
nd

ed
D

a-
ta

R
ec

or
dB

yD
TC

N
um

be
r

0 ×
 03

R
eq

ue
st

 e
m

is
si

on
-r

el
at

ed

di
ag

no
st

ic
 tr

ou
bl

e
co

de
s

0 ×
 19

, 0
 ×

 42
, F

G
ID

, D
TC

St
at

us
-

M
as

k,
 D

TC
Se

ve
rit

yM
as

k
R

ea
dD

TC
In

fo
rm

at
io

n
re

po
rtW

W
H

O
B

D
D

TC
B

yM
as

kR
ec

or
d

FG
ID

 =
 F

un
ct

io
na

lG
ro

up
 ID

 (e
.g

.
em

is
si

on
s,

sa
fe

ty
, …

)
0 ×

 04
C

le
ar

/re
se

t e
m

is
si

on
-r

el
at

ed

di
ag

no
st

ic
 in

fo
rm

at
io

n
0 ×

 14
, g

ro
up

O
fD

TC
C

le
ar

D
TC

In
fo

rm
at

io
n

gr
ou

pO
fD

TC
 =

 3
by

te
 D

TC
 0

xF
FF

FF
F

fo
r a

ll
D

TC
s

0 ×
 05

R
eq

ue
st

 o
xy

ge
n

se
ns

or
 m

on
ito

rin
g

te
st

 re
su

lts
0 ×

 22
, 2

-b
yt

e
D

ID
 (M

ID
)

R
ea

dD
at

aB
yI

de
nt

ifi
er

M
ID

s:
 0

xF
60

0–
0x

F7
FF

 (l
ow

by

te
 =

 T
ID

of

 m
on

ito
r)

0 ×
 06

R
eq

ue
st

 o
n-

bo
ar

d
m

on
ito

rin
g

te
st

re

su
lts

 fo
r s

pe
ci

fic
 m

on
ito

re
d

sy
st

em
s

0 ×
 22

, 2
-b

yt
e

D
ID

 (M
ID

)
R

ea
dD

at
aB

yI
de

nt
ifi

er
M

ID
s:

 0
xF

60
0–

0x
F7

FF
 (l

ow

by
te

 =
 O

B
D

M
ID

#)

0 ×
 07

R
eq

ue
st

 e
m

is
si

on
-r

el
at

ed
 D

TC
s

de
te

ct
ed

 d
ur

in
g

cu
rr

en
t o

r l
as

t
co

m
pl

et
ed

 d
riv

in
g

cy
cl

e

0 ×
 19

, 0
 ×

 42
, F

G
ID

, D
TC

St
at

us
-

M
as

k,
 D

TC
Se

ve
rit

yM
as

k
R

ea
dD

TC
In

fo
rm

at
io

n
re

po
rtW

W
H

O
B

D
D

TC
B

yM
as

kR
ec

or
d

FG
ID

 =
 F

un
ct

io
na

lG
ro

up
 ID

 (e
.g

.
em

is
si

on
s,

sa
fe

ty
, …

)
0 ×

 08
R

eq
ue

st
 c

on
tro

l o
f o

n-
bo

ar
d

sy
st

em
, t

es
t o

r c
om

po
ne

nt
0 ×

 31
, 0

 ×
 01

, 2
-b

yt
e

R
ID

R
ou

tin
eC

on
tro

l
st

ar
tR

ou
tin

e,
 R

ou
tin

e
ID

 (e
.g

. 0
 ×

 01
,

0 ×
 02

, …
) 2

-b
yt

e
R

ID
 (l

ow

by
te

 =
 T

ID
 o

f s
er

vi
ce

 0
 ×

 08
)

0 ×
 09

R
eq

ue
st

 v
eh

ic
le

 in
fo

rm
at

io
n

0 ×
 22

, 2
-b

yt
e

D
ID

 (I
TI

D
)

R
ea

dD
at

aB
yI

de
nt

ifi
er

IT
ID

s:
 0

xF
80

0–
0x

F8
FF

 (l
ow

by

te
 =

 In
fo

Ty
pe

#)
0 ×

 0A
R

eq
ue

st
 e

m
is

si
on

-r
el

at
ed

 D
TC

s
w

ith
 p

er
m

an
en

t s
ta

tu
s

0 ×
 19

, 0
 ×

 55
, F

G
ID

R
ea

dD
TC

In
fo

rm
at

io
n

re
po

rtW
W

H
O

B
D

D
TC

W
ith

Pe
rm

an
en

t-
St

at
us

 F
G

ID
 =

 F
un

ct
io

na
lG

ro
up

 ID

(e
.g

. e
m

is
si

on
s,

sa
fe

ty
, …

)

Ta
bl

e
4.

18
  M

ap
pi

ng
 e

m
is

si
on

-r
el

at
ed

 sy
st

em
 O

B
D

 w
ith

 W
W

H
-O

B
D

 G
TR

2314 Higher Level Protocols

SAE J1939-71 makes the in-vehicle communication between the different ECUs
possible, no or small (e.g. tuning of ECU addresses) adaptions are needed.

The ECUs are more or less “of the shelf”.
The same situation for passenger car is that every OEM sets up his own network

protocol and all ECUs must be adapted to co-exist in the vehicle.

4.4.1 Structure of SAE J1939

The structure of SAE J1939 is the same as the OSI layers. The following stan-
dards will be focused on in this document: SAE J1939-21, SAE J1939-71 and SAE
J1939-73.

The lowest layers (SAE J1939-11 and SAE J1939-15) are almost similar to ISO
11898, i.e. -15 specifies an unshielded twisted cable and -11 specifies a shielded
twisted cable and the CAN bus speed is currently 250 kbps and the CAN identifier
length is 29 bits.

SAE J1939 is working on extending the CAN bus speed to 500 kbps.
SAE J1939-13 defines the connector, which is a nine-pin round Deutz connector

with two pins for CAN and two pins for SAE J1708 which is the physical layer of
SAE J1587. It is not allowed in the USA to use the SAE J1962 (“ISO” or D-shaped)
connector together with SAE J1939 protocol. This specific requirement does not
exist in Europe and Volvo truck and Volvo bus use SAE J1939 together with the
D-shaped connector.

