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List of Symbols
Ap Flow area
As Surface area
Aw Wall area (perpendicular to flow direction)
c, cp Specific heats
D Mass-diffusivity
DT

g
Soret or thermal-diffusion coefficient

esor Fraction by which sorption heat exceeds vaporization heat
fs Mass fraction of adsorbent material in felt
h Convective heat transfer coefficient between felt and process stream
hm Convective mass transfer coefficient between felt and process stream
hw Heat transfer coefficient between felt and wall
hp Mass transfer coefficient between pores and vapor in equilibrium with

desiccant
i Specific enthalpy
~i Specific enthalpy on dry basis
ivap Latent heat of vaporization
iwet Differential heat of wetting
Diw Integral heat of wetting
isor Heat of sorption
j00 Mass flux vector
j00 Mass flux component
k Thermal conductivity
K Number of sections in regenerator
L Regenerator length
p Pressure
Ps Wetted perimeter
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Pw Contact perimeter at felt-wall interface
_q00 Mass flux vector
_q0 Heat flux component
_q00i Heat flux at felt-stream interface
_q00w Heat flux at felt-wall interface
S Surface or interface
Sp Felt-stream interface
Sw Felt-wall interface
_s000sor Volumetric rate of sorption heating
T Temperature
t Time
tf Total cycle time
W Concentration in adsorbed phase
Y Concentration in gas phases

Greek Symbols
e Porosity
/ Relative humidity
km Dufour diffusion coefficient
q Density or specific mass
sdw Dwell time
sG; sS Tortuosities
x Wheel rotation speed
/ Relative humidity

Subscripts
a Dry air
f Porous sorbent medium
g Gas phase of porous medium
i At or related to the felt-stream interface
k In a given regenerator section k
l Adsorbed phase
ls Saturated liquid
s Solid phase of porous medium
v Water vapor

Superscripts
� Dimensionless quantity
þ Modified quantity
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1 Introduction

The phenomenon of Physical Adsorption has been known for over two centuries
and extensively studied over the past couple of decades. The fact that porous solids
could reversibly take up large volumes of vapor was identified in the late eigh-
teenth century, by the studies of Scheele and Fontana, and the term adsorption
appears to have been introduced by Kayser, as mentioned by Gregg and Sing [21].
Nevertheless, it was only several decades later that adsorption technologies gained
widespread application to large-scale industrial processes. Among these major
applications, regenerative heat and mass exchangers that employ sorbent materials
have become an attractive option in a variety of industrial processes.

In HVAC applications, two classes of heat and mass regenerators with sorbent
materials are frequently employed: total heat regenerators1 and regenerative
dehumidifiers. In order to achieve a large surface area in a compact structure, the
regenerators are composed of mini-channels, whose walls are partly composed of
an adsorbent, which exchanges heat and moisture with the process fluid stream.
During operation, two process streams are alternately fed to the channels, resulting
in two distinct operating periods, which form a complete cycle. The regenerator
channels are arranged in a matrix, which is either of fixed-bed (or stationary) type,
or rotary type. Although both designs can perform equivalently, the fixed-bed type
requires two matrices for continuous operation, since each matrix needs to be
switched between the two process streams at the beginning of every period. As an
alternative, in rotary regenerators, a single rotating matrix allows uninterrupted
operation by being continuously cycled between the two process streams.

According to the given application, rotary regenerative exchangers are
respectively termed enthalpy wheels—used for energy recovery—and desiccant
wheels—employed in dehumidification. Although this has been the traditional
terminology adopted in the literature, an alternative terminology in classifying
rotary heat and mass regenerators has been recently proposed [49]. This termi-
nology involves using the term desiccant wheel for both types of exchangers;
however, enthalpy exchangers are termed passive desiccant wheels, since they
require no activation energy for regeneration, while dehumidifiers (traditionally
referred to as desiccant wheels) are actually termed active desiccant wheels, since
these, in fact, require an activation energy for regeneration. In this text, the ter-
minology active desiccant wheel will be employed for referring to dehumidifiers,
whereas passive desiccant wheel or simply enthalpy wheel will be adopted to
denote energy exchangers.

The main difference between an enthalpy wheel and an active desiccant wheel
is that the former possesses a low matrix sorbate-capacity, whereas the latter has a
high matrix sorbate-capacity. In other words, active desiccant wheels, employ a
greater amount of hygroscopic material in their matrix while compared to enthalpy
wheels, such that they can uptake a much larger amount of water than enthalpy

1 Also known as energy or enthalpy exchangers.
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exchangers. In regard to operation, dehumidifiers operate at relative low rotation
rates, for maximizing the drying potential, while enthalpy exchangers operate at
higher rotational speeds, for maximizing heat and mass transfer between the
matrix and process streams. In the HVAC industry, a common application of
active desiccant wheels is in the so-called desiccant cooling systems [22, 33, 48,
50, 71], which rely on water evaporation to meet the required cooling loads. These
systems have been gaining popularity over the last decades due to their environ-
mental friendliness, due to the facts that they require no specialized refrigeration
fluid and that they can be powered by low-grade energy sources. Also amongst
HVAC applications, enthalpy wheels are commonly employed for reducing air-
conditioning costs in ventilated buildings by recovering energy from the exhaust
air to the supply air [81].

While compared to regenerative sensible heat exchangers [35, 64], or periodic
sensible heat exchangers, heat and mass transfer regenerators exhibit similar
characteristics. The main difference, is the additional transport phenomena due to
the presence of mass transfer, which is highly coupled with heat transfer and
conventionally results from normal condensation/evaporation or sorption/desorp-
tion. Clearly, the former requires that an adsorbent medium be present. In most
formulations of enthalpy wheels and active desiccant wheels, however, the normal
condensation and evaporation is not taken into account; nevertheless, this type of
phase change is usually unwanted in these devices. Due to the inherent complexity
of the phenomena involved in heat and mass regenerators with sorbent materials, a
thorough understanding of the transport mechanisms is crucial for obtaining an
accurate mathematical formulation; as a consequence, numerous mathematical
models for these types of regenerators have been proposed throughout the last
decades.

While the mathematical modeling and analysis of sensible heat regenerators can
be dated to studies published almost a century ago, such as the works of Hausen
[23, 24], models for describing the operation of heat and mass transfer regenerators
were only available a few decades later. In addition, the first studies that evaluated
the operation of these exchangers were overly simplified. Before periodic solutions
were available, the performance of regenerative exchangers with sorbent materials
was predicted by models in which the mass transfer breakthrough curves were
analyzed. These early models addressed the problem of isothermal mass transfer in
fluid flow through an adsorbent porous media. In addition, the transfer rates
between the adsorbed phase and the fluid stream were evaluated by considering
gas-side resistances, using convective (or film-controlled) transport coefficients.
Some formulations also allowed for solid-side resistances, by means of overall
(often termed pseudo) transfer coefficients. Examples of these models are the
studies by Hougen and Marshall [28], and the Schumann-Anzelius solutions,
tabulated in [37]. Rosen [52] proposed a model that was probably the first to treat
the solid-side transport as an actual diffusional process. He considered a porous
medium consisting of spherical particles and applied a linear equilibrium relation.
The non-isothermal case of flow through a sorbent porous medium was later
considered in the studies by Bullock and Threlkeld [5], and Chi and Wasan [9], in
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which the coupled heat and mass transport rates were evaluated using overall
transfer coefficients. Meyer and Weber [43] proposed a general treatment for the
problem of coupled heat and mass transfer in flow through an adsorbing medium,
considering diffusion in spherical particles and using a nonlinear equilibrium
relation.

Apparently, until 1970, no provisions had been made to account for flow at the
boundaries of the region in which the diffusional transport occurs, as it actually
happens in the channeled matrix of a regenerator. The earliest formulation
encountered in literature to consider this case was that of Chase et al. [8], who
proposed a simple adiabatic two-dimensional linear model with constant coeffi-
cients, including the diffusional effects through the thickness of the sorbent
medium.

