
131

Chapter 3
Data Link Layer Implementation

Wolfhard Lawrenz, Florian Hartwich, Ursula Kelling, Vamsi Krishna,
Roland Lieder and Peter Riekert

W. Lawrenz (ed.), CAN System Engineering,DOI 10.1007/978-1-4471-5613-0_3,
© Springer-Verlag London 2013

W. Lawrenz ()
Waldweg 1,
38302, Wolfenbuettel, Germany
e-mail: W.Lawrenz@gmx.net

F. Hartwich
Robert Bosch GmbH, Tuebinger Strasse 123,
72703 Reutlingen, Germany
e-mail: Florian.Hartwich@de.bosch.com

U. Kelling
Infineon Technologies AG, Am Campeon 1-12,
85579 Neubiberg, Germany
e-mail: ursula.kelling@infineon.com

V. Krishna
Xilinx India Technology Services Pvt. Ltd.,
Cyber Pearl, Hi-tec City, Madhapur, Hyderabad 500 081, India

R. Lieder
Renesas Electronics Europe GmbH, Arcadiastrasse 10,
40472 Duesseldorf, Germany

P. Riekert
Ingenieurbüro für IC-Technologie, Kleiner Weg 3,
97877 Wertheim, Germany
e-mail: ifi@ifi-pld.de

3.1 � M_CAN—Modular CAN Controller

The modular controller area network (M_CAN) module was developed to expand
Bosch’s well-known family of CAN modules (e.g. the C_CAN module, which is
found in many microcontrollers) and support standardized (Automotive Open Sys-
tem Architecture, AUTOSAR) software drivers in particular, as well as applications
with multiple CAN channels. The M_CAN module’s internal partitioning in CAN
core, Tx Handler, and Rx Handler provides flexibility for easy adaptations to future
requirements. CAN messages are stored in a separate memory, the Message RAM,

132 W. Lawrenz et al.

not inside the M_CAN. The M_CAN module is compliant with CAN protocol
2.0 A, B, and ISO 11898-1. Figure 3.1 shows its internal structure.

All functions specified in the CAN protocol, such as CAN protocol control-
ler state machines as well as the shift registers for transmission and reception, are
implemented in the CAN core. This protocol unit has been adopted from earlier
CAN modules and is part of a direct line of development that begins with the in-
troduction of the CAN protocol. The CAN core’s interface signals are connected to
the rest of the M_CAN via a synchronization logic. This makes it possible to supply
the CAN core with a dedicated clock for CAN communication, whereas the rest of
the module is in the same clock domain as the host central processing unit (CPU).
For example, the CAN core might be operated with an 8 MHz crystal clock while
the CPU is supplied with a phase-locked loop (PLL) clock of significantly higher
frequency which—to limit noise emission—may also be modulated.

The Tx Handler controls the transmission of messages. The host CPU may
set transmission requests for several messages; transmit cancellation is also
supported. The Tx Handler then transfers the messages—according to the priority
of their identifiers—from the Message RAM to the CAN core’s shift register. Up to
32 dedicated transmit buffers are available. They may—partially or completely—be
combined to operate as a transmit first-in-first-out (FIFO) or as a transmit queue.
Status information regarding the requested transmissions, including a 16-bit trans-
mit time stamp, may be logged into the optional Tx Event FIFO.

Dedicated receive buffers and up to two receive FIFOs may be configured for the
reception of messages, under the control of the Rx Handler. The Rx Handler per-
forms acceptance filtering and transfers received messages into the Message RAM.
The following filter types are available for the acceptance filtering:

•	 Range filter: Matches for identifiers in the range from start identifier to end iden-
tifier.

•	 Bit masking: Matches for a specific identifier while some identifier bits may be
masked.

•	 Dual filter: Matches for two specific identifiers.
•	 Dedicated Rx: Matches for the identifier of a dedicated receive buffer.

The filters can each be used as acceptance or as rejection filter; they also decide
where accepted messages are to be stored. In total, up to 128 filter elements may
be configured for 11-bit identifiers and up to 64 for 29-bit identifiers. This may be
combined with a global mask for 29-bit identifiers, in support of J1939 applications.
The various filter options allow a targeted filtering of received messages ensuring
that only messages which are relevant for the particular node are stored in the Mes-
sage RAM; others are rejected. The reception time, a 16-bit time stamp, is optionally
stored with the message.

The M_CAN module combines both qualities of the “Full CAN” concept and of
the “Basic CAN” concept. Received messages are stored in dedicated receive buf-
fers as well as in FIFOs; no software acceptance filtering is needed. The transmit
messages may be—depending on the application—stored in dedicated transmit buf-
fers or managed in a transmit FIFO or in a dynamic transmit queue.

1333  Data Link Layer Implementation

A 16-bit timer counter is available to check for timeout conditions in the han-
dling of the receive FIFOs and the Tx Event FIFO. Both the timer counter and the
time-stamp generation are clocked, via a prescaler, with multiples (1–16) of the
CAN bit time.

The configuration and control of the M_CAN module is done by the host CPU,
via the Generic Slave interface. Through this interface, the CPU also reads status
information from the CAN core, the Rx Handler, and the Tx Handler. The Generic
Slave interface may be connected to 8/16/32-bit CPUs.

The Generic Master interface is used to access the 32-bit-wide Message RAM
(single or dual channel). The CPU also has direct access to the Message RAM. The
transmit buffers, the Tx Event FIFO, the dedicated receive buffers, the receive FI-
FOs, and the acceptance filter elements are stored in the Message RAM, outside of
the module. The partitioning of the Message RAM can be configured flexibly (see
Fig. 3.2). A maximum of 1,216 (32-bit-wide) words can be used per M_CAN mod-
ule; the minimum size of the RAM is determined by the application.

Gateway (GW) configurations consisting of several M_CAN modules sharing
one Message RAM (see Fig. 3.3) can easily be set up. Access conflicts between the
M_CANs and the CPU are resolved by the attached RAM Arbiter state machine. No
modifications to the M_CAN module are required for their use in a GW. It is also
possible to connect several M_CAN modules to the same CAN bus, for example, to
enlarge the number of message buffers for that channel.

The interrupt flags of the M_CAN module signal status or error conditions of
CAN core, Tx Handler, and Rx Handler. The interrupt flags may be evaluated by
polling, or they may be assigned (individually) to one of two interrupt lines that are
connected to the host CPU.

Fig. 3.1   M_CAN block diagram

134 W. Lawrenz et al.

In addition to the normal operating mode, the M_CAN module provides sev-
eral test modes such as the bus monitoring mode to silently observe the CAN
communication or the loop back mode, in which the M_CAN treats its transmitted
messages as received messages. Self-test of the internal transmit and receive path
is possible without disturbing the communication on the CAN bus. A power-down
support (sleep mode) completes the feature list.

The M_CAN’s modular structure makes it easy to add new functions, such as new
communication features as CAN with Flexible Data Rate (CAN FD; see Sect. 3.3).
Another configuration of the M_CAN, with an additional frame synchronization
entity that supports Time-Triggered CAN (TTCAN; see Sect. 3.2), is also available.

Fig. 3.3   Connecting several M_CAN modules to a shared single-ported message RAM

Fig. 3.2   Message RAM configuration

1353  Data Link Layer Implementation

More information on Bosch’s Internet Protocol controller area network (CAN-
IP) modules can be found at the following URL: http://www.semiconductors.bosch.
de/en/ipmodules/can/can.asp

3.2 � IFI Advanced CAN

Prior to designing a CAN communication system, some decisions must be made.
Is the intention to apply a standard CAN controller, which performs the communi-
cation tasks together with a standard CPU, or is it intended to make use of a CPU
containing an integrated CAN controller or is it planned to integrate the CAN inter-
face into a field-programmable gate array (FPGA), perhaps in conjunction with a
CPU? In any case, however, an important criterion is to plan carefully how the CAN
controller shall be operated in order to avoid the CPU to be loaded with unneces-
sary tasks. Normally operation of all CAN controllers is based on the same basic
principle; some more or less mailboxes are installed along with a couple of filters
and masks. IFI Advanced CAN, however, takes another route.

The background for the development of the IFI Advanced CAN is not to launch
the n + 1st variation of a standard controller as an application-specific integrated
circuit (ASIC) but to combine the flexibility of an FPGA with a high-performing
and resources-saving integration. For that purpose, this controller provides multiple
parameters, which, in the compilation run for the FPGA code, are chosen in such a
way that only those resources of the FPGA are allocated which are really necessary
for the application.

This concept starts with the interface between CPU and controller (Fig. 3.4). As this
Internet Protocol (IP) core is designed for Altera FPGAs, the interface is a so-called
Avalon bus. This is a synchronous bus, allowing a dynamic adaptation of the bus width.
When the controller is intended to be used in conjunction with the CPU in an FPGA, it
is recommended to apply an Altera NIOSII CPU, which accesses the core with a data
width of 32 bits. On the application of an external CPU, a parameter selects the desired
data bus width of 8, 16, or 32 bits. This simplifies the connectivity for the designers.
The following will not go into details on the architecture of the Avalon bus interface,
but the structure of the controller will be enlarged, offering quite some specialties.

