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Preface

The Internet of Things (IoT) is a step forward in the well-known widespread
Internet revolution. It consists of a world of physical objects embedded with
sensors and actuators linked by wireless networks which communicate using the
Internet, shaping a network of smart objects, with processing power and able to
capture environmental variables, and to react to external stimuli. Such objects are
connected and can be controlled over the Internet, enabling a myriad of novel
applications. The IoT is one of the key technologies to enable the creation of cyber
physical systems and realize the vision of Smart Cities. Several recent techno-
logical advances enabled the emergence of IoT such as nanotechnology, sensor
networks, mobile communication, and ubiquitous computing. However, there are
still a set of challenges to be addressed, mainly related to the development of IoT
applications dealing with the heterogeneity arising from the diversity of hardware,
sensors and actuators, and wireless technologies inherent to such environments.

Inspired in the IoT idea, a new application development paradigm has recently
emerged, the Web of Things (WoT), that uses Web technologies in the development
of applications composed of smart objects that can be viewed and used in the same
way as any other Web resource. The realization of the WoT paradigm requires that
the World Wide Web, as we know, be extended so that real-world objects and
embedded devices can be seamlessly incorporated into it. This extension is
obtained by using the HTTP protocol and REST principles for creating RESTful
APIs that allow Smart Objects to become Web resources. Furthermore, through the
support, for instance, of middleware platforms, services may be provided on top of
the resources connected to the Web so as to facilitate the fast combination of
features to create multiple value-added applications, the so-called physical
mashups.

Within the context of Web-enabled smart objects, the current form of inte-
grating resources that are not natively HTTP compliant has several limitations and
alternative architectures need to be proposed and evaluated. Moreover, in spite of
the fast ‘‘populating’’ of WoT, it is necessary to develop a more standardized and
scalable approach to integrate Smart Objects in the Web. Such approach must
address multilevel integration issues. In the lower level, it is necessary to seam-
lessly integrate a myriad of heterogeneous physical devices with each other. At an
intermediate level, in order to provide value-added services on top of the simple
sensing service provided by the devices, it is necessary to easily integrate sensing
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data with Internet available functionality, ranging from simple data processing
functions such as data aggregation to more complex Web applications. At the
higher level, a standardized programming model can provide the ultimate inte-
gration level, delivering programming elements specifically tailored to transpar-
ently assemble and transform information from sensing devices without
demanding any specific knowledge from the developer regarding the specificities
of physical devices and networking environment.

The SmartSensor infrastructure is an example of the recent research initiatives
aimed at addressing the aforementioned issues, which is based on current stan-
dardization efforts for enabling WoT. This infrastructure was developed to manage
a specific type of physical devices, those organized to shape a Wireless Sensor
Networks (WSN), where sensors work collaboratively, extracting environmental
data, and transmitting it to one or more exit points of the network, to be analyzed
and further processed. Such WSNs are useful for a wide range of application
domains and their usage has grown enormously in the last decade. Therefore, in
the SmartSensor infrastructure, sensor generated data are considered as a pri-
mordial resource to be shared in the Web. In addition, SmartSensor considers all
levels of integration previously mentioned. SmartSensor provides: (i) integration
of distinct WSNs, i.e., consisting of sensor nodes that adopt different technologies,
hardware, and/or software; (ii) integration of WSN sensing data and functionality
with other Web applications; and (iii) integration of WSN functionalities within a
programming model that abstract the specificities of the WSN environment.

This book focuses on describing SmartSensor and how to develop an appli-
cation for IoT/WoT using such an infrastructure. A parking lot application is
adopted to illustrate the use of the SmartSensor infrastructure as an enabler of the
smart city concept. The choosing of such a type of application is due to the
increasing parking problems in big cities and also in mass events such as the
Olympics, for instance. Although SmartSensor can be considered as a middleware
for IoT, in its current version, it only provides communication and integration
services as well as a programming model to develop applications on top of the
WSN infrastructure. In the direction of providing a more broad view to the reader,
we also describe the requirements that a full functional middleware for IoT should
meet and present an overview of the state-of-the-art in IoT middleware.

This book should be of particular interest for researchers, students, professional
developers who are interested in research trends related to IoT/WoT and who
would like to have a broad understanding of IoT, and of how to develop IoT
applications.

Rio de Janeiro, May 2013 Flávia C. Delicato
Paulo F. Pires

Natal Thais Batista
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Chapter 1
Introduction

Abstract The Internet of Things (IoT) is a step forward in the well-known
wide-spread Internet revolution. It consists in a world of physical objects embed-
ded with sensors and actuators linked by wireless networks and communicating
using the Internet, shaping a network of smart objects, with processing power and
able to capture environmental variables and to react to external stimuli. Such objects
are connected and can be controlled over the Internet, enabling a myriad of novel
applications. IoT is one of the key technologies to enable the creation of cyber phys-
ical systems and realize the vision of new IT application domains such as Smart
Cities. Several recent technological advances enabled the emergence of IoT such as
nanotechnology, wireless sensor networks, mobile communication, and ubiquitous
computing. However, there is still a set of challenges to be addressed in order to
fully realize the IoT paradigm, mainly related to the development of IoT applica-
tions dealing with the heterogeneity arising from the diversity of hardware, sensors
and actuators, and wireless technologies inherent to such an environment.

Keywords Internet of Things (IoT) ·Web of Things (WoT) · Smart objects · Smart-
Sensor · Middleware · Applications for IoT

1.1 Motivation

The advances on electronic devices, communications, RFID technology and the
explosive growth of the World Wide Web (WWW) have contributed to drive the
development of the Internet of Things (IoT) paradigm [1, 2, 4, 11]. IoT enables the
connection of the virtual and physical worlds, where physical objects, the so-called
smart objects [6], are connected to the Internet and can be remotely controlled by
users and even communicate with each other. IoT extends the traditional interaction
between human and machines provided by the Internet to a new dimension, human-
to-thing (H2T) and thing-to-thing (T2T) communications. As reported by the IoT

F. C. Delicato et al., Middleware Solutions for the Internet of Things, 1
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2 1 Introduction

European Research Cluster group, the IoT applications can be applied to multiple
domains, including: telecommunications, medical technology, healthcare, environ-
ment monitoring, agriculture and breeding, oil and gas, food traceability, intelligent
buildings, safety, security and privacy and many more [4]. Considering the signifi-
cance and high potential, governments, research institutes, industries and academics
have paid great attention to IoT and its application in the past few years. IoT is
included by the US National Intelligence Council (NIC) in the list of six “Disruptive
Civil Technologies” with potential impacts on US national power [8]. NIC foresees
that “by 2025 Internet nodes may reside in everyday things—food packages, furni-
ture, paper documents, and more”. Besides that, the US National Science Foundation
(NSF) has identified IoT as a key area of research [8], and IBM proposed Smarter
Planet as an industry implementation of IoT. Even though there are numerous projects
and developments concerning certain aspects of the IoT, it is still in infancy and many
research efforts need to be done to fully accomplish its potential.

Inspired on the IoT idea, a new application development paradigm has recently
emerged, the so-called Web of Things (WoT), which uses Web technologies in the
development of applications composed of smart objects that can be viewed and
used in the same way as any other Web resource. The realization of the WoT par-
adigm requires that the World Wide Web, as we know, be extended so that real-
world objects and embedded devices can be seamlessly incorporated into it. This
extension is obtained by using the Hypertext Transfer Protocol (HTTP)and the Rep-
resentational State Transfer (REST) [5] principles for creating RESTful APIs that
allow smart objects to become Web resources. The REST emphasis on resources
that are addressed using URIs is described by the Resource-Oriented Architecture
(ROA) [10]. Furthermore, through the support, for instance, of middleware platforms,
services may be provided on top of the resources connected to the Web so as to facil-
itate the fast combination of features to create multiple value-added applications, the
so-called physical mashups [3, 7]. Within the context of Web-enabled smart objects,
the current form of integrating resources that are not natively HTTP compliant has
several limitations [7] and alternative architectures need to be proposed and evalu-
ated. Moreover, in spite of the fast “populating” of WoT, it is necessary to develop
a more standardized and scalable approach to integrate smart objects in the Web.
Such an approach must address multilevel integration issues. At the lower level, it is
necessary to seamlessly integrate a myriad of heterogeneous physical devices with
each other. At the intermediate level, in order to provide value-added services on
top of the simple sensing service provided by the devices, it is necessary to easily
integrate sensing data with Internet available functionality, ranging from simple data
processing functions, such as data aggregation, to more complex Web applications.
At the higher level, a standardized programming model can provide the ultimate inte-
gration level, delivering programming elements specifically tailored to transparently
assemble and transform information from sensing devices, without demanding any
specific knowledge from the developer regarding the specificities of physical devices
and networking environment.
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The SmartSensor infrastructure is an example of the recent research projects aimed
at addressing the aforementioned issues, which is based on current standardization
efforts for enabling WoT. This infrastructure was developed to manage a specific type
of physical devices, those organized to shape a Wireless Sensor Networks (WSN).
WSNs are networks consisting of tens to thousands of tiny devices capable to perform
data sensing, processing, and wireless transmissions. Sensors work collaboratively,
extracting environmental data and transmitting it to one or more exit points of the
network, to be analyzed and further processed. Such WSNs are useful for a wide range
of application domains and their usage has grown enormously in the last decade.
Therefore, in the SmartSensor infrastructure, sensor generated data are considered
as a primordial resource to be shared in the Web. In addition, SmartSensor considers
all levels of integration previously mentioned. SmartSensor provides: (i) integration
of distinct WSNs, i.e., consisting of sensor nodes that adopt different technologies,
hardware and/or software; (ii) integration of WSN sensing data and functionality
with other Web applications; and (iii) integration of WSN functionalities within a
programming model that abstract the specificities of the WSN environment.

1.2 Goals

This book focuses on describing SmartSensor and how to develop applications for
IoT/WoT using such an infrastructure. An application of parking management is
adopted to illustrate the use of the SmartSensor infrastructure as an enabler tech-
nology for smart city solutions. This application was chosen due to the increasing
parking problems in big cities as well as in mass events such as the Olympics, for
instance. Although SmartSensor can be considered as a middleware for IoT, in its
current version, it only provides communication and integration services as well as a
programming model to develop applications on top of the WSN infrastructure. In the
direction of providing a more broad view to the reader, we describe the requirements
that a full functional middleware for IoT should meet and also present an overview
of existent proposals for such a middleware.

1.3 Overview of the Book

The remainder of the book is organized as follows. Chapter 2 presents some back-
ground on the enabling technologies for IoT/WoT and on Middleware for IoT in terms
of requirements and services. Chapter 3 introduces the SmartSensor infrastructure.
Chapter 4 describes the Sensor Integration Module, while Chap. 5 details the Sensor
Programming and Execution module. Chapter 6 presents a proof of concept devel-
oped with the SmartSensor, describing an application in the domain of smart buildings
running on the infrastructure: the parking lot management. Chapter 7 contains our
concluding remarks and future work.

http://dx.doi.org/10.1007/978-1-4471-5481-5_2
http://dx.doi.org/10.1007/978-1-4471-5481-5_3
http://dx.doi.org/10.1007/978-1-4471-5481-5_4
http://dx.doi.org/10.1007/978-1-4471-5481-5_5
http://dx.doi.org/10.1007/978-1-4471-5481-5_6
http://dx.doi.org/10.1007/978-1-4471-5481-5_7
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Chapter 2
Basic Concepts

Abstract The Web of Things (WoT) paradigm is based on the use of protocols and
standards widely accepted and already in use in the traditional Web, such as the
Hypertext Transfer Protocol (HTTP) and the Uniform Resource Identifier (URI), to
support information sharing and device interoperation. These standards combined
with other elements such as the Representational State Transfer (REST) architectural
pattern and the Resource-oriented architecture (ROA) allow sensed data, provided
by the sensing physical devices via a Wireless Sensor Networks (WSN), to be treated
as any other resource on the Web. Such physical devices are identified by URIs and
accessed via HTTP basic operations (HTTP verbs). This Chapter briefly presents the
main key concepts that support the WoT paradigm, such as wireless sensor networks,
REST and ROA. We also discuss about the requirements that a middleware for
IoT/WoT should meet and we give an overview of existing proposals for such a
middleware.

Keywords Web of Things (WoT) · Wireless sensor networks (WSN) · Hypertext
transfer protocol (HTTP) · Uniform resource identifier (URI) · Representational
state transfer (REST) architecture · Resource-oriented architecture (ROA) ·
Middleware for IoT

2.1 Realizing the WoT Paradigm

According to Guinard et al. [9], the Web of Things (WoT) goes a step further in
relation to the Internet of Things (IoT) as it integrates smart things not only to
the Internet (the network), but also to the Web (application layer), allowing the
development of applications built upon a myriad of networked physical elements.
Section 2.1.1 discusses about the network infrastructure typically used in WoT to
interconnect devices and physical objects, the Wireless Sensor Networks (WSN).
Section 2.1.2 presents the application level elements that supports the development
of applications built upon various networked physicalobjects.

F. C. Delicato et al., Middleware Solutions for the Internet of Things, 5
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4471-5481-5_2,
© The Author(s) 2013
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2.1.1 Wireless Sensor Networks

To realize the idea of the WoT paradigm it is necessary to make the objects (things)
addressable, searchable, controllable, and accessible via Web. Wireless Sensor Net-
works (WSNs), composed of sensors, actuators and embedded communication hard-
ware, play a fundamental role in the connection of the physical and digital worlds
as they monitor the physical devices, gathers their data and eventually act upon
the environment. Sensors are typically capable of recognizing an event of interest
and actuators can take an action accordingly. A WSN consists in a large number
of nodes where data are collected by distributed and smart sensors associated to
the devices. The sensing data is gathered to a sink node that sends the data to
other computational devices, often more powerful, able to further processing the
sensor produced data. As individual sensor nodes do not always have an Internet
Protocol (IP) address, they cannot be directly accessible via Web. In this case,
an intermediary element is used: the Smart Gateways. A Smart Gateway acts as
a proxy between the objects and the Web, by communicating with the objects
(in this case, the sensor nodes) and making them accessible via Web. Besides
providing WSN nodes with accessibility through the Web, Smart Gateways also
perform other functions such as to translate from Internet protocols to WSN com-
munication protocols (and vice versa), and to provide added value information on
top of the produced raw sensor data. Figure 2.1 illustrates the main elements of a
WSN.

Nowadays, there are several hardware and software platforms for WSN available.
In the SmartSensor infrastructure three different platforms are currently supported:

Fig. 2.1 Elements of a
wireless sensor network
connected to the WoT
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Arduino,1 Sun SPOT,2 and the MICA motes Family (manufactured by MEM-
SIC,former Crossbow),3 this later based on the TinyOS operating system,4 specially
designed to sensors. They are proper to a WSN scenario with several tiny and low-
power networked devices in interaction.

