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Preface

In the 1960s and early 1970s, it was customary to see crippled women and
men, with hip and knee joint deformities and serious restriction of movement,
tottering very short distances using various walking aids and describing how
agonizingly painful their arthritic joints were. In November 1962, just over
50 years ago, the pioneer (Sir John Charnley) in hip reconstruction surgery
made the modern breakthrough. Thanks to basic scientists, engineers, the
industry, and dedicated orthopedic surgeons who have invested their scien-
tific and professional lives in adult reconstructive surgery, we can now pro-
vide arthritic patients with painless joint movement and restoration of
function. Total joint arthroplasty has progressively become a major aspect of
surgery in the twentieth century [1]. However, the road to success for arthro-
plasty has been neither easy nor without obstacles. Problems of surgical tech-
nique arose, low-quality implants were used, patterns of failure were
recognized, surgeons had to learn from devastating clinical failures, and
patients were often “fashion victims” [2]. In parallel, spinal surgery, fracture
surgery, and sport injuries surgery evolved; the use of implants became
increasingly common; mistakes were made; failure patterns were recognized;
and solutions found.

During the early decades when arthroplasty was developing, we learned
from expert opinions and from the studies undertaken by the designers of
materials and were sometimes biased. Industry-influenced data was not fil-
tered and thoroughly assessed. We were led to believe that the implant is to
blame for failures, and due to the lack of strong evidence to support the prin-
ciples of our surgical techniques, we familiarized ourselves with both good
and bad arthroplasty stratagems. Fortunately, we now have reliable educa-
tional and training programs, we critically review high-quality literature, we
have evidence-based studies (Levels I and II RCTs, meta-analysis, and
national registry data), and continental regulatory bodies inform and scruti-
nize industrial proposals. We also carefully record the complications that
arise in our procedures and take preventive measures. It is now accepted that
the long-term survival of a TJA is a multifactorial issue, since, other than the
implant, factors related to diagnosis, the patient, the surgeon, and the surgical
technique are also important.

Yet, notwithstanding the above improvements it seems that we are still
liable to create new patterns of failure and disaster. Clear examples of this lie
in the recent overuse of minimally invasive surgical techniques and the
problems which occur with metal on metal bearings of all types and, more
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alarmingly, with the modular interfaces of the big femoral heads and the
modular necks. Added to these problems, there is the matter of finance.
Health providers question the cost-effectiveness of arthroplasty procedures
and especially the need for the introduction of the newer, more expensive
techniques and implants.

Can we reply to the questions, “What is the optimal design and fixation of
the implants we use for orthopedic reconstructions? What are the gold stan-
dards? and Can we do better?”” In an attempt to throw light on these questions,
the present authors critically evaluate data from basic science, experimental
in vivo and in vitro biological and mechanical models, autopsy specimens,
and long-term clinical studies. It is obvious that a huge effort has been put in
both by individual research centers and the implant industry without consid-
ering the cost-effectiveness of the research. It has also become apparent that
theoretical and laboratory studies do not always hold up in the cold morning
light of long-term clinical studies and that there are few quality Levels I and
II clinical outcome studies.

In this book we focus on the bone orthopedic implant interface in general,
and we hope it will be useful both for the novice who seeks a quick introduc-
tion to this specific topic and for more experienced surgeons who seek an
in-depth critical review of current practices.
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Current Evidence in Designs
and Fixation Surfaces in Total
Hip Arthroplasty

Theofilos Karachalios, George Komnos,
and Konstantina Kolonia

Introduction

Since its introduction in the 1960s, total hip
arthroplasty (THA) has proved to be an excel-
lent and reliable mode of treatment for the end
stages of hip pathology, with satisfactory clini-
cal outcomes at 15-20 years [1-4]. Following
the initial problems which the pioneers
accounted in the 1960s and 1970s (such as surgi-
cal technique, structural design failures, and
infection), in the 1980s, orthopaedic surgeons
faced problems of choice of both acetabular
and femoral components and the selection
of cemented or cementless implant fixation.
Soon afterwards, it was proved that the above
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dilemmas had been misleading since the long-
term survival of a THA is a multifactorial issue,
since, other than the implant, factors related to
the diagnosis, the patient, the surgeon, and sur-
gical technique are also important (Fig. 1.1).
However, until now, the implant has been easy to
blame for failures. A possible explanation is the
fact that we do not have strong evidence sup-
porting implant design and fixation principles.
Instead, we have evidence of good and bad reci-
pes, surgeons having learned from devastating
clinical failures and patients having often been
“fashion victims” [5].