Fig. 3.4   IFI Advanced CAN block diagram

http://www.semiconductors.bosch.de/en/ipmodules/can/can.asp
http://www.semiconductors.bosch.de/en/ipmodules/can/can.asp

136 W. Lawrenz et al.

3.2.1 � Transmit Buffer

For offloading the CPU, a sufficiently large buffer memory is required, which in-
termediately stores the CAN messages ready for transmission until they are finally
transmitted by the CAN cell. For that purpose, most of the CAN cell implementa-
tions provide mailboxes into which the messages ready for transmission must be
written. If on top the transmission of messages is priority controlled by the control-
ler, a lot of software control is needed to know at what time actually a message
had been transmitted. IFI Advanced CAN does not make use of this method, but
applies a FIFO instead. The transmission of messages in the same sequence as the
CPU generates the messages is not only desired by many communication tasks but
also even much easier to handle. The number of messages which can be stored in
that FIFO can be controlled by a parameter between 30 and 254. Theoretically,
there is a case that due to a very busy CAN bus, a message never may be trans-
mitted because of always losing arbitration. A possible solution to that problem
would be to clear the FIFO and rewrite it with a different sequence. However, this
would imply that the user always had to know which messages are still waiting in
the queue. Even for this case, IFI Advanced CAN provides another way out. Any
message can be written into the FIFO in the normal way or a priority identification
may be assigned to the messages. Those messages are not written into the back of
the FIFO but into the front of the FIFO, while passing the queue. This architecture
avoids clearing the FIFO and memorizing the history by software. Therefore, three
functions are implemented:

•	 Removal of a message from the CAN cell, if it is not currently in the transmis-
sion process. That is to say, the bus is busy transmitting another message and
that message is waiting to be transmitted or that message had been interrupted
by an error frame and must be retransmitted. In both cases, that message can be
removed without corrupting any frames.

•	 The removed message must be written into the FIFO again as a not-yet-transmit-
ted message in order to guarantee that this message is not lost.

•	 The most important message is handed over to the CAN cell for transmission.

In order to make sure that this method is working smoothly even for more than one
message only, the FIFO buffer is switched into a last-in-first-out structure and iden-
tifications are assigned to all messages which are contained in the buffer. The iden-
tification enables the controller to recognize which messages still must be transmit-
ted. This concept enables the CPU to insert easily the messages into the buffer while
still maintaining control on the transmission. Each message ready for transmission
is written into the FIFO as a sequence of four addresses each 32 bits long containing
the following information:

•	 The addresses 2 and 3 reserve space for 8 data bytes.
•	 The address 1 contains the standard or the extended ID.
•	 The address 0 contains the data length code and the remote transmit bit as well

as an optional frame number. By this number, the controller knows whether

1373  Data Link Layer Implementation

transmission of this message must be controlled. In order to activate this function
any number greater than 0 must be inserted. After a successful transmission and
independently of any filter conditions, the controller writes this message into the
receive buffer together with this number and a 32-bit-long time stamp, if desired.
Writing into address 0 automatically enables transmission of the message.

Removing a message from a CAN cell can also be done without inserting another
message (Remove Pending Message). In case the node is only alone at the bus,
because the communication lines were disconnected, the node would continuously
retry to transmit the message. After reconnecting the node, the node would retrans-
mit the message again. A removal of the actual message together with a reset of the
transmit FIFO pointer enables once again the setup of the messages to be transmit-
ted. The number of message within the FIFO can also be read back.

3.2.2 � Masks and Filters

In order to ease the evaluation of received CAN messages, this controller provides
256 pairs of masks and filters. There is an object number assigned to each of the
filter pairs, which is written into the receive buffer after a successful check. Because
programming is done in two steps, each of the masks and each of the filters pro-
vide an additional bit. When applied, both of the bits must be set, in order to avoid
the controller to use non-valid combinations for comparison. This makes sure that
masks and filters can be reprogrammed even though the system is running. As only
those messages are written into the receive buffer which have passed the filter con-
dition, a filter can be applied as such to pass all messages. Setting a 1 in bit position
x of the mask defines that the value of the filter bit and the received Identifier (ID)
bit in position x must match. A 0 indicates that the comparison is switched off and
the comparator always would indicate a match.

3.2.3 � Receive Buffer

The receive buffer is FIFO organized. It can be parameterized to be 32–256 mes-
sages long. Each message is stored as a sequence of four messages.

•	 The address 0 contains the 8-bit-long frame number for messages which had
been transmitted by this controller itself, the object number as an identification
which of the filters had passed this message, the remote frame bit, as well as the
data length code.

•	 The address 1 contains the standard and extended ID.
•	 The addresses 2 and 3 contain the received data bytes.
•	 An additional address allows the receive time stamp of the message to be read.

138 W. Lawrenz et al.

In contrast to the transmit buffer, the FIFO pointer is only set to the next message
after confirmation of the read process by writing into a dedicated address. This
technique allows multiple read of each message as well as free choice of the se-
quence without the risk to lose data. Reading and clearing of the pointer is provided
in order to give any kind of control support to the applicant besides information on
interrupts.

3.2.4 � Time Stamp

The FIFO implementation of transmit and receive buffers safeguards the chrono-
logical sequence of the messages. But at any time for any message the generation
of a time stamp can be activated or a time stamp be read back respectively, in case
the application requests more precise information. Not all systems operate under the
same constraints; therefore, the time base is supplied by an external signal, which
internally is fed into a 32-bit counter. The actual value of the counter is stored and
assigned to the message when the acknowledge bit is recognized. This counter can
be separately read and reset for synchronization purposes.

3.2.5 � Conclusion

Depending on the application, either the standard component or the FPGA solution
may be better suited. Nevertheless, there are more and more arguments arguing for
an FPGA implementation. One of the pro-FPGA implementation arguments may be
the cancellation of standard components; another one is the continuously decreasing
costs of new FPGA product families. Furthermore, FPGAs provide an enormous
flexibility with respect to the number of required interfaces. If an application re-
quires more than one CAN node, just implement the number of CAN-IP cores as
needed. Furthermore, the increasing complexity of FPGAs offers new possibilities
up to the implementation of a complete system on one chip. In order to reduce de-
velopment time to a reasonable degree while complexity is rising, the application of
IP cores becomes a major issue.

The purchase of an IP core should not be based only on trust but on the option
to check the functionality before buying. Altera supports this option with its Open-
CorePlus concept. The desired IP core can be applied and tested without any restric-
tions as long as the FPGA is connected to the programming device. After cutting
this connection, the controller will still continue to operate for another hour until it
automatically stops. Another disadvantage of a standard component is that it only
provides exactly the functionality as specified in the data sheet. The flexibility of
the FPGA enables the designer to react on customer requests and to implement new
functions if required.

1393  Data Link Layer Implementation

3.3 � Renesas RS-CAN

As part of its most recent generation of microcontroller devices, Renesas is in-
troducing a new kind of CAN controller function. In contrast to previous im-
plementations, the RS-CAN module supports shared memory among several
channels, flexible sizes of memory areas used, and consequent assignment of
FIFO structures.

The RS-CAN module contains a proprietary CAN transfer layer from Renesas
which fulfils all the requirements of the ISO 11898, SAE J1939, and CAN 2.0B
standards.

Besides its capabilities for the full support of “Full-CAN” or “Basic-CAN” ap-
plications, there are interesting new ways the RS-CAN module can be used. Several
FIFO structures for reception and transmission allow streamed data processing, and
by combining this with the AFL (acceptance filter list), a very efficient CAN con-
troller hardware for GW applications is created.

The RS-CAN naturally also supports the conventional method of message pro-
cessing via message boxes in both the receive and transmit directions. Here, RS-
CAN can handle queued messages (with prioritized sending) concurrently.

The shared memory for all associated CAN channels allows easy transfer of
messages and signals from one channel to another. The RS-CAN hardware has a
built-in mirroring engine, which can perform this job on the message level without
any CPU interaction.

If the shared memory is used consistently, it is possible to assign individual sizes
of FIFO memories and filtering lists to the different channels, in order to tailor the
amount of memory resources available to each channel. In this way, a channel that
needs more data and filter resources can take advantage of another channel needing
less of these resources (Fig. 3.5).

3.3.1 � Properties of RS-CAN

One RS-CAN module supports up to eight CAN channels. The most popular im-
plementation includes three channels and its characteristics are described in detail
below (see Fig. 3.5).

•	 CAN protocol according to ISO 11898 (2.0B active), full functionality for exten-
ded identifiers and remote frames.

•	 Maximum baud rate: 1 Mbit/s. This baud rate can be achieved using a module
clock at 22 MHz and a transfer layer clock at 8 MHz, if the bit timing is set to
8 tq per bit. The transfer layer clock can be derived from a separate clock source,
by using a PLL bypass, for example.

•	 Identical hardware structure for all derivatives and channel configurations, which
allows easy porting of software. Compatible with AUTOSAR requirements.

140 W. Lawrenz et al.

•	 192 receive objects, shared flexibly by user configuration between
−	 up to 48 commonly shared receive message buffers for mailbox reception
−	 up to eight commonly shared receive FIFO units, variable in depth up to 128

messages per FIFO
−	 up to three multi-purpose FIFO units per channel (nine in total), variable in

depth up to 128 messages per FIFO.
•	 192 applicable acceptance filtering rules, including 29-bit identifier masking,

masking for remote and extended frames, data length control (DLC) filtering,
and GW hardware routing rules. Up to eight-way reception is possible, so that
a received message can be stored into up to eight different locations in parallel,
including an additional software identifier (Hardware Receive Handle (HRH)
number of AUTOSAR COM stack processing).