Arduino refers to both a simple microprocessor board designed mainly for use by
academics, and the software system that is used to program the board. The Arduino
project was initiated in Ivrea Italy in 2005 to provide simple, easy-to-use boards,
and it has been recently reported than more than 100,000 Arduino boards have been
produced so far. The circuit design for the board is “open-source” in the sense that
it is available under a Creative Commons license Attribution-ShareAlike 2.5 [4].
The board consists of an Atmel AVR processor—the latest boards contain the AVR
Mega328 (8-bit processor, 32 Kbytes Flash, 2 KB SRAM, Digital I/O, PWM outputs,
ADC inputs, SPI and UART communications, 16 MHz clock). Atmel AVR processors
are used in many other motes due to their compact size, useful peripherals, and low-
power sleep modes. A large range of peripherals is already available for Arduino,
such as accelerometers, light, temperature sensors, motor drivers, and GPS receivers.
The Arduino interface connectors provide direct connections to microprocessor pins
such as digital I/O, analog I/O, interrupts and TTL-level UARTS. Different sensor
interfaces can be quickly developed using the range of connectors. Arduino software
is often developed using a simplified programming interface based on the Wiring
project [3], and using a simple Integrated Development Environment (IDE). The
system accepts code snippets that are automatically expanded into complete C/C++
programs, and compiled using a standard GNU tool-chain. A simple boot-loader
automatically uploads code to the processor.

Sun SPOT (Small Programmable Object Technology) [22] is a platform developed
by Sun Microsystems/Oracle. The Sun SPOT hardware platform is a small, battery
operated wireless device, that runs the Squawk Java Virtual Machine directly on the
processor without an underlying operating system. Sun SPOT provides a low-cost
platform for the development of several wireless sensor and embedded applications.
For instance, SPOTs can be used in robotics cars or in the monitoring of physical
phenomena. There are two types of devices provided by SunSPOT: the free-range
SPOTs (with processor, radio, sensor board and battery) and the base station (with
processor and radio).

MEMSIC provides a broad portfolio of wireless sensor nodes to meet the specific
needs of target applications for either end-user or OEM designs. It provides a variety
of processor boards, sensor boards and data acquisition cards that connect to their
wireless modules. Moreover, MEMSIC provides a wide range of gateway boards to
connect to sensor nodes via multiple types of interfaces, including Ethernet, Wifi,
USB and serial. All MICA and IRIS family sensor boards from MEMSIC support

1 http://www.arduino.cc/
2 http://www.sunspotworld.com/
3 http://www.memsic.com/wireless-sensor-networks/
4 http://www.tinyos.net/

http://www.arduino.cc/
http://www.sunspotworld.com/
http://www.memsic.com/wireless-sensor-networks/
http://www.tinyos.net/
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TinyOS operating system. TinyOS is tiny and flexible operation system. It is the most
used software platform for sensor networks, with approximately 25,000 downloads
per year [14]. TinyOS uses a C dialect called nesC and defines a programing model
based on independent and reusable components. It supports concurrency and flexible
composition. Its main goals are minimizing resource use, by using as few hardware
resources as possible, and preventing bugs. TinyOS provides a set of services for sens-
ing, communication, storage, and temporization. Components can invoke and receive
service requests, signal and receive events (such as, service finalization or hardware
events), and schedule tasks. nesC implements the TinyOS component model. A nesC
file allows the optimisation in code compilation to different sensor platforms.

2.1.2 HTTP, URI, REST, ROA

The integration of objects in the Web involves application protocols and architecture
styles. At the application level, the HTTP protocol interoperability allows the seam-
less integration of objects with the Web. The REST architectural style, proposed by
Fielding [8], enables that objects are modeled as resources, identified by URIs and
accessed via HTTP. REST is built upon five principles:

1. Global identification of resources;
2. Uniform interface for acessing resources;
3. Self-descritive messages;
4. Hypermedia as Engine of Application State;
5. Stateless interactions.

The first principle refers to the identification of resources in requests by using
URIs that provide a global address for resource and service discovery. A resource
can be a server, a document, a Web page, a video stream, or a physical thing.

The second principle defines that the resources are avaliable via a uniform interface
with a well-defined semantics [9]. The Hypertext Transfer Protocol (HTTP) offers a
set of methods proper to enable the uniform interaction.

The self-descritive messages principle define the format of the messages exchan-
ged between clients and servers. A resource can have several representations such
as XML, JSON, HTML, etc. The specification of the representations that a cliente
can receive is in the Accept field of the HTTP header, for instance, text/html (for
HTML), application/xml (for XML) and application/json (for JSON).

The Hypermedia as Engine Of Application State (HATEOAS) is one of the core
tenets of REST. It states that clients can control a Web application following hyper-
links. Links point to Web resources using the global identification (URIs). Clients
follow links to explore a resource. In this schema, an application can be viewed as
a state machine with pages representing a state and links representing the possible
transitions.

The last REST principle defines that servers are stateless. This means that each
request from clients contains all information (state) that the server needs to process
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it, including headers, URL, query parameters, etc. The ST part from the REST name
means State Transfer that is embedded in the request’s content. No information from
the previous request is stored by the server. This principle is related to the scalability
of the system as if a server maintain information for each user, its performance is
affected in case of concurrent access [18].

The REST emphasis on resources is described by the Resource–Oriented Architec-
ture (ROA) [19]. This means that resources are addressed using the standard descrip-
tion in the format of URIs, for instance: http://www.smartsensor.com/sensor1. URIs
provide an unique identification to a resource, regardless of its type and representa-
tion. Thus, resources can be represented by means of various formats, such as Hyper-
Text Markup Language (HTML), eXtended Markup Language (XML), JavaScript
Object Notation (JSON), that are machine-readable and processable. REST offers a
subset of HTTP commands to access and manipulate resources: GET, PUT, POST,
DELETE. GET is used to retrieve information from a resource; POST is used to
add new information; PUT is used to update information, writing to a resource;
and DELETE is used to remove information. Thus, those standard Web operations
enable the communication between the resources and the Web. REST requires that
all resources (different physical devices) support this set of stateless methods to be
accessable via Web. In this way, objects are abstracted as Web services [24]. Things
conforming to the REST principles are called RESTful.

According to Zeng et al. [24], the use of the REST architecture in WoT is due
to its low complexity and its loosing-coupling stateless interactions. In fact, several
objects are resource-constrained devices and only a lightweight solution can be used
for integrating them to the Web [9]. Once the resources are available in the Web,
developers can create mashups, which are new Web applications composed by various
elements, including virtual Web services and physical Web services provided by
objects [9, 24]. As any Web 2.0 application, mashups are built based on a set of
technologies (Atom [1], for instance), that supports the development of simple and
highly interactive user interfaces. Mashups created by composing data and services
of physical devices with other Web resources are called physical mashups. They
focus on the reuse of real world objects with different applications [6, 9].

2.2 Middleware for IoT

The abovementioned technologies enable the connectivity of the objects to the Inter-
net and make them accessible and manageable. However, to create value-added appli-
cations, by combining the resources connected to the Internet, a high abstraction
level model needs to be used. Middleware platforms have been proposed [7, 11, 16,
17, 21] with the goal of facilitating the development of applications supporting the
interoperability of interconnected devices, alleviating the programmer of the burden
of dealing with the specificities of physical devices and networking environment.
Through the use of middleware platforms, services may be provided on top of the
resources connected to the Web, to facilitate the fast combination of features in

http://www.smartsensor.com/sensor1
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order to create multiple value-added applications, the so-called physical mashups
[5, 10].

The main requirements for a IoT middleware to enable the development of dif-
ferent applications domains include:

• fully interoperability support across heterogeneous devices in order to allow the
things (smart objects) communicate with users, Internet services and among each
other [15]. This is a challenge for realizing IoT due to the huge number of devices
integrated in an IoT platform and their diversity in terms of data formats, protocols,
nature of components, etc.

• the provision of a high-level Application Programming Interface(API) to transpar-
ently access the heterogeneous objects, hiding the specificities of the integrated
devices. Such API may facilitate the creation of physical mashups.

According to Bandyopadhyay et al. [2], interoperation, device discovery and man-
agement, context detection, among others, are the main functional components of
an IoT middleware. In addition, an application abstraction component is essential
to support the communication with local and remote applications. Security and pri-
vacity, as well as the management of a massive data volume are other important
functions of an IoT middleware.

In summary, an IoT middleware is a software artifact between the application layer
and the infrastructure support (communication, processing, and sensing) offering a
standardized means to acess data and services provided by the smart objects via a
high level interface. Such a middleware also promotes the reuse of generic services
that can be composed and configured to make easier the development of applications
in a highly distributed and heterogeneous environment. Some works [2, 16] state
that the middleware act as a glue between the applications and the heterogeneous
devices.

In the following subsections we briefly presents some IoT middleware proposals.

2.2.1 UBIWARE

UBIWARE [16] is a agent-based middleware that represents each resource as a soft-
ware agent. An agent is in charge of monitoring the condition of the resource, and
enabling the interoperation of the resource with other elements. The main principles
of UBIWARE is to allow automatic discovery, orchestration, choreography, invo-
cation and execution of different Business Intelligence services. Communication,
resource discovery and resource usage are performed via the correspondent agent.

The UBIWARE agent architecture consists of three layers [13]: (i) the Behavior
Engine implemented in Java, (ii) a declarative middle-layer (Behavior Models cor-
responding to different roles the agent plays), and (iii) sensors and actuators, which
are Java components.

Behavior models are represented in a high-level rule-based language, the Semantic
Agent Programming Language (SAPL) [12], which is proposed by the UBIWARE
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team and it is based on the Resource Description Framework (RDF) [23] data model.
The behavior engine parses an SPL document and loads it in the beliefs storage.
Each agent has a behavior model. Interoperability between heterogeneous resources
is achieved by semantic adaptation and by assigning a proactive agent to each of the
resources.

Thus, this middleware is a multi-agent system where interoperability among the
resources is supported by using agents, metadata and ontologies.

2.2.2 Hydra

The Hydra middleware [11] consists of a service-oriented architecture that relies
on Web services to support the resource discovery, description and access based on
XML and web protocols. It distinguishes resource restricted devices that are not able
to host the middleware, and more powerful devices (Hydra-enabled devices). Each
Hydra-enabled device hosts a Network Manager component, that is responsible for
communication among devices. A proxy is used to connect the restricted devices
to the Hydra network. Proxies are deployed on Hydra-enabled devices that act as
gateways. Such proxies provide Web service interfaces for accessing a device.

The two main tasks performed by Hydra developers are: (i) integrating non-Hydra
devices; and (ii) connecting Hydra-enabled devices to a network.

2.2.3 LinkSmart Middleware

The LinkSmart middleware [7], developed in the Hydra project, enables the integra-
tion of heterogeneous physical devices into applications via a Web service interface
for controlling any type of physical device irrespective of its network technology
such as Bluetooth, RF, ZigBee, RFID, WiFi, etc. The middleware name is different
from the project name because it has been registered in Germany and used by the
Hydra middleware, discussed in the previous subsection.

LinkSmart is based on a semantic model-driven architecture and enables the use
of devices as services both by embedding services in devices and by proxy services
for devices. The semantic description of devices is based on ontologies using OWL,
OWL-s and SAWSDL.

2.2.4 OpenIoT

The OpenIoT project [21] provides an open-source middleware platform to enable
the development of IoT applications according to a utility cloud computing delivery
model. OPENIoT goal is to realize the idea of on demand access to IoT services
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offered over clouds of internet-connected objects, the so-called sensing as a service,
providing a “cloud-of-things”.

OpenIoT adheres to the W3C Semantic Sensor Networks (SSN) for describing
sensors and also relies on the IETF Constrained Application Protocol (CoAP) [20] for
the interaction with nodes and devices. The SSN ontology (Sensor and Sensor Net-
work ontology) enables the specification of formal descriptions of sensor networks,
thus allowing the semantic interoperability among networks.

As OpenIoT follows the REST principles, resources are addressed by URIs and
can have different representation formats. HTTP operations are used to interact with
the resources, through RESTful Web services.

2.2.5 Discussion

Despite the rising popularity of IoT and the emergence of several proposals of mid-
dleware for IoT, the state-of-the-art of such proposals shows that they are still under
development. They share the ideia of seamlessly integrating a broad range of hetero-
geneous devices and offering a high level mechanism to enable developers to build
IoT applications without having to deal with heterogeneity issues.

A brief comparison of the abovementioned proposals shows that: (i) most propos-
als rely on ontologies to address the semantic interoperability between the sensed
data; (ii) the use of well-established Web services technologies is adopted by some
IoT middleware such as Hydra and OpenIoT. Both works highlight the importance
of following popular and emerging standards for IoT.

In summary, several issues remain opened, as discussed in [2], such as a fully
support for context detection and processing and for managing high volumes of
sensed data. According to Bandyopadhyay et al. [2], the current challenge is to
provide a generic IoT middleware, applicable across multiple domains.
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Chapter 3
SmartSensor: An Infrastructure
for the Web of Things

Abstract In order to fast populate the Web of Things, approaches based on
ubiquitous protocols and standards are attractive to promote interoperability among
heterogeneous devices and to facilitate the development of applications on top of
such devices. In this context, this Chapter presents SmartSensor, an infrastructure
for WoT built at the middleware layer and based on current efforts of standardiza-
tion, with the main purpose of integrating Wireless Sensor Networks (WSNs) to
the Web in a transparent, seamless and flexible way. By integrating WSNs to the
Web via SmartSensor, sensor-generated data can be provided to client applications
or users exactly in the same way as documents or other Web resources. Furthermore,
SmartSensor considers the emerging scenario where multiple WSNs from different
technologies and owners are integrated in a unique, virtual sensing infrastructure,
enabling data from different networks to be provided to various applications run-
ning on top of them. In this Chapter, the infrastructure architecture and operation are
briefly presented, emphasizing the features that make SmartSensor fully complaint
to the WoT paradigm.

Keywords Internet of Things (IoT) · Web of Things (WoT) · Wireless sensor
networks · REST · HTTP · SmartSensor architecture

3.1 Overview

Current approaches to integrate smart devices to the Internet have several drawbacks,
and alternative architectures need to be proposed and evaluated so that the Web of
Things (WoT) paradigm is fully realized. In particular, in order to fast populate the
Web of Things, approaches based on ubiquitous protocols and standards would pro-
mote interoperability among heterogeneous devices acting as data providers, and
facilitate the development of applications that make use of such data. In this con-
text, this Chapter presents SmartSensor, an infrastructure for the WoT built at the
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middleware layer and based on current efforts of standardization, with the main pur-
pose of integrating Wireless Sensor Networks (WSNs) [1] to the Web. SmartSensor
is a project developed under the sponsorship of the Brazilian National Network for
Education and Research (RNP – Rede Nacional de Ensino e Pesquisa1).

