
Chapter 12
Boosting k-Nearest Neighbors Classification

Paolo Piro, Richard Nock, Wafa Bel Haj Ali, Frank Nielsen,
and Michel Barlaud

Abstract A major drawback of the k-nearest neighbors (k-NN) rule is the high
variance when dealing with sparse prototype datasets in high dimensions. Most
techniques proposed for improving k-NN classification rely either on deforming
the k-NN relationship by learning a distance function or modifying the input space
by means of subspace selection. Here we propose a novel boosting approach for
generalizing the k-NN rule. Namely, we redefine the voting rule as a strong classi-
fier that linearly combines predictions from the k closest prototypes. Our algorithm,
called UNN (Universal Nearest Neighbors), rely on the k-nearest neighbors exam-
ples as weak classifiers and learn their weights so as to minimize a surrogate risk.
These weights, called leveraging coefficients, allow us to distinguish the most rele-
vant prototypes for a given class. Results obtained on several scene categorization
datasets display the ability of UNN to compete with or beat state-of-the-art methods,
while achieving comparatively small training and testing times.

P. Piro (B)
Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
e-mail: paolo.piro@iit.it

R. Nock
CEREGMIA, Université Antilles-Guyane, Campus de Schoelcher, Martinique, France
e-mail: rnock@martinique.univ-ag.fr

W. Bel Haj Ali · M. Barlaud
I3S Laboratory, University of Nice-Sophia Antipolis, 06903 Sophia Antipolis, France

W. Bel Haj Ali
e-mail: belhajal@i3s.unice.fr

M. Barlaud
e-mail: barlaud@i3s.unice.fr

F. Nielsen
Department of Fundamental Research, Sony Computer Science Laboratories, Inc., Tokyo, Japan

F. Nielsen
LIX Department, Ecole Polytechnique, Palaiseau, France
e-mail: nielsen@lix.polytechnique.fr

G.M. Farinella et al. (eds.), Advanced Topics in Computer Vision,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-5520-1_12, © Springer-Verlag London 2013

341

mailto:paolo.piro@iit.it
mailto:rnock@martinique.univ-ag.fr
mailto:belhajal@i3s.unice.fr
mailto:barlaud@i3s.unice.fr
mailto:nielsen@lix.polytechnique.fr
http://dx.doi.org/10.1007/978-1-4471-5520-1_12

342 P. Piro et al.

12.1 Introduction

In this chapter, we describe the proposed approach to k-NN boosting. First, we intro-
duce the scope of our work, which aims at automatic visual categorization of scenes
(Sect. 12.1.1) and relies on prototype-based classification (Sect. 12.1.2). Then, in
Sects. 12.2.1–12.2.3 we present the key definitions for surrogate risk minimization.
Our UNN algorithm is detailed in Sect. 12.2.4 for the case of the exponential risk.
Section 12.2.5 presents the generic convergence theorem of UNN and the upper
bound performance for the exponential risk minimization. Then, in Sect. 12.3, we
report our experiments on simulated and real data, comparing UNN with k-NN,
support vector machines (SVM) and AdaBoost, using Gist and/or Bag-of-Feature
descriptors. Real datasets include those proposed in [10, 30, 43], with a number of
categories ranging from 8 to 60. Then, in Sects. 12.4 and 12.5 we discuss results,
mention future works, and conclude. Finally, we postpone the general form and
analysis of UNN to other surrogate risks to the Appendix.

12.1.1 Visual Categorization

In this work, we address the problem of generic visual categorization. This is a rel-
evant task in computer vision, which aims at automatically classifying images into
a discrete set of categories, such as indoor vs outdoor [15, 32], beaches vs moun-
tains, churches vs towers. Generic categorization is distinct from object and scene
recognition, which are classification tasks concerning particular instances of objects
or scenes (e.g., Notre Dame Cathedral vs St. Peter’s Basilic). It is also distinct from
other related computer vision tasks, such as content-based image retrieval (that aims
at finding images from a database, which are semantically related or visually sim-
ilar to a given query image) and object detection (which requires to find both the
presence and the position of a target object in an image, e.g., person detection).

Automatic categorization of generic scenes is still a challenging task, due to the
huge number of natural categories that should be considered in general. In addition,
natural image categories may exhibit high inter-class variability (i.e., visually differ-
ent images may belong to the same category) and low inter-class variability (i.e., dis-
tinct categories may contain visually similar images). Classifying images requires
an effective and reliable description of the image content, for example, location and
shape of specific objects or overall scene appearance. Although several approaches
have been proposed in the recent literature to extract semantic information from im-
ages [36, 42], most of the state-of-the-art techniques for image categorization still
rely on low-level visual information extracted by means of image analysis operators
and coded into vector descriptors.

Examples of suitable low-level image descriptors for categorization purposes are
Gist, that is, global image features representing the overall scene [30], and SIFT
descriptors, that is, descriptors of local features extracted either at salient patches
[24] or at dense grid points [23]. A Gist descriptor is based on the so-called “spatial

12 Boosting k-Nearest Neighbors Classification 343

envelope” [30], which is a very effective low dimensional representation of the over-
all scene based on spectral information. Such a representation bypasses segmenta-
tion, extraction of key-points and processing of individual objects and regions, thus
enabling a compact global description of images. Gist descriptors have been suc-
cessfully used for categorizing locations and environments, showing their ability to
provide relevant priors for more specific tasks, like object recognition and detec-
tion [40]. Another successful tool for describing the global content of a scene is
the Bag-of-Features scheme [38], which represents an image by the histogram of
occurrences of vector quantized local descriptors like SIFT.

12.1.2 k-NN Classification

Apart from the descriptors used to compactly represent images, most image catego-
rization methods rely on supervised learning techniques for exploiting information
about known samples when classifying an unlabeled sample. Among these tech-
niques, k-NN classification has proven successful, thanks to its easy implementation
and its good generalization properties [37]. A generalization of the k-NN rule to the
multi-label classification framework has been also proposed recently by [46], whose
technique is based on the maximum-a-posteriori principle applied to multi-labeled
k-NN. A major advantage of the k-NN rule is not to require explicit construction
of the feature space and be naturally adapted to multi-class problems. Moreover,
from the theoretical point of view, straightforward bounds are known for the true
risk (i.e., error) of k-NN classification with respect to the Bayes optimum, even for
finite samples [29].

Although such advantages make k-NN classification very attractive to practition-
ers, it is an algorithmic challenge to speed-up k-NN queries. It is also a statistical
challenge to further improve the risk bounds of k-NN. In part due to the simplicity
of the classification rule, many methods have been proposed to address either of
these challenges. For example, many methods have been proposed for speeding up
nearest neighbor retrieval, including locality sensitive hashing (LSH, [13]), prod-
uct quantization for nearest neighbor search [21], and vector space embedding with
boosting algorithms [2, 25].

It is yet another challenge to reduce the true risk of the k-NN rule, usually tack-
led by data reduction techniques [17]. In prior work, the classification problem has
been reduced to tracking ill-defined categories of neighbors, interpreted as “noisy”
[6]. Most of these recent techniques are in fact partial solutions to a larger problem
related to the nearest neighbors’ true risk, which does not have to be the discrete
prediction of labels, but rather a continuous estimation of class membership proba-
bilities [19]. This problem has been reformulated by [7] as a strong advocacy for the
formal transposition of boosting to nearest neighbors classification. Such a formal-
ization is challenging as nearest neighbors rules are indeed not induced, whereas all
formal boosting algorithms induce so-called strong classifiers by combining weak
classifiers—also induced, such as decision trees—[35].

344 P. Piro et al.

A survey of the literature shows that at least four different categories of ap-
proaches have been proposed in order to improve k-NN classification:

• learning local or global adaptive distance metric;
• embedding data in the feature space (kernel nearest neighbors);
• distance-weighted and difference-weighted nearest neighbors;
• boosting nearest neighbors.

The earliest approaches to generalizing the k-NN classification rule relied on learn-
ing an adaptive distance metric from training data (see the seminal works of [11]).
An analogous approach was later adopted by [18], who carried out linear discrimi-
nant analysis to adaptively deform the distance metric. Recently, [31] has proposed
a method for learning a weighted distance, where weights can be either global
(i.e., only depending on classes and features) or local (i.e., depending on each indi-
vidual prototype as well).

Other more recent techniques apply the k-NN rule to data embedded in a high-
dimensional feature space, following the kernel trick approach of support vector
machines. For example, [44] have proposed a straightforward adaptation of the ker-
nel mapping to the nearest neighbors rule, which yields significant improvement in
terms of classification accuracy. In the context of vision, a successful technique has
been proposed by [47], which involves a “refinement” step at classification time,
without relying on explicitly learning the distance metric. This method trains a local
support vector machine on nearest neighbors of a given query, thus limiting the most
expensive computations to a reduced subset of prototypes.

Another class of k-NN methods relies on weighting nearest neighbors votes
based on their distances to the query sample [8]. Recently, [49] have proposed a
similar weighting approach, where the nearest neighbors are weighted based on their
vector difference to the query. Such a difference-weight assignment is defined as a
constrained optimization problem of sample reconstruction from its neighborhood.
The same authors have proposed a kernel-based non-linear version of this algorithm
as well.

Finally, comparatively few work have proposed the use of boosting techniques
for k-NN classification [1, 2, 12, 25, 33]. [1] use AdaBoost for learning a distance
function to be used for k-NN search. [12] adopt the boosting approach in a non-
conventional way. At each iteration a different k-NN classifier is trained over a
modified input space. Namely, the authors propose two variants of the method, de-
pending on the way the input space is modified. Their first algorithm is based on op-
timal subspace selection, that is, at each boosting iteration the most relevant subset
of input data is computed. The second algorithm relies on modifying the input space
by means of non-linear projections. But neither method is strictly an algorithm for
inducing weak classifiers from the k-NN rule, thus not directly addressing the prob-
lem of boosting k-NN classifiers. Moreover, such approaches are computationally
expensive, as they rely on a genetic algorithm and a neural network, respectively.
[2, 25] map examples in a vector space by using the outputs of (Ada)boosted weak
classifiers. It is not known whether these algorithms formally keep (or improve)
the boosting properties known for AdaBoost [35]. More recently, [33] have built

12 Boosting k-Nearest Neighbors Classification 345

upon the works of [27, 28] (see also the survey of the approach in [9]) to provide
a provable boosting algorithm for k-NN classifiers. Guaranteed convergence speed
is obtained for AdaBoost’s famed exponential loss, under a weak index assump-
tion which parallels the weak learning assumption of boosting algorithms, making
the approach of [33] among the first to provide a provable boosting algorithm for
k-NN [7].

