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          Introduction 

 The health care industry faces a number of challenges and arguably one of the most 
important ones lies in maintaining high levels of patient safety. A much-cited report 
released by the Institute of Medicine [ 1 ] estimates that as many as 98,000 people die 
each year due to medical errors [ 1 ]. The causal determinants of these errors can be 
traced to a variety of medical, cognitive and social challenges in the clinical work-
place. These challenges are exacerbated in critical care environments that are char-
acterized by distributed, interdependent, episodic and non-linear work activities. 
The dynamic nature of the care process in critical care environment affects the 
nature and timing of work activities of clinicians, and often increases the possibility 
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of errors. Studying the work activities of clinicians in such environments can help 
in understanding the care delivery process, workfl ow, and interruptions that affect 
clinical work. 

 Exploratory investigations of clinician activities are often performed using 
observational methods. While these methods provide a descriptive depth that cannot 
be matched by automated methods, use of participant observation methods [ 2 ,  3 ] in 
a critical care setting is often challenging, as capturing the work activities of mul-
tiple clinicians requires several observers who must be closely synchronized during 
their data capture sessions. The tools currently used for workfl ow analysis in clini-
cal environments include methods such as ethnographic observation, shadowing of 
individual clinicians, surveys and questionnaires [ 4 ]. The data collected by these 
methods can be used to model work activities centered on a particular individual (or 
a group) and their activities [ 5 ]. Such approaches sometimes are inadequate to 
develop a holistic and complete picture of work activities. For example, observa-
tions are gathered from an individual’s point of view and may not be adequate to 
capture multiple activities occurring within a clinical environment. Though it is 
plausible to capture additional activities by increasing the number of observers, 
such an approach is highly likely to disrupt clinical activities. Given these con-
straints in complex critical care environments, there is a need for an unobtrusive 
alternative that can augment existing methods of data collection and enable piecing 
together a more complete workfl ow, understanding the nuances of underlying activ-
ities, interactions and dependencies. 

 Tools that can be used to monitor continuous activities in clinical environments 
can provide signifi cant insights into the work activities in clinical environments. 
Radio-frequency Identifi cation (RFID) technology offers a seamless, cheap and 
effective mechanism for monitoring and tracking events within clinical environ-
ments. In this chapter, we describe the potential and use of RFID-based sensors for 
reliably capturing the activities, mobility and interactions of clinicians. This chapter 
is based on aggregated results from our previously published work that on the use 
of RFID technology in critical care settings [ 6 – 8 ].  

    Background 

    Complexity and Critical Care Workfl ow 

 The study of complex systems draws together emerging approaches from several 
diverse fi elds including economics, physics, biology, mathematics and computer 
science on the common ground of complexity. This interdisciplinary effort seeks to 
formulate unifying principles of complexity. Several authors have proposed that the 
healthcare system or elements thereof can be characterized as a complex system 
[ 9 – 13 ]. For example, Smith and Feied [ 13 ] argue that an emergency department is a 
 paradigmatic complex system . This argument rests on the unpredictability of both 

M. Vankipuram et al.



359

patients’ clinical conditions and clinicians’ work patterns, the vast decision space 
and incomplete evidence that complicate clinical decision-making and the inherent 
unpredictability of the system as a whole. 

 Several concepts drawn from the complex systems literature are pertinent to the 
study of a critical care unit as a complex cognitive system. A cogent and readable 
account of the ways in which concepts from the complexity literature might be 
applied to social systems has been developed by the Complexity in Social Science 
[ 14 ] project [ 14 ]. Complex systems are by their nature non-deterministic and 
dynamically structured. That is to say, it is not possible to predict the behavior of a 
complex system by studying the function of its components in isolation, and fur-
thermore the study of the behavior of any such component reveals little about the 
system as a whole. Likewise, the process of clinical care emerges from a series of 
dynamic and fl exible interactions between patients, health-care providers and out-
side infl uences [ 15 ]. While this argument applies readily to workfl ow, it also relates 
to the cognitive processes that underlie critical care decision making, as the cogni-
tive processes in critical care settings are distributed across the minds of the clinical 
team and a range of physical media [ 16 ]. Given the complex nature of system 
behavior, it is not possible to predict the knowledge, expertise and information that 
will be available at the point in time at which clinical decisions are made. Similarly, 
for transfer of information, it has been observed that within complex social systems 
the fl ow of information is determined somewhat serendipitously by the geographi-
cal location of team members [ 17 ], which is infl uenced in turn by the complex 
dynamics of the system as a whole. 

 These aspects of the critical care workplace present challenges for the human- 
intensive ethnographic methods that have been previously employed. However, 
complex systems theory suggests that only limited insight into system behavior 
can be obtained through the study of component parts. Consequently, there is a role 
for automated sensors to complement the human-intensive data collection methods 
that have been employed previously. While not able to capture the depth and rich-
ness of representation that are possible through ethnographic methods, these sen-
sors offer certain advantages in that it is possible to collect data concerning a 
geographically mobile clinical team over an entire shift. This is desirable, as even 
an exceptionally well-funded research program that may be able to employ multi-
ple well-trained human observers is likely to experience problems integrating a 
team of observers into a busy clinical environment without obstructing patient 
care.  

    RFID Sensor Technology 

 Recent times have seen a prolifi c increase in the use of radio frequency identifi ca-
tion (RFID) devices in clinical settings. This is driven by early research results that 
have shown that RFID technology can improve better tracking of patients, more 
effective and safer drug administration and lower monitoring costs. Potential 
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advantages not withstanding, the widespread adoption has been tempered by the 
lack of consistent results regarding the viability of real time location systems 
(RTLS) in clinical settings. RFID tools have been used in a variety of applications 
including locating healthcare professionals, tracking patient fl ows, equipment and 
medication, and improving hospital-wide throughput, bed management, and work-
fl ow [ 18 – 21 ]. 

 Sensors typically used for entity activity recognition include passive infrared 
sensors, radio identifi cation tags and pressure sensors. For example, Fry and Lenert 
[ 22 ] developed a system for location tracking of patients, staff and equipment called 
MASCAL. RFID sensors were used to track clinicians and equipment during mass 
casualty events. Sensor tracking data was combined with personnel and clinical 
information to centralize the management of resources. In a related study, Chen 
et al. [ 23 ] describe the use of RFID sensors to identify patients, and notify clinicians 
on patient related information that decreased the waiting time for patients in inten-
sive care units. 