The usage of J1939 is for controlling vehicle or engine application. SAE J1939-
71 is commonly used in heavy-duty applications for at least powertrain applica-
tions. Some OEMs use it also for complete vehicle applications.

There is an in facto agreement in the USA to use SAE J1939-73 for legislated
OBD diagnostics, and some OEMs use the same protocol as an enhanced protocol
for the complete vehicle and have implemented services for software download and
everything which is needed for workshop fault tracing and repair.

Trucks in the rest of the world usually have adopted an ISO protocol, usually ISO
14230 (“Keyword Protocol (KWP) 2000 on CAN”) or ISO 15765-3 (also known as
ISO 14229-3 or DoCAN).

The ISO protocol does not interfere with J1939-71 which is used for vehicle
control.

It is not allowed to implement both SAE J1939-73 and ISO 15765-4 for legislat-
ed OBD protocol. The reason is that independent scan tools will utilize an algorithm
to detect as to which type of legislated OBD protocol is implemented in the vehicle.
The algorithm is based on scanning through all allowed protocols and the tool stops
when it has detected the first protocol.

It would be too advanced for the tool to try to use two completely different pro-
tocols and combine the data.

232 G. Feiter et al.

The SAE J1939-73 is allowed for legislated OBD communication for US 10
emission legislation, Euro IV, Euro V and the upcoming Euro VI emission legisla-
tions.

Volvo is probably the only OEM in Europe which has implemented SAE J1939-
73 as legislated OBD protocol for Euro IV and Euro V emission legislations. The
company will transfer to ISO protocols in the future (Table 4.19).

4.4.2 SAE J1939-21 Data Link Layer

The SAE J1939-21 defines how the PDU is built up.
A SAE J1939 PDU consist of 3 bit priority (P), 1 reserved bit (R), 1 bit for data

page (DP), 8 bit for PDU format (PF), 8 bit for PDU specific (PS) and 8 bit for
source address (SA) plus up to 64 bit of data (8 byte) (Fig. 4.26).

• The priority bits set the priority during arbitration and 0 is the highest priority,
7 the lowest. A recommended priority is assigned to all PGNs listed in the stan-
dard, but the receiver should ignore the priority bits; this is due to the fact that
the priority may be changed.

• Reserved bit is not the CAN reserved bit, but reserved for future expansion of the
standard.

• Data page: All PGNs must be assigned to page 0 before page 1 is used.
• PDU format, PF, is used to determine the PGN.
• PDU specific, PS, can be either the destination address or a group extension. If

the PS is below 240 then it is a destination address, otherwise it is a group exten-
sion.
– Destination address: It specifies the ECU (or address) that should listen to the

message. 255 is a global address for all ECUs.
– Group extension: It provides 4,096 data groups per DP plus the 240 extra

PDUs (PS < 240). In total, there are (4096 + 240)*2 possible data groups.
• Source address is the ECU sending the message. The addresses are defined in

SAE J1939-81.
• PGN is based on reserved bit, DP bit and then 16 more bits.
• Data field: up to 8 byte of information in a single frame. Non-used data bits

should be set to non-available (padded to ‘1’), which would mean in practice that

Table 4.19  OSI layers as a function of the SAE J1939
Application layer SAE J1939-71 SAE J1939-73
Presentation layer – –
Session layer – –
Transport layer SAE J1939-21 –
Network layer SAE J1939-31 –
Data link layer SAE J1939-21 –
Physical layer SAE J1939-15 SAE J1939-11

2334 Higher Level Protocols

the CAN protocol will include bit stuffing and extend the number of bits in the
message.

Some messages are longer than one single CAN frame (8 byte), e.g. VIN which
consist of 17 ASCII characters. When a long message (up to 1785 bytes) should be
transmitted, it is possible to send the message as a segmented message using the
transport protocol function and there are two methods:

4.4.2.1 Transport Protocol (TP)

Method 1: Broadcast Announce Message, TP_BAM TP_BAM: A message with
a global address, which means that all ECUs listen to the message. The message
starts with a Connection Management (CM) message, PGN 00EC00 with a control
byte indicating TP_BAM and then the PGNs with an inter-frame time of minimum
50 ms. This method should not be used if it is not specified in the applicable standard
(i.e. SAE J1939-71, SAE J1939-73 or SAE J1939-03). The main reason is that all
ECUs have to listen to something which may be a message between one ECU and a
scan tool and therefore spend resources on a message which does not concern them.

One of the examples when a TP_BAM could be used is during scan tool initial-
ization before the tool knows which ECUs are installed in the vehicle. It can at that
time broadcast a message in order to identify all that support the service or data.

To identify if a vehicle is utilizing SAE J1939-73 as a legislated OBD protocol,
the DM 5 (Readiness 1) is used (Fig. 4.27).

Method 2: Connection Management, TP_CM The other method is called TP_CM:
A message is sent from point to point. The sending ECU sends a CM message indi-
cating Request to Send (RTS). The receiver responds with a Clear To Send (CTS)
with the number of packets (buffer size) it may accept and the sequence number of
the expected packet.

The parameter group, together with the data is then transmitted in several data
transfer messages (DT), wherein the first byte indicates the sequence number in
each case. It is possible to pause the communication and to abort. This method is
the preferred one when it comes to diagnostic communication to an off-board client
(scan tool) (Fig. 4.28).

Fig. 4.26  SAE J1939-21 PDU and the CN-identifier assignment

234 G. Feiter et al.

Request: Normal in-vehicle control data are sent periodically on the bus but
sometimes some data are needed and they are not usually sent on the bus. It is pos-
sible to request the data (or PGN) in those situations. One example is VIN which is
used to identify the vehicle by a scan tool. The VIN is 17 characters and there is no
need to send it periodically, so the scan tool needs to request the data from the ECU
which has the information.

Data: The ECU either sends a negative acknowledge, NACK, if it does not have
the data or respond to data. If one data element is not used in the PGN, then the bits
for that suspect parameter number shall be set to 1.

The response time is 200 ms but the requesting equipment needs to wait up to
1.25 s before it times out. The main reason is that bridges (gateways or routers) can
delay the message.