In the modern era of THA, it seems that bear-
ing surfaces (a whole chapter by itself) are the cru-
cial issue for the long-term survival of the artificial
joint, and in all international hip forums, implant

Patient
Surgeor Surgical
technique
Diagnosis Geometry and

bone quality

Materials ??7?
Implant design ??
Fixation ???

Fig.1.1 Parameters affecting the long-term survival of a THA

T. Karachalios (ed.), Bone-Implant Interface in Orthopedic Surgery, 1
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design and implant fixation issues are considered
to have been solved. Can we therefore reply to the
question, “What is the optimal design and fixation
of the implant?” This question is of importance
especially nowadays when Economic Health
Providers are asking challenging questions.

In an attempt to throw light on the latter ques-
tion, data from basic science, experimental in vivo
and in vitro biological and mechanical models,
autopsy specimens, and long-term clinical studies
have been critically evaluated. It is obvious that
a huge effort has been put in both by individual
research centers and the implant industry without
considering the cost-effectiveness of this research.
It has also become apparent that theoretical and
laboratory studies do not always hold up in the
cold morning light of long-term clinical studies
and there are few quality level I and II clinical
studies. In contrast, there are numerous level III
studies in which the factors, mid-term follow-up,
patient selection criteria, one center or one surgeon
experience, implant modifications, and a high rate
of dropout after 15 years, reveal serious defects.

Achieving Implant Incorporation

The lifetime of a THA can be divided into three
phases: the initial months during which the
implant must become rigidly fixed (early stable
phase) and the remainder of the implant’s life,
during which fixation may be either maintained
(late stable phase) or lost (late unstable phase).
An early unstable phase may also be seen,
although infrequently these days, due mainly to
surgical technique errors. The qualities of the
arthroplasty that facilitate short-term fixation
(such as cement mantle and implant surface tex-
ture) may not be the ones most important for
long-term fixation (such as implant geometry and
stiffness). Three methods are now routinely used
to achieve initial fixation: (1) cementing the
implant in the bone using polymethylmethacry-
late (PMMA), (2) creating a porous or rough
implant surface into which bone can grow, and
(3) stimulating bone apposition by covering the
implant surface with a bioactive substance such
as hydroxyapatite (HA) [6] (Fig. 1.2).

T. Karachalios et al.

Bone-Cement Interface

PPMA that has been utilized since the early 1960s
has stood the test of time. Cement is not glue and
there is no adhesion between cement and bone; it
merely forms a micromechanical interlock with
bone (Fig. 1.3). If the bone surface is smooth, the
mechanical interlock is poor. To achieve fixation,
therefore, the bony surfaces must be rough and
irregular. Intimate contact between cement and
bone can only be achieved when the bone surface is
clean (removal of bone debris and blood clots is an
advantage) and the trabecular space is open. Thus,
cleaning of the bone bed with pressure lavage and
pressurization of the cement are very important.
The initial bone reaction can be described as an
infarct with necrosis of the bone marrow. The dead
marrow tissue is replaced with fibrous tissue, and
repair of the fractured trabeculae is accomplished
via removal by osteoclastic resorption and new
bone formation within the fibrous tissue. Osteoid
and later mineralized bone may fill the irregular
surface of the bone. In other areas, foreign-body
giant cells can be seen together with connective tis-
sue membrane. Bone or an intact hematopoietic
marrow can be found beyond this membrane. Bone
remodeling of the underlying bone occurs due to an
alteration in the stress pattern occasioned by use of
an implant [7-11]. Willert has categorized the
response of bone to the insertion of cement into
three phases [12]. In phase I, the first 2-3 weeks
after surgery, tissue necrosis is the dominant find-
ing; in phase II, there is a reparative stage (fibrous,
cartilaginous, and osseous tissue) which lasts up to
2 years; and during phase III, a stable bed forms.
Direct contact between cement and bone can occur,
but the usual interface at the mid-term stages is a
fibrohistiocytic membrane [7-12]. With old gener-
ations of cement techniques (thumb and finger
insertion), only 20 % of cement was in direct con-
tact with the bone, while with second generation
(medullary canal plug) and third generation (plug,
pulsative lavage, and pressure device), an estimated
40-60 % of direct contact can be expected
(Fig. 1.4). Cemented femoral components are well
tolerated by the skeleton over a long period of use,
and fibrous tissue is sparsely formed at the femoral
cement-bone interface of those well fixed and
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- Ha coating

- Bone

d metal surface

Fig.1.2 Line drawings showing: (a) cemented THA, (b) cementless THA, and (¢) HA-coated cementless THA

clinically successful prostheses. The cement mantle
can be well supported by extensive medullary bone
remodeling, and the formation of a dense shell of
new bone that resembles a new cortex is attached to
the outer cortex by new trabecular struts [13].