 Sensor technology used for the studies described in this chapter was an active 
RFID system. The system is composed of  tags  and  base stations  that are used to 
capture the movement and interactions between the clinicians in critical care set-
tings. Tags are mobile devices that help in the tracking of moving objects. Base 
stations are stationary devices that provide radio coverage and tracking of the tags. 
The tags and base stations communicate using a vendor-customized  IP-Lite  radio 
connection protocol. During data collection sessions, clinicians carried the RFID 
tags (i.e., the sensors) in the pockets of their coats. Base stations were placed at key 
locations to capture their movements and the transitions between spaces such as 
patient rooms. As a clinician carrying a tag comes in close physical proximity with 
a base station, a ping event is registered with that base station. This is referred to as 
a  tag-base  ping. The strength of ping event is measured in terms of received signal 
strength index (RSSI). Additionally, when two clinicians come in close proximity to 
each other, a  tag-tag  ping is registered. As with the tag-base pings, the relative 
physical distance between the clinicians is refl ected in the signal strength of the tag- 
tag pings. The tags and base stations send pings at approximately 3-s intervals. In 
other words, for every 3 s, each tag registered with a corresponding base station in 
its vicinity. 

 Figure  17.1  shows the confi guration of tags and base stations and how ping 
events are registered between them. In Fig.  17.1 , interactions between three tags and 
one base station are shown. The tags register pings with each other (tag-tag pings, 
represented as n1, n2 and n3) and, concurrently register pings to the common base 
station (m1, m2 and m3 pings). The tag-tag and the tag-base pings are used for the 
identifi cation of the location of a clinician (or multiple clinicians) and their collabo-
rators at any particular point in time. The tag-tag interactions provide an additional 
dimension (of co-location of clinicians) through which to interpret the actions of the 
clinicians.

   We use an illustrative example of how some activities in the clinical environ-
ments can be captured by appropriate placement of tags and base stations. Consider 
the scenario representing patient arrival is depicted in Fig.  17.2 . First, key members 
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of the patient care team (resident, nurse and so on) gather by the bed of the patient. 
Following this, examination of the patient takes place. A resident may move to the 
telephone to consult or the nurse may move to the nurse’s station to document 
details of the encounter. All these activities are linked to entities performing some 
type of movement in the environment.

   Formally we can express this sequence of activities in terms of time as

   (i)    At time t 1 : Patient arrives at the trauma unit and is sent to the trauma bay   
  (ii)    At time t 2 : The nurse and a resident check in on the patient   
  (iii)    At time t 3 : The resident seeks a phone consult while the nurse heads over to the 

station to continue with documentation.     

 In the fi gure, ‘P’ refers to the patient; ‘N’ refers to the nurse and ‘R’ to the  resident 
on call. The black solid dots denote location of base stations (B 1–6 ). Base stations 
were placed at various key locations; one at each trauma bay, one near the phone 
and the other near the computer. For these given sequence of events, the following 
are the trends we see in the data derived from the tags.

   (i)    At time t 2 : Tags R and N get close to B 1 .   
  (ii)    At time t 3 : Tag N is very close to B 5  and Tag R is very close to B 6 .    

Clinician 1

Clinician 2

m2 pings m1 pings

n3 pingsn2 pings

m3 pings

Clinician 3

n1 pings

  Fig. 17.1    Tag-Tag and Tag-Base confi guration. Three tags and one base station is shown in the 
fi gure with interactions between them represented by pings (tag-tag and tag-base).       

 

17 Automated Workfl ow Analysis



362

  With the initial setup phase we know that B 1  is trauma bay 1, we can assume that 
the patient is being managed by the nurse and resident at time t 2  and that the patient 
arrived at the unit sometime before t 2 . Therefore, at time t 3 , the system can 
 probabilistically estimate that the nurse was documenting the patient report, and the 
resident was seeking a phone consult. While the scenario presented is a simplifi ca-
tion of the total process, it provides a conceptual view of how we can track activities 
through tags. In reality, activity models generated can be more complex. The mod-
els would be required to handle variations in activities performed while classifying 
them accurately.  

    Capturing Clinical Work Activities: Two Evaluation Studies 

 In the rest of this chapter, we describe two evaluation studies that describe the use 
of RFID technology. In the fi rst study, sensor data is used to predict a set of clinician 
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  Fig. 17.2    Example scenario: patient arrival at a trauma unit       
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activities in a simulated trauma scenario. In the second, sensors are used to 
 characterize the nature of clinician interactions and collaboration in an emergency 
care setting. Using both these studies we describe the potential scope of using RFID 
technology in the clinical work environment. We also discuss potential applications 
of its use in training, monitoring and administration in critical care settings.   

    Predicting Clinical Workfl ow from Through 
Automated Analysis 

 Many processes produce outputs that may be characterized as observable signals. 
In the case of RFID tags carried by clinicians, these signals are the discrete received 
signal strength values captured by the base stations. Hidden Markov modeling is a 
well-known method for characterizing real-world signals in terms of signal models 
[ 23 ]. The models can provide a theoretical description of the underlying system 
from which deviations from the norm can be identifi ed. 

    Activity Modeling Using Hidden Markov Models 

 Hidden Markov Modeling (HMM) is a probabilistic modeling tool that is usually 
employed for temporal sequence analysis and has been effectively used in move-
ment analysis, gesture and speech recognition applications. An HMM models a 
temporal sequence of events (called an observation sequence) in terms of a state 
machine, in which the current state of the model is probabilistically dependent on 
the previous states. A well-trained HMM activity model can detect the temporal 
activities that the HMM has been trained for. 

 As with any method, HMM based activity recognition has certain advantages 
and disadvantages. The key disadvantage of HMMs lies in the fact that the amount 
of data that is required to train an HMM is very large. Another issue with HMMs is 
that they require positive data to train with, i.e. in order to effectively train an HMM 
to recognize a class of activities, we require a carefully constructed training set that 
best describes the activity. However, these disadvantages are outweighed by a 
trained HMM’s capability to handle variations in the fi nal style of execution of an 
activity. Activities may be performed in a different manner in critical care environ-
ments and it is important that the model of activities accounts for these variations. 
By training the HMM system in a robust manner, it is possible to recognize the 
motion and some communication activities regardless of the deviations for our 
application. In addition, HMMs scale well as they can be trained to learn activities 
incrementally. New activities can be trained for without affecting models of previ-
ously learned activities. For these reasons, we chose HMMs for the development of 
activity models and activity recognition. 
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 Activity recognition using HMMs is a two-step process. It involves (i)  training  
HMMs for specifi c activity models and (ii)  testing  the HMMs for their recognition 
accuracy with annotated test samples. In order to develop robust activity HMMs, we 
fi rst require data that describes the activity. This data is obtained from the RFID 
tags. More specifi cally, the data utilized is the RSSI value of each tag-base encoun-
ter gathered during data collection. We collect this data for the activities of interest 
in multiple samples. We utilize half of the samples for training the HMMs and retain 
the rest for testing the developed models. A database of samples for each activity 
facilitates training the HMMs for each activity, thereby creating a library of HMM 
activity models for each activity. The training of HMM activity models is achieved 
using the Baum-Welch algorithm. 