•	 16 transmit message buffers per channel (in total 48 buffers), assigned flexibly
by user configuration to either
−	 one transmission queue per channel (three in total), using a variable subset of

the transmit message buffers
−	 up to three multi-purpose FIFO units per channel (nine in total), variable in

depth up to 128 messages per FIFO
−	 up to 16 standard (direct) transmit message buffers per channel (48 in total).

•	 16 transmit history list (THL) entries per channel.
•	 Many interrupt sources, including:

Fig. 3.5   RS-CAN architecture

1413  Data Link Layer Implementation

−	 global error interrupt for DLC errors and lost messages
−	 reception interrupt for each receive FIFO unit (fill level of FIFO is adjustable

individually)
−	 reception interrupt for each multi-purpose FIFO unit (fill level of FIFO is

adjustable individually)
−	 transmit interrupt for each multi-purpose FIFO unit (adjustable either on

every message, or on the last sent message)
−	 transmit interrupt for each transmission queue (adjustable either on every

message, or on the last sent message)
−	 transmit interrupt for every channel, where the message buffer is not assigned

to a multi-purpose FIFO nor to a transmission queue
−	 transmit abortion interrupt for every channel
−	 THL interrupt for every channel (adjustable either on every new entry or on

fill level)
−	 error interrupt for every channel (adjustable on various and multiple error

sources).
•	 Time stamp of reception.
•	 Transmission delay timers.
•	 Individual activation and deactivation of channels.
•	 Diagnostic capability: automatic routing of received messages from selectable or

all channels to be output on another (diagnostic) channel.
•	 Diagnostic mirroring capability: automatic routing of received and sent mes-

sages from selectable or all channels to be output on another (diagnostic) chan-
nel.

•	 Self-test modes with internal and external (including transceiver) loop, to fulfil
ISO safety requirements.

•	 Listen-only mode for bus analysis purposes.

3.3.2 � Initialization of RS-CAN

3.3.2.1 � Operation Modes

The RS-CAN module is able to communicate with several CAN channels, where
each channel may have its individual configuration. For this reason, besides the
global operation mode, there are operation modes for each channel. After a hard
reset, the RS-CAN module is globally disabled, which means that all operation
modes are set to sleep mode. As a general rule, the operation modes of the channels
always follow the global operation mode in the direction of shutdown or stopping,
but the channels can only be moved into the activation direction if the global opera-
tion mode already has this state.

Sleep Mode  After its entry upon a hard reset, the RS-CAN module automatically
initializes its local RAM, where messages, lists, queues, and configurations are sto-

142 W. Lawrenz et al.

red. Consequently, all settings are well defined to start up values. There is no need
to clear any memory with software. The completion of the initialization process is
indicated by a flag.

The sleep mode disables the channels’ clocking in order to save power effectively.

Reset Mode  In this mode, the configuration can be changed. Global reconfiguration
covers the definition of the memory usage and global behaviour, such as setting the
AFL.

Within the channels, the reset mode allows users to set communication parameters
such as bit timing.

Operation Mode  A channel can be put into operation mode if this mode has already
been set globally. At this point, the CAN channel starts its communication on the
CAN bus.

3.3.2.2 � Test Modes

Within the operation mode of a channel, several test modes are available besides
regular operation.

Listen-Only Mode  All transmit functionality is disabled. This is also effective for
the bus acknowledgement and error/overload reporting on the CAN bus by the
transfer layer. The CAN channel behaves as a listener on the CAN bus, but it cannot
be seen by other bus participants. It is possible to use this mode to detect a valid
baud rate among a known selection.

Self-Test Modes  RS-CAN distinguishes between external and internal loops within
the self-test modes. In general, the self-test modes are used to verify the functiona-
lity and safety of the RS-CAN with software.

The internal loop modes allow internal communication to enable internal trans-
mitted messages to be received either in the same channel (using emulated bus
acknowledgement) or by other internal channels. In internal loop mode, the CAN
transceiver is not included, and the test messages are invisible for the other CAN
bus participants.

In external loop mode, the CAN transceiver is also included in the test loop.

In all self-test modes, the transfer layer is fully included in the test path.

3.3.3 � Transmission of Messages

RS-CAN includes four methods of sending messages: the classical use of message
buffers, sending from a transmit queue, streamed sending through a FIFO, and auto-

1433  Data Link Layer Implementation

mated routing by hardware (diagnostic and mirroring function). There are 16 trans-
mit message buffers available for each channel, and these are used and shared for all
these methods of sending messages. By means of sharing, all four sending methods
can be enabled at the same time for a channel. Thus, by sharing a channel between
several software applications, each application can use its favourite method. The
priority of transmission is evaluated on message-buffer level; this means that all
four methods of sending are in competition with each other according to the priority
rules, but every method may have its internal rules as well.

Figure 3.6 shows an example of a valid usage of the message buffers and how
they can be shared among the different sending methods.

3.3.3.1 � Sending from Message Buffers

Every message buffer that has not been assigned to a transmit (TX) queue, a FIFO
or to automated GW routing can be used in this way. When sending from a message
buffer, this single message competes in priority with the remaining 15 message buf-
fers. The message buffer stores all the information required to generate a valid and
complete frame on the CAN bus.

In addition, there is a flag to enable the generation of an entry in the THL after
successful transmission, and there is an optional pointer value (usable as AUTOSAR
HTH), which will appear in the THL, too. This allows tracing and defined process-
ing of transmit objects.

3.3.3.2 � Sending from Transmit Queues

Several message buffers can be grouped to form a transmit queue, always start-
ing with the uppermost buffer. Within this type of transmit queue, software simply
writes all its messages into one single message buffer (the uppermost one), and the

Fig. 3.6   Transmission of messages

144 W. Lawrenz et al.

RS-CAN hardware performs the sending according to priority rules. This method
has the advantage that the software does not need to check for a free message buffer.
RS-CAN indicates the fill state of the transmit queue.

3.3.3.3 � Sending from Multi-Purpose FIFO

A multi-purpose FIFO in transmit mode (TX) has its own memory area to queue
up messages. Again, software writes into a single location to feed in the messages,
and the RS-CAN hardware takes care of sending and fill-level indication. The dif-
ference between this and the transmit queue is that within a FIFO, the sequence of
messages will be kept, ignoring any priority rule (message identifier). One transmit
message buffer must be assigned to a FIFO.

3.3.3.4 � Sending from GW FIFO

If a multi-purpose FIFO is operated in GW mode, it can be assigned to be a recep-
tion target for other CAN channels, so that selected messages from them can be
routed to it. In this configuration, the RS-CAN hardware performs all the tasks for
this message routing without any necessary software interaction. Again, one trans-
mit message buffer must be assigned to every multi-purpose FIFO.

The key prerequisites for smooth operation of the GW are that incoming mes-
sages are well selected from the channels by using the appropriate access filtering
list (AFL) settings, and that the bus transport capacity of the output CAN channel
is sufficient.

There is only one task that remains for the software, and this is the supervision of
the FIFO overflow. If the configuration of the CAN channels allows (at least tempo-
rarily) more data to be routed through the hardware GW than the output channel can
transmit, the FIFO may run into overflow, so that messages are lost.

3.3.3.5 � Transmit History List

Every sent message can be recorded in the THL. The THL represents the confirma-
tion for the software that a message has been sent and acknowledged by another
CAN bus participant. The THL can generate interrupts on new entries or on fill level.

3.3.3.6 � Transmission Intervals

When using the FIFO methods for sending messages, the minimum interval between
two subsequently sent messages can be defined by an internal timer in RS-CAN.
This functionality is required to fulfil Transport Protocol requirements of ISO
15765-2 and to avoid a full bus load caused by one node.

1453  Data Link Layer Implementation

3.3.4 � Reception of Messages

The reception of messages in RS-CAN is possible using several methods, but every
method begins in the filtering section of the multi-reception handler. Here, the AFL
determines where a received message will go. For each received message, the AFL
is parsed for a match. If a match is found, the associated AFL entry contains up to
eight storage targets, which can be loaded in parallel with the message. Valid stor-
age targets are reception FIFO units, multi-purpose FIFO units, and a selectable
receive message buffer.

An AFL entry is shown in Fig. 3.7.
The AFL entry stores identifier values (ID) for the standard and extended identi-

fier frame formats of CAN, and associated mask flags, where the relevance of each
identifier bit (including remote flag bit RTR and extended flag IDE) can be masked.
Masked bits will be set as “don’t care” for the filtering; this works like a so-called
wildcard.

Reference DLC values can be entered for DLC checking. If a received message
matches the ID, but does not have enough data bytes as specified in the DLC speci-
fication of the AFL entry, it will not pass the filter.

Furthermore, the AFL entry contains several pointers:

•	 A flat RX direction pointer with its associated enable flag (FE). If FE is set, the
message will be stored in the receive message buffer with the number of the
pointer value.

•	 One or several FIFO direction pointers. Here, each bit represents one of the avai-
lable receive or multi-purpose FIFO units where the message can be stored.

•	 An additional pointer (PTR) value which is a freely configurable value. This
value will be attached as a property with the message, so that an identification of
the message is possible. This functionality corresponds with the HRH values of
AUTOSAR communication stacks.

3.3.4.1 � Reception into a Receive Message Buffer

The receive message buffer stores the whole message including the PTR value and
a reception time stamp. Old data within the buffer are overwritten.