4.4.3 SAE J1939-31—Network Layer

The SAE J1939-31 network layer standard defines how a complete network should
be designed. The standard describes gateway and router functionalities (Fig. 4.29).

Gateways can be within the vehicle to isolate different buses from each other
(e.g. one private network for brake system, another network for the cab controller, a
third for powertrain) or to act as bridges between, e.g. a tractor and a trailer.

4.4.4 SAE J1939-71 71—Vehicle Application Layer

SAE J1939 has relationship to SAE J1587 which is usually implemented on SAE
J1708 bus.

J1939-71 defines signals for normal communication, point-to-point in-vehicle
communication. The signals are defined as SPNs.

Fig. 4.27  J1939 trans-
port protocol—broadcast
announce message

2354 Higher Level Protocols

The SPN is a fictive number which usually only exists in the standard and is not
seen on the bus, except for some services, e.g. DM 24 which reports which SPNs are
implemented as data stream, freeze frame parameters5 or test values.6

The SPN is defined with length and scaling information and is connected to a
PGN, which is more or less a part of the CAN identifier for the message.

Some SPNs, e.g. SPN 237 = VIN, are longer than a CAN frame and must be sent
as a segmented message.

5 Freeze frame is data which has have been frozen at the occurrence of the detection of a fault. The
intention is that the information in the freeze frame may help the service technician to reproduce
the conditions which existed when the malfunction was detected. Example of a freeze frame pa-
rameters are engine speed and ambient air temperature. The electronic control module will store
these two parameters when it detects a malfunction.
6 Test value is the value which is compared to the fault limits of a monitor to judge if the latest
evaluation was pass or fail. It can be seen as an analogue value of a fault (diagnostic trouble code),
e.g., if the test value is 0 × 8340 and the fault limit is 0 × 8000 then there should be a fault code
stored in the electronic control module.

Fig. 4.29  Connection between tractor and trailer via network bridges

Fig. 4.28  J1939 transport
protocol—connection
management

236 G. Feiter et al.

The SPN can be sent either on request (as for diagnostic information) or as a
periodic transmission.

The request of an SPN is done by requesting the PGN and then decoding the SPN
from the data field of the CAN frame (Fig. 4.30).

This specific PGN (EEC1) is transmitted as a function of engine speed, i.e. low
engine speed = low transmission frequency, high engine speed = high transmission
frequency. The SPN for engine speed is 190 and the value of SPN190 is 16,000.

In order to translate the information, which is received as the data field in a CAN
frame, it is just to copy the content of data byte 4 and 5 and multiply it to 0.125 and
the engine speed is given in rpm. The definition of EEC1 and the different SPNs can
be found in SAE J1939-71.

The other SPNs in EEC1 are 899 (Engine Torque Mode), 4154 (Actual Engine
Per cent Torque High Resolution), 512 (Driver’s Demand Engine Per cent Torque),
513 (Actual Engine Per cent Torque), 1483 (Source Address of Controlling Device
for Engine Control), 1675 (Engine Starter Mode) and 2432 (Engine Demand Per
cent Torque). The value of 15 in data byte 7 indicates “no information”.

4.4.4.1 SPN and Fault Information

Since the main purpose of SPN is for in-vehicle communication, i.e. from ECU A to
ECU B, then a fault information concept has been developed. The valid data range
for a 1-byte SPN is 0–250 and 0xFE is used to indicate that the source of the signal
cannot be trusted due to a fault and 0xFF indicates that the signal is not updated. It
is up to the receiving ECU to decide which default action it should take. It could be
that the latest valid data are used or a default value, e.g. 20 degrees as ambient air
temperature, is used in the application.

The method of using 0xFB–0xFF can be useful for normal in-vehicle communi-
cation, but it makes it impossible to store raw or un-defaulted data in a freeze frame
or to report un-defaulted data stream data to a scan tool.

Un-defaulted data are defined as the data after linearization and converted to an
engineering unit, e.g. the ADC measures voltage and uses a look-up table to convert
the voltage to a temperature.

The defaulted data are when a malfunction is detected and the value of the pa-
rameter is changed to, e.g. 20 degrees, or, if sent on CAN, to 0xFE to indicate to

Fig. 4.30  Example for number-dedicated SPNs

2374 Higher Level Protocols

another ECM that the signal is not valid. If the defaulted value is stored in a freeze
frame, then the data will not help the service technician, i.e. he/she will not know at
which temperature the malfunction was detected.

4.4.5 SAE J1939-73—Diagnostics

Diagnostic communications are based on SAE J1587 and include special PGNs
called DMs. They can be considered as equal to diagnostic services in ISO 15031-5
or ISO 14229-1. Most of the DMs are sent on request. The main exception is DM1
which is used as communication message to the instrument cluster in order to il-
luminate warning lamps. If the ECU does not support the request DM, then it will
respond with a NACK. The DTC contains the 19-bit SPN with a 5-bit failure mode
indicator (FMI) (Fig. 4.31).

SPN is the suspect parameter number of the failed component. FMI is the fail-
ure mode indicator (comparable to failure type byte of ISO 14229-1). The CM is a
conversion method, since there has been at least four different methods on how to
represent the DTCs. At the moment there is just one method, #4 Intel format with 19
bit SPN + 5 bit FMI and CM0, which is allowed for legislated OBD communication.
The other versions shall not be used. Finally, OC is an occurrence counter, which
counts the number of times the fault has been gone from an InActive (previously
Active) state to an Active state.

This method of using the signal as the part of the DTC is useful for simple diag-
nostic function, e.g. if an ambient air temperature sensor detects an electrical fault,
then it will be clear for the service technician on which signal he should check or
read. As said, this will work fine as long as there is a one-to-one relationship, i.e.
the monitor is based on one signal/sensor. OBD II usually requires more advanced
functions, e.g. the catalyst monitor for a gasoline engine maybe utilize the intake
manifold airflow sensor and the rear oxygen sensor plus some other sensor values
to check if the conversion ratio in the catalyst is OK. This is a multiple sensors to
one DTC scenario and it is not possible to read a single sensor anymore and the SPN
is more “fictive”. The detection mechanism of a fault is usually called a monitor.

