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“To raise new questions, new possibilities, to
regard old problems from a new angle,
requires creative imagination and marks the
real advance in science”
A. Einstein

As a result of the above thought, I dedicate
this book to all those who are curious,
critical, and challenging.



Foreword

Fractional Calculus (FC) was originated in 1695 based on the genial ideas of the
German mathematician and philosopher Gottfried Leibniz (1646–1716). Up to the
end of the 19th century, this topic remained mainly abstract with progress centered
in pure mathematics. The application of FC started with Oliver Heaviside (1850–
1925), an English electrical engineer, mathematician, and physicist. Heaviside ap-
plied concepts of FC in is operational calculus and electrical systems. Nevertheless,
FC remained a mathematical tool unknown for most researchers. In the area of life
sciences the first contributions are credited to the American scientists Kenneth Stew-
art Cole (1900–1984) and Robert Hugh Cole (1914–1990), who published several
papers by the end of the 1930s. They proposed the so-called Cole–Cole empirical
model, which has been successfully applied up to today, in a large variety of tissues.

These pioneering applications of FC were apparently forgotten in the decades
that followed. There is no historical record, social event, or scientific explanation,
for the ‘oblivium’ phenomenon. Three decades later Bertram Ross organized the
First Conference on Fractional Calculus and its Applications at the University of
New Haven in 1974. Also, Keith Oldham and Jerome Spanier published the first
monograph devoted to FC. Again, these important contributions remained with FC
focused on pure mathematics, but in 1983 the French engineer Alain Ousaloup
developed the CRONE (acronym for ‘Commande Robuste d’Ordre Non Entier’)
method, which is used since then in control and identification algorithms. We can
say that the modern era of application of FC in physics and engineering started there.
In 1998 Virginia Kiryakova initiated the publication of the journal Fractional Cal-
culus & Applied Analysis. We should mention the vision of Ali Nayfeh and Murat
Kunt, editors-in-chief of journals ‘Nonlinear Dynamics’ and ‘Signal Processing’,
respectively, that supported a sustained growth of the new–old field by means of
several special issues.

In the area of biology and medicine the first book, authored by Richard Magin,
was published in 2006. By 2004 a young researcher, Clara Ionescu, started an in-
tensive work in modeling respiratory systems using FC. I called her the ‘atomic
woman’ given the intensity of her work that culminated with her Ph.D. by the end
of 2009. Clara continued improving the models, getting more results and publish-
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viii Foreword

ing her research. This book formulates, in a comprehensive work, her vision on the
application of FC in the modeling of respiratory systems. I am certain that the book
will constitute a novel landmark in the progress in the area and that its readers will
be rewarded by new perspectives and wider conceptual avenues.

J.A. Tenreiro MachadoPorto
May 2013



Preface

The objective of the book is to put forward emerging ideas from biology and math-
ematics into biomedical engineering applications in general with special attention
to the analysis of the human respiratory system. The field of fractional calculus is
mature in mathematics and chemistry, but still in infancy in engineering applica-
tions. However, the last two decades have been very fruitful in producing new ideas
and concepts with applications in biomedical engineering. The reader should find
the book a revelation of the latest trends in modeling and identification of the hu-
man respiratory parameters for the purpose of diagnostic and monitoring. Of special
interest here is the notion of fractal structure, which tells us something about the bi-
ological efficiency of the human respiratory system. Related to this notion is the
fractal dimension, relating the adaptation of the fractal structure to environmental
changes (i.e. disease). Finally, we have the dynamical pattern of breathing, which is
then the result of both the structure and the adaptability of the respiratory system.

The distinctive feature of the book is that it offers a bottom-up approach, start-
ing from the basic anatomical structure of the respiratory system and continuing
with the dynamic pattern of the breathing. The relations between structure (or the
specific changes within it) and fundamental working of the system as a whole are
pinned such that the reader can understand their interplay. Moreover, this interplay
becomes crucial when alterations at the structural level in the airway caused by dis-
ease may require adaptation of the body to the functional requirements of breathing
(i.e. to ensure the necessary amount of oxygen to the organs). Adaptation of the hu-
man body, and specially of the respiratory system, to various conditions can be thus
explained and justified in terms of breathing efficiency.

The motivation for putting together this book is to give by means of the exam-
ple chosen (i.e. the respiratory system) an impulse to the engineering and medical
community in embracing these new ideas and becoming aware of the interaction
between these disciplines. The net benefit of reading this book is the advantage of
any researcher who wants to stay up to date with the new emerging research trends
in biomedical applications. The book offers the reader an opportunity to become
aware of a novel, unexplored, and yet challenging research direction.
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x Preface

My intention was to build a bridge between the medical and engineering worlds,
to facilitate cross-fertilization. In order to achieve this, I tried to organize the book
in the traditional structure of a textbook.

A brief introduction will present the concept of fractional signals and systems to
the reader, including a short history of the fractional calculus and its applications in
biology and medicine. In this introductory chapter, the notions of fractal structure
and fractal dimension will be defined as well.

The second chapter describes the anatomy of the respiratory system with mor-
phological and structural details, as well as lung function tests for evaluating the
respiratory parameters with the aim of diagnosis and monitoring. The third chapter
will present the notion of respiratory impedance, how it is measured, why it is useful
and how we are going to use it in the remainder of the book.

A mathematical basis for modeling air-pressure and air-flow oscillations in the
airways is given in the fourth chapter. This model will then be used as a basis for
further developments of ladder network models in Chap. 5, thus preserving anatomy
and structure of the respiratory system. Simulations of the effects of fractal symme-
try and asymmetry on the respiratory properties and the evaluation of respiratory
impedance in the frequency domain are also shown.

Chapter 6 will introduce the equivalent mechanical model of the respiratory tree
and its implications for evaluating viscoelasticity. Of special importance is the fact
that changes in the viscoelastic effects are clearly seen in patients with respiratory
insufficiency, hence markers are developed to evaluate these effects and provide
insight into the monitoring of the disease evolution. Measurements on real data sets
are presented and discussed.

Chapter 7 discusses models which can be used to model the respiratory
impedance over a broad range of frequencies, namely ladder network model and
a model existing in the literature, for comparison purposes. The upper airway shunt
(not part of the actual respiratory system with airways and parenchyma) and its bias
effect in the estimated values for the respiratory impedance is presented, along with
a characterization on healthy persons and prediction values. Measurements on real
data sets are presented and discussed.

Chapter 8 presents the analysis of the breathing pattern and relation to the fractal
dimension. Additionally, a link between the fractal structure and the convergence
to fractional order models is shown, allowing also a link between the value of the
fractional order model and the values of the fractal dimension. In this way, the inter-
play between structure and breathing patterns is shown. A discussion of this inter-
play points to the fact that with disease, changes in structure occur, these structural
changes implying changes in the work necessary to breath at functional levels. Mea-
surements on real data sets are again presented and discussed.

Chapter 9 introduces methods and protocols to investigate whether moving from
the theory of linear system to nonlinear contributions can bring useful insight as
regards diagnosis. In this context, measuring frequencies close to the breathing of
the patient is more useful than measuring frequencies outside the range of tidal
breathing. This also implies that viscoelasticity will be measured in terms of nonlin-
ear effects. The nonlinear artifacts measured in the respiratory impedance, are then
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linked to the viscous and elastic properties in the lung parenchyma. Measurements
on real data sets are presented and discussed. Chapter 10 summarizes the contribu-
tions of the book and point to future perspectives in terms of research and diagnosis
methods. In the Appendix, some useful information is given to further support the
reader in his/her quest for knowledge.

Finally, I would like to end this preface section with some words of acknowledg-
ment.

I would like to thank Oliver Jackson for the invitation to start this book project,
and Ms. Charlotte Cross of Springer London for her professional support with the
review, editing, and production steps.

Part of the ideas from this book are due to the following men(tors): Prof. Robin
De Keyser (Ghent University, Belgium), Prof. Jose-Antonio Tenreiro Machado (In-
stitute of Engineering, Porto, Portugal), Prof. Alain Oustaloup (University of Bor-
deaux1, France) and Prof. Viorel Dugan (University of Lower Danube, Galati, Ro-
mania). Clinical insight has been generously provided to me by Prof. Dr. MD Eric
Derom (Ghent University Hospital, Belgium) and Prof. Dr. MD Kristine Desager
(Antwerp University Hospital, Belgium). I thank them cordially for their continu-
ous support and encouragement.

Further technical support is acknowledged from the following Master and Ph.D.
students throughout the last decade: Alexander Caicedo, Ionut Muntean, Niels Van
Nuffel, Nele De Geeter, Mattias Deneut, Michael Muehlebach, Hannes Maes, and
Dana Copot.

Next, I would like to acknowledge the persons who supported my work adminis-
tratively and technically during the clinical trials.

• For the measurements on healthy adult subjects, I would like to thank Mr. Sven
Verschraegen for the technical assistance for pulmonary function testing at the
Department of Respiratory Medicine of Ghent University Hospital, Belgium.

• For the measurements on healthy children, I would like to thank Mr. Raf Mis-
sorten from St. Vincentius school in Zwijnaarde, Principal, for allowing us to
perform tests and to Mr. Dirk Audenaert for providing the healthy volunteers.
I would also like to thank Nele De Geeter and Niels Van Nuffel for further assis-
tance during the FOT (Forced Oscillations Technique) measurements.

• For the measurements on COPD patients: many thanks to Prof. Dr. Dorin Isoc
from Technical University of Cluj-Napoca and to Dr. Monica Pop for the assis-
tance in the University of Pharmacy and Medicine “Iuliu Hatieganu” in Cluj-
Napoca, Romania.

• For the measurements on asthmatic children, I would like to thank Rita Claes,
Hilde Vaerenberg, Kevin De Sooner, Lutje Claus, Hilde Cuypers, Ria Heyndrickx
and Pieter De Herdt from the pulmonary function laboratory in UZ Antwerp, for
the professional discussions, technical and amicable support during my stay in
their laboratory.

• For the measurements on kyphoscoliosis adults, I would like to thank Mrs. Her-
mine Middendorp for the assistance with the Ethical Committee request; to
Philippe De Gryze, Frank De Vriendt, Lucienne Daman, and Evelien De Burck
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for performing the spirometry tests and to Dr. Robert Gosselin for calculating the
Cobb angles on the RX photos.

• For the measurements on healthy children during the Science Week event, I would
like to thank Stig Dooms, Hannes Maes, Gerd Vandersteen, and Dana Copot for
their technical support with the device and for performing measurements.

Last but not least, I would like to acknowledge the moral support and care re-
ceived from my grandma, Buna, my aunt, Victoria, and my two cousins, Florina and
Petrica. I would also like to thank Nathalie for her friendship during the strenuous
times of writing this book, and to thank Robin, Amelie, Cosmin, and Dana for their
critical comments to improve the content of the book.

Clara M. IonescuGent, Belgium
June 2013
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Defined in Chap. 1:

P pressure
Q flow
Zr respiratory impedance
Rr respiratory resistance
Lr respiratory inertance
Cr respiratory capacitance
βr fractional order
n fractional order
j the imaginary number = √

( − 1)

ω angular frequency = 2πf , f the frequency in Hz
E∗ complex modulus of elasticity
σ stress
ε strain
ES , ED storage and dissipation moduli, respectively
E spring/elastic constant
η damper/viscous constant
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τ time delay, time shift
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d diameter, distance
εFD box size
N(εFD) number of boxes of size εFD

Defined in Chap. 2:
m airway level
Δ degree of asymmetry

 airway length
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h airway wall thickness
κ airway cartilage fraction

Defined in Chap. 3:
Ug generated input/signal
Ur breathing input/signal
Z1 impedance describing voltage-pressure conversion
Z2 impedance describing the loudspeaker and bias tube
Z3 impedance describing the pneumotachograph effect
SPU, SQU cross-correlation spectra between various signals
ER error calculated from the real part of impedance
EX error calculated from the imaginary part of impedance
ET total error
Re the values of the real part of the impedance
Im the values of the imaginary part of the impedance
αr,βr fractional orders
CP4 the constant-phase model from literature in four parameters
CP5 the proposed constant-phase model in five parameters
NS total number of samples

Defined in Chap. 4:
δ Womersley parameter = R

√
ωρ/μ
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γ complex propagation coefficient
κ cartilage fraction
μ dynamic viscosity
νP coefficient of Poisson (= 0.45)
θ contour coordinate
ρ,ρwall, ρs, ρc density of air at BTPS, respectively of the airway wall, of the soft

tissue, and of the cartilage
ω angular frequency
ζ radial deformation
φb angle of bifurcation
�P pressure drop
b bifurcation length
cx capacity per distance unit
dx distance unit
c̃, ć0 the complex velocity of wave propagation, the effective/corrected

Moens–Korteweg velocity
f frequency in Hz
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gx conductance per distance unit
h wall thickness
j complex unit = √−1
lx inductance per distance unit

 airway length

m length of an airway in a level m

m airway depth or airway level
p pressure
q flow
r radial direction, radial coordinate
rx resistance per distance unit
t time
u velocity in radial direction
v velocity in contour direction
w velocity in axial direction
z axial direction, longitudinal coordinate
y ratio of radial position to radius = r/R

R airway radius
Ap,C1 amplitude of the pressure wave
Au amplitude of the radial velocity wave
Aw amplitude of the axial velocity wave
A∗

m, Am the cross sectional area in an airway, and in the level m, respec-
tively

Q∗
m, Qm the air-flow in an airway, and in the level m, respectively

w∗
m, wm the axial velocity in an airway, and in the level m, respectively

E, Ec, Es effective, cartilage and soft tissue elastic modulus, respectively
Fr , Fθ , Fz forces in the radial, contour and axial directions
Mp modulus of pressure wave
J1, J0 Bessel functions of first kind and order 1 and 0
M0, M1, M2 the modulus of the complex Bessel functions of the first kind and

order 0 and 1
Δ asymmetry index
Re electric resistance
Le electric inductance, inertance
Ce electric capacitance, compliance
Zl,Zt,Z0 the longitudinal, transversal and characteristic impedances
|E|, φE the modulus and angle of the elastic modulus
NRE Reynolds number

Defined in Chap. 5:
λ ratio for resistance
1/α ratio for inertance
χ ratio for capacitance
o ratio for conductance
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Rm radius of an airway in a level m

Rem electrical resistance in the level m

Lem electrical inertance in the level m

Cem electrical capacitance in the level m

RUA, LUA, CUA upper airway resistance, inertance and capacitance, respectively
RCG, LCG, CCG gas compression resistance, inertance and capacitance, respec-

tively
Zl, Zt longitudinal and transversal impedances, respectively
ZN , YN the total ladder network impedance, respectively admittance
N total number of levels, total number of cells
Im current in cell m

Um voltage in cell m

Defined in Chap. 6:
n fractional order
F force
A cross sectional area
σ stress
ε strain
�
 longitudinal deformation
ES , ED storage and dissipation moduli, respectively
τ relaxation time
V volume
B damping constant (dashpot) from electrical equivalence
K elastic constant (spring) from electrical equivalence
E spring constant
η damper constant
v velocity
x axial displacement
Ed , ϕd dynamic modulus and its angle
W energy
σc constant stress
tan δ loss tangent

Defined in Chap. 7:
Raw total airway resistance (body plethysmography)
Ccw chest wall compliance calculated from Cobb angle
h, a, w height (m), age (years) and weight (kg)
QF6 quality factor at 6 Hz
R6 real part of impedance at 6 Hz
PF6 power factor at 6 Hz
Frez resonant frequency
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Gr tissue damping
Hr tissue elastance
ηr tissue hysteresivity
εr tissue permittivity
φz phase angle at 6 Hz
ZPAR high-frequency interval parametric impedance model
ZREC high-frequency interval recurrent parametric impedance model

Defined in Chap. 8:
p, z poles, zeros
K gain
Npz number of pole-zero pairs
ωu unit angular frequency
ωb,ωh low, respectively high-frequency limit interval
dij ,D1,D2 distance
δij dissimilarity
τ delay

Defined in Chap. 9:
b(t) breathing signal
i harmonic
β polynomial order
Ts sampling period
F0 breathing frequency
UFOT optimized multisine excitation signal for FOT testing
E{} expected value
T index of nonlinear distortions
Peven non-excited pressure values at even frequency points
Podd non-excited pressure values at odd frequency points
Pexc excited pressure values at odd frequency points
Ueven non-excited pressure values at even frequency points
Uodd non-excited pressure values at odd frequency points
Uexc excited pressure values at odd frequency points



Chapter 1
Introduction

1.1 The Concept of Fractional Signals and Systems
in Biomedical Engineering

The seminal concepts risen from two mathematicians, the bourgeois L’Hopital and
the philosopher Leibnitz, have proven yet again that old ideas have long shadows.
Three hundred years after this cross-fertilization, modern sciences are plucking its
fruits at a logarithmically ever-increasing speed. About half a century ago, frac-
tional calculus has emerged from the shadows of its abstract form into the light of
a very broad application field, varying from ecology, economics, physics, biology,
and medicine. Of course, it all became possible with a little aid from the revolu-
tion in computer science and microchip technology, allowing to perform complex
numerical calculations in a fraction of a millisecond. Nowadays, it turns out that
Mother Nature has a very simple, yet extremely effective design tool: the fractal.
For those not yet aware of this notion, the concise definition coined by Mandel-
brot is that a fractal structure is a structure where its scale is invariant under a(ny)
number of transformations and that it has no characteristic length [97]. Fractals and
their relative dimensions have been shown to be natural models to characterize var-
ious natural phenomena, e.g. diffusion, material properties, e.g. viscoelasticity, and
repetitive structures with (pseudo)recurrent scales, e.g. biological systems.

The emerging concepts of fractional calculus (FC) in biology and medicine have
shown a great deal of success, explaining complex phenomena with a startling sim-
plicity [95, 167]. For some, such simplicity may even be cause for uneasiness, for
what would the world be without scepticism? It is the quest to prove, to show, to sus-
tain one’s ideas by practice that allows progress into science and for this, one must
acknowledge the great amount of results published in the last decades and nicely
summarized in [149–152].

To name a few examples, one cannot start without mentioning the work of Man-
delbrot, who, in his quest to decipher the Geometry of Life, showed that fractals are
ubiquitous features [97]. An emerging conclusion from his investigations was that
in Nature there exists the so called “magic number”, which allows to generically
describe all living organisms. Research has shown fractal properties from cellular
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2 1 Introduction

metabolism [144] to human walk [50]. Furthermore, the lungs are an optimal gas
exchanger by means of fractal structure of the peripheral airways, whereas diffusion
in the entire body (e.g. respiratory, metabolic, drug uptake, etc.) can be modeled by
a fractional derivative.1 Based on similar concepts, the blood vascular network also
has a fractal design, and so do neural networks, branching trees, seiva networks in a
leaf, cellular growth and membrane porosity [50, 74, 81].

It is clear that a major contribution of the concept of FC has been and remains
still in the field of biology and medicine [151, 152]. Is it perhaps because it is an
intrinsic property of natural systems and living organisms? This book will try to
answer this question in a quite narrow perspective, namely (just) the human lungs.
Nevertheless, this example offers a vast playground for the modern engineer since
three major phenomena are interwoven into a complex, symbiotic system: fractal
structure, viscoelastic material properties, and diffusion.

1.2 Short History of Fractional Calculus and Its Application
to the Respiratory System

From the 1970s, FC has inspired an increasing awareness in the research commu-
nity. The first scientific meeting was organized as the First Conference on Frac-
tional Calculus and its Applications at the University of New Haven in June 1974
[151, 152]. In the same year appeared the monograph of K.B. Oldham and J. Spanier
[113], which has become a textbook by now together with the later work of Pod-
lubny [126].

Signal processing, modeling, and control are the areas of intensive FC research
over the last decades [146, 147]. The pioneering work of A. Oustaloup enabled
the application of fractional derivatives in the frequency domain [118], with many
applications of FC in control engineering [20, 117].

Fractional calculus generously allows integrals and derivatives to have any order,
hence the generalization of the term fractional order to that of general order. Of all
applications in biology, linear viscoelasticity is certainly the most popular field, for
their ability to model hereditary phenomena with long memory [9]. Viscoelasticity
has been shown to be the origin of the appearance of FO models in polymers (from
the Greek: poly, many, and meros, parts) [2] and resembling biological tissues [30,
68, 143].

Viscoelasticity of the lungs is characterized by compliance, expressed as the vol-
ume increase in the lungs for each unit increase in alveolar pressure or for each unit
decrease of pleural pressure. The most common representation of the compliance is
given by the pressure–volume (PV) loops. Changes in elastic recoil (more, or less:
stiffness) will affect these pressure–volume relationships. The initial steps under-
taken by Salazar to characterize the pressure–volume relationship in the lungs by

1The reader is referred to the appendix for a brief introduction to FC.
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Fig. 1.1 Schematic
representation of the
quasi-linear dependence of
the pressure–volume ratio
with the logarithm of time

means of exponential functions suggested a new interpretation of mechanical prop-
erties in lungs [134]. In their endeavor to obtain a relation for compliance which
would be independent on the size of the lungs, they concluded that the pressure–
volume curve is a good tool in characterizing viscoelasticity. Shortly afterwards,
Hildebrandt used similar concepts to assess the viscoelastic properties of a rubber
balloon [61] as a model of the lungs. He obtained similar static pressure–volume
curves by stepwise inflation in steps of 10 ml (volume) increments in a one minute
time interval. He then points out that the curves can be represented by means of a
power-law function (see Fig. 1.1).

Instead of deriving the compliance from the PV curve, Hildebrandt suggests to
apply sinusoidal inputs instead of steps and he obtains the frequency response of
the rubber balloon. The author considers the variation of pressure over total volume
displacement also as an exponentially decaying function:

P(t)

VT

= At−n + B,
P (t)

VT

= C − D log(t) (1.1)

with A, B , C, D arbitrary constants, VT the total volume, t the time, and n the
power-law constant. The transfer function obtained by applying Laplace to this
stress relaxation curve is given by

P(s)

VT

= A
�(1 − n)

s1−n
+ B

s
(1.2)

with � the Gamma function. If the input is a step v(t) = VT u(t), then V (s) = VT /s

and the output is given by P(s) = T (s)VT /s with T (s) the unknown transfer func-
tion. Introducing this into (1.2) one obtains

T (s) = P(s)

V (s)
= Asn�(1 − n) + B (1.3)

By taking into account the mass of air introduced into the balloon, an extra term
appears in the transfer function equation:

T (s) = P(s)

V (s)
= Asn�(1 − n) + B + Lrs

2 (1.4)

with Lr the inductance. The equivalent form in frequency domain is given by
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T (jω) = A�(1 − n)ωn cos

(
nπ

2

)
− Lrω

2 + B

+ j

[
A�(1 − n)ωn sin

(
nπ

2

)]
(1.5)

This function describes the behavior of the balloon in a plethysmograph, while un-
dergoing sinusoidal forced oscillations. One year later, in 1970, he published the
results obtained by identifying such a model on excised cat lungs [62]. He then sug-
gests to do the PV approximation with a transfer function which has an imaginary
part independent on frequency. This special property gives a phase angle which de-
creases slightly with frequency (quasi-constant). Playing with these models on the
data for the PV curves, he discusses the viscoelastic properties of the rubber balloon
versus the excised cat lungs. In doing so, he combines several idealized mechanical
elements to express viscoelasticity in a mechanical context. Some fragile steps are
then directed towards concepts of stress relaxation and dynamic hysteresis of the
lungs.

Two decades later, Hantos and co-workers in 1992 revised the work of Hilde-
brandt and introduced the impedance as the ratio of pressure and flow, in a model
structure containing a resistance Rr , inertance Lr and compliance Cr element, as in
(3.9) [57]. This model proved to have significant success at low frequencies and has
been used ever since by researchers to characterize the respiratory impedance.

In the same context of characterizing viscoelasticity, Suki provided an overview
of the work done by Salazar, Hildebrandt and Hantos, establishing possible scenar-
ios for the origin of viscoelastic behavior in the lung parenchyma [143]. The authors
acknowledge the validity of the models from (1.1) and the FO impedance from [57]:

Zr(s) = 1

Crsβr
(1.6)

in which the real part denotes elastance and the imaginary part the viscance of the
tissue. This model was then referred to as the constant-phase model because the
phase is independent of frequency, implying a frequency-independent mechanical
efficiency. Five classes of systems admitting power-law relaxation or constant-phase
impedance are acknowledged [143].

• Class 1: systems with nonlinear constitutive equations; a nonlinear differential
equation may have a At−n solution to a step input. Indeed, lung tissue behaves
nonlinearly, but this is not the primary mechanism for having constant-phase be-
havior, since the forced oscillations are applied with small amplitude to the mouth
of the patient to ensure linearity. Moreover, the input to the system is not a step,
but rather a multisine.

• Class 2: systems in which the coefficients of the constitutive differential equations
are time-varying; the linear dependence of the pressure–volume curves in loga-
rithmic time scale does not support this assumption. However, on a larger time
interval, the lungs present time-varying properties.

• Class 3: systems in which there is a continuous distribution of time constants that
are solutions to integral equations. By aid of Kelvin bodies and an appropriate
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distribution function of their time constants, a linear model has been able to cap-
ture the hysteresis loop of the lungs, capturing the relaxation function decreasing
linearly with the logarithm of time [49]. This is a class of systems which may be
successful in acknowledging the origin of the constant-phase behavior, but there
is no clearly defined micro-structural basis. Some attempts to establish this origin
have been made [9].

• Class 4: complex dynamic systems exhibiting self-similar properties (fractals).
This class is based on the fact that the scale-invariant behavior is ubiquitous in
nature and the stress relaxation is the result of the rich dynamic interactions of
tissue strips independent of their individual properties [8, 91]. Although interest-
ing, this theory does not give an explanation for the appearance of constant-phase
behavior.

• Class 5: systems with input–output relationships including fractional-order
equations; borrowed from fractional calculus theory, several tools were used
to describe viscoelasticity by means of fractional-order differential equations
[8, 23, 143].

Referring to the specific application of respiratory mechanics, Classes 3–5 are most
likely to characterize the properties of lung parenchyma. The work presented in this
book deals primarily with concepts from Class 4, but addresses also several items
from Class 5.

Following the direction pointed out hitherto, several studies have been performed
to provide insight on fiber viscoelasticity at macro- and microscopic levels, using tis-
sue strips from animals [162]. For instance, Maksym attempted to provide a model
based on Hookean springs (elastin) in parallel with a nonlinear string element (col-
lagen) to fit measurements of stress–strain in tissue strips in dogs [96]. Their theory
is based on the seminal work of Salazar and Hildebrandt and the results suggest that
the dominant parameter in (1.1) is n. This parameter has been found to increase in
emphysema and decrease in fibrosing alveolitis. They interpret the changes in this
variable as related to alterations in collagen and elastin networks.

About a decade later, Bates provided another mechanistic interpretation of the
quasi-linear viscoelasticity of the lung, suggesting a model consisting of series
spring-dashpot elements (Maxwell bodies) [8]. He also suggests the genesis of
power-law behavior arising from:

• the intrinsic complexity of dynamic systems in nature, ubiquitously present;
• the property of being self-organized critically, posing an avalanche behavior (e.g.

sandpile);
• the rich-get-richer mechanism (e.g. internet links).

whereas the common thread which sews all them together is sequentiality. By allow-
ing two FO powers in the model of Maxwell bodies arranged in parallel (a spring
in parallel with a dashpot), he discussed viscoelasticity in simulation studies. Sim-
ilar attempts have been done by Craiem and Armentano in models of the arterial
wall [23].

Hitherto, the research community focused on the aspect of viscoelasticity in soft
biological tissues. The other property of the lungs which can be related to fractional-
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order equations is diffusion and some papers discuss this aspect [91], but current
state-of-art lacks a mathematical basis for modeling diffusion in the lungs. The sub-
ject in itself is challenging due to its complexity and requires an in-depth study of
alveolar dynamics. This is not treated in this book, but the reader is encouraged to
check the provided literature for latest advances in this topic.

The study of the interplay between fractal structure, viscoelasticity, and breathing
pattern did not capture the attention of both medical and engineering research com-
munities. This is surprising, since interplay clearly exists and insight into its mecha-
nisms may assist diagnosis and treatment. This book will address this issue and will
establish several relations between recurrent geometry (symmetric and asymmetric
tree) and the appearance of the fractional-order models, viscoelasticity, and effects
of pulmonary disease on these properties.

1.3 Emerging Tools to Analyze and Characterize
the Respiratory System

1.3.1 Basic Concepts of Fractional Calculus

The FC is a generalization of integration and derivation to non-integer (fractional)
order operators. At first, we generalize the differential and integral operators into
one fundamental operator Dn

t (n the order of the operation) which is known as
fractional calculus. Several definitions of this operator have been proposed (see,
e.g. [126]). All of them generalize the standard differential–integral operator in two
main groups: (a) they become the standard differential–integral operator of any order
when n is an integer; (b) the Laplace transform of the operator Dn

t is sn (provided
zero initial conditions), and hence the frequency characteristic of this operator is
(jω)n. The latter is very appealing for the design of control systems by using spec-
ifications in the frequency domain [117].

A fundamental Dn
t operator, a generalization of integral and differential operators

(differintegration operator), is introduced as follows:

Dn
t =

⎧⎪⎨
⎪⎩

dn

dtn
, n > 0

1, n = 0∫ t

0 (dτ)−n, n < 0

⎫⎪⎬
⎪⎭ (1.7)

where n is the fractional order and dτ is a derivative function. Since the entire book
will focus on the frequency-domain approach for fractional-order derivatives and
integrals, we shall not introduce the complex mathematics for time-domain analysis.
The Laplace transform for integral and derivative order n are, respectively:

L
{
D−n

t f (t)
}= s−nF (s) (1.8)

L
{
Dn

t f (t)
}= snF (s) (1.9)
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Fig. 1.2 Sketch representation of the FO integral and derivator operators in frequency domain, by
means of the Bode plots (magnitude, phase)

where F(s) = L{f (t)} and s is the Laplace complex variable. The Fourier transform
can be obtained by replacing s by jω in the Laplace transform and the equivalent
frequency-domain expressions are

1

(jω)n
= 1

ωn

(
cos

π

2
+ j sin

π

2

)−n

= 1

ωn

(
cos

nπ

2
− j sin

nπ

2

)
(1.10)

(jω)n = ωn

(
cos

π

2
+ j sin

π

2

)n

= ωn

(
cos

nπ

2
+ j sin

nπ

2

)
(1.11)

Thus, the modulus and the argument of the FO terms are given by

Modulus (dB) = 20 log
∣∣(jω)∓n

∣∣= ∓20n log |ω| (1.12)

Phase (rad) = arg
(
(jω)∓n

)= ∓n
π

2
(1.13)

resulting in:

• a Nyquist contour of a line with a slope ∓nπ
2 , anticlockwise rotation of the mod-

ulus in the complex plain around the origin according to variation of the FO
value n;

• magnitude (dB) vs. log-frequency: straight line with a slope of ∓20n passing
through 0 dB for ω = 1;

• phase (rad) vs. log-frequency: horizontal line, thus independent of frequency, with
value ∓nπ

2 .

The respective sketches can be seen in Fig. 1.2.
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1.3.2 Fractional-Order Dynamical Systems

Let us consider the rheological properties of soft biological tissue, i.e. viscoelastic-
ity. Typical cases are the arterial wall [23] and lung parenchyma [8], which clearly
show viscoelastic behavior. In these recent reports, the authors acknowledge that
integer-order models to capture these properties can reach high orders and that frac-
tional derivative models with fewer parameters have proven to be more efficient in
describing rheological properties. Both of these authors define the complex modulus
of elasticity as being determined by a real part, i.e. the storage modulus, capturing
the elastic properties, and, respectively, by an imaginary part, i.e. the dissipation
modulus, capturing the viscous properties:

E∗(jω) = σ(ω)

ε(ω)
= ES(ω) + jED(ω) (1.14)

with σ the stress and ε the strain, ES and ED the real and imaginary parts of the
complex modulus. This complex modulus E∗(jω) shows partial frequency depen-
dence within the physiologic range in both soft tissue examples. A typical example
of an integer-order lumped rheological model is the Kelvin–Voigt body, consist-
ing of a perfectly elastic element (spring) in parallel with a purely viscous element
(dashpot):

σ(t) = Eε(t) + η
dε(t)

dt
(1.15)

with E the elastic constant of the spring and η the viscous coefficient of the dash-
pot. One of the limitations of this model is that it shows creep but does not show
relaxation, the latter being a key feature of viscoelastic tissues [2, 68]. The classical
definition of fractional-order derivative (i.e. the Riemann–Liouville definition) of an
arbitrary function f (t) is given by [113, 126]

dnf

dtn
= 1

�(1 − n)

d

dt

∫ t

0

f (τ)

(t − τ)n
dτ (1.16)

where � is the Euler gamma function. Hence, the FO derivative can be seen in the
context of (1.15) as the convolution of ε(t) with a t−n function, anticipating some
kind of memory capability and power-law response. It follows that the spring–pot
element can be defined based on (1.16) as

σ = η
dnε

dtn
, 1 ≥ n ≥ 0 (1.17)

in which the value for n can be adjusted to incorporate either a purely elastic com-
ponent (n = 0), either a pure viscous one (n = 1). Both Bates and Craiem acknowl-
edged the fact that the soft biological tissue follows both elastic and viscous be-
havior under baseline and stimulated case. Therefore, if one needs to derive a gen-
eral model for characterizing soft tissue rheological properties, two instead of one
spring–pot elements may be necessary.

Now, let us consider the diffusive properties; e.g. heat transfer [91], gas exchange
[66] and water transfer through porous materials [12, 91]. Diffusion is of funda-
mental importance in many disciplines of physics, chemistry, and biology. It is well
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known that the fractional-order operator d0.5

dt0.5 → s0.5 appears in several types of
problems [10]. The transmission lines, the heat flow, or the diffusion of neutrons in
a nuclear reactor are examples where the half-operator is the fundamental element.
Diffusion is in fact a part of transport phenomena, being one of the three essen-
tial partial differential equations of mathematical physics. Molecular diffusion is
generally superimposed on, and often masked by, other transport phenomena such
as convection, which tend to be much faster. However, the slowness of diffusion
can be the reason for its importance: diffusion is often encountered in chemistry,
physics, and biology as a step in a sequence of events, and the rate of the whole
chain of events is that of the slowest step. Transport due to diffusion is slower over
long length scales: the time it takes for diffusion to transport matter is proportional
to the square of the distance. In cell biology, diffusion is a main form of transport
for necessary materials such as amino acids within cells. Metabolism and respira-
tion rely in part upon diffusion in addition to bulk or active processes. For example,
in the alveoli of mammalian lungs, due to differences in partial pressures across
the alveolar–capillary membrane, oxygen diffuses into the blood and carbon diox-
ide diffuses out. Lungs contain a large surface area to facilitate this gas exchange
process. Hence, the spreading of any quantity that can be described by the diffusion
equation or a random walk model (e.g. concentration, heat, momentum, ideas, price)
can be called diffusion, and this is an ubiquitously present property of nature.

Finally, let us consider the fractal geometry; e.g. self-similarity and recurrence.
Much work has been done on the fundamental property of percolation using self-
similar fractal lattices such as the Sierpinski gasket and the Koch tree [91, 97, 118,
130]. Examples from real life include the coastline, invasion-front curve, lightning,
broccoli and cauliflower, and several human organs such as lungs, vascular tree, and
brain surface [9]. Other studies involve the temporal dynamics of biological signals
and systems, which also pose recurrence [37, 144].

It is generally acknowledged that dynamical systems (e.g. electrical circuits) in-
volving such geometrical structures would lead to the appearance of a fractional-
order transfer function [118]. Although this topic has been investigated for the res-
piratory tree, in this book the relation to viscoelasticity will be made, to offer a
broader image of their interplay.