 Once a library of HMMs is built with one HMM for each activity, the developed 
models can be tested. The testing of an activity sample proceeds by fi rstly, estimat-
ing the probability that the sample movement belongs to the library. This is achieved 
using the Forward-Backward procedure for each of the HMM’s in the library. The 
HMM that yields the highest probability for the test sequence is determined to be 
the type of activity that the movement sequence belongs to. The accuracy of recog-
nition is measured as the ratio of the number of correctly identifi ed test sequences 
to the total number of test sequences. In this manner, activity models are developed 
and tested for activity recognition.  

    Data Collection 

 We collected two sets of data: (a) Qualitative data from observers, and, (b) 
Quantitative data gathered from the RID tags. 

 Both the qualitative data and quantitative data are obtained from standardized 
sources. While time-stamped quantitative data is retrieved from the RFID tags, 
observations were generated by observers using an activity tracking software tool. 
The tool contains a list of commonly occurring activities for the Nurse and Physician. 
The activities chosen were based on an ontology developed by Zhang and col-
leagues based on their prior work on analyzing the workfl ow in emergency depart-
ments [ 24 ]. Observers may select an appropriate activity from the list provided and 
add detailed comments a description text box. The observations are then automati-
cally dated and timed and stored in the output observation fi le. In this way time- 
stamped data is obtained for both qualitative and quantitative data sources. This 
makes synchronization of the two data streams possible. 

 Quantitative data is obtained using  active  RFID tags to gather data. The tags 
record encounters with other tags (tag-tag encounter) and base stations (tag-base 
encounter). For each encounter or interaction, the tags record (a) identifi cation num-
ber of the tag or base station detected, (b) time and date of encounter, and (c) the 
received signal strength indication (RSSI) value. 

 In order to test the HMM based activity recognition system, we simulated 15 
Trauma activities (listed in Table  17.1 ) in a lab setting, (depicted in Fig.  17.3 ) with 
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ten tags and six base stations. These activities were simulations of clinical activities. 
In order to simulate potential activities in a lab setting we observed commonly 
occurring movement tasks in the Trauma unit, an example being “physician moving 
to phone for a consult” (Activity A13). Figure  17.3  depicts the lab setup for 
testing.

    The setup for the testing involved the creation of a 20 ft by 20 ft grid in a lab 
 setting. Six base stations (depicted by black solid circles) we placed in predefi ned 
locations (Base 1 and 4 at Entry/Exit points 2 and 1 respectively; Bases 2 and 3 at 
Beds 1 and 2; Base 5 at the phone on nurse station; Base 6 at the computer on the 
nurse station). This is congruous with base station setup in the real-world scenario. 
We gathered movement data for the 15 sample activities listed in Table  17.1 . 
For each RFID tag-base pair or tag-tag pair an encounter is recorded every 3–4.5 s. 
This data is captured in a time-modulated manner, i.e., encounter information is 
communicated by detecting differences in the time of the encounter rather than the 
frequency. This results in a sparse matrix when considering the entire tag-base 
 station confi guration. Figure  17.4  depicts a sample of the matrix generated. 
The encounter of a tag X with base stations A, B and C (gray fi lled boxes) are shown 
in a 60 s long timeline. We use linear interpolation to fi ll missing data in this sparse 
matrix. While this methodology provides an RSSI value for all base stations at all 
instances, it adds some noise to our system that may affect the overall activity 
 recognition accuracy.

    Table 17.1    Activity list and corresponding clinical descriptions   

 Activity  Movement  Clinical description 

 A1  1-to-2  Paged physician/nurse tends to patient on bed 1 
 A2  2-to-3  Physician/nurse moves to treat patient on bed 2 
 A3  3-to-4  Physician/nurse leaves trauma through entry/exit 1 after visiting patient 

on bed 2 
 A4  4-to-5  Physician/nurse enters trauma through entry/exit 1 and attends to the 

phone 
 A5  5-to-6  Physician/nurse after attending to a phone call move to use the 

computer at the nurse station 
 A6  6-to-1  Physician/nurse leaves Trauma through entry/exit 2 
 A7  1-to-4  Physician/nurse enter and leave trauma 
 A8  4-to-6  Physician/nurse enter trauma through entry/exit 1 and move to use the 

computer at the nurse station 
 A9  6-to-2  After using the computer physician/nurse move to treat patient on bed 1 
 A10  2-to-4  After visiting patient on bed 1, physician/nurse leaves trauma through 

entry/exit 1 
 A11  5-to-1  After attending a phone call, physician/nurse leaves trauma through 

entry/exit 2 
 A12  1-to-3  Paged physician/nurse attends to patient on bed 2 
 A13  3-to-5  After visiting patient on bed 2 physician seeks a phone consult 
 A14  5-to-2  After completing a phone call physician/nurse moves to treat patient on 

bed 1 
 A15  3-to-6  After treating patient on bed 2 physician/nurse move to use the 

computer at the nurse station 
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   For each of these activities, we gathered ten samples of data. Each sample 
involved a tagged entity (researcher) following the movement pattern prescribed 
for the activity. Each sample performed with ten different tags, totaling 100 sam-
ples for each activity. This ensured suffi cient randomization of activity movements, 
accounting for inter-tag variability as well. A total of 1,500 samples (15 activi-
ties × 10  samples × 10 tags) were gathered for testing. Out of the 100 samples 
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  Fig. 17.3    Test setup for simulated clinical activities       
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gathered for each activity, 50 samples were used to train the HMM for activity 
recognition, and the other 50 were used as a testing set to evaluate the algorithms’ 
accuracy.  

    Results of HMM-Based Evaluation 

 Figure  17.5  summarizes the recognition accuracy for the 15 motion patterns 
(A1–A15). Recognition accuracy is the ratio of the number of activities correctly 
identifi ed to the total number of activities used for testing. A mean recognition 
accuracy of 87.5 % was obtained, with a maximum of 90.5 % and minimum of 
84.5 %. The analysis of the incorrectly classifi ed test samples revealed that 
 misclassifi cations were a result of variations in the training set. As discussed 
previously, HMMs require to be trained on a controlled sample that best repre-
sent the activity. Obtaining training data from real-world scenarios are likely to 
have variations that may compromise the quality of models generated. This is a 
limitation of utilizing HMM models with RSSI values alone for activity recogni-
tion. Additional sensors such as accelerometers could be utilized in conjunction 
with RFID tags to improve the activity recognition rates.
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       Summary 

 RFID sensors were used to record of motion and location of clinical teams, which 
was used to model activities in critical care environments. A HMM model was 
developed to identify a set of 15 simulated clinical activities with 87.5 % accuracy. 
We found that RSSI values, as the only observable signal, were insuffi cient in 
 identifying activities with the necessary levels of accuracy. With the use of addi-
tional sensors such as accelerometers it would be possible to counter the noise levels 
 present in RSSI signals.   