Fig. 4.31  Example for SPN 190 trouble code (engine speed)

238 G. Feiter et al.

4.4.5.1 Fault Codes

The first DM for reading fault codes is DM1 to read active DTCs.
A DTC is active when it is detected after debounce filtering and the service is

intended mostly to inform the instrument cluster to illuminate an appropriate lamp,
red, yellow or white lamp. The DM1 service is sent periodically to the instrument
cluster. It includes 4 bits, 1 bit per warning indicator, i.e. malfunction indicator
lamp, red stop light, yellow warning and white information light. After the lamp
information, the fault codes are sent.

DM2: Previously active DTCs. The service is sent on request and includes the
warning light information plus all DTCs which are no longer detected as active faults.

The states for emission-related DTCs are more complicated after US10:
First, the DTC will show up as a pending DTC (DM6) in the first failed driving

cycle.
If the monitor fails in the next consecutive driving cycle, then it will transit to an

emission-related active DTC (DM12) and will not be reported in DM6. When the
DTC heals, it will transit to previously active emission-related DTCs (DM23) and
it will disappear completely after 40 fault-free warm-up cycles.

The DTC will also be reported as a permanent DTC (DM28) as long as the MI
is commanded on.

N.B. It is allowed to report a DTC as both pending and emission-related active
DTCs according to the standard, but any emission-related ECU which does will not
fulfil California legislation (Table 4.20).

A note must be mentioned regarding DM24 and DM25.
DM24 reports which SuspectParameterNumbers are implemented as data stream

parameters, as freeze frame parameters and as test values. It is not clear which
SuspectParameterNumbers should be reported as data stream parameters: All ac-
cording to legislation, all according to what is sent on the bus or those SuspectPa-
rameterNumbers that are broadcasted on request? The service is clearer on freeze
frame parameters since the freeze frame is well defined.

Requesting latest test value from a non-continuous executing monitor is the
same as Service $ 06 of ISO 15031-5, but first the DM25 is read and the SuspectPa-
rameterNumbers for test results are reported in the response.

The SuspectParameterNumber and the correct FailureModeIndicator (which is
not reported by DM25) must be put into the DM7 request. It may also be possible to
request FailureModeIndicator = 31 which means all FailureModes.

The response is sent by the ElectronicControlUnit as a DM30 response including
the SuspectParameterNumber and the FailureModeIndicator, followed by a SLOT
identifier which includes length and scaling information for the next parameter, the
TestValue. The SLOT identifier should always report that the TestValue has a length
of 2 bytes in DM30.

The TestValue is the value which the specific monitor compares with the fault
limits to judge if the result from the monitor is a pass or fail. The TestLimits are also
reported in DM30. The intention of DM7/DM30 is to show how close to the fault
limit the monitor is, e.g. if the TestValue is 90 % of the test limit, then the monitor

2394 Higher Level Protocols

could detect a failure during some conditions. The TestValues will usually differ
each time the monitor is executed since they are affected by component deviation,
component ageing and also driving and environmental conditions.

4.4.5.2 Scan Tool Initialization

The scan tool initialization procedure is easier than for a scan tool for ISO 15765-4
since there is currently only one allowed bus speed, 250 kbps and all Electronic-
ControlUnits shall utilize 29-bit CAN identifiers.

First, the tool will check for PGN 61444 EEC1 which is always transmitted
if there is an engine ElectronicControlUnit on the network. Then it will send a
DM5 Diagnostic Readiness 1 request as a BAM request. All ECUs that utilize SAE
J1939-73 will respond with the information of, e.g. the number of active DTCs, the
number of previously active DTCs, the monitor groups that have executed since last
clear DTC and the OBD compliance (similar to PID $ 1C of ISO 15031-5).

It is possible that vehicles prior 2010 in the USA do not utilize SAE J1939-73 for
diagnostic communication, and in Europe it is quite common to use SAE J1939-71

Table 4.20  Relation of emission-based diagnostics standards
ISO 15031-5 ISO 27145-3 SAE J1939-73

US10
SAE J1939-73
EURO VI

Request data
stream

Service $ 01 Service $ 22 SPNs + DM21,
DM5, DM 26,
DM32, DM33,
DM34

Request freeze
frame

Service $ 02 Service $ 19 04 DM25

Request pending
DTCs

Service $ 07 Service $ 19 42 DM6 DM41, DM44,
DM47, DM50

Request confirmed
DTCs

Service $ 03 Service $ 19 42 DM 12 DM42, DM45,
DM48, DM51

Request permanent
DTCs

Service $ 0A Service $ 19 55 DM28

Request previous
DTCs

Service $ 19 42 DM23 DM43, DM46,

DM 49, DM52
Clear DTCs Service $ 04 Service $ 14 DM 11 DM11
Request test results Service $ 06 Service $ 22 DM7, DM30 DM7, DM30
Command test Service $ 08 Service $ 31 DM8 DM8
Request infoType Service $ 09 Service $ 22 DM 19, DM20,

+SPN
DM 19, DM20,

+SPN
Note: ISO 15031-5 (SAE J1979) is allowed for legislated OBD communication for HDVs in the
USA and for HDVs until Euro VI legislation in Europe. It uses Service $ 01–0A for retrieving the
legislated communication. ISO 14229-1 (ISO 15765-3 DoCAN) is used for enhanced diagnostics
in both passenger cars and some HDVs. The Euro VI column shows that there is a different set of
DMs for fulfilling Euro VI legislation

240 G. Feiter et al.

together with ISO 15765-4/ISO 15031-5 for OBD communication. It is therefore
not enough to check the ParameterGroupNumber 61444 EEC1 to distinguish if the
vehicle utilizes SAE J1939-73.

The scan tool will build a list of the ElectronicControlUnits that has responded
to this request and the OBD compliance will be an input of the services that are
implemented. Table 1 of SAE J1939-73 states which DMs and which information
are needed to comply with different OBD legislations. It is not clear how to handle
smart sensors or smart actuators since these simple devices have a limited imple-
mentation of the diagnostic protocol. They have maybe only implemented DM1
active DTCs, DM11 clear DTCs, DM 19 CALibrationIDentification/Calibration-
VerificationNumber and DM5 for scan tool initialization, but the vehicle needs to
comply to FinalRegulationOrder 1971 which is for US10 legislation in California.