In the 1970s and 1980s, various investigations related to the mathematical
modeling of the transport phenomena in periodically operated exchangers were
conducted [2, 3, 7, 27, 30–32, 39, 41, 42, 53, 78, 79]. These studies employed one-
dimensional formulations in which overall transfer coefficients were used to pre-
dict the transfer rates between the two phases, but with the bulk fluid stream
flowing through channels rather than the porous media itself. The studies of Close,
Banks and Maclaine-Cross [1, 12, 39], presented an approach in which the gov-
erning partial differential equations with temperature and humidity ratio as the
dependent variables are written in terms of characteristic potentials. This approach
leads to a non-linear analogy methodology for predicting the operation of heat and
mass transfer regenerators [2, 3]. In addition to these one-dimensional formulation
studies, models that accounted for the diffusional processes within the porous
material as local phenomena were developed. Ghezelayagh and Gidaspow [18]
presented a formulation for the isothermal case considering both micro-pore and
macro-pore diffusion mechanisms. Pesaran and Mills [51] proposed a model that
allowed for the diffusional process within isothermal spherical particles in fluid
flow through an adiabatic sorbent bed, and Charoensupaya and Worek [6] con-
sidered the diffusional phenomena within the thickness of the porous sorbent
matrix instead of particles and presented periodic solutions for a hypothetical
linear equilibrium relationship. Later, Majumdar and Worek [40] proposed a
formulation in which the diffusional effects were included in particles and through
the sorbent thickness, providing single-blow solutions for nonlinear equilibrium
relations curve-fitted from experimental data.

During the 1990s, mathematical formulations were developed for adsorption-
based regenerative exchangers, with emphasis on enthalpy wheels. Klein et al. [36]
presented one of the first studies dedicated to enthalpy exchangers, and employed
the non-linear analogy method presented in [2, 3]. Stiesch et al. [77] analyzed the
performance of enthalpy exchangers by a simple approach using curve fitted data
from the numerical solution of heat and mass transport equations. Simonson and
Besant [67–70] employed a one-dimensional model that includes axial heat dif-
fusion in the matrix, and used the data to develop correlations for predicting the
performance of enthalpy exchangers in terms of dimensionless groups; an inter-
esting point observed in these works is that the heating due to adsorption is divided
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between the process stream and channel wall. Besides studies focused on enthalpy
wheels, new investigations dedicated to modeling and assessing the performance
of active desiccant wheels also continued to be developed. Zheng et al. [83–85]
employed a simple-one dimensional model without local diffusion transport terms.

Since the turn of the millennium, a number of studies focused on the mathe-
matical modeling and simulation of active desiccant and enthalpy wheels have
appeared in the literature. Particularly interesting is the work of Ge et al. [16], who
present a review of mathematical models used in different investigations. Dai et al.
[14] utilized a two-dimensional model that included diffusion of heat and moisture
within the rotary matrix in both axial and angular directions. Niu and Zhang [45],
Zhang and Niu [82] adopted a two-dimensional model for the transport phenomena
in the sorbent material for analyzing both active and passive desiccant wheels. The
model utilized by Gao et al. [15] also included transport terms in the angular
direction; however, local diffusion terms were only included in the axial direction
within the rotary matrix. Golubovic and Worek [20] considered a simple one-
dimensional model, similar to the one employed in [83–85]; however, a modifi-
cation was included to account for condensation within channels which are prone
to occur at higher operating pressures. Later on, Golubovic et al. [19] employed
this simple one-dimensional model to predict the performance of rotary regener-
ators with and without heated purge. Jeong and Mumma [29] utilized a model
similar to the one adopted in [67–70] for determining correlations for estimating
the performance of enthalpy exchangers. In 2004, Sphaier and Worek proposed a
unified formulation that contemplates both enthalpy exchangers and active des-
iccant wheels. This general formulation considered multi-dimensional heat and
mass diffusion within the adsorbent layer. Later on Sphaier and Worek [72], the
same authors compared a two-dimensional version of this formulation with a
simple one-dimensional counterpart (similar to the one used in most one-dimen-
sional models), and the presented results suggested that one-dimensional models
are better suited for active desiccant wheels rather than for enthalpy wheels. The
importance of including axial diffusion effects in active desiccant wheels and
enthalpy exchangers was analyzed in a separate study Sphaier and Worek [73]. In
following studies, the same authors presented a numerical scheme for solving the
employed model [74], and presented a generalized effectiveness-NTU approach
[75], extending the classical methodology for sensible heat regenerators proposed
by Coppage and London [13], to heat and mass transfer regenerators with local
diffusion in the rotary matrix.

Over the last half decade, different investigations related to modeling and
simulation of heat and mass transfer regenerators have been published. Ruivo et al.
[55–61] presented a series of studies regarding to the mathematical modeling
simulation of heat and mass exchangers. A one dimensional model was employed
in [56] for evaluating the impact of different simplifications mostly related to the
diffusion effects in the adsorbent material. A comparison between one- and two-
dimensional models, assuming parallel plates channels, was carried out in [57] and
the results indicated that a one-dimensional model for the flow in channels (bulk-
flow formulation) could be used with small error for channels lengths smaller than
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100 mm. A one-dimensional model with axial diffusion in the matrix was also
used in [55, 59, 60], and a two-dimensional model for the desiccant matrix,
assuming parallel plates-channels, and considering a one-dimensional bulk-flow
model for the airstream, was employed in [61]. Chung and Lee [10], Chung et al.
[11], and Stabat and Marchio [76] considered a simple one-dimensional model for
the airstream and matrix, but included no effects of axial diffusion, and Shang and
Besant [65, 66] employed a totally-lumped model. Nóbrega and Brum [46, 47, 49]
also employed simple one-dimensional models with no local diffusion phenomena,
and considerered further simplifications such as negligible heat and mass storage
in the airstream. Ge et al. [17] and Heidarinejad and Pasdarshahri [25, 26] utilized
a one-dimensional model with axial diffusion effects in the matrix. Narayanan
et al. [44] also utilized one-dimensional models, but presented a comparison
between models with and without axial diffusion effects. Ruan et al. [54] also used
a one-dimensional model with axial diffusion effects to analyze an enthalpy wheel
with purge air.

As seen from the presented literature review, different mathematical models
have been used over the last couple of decades for simulating the operation of heat
and mass transfer regenerators. When looking into the differences between these
models, one can notice that the main distinctions occur in the heat and mass
transport equations for the sorbent material. In this context, the purpose of this
chapter is to present different types of mathematical models for heat and mass
transfer regenerators, with emphasis on the transport processes within the porous
sorbent material. The derivation of these formulations will be discussed, and
models with different levels of details in the spatial description of the temperature
and humidity concentration in the sorbent material will be presented, from com-
plex multidimensional forms to simple one-dimensional ones.

2 Problem Description and Common Assumptions

The general problem considered in this study is that of a rotary exchanger, which
periodically alternates between different process streams, as shown in Fig. 1. The
rotary matrix is composed of numerous mini-channels through which the streams
flow, transferring mass and energy to the channels’ walls, which are composed of
porous sorbent materials.The overall process is adiabatic such that during an entire
cycle the net energy (as well as mass) transfer rate to the matrix is zero; this means
that, if two process streams are employed, for an entire cycle the energy (and mass)
removed from one stream is entirely delivered to the other one, and vice versa.

The rotary matrix can be subdivided in K sections, delimited by angles, as
shown in Fig. 1. Naturally the sum of all angles add up to 2p:

XK

k¼1

hk ¼ 2p: ð1Þ
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The wheel operates at a constant angular speed x, such that if a fixed point is
followed as it rotates, each section gives rise to a different operating periods. The
duration of these K periods are easily calculated as:

dtk ¼
hk

x
; ð2Þ

and the summation of all these periods yield the total cycle time, tf :

XK

k¼1

dtk ¼ tf : ð3Þ

The summation of the dk up to a given number of sections smaller than the total
sections yield @@@@a a partial cycle time:

Xk

p¼1

dtp ¼ tk; ð4Þ

such that tK corresponds to the total cycle time tf .
Despite the rotation, the channels are analyzed as stationary, by choosing a

proper reference coordinate system, fixed to a representative channel. The walls of
each channel are composed of a porous sorbent felt, which may be laid upon an
impermeable supporting wall, as displayed in Fig. 2. As shown in this figure,
surface Sp represents the interface between the process stream and the porous
sorbent, which is called the felt-stream interface. Moreover, surface Sw represents
the interface between the porous sorbent felt and the impermeable structure,
termed the felt-wall interface. The channels are assumed independent of each other
such that the surfaces between adjacent channel-structures are considered adiabatic
and impermeable. Due to the actual geometry of these channels, an exact, three-
dimensional, representation of the system could be too complex, requiring a
prohibitive computational effort for obtaining excessively detailed information.