1.3.3 Relation Between Fractal Structure and Fractal Dimension

A fractal is a set of points which at smaller scales resembles the entire set. Thus the
essential characteristic of the fractal is self-similarity. Its details at a certain scale
are similar to those at other scales, although not necessarily identical. The textbook
example of such a fractal is the Koch curve, depicted in Fig. 1.3.

The concept of fractal dimension (Fd ) originates from fractal geometry and it
emerges as a measure of how much space an object occupies between Euclidean di-
mensions, e.g. the fractal structure from Fig. 1.3. In practice, the Fd of a waveform
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Fig. 1.3 An example of
repetitive pattern at the origin
of fractals

(e.g. respiratory, circadian, cardiac, electroencephalogram, etc.) represents a pow-
erful tool for transient detection. Several algorithms are available; here we discuss
only two: (i) the Katz algorithm and (ii) the box-counting method.

The definition introduced by Katz is given as[50]

FK
d = log(L)

log(d)
(1.18)

where L is the total length of the curve or sum of distances between successive
points, and d is the diameter estimated as the distance between the first point of the
sequence and the most distal point of the sequence. Hence, d can be expressed as

d = max
∥∥x(1) = x(i)

∥∥, ∀i. (1.19)

The Fd compares the actual number of units that compose a curve with the min-
imum number of units required to reproduce a pattern of the same spatial extent.
Consequently, Fd depends on the measurement units. Naturally, if units will be dif-
ferent, so will Fd values. The solution is to create a general unit, e.g. the average
step or average distance between successive points, denoted by a. Normalization
applied to (1.18) results in a new definition:

FK
d = log(L/a)

log(d/a)
(1.20)

There is also a relationship between the length, area or volume of an object and
its diameter. If one tries to cover the unit square with little squares (i.e. boxes) of
side length εFD, then one will need 1/ε2

FD boxes. To cover a segment of length 1,
there is need only for 1/εFD boxes. If we need to cover a 1 × 1 × 1 cube, then we
need 1/ε3

FD boxes. The general rule emerges as

N(εFD)(S) ≈ 1/εd
FD, for εFD → 0 (1.21)

where εFD is the length of the box, S is the full data set, N(εFD)(S) is the minimum
number of n-dimensional boxes needed to cover S entirely and d is the dimension
of S. Using this, one can define Fd as

F box
d = − lim

εFD→0

lnN(εFD)(S)

ln εFD
(1.22)

Usually, for systems whose dynamics is intrinsic fractal, the graphic representa-
tion of Fd will be a line and its slope denotes the value of the fractal dimension.
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1.4 Summary

In this introductory chapter, the background has been set for the pioneer concepts
further introduced by this book. A definition of fractional calculus and fractional sig-
nals has been given before proceeding in the quest for novel landmarks in biomed-
ical engineering applications. A brief history of fractional calculus and how these
abstract concepts became emerging tools in biology and medicine has been given,
providing also a motivation as to why these tools are now of great interest to the
research community. Two of the most common concepts used to characterize bio-
logical signals have been introduced, namely those of fractal structure and of fractal
dimension. With these basic concepts at hand, the reader is now ready for the quest
of this book.



Chapter 2
The Human Respiratory System

2.1 Anatomy and Structure

Respiration is the act of breathing, namely inhaling (inspiration) oxygen from the at-
mosphere into the lungs and exhaling (expiration) into the atmosphere carbon diox-
ide [53]. The respiratory system is made up of the organs involved in breathing, and
consists of the nose, pharynx, larynx, trachea, bronchi, and lungs, as depicted in
Fig. 2.1.

The respiratory system can be divided into two major parts: the upper airways
part and the lower airways part. The upper respiratory tract includes the nose, with
its nasal cavity, frontal sinuses, maxillary sinus, larynx, and trachea. The lower res-
piratory tract includes the lungs, bronchi and the alveoli.

The lungs take in oxygen, which is required by all the cells throughout the body
to live and carry out their normal functions. The lungs also get rid of carbon dioxide,
a waste product of the body’s cells. The lungs are a pair of cone-shaped organs made
up of spongy, pinkish-gray tissue. They take up most of the space in the chest, or
the thorax (the part of the body between the base of the neck and diaphragm).

The lungs are separated from each other by the mediastinum, an area that con-
tains the following:

• heart and its large vessels;
• trachea;
• esophagus;
• thymus;
• lymph nodes.

The right lung has three sections, called lobes. The left lung has only two lobes.
When one breaths, the air enters the body through the nose or the mouth, travels
down the throat through the larynx (voice box) and trachea (windpipe) and goes
into the lungs through the tubes called main-stem bronchi. One main-stem bronchus
leads to the right lung and the other one leads to the left lung. In the lungs, the main-
stem bronchi divide into smaller bronchi and then into even smaller tubes called
bronchioles, which finally end in tiny air sacs called alveoli. At this level, the act of

C.M. Ionescu, The Human Respiratory System, Series in BioEngineering,
DOI 10.1007/978-1-4471-5388-7_2, © Springer-Verlag London 2013

13

http://dx.doi.org/10.1007/978-1-4471-5388-7_2


14 2 The Human Respiratory System

Fig. 2.1 Schematic
representation of the
respiratory system and its
main components

diffusion takes place. Diffusion allows the oxygen from the alveoli to pass through
the alveolar walls into the blood and the carbon dioxide to pass through the capillary
walls into the alveoli.

In order to move air in and out of the lungs, the volume of the thoracic cavity is
increased (or decreased). The lungs do not contract but increase or decrease in vol-
ume. Muscles like intercostals or diaphragm contract during inspiration. Normally,
the expiration is passive, the inspiration is active (= contraction of muscles). By
increasing the thoracic cavity, the pressure around the lungs decreases, the lungs
expand, and air is sucked in.

2.2 Morphology

In the literature, there are two representative sets of airway morphological values:
the symmetric case and the asymmetric case of the respiratory tree, schematically
depicted in Fig. 2.2. The symmetric case assumes a dichotomously equivalent bifur-
cation of the airways in subsequent levels and is agreed by a group of authors e.g.
[97, 135, 164] as in Table 2.1. The asymmetric case is when the bifurcations are
still dichotomous, but they occur in non-sequent levels, as given in Table 2.2. The
parameter Δ denotes the asymmetry index. In this case, a parent airway will split
into two daughters: one of subsequent level m + 1 and one of level m + 1 + Δ. This
latter anatomical context is agreed by another group of authors: [54, 65].

2.3 Specific Pulmonary Abnormalities

Chronic Pulmonary Emphysema refers to a class of respiratory disorders which im-
plies the existence of excess air in the lungs [6, 53, 64]. It results from three major
pathophysiological events in the lungs:

• chronic infection, caused by inhaling smoke or other substances that irritate the
bronchi and bronchioles;

• the infection, the excess of mucus, and inflammatory edema of the bronchiolar
epithelium together cause chronic obstruction of smaller airways;
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Fig. 2.2 A very brief
schematic representation of
the bronchial tree:
generations 1–16 transport
gas and 17–24 provide gas
exchange [97, 135, 164]. This
is not an accurate anatomical
representation and it is
modified with respect to
numbering from the original
Weibel model [164]. The
notation implies here the
number of levels and, as
described later in this book,
the number of elements in an
analogy to electrical ladder
networks

Fig. 2.3 A schematic
representation of alveolar
tissue in normal lungs (left)
and disrupted alveolar walls
in emphysematous lungs
(right)

• the obstruction of the airways makes it especially difficult to expire, causing en-
trapment of air in the lungs (i.e. barrel chest effect) and over-stretching the alveoli.

The physiological effects of chronic emphysema are extremely varied, depending
on the severity of the disease and on the relative degree of bronchiolar obstruction
versus parenchymal destruction at the alveolar level. A schematic representation of
tissue samples can be observed in Fig. 2.3.

The bronchiolar obstruction causes increased airway resistance and results in
greatly increased work of breathing. It is especially difficult for the person to move
air through the bronchioles during expiration, because the compressive force on the
alveoli acts also on the bronchi, further increasing their resistance during expira-
tion. Another physiological effect is that of a decreased diffusive capacity, from the
marked loss of lung parenchyma (see Fig. 2.3 on the right). This will reduce the abil-
ity of the lungs to oxygenate the blood and to remove the carbon dioxide. Another
effect is that of abnormal ventilation-perfusion ratio, i.e. portions of the lungs will
be well ventilated, while others will be poorly ventilated, depending on the degree
of the obstructive process. Chronic emphysema progresses slowly over many years,
leading to necessity of ventilatory assist devices and finally to death.
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Table 2.1 The tube
parameters for the sub-glottal
airways depths, whereas
depth 1 denotes the trachea
and depth 24 the alveoli, as
used in
[59, 66, 85, 97, 100, 164]

Depth
m

Length

 (cm)

Radius
R (cm)

Wall thickness
h (cm)

Cartilage
fraction κ

1 10.0 0.80 0.3724 0.67

2 5.0 0.6 0.1735 0.5000

3 2.2 0.55 0.1348 0.5000

4 1.1 0.40 0.0528 0.3300

5 1.05 0.365 0.0409 0.2500

6 1.13 0.295 0.0182 0.2000

7 1.13 0.295 0.0182 0.0922

8 0.97 0.270 0.0168 0.0848

9 1.08 0.215 0.0137 0.0669

10 0.950 0.175 0.0114 0.0525

11 0.860 0.175 0.0114 0.0525

12 0.990 0.155 0.0103 0.0449

13 0.800 0.145 0.0097 0.0409

14 0.920 0.140 0.0094 0.0389

15 0.820 0.135 0.0091 0.0369

16 0.810 0.125 0.0086 0.0329

17 0.770 0.120 0.0083 0.0308

18 0.640 0.109 0.0077 0.0262

19 0.630 0.100 0.0072 0.0224

20 0.517 0.090 0.0066 0.0000

21 0.480 0.080 0.0060 0.0000

22 0.420 0.070 0.0055 0.0000

23 0.360 0.055 0.0047 0.0000

24 0.310 0.048 0.0043 0.0000

Asthma is characterized by spastic contraction of the bronchioles, which causes
extremely difficult breathing [17, 53]. The usual cause is bronchial hyperresponsive-
ness towards a variety of specific and a-specific stimuli. In fact, in younger patients,
under the age of 30, the asthma is in about 70 % of the cases caused by allergic
hypersensitivity (i.e. plant pollen, dust mite, cats, dogs). In elder persons, the hyper-
sensitivity is to non-allergic types of irritants in air, such as smog.

As a result of the irritants, the allergic person has a tendency to produce a high
amount of antibodies, which attach to specific cells in the bronchioles and small
bronchi. As a result of the antibodies reaction with the irritant, some substances are
released (e.g. histamine). The combined effect of all these factors will produce:

• localized edema in the walls of the small bronchioles as well as secretion of thick
mucus into bronchiolar airways, and

• spasm of the bronchiolar smooth muscle.



2.3 Specific Pulmonary Abnormalities 17

Table 2.2 The tube parameters for the sub-glottal airways depths, whereas depth 1 denotes the
trachea and depth 35 the alveoli, as used in [54, 65]

Depth
m

Length

 (cm)

Radius
R (cm)

Wall thickness
h (cm)

Cartilage
fraction κ

Bifurcation
Δ

1 10.0 0.80 0.3724 0.67 1

2 5.0 0.6 0.1735 0.5000 2

3 2.2 0.55 0.1348 0.5000 3

4 1.1 0.40 0.0528 0.3300 3

5 1.05 0.365 0.0409 0.2500 3

6 1.13 0.295 0.0244 0.2000 3

7 1.13 0.295 0.0244 0.0926 3

8 0.97 0.270 0.0205 0.0851 3

9 1.08 0.215 0.0149 0.0671 3

10 0.860 0.175 0.0126 0.0526 3

11 0.950 0.175 0.0126 0.0525 3

12 0.990 0.155 0.0118 0.0450 3

13 0.800 0.145 0.0114 0.0410 3

14 0.920 0.140 0.0112 0.0389 3

15 0.820 0.135 0.0111 0.0370 3

16 0.810 0.125 0.0107 0.0329 3

17 0.770 0.120 0.0105 0.0309 3

18 0.640 0.109 0.01 0.0262 3

19 0.630 0.100 0.0096 0.0224 3

20 0.517 0.090 0.0091 0.0000 3

21 0.480 0.080 0.0085 0.0000 3

22 0.420 0.070 0.0079 0.0000 3

23 0.360 0.055 0.0067 0.0000 2

24 0.310 0.048 0.0060 0.0000 2

25 0.250 0.038 0.0050 0.000 1

26 0.11 0.0315 0.0042 0.000 0

27 0.131 0.0265 0.0036 0.000 0

28 0.105 0.024 0.0032 0.000 0

29 0.075 0.0215 0.0029 0.000 0

30 0.059 0.04 0.0052 0.000 0

31 0.048 0.04 0.0052 0.000 0

32 0.048 0.04 0.0052 0.000 0

33 0.048 0.04 0.0052 0.000 0

34 0.048 0.04 0.0052 0.000 0

35 0.048 0.04 0.0052 0.000 0
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There may be a wheezing or whistling sound, which is typical of asthma. Wheez-
ing occurs because muscles that surround the airways tighten, and the inner lining
of the airways swells and pushes inward. It also occurs because membranes that
line the airways secrete extra mucus and furthermore the mucus can form plugs that
may block the air passages. As a result, the rush of air through the narrowed airways
produces the wheezing sounds. Usually, the asthmatic person can inspire quite eas-
ily, but has difficulty to expire air from the lungs. Also here the long-term effect of
barrel chest will occur, similarly to chronic obstructive emphysema.

Although anyone may have an asthma attack, it most commonly occurs in chil-
dren, by the age of 5, adults in their 30s, adults older than 65, and people living
in urban communities (smog or allergic reactions). Other factors include: family
history of asthma and personal medical history of allergies.

Cystic Fibrosis is an inherited disease characterized by an abnormality in the
glands that produce sweat and mucus [35, 132]. It is chronic, progressive, and may
be fatal. Cystic fibrosis affects various systems in children and young adults, in-
cluding the following: respiratory system, digestive system, and the reproductive
system.

Approximately 1 in 20 people in the US and Europe are carriers of the cystic
fibrosis gene. They are not affected by the disease and usually do not know that they
are carriers. Abnormalities in the glands that produce sweat and mucus can cause:

• excessive loss of salt, which in turn can cause an upset in the balance of minerals
in the blood, abnormal heart rhythms and possibly, shock;

• thick mucus that accumulates in lungs and intestines, which in turn can cause
malnutrition, poor growth, frequent respiratory infections, breathing difficulties
and in general, lung disease;

• other medical problems.

Under the item of medical problems one can enumerate: sinusitis, nasal polyps,
clubbing of fingers and toes, pneumothorax—rupture of lung tissue, hemoptysis—
coughing blood, enlargement of right side of the heart, abdominal pain, gas in the
intestines, liver disease, diabetes, pancreatitis and gallstones.

Kyphoscoliosis is a deformation of the spine, as a combination effect of scol-
iosis and kyphosis [103]. An example of an X-ray is given in Fig. 2.4, courtesy
of Prof. Derom from Ghent University Hospital. The patient was hospitalized for
severe breathing insufficiency.

Scoliosis, is a medical condition in which a person’s spine is curved from side to
side, shaped like an S or C, and may also be rotated. To adults it can be very painful.
It is an abnormal lateral curvature of the spine. On an X-ray, viewed from the rear,
the spine of an individual with a typical scoliosis may look more like an S or a C than
a straight line. It is typically classified as congenital (caused by vertebral anomalies
present at birth), idiopathic (sub-classified as infantile, juvenile, adolescent, or adult
according to when onset occurred) or as neuromuscular, having developed as a sec-
ondary symptom of another condition, such as spina bifida, cerebral palsy, spinal
muscular atrophy or due to physical trauma. Scoliotic curves of 10 degrees or less
affect 3–5 out of every 1000 people.
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Fig. 2.4 X-ray of a patient
presenting kyphoscoliosis.
Courtesy of Prof. Dr. MD
Eric Derom from Ghent
University Hospital, Belgium

Kyphosis, also called hunchback, is a common condition of a curvature of the
upper (thoracic) spine. It can be either the result of degenerative diseases (such as
arthritis), developmental problems, osteoporosis with compression fractures of the
vertebrae, and/or trauma. In the sense of a deformity, it is the pathological curving of
the spine, where parts of the spinal column lose some or all of their normal profile.
This causes a bowing of the back, seen as a slouching back and breathing difficulties.
Severe cases can cause great discomfort and even lead to death.

As a result of these deformities at the spinal level, the thorax cannot perform its
normal function, leading to changes in airway resistance and total lung compliance.

2.4 Structural Changes in the Lungs with Disease

The term airway remodeling refers to the process of modification and sustained
disruption of structural cells and tissues leading to a new airway-wall structure with
implicit new functions. Airway remodeling is supposed to be a consequence of long-
term airway diseases. Some studies suggest that the remodeling may be a part of the
primary pathology rather than simply a result of chronic inflammation [9]. Of cru-
cial importance in this quest to understand airway remodeling is the composition
and structure of the lung tissue [82, 153]. The composition and structure determines
the mechanical properties of the lungs. Structural changes will induce alternations
in tissue elasticity and viscosity. Structural alternations introduced by pathological
processes are traditionally divided into three layers: the inner wall, the outer wall
and the smooth-muscle layer. The inner wall consists of the epithelium, basement
membrane and submucosa, while the outer layer consists of cartilage and loose con-
nective tissue between the muscle layer and the surrounding lung parenchyma.
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In COPD, major structural alternations occur in the small bronchi and membra-
nous bronchiole (airway diameter < 2 mm). Changes occur around the supporting
cartilage and bronchial glands in the peripheral airways (≈2 mm diameter). Here,
the thickening occurs mainly in the inner wall area of the large airways [9, 82, 86].

The most important changes in asthma are located in the conducting airways,
which can thicken up to 300 %. Asthma patients have thickened segmental and
subsegmental bronchial walls over their entire size rage. This thickening is depen-
dent on the degree of the disease, more severe and older patients will depict these
characteristics more than young patients [9, 85]. In asthma, the inflammatory re-
actions takes place in the higher part of the airways than in COPD. Unfortunately
for COPD patients, the airway obstruction that accompanies these changes is resis-
tant to medication which makes the changes persistent. By contrast, in asthma the
inflammatory processes can be controlled by the use of corticosteroids. There are
also important differences in the remodeling of the extracellular matrix and the role
of proteolytic enzymes and growth factors which lead to specific airway remod-
eling results by disease. More clinical information about inflammation mechanics
in airway remodeling can be found in [13]. For remodeling effects in asthma, an
important role is played by the degree to which the smooth muscle surrounds the
airway lumen. These muscles are located within the posterior membranous sheath
in the trachea and main-stem bronchi, whereas they surround the entire lumen of the
airway in the bronchioles [53]. Consequently, the same degree of muscle shorten-
ing in asthma patients has a smaller effect on the central airways than on the lower
situated bronchioles [53].

In COPD, hyperplasia and mucous metaplasia are observed in central and periph-
eral airways which ends in a more even distribution of secretary cells. This leads to
a state where the smaller airways (diameter < 400 µm), which are normally popu-
lated with very little goblet cells, become large contributors to the excess of mucous
which characterizes COPD [64]. Mucous, produced in both asthma as COPD, is
quantitatively and qualitatively abnormal with alternations in its molecular and cel-
lular composition. The elevated ratio of mucous/serous acini provides a secretion
of a thicker, gel-like mucus in COPD. Partial or complete occlusion of the small
airways occurs.

The lungs consist of large surface areas with small diffusion distances to guaran-
tee proper gas exchange. The 3D structure of the alveoli can be compared to a hon-
eycomb structure of thin-walled septa which form a fractal network [64, 71]. This
structure is unstable at low inflating pressures and would collapse if there would
not be a mechanical stress at the end of expiration. This ‘pre-stress’ is generated by
the pleural pressure around the lung. Changes in mechanical properties of the lung
tissue by pathology will influence the response on this pre-stress. Once an alveo-
lar wall starts to rupture, the stress the original wall carried is redistributed to the
neighboring walls. These areas will experience a increased pre-stress which will re-
sult in a relentless increase of the unbinding and cleavage rate and the unfolding of
new binding sites. A single rupture will induce a cascade of ruptures and serves as
a positive feedback for further breakdown. It is obvious that there must be a kind
of ‘tipping point’ beyond which the structure–function relationship cannot return to
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the healthy condition. The rupturing process develops in time and depends on sud-
den exacerbations. After the rupture of (one) septal wall(s), a new stable mechanical
equilibrium can be reached. However, exacerbations triggered by bacterial or viral
infections or tissue fatigue due to hard breathing or forceful coughing can lead to
physical failure of the walls.

It is clear that mechanical forces invoked during breathing on enzyme-injured
lungs have an important role in the breakdown of the septal walls of the alveoli.
Changes in network topology will influence the macroscopic elasticity which may
be detectable by the FOT (Forced Oscillations Technique) lung function test. When
pressure oscillations are applied to this injured and mechanical adapted tissue, a
significantly higher amount of nonlinear dynamics will be present.

2.5 Non-invasive Lung Function Tests

Normal quiet breathing (such as during the FOT lung function test) is accomplished
by contraction of the diaphragm, the parasternal muscles and the scaleni. During in-
spiration, the diaphragm pulls the lower surfaces of the lung downwards. Expiration
results from simple relaxation of these muscles. Changes in the elastic recoil of the
lungs (more, or less, stiffness) will affect their normal function, in particular total
lung volume and pressure–volume relationships.

Some measurements are performed during forced inspirations and forced expi-
rations, i.e. the spirometry lung function test. A person’s vital capacity can be mea-
sured by a spirometer [109]. In combination with other physiological measurements,
the vital capacity (VC) can help make a diagnosis of underlying lung disease. Vi-
tal capacity is the maximum amount of air a person can expel from the lungs after
a maximum inspiration. It is equal to the inspiratory reserve volume plus the tidal
volume plus the expiratory reserve volume. Forced vital capacity (FVC) is the max-
imum volume of air that a person can exhale after maximum inhalation. It can also
be the maximum volume of air that a person can inhale after maximum exhala-
tion. Another important measure during spirometry is the forced expired volume in
one second (FEV1). The FEV1/FVC ratio is used in the diagnosis of obstructive
and restrictive lung disease, and normal values are approximately 80 %. In obstruc-
tive lung disease, the FEV1 is reduced due to obstruction to air escape. Thus, the
FEV1/FVC ratio will be reduced. In restrictive lung disease, the FEV1 and FVC are
equally reduced due to fibrosis or other lung pathology (not obstructive pathology).
Thus, the FEV1/FVC ratio should be approximately normal.

The compliance is expressed as the volume increase in the lungs for each unit of
trans-pulmonary pressure (which is the difference between the alveolar and pleural
pressures). For instance, the compliance of the normal lungs and thorax combined
is 0.13 liter per centimeter of water pressure (l/cmH2O). This means that every time
the alveolar pressure is increased by 1 cmH2O, the lungs expand 130 ml. The most
common representation of the compliance is given by the pressure–volume (PV)
loops. The area between the inspiratory and expiratory PV curve is called the work
of breathing; this will again vary with pathology.
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Factors that cause abnormal compliance can be in fact anything which destroys
the lung tissue, causing it to become fibrotic or edematous, blocks the bronchioli
or in any other way impedes lung expansion and contraction. When considering the
compliance of the lungs and thorax together, one should keep in mind any abnor-
mality of the thoracic cage (e.g. kyphosis, scoliosis).

2.6 Summary

The purpose of this chapter was to provide a basic knowledge of anatomy and struc-
ture of the lungs, necessary to understand further developments in this book. The
morphology plays an important role here, so a great deal of attention has been given
to its implications in fractal analysis. The mechanical properties of the lungs are
the result of a dynamic interplay between structure, active and passive breathing, all
due to variations in pressure between the mouth and the alveoli. An overview of the
spirometry non-invasive lung function test is also provided, since it helps the reader
understand the clinical significance of the mechanical work of respiration.



Chapter 3
The Respiratory Impedance

3.1 Forced Oscillation Technique Lung Function Test

Although standardized and currently used in clinical environment, spirometry has
several limitations. It requires maximal, reproducible efforts, which in turn requires
several measurement sessions from the patient, resulting in fatigue and time con-
sumption. The maximal expiratory flow is dependent on the lung recoil pressure,
the dynamic airway resistance and the airway properties at the flow limiting segment
(i.e. flow plateau) [112, 125]. Spirometry has also difficulties to clearly evaluate ob-
structive lung diseases. Even paired with bronchoprovocation, spirometry cannot
reliably differentiate patients with both asthma and COPD (chronic obstructive pul-
monary disease) features from either asthma or either COPD, and it is rather insen-
sitive to early airway changes [38, 88]. Additionally, neither spirometry nor body
plethysmography can provide information upon the resonance and anti-resonance
frequencies in the lungs.

The forced oscillation technique (FOT) is defined as superimposing external
pressure signals on spontaneous breathing (tidal breathing) [32, 116, 141, 158]. The
effect of these oscillations on the airways and lungs provides an effort-independent
assessment of respiratory mechanics. There is a significant amount of literature in
pediatric applications [15, 25, 27, 123, 140] and there is an increasing interest in
adult lung function testing [19, 28]. Typically, the forced oscillations can employ
a mono- or a multi-frequency excitation signal, typically in the range 4 Hz to 30–
50 Hz. It can be continuous (e.g. pseudo random noise, optimized multisine), or
time discrete (e.g. impulse oscillations) [78, 79, 141]. FOT has been broadly used
for screening purposes: upper airway obstruction, small airways disease in COPD
[64], for bronchoprovocation testing [36], vocal cord dysfunction evaluation [106],
with bronchodilator response, and respiratory mechanics in obstructive sleep ap-
nea [110].

The measurements of the signals analyzed in this book have been performed
using the device depicted in Fig. 3.1: the FOT standard setup, modified from a com-
mercially available device, able to assess the respiratory mechanics in the range
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Fig. 3.1 A schematic
overview (A) and an
electrical analogy of the FOT
setup (B). Typical measured
signals (C) from one subject:
oscillatory driving air flow;
air pressure and air flow. The
breathing of the patient (low
frequency) can be observed
superimposed on the
multisine signals. Symbols:
LS loudspeaker; PT pressure
transducer;
PN pneumotachograph;
BT bias tube; bf biological
filter; U(t) generated
pressure oscillations
(4–48 Hz); P (t) measured
pressure oscillations;
Q(t) measured flow; pressure
unit conversion:
1 kPa = 10 cmH2O. See text
for further symbol
explanation

4–250 Hz. However, in this book we will see applications of FOT over three differ-
ent frequency intervals: the low frequency range, from 0.01–5 Hz, mid-frequency
range, from 4–50 Hz and high frequency range, from 7–250 Hz. Due to limitations
implied by the loudspeaker, we have used two prototypes for the low frequency
range, described later in the book. These prototypes kept the same principle of su-
perimposing oscillations on the tidal breathing of the patient, so they used the same
FOT lung function test.

The commercially available I2M (Input Impedance Measurement) device pro-
duced by Chess Medical Technologies, The Netherlands (2000) was used for pul-
monary testing. The specifications of the device are: 11 kg, 0.50 × 0.50 × 0.60 m,
8 s measurement time, European Directive 93/42 on Medical devices and safety
standards EN60601-1. Because the standard measurement time (8 seconds) is too
short, a second measurement line has been connected to a data acquisition card and
the signals recorded for 30–40 seconds, in order to provide better estimates. The
subject is connected to the typical setup as in Fig. 3.1 via a mouthpiece, suitably
designed to avoid flow leakage at the mouth and dental resistance artifact.
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In the commercial device, the oscillation pressure is generated by a loudspeaker
(LS) connected to a chamber [112, 116, 141, 158]. The LS is driven by a power
amplifier fed with the oscillating signal generated by a computer (Ug). The move-
ment of the LS cone generates a pressure oscillation inside the chamber, which is
applied to the patient’s respiratory system by means of a tube connecting the LS
chamber and the bacterial filter (bf). A side opening of the main tubing (BT) allows
the patient to have fresh air circulation. This pipeline has high impedance at the
frequencies above 5 Hz to avoid the loss of power from the LS pressure chamber.

It has been shown that in some patients, using a nose clip causes the first anti-
resonance peak in respiratory impedance to be distorted, resulting also in splitting of
the anti-resonance peak into two smaller peaks [154, 155]. This is mainly because
the use of a nose clip frequently results in velum opening and biased anti-resonance
parameters. During the measurements performed for this study, the patient wears a
nose clip and keeps the cheeks firmly supported to counteract this influence. Before
starting the measurements, the frequency response of the transducers (PT) and of
the pneumotachograph (PN) are calibrated. The measurements of air pressure, P ,
and air flow, Q = dV/dt (with V the air volume), during the FOT lung function test
is done at the mouth of the patient. The FOT lung function tests were performed ac-
cording to the recommendations described in [116, 159]. The FOT excitation signal
was kept within a range of a peak-to-peak size of 0.1–0.3 kPa, in order to ensure
optimality, patient comfort, and linearity. Averaged measurements from three tech-
nically acceptable tests (i.e. no artifacts and coherence values above 0.8) were taken
into consideration for each subject, with typical time records depicted in Fig. 3.1-C.
The time records were sampled at a sampling time of 1 ms. All patients were tested
in the sitting position, with cheeks firmly supported and elbows resting on the ta-
ble. The posture is important in estimating values for respiratory impedance and,
therefore a straight back was as much as possible applied (some patients who were
too tall for the adjusted maximum height of the device, were excluded from the
database). Each and every group of patients and volunteers has been tested in its
unique location, using the same FOT device, and under the supervision of the same
FOT team.

3.2 Frequency Response of the Respiratory Tissue and Airways

The global experimental setup from Fig. 3.1-A can be modeled by the electrical
analogy from Fig. 3.1-B, where Ug denotes the generator test signal (known); Ur

denotes the effect of spontaneous breathing (unknown); Zr denotes the total respi-
ratory impedance (to be estimated); Z1 denotes the impedance (unknown) describ-
ing the transformation of driving voltage (Ug) to chamber pressure; Z2 denotes the
impedance (unknown) of both bias tubes and loudspeaker chamber; Z3 denotes the
impedance (unknown) of tube segment between bias tube and mouth piece (effect
of pneumotachograph essentially).

Using the basic laws for analyzing electrical networks, the following relation-
ships can be derived:
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P = (Zm − Z3)Zr

(Zm + Zr)Z1
· Ug + Zm

Zm + Zr

· Ur (3.1)

Q = (Zm − Z3)

(Zm + Zr)Z1
· Ug − 1

Zm + Zr

· Ur (3.2)

with Zm = Z3 + Z1·Z2
Z1+Z2

.
This can be written as a system[

P(s)

Q(s)

]
= H(s) ·

[
Ug(s)

Ur(s)

]
(3.3)

with two inputs Ug and Ur , two outputs P and Q and transfer matrix:

H =
[

(Zm−Z3)Zr

(Zm+Zr)Z1

Zm

Zm+Zr

(Zm−Z3)
(Zm+Zr)Z1

−1
Zm+Zr

]
(3.4)

(all impedances in Z being also a function of s, the Laplace operator). Define now
the vectors:

SYU =
[

SPUg

SQUg

]
and SUU =

[
SUgUg

SUrUg

]
(3.5)

containing cross-power spectra SYU (jω) between two signals y(t) and u(t) and
auto-power spectra SUU(ω) of a signal u(t). From well-known identification and
signal-processing theory it then follows that [136]

SYU (jω) = H(jω)SUU(jω) (3.6)

In the case of absence of breathing (Ur = 0) (3.6) reduces to
[

SPUg

SQUg

]
=
[

(Zm−Z3)Zr

(Zm+Zr)Z1
(Zm−Z3)

(Zm+Zr)Z1

]
· SUgUg (3.7)

It follows that the respiratory impedance Zr can be defined as their spectral (fre-
quency domain) ratio relationship [24, 67]:

Zr(jω) = SPUg (jω)

SQUg (jω)
(3.8)

where ω = 2πf is the angular frequency and j = √−1, the result being a complex
variable.

However, it is supposed that the test is done under normal breathing conditions,
which may result in an interference between the (unknown) breathing signal Ur and
the test signal Ug , making the identification exercise more difficult. From the point
of view of the forced oscillatory experiment, the signal components of respiratory
origin (Ur ) have to be regarded as pure noise for the identification task! Neverthe-
less, if the test signal Ug is designed to be uncorrelated with the normal respiratory
breathing signal Ur , then SUrUg

∼= 0, and the approach (3.8) is still valid, based on
(3.6) with SUrUg

∼= 0 [24, 67].
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Fig. 3.2 Structure of the viscoelastic model from [111]. Raw airway resistance; Cs static compli-
ance; Rve viscoelastic tissue resistance; Cve viscoelastic tissue compliance

3.3 Lumped Models of the Respiratory Impedance

3.3.1 Selected Parametric Models from Literature

With the real (Re) and imaginary (Im) parts of the complex impedance from (3.8) at
hand, parametric identification can be further employed to characterize the respira-
tory impedance. Unlike non-parametric modeling, parameterization has the advan-
tage of providing concise values for the variables of interest. With the frequency-
dependent impedance curves at hand, by means of identification algorithms [136],
the non-parametric data may be correlated with the models consisting of electrical
components that are analogous to the resistances, compliances, and inertances in-
herent in the respiratory system [116]. For this study, we selected several reported
models closely related to the physiology of human lungs. If not mentioned explicitly,
the units of model parameters are given for resistance in cmH2O/(l/s); for inertance
in cmH2O/(l/s2) and for compliance in l/cmH2O.

One of the first models reported in the literature and also the simplest is based
on analogy of the respiratory system as a tube denoting the central airways and
a balloon accounting for the inspiration and expiration changes in volume of the
lungs. This pipe–balloon analogy can be described as a RLC series electrical cir-
cuit [32]. In his initial attempts to characterize input impedance with a series RLC
model structure, DuBois observed that over the 1–15 Hz frequency range, the
inertance is a factor which must be negligible at ordinary breathing frequencies
(≈0.0004 cmH2O/(l/s2)), but that inertia and compressibility of alveolar air become
factors of increasing importance as the test frequency is increased. He also found
rather high values for the airway resistance (3.8 cmH2O/(l/s)) in the 2–10 Hz fre-
quency range. He concluded that the mechano-acoustical (equivalent) system must
be more complex in order to be able to capture the true properties of chest and lungs.
This simple model is unable to represent the frequency-dependent real part of the
complex impedance (resistance) found later by other authors and therefore it has not
been included in the consequent discussions.

To characterize the respiratory mechanical properties at low frequencies, Navajas
proposed the model from Fig. 3.2, including a linear viscoelastic component for the
tissues [111], with Raw airway resistance; Cs static compliance; Rve viscoelastic
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Fig. 3.3 Structure of the “DuBois” model from [32]. Raw airway resistance; Law airway iner-
tance; Rt tissue resistance; Ct tissue compliance; Lt tissue inertance; Cg gas compression compli-
ance

tissue resistance; Cve viscoelastic tissue compliance. They assessed the impedance
in seven anesthetized paralyzed patients with no respiratory disease. The advantage
of this scenario is that the influences from upper airway shunt and muscular activity
are not significant and therefore do not bias the estimates. The Raw is hypothesized
to represent airways resistance plus a purely viscous component of tissue resistance,
presumably in the chest wall. The Cs is the static compliance of the respiratory sys-
tem. The Rve and Cve are related to viscoelastic properties of the tissue. However,
there is virtually no inertance (air mass) quantified in this model, one may expect
that this model will provide biased estimates at relative higher frequencies.