We propose in this work a full-fledged solution to the problem of boosting
k-NN classifiers in the general multi-class setting and for general classes of losses.
Namely, we propose the first provable boosting algorithm, called UNN, which in-
duces a leveraged nearest neighbor rule that generalizes the uniform k-NN rule, and
whose convergence rate is guaranteed for a wide (i.e., infinite) set of losses, encom-
passing popular choices such as the logistic loss or the squared loss. The voting rule
is redefined as a strong classifier that linearly combines weak classifiers of the k-NN
rule (i.e., the examples). Therefore, our approach does not need to learn a distance
function, as it directly operates on the top of k-NN search. At the same time, it
does not require an explicit computation of the feature space, thus preserving one
of the main advantages of prototype-based methods. Our boosting algorithm is an
iterative procedure which learns the weights for examples called leveraging coeffi-
cients. Then, our class encoding allows to generalize the guarantees on convergence
rates for an infinite number of surrogate risks.1 The generalization is highly de-
sirable, not only for experimental purposes related for example, to no-free-lunch
Theorems [28]: our generalization encompasses many classification calibrated sur-
rogates, functions exhibiting particularly convenient guarantees in the context of
classification [4]. Finally, an important characteristic of UNN is that it is naturally
able, through the leveraging mechanism, to discriminate the most relevant proto-
types for a given class.

12.2 Method

12.2.1 Preliminary Definitions

In this work, we address the task of multi-class, single-label image categorization.
Although the multi-label framework is quite well established in literature [5], we
only consider the case where each image is constrained to belong to one single cat-
egory among a set of predefined categories. The number of categories (or classes)
may range from a few to hundreds, depending on applications. For example, cat-
egorization with 67 indoor categories has been recently studied by [34]. We treat
the multi-class problem as multiple binary classification problems as it is custom-
ary in machine learning. Hence, for each class c, a query image is classified either

1A surrogate is a function which is a suitable upperbound for another function (here, the non-
convex non-differentiable empirical risk).

346 P. Piro et al.

to c or to c̄ (the complement class of c, which contains all classes but c) with a
certain confidence (classification score). Then the label with the maximum score is
assigned to the query. Images are represented by descriptors related to given local
or global features. We refer to an image descriptor as an observation x ∈ X , which
is a vector of n features and belongs to a domain X (e.g., Rn or [0,1]n). A label
is associated to each image descriptor according to a predefined set of C classes.
Hence, an observation with the corresponding label leads to an example, which is
the ordered pair (x,y) ∈ X ×R

C , where y is termed the class vector that specifies
the class memberships of x. In particular, the sign of yc gives the membership of ex-
ample (x,y) to class c, such that yc is negative iff the observation does not belong
to class c, positive otherwise. At the same time, the absolute value of yc may be
interpreted as a relative confidence in the membership. Inspired by the multi-class
boosting analysis of [48], we constrain class vectors to be symmetric, that is:

C∑

c=1

yc = 0. (12.1)

Hence, in the single-label framework, the class vector of an observation x belonging
to class c̃ is defined as:

yc̃ = 1, yc �=c̃ = − 1

C − 1
. (12.2)

This setting turns out to be necessary when treating multi-class classification as
multiple binary classifications, as it balances negative and positive labels of a given
example over all classes. In the following, we deal with an input set of m exam-
ples (or prototypes) S = {(xi ,yi), i = 1,2, . . . ,m}, arising from annotated images,
which form the training set.

12.2.2 Surrogate Risks Minimization

We aim at defining a one-versus-all classifier for each category, which is to be
trained over the set of examples. This classifier is expected to correctly classify
as many new observations as possible, that is, to predict their true labels. Therefore,
we aim at determining a classification rule h from the training set, which is able to
minimize the classification error over all possible new observations. Since the un-
derlying class probability densities are generally unknown and difficult to estimate,
defining a classifier in the framework of supervised learning can be viewed as fitting
a classification rule onto a training set S , with the hope to minimize overfitting as
well. In the most basic framework of supervised classification, one wishes to train a
classifier on S , that is, build a function h : X → R

C with the objective to minimize
its empirical risk on S , defined as:

ε0/1(h,S)
.= 1

mC

C∑

c=1

m∑

i=1

[
�(h, i, c) < 0

]
, (12.3)

12 Boosting k-Nearest Neighbors Classification 347

with [.] the indicator function (1 iff true, 0 otherwise), called here the 0/1 loss, and:

�(h, i, c)
.= yichc(xi) (12.4)

the edge of classifier h on example (xi ,yi) for class c. Taking the sign of hc in
{−1,+1} as its membership prediction for class c, one sees that when the edge is
positive (resp. negative), the membership predicted by the classifier and the actual
example’s membership agree (resp. disagree). Therefore, (12.3) averages over all
classes the number of mismatches for the membership predictions, thus measuring
the goodness-of-fit of the classification rule on the training dataset. Provided the
example dataset has good generalization properties with respect to the unknown
distribution of possible observations, minimizing this empirical risk is expected to
yield good accuracy when classifying unlabeled observations.

However, minimizing the empirical risk is computationally not tractable as it
deals with non-convex optimization. In order to bypass this cumbersome optimiza-
tion challenge, the current trend of supervised learning (including boosting and sup-
port vector machines) has replaced the minimization of the empirical risk (12.3) by
that of a so-called surrogate risk [4], to make the optimization problem amenable.
In boosting, it amounts to sum (or average) over classes and examples a real-valued
function called the surrogate loss, thus ending up with the following rewriting of
(12.3):

εψ(h,S)
.= 1

mC

C∑

c=1

m∑

i=1

ψ
(
�(h, i, c)

)
. (12.5)

Relevant choices available for ψ include:

ψ sqr .= (1 − x)2, (12.6)

ψexp .= exp(−x), (12.7)

ψ log .= log
(
1 + exp(−x)

); (12.8)

(12.6) is the squared loss [4], (12.7) is the exponential loss [35], and (12.8) is the
logistic loss [4]. Such surrogates play a fundamental role in supervised learning.
They are upper bounds of the empirical risk with desirable convexity properties.
Their minimization remarkably impacts on that of the empirical risk, thus enabling
to provide minimization algorithms with good generalization properties [28].

In the following, we move from recent advances in boosting with surrogate risks
to redefine the k-NN classification rule. Our algorithm, UNN (Universal Nearest
Neighbors), is first proposed for the exponential surrogate. We describe in the ap-
pendix the general formulation of the algorithm, not restricted to this surrogate. We
show that UNN converges to the optimum of many surrogates with guaranteed con-
vergence rates under mild assumptions, and more generally converges to the global
optimum of the surrogate risk for an even wider set of surrogates.

348 P. Piro et al.

12.2.3 Leveraging the k-NN Rule

We denote by NNk(x) the set of the k-nearest neighbors (with integer constant
k > 0) of an example (x,y) in set S with respect to a non-negative real-valued
“distance” function. This function is defined on domain X and measures how much
two observations differ from each other. This dissimilarity function thus may not
necessarily satisfy the triangle inequality of metrics. For sake of readability, we let
i ∼k x denote an example (xi ,yi) that belongs to NNk(x). This neighborhood rela-
tionship is intrinsically asymmetric, that is, xi ∈ NNk(x) does not necessarily imply
that x ∈ NNk(xi). Indeed, a nearest neighbor of x does not necessarily contain x

among its own nearest neighbors.
The k-nearest neighbors rule (k-NN) is the following multi-class classifier h =

{hc : c = 1,2, . . . ,C} (k appears in the summation indices):

hc(x) =
∑

j∼kx

[yjc > 0], (12.9)

where hc is the one-versus-all classifier for class c and square brackets denote the
indicator function. Hence, the classic nearest neighbors classification is based on
majority vote among the k closest prototypes.

We propose to weight the votes of nearest neighbors by means of real coeffi-
cients, thus generalizing (12.9) to the following leveraged k-NN rule h� = {h�

c : c =
1,2, . . . ,C}:

h�
c(x) =

∑

j∼kx

αjcyjc, (12.10)

where αjc ∈ R is the leveraging coefficient for example j in class c, with j =
1,2, . . . ,m and c = 1,2, . . . ,C. Hence, (12.10) linearly combines class labels of
the k nearest neighbors (defined in Sect. 12.2.1) with their leveraging coefficients.

Our work is focused on formal boosting algorithms working on top of the k-NN
methods. These algorithms do not affect the nearest neighbor search when inducing
weak classifiers of (12.10). They are thus independent on the way nearest neigh-
bors are computed, unlike most of the approaches mentioned in Sect. 12.1.2, which
rely on modifying the neighborhood relationship via metric distance deformations
or kernel transformations. This makes our approach fully compatible with any un-
derlying (metric) distance and data structure for k-NN search, as well as possible
kernel transformations of the input space.

For a given training set S of m labeled examples, we define the k-NN edge matrix
R(c) ∈ R

m×m for each class c = 1,2, . . . ,C:

r(c)ij

.=
{

yicyjc if j ∼k i

0 otherwise.
(12.11)

The name of R(c) is justified by an immediate parallel with (12.4). Indeed, each
example j serves as a classifier for each example i, predicting 0 if j /∈ NNk(xi),

12 Boosting k-Nearest Neighbors Classification 349

Fig. 12.1 Schematic illustration of the direct (left) and reciprocal (right) k-nearest neighbors
(k = 1) of an example xi (green diamond). Red squares and blue circles represent examples of
positive and negative classes. Each arrow connects an example to its k-nearest neighbors

yjc otherwise, for the membership to class c. Hence, the j th column of matrix R(c),

r
(c)
j , which is different from x when choosing k > 0, collects all edges of “clas-

sifier” j for class c. Note that nonzero entries of this column correspond to the
so-called reciprocal nearest neighbors of j , that is, those examples for which j is a
neighbor (Fig. 12.1). Eventually, the edge of the leveraged k-NN rule on example i

for class c reads:

�
(
h�, i, c

) = (
R(c)α(c)

)
i
, c = 1,2, . . . ,C, (12.12)

where α(c) collects all leveraging coefficients in a vector form for class c: α
(c)
i

.= αic ,
i = 1,2, . . . ,m. Thus, the induction of the leveraged k-NN classifier h� amounts to
fitting all α(c)’s so as to minimize (12.5), after replacing the argument of ψ(·) in
(12.5) by (12.12).

