
Chapter 4
The Sensor Integration Module (SIM)

Abstract The SmartSensor architecture encompasses three main software modules:
(i) the Sensor Integration Module (SIM), (ii) the Programming and Execution Mod-
ule (PEM), and (iii) the Web 3.0 Integration Module (WIM). In this Chapter we detail
the SIM logical and physical components as well as their operation. In the SmartSen-
sor infrastructure a set of wireless sensor networks (WSN) is connected to the Web
through one gateway node, that exposes to client applications the sensing data pro-
duced by the networks as RESTful Web resources. The Sensor Integration Module
(SIM) is responsible for providing the RESTful interface to access the resources of
a given WSN. Its components receive application requests describing their desired
sensing data, translate HTTP messages to and from the several sensor specific formats
and protocols, coordinate the functions needed to meet the received sensing tasks
and manage the different communication models required to produce and deliver the
data back to the requesting applications.

Keywords Web of Things (WoT) · REST · HTTP · XML · JSON · Wireless sensor
networks · Integrating WSN · Restful services

4.1 Overview

As previously stated, the SmartSensor project considers a system consisting of a set
of wireless sensor networks with technologies/platforms possibly distinct, connected
to the Web through one gateway node, and a set of client applications. The WSNs are
exposed and their data accessed by applications as Web resources, using the concept
of RESTful services. The access to the resources provided by a specific WSN is real-
ized through the Sensor Integration Module (SIM). The following Sections present
the SIM logical and physical architecture, describing how its software components
are deployed in each type of node that composes the SmartSensor infrastructure. As
we discussed, SIM components are deployed in sensor nodes and in gateway nodes.

F. C. Delicato et al., Middleware Solutions for the Internet of Things, 29
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-5481-5_4,
© The Author(s) 2013



30 4 The Sensor Integration Module (SIM)

The current implementation of SmartSensor considers WSN nodes from MEMSIC,1

Arduino,2 and SUN SPOT platforms.3

4.2 The SIM Logical Architecture

The UML diagrams of Figs. 4.1 and 4.2 illustrate the main components of the SIM
logical architecture. The deployment diagram of Fig. 4.1 provides an overview of
components for each type of physical node (sensor and gateway) considered in Smart-
Sensor. The UML class diagram in Fig. 4.2 details the classes and subclasses that
compose the gateway Communication Component.

4.2.1 Gateway Components

As depicted in the diagram of Fig. 4.1, the logical architecture of the gateway node
is organized into five software components, described below.

4.2.1.1 Web Interface

This component is the ultimate responsible for providing a uniform Web interface to
access the WSN as a service. It enables that services provided by the sensor nodes of a

Fig. 4.1 SIM components deployed in the gateway node and in the sensor nodes

1 http://www.memsic.com/
2 http://www.arduino.cc/
3 http://www.sunspotworld.com/

http://www.memsic.com/
http://www.arduino.cc/
http://www.sunspotworld.com/


4.2 The SIM Logical Architecture 31

Fig. 4.2 Classes of the communication component

WSN connected to the SmartSensor infrastructure be available in the Web as RESTful
resources. Considering the traditional operation phases of a WSN, this component
is responsible for phase (ii) submission of application requests (see Sect. 3.2). The
main class of this component is called SIM_Web_Service and it simply consists of
a traditional REST-based Web Service installed in a Web server. SIM_Web_Service
class handles all the HTTP messages exchanged between client applications and the
WSN connected through the respective gateway node.