All patients exhibited a marked frequency dependence of effective respiratory re-
sistance (real part of impedance) at low frequencies. The resistance fell sharply from
6.2 ± 2.1 cmH2O/(l/s) at 0.25 Hz to 2.3 ± 0.6 cmH2O/(l/s) at 2 Hz and decreased
moderately with frequency, such that its value at 32 Hz was 1.5 ± 0.5 cmH2O(l/s).
The imaginary part of the impedance was −22.2 ± 5.9 cmH2O/(l/s) at 0.25 Hz
and increased with frequency, crossing zero line around 14 Hz and reached 2.3 ±
0.8 cmH2O/(l/s) at 32 Hz. They observed that the inertance becomes important as
early as with 4 Hz, which rather contradicts DuBois [32, 93]. The strong negative
dependence in the vicinity of spontaneous breathing frequencies in the real part
of impedance in anesthetized patients agreed with studies in awaken subjects. The
authors agree that this dependence at low frequencies can hardly be attributed to
regional inhomogeneities of tissues. They suggest that the mechanical behavior of
the respiratory system at spontaneous breathing frequencies is largely determined
by intrinsic features of tissues, such as plasto-elastic properties. They also report
an average value of ≈9 cmH2O/(l/s) for total resistance, mainly influenced by tis-
sue properties at very low frequencies. The authors suggest that a nonlinear plastic
model should be considered to account for the mechanical behavior of the respira-
tory system.

A relatively good model structure, dividing the airway tissue and alveolar proper-
ties into different compartments, is the one proposed by DuBois and schematically
depicted in Fig. 3.3 [32]. This model has the following elements: Raw , airway resis-
tance; Law , airway inertance; Rt , tissue resistance; Ct , tissue compliance; Lt , tissue
inertance; Cg , gas compression compliance.
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Fig. 3.4 Structure of the “Mead” model from [102]. Rc central resistance, Lr the total inertance,
Rp peripheral resistance, Cl lung compliance, Cb bronchial tube compliance, Cw wall compliance,
and Ce extrathoracic compliance

Fig. 3.5 Structure of the ‘extended’ model from [29]. Rr airway and lung resistance; Rp periph-
eral resistance; Lr lung inertance; Cr alveolar compliance

Mechanical properties in lung and chest wall are described by the model devel-
oped originally by Mead and described later in [9, 158]. Mead’s model is an ex-
tended one-compartment model that does not allow the simulation of uneven alve-
olar ventilation (Fig. 3.4). In this model, Rc is the central resistance, Lr the total
inertance, Rp peripheral resistance, Cl lung compliance, Cb bronchial tube compli-
ance, Cw wall compliance, and Ce extrathoracic compliance.

The Mead model [102] from Fig. 3.4 allows the simulation of different influences
on the respiratory mechanics (e.g. extrathoracic compliance by the mouth and the
face mask, properties of the chest wall, air leaks around face mask or endotracheal
tubes). The model is used to investigate different causes of airway obstructions and
to assess the influence of the equipment on measurements.

Recently, an extended RLC model was proposed in [29], which can be viewed ei-
ther as a simplification of the DuBois’s or Mead’s model, either an improvement of
the simple series RLC circuit. The model allows characterization of small airways
resistance. For the extended RLC model from Fig. 3.5 we have Rr , airway and lung
resistance; Rp , peripheral resistance; Lr , lung inertance; Cr , alveolar compliance.
This model provides a theoretical support for the observations made in experimental
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Fig. 3.6 Structure of the ‘RLCES’ proposed model [69]. Rc the central resistance, Lr the total
inertance, Rp the peripheral resistance, Cb the bronchial tube compliance, and Ce the extrathoracic
compliance

studies upon the frequency dependence of respiratory resistance at low frequencies.
The added peripheral resistance Rp allows for the frequency dependence observed
of the typical real impedance data, which is beyond the RLC series model’s capabil-
ity. The physical justification for adding this additional component is that it models
the resistance presented by the respiratory system’s small airways.

Finally, another lumped parametric model proposed recently in the literature is
based on the observations from [29] on the influence of the upper airway shunt: RL-
CES (RLC Extended with Shunt). In Mead’s model, the influence of upper airway
shunt is taken into account by the extrathoracic compliance Ce. The proposed model
is then an extension from the Extended RLC proposed in [29] combined with the
extrathoracic compliance from Mead [102]. The corresponding electrical scheme
of the RLCES model is given in Fig. 3.6. This model is a simplification of Mead
model, with similar variables: Rc, the central resistance, Lr , the total inertance, Rp ,
the peripheral resistance, Cb , the bronchial tube compliance, and Ce, the extratho-
racic compliance [69].

Hitherto, integer-order parametric models for characterizing the respiratory input
impedance have been broadly developed and tested in various lung pathologies.
Although they succeed to characterize in a clinically useful manner the mechanical
properties of the lungs, there is a major drawback: accuracy increases with the model
order and so does numerical complexity. The impedance varies significantly with
frequency, requiring high order dynamical models. This problem has been tackled
by introducing the concept of fractional calculus from mathematics, leading to FO
models.

Some of the proposed FO models in the literature are

Zr(s) = P(s)

Q(s)
= Rr + Lrs + 1

Crsβr
(3.9)
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Table 3.1 Biometric and
spirometric parameters of the
investigated (male) subjects.
Values are presented as
mean ± SD; % pred:
predicted according to the
asymptomatic males of the
present study; VC: vital
capacity; FEV1: forced
expiratory volume in 1 s

Healthy
(7)

Asthma
(5)

COPD
(14)

Age (yrs) 55 ± 3 65 ± 2 51 ± 6

Height (m) 1.74 ± 0.15 1.62 ± 0.12 1.73 ± 0.14

Weight (kg) 82 ± 4 78 ± 5 71 ± 5

VC % pred 100 ± 3 80 ± 8 89 ± 7

FEV1 % pred 100 ± 4 53 ± 7 44 ± 6

and

Zr(s) = P(s)

Q(s)
= Rr + Lrs

αr + 1

Crsβr
(3.10)

with P pressure in cmH2O; Q flow in l/s; Zr the impedance in cmH2O/(l/s); Rr air-
way resistance in cmH2O/(l/s), Lr inductance in cmH2O/(l/s2); Cr capacitance in
l/cmH2O; 0 ≤ αr ≤ 1 and 0 ≤ βr ≤ 1 fractional orders and s the Laplace operator.
Using the definition of complex numbers, (3.10) becomes

Zr(jω) = Rr + Lrω
αr cos

(
αrπ

2

)
+ 1

Crωβr
cos

(
βrπ

2

)

+ j ·
[
Lrω

αr sin

(
αrπ

2

)
− 1

Crωβr
sin

(
βrπ

2

)]
(3.11)

It is possible to see that, contrary to a RLC series system, the real part of the
impedance in (3.11) will vary with frequency and comprises both inductance and
compliance effects. Therefore, it allows to characterize both increase and decrease
with frequency in the real part of impedance, without requiring a high integer-order
system.

3.3.2 The Volunteers

In this chapter, we are dealing with subjects evaluated with the classical FOT non-
invasive lung function test. There are three (averaged) data sets from groups of Cau-
casian healthy, asthmatic and COPD patients. Table 3.1 presents the corresponding
biometric and spirometric details.

The choice of these representative cases is motivated by the general aim of the
study: to evaluate the parametric models on the input impedance of these three sets
of subjects. The physiological differences between these sets of subjects are clearly
visible in the complex impedance values and we expect that the parametric models
proposed in this section will be able to quantify their specific properties.
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3.3.3 Identification Algorithm

For the purpose of this example, the model parameters were estimated using a non-
linear least squares optimization algorithm, making use of the MatLab function
lsqnonlin. The optimization algorithm is a subspace trust region method and is
based on the interior-reflective Newton method described in [21]. The large-scale
method for lsqnonlin requires that the number of equations (i.e., the number
of elements of cost function) is at least as great as the number of variables. Every
iteration involves the approximate solution using the method of preconditioned con-
jugate gradients, for lower and upper bounds. In this application, the lower bounds
were set to 0 (negative values are meaningless) and no upper bounds. The optimiza-
tion stopped either when a high number of iterations reached 100 times the number
of variables (i.e. 500), or a termination tolerance value of 10e−8. In all cases we
obtained a correlation coefficient between data and model estimates above 80 %.

Along with the corresponding model estimates, the error on the real and imagi-
nary part respectively and the total error between the real patient impedance and the
model estimated impedance are calculated according to the formula:

ER = 1

NS

√√√√ NS∑
1

(Re−R̂e)2

EX = 1

NS

√√√√ NS∑
1

(Im− ˆIm)2

ET =
√

E2
R + E2

X

(3.12)

with Re denoting the real part of the impedance, Im denoting the imaginary part of
the impedance, and NS the total number of excited frequency points.

3.3.4 Results and Discussion

We apply the input impedance identification methods described initially in [24] and
revisited in [67, 69] on the data measurements from FOT. By using (3.8), we obtain
complex input impedances for each group from Table 3.1 from 4–48 Hz frequency
range.

The reported values are given for resistance in cmH2O/(l/s); for inertance
in cmH2O/(l/s2) and for compliance in l/cmH2O. The corresponding averaged val-
ues for each model parameter and their standard deviations are reported. The results
were tested using the one way analysis of variance (in Matlab, anova1). All re-
ported values were statistically significant (p < 0.001, where p is the probability of
obtaining a result at least as extreme as the one that was actually observed, assuming
that the null hypothesis is true).
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Fig. 3.7 The performance of
the RLCES model (star line),
the CP4 model (dashed line)
and the CP5 model (dotted
line), against measured data
(continuous line) in healthy
subjects

Fig. 3.8 The performance of
the RLCES model (star line),
the CP4 model (dashed line)
and the CP5 model (dotted
line), against measured data
(continuous line) in asthmatic
patients

The error values calculated with (3.12) for each case are also reported, in terms
of their averaged values and a standard deviation >5 %. For those model parame-
ters for which no standard deviation is reported, the standard deviation varied with
<5 %.

In the remainder of this chapter, CP4 and CP5 will denote the constant-phase
model in four parameters from (3.9), respectively, the constant-phase model in five
parameters from (3.10).

The performance of the models from (3.9), (3.10) and RLCES on the impedance
complex data is depicted in Figs. 3.7, 3.8 and 3.9. It can be observed that these
models characterize sufficiently well the frequency-dependent behavior of the
impedance. It is also clear that the FO model in four parameters from the literature,
given by (3.9), is unable to capture the real part of impedance, which is increasing
with frequency. This model is then only valid in the low frequency range where the
real part of the impedance is decreasing as frequency is increasing.

As observed from the results given in Tables 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8,
the viscoelastic model has the poorest performance in terms of total error, explained
by the absence of inductance in the model structure. Within the integer-order mod-
els, Mead’s model has the least total error results in all subject groups. Notice that
Extended RLC is a (simplified) special case of Mead’s model, and therefore it will
never provide better results. For the case of a healthy subject, peripheral resistance
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Fig. 3.9 The performance of
the RLCES model (star line),
the CP4 model (dashed line)
and the CP5 model (dotted
line), against measured data
(continuous line) in COPD
patients

Table 3.2 Identified values for the viscoelastic model parameters and modeling errors. Ref.
Fig. 3.2

Raw Cs Rve Cve ER EX ET

Healthy 2.458±0.83 1.477e+9 0.117±0.012 2.04e−13 0.185 1.551 1.562

Asthma 1.925±0.61 0.291±0.04 0.817±0.23 6.37e−12 0.423 1.580 1.636

COPD 0.160±0.03 0.390±0.07 4.892e−4 1.43e−11 0.017 1.636 1.636

is very high (910.5778 cmH2O/(l/s)). As reported in [29], in trying to minimize the
error by not having the real part of the impedance decrease too rapidly (with respect
to frequency), Rp will tend to have larger values. Diong et al. suggest that it is not
entirely reliable to use any individual value of the model parameter to discriminate
between pathologic and healthy cases. However, the authors point to the possibility
of using two-parameter combinations for discriminating between healthy volunteers
and diagnosed patients.

It is also worth noticing that the estimated values of the RLCES model param-
eters are close to the ones estimated in the Mead model, leading to the conclusion
that the absence of wall compliance does not affect significantly the total impedance
of the human respiratory system.

Generally, the values for the model parameters in the three subject groups were
significantly different, allowing a separation (necessary for screening or for diagno-
sis). The airway resistance in models Viscoelastic, DuBois, and RLCES were fairly
close to each other, indicating good correlation between the various models for this
specific parameter. The same is valid for the central resistance values in models
Mead and CP5.

As referring to the specific values in each case (healthy, asthma, and COPD), the
resistance indicated correctly the possible variations with pathology. As expected,
the viscoelastic resistance Rve in Viscoelastic was significantly lower in COPD than
in Healthy and Asthma groups. The peripheral resistance Rp in models Mead, Ex-
tended and RLCES had similar order of magnitude in each group, but their val-
ues did not correlate. Since the highest values are reported by the Extended model,
which also has the least number of parameters of the above mentioned three model
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structures, we may suspect that this is due to the lumped characterization in model
Extended as opposed to Mead or RLCES, where part of this resistance’s effects are
transmitted to other model parameters.

In DuBois, tissue compliance correlated well with physiologically expected val-
ues and pathology. Bronchial compliance Cb correlated well between models Mead
and RLCES for asthma and COPD cases, but not in healthy subjects. We suspect this
may be due to inaccurate partitioning of wall and lung compliance. Nevertheless, the
values for Cb in asthma are very close to the reported values by Van Noord, where
Cb = 0.005 l/cmH2O and although the values for Ce are somewhat lower than ex-
pected, they are similar to what other authors report [29, 39, 93]. Airway inertance
correlated well between model structures DuBois, Mead, Extended, RLCES, as well
as in relation to expected pathology.

From the point of view of reported total errors, we may add that for all subject
groups the best performance was given by Mead’s model and highest errors for
viscoelastic model. We may conclude that Mead’s model is still the structure with
least errors in parametric estimations. However, the newly proposed integer-order
model RLCES gives similar total errors with less number of model parameters. This
is indeed an advantage when a specific characterization is not intended, but merely a
clear-cut within subject population for preliminary diagnosis. It is clear that if more
specific information is required, the Mead model must be employed. Nonetheless,
the model structure in Mead may not necessarily be optimal, for it over-estimates
lung compliance (in healthy and asthmatic).

It is also noticeable that the total errors given by the CP5 model are compara-
ble to the ones given by the Mead model. The main advantage of the CP5 model
structure over the Mead model structure is its reduced number of parameters to be
identified. The reason for giving such good estimations is that the fractional or-
der captures in a more accurate and flexible way the frequency dependence of the
complex impedance. It also seems that the model from (3.10) gives most accurate
estimates for the COPD case. For healthy persons, the airway resistance is very low.
The reason for such low values is that part of dissipation properties are captured by
the fractional orders [118]. This observation suggests eliminating the term Rr from
(3.10), but this issue will be revisited later in this book.

3.4 Summary

This chapter introduced the basic principles of estimating the respiratory impedance
from measurements performed with the forced oscillation lung function test. The
non-parametric identification of the respiratory impedance has been derived and
presented by means of spectral analysis. Next, a comparison of most representative
parametric models from literature for assessing respiratory input impedance shows
that FO models are more efficient than integer-order models in capturing frequency-
dependent impedance values variations. This motivates the development of the next
chapters, where theoretical models will be derived and it is shown that convergence
of these models for many airways will lead to the appearance of FO terms in the
lumped model structure.



Chapter 4
Modeling the Respiratory Tract by Means
of Electrical Analogy

4.1 Modeling Based on a Simplified Morphology and Structure

Since the fractal geometry is characterized by recurrent geometry, the respiratory
system is an ideal application. Lung geometry and morphology have been studied
using CT scans in 3D form [135]. Already since the work of Weibel, the fractal
geometry present in the lung morphology has been employed in studies on airway
aerodynamics [163]. The self-similarity is related to the optimality of ventilation
and asymmetry exists in the healthy lung as well. By contrast, a diseased lung
parenchyma contains significant heterogeneities and the optimality conditions are
no more fulfilled [66].

One of the most comprehensive and earliest overviews on the mechanical prop-
erties of lungs is given by Mead, describing the initial attempts to quantify static and
dynamic resistive, inertial and compliant properties of lungs. His review covers both
the inspiratory and the expiratory phase, at laminar and turbulent flow conditions, in
terms of a single variable: air volume. Another important study has been reported in
[114] for tube-entrance flow and pressure drop during inspiration in spontaneous
ventilation. While breathing at rest, the airflow remains laminar [66, 114, 120].
A decade later, Franken developed a model for oscillating flow of a viscous and
compressible fluid in a rigid tube [41]. It is one of the first applications of dynamic
models to the conditions of the forced oscillations technique as applied for lung
function testing. They modified the standard measurement device for pressure and
flow at the mouth of the patient replacing it with a 2 m rigid tube and based on
the tube model, the flow was estimated (thus the pneumotachograph is replaced by
this 2 m rigid tube). They included a one dimensional model of the propagating
waves and the true thermal properties of the tube wall and found that quantitative
differences between models with and without thermal variations are negligible.

Technological and computational progress allowed to perform studies of CT
scans from the 3D topology and morphology of a human (cast) lung [135]. Mean
gravity and branching angles up to level 9 bifurcations for the right and the left
lobe (asymmetric morphology due to heart location) were also reported, allowing
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detailed simulations in flow analysis studies. Such a detailed analysis, however, in-
volves complex numerical computations and the effort may be justified only by the
need for aerosol deposition models, etc. This is obviously out of the scope of this
book.

From the zoo of literature reports on pulmonary function, one may distinguish
two mainstreams:

• a symmetrical structure of the lung [163, 164] and
• an asymmetrical [54, 65] representation of the airways in the respiratory tree.

In this book, a symmetric flow bifurcation pattern is assumed in order to derive the
pressure–flow relationship in the airways. However, both symmetric and asymmetric
airway networks will be discussed in the next chapter, by means of their electrical
analogues.

Womersley theory has been previously applied to circulatory system analy-
sis, considering the pulsatile flow in a circular pipeline for sinusoidally varying
pressure-gradients [168]. Taking into account that the breathing is periodic with
a certain period (usually, for normal breathing conditions, around 4 seconds), we
address the airway dynamics problem making use of this theory. Usually, when si-
nusoidal excitations are applied to the respiratory system [69, 116], they contain
ten times higher frequencies than the breathing, which permits analyzing oscillatory
flow. To find an electrical equivalent of the respiratory duct, one needs expressions
relating pressure and flow with properties of the elastic tubes, which can be done
straightforward via Womersley theory [3, 115, 139].

The periodic breathing can be analyzed in terms of periodical functions, such
as the pressure gradient:− ∂p

∂z
= MP cos(ωt − ΦP ), where z is the axial coordi-

nate, ω = 2πf is the angular frequency (rad/s), with f the frequency (Hz), MP

the modulus and ΦP is the phase angle of the pressure gradient. Given its period-
icity, it follows that also the pressure and the velocity components will be periodic,
with the same angular frequency ω. The purpose is to determine the velocity in
radial direction u(r, z, t) with r the radial coordinate, the velocity in the axial direc-
tion w(r, z, t), the pressure p(r, z, t) and to calculate them using the morphological
values of the lungs. In this study, we shall make use of the Womersley parameter
from the Womersley theory developed for the circulatory system, with appropri-
ate model parameters for the respiratory system, defined as the dimensionless pa-

rameter δ = R
√

ωρ
μ

[139, 168], with R the airway radius. The air in the airways is

treated as Newtonian, with constant viscosity μ = 1.8 × 10−5 kg/m s and density
ρ = 1.075 kg/m3, and the derivation from the Navier–Stokes equations is done in
cylinder coordinates [165]:

ρ

(
∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂θ
+ w

∂u

∂z
− v2

r

)

= −∂p

∂r
+ ρFr + μ

[
1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2
+ 1

r2

∂2u

∂θ2
− 2

r2

∂v

∂θ
+ ∂2u

∂z2

]
(4.1)
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for the radial direction r , and

ρ

(
∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂θ
+ w

∂v

∂z
+ uv

r

)

= −1

r

∂p

∂θ
+ ρFθ + μ

[
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+ 1

r2

∂2v

∂θ2
− 2

r2

∂u

∂θ
+ ∂2v

∂z2

]
(4.2)

for the contour θ , and

ρ

(
∂w

∂t
+ u

∂w

∂r
+ v

r

∂w

∂θ
+ w

∂w

∂z

)

= −∂p

∂z
+ ρFz + μ

[
1

r

∂

∂r

(
r
∂w

∂r

)
+ 1

r2

∂2w

∂θ2
+ ∂2w

∂z2

]
(4.3)

in the axial direction z. If we have the simplest form of axi-symmetrical flow in

a cylindrical pipeline, the Navier–Stokes equations simplify by ∂
∂θ

= ∂2

∂θ2 = 0 and
with the contour velocity v = 0; it follows that (4.2) can be omitted. Let us consider
no external forces Fr,Fz. Since we have very low total pressure drop variations, i.e.
≈0.1 kPa [114], we can divide by density parameter ρ. Next, we introduce the di-
mensionless parameter y = r/R, with 0 ≤ y ≤ 1 in the relation d

dy
= d

dr
dr
dy

= R d
dr

,

and d
dr

= 1
R

d
dy

. The simplifying assumptions are applied: (i) the radial velocity com-
ponent is small, as well as the ratio u/R and the term in the radial direction; (ii) the

terms ∂2

∂z2 in the axial direction are negligible, leading to the following system:

∂u

∂t
= − 1

ρR

∂p

∂y
+ μ

ρ

[
1

yR2

∂u

∂y
+ 1

R2

∂2u

∂y2
− u

R2y2

]
(4.4)

∂w

∂t
= − 1

ρ

∂p

∂z
+ μ

ρ

[
1

yR2

∂w

∂y
+ 1

R2

∂2w

∂y2

]
(4.5)

u

Ry
+ 1

R

∂u

∂y
+ ∂w

∂z
= 0 (4.6)

Studies on the respiratory system using similar simplifying assumptions can be
found in [41, 114, 120]. Given that the pressure gradient is periodic, it fol-
lows that also that the pressure p(y, z, t) and the other velocity components
u(y, z, t),w(y, z, t) are periodic, as in

p(y, z, t) = AP (y)ejω(t−z/c̃)

u(y, z, t) = AU(y)ejω(t−z/c̃)

w(y, z, t) = AW(y)ejω(t−z/c̃)

(4.7)
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where c̃ denotes the complex velocity of wave propagation and j = √−1. Further
simplifications lead to the following system of equations:

u = jωR

μc̃

{
C1

2

δj3/2
J1
(
δj3/2y

)+ AP

ρc̃
y

}
ejω(t− z

c̃
) or

u = C1
jωR

δj3/2c̃
J1
(
δj3/2y

)
ejω(t− z

c̃
) + R

2ρc̃
MP ej (ωt−ΦP )

(4.8)

w =
{
C1J0

(
δj3/2y

)+ AP

ρc̃

}
ejω(t− z

c̃
) or

w = C1J0
(
δj3/2y

)
ejω(t− z

c̃
) + MP

ωρ
ej(ωt−ΦP − π

2 )

(4.9)

p(t) = AP ejω(t− z
c̃
) or − dp

dz
= MP ej(ωt−ΦP ) (4.10)

with C1 = −AP

ρc̃
1

J0(δj
3/2)

, AP the amplitude of the pressure wave, J0 the Bessel
function of the first kind and zero degree, J1 the Bessel function of the first kind and
first degree [1], and where

−dp

dz
= jω

c̃
AP ejω(t− z

c̃
) = MP ej(ωt−ΦP ) (4.11)

such that

AP ejω(t− z
c̃
) = c̃

ω
MP ej(ωt−ΦP −π/2) (4.12)

It is supposed that the movement of the (relatively short) elastic airway ducts is
limited to the radial movement ζ(z, t) of the tube, being dependent only on the
longitudinal coordinate and the time. This supposition is valid for short segments
(� wavelength of the pressure wave) in which the longitudinal movement is negli-
gible compared to the radial. The wavelength corresponding to the tracheal tube is
about 2.5 m long, much longer than the length of the tube itself; hence, the supposi-
tion is valid in our case. Although the inspiratory and expiratory movements of the
airways involve both radial as well as longitudinal movement, we restrict our analy-
sis to the radial elongation only. The Poisson coefficient is denoted by νP ; it equals
0.45 [85]. The problem now contains four unknowns: u(y, z, t), w(y, z, t), p(z, t),
and ζ(z, t); therefore we need an extra equation in order to solve the system: the
pipeline equation. The movement equation of the wall follows from the dynamical
equilibrium of the forces applied on the wall, similar to the work reported in [115].
Denoting with ζ the elongation of the tube radius from R to R + ζ , we have the
dynamic equilibrium equation in the radial direction:

p(R + ζ ) dθ dz + h
E

1 − ν2
P

ζ

R
dθ dz = hρwall(R + ζ ) dθ dz

d2ζ

dt2
(4.13)
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where R is the initial (steady-state) radius, h is the thickness of the wall, E is the
effective modulus of elasticity, ρwall is the effective density of the wall, and νP is the
Poisson coefficient. The modulus of elasticity and the wall density have to take into
account that the airways are a combination of soft tissue and cartilage, the percent
of which varies with the airway levels.

In this model, the effective elastic modulus and wall density, respectively, are
considered in function of the airway tissue structure:

E = κEc + (1 − κ)Es

ρwall = κρc + (1 − κ)ρs

(4.14)

taking into account at each level the fraction amount κ of corresponding cartilage
tissue (index c) and soft tissue (index s) and with Ec = 400 kPa, Es = 60 kPa, ρc =
1140 kg/m3, ρs = 1060 kg/m3. The values of the corresponding cartilage fraction
are given in Table 2.1.

Assuming a negligible displacement ζ in comparison to R, one can simplify
(4.13) with all terms in ζ/R. Dividing by R dzdθ , leads to the simplified equation
of motion for the elastic airway wall:

p + Eh

1 − ν2
P

ζ

R2
= ρwallh

d2ζ

dt2
(4.15)

The set of Eqs. (4.4)–(4.6) and (4.15) form a system of four equations with four
unknown parameters.

For a rigid pipeline we have

ζ = 2Rejω(t− z
c̃
) (4.16)

introducing this relation in (4.15) and using (4.10) we obtain

2R = AP

( E

1−ν2
p

h

R2 − ρwallhω2)
(4.17)

such that the movement of the airway wall is given as a function of the pressure

ζ = AP

( E

1−ν2
p

h

R2 − ρwallhω2)
· ejω(t− z

c̃
) (4.18)

The equation for the axial velocity remains the same as in case of a rigid pipeline:

w(y) = MP

ωρ
M0(y)ej (ωt−ΦP −π/2+ε0(y)) (4.19)

where

M0(y)ejε0(y) = 1 − (δj3/2y)

(δj3/2)
(4.20)
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Similarly, we define

M1e
jε1 = 1 − 2J1(δj

3/2)

(J0(δj3/2)δj3/2)

M2(y)ejε2(y) = 1 − 2J1(δj
3/2y)

(J0(δj3/2)δj3/2)

(4.21)

denoting the modulus and phase of the Bessel functions of first kind Ji and ith
order [1].

For an elastic pipeline, the no-slip condition is still valid (w = 0 for y = ±1),
such that the radial velocity is

u(y) = jωR

2ρc̃

{
y − 2J1(δj

3/2y)

J0(δj3/2y)δj3/2

}
AP ejω(t− z

c̃
)

= Ry

2ρc̃

{
y − 2J1(δj

3/2y)

J0(δj3/2)δj3/2

}
MP ej(ωt−ΦP ) (4.22)

and using (4.21), the equivalent form of (4.22) becomes

u(y) = R

2ρc̃
MP M2(y)ej (ωt−ΦP +ε2(y)) (4.23)

The flow is given by

Q = πR2MP

ωρ
M1e

j (ωt−ΦP −π/2+ε1) = πR4MP

μδ2
M1e

j (ωt−ΦP −π/2+ε1) (4.24)

The effective pressure wave has the general form of

p(z, t) = AP ej(ω(t− z
c̃
)−φP ), (4.25)

where φP can be a phase shift for z = 0 at t = 0. It follows that

−dp

dz
= MP ej(ωt−ΦP ) = AP ω

c̃
ej (ω(t− z

c̃
)−φP +π/2) (4.26)

For z = 0, it follows that

MP ej(ωt−ΦP ) = AP ω

ć0
√

M1
ej (ωt−φP +π/2−ε1/2) (4.27)

from which we have

MP = AP ω

ć0
√

M1
(4.28)

and

ΦP = φP − π/2 + ε1/2 (4.29)
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The pressure gradient is related to the characteristics of the airway duct via the
Moens–Korteweg relation for the wave velocity ć0, with

ć0 =
√

Eh

(2ρR(1 − ν2
P ))

(4.30)

The model for wave propagation in function of the pressure p (kPa) for axial w

(m/s) and radial u (m/s) velocities, for flow Q (l/s) and for the wall deformation ζ

(%) at the axial distance z = 0 is given by the set of equations:

p(t) = AP ej(ωt−φP ) (4.31)

u(y, t) = RAP ω

2ρć2
0

· M2(y)

M1
cos

(
ωt − ε1 − φP + ε2(y) + π

2

)
(4.32)

w(y, t) = R2AP ω

ć0μ
√

M1
· M0(y)

δ2
sin

(
ωt − ε1

2
− φP + ε0(y) + π

2

)
(4.33)

Q(t) = πR4

μ

AP ω

ć0
√

M1

M1

δ2
sin

(
ωt + ε1

2
− φP + π

2

)
(4.34)

ζ(t) = AP

hE

R2 − ρwallhω2
cos(ωt − φP ) (4.35)

with

AP = 2R

(
E

1 − ν2

h

R2
− ρwallhω2

)
(4.36)

ć0 =
√

Eh

(2ρR(1 − ν2
P ))

(4.37)

One should note that the model given by (4.31)–(4.35) is a linear hydrodynamic
model, adapted from Womersley [168]. This model has been used as basis for fur-
ther developments by numerous authors [115, 139]. The assumption that air is in-
compressible and Newtonian has been previously justified and the equations are
axi-symmetric for flow in a circular cylinder. The boundary condition linking the
wall and pipeline equations (4.31)–(4.35) is the no-slip condition that assumes the
fluid particles to be adherent to the inner surface of the airway and hence to the mo-
tion of the elastic wall. Due to the fact that the wall elasticity is determined by the
cartilage fraction in the tissue, it is possible to consider variations in elasticity with
morphology, which in turn varies with pathology.

Generally, it is considered that if the Reynolds number NRE is smaller than 2000,
then the airflow is laminar; otherwise it is turbulent [165]. Based on the airway
geometry and on an average inspiratory flow rate of 0.5 (l/s) during tidal breathing
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Fig. 4.1 Schematic
representation of the
infinitesimal distance dx over
the transmission line and its
parameters

conditions, the Reynolds number can be calculated as

NRE = w · 2R · ρ

μ
(4.38)

with ρ = 1075 (g/m3) the air density BTPS (Body Temperature and Pressure, Satu-
rated) and μ = 0.018 (g/m s) the air viscosity BTPS. We have verified the values for
the Reynolds number, which indeed indicated laminar flow conditions throughout
the respiratory tree, varying from 1757 in the trachea to 0.1 in the alveoli. Hence,
the assumption of laminar flow conditions during tidal breathing is correct.

4.2 Electrical Analogy

By analogy to electrical networks, one may consider voltage as the equivalent for
respiratory pressure P and current as the equivalent for airflow Q [83]. Electri-
cal resistances Re may be used to represent respiratory resistance that occur as a
result of airflow friction in the airways. Similarly, electrical capacitors Ce may rep-
resent volume compliance of the airways which allows them to inflate/deflate. The
electrical inductors Le may represent inertia of air and electrical conductances Ge

may represent the viscous losses. These properties are often clinically referred to
as mechanical properties: resistance, compliance, inertance, and conductance. The
aim of this section is to derive them in function of airway morphology in case of
an elastic airway wall (Re,Le,Ce) and in the case of a viscoelastic airway wall
(Re,Le,Ce,Ge).

Suppose the infinitesimal distance dx of a transmission line as depicted in
Fig. 4.1. We have the distance-dependent parameters: lx induction/m; rx resis-
tance/m; gx conductance/m; cx capacity/m. We consider the analogy to voltage as
being the pressure p(x, t) and to current as being the airflow q(x, t) and we apply
the transmission line theory. We shall make use of the complex notation:

p(x, t) = P(x)ej (ωt−φP )

q(x, t) = Q(x)ej (ωt−φQ)
(4.39)

where x is the longitudinal coordinate (m), t is the time (s), ω is the angular fre-
quency (rad/s), f is the frequency (Hz) and j = √−1. The pressure and the flow are
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harmonics, with the modulus dependent solely on the location within the transmis-
sion line (x). φP and φQ are the pressure and flow phase angles at t = 0. The voltage
difference between two points on the transmission line denoted (x) and (x + dx) is
due to losses over the resistance and inductance:

p(x + dx) − p(x) = −rx dx · q − lx dx
∂q

∂t
(4.40)

and the current difference between the same points is due to leakage losses and
storage in the capacitor:

q(x + dx) − q(x) = −gx dx · p − cx dx
∂p

∂t
(4.41)

After division with dx, knowing that in the limit dx −→ 0, and introducing
(4.39) in the first and second derivation gives, respectively:

∂P

∂x
= −(rx + jωlx)Q = −ZlQ

∂Q

∂x
= −(gx + jωcx)P = −P/Zt

∂2P

∂x2
= −(rx + jωlx)

∂Q

∂x
= −Zl

∂Q

∂x

∂2Q

∂x2
= −(gx + jωcx)

∂P

∂x
= −∂P

∂x

/
Zt

(4.42)

with

Zl = −
∂P
∂x

Q
= rx + jωlx (4.43)

the longitudinal impedance and

Zt = P

− ∂Q
∂x

= 1

gx + jωcx

(4.44)

the transversal impedance.
From (4.42) we obtain the system equations for P(x) and Q(x):

∂2P

∂x2
− ZlP/Zt = 0

∂2Q

∂x2
− ZlQ/Zt = 0

(4.45)

Introducing the notation

γ =√(rx + jωlx)(gx + jωcx) =
√

Zl

Zt

(4.46)



48 4 Modeling the Respiratory Tract by Means of Electrical Analogy

it follows that (4.45) can be re-written as

∂2P

∂x2
− γ 2P = 0 and

∂2Q

∂x2
− γ 2Q = 0

(4.47)

to which the solution is given by

P(x) = Ae−γ x + Beγx and

Q(x) = Ce−γ x + Deγx
(4.48)

with complex coefficients A,B,C,D; using (4.48) in the first two relations from
(4.42), the system can be reduced to

Q(x) = 1

Z0

(
Ae−γ x − Be+γ x

)
, with (4.49)

Z0 =
√

rx + jωlx

gx + jωcx

=√ZlZt (4.50)

in which Z0 is the characteristic impedance of the transmission line cell.
Using the trigonometric relations

sinh(γ x) = eγ x − e−γ x

2

cosh(γ x) = eγ x + e−γ x

2

(4.51)

we can write the relationship between the input x = −
 and the output x = 0 as
∣∣∣∣ P1
Q1

∣∣∣∣ ==
∣∣∣∣ cosh(γ 
) Z0 sinh(γ 
)

1
Z0

sinh(γ 
) cosh(γ 
)

∣∣∣∣
∣∣∣∣ P2
Q2

∣∣∣∣ (4.52)

with

Z0 =
√

rx + jωlx

gx + jωcx

=√ZlZt (4.53)

the characteristic impedance and

Zl = rx + jωlx = γZ0 (4.54)

the longitudinal impedance, respectively,

Zt = 1/(gx + jωcx) = Z0/γ (4.55)

the transversal impedance.
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The relation for the longitudinal impedance in function of aerodynamic variables
is obtained from (4.43), and gives

Zl = jωρ

πR2M1
e−jε1 = μδ2

πR4M1
e−j ( π

2 −ε1)

= μδ2

πR4M1

[
sin(ε1) + j cos(ε1)

]
(4.56)

respectively, in terms of transmission line parameters, the longitudinal impedance is
given by Zl = rx + jωlx .