12.2.4 UNN Boosting Algorithm

We explain our classification algorithm specialized for the exponential loss mini-
mization in the multi-class one-versus-all framework, with pseudo-code shown in
Algorithm 1. Like common boosting algorithms, UNN operates on a set of weights
wi (i = 1,2, . . . ,m) defined over training data. Such weights are repeatedly updated
to fit all leveraging coefficients α(c) for class c (c = 1,2, . . . ,C). At each iteration,
the index to leverage, j ∈ {1,2, . . . ,m}, is obtained by a call to a weak index chooser
oracle WIC(., ., .), whose implementation is detailed later in this section.

Figure 12.2 presents a block diagram of UNN algorithm. In particular, notice
how the initialization step, relying on k-NN and edge matrix computation, is clearly

350 P. Piro et al.

Algorithm 1 Universal Nearest Neighbors UNN(S) for ψ = ψexp

Input: S = {(xi ,yi), i = 1,2, . . . ,m, xi ∈X , yi ∈ {− 1
C−1 ,1}C}

r(c)
ij

.=
{

yicyjc if j ∼k xi

0 otherwise
∀i, j = 1,2, . . . ,m, c = 1,2, . . . ,C � k-NN edge matrix

for c = 1,2, . . . ,C do
αjc ← 0, ∀j = 1,2, . . . ,m � Leveraging coefficients
wi ← 1, ∀i = 1,2, . . . ,m � Example weights
for t = 1,2, . . . , T do

[I.1] j ← WIC({1,2, . . . ,m}, t) � Weak index chooser oracle
[I.2]

w+
j

=
∑

i:r(c)ij >0

wi, w−
j

=
∑

i:r(c)ij <0

wi (12.13)

δj ← 1

2
log

(w+
j

w−
j

)
(12.14)

[I.3]

wi ← wi exp
(−δj r(c)

ij

)
, ∀i : j ∼k xi (12.15)

[I.4] αjc ← αjc + δj
end for

end for
Output: hc(x) = ∑

i∼kx
αicyic, ∀c = 1,2, . . . ,C

distinguished from the iterative procedure, where a new prototype is added at each
iteration t , thus updating both the strong classifier h(x) and the weights wi .

The training phase is implemented in a one-versus-all fashion, that is, C learning
problems are solved independently, and for each class c the training examples are
considered as belonging to either class c or the complement class c̄, that is, any
other class. Eventually, one leveraging coefficient (αjc) per class is learned for each
weak classifier (indexed by j).

The key observation when training weak classifiers with UNN is that, at each
iteration, one single example (indexed by j) is considered as a prototype to be lever-
aged. Indeed, all the other training data are to be viewed as observations for which
j may possibly vote. In particular, due to k-NN voting, j can be a classifier only
for its reciprocal nearest neighbors (i.e., those data for which j itself is a neighbor,
corresponding to nonzero entries in matrix (12.11) on column j). This brings to a re-
markable simplification when computing δj in step [I.2] and updating weights wi in
step [I.3] (Eqs. (12.14), (12.15)). Indeed, only weights of reciprocal nearest neigh-
bors of j are involved in these computations, thus allowing us not to store the entire
matrix R(c), c = 1,2, . . . ,C. Note that the set of reciprocal neighbors is split in two
subsets, each containing examples that agree (disagree) with the class membership
of j , thus yielding the partial sums w+

j and w−
j of (12.13).

12 Boosting k-Nearest Neighbors Classification 351

Fig. 12.2 Block diagram of
the UNN learning scheme

Note that when whichever w+
j or w−

j is zero, δj in (12.14) is not finite. There
is however a simple alternative, inspired by [35], which consists in smoothing out
δj when necessary, thus guaranteeing its finiteness without impairing convergence.
More precisely, we suggest to replace:

w+
j ← w+

j + 1

m
, (12.16)

w−
j ← w−

j + 1

m
. (12.17)

Also note that step [I.1] relies on oracle WIC(., ., .) for selecting index j of the
next weak classifier. We propose two alternative implementations of this oracle, as
follows:

(a) a lazy approach: T = m, WIC({1,2, . . . ,m}, t, c) .= t ;
(b) the boosting approach: we pick T ≥ m, and let j be chosen by WIC({1,2, . . . ,

m}, t, c) such that δj is large enough. Each j can be chosen more than once.

There are also schemes mixing (a) and (b): for example, we may pick T = m, choose
j as in (b), but exactly once as in (a).

12.2.5 UNN Convergence

The main properties of UNN are summarized by the following three fundamental
theorems. The first theorem ensures general monotonic convergence to the optimal

352 P. Piro et al.

surrogate loss, for any given surrogate function. The second theorem further refines
this general convergence theorem by providing an effective convergence bound for
the exponential loss.

Suppose that ψ meets the following conditions:

(i) im(ψ) = R+;
(ii) ∇ψ(0) < 0 (∇ψ is the conventional derivative);

(iii) ψ is strictly convex and differentiable.

Theorem 12.1 As the number of iteration steps T increases, UNN converges to h�

realizing the global minimum of the surrogate risk at hand (12.5), for any ψ meeting
conditions (i), (ii) and (iii) above.

Proof A proofsketch is given in Appendix. �

Then, in order to obtain the specific convergence rate for ψexp, suppose the fol-
lowing weak index assumption (WIA) holds. (See Eq. (12.13) in Algorithm 1 for the
definition of w

(c)+
j and w

(c)−
j .)

(WIA) There exist some γ > 0 and η > 0 such that the following two inequalities
hold for index j returned by WIC(., ., .):

∣∣∣∣
w

(c)+
j

w
(c)+
j + w

(c)−
j

− 1

2

∣∣∣∣ ≥ γ, (12.18)

w
(c)+
j + w

(c)−
j

‖w‖1
≥ η. (12.19)

Theorem 12.2 If the (WIA) holds for ν ≤ T steps in UNN (for each c), then
ε0/1(h�,S) ≤ exp(−Ω(ηγ 2ν)).

Proof A proofsketch is given in Appendix. �

Theorems 12.1 and 12.2 show that UNN converges (exponentially fast) to the
global optimum of the surrogate risk on the training set. Most of the recent works
that can be associated to boosting algorithms, or more generally to the minimiza-
tion of some surrogate risk using whichever kind of procedure, have explored the
universal consistency of the surrogate minimization problems (see [4, 26, 45], and
references therein). The problem can be roughly stated as whether the minimization
of the surrogate risk guarantees in probability for the classifier built to converge to
the Bayes rule as m → ∞. This question obviously becomes relevant to UNN given
our results. Among the results contained in this rich literature, the one whose con-
sequences directly impact on the universal consistency of UNN is Theorem 3 of [4].
We can indeed easily show that all our choices of surrogate loss are classification
calibrated, so that minimizing the surrogate risk in the limit (m → ∞) implies mini-
mizing the true risk, and implies uniform consistency as well. Moreover, this result,

12 Boosting k-Nearest Neighbors Classification 353

proven for C = 2, holds as well for arbitrary C ≥ 2 in the single-label prediction
problem. [3] proved an additional result for AdaBoost [35]: if the algorithm is run
for a number T ≥ mη boosting rounds, for η ∈ (0,1), then there is indeed minimiza-
tion in the limit of the exponential risk, and so AdaBoost is universally consistent.
From our theorems above, this implies the consistency of UNN, and this even has
the consequence to prove that the filtering procedure described in the experiments
is also consistent, since indeed [3]’s bound implies that we leverage a proportion of
1/m1−η examples, “filtering out” the remaining ones.

Moreover, the results of [26] are also interesting in our setting, even when they
are typically aimed at boosting algorithms with weak learners like decision-tree
learning algorithms, that define quantizations of the observations (each decision tree
defines a new description variable for the examples). They show that there exists
conditions on the quantizers that yield conditions on the surrogate loss function for
universal consistency. It is interesting to notice that the universal consistency of
UNN does not need such assumptions, as weak learners are examples that do not
make quantizations of the observation’s domain. Finally, the work of [45] explores
the consistency of surrogate risk minimization in the case where rejects are allowed
by classifiers, somehow refusing to classify an observation at a cost smaller than
misclassifying. While this setting is not relevant to UNN in the general case, it
becomes relevant as we filter out examples (see the experiments), which boils down
to stating that they systematically reject on observations.

On the one hand, [45] show that filtering out examples does not impair UNN uni-
versal consistency, as long as filter thresholds are locally based. On the other hand,
they also provide a way to quantify the actual loss �r,j caused by filtering out ex-
ample j , which we recall is in between 0 (the loss of good classification) and 1 (the
loss of bad classification). For example, choosing the exponential loss and using
Theorem 1 in [45] reveals that the reject loss is:

�r,j = min{w+
j ,w−

j }
w+

j + w−
j

.

Let us now complete further the picture of boosting algorithms for k-NN, by show-
ing that, under a mild additional assumption on ψ , we obtain a guaranteed conver-
gence rate for UNN. Of particular interest is the assumption under which we are
able to prove this result. Following [27, 28], we make a “Weak Edge Assumption”:

(WEA) There exists some ϑ > 0 such that the following inequality holds for in-
dex j returned by WIC(., ., .):

∣∣∣∣
∑

i:j∼ki

r(c)ij wi

∣∣∣∣ ≥ ϑ. (12.20)

This assumption states that the average value (in absolute value) of yicyjc over
the reciprocal neighborhood of example j cannot be smaller than some constant ϑ .
It is weak for the following reason. If the classes in the reciprocal neighborhood were

354 P. Piro et al.

picked at random, the quantity inside the absolute value in (12.20) would be zero in
average because of the way we model classes in (12.1). So, we are assuming that,
regardless of weights, we can always pick an example (xj ,yj) “beating” random
by a potentially small advantage ϑ . Note that (WEA) is weaker than (WIA) in the
sense that we do not make any coverage assumption like (12.19).

