
Chapter 6
SmartSensor Proof of Concept

Abstract This chapter illustrates the use of the SmartSensor infrastructure through
the development of an application in the domain of smart buildings. Smart buildings
are buildings instrumented with smart devices designed to provide high flexibility
of use and the ability to evolve and adapt according to the needs of organizations
and human beings, aiming at increasing users comfort and safety and optimizing
the operation and managing of several functions inside and outside the building
while increasing its energy efficiency. There are plenty of applications within the
broad domain of smart buildings, varying from applications to control light, humidity
and temperature of rooms to fire and intrusion detection. We choose a parking lot
management application to present the main functionalities and potential benefits of
SmartSensor. The application consists of a wireless sensor network (WSN) based
vehicle detection sub-system connected to the SmartSensor infrastructure. The WSN
gathers information on the availability of each parking lot and the SmartSensor
infrastructure processes the information and provides a Web interface to guide the
driver to the available lots.

Keywords Internet of Things (IoT) · Web of Things (WoT) · REST · Applications
for IoT · Mashups · EMML · Parking Lot · Smart buildings

6.1 Overview

This chapter demonstrates the use of the SmartSensor infrastructure through the
development of an application in the domain of smart buildings. According to [2],
smart buildings are buildings equipped with smart devices designed and constructed
to offer great flexibility of use, providing the ability to evolve and adapt according to
the needs of organizations and to provide at each moment, the best possible support
for their activities. Furthermore, smart buildings must be equipped with systems
for automation, computing and communications, which enable, in an integrated and

F. C. Delicato et al., Middleware Solutions for the Internet of Things, 57
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-5481-5_6,
© The Author(s) 2013



58 6 SmartSensor Proof of Concept

consistent way, the effective management of the resources available in the building,
boosting increases in productivity, allowing energy savings and offering high levels
of comfort and safety to the individuals that work in them.

Examples of smart building applications are: temperature, lighting, air quality
and windows (natural ventilation) control; applications that monitor and shutdown
unattended devices; security applications to protect personnel (access control) and
building properties (anti-theft), parking lot management, detection and management
of emergency situations, just to name a few. Such applications often monitor physical
variables extracted from the target environment, such as light, vibration, temperature,
proximity, presence, chemicals (smoke or gas) and electric voltage.

In order to efficiently manage such applications, the notion of integration arises.
Integration is defined as the ability to communicate, collaborate and exchange infor-
mation between applications to achieve common goals [2]. Examples of advantages
of integrating applications are: (i) more efficient use of resources, such as energy,
computational, and even human resources, (ii) fast and more coordinated responses
to monitored physical events, (iii) the ability to correlate information between appli-
cations to optimize the decision process, (iv) decision chaining between integrated
applications, i.e., a decision made in a given application may trigger another deci-
sion on a different application. As an example, in the occurrence of a fire hazard, a
service of detection and management of emergency situations needs to interact with
many other services such as: lighting, elevators, parking lot, building access control.
These services, whenever informed of the existence of a fire in a particular area of
the building can trigger actions such as depressurization and smoke removal of the
affected area, pressurization of evacuation areas, automatically disabling elevators
and moving the occupied cars to safe floors, prevent access to people in general to
areas that may be at risk of being affected by the sinister, allow free exit from sinister
places, and block access to building and parking areas that may be at risk.

Many smart buildings services require continuous monitoring of various environ-
mental parameters inside and outside the building using sensors and actuators [1, 2].
Moreover, several services demand interaction between sensing data and information
systems that manage the operation of the building. Thus, a key requirement for an
efficient monitoring and controlling is that all sensors and actuators are addressable
over the network to exchange data with corporative intranet or the Internet. In this
context, the use of a WoT infrastructure can bring a set of benefits as the enabler tech-
nology to achieve the degree of interoperability among senor instrumented spaces in
a smart buildings and an internal or external Web-based network. In the next section,
we describe the development of a smart building application using the SmartSensor
infrastructure.