    Tracking Clinicians During Emergency Care Activities 

 In many respects, the critical care workplace resembles a paradigmatic complex 
system: on account of the dynamic and interactive nature of collaborative clinical 
work, these settings are characterized by non-linear, inter-dependent and emergent 
activities. Developing a comprehensive understanding of the work activities in 
critical care settings enables the development of streamlined work practices, better 
clinician workfl ow and most importantly, helps in the avoidance of and recovery 
from potential errors. We used sensor-based technology to capture the movement 
and interactions of clinicians in the Trauma Center of an Emergency Department 
(ED). Remarkable consistency was found between sensor data and human observa-
tions in terms of clinician locations and interactions. With this validation and 
greater precision with sensors, ED environment was characterized in terms of (a) 
the movement patterns of clinicians, (b) interactions with other clinicians and 
fi nally, (c) patterns of collaborative organization with team aggregation and 
dispersion. 

    Study Setting 

 The study was conducted in a certifi ed Level 1 Trauma Center in the Emergency 
Department of a large teaching hospital located in the United States. The hospital 
provides 24/7 emergency and trauma care to approximately 52,000 patients a year. 
The ED is separated into distinct units caring for pediatric patients, general medi-
cine patients and those requiring trauma care. The physical set-up of the trauma 
side of the ED includes eight trauma patient beds and fi ve urgent care beds. In 
times of high patient volume, additional chairs and beds are placed in the open 
spaces as needed. The care team for trauma ED typically includes one attending 
physician, two resident physicians and two trauma nurses, an urgent care nurse, a 
charge nurse, one technician, and a respiratory therapist shared by the entire ED. 
The trauma center is also supported by a dedicated trauma team, consulting physi-
cians and the staff from other units of the ED (including off-service providers) as 
needed.  
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    Participants 

 Observation and tagging occurred on four separate shifts over a 2-month period at 
the trauma center. During each observation session, the attending physician, two 
resident physicians, and two trauma room nurses, were solicited for participation. 
Informed consent was obtained from all participants before the start of each data 
collection session. Participants were instructed to go about their usual activities.  

    Sensor Setup 

 A total of ten (10) base stations were placed across the trauma rooms, physician 
station, nurse station, CT room and urgent care rooms. The tags were distributed 
among the attending physician (1), residents (2) and nurses (2). The sensor data 
included the tag-tag and tag-base pings along with their corresponding signal 
strength and time-stamp. Sensor data on the tags and base stations was then format-
ted and uploaded to a MySQL database server. The spatial orientation of the base 
stations is shown in Fig.  17.6 .

CT
room

T4A T1A

T4B

PACS station

T3B T2B

T1B

Base stations

Nurse
station

Urgent care
beds

  Fig. 17.6    Spatial orientation of the base stations in the ED. Each circle represents a base station 
at that location. The locations were CT room ( CT ), Nurse station ( NS ), Image browsing station 
(PACS), Trauma bed 1A ( T1A ), Trauma bed 1B ( T1B ), Trauma bed 2B ( T2B ), Trauma bed 3B 
( T3B ), Trauma bed 4A ( T4A ), Urgent care beds       
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   One of the critical factors in effectively using the sensor technology is the 
 calibration of the sensors to fi lter “good” signals from noise. Prior research has used 
a variety of mechanisms to fi lter the sensor signals. In general,  threshold signal 
strength  is often established as a baseline measure. In our experiments, we used a 
RSSI signal strength value of −70 dB (decibel) as our cut off signal strength. 
This value was based on the manufacturer’s specifi cation and our calibration tests 
verifi ed this threshold.  

    Shadowing 

 In order to validate and complement the information provided by the sensor data, 
human observers shadowed the “tagged” clinicians. The purpose of shadowing the 
clinicians was twofold: fi rst, to confi rm the accuracy of the location estimations 
made by the tags and second, to get additional information on the activities of clini-
cians. The attending physician was shadowed for two sessions, while in the other 
sessions, a resident and nurse was followed. 

 To assist observers with their shadowing tasks, we used the UObserve suite of 
data logging tool [ 25 ]. UObserve is a mobile platform that provides researchers 
with the ability to conduct fi eld observations using standard templates to ease data 
collection, and importantly the capacity to precisely record the time of recorded 
events. The UObserve tool is based on the work domain ontology of the ED envi-
ronment. The use of UObserve allowed for precision and ease in capturing events 
(e.g. time, place, participants, activities) and synchronization with the tagging data. 
For this study, observers were provided with a version of UObserve, which had a list 
of ED-specifi c locations (based on the base-station locations) and collaborating cli-
nicians at that location. At every instance when the tagged subject changed location, 
the observer noted the location on the UObserve tool. Additionally, other clinicians 
who came in direct contact with the shadowed- clinician were also noted. 

 For each location selection, a time-stamp was automatically added by the 
 system. This time-stamp was synchronized with the time-stamps on the sensors. 
The data from UObserve was uploaded from the mobile device to an encrypted 
server. A companion application was developed to export the data in customizable 
data formats. A sample screen shot from one template in the UObserve interface is 
shown in Fig.  17.7 .

       Data Collection 

 Four data observations of the core trauma care team (1 attending, 2 residents, 2 
trauma nurses) occurred over a 2-month period. One clinician was shadowed 
per session by an observer. Prior to collecting the data in the ED, the tags and 
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base stations were extensively tested in the laboratory and in the ED (in pilot 
experiments) to ascertain their accuracy and effectiveness. During each of these 
sessions, both sensor and shadowing data were captured. On average, each of the 
data collection sessions lasted about 3 h (mean = 3.2 h, s.d. = 0.14 h) and was con-
ducted from the start of attending shifts during both afternoon and night periods. 
While all fi ve team members wore RFID tags, only selected team members were 
shadowed. Clinicians varied across the sessions.  

    Data Analysis 

 In this section, a detailed explanation of the various measures that were used to 
analyze the sensor and observation data is provided. Particular attention is given 
to the manner in which the data from the sensors are extracted, processed and ana-
lyzed. We specifi cally investigate two characteristics of clinician activities:  move-
ment of clinicians  and their  interactions  with each other. Based on these two specifi c 
characteristics, we investigate the following: time spent at a location, time spent 
with other clinicians, transition between various locations and collaborative work 
activities. 

  Fig. 17.7    UObserve iPhone 
interface with the location 
details and activity template 
is shown       
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    Time Spent at a Location and in Proximity to Other Clinicians 

 Collaborative work is often done within the specifi c context of location and people. 
By ascertaining the location of a clinician and subsequently the time spent at that 
location, it is possible to make preliminary judgments on the work activities of the 
clinicians. 