4.4.6 SAE J1939-81 81—NMT

SAE J1939-81 includes NMT, i.e. how to handle if two ECUs are connected to the
same network with the same ECU address. Normally two ECUs shall never share
the same SA, but in some type of vehicles, this may happen, e.g. a tractor with two
trailers with both trailers having a brake system.

It uses a NAME field and a method to claim addresses. If there are multiple
ECUs with same address, then the ECU with the lowest NAME will win and the
others have to claim other addresses. The claiming can be seen as an ECU address
arbitration. This works as the best in theory but there are problems in real life; the
ECUs detect bus-off before they could claim the address, they misunderstand the
response since maybe both ECUs respond to the same Name claim response and get
the same response, i.e. they cannot know if the data are intended for the own ECU
or the other ECU and both will react as for communication faults.

4.4.7 SAE J1939-84

The standard is a conformance test, but not equal to SAE J1699-3 for LDVs. The
J1699-3 is a conformance test for a complete vehicle and J1939-84 is a very thin test
specification for a single ECU. The implementation of the standard can also be down-
loaded as a Dynamic Link Library (DLL) on www.sourceforge.org. The standard is
used to verify that the application in the ECU fulfil the SAE J1939-73 standard.

4.5 CanKingdom

CanKingdom (CK), first published in 1990, is considered the ancestor of the CAN-
based higher layer protocols (HLP). In many respects, it is quite different from later
CAN HLPs:

2414 Higher Level Protocols

• It is not really a HLP; it is a meta-HLP, i.e. a protocol for constructing a protocol.
• It is not a communication protocol, but a system control protocol.
• It is designed to maximize the composability of a system.
• It is designed for achieving high performance at low cost throughout the life

cycle of a system.
• It is intended for hard real-time and safety critical systems.
• It is designed to allow a mix of time-triggered, event-triggered and sequential

schedules.
• It is designed to minimize development time of systems and modules by separat-

ing the system design and module design tasks as far as possible.
• It is designed to allow a system to be individually optimized at any time during

its lifetime.
• It is designed to allow changes between modes during run time, e.g. from normal

mode to a limp home mode.
• It is not compliant with the OSI model.
• CK uses a unique vocabulary for essential terms to make them unambiguous.

CK is based on an unorthodox approach to Distributed Embedded Control Systems.
Most CAN systems are based on the seven-layer OSI model, where the different
applications in a network are separated by an independent communication layer.
However, this approach can lead to severe timing and synchronization problems
because the timing of CAN messages is not controlled. A great advantage of CK is
that it allows the system designer to take full control of message transmissions by
scheduling them in time or sequence, as well as having unschedulable messages (as
alarms) to be transmitted when needed. In the approach for CK the whole system
is viewed as a combination of devices, such as joysticks, actuators, sensors, etc.,
all controlled by one imaginary application. This imaginary application is broken
down into a number of real sub-applications, with each sub-application residing in
a module of its own and integrated into the respective device. Sub-applications have
two parts: A local part takes care of everything needed for the device it resides in
and the other part interacts with other devices. In this way, we have two clear lay-
ers: an imaginary system layer and a module layer. The imaginary system layer is
brought to reality by a third “glue” layer that integrates the sub-applications with
each other. This glue layer provides a common application programming interface
(API) that is partly based on a serial communication. Thus, the communication is
not a separate layer as in the OSI model; it is an inherent part of the system, gluing
sub-applications together to run as one common real-time application. The restric-
tions imposed by the serial bus communication make the interfaces between the
respective sub-applications very clean and predictable in time and sequence.

CAN is the serial communication of choice and the basis of the glue layer in
CAN Kingdom. Each module has primitives of the glue layer that are completed by
information sent during a configuration phase. A specific system module containing
all necessary information needed to harmonize each module to the system require-
ments controls this phase. In this way, generic modules can be easily combined into
complex, high-performance systems. In a simple system, the system module can
be disconnected after the setup procedure. However, in more advanced systems,

242 G. Feiter et al.

the system module is an integrated part of the system, taking a monitoring and
supervising role during run time, allowing for hot swaps of modules, changing of
modes, etc. CK can be implemented in a modular way. A full implementation re-
quires roughly 5.5 K flash and 100 K RAM.

4.5.1 Background

In the early 1980s, the Swedish company Rovac developed an advanced factory au-
tomation system based on distributed embedded controllers. The whole factory was
seen as one big application that included robots, material supply, mould positioning,
heat control, etc. This application was broken down into as small pieces as possible
and each piece was executed in a separate micro-controller, physically integrated
into the device it controlled or monitored. As an example, a robot was constructed
of a set of actuators connected by structural parts, tubes and swivels. In this way,
special robots could be easily designed using standard parts. The micro-controllers
were grouped according to their functions and the members of each group were con-
nected to each other and to a central computer by a serial communication bus. The
central computer coordinated and supervised the groups to act in concert in a safe
manner. The concept, designated ‘Trainet’, turned out to be very flexible and effi-
cient, but the bit rate of the communication, 9,600 bps, limited the update frequency
to 25 Hz, i.e. any feedback control loop had to be executed locally.

When CAN became available in 1988, high-speed bus communication was avail-
able at a reasonable cost. As the concept of CAN is to minimize the need for run-
time bandwidth by defining as much as possible off-line, it was a perfect match with
the Rovac ideas. The combination of Trainet features and CAN resulted in CK, first
 published in 1990 by the company Kvaser. It was developed further and version 3 was
made available at CiA 1992 and reached a broader audience. CK v. 3 formed the basis
for the US DoD CDA 101 project for a common CAN-based protocol for different
types of airborne and seaborne targets. During the development period of CDA 101,
from 1996 until 2001, CK was further improved to meet the high requirements for any
aspect of an embedded CAN, such as adding improved support for hard real-time and
synchronization, composability, membership verification, safety, troubleshooting, etc.