By equivalence of the two relations we find that the resistance per unit distance
is

rx = μδ2

πR4M1
sin(ε1) (4.57)

It follows that ωlx = μδ2

πR4M1
cos(ε1) and recalling that δ = R

√
ωρ
μ

, the inductance

per unit distance is

lx = ρ

πR2

cos(ε1)

M1
(4.58)

4.2.1 Elastic Tube Walls

In case of an elastic pipeline, the characteristic impedance is obtained using rela-
tions (4.43), (4.44), and (4.50), leading to

Z0 = ρ

πR2

1

1 − ν2
P

√
Eh

2ρR

1√
M1

e−j
ε1
2 (4.59)

and for a lossless line (no air losses trough the airway walls, thus conductance gx is
zero), the transversal impedance is

Zt = 1

jωcx

= Z2
0

Zl

= Eh

(jω(2πR3(1 − ν2
P ))

(4.60)

from where the capacity per unit distance can be extracted:

cx = 2πR3(1 − ν2
P )

Eh
(4.61)

Thus, from the geometrical (R,h) and mechanical (E, νP ) characteristics of the
airway tube, and from the air properties (μ,ρ) one can express the rx , lx and cx

parameters. In this way, the dynamic model can be expressed in an equivalent loss-
less transmission line by Eqs. (4.57)–(4.61). Notice that the compliance parameter
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cx in (4.61) is independent of the frequency, while both rx (4.57) and lx (4.58) are
dependent on frequency trough the δ parameter, present also in M1. Because we are
interested only in the input impedance, we can disregard the effects introduced by
the reflection coefficient. Hence, for |γ | � 1, one can estimate that over the length

 of an airway tube, we have the corresponding properties [73]:

Re = rx
 = 

μδ2

πR4

sin(ε1)

M1
(4.62)

Le = lx
 = 

ρ

πR2

cos(ε1)

M1
(4.63)

Ce = cx
 = 

2πR3(1 − ν2

P )

Eh
(4.64)

4.2.2 Viscoelastic Tube Walls

Viscoelasticity is introduced assuming a complex function for the elastic modulus,
yielding a real and an imaginary part [8, 23, 143]. This can then be written as a
corresponding modulus and phase:

E∗(jω) = ES(ω) + jED(ω) = |E|ejϕE (4.65)

The complex definition of elasticity will change the form of the wave velocity from
(4.37) into

ć0 =
√

|E|hejϕE

2ρR(1 − ν2
P )

=
√

|E|h
2ρR(1 − ν2

P )
ej

ϕE
2 (4.66)

The viscoelasticity of the wall is determined by the amount of cartilage fraction in
the tissue, as the viscous component (collagen), respectively by the soft tissue frac-
tion in the tissue as the elastic component (elastin) [8]. The equivalent of (4.65) is
the ratio between stress and strain of the lung parenchymal tissue. The Young mod-
ulus is then defined as the slope of the stress–strain curve. With the model given by
the above described equations, it is possible to consider variations in viscoelasticity
with morphology and with pathology. This will be discussed in the next chapter.

For a viscoelastic pipeline, the characteristic impedance is given by

Z0 = ρ

πR2

1

1 − ν2
P

√
|E|h
2ρR

1√
M1

e−j (
ε1
2 + ϕE

2 ) (4.67)

and the transversal impedance is given by

Zt = 1

gx + jωcx

= Z2
0

Zl

= 1
/(

ω
2πR3(1 − ν2

P )2

|E|h ej ( π
2 −ϕE)

)
(4.68)
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from which the conductance per unit distance can be extracted:

gx = ω
2πR3(1 − ν2

P )2

|E|h sinϕE (4.69)

and the capacitance per unit distance is given by

cx = 2πR3(1 − ν2
P )2

|E|h cosϕE (4.70)

Thus, from the geometrical (R,h) and mechanical (E∗, νP ) characteristics of the
airway tube, and from the air properties (μ,ρ) one can express the rx , lx , gx and
cx parameters. In this way, the dynamic model can be expressed in an equivalent
transmission line defined by Eqs. (4.57), (4.58), (4.69), (4.70). Similar to the elastic
wall case, we can estimate that, over the length 
 of an airway tube, we have the
corresponding properties:

Re = rx
 = 

μδ2

πR4M1
sin(ε1) (4.71)

Le = lx
 = 

ρ

πR2

cos(ε1)

M1
(4.72)

Ge = gx
 = 
ω
2πR3(1 − ν2

P )2

|E|h sinϕE (4.73)

Ce = cx
 = 

2πR3(1 − ν2

P )2

|E|h cosϕE (4.74)

4.2.3 Generic Recurrence in the Airways

Variations of the ratios of the mechanical parameters within consecutive airway lev-
els in a branch are given in Fig. 4.2-left. The ratio for the resistance is supra-unitary,
hence the resistance increases with the branch. Similarly, a sub-unitary ratio for
compliance denotes a decreases in elasticity with each level. Both effects are due to
a decrease in the airway cross-section. Figure 4.2-right depicts the same variation,
but with the airway level. Due to an increase in the total cross-sectional area from
one level to another, the total resistance decreases (sub-unitary ratio), whereas the
total compliance increases (supra-unitary ratio). Exponential changes for resistance,
inertance and elastance from level 10 onwards show that mechanical properties be-
come important towards the lower ducts (gas exchange).

Notice from Fig. 4.2 that from level 11 onwards, the variations of the ratios are
smaller (except the last two bifurcations: 22 and 23). Physiologically, level 11 cor-
responds to the bronchiole [59, 114]. We can correlate these effects to the variations
in the airway radius and in the airway cross-sectional area, respectively. The ra-
dius changes from 8 mm to 1.75 mm, whereas the area varies from 254.5 mm2 to
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Fig. 4.2 The ratio between two consecutive branches belonging to consecutive levels (left) and
between two consecutive levels (right) in the healthy lung for resistance Re , inertance Le , and
compliance Ce

2.09 mm2 from trachea (level 1) to bronchiole (level 11). From level 11 onward,
these changes are not so abrupt, thus resulting in lower variance of the mechani-
cal parameters values as well. Functionally, levels up to 11 denote the conductive
zone (i.e. they transport air into and out of the lungs) and levels up to 24 denote
respiratory zone (i.e. gas exchange takes place here).

4.3 Some Further Thoughts

The set of equations given by (4.31)–(4.35) can be used to investigate the varia-
tions in tidal breathing pressure and flow waves caused by pathology in the nominal
function of the lung. Due to the fact that we do not seek to obtain a precise/exact
value of the pressure and flow components but merely a qualitative evaluation, a
more complex formulation may be more realistic, but may serve little to our quest
in bringing forward lumped FO parameter models. In the remainder of this chapter,
the assumptions and limitations used in the derivation of the electrical analogue are
presented.

For typical flow rates during spontaneous breathing ranging 0.5–1 l/s, wall rough-
ness is neglected since it has little effect under laminar flow conditions and for low
values of the Womersley parameter. The values of the Womersley parameter δ are
always less than 1, varying from 0.0471 in alveoli to 0.785 in the trachea. If one
compares these values of δ for the circulatory system, where values become as high
as 24, deviations from Poiseuille parabolic flow profile occur as a result [120, 139].
This is not the case for the laminar flow conditions during tidal breathing.

We use a set of simplifying assumptions which emerged from previous studies
[41, 102]. The pressure at the boundaries of all parts is the same at all points of the
respective boundaries. Three of the boundaries contain gas only on one side: airway
opening, alveolar surface, and body surface. Uniform pressure is valid if the gas is in
continuity condition and there is no flow. These conditions are fulfilled for the body
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surface, during panting at the airway opening and the alveoli. The only part which
is not in agreement with this hypothesis is the pleural surface, which has tissue on
both sides and its pressure distribution cannot be predicted.

To summarize, the results are obtained under the following assumptions:

• laminar flow for typical Reynolds number during quiet breathing less than 2000;
• ducts are long enough (this assumption is not true, thus neglecting the entrance

effects);
• the air is homogeneous and Newtonian;
• the axial velocity component is zero at the airway wall;
• linear (visco)elastic, uniform cylindrical duct (valid as approximation);
• for linearization we have assumed the following simplifications:

– −ωR
c

� δ, for in respiration we have values between 3.5904 × 10−5 and
2.1542 × 10−6;

– the air velocity is small compared to the wave velocity; this is valid for most
of the airways; i.e. in trachea there may be velocities as high as 10 m/s, with a
wave velocity of 339 m/s;

– the values for y vary between 0 −→ ±1 (rigid pipe), although in reality it
varies between 0 −→ ±(1 + ζ/R) (viscoelastic pipe);

– the E modulus is dependent on the airway type (cartilage fraction);

• thin-walled ducts; for the healthy respiratory system, the ratio h/R varies between
0.4625 in trachea, to 0.0896 in alveoli. When calculating the value for ć0, the
geometrical characteristics are introduced, modifying it accordingly.

4.4 Summary

In this chapter, the results based on the Womersley theory have been used to deter-
mine an electrical equivalent of the respiratory system and capture the mechanical
properties in (4.62)–(4.64). For the respiratory system, transmission line models are
mostly used within high frequency ranges (above 100 Hz) for sound analysis diag-
nosis [59]. However, for lower frequencies (0.1–50 Hz) the transmission line theory
can be applied in a simplified form, leading to the exact solution for pressure and
flow changes in normal breathing conditions. A study of the systemic circulation
has been employed in [115], leading to the same formula for the compliance (4.61).
Similarity exists between the derivation of the input impedance in the respiratory
tree in this study and modeling the smaller systemic arteries, since in both simu-
lations the symmetric structure is employed, along with laminar flow conditions,
incompressibility, Newtonian fluid, and the no-slip boundary condition. The input
impedance is extended to a more general tree in [115], by adding the equation of
crossing a bifurcation based on a law on which the geometry changes over the junc-
tion. Nevertheless, we may argue that our choice of choosing to model a completely
symmetric tree still reflects its essential behavior, and can be extended with the
asymmetry relations adapted from [115].
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It is straightforward to apply airway altering/remodeling effects in this simple
model representation, but limitations should be taken into account. The major errors
which may occur in this study are determined by the heterogeneity of the human
lung, i.e. inter-subject variability can affect the values from Table 2.1 and Table 2.2.
However, these values are reported in several studies [59, 66, 85, 100, 164] and they
had offered a good basis for investigations, originally measured from excised lungs
[114, 163] and then in plastic casts [135].

Another further simplification in our reasoning is considering the effects from the
branching angles negligible. These angles influence the flow to change direction,
may lead to an asymmetrical velocity profile, to develop a secondary flow in the
daughter branches and the inner airway walls to be slightly stretched [135]. The
change in cross-sectional areas which occurs from parent to daughter branches in a
bifurcation causes the fluid to undergo a deceleration and may cause separation of
adjoining streamlines. However, this kind of information may be more useful to the
study of airflow dynamics in aerosol deposition models.

The model developed in this chapter can be now employed in building an elec-
trical analogue ladder network model preserving the geometry of the respiratory
system.



Chapter 5
Ladder Network Models as Origin
of Fractional-Order Models

5.1 Fractal Structure and Ladder Network Models

5.1.1 An Elastic Airway Wall

In this section, we make use of the formulas (4.62), (4.63), and (4.64), which are cal-
culated with the morphologic values from Table 2.1. With the resistance, inertance,
and capacitance values at hand, one is able to build an electrical network. Suppose
we have the electrical network as depicted in Fig. 5.1, which preserves the geome-
try of the respiratory tree. In this network, Zl∗m denotes the longitudinal impedance,
whereas Zt∗m denotes the transversal impedance of the airway tubes and m denotes
the level in the respiratory tree (m = 1, . . . ,N ).

Assuming that the flow Q is symmetric with respect to each bifurcation (divides
equally trough the branches) one can define the equivalent level impedances and
admittances as a function of powers 2. Hence, the total resistance per level is given
by [108]:

Rem = R∗
em/2m−1 (5.1)

with R∗
em the resistance in a single branch. Similarly, the total inertance per level is

given by

Lem = L∗
em/2m−1 (5.2)

with L∗
em the inertance in a single branch; finally, the total capacitance in a level is

given by

Cem = C∗
em · 2m−1 (5.3)

with C∗
em the capacitance in a single branch. Using these relations, one can simplify

the electrical network from Fig. 5.1 to an equivalent ladder network, schematically
depicted in Fig. 5.2. In this ladder network, Zl∗m, with m = 1, . . . ,N denoting the
longitudinal impedance, which is defined as Zl∗m(s) = R∗

em + L∗
ems. Since both re-

sistance and inertance in each level are divided by 2m−1, we can use the equivalent
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Fig. 5.1 Recursive tree representation of the respiratory tree in its electrical equivalent

Fig. 5.2 Equivalent ladder network for the symmetric recursive tree

Table 5.1 Ratios of the mechanical parameters between consecutive levels. Values are presented
as mean ± standard deviation values for the 1–15 levels, respectively, for the 16–24 levels

Nominal Levels 1–15 Levels 16–24

λ 0.81 ± 0.32 0.68 ± 0.16

1/α 0.56 ± 0.17 0.56 ± 0.08

χ 1.71 ± 0.77 1.55 ± 0.29

representation Zlm(s) = Zl∗m/2m−1, as in Fig. 5.2. In the same figure, the capaci-
tance is denoted using (5.3).

We introduce the following notations for the ratios between the levels:

Rem+1

Rem

= λ,
Lem+1

Lem

= 1

α
,

Cem+1

Cem

= χ (5.4)

with the ratios including both morphological and geometrical properties, as in
Fig. 5.2. Hence, using the morphological values from Table 2.1 in (5.1), (5.2), and
(5.3), the ‘nominal’ ratios from (5.4) are calculated and given in Table 5.1.

The total input impedance ZN(s) of the ladder network from Fig. 5.2 can be writ-
ten as a continuous fraction expansion [118]. For the sake of mathematical clarity,
we shall derive the analysis in terms of the admittance, which is the inverse of the
impedance YN(s) = 1/ZN(s).
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Fig. 5.3 General scheme of a ladder network in gamma-cell configuration; here N denotes the
total number of cells

In this chapter we make use of the theoretical basis available in the literature
for similar structures, but tailored upon the conditions and the characteristics of the
respiratory system.

Consider the generalized case depicted in Fig. 5.3. The longitudinal and transver-
sal impedances can be defined irrespective of their elements, in function of voltage
and current:

Zlm(s) = Um−1(s) − Um(s)

Im−1(s)
(5.5)

and

Ztm(s) = Um(s)

Im−1(s) − Im(s)
(5.6)

from which we can further write

Um(s) − Um+1(s) = Zlm+1(s)Im(s) (5.7)

or, equivalently,

Im(s)

Um(s)
= 1/Zlm+1(s)

1 + Um+1(s)

Im(s)Zlm+1(s)

(5.8)

and

Im(s) − Im+1(s) = Um+1(s)

Ztm+1(s)
(5.9)

or, equivalently

Um+1(s)

Im(s)
= Ztm+1(s)

1 + Ztm+1(s)
Im+1(s)

Um+1(s)

(5.10)

From (5.8)–(5.10), the total admittance of the ladder at level m = 0 is given by

Y1(s) = I0(s)

U0(s)
= 1/Zl1(s)

1 + U1(s)
I0(s)Zl1(s)

(5.11)

or, equivalently, by

Y1(s) = 1/Zl1(s)

1 + Zt1(s)/Zl1(s)

1+Zt1(s)
I1(s)

U1(s)

(5.12)
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If we calculate the total admittance until m = 1, we have

Y2(s) = 1/Zl1(s)

1 + Zt1(s)/Zl1(s)

1+ Zt1(s)/Zl2(s)

1+ U2(s)
I1(s)Zl2(s)

(5.13)

or, equivalently,

Y2(s) = 1/Zl1(s)

1 + Zt1(s)/Zl1(s)

1+ Zt1(s)/Zl2(s)

1+ Zt2(s)/Zl2(s)

1+Zt2(s)
I2(s)
U2(s)

(5.14)

From (5.12)–(5.14) one may generalize via recurrence the form of the total admit-
tance with m = N cells, for N → ∞:

YN(s) = 1/Zl1(s)

1 + Zt1(s)/Zl1(s)

1+ Zt1(s)/Zl2(s)

1+ Zt2(s)/Zl2(s)
...

...

1+ ZtN−1(s)/ZlN (s)

1+ZtN (s)/ZlN (s)

(5.15)

which is, in fact, a continued fraction expansion [118]. Re-writing (5.15) using the
explicit form of the longitudinal and transversal impedances gives

YN(s) = 1/(Re1 + Le1s)

1 + 1/[Ce1s(Re1+Le1s)]
1+ 1/[Ce1s(Re2+Le2s)]

1+ 1/[Ce2s(Re2+Le2s)]
1+ 1/[Ce2s(Re3+Le3s)]

... ...

1+
1/[Ce(N−1)s(ReN+LeN s)]
1+1/[CeN s(ReN+LeN s)]

(5.16)

which, in terms of the recursive ratios from (5.4) can be re-written as

YN(s) = 1/(Re1 + Le1s)

1 + 1/[Ce1s(Re1+Le1s)]
1+ 1/[Ce1s(λRe1+ Le1s

α
)]

1+ 1/[χCe1s(λRe1+ Le1s

α
)]

1+
1/[χCe1s(λ

2Re1+ Le1s

α2 )]
... ...

1+
1/[χN−2Ce1s(λ

N−1Re1+ Le1s

αN−1 )]
1+1/[χN−1Ce1s(λ

N−1Re1+ Le1s

αN−1 )]

(5.17)

For the set of conditions:

Le1 � Re1 |s| < 1

Re1 · Ce1
and |s| � Re1

Le1
(5.18)

and

α · χ > 1, α · λ > 1, λ > 1 and χ > 1, (5.19)
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we see that in the limit N → ∞, the term Le1s

(αλ)N−1 from (5.17) becomes very small
compared to the term in Re1. Consequently, the continued fraction expansion from
(5.17) reduces to

YN(s) ∼= 1/Re1

1 + 1/Re1Ce1s

1+ 1/λRe1Ce1s

1+ 1/χλRe1Ce1s

1+ 1/χλ2Re1Ce1s
... ...

1+ 1/χN−2λN−1Re1Ce1s

1+1/χN−1λN−1Re1Ce1s

(5.20)

If we introduce the notations

Wd(s) = 1

Re1Ce1s
, Wn(s) = 1

Re1
(5.21)

then (5.20) can be reduced to an analogue representation:

YN(s) ≈ Wn(s)

1 + g(Wd(s), λ,χ)
(5.22)

in which g(Wd(s), λ,χ) denotes

g
(
Wd(s), λ,χ

)= Wd(s)

1 + Wd(s)/λ

1+ Wd(s)/λχ

1+Wd(s)/λ2χ
···

(5.23)

Since Wd(s) can be taken in front of the expansion and both λ and χ are constants,
we can write

YN(s) ≈ Wn

K(λ,χ)(Wd(s))n
(5.24)

with the fractional order n given by

n = log(λ)

log(λ) + log(χ)
(5.25)

or, in our specific case:

YN(s) ∼= 1/Re1

K(λ,χ) · (1/Re1Ce1s)n
(5.26)

Consequently, the impedance is given by

ZN(s) = 1

YN(s)
∼= K(λ,χ) · Re1

(Re1Ce1s)n
(5.27)

The values for K(λ,χ) can be determined as described in [118]; since we do not
make use of it explicitly, its derivation will not be discussed here. Moreover, our sole
purpose was to show that the continuous fraction expansion from (5.16) will lead
to a compact form which contains a term in the fractional order n. Hence, relation
(5.27) shows the link between the ladder network from Fig. 5.2 and the appearance
of a fractional-order term in the form of total input impedance. In the frequency
domain, the fractional order will lead to a constant-phase behavior, i.e. a phase-
locking in the frequency range given by the convergence conditions [118, 148].
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Fig. 5.4 Impedance by means of complex (left) and Bode-plot (right) representation, for the R–C

(continuous line) and the R–L–C (dashed line) model structures

Depending on the number of cells in the ladder (N ), the constant-phase behavior
will emerge over a wider range of frequencies. This result is applicable to any kind
of ladder network (airways, arteries, etc.). However, the fractional-order value and
coefficients will change according to the properties (morphology, geometry) of the
system.

In practice, the respiratory tract can be simulated as follows. The relations de-
rived in Chap. 4 for resistance (4.62), inertance (4.63), and compliance (4.64) are
used to calculate the total level values as in (5.1), (5.2), and (5.3). Notice that the
values in the trachea Re1, Le1, and Ce1 need to take into account the flow and
pressure effects in the upper airways (mouth, nose, larynx, pharynx). Since we
do not model the upper airways, we need to take the values from literature [121]:
RUA = 0.2 kPa/(l/s), LUA = 0.002 kPa/(l/s2), and CUA = 0.25 l/kPa. To find the
level values, one can make use of the ratios from Table 5.1. The last compartment
needs to model the gas compression effect; hence, from literature, we introduce the
series impedance consisting of [54] RGC = 0.05 kPa/(l/s), LGC = 0.06 kPa/(l/s2),
and CGC = 6 l/kPa. This last impedance is closing the ladder network, being in par-
allel with the cell N = 24. The total admittance from (5.16) is then calculated. The
equivalent total input impedance (including the upper airways and the gas compres-
sion compartment) is depicted by means of its real-imaginary parts in Fig. 5.4-left,
respectively, by its equivalent Bode-plot representation in Fig. 5.4-right. Notice that,
in these figures, we show the impedance in two cases: when the airway tube is mod-
eled by an R–C element, and an R–L–C element, respectively. This comparison
allows capturing the effect of the inertance element, while the frequency is increas-
ing.

In the Bode plot, a variation of the phase between 0◦ and −26◦ can be observed
in the frequency interval ω ∈ [10−4,102] (rad/s). However, this is not the constant-
phase effect as expected from theory, because the fractional-order value n would
have to be zero, or 0.3, respectively. If we use the analytical form of (5.25) to calcu-
late this fractional-order value, we obtain n = 0.59. This mismatch between simula-
tion and theory is due to the fact that the condition of λ > 1 is not fulfilled in (5.19).
We shall discuss this aspect later on.
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Table 5.2 Ratios of the
mechanical parameters
between consecutive levels.
Values are presented as mean
± standard deviation values
for the 1–15 levels,
respectively, for the 16–24
levels

Nominal Level 1–15 Level 16–24

λ 0.81 ± 0.32 0.68 ± 0.16

1/α 0.56 ± 0.17 0.56 ± 0.08

χ 1.71 ± 0.77 1.55 ± 0.29

o 1.71 ± 0.77 1.55 ± 0.29

It is also worth noticing that the extra parameter Lm has no effect in determining
the value of the fractional order, which is then similar to what we expected from the-
oretical analysis, i.e. relation (5.20) [70]. On the other hand, the effect of this extra
term becomes significant with increasing frequencies, namely after the frequency
interval where the phase variations are observed (ω > 100 rad/s).

5.1.2 A Viscoelastic Airway Wall

In this section, we shall use the formulas derived in Chap. 4, namely (4.71), (4.72),
(4.74), and (4.73), with values from Table 2.1. With these values at hand, one is able
to build an electrical network as described in the previous section. The difference
from the previous case (elastic) is that now the airway tube is modeled by a R–L–
C–G element, as described in Chap. 4. This representation allows us to consider the
viscoelastic wall properties, through the elements C–G.

For the special case of the ladder network in which Zlm(s) = Rem + Lems and
1/Ztm(s) = Gem + 1/Cems, with m denoting a level in the respiratory tree, one can
analyze the properties of such a network. Next to the ratios defined in (5.4), we add
the ratio for the conductance:

Gem+1

Gem

= 1

o
(5.28)

where the ratio is determined similarly as for the other parameters. The nominal
ratios are given in Table 5.2. Notice that the ratios for Ce and Ge are similar due to
the fact that the forms in (4.74) and (4.73) are the same, except for the sin and cos
terms, whose effect are thus very small.

In a similar manner as for the elastic tube case, we can write that the total admit-
tance is given by

YN(s) = 1/(Re1 + Le1s)

1 + Ge1/[(Ge1Ce1s+1)(Re1+Le1s)]
1+ Ge1/[(Ge1Ce1s+1)(Re2+Le2s)]

1+ Ge2/[(Ge2Ce2s+1)(Re2+Le2s)]
1+ Ge2/[(Ge2Ce2s+1)(Re3+Le3s)]

... ...

1+
Ge(N−1)/[(Ge(N−1)Ce(N−1)s+1)(ReN+LeN s)]

1+GeN/[(GeNCeN s+1)(ReN+LeN s)]

(5.29)
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which can be re-written in a convenient form:

YN(s) = 1/Re1(1 + Le1s/Re1)

1 +
Ge1/Ge1Ce1s

(1+1/Ge1Ce1s)Re1(1+Le1s/Re1)

1+
Ge1/Ge1Ce1s

(1+1/Ge1Ce1s)Re2(1+Le2s/Re2)

1+
Ge2/Ge2Ce2s

(1+1/Ge2Ce2s)Re2(1+Le2s/Re2)

1+
Ge2/Ge2Ce2s

(1+1/Ge2Ce2s)Re3(1+Le3s/Re3)
...

...

1+
Ge(N−1)/Ge(N−1)Ce(N−1)s

(1+1/Ge(N−1)Ce(N−1)s)ReN (1+LeN s/ReN )

1+ GeN/GeNCeN s
(1+1/GeNCeN s)ReN (1+LeN s/ReN )

(5.30)

We introduce the notation

Wd(s) = 1

Re1Ce1s
, W0(s) = 1

Ge1Ce1s
and W1(s) = Le1s

Re1
(5.31)

and replace the ratios in (5.30) and we obtain

YN(s) = 1/Re1(1 + W1(s))

1 +
Wd(s)/(W0(s)+1)

(1+W1(s))

1+
Wd(s)/λ(W0(s)+1)

(1+W1(s)/αλ)

1+
Wd(s)/λχ(oW0(s)/χ+1)

(1+W1(s)/αλ)

1+
Wd(s)/λ2χ(oW0(s)/χ+1)

(1+W1(s)/α
2λ2)

...
...

1+
Wd(s)/λN−1χN−2(oN−2W0(s)/χ

N−2+1)

(1+W1(s)/α
N−1λN−1)

1+Wd(s)/λN−1χN−1(oN−1W0(s)/χ
N−1+1)

(1+W1(s)/α
N−1λN−1)

(5.32)

For the set of conditions from (5.18) and for
α · χ > 1, α · λ > 1, λ > 1 and χ ≥ o, o > 1, (5.33)

we find that the term oN−1

(Ge1Ce1s)χ
N−1 from (5.32) goes to zero as frequency increases.

In this case, the limit N → ∞ does not play any role, since χ = o; however, if
1/(Ge1Ce1s) � 1 then we can then re-write (5.32) as

YN(s) ∼= 1/Re1(1 + W1(s))

1 + Wd

1+ Wd/λ

1+ Wd/χλ

1+ Wd/χλ2

... ...

1+ Wd/χN−2λN−1

1+Wd/χN−1λN−1

(5.34)

which is similar in form to (5.22)

YN(s) ≈ 1/Re1(1 + W1(s)))

1 + g(Wd(s), λ,χ)
(5.35)

in which

g
(
Wd(s), λ,χ

)= Wd(s)

1 + Wd(s)/λ

1+ Wd(s)/λχ

1+Wd(s)λ2χ
···

(5.36)
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Fig. 5.5 Impedance by means of complex (left) and Bode-plot (right) representation, for the
R–L–C (continuous line) and the R–L–C–G (dashed line) model structures

which can be re-written as

YN(s) ≈ 1/(Re1 + Le1s)

K(λ,χ)(Wd(s))n
(5.37)

with the fractional order n given by

n = log(λ)

log(λ) + log(χ)
(5.38)

In our specific case we have

YN(s) ∼= 1/(Re1 + Le1s)

K(λ,χ) · (1/Re1Ce1s)n
(5.39)

Consequently, the impedance is given by

ZN(s) = 1

YN(s)
∼= K(λ,χ) · (Re1 + Le1s)

(Re1Ce1s)n
(5.40)

The respiratory tract is simulated in a similar manner as explained in the previ-
ous section, with the same values for the upper airways and the gas compression
impedance. There is no information upon the upper airway values for GUA, thus
we take arbitrary values for GUA = 1/[RUA · 200]. The total impedance from (5.29)
is then calculated and depicted by means of its real-imaginary parts in Fig. 5.5-
left, respectively, by its equivalent Bode-plot representation in Fig. 5.5-right. Notice
that in these figures, we show the impedance in two cases: when the airway tube is
modeled by the R–L–C element, and by the R–L–C–G element, respectively. This
comparison allows capturing the effect of the conductance element at frequencies
below 0.1 rad/s.

A similar FO behavior can be observed as in Fig. 5.4. This is again in accordance
to the theoretical result from relations (5.34) and (5.38), which shows that only the
ratios for Rm+1/Rm and Cm+1/Cm play a role in determining the value for the
fractional order at low frequencies.
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5.2 Effects of Structural Asymmetry

In his recent publication, Weibel discusses the reduction of diameter and length by a
constant factor for both blood vessels and airways [164]. He recognizes the theoret-
ical contributions of Murray [107], i.e. that the dissipation of energy due to flow of
blood or air in a branched tube system can be minimized if the diameter of the two
daughter-branches are related to the diameter of the parent as in d3

parent = d3
1 + d3

2 .
In the context of fractal geometry, the reduction factor depends on the fractal dimen-
sion FD of the branching tree such that the correct formula is d1 = dparent · 2−1/FD.
In the case of Hess–Murray law, FD = 3 because the tree is considered to be space-
filling [34]. In his investigations, Weibel found that the slope of the conducting
airway diameters against the generations was given by d(m) = d0 · 2−m/3, with d0
the tracheal diameter and m the airway generation. He then concludes that the con-
ducting airways of the human lung are designed as a self-similar and space-filling
fractal tree, with a homothety factor of 2−1/3 = 0.79 (similitude ratio). However, as
discussed in Chap. 3 and in the beginning of Chap. 4, this average has a significant
variance in the first generations. Hence, the average value changes in the diffusion
zone (airways from 16th generation onward). These observations and the fact that
Weibel himself discusses that a small change in the homothety factor results in a
dramatic increase in peripheral bronchiolar resistance imply that the lung must be
capable to adjust itself to the optimality conditions. Indeed, a closer analysis reveals
that the homothety factor is about 0.79 in the sixth generation, but it increases slowly
to about 0.9 in the 16th generation, with an average of 0.85 for the small airways
[164]. The physiological implications of this observation are:

• the flow resistance decreases in the small airways and
• a small reduction in the homothety factor does not affect significantly the lung

function.

In the context of the above observations, one may explore the possibility of the
respiratory system as a multi-fractal structure. A self-similar multi-fractal spatial
distribution forms the basis for breaking the symmetry of bifurcation design within a
tree. In [167], the author discusses the implications of self-affine scaling. It turns out
that the fractal dimension changes when calculated from different reference points.
Therefore, the slope determining the homothety factor changes when viewed at a
fine or coarse grained diameter scale. This latter observation is of interest in the
context of this book, since it supports the idea of a multi-fractal structure. For ex-
ample, the average of the radius ratio changes from 2−0.17 = 0.88 to 0.89 when only
the first 16 generations are taken into account, respectively, to 0.87 for the alveoli
(generations 17–24). This implies that the homothety factor changes, depending on
the spatial location within the tree. On the other hand, if we analyze the radius ratio
from generations 1 to 24 in steps of 4, we obtain an average of 0.85, whereas if we
use steps of 2, we obtain an average homothety factor of 0.86. These changes might
not seem significant, but one should recall that they originate by the symmetric ge-
ometry of the respiratory tree. However, when asymmetry is considered, one deals
with several homothety factors, i.e. as schematically drawn in Fig. 5.6.
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Fig. 5.6 Asymmetric representation for the first four generations, in its electrical equivalent

Fig. 5.7 Number of branches
for each generation, in the
asymmetric (top) and
symmetric (bottom)
generation. Notice that the
Y-axis is logarithmic

It has been demonstrated by a systematic analysis that the airway tree in differ-
ent species shows a common fractal structure, in spite of some gross differences in
airway morphology [164]. Nevertheless, let us investigate the case of asymmetric
branching in the human lungs. The Horsfield representation will be used, as from
[65], with the values listed in Table 2.2. In this scenario, an airway of level m bifur-
cates into two daughters: one of order m+1 and one of order m+1+Δ, with Δ the
asymmetry index. As a result of the asymmetry, the electrical network becomes as
in Fig. 5.6. Figure 5.7 shows the number of branches that are in one generation, for
the symmetric and asymmetric lung structure. Notice the different slope which char-
acterizes the space-filling distribution; the top figure shows that the slope is lower
in the asymmetric tree section than in the symmetric tree section.

Since the symmetry is lost, one cannot simplify the electrical network to its lad-
der network equivalence as in Fig. 5.2. Therefore, one must calculate explicitly the
impedance from level 36 to level 1. To avoid complex numerical formulations, the
impedance along the longest path was calculated, as in [54]. One should notice that
from level 26 onward, the asymmetry index is zero, therefore symmetric bifurca-
tion occurs (recall here Table 2.2). The effect of this change in the asymmetry index
is visible in Fig. 5.7, i.e. a change in the slope. The initial values in the trachea
are imposed similarly as in the symmetric case [121]. Figure 5.8 shows the total
impedance by means of its complex representation (left) and its Bode plot (right),
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Fig. 5.8 Impedance by means of complex (left) and Bode-plot (right) representation, for the sym-
metric (continuous line) and the asymmetric (dashed line) tree

Fig. 5.9 Detailed view of the
impedance by means of the
Bode-plot representation, for
the symmetric (continuous
line) and the asymmetric
(dashed line) tree

for the symmetric and the asymmetric tree, whereas the airway tubes are modeled
by an R–L–C element in both representations.

It is significant to observe that in the frequency interval of clinical interest, ω ∈
[25,300] rad/s, the two impedances tend to behave similarly. A detail of Fig. 5.8
can be viewed in Fig. 5.9. For the asymmetric case, we have a decrease of about
−10 dB/dec and a phase of approximately −50◦, resulting in a fractional order
of n ∼= 0.5. The constant-phase behavior is emphasized at frequencies below those
evaluated standardly in clinical practice, i.e. below 5 Hz. However, in the standard
clinical range of frequencies for the forced oscillation technique, namely 4–48 Hz,
both models give similar results, as depicted in Figs. 5.10 and 5.11.

5.3 Relation Between Model Parameters and Physiology

5.3.1 A Simulation Study

For the simulations in this study, the admittance from (5.17) will be used, with ratios
calculated with (5.4) using morphological values from Table 2.1. The respiratory
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Fig. 5.10 The estimated
impedance within the
measured frequency range for
the symmetric (*) and the
asymmetric (o) case, against
averaged data from healthy
subjects

Fig. 5.11 Equivalent polar
plot representation of
Fig. 5.10

tract is simulated by approximating each level m as one cell in the ladder network,
thus N = 24. The system given by (5.17) has been simulated starting from initial
conditions given by the upper airway tract (mouth–trachea) as from [121]:

RUA = 0.047 (kPa s/l), LUA = 0.0008
(
kPa s2/l

)
and

CUA = 0.01341 (l/kPa)
(5.41)

Notice that these values are only averaged values and they do not represent the exact
upper airway tract impedance for each individual person. Taking into account the
effect of the upper airways is done by putting the upper airway impedance in series
to that of the recurrent tree modeled by (5.17), in order to obtain the total estimated
input impedance.