Cement-Femoral Stem Interface

It has been shown that the optimal shape of a
stem should transmit torsional as well as axial
load to the cement and to the bone without
creating damaging peak stresses and without

excessive micro-movement. Mechanical fac-
tors, cement type and creep, implant type, alloy
material, hip stem design, cross-section geome-
try, stem surface finish, and heat generation dur-
ing the exothermic polymerizarion of cement
can all affect the interface (Fig. 1.5). The stem
should remain mechanically stable in the long
term despite being subjected to repetitive load-
ing. Two methods have been adopted to achieve
these goals: “loaded-taper” or “force-closed”
fixation and ‘“composite-beam” or ‘“‘shaped-
closed” fixation [14, 15]. In the loaded-taper
model epitomized by the Exeter implant and its



Fig. 1.3 Cement-bone
microinterlock

Fig. 1.4 Third generation of cementing
Satisfactory clinical and radiological outcome at 18 years
follow-up

technique.

modern counterparts, the stem is tapered in two
or three planes and becomes lodged as a wedge
in the cement mantle during axial loading, reducing

T. Karachalios et al.

peak stresses in the proximal and distal cement
mantle. The stem is allowed to subside at early
stages without compromising long-term clini-
cal outcome. Polished stems with a loaded-taper
design are preferred since they allow stepwise
subsidence to a stable position, with the asso-
ciated micro-movement producing less metal
and cement debris at the cement-stem interface.
They are very sensitive to a rough surface fin-
ish and are incompatible with the use of a col-
lar as a positioning device, an anatomical shape
or canal-filling design of the stem, since these
features prevent subsidence within the cement
mantle. In the composite-beam concept, the
stem needs to be rigidly bound to the cement
since subsidence or impairment of the stem-
cement interface may result in damage to the
cement, with the generation of PMMA and/
or metal debris, and ultimately failure of the
implant. These implants are not intended to sub-
side at the early stages, and in order to optimize
stability, roughening or cement pre-coating of
the surface has been shown to increase cement-
stem bonding. Implants with a strong cement-
stem bond are more sensitive to the presence
of incomplete and thin cement mantles with a
poor cement-bone interface than are polished
stems. Discussion about the behavior of the
cement-stem interface was initiated by Harris
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Fig. 1.5 Implant-related parameters affecting the long-term survival of cemented THA

who observed that cement failure begins at the
stem-cement interface [16]. In his opinion, the
cement-stem interface can be made stronger
by fixing the cement to the stem. Rough stems
need a thick, continuous cement mantle of good
quality with a strong cement-bone interface and
should be made of wear-resistant materials,
whereas polished stems may be more tolerant to
suboptimal cementing and manufactured from
less wear-resistant materials. It has been recom-
mended that a cement mantle which is subjected
to high stresses should be between 2 and 5 mm
thick, especially in the proximal-medial part of
the implant and around the tip of the distal stem
[17]. Several features of the shape of the stem
influence the in vivo behavior of femoral com-
ponents, including the overall shape (straight or
anatomical), the cross section (oval or square),
the presence of a collar, the shape of the tip of
the stem, the length of the stem, and whether the
edges are rounded to a greater or lesser degree
[14, 15]. A stem relying on the composite-beam
principle can be either straight or anatomical.
Composite beams can be achieved with the
interposition of a thick or a thin layer of cement,
depending on whether the implant is undersized

compared with the broach or not. A canal-filling
stem (stems related to the “French paradox”
principle) is cemented line to line with the size
of the last broach used, and stem cortex contact
points as well as areas of thin cement supported
by cortical bone help to stabilize the implant.

The Test of Time

Cemented surgical techniques and the design of
implants have evolved dramatically. Some of
these changes have resulted in improved sur-
vival rates (good recipes) while others have not
(bad recipes), and registry data have shown that
not all cemented cups and stems are the same
[18]. It should be understood that satisfactory
cemented designs are at least 15-20 years ahead
of cementless designs, lessons have been
learned, and reliable long-term data exists.
Cement has been implicated as a major cause of
failure responsible for large lytic and foreign-
body reactions around both acetabular and fem-
oral implants [19]. Later it was understood that
these reactions were the result of a biological
response to wear debris.