Fig. 1 Rotary exchanger
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Then again, a one-dimensional description may be overly simplified, and a balance
between these two could be required. Different levels of formulations will be
presented in this chapter, and the simplifications involved in each case will be
discussed, allowing a proper formulation to be chosen according to the considered
type of problem.

The porous adsorbent material is modeled as a homogeneous medium composed
of a solid portion and pores, in which both gas and adsorbed phases coexist. In order
to facilitate the analysis, a subscripting scheme indicating the considered phase is
employed. Starting with the solid portion of the material, the subscript s refers to
quantities in this solid phase. Conversely, within pores, g is employed for the
gaseous phase. The subscript l is employed for the adsorbed phase; nevertheless,
since the adsorption occurs on the surface of the solid phase, the subscript s is also
employed to describe quantities related to the adsorbed phase, e.g. surface diffusion
of the adsorbate. For quantities within the bulk porous material with no required
phase distinction, a simple f subscript is used. In the process stream, a single-phase
is present, and for the sake of simplicity, no subscript is employed for this phase.

2.1 Common Assumptions

Some common assumptions employed for modeling heat and mass transfer in
rotary regenerators can be summarized as:

1. Radiation effects are neglected, as a result of relatively small temperatures.

x

r

impermeable wall (w)

porous sorbent felt ( f )

process stream (no subscript)

porous sorbent felt ( f )

impermeable wall (w)

surface p

surface w

Fig. 2 Single channel-structure
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2. No chemical reaction takes place, nor are there any energy sources within the
system.

3. The effects of field forces, such as gravity, on the fluid mixture are negligible.
4. The channel flow is incompressible and viscous dissipation is negligible.
5. The channels are equal and uniformly distributed throughout the wheel.
6. The state properties of each inlet-stream are radially uniform at the inlet face

of the wheel; also, the mass flow rate of dry air is constant at each inlet face.
7. Heat and mass transfer between adjacent flow-channels is negligible; heat and

mass transfer from the exchanger to the surroundings (besides the channel
inflow and outflow) are also negligible.

8. The pressure drop along the axial flow length due to skin friction is small
compared to the total pressure, such that thermodynamic properties are
unaffected.

9. All sorption phenomena are thermodynamically reversible.
10. Axial diffusion in the process stream is small compared to convective transfer,

and is neglected.
11. The channel flow is laminar and fully developed; the convective heat and mass

transfer between channels and the felt surface can be evaluated by employing
bulk properties and film coefficients.2

12. The gaseous components of the fluid mixture are treated as ideal gases with
constant thermo-physical properties.

13. The concentration of fluid other than sorbate in the mixture is assumed
constant.

14. The specific heats and thermal conductivities of dry sorbent and adsorbate are
assumed constant.

15. The gas mixtures are dilute solutions.
16. The porous felt is assumed to be homogeneous and isotropic, and the con-

centration of material other than adsorbate is unaffected by sorption.
17. The mass diffusion rate in micro-pores is rapid compared to that of the macro-

pores.
18. Thermodynamic equilibrium exists at every point between the sorbate in the

gas-phase and on the solid surface (adsorbed phase).
19. No phase change, other than that related to the sorption process, occurs in the

exchanger.
20. There is no explicit transfer coupling through Soret or Dufor effects.

The majority of studies that present mathematical formulations for simulating
the operation of active and passive desiccant wheels are based on a list of similar
assumptions. Naturally, there are some variations in assumptions that consequently
lead to different formulations. The formulations presented in this text are mainly
based on the aforementioned assumptions; however, the implications of relaxing
some of these assumptions, or even considering additional simplifications, will be

2 Convective heat and mass transfer coefficients.
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discussed and the modifications in formulations resulting from these consider-
ations will be presented.

3 Concentrations, Enthalpies and Heat of Sorption

Before going into the details of the heat and mass transfer balances that lead to the
mathematical model equations, some fundamental quantities are introduced, such
as the concentration variables, enthalpies and quantities related to the sorption
phenomenon.

3.1 Concentrations

Since it is common practice in enthalpy and active desiccant wheels to assume an
invariable density of dry air, it becomes useful to employ dry-basis concentrations.
This section introduces the concentration variables used to describe the water
concentration in gaseous and adsorbed phases, in both volumetric basis (kg/m3)
and dry basis (kg water/kg dry air).

The water vapor concentrations in the gas phase, denoted qv (in process stream)
and qv;f (in void spaces within the sorbent material), are related to the dry-basis
concentrations Y and Yf as:

qv ¼ qaY; qv;f ¼ qaYf ; ð5Þ

where qa is the dry air density, which is assumed constant. In this form, the dry
basis vapor concentration is equivalent to the traditional humidity ratio or absolute
humidity used in psycrhometrics.

In addition, the adsorbed phase concentration, denoted ql is related to its dry-
basis counterpart, W , as:

ql ¼ qsfs W ; ð6Þ

where fs is the mass fraction of adsorbent material in the felt.
While the water vapor concentration qv;f is defined per unit volume of pores

(excluding dead pores), the adsorbed water concentration ql is given in terms of
the actual structural volume of the solid sorbent (including dead pores). As a result,
the total mass of water contained in the adsorbent material can be calculated by

Z

V f

e qv; f þ ð1� eÞ qldV; ð7Þ

where V f corresponds to the volume of the porous felt and e to its porosity.
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For problems involving active and passive desiccant wheels, the adsorbed phase
concentration is generally assumed to be in local equilibrium with the gas phase in
the pore space adjacent to it. As a result W is expressed as a function of the
temperature and gas-phase concentration of the pore space:

UðW ; Yf ; Tf Þ ¼ 0; ð8Þ

where U is a general function. Many times this relation can be written in an
simpler explicit form:

W ¼ UðYf ; Tf Þ: ð9Þ

The specific function relation for W is a constitutive equation called an equi-
librium relation or an adsorption isotherm.

3.2 Enthalpies and Heat of Sorption

Since ideal gases are considered, the enthalpies of the gaseous phases depend only
on temperature. The dry air and vapor enthalpies are written as:

ia ¼ iaðTÞ; ia;f ¼ ia;f ðTf Þ; iv ¼ ivðTÞ; iv;f ¼ iv;f ðTf Þ; ð10Þ

where the subscripts have been included do distinguish between the air and vapor
in the felt from those quantities in the process streams (where no subscript is used).
The enthalpy of saturated liquid and the solid matrix also depend on temperature
only, and are given by:

ils ¼ ilsðTf Þ; is ¼ isðTf Þ; ð11Þ

in which no special phase subscript is needed since these only occur within the
porous felt. The enthalpy associated with the adsorbed phase is somewhat similar
to that of a liquid phase; however, the additional surface attraction associated with
the physical adsorption phenomenon imply in enthalpy values that are generally
smaller than that of saturated liquid at the same temperature. This enthalpy is
defined as:

il ¼ ilðTf ;WÞ ¼ ilsðTf Þ þ iwetðTf ;WÞ; ð12Þ

where iwet is the differential heat of wetting, which is generally a negative value as
normally il� ils. The relations above also reflect the fact that iwet, and consequently
il, depend on the adsorbed content. The heat of wetting will generally have a larger
magnitude for smaller values of W , due to the stronger adsorption forces associ-
ated with the first layers of adsorbate on the adsorbent surface.

The heat of wetting also occurs in an integral form, called the integral heat of
wetting and defined as:
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Diwet ¼ Diwet Tf ;W
� �

¼
ZW

0

iwetðTf ;W
0Þ dW 0; ð13Þ

where the parenthesis denote the dependence of iwet on the adsorbed content.3

Since the quantity iwet decreases with increasing W , using constant iwet values
could lead to overestimated values of Diwet. Based on the definition of Diwet, an
averaged differential heat of wetting is also defined:

�iwetðTf ;WÞ ¼
DiwetðTf ;WÞ

W
¼ 1

W

ZW

0

iwetðTf ;W
0Þ dW 0; ð14Þ

such that the integral heat of wetting for a given adsorbed content W can be simply
obtained by multiplying this quantity by �iwet.