To validate the theoretical developments, we investigate three simulated cases:
the nominal, the pathologic and the extended case.

In the nominal case, the total impedance from (5.17) is calculated with initial
values from (5.41) and the ratios:

λ = 0.818, χ = 1.715, α = 1.764, for m = 1, . . . ,13

λ = 0.686, χ = 1.556, α = 1.783, for m = 14, . . . ,24
(5.42)

Notice that the convergence of (5.17) to the form in (5.24) and the term in (5.25)
is not guaranteed, since the condition λ > 1 is not fulfilled. It is also interesting



68 5 Ladder Network Models as Origin of Fractional-Order Models

Fig. 5.12 Impedance by
means of Bode-plot
representation, for the
nominal and the pathologic
scenario

Fig. 5.13 For the pathologic
case, but with increasing
number of cells in the ladder
network (the extended
scenario)

to note that these ratios have a significantly different mean in the first part of the
respiratory tree (conductive zone) from that in the second part of it (respiratory
zone), hence we considered it necessary to vary them accordingly in the model.

In the pathologic case, due to the fact that airway morphology is affected by dis-
ease, changes occur in the mechanical parameters such that the overall resistance
increases and the compliance decreases (e.g. in chronic obstructive pulmonary dis-
ease) [72]. This results in the following ratios:

λ = 1.127, χ = 1.220, α = 1.846, for m = 1, . . . ,13

λ = 1.167, χ = 1.226, α = 1.535, for m = 14, . . . ,24
(5.43)

It is clear that the condition on λ > 1 is fulfilled in the pathologic case. All other
conditions imposed as αχ > 1, αλ > 1, and χ > 1 are also fulfilled. The extended
case consists of increasing the number of cells in the ladder network, while main-
taining the ratios from (5.43).

The simulated total input impedance is depicted by means of its equivalent Bode-
plot representation in Fig. 5.12 in the nominal case, in the pathologic case and in
Fig. 5.13 the extended case (varying the number of cells in the ladder network).
From the Bode plot, it is clear that the fractional-order behavior (phase locking)
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depends on the ratios between the ladder network parameters, since its value varies
from one scenario to the other.

For the simulated nominal case observed in Fig. 5.12, with averaged ratios
from (5.42), the calculated fractional-order value is n = 0.59, corresponding in the
impedance plots to a phase constancy of about −53◦. This value does not corre-
spond to our simulation results, due to the fact that the values for λ are sub-unitary,
therefore not fulfilling the condition for convergence. Since the formula for n is
valid only for positive values of the logarithm, for λ < 1 the formula (5.25) will be
inaccurate.

In the simulated pathologic case, one may observe in Fig. 5.12 that in the fre-
quency interval ω ∈ [10−4,10−1] (rad/s) the constant-phase effect is visible. The
magnitude decreases with 45 dB over four decades, which results in a change of
about −11 dB/dec. The phase exhibits a phase-locking within this frequency range,
around the value of −48◦. From −n · 20 dB/dec = −11 we have n ≈ 0.55, and
from −n · 90◦ = −48◦, it follows that n ≈ 0.53. If one calculates the fractional-
order value from (5.25) with averaged ratio values from (5.43), one comes up with
n = 0.59 for the admittance in (5.26), which corresponds closely to the value ob-
served in Fig. 5.12. This result proves that the formula (5.25) for calculating n is
valid in the limit if and only if all convergence conditions are fulfilled.

In the simulated extended case, Fig. 5.13 shows the effect of increasing the num-
ber of cells, while keeping the same ratios as in (5.43). Increasing the number of
cells will help convergence in the limit; recall here that the formula (5.25) was de-
rived from (5.17) assuming N → ∞. Increasing the number of cells in the ladder
network leads indeed to a constant-phase behavior corresponding to a similar phase
value as in the pathologic case, but its effect will be visible over a broader frequency
band. It is worth to notice that the frequency band is linearly dependent with the in-
creasing in the number of cells.

Our findings justify the use of a FO parametric model to characterize the res-
piratory input impedance [69]. Hence, we established that the origins of the FO
behavior are not only the viscoelastic properties of the lung tissue, typically visible
at low frequencies, but also the fractal structure of the respiratory tree. It is inter-
esting to note that both viscoelasticity and diffusion appear at low frequencies; the
diffusion is not tackled in this book. The proposed model allows variations in the
parameters by altering the elastic modulus E and cartilage fraction κ , as well as
variations in the airway geometry by altering the airway radius R, length 
, and
thickness h. Although preserving its fractal structure, these alterations can be cor-
related to airway remodeling in pathology, leading to different values in the ratios,
e.g. those given in (5.43). The results depicted in Figs. 5.12 and 5.13 indicate that
viscoelastic and diffusion phenomena are not the only origin of the phase constancy
(non-integer order) models for the lungs, but also the intrinsic recurrent geometry
has a similar contribution. Although simple, the nominal case of this model proves
to be reasonably close to the data measured from the healthy subjects, showing that
it is able to capture the intrinsic properties of the respiratory tree.
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Table 5.3 Biometric
parameters of the investigated
subjects in the mid-frequency
range (4–48 Hz) and in the
low frequency range
(0.9–5.3 Hz); values are
presented as mean ± standard
deviation

4–48 Hz 0.9–5.3 Hz

male (15) female (8) male (8) female (2)

Age (yrs) 23 ± 0.7 23 ± 1.3 27.2 ± 2.1 28.5 ± 2.1

Height (m) 1.76 ± 0.06 1.68 ± 0.03 1.75 ± 0.07 1.72 ± 0.02

Weight (kg) 73 ± 5.1 63 ± 2.8 71.1 ± 7.11 66.5 ± 10.6

Fig. 5.14 Measured impedance values from healthy subjects (left) and the corresponding mean
with standard deviation values (right)

5.3.2 A Study on Measured Respiratory Impedance

In order to validate this ladder network model, respiratory impedance has been es-
timated using non-parametric methods described in Chap. 2 and in (3.8) in two dif-
ferent frequency intervals: (i) mid-range frequencies between 4–50 Hz and (ii) low-
range frequencies between 0.9–5.3 Hz. The impedance over the mid-frequency
range interval has been acquired using the standard FOT device described previ-
ously. Since a loudspeaker has limitations at low frequencies, a prototype mechani-
cal device has been used to measure impedance over the low frequency range.

The measured frequency interval used in standard clinical tests is 4–48 Hz, re-
spectively, 25–300 rad/s. Previously available records from 23 healthy volunteers
have been used to support the validity of the model with morphological values [72],
and their biometric values are given in Table 5.3. An additional set of 10 healthy vol-
unteers whose biometric values are given in the same table are measured with low
frequency FOT, for the 0.9–5.3 Hz frequency interval. The impedance data from the
healthy subjects with the corresponding mean and standard deviation values is given
in Fig. 5.14.

From the measured healthy subjects, we obtain the averaged impedance and
the standard deviation values which offer a lower and upper bound, as depicted
in Fig. 5.14. The RLC-ladder model for the respiratory tree calculated with param-
eters from Table 2.1 and (4.62)–(4.64) neglects the impedance introduced by the
upper airways segment. In order to make the comparison with the measured data,
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Fig. 5.15 Comparison of the RLC-ladder model performance, within the measured frequency
range, against data from healthy subjects (left) and equivalent polar plot representation (right)

one has to add this extra impedance to obtain the total estimated input impedance.
By adding the values of upper airway impedance parameters: RUA = 0.35 kPa/(l/s),
LUA = 0.00045 kPa/(l/s2), CUA = 0.85 l/kPa, one obtains satisfactory values in the
clinical range of frequencies, as depicted in Fig. 5.15. One should keep in mind
that no study has been reported in the literature upon the variations and confidence
intervals of the upper airway parameters values. These values represent a tuning
parameter of our ladder network model, and in this particular case they have been
tuned for the averaged values of impedance given in Fig. 5.15.

Since Fig. 5.5 shows the same result in the 25–300 rad/s frequency range for
both elastic and viscoelastic airway wall models, it is clear that the same result is
obtained for the R–L–C–G ladder network model as in Fig. 5.15.

The impedance data collected in 10 volunteers at frequencies below 6 Hz is given
in Fig. 5.16 by means of the complex impedance values, respectively, in Fig. 5.17
by means of its equivalent Bode plot. Both figures show the statistical significance
of each measured frequency point, by means of its mean value, value distribution
within the group, and confidence intervals. These figures may suggest that the lower
the frequency, the lower the signal-to-noise ratio, due to interference with the har-
monics from the breathing frequency (about 0.25 Hz).

The values identified from the 10 volunteers tested for this study in our laboratory
are also summarized in Table 5.4, with the identification method from Chap. 3 and
error formula from (3.12). A further comparison of this ladder network model with
two papers from literature discussing low frequency impedance values is provided
in [4, 76, 121].

It can be observed in the results summarized in Table 5.4 that the fifth subject
had a high initial resistance values due to inflammation of the respiratory tract (i.e.
flu). The results also show that smoking did not affect significantly the model val-
ues, suggesting that the proposed model may not be sensitive to the specific small
changes in the airways. The outlier subject indicates that age plays an important role
in determining the properties of the respiratory tree, namely an increased resistance
value, which correlates with the clinical expertise [53]. Minor differences can be
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Fig. 5.16 The complex
impedance by means of its
real (top) and imaginary
(bottom) parts measured from
the 10 volunteers at low
frequencies. Each frequency
point is depicted by its mean
value, distribution, and
confidence intervals. Crosses
denote outliers defined as 1.5
times further than the mean
value

observed also in the slim (s) and the tall (t) subjects, but in order to quantify the
relation of the ladder network structure with weight and height, more measurements
are necessary. When validating with external data and population data, it is impor-
tant to notice that the phase-locking effect takes place in frequencies lower than the
standard clinical range of tested frequencies.

The results of the identification are plotted in Figs. 5.18, 5.19, 5.20, 5.21 and
5.22. The good results support the claim that when modeling the respiratory system
with lumped parametric models, the use of FO terms is justified by the intrinsic
structure of the respiratory tree. The fact that this augmented ladder network model
comprising the full recurrent ladder network was able to capture the impedance
is an indication that FO models are therefore natural solutions for a parsimonious
modeling approach.

5.4 Summarizing Thoughts

Based on the results presented in this chapter, one may speculate that the proposed
model can be successfully used for characterization of the intrinsic fractal geometry
and its implicit properties: self-similarity and recurrence.

For the symmetric tree representation, we have established the following:
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Fig. 5.17 The impedance by
means of its magnitude (top)
and phase (bottom) measured
from the 10 volunteers at low
frequencies. Each frequency
point is depicted by its mean
value, distribution, and
confidence intervals. Crosses
denote outliers defined as 1.5
times further than the mean
value

Table 5.4 Identified values for the ladder network from data in 10 healthy subjects at low frequen-
cies (0.5–5.7 Hz). See text for symbol explanations

RUA LUA CUA Re1 Le1 Ce1 2λ 2/α χ/2 ET

1 0.428 0.005 0.451 0.009 0.001 0.001 2.40 0.12 0.55 0.06

2 0.353 0.006 0.648 0.007 0.001 0.001 2.34 0.29 0.56 0.05

3 1.015 0.066 0.150 0.017 0.005 0.001 2.19 0.53 0.57 0.09

4a 0.342 0.010 0.457 0.012 0.001 0.001 2.08 0.47 0.57 0.07

5a 0.389 0.004 0.534 0.009 0.001 0.001 2.23 0.54 0.56 0.06

6s 0.854 0.015 1.434 0.027 0.005 0.001 2.17 0.51 0.57 0.09

7 0.365 0.080 0.286 0.004 0.002 0.001 2.25 0.49 0.60 0.03

8t 1.221 0.535 0.028 0.003 0.002 0.001 2.31 0.58 0.61 0.05

9a 0.731 0.047 0.204 0.006 0.003 0.001 2.29 0.50 0.58 0.05

10b 0.717 0.074 0.156 0.014 0.004 0.001 2.21 0.46 0.58 0.12

adenotes occasional smoker
bdenotes outlier data: male, 59 years, 80 kg, 1.75 m; s denotes slim (53 kg); t denotes tall (1.90)
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Fig. 5.18 Result of the identification for subject 1 (left) and subject 2 (right)

Fig. 5.19 Result of the identification for subject 3 (left) and subject 4 (right)

Fig. 5.20 Result of the identification for subject 5 (left) and subject 6 (right)

• a recurrent relation can be obtained between the model parameters of each airway
generation;

• the recurrence leads to a homothety factor, which is different for the conductive
zone (levels 1–15) and respiratory zone (levels 16–24);
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Fig. 5.21 Result of the identification for subject 7 (left) and subject 8 (right)

Fig. 5.22 Result of the identification for subject 9 (left) and subject 10 (right)

• if symmetry exists, then the total input impedance can be calculated in a simpli-
fied, recurrent manner;

• the impedance exhibits a fractional-order behavior leading to a fractional-order
value for the symmetric case, if the convergence conditions are fulfilled; other-
wise the constant-phase behavior is missing;

• the ratios for inertance 1/α and for the conductance o elements do not play a role
in determining the value of the fractional order, the latter being determined solely
by the ratios of the resistance λ and of the capacitance χ elements.

For the asymmetric tree representation, the following remarks can be summa-
rized:

• the impedance exhibits a fractional-order behavior in the nominal case, without
fulfilling the theoretical conditions for convergence; in this case it is difficult to
calculate analytically the value of the fractional order;

• the fractional-order behavior is still present, although the fractal structure and
dimension is not uniquely characterized;

• the fractional-order value is changing if the degree of asymmetry is changed (this
observation is significant for the case of diseased lungs).



Chapter 6
Modeling the Respiratory Tree by Means
of Mechanical Analogy

6.1 Basic Elements

When a force F is applied to an object with initial length 
 and cross-sectional area
A, a mechanical stress σ results. Consequently, a deformation occurs �
, which
leads us to define the strain ε:

σ = F

A
; ε = �




(6.1)

The following relations can be defined between the stress and the strain, in which
E is the elasticity modulus and η the viscosity coefficient [23].

For a spring:

σ(t) = E · ε(t) (6.2)

denoting Hooke’s Law and the linear elastic behavior of materials. Supposing a si-
nusoidal strain applied to the material: ε(t) = ε0 · sin(ωt), then the stress is in phase
with the strain and its amplitude is given by E · ε0. Observing the corresponding
stress–strain curve from Fig. 6.1-left, the load and unload are following the same
path; therefore no loss of energy occurs. Hence, we conclude that elastic materials
do not show energy-dissipation phenomena.

For a damper:

σ(t) = μ · d

dt
ε(t) (6.3)

denoting Newton’s Law and describing the viscous behavior of a linear flow. Apply-
ing a similar strain as above, the stress will lead the strain by 90◦ with an amplitude
equal to μ · ω · ε0. The amplitude is therefore frequency dependent. When both sig-
nals are opposite in phase, as depicted in Fig. 6.1-right, we see that all the energy is
used (equal hysteresis on both sides). Therefore, we conclude that viscous materials
show energy-dissipation phenomena.

Emerging theories of fractional calculus allowed the appearance of a novel term,
i.e. a spring-pot of order n (with 0 ≤ n ≤ 1), characterized by the following relation:

σ(t) = η · dn

dtn
ε(t) (6.4)
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Fig. 6.1 The stress–strain curves for a spring (left) and for a damper (right)

Fig. 6.2 The stress–strain curve of a viscoelastic material

which denotes an element characterizing the combined effect of elastic and viscous
behavior in a material. Notice that for n = 0 we have a pure elastic element (spring),
whereas for n = 1 we have a pure viscous element (dashpot).

When the material undergoes a dynamical excitation, the stress will lead the
strain in phase with an angle ϕ between 0 en π/2 radians. The amplitude of the
stress is Ed · ε, from

σ(t) = Ed(ω) · ε · sin
(
ωt + ϕ(ω)

)
(6.5)

The plot of the stress and strain below shows that part of the energy is stored and
part is dissipated, resulting in hysteresis.

The most simple combination of the basic elements presented above is a series
spring-dashpot, referred to as the Maxwell element and depicted in Fig. 6.3.

For a constant strain variation (i.e. step inputs) we have

σ(t) = E · ε · e(− t
τ
) (6.6)

with τ = η
E

, the relaxation time, as from (6.4). At time t = 0 the spring will be fully
taut, whereas the damper will remain unchanged. Within some time, the damper will
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Fig. 6.3 From left to right: the Maxwell and the Kelvin–Voigt element, followed by a combination
of the two

start to take over the stress from the spring and relax it. Hence, the Maxwell element
can characterize stress relaxation.

For a constant stress variation (i.e. step inputs) we have

ε(t) = σ

(
1

E
+ t

η

)
(6.7)

which shows a spontaneous elastic strain with the stress. When the stress variation
stops, the spring returns to its initial position, while the damper remains in an irre-
versible state.

A second possible combination is the parallel spring-dashpot, referred to as the
Kelvin–Voigt element (see Fig. 6.3). In this model, we cannot account for a constant
strain, given the force on the damper must be infinitely big; hence, this model does
not show stress-relaxation properties.

Assuming a constant stress input, we have

ε(t) = σ

E

(
1 − e(− t

τ
)
)

(6.8)

with τ = η
E

, the relaxation time. At the time instant t = 0, the damper begins to
change slowly, while the spring reached asymptotically its taut value. Hence, the
Kelvin–Voigt element describes the creep phenomena in viscoelastic materials well.

Finally, both the Maxwell element and the Kelvin–Voigt element do not fully
characterize the true viscoelastic behavior. Hence, combining both elements seems
to be a good solution to overcome their individual limitation: N parallel Maxwell-
elements, all in parallel with an extra spring, as shown in Fig. 6.3.

6.2 Mechanical Analogue and Ladder Network Models

In this chapter we treat the symmetric structure of the respiratory tree [97, 135,
163, 164], with morphological values given as in Table 2.1. For the purpose of this
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Fig. 6.4 A schematic representation of the electrical model for the lung parenchymal tissue as an
interconnected system (starting from level 16)

study, we investigate the airways within the respiratory zone, corresponding to levels
16–24, as schematically depicted in Fig. 6.4 [66, 164]. In this figure, Am denotes
the cross-sectional area, 
m denotes the length, Rem the resistance, and Cem the
capacitance of one airway tube from level m, respectively.

In the respiratory zone, the oxygen and carbon dioxide exchange takes place
between the air in the lung and the blood in the small-diameter blood vessels that
surround the alveoli. The gas compression impedance is modeled by a RGC −LGC −
CGC series impedance, as described in Chap. 5.

For the case of elastic tube walls, we have no viscous losses, thus no conductance
Ge element, as defined in Sect. 4.2.1. Using (4.62)–(4.64), the equations for the
electrical model are given by

e0 = Re1i1 + e1; e1 = Re2

2
i2 + e2

i1 = i2 + Ce1ė1; i2 = 2Ce2ė2

(6.9)

with e the voltage and i the current represented as in Fig. 6.5. The electro-
mechanical analogy is given in Table 6.1.

Using the electro-mechanical analogy from Table 6.1, we can derive an equiva-
lent mechanical model. This can be done starting from the electrical model equa-
tions (6.9). The electrical element (ReCe series) corresponds to the mechanical
Kelvin–Voigt element (spring in parallel with dashpot):
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F0 = B1v1 + F1; F1 = B2

2
v2 + F2

v1 = v2 + 1

K1
Ḟ1; v2 = 2

K2
Ḟ2

(6.10)

The values of resistors and capacitors are calculated with the model from Fig. 6.5
and relations (4.62)–(4.64): Re16 = 1.57 kPa/(l/s) and Ce16 = 3.06 · 10−6 l/kPa.
From these values one can calculate the equivalent B∗

m and K∗
m values, taking into

account that Rem = R∗
em/2m−1 and Cem = 2m−1C∗

em, respectively, from (5.1) and
(5.3). The superscript ∗ denotes a single branch in the respiratory level represented
by the subscript m:

B∗
m = Fm

vm

= Pm

Qm

A2
m = R∗

emA2
m

K∗
m = Fm

xm

= Pm

Vm

A2
m = A2

m

C∗
em

(6.11)

with P the pressure, Q the flow, V the volume, Am = πR2
m the area, Rm the radius

of a tube at level m, and x the axial displacement.
Figure 6.6-left depicts the evolution of the parameters in a single tube at a cer-

tain level m, whereas Fig. 6.6-right depicts their evolution in the entire level. One

Fig. 6.5 An illustrating example of the first two levels in the electrical and the mechanical net-
works

Table 6.1 The
electro-mechanical analogy Electrical Mechanical

Voltage e [V] Force F [N]

Current i [A] Velocity v [m/s]

Resistance Re [�] Damping constant B [N s/m]

Capacitance Ce [F] Spring constant 1/K [m/N]

Inductance Le [H] Mass M [kg]
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Fig. 6.6 Parameter evolution in singular tubes (left) and in the entire level (right), for levels 16–24

may observe that the evolution in a single tube, in consecutive levels is quasi-linear
for both parameters (Fig. 6.6-left). However, since the total parameter values from
Fig. 6.6-right depend on the total number of tubes within each level, they change
as an exponential decaying function. When represented on a logarithmic scale, one
can observe a quasi-linear behavior, as in Fig. 6.6-right.

In a similar manner as the electrical impedance, one may obtain H(s), which
defines the relation from velocity (input) to force (output) F(s)/v(s), with s the
Laplace operator. The transfer function of a cell in the ladder network consisting of
one damper and one spring, is

H(s) = B + K

s
(6.12)

which can be evaluated over a range of frequencies, e.g. ω ∈ [10−5,105], with the
result depicted in Fig. 6.7. In this figure ‘24’ denotes that the H(s) is calculated at
level 24; ‘23’ denotes that H(s) is calculated at level 23, etc.

Due to the fact that the network is dichotomous and symmetric, we can obtain
the total mechanical impedance using the network structure as in Fig. 6.5, with Bm

and Km calculated with (6.11). Since the Kelvin–Voigt elements corresponding to
one level are in parallel, their transfer function Hm will be in series with the spring
in the level m − 1. The next corresponding transfer function is in parallel with the
damper in the level m− 1, as depicted schematically by Fig. 6.9. In this manner, the
total transfer function H(s) can be determined, starting at level 24 [26].

The lung parenchyma consists of interwoven collagen (infinitely stiff) and elastin
(elastic) fibers. Each level in the respiratory tree has a specific balance between these
two components. In our model we take this balance into account in (4.14), in func-
tion of the cartilage percent (Table 2.1). Following this reasoning, a similar repre-
sentation of the mechanical model is given in Fig. 6.8. Here, the cylinders represent
the collagen fibers within one level, which are interconnected with elastin fibers,
represented by inextensible unstressed strings. This representation varies from that
of Bates in that it represents the total collagen–elastin distribution in a level and not
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Fig. 6.7 The corresponding
frequency response of the
transfer function for the
network of spring-dashpot
elements in levels 16–24

Fig. 6.8 A schematic
representation of the
mechanical model for the
lung parenchymal tissue
(levels 16–24)

in a single tissue strip [8]. In his book, Bates shows the clinical implication of vis-
coelastic (mechanical) models and their bearing to the origin of FO lumped models.
A more medical-oriented comprehensive book is therefore referred in [9].
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Fig. 6.9 A schematic representation of how the mechanical impedance H(s) is calculated from
level 24 by adding levels up to level 16 [26]

6.3 Stress–Strain Curves

6.3.1 Stepwise Variations of Strain

The elastic modulus is defined as the ratio between stress and strain properties. The
Kelvin–Voigt body is the simplest viscoelastic model that can store and dissipate
energy, consisting of a perfectly elastic element (i.e. spring) arranged in parallel with
a purely viscous element (i.e. dashpot). Connecting the notions introduced in the
previous sections of this chapter, we obtain the link between stress–strain properties
and morphology of the lungs. The corresponding equation is given by

σ(t) = K


A
ε(t) + B


A

dε(t)

dt
(6.13)

with σ the stress, ε the strain, 
 the length, A the area and K,B the constants of
the spring and dashpot, respectively [23]. The stress can be defined as pressure,
whereas the latter is given by force distribution over the area. The strain ε is defined
as the ratio of the change in length over the initial length: �
/
. Starting with an
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unstressed tissue, we apply a strain that increases in steps of 10 % until it reaches
100 %. The new length can be calculated as


new = (1 + ε)
old (6.14)

with the subscript old denoting the characteristics before applying the strain step.
Assuming a constant tissue volume Vt , the radius will decrease:

Rnew = Vt

2π
newh
= Rold · 
old


new
(6.15)

with Rnew and Rold the new and old airway radius, respectively. We neglect the
changes in the thickness h of the tube wall with changes in the strain. Applying
a typical value for the oscillatory flow Q = 0.5 l/s at the oscillatory frequency of
5 Hz, the velocity v can be calculated as

vnew = 5 · 10−4

Anew
(6.16)

Since the B’s and K’s are time-invariant material properties, the transfer function
H(s) from (6.12) will be independent of the strain. The elongation �
 of the airway
tube will have an effect on the pipeline equation (4.13) which can be expressed as

p + h

R(1 − ν2
p)

(
K


A
ε + B


A

dε

dt

)
= 0 (6.17)

with νp the Poisson coefficient. The new values for the pressure and the stress are
given by

Pnew = Fnew

Anew
= vnewH

πR2
new

(6.18)

σnew = −Pnew
Rnew(1 − ν2

p)

h
(6.19)

Hence, in this representation, the stress and strain properties can be evaluated using
(6.14)–(6.19), leading to the stress–strain curves depicted in Fig. 6.10. The strain is
increased in steps of 10 % from 10 to 100 %. Starting from level 24, one can then
calculate the stress–strain curve at the input of each level. This then will give rheo-
logical information in the context that all parenchymal levels are interconnected.

As expected, the stress increases with the degree of elongation applied to the en-
tire structure. The more levels we have in our structure, the higher the values of the
stress–strain curve, due to higher amount of cartilage tissue (collagen). The latter
observation has been illustrated in Fig. 6.8. The obtained results are qualitatively
similar to those reported in literature [18, 96, 143]. Quantitatively, it is not possi-
ble to make an evaluation of our model, since the values reported hitherto in the
literature are based on excised tissue strips.
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Fig. 6.10 The stress–strain
curves for a ladder network
model of the level 24,
building up additional cells,
until level 16

Fig. 6.11 Example of stress
and strain as a function of
time with normalized units.
Observe the phase shift

6.3.2 Sinusoidal Variations of Strain

In the previous section, a stepwise strain excitation was applied in steps of 10 % until
100 %. Similarly to the calculus presented previously, the new fractal-mechanical
model can be excited by a dynamic strain excitation; i.e. a sinusoidal excitation,
which is closer to the breathing phenomenon. It is noteworthy to realize that since
our model consists of a combination of springs and dampers, the stress–strain curve
will be a result of the two individual curves from Fig. 6.1. Moreover, since we
only characterize the respiratory zone by the viscoelastic lung parenchyma, we also
expect a stress–strain curve as in Fig. 6.2.

Oscillatory stress and strain histories are represented by sinusoid functions. Sup-
pose we have σ(ωt) = σ0 sinπt , in which t denotes time, σ0 denotes the amplitude,
and ω is the angular frequency. The sine function repeats every 2π radians. So
σ(ωt + 2π) = σ(ωt). The time T required for the sine function to complete one
cycle is obtained from ωT = 2π , or T = 2π/ω. In a viscoelastic material, stress
and strain sinusoids are out of phase. To represent the phase shift consider two sinu-
soids, sinωt and sin(ωt + δ). The quantity δ is called the phase angle. In a plot of
the two waveforms, the sinusoids are shifted with respect to each other on the time
axis as in Fig. 6.11. Recall that the cosine function is π /2 radians out of phase with



6.3 Stress–Strain Curves 87

the sine function. Sinusoidal functions that represent oscillatory quantities in which
phase is important are commonly written in complex exponential notation.

Applying a sinusoidal strain on the lung model with amplitude ε0 and frequency
ω = 2πf it follows that

ε(t) = ε0 · sin(ωt) (6.20)

which results in a sinusoidal stress response, as in (6.5).
Using sin(a + b) = cos(a) sin(b) + sin(a) cos(b) yields

σ(t) = Ed · ε0 · sin(ωt + ϕd)

= ε0 · [Ed cos(ϕd) sin(ωt) + Ed sin(ϕd) cos(ωt)
]

(6.21)

with Ed the dynamic modulus and ϕd the corresponding angle. Introducing the stor-
age modulus ES = Ed cos(ϕd) and the loss modulus ED = Ed sin(ϕd), one may
calculate the dissipated energy W in one cycle:

W =
∫

σ dε

=
∫ T

0
ε0 · [Ed cos(ϕd) sin(ωt) + Ed sin(ϕd) cos(ωt)

]
ε0 sin(ωt) dt

= πε2
0Ed sin(ϕd) (6.22)

with T = 1/f the corresponding period and f the frequency in Hz. The used energy
is therefore directly proportional to the loss modulus. The storage modulus is a
measure for the necessary power to overcome elastic forces and to release them
when the excitation ceases.

Viscoelastic properties can be analyzed by means of a frequency-dependent com-
plex elastic modulus E∗ [23]:

E∗(jω) = σ(jω)

ε(jω)
= ES(ω) + jED(ω) (6.23)

whereas the parameters are related to the viscous behavior of the material.
In the Kelvin–Voigt model, the relation between stress and strain is given by

σ(t) = Eε(t) + η
dε(t)

dt
(6.24)

Applying the Fourier transform leads to

E∗(jω) = E + η(jω) (6.25)

For a viscoelastic material the mechanical impedance H(s) of this material is
given by

H(s) = K

s
+ B (6.26)

which leads to the following relation for the complex modulus:

E∗(s) = 


A
· s · H(s) (6.27)
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Fig. 6.12 The stress–strain curve for sinusoidal strain at ε(t) = ε0 · sin(2π0.25t) and at
ε(t) = ε0 · sin(2π4t)

Applying the Laplace transform on the sinusoidal strain ε(t) = ε0 · sin(ωt) we have

ε(s) = ε0
ω

s2 + ω2
(6.28)

and the stress can be calculated as

σ(s) = E∗(s)ε(s)
σ (t) = L−1{σ(s)

} (6.29)

The results for a sinusoidal strain of ω = 2π0.25 (rad/s) and of ω = 2π4 (rad/s) are
given in Fig. 6.12.

As expected, the energy is dissipated and the ellipse curve is deformed to a hys-
teresis curve [62]. There is also a slope on this hysteresis loop, which points to the
fact that both energy storage and dissipation occurs during the test. As the frequency
increases, the loop becomes closer to the ellipse form, suggesting that viscous be-
havior becomes negligible.

The evolution with frequency of the complex modulus from (6.27) is depicted
in Fig. 6.13. It is clear that the real part varies with frequency, hence if one would
identify a lumped model in a limited frequency range, would need a fractional-order
model [67], as explained by means of (3.11). Notice that in our model representa-
tion, the ladder network leads to a similar effect of constant-phase behavior as that
of the electrical ladder network in the previous chapter. This effect is visible in
Fig. 6.13-right, below the ω < 100.3 (rad/s) frequency range.

In a similar study, Craiem acknowledged the necessity of a fractional order to
characterize viscoelasticity in the arterial wall of the circulatory system in a sheep
[23]. Compared to the values in literature, one may say that our results are within
reasonable values. For example, in [162] the authors obtain values of 2–8 kPa for
the storage modulus, respectively values of 0.2–1 kPa for the loss modulus in guinea
pigs lung tissue strips. It is difficult to compare our results to those from [162],
because they come from animal studies and in general, most of the authors provide
values from tissue strips instead of an interconnected system of lung parenchymal
airways.
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Fig. 6.13 The frequency response of the elastic modulus in its complex representation (left) and
in its equivalent Bode plot (right)

6.4 Relation Between Lumped FO Model Parameters
and Viscoelasticity

A typical feature of FO models is that of characterizing history-dependent sys-
tems [169]. Viscoelastic materials, such as polymers, i.e. materials very close in
their dynamics to lung parenchymal tissue, are history dependent [9]. The follow-
ing simple, nonlinear relation allows for prediction of history dependence, called
nonlinear superposition, which allows the relaxation function to depend on strain
level:

σ(t) =
∫ t

0
E
(
t − τ, ε(τ )

) dε

dτ
dτ (6.30)

A similar equation may be written for stress-dependent creep in the compliance
formulation.

ε(t) =
∫ t

0
J
(
t − τ, σ (τ )

)dσ

dτ
dτ (6.31)

If a series of relaxation tests is done at different strain levels, relaxation will be
observed, but the functional form of the relaxation curves will depend on the strain
level.

However, nonlinearly viscoelastic materials cannot be analyzed via Laplace
transforms because the Laplace transform is a linear operator. The interrelation
between creep and relaxation is developed here by direct construction. Look at
Fig. 6.14 and start by writing the time-dependent strain due to a constant stress
σc as a sum of immediate and delayed Heaviside step functions in time H(t),

ε(t) = ε(0)H(t) +
N∑

i=0

�εiH(t − ti ) (6.32)
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Fig. 6.14 Example of
history-dependent strain as a
function of constant stress
divided into Heaviside step
functions

Based on the definition of the relaxation function each step strain in the summation
gives rise to a relaxing component of stress. Assuming there is no effect from the
interaction between the step components, we have

σc = ε(0)E(t, ε) +
N∑

i=0

�εiE(t − ti , ε) (6.33)

Divide by σc, and use the definition of the creep compliance from (6.4),

1 = J (0)E(t, ε) +
N∑

i=0

�JiE
(
t − ti , ε(ti)

)
(6.34)

If we consider in the limit that we have infinitely many fine step components (i.e.
similar rationale to the decomposition of the recurrent ladder network elements), we
obtain a Stieltjes integral, with τ as a time variable of integration:

1 = J (0)E(t, ε) +
∫ t

0
E
(
t − τ, ε(τ )

)dJ (τ, σc)

dτ
dτ (6.35)

This relationship is implicit and is analogous to the one for the linear case. In order to
develop an explicit form, one needs to assume a specific form for the creep behavior.
First, assume the creep function to be separable into a stress-dependent portion and
a power law in time. Such a form, called quasi-linear viscoelasticity has been used
widely in biomechanics [49]:

J (t, σ ) = g(σ )tn = [g1 + g2σ + g3σ
2 + · · ·]tn (6.36)

where g1, g2, g3 are constants. Consider the following relaxation function, with
f1, f2, f3 constants, as a trial solution. A separable form does not give rise to a
solution:

E(t, σ ) = f1t
−n + f2ε(t)t

−2n + f3ε(t)
2t−3n + · · · (6.37)
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The creep strain is ε(t) = J (t)σc = ε0t
n, with ε0 as the strain amplitude. Substi-

tution leads to

1 =
∫ t

0

[
f1(t − τ)−n + f2ε0(t − τ)n(t − τ)−2n + f3ε

2
0(t − τ)2n(t − τ)−3n + · · ·]

× [g1 + g2σ + g3σ
2 + · · ·]nτn−1 dτ (6.38)

Factorization of the stress-dependent and the time-dependent parts delivers:

1 = [g1 + g2σ + g3σ
2 + · · ·][f1 + f2ε0 + f3ε

2
0 + · · ·]

∫ t

0
n(t − τ)−nτn−1 dτ

(6.39)

The integral part gives results ( 1
nπ

sinnπ ) identical to the linear case by Laplace
transformation of the integral and an identity involving the gamma function. This
is in fact quite similar to the definitions of fractional derivative as from fractional
calculus (see the Appendix for detailed information). Again, we stumble on the ob-
vious origin of genesis of lumped fractional-order models characterizing viscoelas-
tic properties in the lungs. However, we need to make an explicit link between the
constitutive equations of viscoelastic behavior and the fractional-order terms in FO
models.