In the SmartSensor project, unlike other existing initiatives [8, 9, 11, 14, 22]
that deal with the addressability and availability of all types of smart objects, the
main focus is in integrating Wireless Sensor Networks in the Web. Furthermore,
SmartSensor considers the emerging scenario where multiple WSNs from different
technologies and owners are integrated in a unique, virtual sensing infrastructure,
enabling data from different networks to be provided to various applications running
on top of them. In such scenario, the WSN itself is seen as a service (WSN as a Service
[3]), and it is possible to take full advantage of the physical infrastructure of sensor
nodes already deployed, sharing the communication and sensing resources, thus
potentially increasing the return of investment (ROI) for the infrastructure owners
and generating added value for the end users [16, 35].

The adoption of the SmartSensor infrastructure allows WSNs to be integrated to
the Web in a transparent, seamless and flexible way. By integrating WSNs to the
Web via SmartSensor, sensor-generated data can be provided to client applications
or users exactly in the same way as documents or other Web resources. Following the
Web architecture, a resource should have a uniform resource identifier (URI) [28] and
by using URIs it is possible to navigate to/from resources and also to link resources.
It is possible to have different representations for the same resource, which is a very
powerful concept, i.e. a server can provide HTML content for human consump-
tion and eXtensible Markup Language (XML) [36] or Java Script Object Notation
(JSON) for machines. In WSNs, a resource can represent either an individual sensor
reading, the aggregate information from a set of sensors, from the whole WSN or
even from different networks connected to the infrastructure. Moreover, sensor data
can be composed with information originated from other devices and/or applications
that are available in the Web, in order to deliver value-added information to the end
user. Basically, resources are consumed in the Web by two types of clients: (i) end
users, that interact through a Web page displayed by a browser, or (ii) client appli-
cations. Such applications can be SOAP or REST-based Web services, or mashup
applications, in either case implementing an application-to-application interaction.

SmartSensor was designed from scratch to be complaint with the WoT paradigm,
thus it was built on REST (Representational State Transfer) [6] principles and relies
on current Web standards and protocols, such as HTTP (Hypertext Transfer Proto-
col) [25, 26] and URIs (Uniform Resource Identifier). In WoT, the HTTP protocol is
not only used as a communication protocol to carry data formatted according to any
specification (as in the case of Web services technologies). Instead, HTTP is used as
the standard mechanism to support all interactions with smart objects. This interac-
tion occurs through the HTTP main operations (GET, POST, PUT and DELETE i.e.
the verbs of REST), that provide a well-defined interface to expose the functionality
of the objects in the Web. Such interface complies with the REST principles [6, 8],

1 http://www.rnp.br/en/

http://www.rnp.br/en/
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thus allowing that the services of smart objects are accessed as resources in an ROA
(Resource-Oriented Architecture) approach [12, 17]. Besides the standardization
and simplification in the process of applications development, the use of the HTTP
protocol also eliminates compatibility issues between different manufacturers, pro-
prietary protocols and data formats [4]. Such feature is particularly appealing in the
integration of WSN to the Web, since the devices that compose such networks are
heterogeneous regarding their software and hardware technologies.

To make a WSN Web-enabled is not a trivial task as a consequence of the differ-
ences between Internet applications and WSN applications. WSN applications have
specific Quality of Services (QoS) requirements and data delivery models. They run
on battery operated devices which most of the time sleep and wakeup only when there
is data to be exchanged. Furthermore, the WSN protocol stack is very different from
the Internet stack and the multicast and asynchronous communication is the most
frequent style in comparison to the unicast and synchronous approach of standard
Internet applications [34]. Therefore, there are several issues to be addressed by a
middleware-layer infrastructure to provide WSN as a service in the WoT.

The Web of Things paradigm exposes the functionalities of smart devices in
the Web using two different approaches and both were adopted in the SmartSensor
infrastructure. In the first approach, embedded Web servers are deployed directly
within smart objects, enabling that the features of these devices are available in the
Web as RESTful resources [21, 29]. However, whenever a smart object does not
have enough hardware resources to run an embedded server, a different approach
for the WoT integration is required, based on the adoption of a WoT Gateway or
Smart Gateway. Gateways are (more) powerful devices used as a bridge to provide
the functionalities of smart devices through a RESTful interface. Gateways have
two basic functions: to provide a RESTful interface with URIs that identify and
provide access to physical objects (smart devices) and their resources; and to realize
the communication with physical objects by using their specific APIs. Gateways
intercept HTTP request messages issued by client applications and perform any
conversion of data and protocols before forwarding the converted messages to the
WSN devices. In the same way, messages sent by the sensor nodes in response to
application requests are translated by the gateways to the HTTP format. A gateway
can support multiple types of devices through an architecture encompassing a set of
drivers responsible for solving heterogeneity issues.

Smart Gateways can also be used to perform more complex operations with data
obtained from a WSN, and to orchestrate the composition of a highest level Web
application from several lower-level services provided by devices. These Web appli-
cations are the so-called physical mashups created from the composition of informa-
tion provided by devices available as resources through the RESTful API provided
by the gateway [10]. As a basic example of this type of application lets consider
a set of devices connected to the Web that provide power consumption monitoring
of electronic appliances. The Smart Gateway could provide a service that presents
a map showing the geographical location of several sensor instrumented buildings
(Smart Buildings [7, 13, 30]) and then, whenever a user selects a particular building,
the service returns the consolidate energy consumption monitored by all devices in
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such building. The construction and deployment of physical mashups is a feature of
WoT with the appealing potential to provide value-added services to the end user,
and influence the creation of new business models and applications.

3.2 The SmartSensor Architecture

The SmartSensor architecture encompasses three main software modules (Fig. 3.1):
(i) Sensor Integration Module (SIM), responsible for the integration of sensor devices
from different software and hardware technologies, (ii) Programming and Execution
Module (PEM), responsible for providing additional functionality on top of SIM,
in particular the ability to compose value-added services from the information pro-
vided by Web-enabled devices and to search for available services, and (iii) Web
3.0 Integration Module (WIM), responsible for integrating devices with Web 3.0
applications and platforms [31]. In this Book we will first briefly describe these three
components and then we will further detail SIM and PEM.

Fig. 3.1 SmartSensor
modules
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Fig. 3.2 SmartSensor environment

The SmartSensor is a system composed of a group of potentially heterogeneous
wireless sensor networks, a set of gateway nodes organized in a hierarchy, and several
client applications (Fig. 3.2). Each WSN is connected to the infrastructure through
one gateway node. Gateway nodes communicate among them so that the Smart-
Sensor keeps a unified view on the resources provided by all WSNs connected to
the infrastructure. Such unified view is managed by the Programming and Execu-
tion Module (PEM) while the Sensor Integration Module (SIM) is responsible for
managing the resources of a single WSN.

The software components of the Sensor Integration Module are deployed and
executed in both the sensor nodes and the gateway nodes. PEM and WIM components
execute only in the gateway nodes. Considering the traditional architecture of a WSN,
the gateway corresponds to the Sink node. Besides the software components of SIM,
PEM and WIM, a gateway node needs to implement the WSN radio protocol stack
(MAC and physical layers) in order to enable the communication with the sensor
nodes, thus acting as a bridge between the Internet protocols and WSN protocols.
Most of the current sensor platforms adopt IEEE 802.15.4 protocol (ZigBee [27]) to
communicate.

The Sensor Integration Module includes, among other software components, those
responsible for the implementation of the HTTP protocol API, as well as drivers for
handling received requests and specific commands of each sensor platform connected
to the infrastructure. The gateway is responsible for integrating WSNs in the Web,
extracting data from them, and providing such data to end users or client applications.
The use of a gateway node is ultimately required in spite of sensor nodes having or not
an embedded HTTP server, for the following reasons: (i) the protocol stack adopted
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by WSNs usually differs from the Internet protocol stack; (ii) sensor nodes often have
very limited hardware resources, not supporting the full implementation of HTTP
protocol; (iii) direct access of applications to the sensor nodes in order to request
their data via Web would quickly drain energy resources of those nodes, making the
network energy efficiency quite poor and decreasing its operating lifetime; (iv) in
most RSSF applications, the data provided by one individual sensor node is almost
always irrelevant to the end user, who is usually more interested in the aggregated
data monitored by a group of nodes; thus addressing individual nodes and processing
Web requests on a node basis makes little sense for such applications. Therefore, the
use of the HTTP protocol internally to the nodes of a sensor network is only justified
as a standard format to access and query sensor generated data, providing a uniform
interface for such access and allowing interoperability among nodes from different
networks (or nodes in a same heterogeneous WSN).

As we previously mentioned, in the WoT paradigm followed by SmartSensor,
WSN is considered as a service, which can be accessed as any other Web resource.
The basic service provided by a WSN is the delivery of data collected by sensors to
the client applications. Such delivery depends on the discovery of sensing capabilities
available in the network nodes, on the data requests issues by the applications (data
consumers) and on the strategy of the provider nodes to communicate their data to the
application. Considering this general scenario of a WSN operation, the functionalities
of SIM are executed in a series of phases that are intertwined with the WSN working
itself. These phases are: (i) service discovery; (ii) submission of application requests;
and (iii) data collection and delivery. The identification of the WSN operation phases
guided the specification of SIM logical architecture as well as the implementation
of its components both in the gateway side and in the sensor nodes side. In the
WoT paradigm, an abstraction of the WSN data delivery service is provided to the
application, so that the network can be accessed and eventually configured according
to each application needs, like any other resource available in the Web. For this
purpose, a uniform interface to access the WSN is provided, adopting the REST
architectural principles implemented via HTTP protocol.

Regarding the Programming and Execution Module (PEM), its main purpose is
to allow end users to quickly compose value-added services, and to efficiently search
for services provided by Web-enabled WSNs. PEM encompasses Publishing and
Discovery, Data Manager, and EMML Scripts Manager components (Fig. 3.3). The
services offered by a WSN are published and discovered through a gateway, and
described by using XML.

PEM offers a Domain Specific Language (DSL) for programming Web mashup
applications specifically tailored for the WSN environment. The adopted DSL is
an extension of the Enterprise Mashup Markup language (EMML) [5]. EMML is
a declarative language for developing Web mashups that provides portability and
interoperability of developed programs, also allowing the integration of data from
different sources. EMML is an open language based on XML, made available in
the public domain by the Open Mashup Alliance (OMA) [18]. Applications cre-
ated by using EMML produce new data that can be used in other applications and
other mashups, thus allowing a high degree of reusability. This language allows the
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Fig. 3.3 PEM components

composition of mashups with traditional Web services (based on SOAP, third party
APIs or REST, for instance) and SQL databases. OMA provides the EMML specifi-
cation, the EMML schema, and an open source implementation of reference, which
allows processing EMML scripts. An EMML file is a mashup script written in
EMML.

Finally, the Web 3.0 Integration Module (WIM) integrates smart objects with
Web 3.0 applications and platforms, so as to promote interactivity and data sharing;
specially allowing the building of physical Web mashups encompassing informa-
tion provided by real world devices and enriched with semantic information. WIM
allows the publication of data provided by WSNs following Linked Open Data (LOD)
principles [15]. LOD [14] is a set of best practices for publishing and connecting
structured data sets on the Web, in order to create a “Web of Data”. Published data
that follow the LOD principles have well-defined structure and semantics, allowing
its processing by computational methods. According to the principles [15], data pub-
lished in the Web must be in RDF (Resource Description Framework [24]) format.
RDF is a family of W3C (World Wide Web Consortium) specifications, used as a
general method for conceptual description or data modelling. LOD can help deal-
ing with the growing volume of sensed data, thus contributing to the deployment
of large-scale WSNs. On the other hand, by interconnecting sensor data with other
types of data, such as environmental and sociological data, enhanced information
can be delivered to the end user or application. Some proposals for publishing sensor
data by following the LOD principles can be seen in [2, 14, 19, 20]. These proposals
do not consider, in general, intrinsic characteristics of WSN such as limited energy,
asynchronous communication and low processing capacity. Thus, the WIM module
of the SmartSensor infrastructure extends and adapts the LOD principles for integra-
tion of sensor data. The five main components of this module are (Fig. 3.4): (i) Data
Capture, responsible for receiving data and metadata sent from one or more WSNs;
(ii) Data Transformation, responsible for transforming the sensor data received from
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Fig. 3.4 WIM components

a WSN to the RDF format; (iii) Rule Processor, responsible for the construction and
execution of logical rules that initiate predefined actions which, when activated, coor-
dinate the delivery and storage of data and enable data fusion using simple arithmetic
operators; (iv) Triple-Store (or triples repository) responsible for storing (for later
use) sensor data converted to RDF; and (v) Asynchronous Data Publisher, which is
responsible for sending sensed data, already converted to the RDF format, for users
that have registered interest in receiving them, thus creating an asynchronous stream
of sensor data in RDF.

WIM acts as a hub in the Web, obtaining data and metadata from WSNs integrated
to SmartSensor and publishing these data based on LOD principles. The publishing
of sensor data can be done in two different ways. The first one is by issuing queries
formatted in SPARQL [32]or in RDF Query Language [23] in order to recovery data
generated at the query time. SPARQL is a standard query language recommended by
W3C to recover data from RDF graphs. The second way is through an asynchronous
communication mechanism where a user provides a communication interface and a
push rule. Whenever the parameters that satisfy the condition of a defined rule are
met, data in RDF format is sent to the respective user along with a reference (via
URIs) for the provenance information (indicating which network has produced the
delivery data).

3.3 Exposing WSN as REST Resources in the SmartSensor

As extensively seen throughout this Book, in the Web of Things paradigm all the
functionalities provided by connected devices are accessed as RESTful resources via
Universal Resource Identifiers (URIs). Thus, as already mentioned, the resources of a
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sensor node, a set of nodes, a WSN, or a set of WSNs associated with a gateway must
be accessed via URI. A URI is used to locate a specific gateway, to identify a device
on a network, and to specify a resource provided by a device [17]. Each node in a
WSN is endowed with a number of sensing units (light, temperature, accelerometer,
etc.), a number of actuators (digital outputs, leds, etc.) and a number of internal
components (radio, battery). All these parts (including the nodes themselves) are the
resources of the REST architecture. Resources are organized in a tree hierarchy and
each of them implements or inherits the four verbs of the HTTP protocol. In the
SmartSensor infrastructure, the URI to access a resource provided by a sensor node
has the general format http://gateway IP address and port/ identification of the type
of the driver/node ID/node resource. The gateway IP address uniquely identifies the
specific gateway in the Web; the driver identification indicates the type of the WSN
platform associated with the gateway that the client wants to access; the identification
of the node indicates the specific device associated with the gateway that is to be
accessed (such node ID can be created locally or be a portion of the MAC address
of the sensor, depending on the WSN platform used); finally, the node resource
specified in the URI indicates which functionality of the node the client wants to
access. For example, the access to the temperature reading from a sensor node of
Sun SPOT platform [33] whose last four digits of MAC address (used as node ID
in such platform) are “1265” can be done through the URI http://localhost:8888/
spotserver/spot-1265/light where “/light” identifies the required type of the node
resource.