The heat of vaporization is defined as the difference between the saturated
vapor and saturated liquid enthalpies:

ivap ¼ ivapðTf Þ ¼ iv; f ðTf Þ � ilsðTf Þ; ð15Þ

in which iv;f equals the saturated vapor enthalpy due to the ideal gas assumption.
Similar to the definition of the heat of vaporization, the differential heat of
sorption4 is defined as the difference between the enthalpy of saturated vapor and
that of the adsorbed phase:

isor ¼ isorðTf ;WÞ ¼ iv;f ðTf Þ � ilðTf ;WÞ; ð16Þ

emphasizing the dependence of isor on the adsorbed content W . It is useful to know
that the difference between the heat of sorption and heat of vaporization leads to
the heat of wetting:

iwet ¼ ivap � isor; ð17Þ

which implies that isor is larger than ivap as iwet\0:
As similarly done for the heat of wetting, an averaged specific enthalpy of the

adsorbed phase is also defined:

�il ¼ ils þ�iwet; ð18Þ

such that the enthalpy per mass of dry sorbent of adsorbed water can be simply
written as W�il.

3 However, the heat of wetting may also depend on temperature.
4 For simplicity, the differential heat of sorption is commonly referred to as just heat of sorption.
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4 Conservation Balances

This section presents heat and mass conservation balances for the process stream
and the sorbent material. Although a simple bulk-flow model is presented for the
process stream, as employed by the majority of previous investigators, different
type of balances will be presented for the transport processes in the sorbent
material.

4.1 Conservation Balances for Process Stream

Although a few works may employ more complex formulations for describing the
heat and mass transfer within the process streams, most studies employ simple
bulk transport equations for describing the heat and mass transfer in the flow.
Since the purpose of this text is to present different formulations for the transport
within the adsorbent material, simple one-dimensional convection equations, as
found in a number of active and passive desiccant wheels studies, are used.
Nevertheless, a few nuances that are seen in different literature studies will be
commented.

The convective mass transfer in the process stream is described by the mean
stream concentration qv, which is obtained from a simple mass balance:

Ap
oqv

ot
þ u

oqv

ox

� �
¼ Psji

00; ð19Þ

in which Ps is the wetted perimeter (i.e. based on the heat and mass transfer area at
the felt-stream interface), Ap is the flow area and j00i is the mass transfer flux at this
interface. Naturally, the adopted convention is that j00i be positive when water is
transferred from the sorbent felt to the process stream. Using the dry-basis con-
centration the previous equation may be simplified to:

qa
oY

ot
þ u

oY

ox

� �
¼ Ps

Ap
j00i : ð20Þ

The convective heat transport equation is also given in terms of a mean stream
energy balance:

Ap
o

ot
qaia þ qvivð Þ ¼ � o

ox
Apu ðqaia þ qvivÞ
� �

þ Ps _q00i þ Psj
00
i iv;i; ð21Þ

where ia and iv are the mean stream enthalpies of dry air and water vapor, u is the
bulk velocity of the flow, and q00i is the heat flux from the sorbent felt to the process
stream. Rearranging Eq. (21) and simplifying yields:
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qcp
oT

ot
þ u

oT

ox

� �
¼ Ps

Ap
_q00i þ

Ps

Ap
j00i ðiv;i � ivÞ; ð22Þ

in which qcp is the volumetric heat capacity of moist air, given by:

qcp ¼ qacp;a þ qvcp;v ¼ qaðcp;a þ cp;vYÞ: ð23Þ

The vapor enthalpy iv;i represents the specific enthalpy associated with the mass
transfer from the sorbent felt. Many studies omit the term involving the enthalpy
difference ðiv;i � ivÞ in their formulations, which corresponds to assuming either
that iv;i � iv or that the total contribution of the entire energy transfer term due to
mass transfer from the felt is negligible.

Despite the fact that the process stream balances are written in terms of bulk, or
mean stream properties, and the average velocity u is constant, it can assume
different values for each stream. As a matter of fact, for counterflow arrangements
the velocities will have different signs. In order to work with positive velocity
values, the flow transport equations are written as:

qa
oY

ot
þ ð�1Þcu oY

ox

� �
¼ Ps

Ap
j00i ; ð24Þ

qcp
oT

ot
þ ð�1Þc u

oT

ox

� �
¼ Ps

Ap
_q00i þ

Ps

Ap
j00i ðiv;i � ivÞ; ð25Þ

where c ¼ 0 for parallel flow arrangements and c ¼ 1 for counterflow arrange-
ments during reversed flow periods.

Another common simplification among formulations for heat and mass transfer
in both active and passive desiccant wheels involves assuming that the energy and
water vapor storage terms in the fluid flow is negligible compared to the advective
term, which leads to the following simplified forms:

ð�1Þcqau
oY

ox
¼ Ps

Ap
j00i ; ð26Þ

ð�1Þcqcpu
oT

ox
¼ Ps

Ap
_q00i þ

Ps

Ap
j00i ðiv;i � ivÞ; ð27Þ

4.2 Balance for Impermeable Supporting Structure

As already mentioned, in many cases, the sorbent felt is laid upon an impermeable
supporting structure, which will consequently have an influence on the heat and
mass transfer in the sorbent material. The impermeability condition only requires
that an energy balance be used. This balance can be written in simple one-
dimensional form:
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Awqwcw
oTw

ot
¼ �Aw

o _q00w;x
ox
� Pw _q00w; ð28Þ

where Aw is the conduction heat transfer area of the wall (perpendicular to the flow
direction), Pw is the contact perimeter at the felt-wall interface, _q00w is the heat flux
from the wall to the sorbent material, _q00w;x is the conduction heat flux in the wall,
and qwcw is the wall thermal capacity. The heat fluxes _q00w;x and _q00w will be intro-
duced in a latter section.

4.3 One-Dimensional Conservation Balances for Sorbent

The simplest formulation for describing active desiccant and enthalpy wheels is a
one-dimensional one, which takes into account variations in the flow direction
only. These one-dimensional balances are herein presented, and variations
between formulations will be discussed according to the application of different
simplifying assumptions.

4.3.1 Mass Transport

The mass transport equation is given by the following mass balance for water in
the felt:

Af e
oqv;f

ot
þ ð1� eÞ oql

ot

� �
¼ �Ps j00i �Af

oj00g;x
ox
�Af

oj00s;x
ox

; ð29Þ

in which Af is the frontal area (area perpendicular to the flow direction) of the
adsorbent material. The fluxes j00g;x and j00s;x are due to axial mass diffusion in the
sorbent material, in the gas-phase (vapor) and adsorbed phase (on the pore sur-
face), respectively. Using the dry-basis concentrations, Eq. (29) can be rewritten
as:

e qa
oYf

ot
þ ð1� eÞqsfs

oW

ot
¼ �Ps

Af
j00i �

oj00g;x
ox
�

oj00s;x
ox

: ð30Þ

Based on the previous equations, the volumetric rate of sorption, for the one-
dimensional balance, is defined as:

_g000sor ¼ ð1� eÞ oql

ot
þ

oj00s;x
ox
¼ ð1� eÞqsfs

oW

ot
þ

oj00s;x
ox

; ð31Þ

representing the actual rate of water adsorption, which comprises for the rate of
increase in adsorbed water and less the rate of inflow of adsorbed water through
diffusion.
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While some investigations consider the axial mass diffusion through the sorbent
layer, a common simplification among a number of studies is that the mass dif-
fusion in the axial direction is small compared to the mass transfer in the airstream,
such that Eq. (30) could be simply written as:

eqa
oYf

ot
þ ð1� eÞ qsfs

oW

ot
¼ �Ps

Af
j00i ; ð32Þ

and the rate of sorption is simplified to:

_g000sor ¼ ð1� eÞ qs fs
oW

ot
: ð33Þ

More insight on the rate of sorption can be obtained if the mass conservation
Eq. (30) is employed to rewrite the rate of sorption as:

_g000sor ¼ �
Ps

Af
j00i �

oj00g;x
ox
� eqa

oYf

ot
: ð34Þ

In this form, if one considers that the convective mass transfer to the process
stream is much larger in magnitude than the storage in gas-phase and the gas-phase
diffusion transfer, the rate of sorption could be alternatively simplified to:

_g000sor ¼ �
Ps

Af
j00i : ð35Þ

This simplification is considered by different investigators and generally also
implies that vapor storage effect in the gas-phase is small compared to that of the
adsorbed phase. For these cases, one could simplify Eq. (32) to:

ð1� eÞ qsfs
oW

ot
¼ �Ps

Af
j00i : ð36Þ

Nevertheless, while this could be a good approximation for some active des-
iccant wheels, when enthalpy wheels are considered, the fraction of adsorbent
material in the felt (fs) may assume small values, and this approximation could
lead to incorrect results.