6.2 Parking Lot Application

In this section, we describe a smart building application that provides guidance to
drivers that need to park a car in one of the available parking lots within a given
building. A challenge usually found in applications for managing parking lots is to



6.2 Parking Lot Application 59

Fig. 6.1 Schematic draw of
an inductive loop

effectively detect vehicles. Many solutions use inductive loops (Fig. 6.1) to tackle
this issue [3]. However, inductive loops have high costs of both installation and
maintenance [4]. In this sense, an easy and cost effective solution option is to use a
WSN. Wireless sensors can be easily deployed in existing parking lots without the
need for excavation and expensive cable installations required by inductive loops.
Moreover, the flexibility to reconfigure sensors already installed, together with the
availability of low cost sensors capable of detecting vehicles, make WSN a natural
candidate to solve the emerging problems of monitoring and control of parking lots
in smart buildings.

Our illustrative application consists of a WSN based vehicle detection sub-system
connected to the SmartSensor infrastructure. WSN gathers information on the avail-
ability of each parking lot and the SmartSensor infrastructure processes the infor-
mation and provides a Web interface to guide the driver to the available parking
lots.

WSNs have great potential to provide an easy and cost effective solution for the
parking lot management application. Its usage along with a WoT solution allows
remote and real-time access to the information on the availability of lots besides
other useful information, thus increasing the efficiency and manageability of large
parking lots, while saving time for the user.

6.2.1 Application Requirements

The Proof of Concept (PoC) parking lot application was developed according to the
following requirements:

• The system must provide a list with the location of all parking lots registered in
the SmartSensor infrastructure. Such a list must be published as a Web mashup
application in order to allow end users to easily locate the nearest parking related
to his/her current location.

• The system must provide information about the number of available spaces in each
parking lot registered in the system.



60 6 SmartSensor Proof of Concept

• The system must be able to identify the types of available spaces (normal or large)
that each parking lot have. Normal spaces fit small vehicles while large spaces fit
larger vehicles (trucks).

• The system must be able to provide the location of available spaces within a parking
in order to guide the driver to them.

• The system must allow real-time monitoring, via the Internet, of vehicles entrance
and exit from a given parking lot.

The UML use case diagram of Fig. 6.2 illustrates the interactions between the end
user and the parking lot application according to the requirements described in the
previous paragraph.

Fig. 6.2 UML use case diagram representing the Parking Lot application



6.2 Parking Lot Application 61

Fig. 6.3 Parking lot image

6.2.2 Environment Setup

The experiment was conducted in three parking lots located at the Center for Math-
ematical Sciences and Nature (CCMN) in the Federal University of Rio de Janeiro
(UFRJ), Brazil. One of these parking lots is illustrated in Fig. 6.3. This parking lot has
three rows with 72 places available in each, summing up 216 monitored car spaces.

To detect vehicles and to distinguish them from other objects, such as a person
walking through the parking entrance, one pair of sensor nodes endowed with ultra-
sonic distance detectors were placed at the entrance and exit of each row of the
parking lot, as shown in Fig. 6.3. Whenever an object is detected, each pair of sensor
nodes sends its collected data to a sink node (Gateway) using a wireless communica-
tion channel. A SIM Driver installed in the sink node receives such data, decodes it,
and then forwards it to the SIM Manager component. Then, the Manager component
analyses the data and identifies that it must be forwarded to a specific Web service
installed in the SIM to further processing. This Web service is responsible for calcu-
lating the width of the detected object, and to infer whether it is a car or other type
of object. Whenever a car is detected, the Web service accesses the SIM database to
update the current number of available car spaces of the parking lot. Regarding the
hardware, both the pairs of sensor nodes and the wireless communication module
of the sink node consist of Arduino Uno boards endowed with Xbee Shields for
wireless communication. The SIM components are installed in a desktop computer
and another computer hosts the PEM components. The details of the hardware used
for this experiment are found in Sect. 6.2.3.

Figure 6.4 shows a schematic draw of the configuration of the sensor nodes and
sink nodes in the parking lot application. A pair of sensor nodes were placed at the



62 6 SmartSensor Proof of Concept

Fig. 6.4 Schematic draw of hardware elements in the parking lot application

entrances and exits of each parking lot row, which is 120 m long and 8 m wide. Two
sink nodes were placed in the center of the second and third rows of the parking
lot, 60 m away from the entrance of the row. The decision to place the sink node
at this location is due to the limitations of radio coverage of the 802.15.4 protocol,
implemented by the Zigbee standard [5], which allows data transmission up to a
maximum of 100 ft away with direct line-of-sight.