Cemented Cups

We have learned that cemented cups require
exposure to cancellous bone, the bone bed must
be clean and dry, and adequate bony coverage of
the cup is necessary. Wear and aseptic loosening
appear late after the 10th postoperative year and
survival rates are inferior in younger patients. We
are still not able to fully control radiolucent lines
at the bone-cement interface, and cemented cups
still produce inconsistent results [20]. Cemented
cups have shown a 97 % survival rate at 10 years
and 85 % at 20 years [21, 22]. A survival rate of
98 % at 10 years and 90 % at 16 years (based
mainly on the Charnley and Exeter cup) has been
reported in the 2007 annual report of the Swedish
Registry. However, survival rates of 78 % at 10
years and 68 % at 20 years were reported in
younger patients [23-25].

Cemented Stems

It has been reported (long-term studies and regis-
try data) that improved cementing techniques have
resulted in improved clinical outcomes [26, 27].
However, even a small change in a satisfactory
design can have a substantial effect on long-term
outcome. Young age does not affect femoral long-
term survival (Swedish, Norwegian and Danish
Registries, 2007 annual reports). Third-generation
cementing techniques are affected by stem pre-
coating problems. Survival rates vary, at a high
level, but satisfactory designs tend to produce a
constant 1-1.5 % aseptic loosening rate of the
femoral stem at 15 years. Good loaded-taper reci-
pes are the Charnley stem with survival rates of
over 90 % at 10 years with losses of 10 % per
decade and a final 77-81 % at 20-30 years [25, 28, 29]
and the Exeter stem with an exceptional survival
rate of 93.5 % at 33 years [30, 31]. Good compos-
ite-beam recipes are the Lubinus SP II stem [32—
34] and the original Muller straight stem with a
94 % survival rate at 15 years [35, 36]. The French
paradox recipe (by far the most inexperienced
user-friendly technique) including different pol-
ished rectangular canal-filling stems cemented
line to line has produced excellent long-term

T. Karachalios et al.

results [37-40]. Although in vivo both concepts of
stem fixation have proved to be effective, they can-
not work together. It is important to understand on
which principle a particular stem relies.

Bone-Implant Interface

Despite unsatisfactory early attempts at cement-
less fixation, in the early 1980s, it became evi-
dent that lamellar bone can be attached to specific
implant surfaces without intervening fibrous tissue,
a phenomenon called osseointegration [41]. Since
osseointegration was considered to be a more bio-
logical mode of implant fixation, numerous bio-
logical, biomechanical, and human retrieval studies
were performed in order to throw light on this bio-
logical process. We now know that this is a fracture
healing-like process which occurs approximately
4-12 weeks after implantation and may continue
for up to 3 years [42, 43]. During the stages of this
“interface healing” process, cartilaginous, fibrous,
and osseous tissue are formed (primary stable
membrane, 4-6 weeks), and at the end, the surface
of the prosthesis is covered, to a varying degree, by
bone (stable interface, 4 months). The initial stages
of this process are direct contact and micromotion
sensitive, and early stability (press-fit technique)
of the interface is mandatory [44, 45]. Several fac-
tors affect the osseointegration of implants, with
their relative importance being unknown (Fig. 1.6).
Ingrowth occurs when bone grows inside a porous
surface, a phenomenon which depends on the sur-
face characteristics of the implant. Surfaces for
ingrowth include sintered beads, fiber mesh, and
porous metals (Fig. 1.7). Sintered beads are micro-
spheres of either cobalt chromium or titanium alloy
attached by the use of high temperatures (excel-
lent bond strength, high resistance to abrasion)
[46]. Fiber mesh coatings are titanium metal pads
attached by diffusion bonding [46]. Porous met-
als (a recent development) have a uniform three-
dimensional network, with high interconnectivity
of the voids and high porosity (75-85 %) com-
pared with that of sintered beads and fiber metal
coatings (30-50 %) [47]. Ingrowth requires a pore
size between 50 and 400 mm, and the percentage
of voids within the coating should be between
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Fig.1.6 Implant-related ﬂ
parameters affecting