Being a meta-HLP, CK is used as a base for proprietary HLPs, e.g. the Mercury
“SmartCraft” for pleasure boats and the Sauer–Danfoss “Plus+1” for off-highway
machines.

4.5.2 The Concept Behind CK

A cornerstone of the concept is the notion of a system: An electro-mechanical sys-
tem is constructed of a number of modules, each with an ECU that is connected to a
serial communication of some kind. Each module has a specific role in the system,
e.g. a steering wheel or joystick, a gearbox, a motor, an actuator, a sensor, etc. They

2434 Higher Level Protocols

are all connected as nodes in a system network. A system designer has to combine a
number of modules and make them perform in concert.

In this way, we have three concise layers:

• System layer
• Glue layer
• Module layer

The system is also seen as one big application, broken down into sub-applications
that reside in respective nodes and are coordinated by the glue layer. The glue layer
can then be seen as an API built upon a specific serial communication protocol.
The qualities of the glue layer are therefore highly dependent on the qualities of the
chosen communication protocol.

This concept has many advantages:

• The glue layer makes a clean and simple interface between interacting modules
as it is only control and data messages that are transmitted and received accord-
ing to need.

• Module designers can concentrate on the performance of the module and need
not know much about the system.

• The system designer has only to see to it that each module receives and transmits
messages as needed to perform in concert with the other nodes and does not need
to know much about each ECU.

• The performance of each module can be easily checked individually as a stream
of messages can be used to simulate the rest of the system. If the module re-
sponds to commands and is able to transmit messages according the specifica-
tion, it is OK.

• Modules and systems can be developed in parallel, saving time and money.

This concept does not fit the OSI model. The OSI model is based on a concept
where modules just need to exchange information and do not require any form of
coordination between communication sessions.

CAN is very well suited as the basis for a glue layer:

• It conveys 11–93 bits at a time from one node to all other connected nodes in a
safe, predictable way.

• Any bit rate between 10 kbps and 1 Mbps is supported.
• It can be used for any scheduled and/or unscheduled transmissions.
• Time scheduled, sequence scheduled and unscheduled messages can be transmit-

ted simultaneously with a guaranteed latency time.

4.5.3 Overview

CK is a glue layer based on CAN. It contains a set of rules—all in all 18—that
separate the module layer and system layer as much as possible. Only three of these
rules are mandatory (Table 4.21).

244 G. Feiter et al.

A full implementation of CK requires roughly 5.5 K flash memory and 100 K
RAM.

4.5.4 CK Vocabulary

In order to make the CK rules and functions unambiguous, it uses a unique vocabu-
lary and specific CK terms are spelt with a capital letter. The description is based on
a simile of a kingdom where the King in his Capital sets the rules for the Kingdom.
The Kingdom has Cities, each of them ruled by a Mayor. The Kingdom is designed
by a Kingdom Founder, i.e. the system designer and Cities by City Founders, i.e.
module designers. Any information exchange between Cities in the Kingdom is
made via a Postal System. The Capital and each City has a Post Office with a Post-
master (a CAN controller) (Fig. 4.32).

The only way to communicate within a Kingdom is to use Letters (CAN mes-
sages). Each Letter has an Envelope (CAN ID) and a Page (CAN data field). A Page
is built up of 0–8 Lines (bytes in the CAN data field) and a Line can be constructed
of 0–8 Dots (bits in a byte in the CAN data field). Pages are organized in Docu-

Table 4.21  Rules of the CanKingdom glue layer
Rule Description
1 Start/stop modes. To force a module to stop and go into silent mode Mandatory
2 Initiate. To establish an exclusive communication between a module and

the configuration tool
Mandatory

3 Assign CAN IDs to receive and transmit data in a module Mandatory
4 Assign groups. Make a module a member of a group to receive group

commands
–

5 Remove groups. To expel a module from a group –
6 Trigger setting. To make a module trigger a task on a message or an

event
–

7 Assigning modules to product or producer-specific groups –
8 Assigning a physical address to a module identified by its serial number –
9 Change the physical address of a module –
10 Bit timing register setting –
11 Inhibit time. To prevent a module from retransmitting a message until a

certain time has elapsed
–

12 Circular time base setup. To create a global clock –
13 Repetition rate and open window setup. To set up a time-triggered

communication
–

14 Giving common system wide identifications to messages or groups of
messages

–

15 Create CAN messages from local parameters –
16 Create CAN messages where the data field is extended into the ID field –
17 Creating bit filter masks –
18 Creating advanced message filters –

2454 Higher Level Protocols

ments. The Document is the key for the Cities to encode or decode the Pages. A
Document can contain one un-enumerated Page or more enumerated Pages. Cities
have matching Documents for coordinated tasks; one is set up for transmission and
the other ones for reception. The King uses a King’s Document to configure each
City. In this process, he assigns Envelopes to matching Documents. Then no CAN
ID (except the one for the King’s Document) is predefined and a system designer is
free to give any message its proper priority. A Document can contain not only data
but also tasks, e.g. a Letter with a blank Page or even a Letter for another City can
be used for triggering the execution of tasks in one or more Cities. A programmer
may see the transmission entities as threads (Fig. 4.33):

4.5.5 King’s Document

The King’s Document contains many Pages, one for each rule. The Kingdom
Founder has to implement all King’s Pages supported by any City he/she will use
in his Kingdom in order to set up each City in a proper way. The King’s Document
contains then at least three Pages (the mandatory rules) but also any Pages corre-
sponding to additional rules implemented by selected Cities. All King’s Pages use
the Envelope 0 (CAN ID 0 Std) as default. (This number can be changed if neces-

Fig. 4.32  Structure of CanKingdom

246 G. Feiter et al.

sary, but then each module has then to be updated before it is integrated into the
system.) The first Line (first byte in the CAN data field) is a Group or City address.
Any module in a system needs to have a physical address, a number between 1 and
255, before it is connected to the system. All Cities in the Kingdom belong to a
Group with the address 0. This address can be used for broadcasting purposes. It is
also possible to assign a City to additional Groups. The Group address is given by
the King and can be any number between 1 and 255 not used as a City address. This
feature can, for example, be used to freeze a part of the Kingdom in an emergency
situation. The second Line is the King’s Page number. Numbers 0–31 are reserved
for the core CK rules, 32–127 for future additions needed to enable the integration
of other HLPs. The numbers 128–255 can be used for City-specific needs. King’s
Page 0 is shown in Table 4.22.