4.3.2 Energy Transport

With the assumptions of small pressure variation, the energy transport equation
can be obtained from an enthalpy balance within the sorbent felt:
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Af
o

ot
e qaia þ qv;f iv;f

� �
þ ð1� eÞ qsis þ

Zql

0

ildql0

0

@

1

A

0

@

1

A

¼ �Af

o _q00f ;x
ox
� Ps _q00i � Ps j00i iv;i þ Pw _q00w �Af

o iv;f j00g;x

� �

ox
�Af

oð�ilj00s;xÞ
ox

;

ð37Þ

which can also be written in terms of the dry-basis concentrations:

Af
o

ot
e qaðia þ Yf iv;f Þ þ ð1� eÞqs is þ

ZW

0

ildW 0

0

@

1

A

0

@

1

A

¼ �Af

o _q00f ;x
ox
� Ps _q00i � Psj

00
i iv;i þ Pw _q00w �Af

oðiv;f j00g;xÞ
ox

�Af
oð�il j00s;xÞ

ox
;

ð38Þ

where _q00f ;x is the conduction heat flux in the sorbent material. The integrated
enthalpy of adsorbed water needs to be used due to the dependence of the enthalpy
of the adsorbed phase (il) on the adsorbed concentration, which occurs due to the
nature of the heat of wetting.

Another point worth noting is that the energy transfer associated with the
diffusion in the adsorbed phase is written in terms of the averaged enthalpy �il.
Hence, the enthalpy of the diffused amount is the averaged value of all adsorbed
layers, which implies an assumption that the diffusion is equally distributed among
different adsorbed layers. Indeed, the ‘‘exact’’ value of the specific enthalpy of the
diffused adsorbed water would involve an integral over the different diffusion rates
associated with different adsorbed layers. On the other hand, using il instead of �il

involves an assumption that the amount of diffused water, regardless of its
quantity, will have an enthalpy value of the last adsorbed layer. Although �il is
herein adopted as the enthalpy of the diffused layer, one could easily modify the
formulation if a better approximation or the actual enthalpy of the diffused
adsorbed water is available.

The rearrangement of Eq. (38) leads, after simplification, to:

qf cf
oTf

ot
þ j00g;x

oiv;f

ox
þ j00s;x

o�il

ox
¼ �

o _q00f ;x
ox
� Ps

Af
_q00i

� Ps

Af
j00i iv;i � iv;f
� �

þ _s000sor þ
Pw

Af
_q00w;

ð39Þ

where _s000sor is the volumetric rate of sorption heating, which, for the one-dimen-
sional balance, is defined as:

_s000sor ¼ ð1� eÞ qs fs
oW

ot
iv;f � il
� �

þ
oj00s;x
ox

iv;f ��il

� �
; ð40Þ
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and the volumetric thermal capacity of the felt includes contributions from the
moist air in pores, the solid adsorbent and the adsorbed water:

qf cf ¼ eqa ðcp;a þ cp;vYf Þ þ ð1� eÞqs ðcs þ fsWclÞ; ð41Þ

in which the specific heat of the adsorbed phase is defined by

Wcl ¼ o
oTf

RW

0
il dW

� �

W

or cl ¼ o�il
oTf

� �

W
; ð42Þ

where the subscript W indicates differentiation holding W constant. Equation (41)
shows that the energy storage term in Eq. (39) represents the combined energy
storage in all three phases present at a point in the sorbent material.

Observing the left-hand-side of Eq. (39), one notices that besides the energy
storage term, there are two advective energy transport terms due to the water
motion in gas and adsorbed phases. Since these mass transfer rates are due to
diffusion, these terms are assumed negligible and removed from the transport
equation. Finally, with the introduction of the heat of sorption from Eq. (16), one
obtains:

qf cf
oTf

ot
¼ �

o _q00f ;x
ox
� Ps

Af
_q00i �

Ps

Af
j00i iv;i � iv;f

� �
þ _s000sor þ

Pw

Af
_q00w; ð43Þ

Introducing the definition of the heat of sorption (16) in Eq. (40) leads to:

_s000sor ¼ ð1� eÞ qs fs
oW

ot
isor þ

oj00s;x
ox

iv;f ��il
� �

: ð44Þ

The sorption heating can be also written in terms of the rate of sorption:

_s000sor ¼ _g000sor isor þ
oj00s;x
ox

il ��ilð Þ; ð45Þ

in which the last term represents an additional contribution due to diffusion in the
adsorbed layers. An example of the manifestation of this term is a situation in
which no adsorption occurs, but due to a difference in surface concentration, there
is movement in the adsorbed phase, thereby resulting in a redistribution of
adsorbate within different adsorbed layers. The enthalpy difference associated with
different layers will produce a heating or cooling effect, which is represented by
the last term in equation. Naturally, if there is no surface diffusion, _s000sor is simply
given by:

_s000sor ¼ _g000sorisor ¼ ð1� eÞqs fs
oW

ot
isor: ð46Þ

Finally, since three dependent variables appear in the heat and mass balance, an
extra equation is needed. This equation is the sorption isotherm, or equilibrium
relation, as generally defined by Eq. (8) or (9), such that W is calculated directly
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from the properties (Tf and Yf ) of the gas-phase in the void spaces of the sorbent
felt.

4.4 Multidimensional Conservation Balances for Sorbent

The derivation of the mass and energy transport equations for a multidimensional
formulation in the sorbent can also be easily obtained, as demonstrated in this
section. As presented for the one-dimensional formulation, variation in equations
arising from different simplifications are also discussed. A specific modification
that will be shown is due to the inclusion of additional transport rates due to Soret
and Dufor effects. This modification was not included in the one-dimensional
sorbent equations to avoid repetition. Nevertheless, one can easily modify the one-
dimensional transport equation for the sorbent material as similarly shown for the
multi-dimensional formulation to include these effects.

4.4.1 Mass Transport

Considering a control volume V with a bounding surface S, within the sorbent
material, an integral mass balance yields:

d
dt

Z

V
eqv;f þ ð1� eÞ ql

� �
dV ¼ �

Z

S
ðj00g þ j00s Þ � n dS; ð47Þ

where j00g and j00s represent the mass flux vectors corresponding to diffusion of vapor
in the gas-phase and adsorbed water on the surface of the pores, respectively.
Then, applying Gauss’ Divergence Theorem finally leads to:

e
oqv;f

ot
þ ð1� eÞ oql

ot
¼ �r � j00g �r � j00s ; ð48Þ

which correspond to a statement that the water storage in gaseous and adsorbed
form result from the net mass inflow due to gas-phase and surface diffusion, which
are assumed to occur in parallel. Using the dry-basis concentration variables, Eq.
(48) can be simplified to:

eqa
oYf

ot
þ ð1� eÞ qs fs

oW

ot
¼ �r � j00g �r � j00s : ð49Þ

This is probably the most common form of the mass conservation equation used
in multidimensional formulations for solid sorbents in active and passive desiccant
wheels.

The equation can naturally be modified if some effects are considered unim-
portant. A common modification seen among literature studies involves assuming
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that the adsorbed phase storage is much higher than that of the gas-phase storage,
such that Eq. (49) is modified to the following form:

ð1� eÞ qs fs
oW

ot
¼ �r � j00g �r � j00s : ð50Þ

While the last modification simplifies Eq. (49), additional modifications can be
made to include other phenomena. For instance, if the hypothesis of no thermo-
diffusion is relaxed, this equation should be modified to include an additional
transport term:

eqa
oYf

ot
þ ð1� eÞ qs fs

oW

ot
¼ �r � j00g �r � j00s �r � j00T ; ð51Þ

where j00T represents the mass flux vector due to thermo-diffusion, also known as
thermophoresis or simply as Soret effect.