the long-term survival
of cementless THA
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30 and 40 % to maintain mechanical strength [48].
Ongrowth occurs when bone grows onto a rough-
ened surface. Ongrowth surfaces are created by grit
blasting or plasma spraying (Fig. 1.7). Grit blast-
ing creates a textured surface by bombarding the
implant with small abrasive particles. The surface
roughness ranges from 3 to 5 mm [43, 49]. Plasma
spraying involves mixing metal powders with an
inert gas that is pressurized and ionized, forming a
high-energy flame. The molten material is sprayed
onto the implant, creating a textured surface
(weaker mechanical bond, abrasion, and wear).
There is less interconnecting porosity than with
the ingrowth surfaces; however, 90 % of implant
fatigue strength is retained, whereas only 50 % is
retained after diffusion bonding and sintering [50].
Hydroxyapatite is a calcium phosphate compound
that is plasma sprayed directly on the implant alone
or over a porous coating. It is osteoconductive and
enhances the growth of mineralized bone onto the
implant [51, 52]. HA bone interface is more tol-
erant to interface gaps and micromotion. Interface
strength, interface degradation, and HA particle
third-body wear are of concern [53, 54]. The good
“recipe” for HA-coated implants is titanium alloy
substrate, plasma spray technique, high crystallin-
ity HA of 50-75 pm thickness, which does not com-
promise its strength or biological behavior [54, 55].
It is generally accepted that fixation surfaces need
to be circumferential and continuous. Metaphyseal
osseointegration and proximal stress transfer are

enhanced, and coating provides a seal which stops
wear particle migration preventing interface oste-
olysis [56, 57]. Cobalt-chromium-molybdenum
alloys and titanium-aluminum-vanadium alloys
are most commonly used for cementless femoral
stem designs. The modulus of elasticity of titanium
alloys is closer to that of bone than is that of cobalt-
chromium alloys. Theoretically, this should pro-
duce less thigh pain and stress shielding [58]. Thigh
pain, however, is believed to be a result of not only
the stiffness of the metal but also the stem geom-
etry, and recent long-term clinical data have shown
that proximal stress shielding phenomenon has
been overestimated from the clinical point of view
[59, 60]. In a modern cementless implant direct
bone formation can be seen on 70-80 % of porous
surfaces, fibrous tissue (with well-organized dense
collagen network) on 20 % of porous surfaces,
and amorphous fibrous tissue on smooth surfaces
(Fig. 1.8). Improved direct bone formation is seen
in HA-coated prostheses. Proximal femoral mor-
phology and bone quality also seem to affect fixa-
tion [61]. Early cementless stems were classified as
straight or curved. Current stems are referred to as
proximally porous-coated tapered or fully coated
cylindrical. While these simplifications are accept-
able in general terms, they miss important design
characteristics and make comparisons misleading.
A comprehensive classification system is needed,
with that proposed by Khanuja being useful for
comparisons, although not complete [62].
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The Test of Time

Cementless surgical techniques and the design of
implants have also evolved dramatically. Some
of these changes have also resulted in improved
survival rates (good recipes), while others have
not (bad recipes), and mid-term and long-term
clinical and registry data have also shown that
not all cementless cups and stems are the same.
No data exist to support the idea that the use of
super alloys and improved surfaces, as a single
factor, affects clinical results at 15 years. Despite
improvements in manufacturing, structural fail-
ures of implants still appear [63]. The long-term
results of the first generation of cementless cups
are heavily affected by problems of the lock-
ing mechanism, backside wear, and osteolysis.
Cups made of porous materials, approaching the
10-year time interval, present promising clini-
cal data [64, 65]. Additionally, high failure rates
were observed with the use of HA-coated hemi-
spherical cups [66]. There is also evidence that
femoral stem geometry is more important than
alloy and surface characteristics [59, 67-69].
There are several good “recipes” which combine
different alloy, geometry, and surface finish princi-
ples [62]. Numerous reports of the CLS Spotorno
femoral stem, which is a grit-blasted single wedge
for tapered proximal fixation, show a 98.8 % sur-
vival rate at 15-20 years [70]. Taper-Lock and Tri-
Lock, two versions (plasma spray and porous
coated) of a single wedge for proximal tapered fixa-
tion, showed a 99 % survival rate at 22 years [71].
Two versions of the Omnifit stem, a double wedge
for metaphyseal filling and proximal HA fixation,
showed a 99 % survival rate at 17-24 years [66, 69,
72]. Another similar design, the Corail HA-coated
stem, showed a 97 % survival rate at 20 years [73].
In the same category, the HA-coated Furlong stem
showed 97-99 % survival at 15-20 years [74]. The
Mallory tapered round stem, for tapered proximal
fixation, showed a 95.5 % survival rate at 20 years
[75]. The small Wagner stem, a tapered spline cone
for distal fixation, showed a 95-98 % survival rate
at 15 years [76]. The Zweymuller grit-blasted
tapered rectangular stem, for tapered distal fixation,
showed a 96-98 % survival rate at 20 years [77].
The anatomic cylindrical fully coated stem for distal

fixation showed a 92 % survival rate at 22 years [ 78, 79].
Generally, all the above designs and several modern
3° taper stems (with follow-up observation just
above 15 years) present an average 1.5 % revision
rate for aseptic loosening at 15 years.