In order to achieve its goals, the SIM_Web_Service class directly interacts with
the classes of the Communication component. HTTP requests received from appli-
cations are processed in the Web server ‘as any other request for Web resources. A
request message identifies through the URI path (i) a given WSN resource (accessed
via the respective driver type), (ii) a specific device (considered as a sub resource
of the driver) and (iii) some functionality provided by the device (considered sub
resource of the device). Thus, the path of an HTTP request is initially used to iden-
tify the type of driver from the device whose service is being requested, then to
identify a particular device (if desired) and finally the service (type of sensing data)
provided by this device. For example, in the path /spotApi/spot-0f40/temperature,
the first part “/spotApi” identifies the driver for this type of device (indicating that it
is a Sun SPOT platform sensor). The second part “/device-0f40” identifies the spe-
cific node (SPOT), where “0f40” is the last four digits of the SPOT MAC address.
Finally, the part “/temperature” is used to identify the temperature sensing unit of the
respective SPOT. After analysing the content (body and header) of the HTTP request
message, the description of the required sensing task needs to be extracted from the
message and forwarded to the sensor nodes able to attend such request. The Man-
ager class of the Communication component is responsible for determining the nodes
that are able to perform a received sensing task. Therefore, after processing an HTTP
request message, the SIM_Web_Service class reports its content to such component.

http://dx.doi.org/10.1007/978-1-4471-5481-5_3


32 4 The Sensor Integration Module (SIM)

Likewise, results (sensor data) provided by the sensor nodes in response to the
received requests are sent back to the requesting applications as HTTP reply mes-
sages via the SIM_Web_Service class. When data produced by the sensor nodes in
a WSN is to be sent to a client in response to a given HTTP request, such data is
mapped into a REST compliant representation. Possible formats are HTML, XML
and JSON. This mapping is responsibility of the Driver class of the Communication
component.

4.2.1.2 Communication

Considering the WSN operation phases, this component includes the several classes
responsible for performing the phase (iii) data collection and delivery (see Sect. 3.2).

From the HTTP request messages received and processed by the SIM_Web_Service
class, this component manages and distributes sensing tasks to the respective sensor
nodes, collects the received results and forwards them back to the Web server so that
they are properly delivered to the requesting application.

The Manager Class. The Manager class of the Communication component
directly interacts with the SIM_Web_Service class and determine, based on the analy-
sis of the incoming messages content and by querying the database maintained at
the gateway, which nodes are able to meet the received request (Fig. 4.3). The main
parameters used to perform the matching between a requested sensing task and the
nodes in a given WSN that are able to execute the task are (i) types of environmen-
tal variables to be monitored (depend on the sensing units available in the node);
(ii) geographical location of the node; and optionally (iii) quality of service (QoS)

Fig. 4.3 Simplified view of the interactions for the submission of application request messages;
message processing; and sensor data delivery

http://dx.doi.org/10.1007/978-1-4471-5481-5_3


4.2 The SIM Logical Architecture 33

requirements as, for instance, the minimum data accuracy provided by the node, the
maximum delay delivered by the network, the maximum lifetime of the node, among
others. Upon determining which sensor nodes are used to execute the required sens-
ing task, the Manager class is able to know the respective sensor platform(s) to be
used to meet the request. Thus, the request message is forwarded to the respective
Driver class to be translated to the proper data format. After the required sensing
task is performed by the WSN and the required sensing data is collected by the
nodes, the respective Driver class sends to the Manager class the translated reply
messages directly received from the tasked sensor nodes. The Manager then forwards
the message to the Web Interface component so that the results of the HTTP request
are presented/delivered to the user/client application. The other functionality of the
Manager class is to determine the type of communication to be used (synchronous
or asynchronous) in the message exchange between the gateway and the WSN. Such
type is defined from the data delivery model required by the client application.

According to the data delivery model, WSNs can be typically classified in three
types: periodic, event-driven and initiated-by-the-observer (or simply request-reply
model). In the periodic model, sensor nodes sense and send their collected data
continuously, at a predefined rate. In the event-driven model, sensors continuously
sense the monitored environment but report information only if an event of interest
for the application occurs. In the request-reply model, sensor nodes report their data
in response to a synchronous query issued by the application. In this last case, the
application is interested in getting a snapshot of values of the monitored phenomenon.