4.4.2 Energy Transport

As similarly carried out for the mass balance, an integral energy balance with a
control volume V yields:

d
dt

Z

V
e ðqaia þ qv;f iv;f Þ þ ð1� eÞ qsis þ

Z ql

0
ildql0

� �� �
dV

¼ �
Z

S
_q00f � n dS �

Z

S
iv;f j00g þ�il j00s

� �
� ndS;

ð52Þ

where _q00f is the effective heat flux vector in the porous felt. Then, employing
Gauss’ Divergence Theorem and using the mass conservation Eq. (48) leads, after
simplification, to:

qf cf
oTf

ot
þ j00g � riv;f þ j00s � r�il ¼ �r � _q00f þ _s000sor; ð53Þ

where the last term on the right hand side of Eq. (53) represents the heating effects
associated with the sorption phenomenon. The volumetric rate of sorption for the
multidimensional formulation is given by:

_g000sor ¼ ð1� eÞ oql

ot
þr � j00s ; ð54Þ

and the rate of heating due to sorption is given by:

_s000sor ¼ ð1� eÞ oql

ot
isor þ ðr � j00s Þ iv;f ��il

� �
¼ _g000sor isor þ r � j00s

� �
il ��ilð Þ; ð55Þ
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as analogously defined for the one-dimensional formulation by Eqs. (31) and (44),
respectively. Naturally, if the contribution of surface diffusion is negligible to the
sorption heating term, one arrives at:

_s000sor ¼ _g000sor isor: ð56Þ

As previously discussed, as the advective heat transport terms due to the dif-
fusion mass fluxes can generally be assumed negligible compared to the other
energy transport terms, Eq. (53) is simplified to give:

qf cf
oTf

ot
¼ �r � _q00f þ _s000sor; ð57Þ

which is also a traditional form found in the literature for multidimensional heat
transfer in sorbents of active and passive desiccant wheels. As done for the mass
transport equation, modifications to Eq. (57) may be easily accomplished. If an
additional heat transfer rate due to Dufour effects are considered, an additional
transport term is incorporated:

qf cf
oTf

ot
¼ �r � _q00f �r � _q00j þ _s000sor; ð58Þ

where _q00j represents the heat flux due to the diffusion thermo-effect, or simply to
the Dufor effect. Although boundary conditions are required for solving the pre-
sented heat and mass balance equations, an extra relation is needed due to the
presence of three unknown dependent variables. As mentioned in the one-
dimensional formulation, an equilibrium isotherm, such as Eqs. (8) and (9), is
required for relating W with Yf and Tf .

Equations (48) through (50) assume no mass transfer resistance between the
water vapor in pores and the gaseous phase that is in equilibrium with the adsorbed
phase, such that these two quantities are the same. Under some circumstances,
however, it could be important to consider such resistances. One example would
be in a desiccant material having larger and smaller pores. In this type of situation
the vapor in the smaller pores (and near the surfaces of larger pores) could be in
equilibrium with the the adsorbed phase, but the vapor in the larger pores would
have a different concentration.

A relatively simple formulation for this case can be obtained if Eq. (49) is split
into two parts:

eqa
oYf

ot
þr � j00g ¼ j00p; ð59Þ

ð1� eÞqs fs
oW

ot
þr � j00s ¼ �j00p: ð60Þ

Naturally, the addition of these two equations lead to Eq. (49). The mass flux j00p
will depend on the concentration at the pore Yf , and another concentration Yp,
representing the vapor state that is in equilibrium with the adsorbed state:
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j00p ¼ j00pðYf ; YpÞ: ð61Þ

The other modification is that W be related to the temperatures and concen-
tration in a different way:

W ¼ WðTf ; YpÞ; ð62Þ

so that W is in equilibrium with Yp instead of Yf . Note, however, that if Yp ¼ Yf ,
the previous formulation is obtained. Finally, one must mention that this formu-
lation still considers that there is thermal equilibrium between these two states,
such that they possess the same temperature.

5 Constitutive Equations

5.1 Expressions for Heat and Mass Fluxes

The heat and mass diffusion fluxes within the sorbent felt, needed for the multi-
dimensional formulation, are given in terms of Fourier’s Law of heat conduction

_q00f ¼ �keff rTf ; ð63Þ

where, the heat diffusion in the solid desiccant also is given in terms of an apparent
property: the effective thermal conductivity keff . However, different than the
thermal capacity, there are a number of models available in the literature for
expressing keff in terms of the different components found in the porous adsorbent
material [38]. For the one-dimensional formulation, only the axial component of
the flux is needed:

_q00f ;x ¼ �keff
f

ox
: ð64Þ

Similar to the heat diffusion flux, the mass diffusion fluxes are given by Fick’s
Law expressions:

j00g ¼ �qaDg;effrYf ; ð65Þ

j00s ¼ �qsfsDs;effrW ; ð66Þ

where the effective Fick diffusion coefficients account for tourtuosities in the
sorbent material, being given by:

Dg;eff ¼
eDg

sG
; Ds;eff ¼

ð1� eÞDs

sS
: ð67Þ

Many works model the gas-phase mass diffusion as a combination of molecular
diffusion and Knudsen diffusion. These are assumed to be parallel processes [80],
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such that the gas-phase diffusion coefficient is calculated from a combination of a
molecular diffusion coefficient DM and a Knudsen diffusion coefficient DK :

1
Dg
¼ 1
DM
þ 1
DK

: ð68Þ

The molecular diffusion coefficient can be obtained from expressions for binary
air–water gas mixtures.

As analogously mentioned for the conduction flux, for the one-dimensional
sorbent formulation only the axial components of the mass fluxes in the felt are
needed. These are simply given by:

j00g ¼ �qaDg;eff

oYf

ox
; ð69Þ

j00s ¼ �qsfs Ds;eff

oW

ox
: ð70Þ

If Soret and Dufour effects are taken into account, additional expressions for
these fluxes are needed. In a general way, the diffusion flux due to the Soret effect
may be written as [4, 34]:

j00T ¼ �DT
g;effr log Tð Þ ¼

DT
g;eff

keffT
_q00f ; ð71Þ

where DT
g is thermal diffusion coefficient. In a similar fashion, the heat flux due to a

concentration difference, comprising the Dufour effect, may be expressed as [34]:

_q00m ¼ km j00g; ð72Þ

in which km is a coefficient that relates the heat flux due to concentration difference
to the mass flux j00g . Although Soret and Dufour effects were discussed and
expressions for the associated heat and mass fluxes were presented, apparently no
models found in the literature related to active and passive desiccant wheels
include these effects. Since the inclusion of these terms involve simple modifi-
cations to the transport equations, and since no literature studies include these
effects in simulations of heat and mass transfer regenerators, they will be assumed
negligible from this point on for the sake of simplicity.

The convective heat flux from the sorbent felt to the process stream is given by
Newton’s Cooling Law:

_q00i ¼ h Ti � Tð Þ; ð73Þ

where h is the convective heat transfer coefficient, and Ti is the temperature at the
felt-stream interface. The value of Ti will depend on the type of formulation
employed; for the one-dimensional sorbent formulation it is the actual sorbent
temperature Tsðx; tÞ, whereas for the multidimensional sorbent model it is the
sorbent temperature Tsðx; tÞ evaluated at the felt-stream interface.
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Traditionally, the convective mass flux from the sorbent felt to the process
stream is written in terms of a concentration difference, similarly to Newton’s
Cooling Law:

j00i ¼ hmqaðYi � YÞ; ð74Þ

where hm is a convective mass transfer coefficient and Yi is the vapor concentration
in the felt, at the interface. As similar to Ti, this concentration can assume different
values depending on the type of formulation employed for the adsorbent material;
it will be simply given by Yi ¼ Yf ðx; tÞ for the one-dimensional sorbent formula-
tion and by Yi ¼ Yf ðx; tÞ with x evaluated at the felt-stream interface for the multi-
dimensional model.

The mass flux j00p used in the multidimensional formulation with an additional
mass transfer resistance within the felt can also be written as a Newton’s Law-type
expression:

jj00p ¼ hpqaðYp � Yf Þ; ð75Þ

where, hp is the mass transfer coefficient across the additional resistance. Natu-
rally, higher hp values will lead to a lower mass transfer resistance, and in the limit
with hp !1 this resistance becomes negligible.

The conduction heat flux in the supporting wall is simply given by Fourier’s
Law:

_q00w;x ¼ �kw
oTw

ox
: ð76Þ

Moreover, the heat flux from the impermeable wall to the sorbent felt (at the
felt-wall interface), can be given in terms of a contact heat transfer coefficient:

_q00w ¼ hw Tw � Tfw

� �
; ð77Þ

in which Tfw is the temperature of the sorbent material at the felt-wall interface.
For the one-dimensional sorbent formulation Tfw is the actual temperature of the
sorbent felt Tf ; however, for a multi-dimensional sorbent formulation Tfw is the
temperature of the felt evaluated at this position.