 The location of a clinician is determined based on the tag-base pings and the 
shadowing data. For determining the time spent by the clinicians at a location, we 
use the tag-base ping events that were retrieved from the base stations. The time 
spent by a clinician in proximity to a base station is determined by aggregating the 
tag-base pings at each identifi ed base station with the highest threshold signal 
strength value at that particular time. Like time spent in a location, time spent in 
proximity to others is measured by pings over the threshold response level. Unlike 
time at a location (tag-base pings), time spent in proximity to other clinicians is 
computed as an aggregate of the tag-tag pings. If there were multiple tag-tag pings 
at a particular time, then all possible pairs of tag-tag pings were aggregated for this 
computation.  

    Transitions Between Locations 

 One of the ways to investigate the workfl ow of clinicians is to trace the movement 
patterns of the clinicians. As explained earlier, work activities are often context 
(and location) dependent. In other words, locations can be used as a general proxy 
for certain types of activities. For example, the presence of an attending or resi-
dent at a trauma bedside can be considered as a “patient care” activity. Similarly, 
a physician at a physician workstation can be construed as the physician perform-
ing a documentation task. On account of the hands-on nature of clinical work in 
this setting, transitions between locations provide a preliminary account of the 
workfl ow in a collaborative setting. For example, the movement of the attending 
physician across various locations within the ED over the period of a shift can be 
used to gauge their work pattern. If the attending physician was at their worksta-
tion for most of a shift, then we can make predictions about the low degree of 
activity during that shift. In contrast, if there is signifi cant amount of movement 
by the attending physician across various trauma rooms, then we can make predic-
tions about the high degree of activity during a shift. While these examples are 
extreme scenarios, it is important to note that transitions between different loca-
tions can be used as a basis for determining the nature of activities in the ED. In 
short, the transition between locations provides a trace-based illustration of the 
workfl ow. 

 In order to develop the transitions between locations in the ED, we identifi ed ten 
locations in the ED where the base-stations captured signifi cant signal strength. 
These locations were: CT Room (CT), Nurse Station (NS), Image Browsing Station 
(PACS), Trauma Bed 1A (T1A), Trauma Bed 1B (T1B), Trauma Bed 2B (T2B), 
Trauma Bed 3B (T3B), Trauma Bed 4A (T4A), Urgent Care Beds. Based on the 
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tag-base pings at these locations, we fi rst developed a transition probability matrix 
of location transitions for each clinician. 

 A location-based transition probability matrix represents the transitions between 
a set of selected locations. Each cell in the matrix represents the total count of the 
transitions between the two locations. For example, if the cell value between the CT 
room and the Nurse’s Station for the attending physician was 25, it means that the 
physician moved from the CT room and the Nurse’s Station a total of 25 times dur-
ing the shift. The transition probability matrix is also often referred to as 
an  antecedent- consequent   matrix, since it provides the counts of the number of 
transitions between the antecedent and consequent events. We developed a 10 × 10 
matrix for the location-based transitions (for the ten locations described earlier in 
this section) for each of the clinicians, per session. 

 In order to develop the transition probability matrix, we fi rst fi ltered the tag-base 
pings that were above the threshold value. Using a sliding window with an interval 
of 15 s, we temporally collected the locations of all clinicians within this 
 time- window. The location with the highest RSSI strength per clinician was then 
separated out. This process was applied to the entire data set till all locations of all 
clinicians were obtained over their entire shifts. The temporal sequence of locations 
was then converted into a matrix of location-based transitions for further analysis.  

    Collaboration: Aggregation and Dispersion 

 Highly complex environments are often characterized by collaborative interactions 
to maintain the continuity of work activities. The collaborative interactions can be 
characterized in terms of three key concepts: the  size  of the collaborating team of 
clinicians, the  length  of their collaboration and the  location  at which the interactions 
of the team occurs. The knowledge of these three concepts is useful in developing a 
“blueprint” of the collaborative activities within the ED. We use the tag-tag pings 
between clinicians to estimate the collaborative interactions between them. Using 
physical proximity as an indicator for interaction, we identify the following: fi rst, 
the pair-wise interactions between all the clinicians and the locations at which these 
interactions take place were identifi ed (based on tag-base pings). Then, the location 
and size of the largest group of clinicians are detected using matrix-based 
algorithm. 

 While, we use the term “interaction” in a general sense, meaning physical 
 proximity between clinicians, it can be argued that close proximity at a particular 
location in an emergency care setting (e.g., at a specifi c trauma bed) would indicate 
that the clinicians are together for a common purpose or goal (e.g., care for a patient 
at a location). Thus, even though the clinicians may not be verbally communicating 
with each other, a common goal of being at the same location can be considered as 
a measure of a shared collaborative activity. We use this concept to measure the 
degree of team aggregation and dispersion in the ED. 

 As explained earlier, we fi rst identify the pair-wise interactions between all pairs 
of clinicians. For the sensor data, we focus primarily on the pair-wise interactions 
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of the attending physician, as they are central to controlling the workfl ow in the ED. 
For ascertaining the pair-wise interactions, the sensor data was fi rst “chunked” into 
intervals of 30 s, after testing with intervals ranging from 30 to 180 s. To be consid-
ered as a “valid tag-tag ping” at a particular location several conditions were fi rst 
evaluated. We describe these conditions with an example. Consider two tags, tag1 
and tag2 at a location B1 (base station location). A valid tag-tag ping between these 
two tags would involve the following interactions: tag1-tag2 ping, tag2-tag1 ping, 
tag1-B1 ping and tag2-B1 ping. Additionally, all these pings have to occur within 
the selected 30-s interval. 

 After obtaining the pair-wise interactions (and their locations), we evaluated 
the formation (aggregation) and dissipation (dispersion) of larger clinician groups. 
The identifi cation of large groups was progressively more complex than the pair-
wise comparisons. Since groups (size > 2) take longer time to form (and disperse), 
we considered time intervals of 100 s for this analysis. The time period of 100 s 
was arrived after testing with various “time-chunks”, discussions with ED attend-
ing physicians and our own observation data. Based on our observation data and 
discussion with ED clinicians, we evaluated the average group formation (for 
groups of different sizes) time across each shift. A 100-s interval was found to be 
an appropriate time-span for capturing the formation (and dispersion) of groups 
of sizes varying from two to four. The groups were ascertained in the following 
manner: fi rst, the presence of a group within the considered time interval was 
determined. Second, it was verifi ed whether the interactions were occurring 
within the same location. We explain the aggregation algorithm with an 
example. 