Evidence-Based Data

In a systematic review and meta-analysis of
cemented versus cementless cups, it was found that
using contemporary techniques, both cemented
and uncemented sockets, can yield good long-
term results, but the overall/all cause reoperation
risk is lower for cemented fixation. It is suggested
until and unless cross-linked polyethylene (PE)
liners or alternative bearings can prove to yield a
superior outcome in the future, the cemented PE
cup remains the gold standard, for all age groups,
and by which every acetabular component should
be compared [4, 80]. There are two systematic
reviews comparing cemented and cementless
femoral stems. In the first one, no difference was
found [3]. In the second, cemented stems showed
superior clinical and functional results in the short
term, but cemented stems showed less clear supe-
riority in the long term, and radiological results
did not correlate with the clinical outcome [81].
In a RCT (level 1) study with a 20-year follow-
up cemented THA showed lower survival rates
compared to cementless; the cementless tapered
stem was associated with a survival rate of 99 %
[82]. Age younger than 65 years and male gender
were predictors of revision surgery [82]. Finally,
in a recent report from the Swedish Register, it
was found that the survival of uncemented THA
is inferior to that of cemented, mainly related to
poorer performance of uncemented cups, unce-
mented stems perform better than cemented stems,
and unrecognized intraoperative femoral fractures
may be an important reason for early failure of
uncemented stems [83].

Conclusion

Long-term survival of THA is multifactorial.
The patient, diagnosis, and surgeon factors are
perhaps more important than the implant per
se. There are several good and bad recipes for
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both cemented and cementless arthroplasty. It
seems that a 1.5 % revision rate (for both
cemented and cementless stem fixation) for
aseptic loosening at 15 years follow-up is a
target for future comparisons. Financial
investment in the development of new materi-
als and designs has not been translated in
improved survival rates at 15 years follow-up.
The weak link of contemporary THA remains
bearing surfaces.
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Early and Late Mechanical Stability
of the Cementless Bone-Implant
Interface in Total Joint

Arthroplasty

Elise C. Pegg, Stephen J. Mellon,

and Harinderjit S. Gill

Introduction

The mechanical stability of an orthopedic implant
is essential for optimal function and outcome.
Implant design and theories about fixation have
changed greatly over the years, but what does
remain is a belief in the importance of achieving
both primary stability and secondary stability.

Primary stability: Mechanical fixation of
an implant achieved at surgery

Secondary stability: Bone growth directly
onto the implant surface, enabling long-term
fixation

The purpose of this chapter is to examine our
current understanding of how these two stages can
be achieved and the various influencing factors.

There are two main techniques used to achieve
fixation of orthopedic components: application of
polymethylmethacrylate (PMMA) to “cement”
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the implant into the bone and “cementless” fixa-
tion where bone ingrowth directly onto the
implant is encouraged using bioactive implant
coatings and a rough surface texture. Much of our
understanding of primary and secondary stability
stems from the early studies of these techniques;
therefore, we will begin by discussing the history
behind cementless fixation. We will then exam-
ine the current theories behind the mechanism by
which primary and secondary stability is achieved
and finally we will focus on how implant design
can affect stability.

Development of Cementless
Components

Fixation of early components for joint replace-
ment was largely unsatisfactory; many compo-
nents were press-fit into the bone and some
experimented with screw fixation [1], but loosen-
ing remained a common complication [2]. In
1962, Sir John Charnley decided to employ
PMMA cement for his low-friction arthroplasty
hip [3], and following the success of the proce-
dure, PMMA cement use in orthopedics became
common. However, some issues were associated
with PMMA cement. One of these was the high
temperature resulting from the exothermic
polymerization reaction; this could lead to necro-
sis of the bone in some cases [4]. In addition to
this, in 1976, Harris et al. published a paper
reporting osteolysis following hip arthroplasty
with an unusually high number of macrophages
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Fig.2.1 Timeline of significant events in cementless fixation research

and voids in the surrounding tissue [5]. The tissue
response was