Let us now turn to the assumption on ψ :

(iv) ψ is locally ω strongly smooth, for some ω > 0:

Dψ

(
x′‖x) ≤ ω

2

(
x′ − x

)2
, (12.21)

where x, x′ range through the values �(h, i, c) over which UNN is run, and

Dψ

(
x′‖x) .= ψ

(
x′) − ψ(x) − (

x′ − x
)∇ψ(x) (12.22)

is the Bregman divergence with generator ψ . There is an important duality between
strong smoothness and strong convexity, with applications in machine learning and
optimization [22]. The proof of the following theorem, in the Appendix, is another
example of its applicability in these fields.

Theorem 12.3 If the (WEA) holds and ψ meets assumptions (i)–(iv), then for any
user-fixed τ ∈ [0,1], UNN has fit a leveraged k-NN classifier with empirical risk no
greater than τ provided the number of boosting iterations T satisfies:

T ≥ 2(1 − τ)ψ(0)ωkm

ϑ2(C − 1)
= Ω

(
ωkm

ϑ2

)
. (12.23)

Theorem 12.3 does not obliterate the (better) convergence results for the expo-
nential loss of Theorem 12.2, yet it opens the guarantees of convergence under weak
assumptions to some of the most interesting surrogates in classification. These in-
clude permissible convex surrogates (PCS, [27]), a set containing as special cases
the squared and logistic surrogates in (12.6), (12.8). Informally, any loss which
meets regularity conditions and common requirements about losses, such as lower-
boundedness, symmetry and the proper scoring property, can be represented by a
PCS [27]. The exponential surrogate in (12.7) is not a PCS, yet it is a first-order ap-
proximation to the logistic surrogate. Up to translating and scaling by constants, any
PCS meets im(∇ψ) ⊆ [−1,0] [27]. Reasoning on the second derivative of ψ , we see
that there is not much room to violate (12.21), thus making many PCS ω strongly
smooth for small values of ω. Simple calculations yield that we can take for example
ω = 1/4 for the logistic loss (12.8), and ω = 2 for the squared loss (12.6), making
the bound in (12.23) more favorable to the former. As a last example, consider the
following parameterized choice for ψ , with μ ∈ (0,1):

ψmat
μ

.= 1

1 − μ

(−x +
√

(1 − μ)2 + x2
);

this choice, which gives rise to Matsushita’s loss for μ = 0, has important convexity
properties [27]. In this case, we easily obtain that we can pick ω = 1/(1 − μ).

12 Boosting k-Nearest Neighbors Classification 355

12.3 Experiments

In this section, we present experimental results of UNN for image categorization. In
order to reduce numerical problems on the large databases on which we test UNN,
we normalize weights to unity after the update in (12.15). Our experiments aim at
carefully quantifying and explaining the gains brought by boosting on k-NN voting
on real image databases. In particular, we propose in Sects. 12.3.1 and 12.3.2 an
analysis and comparison of UNN vs k-NN for Gist and Bag-of-Features descriptors
on two broadly used datasets of natural images. In Sect. 12.3.3, we drill down into
precision and execution times comparisons between UNN vs k-NN, SVM and Ad-
aBoost. We also introduce in this section a soft version of UNN which, to classify
new observations, convolutes weighting with a simple density estimation suggested
by boosting.

12.3.1 Image Categorization Using Global Gist Descriptors

We tested UNN on global descriptors for the categorization of natural images. In
particular, we used the database of natural scenes collected by [30], which has been
successfully used to validate several classification techniques relying on Gist image
descriptors. A Gist descriptor provides a global representation of a scene directly,
without requiring neither an explicit segmentation of image regions and objects nor
an intermediate representation by means of local features. In the standard setting,
an image is first resized to square, then represented by a single vector of d compo-
nents (typically d = 512 or d = 320), which collects features related to the spatial
organization of dominant scales and orientations in the image. The one-to-one map-
ping between images and Gist descriptors is one of the main advantages of using
such a global representation instead of local descriptors. In particular, the ability to
map any instance to a single point in the feature space is crucial for the effective-
ness of k-NN methods, where computing the one-to-one similarity between testing
and training instances is explicitly required at classification time. Conversely, rep-
resenting an image with a set of multiple local descriptors is not directly adapted to
such discriminative classification techniques, thus generally requiring an intermedi-
ate (usually unsupervised) learning step in order to extract a compact single-vector
descriptor from the set of local descriptors [14]. For example, this is the case for
Bag-of-Features methods, that we discuss in Sect. 12.3.2 along with an experimen-
tal comparison to our method. Finally, although Gist is not an alternative image rep-
resentation method with respect to local descriptors, it has proven very successful
in representing relevant contextual information of natural scenes, thus allowing, for
instance, to compute meaningful priors for exploration tasks, like object detection
and localization [40].

In the following, we denote as 8-cat the database of [30], which contains 2,688
color images of outdoor scenes of size 256 × 256 pixels, divided in 8 categories:
coast, mountain, forest, open country, street, inside city, tall buildings and high-
ways. One example image of each category is shown in Fig. 12.3. In addition, we

356 P. Piro et al.

Fig. 12.3 Examples of annotated images from the 8 categories database of [30]

Fig. 12.4 Examples of the five additional categories included in the 13 categories database of [10]

Fig. 12.5 Gist image
classification performances of
UNN compared to k-NN on
the 8-cat database (see text
for details)

carried out categorization experiments on a larger database of 13 categories as well,
denoted as 13-cat. This dataset was firstly proposed by [10] and contains five more
categories, as shown in Fig. 12.4. We extracted Gist descriptors from these images
with the most common settings: 4 resolution levels of the Gabor pyramid, 8 orien-
tations per scale and 4 × 4 blocks.2

We evaluated classification performances when filtering the prototype dataset,
that is, retaining a proportion θ of the most relevant examples as prototypes for
classification.

2The implementation by the authors is available at: http://people.csail.mit.edu/torralba/code/
spatialenvelope/sceneRecognition.m.

http://people.csail.mit.edu/torralba/code/spatialenvelope/sceneRecognition.m
http://people.csail.mit.edu/torralba/code/spatialenvelope/sceneRecognition.m

12 Boosting k-Nearest Neighbors Classification 357

Fig. 12.6 Gist image
classification performances of
UNN compared to k-NN on
the 13-cat database (see text
for details)

In Figs. 12.5 and 12.6, we show classification performances in terms of the mean
Average Precision (MAP)3 as a function of θ . We randomly chose half images to
form a training set, while testing on the remaining ones. In each UNN experiment,
we fixed the value of θ = T/m, thus constraining the number of training iterations T

such that at most T examples could be retained as prototypes.
We compared UNN with the classic k-NN classification. Namely, in order for

the classification cost of k-NN be roughly the same as UNN, we carried out ran-
dom sampling of the prototype dataset for selecting proportion θ (between 10 %
and the whole set of examples). UNN significantly outperforms classic k-NN. Take
for example θ = 0.5 in Fig. 12.5: UNN not only outperforms k-NN with θ = 0.5,
its MAP also exceeds that of k-NN with all data (θ = 1) by almost 2 %. More-
over, on the 13-cat database, UNN outperforms the technique proposed by [10] by
3 % (the asterisk in Fig. 12.6, which corresponds to the best result reported in their
paper).

12.3.2 Image Categorization Using Bags-of-Features

We now describe experiments with UNN on the Bag-of-Features (BoF) image clas-
sification approach. This technique is based on extracting a “bag” of local descrip-
tors (e.g., SIFT descriptors) from an image and vector quantizing them on a precom-
puted vocabulary of so-called “visual words” [38]. An image is then represented by
the histogram of visual word frequencies. This approach provides an effective tool

3The MAP was computed by averaging classification rates over categories (diagonal of the confu-
sion matrix) and then averaging those values after repeating each experiment 10 times on different
folds.

358 P. Piro et al.

Fig. 12.7 Overall results of
BoF classification with UNN
compared to k-NN for
different settings of histogram
normalization (either L1- or
L2-norm) and nearest
neighbor matching (either
Euclidean distance or
Histogram Intersection)

for image categorization, as it relies on one single compact descriptor per image,
while keeping the informative power of local features. We compare UNN and k-NN
on the 8-cat database (see Sect. 12.3.1).

We used the VLFeat toolbox [41]4 for extracting gray-scale dense SIFT descrip-
tors at four resolution levels. In particular, a regular grid with spacing 10 pixels was
defined over the image and at each grid point SIFT descriptors were computed over
circular support patches with radii 4, 8, 12 and 16 pixels. As a result, each point
was represented by four different SIFT descriptors. Therefore, given the image size
256 × 256, we obtained about 2,500 SIFT descriptors per image. Then we split
the database in two distinct subsets of images, half for training and half for testing
(i.e., 1,344 images in each dataset). In order to build the dictionary of visual words,
we applied k-means clustering on 600,000 SIFT descriptors extracted from train-
ing images. For this purpose, we first selected a random subset of training images
(about 30 images per class), then we collected all SIFT descriptors of these images
and run k-means. In all the experiments, we computed dictionaries of 500 visual
words.

The results obtained with the three different settings are depicted in Fig. 12.7.
Notice that UNN using the Histogram Intersection matching outperforms all the
compared curves. We also note an improvement (up to 5 % gap for k-NN and 7 %
for UNN) when using L1-normalized Bag-of-Features descriptors compared to Eu-
clidean distance. This similarity measure was firstly proposed by [39] for image
indexing based on color histograms, and, more recently, it has been successfully
used by [23] in the context of Bag-of-Features image categorization.

4Code available at http://www.vlfeat.org/.

http://www.vlfeat.org/

12 Boosting k-Nearest Neighbors Classification 359

12.3.3 Comparison with SVM and AdaBoost on Image
Categorization

Two major issues arise when implementing our UNN algorithm in practice. The first
one concerns the distance (or, more generally, the dissimilarity) measure used for
the k-NN search. The second one consists in setting the value of k for both training
and testing our prototype-based classifiers.