 For every 100-s interval that we considered, we developed a two-dimensional 
matrix similar to the one shown in Fig.  17.4 . There are two types of information 
that is encoded in the matrix: the tag-tag interactions (represented as a binary 
operator between tags T1–T5 in the left half of the matrix) and the tag-base inter-
action  (represented as a binary operator between base stations B1–B10). From the 
example matrix (see Fig.  17.4 ), we generate all possible tag-tag interactions. In 
this case, the only tag-tag interactions are with tag 1 (T1) with (T2 and T3). The 
interactions of all other tags (T2, T3 and T4) are with only with T1. Thus, the 
direct interactions in this period of time are {T1, T2, T3}. Next, we investigate the 
reverse tag pings (i.e., from T2 to T1, T3 to T1, etc.). For this, we evaluate the 
column values for T1: {T2, T3, T4}. The intersection set between direct and 
reverse set of tag-tag pings gives us the set of tags that were interacting in this time 
period. In our case, we get the set of tags as {T1, T2, T3}. This means that the 
clinicians carrying the tags T1, T2 and T3 were in close physical proximity to each 
other. 

 The last step in the algorithm is to establish the location where the clinicians 
were together. For this, we use the identifi ed set of tags and compare it with the 
common set of locations at which these tags were present. In other words, we 
explore the columns for the base stations (B1–B10) that have non-zero values in the 
cells for the set of identifi ed interacting tags. In the case of the example provided, 
the only location where the base station has non-zero value is for the column 
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pertaining to B2 (see Fig.  17.8 ). Consequently, a group will only be considered as 
such if all members ping one another, as well as the location base station during the 
same 100-s time period. Thus, we can identify the largest group during this time 
period as {T1, T2, T3} at location {B1}. The highest signal threshold values were 
taken into consideration if there were multiple possible locations for the identifi ed 
group. There was less than 5 % incidence of multiple locations for a group across 
all sessions. We computed the size of the largest group for every 100-s interval for 
the all the four sessions.

        Results 

 In this section, we report on the results from the sensor and observation data. 
First, we validate the correlation between sensor and observed data. Based on this 
validation (i.e., the plausibility of using tags as a data collection mechanism), we 
investigated the relative entropy of the ED system. Then we report on the workfl ow 
of the ED clinicians based on their location transitions and interactions with other 
clinicians. Finally, we describe the formation and dispersion of teams as a measure 
of collaboration in the ED. 

    Validating Sensor and Shadowing Data 

 In order to evaluate the degree of association between the sensor and shadowing 
data, we computed the correlation between these data sets for both mobility and 
interactions among clinicians. A high correlation between the sensor and observed 
data validates the accuracy of the sensor data in capturing the location and interac-
tions among the clinicians. We computed the Pearson moment-correlation between 
the location determined by the sensor data and location determined by human 
observers. We obtained a statistically signifi cant correlation between the observed 
and sensor-based location data ( p < 0.01, R = 0.96 ) (See Fig.  17.9a ).
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   Similarly, we also computed the correlation of proximity between the clinicians 
as determined by the sensors and shadowing observer. Based on Pearson product- 
moment correlation, we found signifi cant correlation between co-location of the 
physicians as determined by the sensors and by the observers ( R = 0.98, p <0.001 ) 
(See Fig.  17.9b ). In other words, physicians (attending and the two residents) were 
more likely to be co-located than the nurses. The inherent lack of co-location of 
nurses can be attributed to the signifi cant percentage of nurse activities are often 
performed in isolation from other physicians (e.g., documentation, care coordina-
tion). Hendrich et al. [ 26 ] reported similar results where they found that that nurses 
spend signifi cant amount of their time at nurse stations performing documentation 
and care coordination activities. The mobility and interaction correlations were 
computed from data across all sessions. 

 The signifi cant correlation between the sensor and observed data provides an 
initial validation for the accuracy of the sensor data in capturing the location and 
interactions of clinicians in the ED. A comprehensive knowledge about the location 
and interactions is instrumental in real-time monitoring of emergency environ-
ments. Such monitoring can provide useful insights into the activities around 
 specifi c events such as arrival of a patient with severe acuity or a mass emergency 
event (e.g., a train accident) and for the study of errors. These concepts are further 
explored in the discussion section.  

    Time Spent at Locations and in Proximity with Other Clinicians 

 Based on the tag-base pings, we computed the time spent by the clinicians in var-
ious ED locations. As described earlier, the time spent was computed based on 
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the aggregation of tag-base pings at each location over time. Figure  17.10  shows 
the time spent by the clinicians at the various locations in the ED. The x-axis 
shows the different ED locations (same as those marked up in Fig.  17.2 ) and y-axis 
is the time spent at each location in seconds. From Fig.  17.10 , we found that: clini-
cians spent most of their time in the trauma rooms (at the various trauma beds 1A, 
1B, 2B, 3B, 4A and 4B); the residents and nurses spent signifi cantly more time in 
the trauma rooms (i.e., beside the patients) than the attending physician. This is 
primarily a function of the care process in large teaching hospitals where residents 
(along with the support of nurses) manage the care process under the supervision of 
the attending physician.

   In a similar manner, we also computed the time spent by the attending 
 physician with other clinicians based on the tag-tag pings. We found that the 
 attending physician spent considerably more time with other physicians (residents) 
compared to time spent with nurses ( p < 0.01 ). This was expected considering as 
the study was conducted at a teaching hospital.  

    Transition Between Locations 

 In order to investigate the clinician workfl ow we traced the transitions between 
 various locations by the clinicians. The transitions were determined based on the 
transition probability matrices. Figure  17.11  shows the counts of transitions between 
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various locations by the attending physician in the four sessions. The x-axis repre-
sents the originating location and y-axis represents the terminating location for each 
transition. The diagonal of the matrix represents instances where the attending 
 physician was in the same location for consecutive time intervals. Signifi cant 
 differences in the transition patterns can be gleaned from the analysis of the four 
graphs. In session 1, the attending physician was fairly sedentary at the nurse station 
(NS). This was probably due to a relatively slow shift. 1  In sessions 2–4, we can see 
that the attending physician moved across the various trauma rooms and had a “foot 
print” across all the locations in the ED. It can also be observed that a signifi cant 

1   In fact, our observation data shows that during this session, the attending physician spent a 
 considerable portion of this slow shift teaching the residents at the Nurse’s station. 
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time was spent in the trauma rooms (darker squares in the cells representing the 
trauma rooms).

   We also developed similar location matrices for other clinicians. In the case of 
residents, we found that the transition pattern of one resident was complementary to 
the other. In other words, we found that, one resident was invariably present at a set 
of trauma rooms (and absent from the rest of the trauma rooms), while the second 
resident was present at the remaining trauma rooms. This is consistent with the 
demands of their shared workload and division of patient care duties. This is further 
investigated in the next section on collaborative patterns. We found no consistent 
patterns in the location transitions among the nurses.  