For event-based applications, asynchronous communication is required, for
instance, based on the Publish-Subscribe model. The current architecture of Smart-
Sensor does not support this model. With such model, a client application registers for
events of interest only once and receives new sensor measurements upon the occur-
rence of an event. The HTTP protocol typically operates in the pull mode, where
clients send a request message whenever they need a resource from a Web server.
HTTP does not natively provide an event notification mechanism (push mode). A
usual way of implementing the push mode would be to repeatedly send an HTTP
request message (for instance containing a conditional GET operation) describing the
event of interest; whenever the event occurs the reply message body will include the
event description; otherwise the message body will be empty. This implementation
based on sending repeated requests makes costly the communication for this type
of data delivery model. To overcome such drawback, a possible solution would be
to modify the original HTTP protocol implementation. One example of such a solu-
tion is the TinyREST protocol [5], proposed as part of a joint R&D project between
Samsung Advanced Institute of Technology and Fraunhofer FOKUS. TinyREST is
a protocol specific to the TinyOS sensor platform that was built based on the REST
architecture and principles. The TinyREST implementation provides the clients with
the ability to issue HTTP-like messages to accessing MICA [3] motes in a WSN.
Besides the standard POST and GET HTTP operations, TinyREST includes a SUB-
SCRIBE request message. By issuing a SUBSCRIBE message, clients are able
to register their interest to specific services provided by sensors/actuators, besides
defining personalized parameters depending on the clients needs. Each subscribed



34 4 The Sensor Integration Module (SIM)

client will automatically be notified with a NOTIFY message whenever a desired
event has been detected (e.g. a temperature value passing a specified threshold).

Although providing an efficient way for handling event-based applications and
asynchronous communication in a WoT connected WSN, the solution offered by
TinyREST actually changes the standard HTTP API and implementation. For a WoT
solution that needs to be fully compliant to the REST principles, as is the goal of the
SmartSensor framework, this is not a suitable option.

Other options involve introducing a third party component to mediate HTTP
messages sent by applications to the gateway. An example of such a solution is
the Pubsubhubbub protocol.4 This protocol enables the communication between
client and server using a Publish-Subscribe model by employing a component, called
Hub, that registers clients (Subscribers) interested in receiving events (about sensor
generated data), gets new data provided by the server (the gateway, acting as a
Publisher), and deliver data to the respective clients. The SmartSensor designers
consider that handling asynchronous communication in Web-enabled WSNs is still
an open issue that requires further investigations to be implemented in an efficient
and interoperable way.

A periodic data delivery model is implemented in SmartSensor by the submission
of a sensing task that describes the desired data type and the frequency of data
delivery (data sensing/sending rate). It requires that the user (or application) access
the SIM to check the latest data collected by the network. The SIM database is
periodically updated with the latest data sent by the sensors, with the frequency
previously configured in the nodes. To access the collected data, the user must access
the URI: GATEWAY/gateway/rest/getdata/data type.

Such request will return all sensor data of the required type that were collected and
stored in the SIM database until the moment of the request. If the user is accessing
SmartSensor via PEM, there is the option to automatically refresh the application,
which can be configured according to the required frequency, avoiding the need for
the user need to resubmit the request or manually update the HTML page where the
data is being displayed.

The Driver Class. Another important class of the Communication component
is the Driver class, a super-class that represents the interaction with the sensors
from each specific WSN platform to be integrated in the SmartSensor infrastructure.
Drivers translate messages and commands to the specific language/protocols of the
WSN and vice-versa. This class is extended by subclasses for each sensor platform.
As we have already stated, SmartSensor currently provides drivers for the Arduino,5

SUN SPOT6 and TinyOS7 sensor platforms.
The main operations provided by the Driver class, regardless of the sensor plat-

form used are described as follows. The advertiseService operation is responsible for
handling the advertisement messages (RequestAdvertiseMessage) sent by the gate-

4 http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
5 http://www.arduino.cc/
6 http://www.sunspotworld.com/
7 http://www.tinyos.net/

http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
http://www.arduino.cc/
http://www.sunspotworld.com/
http://www.tinyos.net/


4.2 The SIM Logical Architecture 35

way for devices that interact with the respective driver. These messages are generated
by classes of the Publish and Discovery component and should be sent to the sen-
sors, which respond with a message (AdvertiseMessage) advertising their services,
residual energy, among other relevant information. The getData operation is used
to task the sensor nodes to collect the sensing data as requested by the client appli-
cation, according to the desired data delivered model. The publishData operation is
responsible for receiving data messages sent by the sensors (containing the collected
sensing data).