The method of storing a message in a receive message buffer is designed to be
used in conjunction with polled message reception, i.e. for non-interruptive infor-
mation, which is read and checked by software at certain intervals.

3.3.4.2 � Reception into a FIFO Unit

This kind of reception is used for streamed and interruptive data processing. Sort-
ing into different FIFO units makes it possible to distinguish between higher and
lower priority messages. Every FIFO unit can be configured when its interrupt is

146 W. Lawrenz et al.

generated, depending on its fill level, even on every reception. Overflow of a FIFO
is indicated, too.

Like the message buffers, a FIFO entry also contains the PTR value and the re-
ception time stamp of the received message.

When receiving into a multi-purpose FIFO unit, hardware GW operations are
possible. If enabled within a multi-purpose FIFO, its received messages can be
transmitted by another channel.

•	 In diagnostic mode, a multi-purpose FIFO can collect received messages from
one or several channels and send them to another channel.

Fig. 3.7   Access filtering list entry

1473  Data Link Layer Implementation

•	 In loop back and mirroring mode, a multi-purpose FIFO collects received and
transmitted messages from one (loop back) or several (mirror) channels, and
sends them to another channel.

•	 At the same time, while performing the hardware GW functions, the messages
can be copied into a standard receive message buffer, so that software can moni-
tor all messages processed by the GW.

3.3.5 � Summary

The RS-CAN module handles the increased complexity of current requirements for
CAN controllers. Streamed data processing support for GWs with high efficiency is
combined with flexibility in usage. Greatly enhanced filtering methods and shared
resources for all channels allow RS-CAN to be adapted to most application needs.
At the same time, the new structure of the RS-CAN hardware is smaller than those
of its predecessors.

3.4 � Infineon’s CAN Modules of the XC16x-
and XC2000/XE16x family

In this section, a short introduction to the two actual CAN modules of Infineon will
be given. Both standards comply to “CAN 2.0B active”. At the end of the section,
an example how to do a GW application with an XC2000/XE16x family device (a
16/32-bit-microcontroller family with up to CAN nodes) is shown.

3.4.1 � TwinCAN and MultiCAN from Infineon

The CAN modules of the current Infineon microcontroller families from Infineon
are defined in a scalable approach. The CAN modules have a message control block
and separated nodes, building one module. There it is possible to append the mes-
sage objects to the node, wherever they are needed. It is possible to build FIFO
message buffers as well as an automatic rerouting of messages, the so-called GW
function. The GW does not cost any CPU performance.

The implementation of the TwinCAN module can be found on the XC16x mi-
crocontroller family. The MultiCAN module is available on the XC2000 family as
well as on the 32-bit TriCore controllers and last but not least on the 8051-based
family, the XC8xx microcontrollers. Therefore, a porting of CAN code among the
families is given.

148 W. Lawrenz et al.

3.4.2  �TwinCAN

The TwinCAN module can handle standard as well as extended identifiers. It is able
to receive and transmit all identifier types.

•	 All 32 message objects:
−	 All message objects can be assigned to one of the two CAN nodes.
−	 All message objects can be used to receive or transmit.
−	 All message objects can be part of a FIFO structure with a size of power of

two.
−	 All message objects do have a local acceptance mask.
−	 All message objects do support frame counters for bus analysis (for example,

statistics).
−	 All message objects can be part of a GW.
−	 All message objects can be used for remote monitoring in the GW use case.

•	 Up to eight interrupt nodes can be assigned to interrupt events.
•	 All nodes support the analyser function (listen mode).

First, the structure of the module is shown. The TwinCAN module is having a block
of 32 message objects and two independent CAN nodes. Additional control logic
makes these three blocks to act as one module. Figure 3.8 shows the basic block
diagram of the TwinCAN module.

We start with a brief description of the message object function.

3.4.2.1 � Message Objects

Each message object has a local acceptance mask. Therefore, it is possible to re-
ceive a group of identifiers. The acceptance mask is ANDed to the identifier. A 0 on
a bit position means “don’t care” for the TwinCAN module. Message objects can be
part of a FIFO, a GW or one message object can build also a so-called Shared GW.

Fig. 3.8   Basic block diagram
of the TwinCAN module

1493  Data Link Layer Implementation

It is also possible to combine the FIFO and the GW feature. Each message object
can trigger a receive or a transmit interrupt.

Each message object can be part of a FIFO, which is described here.

3.4.2.2  �FIFO

With the TwinCAN module, the FIFO can consist of 2, 4, 8, 16, or 32 message
objects. In a system, where specific messages or message groups are coming in, in
a high frequency, the FIFO gives the possibility to buffer these messages until the
CPU is ready to read out these messages. The probability of overwriting messages
can be reduced. During reception, the CPU is not used, until the interrupt is trig-
gered, at a predefined level. The FIFO is also available for transmission, so that the
CPU can write all messages to be sent within one block and the TwinCAN module
will take care of the transmission to the bus.

In addition to the FIFO, a rerouting function is available, the so-called GW mode
(Fig. 3.9).

3.4.2.3 � Automatic GW

The GW function of the TwinCAN module allows interconnecting two different
bus systems. These two bus systems are allowed to run on different baud rates. No

Fig. 3.9   FIFO block diagram

150 W. Lawrenz et al.

CPU load will be generated. A message received on bus A will be copied to bus B
and depending on the settings, the transmission request can be set automatically;
the amount of data bytes can be reduced and/or the identifier can be changed au-
tomatically. This feature is quite useful also in combination with the GW feature.
The FIFO/GW combination allows to reroute messages automatically between two
buses running at different speeds, without overwriting message objects, or to buffer
their contents via software.

Figure 3.10 shows an example of the speed; information can be automatically
forwarded from the Powertrain module to the door module, to lock the door at
speeds greater than 30 km/h automatically.

In the following example, a message block of four messages having the same
identifier shall be routed to a bus running at a lower baud rate.

3.4.2.4 � FIFO/GW Combination

To route the messages from bus A to bus B (Fig. 3.11) in an optimal way, a message
object assigned to bus A has to be configured a source GW object and to point to a
four-state FIFO, assigned to bus B. This combination allows rerouting the messages
automatically and it does not cost any CPU performance after initialization. The
received messages are copied to the FIFO and the message will be sent according to
CAN prioritization rules. Software activities are only needed, in case the data bytes
are changed. No software interaction is needed, in case the data length core or the
identifier is changed. Be aware that in case the data length code is increased, the
new data byte will include a 0 × 0, if not changed by software.

Figure 3.10   Example: CAN gateway for automotive

1513  Data Link Layer Implementation

3.4.2.5 � Shared-GW-Modus

In case of sporadic messages, which shall be rerouted to the other bus, it is possible
to configure a single message object to be a GW. This is the so-called Shared GW
Mode. If a message is received, the message object switches to transmission on
the second CAN node. The message is sent according to CAN prioritization rules.
Depending on the settings, it switches back automatically. This feature only exists
on TwinCAN but not on its successor, the MultiCAN module.

Another feature of the TwinCAN module is the so-called analyser mode.

3.4.2.6 � Analyser Mode

Starting with TwinCAN, a so-called analyser mode has been introduced to Infineon-
microcontrollers. It is comparable to a listen-only mode. This feature gives the pos-
sibility to switch a CAN node silent. The CAN node will listen to bus and save the
understood messages with the corresponding identifiers into the message objects,
but is not taking part actively on the bus. The node will not send any acknowledge-
ment or any error signalling to the bus. If a baud rate detection is implemented, this
mode can be used to switch the node silent during the detection phase and not to
spam the bus with error messages. If the CAN module becomes active, the analyser
feature needs to be disabled, but not the complete node needs to be reconfigured.

With this feature, it is also possible to have both nodes on the very same bus,
but only one node is active. With the help of the reception on the second node, a
software comparison can be done. This is useful in case of safety application (higher

Fig. 3.11   FIFO/gateway running at different speeds

152 W. Lawrenz et al.

levels) to guarantee the correct reception. The analyser feature can also be applied to
disconnect a failing node which permanently disturbs communication from the bus
in order to enable the remaining still functional system to continue communication.

3.4.2.7 � The Interrupt System

TwinCAN has 72 interrupt sources; 32 interrupt sources are for reception and another
32 for transmission, as the very same message object can trigger a receive as well
as a transmit interrupt. (In case of a remote frame) For each CAN node, four status
and error interrupts are existing. The interrupt generation of the TwinCAN module
allows to have up to eight independent interrupt routines as eight interrupt nodes can
be assigned. Therefore, it is quite easy to have a well-defined prioritization among the
events. Thus, it is possible to assign a Peripheral Event Controller (PEC) or Direct
Memory Access (DMA) to a special message object, without having a complete inter-
rupt routine and having a fast copy process from the TwinCAN to the needed memories.

The successor of the TwinCAN module is the MultiCAN module. The Multi-
CAN module can be found on the XC2000/XE16x family, the XC8xx family, and
on all devices of the Audo Next Generation, Audo Future, and Audo MAX family.
By having the same CAN module over all families, the software compatibility of
over 8-, 16-, and 32-bit microcontrollers is given to a high extent.

3.4.3 � MultiCAN

Like for the TwinCAN module, first the core functions of the module will be ex-
plained briefly before discussing the most important point in very detail.