We assume the minimum width of a car as being at least 1.5 m. Therefore, any
detected object larger than 1.5 m is considered a car by the application. The pair of
sensor nodes at the entrance of each row counts occupied spaces while the par of
sensors at the exit of each row counts the vacancy of a space. The sensors of each
pair of nodes were placed 8 m apart from each other. To calculate the size of detected
objects we use the formula:

OS = 8 − DDR − DDL (6.1)

where OS is the size of the object, DDR is the distance measured by the sensor node
at the right side, and DDL is the distance measured by the sensor node at the left
side. Such formula is applied by the SIM Web service on the measurements sent by
the sensor nodes.



6.2 Parking Lot Application 63

6.2.3 Hardware Components

The following hardware components were used to instrument each parking lot:

• 14 Arduino Uno boards: 12 used on sensor nodes and 2 used in the sink nodes;
• 14 Arduino Xbee Shield: 12 used on sensor nodes and 2 used in the sink nodes;
• 12 ultrasonic sensors Maxbotix LV-EZ1;
• 12 batteries;
• 2 laptop computers to host the sink nodes.

Arduino Uno (Fig. 6.5) is a microcontroller board based on the ATmega328 chip,
which has 14 digital inputs/outputs pins, 6 analog inputs, a 16 MHz crystal oscilator,
a USB connection, a power jack, an ICSP header, and a button reset. The Arduino
Uno board can be powered via the USB connection or through an external battery
connected its power jack.

Arduino Xbee Shield (Fig. 6.6) can be plugged on top of the Arduino Uno to
allow it to communicate wirelessly using Zigbee. It is based on the Xbee module
from MaxStream [5]. The Xbee module can communicate up to 30 m indoors or 90 m
outdoors (with direct line-of-sight).

Ultrasonic Distance Sensor Maxbotix LV-EZ1 (Fig. 6.7) has a frequency of 42 kHz
and reading rate of 20 Hz. The LV-EZ1 has virtually no blind spots, detecting objects
up to 6.5 m. The closest measured distance is 15 cm, meaning objects closer than this
distance are measured as being 15 cm apart. The ultrasonic distance sensor emits a
sound signal that travels up to a solid object, like a wall, and back to the source of
the sound. To determine the distance of a solid object, the travel time of the echo is
calculated.

The laptops were used to host the SIM components responsible for processing the
data collected by the base station and transmit them over the Internet to the PEM.
The minimum required configuration is:

Fig. 6.5 Arduino Uno board



64 6 SmartSensor Proof of Concept

Fig. 6.6 Xbee Shield

Fig. 6.7 Ultrasonic Distance
Sensor Maxbotix LV-EZ1

• Hardware:
• 1 gigabyte (GB) of RAM
• 50 megabytes (MB) of available disk space for installation
• Software:
• Linux Operating System



6.2 Parking Lot Application 65

• Database MySql 5.5
• JDK version 1.5 or higher
• Tomcat Server 6

Besides the aforementioned hardware components, the parking lot application
uses a server computer responsible for hosting the SmartSensor PEM. The minimum
configuration required for this computer to run the experiments is similar to the
laptop computers. However, in a real installation this computer needs to be configured
according to more specific systems requirements.

6.3 Application Development

The development of the application has three distinct phases. The first phase com-
prises the hardware configuration of the sensor nodes and the sink node. The second
phase comprises the programming of the SIM components required to collect and
interpret the signals collected by the WSN ultrasonic sensors. These components
are to be installed at sensor nodes and sink nodes. The third phase is the program-
ming and installation of the PEM mashup application built to monitor the parking
lots registered in the SmartSensor infrastructure. To mount the ultrasonic sensors on
the Arduino Uno boards, it is necessary to follow the following configuration steps
(Fig. 6.8):

• To connect the sensor calibration pin to digital pin 13 of the Arduino board.
• To connect the sensor analog output to the Arduino analog pin 0.
• To connect the sensor voltage pin to the Arduino 5 V voltage pin.
• To connect the ground pin to the GND pin of the Arduino.