On the one hand, defining the most appropriate dissimilarity measure for k-NN
search is particularly challenging when dealing with very high-dimensional fea-
ture vectors like image descriptors commonly used for categorization. Indeed, the
classic metric distances may be inadequate when such vectors are generated by so-
phisticated pre-processing stages (e.g., vector quantization or unsupervised dictio-
nary learning), thus lying on complex high-dimensional manifolds. In general, this
should require an additional distance learning stage in order to define the optimal
dissimilarity measure for the particular type of data at hand. In this respect, our UNN
method has the advantage of being fully complementary with any metric learning
algorithm, acting on the top of the k-NN search. In Sect. 12.3.2, we have described
some examples of using different distances for k-NN search, particularly focusing
on the most suitable dissimilarity measure for histogram-based descriptors.

On the other hand, selecting a good value for k amounts to learning parameter-
dependent weak classifiers, where the parameter k specifies the size of the voting
neighborhood in classification rule (12.10). From the theoretical standpoint, a brute-
force approach is possible with boosting: one can define multiple candidate weak
classifiers per example, one for each value of k, that is, for each neighborhood size,
and then learn prototypes by optimizing the surrogate risk function over k as well.
This strategy has the advantage of enabling direct learning of k at training time.
However, training several weak classifiers per example without computation tricks
would potentially severely impair the applicability of the algorithm on huge datasets.
The solution we propose is subtler, as it relies on weighting the neighbors, exploiting
the trick that boosting locally fits particular maximum likelihood estimators of class
memberships [27]. Using (12.14), we can indeed rewrite (12.10) as:

h�
c(x) ≈ log

∏

j∼kx,yjc>0

p̂(c|j)

p̂(c̄|j)
− log

∏

j∼kx,yjc<0

p̂(c|j)

p̂(c̄|j)
, (12.24)

where p̂(c|j) (resp. p̂(c̄|j)) models a conditional probability (resp. not) to belong
to class c. To make the right-hand side of (12.24) closer to a full-fledged maximum
likelihood, we have to integrate the density estimators for nearest neighbors, p̂(j).
We can obviously make the assumption that they are all equal: this would multiply
the right-hand side of (12.24) by a positive constant factor, and would not change
the outcome of (12.10). Instead, we have modified the classification phase of UNN,
and tried a soft solution which considers a logistic estimator for a Bernoulli prior
which vanishes with the rank of the example in the neighbors, thus decreasing the

360 P. Piro et al.

importance of the farthest neighbors:

p̂(j) = βj = 1

1 + exp(λ(j − 1))
, (12.25)

with λ > 0. The shape prior is chosen this way because it was shown that
boosting, as carried out in a number of algorithms—not restricted to the induc-
tion of linear separators [27]—locally fits logistic estimators for Bernoulli priors.
The soft version of UNN we obtain, called UNNs (for “Soft UNN”), replaces
(12.10) by:

h�
c(x) =

∑

j∼kx

βjαjcyjc. (12.26)

Notice that it is useless to enforce the normalization of coefficients βj in (12.25),
because it would not change the classification of UNNs . Notice also that the βj s
in (12.26) are used only to classify new observations: the training steps of UNNs

are the same as UNN, and so UNNs meets the same theoretical properties as UNN
described in Theorems 12.1, 12.2 and 12.3.

We selected 100 categories from the SUN database [43]. We kept all the images
of each category and the inherent unbalancing of the original database. We ran-
domly chose half images to form a training set, while testing on the remaining ones.
The MAP was computed by averaging classification rates over categories (diago-
nal of the confusion matrix) and then averaging those values after repeating each
experiment 10 times on different folds. To speed-up processing time, we used the
fast implementation of k-NN proposed by [21].5 Furthermore, we also developed an
optimized version of our program, which exploits multi-thread functionalities. We
denote this version as UNNs (MT). All the experiments were run on an Intel Xeon
X5690 12-cores processor at 3.46 GHz.

We compared UNNs , SVM with Gaussian RBF Kernel, and AdaBoost with deci-
sion stumps6 (i.e., decision trees with a single internal node), using BoF descriptors.
In particular, we followed the guidelines of [20] for carrying out the SVM exper-
iments, thus carrying out cross-validation for selecting the best parameters values
for SVM. For the sake of completeness, we also provide results for Gist descriptors
with UNNs and k-NN.

In Table 12.1, we report the MAP for each classification method. Results in these
tables are provided as a function of the number of image categories. The most rel-
evant results obtained are also displayed in Fig. 12.8 (mAP as a function of the
number of categories) and Figs. 12.9 and 12.10, for the training and classification
times, respectively.

5Code available at http://www.irisa.fr/texmex/people/jegou/src.php.
6For AdaBoost, we used the code available at http://www.mathworks.com/matlabcentral/
fileexchange/22997-multiclass-gentleadaboosting.

http://www.irisa.fr/texmex/people/jegou/src.php
http://www.mathworks.com/matlabcentral/fileexchange/22997-multiclass-gentleadaboosting
http://www.mathworks.com/matlabcentral/fileexchange/22997-multiclass-gentleadaboosting

12 Boosting k-Nearest Neighbors Classification 361

Table 12.1 Classification performances of the different methods we tested in terms of the Mean
Average Precision (MAP) as a function of the number of categories

categories 10 20 30 40 50 60 100

k-NN BoF 76.38 57.28 45.00 40.27 36.09 32.30 24.67

SVM BoF 83.85 67.65 58.21 53.45 47.81 44.09 35.31

AdaBoost BoF 75.37 58.21 45.57 37.75 32.41 29.01 26.72

UNNs BoF 84.28 70.44 58.49 51.07 46.34 41.80 31.61

k-NN Gist 64.22 51.48 43.65 39.04 35.65 32.27 25.50

UNNs Gist 77.84 66.80 56.37 50.45 46.48 42.75 32.71

Fig. 12.8 Classification
performances of the tested
methods as a function of the
number of image categories

We can first notice that BoF descriptors generally outperform Gist, even when
this phenomenon is dampened as the number of categories increases (above 30).
This, overall, follows the trend generally reported in the literature.

MAP results display that UNNs dramatically outperforms AdaBoost (and k-NN
as well); this result, which somehow experimentally confirms that UNN successfully
exploits the boosting theory, was quite predictable, as UNN builds a piecewise linear
decision function in the initial domain O, while AdaBoost builds a linear separator
in this domain. SVM, on the other hand, have access to non-linear fitting of data,
by lifting the data to a domain whose dimension far exceeds that of O. Yet, SVM’s
testing results are somehow not as good as one might expect from this clearcut
theoretical advantage over UNN, and also from the fact that we carried out SVMs
with significant parameters optimization [20]. Indeed, UNNs even beats SVMs over
10 to 30 categories, being slightly outperformed by them on more categories.

In Tables 12.2 and 12.3, we report the corresponding computation time (in sec-
onds) for the training and classification phase, respectively. Obviously, the computa-
tion times over training and testing are also a key for exploiting the experimental re-

362 P. Piro et al.

Fig. 12.9 Training time as a
function of the number of
image categories

Fig. 12.10 Classification
time for UNNs vs SVM as a
function of the number of
image categories with BoF

sults. Table 12.2 displays that, while the training time of AdaBoost is linear, UNNs is
a logical clearcut winner over SVM for training: it achieves speedups ranging in be-
tween two and more than seventeen over SVM. To assess the validity of these com-
parisons, we have computed least-square fittings of the training and testing times of
UNNs vs AdaBoost vs SVM (all with BoF), with both linear (s = aC + b, s being
the time in seconds, and C the number of categories) and polynomial (s = bCa)
fittings, with the objective to foresee on the best models what might happen on do-
mains with classes ranging from hundreds to (tens of) thousands. The best models
are displayed in Table 12.4. The coefficients of determination show that only a slim
portion of the data is not explained by the models shown.

12 Boosting k-Nearest Neighbors Classification 363

Table 12.2 Computation time [s] for the training phase

categories 10 20 30 40 50 60 100

training images 951 2,162 3,099 4,381 5,540 6,568 11,186

k-NN BoF 0

SVM BoF 2.4 27 83 226 472 806 4526

AdaBoost BoF 96 218 341 442 559 662 1128

UNNs BoF 1.7 16 58 150 295 498 2146

UNNs (MT) BoF 0.3 2.5 7.8 19 36 53 257

Table 12.3 Computation time [s] for the testing phase

categories 10 20 30 40 50 60 100

test images 951 2,162 3,099 4,381 5,540 6,568 11,186

k-NN BoF 0.20 1.0 2.0 4.0 6.0 9.0 22.0

SVM BoF 0.25 5.7 13 31 56 80 260

AdaBoost BoF 0.02 0.1 0.25 0.43 0.67 0.95 2.74

UNNs BoF 0.21 0.72 1.6 2.7 4.2 5.9 17

UNNs (MT) BoF 0.08 0.2 0.37 0.58 0.84 1.11 3.25

Models confirm that the training time of AdaBoost is linear. This is not a surprise,
as it is ran with stumps as weak classifiers. Allowing decision trees with more than
one internal node would have certainly blown the linear time barrier. While they
are roughly equivalent for UNNs and AdaBoost (Table 12.3), testing times reveal a
much bigger gap between UNNs and SVM, as displayed in Fig. 12.10. Exploiting
the models of Table 12.4, we obtain the ratio:

sSVM/sUNN ≈ Ω(m), (12.27)

while, for the multi-thread implementation, we obtain:

sSVM/sUNNsMT ≈ Ω
(
m1.3). (12.28)

The ratio is always in favor of UNN, and of order the number of examples. Hence,
the execution time for UNNs should allow to classify many images in reduced time
compared to SVM: from Table 12.4, UNN should already classify almost twenty
times as many images as SVM in a single minute. In such a case, UNNs should also
classify almost twice as many images as AdaBoost. Thus, UNN provides the best
MAP/time trade-off among the tested methods, which suggests that UNN might well
be more than a legal contender to classification methods dealing with huge domains,
or domains where the testing set is huge compared to the training set, which is
the case, for instance, for cell classification in biological images [16]. Finally, we
have only scratched experimental optimizations for UNN, and have not optimized

364 P. Piro et al.

Ta
bl

e
12

.4
B

es
tfi

ts
fo

r
tr

ai
ni

ng
/te

st
in

g
tim

es
[s

]
as

a
fu

nc
tio

n
of

th
e

nu
m

be
r

of
cl

as
se

s
C

,o
r

th
e

nu
m

be
r

of
im

ag
es

m
in

th
e

tr
ai

ni
ng

sa
m

pl
e/

to
be

te
st

ed
.T

he
m

od
el

in
di

ca
te

d
is

th
e

be
st

fit
am

on
g

m
od

el
s

of
th

e
ty

pe
y

=
a
x

+
b

an
d

y
=

b
x

a
,

ac
co

rd
in

g
to

th
e

co
ef

fic
ie

nt
of

de
te

rm
in

at
io

n
r

2
.