    Collaboration: Aggregation and Dispersion 

 We computed all pair-wise co-occurrences between the attending physician and 
other clinicians. As expected, we found consistent co-location of the attending and 
the residents in the trauma rooms. This was further confi rmatory evidence for the 
likely complementary role that each of the residents took for the patient care activi-
ties. In other words, we found that one resident had a prominent “role” with respect 
to the treatment of a specifi c patient. This can be seen in terms of the pair-wise co- 
location probability (see Fig.  17.12 ) where one resident is more likely to be present 
along with the attending physician in a trauma room. The high co-location probabil-
ity of one resident was highly correlated with a low co-location probability of the 
other resident being in the same trauma room. We did not fi nd any consistent pat-
terns with respect to the co-location between nurses and the attending physician.
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   While the interaction between pairs of clinicians is interesting, complex settings 
are characterized by a signifi cant amount of collaborative activity. Consequently, 
we were interested in the behavior of the team as a unit, in addition to that of indi-
vidual clinicians or clinician pairs. We investigated the formation and dispersion of 
larger groups (>3) in the ED. Based on our algorithm described earlier we computed 
the team size dispersion over the data collection sessions. On average we found that 
there was a high percentage of two and three-clinician groups across all sessions. 
We found several interesting patterns with respect to the aggregation and dispersion 
of teams across the ED.

  First, the incidence of larger clinician groups (4 and above) was very low. On 
average, there were less than 15 such group occurrences. These clinician groups 
always included the physician, both residents and one of the nurses. The low 
occurrence of the larger groups was probably due to a combination of factors: 
fi rst, such large groups would entail the majority of the care team. From observa-
tions, we know that these large groups typically come together during a major 
trauma and quickly disperse to care for the other patients in the ED center. During 
occasion of lower patient volume, large groups might congregate in central loca-
tions with team members entering and exiting freely. These circumstances of high 
demand and low volume are relatively infrequent. Second, our algorithm that 
determined the presence of teams was extremely stringent in terms of the require-
ments that  ascertained the presence of a group (multiple tag-tag and tag-base 
pings within a short interval). While, this may ignore extremely slow forming 
groups, we believe that the ED is an extremely fast-paced environment where the 
formation and  dispersion of groups are in response to rapidly emerging 
situations. 

 Second, larger clinician groups (size greater than or equal to four) always 
 congregated in one of the trauma rooms. This is highly likely in ED settings where 
the arrival of a patient with high acuity levels triggers signifi cant activity around that 
patient. While, we cannot directly verify the acuity of the patient at the times where 
the larger groups congregated, in our future work we plan to retrospectively investi-
gate the arrival acuity levels of patients for the sessions in which we collected sensor 
data. Third, team size of three almost always (90 % of the cases) involved at least 
one resident and a nurse. The third participant in such three-person groups was 
either the resident or the attending physician. About 60 % of such three-person 
groups were formed in the trauma rooms, while the rest were primarily split between 
the nurse station (NS) and physician station (PACS). Two clinician pairs were very 
common and we found signifi cant variability among these pairs. But, about 50 % 
of the two-clinician groups identifi ed consisted of the physician and one of the 
 residents. This is typical considering the dual role of the attending physician in 
patient care and medical education. 

 An example of how the overall size of the largest ED team changes over a data 
collection session is shown in Fig.  17.13 . The x-axis shows the time while the y-axis 
represents the size of the largest group at that point in time. As can be seen from the 
fi gure, the size of the group varies between 2 and 3 and for a short time a group of 
size 4 congregates together.
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         Discussion 

 We used RFID sensors to simulate and predict workfl ow and to capture the work 
activities of clinicians in critical care settings. The results from two studies reported 
in this chapter show the  appropriateness of using sensors to study work activities in 
complex critical care environment.  While, we used limited data collection sessions, 
our results provide signifi cant support for more extensive use of sensors for study-
ing complex activities. Though human observers are defi nitely required to collect 
highly nuanced information about the activities in complex environments, sensors 
are a reasonably reliable complementary data collection mechanism. Combining 
sensor data with other readily available clinical information (such as patient arrival 
information, condition, acuity, etc.) can help in developing fl exible mechanisms 
for monitoring and managing the resources of complex environments. We further 
describe potential applications and uses of sensor technology including its role in 
visualization and training, management of resources and tracking of errors in criti-
cal care environments. 

    Visualization of Workfl ows 

 Visualizing workfl ow in 3D enables researchers and clinicians alike to easily grasp 
the activities that make up the workfl ow. In addition to enabling researchers 
review workfl ow in a novel way, the confi gurable virtual reality (VR) visualizations 
can also be employed for educational purposes. For example, a resident would 
be able to go experience a trauma from the perspective of the attending or nurse. 
This kind of confi gurability would enable the cross-training of clinical teams. 
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The visualizations can also be used to educate clinicians by illustrating cases of 
optimal workfl ow in relation to error-prone workfl ow. 

 In the domain of healthcare, virtual reality has been used to develop simula-
tions for training of cognitive and psychomotor surgical skills and clinical deci-
sion making skills [ 27 – 29 ]. However, there is a lack of VR-based solutions for 
visualization of workfl ows and error scenarios even though such systems may 
have a major role to play in error prevention and mitigation. We can employ 
online VR environments such as Second Life® (  http://secondlife.com/    ) and Active 
Worlds® (  http://www.activeworlds.com/    ) for such visualizations. In this stage of 
the work, we have developed a standalone system that could be employed for 
such visualizations employing an open source gaming engine called Irrlicht 
(  www.irrlicht.net    ). 

 A sample virtual trauma unit (see Fig.  17.14 ) was developed to mimic the 
trauma unit at Banner Good Samaritan Medical Center, which is the site of devel-
opment for the project. The virtual trauma room consists of four trauma pods or 
beds. The nurses’ station faces the trauma pods. A computer and phone are key 
components that are included in the design of the nurses’ station. Two exit doors 
are present in either side of the trauma room. These details are synchronous with 
the test and real world set up. The current simulation contains three basic charac-
ters – the patient, resident and the nurse. The number and type of models to be 
utilized depend on the entities studied in the real-world. Models of the characters 
are built using modeling software (Maya and 3dMax;   http://usa.autodesk.com/    ). 
Once the models are developed they can be controlled in the simulated world 
programmatically.

  Fig. 17.14    Virtual trauma unit for workfl ow visualization       

 

M. Vankipuram et al.

http://secondlife.com/
http://www.activeworlds.com/
http://www.irrlicht.net/
http://usa.autodesk.com/


383

   In order to obtain VR simulations of the workfl ow, the system generates a list of 
activities making up the workfl ow. These activities are then manually fed into the 
visualization engine to create the simulations. Currently, this stage of visualization 
process is completed offl ine. VR simulations created in this manner present a simu-
lated view of real-world events. This is valuable to clinicians and researchers in 
highlighting the main events in the workfl ow within the context of the clinical 
environment. 