The MultiCAN module offers:

•	 CAN functionality, which is V2.0B active.
•	 A CAN bus analyser mode and baud rate detection mechanisms for each CAN

node.
•	 Up to 256 (dependent on the device) message objects that

−	 can be assigned to the CAN nodes
−	 can be used for transmission or reception
−	 offer the remote monitoring mode in case of GW
−	 have “Frame Counter Monitoring”.

•	 Acceptance filtering:
−	 Each message has its own local mask, which allows to receive a group of

messages.
−	 Each message object is able to receive and transmit messages in standard or

extended format, and by masking also both types can be received via the very
same message object.

−	 It is possible to have different prioritization rules on the internal arbiter, run-
ning on the message objects.

1533  Data Link Layer Implementation

−	 Each message object can be part of a FIFO of any size. The only limitation
is the absolute amount of message objects. The message objects are part of
a double-chained list and the FIFO is done in the very same structure. The
double-chained lists can be changed during runtime.

−	 Each message object can be part of a GW, rerouting messages from one CAN
bus to another.

−	 The list/a part of list can be rerouted to another CAN node at any time.
−	 Up to 16 interrupt nodes can be assigned to interrupt sources within the

module.

The MultiCAN module can include up to 256 message objects and eight CAN
nodes. Depending on the implementation, the amount of CAN nodes and mes-
sage objects can be different from one controller to another. For example, a
XC878 included two CAN nodes and 32 message objects, a TC1167/TC1767 has
two CAN nodes and 64 message objects, the TC1797 has four CAN nodes and
128 message objects and most family members of the XC2000/XE166 family
are available with six CAN nodes and 256 message objects. All members of the
Audo MAX family do include the MultiCAN module. Like the TwinCAN mod-
ule, the module is split between node logic and message objects. Node logic and
the message objects are combined and made on module by the control logic. The
message objects can be freely assigned to any of the nodes. However, they are
not part of a static structure, which is controlling the message objects, but they
are part of a list structure. Therefore, it is possible to reassign message objects
during runtime, but also to have FIFOs of any size. Figure 3.12 shows a block
diagram of the module.

Like on TwinCAN, each message object has a local mask, giving the possibil-
ity to receive a group of message identifiers. The flexibility of the FIFO has been
increased by using the list structure within the module. Therefore, all message ob-
jects (against TwinCAN being limited) can be part of a FIFO, GW, or FIFO/GW
combination. The message objects can be scattered over the RAM and do not need
to be behind each other.

Figure 3.13 shows an example, with a FIFO consisting of message objects
5, 16, and number 3. Message object 5 is the source object. The source object
does not need to be part of the FIFO. Message object 3 is the end of the list and,
therefore, pointing to itself. The current position within the FIFO is shown by the
pointer CUR(rent). The terminology in Fig. 3.13 is identical to that in the User’s
Manual.

With the help of the list structure, a GW can be built. In contrast to TwinCAN,
the number of the message object is no longer relevant to build such a GW.

As on TwinCAN, the FIFO and the GW feature may be combined to a GW/FIFO
feature. By using the list structure, it is possible to change the FIFO size during the
runtime to react flexibly on different busloads. For example, in case that a diagnosis
is activated, a different set of message identifiers becomes relevant and the software
is able to react to this change.

154 W. Lawrenz et al.

3.4.3.1 � Advantages of the MultiCAN

Besides the already explained list structure, the MultiCAN module is also having an
analyser mode. This allows, for example, auto-baud detection or supervision of in-
coming traffic for safety applications with a second node. A module internal counter
also allows calculating the amount of time quanta within one bit. By having such a
function, the automatic baud rate detection becomes easier.

Fig. 3.13   List structure of the MultiCAN

Fig. 3.12   Block diagram of the MultiCAN module

1553  Data Link Layer Implementation

On MultiCAN, a feature has been introduced to measure the actual transceiver
delay and to check if the bus termination is properly done. By being able to measure
the time between a falling edge being transmitted by the CAN node, until this fall-
ing edge is received, the actual transceiver delay can be measured.

3.4.3.2 � MultiCAN Supports CAN-Debugging

For safety critical applications, MultiCAN is giving some possibilities to support
fault tolerant implementations. An example is shown within this section.

If two CAN nodes are connected to the very same bus, we do have the possibility
as shown in Fig. 3.14.

Two CAN nodes, via two CAN transceivers, are connected to the very same
bus (Fig. 3.14, left). The advantage is at the same time the disadvantage of the
concept. Two transceivers are used, which means higher cost. As one mod-
ule shall only listen to bus, the transmit line does not need to be connected. The
comparison between the messages is done via software. Due to the fact that two
transceivers are used, also transceiver errors can be found, as two transceivers
are used.

In the right part of Fig. 3.14, a similar approach is shown, having only one CAN
transceiver. The advantage is on the cost side, having only one transceiver. The dis-
advantage remains that here transceiver errors cannot be found.

In case of having two separate modules, small disturbances can be seen on both
nodes at the very same time; therefore, such an issue remains undetected. The Mul-
tiCAN module helps to overcome the absolute synchronism.

Fig. 3.14   System with two redundant CAN nodes connected with two transceivers ( left) as well
as system with only one transceiver ( right)

156 W. Lawrenz et al.

3.4.3.3 � MultiCAN in Analyser Mode

As already described, the CAN node is only listening to the bus, if it is switched to
the analyser mode. It is not actively participating in bus traffic. The message objects
are assigned to the nodes. If the application needs a higher safety level and, there-
fore, has to test if messages are properly received, two nodes have to be on the same
bus, receiving the same messages, and the application has to compare the received
information. As the nodes are transferring the information not exactly at the very
same time, short time disturbances can be detected. Therefore, an erratic behav-
iour between the protocol machine and the nodes can be detected. The amount of
unknown errors, relevant for high-level safety applications can be decreased (only
necessary in case of Safety Integrity Level 3, SIL3, or Automotive Safety Integ-
rity Level C, ASIL C, and higher). This concept can be implemented with one or
two transceivers, depending on the safety level. A possible solution is shown in
Fig. 3.15; the grey line shows the solution with two transceivers. Node A is taking
part in the bus traffic, whereas node B is in the analyser mode. The messages are
saved with a small offset; therefore, short time disturbances become detectable. If
further redundancy is needed, both CAN nodes can be connected, so that in case of a
failure on node A, node B can take over and signal the situation to the network and,
in case required, take over the role of the active node. These concepts are especially
interesting for safety applications, for example, with the TC1387 designed for ASIL
C and SIL 3 applications.

In addition, the MultiCAN can be used to detect errors within bus termination.
The time between the first dominant edge and the sample point can be measured
(Fig. 3.16) with the frame counter, so bus extensions are made easier.

The analyser mode and the measurement of bus termination help to detect faulty
transceiver circuitries on a bus system.

Fig. 3.15   MultiCAN in
analyser mode

1573  Data Link Layer Implementation

3.4.3.4 � MultiCAN: Flexible Interrupts

MultiCAN has up to 16 interrupt nodes, called Service Request Nodes (SRN),
which can be assigned to interrupt events on the MultiCAN module. Each message
object can cause an interrupt on receive, transmit, or both. The frame counter can be
used to get time and message information. It is also having an overflow interrupt,
to enable a better monitoring of the CAN traffic. Therefore, the initialization is as-
signing interrupt events (Fig. 3.17) to interrupt nodes. All used interrupt sources are
mapped to an interrupt node (an interrupt node can handle more than one interrupt
source). This is done via bit-field setting. It is also possible to keep some interrupt
nodes on polling, but to handle others within an interrupt routine.

By having this variety of interrupt sources and interrupt nodes, it is possible to
have, for example, status information on a lower interrupt level or to poll these, but,
for example, error situations like a bus-off (Alert, ALRT) can be handled on higher
priority levels. Therefore, an appropriate reaction to an event can be assigned.

3.4.4 � The XC2000 Family in GW Applications—An Application
Example Using MultiCAN

Microcontrollers of the XC2000/XE16x family do have the “C166SV2 Core” with
MAC (multiplier-accumulator, set of digital signal processor (DSP) functions) unit.
The very high-end one even includes a cache. They are the logical progression of
the previous C16x and XC16x family. The CPU and the peripherals can run up to
128 MHz. The family members do have different MultiCAN modules, with differ-
ent amount of nodes and message objects. Most of the family members, besides
the very low-end one, do have six nodes and 256 message objects. In addition,
depending on the device, up to ten Local Interconnect Network (LIN) buses can

Fig. 3.16   Tx to Rx measurement

158 W. Lawrenz et al.

be handled, in the very high-end one of the XC2000 family, in which a FlexRay
module is integrated.

In this example, the CAN module is having six nodes and 256 message objects.
The XC2000 family is a scalable microcontroller family, scalable as the usage of a
different package will not cause a change in software.

The following example also works with the TriCore family and, in a restricted
way, also with the XC8xx family.