Before proceeding further with our theoretical development, it is necessary to
discuss the implications of stress–strain response in relation to history dependence.
Consider a stress history that is triangular in time (i.e. quite close to the actual
breathing patterns in some patients):

σ(t) = 0 for t < 0,

σ (t) = (σ0/t1)t, for 0 < t < t1,

σ (t) = 2σ0 − (σ0/t1)t, for t1 < t < 2t1, and

σ(t) = 0 for 2t1 < t < ∞
(6.40)

Use the Boltzmann integral and consider that slopes are piecewise constant:

ε(t) = 0 for t < 0,

ε(t) = σ0

t1

∫ t

0
J (t − τ) dτ, for 0 < t < t1

ε(t) = σ0

t1

[∫ t1

0
J (t − τ) dτ −

∫ t

t1

J (t − τ) dτ

]
, for t1 < t < 2t1, and

ε(t) = σ0

t1

[∫ t1

0
J (t − τ) dτ −

∫ 2t1

t1

J (t − τ) dτ

]
, for 2t1 < t < ∞

(6.41)

Substitute the given creep function and decompose the exponential as follows:∫ b

a

[
1 − exp

(
− t − τ

τc

)]
dτ = b − a − τc

[
e
− t−b

τc − e
− t−a

τc

]
(6.42)

A more meaningful approach to theoretical basis of viscoelasticity is to look at
the response of viscoelastic materials to sinusoidal load, referred to as dynamic be-
havior. Notice, however, that the term dynamic in this context has no connection
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with inertial terms or resonance and should not be confounded with other linear ter-
minology. The dynamic behavior is of special interest because viscoelastic materials
are used in situations in which the damping of vibration or the absorption of sound
is necessary. At first sight, this may not be an obvious relation to the lungs, but bear
in mind that lung parenchyma is very similar to polymers, used for such purposes.

The frequency of the sinusoidal load applied to an object or structure may be so
slow that inertial terms do not appear (i.e. the subresonant regime). For respiratory
impedance, these frequencies are below 1 Hz. By contrast, the frequency of the sinu-
soidal load may be high enough such that resonance occurs. For respiratory system,
these resonant frequencies alternate starting from about 10 Hz. A separate study of
these will be done in the next chapter. However, at a sufficiently high frequency,
dynamic behavior is manifested as wave motion. This distinction between ranges of
frequency does not appear in the classical continuum description of a homogeneous
material, because the continuum view deals with differential elements of material.
The lungs are non-homogeneous materials, and the degree of heterogeneity is an
important classification index for correlating the impedance to structural changes in
pathology [145].

The stress–strain plot for a linearly viscoelastic material under sinusoidal load
is elliptical, as demonstrated in previous sections of this chapter, and the shape of
the ellipse is independent of stress. By contrast, an elastic–plastic material exhibits
a threshold. Below the threshold yield stress, the material is elastic, and its stress–
strain plot is a straight line. Above the yield stress, irreversible deformation occurs
in the elastic-plastic material.

Let the history of strain to be purely sinusoidal. In complex exponential form,
ε(t) = ε0e

iωt , with ω the angular frequency in radians per second. We make use
of the Boltzmann superposition integral, with the lower limit taken as −∞ since in
strict mathematical terms a sinusoid has no starting point:

σ(t) =
∫ t

−∞
E(t − τ)

dε

dτ
dτ (6.43)

To achieve explicit convergence of the integral, we must decompose the relaxation
function into the sum E(t) ∼= Ê(t)+Ee with Ee = limt−∞ E(t) = E(∞) called the
equilibrium modulus (in the context of polymers) and substitute the strain history in
(6.43). Recalling that Ee > 0 for solids and Ee = 0 for liquids, it follows that

σ(t) = Eeε0e
iωt + iωε0

∫ t

−∞
Ê(t − τ)eiτω dτ (6.44)

Make the substitution of a new time variable t ′ = t − τ , and obtain

σ(t) = ε0e
iωt

[
Ee + ω

∫ ∞

0
Ê
(
t ′
)

sinωt ′ dt ′ + iω

∫ ∞

0
Ê
(
t ′
)

cosωt ′ dt ′
]

(6.45)

If the strain is sinusoidal in time, so is the stress, but they are no longer in phase.
The stress–strain relation becomes

σ(t) = E∗(ω)ε(t) = (ES + jED)ε(t) (6.46)
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in which, with Ê(t) = E(t) − E(∞),

ES(ω) ∼= E+
e ω

∫ ∞

0
Ê
(
t ′
)

sinωt ′ dt ′ (6.47)

is called the storage modulus,

ED(ω) ∼= ω

∫ ∞

0
Ê
(
t ′
)

cosωt ′ dt ′ (6.48)

is called the loss modulus, and the loss tangent (dimensionless) is given by

tan δ(ω) ∼= ED(ω)

ES(ω)
(6.49)

The above equations give the dynamic, frequency-dependent mechanical properties
in terms of the relaxation modulus. ES is the component of the stress–strain ratio in
phase with the applied strain, while ED is the component 90 degrees out of phase.
These relations may be inverted in order to obtain

E(t) = Ee + 2

π

∫ ∞

0

(ES − Ee)

ω
sinωt dω (6.50)

E(t) = Ee + 2

π

∫ ∞

0

ED

ω
cosωt dω (6.51)

Physically, the quantity δ represents the phase angle between the stress and strain
sinusoids. The dynamic stress–strain relation can be expressed as

σ(t) = ∣∣E∗(ω)
∣∣ε0e

j (ωt+δ) (6.52)

with E∗ = ES + jED .
One can also consider the dynamic behavior in the compliance formulation. In

the modulus formulation, σ(t) = E∗(ω)ε(t) is an algebraic equation for sinusoidal
loading, hence the strain is

ε(t) = 1

E∗(ω)
σ (t) (6.53)

However, the complex compliance J ∗ is defined by the equation

ε(t) = J ∗(ω)σ (t), (6.54)

with J ∗ = JS − jJD . Hence, the relationship between the dynamic compliance and
the dynamic modulus is

J ∗(ω) = 1

E∗(ω)
(6.55)

This is considerably simpler than the corresponding relation for the transient creep
and relaxation properties. Notice that tan δ(ω) = JD(ω)/JS(ω).

Plots of dynamic viscoelastic functions may assume a variety of forms. For in-
stance, one may plot the dynamic properties versus frequency, with the frequency
scale given logarithmically. Alternatively, one may plot the imaginary part versus
the real part: ED versus ES or JD versus JS . Such a plot is often used in dielectric
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Fig. 6.15 Example of
stress–strain curves with
slopes and intercepts for a
linear viscoelastic material
under oscillatory load, e.g.
viscoelastic rubber

relaxation studies and is referred to as a Cole–Cole plot [80]. A single relaxation-
time process gives a semicircle in a Cole–Cole plot. Another usual graphical repre-
sentation is that of stiffness versus loss: |E∗| versus tan δ, i.e. a stiffness–loss map.

In the remainder of this section, we shall focus our attention on the loss tangent
and its relation to hysteresis loops. Consider again the relation between stress and
strain in dynamic loading of a linearly viscoelastic material. First, the shape of the
stress–strain curve is determined, and a relation for the loss tangent is developed.
Hitherto, we have considered stress and strain as they depend on time. Suppose we
have

ε = B sinωt (6.56)

and

σ = D sin(ωt + δ) (6.57)

which determine an elliptic Lissajous as given in Fig. 6.15, the direct consequence
of linearly viscoelastic behavior. For some materials, the curve of stress versus strain
in dynamic loading is not elliptical, but has pointed ends; this behavior is a mani-
festation of material nonlinearity. The loop is called a hysteresis loop. Hysteresis, in
general, refers to a lag between cause and effect. In some contexts, such as the study
of polymers, a specific view of hysteresis is taken; it then represents a frequency-
independent damping, as discussed in the next chapter. To interpret the dimensions
and intercepts of the figure, first let the intersection with the axis be called A, as-
sumed to occur at time t1. Then, consider A = B sinωt1 and

0 = D sin(ωt1 + δ) = D sin(ωt1) cos δ + D cosωt1 sin δ (6.58)

Substituting sinωt1 = A
B

and cosωt1 = 1
B

√
B2 − A2 into the last expression, we

obtain

0 = D
A

B
cos δ + D

B

√
B2 − A2 sin δ (6.59)

Squaring the last expression leads to A2 cos2 δ = B2 sin2 δ − A2 sin2 δ, hence
A2(cos2 δ + sin2 δ) = B2 sin2 δ. This implies that sin δ = A

B
. If ωt = −δ, then σ = 0.
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Consequently, εA = B sin(−δ) at the intersection. However, the ellipse is symmet-
ric, so A = B sin δ.

Now, with the aim of obtaining a different relation between δ and the param-
eters of the ellipse, consider the point of maximum stress, which occurs when
sin(ωt + δ) = 1. Then ωt + δ = π

2 , and referring to Fig. 6.15, we have

C = ε(σmax) = B sin

(
π

2
− δ

)
= B

[
sin

π

2
cos(−δ) + cos

π

2
sin(−δ)

]
(6.60)

thus

ε(σmax) = B cos δ (6.61)

Since A = B sin δ, then tan δ = A/C, it follows that the width of the elliptic Lis-
sajous figure is a measure of the loss angle δ of a linearly viscoelastic material.

To obtain a relation for the storage modulus ES in connection with the elliptic
stress–strain curve, suppose ε = εmax sinωt . Then, the stress σ at the maximum
strain is σ = ESεmax sinωt +EDεmax cosωt . For εmax,ωt = π/2, then σ = ESεmax
so the slope of the line from the origin to the point of maximum strain is ES , as
shown in Fig. 6.15.

To obtain a relation for the storage compliance JS in connection with the ellip-
tic stress–strain curve, suppose σ = σmax sinωt . Then, the strain at the maximum
stress is, by the definition of |J ∗|, ε = (JS − jJD)σmax. Hence ε = JSσmax sinωt −
JDσmax cosωt , because j = √−1 implies a 90-degree phase shift. For σmax,ωt =
π/2, then ε = JSσmax or σmax = ε/JS . Therefore, the slope of the line from the
origin to the point of maximum stress is 1/JS , as shown in Fig. 6.15. Observe that
1/JS ≥ ES equality occurs if the material is elastic (i.e. δ = 0).

Consider now the time t = 0, and ε = 0. It follows that σ(t) = D sin δ, with
σ(t) = εmax[ES sinωt + ED cosωt]. For t = 0, σ0 = εmaxED , which is marked as
an intercept on the ordinate in Fig. 6.15.

Also observe that σmax = |E∗|εmax, so, again referring to Fig. 6.15, this modulus
corresponds to a line of intermediate slope between that for ES and that for 1/JS .

To conclude this line of thoughts, the loss angle δ, or the loss tangent tan δ, may
be considered as the fundamental measure of damping in a linear material.

However, the above derivation is not limited to linear viscoelastic properties.
Also nonlinear viscoelastic materials can be excited by sinusoidal loads. The sim-
plest dynamic example of the effect of nonlinearity is nonlinear elasticity in one
dimension. Suppose that

σ = f (ε) (6.62)

If we write f (ε) as a power series we obtain

σ = a1ε
1 + a2ε

2 + a3ε
3 + · · · (6.63)

and if the strain is sinusoidal, say ε = cosωt and using trigonometric identities, for
example,

cos2 ωt = 1

2
(1 + cos 2ωt) (6.64)
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Fig. 6.16 Several example of the response from nonlinear materials under cyclic load. Observe
that the loop is no longer elliptical. Such response is very similar to pressure–volume loops in
diagnosed patients

and

cos3 ωt = 1

4
cos 3ωt + 3

4
cosωt (6.65)

then we can express the stress as a sum of sinusoids:

σ(t) =
N∑

n=1

an sinnωnt + φn (6.66)

Consequently, the effect of the nonlinearity is to generate higher harmonics (integer
multiples) of the driving frequency. If the driving signal contains several frequen-
cies, the material responds at new frequencies corresponding to sums and differ-
ences of the drive frequencies.

As for a viscoelastic material obeying nonlinear superposition, analysis shows
that higher harmonics are generated as well. In the electrical engineering commu-
nity, this sort of response is called harmonic distortion. Response of a nonlinear
material to cyclic load may also be visualized via a plot of stress versus strain, as
shown schematically in Fig. 6.16. In a nonlinear material, the plot is no longer ellip-
tical in shape, as it is in a linear material, because harmonic distortion generates a
non-elliptic plot. Many types of curves are observed in healthy and pathologic lung
function pressure–volume loops. The area within the closed curve, as in the case of
linear materials, represents the energy per volume dissipated per cycle, also known
as work of breathing.

6.5 Implications in Pathology

Materials can be time dependent in ways other than viscoelastic response. For ex-
ample, a structural member, such as an alveolar wall, can gradually become stiffer
and stronger if additional substance is added in response to heavy loading [7, 43].
By contrast, it can become less dense and weaker if material is removed in response
to minimal loading. Biological materials intrinsically behave in this way, perform-
ing an adaptation to maintain functionality of the system. For instance, a change in
stiffness of the lung parenchyma can be assumed to depend on its porosity [86]:

σij = (ξ0 + e)Cijkl(e)εkl (6.67)
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Specifically, a change e in the solid volume fraction of a porous material with respect
to a reference volume fraction drives the adaptation process:

de

dt
= a(e) + Aij (εij ) (6.68)

Here, a and A are coefficients that depend on the type of structure, e.g. airway walls,
alveolar walls, etc. Almost all biologic materials are adaptive, i.e. smart, and pose
specific characteristics as self-repair, adaptability to various environmental condi-
tions, self-assembly, homeostasis, and the capacity for regeneration.

Recoil pressures at same lung volumes are always less during deflation than in-
flation (hysteresis), hence the mechanical energy (work of breathing) follows the
same property. The area within the pressure–volume loops represents the lost en-
ergy per breathing cycle. During quiet breathing, this area is nearly independent
of frequency. Thus, under constant amplitude cycling, energy dissipation is nearly
independent of frequency. However, the dissipation is proportional to the product
of resistance and frequency, hence, implying that the resistance is inversely propor-
tional to the frequency.

The constant-phase model from [57], i.e. (3.9), describing the viscoelastic prop-
erties of lung tissues, has been considered superior to the classic spring and dashpot
representation, since it contains a combined element. Although the electrical ana-
logue of viscoelastic processes as well as the phenomenological and mechanical
approaches yield good quantitative correspondence with data, they lack anatomic
and mechanistic specificity.

Later models tried to deal with dynamic tissue behavior on a mechanistic basis.
Some mechanisms have been proposed as contributors to the constant-phase tissue
viscoelasticity, such as the structural disposition of fibers and their instantaneous
configuration during motion, since elastic fibers dissipate energy as they slip with
respect to each other. Additionally, lung tissue might exhibit molecular mechanisms
similar to those proposed for polymer rheology. Maksym [96] suggested a role for
the relative stress-bearing contributions of collagen and elastin fibers based on the
differential elastic properties of these two types of fibers, in which collagen fibers
were progressively recruited with strain. Bates [8] also proposed that the nonlin-
ear elastic properties and linear elastic behavior of lung tissues arise from different
physical processes, whereas elastic recoil is linked to geometry as fibers rearrange
themselves; stress adaptation would reflect a process of diffusion due to the thermal
motion of the fibers with respect to each other and to the ground substance.

6.6 Summary

Based on the concept laid down in previous chapters, the analogy to mechanical
parametric models has been made. This analogy has been used as a theoretical basis
for analyzing viscoelastic properties in the lung tissue. The relation between the
lumped fractional-order model parameters and viscoelasticity has been developed
and the implications in pathology are discussed.
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It is obvious to see that changes in mechanical structure, parameters, and geom-
etry can be applied to evaluate their effect on the total properties of the tissues and
airways in the lungs. So far, we have established both an electrical and a mechanical
analogue to perform such evaluations.

In the next chapters, we shall apply the concepts and models learned so far on
real impedance data and signals measured from volunteers.



Chapter 7
Frequency Domain: Parametric Model Selection
and Evaluation

7.1 Overview of Available Models for Evaluating
the Respiratory Impedance

Hitherto in this book, we have discussed available models from literature in Chap. 3,
and we have established an anatomical and morphological basis for the appearance
of recurrent ladder networks in Chap. 4. The next step was to provide analogy be-
tween the respiratory airways and the electrical, respectively mechanical elements.
In Chap. 5 was also established the convergence of such ladder networks to a lumped
parametric model of fractional order, where clearly changes in the airways structure
lead to changes in the fractional-order values. Similarly, in Chap. 6 we discussed
the relation of such ladder networks to viscoelastic properties of lung parenchyma,
in a mechanical context.

Such ladder network models are useful to characterize broad ranges of frequen-
cies, since they allow (more) significant variations of model parameters with fre-
quency. However, certain variability in the fractional-order value is not captured,
making these models unsuitable for multi-fractal systems. Of course, multiple lad-
der networks will lead to multiple fractional-order lumped parametric models. It is
also meaningful to observe that the recurrent values in the airways are different for
conductive zone (i.e. nose, pharynx, larynx, trachea, bronchi, bronchioles, and ter-
minal bronchioles) than for the respiratory zone (i.e. below terminal bronchioles,
where gas exchange takes place). This already suggests that the complexity of the
respiratory system naturally requires a multi-fractal parametric model [63].

It has already been acknowledged in the research community that multi-fractal
lumped parametric models are indeed good candidates for characterizing the res-
piratory impedance, but the genesis of such models is not fully understood. Such
complexity in both structure and function has gathered the attention of many biol-
ogists, physiologists, anesthesiologists, and engineers [63]. As the emerging tools
from fractional calculus and chaos theory are rather new in biological applications,
we must recognize the need for a well-defined terminology and standardized analy-
sis.

C.M. Ionescu, The Human Respiratory System, Series in BioEngineering,
DOI 10.1007/978-1-4471-5388-7_7, © Springer-Verlag London 2013
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This chapter will guide the reader in choosing the suitable model for the fre-
quency range where respiratory input impedance needs to be analyzed.

7.2 FO Model Selection in Relation to Various Frequency
Intervals

It is important to understand the limitations of lumped FO parametric models over
various frequency intervals. There exists no generally valid model, since the vari-
ations of the impedance values with frequency are significant, as we will see later
in this chapter. To begin with, we discuss the available FO models in order of com-
plexity.

The first model, from here-on referred to as FO1, is defined as

ZFO1(s) = Rr + 1

Crsβr
(7.1)

with Rr the resistance (kPa/(l/s)), Cr the capacitance (l/kPa) and 0 ≤ βr ≤ 1. This
model was initially developed for frequencies below 5 Hz, whereas the effect of the
inductance is negligible [57]. Therefore, when evaluating such model in the 4–48 Hz
frequency interval, one may expect poor performance results.

The second model included in our discussion, referred to as FO2, is obtained
from (7.1) by adding the inductance term [58]:

ZFO2(s) = Rr + Lrs + 1

Crsβr
(7.2)

As described in Chap. 3, experimental results show that in several patients, the real
part of the complex impedance may increase with frequency. Splitting (7.2) in its
real and imaginary parts yields

Zr(jω) = Rr + 1

Crωβr
cos

(
βrπ

2

)
+ j ·

[
Lrω sin

(
π

2

)
− 1

Crωβr
sin

(
βrπ

2

)]

(7.3)

Hence, it can be observed that when frequency increases, the real part of the term in
Cr decreases, therefore unable to characterize correctly the impedance. However, if
the model is evaluated in a frequency range in which the real part of the impedance
is decreasing with frequency, the model performs well.

The third model (FO3) introduced in the discussion contains an extra FO term in
the inductance:

ZFO3(s) = Rr + Lrs
αr + 1

Crsβr
(7.4)

which is in fact (3.10). This model is able to counteract the limitation of FO2 and
captures both increasing, as well as decreasing variations with frequency in the real
part of the impedance.
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The last model (FO4) proposed for evaluation in this chapter is based on FO3, but
takes into account the ability of fractional-order terms to model constant elements
in the gain of the term. This results in a simplification of the FO3 model to

ZFO4(s) = Lrs
αr + 1

Crsβr
(7.5)

which does not contain the resistance term Rr . Indeed, the theory of fractional-order
appearance in ladder networks shows that the effects of Rr are indirectly captured in
the values of the FO terms and FO coefficients [76, 118]. Hence, if it turns out that
the Rr term in FO3 will not give significant values, then FO4 will have less model
parameters to be interpreted by the clinicians.

In order to illustrate the above rationale, two groups of respiratory impedance
data will be employed in an example. The remainder of this section presents the
results of these models and makes a discussion on the model parameter values.

7.2.1 Relation Between Model Parameters and Physiology

Recalling here the identification procedure described in Sect. 3.1 using (3.8), one
obtains the complex impedance by means of its real and imaginary parts as a func-
tion of frequency. From the real and imaginary parts of the complex impedance,
the model parameters of (7.5) were identified. The modeling errors were calculated
with (3.12).

From the identified model parameters one can derive the tissue damping Gr and
elastance Hr , defined as [57, 58]

Gr = 1

Crωβr
cos

(
βr

π

2

)

Hr = 1

Crωβr
sin

(
βr

π

2

) (7.6)

both in (l/kPa). The hysteresivity coefficient ηr (dimensionless) is defined as [42]

ηr = Gr

Hr

(7.7)

This parameter characterizes the heterogeneity of the lung tissue and has been
shown to vary significantly with pathology. Since all these parameters from (7.6)
and (7.7) are frequency dependent, the lumped identified values will in fact repre-
sent an averaged value over the 4–48 Hz frequency range.

Apart from the identified model parameters, some additional parameters are in-
troduced in this analysis. The real part of the complex impedance at 6 Hz (R6) can
be used to characterize the total resistance at this frequency, a parameter often en-
countered in clinical studies. The resonant frequency (Frez) could also be used as a
classifying parameter, since it has been shown that the balance between elastic and
inertial properties change with pathology.
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We also introduce two dimensionless indices, namely the quality factor at 6 Hz
(QF6), denoted by the ratio of the reactive power to the real power:

QF6 = Im6

Re6
= tanφz (7.8)

where Re6 and Im6 denote the real and imaginary parts of the complex impedance
evaluated at 6 Hz and φz denotes the phase angle at 6 Hz. From (7.8), one can
calculate the corresponding power factor PF6:

PF6 =
√

1

QF62 + 1
=
√

Re2
6

(Re2
6 + Im2

6)
2

= Re6

Re2
6 + Im2

6

= cosφz (7.9)

In engineering, the quality factor QF compares the time constant for decay of
an oscillating physical system’s amplitude with respect to its oscillation period. In
other words, it compares the frequency at which a system oscillates to the rate at
which it dissipates its energy, also known as the damping factor. For a second order
linear time invariant system, a system is said to be over-damped if QF < 0.5, under-
damped for QF > 0.5 and critically damped for QF = 0.5. In other words, a low
QF denotes a high energy loss, while a high QF denotes a low energy loss. For the
power factor PF, we find that for PF = 0 the energy flow is entirely reactive (hence
the stored energy in the load returns to the source with each cycle), and if PF = 1,
all the energy supplied by the source is consumed by the load.

Because FO are natural solutions in dielectric materials [80, 131], it is interesting
to look at the permittivity property of respiratory tissues. In electric engineering, it
is common to relate permittivity to a material’s ability to transmit (or permit) an
electric field. By electrical analogy, changes in trans-respiratory pressure relate to
voltage difference, and changes in air flow relate to electrical current flows. When
analyzing the permittivity index, one may refer to an increased permittivity when
the same amount of air-displacement is achieved with smaller pressure difference.
The complex permittivity has a real part, related to the stored energy within the
medium and an imaginary part related to the dissipation (or loss) of energy within
the medium. The imaginary part of permittivity corresponds to

εr = Lr sin

(
π

2
αr

)
(7.10)

7.2.2 Subjects

The first group evaluated here consists of male volunteers without a history of respi-
ratory disease, whose lung function tests were performed in the laboratory of Ghent
University, Department of Electrical energy, Systems and Automation. Table 7.1
presents their biometric parameters, whereas a detailed analysis on their respiratory
impedance parameters will be discussed later in this chapter.

A second group consists of former coal miners from the Petrosani area, tested
periodically for their lung function at the ‘Leon Danielo’ Hospital in Cluj-Napoca,
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Table 7.1 Biometric and
spirometric parameters of the
investigated subjects. Values
are presented as mean ±
standard deviations; % pred:
predicted according to the
asymptomatic males of the
study; VC: vital capacity;
FEV1: forced expiratory
volume in one second

Healthy
(17)

COPD
(17)

Age (yrs) 26 ± 3 51 ± 11

Height (m) 1.67 ± 0.04 1.74 ± 0.09

Weight (kg) 64 ± 3.7 76 ± 8

VC % pred – 89 ± 7

FEV1 % pred – 44 ± 6

Fig. 7.1 Impedance plots for
the healthy group

Romania, and diagnosed with COPD (Chronic Obstructive Pulmonary Disease). Ta-
ble 7.1 presents the corresponding biometric and spirometric parameters.

The measurements of the input impedance values for these two groups of vol-
unteers have been performed according to the forced oscillation lung function test
described in Sect. 3.1 and the model from (3.8). The modeling errors have been
calculated according to (3.12).

7.2.3 Results

The complex impedance values for the healthy and COPD patients have been ob-
tained using (3.8) and they are depicted in Figs. 7.1 and 7.2. It can be observed that
the healthy group has a resonant frequency (zero crossing in the imaginary part)
around 8 Hz, whereas the COPD group around 16 Hz. The real part denotes mainly
the mechanical resistance of the lung tissue, which is generally increased in the
COPD group, resulting in higher work of breathing. Also, the resistance at low fre-
quencies is much increased in the COPD group, suggesting increased damping of
the lung parenchyma [64].

Next, the models from (7.1)–(7.5) are fitted to these complex impedance values.
Identification is performed using the System Identification Toolbox within the Mat-
Lab platform, i.e. the lsqnonlin optimization function (a nonlinear least squares
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Fig. 7.2 Impedance plots for
the COPD group

algorithm). The estimated parameter values along with the modeling error values are
given in Table 7.2 for the healthy subjects, respectively in Table 7.3 for the COPD
patients.

Independent Student’s t tests with unequal sample size were used to compute the
confidence intervals. The classification results were considered significant if p ≤
0.05 (i.e. within 95 % confidence interval).

The model parameters were compared between groups using boxplots. The
lower and upper lines of the boxplot are the 25th and 75th percentiles of the sample
group. The distance between the top and bottom of the box is the interquartile range.
The line in the middle of the box is the sample group median value. If the median
is not centered in the box, it is an indication of skewness. The whiskers are lines
extending below and above the box. They show the extent of the rest of the sample
group (unless there are outliers). Assuming no outliers, the maximum of the sample
is the top of the upper whisker, respectively, the minimum is the bottom of the
lower whisker. An outlier is a value more than 1.5 times the interquartile range
away from the top or bottom of the box, and they are denoted by plus signs. A side
by side comparison of two or more boxplots provides a graphical way to determine
which groups have significantly different medians (typical measure in classification
studies).

From the model parameters, one can calculate the tissue damping Gr =
1
Cr

cos(π
2 βr) and tissue elastance Hr = 1

Cr
sin(π

2 βr) [57] and tissue hysteresivity
ηr = Gr/Hr [42]. The relationship with (7.2) is found if the terms in Cr are re-
written as:

1

Crω
β
r

cos

(
π

2
βr

)
− j

1

Crω
β
r

sin

(
π

2
βr

)
= Gr − jHr

ω
β
r

(7.11)

From Tables 7.2 and 7.3 one may observe that the model FO4 gives the smallest
total error. This is due to the fact that two FO terms are present in their model struc-
ture, allowing both a decrease and increase in the real part of the impedance values.
The FO2 model is the most commonly employed in clinical studies, with similar
errors for the imaginary part, but higher error in the real part of the impedance than
the FO4 model. The underlying reason is that the model can only capture a decrease



7.2 FO Model Selection in Relation to Various Frequency Intervals 105

Ta
bl

e
7.

2
E

st
im

at
ed

m
od

el
pa

ra
m

et
er

s
an

d
m

od
el

in
g

er
ro

rs
fo

r
th

e
he

al
th

y
gr

ou
p

in
al

lc
an

di
da

te
FO

m
od

el
s

H
ea

lth
y

FO
1

FO
2

FO
3

FO
4

R
r

0.
22

±
0.

09
0.

22
±

0.
09

0.
01

±
0.

01
–

L
r

–
0.

7
×

10
−3

±
0.

1
×

10
−3

19
.3

×
10

−3
±

3.
02

×
10

−3
3.

74
×

10
−3

±
3.

11
×

10
−3

α
r

–
–

0.
46

±
0.

07
0.

43
±

0.
10

1/
C

r
0

1.
36

±
0.

98
0.

99
±

0.
03

2.
02

±
1.

47

β
r

0.
99

±
0.

00
0.

99
±

0.
01

0.
72

±
0.

08
0.

79
±

0.
16

E
R

0.
05

±
0.

02
0.

05
±

0.
02

0.
02

±
0.

01
0.

02
±

0.
01

E
X

0.
12

±
0.

02
0.

01
±

0.
00

0.
01

±
0.

00
0.

01
±

0.
00

E
T

0.
13

±
0.

03
0.

05
±

0.
02

0.
02

±
0.

01
0.

02
±

0.
01

Ta
bl

e
7.

3
E

st
im

at
ed

m
od

el
pa

ra
m

et
er

s
an

d
m

od
el

in
g

er
ro

rs
fo

r
th

e
C

O
PD

gr
ou

p
in

al
lc

an
di

da
te

FO
m

od
el

s

C
O

PD
FO

1
FO

2
FO

3
FO

4

R
r

0.
18

±
0.

08
0.

26
±

0.
08

0.
00

6
±

0.
01

–

L
r

–
0.

9
×

10
−3

±
0.

1
×

10
−3

7.
7

×
10

−3
±

2.
7

×
10

−3
15

.1
×

10
−3

±
8.

1
×

10
−3

α
r

–
–

0.
56

±
0.

06
0.

59
±

0.
09

1/
C

r
1.

73
±

3.
32

5.
20

±
2.

49
3.

37
±

1.
73

2.
94

±
1.

54

β
r

0.
18

±
0.

36
0.

83
±

0.
16

0.
51

±
0.

08
0.

52
±

0.
11

E
R

0.
05

±
0.

01
0.

04
±

0.
01

0.
03

±
0.

01
0.

03
±

0.
01

E
X

0.
14

±
0.

02
0.

02
±

0.
00

0.
03

±
0.

01
0.

02
±

0.
00

E
T

0.
15

±
0.

02
0.

05
±

0.
01

0.
04

±
0.

02
0.

04
±

0.
01



106 7 Frequency Domain: Parametric Model Selection and Evaluation

Fig. 7.3 Tissue damping Gr (kPa/l) with FO2, p < 3e−5 (left) and with FO4, p < 10e−8 (right);
1: Healthy subjects and 2: COPD patients

Fig. 7.4 Tissue elastance Hr (kPa/l) with FO2, p < 0.0012 (left) and with FO4, p < 0.0004
(right); 1: Healthy subjects and 2: COPD patients

in real part values of the impedance with frequency, whereas some patients may
present an increase.

Figures 7.3, 7.4 and 7.5 depict the boxplots for the FO2 and FO4 for the tissue
damping Gr , tissue elastance Hr and hysteresivity ηr . Due to the fact that FO2 has
higher errors in fitting the impedance values, the results are no further discussed.
Although a similarity exists between the values given by the two models, the dis-
cussion will be focused on the results obtained using FO4 in the 4–48 Hz frequency
range.

The damping factor is a material parameter reflecting the capacity for energy ab-
sorption. In materials similar to polymers, as lung tissue properties are very much
alike polymers, damping is mostly caused by viscoelasticity, i.e. the strain response
lagging behind the applied stresses [142, 143, 145]. In both FO models, the exponent
βr governs the degree of the frequency dependence of tissue resistance and tissue
elastance. The increased lung elastance 1/Cr (stiffness) in COPD results in higher
values of tissue damping and tissue elastance, as observed in Figs. 7.3 and 7.4. The
loss of lung parenchyma (empty spaced lung), consisting of collagen and elastin,
both of which are responsible for characterizing lung elasticity, is the leading cause
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Fig. 7.5 Tissue hysteresivity ηr with FO2, p < 0.0012 (left) and with FO4, p < 0.0004 (right);
1: Healthy subjects and 2: COPD patients

of increased elastance in COPD. The hysteresivity coefficient ηr introduced in [42]
is Gr/Hr in this model representation. Given the results observed in Fig. 7.5, it is
possible to distinguish between tissue changes from healthy to COPD case. Since
pathology of COPD involves significant variations between inspiratory and expira-
tory air flow, an increase in the hysteresivity coefficient ηr reflects increased inho-
mogeneities and structural changes in the lungs. In other words, the hysteresivity
coefficient incorporates this property for the capacitor, that is, the COPD group has
an increased capacitance, justified by the pathology of the disease. Many alveolar
walls are lost by emphysematous lung destruction, the lungs become so loose and
floppy that a small change in pressure is enough to maintain a large volume, thus
the lungs in COPD are highly compliant (elastic) [6, 64, 71].

Another interesting aspect to note is that in the normal lung, the airways and
lung parenchyma are interdependent, with airway caliber monotonically increasing
with lung volume. In emphysematous lung, the caliber of small airways changes less
than in the normal lung (defining compliant properties) and peripheral airway resis-
tance may increase with increasing lung volume. At this point, the notion of space
competition has been introduced [64], hypothesizing that enlarged emphysematous
air spaces would compress the adjacent small airways, according to a nonlinear
behavior. Therefore, the compression would be significantly higher at higher vol-
umes rather than at low volumes, resulting in blunting or even reversing the airway
caliber changes during lung inflation. This mechanism would therefore explain the
significantly marked changes in model parameters in tissue hysteresivity depicted
in Fig. 7.5. It would be interesting to notice that since small airway walls are col-
lapsing, resulting in limited peripheral flow, it also leads to a reduction of airway
depths. A correlation between such airway depths reduction in the diseased lung
and model’s non-integer orders might give insight on the progress of the disease in
the lung.

In COPD, due to the sparseness of the lung tissue, the air flow in the alveoli
is low, thus a low level of energy absorption is observed in Fig. 7.6. In healthy
subjects, due to increased alveolar surface, higher levels of energy absorption are
present, thus increased permittivity.
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Fig. 7.6 Boxplots for the computed permittivity index εr in the FO2, p < 0.0081 (left) and in
FO4, p < 0.0002 (right), in the two groups; 1: Healthy subjects and 2: COPD patients

The concluding observation for this section is that in general, FO4 identified
more statistically significant model parameter values than FO2. In Figs. 7.3–7.5 FO4
parameters had identified similar variations between healthy and COPD groups.
However, in Fig. 7.6, one can observe that FO4 identified a more realistic variation
between healthy and COPD groups, i.e. a decreased permittivity index in COPD
than in healthy.

7.3 Implications in Pathology

In the remainder of this chapter, the term subjects will refer to healthy volunteers,
whereas the term patients will refer to diagnosed volunteers. The forced oscillations
lung function test (FOT) was employed to perform measurements of the input res-
piratory impedance, as described in Sect. 3.1. The measurement was performed in
the f ∈ [4,48] (Hz) frequency interval, respectively ω ∈ [25,300] (rad/s).

Drop-out criteria were: (i) technically biased measurements (swallowing, cough-
ing, glottis closure); (ii) fatigue and therefore reduced ability to breath sponta-
neously; and (iii) irregular breathing period. All subjects and patients were in stable
physical conditions at the time of the evaluation.

Written and/or oral consent was obtained from all participants, and in case of
children, from both children and their parents. Further selection of the participants
was performed by oral/written questionnaire ruling out any other respiratory disease
than the one envisaged for the study at the time of measurement or in the past 4
weeks. The remainder of this section presents the data for the participants to whom
these inclusion criteria applied.