4.5.5.1 Action Mode

It relates to actual City Mode and Communication Mode. The reset behaviour may
be different in different Communication Modes regarding stored bit-timing register
settings and stored parameter values. Action Modes have to be defined by the City
Founder. It is recommended that the City supports at least the following Action Modes:

• Run: The City is functional and operating.
• Freeze: The City takes a safe state, still responding to King’s Letters.
• Reset: The City performs a restart including the Start-up procedure in Sect. 9.

The 200 ms at 125 Kbit/s sequence may be omitted.

Fig. 4.33  Organizational structure of the CanKingdom messages

2474 Higher Level Protocols

Table 4.22  Form of the King’s Page 0

248 G. Feiter et al.

4.5.5.2 Communication Modes

• Silent: The Postmaster will be silent but still receives Letters and notifies the
Mayor when Letters are accepted. The Postmaster will transmit neither acknowl-
edgement bit nor error or overload frames.

• Listen Only: The Postmaster will be fully active but the Mayor will send Letters
only upon the King’s request.

• Communicate: Normal communication.

4.5.5.3 City Mode

City-specific modes, e.g. configuration mode, service mode, working mode, etc.
For each City Mode the City Founder has to define how the City will work on Ac-
tion Mode and Communication Mode commands from the King.

4.5.6 Mayor’s Document

Each Mayor has a Document with some Pages and an Envelope of his own by which
he can respond to the King. The King will broadcast a Base Number and the Mayor
will use the Envelope that equals the sum of the City Address and the Base Number.
The Mayor’s Pages 0 and 1 are mandatory (Table 4.23 and 4.24):

A City is fully identified by the Mayor’s Page 1 and 2. Any King’s Page can be
mirrored by a Mayor’s Page and the current setup of a City can be checked by ask-
ing for those Pages.

4.5.7 City Organization

The City Founder (the module designer) always knows what information his City
must receive and what it can transmit in different situations but frequently he does
not know how his City will be used in a specific Kingdom. It is only known by the
Kingdom Founder (the system designer). A convenient way for the City Founder
to escape the problem of how to receive and transmit information is to leave it to
the Kingdom Founder. This is done by organizing the City information into Lists
where selectable information blocks are referenced by records. Lists are enumer-
ated from 0 to 253 and each list can hold up to 256 records. The King can use some
King’s Pages to order the Mayor to construct new Pages by referring to records in
the Lists and place them in new Documents. In this way, modules can be optimized
to the system requirements and the use of bandwidth optimized as only required
data are transmitted. No profiles like the ones in CANopen and DeviceNet have to
be defined.

A full-blown City may have all of the following Lists:

2494 Higher Level Protocols

1. Document List: The King selects Documents for transmission and reception by
placing Documents into Folders. Available Documents are listed in Document
Lists. These Lists are of two different types: Receive or Transmit.

2. Page List: A City can offer the King the opportunity to construct Documents from
predefined Page Forms. These Forms are then listed in one or more Page Lists.

3. Line List: A City can offer the King the opportunity to construct Pages by pre-
defined Line Forms. These Forms are then listed in one or more Line Lists.

Table 4.23  Form for the Mayor’s Page 0

250 G. Feiter et al.

4. Dot List: A City can offer the King the opportunity to construct Lines by pre-
defined Dot Forms. These Forms are then listed in one or more Line Lists.

5. Item List: In a Compressed Page, data can be placed not only in the CAN data
field but also in the CAN ID field. A City supporting Compressed Pages or Let-
ters has an Item List where available constants, parameters, variables, etc. and
information about them can be found. By using references to List and Record
numbers, the King can instruct the Mayor where to place or read specific data
anywhere he likes in a CAN message. Data can then be extended into the CAN
identifier or integrated as a part of the identifier field.

4.5.8 The Folder

A Folder is the link between a Document and the Postal System. One or more Enve-
lopes are assigned to a Folder that contains one Document. A Folder Label contains
all necessary Postal information for the exchanging of Letters between Cities.

A City can have up to 256 different Folders for incoming or outgoing Docu-
ments. The Mayor puts the Documents for the information that he will send or

Table 4.24  Form for the Mayor’s Page 1

2514 Higher Level Protocols

receive into these Folders. The King will then assign Envelopes to Folders contain-
ing a Document of interest for the Kingdom. A Folder can be fixed, i.e. the Docu-
ment in the Folder is predefined or dynamic, i.e. the King can order the Mayor to
put a Document into a given Folder. The advantages of letting the King to decide
which Documents will be put into which Folders are that matching Documents in
different Cities will have a common identification throughout the Kingdom. The
disadvantage is that this requires some software and a City Founder may find it
too expensive and choose to have the Documents placed in fixed Folders to save
memory.

4.5.9 Folder Label

A Folder always has a label, the Folder Label. It contains the following information:

• Folder Number.
• Document List Number.
• Document Number.
• Transmit/Receive mark.
• The CAN Control Field according to the CAN specification.
• Remote Envelope(s).
• An Envelope can be set as “remote” according to the CAN specification by the

RTR bit. How RTR set to 1 is interpreted is dependent on the application cor-
responding to the Document in the Folder and has to be defined in the City docu-
mentation.

• Enable/disable the Folder.
• By disabling the Folder, any CAN communication by the application corre-

sponding to in this Folder is interrupted.
• Envelope(s) assigned to this Folder.
• Envelope(s) enable/disable.
• The use of an Envelope can be switched on or off with an enable/disable tag.

How a Page is identified in a Transmit Form List and put into a transmit Document
is depicted in Fig. 4.34. Receiving Cities use the same Page Form in their corre-
sponding Receive Document.