Fo
r

al
l

bu
t

tw
o

m
od

el
s,

r
2
>

0.
99

9
≈

1.
0

(t
he

ex
ce

pt
io

ns
ar

e
(*

),
fo

r
w

hi
ch

r
2
≈

0.
97

,a
nd

(*
*)

,f
or

w
hi

ch
r

2
≈

0.
99

).
m

1m
is

th
e

nu
m

be
r,

es
tim

at
ed

by
th

e
m

od
el

,o
f

im
ag

es
th

at
ca

n
be

pr
oc

es
se

d
in

1
m

in
ut

e
(s

ee
te

xt
fo

r
de

ta
ils

)

T
ra

in
in

g
Te

st
in

g

s
=

f
(C

)
s
=

f
(m

)
s
=

f
(C

)
s
=

f
(m

)
m

1m

SV
M

B
oF

s
=

(1
.4

2
×

10
−3

)
×

C
3.

25
s
=

(1
.9

×
10

−9
)
×

m
3.

05
s
=

(4
.9

4
×

10
−4

)
×

C
2.

94
(*

)
s
=

(2
.1

1
×

10
−9

)
×

m
2.

77
5

94
2

A
da

B
oo

st
B

oF
s
=

−1
1.

40
+

11
.3

7
×

C
s
=

7.
63

+
0.

10
×

m
s
=

(2
.1

6
×

10
−4

)
×

C
2.

05
s
=

(4
.1

9
×

10
−8

)
×

m
1.

93
55

64
3

U
N

N
s

B
oF

s
=

(1
.2

4
×

10
−3

)
×

C
3.

16
s
=

(2
.4

3
×

10
−9

)
×

m
2.

96
s
=

(2
.4

9
×

10
−3

)
×

C
1.

90
s
=

(9
.1

9
×

10
−7

)
×

m
1.

78
24

56
7

U
N

N
s

M
T

B
oF

s
=

(3
.8

5
×

10
−4

)
×

C
2.

91
s
=

(2
.0

7
×

10
−9

)
×

m
2.

74
s
=

(1
.8

2
×

10
−3

)
×

C
1.

58
s
=

(2
.5

7
×

10
−6

)
×

m
1.

48
(*

*)
95

17
5

12 Boosting k-Nearest Neighbors Classification 365

UNN from the complexity-theoretic standpoint, so we expect room space for further
significant improvement of its training/testing times.

12.4 Discussion and Perspectives

UNN provides us with a sound blend of two powerful yet simple classification
algorithms: nearest neighbors and boosting. While the analysis of the mixing is
not straightforward—such as for the convergence and boosting properties in Theo-
rems 12.1–12.3—UNN remains simple to state and implement, even in the multi-
class case. It also appears to be a interesting contender to SVM: without using the
kernel trick mapping examples to high dimensional feature spaces, UNN manages
to fit nonlinear classifiers in the initial feature space whose accuracy clearly compete
with SVM’s.

We think that this simplicity opens avenues for future research on the way sepa-
rate extensions and improvements of nearest neighbors and boosting might be trans-
ferred to UNN. One example is the inclusion of powerful density estimation tech-
niques that would fit better than our simple logistic convolution of priors in (12.25).

Another example involves improved sophistication from the classifier’s stand-
point, in particular with metric distance learning and the kernelization of the input
space [47]. This, we expect, would enable significant improvements of categoriza-
tion performances.

A third example involves improvements from the nearest neighbor search stand-
point. Novel techniques exist that make embeddings in a real-valued vector space of
nearest neighbors queries, thus transforming the data space with the hope to achieve
good compromises between reducing the processing complexity of nearest neighbor
queries while not reducing the accuracy of (vanilla) nearest neighbors in the space
learnt [2, 25]. Clearly, such approaches do not tackle the same problem as us, as
UNN directly processes nearest neighbors on the data’s ambient space. Neverthe-
less, they are very interesting from the perspective standpoint because this new data
space is learnt with (Ada)boosting. A neat combination with UNN might thus of-
fer the possibility to kill two birds in one boosting shot for nearest neighbors: learn
an improved data space, and learn in this data space an improved nearest neighbor
classifier with UNN. The questions raised by such perspective are not only exper-
imental, as basically only the contractiveness of the approach of [2] is formally
known to date. Transferring, or even improving, the boosting properties of UNN in
such sophisticated blends would thus be more than interesting.

12.5 Conclusion

In this work, we contribute to fill an important void of NN methods, showing how
boosting can be transferred to k-NN classification, with convergence rates guaran-
tees for a large number of surrogates. Our UNN algorithm generalizes classic k-NN

366 P. Piro et al.

to weighted voting where weights, the so-called leveraging coefficients, are itera-
tively learned by UNN. We prove that this algorithm converges to the global opti-
mum of many surrogate risks in competitive times under very mild assumptions.

Our work is also the first extensive assessment of UNN to computer vision related
tasks. Comparisons with k-NN, support vector machines and AdaBoost, using Gist
or Bag-of-Feature descriptors, on simulated and real domains, display the ability of
UNN to be competitive with its contenders, achieving high mAP in comparatively
reduced training and testing times.

Avenues for future research include blending UNN with other approaches that
bias the domain towards the improvement of nearest neighbors rules, or that learn
more sophisticated metrics over data.

Appendix

Generic UNN Algorithm The general version of UNN is shown in Algorithm 2.
This algorithm induces the leveraged k-NN rule (12.10) for the broad class of sur-
rogate losses meeting conditions of [4], thus generalizing Algorithm 1. Namely,
we constrain ψ to meet the following conditions: (i) im(ψ) = R+, (ii) ∇ψ(0) < 0
(∇ψ is the conventional derivative of ψ loss function), and (iii) ψ is strictly con-
vex and differentiable. (i) and (ii) imply that ψ is classification-calibrated: its local
minimization is roughly tied up to that of the empirical risk [4]. (iii) implies conve-
nient algorithmic properties for the minimization of the surrogate risk [28]. Three
common examples have been shown in Eqs. (12.7)–(12.6).

The main bottleneck of UNN is step [I.1], as Eq. (12.30) is non-linear, but it
always has a solution, finite under mild assumptions [28]: in our case, δj is guar-
anteed to be finite when there is no total matching or mismatching of example j ’s
memberships with its reciprocal neighbors’, for the class at hand. The second col-
umn of Table 12.5 contains the solutions to (12.30) for surrogate losses mentioned
in Sect. 12.2.2. Those solutions are always exact for the exponential loss (ψexp) and
squared loss (ψ squ); for the logistic loss (ψ log) it is exact when the weights in the
reciprocal neighborhood of j are the same, otherwise it is approximated. Since start-
ing weights are all the same, exactness can be guaranteed during a large number of
inner rounds depending on which order is used to choice the examples. Table 12.5
helps to formalize the finiteness condition on δj mentioned above: when either sum
of weights in (12.29) is zero, the solutions in the first and third line of Table 12.5
are not finite. A simple strategy to cope with numerical problems arising from such
situations is that proposed by [35]. (See Sect. 12.2.4.) Table 12.5 also shows how
the weight update rule (12.31) specializes for the mentioned losses.

Proofsketch of Theorem 12.1 We show that UNN converges to the global op-
timum of any surrogate risk (Sect. 12.2.5). For this purpose, let us consider the

12 Boosting k-Nearest Neighbors Classification 367

Algorithm 2 Universal Nearest Neighbors UNN(S,ψ)

Input: S = {(xi ,yi), i = 1,2, . . . ,m, xi ∈ X , yi ∈ {− 1
C−1 ,1}C}, ψ meeting (i),

(ii), (iii) (Appendix);

r(c)
ij

.=
{

yicyjc if j ∼k i

0 otherwise
∀i, j = 1,2, . . . ,m, c = 1,2, . . . ,C � k-NN edge matrix

for c = 1,2, . . . ,C do
αjc ← 0, ∀j = 1,2, . . . ,m � Leveraging coefficients
wi ← −∇ψ(0) ∈ Rm+∗, ∀i = 1,2, . . . ,m � Example weights
for t = 1,2, . . . , T do

[I.0] j ← WIC({1,2, . . . ,m}, t) � Weak index chooser oracle
[I.1]

w+
j

=
∑

i:r(c)ij >0

wi, w−
j

=
∑

i:r(c)ij <0

wi, (12.29)

Let δj ∈ R solution of:

m∑

i=1

r(c)
ij

∇ψ

(
δj r(c)

ij
+ ∇−1

ψ (−wi)
) = 0; (12.30)

[I.2] ∀i : j ∼k i, let

wi ← −∇ψ

(
δj r(c)

ij
+ ∇−1

ψ (−wi)
)
. (12.31)

[I.3] αjc ← αjc + δj
end for

end for
Output: hc(xi′) = ∑

i∼ki
′ αicyic, ∀c = 1,2, . . . ,C

Table 12.5 Three common loss functions and the corresponding solutions δj of (12.30) and wi of

(12.31). (Vector r
(c)
j designates column j of R(c) and ‖.‖1 is the L1 norm.) The rightmost column

says whether it is (A)lways the solution, or whether it is when the weights of reciprocal neighbors
of j are the (S)ame

Loss function δj in (12.30) wi in (12.31) Opt

ψexp .= exp(−x) 1
2 log(

w
(c)+
j

w
(c)−
j

) wi exp (−δj r(c)ij) A

ψsqu .= (1 − x)2 w
(c)+
j −w

(c)−
j

2‖r(c)
j ‖1

wi − 2δj r(c)ij A

ψ log .= log(1 + exp(−x)) log(
w

(c)+
j

w
(c)−
j

)
wi exp(−δj r(c)ij)

1−wi(1+exp(−δj r(c)ij))
S

surrogate risk (12.5) for a given class c = 1,2, . . . ,C:

εψ
c (h,S)

.= 1

m

m∑

i=1

ψ
(
�(h, i, c)

)
. (12.32)

368 P. Piro et al.

In this section, we use the following notations:

• ψ̃(x)
.= ψ�(−x), where ψ�(x)

.= x∇−1
ψ (x) − ψ(∇−1

ψ (x)) is the Legendre conju-

gate of ψ , which is strictly convex and differentiable as well. (ψ̃ is related to ψ

in such a way that: ∇ψ̃ (x) = −∇−1
ψ (−x).)