5.2 Adsorption Isotherm and Heat of Sorption

A number of relations for expressing the equilibrium between water in adsorbed
form and vapor in the air–water mixture in contact with it can be found in the
literature. A commonly used simple isotherm is the explicit separation-factor
based relation:
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W ¼
/f Wmax

r þ ð1� rÞ/f
; ð78Þ

where r is the separation factor and /f is the relative humidity of air in the pore
space, i.e. /f ¼ /f ðTf ; Yf Þ. As one can observe, this isotherm combines the tem-
perature and absolute humidity dependence of W into a single parameter: the
relative humidity. Equation (78) is further simplified if r ¼ 1:

W ¼ Wmax /f ; ð79Þ

which is known as the linear isotherm.
Equations (78) and (79) naturally apply to the case without the extra mass

transfer resistance between the gas-phase and the layer in equilibrium with the
adsorbed phase. For cases with the additional resistance, /f should be substituted
by /p ¼ /pðTf ;/pÞ.

Another traditional isotherm relation is the Langmuir model:

W ¼ Wmax

bpv;f

1þ bpv;f
; ð80Þ

where pv;f is the vapor partial pressure of the gas-phase in pores and b is a
coefficient, which generally depends on temperature. The quantity Wmax represents
the maximum water uptake by the desiccant, which can also depend on
temperature.

The heat of sorption is commonly expressed in terms of the heat of
vaporization:

isor ¼ ð1þ esorÞivap; ð81Þ

where esor is the fraction by which the heat of sorption exceeds the heat of
vaporization. This implies that esor is related to the differential heat of wetting as:

esor ¼ �
iwet

ivap

: ð82Þ

Jurinak and Mitchell [30] argument that a reasonable expression for water
vapor being adsorbed on silica gel, based on the experimental data, is given by:

esor ¼ De
expðW�jÞ � expðjÞ

1� expðjÞ ; ð83Þ

in which W� ¼ W=Wmax. The parameters De and j are constants, with j\ 0. It is
interesting to note that, if W ¼ Wmax, esor ¼ 0 and the heat of sorption is reduced
to the latent heat of vaporization. This reflects the fact that any change of phase (in
the direction of moisture removal from the airstream) beyond this point can only
occur by simple condensation. For illustration purposes, for a linear isotherm with
Wmax ¼ 0:5 kg water/kg sorbent, possible values for the constants are De ¼ 0:3,
j ¼ 0:5.
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San and Hsiau [62, 63] also use a similar expression for silica-gel and water, in
which esor is given by:

esor ¼ 0:2843 expð�10:28WÞ: ð84Þ

6 Equations in Terms of Temperature and Concentration

After the introduction of heat and mass fluxes, the transport equations arising from
the presented conservation balances are written in terms of temperature and
concentration.

6.1 Process Stream and Impermeable Wall

Starting with the process stream, the governing equations are given by:

qa
oY

ot
þ ð�1Þc u

oY

ox

� �
¼ Ps

Ap
hmqa Yi � Yð Þ; ð85Þ

qcp
oT

ot
þ ð�1Þc u

oT

ox

� �
¼ Ps

Ap
h Ti � Tð Þ þ Ps

Ap
hmqa Yi � Yð Þ iv;i � iv

� �
: ð86Þ

By inspecting these equations, one notices that although Ti and Yi are clearly
defined, the value of iv;i is unclear. Physically, it must be within the values of the
vapor enthalpy in the process stream iv and the vapor enthalpy in the sorbent felt
iv;f . In order to facilitate matters, the parameter u is introduced:

u ¼ iv;i � iv

iv;f � iv
; 1� u ¼ iv;f � iv;i

iv;f � iv
: ð87Þ

In addition, iv;f � iv can be written in terms of a temperature difference:

iv;f � iv ¼ cp;v Ti � Tð Þ; ð88Þ

where Ti has been used for representing the temperature associated with the felt
enthalpy because, Ti ¼ Tf for the one-dimensional sorbent balances and Ti ¼ Tf at
the felt-stream interface for the multi-dimensional case. With Eq. (87) the energy
Eq. (86) can be rewritten as:

qcp
oT

ot
þ ð�1Þc u

oT

ox

� �
¼ Ps

Ap
h Ti � Tð Þ

þ Ps

Ap
hmqaucp;v Yi � Yð Þ Ti � Tð Þ:

ð89Þ
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The energy equation for the impermeable wall is given in terms of its tem-
perature as:

qwcw
oTw

ot
¼ kw

o2Tw

ox2
� Pw

Aw
hw Tw � Tfw

� �
: ð90Þ

6.2 One-Dimensional Sorbent Equations

For the sorbent felt, if the one-dimensional balances are employed, one obtains the
following equations:

e qa
oYf

ot
þ ð1� eÞ qs fs

oW

ot
¼ �Ps

Af
hm qa Yf � Y

� �

þ qa
o

ox
Dg;eff

oYf

ox

� �
þ qsfs

o

ox
Ds;eff

oW

ox

� �
;

ð91Þ

qf cf
oTf

ot
¼ keff

o2Tf

ox2
� Ps

Af
hm Tf � T
� �

þ Ps

Af
hm qa 1� uð Þ cp;v Yf � Y

� �
Tf � T
� �

þ _s000sor þ
Pw

Af
hw Tw � Tfw

� �
;

ð92Þ

where, naturally, if mass diffusion through the porous felt is negligible, Eq. (91)
can be simplified to:

eqa
oYf

ot
þ 1� eð Þ qs fs

oW

ot
¼ �Ps

Af
hm qa Yf � Y

� �
: ð93Þ

It is interesting to note that, if rate of sorption term can be written in the form of
Eq. (35), one arrives at:

_g000sor ¼ �
Ps

Af
hmqa Yf � Y

� �
: ð94Þ

Then, if one further considers that the effects of surface diffusion are negligible
to the sorption heating term, the energy equation can be written in the following
form:

qf cf
oTf

ot
¼ keff

o2Tf

ox2
� Ps

Af
hm Tf � T
� �

þ _g000sor iþsor þ
Pw

Af
hw Tw � Tfw

� �
; ð95Þ

where iþsor is a modified heat of sorption, defined as:

iþsor ¼ isor þ ð1� uÞcp;v ðTf � TÞ; ð96Þ
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which also involves a sensible heating portion.
It is also interesting to note that combining Eqs. (89), (90) and (92) leads to

Apqcp
oT

ot
þ ð�1Þcu oT

ox

� �
þAf qf cf

oTf

ot
þAwqw cw

oTw

ot
¼ Af keff

o2Tf

ox2

þAwkw
o2Tw

ox2
þ Pshmqacp;v Yf � Y

� �
Tf � T
� �

þAf _s000sor;

ð97Þ

which actually represents the energy balance for the entire system, including the
process stream, felt and supporting structure. From this equation, one notices that
regardless of the value of u, the complete system will have the same heating effect,
which is represented in the last two terms of this equation. The last term represents
the latent heating due to sorption, whereas the next-to-last term represents a
sensible heating. Its interesting to note that depending on the signs of Tf � T and
Yf � Y , the sensible heating term can assume positive or negative values, repre-
senting a heating or even a cooling effect. Finally, comparing Eqs. (89) and (92) it
becomes clear that the u parameter determines which medium is directly affected
by the sensible heating term. If u ¼ 1 the sensible heating is entirely delivered to
the process stream; on the other hand, if u ¼ 0 it is entirely delivered to the
sorbent felt. Any other value will lead to a fraction of this effect being delivered to
each of these media. A similar consideration is done in [67]; however, it is also
considered that the latent fraction of the sorption heating effect can be delivered
partly to the felt and partly to the process stream.