This usage of URI also allows the system to provide links for clients to browse
between sub resources of a resource. For example, a request sent to the following
URL http://localhost:8888/spotserver/spot-1265 returns a list with links to all avail-
able resources in this node (SPOT). These links allow clients to access any specific
resource and also to navigate from the representation of the state of a resource to
other representations of different resources. Furthermore, it is also possible to use
links to guide the client in the various interactions that can be performed with the
resource.

Regarding to the representation of resources, WSN devices connected to the
SmartSensor infrastructure can be represented in XML, HTML and JSON. The
HTML representation was adopted to simplify human interaction with the avail-
able resources, enabling navigation within the structure of resources through links
to sub resources (also called child resources). In response to a Web request via the
provided URI, the gateway may return an HTML page containing a list of the con-
nected devices separated by type. Each device in the list has as associated link that
allows the user to access such device (and its provided services/resources). In most
cases, however, a XML file is returned in response to the HTTP request, allowing
an application-to-application interaction. Finally, JSON format is also available for
representing the resources returned in response to an HTTP request. JSON (Java
Script Object Notation) is a lightweight alternative to the XML as a data interchange
format [10]. It is a text-based open standard for data client/server data exchange and
it is used whenever it is necessary to decrease the footprint of the application, for
instance, to exchange data among sensor nodes that have an embedded server. For

http://gateway
http://localhost:8888/spotserver/spot-1265/light
http://localhost:8888/spotserver/spot-1265/light
http://localhost:8888/spotserver/spot-1265
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instance, in the SmartSensor infrastructure the server implemented in Sun SPOT
nodes responds to HTTP requests by sending the sensor readings embedded into a
JSON file. An example of the payload in a reply message in JSON is the following:
“sensor”: “1265”, “temp”: “27.75”, “scale”: “celsius”, “timestamp”: “Wed Jun 22
16:12:13 BRT 2011” where the sensor is recognized by the last four digits of its
MAC address, temp is the temperature resource with its current value.

3.4 Accessing and Using WoT-Enabled WSNs Through
the SmartSensor

In the SmartSensor infrastructure there is a hierarchy of gateway nodes, each one
containing a Web server. PEM components execute in a gateway node responsible
for keeping and providing the unified view of all WSNs integrated to the WoT
infrastructure, while SIM components run in a gateway node connected to a single
WSN. The PEM Web server is kept always up-and-running waiting for requests
in a well-known URL. Upon start-up, the SIM Gateway publishes its current IP
address and port number to the PEM server. It also sends to the PEM the list of
resources it has currently available (set of connected WSNs). Upon initialization,
each sensor node in a WSN that wishes to connect to the SmartSensor should send an
advertising message to the SIM Gateway. In the SmartSensor current implementation
the multihop communication is not supported. Therefore, advertising messages are
broadcasted in the network and it is assumed that every node is in the gateway radio
communication range. Such messages are discarded by every other node except
the gateway, which will process the content and update its database of resources.
Periodically, the gateway exchanges messages with the PEM to inform the current
available resources. Interactions with the resources provided by the SmartSensor
infrastructure may occur basically in two ways. A client that is interested in building
mashup applications on top of the WSN provided resources interacts only through
PEM. For this type of user, the source of a given resource (the specific WSN the data
comes from) remains transparent, since he/she is only interested in using resources
that match to a description (geographic location, type of sensor, etc.). A client that is
interested in directly accessing the resources provided by a WSN interacts through
the SIM.

A given user discovers the resources of all available WSNs integrated to the
SmartSensor infrastructure by accessing the PEM. To do this, the SmartSensor
infrastructure provides a REST-based discovery service through the URI: http://
PEM_server:8080/pem-v3.4-emml/listSIMEMML. This service returns an XML
file (Fig. 3.5) containing all the WSNs currently registered in SmartSensor, indi-
cating the IP address of the gateway for each network. Once the user gets the IP of a
given desired network (Gatewayś IP), he/she can find out what resources are available
in that specific network. For doing this, there is another REST Web service provided
by SIM and accessed through: http://SIM_server/gateway/rest/GetServices/. This
service returns all resources offered by the given network, informing the sensorsÍDs
(optionally), and the types of sensing data they collect. With this information users

http://PEM_server:8080/pem-v3.4-emml/listSIMEMML
http://PEM_server:8080/pem-v3.4-emml/listSIMEMML
http://SIM_server/gateway/rest/GetServices/
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Fig. 3.5 REST service provided by PEM to discover the WSNs registered in the SmartSensor

Fig. 3.6 XML file returned
as the output of a call to
GetServices representing the
services provided by a WSN
connected to the SmartSensor

can obtain the information (sensing data) already stored in the SIM database, or make
a new request for data. Figure 3.6 shows an XML file representing an example of
the outcome of a call to GetServices that presents the services (type of sensor data)
offered by a given WSN connected to the SmartSensor. In this example the nodes
(from Arduino platform) provides temperature and distance services.

To find out which sensors are available in a given WSN that provide data of a spe-
cific type, SmartSensor provides other service, accessed via URI: http://SIM_server/
gateway/rest/getdata/type_of_sensor. Then, the user can send a request to a specific
node to perform a specific service, by using the generic URI: http://SIM_server/
gateway/rest/request/id_sensor/type_of_sensor; or he/she can request data from a
specific type (for instance, light, temperature, acceleration, etc) from a given WSN
without specifying any particular node (this is the most frequent case in WSNs).
Figure 3.7 shows an XML file with historical temperature data returned from a request
for the temperature service of a specific node (in this example, node with ID = 11).

Besides the types of sensing data available in the sensor nodes, other relevant
metadata are kept in the SIM database (more details on this in Chap. 4), such as QoS
parameters, geographical location, among others. However, in the current implemen-
tation of SmartSensor, only searches for types of sensors or for specific nodes are
available.

The interactions within the domain of a given WSN occur basically as follows
(Fig. 3.8). Suppose a request from a client application is sent to the SIM Gateway,
which is continuously listening for incoming requests. This part of communication

http://SIM_server/gateway/rest/getdata/type_of_sensor
http://SIM_server/gateway/rest/getdata/type_of_sensor
http://SIM_server/gateway/rest/request/id_sensor/type_of_sensor
http://SIM_server/gateway/rest/request/id_sensor/type_of_sensor
http://dx.doi.org/10.1007/978-1-4471-5481-5_4
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Fig. 3.7 Temperature data provided by a sensor with ID = 11

Fig. 3.8 Overview of the interactions in the SmartSensor
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is performed using the traditional TCP/IP protocol stack between the application
and the gateway. Once the gateway receives the HTTP request, the SIM components
process the message content and then build a new message in the specific format
of the WSN platform whose nodes need to be tasked to meet the request. This new
message in the format understood by the sensor nodes is sent through a serial cable
that connects the desktop computer to the wireless communication component (part
of the gateway implementation that acts as the WSN sink node). The message is
then forwarded over radio to the sensor nodes by broadcast and will be accepted by
those nodes whose ID matches the one specified in the request or by all nodes if
the broadcast address was specified in the request. Upon reception of the request,
the sensors perform the necessary actions the request demands, generating the reply
messages in the networks specific format. Reply messages sent by the sensors are
processed in the gateway and translated to HTTP/TCP/IP format before sent back to
the requiring application.
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Chapter 4
The Sensor Integration Module (SIM)

Abstract The SmartSensor architecture encompasses three main software modules:
(i) the Sensor Integration Module (SIM), (ii) the Programming and Execution Mod-
ule (PEM), and (iii) the Web 3.0 Integration Module (WIM). In this Chapter we detail
the SIM logical and physical components as well as their operation. In the SmartSen-
sor infrastructure a set of wireless sensor networks (WSN) is connected to the Web
through one gateway node, that exposes to client applications the sensing data pro-
duced by the networks as RESTful Web resources. The Sensor Integration Module
(SIM) is responsible for providing the RESTful interface to access the resources of
a given WSN. Its components receive application requests describing their desired
sensing data, translate HTTP messages to and from the several sensor specific formats
and protocols, coordinate the functions needed to meet the received sensing tasks
and manage the different communication models required to produce and deliver the
data back to the requesting applications.

Keywords Web of Things (WoT) · REST · HTTP · XML · JSON · Wireless sensor
networks · Integrating WSN · Restful services

4.1 Overview

As previously stated, the SmartSensor project considers a system consisting of a set
of wireless sensor networks with technologies/platforms possibly distinct, connected
to the Web through one gateway node, and a set of client applications. The WSNs are
exposed and their data accessed by applications as Web resources, using the concept
of RESTful services. The access to the resources provided by a specific WSN is real-
ized through the Sensor Integration Module (SIM). The following Sections present
the SIM logical and physical architecture, describing how its software components
are deployed in each type of node that composes the SmartSensor infrastructure. As
we discussed, SIM components are deployed in sensor nodes and in gateway nodes.

F. C. Delicato et al., Middleware Solutions for the Internet of Things, 29
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The current implementation of SmartSensor considers WSN nodes from MEMSIC,1

Arduino,2 and SUN SPOT platforms.3

4.2 The SIM Logical Architecture

The UML diagrams of Figs. 4.1 and 4.2 illustrate the main components of the SIM
logical architecture. The deployment diagram of Fig. 4.1 provides an overview of
components for each type of physical node (sensor and gateway) considered in Smart-
Sensor. The UML class diagram in Fig. 4.2 details the classes and subclasses that
compose the gateway Communication Component.

4.2.1 Gateway Components

As depicted in the diagram of Fig. 4.1, the logical architecture of the gateway node
is organized into five software components, described below.

4.2.1.1 Web Interface

This component is the ultimate responsible for providing a uniform Web interface to
access the WSN as a service. It enables that services provided by the sensor nodes of a

Fig. 4.1 SIM components deployed in the gateway node and in the sensor nodes

1 http://www.memsic.com/
2 http://www.arduino.cc/
3 http://www.sunspotworld.com/

http://www.memsic.com/
http://www.arduino.cc/
http://www.sunspotworld.com/
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Fig. 4.2 Classes of the communication component

WSN connected to the SmartSensor infrastructure be available in the Web as RESTful
resources. Considering the traditional operation phases of a WSN, this component
is responsible for phase (ii) submission of application requests (see Sect. 3.2). The
main class of this component is called SIM_Web_Service and it simply consists of
a traditional REST-based Web Service installed in a Web server. SIM_Web_Service
class handles all the HTTP messages exchanged between client applications and the
WSN connected through the respective gateway node.

In order to achieve its goals, the SIM_Web_Service class directly interacts with
the classes of the Communication component. HTTP requests received from appli-
cations are processed in the Web server ‘as any other request for Web resources. A
request message identifies through the URI path (i) a given WSN resource (accessed
via the respective driver type), (ii) a specific device (considered as a sub resource
of the driver) and (iii) some functionality provided by the device (considered sub
resource of the device). Thus, the path of an HTTP request is initially used to iden-
tify the type of driver from the device whose service is being requested, then to
identify a particular device (if desired) and finally the service (type of sensing data)
provided by this device. For example, in the path /spotApi/spot-0f40/temperature,
the first part “/spotApi” identifies the driver for this type of device (indicating that it
is a Sun SPOT platform sensor). The second part “/device-0f40” identifies the spe-
cific node (SPOT), where “0f40” is the last four digits of the SPOT MAC address.
Finally, the part “/temperature” is used to identify the temperature sensing unit of the
respective SPOT. After analysing the content (body and header) of the HTTP request
message, the description of the required sensing task needs to be extracted from the
message and forwarded to the sensor nodes able to attend such request. The Man-
ager class of the Communication component is responsible for determining the nodes
that are able to perform a received sensing task. Therefore, after processing an HTTP
request message, the SIM_Web_Service class reports its content to such component.

http://dx.doi.org/10.1007/978-1-4471-5481-5_3
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Likewise, results (sensor data) provided by the sensor nodes in response to the
received requests are sent back to the requesting applications as HTTP reply mes-
sages via the SIM_Web_Service class. When data produced by the sensor nodes in
a WSN is to be sent to a client in response to a given HTTP request, such data is
mapped into a REST compliant representation. Possible formats are HTML, XML
and JSON. This mapping is responsibility of the Driver class of the Communication
component.

4.2.1.2 Communication

Considering the WSN operation phases, this component includes the several classes
responsible for performing the phase (iii) data collection and delivery (see Sect. 3.2).

From the HTTP request messages received and processed by the SIM_Web_Service
class, this component manages and distributes sensing tasks to the respective sensor
nodes, collects the received results and forwards them back to the Web server so that
they are properly delivered to the requesting application.

The Manager Class. The Manager class of the Communication component
directly interacts with the SIM_Web_Service class and determine, based on the analy-
sis of the incoming messages content and by querying the database maintained at
the gateway, which nodes are able to meet the received request (Fig. 4.3). The main
parameters used to perform the matching between a requested sensing task and the
nodes in a given WSN that are able to execute the task are (i) types of environmen-
tal variables to be monitored (depend on the sensing units available in the node);
(ii) geographical location of the node; and optionally (iii) quality of service (QoS)

Fig. 4.3 Simplified view of the interactions for the submission of application request messages;
message processing; and sensor data delivery

http://dx.doi.org/10.1007/978-1-4471-5481-5_3
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requirements as, for instance, the minimum data accuracy provided by the node, the
maximum delay delivered by the network, the maximum lifetime of the node, among
others. Upon determining which sensor nodes are used to execute the required sens-
ing task, the Manager class is able to know the respective sensor platform(s) to be
used to meet the request. Thus, the request message is forwarded to the respective
Driver class to be translated to the proper data format. After the required sensing
task is performed by the WSN and the required sensing data is collected by the
nodes, the respective Driver class sends to the Manager class the translated reply
messages directly received from the tasked sensor nodes. The Manager then forwards
the message to the Web Interface component so that the results of the HTTP request
are presented/delivered to the user/client application. The other functionality of the
Manager class is to determine the type of communication to be used (synchronous
or asynchronous) in the message exchange between the gateway and the WSN. Such
type is defined from the data delivery model required by the client application.