The configuration of the ultrasonic sensors of the experiment can be visualized in
Fig. 6.9.

The first step to program the sensor nodes and configure the Gateway according to
the application requirements is to assess the type of the required data delivery model.
In general, the data delivery model of WSN applications can be of two kinds (or a
combination of both): synchronous or asynchronous. In the synchronous model, net-
work nodes must respond to an application request or should monitor some periodic
event. To deal with synchronous events based on Request-Response operations, the
SmartSensor provides developers with a REST Web service that is accessed through

Fig. 6.8 Ultrasonic sensor
setup



66 6 SmartSensor Proof of Concept

Fig. 6.9 Ultrasonic sensor
mounted on the Arduino
board

the Gateway and returns the information collected by the sensor. The REST Web
service follows the following format:

http://{url_mis}/gateway/rest/getdata/{sensor}

To handle periodic events the developer must program the sensor node itself to
raise such events, i.e., the developer must set the parameters of sensing data rate and
sending data rate of the sensor node. For sensor nodes to send data to the gateway, the
developer must create an HTTP message using the createHTTPmsg method provided
by the SmartSensor HTTP library. This method has all the comprised elements of
an HTTP message: DHost, Shost, code, method, path, data and error. Where the
parameter “DHost” represents the id of the destination node, “Shost” the source node,
“code” represents the message type (for example, 2000 for discovery messages and 0
for sending data), “method” represents the HTTP verb (for example G for GET) and
“path” represents the type of sensor (for example, 5 for distance), “data” represents
the data collected by the sensor, and the parameter “error” sets the error value, if
any. To programming the sending of HTTP messages to the Gateway, the developer
uses the sendHTTPmsg method passing as a parameter a message created by the
createHTTPmsg method.

SmartSensor also allows processing asynchronous events. These events are unpre-
dictable, and must be configured on the sensor node, creating an HTTP message using
the createHTTPmsg method and sending it to the Gateway via the sendHTTPmsg
method.

In the parking lot application, the vehicle detection is programmed as a complex
asynchronous event involving a pair of sensor nodes (Master and Slave) and the
Gateway. Whenever the Master node detects the presence of an object it sends an



6.3 Application Development 67

HTTP message to the Gateway informing the occurrence of the event. The Gateway,
upon receiving of such message, makes a synchronous request to the Slave node to
sense the current distance (object detection). After receiving the Slave response, the
Gateway uses both measures to calculate the object size and determine if the detected
object matches or not a vehicle. After a vehicle detection, the Gateway performs an
update of the number of car parking spaces at the SIM database. This complex event
is implemented by a component called “ParkingManager” that must be implemented
by the application developer and installed at the Gateway node. The steps involved
in the vehicle detection are illustrated in the UML sequence diagram of Fig. 6.10.

After the SIM programming and configuration, the next step in the programming
of the parking lot Mashup application that will be installed in the SmartSensor PEM.
This step starts with the building of a set of REST Web services that exposes informa-
tion about the parking lot state. In the PoC application, we developed the following
Web services:

• ListParkingLots: This service provides a list of parking lots registered in infrastruc-
ture. The invocation of this service should follow the format:

Fig. 6.10 Vehicle detection UML sequence diagram



68 6 SmartSensor Proof of Concept

http://{PEM_SERVER}:8080/pem-v3.4-emml/ListSimEmml.