4.2.1.3 Publish and Discovery

There are two levels of service discovery in a WSN: internal and external (phase (i)
of the networks operation, as described in the Chap. 3), and both are implemented
by classes from the Publish and Discovery component.

The internal discovery enables that sink/gateway nodes know the capabilities of
all sensor nodes that compose a given WSN connected to the gateway. In order to
implement this feature, in the SmarSensor infrastructure a special message, called
AdvertiseMessage, was defined to allow sensor nodes to advertise their capabilities.
Such message include the node (local) identifier, a timestamp, the types of sensing
units available in the node, geographic location, residual energy, maximum data
accuracy/precision provided; supported data rates, supported aggregation functions
and supported duty cycles. Advertising messages are sent by a sensor node (i) at the
node initialization (upon the network deployment in the target area), (ii) when a new
sensor joins a pre-deployed network, and (iii) from time to time, either as a keep
alive message sent with a predefined periodicity or upon request by the gateway
(via a RequestAdvertiseMessage). Such periodic sent of advertising messages is
required given the dynamic nature of the WSN environment, where sensors may
be damaged, moved, have their energy depleted, thus no longer participating from
the network infrastructure. In SmartSensor, if a connected device does not respond
to three consecutive RequestAdvertiseMessage sent by a gateway, such device is
considered unreachable and should be removed from the list of devices maintained in
the database. AdvertiseMessage messages are disseminated throughout the network
by using the communication/routing protocols available at the nodes, until they reach
the gateway node. In the gateway, the content of such messages is extracted and stored
in a database containing data for the respective WSN connected to the gateway.
Gateways are organized in a logical hierarchy and interact among themselves in
order to exchange data from their respective WSNs. PEM components execute in
the gateways positioned in the highest level of the hierarchy. While gateways at
the lower levels only keep information on their respective WSNs, the higher level
gateways keep a database with updated information on all networks connected to the
SmartSensor infrastructure.

The external service discovery is used by client applications to discover which
WSNs provide the services they require, and how to access such services. This is a
traditional phase of service discovery according to the Web Services technologies.

http://dx.doi.org/10.1007/978-1-4471-5481-5_3


36 4 The Sensor Integration Module (SIM)

Fig. 4.4 Logical components of sensor nodes

For REST-based Web services, the discovery and navigation through available
resources are performed by using URIs. SmartSensor infrastructure provides a REST-
based discovery service available through a URI exposed by the Programming and
Execution Module (PEM).

4.2.1.4 Access Control

This component includes classes with basic functions (authentication and authoriza-
tion) for managing the access constraints to the services provided by a given WSN
(accessed through a gateway node). Policies are enforced over resource publication
and sensing task allocation according to criteria set by network administrators.

4.2.1.5 Data Manager

This component is responsible for storing data in a local database maintained by the
gateway. The classes of this component manage the reading and writing operations of
the tables responsible for storing sensing data as well as all the information (metadata)
about sensing capabilities offered by each network node in the WSN connected to
the respective gateway.

4.2.2 Sensor Node Components

Figure 4.4 shows the SIM main software components that should be deployed in the
sensor nodes. The components are described as follows.



4.2 The SIM Logical Architecture 37

4.2.2.1 Communication

As we previously mentioned, WoT employs REST principles to expose the services
of smart devices available on the Web by using two different approaches. In the
first approach, an embedded HTTP server is deployed directly on the devices and
the functionality of these devices is provided as RESTful resources. The second
approach is adopted whenever a device does not have hardware resources enough
to run an embedded server, or when it is not necessary that such device is directly
accessed via Web. For these cases, another, more powerful device can be used as
a bridge to expose the services provided by the constrained device via a RESTful
interface. Such device consists of a WoT gateway. In the SmartSensor project both
approaches were implemented. However, as mentioned, independently of either hav-
ing a server embedded in the sensors or not, the gateway is always used for mediating
the interaction of WSNs with the Internet (for the purposes of converting the adopted
protocol stacks).