7.3.1 FOT Measurements on Adults

The healthy adult group evaluated in this study consists of 80 Caucasian volunteers
(students) without a history of respiratory disease, whose lung function tests were
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Table 7.4 Biometric
parameters of the healthy
subjects. Values are presented
as mean ± standard deviation

Healthy
(80)

Female/male 31/49

Age (yrs) 27 ± 5

Height (m) 1.73 ± 0.17

Weight (kg) 69 ± 9.6

performed in our laboratory, and Table 7.4 presents their biometric parameters. The
measurements were performed over the 2005–2009 time interval.

According to Pasker, the real (Re) and imaginary (Im) parts of the impedance
can be predicted from their biometric data as given below [119]:

Female
Re0 = −0.4300 · h + 0.00165 · w − 0.00070 · a + 0.9312

(RSD = 0.0619)

Re1 = 0.01176 · h − 0.000106 · w − 0.000045 · a − 0.00817

(RSD = 0.00256)

Im0 = 0.2487 · h − 0.001700 · w − 0.00053 · a − 0.2158

(RSD = 0.0406)

Male
Re0 = −0.2454 · h + 0.001564 · w − 0.00055 · a + 0.5919

(RSD = 0.0493)

Re1 = 0.01176 · h − 0.000106 · w − 0.000045 · a − 0.00817

(RSD = 0.00197)

Im0 = 0.2487 · h − 0.001700 · w − 0.00053 · a − 0.2158

(RSD = 0.0306)

(7.12)

where h denotes height in (m), w denotes weight in (kg), a denotes age in (yrs)
and RSD is the residual standard deviation. The real and imaginary parts of the
impedance are fitted by the polynomial:

Rrs = Df + E (7.13)

where f is the frequency. The coefficients calculated with (7.12) from their biomet-
ric parameters are then validated with the E and D coefficients resulting from the
curve fitting. For the real part of the impedance, the coefficient E is validated with
the coefficient Re0, respectively the coefficient D is validated with the coefficient
Re1. For the imaginary part of the impedance, the coefficient E is validated with the
coefficient Im0. Since the volunteers were presumed healthy (but not guaranteed),
the predicted values for terms in (7.13) were verified with the reference values from
[119, 121]. Only in 56 (from the initial 80) subjects, the identified values from (7.13)
remained close to the predicted values of Re0, Re1 and Im0, within the 95 % confi-
dence interval.
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Table 7.5 Biometric and
spirometric parameters of the
COPD patients. Values are
presented as mean ± standard
deviation; % pred: predicted
according to the
asymptomatic males of the
present study; VC: vital
capacity; FEV1: forced
expiratory volume in one
second

COPD
(47)

Female/male 0/47

Age (yrs) 64 ± 13

Height (m) 1.74 ± 0.12

Weight (kg) 79 ± 12

VC % pred 84 ± 12

FEV1 % pred 38 ± 8

The second adult group was diagnosed with chronic obstructive pulmonary dis-
ease (COPD). COPD is a generic name for any disorder that persistently obstructs
the bronchial air flow [6, 64]. However, it mainly involves two related diseases—
chronic bronchitis and emphysema. Both cause chronic obstruction of air flowing
through the airways and in and out of the lungs. The obstruction is irreversible and
progresses (becomes worse) over the time. Most cases of COPD develop after long-
term exposure to lung irritants that damage the lungs and the airways (e.g. miners,
smoke). Second-hand smoke (i.e. smoke in the air from other people smoking) can
also irritate the lungs and contribute to COPD. Breathing in air pollution and chem-
ical fumes or dust from the environment or workplace also can contribute to COPD.

The COPD group under study consisted of 47 Caucasian patients, diagnosed and
under observation at the “Leon Danielo” Hospital in Cluj-Napoca, Romania. The
patients were former coal miners from the Petrosani area in Romania. Their bio-
metric and spirometric parameters are given in Table 7.5. The measurements were
performed in January 2006, Cluj Napoca, Romania.

The third and last group of adult patients was diagnosed with kyphoscoliosis.
Kyphoscoliosis is a disease of the spine and its articulations, mostly beginning in
childhood [103]. The deformation of the spine characteristically consists of a lateral
displacement or curvature (scoliosis) or an antero–posterior angulation (kyphosis)
or both (kyphoscoliosis). The angle of the spinal curvature called the angle of Cobb
determines the degree of the deformity and consequently the severity of the restric-
tion. Severe kyphoscoliosis may lead to respiratory failure, which often needs to be
treated with non-invasive nocturnal ventilation.

This study was approved by the local Ethics Committee of the University Hos-
pital Gent (UZGent) and informed consent was obtained from all volunteers before
inclusion in the study. The study involved nine adults diagnosed with kyphoscoliosis
and their corresponding biometric and spirometric values are given in Table 7.6. The
measurements were performed during the June 2009–August 2009 time interval.

7.3.2 Healthy vs. COPD

The complex impedance values for the healthy and COPD patients obtained with
(3.8) are similar to those presented in Sect. 6.1; the equivalent Bode plots are given
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Table 7.6 Biometric and spirometric parameters of the adults diagnosed with kyphoscoliosis. Val-
ues are presented as mean±standard deviation values; % pred: predicted values; VC: vital capacity;
FEV1: forced expiratory volume in one second; FVC: forced vital capacity; Cobb angle: the angle
of spinal deformity (one patient was excluded for it has outlier value for Cobb angle, i.e. 178◦;
Ccw : chest wall compliance; pred∗: denotes values predicted from the Cobb angle, according to
[103]; Raw : airway resistance from bodybox lung function test. All patients were on nocturnal
ventilation

Kyphoscoliosis
(9)

Female/male 3/6

Age (yrs) 62.25 ± 10.12

Height (m) 1.55 ± 0.08

Weight (kg) 63.25 ± 15.62

VC % pred 33.25 ± 14.15

FEV1 % pred 31.62 ± 11.30

FVC % pred 34.62 ± 12.12

Cobb angle (◦) 75 ± 19.63

Raw (kPa/l/s) 0.51± 0.12

Ccw pred* (l/kPa) 0.98 ± 0.29

VC % pred* 65.06 ± 10.48

Fig. 7.7 Bode plots for the
healthy group

in Figs. 7.7 and 7.8. The real part denotes mainly the mechanical resistance of the
lung tissue, which is generally increased in the COPD group, resulting in a higher
work of breathing. Also, the resistance at low frequencies is much increased in the
COPD group, suggesting increased damping of the lung parenchyma (viscoelasticity
is mainly analyzed at low frequencies).

The estimated and derived model parameter values along with the real, imagi-
nary, and total error values are given in Table 7.7 for the healthy subjects and for the
COPD patients.

Tissue destruction (emphysema, COPD) and changes in air-space size and tis-
sue elasticity are matched with changes in model parameters when compared to
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Fig. 7.8 Bode plots for the
COPD group

Table 7.7 Estimated and derived model parameters and modeling errors for the healthy and COPD
groups. Values are given as mean ± standard deviation; values in brackets indicate the correspond-
ing 95 % confidence intervals

Healthy COPD

Lr 0.032 ± 0.029 (0.019, 0.045) 0.016 ± 0.007 (0.013, 0.019)

1/Cr 1.59 ± 1.10 (1.09, 2.08) 2.81 ± 1.45 (2.15, 3.47)

αr 0.42 ± 0.08 (0.38, 0.47) 0.56 ± 0.07 (0.53, 0.60)

βr 0.75 ± 0.11 (0.70, 0.80) 0.52 ± 0.10 (0.47, 0.56)

Gr 0.44 ± 0.15 (0.37, 0.50) 1.77 ± 0.73 (1.43, 2.10)

Hr 1.49 ± 1.14 (0.98, 2.00) 2.15 ± 1.30 (1.55, 2.74)

ηr 0.41 ± 0.21 (0.32, 0.51) 0.99 ± 0.41 (0.80, 1.18)

R6 0.13 ± 0.05 (0.11, 0.16) 0.33 ± 0.07 (0.29, 0.36)

Frez 10.48 ± 3.56 (8.75, 13.87) 20.58 ± 8.98 (11.89, 30.27)

QF6 0.09 ± 0.09 (0.02, 0.17) 0.55 ± 0.24 (0.44, 0.66)

PF6 0.99 ± 0.01 (0.98, 0.99) 0.86 ± 0.08 (0.82, 0.90)

ER 0.02 ± 0.01 0.03 ± 0.01

EX 0.013 ± 0.006 0.02 ± 0.006

ET 0.02 ± 0.01 0.04 ± 0.01

the healthy group. The physiological effects of chronic emphysema are extremely
varied, depending on the severity of the disease and on the relative degree of bron-
chiolar obstruction versus lung parenchymal destruction [6]. Firstly, the bronchio-
lar obstruction greatly increases airway resistance and results in increased work of
breathing. It is especially difficult for the person to move air through the bronchioles
during expiration because the compressive force on the outside of the lung not only
compresses the alveoli but also compresses the bronchioles, which further increase
their resistance to expiration. This might explain the decreased values for inertance
(air mass acceleration), captured by the values of Lr .

Secondly, the marked loss of lung parenchyma greatly decreases the elastin cross-
links, resulting in loss of attachments [64]. The latter can be directly related to
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Fig. 7.9 Tissue damping Gr (left) and tissue elastance Hr (right) in 1: Healthy subjects and
2: COPD patients

Fig. 7.10 Tissue hysteresivity ηr (left) and real part of impedance R6 evaluated at 6 Hz (right) in
1: Healthy subjects and 2: COPD patients

the fractional order of compliance, which generally expresses the capability of a
medium to propagate mechanical properties [143]. The damping factor is a material
parameter reflecting the capacity for energy absorption. In materials similar to poly-
mers, as lung tissue properties are very much alike polymers, damping is mostly
caused by viscoelasticity, i.e. the strain response lagging behind the applied stresses
[142, 143]. In the FO model, the exponent βr governs the degree of the frequency
dependence of tissue resistance and tissue elastance. The increased lung elastance
1/Cr (elasticity) in COPD results in higher values of tissue damping and tissue elas-
tance, as observed in Fig. 7.9. The loss of lung parenchyma (empty spaced lung),
consisting of collagen and elastin, both of which are responsible for characterizing
lung elasticity, is the leading cause of increased elastance in COPD. Given the re-
sults observed in Fig. 7.10, it is possible to distinguish between tissue changes from
healthy to COPD case from the variations in the hysteresivity index ηr (p � 0.01).
Since pathology of COPD involves significant variations between inspiratory and
expiratory air flow, an increase in the hysteresivity coefficient ηr reflects increased
inhomogeneities and structural changes in the lungs.
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Fig. 7.11 Quality factor QF6 (left) and power factor PF6 (right) in 1: Healthy subjects and
2: COPD patients

Figures 7.9, 7.10 depict the boxplots for the tissue damping Gr (p � 0.01), tis-
sue elastance Hr (p � 0.01), tissue hysteresivity ηr (p � 0.01) and resistance at
6 Hz R6 (p � 0.01) calculated with the parameters from Table 7.7. In emphysema-
tous lung, the caliber of small airways changes less than in the normal lung (defining
compliant properties) and peripheral airway resistance may increase with increas-
ing lung volume. At this point, the notion of space competition has been introduced
[64], hypothesizing that enlarged emphysematous air spaces would compress the
adjacent small airways, according to a nonlinear behavior. Therefore, the compres-
sion would be significantly higher at higher volumes rather than at low volumes,
resulting in blunting or even reversing the airway caliber changes during lung infla-
tion. This mechanism would therefore explain the significantly marked changes in
model parameters in tissue hysteresivity depicted in Fig. 7.10.

Many alveolar walls are lost by emphysematous lung destruction, the lungs be-
come so loose and floppy that a small change in pressure is enough to maintain a
large volume, thus the lungs in COPD are highly compliant (elastic) [6, 64, 71].
This is observed in the high values identified for 1/Cr .

The quality factor QF6 is close to 0.5 in COPD in Fig. 7.11, suggesting a criti-
cally damped tissue characteristic. As expected, the quality factor remained low in
healthy, denoting the under-damped character of lung parenchyma. This will then
result in a high power factor for healthy and decreased power factor in COPD, hence
increased work of breathing in COPD.

7.3.3 Healthy vs. Kyphoscoliosis

The complex impedance values for the kyphoscoliosis patients obtained using (3.8)
are depicted in Fig. 7.12 and the equivalent Bode plots are given in Fig. 7.13. The
healthy volunteers are the same as in the previous section.

Table 7.8 presents the results obtained from the identification of model param-
eters (3.10). There were significant variances between the groups for tissue damp-
ing Gr (p � 0.01), but not for tissue elastance Hr (p < 0.75), as observed from
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Fig. 7.12 Impedance plots
for the kyphoscoliosis group

Fig. 7.13 Bode plots for the
kyphoscoliosis group

Table 7.8 Estimated and derived model parameters and modeling errors for the healthy and
kyphoscoliosis groups. Values are given as mean ± standard deviation; values in brackets indi-
cate the 95 % confidence intervals

Healthy Kyphoscoliosis

Lr 0.032 ± 0.029 (0.019, 0.045) 0.0173 ± 0.012 (0.007, 0.02)

1/Cr 1.59 ± 1.10 (1.09, 2.08) 2.47 ± 0.76 (1.85, 3.10)

αr 0.42 ± 0.08 (0.38, 0.47) 0.54 ± 0.05 (0.49, 0.58)

βr 0.75 ± 0.11 (0.70, 0.80) 0.55 ± 0.05 (0.50, 0.59)

Gr 0.44 ± 0.15 (0.37, 0.50) 1.55 ± 0.39 (1.25, 1.86)

Hr 1.49 ± 1.14 (0.98, 2.00) 1.91 ± 0.73 (1.34, 2.48)

ηr 0.41 ± 0.21 (0.32, 0.51) 0.85 ± 0.16 (0.72, 0.98)

R6 0.13 ± 0.05 (0.11, 0.16) 0.28 ± 0.06 (0.23, 0.33)

Frez 10.48 ± 3.56 (8.75, 13.87) 15.01 ± 2.08 (12.80, 18.02)

QF6 0.09 ± 0.09 (0.02, 0.17) 0.58 ± 0.15 (0.46, 0.71)

PF6 0.99 ± 0.01 (0.98, 0.99) 0.85 ± 0.05 (0.81, 0.90)

ER 0.02 ± 0.01 0.03 ± 0.008

EX 0.013 ± 0.006 0.01 ± 0.005

ET 0.02 ± 0.01 0.03 ± 0.008
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Fig. 7.14 Tissue damping Gr (left) and tissue elastance Hr (right) in 1: healthy and 2: kyphosco-
liosis. See corresponding p-values discussed in text

Fig. 7.15 Quality factors QF6 (left) and power factors PF6 (right) evaluated at 6 Hz in 1: healthy
and 2: kyphoscoliosis. See corresponding p-values discussed in text

Fig. 7.14. The boxplots for the quality factor QF6 and the power factor PF6 are
given in Fig. 7.15, which were significantly different between the groups (p �
0.01). Finally, the boxplot for the real part of impedance at 6 Hz, R6 (p � 0.01),
and for tissue hysteresivity ηr (p � 0.01) are given in Fig. 7.16.

The total lung capacity can be markedly reduced in kyphoscoliosis, with a rela-
tive preservation of residual volume. Hence, the reduction in volume capacity (VC)
is consequent. The fact that the predicted values in VC from the Cobb angle val-
ues were higher than measured, can be attributed to the fact that these patients may
have secondary kyphoscoliosis, whereas the predicted values correlate better with
idiopatic scoliosis [103]. Similarly, a stiff chest wall (low Ccw values from Cobb
angle) will diminish the resting position of the chest wall, which in turn, reduces the
functional residual capacity. Stiffening of the chest wall leads as well to an overall
reduction in the lung compliance (increased damping). One must keep in mind that
these changes are not resulted from a diseased parenchyma, but a consequence of
the relatively immobile chest wall.

The restrictive nature of the disease (from reduced lung volume) was confirmed
by a significantly increased tissue damping Gr , airway resistance R6, and quality
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Fig. 7.16 Real part of impedance R6 evaluated at 6 Hz (left) and the tissue hysteresivity ηr in
1: healthy and 2: kyphoscoliosis. See corresponding p-values discussed in text

Table 7.9 Biometric
parameters of the healthy
children. Values are presented
as mean ± standard deviation
values

Healthy
(16)

Female/male 13/3

Age (yrs) 9.66 ± 0.47

Height (m) 1.39 ± 0.07

Weight (kg) 32.3 ± 6.34

factor QF6. The latter suggested an over-damped dynamical system. The reduced
lung and chest wall compliances increase the elastic load on the respiratory muscles
and therefore increase the inspiratory pressure needed to inhale a given air volume.
Consequently, the work of breathing is increased, reflected in the lower values for
the power factor PF6.

Tissue elastance was not significantly different between the groups, but the tissue
hysteresivity ηr provided a significantly increased heterogeneity in the lungs of the
kyphoscoliosis group. Indeed, this result reflects the modified structure of the lungs
as originated by the spinal deformity. For example, airway obstruction can occur
in some cases as a consequence of changes in the geometry of the airways, or as a
result of the aorta impinging on the tracheal wall.

7.3.4 FOT Measurements on Children

The measurements on children included also a healthy children group. This study
was approved by the local Ethics Committee of the University Hospital in Antwerp
(UZA) and informed consent was obtained from all volunteers before inclusion in
the study. The study involved 16 healthy children and their corresponding biometric
values are given in Table 7.9. The measurements were performed in May 2009, at
the St. Vincentius Basis School in Zwijnaarde, Belgium.
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Table 7.10 Biometric and spirometric parameters of the asthmatic children and the healthy chil-
dren used for comparison. Values are presented as mean ± standard deviation values; % pred:
predicted values; VC: vital capacity; FEV1: forced expiratory volume in one second; FEF: forced
expiratory flow; MEF75/25: mean expiratory flow at 75 %, respectively at 25 % capacity; NA: data
not available

Asthma
(19)

Healthy
(16)

Female/male 3/16 13/3

Age (yrs) 11.05 ± 4.7 9.66 ± 0.47

Height (m) 1.40 ± 0.17 1.39 ± 0.07

Weight (kg) 36.25 ± 15.58 32.3 ± 6.34

FEF/VC % pred 85.31 ± 31.15 NA

FEV1/VC % pred 97.75 ± 12.83 NA

MEF75/25 (l) 2.12 ± 0.95 NA

The healthy children had no history of pulmonary disease, and were selected
using a specific questionnaire. The questionnaire verified the absence of dyspnoea,
chronic cough, wheeze in the chest, etc.

In order to validate the measurements in healthy children, the real part of the
complex impedance evaluated at 6 Hz (R6) was predicted from

R6 = 0.0017 · h2 − 0.5407 · h + 47.7323 (7.14)

with h the height in (cm) [33]. All subjects were within the 95 % confidence interval
values.

The second children group was diagnosed with asthma. Asthma denotes a pul-
monary disease in which there is obstruction to the flow of air out of the lungs,
but the obstruction is usually reversible and between attacks of asthma the flow of
air through the airways is usually good [17, 19, 161]. Asthma is caused by chronic
(ongoing, long-term) inflammation of the airways, making them highly sensitive
to various triggers. Such triggers are usually: indoor and outdoor allergens, indoor
and outdoor dust, exercise. In an asthma attack, the muscles in the airways contract
(bronchospasm), causing narrowing of the airway walls. With proper treatment, peo-
ple with asthma can have fewer and less severe attacks; while without treatment,
they will have more frequent and more severe asthma attacks and can even die.
Asthma can be controlled using specific medication (inhaled steroids).

This study was approved by the local Ethics Committee of the University Hospi-
tal Antwerp (UZA) and informed consent was obtained from all volunteers before
inclusion in the study. The study involved 19 asthmatic children and their corre-
sponding biometric and spirometric values are given in Table 7.10. The measure-
ments were performed during the December 2008–March 2009 time interval.

The protocol in this clinical trial was as follows: initial measurements of FOT
and spirometry were performed, followed by a bronchodilatator test. Typically, the
spontaneous improvement of the symptoms mentioned above, after the bronchodi-
latator use, is also an indicative of asthma (>12 % improvement of forced expira-
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Table 7.11 Number of the asthmatic children related to various asthma parameters: ICS: inhaled
corticosteroid; LABA: long acting beta agonist; LRA: leukotriene receptor antagonist; PC: partially
controlled; C: controlled

Medication ICS: 12 LABA: 15 LRA: 8

Level of asthma control PC: 6 C: 8 none: 5

Time of diagnose (years) <1: 9 <2: 3 <5: 7

Allergic asthma Yes: 17 No: 2 –

tory volume for the 1 second (FEV1) predicted baseline after inhalation). For the
bronchodilatation test, Ventolin 100 (4 × Salbutamol 100 mg) was administered.
The patient has to breath in and breath out in a nebulizer 4 times the administered
medication. A time interval of 12 minutes was allowed to pass after the inhalation,
such that the airways have time to respond to the bronchodilatator. Repeated mea-
surements of FOT and spirometry evaluated the patients after the bronchodilatation
test.

As additional information, allergy was determined based on specific positive re-
action to inhaled allergen (house dust mite, birch tree, grass pollen, weed, dog/cat
dander), and further details are given in Table 7.11.

The third group included children diagnosed with cystic fibrosis. This is one of
the most common severe genetic diseases, characterized by the production of abnor-
mal secretions, leading to mucous build-up, and persistent infections and inflamma-
tion in a variety of organs [15, 132]. Inflammation and infection also cause injury
and structural changes to the lungs, leading to a variety of symptoms and eventually
to respiratory failure. Without treatment, CF results in death for 95 % of affected
children before the age of 5, hence early diagnosis is critical.

This study was approved by the local Ethics Committee of the University Hospi-
tal Antwerp (UZA) and informed consent was obtained from all volunteers before
inclusion in the study. The study involved 10 children diagnosed with cystic fibrosis
and their corresponding biometric and spirometric values are given in Table 7.12.
The measurements were performed during the December 2008–March 2009 time
interval.

The patients were clinically diagnosed and hospitalized at the time of measure-
ment. Diagnosis was based on a sweat test and detection of a minimum of 1 gene
mutation responsible for cystic fibrosis.

7.3.5 Healthy vs. Asthma in Children

Using a closed circuit spirometer (JAEGER MasterLab, Germany) measurements
for forced vital capacity (FVC), forced expiratory volume in one second (FEV1),
the ratio FEV1/FVC and the ratio of forced expiratory flow (FEF) between 25 %
and 75 % of FVC to FVC (FEF/FVC) were obtained for the asthmatic patients in a
sitting position. These parameters were presented as raw data and percentile of the
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Table 7.12 Biometric and spirometric parameters of the children diagnosed with cystic fibrosis
and the healthy children used for comparison. Values are presented as mean ± standard deviation
values; % pred: predicted values; VC: vital capacity; FEV1: forced expiratory volume in one sec-
ond; FEF: forced expiratory flow; MEF75/25: mean expiratory flow at 75 %, respectively at 25 %
capacity; NA: data not available

Cystic fibrosis
(10)

Healthy
(16)

Female/male 4/6 13/3

Age (yrs) 14.44 ± 6.21 9.66 ± 0.47

Height (m) 1.49 ± 0.15 1.39 ± 0.07

Weight (kg) 39.89 ± 11.67 32.3 ± 6.34

FEF/VC % pred 86.51 ± 36.12 NA

FEV1/VC % pred 95.71 ± 9.42 NA

MEF75/25 (l) 2.08 ± 1.13 NA

predicted values (% pred) in a healthy subject with the same biometric details. Qual-
ity control of spirometry is given by the ATS criteria (American Thoracic Society),
with the software allowing detection of non-acceptable manoeuvres. From the 19
patients with clinical diagnosis of asthma, 16 presented normal respiratory response
by spirometry, and will be further referred to as normal-to-the exam (NE) patients.
The underlying reason for this was that the patients had a controlled asthma.

The predicted values in R6 are very close to the measured values, in both healthy
and asthmatic children, as depicted by Fig. 7.17. This then supports the spirometric
data from Table 7.10, which shows values close to 100 % of the predicted values
in all subjects, thus denoting the NE patients. The high standard deviation values in
Table 7.10 for the spirometric indices are due to the few asthmatic patients which
were not normal to the exam, also visible in Fig. 7.17 with R6 values higher than
the rest of the group. As observed from Fig. 7.18, there was a linear dependence
between the FEV1/VC% index and height in asthmatic children, in agreement with
similar studies from literature [33, 121].

The complex impedance values for the healthy and asthmatic children obtained
using (3.8) are depicted in Figs. 7.19 and 7.20. The equivalent Bode plots are given
in Figs. 7.21 and 7.22. Table 7.13 presents the results obtained from the identifica-
tion of model parameters.

It can be observed that for the inductance Lr and its corresponding fractional-
order parameter αr , the confidence intervals are overlapping; hence, there are no
significant differences from these parameters between the three groups. The elas-
tance 1/Cr and its corresponding fractional-order parameter βr were significantly
different between the groups, leading to significantly different values for the tis-
sue damping Gr (p � 0.01) and tissue elastance Hr (p � 0.01), as observed in
Fig. 7.23. The corresponding boxplots for tissue damping Gr and tissue elastance
Hr in the three groups: healthy, asthma before bronchial challenge, and asthma after
bronchial challenge test are given in Fig. 7.23. The boxplots for the quality factor
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Fig. 7.17 The real part of impedance R6 evaluated at 6 Hz against the height in healthy (square),
asthma before bronchial challenge (triangle) and asthma after bronchial challenge (crosses). Pre-
dicted values for R6 from [33] (diamond)

Fig. 7.18 The percent ratios FEV1/VC% (diamond) and FEF/VC% (square) against height

Fig. 7.19 Impedance plots
for the healthy children group

QF6 and the power factor PF6 are given in Fig. 7.24. Finally, the boxplots for the
real part of impedance R6 and resonant frequency ηr are given in Fig. 7.25.

There were no significantly different values obtained between the groups for the
hysteresivity ηr (p < 0.41), perhaps due to prior medication of the asthmatic group.
Indeed, in lung tissues, the frictional stress is almost invariably between 0.1 and 0.2
of the elastic stress, a fraction known as hysteresivity. This means that for each unit
of peak elastic strain energy that is stored during a cyclic deformation, 10 to 20 %
of that energy is lost irreversibly to heat. This fixed relationship holds at the level of
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Fig. 7.20 Impedance plots
for the children with asthma

Fig. 7.21 Bode plots for the
healthy children group

Fig. 7.22 Bode plots for the
children with asthma

the whole lung, isolated lung parenchymal tissue strips [143], and isolated smooth
muscle strips [162]. The fact that in our case we do not have variations in hystere-
sivity with bronchial challenge is explained by the fact that in all asthma patients,
a spontaneous improvement higher than 12 % was absent, due to prior medication
intake (see Table 7.11). Nevertheless, the tissue damping and tissue elastance coef-
ficients were sensitive to detect variations between the groups when evaluated inde-
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Table 7.13 The identified model parameters in the three groups; values are given as mean ±
standard deviation; (bc) denotes values after bronchial challenge; values in brackets denote the
95 % confidence intervals

Healthy Asthma Asthma (bc)

Lr 0.11 ± 0.08 (0.06, 0.15) 0.13 ± 0.17 (0.03, 0.23) 0.08 ± 0.04 (0.06, 0.11)

1/Cr 4.73 ± 2.73 (3.2, 6.2) 7.96 ± 3.16 (6.21, 9.7) 7.95 ± 3.31 (6.13, 9.78)

αr 0.32 ± 0.11 (0.26, 0.38) 0.32 ± 0.09 (0.27, 0.38) 0.34 ± 0.10 (0.28, 0.40)

βr 0.63 ± 0.16 (0.54, 0.72) 0.70 ± 0.13 (0.62, 0.77) 0.76 ± 0.15 (0.67, 0.85)

Gr 1.91 ± 0.68 (1.53, 2.29) 3.21 ± 1.75 (2.25, 4.18) 2.33 ± 0.90 (1.84, 2.82)

Hr 4.10 ± 3.01 (2.44, 5.76) 7.06 ± 3.18 (5.3, 8.81) 7.47 ± 3.61 (5.34, 9.39)

ηr 0.70 ± 0.38 (0.49, 0.91) 0.53 ± 0.29 (0.37, 0.70) 0.48 ± 0.66 (0.13, 0.84)

QF6 0.41 ± 0.11 (0.35, 0.48) 0.60 ± 0.17 (0.52, 0.69) 0.61 ± 0.16 (0.52, 0.7)

PF6 0.91 ± 0.03 (0.89, 0.93) 0.85 ± 0.06 (0.82, 0.88) 0.85 ± 0.06 (0.81, 0.88)

R6 0.49 ± 0.06 (0.46, 0.53) 0.61 ± 0.37 (0.42, 0.8) 0.44 ± 0.24 (0.31, 0.56)

Frez 21 ± 5.9 (17.81, 24.18) 22.94 ± 12.29 (17.01, 28.87) 16.66 ± 9.4 (11.98, 21.34)

ER 0.05 ± 0.01 0.09 ± 0.03 0.08 ± 0.02

EX 0.04 ± 0.01 0.06 ± 0.04 0.04 ± 0.01

ET 0.06 ± 0.02 0.12 ± 0.05 0.09 ± 0.03

Fig. 7.23 Tissue damping Gr (left) and tissue elastance Hr (right) in 1: healthy; 2: asthma; and
3: asthma after bronchial challenge. See corresponding p-values discussed in text

pendently. Tissue damping was higher in asthma and became lower after bronchial
challenge. Tissue elastance increased in asthma after bronchial challenge.

Lower QF6 values were obtained in the healthy group in Fig. 7.24 (p � 0.01),
denoting that higher amount of air circulates in the lungs than in asthma. A slight
decrease in QF6 values suggests an improvement in the air flow after bronchial
challenge in asthma groups (decreased overall damping factor). The corresponding
values for the PF6 show that in healthy lungs, the overall system is more efficient to
use the available energy than in asthmatic lungs (p � 0.01), hence increased work
of breathing in asthma.
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Fig. 7.24 Quality factors QF6 (left) and power factors PF6 (right) evaluated at 6 Hz in 1: healthy;
2: asthma; and 3: asthma after bronchial challenge. See corresponding p-values discussed in text

Fig. 7.25 Real part of impedance R6 evaluated at 6 Hz (left) and tissue hysteresivity ηr (right)
in 1: healthy; 2: asthma; and 3: asthma after bronchial challenge. See corresponding p-values
discussed in text

The real values of impedance R6 (p < 0.22) and the tissue hysteresivity ηr

(p < 0.29) were not significantly different between the groups. These findings are
in agreement with similar studies in asthma groups, using forced oscillation lung
function test [19]. The authors also report no statistical significant differences be-
tween the control and NE groups in mean reactance, mean resistance and resonant
frequency.

7.3.6 Healthy vs. Cystic Fibrosis in Children

The complex impedance values for the cystic fibrosis (CF) children obtained using
(3.8) are depicted in Fig. 7.26 and the equivalent Bode plots are given in Fig. 7.27.
The healthy children are the same as in the previous section.

Table 7.14 presents the results obtained from the identification of model param-
eters. There were no significant variances between the groups for tissue damping



7.3 Implications in Pathology 125

Fig. 7.26 Impedance plots
for the children with cystic
fibrosis

Fig. 7.27 Bode plots for the
children with cystic fibrosis

Table 7.14 The identified
model parameters in the two
groups; values are given as
mean ± standard deviations;
values in brackets denote the
95 % confidence intervals

Healthy Cystic fibrosis

Lr 0.11 ± 0.08 (0.06, 0.15) 0.07 ± 0.03 (0.05, 0.10)

1/Cr 4.73 ± 2.73 (3.2, 6.2) 8.67 ± 4.63 (5.11, 12.23)

αr 0.32 ± 0.11 (0.26, 0.38) 0.38 ± 0.08 (0.31, 0.44)

βr 0.63 ± 0.16 (0.54, 0.72) 0.77 ± 0.15 (0.66, 0.89)

Gr 1.91 ± 0.68 (1.53, 2.29) 2.07 ± 0.85 (1.41, 2.73)

Hr 4.10 ± 3.01 (2.44, 5.76) 8.26 ± 4.86 (4.52, 12.00)

ηr 0.70 ± 0.38 (0.49, 0.91) 0.38 ± 0.29 (0.15, 0.61)

R6 0.49 ± 0.06 (0.46, 0.53) 0.38 ± 0.08 (0.32, 0.45)

Frez 21 ± 5.9 (17.81, 24.18) 15.75 ± 4.71 (11.80, 19.69)

QF6 0.41 ± 0.11 (0.35, 0.48) 0.67 ± 0.18 (0.52, 0.81)

PF6 0.91 ± 0.03 (0.89, 0.93) 0.82 ± 0.06 (0.77, 0.88)

ER 0.05 ± 0.01 0.07 ± 0.03

EX 0.04 ± 0.01 0.05 ± 0.04

ET 0.06 ± 0.02 0.10 ± 0.05
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Fig. 7.28 Tissue damping Gr (left) and tissue elastance Hr (right) in 1: healthy and 2: cystic
fibrosis. See corresponding p-values discussed in text

Fig. 7.29 Quality factors QF6 (left) and power factors PF6 (right) evaluated at 6 Hz in 1: healthy
and 2: cystic fibrosis. See corresponding p-values discussed in text

Gr (p < 0.46) and tissue elastance Hr (p < 0.17), as observed from Fig. 7.28. The
boxplots for the quality factor QF6 and the power factor PF6 are given in Fig. 7.29,
which were significantly different between the groups (p � 0.01). Finally, the box-
plot for the real part of impedance at 6 Hz, R6 (p � 0.01), and for tissue hystere-
sivity ηr (p < 0.23) are given in Fig. 7.30.

Lung disease in CF begins in the distal airways and should be therefore reflected
in abnormalities of the intra-parenchymal airways and parenchymal mechanics. By
its intrinsic nature, the identified FO4 model should be able to determine such
changes. However, in order to partition the airway and parenchymal mechanics,
one needs to measure at low frequencies, i.e. a decade lower than 5 Hz. Since in our
study we are not envisaging such frequency range, it is not surprising that no sta-
tistical significant differences in tissue damping, elastance, and hysteresivity were
obtained. In a study over the 0.5–20 Hz frequency range using the model structure
from (7.2), there was also no significant difference between the measures of lung
function (airway or parenchymal) in infected or uninfected children with respira-
tory pathogen [15]. In [15] it was shown that the FO2 model can provide separate
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Fig. 7.30 Real part of impedance R6 evaluated at 6 Hz (left) and the tissue hysteresivity ηr (right)
in 1: healthy and 2: cystic fibrosis. See corresponding p-values discussed in text

estimates of the mechanical properties of the airways and pulmonary parenchyma
in CF, but in a lower frequency decade than in this present study.

In the 4–48 Hz frequency range, the only parameters able to classify between
healthy and CF children were those derived from the identified impedance at 6 Hz:
R6, QF6, and PF6. One should recall that the quality factor QF6 is related to the
overall damping factor of the respiratory system, hence indirectly related to Gr .
QF6 was significantly higher in CF than in healthy, denoting an over-damped tissue
property. Consequently, the power factor PF6 was below that of healthy children,
suggesting lower efficiency in breathing, thus requiring higher work of breathing.

Although one might expect increased airway resistance in CF than in healthy, the
values for R6 were significantly lower in CF than in healthy. One of the reasons
for this result might be that prior to the lung function exam, the CF patients under-
gone removal of retained secretions using specific physiotherapy which resulted in
decreased airway obstruction and overall resistance [132].

The lung function measured by spirometry is insensitive to changes in airway
structure, therefore it is not sufficient for early diagnosis of CF. We expect that the
FO4 model is able to capture such changes, but in a lower frequency range.