Following an example of the XML file returned as response for this service:

• getParkingLotInfo: This service provides the detailed information of a given park-
ing lot registered in the infrastructure. The invocation of this service should follow
the format:http://{PEM_SVREER}:8080/pem-v3.4-emml/getParkingLotInfo?
gatoway={url}

where url is the address of the Gateway that manages the parking lot. The fol-
lowing code shows an example of the XML file returned as response for this service:

• getCarSpacesInfo: This service provides the historical information about car
spaces of parking lots registered in the infrastructure. The invocation of this service



6.3 Application Development 69

should follow the format:
http://{PEM_SERVER}:8080/pem-v3.4-emml/gntCarSpacesInfo?gateway

={url},

where url is the address of the Gateway that manages the parking lot. The fol-
lowing code shows an example of the XML file returned as response for this service:

After the creation of the PEM services, the next step is to build the Web mashup
application that integrate the information provided by the Web services and present



70 6 SmartSensor Proof of Concept

Fig. 6.11 Registering of PEM Web services within presto

this integrated view through a set of graphical user interfaces. Web Mashups can be
built using any EMML editor. In this PoC we will show how to create Web Mashups
using a popular graphical EMML editor and runtime environment called Presto [6].

First, it is necessary to integrate the PEM Web services created in the last step
into the Presto platform. To do so, the Web services must be registered as data source
for Mashup applications. This registration is done in the Presto platform through
the instantiation of new REST Web Services connections, one for each Web service
provided by PEM. Figure 6.11 illustrates the registration process within the Presto
platform.

After registering all PEM Web services, we can start building the Web Mashup
application. Figure 6.12 is a snapshot of the Presto graphical editor showing the
specification of a data flow that processes the information generated by the get-
CarSpacesInfo Web service, which is represented in the figure by the Presto Mashable
object ParkingSpace. A Mashable object is any object that can be used as data source
to create a Mashup application. The data flow specifies that the data received after
the invocation of this service should be ordered using the object Sort and forwarded
to the object Mashup Output.

Figure 6.13 illustrates the user interface that consumes the output of the EMML
Mashup created in Fig. 6.12. This interface shows, in a tabular format and in real
time, the entrance and exit of vehicles from a parking lot monitored by the PoC
application.

The other functionalities of the PoC application are created using the same process.
Figure 6.14 shows the user interface that displays the available car spaces in each lane
of a parking lot. This application uses a PEM Web services that queries the database
of the SIM responsible for monitoring the parking lot about the current state of its
car spaces.

Finally, Fig. 6.15 illustrates the Web mashup application that integrates all the
aforementioned user interface fragments into a unified view. The top of the window
shows the number of car spaces available in each parking lot lane. At the bottom
left is showed the entrance and exit of vehicles, on the right a map indicating the



6.3 Application Development 71

Fig. 6.12 Presto graphical editor

Fig. 6.13 User interface for monitoring available car spaces

location of the parking lot, and at the bottom right a table shows general features of
the parking Lot, such as total car spaces by type, and current available spaces. Any
Web browser connected to the Internet can access this information.



72 6 SmartSensor Proof of Concept

Fig. 6.14 User interface showing the available spaces in a parking lot

Fig. 6.15 Parking Lot Web mashup application



References 73

References

1. Liu, M., Mihaylov, S., Bao, Z., Jacob, M., Ives, Z., Loo, B., et al. (2010, September). SmartCIS:
Integrating digital and physical environments. SIGMOD Record, 39, 48–53.

2. Nunes, R. J. C. (1995, November). Integracão de Serviços para Edifcios Inteligentes. (in
Portuguese) PhD thesis, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.

3. Chinrungrueng, J., Sunantachaikul, U., Triamlumlerd, S. (2007). Smart parking: An applica-
tion of optical wireless sensor network. Proceedings of the 2007 International Symposium on
Applications and the Internet Workshops (SAINTW07).

4. Vijay Kumar, P., Siddarth, T. S. (2010). A prototype parking system using wireless sensor
networks. International Joint Journal of Power, Control and Signal Processing (IJJCET2010),
1(4), 78–82, www.ijjcet.com

5. Zigbee Protocol, http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Manual.pdf
6. Presto Platform, Retrieved May 2013, from http://prestocloud.jackbe.com/presto

www.ijjcet.com
http://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Manual.pdf
http://prestocloud.jackbe.com/presto

	6 SmartSensor Proof of Concept
	6.1 Overview
	6.2 Parking Lot Application
	6.2.1 Application Requirements
	6.2.2 Environment Setup
	6.2.3 Hardware Components

	6.3 Application Development
	References