According to the data delivery model, WSNs can be typically classified in three
types: periodic, event-driven and initiated-by-the-observer (or simply request-reply
model). In the periodic model, sensor nodes sense and send their collected data
continuously, at a predefined rate. In the event-driven model, sensors continuously
sense the monitored environment but report information only if an event of interest
for the application occurs. In the request-reply model, sensor nodes report their data
in response to a synchronous query issued by the application. In this last case, the
application is interested in getting a snapshot of values of the monitored phenomenon.

For event-based applications, asynchronous communication is required, for
instance, based on the Publish-Subscribe model. The current architecture of Smart-
Sensor does not support this model. With such model, a client application registers for
events of interest only once and receives new sensor measurements upon the occur-
rence of an event. The HTTP protocol typically operates in the pull mode, where
clients send a request message whenever they need a resource from a Web server.
HTTP does not natively provide an event notification mechanism (push mode). A
usual way of implementing the push mode would be to repeatedly send an HTTP
request message (for instance containing a conditional GET operation) describing the
event of interest; whenever the event occurs the reply message body will include the
event description; otherwise the message body will be empty. This implementation
based on sending repeated requests makes costly the communication for this type
of data delivery model. To overcome such drawback, a possible solution would be
to modify the original HTTP protocol implementation. One example of such a solu-
tion is the TinyREST protocol [5], proposed as part of a joint R&D project between
Samsung Advanced Institute of Technology and Fraunhofer FOKUS. TinyREST is
a protocol specific to the TinyOS sensor platform that was built based on the REST
architecture and principles. The TinyREST implementation provides the clients with
the ability to issue HTTP-like messages to accessing MICA [3] motes in a WSN.
Besides the standard POST and GET HTTP operations, TinyREST includes a SUB-
SCRIBE request message. By issuing a SUBSCRIBE message, clients are able
to register their interest to specific services provided by sensors/actuators, besides
defining personalized parameters depending on the clients needs. Each subscribed
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client will automatically be notified with a NOTIFY message whenever a desired
event has been detected (e.g. a temperature value passing a specified threshold).

Although providing an efficient way for handling event-based applications and
asynchronous communication in a WoT connected WSN, the solution offered by
TinyREST actually changes the standard HTTP API and implementation. For a WoT
solution that needs to be fully compliant to the REST principles, as is the goal of the
SmartSensor framework, this is not a suitable option.

Other options involve introducing a third party component to mediate HTTP
messages sent by applications to the gateway. An example of such a solution is
the Pubsubhubbub protocol.4 This protocol enables the communication between
client and server using a Publish-Subscribe model by employing a component, called
Hub, that registers clients (Subscribers) interested in receiving events (about sensor
generated data), gets new data provided by the server (the gateway, acting as a
Publisher), and deliver data to the respective clients. The SmartSensor designers
consider that handling asynchronous communication in Web-enabled WSNs is still
an open issue that requires further investigations to be implemented in an efficient
and interoperable way.

A periodic data delivery model is implemented in SmartSensor by the submission
of a sensing task that describes the desired data type and the frequency of data
delivery (data sensing/sending rate). It requires that the user (or application) access
the SIM to check the latest data collected by the network. The SIM database is
periodically updated with the latest data sent by the sensors, with the frequency
previously configured in the nodes. To access the collected data, the user must access
the URI: GATEWAY/gateway/rest/getdata/data type.

Such request will return all sensor data of the required type that were collected and
stored in the SIM database until the moment of the request. If the user is accessing
SmartSensor via PEM, there is the option to automatically refresh the application,
which can be configured according to the required frequency, avoiding the need for
the user need to resubmit the request or manually update the HTML page where the
data is being displayed.

The Driver Class. Another important class of the Communication component
is the Driver class, a super-class that represents the interaction with the sensors
from each specific WSN platform to be integrated in the SmartSensor infrastructure.
Drivers translate messages and commands to the specific language/protocols of the
WSN and vice-versa. This class is extended by subclasses for each sensor platform.
As we have already stated, SmartSensor currently provides drivers for the Arduino,5

SUN SPOT6 and TinyOS7 sensor platforms.
The main operations provided by the Driver class, regardless of the sensor plat-

form used are described as follows. The advertiseService operation is responsible for
handling the advertisement messages (RequestAdvertiseMessage) sent by the gate-

4 http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
5 http://www.arduino.cc/
6 http://www.sunspotworld.com/
7 http://www.tinyos.net/

http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
http://www.arduino.cc/
http://www.sunspotworld.com/
http://www.tinyos.net/
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way for devices that interact with the respective driver. These messages are generated
by classes of the Publish and Discovery component and should be sent to the sen-
sors, which respond with a message (AdvertiseMessage) advertising their services,
residual energy, among other relevant information. The getData operation is used
to task the sensor nodes to collect the sensing data as requested by the client appli-
cation, according to the desired data delivered model. The publishData operation is
responsible for receiving data messages sent by the sensors (containing the collected
sensing data).

4.2.1.3 Publish and Discovery

There are two levels of service discovery in a WSN: internal and external (phase (i)
of the networks operation, as described in the Chap. 3), and both are implemented
by classes from the Publish and Discovery component.

The internal discovery enables that sink/gateway nodes know the capabilities of
all sensor nodes that compose a given WSN connected to the gateway. In order to
implement this feature, in the SmarSensor infrastructure a special message, called
AdvertiseMessage, was defined to allow sensor nodes to advertise their capabilities.
Such message include the node (local) identifier, a timestamp, the types of sensing
units available in the node, geographic location, residual energy, maximum data
accuracy/precision provided; supported data rates, supported aggregation functions
and supported duty cycles. Advertising messages are sent by a sensor node (i) at the
node initialization (upon the network deployment in the target area), (ii) when a new
sensor joins a pre-deployed network, and (iii) from time to time, either as a keep
alive message sent with a predefined periodicity or upon request by the gateway
(via a RequestAdvertiseMessage). Such periodic sent of advertising messages is
required given the dynamic nature of the WSN environment, where sensors may
be damaged, moved, have their energy depleted, thus no longer participating from
the network infrastructure. In SmartSensor, if a connected device does not respond
to three consecutive RequestAdvertiseMessage sent by a gateway, such device is
considered unreachable and should be removed from the list of devices maintained in
the database. AdvertiseMessage messages are disseminated throughout the network
by using the communication/routing protocols available at the nodes, until they reach
the gateway node. In the gateway, the content of such messages is extracted and stored
in a database containing data for the respective WSN connected to the gateway.
Gateways are organized in a logical hierarchy and interact among themselves in
order to exchange data from their respective WSNs. PEM components execute in
the gateways positioned in the highest level of the hierarchy. While gateways at
the lower levels only keep information on their respective WSNs, the higher level
gateways keep a database with updated information on all networks connected to the
SmartSensor infrastructure.

The external service discovery is used by client applications to discover which
WSNs provide the services they require, and how to access such services. This is a
traditional phase of service discovery according to the Web Services technologies.

http://dx.doi.org/10.1007/978-1-4471-5481-5_3
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Fig. 4.4 Logical components of sensor nodes

For REST-based Web services, the discovery and navigation through available
resources are performed by using URIs. SmartSensor infrastructure provides a REST-
based discovery service available through a URI exposed by the Programming and
Execution Module (PEM).

4.2.1.4 Access Control

This component includes classes with basic functions (authentication and authoriza-
tion) for managing the access constraints to the services provided by a given WSN
(accessed through a gateway node). Policies are enforced over resource publication
and sensing task allocation according to criteria set by network administrators.

4.2.1.5 Data Manager

This component is responsible for storing data in a local database maintained by the
gateway. The classes of this component manage the reading and writing operations of
the tables responsible for storing sensing data as well as all the information (metadata)
about sensing capabilities offered by each network node in the WSN connected to
the respective gateway.

4.2.2 Sensor Node Components

Figure 4.4 shows the SIM main software components that should be deployed in the
sensor nodes. The components are described as follows.
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4.2.2.1 Communication

As we previously mentioned, WoT employs REST principles to expose the services
of smart devices available on the Web by using two different approaches. In the
first approach, an embedded HTTP server is deployed directly on the devices and
the functionality of these devices is provided as RESTful resources. The second
approach is adopted whenever a device does not have hardware resources enough
to run an embedded server, or when it is not necessary that such device is directly
accessed via Web. For these cases, another, more powerful device can be used as
a bridge to expose the services provided by the constrained device via a RESTful
interface. Such device consists of a WoT gateway. In the SmartSensor project both
approaches were implemented. However, as mentioned, independently of either hav-
ing a server embedded in the sensors or not, the gateway is always used for mediating
the interaction of WSNs with the Internet (for the purposes of converting the adopted
protocol stacks).

For the first approach, an embedded Web server is directly implemented on each
sensor node making it an autonomous and Web-enabled device. The use of servers
embedded in physical objects enables the functionality of these objects to be avail-
able as Web resources. However, the technologies used in the creation of traditional
Web services are not designed to be used on devices that are severe restricted in
resources and battery powered (eg, wireless sensors) [4]. Therefore, so that Web
servers are used in embedded devices, they must meet a number of requirements.
In Ref. [4] a set of requirements and standards for the implementation of embedded
servers were presented. An example of a requirement to be met in a standardized way
is the compression of HTTP protocol messages [1]. For the definition of a generic
architecture for embedded servers, the SmartSensor project followed a bottom-up
approach, in which such an architecture was derived from an existing implementa-
tion of a embedded server deployed in a specific sensor platform, the SUN Spot.
The implementation used as a reference for the SmartSensor design is described
in the WebOfThings project.8 From the analysis of the components of this existing
architecture, a platform-independent generalization was performed and adopted in
the SmartSensor logical architecture to guide the possible implementation of a server
embedded in other sensor platforms.

The embedded Web server is basically a very lean version of an HTTP server,
capable of handling HTTP request messages and generating reply messages server.
Thus, it natively supports the four main operations of the HTTP protocol (GET,
POST, PUT, DELETE, i.e the verbs of REST). In this case, the Communication
component in the sensor nodes encompasses the typical classes of an HTTP engine,
including a request dispatcher and a response builder [2].

For the second approach, the Communication component includes the classes
and interfaces native for each sensor platform, which are responsible for the com-
munication tasks. Such classes should participate in the completion of three tasks:
(i) sending messages advertising the capabilities of the device; (ii) receiving

8 http://www.webofthings.org/projects/

http://www.webofthings.org/projects/
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messages requesting for a given sensing task/data, and (iii) sending reply messages in
response to request messages (after the required sensing tasks have been performed).

4.2.2.2 Sensor

This component includes classes responsible for keeping the current state of the sen-
sor nodes, both regarding the available resources, such as residual energy, and the
acquired sensing data. As the data collected by the sensing units are not always imme-
diately transmitted (depending on the data delivery model required by the application
and also on the adopted data aggregation intervals), the classes of this component
shall keep the data in the node memory until they are processed and sent through the
network towards the gateway.

4.2.2.3 Publish and Discovery

The classes of this component are responsible for implementing the internal discovery
service. Therefore, a class is required to create messages advertising the node features
and send these messages whenever required. Classes of the Publish-Discovery and
the Sensor components directly depend on the low-level primitives provided by the
sensor operation system.

4.2.3 The SIM Physical Architecture

The logical architecture previously described for SIM was instantiated on a gateway
node implemented in Java and on sensor nodes from three different technologies:
Mica platform/TinyOS, Arduino and Sun Spot. In the next subsections we describe
the gateway physical architecture and the components for the MICA/TinyOS plat-
form. Description of the components implemented for Arduino and Sun Spot plat-
forms are outside the scope of the Book.

4.2.3.1 WoT Gateway

Despite the REST principles are suitable for the integration of physical devices to the
WoT, such devices do not always have sufficient computational resources to support
an embedded server. Therefore, the direct integration of real-world devices with
the Web is still a complex task, especially in cases of extremely limited resources
devices such as the sensor nodes in a WSN. In such cases, a different strategy for
the integration should be adopted, based on the utilization of an intermediate device,
Smart Gateway or WoT gateway. Smart Gateways have two basic functions: to expose
a RESTful interface via URIs that identify and provide access to physical objects
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(smart devices) and their resources, and to realize the communication with physical
objects using their provided APIs. In other words, the Smart Gateway acts as a bridge
between the Web and smart devices, by providing a RESTful Web interface to access
resources and sub resources provided by these devices and communicate with them
through their specific APIs. The gateway node plays the role of an interface between
client applications and WSNs connected to the WoT, serving as the entry point for the
submission of application requests and as a concentrator for data sent by the sensor
nodes.

In the SmartSensor architecture, a gateway node is a synonymous of a sink node,
and its functionalities are partially implemented in a computer (a PC running Debian
GNU/Linux i386 in the project) and partly on wireless communication modules
that are dependent on the different radio technologies used in WSNs. All the WSN
platforms used in the SmartSensor project adopt variations of the ZigBee protocol
[3]; therefore the sink/gateway wireless module implements this protocol to enable
the communication with sensors.

Each Smart Gateway has an IP address, runs an HTTP server and includes several
drivers, each one responsible for translating to/from proprietary protocols of the
different WSN technologies connected to the infrastructure. Thus, all Web requests
sent to a sensor node through the provided RESTful API are mapped by the gateway
to a request in the proprietary WSN API and transmitted to the respective node by
using the communication protocol understood by the device (for example, the Zigbee
protocol).

The classes and components described for the SIM logical architecture were
implemented in the Java programing language. For the Gateway Web Server, the
Apache Tomcat version 6.0.33 was used and Apache Derby relational database was
adopted as the Gateway Database. The Data Manager component is responsible
for data storage and management in the Gateway Database and its mains class is the
DataDB class. DataDB is a typical persistency class, mediating all the read and write
operations performed in the two main tables kept in the gateway. The Data_Read
table is responsible for the storage of the sensor generated data, while the Services
table contains the list of capabilities offered by each node in a given WSN.

4.2.3.2 MICA/TinyOS Sensor Plataforms

MICA motes are the category of sensor nodes manufactured by MEMSIC (formerly
Crossbow). MEMSIC technology for WSN platforms is based on the TinyOS oper-
ating system and programs to be deployed in the nodes are written in nesC language.
As specified in the MIS logical architecture, a sensor node must have three basic
functional blocks to be integrated into the SmartSensor infrastructure: Communica-
tion, Publication, and Sensor. TinyOS adopts a component-based and event-driven
programing model, and nesC is a language derived from C, so it does not natively
incorporate concepts of object-oriented programing. The main units of program-
ming in TinyOS environment are components and interfaces. Therefore, in order to
implement the functionalities of the three logical blocks defined for the sensors three
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Fig. 4.5 Components e interfaces of sensor nodes in the TinyOS platform

major components and their respective interfaces were created. Such components
and interfaces are illustrated in the diagrams of Fig. 4.5, and briefly described below.