3.4.4.1 � GW Between Two CAN Bus Systems

In a GW application, different ways of message rerouting are needed. On the one
hand, there are messages, which simply need to be transferred to another bus; these
messages can be rerouted by the automatic GW feature. The GW mode is config-
ured to copy the complete message and to transfer it directly afterwards. Here no in-
teraction with software is necessary; all actions can be handled within the hardware.
Other messages have to be changed in some of the bytes. In this case, the GW mode
needs to be configured in such a way that the transfer to the destination message
object takes place, but there is no automatic sending, as the software still needs to do
the change. Nonetheless, a software transfer is not necessary. The transfer can be,
for example, signalled by an interrupt. The corresponding bytes are changed, a new
message transmission is requested, and the message object will take part in the in-
ternal arbitration process. Other messages need to be sent with a different identifier;
if it is always the very same, this change has to be done in the hardware, by using

Fig. 3.17   Assignment of interrupts

1593  Data Link Layer Implementation

the feature appropriately. In case the identifier needs to be changed depending on
the contents of the message, a software interaction is necessary. The basic actions
are comparable to the change of data bytes.

In Fig. 3.18, a GW consisting of two message objects is shown. Message object
5 is defined as the source object and number 9 as the destination object by the usage
of CUR. The different GW transfer features can be used as described above; they
can be found within the register MOFCRn (here n = 5).

3.4.4.2 � Gateway Between CAN- and LIN-Bus

A LIN-compliant node on the XC2000 is implemented on the USIC (Universal
Serial Interface Controller) module. The USIC includes a module internal counter,
which eases the baud rate measurement during BREAK signal. The module in-
cludes a FIFO structure, which allows in combination with the collision detection
feature, to have only a single interrupt for the header and one for the frame response.
For frames copied from one bus system (here CAN) to another or signal groups, it
also eases the usage of writing to the module, as the information can be written at
one time. The application does not need to reserve the occupied message objects for
longer times or to buffer the messages within RAM in this case, as they can directly
be written to the FIFO of the USIC. A CAN message can be copied in only for
transactions from the CAN module to the USIC and then be sent via LIN protocol.
The received amount of interrupts can be reduced as the FIFO structure allows not
to receive the information byte-wise. The speed difference between CAN bus and
LIN is normally quite high in an automotive environment, as the LIN bus has a
maximum baud rate of shortly below 20 kBaud. Therefore, buffering LIN messages
has a high impact on the application.

3.4.4.3 � Gateway from CAN to FlexRay

Depending on the XC2000 family device, it is possible either to use a device internal
FlexRay module or to use the CIC-310 as extension device, to enable FlexRay com-
munication. The different baud rates need some buffering, especially transferring
data from the time-driven high-speed FlexRay bus to the (compared to FlexRay)
low-speed event-driven CAN bus. Here the CAN module internal FIFO structures
ease handling the traffic coming from the FlexRay module and have to be sent via
CAN bus.

Fig. 3.18   Gateway—example

160 W. Lawrenz et al.

3.4.4.4 � Outlook

The MultiCAN module includes several useful extensions against the TwinCAN
module. The list structure grants a high degree of flexibility to user and more free-
dom for CAN applications. The double-chained list-structure enables a highly flex-
ible FIFO structure, as the FIFO elements can be collected among the CAN module.
Therefore, the reception on faster CAN bus can be buffered in-between for the trans-
mission on a low-speed bus. The USIC on the XC2000 family rounds out this flexi-
bility to the LIN bus. The external bus controller (EBC) allows attaching an external
FlexRay device, if this is not included internally. Therefore, the currently existing
serial bus systems widely used in automotive environment are available on the de-
vice. The FIFOs within CAN and USIC, which is used for LIN, ease the implemen-
tations and reduce the overall CPU load for transferring data from one bus system
to another. However, these features become useful not only for automotive applica-
tions but also for industrial applications. The MultiCAN is used on several members
of the industrial microcontroller families, for example, the TC11xx, XE16x, and
XC8xx. These devices are optimized for automation and industrial drivers.

3.5 � Xilinx CAN-Controller LogiCORE™ IP

The features of Xilinx CAN Controller are that it:

•	 Conforms to ISO 11898-1, CAN 2.0A, and CAN 2.0B standards
•	 Supports Industrial (I) and Extended Temperature Range (Q)
•	 Supports standard frames (11-bit identifier) as well as extended frames (29-bit

identifier)
•	 Supports bit rates up to 1 Mbps
•	 Transmits message FIFO with a user-configurable depth of up to 64 messages
•	 Prioritized message transmission through High-Priority Transmit Buffer
•	 Automatic re-transmission on errors or lost arbitration
•	 Receive message FIFO with a user-configurable depth of up to 64 messages
•	 Acceptance filtering by (a user-configurable number of) up to four acceptance

filters
•	 Sleep mode with automatic wakeup
•	 Loop back mode for diagnostic applications
•	 Maskable error and status interrupts
•	 Has readable error counters (Fig. 3.19).

3.5.1 � User Interface

The external interface of the CAN controller is a subset of the Xilinx Intellectual
Property Inter-connect (IPIC) signalling. This enables the CAN controller to be

1613  Data Link Layer Implementation

interfaced to any microcontroller in a stand-alone mode. When coupled with an
on-chip peripheral bus/processor local bus (OPB/PLB) Intellectual Property Inter-
face (IPIF), which attaches to the core through the IPIC interface, the core can be
connected to the MicroBlaze. This allows the core to be used in an Embedded De-
velopment Kit (EDK) environment. Table 3.1 describes the interface signalling of
the CAN controller.

3.5.1.1 � Interface Description

The CAN controller supports the following two modes of transfers

•	 Single read
•	 Single write

3.5.1.2 � Single Read Transaction

For a read operation, when the transfer is enabled (Bus2IP_CS = ‘1’ and Bus2IP_
RNW = ‘1’), the core samples the address on the Bus2IP_Addr pins and returns
the corresponding read data on the IP2Bus_Data pins. Read data are returned on a
successive clock rising edge, after a wait time. IP2Bus_Ack is asserted when the
data are ready on the IP2Bus_Data pins. For a read operation, it should be noted
that address is assumed to be valid on the Bus2IP_Addr pins when Bus2IP_CS is
asserted and the core samples the address on the next rising edge of SYS_CLK.

Fig. 3.19   CAN controller block diagram

162 W. Lawrenz et al.

IP2Bus_Ack is asserted for all read transactions, irrespective of whether the
transaction is valid or not. Successive read operations require that the Bus2IP_CS
be de-asserted and reasserted. The timing diagram for a single read transaction is
shown in Fig. 3.20.

It should be noted that

•	 read transactions from address locations defined as reserved return all ‘0’s on the
IP2Bus_Data bus,

•	 read transactions from write-only address locations return all ‘0’s on the IP2Bus_
Data bus,

•	 read transactions from the AFR register when C_CAN_NUM_ACF = 0 return all
‘0’s on the IP2Bus_Data bus,

•	 read transactions on the Acceptance Filter ID Register (AFIR) and Acceptance
Filter Mask Register (AFMR) address locations when C_CAN_NUM_ACF = 0
return all ‘0’s on the IP2Bus_Data bus,

•	 read transactions on any or all of the AFIR and AFMR address locations when
C_CAN_NUM_ACF > 0 return the data that were written to these locations, and

•	 read transactions on an empty RX FIFO return invalid data.

IPIC name I/O Default value Description
1 Bus2IP_Reset Input 0 Active high reset
2 Bus2IP_Data(0:31) Input X”00000000” Write Data bus
3 Bus2IP_Addr(0:7) Input “00000000” Address Bus
4 Bus2IP_RNW Input 1 Read or Write signalling

‘1’ for a Read Trans-
action ‘0’ for a Write
Transaction

5 Bus2IP_CS Input 0 Active high CS
6 IP2Bus_Data(0:31) Output X”00000000” Read Data bus
7 IP2Bus_Ack Output 0 R/W data

acknowledgement
8 IP2Bus_IntrEvent Output 0 Active high interrupt line.

See Note 1.
9 IP2Bus_Error Output 0 Active high R/W error

signal. Reserved for
future use.

10 CAN_PHY_TX Output 1 CAN bus transmit signal
to PHY

11 CAN_PHY_RX Input 1 CAN bus receive signal
from PHY

12 CAN_CLK Input 24 MHz oscillator clock
input

13 SYS_CLK Input Input interface clock
Note 1: The Interrupt line is an edge-sensitive interrupt. Interrupts are indicated via the transition
of the interrupt line from logic ‘0’ to logic ‘1’

Table 3.1   External I/Os

1633  Data Link Layer Implementation

3.5.1.3 � Single Write Transaction

For a write operation, when the transfer is enabled (Bus2IP_CS = ‘1’ and Bus2IP_
RNW = ‘0’), the core samples both address and data from the Bus2IP_Addr and
Bus2IP_Data pins, respectively, and IP2Bus_Ack is asserted on a successive clock ris-
ing edge. For a write operation, it should be noted that address on the Bus2IP_Addr bus
and data and Bus2IP_Data bus are assumed to be valid when Bus2IP_CS is asserted.

IP2Bus_Ack is asserted for all write transactions, irrespective of whether the
transaction is valid or not. Successive write operations require that Bus2IP_CS
be de-asserted and reasserted. The timing diagram for a single write transaction is
shown in Fig. 3.21.

3.5.2 � Object Layer

3.5.2.1 � Transmit and Receive Messages

Separate storage buffers exist for transmit (TX FIFO) and receive (RX FIFO) mes-
sages through a FIFO structure. The depth of each buffer is individually configu-
rable up to a maximum of 64 messages.

3.5.2.2 � TX High-Priority Buffer

The Transfer High-Priority Buffer (TX HPB) provides storage for one transmit
message. Messages written on this buffer have maximum transmit priority. They
are queued for transmission immediately after the current transmission is complete,
pre-empting any message in the TX FIFO.