For the first approach, an embedded Web server is directly implemented on each
sensor node making it an autonomous and Web-enabled device. The use of servers
embedded in physical objects enables the functionality of these objects to be avail-
able as Web resources. However, the technologies used in the creation of traditional
Web services are not designed to be used on devices that are severe restricted in
resources and battery powered (eg, wireless sensors) [4]. Therefore, so that Web
servers are used in embedded devices, they must meet a number of requirements.
In Ref. [4] a set of requirements and standards for the implementation of embedded
servers were presented. An example of a requirement to be met in a standardized way
is the compression of HTTP protocol messages [1]. For the definition of a generic
architecture for embedded servers, the SmartSensor project followed a bottom-up
approach, in which such an architecture was derived from an existing implementa-
tion of a embedded server deployed in a specific sensor platform, the SUN Spot.
The implementation used as a reference for the SmartSensor design is described
in the WebOfThings project.8 From the analysis of the components of this existing
architecture, a platform-independent generalization was performed and adopted in
the SmartSensor logical architecture to guide the possible implementation of a server
embedded in other sensor platforms.

The embedded Web server is basically a very lean version of an HTTP server,
capable of handling HTTP request messages and generating reply messages server.
Thus, it natively supports the four main operations of the HTTP protocol (GET,
POST, PUT, DELETE, i.e the verbs of REST). In this case, the Communication
component in the sensor nodes encompasses the typical classes of an HTTP engine,
including a request dispatcher and a response builder [2].

For the second approach, the Communication component includes the classes
and interfaces native for each sensor platform, which are responsible for the com-
munication tasks. Such classes should participate in the completion of three tasks:
(i) sending messages advertising the capabilities of the device; (ii) receiving

8 http://www.webofthings.org/projects/

http://www.webofthings.org/projects/


38 4 The Sensor Integration Module (SIM)

messages requesting for a given sensing task/data, and (iii) sending reply messages in
response to request messages (after the required sensing tasks have been performed).

4.2.2.2 Sensor

This component includes classes responsible for keeping the current state of the sen-
sor nodes, both regarding the available resources, such as residual energy, and the
acquired sensing data. As the data collected by the sensing units are not always imme-
diately transmitted (depending on the data delivery model required by the application
and also on the adopted data aggregation intervals), the classes of this component
shall keep the data in the node memory until they are processed and sent through the
network towards the gateway.

4.2.2.3 Publish and Discovery

The classes of this component are responsible for implementing the internal discovery
service. Therefore, a class is required to create messages advertising the node features
and send these messages whenever required. Classes of the Publish-Discovery and
the Sensor components directly depend on the low-level primitives provided by the
sensor operation system.

4.2.3 The SIM Physical Architecture

The logical architecture previously described for SIM was instantiated on a gateway
node implemented in Java and on sensor nodes from three different technologies:
Mica platform/TinyOS, Arduino and Sun Spot. In the next subsections we describe
the gateway physical architecture and the components for the MICA/TinyOS plat-
form. Description of the components implemented for Arduino and Sun Spot plat-
forms are outside the scope of the Book.

4.2.3.1 WoT Gateway

Despite the REST principles are suitable for the integration of physical devices to the
WoT, such devices do not always have sufficient computational resources to support
an embedded server. Therefore, the direct integration of real-world devices with
the Web is still a complex task, especially in cases of extremely limited resources
devices such as the sensor nodes in a WSN. In such cases, a different strategy for
the integration should be adopted, based on the utilization of an intermediate device,
Smart Gateway or WoT gateway. Smart Gateways have two basic functions: to expose
a RESTful interface via URIs that identify and provide access to physical objects



4.2 The SIM Logical Architecture 39

(smart devices) and their resources, and to realize the communication with physical
objects using their provided APIs. In other words, the Smart Gateway acts as a bridge
between the Web and smart devices, by providing a RESTful Web interface to access
resources and sub resources provided by these devices and communicate with them
through their specific APIs. The gateway node plays the role of an interface between
client applications and WSNs connected to the WoT, serving as the entry point for the
submission of application requests and as a concentrator for data sent by the sensor
nodes.