In the version implemented for the Mica/TinyOS platform, the approach adopted
for the integration in the WoT was based in the implementation of an HTTP server
embedded in the sensor nodes. Therefore, for such WSN platform, the Communi-
cation component includes classes responsible for receiving and processing HTTP
request messages, and then for composing and sending the respective HTTP reply
messages. The features of the Sensor component are realized by software compo-
nents already existing in the sensor platform; it was not necessary to implement
them. However, the implementation of the Publish-Discovery classes was hampered
by the available node interfaces. The access to the node state information on Mica
platform is restricted to the sensed data, and there is no API to report, for example, the
residual energy of the sensor. Information such as the maximum precision provided
by a given sensing unit comes preconfigured from the factory, and there is no native
method to get/set such an information. Data such as the node geographic location is
only available either if the node is endowed with a GPS unit or if some algorithm
for node location is employed. Therefore, in the current version of the SmartSensor
infrastructure all the relevant metadata for sensor nodes from the Mica/TinyOS plat-
form was statically configured as parameters in the advertising messages sent by the
nodes.

The main software components implemented for the Mica/TinyOS sensor nodes
are showed in Fig. 4.5 and briefly described below:
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• SensorC: this component is deployed in each sensor node to implement the com-
munication based on the interfaces provided by HttpP.

• HttpP: this component implements the HTTP protocol API, providing RESTful
interfaces for communication with the gateway node (and also between the sensor
nodes themselves).

• DiscoveryP: this is the component responsible for the (internal) publication and
discovery of the capabilities of sensor nodes.

In addition to the components of the sensor node, a component is necessary to
connect the WSN (based on TinyOS/nesC) to the gateway (in Java). This component
is baseC, implemented in nesC, and responsible for making the connection with the
Gateway Web Server through a serial communication interface.

4.2.3.3 Operation

As previously mentioned, a WSN integrated to the WoT works according to three
phases: (i) internal and external service discovery, (ii) submission of sensing tasks,
(iii) data collection and delivery. Except for the external discovery phase, which
is totally the responsibility of the gateway, the other phases are implemented by
the sensor node components previously described. During the internal service dis-
covery phase an HTTP PUT message is used to advertise the sensing capabili-
ties of each node to the gateway, thus respecting the RESTful principles to main-
tain a uniform interface for accessing all data (and metadata) from the connected
sensors.

Phases (ii) and (iii) of the network operation are illustrated in the UML activ-
ity diagram of Fig. 4.6. In the diagram, the Client swimming lane represents the
client side of an HTTP-based interaction with a Web Server. The Gateway Web
Server remains listening in a well-known port and waiting to receive a request from
client applications, which may be requests for changing some parameters of the sen-
sor (PUT operation) or requests for some monitoring data collected by the sensor
(GET operation). In both cases, the received request messages are sent for analysis
and subsequent forwarding to the destination sensor node(s). Upon arriving at the
gateway, the request message header is analysed, and the following cases are pos-
sible: if the message is addressed to the sink node itself, it examines if it is either
a Get or Put message; otherwise, the error message 405 is returned to the client.
If the message is addressed to the client, it is not forwarded to the WSN, being
processed within the gateway. If the message is directed neither to the client nor to
the Sink node, a 404 error message is returned to the client. Otherwise, the message
is redirected to the specified sensor, group of sensors or broadcasted in the whole
network.

Upon the arrival of a message in a sensor node, the message header is analysed,
and the following options are possible: if the message is addressed to the sensor
itself, it checks whether it is a Get or Put message, if is not either type a 405 error
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Fig. 4.6 Realization of phases for submission of sensing tasks, data collection and delivery

message is returned. If it is a Get message, the sensor produces a reply message
with a copy of the requested information and returns it to the Sink node, which will
forward it to the client. If it is a Put message, the sensor will change the current
configuration parameter (for example, data sensing or sending rate) according to the
values contained in the message.
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Chapter 5
The Programming and Execution Module (PEM)

Abstract This Chapter presents the Programming and Execution Module (PEM)
of SmartSensor. The main purpose of PEM is to allow end users to program Web
mashup applications through the composition of a mixing of public available ser-
vices and services provided by SmartSensor registered in SIMs. Web mashups are
ad-hoc Web applications built upon the combination of real-time information (data,
presentation and functionality) from multiple Web sources. The PEM’s programming
environment provides a Web Mashup DSL (Domain Specific Language) specifically
tailored for the WSN environment, as well as an interpreter for such DSL. More-
over, this module contains components for publishing and discovering the capacities
of available WSNs. PEM’s DSL is an extension of the Enterprise Mashup Markup
Language (EMML), which is an open language specification, promoted by the Open
Mashup Alliance. The main goals of EMML are to provide programming mecha-
nisms to promote mashup design portability and interoperability of mashup solutions
aiming at reducing vendor lock-in.

Keywords Internet of Things (IoT) · Web of Things (WoT) · REST · Applications
for IoT · Mashups · EMML · Domain specific language (DSL)

5.1 Overview

The SmartSensor project considers a system consisting of a set of Wireless Sensor
Networks (WSN) with technologies/platforms possibly distinct, connected to the
Web through one gateway node, and a set of client applications. The WSNs are
exposed and their data accessed by applications as Web resources, using the concept
of RESTful services. Such approach allows building several types of value-added
applications on top of loosely coupled services provided by physical devices and other
Web resources, which can be easily shared and reused. The resources are decoupled
to the concrete implementation of services and therefore they can be arbitrarily
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represented by means of various formats, such as XML or JSON. An appealing type
of application made available through the SmartSensor consists in Web mashups.
Web mashups are ad-hoc Web applications built upon the combination of real-time
information (data, presentation and functionality) from multiple Web sources.

The goal of the Programming and Execution Module (PEM) of SmartSensor is to
allow end users to program Web mashup applications through the composition of a
mixing of public available services and services provided by SmartSensor registered
SIMs. The PEM’s programming environment provides a DSL (Domain Specific
Language) specifically tailored for the WSN environment, as well as an interpreter for
such DSL. PEM’s DSL is an extension of the Enterprise Mashup Markup Language
(EMML). EMML is an open language specification promoted by the Open Mashup
Alliance (OMA) [3, 4].

Section 5.1 explaining the concept and the technologies associated with the cre-
ation of mashup applications, showing their main features along with examples of
companies that have successfully used such approach. Next Sect. 5.2 we describe the
architecture and main features of the Programming and Execution Module.

5.2 Web Mashups

Web Mashups are ad-hoc Web applications built upon the combination of real-time
information (data, presentation and functionality) from multiple Web sources. The
term Web Mashup implies easy, fast integration, frequently using open application
programming interfaces (API) and data sources to produce augmented results that
were not necessarily the original reason for producing the raw data [4, 5]. Data and
presentation information typically comes in formats such as Rich Site Summary
(RSS) or Atom feeds, different XML based formats, or as HTML, or other graphi-
cal elements. Application functionality can come from any Web accessible API as,
for example, a JavaScript code. Different technologies such as PHP, Ruby, or Java
can be used to combine data, functionality, and presentation to create the Mashup
applications [1, 6].

Developers are currently creating a plethora of mashups covering a wide range of
domains, from esoteric mashups that record the location and availability of rare gam-
ing consoles to those that create Sudoku games from Flickr photos. However, there
are also more generally useful mashups, such as those offering weather information
and mapping services.

For enterprises, the Web mashup paradigm can be used as a simple and cheap
way to access data and combine different data sources, encouraging innovation by
allowing new ideas to be tested, refined and improved at very low cost. One of
the first organizations to leverage mashup technology for immediate results was the
JP Morgan Chase [3]. This company employed a rudimentary mashup technology
to integrate real-time data on commodity performance within analytical tools that
allowed security traders to monitor up to 500 portfolios at once. This mashup was
named Trading Algorithm Optimizer (TAO) [3]. Another example of Web applica-
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tions built using mashup technology integrates Google maps with environmental data
from the Brazilian National Institute for Space Research (INPE). This application
displays, in real time, places within the Brazilian Amazon forest with occurrences of
fire and deforestation [2]. The reader can refer to Web directories and marketplaces
like ProgrammableWeb.com, StrikeIron.com and Mashable.com to find other live
examples.

At a first glance, it is not easy to identify the differences between mashups and
traditional forms of integration. In this context, the work of Benatallah, Casati, and
Daniel [1] provides useful insights to identify mashup development specificities.
They say that a key point to understand such differences is to contrast de focus of both
approaches. On one hand, Mashups focus on opportunistic integration, occurring on
the Web targeted to user’s personal use and for nonbusiness critical applications. On
the other hand, traditional composition (for example, workflow based business com-
positions) focuses on well-defined and repeatable enterprise processes. Moreover,
enterprise processes have, besides the functional requirements, a set of system wide
requirements (for instance, scalability and security) that are not present in most of
today mashup applications. The implementation of system wide requirements makes
the overall development of enterprises process rather complex. Mashup employs an
end-user oriented development that requires improved tool support with strong reuse
of software components to allow end-users to easily compose their own mashups.
Therefore, integration paradigms focused on end-users are needed for allowing easy
and simple discovery and integration of mashups.

5.3 SmartSensor Programming and Execution Module

The main purpose of the Programming and Execution Module (PEM) is to allow end
users to program Web mashup applications through the composition of a mixing of
public available services and services provided by SmartSensor registered in SIMs.
The PEM’s programming environment provides a DSL (Domain Specific Language)
specifically tailored for the WSN environment, as well as an interpreter for such
DSL. Moreover, this module contains components for publishing and discovering
the capacities of available WSNs.

PEM’s DSL is an extension of the Enterprise Mashup Markup Language (EMML).
EMML is an open language specification promoted by the Open Mashup Alliance
(OMA) [3, 4]. The main goals of EMML are to provide programming mechanisms to
promote mashup design portability and interoperability of mashup solutions aiming at
reducing vendor lock-in. EMML allows the composition of mashups with traditional
services in the Web (i.e. services based on SOAP, REST, third party APIs, and SQL
databases).

Figure 5.1 shows the main components of the PEM: (i) Publishing and Discovery;
(ii) Data Manager; and (iii) EMML Script Manager.

The Publishing and Discovery component is responsible for finding out the WSNs
that provide the services required by a mashup application and how to access such
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Fig. 5.1 PEM components

services. This component relies on the SIM Web interface component to provide
information about sensing capacities of registered WSNs. For doing so, the SIM Web
interface component implements a functionality to send advertising messages con-
taining WSN metadata to PEM. A typical advertising message contains the network
identifier, types of sensing units in the network, geographic localization, network
creation time, RESTful Web Services provided by the network, among other rel-
evant information. These messages are sent whenever a new WSN is registered
within SIM, whenever new sensing capacities are deployed in a registered WSN,
or whenever SIM detects nonoperating networks, which are no longer part of the
infrastructure. After receiving an advertising message, the Publish and Discovery
component calls the Data Manager component to update the information about the
registered WSN capabilities.

The Data Manager component is responsible for managing all data structures
required by PEM.

The EMML Script Manager component provides mechanisms to create, interpret,
and execute Web mashups specified through EMML scripts. Mashup creation in
PEM follows the same model as defined in the EMML specification, described in
the next Section.

5.3.1 EMML Programming Model

The EMML language has a number of specific elements that allow the programming
of mashups scripts. These elements allow a developer to perform the invocation
and consumption of remote data, the processing and enrichment of these data, the
programming of the mashup control logic, and the use of databases to manage the
handling of such information. The EMML programming elements can be extended
using macros. The PEM’s EMML script manager uses the macro functionality for
creating a domain-specific language (DSL) to facilitate the construction of physical
mashups based on information provided by WSN.
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Table 5.1 EMML commands

• Data consumption – While
– Invoke – For
– Direct Invoke – Foreach
– Input – Parallel
– Output – Sequence

• Data transformation (mashup) • Macros
– Filter – Macro
– Join – Include
– Merge • Debug
– Select
– Group – Display

• Data enrichment • Transactions
– Append – SQL
– Constructor – SQL Update
– Annotate – Begin TX
– Assign – Commit TX
– Variable – Rollback TX

• Operations for control logics and error handling • Meta operations
– If-else – Template UserMeta

The capabilities of EMML can be broadly classified into sets of operations, as
listed in Table 5.1. The following paragraphs illustrate the operation of some of these
EMML programming elements. The complete EMML reference can be found in [4].

The <directinvoke> EMML element is used to invoke and consume diferent
types of services such as: HTML, RSS/ATOM, REST and SOAP.
The <directinvoke> element supports HTTP verbs GET, POST, PUT, and
DELETE. HTTP Header and cookie support is also available, thus providing capa-
bility to consume a wide variety of Web services. Figure 5.2 shows an example of the
usage of the <directinvoke> element. In this Figure, the endpoint specifies the
URL of the service to be consumed; u and f are the input parameters of the service;
and outputvariable specifies the variable that will receive the result of the service
invocation.

The <filter> element allows filtering a set of nodes in a variable, based on a
filter expression. In Fig. 5.3, inputvariable provides the data input to the filter; filter-

Fig. 5.2 Usage example of <directinvoke> element
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Fig. 5.3 Usage example of <filter> element

Fig. 5.4 Usage example of <if> element

expr contains an XPath [7] expression that sets the filter condition; and outputvariable
defines variable that will receive the output of filter processing.

The <if> element is responsible for handling the control structures if-elseif-else
in scripts. The elements <elseif> and <else> are optional. An example of this
element is shown in Fig. 5.4.

5.3.2 Extending EMML

The EMML <macro> element allows creating user-defined statements to be used in
mashup scripts. Macros are snippets of mashup logic that can accept input parameters
and produce output. Macros can be defined within a single mashup or they can be
defined in macro libraries so that they can be shared among mashups. The macro
functionality is used in PEM to create a mashup domain-specific language (DSL) for
WSN. This DSL is implemented as a macro library of PEM that provides additional
functionality to manipulate WSM information.

The following macros are currently implemented:

• ShowRSSFs: Macro responsible for querying the PEM Data Manager about avail-
able WSNs (identification, sensing capabilities, etc.).

• SortbyData: Macro that order the data received from WSN sensors by date (ascend-
ing or descending order).

• SortbyDate: Macro responsible for ordering, in chronological order, the values
collected by a sensor of a WSN.

• FilterSensor: Macro that filters WSN data according to a given type of sensor (i.e.,
temperature, light, etc.).