• Dψ̃(wi‖w′
i)

.= ψ̃(wi) − ψ̃(w′
i) − (wi − w′

i)∇ψ̃ (w′
i) is the Bregman divergence

with generator ψ̃ [28].

Let wt denote the t th weight vector inside the “for c” loop of Algorithm 2 (assuming
w0 is the initialization of w); similarly, h�

t denotes the t th leveraged k-NN rule
obtained after the update in [I.3]. The following fundamental identity holds, whose
proof follows from [28]:

ψ
(
�
(
h�

t , i, c
)) = g + Dψ̃(0‖wti), (12.33)

where g(m)
.= −ψ̃(0) does not depend on the k-NN rule. In particular, Eq. (12.33)

makes the connection between the real-valued classification problem and a geo-
metric problem in the non-metric space of weights. Moreover, Eq. (12.33) proves
in handy as one computes the difference between two successive surrogates:
ε
ψ
c (h�

t+1,S)− ε
ψ
c (h�

t ,S). Indeed, plugging Eq. (12.33) in Eq. (12.32), and comput-
ing δj in Eq. (12.30) so as to bring h�

t+1 from h�
t , we obtain the following identity:

εψ
c

(
h�

t+1,S
) − εψ

c

(
h�

t ,S
) = − 1

m

m∑

i=1

Dψ̃(w(t+1)i‖wti). (12.34)

Since Bregman divergences are non negative and meet the identity of the indis-
cernibles, (12.34) implies that steps [I.1]–[I.3] guarantee the decrease of (12.32) as
long as δj �= 0. But (12.32) is lowerbounded, hence UNN must converge.

In addition, it converges to the global optimum of the risk (12.5). Since pre-
dictions for each class are independent, the proof consists in showing that (12.32)
converges to its global minimum for each c. Let us assume this convergence for the
current class c. Then, following the reasoning of Nock and Nielsen [28], (12.30) and
(12.31) imply that, when any possible δj = 0, the weight vector, say w∞, satisfies

R(c)�w� = 0, that is, w∞ ∈ kerR(c)�, and w∞ is unique. But the kernel of R(c)�

and W, the closure of W (i.e., the manifold where w’s live), are provably Bregman
orthogonal [28], thus yielding:

m∑

i=1

Dψ̃(0‖wi)

︸ ︷︷ ︸
mε

ψ
c (h�,S)−mg

=
m∑

i=1

Dψ̃(0‖w∞i)

︸ ︷︷ ︸
mε

ψ
c (h�∞,S)−mg

+
m∑

i=1

Dψ̃(w∞i‖wi)

︸ ︷︷ ︸
≥0

, ∀w ∈W. (12.35)

Underbraces use (12.33) in (12.32), and h� is a leveraged k-NN rule corresponding
to w. One obtains that h�∞ achieves the global minimum of (12.32), as claimed.

12 Boosting k-Nearest Neighbors Classification 369

Fig. 12.11 A geometric view
of how UNN converges to the
global optimum of (12.5).
(See Appendix for details and
notations.)

The proofsketch is graphically summarized in Fig. 12.11. In particular, two cru-
cial Bregman orthogonalities are mentioned [28]. The red one symbolizes:

m∑

i=1

Dψ̃(0‖wti) =
m∑

i=1

Dψ̃(0‖w(t+1)i) +
m∑

i=1

Dψ̃(w(t+1)i‖wti), (12.36)

which is equivalent to (12.34). The black one on w∞ is (12.35).

Proofsketch of Theorem 12.2 Using developments analogous to those of [28],
UNN can be shown to be equivalent to AdaBoost in which m weak classifiers
are available, each one being an example. Each weak classifier returns a value in
{−1,0,1}, where 0 is reserved for examples outside the reciprocal neighborhood.
Theorem 3 of [35] brings in our case:

ε0/1(h�,S
) ≤ 1

C

C∑

c=1

T∏

t=1

Z
(c)
t , (12.37)

where Z
(c)
t

.= ∑m
i=1 w̃

(c)
it is the normalizing coefficient for each weight vector in

UNN. (w̃(c)
it denotes the weight of example i at iteration (t, c) of UNN, and the

Tilda notation refers to weights normalized to unity at each step.) It follows that:

Z
(c)
t = 1 − w̃

(c)+−
j t

(
1 − 2

√
p

(c)
j t

(
1 − p

(c)
j t

))

≤ exp
(
−w̃

(c)+−
j t

(
1 − 2

√
p

(c)
j t

(
1 − p

(c)
j t

)))

≤ exp
(−η

(
1 −

√
1 − 4γ 2

)) ≤ exp
(−2ηγ 2),

where w̃
(c)+−
j t

.= w̃
(c)+
j t + w̃

(c)−
j t , p

(c)
j t

.= w̃
(c)+
j t /w̃

(c)+−
j t = w

(c)+
j t /w

(c)+−
j t . The first

inequality uses 1 − x ≤ exp(−x), and the second the (WIA). Since even when
the (WIA) does not hold, we still observe Z

(c)
t ≤ 1, plugging the last inequality

in (12.37) yields the statement of the theorem.

370 P. Piro et al.

Proofsketch of Theorem 12.3 We plug in the weight notation the iteration t

and class c, so that w
(c)
ti denotes the weight of example xi prior to iteration t for

class c in UNN (inside the “for c” loop of Algorithm 2, letting w0 denote the ini-
tial value of w). To save space in some computations below, we also denote for
short:

ε̄ψ
(
h�

T ,S
) .= 1

C

C∑

c=1

εψ
c

(
h�

T ,S
)
. (12.38)

ψ is ω strongly smooth is equivalent to ψ̃ being strongly convex with parameter
ω−1 [22], that is,

ψ̃(w) − 1

2ω
w2 (12.39)

is convex. Here, we have made use of the following notations: ψ̃(x)
.= ψ�(−x),

where ψ�(x)
.= x∇−1

ψ (x) − ψ(∇−1
ψ (x)) is the Legendre conjugate of ψ . Since a

convex function h satisfies h(w′) ≥ h(w) + ∇h(w)(w′ − w), applying inequality
(12.39) taking as h the function in (12.39) yields, ∀t = 1,2, . . . , T , ∀i = 1,2, . . . ,m,
∀c = 1,2, . . . ,C:

Dψ̃

(
w

(c)
(t+1)i‖w(c)

ti

) = Dψ̃

(
w

(c)
ti + (

w
(c)
(t+1)i − w

(c)
ti

)‖w(c)
ti

)

≥ 1

2ω

(
w

(c)
(t+1)i − w

(c)
ti

)2
, (12.40)

where we recall that Dψ denotes the Bregman divergence with generator ψ (12.22).
On the other hand, Cauchy–Schwarz inequality yields:

∀j ∈ S,
∑

i:j∼ki

(
r(c)ij

)2 ∑

i:j∼ki

(
w

(c)
(t+1)i − w

(c)
ti

)2 ≥
(∑

i:j∼ki

r(c)ij

(
w

(c)
(t+1)i − w

(c)
ti

))2

=
(∑

i:j∼ki

r(c)ij w
(c)
ti

)2

. (12.41)

The equality in (12.41) holds because
∑

i:j∼ki
r(c)ij w

(c)
(t+1)i = 0, which is exactly

(12.30). We obtain:

1

m

m∑

i=1

Dψ̃

(
w

(c)
(t+1)i‖w(c)

ti

) = 1

m

∑

i:t∼ki

Dψ̃

(
w

(c)
(t+1)i‖w(c)

ti

)

≥ 1

2ωm

∑

i:t∼ki

(
w

(c)
(t+1)i − w

(c)
ti

)2 (12.42)

12 Boosting k-Nearest Neighbors Classification 371

≥ 1

2ωm

(
∑

i:t∼ki
r(c)it w

(c)
ti)2

∑
i:t∼ki

(r(c)it)2
(12.43)

≥ ϑ2

2ωm
× 1

∑
i:t∼ki

(r(c)it)2
(12.44)

Here, (12.42) follows from (12.40), (12.43) follows from (12.41), and (12.44) fol-
lows from (12.20). Adding (12.44) for c = 1,2, . . . ,C and t = 1,2, . . . , T , and then
dividing by C, we obtain:

1

C

C∑

c=1

T∑

t=1

1

m

m∑

i=1

Dψ̃

(
w

(c)
(t+1)i‖w(c)

ti

)

≥ T ϑ2

2ωm
×

(
1

T C
×

C∑

c=1

T∑

t=1

1
∑

i:t∼ki
(r(c)it)2

)
. (12.45)

We now work on the big parenthesis which depends solely upon the examples. We
have:

(
1

T C
×

C∑

c=1

T∑

t=1

1
∑

i:t∼ki
(r(c)it)2

)−1

≤ 1

T C

C∑

c=1

T∑

t=1

∑

i:t∼ki

(
r(c)it

)2 (12.46)

= 1

T C

C∑

c=1

T∑

t=1

∑

i∈NNk(xt)

y2
tcy

2
ic

≤ 1

T C

C∑

c=1

T∑

t=1

∑

i∈NNk(xt)

(|ytc|
2

+ |yic|
2

)
(12.47)

= k

T C

T∑

t=1

C∑

c=1

|ytc|
2

+ 1

T C

T∑

t=1

∑

i∈NNk(xt)

C∑

c=1

|yic|
2

= k

(C − 1)
. (12.48)

Here, (12.46) holds because of the Arithmetic-Geometric-Harmonic inequality, and
(12.47) is Young’s inequality7 with p = q = 2. Plugging (12.48) into (12.45), we
obtain:

7We recall young inequality: for any p, q Hölder conjugates (p > 1, (1/p) + (1/q) = 1), we have
yy′ ≤ yp/p + y′q/q , assuming y, y′ ≥ 0.