In the SmartSensor architecture, a gateway node is a synonymous of a sink node,
and its functionalities are partially implemented in a computer (a PC running Debian
GNU/Linux i386 in the project) and partly on wireless communication modules
that are dependent on the different radio technologies used in WSNs. All the WSN
platforms used in the SmartSensor project adopt variations of the ZigBee protocol
[3]; therefore the sink/gateway wireless module implements this protocol to enable
the communication with sensors.

Each Smart Gateway has an IP address, runs an HTTP server and includes several
drivers, each one responsible for translating to/from proprietary protocols of the
different WSN technologies connected to the infrastructure. Thus, all Web requests
sent to a sensor node through the provided RESTful API are mapped by the gateway
to a request in the proprietary WSN API and transmitted to the respective node by
using the communication protocol understood by the device (for example, the Zigbee
protocol).

The classes and components described for the SIM logical architecture were
implemented in the Java programing language. For the Gateway Web Server, the
Apache Tomcat version 6.0.33 was used and Apache Derby relational database was
adopted as the Gateway Database. The Data Manager component is responsible
for data storage and management in the Gateway Database and its mains class is the
DataDB class. DataDB is a typical persistency class, mediating all the read and write
operations performed in the two main tables kept in the gateway. The Data_Read
table is responsible for the storage of the sensor generated data, while the Services
table contains the list of capabilities offered by each node in a given WSN.

4.2.3.2 MICA/TinyOS Sensor Plataforms

MICA motes are the category of sensor nodes manufactured by MEMSIC (formerly
Crossbow). MEMSIC technology for WSN platforms is based on the TinyOS oper-
ating system and programs to be deployed in the nodes are written in nesC language.
As specified in the MIS logical architecture, a sensor node must have three basic
functional blocks to be integrated into the SmartSensor infrastructure: Communica-
tion, Publication, and Sensor. TinyOS adopts a component-based and event-driven
programing model, and nesC is a language derived from C, so it does not natively
incorporate concepts of object-oriented programing. The main units of program-
ming in TinyOS environment are components and interfaces. Therefore, in order to
implement the functionalities of the three logical blocks defined for the sensors three



40 4 The Sensor Integration Module (SIM)

Fig. 4.5 Components e interfaces of sensor nodes in the TinyOS platform

major components and their respective interfaces were created. Such components
and interfaces are illustrated in the diagrams of Fig. 4.5, and briefly described below.

In the version implemented for the Mica/TinyOS platform, the approach adopted
for the integration in the WoT was based in the implementation of an HTTP server
embedded in the sensor nodes. Therefore, for such WSN platform, the Communi-
cation component includes classes responsible for receiving and processing HTTP
request messages, and then for composing and sending the respective HTTP reply
messages. The features of the Sensor component are realized by software compo-
nents already existing in the sensor platform; it was not necessary to implement
them. However, the implementation of the Publish-Discovery classes was hampered
by the available node interfaces. The access to the node state information on Mica
platform is restricted to the sensed data, and there is no API to report, for example, the
residual energy of the sensor. Information such as the maximum precision provided
by a given sensing unit comes preconfigured from the factory, and there is no native
method to get/set such an information. Data such as the node geographic location is
only available either if the node is endowed with a GPS unit or if some algorithm
for node location is employed. Therefore, in the current version of the SmartSensor
infrastructure all the relevant metadata for sensor nodes from the Mica/TinyOS plat-
form was statically configured as parameters in the advertising messages sent by the
nodes.

The main software components implemented for the Mica/TinyOS sensor nodes
are showed in Fig. 4.5 and briefly described below:



4.2 The SIM Logical Architecture 41

• SensorC: this component is deployed in each sensor node to implement the com-
munication based on the interfaces provided by HttpP.

• HttpP: this component implements the HTTP protocol API, providing RESTful
interfaces for communication with the gateway node (and also between the sensor
nodes themselves).

• DiscoveryP: this is the component responsible for the (internal) publication and
discovery of the capabilities of sensor nodes.