• FilterPlatform: Macro that filters WSN data according to a particular platform (i.e.
Arduino or TinyOS).
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• JoinRSSF: Macro responsible for merging into a single XML file values collected
by various WSN.

• CountMacro: Macro responsible for counting the number of values in given data
set.

• FusionMacro: Macro that performs data fusion on the values collected by a net-
work.

5.4 Integration of PEM with EMML Interpreters

This section describes the process of integrating the PEM module with tools that
interpret the EMML language. In its current specification, PEM allows building Web
mashups applications by using both textual EMML interpreters or with tools that
provide graphical user interfaces. To build Web mashup applications by employing
some graphical tool created for this purpose and using as data source the information
collected by the SmartSensor infrastructure, it is necessary to integrate these tools to
PEM. The infrastructure can be used in conjunction with any tool based on EMML,
and in this Book we will illustrate the integration with Presto,1 from JackBe company.
Presto was chosen because it is a widely used platform and has a very detailed
documentation and complete information about the use of the EMML language in
creating Web mashup applications both textual as graphical.

Presto is an ideal solution for organizations that need to merge real-time data from
multiple systems and empower users to create their own dashboards for decision sup-
port to measure, monitor and manage business processes and still meeting corporate
security and other management requirements.

Presto is a solution that combines three key elements:

• Real Time Data: by providing direct connection to a number of internal or external
systems, Presto provides the latest information no matter where it is.

• Self-Assembly Service: by providing non-technical users with visual tools that are
easy to use, Presto empowers such users with the ability of working by themselves,
with a minimal involvement from IT personnel. Presto reverses the typical 80/20
rule, leaving the business with 80 % of the work and leaving the burden of security
and governance for IT.

• Universal: users can get their information no matter where they are or which
technologies they use. Presto offers unaltered applications and dashboards for
Web portals, smartphones, tablets, spreadsheets and email.

Presto allows advanced users to assemble applications visually in a matter of
minutes or hours. It allows connecting to sources of information in real time for
faster access, easy and flexible data, benefiting business users through greater self-
sufficiency.

1 http://www.jackbe.com/prestodocs/v3.2/presto-intro/prestoIntro.html

http://www.jackbe.com/prestodocs/v3.2/presto-intro/prestoIntro.html
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5.4.1 Integration Mechanism: Example of Integrating PEM
with Presto

The tools for creating Web mashup applications provide several options for recording
data sources such as WS* Web Services, databases, Rest-based Web Services, RSS,
etc.. SmartSensor users that wish to integrate the PEM module with some existing
EMML graphical tool must select the option to record data sources as REST-based
Web Service and log each REST URL provided by PEM that he/she wants to utilize.

Figure 5.5 illustrates the option to register a new “REST Web Service” in the
initial screen of Presto. In this tool, once selected the option “REST Web Service”, a
new screen appears requesting the data from the service to be registered. This screen
must be completed once for each PEM Web service to be registered for use in the
mashup building.

Figure 5.6 shows an example of a registry of the getServicesSIM service provided
by PEM. This service lists information of all WSNs registered at SmartSensor.

The information returned by the getServicesSIM service can be observed in the
XML document shown in Fig. 5.7.

5.4.2 Creating a Web Mashup Application

Once the desired REST services are registered in Presto, we can use them as data
sources to create Web Mashup applications. In Presto, registered services can be
combined to build Web Mashups using the “Wires” tool, which is part of the platform
and allow users to graphically “wire” services together to form Mashup applications.
The “Wires” tool has a set of objects that allows the dynamic creation of EMML

Fig. 5.5 Creating a new “REST web service” in PRESTO
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Fig. 5.6 Registering a PEM service in PRESTO

Fig. 5.7 XML document returned by the getServicesSIM service

statements. Wires separates a section for objects that will be used as data sources
(the “mashables” section). The previously registered REST Web services are stored
in this section.

Figure 5.8 shows an example of two PEM REST services registered as mashable
objects in the Presto tool. They are being used to create a Web Mashup application.

Once a Mashup Web application is created, it is possible to select a visual form of
presenting it. Figure 5.9 illustrates a Web mashup application that displays historical
data collected by sensor of light intensity of a WSN using two different types of
presentations.
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Fig. 5.8 Using PEM services to create a web mashup in the PRESTO wires tool

Fig. 5.9 Two different graphical presentations for the same web mashup data
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Chapter 6
SmartSensor Proof of Concept

Abstract This chapter illustrates the use of the SmartSensor infrastructure through
the development of an application in the domain of smart buildings. Smart buildings
are buildings instrumented with smart devices designed to provide high flexibility
of use and the ability to evolve and adapt according to the needs of organizations
and human beings, aiming at increasing users comfort and safety and optimizing
the operation and managing of several functions inside and outside the building
while increasing its energy efficiency. There are plenty of applications within the
broad domain of smart buildings, varying from applications to control light, humidity
and temperature of rooms to fire and intrusion detection. We choose a parking lot
management application to present the main functionalities and potential benefits of
SmartSensor. The application consists of a wireless sensor network (WSN) based
vehicle detection sub-system connected to the SmartSensor infrastructure. The WSN
gathers information on the availability of each parking lot and the SmartSensor
infrastructure processes the information and provides a Web interface to guide the
driver to the available lots.

Keywords Internet of Things (IoT) · Web of Things (WoT) · REST · Applications
for IoT · Mashups · EMML · Parking Lot · Smart buildings

6.1 Overview

This chapter demonstrates the use of the SmartSensor infrastructure through the
development of an application in the domain of smart buildings. According to [2],
smart buildings are buildings equipped with smart devices designed and constructed
to offer great flexibility of use, providing the ability to evolve and adapt according to
the needs of organizations and to provide at each moment, the best possible support
for their activities. Furthermore, smart buildings must be equipped with systems
for automation, computing and communications, which enable, in an integrated and
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consistent way, the effective management of the resources available in the building,
boosting increases in productivity, allowing energy savings and offering high levels
of comfort and safety to the individuals that work in them.

Examples of smart building applications are: temperature, lighting, air quality
and windows (natural ventilation) control; applications that monitor and shutdown
unattended devices; security applications to protect personnel (access control) and
building properties (anti-theft), parking lot management, detection and management
of emergency situations, just to name a few. Such applications often monitor physical
variables extracted from the target environment, such as light, vibration, temperature,
proximity, presence, chemicals (smoke or gas) and electric voltage.

In order to efficiently manage such applications, the notion of integration arises.
Integration is defined as the ability to communicate, collaborate and exchange infor-
mation between applications to achieve common goals [2]. Examples of advantages
of integrating applications are: (i) more efficient use of resources, such as energy,
computational, and even human resources, (ii) fast and more coordinated responses
to monitored physical events, (iii) the ability to correlate information between appli-
cations to optimize the decision process, (iv) decision chaining between integrated
applications, i.e., a decision made in a given application may trigger another deci-
sion on a different application. As an example, in the occurrence of a fire hazard, a
service of detection and management of emergency situations needs to interact with
many other services such as: lighting, elevators, parking lot, building access control.
These services, whenever informed of the existence of a fire in a particular area of
the building can trigger actions such as depressurization and smoke removal of the
affected area, pressurization of evacuation areas, automatically disabling elevators
and moving the occupied cars to safe floors, prevent access to people in general to
areas that may be at risk of being affected by the sinister, allow free exit from sinister
places, and block access to building and parking areas that may be at risk.

Many smart buildings services require continuous monitoring of various environ-
mental parameters inside and outside the building using sensors and actuators [1, 2].
Moreover, several services demand interaction between sensing data and information
systems that manage the operation of the building. Thus, a key requirement for an
efficient monitoring and controlling is that all sensors and actuators are addressable
over the network to exchange data with corporative intranet or the Internet. In this
context, the use of a WoT infrastructure can bring a set of benefits as the enabler tech-
nology to achieve the degree of interoperability among senor instrumented spaces in
a smart buildings and an internal or external Web-based network. In the next section,
we describe the development of a smart building application using the SmartSensor
infrastructure.

6.2 Parking Lot Application

In this section, we describe a smart building application that provides guidance to
drivers that need to park a car in one of the available parking lots within a given
building. A challenge usually found in applications for managing parking lots is to
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Fig. 6.1 Schematic draw of
an inductive loop

effectively detect vehicles. Many solutions use inductive loops (Fig. 6.1) to tackle
this issue [3]. However, inductive loops have high costs of both installation and
maintenance [4]. In this sense, an easy and cost effective solution option is to use a
WSN. Wireless sensors can be easily deployed in existing parking lots without the
need for excavation and expensive cable installations required by inductive loops.
Moreover, the flexibility to reconfigure sensors already installed, together with the
availability of low cost sensors capable of detecting vehicles, make WSN a natural
candidate to solve the emerging problems of monitoring and control of parking lots
in smart buildings.

Our illustrative application consists of a WSN based vehicle detection sub-system
connected to the SmartSensor infrastructure. WSN gathers information on the avail-
ability of each parking lot and the SmartSensor infrastructure processes the infor-
mation and provides a Web interface to guide the driver to the available parking
lots.

WSNs have great potential to provide an easy and cost effective solution for the
parking lot management application. Its usage along with a WoT solution allows
remote and real-time access to the information on the availability of lots besides
other useful information, thus increasing the efficiency and manageability of large
parking lots, while saving time for the user.

6.2.1 Application Requirements

The Proof of Concept (PoC) parking lot application was developed according to the
following requirements:

• The system must provide a list with the location of all parking lots registered in
the SmartSensor infrastructure. Such a list must be published as a Web mashup
application in order to allow end users to easily locate the nearest parking related
to his/her current location.

• The system must provide information about the number of available spaces in each
parking lot registered in the system.
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• The system must be able to identify the types of available spaces (normal or large)
that each parking lot have. Normal spaces fit small vehicles while large spaces fit
larger vehicles (trucks).

• The system must be able to provide the location of available spaces within a parking
in order to guide the driver to them.

• The system must allow real-time monitoring, via the Internet, of vehicles entrance
and exit from a given parking lot.

The UML use case diagram of Fig. 6.2 illustrates the interactions between the end
user and the parking lot application according to the requirements described in the
previous paragraph.

Fig. 6.2 UML use case diagram representing the Parking Lot application
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Fig. 6.3 Parking lot image

6.2.2 Environment Setup

The experiment was conducted in three parking lots located at the Center for Math-
ematical Sciences and Nature (CCMN) in the Federal University of Rio de Janeiro
(UFRJ), Brazil. One of these parking lots is illustrated in Fig. 6.3. This parking lot has
three rows with 72 places available in each, summing up 216 monitored car spaces.

To detect vehicles and to distinguish them from other objects, such as a person
walking through the parking entrance, one pair of sensor nodes endowed with ultra-
sonic distance detectors were placed at the entrance and exit of each row of the
parking lot, as shown in Fig. 6.3. Whenever an object is detected, each pair of sensor
nodes sends its collected data to a sink node (Gateway) using a wireless communica-
tion channel. A SIM Driver installed in the sink node receives such data, decodes it,
and then forwards it to the SIM Manager component. Then, the Manager component
analyses the data and identifies that it must be forwarded to a specific Web service
installed in the SIM to further processing. This Web service is responsible for calcu-
lating the width of the detected object, and to infer whether it is a car or other type
of object. Whenever a car is detected, the Web service accesses the SIM database to
update the current number of available car spaces of the parking lot. Regarding the
hardware, both the pairs of sensor nodes and the wireless communication module
of the sink node consist of Arduino Uno boards endowed with Xbee Shields for
wireless communication. The SIM components are installed in a desktop computer
and another computer hosts the PEM components. The details of the hardware used
for this experiment are found in Sect. 6.2.3.

Figure 6.4 shows a schematic draw of the configuration of the sensor nodes and
sink nodes in the parking lot application. A pair of sensor nodes were placed at the
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Fig. 6.4 Schematic draw of hardware elements in the parking lot application

entrances and exits of each parking lot row, which is 120 m long and 8 m wide. Two
sink nodes were placed in the center of the second and third rows of the parking
lot, 60 m away from the entrance of the row. The decision to place the sink node
at this location is due to the limitations of radio coverage of the 802.15.4 protocol,
implemented by the Zigbee standard [5], which allows data transmission up to a
maximum of 100 ft away with direct line-of-sight.

We assume the minimum width of a car as being at least 1.5 m. Therefore, any
detected object larger than 1.5 m is considered a car by the application. The pair of
sensor nodes at the entrance of each row counts occupied spaces while the par of
sensors at the exit of each row counts the vacancy of a space. The sensors of each
pair of nodes were placed 8 m apart from each other. To calculate the size of detected
objects we use the formula:

OS = 8 − DDR − DDL (6.1)

where OS is the size of the object, DDR is the distance measured by the sensor node
at the right side, and DDL is the distance measured by the sensor node at the left
side. Such formula is applied by the SIM Web service on the measurements sent by
the sensor nodes.
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6.2.3 Hardware Components

The following hardware components were used to instrument each parking lot:

• 14 Arduino Uno boards: 12 used on sensor nodes and 2 used in the sink nodes;
• 14 Arduino Xbee Shield: 12 used on sensor nodes and 2 used in the sink nodes;
• 12 ultrasonic sensors Maxbotix LV-EZ1;
• 12 batteries;
• 2 laptop computers to host the sink nodes.

Arduino Uno (Fig. 6.5) is a microcontroller board based on the ATmega328 chip,
which has 14 digital inputs/outputs pins, 6 analog inputs, a 16 MHz crystal oscilator,
a USB connection, a power jack, an ICSP header, and a button reset. The Arduino
Uno board can be powered via the USB connection or through an external battery
connected its power jack.

Arduino Xbee Shield (Fig. 6.6) can be plugged on top of the Arduino Uno to
allow it to communicate wirelessly using Zigbee. It is based on the Xbee module
from MaxStream [5]. The Xbee module can communicate up to 30 m indoors or 90 m
outdoors (with direct line-of-sight).

Ultrasonic Distance Sensor Maxbotix LV-EZ1 (Fig. 6.7) has a frequency of 42 kHz
and reading rate of 20 Hz. The LV-EZ1 has virtually no blind spots, detecting objects
up to 6.5 m. The closest measured distance is 15 cm, meaning objects closer than this
distance are measured as being 15 cm apart. The ultrasonic distance sensor emits a
sound signal that travels up to a solid object, like a wall, and back to the source of
the sound. To determine the distance of a solid object, the travel time of the echo is
calculated.