 Recent research [ 7 ] has reported on the potential of online 3-D virtual environ-
ments for medical education and learning. Online virtual environments provides an 
informal environment in which the learners can understand the norms, practices and 
challenges of working in a complex environment and integrate such information 
through repetition and group interactions.  

    Real-Time Monitoring of Activities and Resources in the ED 

 Sensor technology has been signifi cantly useful in the remote and real-time 
 monitoring of activities in various environments such as nursing activities, elderly 
care and telemedicine. Monitoring and management of resources in a highly 
dynamic and complex setting requires signifi cant amount of data with respect to the 
activities and happenings within that setting. Data from the sensors (both mobility 
and interaction) provide information regarding the clinician (in terms of their loca-
tion and co-location with other clinicians) with great precision and detail. 
Additionally, this information is time-sequenced. As a result, a real-time feed from 
the sensor data can be used to develop a trace of events in the ED. For example, the 
rapid formation and dispersion of large teams at different trauma beds may indicate 
the possible arrival of several patients with high acuity. Hospital administrators can 
use the data from the sensors to ascertain the “status of the ED”. This information is 
critical in deploying additional resources, both in terms of personnel and equip-
ment, to the ED. Additionally sensor data can have potential applications when 
changes are introduced in a critical care environment. For example, the introduction 
of new health information technology (HIT) creates signifi cant changes in work 
activities.  

    Framework for Studying Errors 

 The study of errors in emergency care settings has received signifi cant attention in 
recent times. While sensor technology has been minimally used in the investigation 
of origin and propagation of errors in the ED, it is a viable mechanism for this 
 purpose. From our sensor data, we developed normative and predictive models of 
clinician activities in the ED. These activities can be retrospectively used to investi-
gate the temporal events and activities that surround reported error incidents. 
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 What is missing from most prior studies on the tracing of errors in critical care 
environments is the detailed information regarding clinician activities around the 
time at which the error occurred. The continuous monitoring using sensors provides 
a large database of clinician location, movement and interaction events. Using the 
methods described earlier (e.g., transition patterns, group formation and interac-
tions), it is possible to re-create the distribution of attention and resources in the ED 
around the time at which the error was reported. Such a “replay” of events can help 
in tracing potential activities that could have been avoided and may have contrib-
uted to the error. We will use an example to describe this. 

 Consider that an attending physician self-reports an error regarding the delayed 
administration of a drug to a patient in trauma-bed 4 at 530 ET on June 1, 2010. 
The error report also includes the arrival condition of the patient, history and 
other patient-relevant information. There are two sets of information that can be 
used to develop a trace of the events that happened prior and after the error 
occurred. The sensor data can be used to identify the patterns of interactions, 
movement and collaboration among the clinicians around the time at which the 
error happened (say, from 5 to 6 PM on June 1, 2010). The clinical information on 
the patient along with observation (audio or fi eld notes) can be used as comple-
mentary evidence to develop a much richer perspective of the activities surround-
ing the reported error event. Thus, a detailed sequence of events can be used to 
track the possible contributory activities that possibly led to the error event. This 
framework, which combines sensor data and clinical data, for studying errors is 
shown in Fig.  17.15 .

   This framework for investigating the origin and propagation of errors has several 
advantages. First, the data collected from using the sensors can be retroactively 
combined with the clinical data. Self-reported errors in an emergency setting are 
usually very low. As such, it is important to be able to trace the events that happened 
around the time the error incident was reported. Sensors provide a viable mecha-
nism by which data can be collected for extended periods of time and then be retro-
spectively used for evaluation and analysis. Second, sensors can be used as a passive 
data collection mechanism with minimal interference with the clinician’s work 
activities. Third, the relatively long battery life of most sensors makes it feasible for 
running long data collection sessions (e.g., 20–30 days) without any breaks in data 
capture. Such an arrangement with human observers is extremely costly and labor- 
intensive. Our future research work involves the use of the framework to investigate 
the activities of clinicians in the ED around self-reported errors.   

    Challenges and Lessons Learned 

 In summary, there are several potential research and applied opportunities for the 
use of sensor technology in complex critical care environments. In spite of the 
 signifi cant challenges for designing, calibrating, collecting and analyzing sensor 
data, we believe that sensor technology has exciting prospects for developing 
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insights of the work of complex critical care environments, which would otherwise 
be impossible due to signifi cant time and cost burden of using human observers. 
The calibrating and setting up of the sensors often requires extensive pilot testing to 
ascertain the exact positioning of the base stations to get maximum coverage. We 
also had to ensure that our technology did not cause adverse effects on medical 
equipment and devices. Per our manufacturer’s description, our sensor technology 
operates in the same frequency range as the WiFi (Wireless), which is ubiquitous in 
hospital  settings. While, we did not extensively test for adverse effects of sensors, 
we believe that our technology does not cause adverse effects on medical devices as 
argued by van der Togt et al. [ 30 ]. Some clinicians were concerned about their pri-
vacy issues due to the use of sensors during their shifts. We collected no physician 
or patient- identifying information and all IRB-regulated protocols were followed 
for assuring data protection and privacy. For example, all data was saved on an 

Patient case Scenario: An attending self-reports an
error regarding delayed administration of a
medication to a patient on Trauma-Bed 4

@5:30PM EST on June 1, 2010

Clinical DataSensor data

Interactions and
Collaborations

Location of clinicans
from 5-6PM

Clinical Locations
between 5-6PM

Team Collaboration
between 5-6PM

Attending interactions
from 5-6PM

5:30PM

5:30PM

MedHost (Patient arrival time,
acuity, triage info of patient on

TB-4)

Observation data (audio
transcripts of events)

  Fig. 17.15    Framework for studying errors       
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encrypted drive and all identifying information (e.g., time) was removed prior to 
data analysis. Another signifi cant challenge that we faced was the cost involved in 
managing the sensor technology. Due to the signifi cant amount of data generated 
from the sensors, we developed algorithms for compressing and storing the data. 
This volume of data also required us to develop computationally effi cient algo-
rithms for analysis.  

    Discussion Questions 

     1.    What are the challenges of tracking clinical workfl ow in critical care settings? 
What are some of the potential solutions for collecting high-fi delity data in such 
settings?   

   2.    One of the major challenges with capturing micro-level data (e.g., using sensors) 
is the signifi cant volume of data. What are some of the approaches to streamline 
data collection using sensors?   

   3.    How can we minimize the “noise” in sensor data? What are some of the 
 algorithmic approaches for doing so?   

   4.    There are several activities that take place in a hospital setting that may be of 
interest from the patient safety point of view. Hand washing is one example. Can 
you provide other activities related to patient safety that would be interesting to 
track and quantify?         
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