In addition to the components of the sensor node, a component is necessary to
connect the WSN (based on TinyOS/nesC) to the gateway (in Java). This component
is baseC, implemented in nesC, and responsible for making the connection with the
Gateway Web Server through a serial communication interface.

4.2.3.3 Operation

As previously mentioned, a WSN integrated to the WoT works according to three
phases: (i) internal and external service discovery, (ii) submission of sensing tasks,
(iii) data collection and delivery. Except for the external discovery phase, which
is totally the responsibility of the gateway, the other phases are implemented by
the sensor node components previously described. During the internal service dis-
covery phase an HTTP PUT message is used to advertise the sensing capabili-
ties of each node to the gateway, thus respecting the RESTful principles to main-
tain a uniform interface for accessing all data (and metadata) from the connected
sensors.

Phases (ii) and (iii) of the network operation are illustrated in the UML activ-
ity diagram of Fig. 4.6. In the diagram, the Client swimming lane represents the
client side of an HTTP-based interaction with a Web Server. The Gateway Web
Server remains listening in a well-known port and waiting to receive a request from
client applications, which may be requests for changing some parameters of the sen-
sor (PUT operation) or requests for some monitoring data collected by the sensor
(GET operation). In both cases, the received request messages are sent for analysis
and subsequent forwarding to the destination sensor node(s). Upon arriving at the
gateway, the request message header is analysed, and the following cases are pos-
sible: if the message is addressed to the sink node itself, it examines if it is either
a Get or Put message; otherwise, the error message 405 is returned to the client.
If the message is addressed to the client, it is not forwarded to the WSN, being
processed within the gateway. If the message is directed neither to the client nor to
the Sink node, a 404 error message is returned to the client. Otherwise, the message
is redirected to the specified sensor, group of sensors or broadcasted in the whole
network.

Upon the arrival of a message in a sensor node, the message header is analysed,
and the following options are possible: if the message is addressed to the sensor
itself, it checks whether it is a Get or Put message, if is not either type a 405 error



42 4 The Sensor Integration Module (SIM)

Fig. 4.6 Realization of phases for submission of sensing tasks, data collection and delivery

message is returned. If it is a Get message, the sensor produces a reply message
with a copy of the requested information and returns it to the Sink node, which will
forward it to the client. If it is a Put message, the sensor will change the current
configuration parameter (for example, data sensing or sending rate) according to the
values contained in the message.

References

1. Chopan—Compressed HTTP Over PANs (draft-frank-6lowpan-chopan-00). http://w3-org.
9356.n7.nabble.com/Chopan-Compressed-HTTP-Over-PANs-draft-frank-6lowpan-chopan-
00-td104660.html. Last access April 2013

2. Guinard, D., Trifa, V., Pham, T., & Liechti, O. (2009). Towards physical mashups in the web
of things. Proceedings of IEEE Sixth International Conference on Networked Sensing Systems.
Pittsburgh, USA

http://w3-org.9356.n7.nabble.com/Chopan-Compressed-HTTP-Over-PANs-draft-frank-6lowpan-chopan-00-td104660.html.
http://w3-org.9356.n7.nabble.com/Chopan-Compressed-HTTP-Over-PANs-draft-frank-6lowpan-chopan-00-td104660.html.
http://w3-org.9356.n7.nabble.com/Chopan-Compressed-HTTP-Over-PANs-draft-frank-6lowpan-chopan-00-td104660.html.


References 43

3. MEMSIC solutions. http://www.memsic.com/products/wireless-sensor-networks.html
4. Shelby, Z. (2010). Embedded web services. IEEE Em Wireless Communications, 17, 52–57.
5. Luckenbach, T., Gober, P., Arbanowski, S., Kotsopoulos, A., & Kim, K. (2005). TinyREST—a

protocol for integrating sensor networks into the internet. Proceedings of REALWSN 2005

http://www.memsic.com/products/wireless-sensor-networks.html

	4 The Sensor Integration Module (SIM)
	4.1 Overview
	4.2 The SIM Logical Architecture
	4.2.1 Gateway Components
	4.2.2 Sensor Node Components
	4.2.3 The SIM Physical Architecture

	References