Fig. 3.20   Single read transaction

164 W. Lawrenz et al.

3.5.2.3 � Acceptance Filters

Acceptance filters sort incoming messages with the user-defined acceptance mask
and ID registers to determine whether to store messages in the RX FIFO, or to
acknowledge and discard them. The number of acceptance filters can be config-
ured from 0 to 4. Messages passed through acceptance filters are stored in the RX
FIFO.

3.5.2.4 � Configuration Registers

This module provides access to the registers through the external microcontroller
interface.

Table 3.2 defines the CAN controller configuration registers. Each of these reg-
isters is 32-bit wide and is represented in big endian format. Any read operations to
reserved bits or bits that are not used return ‘0’. A ‘0’ should be written to reserved
bits and bit fields not used. Writes to reserved locations are ignored.

3.5.3 � Transfer Layer

3.5.3.1 � Bit Timing Module

The primary functions of the Bit Timing Logic (BTL) module include:

•	 Synchronizing the CAN controller to CAN traffic on the bus
•	 Sampling the bus and extracting the data stream from the bus during reception
•	 Inserting the transmit bit stream onto the bus during transmission
•	 Generating a sampling clock for the Bit Stream Processor (BSP) module state

machine

Fig. 3.21   Single write transaction

1653  Data Link Layer Implementation

Register Name Address Access
Control Registers
Software Reset Register (SRR) 0 × 000 Read/Write
Mode Select Register (MSR) 0 × 004 Read/Write
Transfer Layer Configuration Registers
Baud Rate Presale Register (BRPR) 0 × 008 Read/Write
Bit Timing Register (BTR) 0 × 00C Read/Write
Error Indication Registers
Error Counter Register (ECR) 0 × 010 Read
Error Status Register (ESR) 0 × 014 Read/Write to Clear
CAN Status Registers
Status Register (SR) 0 × 018 Read
Interrupt Registers
Interrupt Status Register (ISR) 0 × 01C Read
Interrupt Enable Register (IER) 0 × 020 Read/Write
Interrupt Clear Register (ICR) 0 × 024 Write
Reserved
Reserved Locations 0 × 028 to 0 × 02C Reads Return 0/Write has

no effect
Messages
Transmit Message FIFO (TX FIFO)
 ID 0 × 030 Write
 DLC 0 × 034 Write
 Data Word 1 0 × 038 Write
 Data Word 2 0 × 03C Write
Transmit High-Priority Buffer (TX HPB)
 ID 0 × 040 Write
 DLC 0 × 044 Write
 Data Word 1 0 × 048 Write
 Data Word 2 0 × 04C Write
Receive Message FIFO (RX FIFO)
 ID 0 × 050 Read
 DLC 0 × 054 Read
 Data Word 1 0 × 058 Read
 Data Word 2 0 × 05C Read
Acceptance Filtering
Acceptance Filter Register (AFR) 0 × 060 Read/Write
Acceptance Filter Mask Register 1 (AFMR1) 0 × 064 Read/Write
Acceptance Filter ID Register 1 (AFIR1) 0 × 068 Read/Write
Acceptance Filter Mask Register 2(AFMR2) 0 × 06C Read/Write
Acceptance Filter ID Register 2 (AFIR2) 0 × 070 Read/Write
Acceptance Filter Mask Register 3(AFMR3) 0 × 074 Read/Write
Acceptance Filter ID Register 3 (AFIR3) 0 × 078 Read/Write
Acceptance Filter Mask Register 4(AFMR4) 0 × 07C Read/Write
Acceptance Filter ID Register 4 (AFIR4) 0 × 080 Read/Write
Reserved
Reserved Locations 0 × 084 to 0 × 0FC Reads Return 0/Write has

no effect

Table 3.2   Configuration registers

166 W. Lawrenz et al.

Figure 3.22 illustrates the CAN bit time divided into four parts:

•	 Sync segment
•	 Propagation segment
•	 Phase segment 1
•	 Phase segment 2

The four bit time parts are comprised of a number of smaller segments of equal
length called time quanta (tq). The length of each time quantum is equal to the
quantum clock time period (period = tq). The quantum clock is generated inter-
nally by dividing the incoming oscillator clock by the baud rate prescaler. The
prescaler value is passed to the BTL module through the Baud Rate Presale
(BRPR) register. The propagation segment and phase segment 1 are joined to-
gether and called ‘time segment1’ (TS1), while phase segment 2 is called ‘time
segment2’ (TS2). The number of time quanta in TS1 and TS2 vary with different
networks and are specified in the Bit Timing Register (BTR), which is passed to
the BTL module.

The Sync segment is always 1-tq long. The BTL state machine runs on the
quantum clock. During the start-of-frame (SOF) bit of every CAN frame, the state
machine is instructed by the BSP module to perform a hard sync, forcing the re-
cessive (r) to dominant edge (d) to lie in the sync segment. During the rest of the
recessive-to-dominant edges in the CAN frame, the BTL is prompted to perform
re-synchronization.

During re-synchronization, the BTL waits for a recessive-to-dominant edge. Af-
ter this is over, it calculates the time difference (number of tqs) between the edge
and the nearest sync segment. To compensate for this time difference, and to force
the sampling point to occur at the correct instant in the CAN bit time, the BTL
modifies the length of phase segment 1 or phase segment 2.

The maximum amount by which the phase segments can be modified is dictated
by the Synchronization Jump Width (SJW) parameter, which is also passed to the
BTL through the BTR. The length of the bit time of subsequent CAN bits is unaf-
fected by this process. This synchronization process corrects for propagation delays
and oscillator mismatches between the transmitting and receiving nodes. After the
controller is synchronized to the bus, the state machine waits for a time period of
TS1 and then samples the bus, generating a digital ‘0’ or ‘1’. This is passed on to the
BSP module for higher level tasks.

Fig. 3.22   CAN bit timing

1673  Data Link Layer Implementation

3.5.4 � Bit Stream Processor

The BSP module performs several MAC/logical link control (LLC) functions dur-
ing reception (RX) and transmission (TX) of CAN messages. The BSP receives a
message for transmission from either the TX FIFO or the TX HPB and performs the
following functions before passing the bit stream to BTL:

•	 Serializing the message
•	 Inserting stuff bits, cyclic redundancy check (CRC) bits, and other protocol-de-

fined fields during transmission

During transmission, the BSP simultaneously monitors RX data and performs bus
arbitration tasks. It then transmits the complete frame when arbitration is won, and
retrying when arbitration is lost. During reception, the BSP removes stuff bits, CRC
bits, and other protocol fields from the received bit stream. The BSP state machine
also analyses bus traffic during transmission and reception for Form, CRC, ACK,
Stuff, and Bit violations. The state machine then performs error signalling and er-
ror confinement tasks. The CAN controller will not voluntarily generate overload
frames but will respond to overload flags detected on the bus. This module deter-
mines the error state of the CAN controller: Error Active, Error Passive, or Bus-off.
When TX or RX errors are observed on the bus, the BSP updates the transmit and
receive error counters according to the rules defined in the CAN 2.0 A, CAN 2.0 B,
and ISO 11898-1 standards. Based on the values of these counters, the error state of
the CAN controller is updated by the BSP.

3.5.5 � Configuring the CAN Controller

This section covers the various configuration steps that need to be performed to
program the CAN core for operation.

The following are some of the key configuration steps:

•	 Choose the mode of operation of the CAN core.
•	 Program the configuration registers to bring up the core.
•	 Write messages to the TX FIFO/TX HPB.
•	 Read messages from the RX FIFO.

3.5.5.1 � Programming the Configuration Registers

The following steps are to be performed to configure the core when the core is pow-
ered on or after system reset or software reset.

1.	 Choose the mode of operation
−	 Write a ‘1’ to the LBACK bit in the Mode Select Register (MSR) and ‘0’ to

the SLEEP bit in the MSR to choose loop back mode.

168 W. Lawrenz et al.

−	 Write a ‘1’ to the SLEEP bit in the MSR and ‘0’ to the LBACK bit in the MSR
to choose sleep mode.

−	 Write ‘0’s to the LBACK and SLEEP bits in the MSR to choose normal mode.

2.	 Configure the Transfer Layer Configuration Registers
−  �Program the Baud Rate Priscilla Register and the BTR to correspond to the

network timing parameters and the network characteristics of the system.

3.	 Configure the AFRs

The number of AFMR and AFIR pairs that are used is chosen at build time. To con-
figure these registers, the following steps should be taken:

•	 Write a ‘0’ to the UAF bit in the AFR register corresponding to the AFMR and
AFIR pair to be configured.

•	 Wait till the ACFBSY bit in the Status Register (SR) is ‘0’.
•	 Write the appropriate mask information to the AFMR.
•	 Write the appropriate ID information to the AFIR.
•	 Write a ‘1’ to the UAF bit corresponding to the AFMR and AFIR pair.
•	 Repeat the steps mentioned above for each AFMR and AFIR pair.

4.	 Write to the Interrupt Enable Register (IER) to choose the bits in the Interrupt
Status Register (ISR) that can generate an interrupt.

5.	 Enable the CAN controller by writing a ‘1’ to the CEN bit in the Software Reset
Register (SRR).

3.5.5.2 � Transmitting a Message

A message to be transmitted can be written to either the TX FIFO or the TX HPB. A
message in the TX HPB gets priority over the messages in the TX FIFO. The TXOK
bit in the ISR is set after the CAN core successfully transmits a message.