372 P. Piro et al.

1

C

C∑

c=1

T∑

t=1

1

m

m∑

i=1

Dψ̃

(
w

(c)
(t+1)i‖w(c)

ti

) ≥ T (C − 1)ϑ2

2ωmk
. (12.49)

Now, UNN meets the following property, which can easily be shown to hold with
our class encoding as well:

εψ
c

(
h�

t+1,S
) − εψ

c

(
h�

t ,S
) = − 1

m

m∑

i=1

Dψ̃

(
w

(c)
(t+1)i‖w(c)

ti

)
. (12.50)

Adding (12.50) for t = 0,2, . . . , T − 1 and c = 1,2, . . . ,C, we obtain:

1

C

C∑

c=1

εψ
c

(
h�

T ,S
) − ψ(0) = − 1

C

C∑

c=1

T∑

t=1

1

m

m∑

i=1

Dψ̃

(
w

(c)
(t+1)i‖w(c)

ti

)
. (12.51)

Plugging (12.49) into (12.51), we obtain:

ε̄ψ
(
h�

T ,S
) ≤ ψ(0) − T (C − 1)ϑ2

2ωmk
. (12.52)

But the following inequality holds between the average surrogate risk and the em-
pirical risk of the leveraged k-NN rule h�

T , because of (i):

ε̄ψ
(
h�

T ,S
) = 1

C

C∑

c=1

εψ
c

(
h�

T ,S
)

= 1

mC

C∑

c=1

m∑

i=1

ψ

(
yic

∑

j :j∼ki

αjcyjc

)

≥ ψ(0)

mC

C∑

c=1

m∑

i=1

[
yic

∑

j :j∼ki

αjcyjc < 0

]

= ψ(0)ε0/1(h�
T ,S

)
, (12.53)

so that, putting altogether (12.52) and (12.53) and using the fact that ψ(0) >

0 because of (i)–(ii), we have after T rounds of boosting for each class: that
is,

ε0/1(h�
T ,S

) ≤ 1 − T (C − 1)ϑ2

2ψ(0)ωmk
. (12.54)

There remains to compute the minimal value of T for which the right-hand side of
(12.54) becomes no greater than some user-fixed τ ∈ [0,1] to obtain the bound in
(12.23).

12 Boosting k-Nearest Neighbors Classification 373

References

1. Amores J, Sebe N, Radeva P (2006) Boosting the distance estimation: application to the k-
nearest neighbor classifier. Pattern Recognit Lett 27(3):201–209

2. Athitsos V, Alon J, Sclaroff S, Kollios G (2008) BoostMap: an embedding method for efficient
nearest neighbor retrieval. IEEE Trans Pattern Anal Mach Intell 30(1):89–104

3. Bartlett P, Traskin M (2007) Adaboost is consistent. J Mach Learn Res 8:2347–2368
4. Bartlett P, Jordan M, McAuliffe JD (2006) Convexity, classification, and risk bounds. J Am

Stat Assoc 101:138–156
5. Boutell MR, Luo J, Shen X, Brown CM (2004) Learning multi-label scene classification.

Pattern Recognit 37(9):1757–1771
6. Brighton H, Mellish C (2002) Advances in instance selection for instance-based learning al-

gorithms. Data Min Knowl Discov 6:153–172
7. Cucala L, Marin JM, Robert CP, Titterington DM (2009) A bayesian reassessment of nearest-

neighbor classification. J Am Stat Assoc 104(485):263–273
8. Dudani S (1976) The distance-weighted k-nearest-neighbor rule. IEEE Trans Syst Man Cy-

bern 6(4):325–327
9. Escolano Ruiz F, Suau Pérez P, Bonev BI (2009) Information theory in computer vision and

pattern recognition. Springer, London
10. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene cate-

gories. In: IEEE computer society conference on computer vision and pattern recognition
(CVPR), pp 524–531

11. Fukunaga K, Flick T (1984) An optimal global nearest neighbor metric. IEEE Trans Pattern
Anal Mach Intell 6(3):314–318

12. García-Pedrajas N, Ortiz-Boyer D (2009) Boosting k-nearest neighbor classifier by means of
input space projection. Expert Syst Appl 36(7):10,570–10,582

13. Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In:
Proc international conference on very large databases, pp 518–529

14. Grauman K, Darrell T (2005) The pyramid match kernel: discriminative classification with
sets of image features. In: IEEE international conference on computer vision (ICCV),
pp 1458–1465

15. Gupta L, Pathangay V, Patra A, Dyana A, Das S (2007) Indoor versus outdoor scene clas-
sification using probabilistic neural network. EURASIP J Appl Signal Process 2007(1):
123

16. Bel Haj Ali W, Piro P, Crescence L, Giampaglia D, Ferhat O, Darcourt J, Pourcher T, Bar-
laud M (2012) Changes in the subcellular localization of a plasma membrane protein studied
by bioinspired UNN learning classification of biologic cell images. In: International confer-
ence on computer vision theory and applications (VISAPP)

17. Hart PE (1968) The condensed nearest neighbor rule. IEEE Trans Inf Theory 14:515–516
18. Hastie T, Tibshirani R (1996) Discriminant adaptive nearest neighbor classification. IEEE

Trans Pattern Anal Mach Intell 18(6):607–616
19. Holmes CC, Adams NM (2003) Likelihood inference in nearest-neighbour classification mod-

els. Biometrika 90:99–112
20. Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Techni-

cal report
21. Jégou H, Douze M, Schmid C (2011) Product quantization for nearest neighbor search. IEEE

Trans Pattern Anal Mach Intell 33(1):117–128
22. Kakade S, Shalev-Shwartz S, Tewari A (2009) Applications of strong convexity–strong

smoothness duality to learning with matrices. Technical report
23. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching

for recognizing natural scene categories. In: IEEE computer society conference on computer
vision and pattern recognition (CVPR), pp 2169–2178

24. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis
60(2):91–110

374 P. Piro et al.

25. Masip D, Vitrià J (2006) Boosted discriminant projections for nearest neighbor classification.
Pattern Recognit 39(2):164–170

26. Nguyen X, Wainwright MJ, Jordan MI (2009) On surrogate loss functions and f -divergences.
Ann Stat 37:876–904

27. Nock R, Nielsen F (2009) Bregman divergences and surrogates for learning. IEEE Trans Pat-
tern Anal Mach Intell 31(11):2048–2059

28. Nock R, Nielsen F (2009) On the efficient minimization of classification calibrated sur-
rogates. In: Advances in neural information processing systems (NIPS), vol 21, pp 1201–
1208

29. Nock R, Sebban M (2001) An improved bound on the finite-sample risk of the nearest neigh-
bor rule. Pattern Recognit Lett 22(3/4):407–412

30. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the
spatial envelope. Int J Comput Vis 42(3):145–175

31. Paredes R (2006) Learning weighted metrics to minimize nearest-neighbor classification error.
IEEE Trans Pattern Anal Mach Intell 28(7):1100–1110

32. Payne A, Singh S (2005) Indoor vs. outdoor scene classification in digital photographs. Pattern
Recognit 38(10):1533–1545

33. Piro P, Nock R, Nielsen F, Barlaud M (2012) Leveraging k-NN for generic classification
boosting. Neurocomputing 80:3–9

34. Quattoni A, Torralba A (2009) Recognizing indoor scenes. In: IEEE computer society confer-
ence on computer vision and pattern recognition (CVPR)

35. Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predic-
tions. Mach Learn J 37:297–336

36. Serrano N, Savakis AE, Luo JB (2004) Improved scene classification using efficient low-level
features and semantic cues. Pattern Recognit 37:1773–1784

37. Shakhnarovich G, Darell T, Indyk P (2006) Nearest-neighbors methods in learning and vision.
MIT Press, Cambridge

38. Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching
in videos. In: IEEE international conference on computer vision (ICCV), vol 2, pp 1470–
1477

39. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7:11–32
40. Torralba A, Murphy K, Freeman W, Rubin M (2003) Context-based vision system for place

and object recognition. In: IEEE international conference on computer vision (ICCV), pp 273–
280

41. Vedaldi A, Fulkerson B (2008) VLFeat: an open and portable library of computer vision algo-
rithms. http://www.vlfeat.org

42. Vogel J, Schiele B (2007) Semantic modeling of natural scenes for content-based image re-
trieval. Int J Comput Vis 72(2):133–157

43. Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A (2010) SUN database: large-scale scene
recognition from abbey to zoo. In: IEEE conference on computer vision and pattern recogni-
tion (CVPR), pp 3485–3492

44. Yu K, Ji L, Zhang X (2002) Kernel nearest-neighbor algorithm. Neural Process Lett
15(2):147–156

45. Yuan M, Wegkamp M (2010) Classification methods with reject option based on convex risk
minimization. J Mach Learn Res 11:111–130

46. Zhang ML, Zhou ZH (2007) ML-kNN: a lazy learning approach to multi-label learning. Pat-
tern Recognit 40(7):2038–2048

47. Zhang H, Berg AC, Maire M, Malik J (2006) SVM-kNN: discriminative nearest neighbor clas-
sification for visual category recognition. In: IEEE computer society conference on computer
vision and pattern recognition (CVPR), pp 2126–2136

http://www.vlfeat.org

12 Boosting k-Nearest Neighbors Classification 375

48. Zhu J, Rosset S, Zou H, Hastie T (2009) Multi-class adaboost. Stat Interface 2:349–360
49. Zuo W, Zhang D, Wang K (2008) On kernel difference-weighted k-nearest neighbor classifi-

cation. Pattern Anal Appl 11(3–4):247–257

	Chapter 12: Boosting k-Nearest Neighbors Classiﬁcation
	12.1 Introduction
	12.1.1 Visual Categorization
	12.1.2 k-NN Classiﬁcation

	12.2 Method
	12.2.1 Preliminary Deﬁnitions
	12.2.2 Surrogate Risks Minimization
	12.2.3 Leveraging the k-NN Rule
	12.2.4 UNN Boosting Algorithm
	12.2.5 UNN Convergence

	12.3 Experiments
	12.3.1 Image Categorization Using Global Gist Descriptors
	12.3.2 Image Categorization Using Bags-of-Features
	12.3.3 Comparison with SVM and AdaBoost on Image Categorization

	12.4 Discussion and Perspectives
	12.5 Conclusion
	Appendix
	Generic UNN Algorithm
	Proofsketch of Theorem 12.1
	Proofsketch of Theorem 12.2
	Proofsketch of Theorem 12.3

	References