Equation (92) considers the effect of a thermal resistance between the imper-
meable structure and sorbent felt. This is actually a general case that can be used
for other simple situations. For instance, if there is no impermeable wall, one can
simply equal hw to zero, removing the wall from the problem. On the other hand, if
perfect contact is assumed between the wall and sorbent, hw goes to infinity and the
temperature difference Tw � Tf goes to zero. As both the wall and felt are at the
same temperature for this special case, Eqs. (90) and (92) can be combined into a
single form:

qf cf þ qwcw
Aw

Af

� �
oTf

ot
¼ keff þ kw

Aw

Af

� �
o2Tf

ox2
� Ps

Af
hm Tf � T
� �

þ Ps

Af
hmqa 1� uð Þ cp;v Yf � Y

� �
Tf � T
� �

þ _s000sor;

ð98Þ

which shows, for the perfect thermal contact, that the wall contributes to aug-
menting the thermal capacity and thermal conductivity of the felt.
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6.3 Multi-Dimensional Sorbent Equations

Employing the more general model that includes an extra mass transfer resistance,
the governing equations in terms of temperature and concentrations are given by:

e
oYf

ot
�r � Dg;effrYf

� �
¼ hp Yp � Yf

� �
; ð99Þ

1� eð Þqs fs
oW

ot
� qs fs r � Ds;eff rW

� �
¼ �hp qa Yp � Yf

� �
; ð100Þ

qf cf
oTf

ot
¼ r � keffrTf

� �
þ _s000sor; ð101Þ

remembering that W ¼ WðTf ; YpÞ. As previously mentioned, if hp !1, Yf ¼ Yp,
and Eqs. (99) and (100) can be combined into a single from:

eqa
oYf

ot
þ 1� eð Þqs fs

oW

ot
¼ qar � Dg;effrYf

� �
þ qs fs r � Ds;effrW

� �
: ð102Þ

Regardless of the value of hp, the heating rate due to sorption is given by:

_s000sor ¼ qs fs ð1� eÞ oW

ot
�r � ðDs;effrWÞ

� �
isor �r � ðDs;effrWÞ ðil ��ilÞ

� 	
;

ð103Þ

which for no surface diffusion is simply reduced to:

_s000sor ¼ qs fsð1� eÞ oW

ot
isor: ð104Þ

7 Boundary and Periodicity Conditions

7.1 Process Stream and Impermeable Wall

The heat and mass convection equations for the process streams and the imper-
meable wall heat balance equation require boundary conditions in the axial
direction only. For the supporting wall, convection heat transfer conditions can be
written at x ¼ 0 and x ¼ L:

_q00w;x ¼ h0 T0 � Twð Þ; at x ¼ 0; ð105Þ

_q00w;x ¼ hL Tw � TLð Þ; at x ¼ L; ð106Þ
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where h0 and hL are convective heat transfer coefficients at the boundaries, and T0

TL are the fluid temperatures at x ¼ 0 and x ¼ L, respectively. Nevertheless, it is
generally considered that the heat transfer through these boundaries is insignificant
compared to that exchanged with the sorbent felt, such that insulated conditions
can be applied:

_q00w;x ¼ 0; at x ¼ 0 and x ¼ L: ð107Þ

For the process stream, the presence of first order spatial derivatives only
require a single boundary condition for each dependent variable. These are the
inlet conditions of the different process streams:

Tðck L; tÞ ¼ Tin;k and YðckL; tÞ ¼ Yin;k; for tk�1� t\tk; ð108Þ

for k ¼ 1; 2; . . .;K, where ck ¼ 0 for streams flowing in the positive x direction
and, whereas ck ¼ 1 for streams that flow in the opposite direction.

7.2 Sorbent Material

The remaining required boundary conditions involve the sorbent material. Since
two types of balances were employed, different sets of boundary conditions will be
used. At x ¼ 0 and x ¼ L, the boundary conditions will be the same for both one-
dimensional and multi-dimensional balances. As similarly considered for the
impermeable wall, the mass and energy transfers at the boundaries x ¼ 0 and
x ¼ L are negligible compared to the transfer rates to the process stream and wall,
such that insulated and impermeable boundaries may be assumed. This leads to the
following result

_q00f ;x ¼ 0; at x ¼ 0 and x ¼ L; ð109Þ

j00g;x ¼ 0; at x ¼ 0 and x ¼ L; ð110Þ

j00s;x ¼ 0; at x ¼ 0 and x ¼ L; ð111Þ

which can also be expressed in terms of temperature and gas-phase concentration:

oYf

ox
¼ oTf

ox
¼ 0; at x ¼ 0 and x ¼ L: ð112Þ

For the one-dimensional sorbent balance, these are actually the only boundary
conditions required. In fact, if axial diffusion through the supporting structure is
assumed negligible, no boundary conditions are required at all.

For the multi-dimensional balances, additional conditions at the remaining
interfaces are needed. At the felt-stream interface a mass balance yields the fol-
lowing boundary condition:
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j00s þ j00g

� �
� n ¼ j00i for x 2 Sp; ð113Þ

noting that in this case the interface concentration Yi is given by the value of Yf at
the interface. Although thermodiffusion was not considered in this equation, one
could easily modify it to include this effect. In a similar fashion, an energy balance
can be written at the felt-stream interface:

�il j00s þ iv;f j00g þ _q00f

� �
� n ¼ _q00i þ j00i iv;i for x 2 Sp: ð114Þ

A simplified equation can be obtained if the mass balance at the interface is
used, leading to:

_q00f � n ¼ _q00i þ j00i ðiv;i � iv;f Þ þ ðiv;f ��ilÞ j00s � n for x 2 Sp; ð115Þ

where the last to terms on the right-hand-side are generally assumed negligible
among most literature studies leading to

_q00f � n ¼ _q00i for x 2 Sp; ð116Þ

which implies that the heat conduction into the sorbent material is solely due to the
sensible heat transfer from the process stream. As similarly mentioned for the
interface mass balance, Ti [appearing in the definition of _q00i , Eq. (73)] is the value
of Tf evaluated at this interface. In terms of concentration and temperature, the
boundary conditions given by Eqs. (113) and (115) are written as:

� qaDg;effr Yf þ fs qs Ds;eff rW
� �

� n ¼ hm qa Yf � Y
� �

; ð117Þ

�keffr Tf � n ¼ h Tf � T
� �

þ

þhm qaðYf � YÞ ðiv;i � iv;f Þ � ðiv;f � ilÞ qs fsDs;effrW � n; ð118Þ

At the felt-wall interface, the impermeability condition must hold:

j00s þ j00g

� �
� n ¼ 0 for x 2 Sw: ð119Þ

In a similar fashion, an energy balance can be written at same interface:

�ilj
00
s þ iv;f j

00
g þ _q00f

� �
� n ¼ � _q00w for x 2 Sw; ð120Þ

and this equation can be simplified by using the mass boundary condition (119):

_q00f � n ¼ � _q00w þ iv;f ��il
� �

j00s � n for x 2 Sw: ð121Þ

Finally, in terms of concentration and temperatures, the boundary conditions
given by Eqs. (119) and (121) are written as:

� qaDg;effrYf þ fsqs Ds;eff rW
� �

� n ¼ 0; ð122Þ
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�keff rTf � n ¼ �hw Tw � Tf

� �
� iv;f ��il

� �
qs fsDs;eff rW � n; ð123Þ

In the absence of a supporting structure, the surface Sw is treated as imper-
meable and adiabatic. For these cases, it is easy to show that the boundary con-
ditions at this interface are reduced to:

rTf � n ¼ rYf � n ¼ 0 for x 2 Sw: ð124Þ

7.3 Periodicity Conditions

Although the regenerative exchanger problem associated with active and passive
desiccant is transient, its solution is periodic, such that the following periodicity
conditions must be satisfied:

Tðx; tÞ ¼ Tðx; t þ tf Þ; ð125Þ

Yðx; tÞ ¼ Yðx; t þ tf Þ; ð126Þ

Tf ðx; tÞ ¼ Tf ðx; t þ tf Þ; ð127Þ

Yf ðx; tÞ ¼ Yf ðx; t þ tf Þ; ð128Þ

Twðx; tÞ ¼ Twðx; t þ tf Þ; ð129Þ

remembering that tf is the total operation period, as defined by Eq. (3). The
position vector x was used for the sorbent temperature and vapor concentration,
since in the multi-dimensional formulation it can depend one more than one spatial
variable.

8 Concluding Remarks

This chapter presented a detailed description of different mathematical models that
can be applied for simulating the operation of both active and passive desiccant
wheels. Following a trend seen in the vast majority of literature studies, the
transport equations for the airstream were treated in a simple bulk-form, and most
of the presented features were focused on the transport phenomena that occur
within the porous desiccant material. The simplifying assumptions and required
steps for obtaining the governing equations were properly discussed, and some of
the resulting formulations are very similar to models available in the literature. In
addition, suggestions for modifications in current literature models for this type of
problem were also presented, as an attempt to motivate the development of new
studies related to modeling and simulation of heat and mass transfer regenerators,
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such as active and passive desiccant wheels. The presented set of equations are
very general such that a variety of configurations can be simulated. As expected,
due to the coupling and non-linearities involved, one should seek a numerical
scheme for solving such equations. Nevertheless, such numerical schemes are
readily available in the literature related to heat and mass transfer regenerators.
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