As shown, a City Founder (module designer) does not have to care about how
his module will exchange information with other modules in a system. He has de-
fined what information his module needs and the timing constrictions. He has also
specified what kind of information the module can make available to other modules.
A Kingdom Founder can later on adapt the module to the needs of his system by
transmitting King’s Pages at a start-up procedure and even dynamically tune it dur-
ing run time. Thus, the system designer can adapt and control the system using
the King in the Capital. Some diagnostics can only be made at the system level by
monitoring the traffic and getting internal information from modules. Any internal

252 G. Feiter et al.

status and parameter value in a module can be made available to the King in the
Capital. Consequently, any decision on what to do in specific situations can be left
to the system designer to decide among a set of alternatives.

A small CK system is depicted in Fig. 4.35. City 1 measures oil temperature
and City 2 measures water temperature. Each City only measures temperature and
makes the measured values available to the system. They do not have to know
what they are measuring and when to transmit. City 3 receives both temperature
values and has to distinguish between the two. This is easily done by assigning
an Envelope to the Temperature Transmit Document in City 1 and the same En-
velope to the oil temperature Receive Document in City 3. The temperature in
City 2 is connected to the water temperature in City 3. With CK, no profiles are
necessary as the King can set up a City to match the needs of the system. The
module designer has great freedom to integrate a variety of options to meet the
requirements of different HLPs and profiles. The module can then be adapted to
a specific HLP and profile using proper King’s Pages at an end of line program-
ming. A system designer can also integrate modules made for other HLPs into
his system by adapting other modules to the runtime behaviour of the integrated
ones. Any HLP-specific start-up procedure, e.g. the “Duplicate MAC ID check”
in DeviceNet or “Address Claim” in J1939 can be simulated by the King to make
the integrated module happy.

Fig. 4.34  Identification of a sending system in a transmission document list

2534 Higher Level Protocols

4.5.10 Composability and Membership

The composability in CK relies on the King, i.e. the system needs to have a Capital
(a system node) and the start-up procedure. During the start-up procedure, all con-
nected Cities are identified. Any new City can be properly configured. For a safe
cold start, the following are necessary:
• Each module conducts a self-test.
• Each node connects to the CAN network in silent mode, i.e. without transmitting

ACK bits, and listens for a specific message at 125 kbps for 2 s.
• Switch to stored bit rate for the current system.
• When a valid message is received, the module switches to listen-only mode, i.e.

it participates in the CAN error checking and acknowledgement, but does not
transmit and waits for the King’s Page 1 with the Base Number.

• The King sends King’s Page 1, either with the Group Address 0 or with individ-
ual addresses, to make every module respond with its European Article Number
(EAN) and serial number (Fig. 4.36).

In this way, the King has complete control of the system. The King can check that
all anticipated modules are connected and working correctly before the system is
turned into runtime mode. During runtime mode, the King can supervise the system
and check for different types of errors as missed schedules, unauthorized bus traf-
fic, mismatching values, etc. The King can also act as a gateway to external tools
or systems and provide full documentation of the settings of each node and their
respective states.

Fig. 4.35  CanKingdom basics

254 G. Feiter et al.

If any module is set to a false bit rate, it will not disturb the network as it stays in
silent mode. An external setup tool (or the King) will always be able to connect at
125 kbit/s and correct the bit-timing register settings.

Fig. 4.36  CanKingdom setting

	Chapter-4
	Higher Level Protocols
	4.1 CANopen
	4.1.1 Profiles for the Lower Layers
	4.1.2 Device Model
	4.1.3 Network Management
	4.1.4 Transport Protocols
	4.1.5 Application Protocols
	4.1.6 Device Profiles
	4.1.7 Application Profiles

	4.2 AUTOSAR
	4.2.1 Introduction
	4.2.1.1 AUTOSAR Foundation
	4.2.1.2 AUTOSAR Concept
	4.2.1.3 New Methodology

	4.2.2 The AUTOSAR Platform
	4.2.2.1 Overview
	4.2.2.2 Microcontroller Abstraction Layer
	4.2.2.3 ECU Abstraction Layer
	4.2.2.4 Service Layer
	4.2.2.5 Application Abstraction Layer
	4.2.2.6 AUTOSAR Applications

	4.2.3 AUTOSAR Communication—An Example
	4.2.3.1 Overview
	4.2.3.2 Communication Path Through the Basic Software
	4.2.3.3 AUTOSAR Application
	4.2.3.4 AUTOSAR RTE
	4.2.3.5 AUTOSAR COM
	4.2.3.6 PDU Router
	4.2.3.7 CAN Interface
	4.2.3.8 CAN Driver
	4.2.3.9 Conclusion

	4.3 Automotive Diagnostic Implementations on CAN
	4.3.1 OBDonCAN—ISO 15031 emissions-related OBD on ISO 15765-4 DoCAN
	4.3.2 UDSonCAN—ISO 14229-3
	4.3.2.1 UDSonCAN Services Overview

	4.3.3 Development Trends
	4.3.3.1 History
	4.3.3.2 Requirements of the Legislators
	4.3.3.3 ISO 27145 WWH-OBD
	4.3.3.4 The WWH-OBD Task Force also Established Requirements Related to Diagnostics and Flash Programming of ECUs.
	4.3.3.5 Decisions on How to Proceed with the Development Work:

	4.4 SAE J1939
	4.4.1 Structure of SAE J1939
	4.4.2 SAE J1939-21 Data Link Layer
	4.4.2.1 Transport Protocol (TP)

	4.4.3 SAE J1939-31—Network Layer
	4.4.4 SAE J1939-71 71—Vehicle Application Layer
	4.4.4.1 SPN and Fault Information

	4.4.5 SAE J1939-73—Diagnostics
	4.4.5.1 Fault Codes
	4.4.5.2 Scan Tool Initialization

	4.4.6 SAE J1939-81 81—NMT
	4.4.7 SAE J1939-84

	4.5 CanKingdom
	4.5.1 Background
	4.5.2 The Concept Behind CK
	4.5.3 Overview
	4.5.4 CK Vocabulary
	4.5.5 King’s Document
	4.5.5.1 Action Mode
	4.5.5.2 Communication Modes
	4.5.5.3 City Mode

	4.5.6 Mayor’s Document
	4.5.7 City Organization
	4.5.8 The Folder
	4.5.9 Folder Label
	4.5.10 Composability and Membership