The laptops were used to host the SIM components responsible for processing the
data collected by the base station and transmit them over the Internet to the PEM.
The minimum required configuration is:

Fig. 6.5 Arduino Uno board
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Fig. 6.6 Xbee Shield

Fig. 6.7 Ultrasonic Distance
Sensor Maxbotix LV-EZ1

• Hardware:
• 1 gigabyte (GB) of RAM
• 50 megabytes (MB) of available disk space for installation
• Software:
• Linux Operating System
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• Database MySql 5.5
• JDK version 1.5 or higher
• Tomcat Server 6

Besides the aforementioned hardware components, the parking lot application
uses a server computer responsible for hosting the SmartSensor PEM. The minimum
configuration required for this computer to run the experiments is similar to the
laptop computers. However, in a real installation this computer needs to be configured
according to more specific systems requirements.

6.3 Application Development

The development of the application has three distinct phases. The first phase com-
prises the hardware configuration of the sensor nodes and the sink node. The second
phase comprises the programming of the SIM components required to collect and
interpret the signals collected by the WSN ultrasonic sensors. These components
are to be installed at sensor nodes and sink nodes. The third phase is the program-
ming and installation of the PEM mashup application built to monitor the parking
lots registered in the SmartSensor infrastructure. To mount the ultrasonic sensors on
the Arduino Uno boards, it is necessary to follow the following configuration steps
(Fig. 6.8):

• To connect the sensor calibration pin to digital pin 13 of the Arduino board.
• To connect the sensor analog output to the Arduino analog pin 0.
• To connect the sensor voltage pin to the Arduino 5 V voltage pin.
• To connect the ground pin to the GND pin of the Arduino.

The configuration of the ultrasonic sensors of the experiment can be visualized in
Fig. 6.9.

The first step to program the sensor nodes and configure the Gateway according to
the application requirements is to assess the type of the required data delivery model.
In general, the data delivery model of WSN applications can be of two kinds (or a
combination of both): synchronous or asynchronous. In the synchronous model, net-
work nodes must respond to an application request or should monitor some periodic
event. To deal with synchronous events based on Request-Response operations, the
SmartSensor provides developers with a REST Web service that is accessed through

Fig. 6.8 Ultrasonic sensor
setup
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Fig. 6.9 Ultrasonic sensor
mounted on the Arduino
board

the Gateway and returns the information collected by the sensor. The REST Web
service follows the following format:

http://{url_mis}/gateway/rest/getdata/{sensor}

To handle periodic events the developer must program the sensor node itself to
raise such events, i.e., the developer must set the parameters of sensing data rate and
sending data rate of the sensor node. For sensor nodes to send data to the gateway, the
developer must create an HTTP message using the createHTTPmsg method provided
by the SmartSensor HTTP library. This method has all the comprised elements of
an HTTP message: DHost, Shost, code, method, path, data and error. Where the
parameter “DHost” represents the id of the destination node, “Shost” the source node,
“code” represents the message type (for example, 2000 for discovery messages and 0
for sending data), “method” represents the HTTP verb (for example G for GET) and
“path” represents the type of sensor (for example, 5 for distance), “data” represents
the data collected by the sensor, and the parameter “error” sets the error value, if
any. To programming the sending of HTTP messages to the Gateway, the developer
uses the sendHTTPmsg method passing as a parameter a message created by the
createHTTPmsg method.

SmartSensor also allows processing asynchronous events. These events are unpre-
dictable, and must be configured on the sensor node, creating an HTTP message using
the createHTTPmsg method and sending it to the Gateway via the sendHTTPmsg
method.

In the parking lot application, the vehicle detection is programmed as a complex
asynchronous event involving a pair of sensor nodes (Master and Slave) and the
Gateway. Whenever the Master node detects the presence of an object it sends an
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HTTP message to the Gateway informing the occurrence of the event. The Gateway,
upon receiving of such message, makes a synchronous request to the Slave node to
sense the current distance (object detection). After receiving the Slave response, the
Gateway uses both measures to calculate the object size and determine if the detected
object matches or not a vehicle. After a vehicle detection, the Gateway performs an
update of the number of car parking spaces at the SIM database. This complex event
is implemented by a component called “ParkingManager” that must be implemented
by the application developer and installed at the Gateway node. The steps involved
in the vehicle detection are illustrated in the UML sequence diagram of Fig. 6.10.

After the SIM programming and configuration, the next step in the programming
of the parking lot Mashup application that will be installed in the SmartSensor PEM.
This step starts with the building of a set of REST Web services that exposes informa-
tion about the parking lot state. In the PoC application, we developed the following
Web services:

• ListParkingLots: This service provides a list of parking lots registered in infrastruc-
ture. The invocation of this service should follow the format:

Fig. 6.10 Vehicle detection UML sequence diagram
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http://{PEM_SERVER}:8080/pem-v3.4-emml/ListSimEmml.

Following an example of the XML file returned as response for this service:

• getParkingLotInfo: This service provides the detailed information of a given park-
ing lot registered in the infrastructure. The invocation of this service should follow
the format:http://{PEM_SVREER}:8080/pem-v3.4-emml/getParkingLotInfo?
gatoway={url}

where url is the address of the Gateway that manages the parking lot. The fol-
lowing code shows an example of the XML file returned as response for this service:

• getCarSpacesInfo: This service provides the historical information about car
spaces of parking lots registered in the infrastructure. The invocation of this service
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should follow the format:
http://{PEM_SERVER}:8080/pem-v3.4-emml/gntCarSpacesInfo?gateway

={url},

where url is the address of the Gateway that manages the parking lot. The fol-
lowing code shows an example of the XML file returned as response for this service:

After the creation of the PEM services, the next step is to build the Web mashup
application that integrate the information provided by the Web services and present
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Fig. 6.11 Registering of PEM Web services within presto

this integrated view through a set of graphical user interfaces. Web Mashups can be
built using any EMML editor. In this PoC we will show how to create Web Mashups
using a popular graphical EMML editor and runtime environment called Presto [6].

First, it is necessary to integrate the PEM Web services created in the last step
into the Presto platform. To do so, the Web services must be registered as data source
for Mashup applications. This registration is done in the Presto platform through
the instantiation of new REST Web Services connections, one for each Web service
provided by PEM. Figure 6.11 illustrates the registration process within the Presto
platform.

After registering all PEM Web services, we can start building the Web Mashup
application. Figure 6.12 is a snapshot of the Presto graphical editor showing the
specification of a data flow that processes the information generated by the get-
CarSpacesInfo Web service, which is represented in the figure by the Presto Mashable
object ParkingSpace. A Mashable object is any object that can be used as data source
to create a Mashup application. The data flow specifies that the data received after
the invocation of this service should be ordered using the object Sort and forwarded
to the object Mashup Output.

Figure 6.13 illustrates the user interface that consumes the output of the EMML
Mashup created in Fig. 6.12. This interface shows, in a tabular format and in real
time, the entrance and exit of vehicles from a parking lot monitored by the PoC
application.

The other functionalities of the PoC application are created using the same process.
Figure 6.14 shows the user interface that displays the available car spaces in each lane
of a parking lot. This application uses a PEM Web services that queries the database
of the SIM responsible for monitoring the parking lot about the current state of its
car spaces.

Finally, Fig. 6.15 illustrates the Web mashup application that integrates all the
aforementioned user interface fragments into a unified view. The top of the window
shows the number of car spaces available in each parking lot lane. At the bottom
left is showed the entrance and exit of vehicles, on the right a map indicating the
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Fig. 6.12 Presto graphical editor

Fig. 6.13 User interface for monitoring available car spaces

location of the parking lot, and at the bottom right a table shows general features of
the parking Lot, such as total car spaces by type, and current available spaces. Any
Web browser connected to the Internet can access this information.
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Fig. 6.14 User interface showing the available spaces in a parking lot

Fig. 6.15 Parking Lot Web mashup application
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Chapter 7
Final Remarks

Abstract In this chaper we summarize the contributions of this Book to advance
the state-of-the-art in the development of IoT applications. The main contributions
are: (i) to present a middleware-layer infrastructure, SmartSensor, that focuses on
the integration of Wireless Sensor Networks (WSN) in the Web, providing WSN
as a service, acessible as any other Web resource and enabling the discovery and
composition of services to form Web mashup applications; (ii) to describe step by
step the development of an application using the SmartSensor infrastructure, the
Parking Lot Application, that helps drivers to find available parking space in a build-
ing. SmartSensor is composed of three software modules: (i) the Sensor Integration
Module (SIM) integrates the distinct WSN devices and provides a RESTFUL inter-
face to access them as Web resources; (ii) the Programming and Execution Module
(PEM) enables the composition of value-added services from multiple Web sources;
(iii) the Web 3.0 Integration Module (WIM) integrates the resources with Web 3.0
applications and platforms.

Keywords Internet of Things (IoT) · Web of Things (WoT) · Wireless sensor
networks (WSN) · Middleware for IoT · SmartSensor · Parking lot application

7.1 Introduction

The Internet of Things (IoT) represents a new direction on the use of computers
in everyday life as it enables the integration of the Internet with the physical world,
populated with sensors, actuators, and embedded communication hardware. The het-
erogeneous physical devices become a part of the Web and can be accessible using
the well-known Internet protocols. This scenario arises the opportunity for creating
sophisticated applications based on physical world data, such as monitoring inacces-
sible and remote spaces (oil platforms, forests, tunnels, mines, pipes), environmental
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monitoring (earthquakes, floods, radiation areas, fire, rainfall) [6], smart cities, smart
buildings, smart homes, health-care, to name a few.

Some middleware platforms already exist, addressing one of the main challenges
to enable realization of IoT: interoperability across heterogeneous resources to relieve
the application developer from the burden of integrating them. However, according
to [5], the existing proposals do not cover the full set of functionalities to meet the
requirements of an IoT middleware. In addition, most of them are under development
and did not reach the stage of maturity to be adopted in a large scale.

This Book described a middleware-layer infrastructure, SmartSensor, that focuses
on the integration of Wireless Sensor Networks (WSN) in the Web, providing WSN
as a service, acessible as any other Web resource and enabling the discovery and
composition of services to form Web mashup applications. In fact, this infrastructure
targets a significant barrier to the widespread use of WSNs, that is the complexity of
applications development that need to deal with low-level concerns of WSN. One of
the fundamental characteristic of SmartSensor is to be based on the REST (Represen-
tational State Transfer) principles [2] and to use Web standards and protocols, such as
URIs (Uniform Resource Identifier) and HTTP (Hypertext Transfer Protocol). This
is especially useful for the integration of WSN to the Web, since the heterogeneous
nature of their devices. In SmartSensor, WSNs are connected to the Web through
a gateway node and their data are exposed as RESTful Web resources. Therefore,
the interactions occurs in a RESTFull style by using the set of simple, well-defined
HTTP main operations (GET, POST, PUT and DELETE i.e. the verbs of REST).
Currently, SmartSensor supports three different platforms that are proper to a WSN
scenario typically endowed with several tiny and low-power networked devices in
interaction.: Arduino,1 Sun SPOT,2 and motes from the MICA family (produced by
MEMSIC, former Crossbow),3 based on the TinyOS operating system,4 specially
designed to sensors.

The infrastructure provided by SmartSensor to seamless integrate the resources
relies on three main building blocks:

1. The Sensor Integration Module (SIM) integrates the distinct WSN devices and
provides a RESTfull interface to access them as Web resources. It enables data
collection and delivery and supports publish and discovery of WSN services.
SIM components are deployed both in sensor nodes and in gateways nodes.

2. The Programming and Execution Module (PEM) enables the composition of
value-added services from multiple Web sources, mixing public available ser-
vices and those provided by SmartSensor that are registered in SIMs. PEM offers
a DSL (Domain Specific Language) based on the Enterpise Mashup Markup Lan-
guage (EMML) [1] and an interpreter for such DSL. It provides mechanisms to
create, interpret, and execute Web mashups specified via EMML scripts.

1 http://www.arduino.cc/
2 http://www.sunspotworld.com/
3 http://www.memsic.com/
4 http://www.tinyos.net/

http://www.arduino.cc/
http://www.sunspotworld.com/
http://www.memsic.com/
http://www.tinyos.net/
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3. The Web 3.0 Integration Module (WIM) integrates the resources with Web 3.0
applications and platforms.

This Book also detailed the development of a parking lot application that consists
of a WSN-based vehicle detection system connected to the SmartSensor infrastruc-
ture. The three distinct phases involved in the development of such an application
were discussed: (i) the hardware configuration of the sensor nodes and the sink node;
(ii) the programming of the components to collect and interpret the signals collected
by the WSN ultrasonic sensors; (iii) the programming and installation of the PEM
mashup application to monitor the parking lots registered in the infrastructure. This
application was used in three parking lots located at the Federal University of Rio
de Janeiro (UFRJ).

7.2 Contributions

The main contributions of this work are:

• to present an overview on the emergent WoT paradigm, describing its main con-
cepts, principles and building blocks;

• to describe a middleware-layer infrastructure that integrates distinct WSN endowed
with a myriad of heterogeneous elements (sensors, actuators, communication hard-
ware);

• to provide a RESTful-based programming model that hides, from the developer,
the low-level details to integrate different types of WSN sensed data in a Mashup
application. Using this programming model, developers can create applications
without having specific knowledge about physical devices or networking environ-
ments;

• to describe, step by step, how to create a Web Mashup application using the Smart-
Sensor infrastructure integrated with a widely used EMML graphical editor and
runtime environment, Presto.5 It is worthwhile to mention that SmartSensor can
be used with any other tool based on EMML.

7.3 Future Work

Despite the rising popularity of IoT and the development of middleware solutions for
facilitating the development of mashup applications, some important aspects need to
be further addressed for making IoT a reality. The main functional components of an
IoT middleware, stated by [5], includes interoperation, context detection, device dis-
covery and management, security and privacy, and managing data volume. Although
SmartSensor can be considered as a middleware for IoT, in its current version, it only

5 http://www.jackbe.com/prestodocs/v3.2/presto-intro/prestoIntro.html

http://www.jackbe.com/prestodocs/v3.2/presto-intro/prestoIntro.html
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provides communication and integration services as well as a programming model
to develop applications on top of the WSN infrastructure.

Managing high data volume and supporting security and privacy are the two key
capabilities to be considered in next versions of SmartSensor. According to [6],
IoT generates a huge ammount of data, yielded by physical and virtual elements
connected to the Internet, and the data volume needs to be stored and easily reached.
The convergence of Cloud Computing with IoT has been pointed out as a promissing
approach [3] to address this issue by establish a cloud-based IoT environment, the
so-called cloud-of-things [4].

Another important issue that deserves a further investigation, highlighted by [7], is
the support for dynamic adaptation of mashups according to the user requirements and
the runtime environment. This aspect needs a combination of context monitoring and
management, adaptive behavior modeling, and the realization of dynamic adaptation
of the mashup.
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