1.	 Writing a Message to the TX FIFO
−	 Poll the TXFLL bit in the SR. The message can be written into the TX FIFO

when the TXFLL bit is ‘0’.
−	 Write the ID of the message to the TX FIFO ID memory location

(C_BASEADDR + 0 × 030).
−	 Write the DLC of the message to the TX FIFO DLC memory location

(C_BASEADDR + 0 × 034).
−	 Write the Data Word 1 of the message to the TX FIFO DW1 memory location

(C_BASEADDR + 0 × 038).
−	 Write the Data Word 2 of the message to the TX FIFO DW2 memory location

(C_BASEADDR + 0 × 03C).

Messages can be continuously written to the TX FIFO until the TX FIFO is full.
When the TX FIFO is full, the TXFLL bit in the ISR and the TXFLL bit in the SR
are set. If polling, the TXFLL bit in the SR should be polled after each write. If us-

1693  Data Link Layer Implementation

ing interrupt mode, writes can continue until the TXFLL bit in the ISR generates
an interrupt.

2.	 Writing a Message to the TX HPB
−	 Poll the TXBFLL bit in the SR. The message can be written into the TX HPB

when the TXBFLL bit is ‘0’.
−	 Write the ID of the message to the TX HPB ID memory location

(C_BASEADDR + 0 × 040).
−	 Write the DLC of the message to the TX HPB DLC memory location

(C_BASEADDR + 0 × 044).
−	 Write the Data Word 1 of the message to the TX HPB DW1 memory location

(C_BASEADDR + 0 × 048).
−	 Write the Data Word 2 of the message to the TX HPB DW2 memory location

(C_BASEADDR + 0 × 04C).

After each write to the TX HPB, the TXBFLL bit in the SR and the TXBFLL bit in
the ISR are set.

3.5.5.3 � Receiving a Message

Whenever a new message is successfully received and written into the RX FIFO,
the RXNEMP bit and the RXOK bits in the ISR are set. In case of a read operation
on an empty RX FIFO, the RXNEMP bit in the ISR is set.

1.	 Reading a Message from the RX FIFO

The RXOK or RXNEMP bits in the ISR can be polled. In interrupt mode, the reads
can occur after the RXOK or RXNEMP bits in the ISR generate an interrupt.

•	 Read from the RX FIFO memory locations. All the locations must be read re-
gardless of the number of data bytes in the message.

•	 Read from the RX FIFO ID location (C_BASE_ADDR + 0 × 050).
•	 Read from the RX FIFO DLC location (C_BASE_ADDR + 0 × 054).
•	 Read from the RX FIFO DW1 location (C_BASE_ADDR + 0 × 058).
•	 Read from the RX FIFO DW2 location (C_BASE_ADDR + 0 × 05C).

After performing the read, if there are one or more messages in the RX FIFO, the
RXNEMP bit in the ISR is set. This bit can either be polled or generate an interrupt.
The process mentioned above should be repeated till the FIFO is empty.

3.5.5.4 � CAN Graphical User Interface

The CAN graphical user interface (GUI) provides a single screen for configuring
the CAN core. Parameter C_BASEADDR defaults to X”00000000” in the GUI,
while the parameter C_HIGHADDR does not exist (Fig. 3.23).

170 W. Lawrenz et al.

3.5.5.5 � Component Name

Base name of the output files generated for this core. The name must begin with a
letter and be composed of the following characters: a–z, A–Z, 0–9, and “-”.

3.5.5.6 � Xilinx CAN Controller Design Parameters

To obtain a CAN controller that is uniquely tailored to the minimum system require-
ments, certain features can be parameterized. This results in a design that utilizes
only the resources required and gives the best possible performance. The features
that can be parameterized in the CAN controller are shown in Table 3.3. The in-
terface parameters C_BASEADDR and C_HIGHADDR need to be specified only
when the core is interfaced to the OPB IPIF. For the core generated by CoreGen,
C_BASEADDR defaults to X”00000000”. C_HIGHADDR parameter does not
exist for CoreGen cores.

Number of Acceptance Filters  Valid range is from 0 to 4. This specifies the number
of acceptance filter pairs used by the CAN controller. Each acceptance filter pair
consists of a mask register and an ID register. These registers can be configured so
that a specific Identifier or a range of Identifiers can be received. This determines
the value of C_CAN_NUM_ACF.

TX FIFO Depth  Valid values: 2, 4, 8, 16, 32, 64. This configures the depth of the
TX FIFO.

The TX FIFO depth is measured in terms of the number of CAN packets. For exam-
ple, TX FIFO with a depth of 2 can hold at most two CAN packets. This determines
the value of C_CAN_TX_DPTH.

Fig. 3.23   LogiCORE

1713  Data Link Layer Implementation

RX FIFO Depth  Valid values: 2, 4, 8, 16, 32, 64. This configures the depth of the
RX FIFO. The RX FIFO depth is measured in terms of the number of CAN packets.
For example, RX FIFO with a depth of 2 can hold at most two CAN packets. This
determines the value of C_CAN_RX_DPTH.

3.5.6 � Ordering the CAN Controller

A free evaluation version of the CAN core is provided with the Xilinx CORE Gen-
erator, which lets you assess the core functionality and demonstrates the various
interfaces of the core in simulation. After purchase, the core may be downloaded
from the Xilinx IP Center for use with the CORE Generator v9.2i and higher. The
CORE Generator is bundled with ISE Foundation v9.2i software at no additional
charge. Contact your local Xilinx sales representative for pricing and availability
about the CAN LogiCORE module or go to the CAN product page www.xilinx.
com/systemio/can/index.html for additional information.

Table 3.3   Xilinx CAN Controller design parameters
Features Feature/description Parameter name Allowable values Default

value
CAN

controllerfeatures
Depth of the RX

FIFO
C_CAN_RX_DPTH 2,4,8,16,32,64 2

Depth of the TX
FIFO

C_CAN_TX_DPTH 2,4,8,16,32,64 2

Number of accep-
tance filters used

C_CAN_NUM_
ACF

0 to 4 0

Interface Base address C_BASEADDR 32 bit address None
High address C_HIGHADDR 32 bit address None

www.xilinx.com/systemio/can/index.html
www.xilinx.com/systemio/can/index.html

	Chapter-3
	Data Link Layer Implementation
	3.1 M_CAN—Modular CAN Controller
	3.2 IFI Advanced CAN
	3.2.1 Transmit Buffer
	3.2.2 Masks and Filters
	3.2.3 Receive Buffer
	3.2.4 Time Stamp
	3.2.5 Conclusion

	3.3 Renesas RS-CAN
	3.3.1 Properties of RS-CAN
	3.3.2 Initialization of RS-CAN
	3.3.2.1 Operation Modes
	3.3.2.2 Test Modes

	3.3.3 Transmission of Messages
	3.3.3.1 Sending from Message Buffers
	3.3.3.2 Sending from Transmit Queues
	3.3.3.3 Sending from Multi-Purpose FIFO
	3.3.3.4 Sending from GW FIFO
	3.3.3.5 Transmit History List
	3.3.3.6 Transmission Intervals

	3.3.4 Reception of Messages
	3.3.4.1 Reception into a Receive Message Buffer
	3.3.4.2 Reception into a FIFO Unit

	3.3.5 Summary

	3.4 Infineon’s CAN Modules of the XC16x- and XC2000/XE16x family
	3.4.1 TwinCAN and MultiCAN from Infineon
	3.4.2 TwinCAN
	3.4.2.1 Message Objects
	3.4.2.2 FIFO
	3.4.2.3 Automatic GW
	3.4.2.4 FIFO/GW Combination
	3.4.2.5 Shared-GW-Modus
	3.4.2.6 Analyser Mode
	3.4.2.7 The Interrupt System

	3.4.3 MultiCAN
	3.4.3.1 Advantages of the MultiCAN
	3.4.3.2 MultiCAN Supports CAN-Debugging
	3.4.3.3 MultiCAN in Analyser Mode
	3.4.3.4 MultiCAN: Flexible Interrupts

	3.4.4 The XC2000 Family in GW Applications—An Application Example Using MultiCAN
	3.4.4.1 GW Between Two CAN Bus Systems
	3.4.4.2 Gateway Between CAN- and LIN-Bus
	3.4.4.3 Gateway from CAN to FlexRay
	3.4.4.4 Outlook

	3.5 Xilinx CAN-Controller LogiCORE™ IP
	3.5.1 User Interface
	3.5.1.1 Interface Description
	3.5.1.2 Single Read Transaction
	3.5.1.3 Single Write Transaction

	3.5.2 Object Layer
	3.5.2.1 Transmit and Receive Messages
	3.5.2.2 TX High-Priority Buffer
	3.5.2.3 Acceptance Filters
	3.5.2.4 Configuration Registers

	3.5.3 Transfer Layer
	3.5.3.1 Bit Timing Module

	3.5.4 Bit Stream Processor
	3.5.5 Configuring the CAN Controller
	3.5.5.1 Programming the Configuration Registers
	3.5.5.2 Transmitting a Message
	3.5.5.3 Receiving a Message
	3.5.5.4 CAN Graphical User Interface
	3.5.5.5 Component Name
	3.5.5.6 Xilinx CAN Controller Design Parameters

	3.5.6 Ordering the CAN Controller