7.4 Parametric Models for Multiple Resonant Frequencies

7.4.1 High Frequency Range of Respiratory Impedance

Lumped parameter models for the input impedance have been developed for both
low frequency range (0.1–5 Hz) [31], as well as in the high frequency range (8–
256 Hz) [39], with constant-phase model elements used to model the respiratory
impedance for frequencies below 50 Hz [56–58].

There is not much information in the literature upon respiratory impedance eval-
uated at frequencies higher than 50 Hz. A possible underlying reason is that vis-
coelastic properties become important at low frequencies and their characteristics
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are changing with the evolution of the respiratory diseases. By contrast, the structure
and morphology of the lungs influences the mechanical properties at higher frequen-
cies, given the coupling between the various respiratory compartments [9]. Studies
have shown that the respiratory impedance poses several resonance (minima)–anti-
resonance (maxima) frequency intervals. It is thought that the first anti-resonance
peak (around 50–150 Hz) reflects the interaction between lung tissue and air vol-
ume and changes with respiratory disease. The second peak (between 150–600 Hz)
depends on airway walls compliance and respiratory gas properties [44–46, 133]
and has not been yet related to changes in respiratory mechanics with disease.

The work presented in this section is based on the previous chapters where it was
shown that equivalent ladder network models preserving the human lung morphol-
ogy and structure are in good qualitative agreement with general impedance values.
We employ here two parametric models for characterizing the impedance over a
long range in the frequency domain. The first model is the recurrent ladder network
model from (5.17) and re-visited to accommodate for the upper airway shunt and
the second model has been recently published in [78, 79]. The primary objective is
to evaluate the performance of these models in a group of 31 healthy patients. The
secondary objective is to determine from the recurrent ladder network the fractional-
order value which characterizes the specific feature of the respiratory mechanics at
high frequencies.

The measurements of the signals analyzed in this section have been performed
using the device described in Chap. 3 able to assess the respiratory mechanics in
the range 7–250 Hz. On the non-parametric estimation of the respiratory impedance
using (3.8), we fit the recurrent ladder network described in Chap. 5.

For comparison purposes, we employ the parametric model given in [78] is

ZPAR = Rp + ZmZgZts + ZmZawZg + ZmZawZts

ZgZm + ZtsZm + ZgZts + ZawZg + ZawZts

(7.15)

with Rp the peripheral resistance, Zm the impedance of the upper airway compli-
ance Cm; Zaw the impedance of the series connection of airway resistance Raw and
inertance Law; Zg the impedance of the alveolar gas compliance Cg and Zts the
impedance of the series connection of lung tissue and chest wall resistance Rts , iner-
tance Lts and compliance Cts . This model has been shown to be in good agreement
with frequency response values in the 4–500 Hz interval [78]. To our knowledge,
this is the most complete model developed for analysis of the respiratory mechanics
in the high frequency range.

The first segment in the respiratory tract is denoted by the upper airways, com-
prising the oral cavity, larynx, and pharynx. The corresponding electrical elements
are then denoted by a resistance RUA, an inductance LUA and a capacitance CUA
(see Fig. 7.31). Since we make use of recurrent properties as given by (5.4), the ini-
tial values of the recurrent ladder network, RUA, LUA, CUA, are not known and they
need to be included in the identification as unknown parameters. Next, using the
recurrent ratios from (5.4) combined with the geometrical ratios from (5.1)–(5.3),
the impedances Zlm and Ztm can be calculated.

We refer to the identified impedance ZREC as the inverse of the admittance from
(5.17). Similarly, we refer to the identified impedance from 7.15 as ZPAR.
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Fig. 7.31 Re-visited ladder network model to accommodate the upper airway segment

The best fit of ZREC(jω) and ZPAR(jω), respectively, is given by searching for
the minimum value of the cost function:

J = 1

Np

Np∑
Ωi

[
(Re − r̂)2 + (Im − x̂)2] (7.16)

where Re = real(Zr) and Im = imag(Zr) with Zr from (3.8), r̂ and x̂ are the es-
timated real and imaginary parts, Ωi represents the set of sampling points in the
frequency domain, and Np the number of samples. The total error ET between
complex data and its estimate has been calculated as in (3.12).

7.4.2 Evaluation on Healthy Adults

The volunteers tested for their high frequency respiratory impedance characteristic
are listed in Table 7.15 by means of their biometric values.

Figures 7.32, 7.33 depict the calculated impedance for the 31 volunteers using
(3.8) by means of its complex representation and equivalent Bode plots. The values
for the impedance are corresponding to similar measurements performed in the same
frequency interval in adults [39]. The red line denotes the averaged impedance data
from all 31 volunteers. After 70 Hz, there is increased noise amount, due to the
fixed sampling period (1 ms). However, we are measuring long data intervals (30–
40 seconds), such that the effects in the frequency response values are minimal.

Next step was to perform identification on each data set in the frequency interval
from 7–250 Hz, resulting in identified values for the ladder network in a recurrent
form ZREC. More precisely, the ladder network has resistance, inductance, and ca-
pacitance terms, in a gamma form, with ratios for each parameter as in Chap. 5.
The number of compartments in the ladder network has been set to N = 24, ac-
cording to lung morphology [163, 164]. The initial values for the ladder network
model were: RUA = 0.001 (kPa s/l), CUA = 0.001 (l/kPa), LUA = 0.001 (kPa s2/l),
λ = 2.46, χ = 0.54, α = 1.15. There were statistically significant results identified
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Table 7.15 Biometric values
of the volunteers. Notice that
two volunteers are outliers,
denoted pA and pB and they
are not taken into account
when mean and standard
deviation values are
calculated

Subject Gender Age (years) Weight (kg) Height (cm)

1 m 31 65 160

2 m 28 68 165

3 m 28 68 165

4 m 23 89 190

5 m 24 70 170

6 m 30 72 180

7 m 30 72 180

8 m 23 74 182

9 f 30 70 173

10 f 31 70 170

11 m 24 70 160

12 m 25 71 160

13 m 26 80 197

14 m 29 90 186

15 m 30 90 186

16 m 23 65 179

17 m 29 64 160

18 m 22 59 174

19 m 22 71 183

20 f 24 54 167

21 m 22 75 180

22 m 28 73 179

23 f 23 50 164

24 f 27 50 158

25 f 22 56 161

26 m 22 70 181

27 m 27 75 181

28 m 28 76 181

29 f 30 65 160

Mean ± std – 26 ± 3 70 ± 10 173 ± 10

pA m 55 80 170

pB m 60 83 170

only for the recurrent ratios, given in Table 7.16. The other identified parameters are
given in Fig. 7.34 by means of boxplots.

Next, we applied identification on the same data for the parametric impedance
model ZPAR from (7.15). The results of the identification are given in Fig. 7.35 by
means of boxplots (volunteers pA and pB not included here). Figure 7.36 shows a
typical identification result, all other identification results being similar. There were
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Fig. 7.32 Respiratory
impedance calculated from
the 31 volunteers by means of
its complex representations;
line denotes the
corresponding averaged
values

Fig. 7.33 Respiratory
impedance calculated from
the 31 volunteers by means of
its modulus-phase
representations; line denotes
the corresponding averaged
values

Fig. 7.34 Estimated
parameters of the ZREC
impedance model. Units are,
respectively: R,Rua

(kPa s/L); L,Lua (kPa s2/L);
C,Cua (L/kPa)
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Table 7.16 Identified
recurrent ratio values for the
ladder network model ZREC
in the 7–250 Hz frequency
interval; std: standard
deviation. CI: 95 %
confidence intervals. Notice
that two volunteers are
outliers with respect to age,
weight, and height, they are
denoted as pA and pB and
they are not taken into
account when mean and
standard deviation values are
calculated

Subject λ χ α

1 2.66 0.70 1.34

2 2.24 0.52 1.40

3 1.96 0.57 1.32

4 0.60 0.62 1.28

5 2.08 0.56 1.22

6 2.05 0.68 1.33

7 2.12 0.55 1.20

8 2.30 0.56 1.20

9 2.17 0.56 1.34

10 2.17 0.57 1.33

11 1.94 0.58 1.21

12 1.95 0.60 1.29

13 0.019 0.60 1.29

14 0.10 0.57 1.21

15 2.19 0.59 1.30

16 2.01 0.55 1.15

17 2.25 0.51 1.31

18 1.96 0.56 1.24

19 0.96 0.59 1.21

20 2.07 0.55 1.17

21 2.01 0.52 1.28

22 1.98 0.62 1.18

23 2.06 0.56 1.21

24 0.77 0.56 1.10

25 2.02 0.58 1.26

26 2.04 0.54 1.29

27 0.53 0.67 1.26

28 1.68 0.54 0.96

29 1.98 0.60 1.18

Mean ± std 1.75 ± 0.69 0.58 ± 0.04 1.24 ± 0.08

CI-min 1.70 0.54 1.20

CI-max 2.08 0.60 1.27

pA 2.19 0.67 1.26

pB 1.17 0.57 1.27

no statistically significant differences between the errors provided by the estimated
parametric models (p < 0.89). Figure 7.37 shows the boxplots for the errors be-
tween ZREC and ZPAR, respectively.
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Fig. 7.35 Estimated
parameters of the ZPAR
impedance model. Units are,
respectively: Rp,Rt ,Raw

(kPa s/L); Lt ,Law (kPa s2/L);
Cg,Cm,Ct ,Caw (L/kPa)

Fig. 7.36 Respiratory
impedance by means of its
complex representations;
squares denote the estimated
ZREC impedance values; stars
denote the measured
impedance with (3.8), bold
line denotes the estimated
ZPAR impedance values. This
illustrative example is given
for patient “22” from
Table 7.15

Fig. 7.37 Boxplot for the
total errors provided by the
two identified parametric
models ZPAR and ZREC,
respectively. There were no
statistically significant
differences (p < 0.89)

From the identified recurrent ratios, one can calculate the fractional order of the
ladder network, using (5.25). The values are given in Fig. 7.38 as a boxplot showing
the median value and the outliers. In order to check the variability of the fractional-
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Fig. 7.38 Boxplot for the
fractional-order values n

identified from the 31
volunteers

Fig. 7.39 The original ZPAR
impedance (bold line) as
identified for patient “22”
from Table 7.15 and the
modified impedance (stars)
with twofold increased Rts

(denoted in figure as “test
case”)

order parameter with frequency, we re-identify the ladder network model in the
range 5–50 Hz, and we obtained a new fractional-order value, depicted in Fig. 7.38
in the right-column. There was no statistically significant difference between the
two identified sets (p < 0.7). This validates the expected theoretical result that the
fractional-order value is independent on the frequency.

Further on, the sensitivity of the fractional-order value to changes in mechanical
parameters has been evaluated by using ZPAR with modified Rts increased twofold,
and fitting ZREC to it. Figure 7.39 shows the original ZPAR impedance identified
for patient “22” from Table 7.15 and the modified impedance (denoted in figure as
“test case”). To the modified impedance (i.e. test-case impedance) we have fitted
the model of ZREC as shown in Fig. 7.40 and obtained the following parameter val-
ues: Rua = 1.3e−7 (kPa s/L); Lua = 0.0017 (kPa s2/L); Cua = 0.0034 (L/kPa); R =
0.098 (kPa s/L); L = 0.0005 (kPa s2/L); C = 0.0016 (L/kPa); λ = 1.10; χ = 0.52;
α = 1.10 and total error Et = 0.03. The simulated increase in tissue resistance is re-
flected by an overall increase in the airway resistance value and modified recurrent
ratio values. The resulting fractional-order value is then calculated from the identi-
fied recurrent ratios using (5.38), it following that n = 0.19. This implies that our
proposed model is able to capture variations in the respiratory parameters and the
fractional-order value is a suitable parameter for classification.



7.4 Parametric Models for Multiple Resonant Frequencies 135

Fig. 7.40 Identified ZREC
impedance (circles) fitted to
the test-case impedance data
(stars)

7.4.3 Relation to Physiology and Pathology

The measured impedance values in healthy subjects and the corresponding reso-
nance/anti-resonance peak values are qualitatively and quantitatively comparable to
those reported in [39, 78, 79]. Both impedance models evaluated here were able to
capture the frequency-dependence of the respiratory mechanics at high frequencies.

The idea of multiple parallel tubes to model the respiratory tree at high frequen-
cies from [39] is here re-visited by means of a recurrent ladder network ZREC.
The ladder network model ZREC captures well the variations with frequency in the
impedance in all investigated patients and the identified model parameter values are
within reasonable values from clinical insight [112]. One should keep in mind that
the estimated ladder network coefficients are based on recurrent relations and the
fact that this recurrence leads to the constant-phase behavior in the impedance data
is an intrinsic property of such models [31, 56–58]. Even if these ladder network
elements are then replaced by fractional-order elements, the convergence remains
valid [118]. These findings support the theoretical insights on prior ladder network
developments and are in line with morphometry of the respiratory system [31, 39].
The upper airway resistance values Rua are similar to those identified in [79]. The
identified upper airway compliance Cua values are slightly lower for the ZREC than
the values reported in [79].

The identified model parameters of ZPAR are close to those reported in [39] for
the model with bronchial elasticity and similar to those reported in [79].

The values for the fractional order calculated from the identified recurrent ratios
(n = 0.78) are very close to previously reported values in [71] for healthy sub-
jects by means of a lumped FO parameter model (average value n = 0.79). It is
remarkable that a very close FO value (average value n = 0.8) has been obtained in
[11] when respiratory impedance has been evaluated at low frequencies in lambs.
This suggests once again experimentally what has been theoretically shown in
[70, 76, 118], i.e. that the recurrent ladder network converges to a lumped fractional-
order model, whose fractional order is independent of frequency [105].

Since in [154, 155] it was illustrated that the respiratory impedance at high fre-
quency is subject to bias originating from the nose clip, we re-identified the recurrent
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ladder network model ZREC in the 5–50 Hz frequency range. The two identified data
sets are illustrated in Fig. 7.38 and there were no statistically significant differences
between them (p < 0.7). We conclude that the fractional-order index is independent
of frequency, hence it is a reliable parameter to quantify the fractal properties of the
human respiratory system. There can also be speculated that age does not seem to
introduce difference in the results—as observed from the two introduced outliers pA
and pB from Table 7.16. However, further studies will have to confirm this claim in
detail.

Intuitively, we expect that changes in resistance and compliance values of the
airways and respiratory tissue will affect the recurrent ratios. This has been shown
in previous section by a simple yet efficient example on the “test-case” impedance,
resulting in a different identified value for the FO parameter n. Consequently, we
expect that the value of the fractional order will be sensitive to changes originated
from different respiratory pathologies. This is also supported by our prior study on
the impulse response of fractional-order models identified from healthy and patho-
logic data, which gave different pressure–volume dynamics [75] and other works
[55]. There is also evidence in the literature showing that morphometric changes
occur in the airways with pathology and thus we have reasons to believe that our
claim is well justified [51, 84, 156].

There are several limitations present in this modeling approach. A first limitation
is that the model lacks the characterization of diffusion phenomena. However, in our
model we include a gas compression compartment to account for the gas compliance
phenomena. It is also questionable whether diffusion phenomena are important at
high frequency, since it is a slow process mainly observable at low frequencies.

Perhaps the most significant limitation in this study is the fact that we assume a
symmetric tree, whereas the asymmetrical representation is more realistic [54, 65].
It is significant to note that the self-similarity is related to the optimality of ven-
tilation [66, 91] and that asymmetry exists in the healthy lung as well, whereas a
diseased lung contains significant heterogeneities and the optimality conditions are
not fulfilled anymore. However, even the asymmetric representation of the Horsfield
structure [65] has a high degree of self-similarity and, therefore, our model results
are fairly reasonable. The major errors which may occur in this study are determined
by the heterogeneity of the human lung and the inter-subject variability that can af-
fect the recurrent values. However, these values are reported in several studies and
they have offered a good basis for investigations [91, 97, 163, 164]. Although the air-
way tree of the human lung shows considerable irregularity, there exists a systematic
reduction of airway size [167]. It was demonstrated that the airway tree in different
species shows a common fractal structure, in spite of some gross differences in air-
way morphology [63]. On the other hand, it is indeed interesting to quantify changes
in the results if the degree of asymmetry in the respiratory tree (which is scarcely
discussed in literature) is taken into account. In our opinion, the case of asymmetry
requires a separate study, since both the ‘uncertainty’ in the morphology of lungs
from inter-patient variability and the asymmetry resulting from disease effects (e.g.,
COPD, cancer, etc.) can be discussed. We also suspect that the asymmetry may be
self-similar over certain regions, leading thus to a multi-fractal spatial distribution.
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7.5 Summarizing Thoughts

In this chapter, we evaluated the impedance in its non-parametric model form and its
parametric model form over several frequency intervals. It turns out that no generic
model can cope with the strongly varying, frequency-dependent, impedance values.
However, the parameters of the proposed models are all linked to anatomical, mor-
phological, and structural features in the respiratory system, so there is a link to
physiology.

Next research directions may evaluate which of these models are most sensitive
to airway changes and which of these are sensitive to tissue changes. Consequently,
further studies may reveal directions for developing strategies to select the model
according to the clinical target.



Chapter 8
Time Domain: Breathing Dynamics and Fractal
Dimension

8.1 From Frequency Response to Time Response

8.1.1 Calculating the Impulse Response of the Lungs

In the previous section, we have seen that fractional order models of the impedance
can be fitted on the frequency response (3.8) of the respiratory system in a given
frequency band. However, these models cannot be used directly to simulate the time
response of the respiratory system (e.g. impulse response). A feasible solution is to
use finite-dimensional transfer functions of integer order. A good overview of such
feasible implementations is given in [105]. From these methods, we shall adopt in
this chapter the classical method of pole-zero interpolation introduced by Oustaloup
in early 1990s [118]. In the remainder of this paper, we shall refer to this method as
the Oustaloup filter.

Oustaloup filter approximation to a fractional order differentiator is a widely
used method in fractional calculus. A generalized Oustaloup filter defined in the
frequency band [ωb,ωh] can be represented as

G(s) = K

Npz∏
k=1

s + p

s + z
(8.1)

with p poles, z zeros, K a gain, and Npz the number of pole-zero pairs (i.e. a design
parameter). The poles, zeros, and gain can be calculated from:

p = ωb · ω2k−1−n/Npz
u (8.2)

z = ωb · ω2k−1+n/Npz
u (8.3)

K = ωn
h (8.4)

with n the fractional order of the derivative sn to be approximated and ωu =√
ωh/ωb. The result will be a Npzth integer order transfer function.

C.M. Ionescu, The Human Respiratory System, Series in BioEngineering,
DOI 10.1007/978-1-4471-5388-7_8, © Springer-Verlag London 2013

139

http://dx.doi.org/10.1007/978-1-4471-5388-7_8


140 8 Time Domain: Breathing Dynamics and Fractal Dimension

In this study, we have applied the approximation given by (8.1) for the sαr and
the sβr coefficients from:

G(s) = Lr · g1 + 1

Cr · g2
(8.5)

with g1 and g2 the integer order approximations for sαr and sβr , respectively.
The Fourier transform of a signal x(t) in time is used to obtain the frequency

representation of that signal [136]:

FT{x} = X(jω) =
∫ ∞

−∞
x(t)e−jωt dt (8.6)

where ω = 2πf (rad/s) with f the frequency (Hz) and t is time (s). If we assume
that xk is a discrete sample of x(t), we have the discrete Fourier transform (DFT):

DFT{x} =
Nk−1∑
k=0

xke
−jωkTs (8.7)

with k the sample number, Ts the sampling period and Nk the number of samples.
Hence, the Fourier transform of a sequence of impulse functions, each of which is
an element of the sample vector x, is equal to the DFT of x at each frequency where
DFT is measured.

The inverse DFT is calculated as

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωt dω (8.8)

The result of (8.8) is the impulse response of the system whose frequency response
is given by X(jω).

It has been shown in Chap. 5 that the respiratory system can be successfully
modeled by recurrent ladder networks which preserve the morphology and the
anatomy. It was also shown that these ladder networks converge to a transfer func-
tion with fractional order operators. Since the fractal dynamics can be well mod-
eled by power-law models (decay function), one may expect this property also from
the respiratory system. We propose therefore to model the impulse response by the
power-law model:

x(t) = A · tB (8.9)

with A and B identified constants using a similar nonlinear least-squares algorithm
as presented in Chap. 3 [21]. A Student t-test was used to derive the 95 % confidence
intervals and analysis of variance (i.e. ANOVA test) was used to compare model
parameters among the groups.

8.1.2 Implications in Pathology

The same groups of adults and children have been employed here as in the previous
chapter. The estimated model parameter for (8.5) are given in Table 8.1 for all sub-
jects by means of mean and standard deviation values, along with 95 % confidence
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Table 8.1 Estimated and derived model parameters and modeling errors for all the investigated
groups. Values are given as mean ± standard deviation; values in brackets indicate the correspond-
ing 95 % confidence intervals

Lr 1/Cr αr βr

Healthy adults 0.032 ± 0.029 1.59 ± 1.10 0.42 ± 0.08 0.75 ± 0.11

(0.019, 0.045) (1.09, 2.08) (0.38, 0.47) (0.70, 0.80)

COPD 0.016 ± 0.007 2.81 ± 1.45 0.56 ± 0.07 0.52 ± 0.10

(0.013, 0.019) (2.15, 3.47) (0.53, 0.60) (0.47, 0.56)

KS 0.0173 ± 0.012 2.47 ± 0.76 0.54 ± 0.05 0.55 ± 0.05

(0.007, 0.02) (1.85, 3.10) (0.49, 0.58) (0.50, 0.59)

Healthy children 0.11 ± 0.08 4.73 ± 2.73 0.32 ± 0.11 0.63 ± 0.16

(0.06, 0.15) (3.2, 6.2) (0.26, 0.38) (0.54, 0.72)

Asthma 0.13 ± 0.17 7.96 ± 3.16 0.32 ± 0.09 0.70 ± 0.13

(0.03, 0.23) (6.21, 9.7) (0.27, 0.38) (0.62, 0.77)

CF 0.07 ± 0.03 8.67 ± 4.63 0.38 ± 0.08 0.77 ± 0.15

(0.05, 0.10) (5.11, 12.23) (0.31, 0.44) (0.66, 0.89)

intervals. These model parameters are then used to calculate the frequency response
in a wide range of frequencies. Statistically significant differences were observed
in adults, between the healthy, COPD, and KS groups (p < 0.01) and, in children,
between healthy, asthma, and CF groups (p < 0.01). There were no significant dif-
ferences between HC and AC groups, due to prior inhaled medication (p < 0.29).

The tuning parameters for the Oustaloup filter were fitted in the frequency range
0–106 Hz, with 100 Hz frequency resolution, linearly spaced. The order of the filter
set to Npz = 20 gave good results for all frequency responses. An illustrative ex-
ample is given in Fig. 8.1 by means of the Bode plot, with the corresponding 22nd
order transfer function in the form of (8.1) with the gain

K = 245950.9486 (8.10)

the denominator

s4(s + 4.759 · 10−8)(s + 3.369 · 10−7)(s + 2.385 · 10−6)(s + 1.688 · 10−5)
× (s + 0.0001195)(s + 0.0008463)(s + 0.005991)(s + 0.04241)(s + 0.3003)

× (s + 2.126)(s + 15.05)(s + 106.5)(s + 754.2)(s + 5339)(s + 37800)

× (s + 2676 · 10−5)(s + 1.895 · 106)(s + 1.111 · 107) (8.11)

and the numerator

s2(s + 2.645 · 10−8)(s + 6.3 · 10−8)(s + 1.873 · 10−7)(s + 1.326 · 10−6)
× (s + 9.386 · 10−6)(s + 6.645 · 10−5)(s + 0.0004704)(s + 0.00333)
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Fig. 8.1 An illustrative
example of fitting the
Oustaloup filter of order
Npz = 20 to the frequency
response of the respiratory
admittance in one patient

× (s + 0.02358)(s + 0.1669)(s + 1.182)(s + 8.366)(s + 59.22)(s + 419.3)

× (s + 2968)
(
s + 2.101 · 104)(s + 1.488 · 105)(s + 1.053 · 106)

× (s + 7.456 · 106)(s + 3.704 · 107) (8.12)

For the inverse DFT method, the same frequency response as for the Oustaloup
filter was used. The results from Fig. 8.2 show that the same type of impulse re-
sponse is obtained with either methods. Similar impulse responses are obtained for
the other data sets. However, the Oustaloup filter is a high-order transfer function,
containing coefficients which differ significantly in their magnitude. As such, the
transfer function from (8.10)–(8.12) may not always pose numerical stability, since
it contains coefficients which vary broadly in magnitude [10−8,107]. The inverse
DFT is numerically stable by definition and can serve to simulate the output of the
respiratory system for any input signal.

Figure 8.3 shows the log–log plots of the averaged values for impulse response in
admittances for adults and for children groups, respectively. To the impulse response
of each patient, a power-law model as given by (8.9) has been identified and its

Fig. 8.2 Impulse responses for the adult healthy averaged data set (left) and for the healthy chil-
dren averaged data set (right)
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Fig. 8.3 Log-Log plot of the averaged impulse response of the admittance in adults (left) and in
children (right)

Fig. 8.4 The locus of the
identified A and B values
from model (8.9)

values are given in Table 8.2. The locus plot of the values from Table 8.2 is depicted
by Fig. 8.4.

From the results presented in this paper, it is clear that the specificity of the res-
piratory disorders in COPDA and KSA, respectively, has a significant impact on the
fractal dynamics of the respiratory system (p � 0.01). However, the AC group were
controlled by means of medication, hence their lung function test was normal to the
exam. This is often the case, since asthma does not manifest itself as a continuous
phenomenon, mostly being triggered by external factors (i.e. allergens). Bearing
these facts in mind, it is no surprising that the fractal dynamics in HC and in AC are
similar (p < 0.2). In CFC , there is no specificity in the manifestation of the disease
with respect to respiratory airways and tissue, but its manifestation is overall the
respiratory airways and tissue (p � 0.01).

From a practical point of view, the impulse response describes the dynamics of
the respiratory airways and tissue. The results depicted in Fig. 8.2 show that with
disease, the amplitude is diminished and the decay is accelerated, showing viscous
effect (i.e. fibrosis of the tissue). In other words, in patients suffering from obstruc-
tive (COPDA, AC ) or restrictive disease (KSA), a much higher pressure (impulse
amplitude and time interval) must be applied to obtain the same airflow as in healthy.
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Table 8.2 Estimated power-law model parameters (8.9) for all the investigated groups, from the
corresponding impulse response. Values are given as mean ± standard deviation; values in brackets
indicate the 95 % confidence intervals

A × 10−5 −B Res × 10−5

Healthy adults 3.24 ± 0.51 0.57 ± 0.10 0.54 ± 0.16

(2.57, 4.93) (0.52, 0.61)

COPD 9.43 ± 2.62 0.43 ± 0.18 0.05 ± 0.04

(7.65, 9.67) (0.39, 0.47)

KS 7.68 ± 5.12 0.45 ± 0.26 0.09 ± 0.02

(7.05, 15.9) (0.41, 0.51)

Healthy children 0.70 ± 0.11 0.67 ± 0.10 0.53 ± 0.15

(0.6, 0.9) (3.2, 6.2)

Asthma 0.60 ± 0.23 0.67 ± 0.08 0.38 ± 0.12

(0.40, 1.78) (0.61, 0.73)

CF 1.33 ± 0.45 0.61 ± 0.33 0.30 ± 0.19

(1.08, 1.44) (0.55, 0.68)

We can therefore conclude that the impulse response can serve as an evaluation tool
for respiratory dynamics and mechanical properties.

The results presented here indicate that both methods provide similar impulse
response data. However, we may suggest that the inverse DFT is a more suitable al-
ternative to the high-order transfer functions obtained using the classical Oustaloup
filter. Additionally, a power-law model is fitted on the impulse response data, em-
phasizing once again the intrinsic fractal dynamics of the respiratory system.

8.2 Mapping the Impedance Values

8.2.1 Multi-dimensional Scaling

Multi-dimensional scaling (MDS) is a family of statistical techniques which attempt
to discover the hidden structure in the available data [22]. MDS uses a matrix of
proximities among the objects as input and produces an N -by-N mapping matrix of
the output, given N objects for mapping. In other words, the MDS technique pro-
vides a geometric interpretation to (dis)similarity data and is a natural tool for map-
ping data sets in a low-dimensional space. Usually, by minimizing a loss function
calculated for different possible configurations, a set of coordinates can be assigned
to the envisaged objects, providing a functional meaning to the geometry of the map.
The resulting map, or embedding, places objects that have similar attributes close to
each other.
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Various examples from technical and non-technical fields of applications can be
found to use MDS as a mapping tool. The MDS has been applied to pilot perfor-
mance data obtained during simulated air-to-air combat [127], where an adequate
performance metric was developed to describe the complex interaction between po-
sition advantage and energy management.

Multi-dimensional scaling is also aimed to represent high-dimensional data
in a low-dimensional space with preservation of the similarities between data
points [47]. This reduction in dimensionality is crucial for analyzing and reveal-
ing the genuine structure hidden in the data. For noisy data, dimension reduction
can effectively diminish the effect of noise on the embedded structure. For large
data sets, dimension reduction can effectively overcome the information retrieval
complexity. Thus, MDS techniques are used in many applications of data mining
and gene network research [157, 160].

From the field of non-technical applications, the area of medicine seems to suit
most the applicability of MDS, that is, the analysis of biomedical data in general.
For medical image analysis, it is important to take advantage of the full range of
information presented in an image, thus one has to consider distance and shape
attributes [98, 166]. Separation between left and right brain sulci was developed us-
ing MDS for a new geometric representation [98]. Topography of functional brain
spaces and cortico-cortical interactions was implemented through MDS [48], in or-
der to transform anatomical space so that the distance between cortical areas is
directly related to their functional connectivity. Similarly, MDS has been useful
to provide an automatic method for classification of electroencephalogram (EEG)
waveforms, in order to objectively detect changes in EEG recordings [60], with re-
sults in agreement with visual examination by trained physicians. Bearing in mind
the success of previously reported results of MDS in various medical applications,
we propose the use of MDS tools to provide a geometrical mapping of data from
lung function tests in healthy subjects and in patients with respiratory disorders.

There are a manifold of techniques available to cluster data for classification
purposes. These vary in optimization algorithms, speed of convergence, visualiza-
tion technique and complexity. However, the MDS-based algorithms have lower
complexity and faster convergence when compared to other variants [16]. If a large
number data points are available, methods for high-dimensional data may be more
suitable than MDS, e.g. self-organizing maps [89]. They are based on neural net-
works and rely on feature analysis to reduce dimensionality. In this paper, the di-
mension of our data is relatively low, hence the self-organizing feature maps are not
employed. Moreover, they do not preserve distance information (i.e. only topolog-
ical). The authors of [89] showed that a MDS-based tool is preferable for its trade
off between complexity and ability to partition data sets. Moreover, MDS can pro-
cess many types of data: nonnegative or negative, frequencies, correlations, ratings,
etc. [14] and can optimally transform the data for better results. The main property
of MDS that will be explored in this paper is that the distances between the points
can be directly interpreted.

MDS is a generic name for a family of algorithms that construct a configuration
of points in a low-dimensional space from information about inter-point distances
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measured in high-dimensional space [14]. The new geometrical configuration of
points, which preserves the proximities of the high-dimensional space, facilitates the
perception of data’s underlying structure and often makes it much easier to under-
stand. The problem addressed by MDS can be stated as follows: given ni items in a
m-dimensional space and an ni ×ni matrix of proximity measures among the items,
MDS produces a pi -dimensional configuration X, pi ≤ m, representing the items
such that the distances among the points in the new space reflect, with some degree
of fidelity, the proximities in the data. The proximity measures the (dis)similarities
among the items, and in general, it is a distance measure: the more similar two items
are, the smaller their distance is. The Minkowski distance metric provides a general
way to specify distance for quantitative data in a multi-dimensional space:

dij =
(

m∑
k=1

wk|xik − xjk|r
)1/r

(8.13)

where m is the number of dimensions, xik is the value of dimension k for object i

and wk is a weight. For wk = 1, with r = 2, the metric equals the Euclidean dis-
tance metric, while r = 1 leads to the city-block (or Manhattan) metric. In practice,
the Euclidean distance metric is generally used, but there are several other defini-
tions that can be applied, including for binary data [22]. Typically MDS is used to
transform the data into two or three dimensions for visualizing the result to uncover
data’s hidden structure, but any pi < m is also possible. The geometrical repre-
sentation obtained with MDS is indeterminate with respect to translation, rotation,
and reflection [47]. There are two forms of MDS, namely the metric MDS and the
nonmetric MDS. The metric MDS uses the actual values of dissimilarities, while
nonmetric MDS effectively uses only their ranks. Metric MDS assumes that the dis-
similarities δij calculated in the original m-dimensional data and distances dij in the
pi -dimensional space are related as follows:

dij ≈ f (δij ) (8.14)

where f is a continuous monotonic function. Metric (scaling) refers to the type of
transformation f of the dissimilarities and its form determines the MDS model. If
dij = δij (it means f = 1) and a Euclidean distance metric is used we obtain the
classical (metric) MDS. In metric MDS the dissimilarities between all objects are
known numbers and they are approximated by distances. Thus objects are mapped
into a low-dimensional space, distances are calculated, and compared with the dis-
similarities. Then objects are moved in such way that the fit becomes better, until
an objective function (called stress function in the context of MDS) is minimized.
In nonmetric MDS, the metric properties of f are relaxed but the rank order of
the dissimilarities must be preserved. The transformation function f must obey the
monotonicity constraint dij < δrs → f (dij ) = f (δrs) for all objects. The advantage
of nonmetric MDS is that no assumptions need to be made about the underlying
transformation function f . Therefore, it can be used in situations that only the rank
order of dissimilarities is known (ordinal data). Additionally, it can be used in cases
where there is incomplete information. In such cases, the configuration X is con-
structed from a subset of the distances, and, at the same time, the other (missing)
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distances are estimated by monotonic regression. In nonmetric MDS it is assumed
that dij ≈ f (δij ), therefore f (δij ) are often referred as the disparities [157] in con-
trast to the original dissimilarities δij , on one hand, and the distances dij of the
configuration space on the other hand. In this context, the disparity is a measure of
how well the distance dij matches the dissimilarity δij . There is no rigorous sta-
tistical method to evaluate the quality and the reliability of the results obtained by
an MDS analysis. However, there are two methods often used for that purpose: the
Shepard plot and the stress. The Shepard plot is a scatter plot of the dissimilari-
ties and disparities against the distances, usually overlaid with a line having unitary
slope. The plot provides a qualitative evaluation of the goodness of fit. On the other
hand, the stress value gives a quantitative evaluation. Additionally, the stress plotted
as a function of dimensionality can be used to estimate the adequate pi -dimension.
When the curve ceases to decrease significantly, the resulting “elbow” may corre-
spond to a substantial improvement in fit.

In order to obtain the MDS mapping, the respiratory impedances from the same
patient groups as presented in the previous chapter have been calculated using rela-
tion (3.8), for the 4 to 48 Hz frequency interval in increments of 2 Hz. As a result,
we have the impedance for each patient consisting of a complex vector of real and
imaginary parts, with 23 frequency points. Consequently, the distance between the
real parts of the impedance Re, respectively the imaginary parts of the impedance
Im, between various patients, can be calculated with some distance relations. We
propose two such relations, as follows:

D1 =
√√√√M1,M2∑

k=1

[
(Re1 − Re2)2 + (Im1 − Im2)2

]
k

(8.15)

and

D2 =
√√√√∑M1,M2

k=1 [(Re1 − Re2)2 + (Im1 − Im2)2]k∑M1,M2
k=1 [(Re1 + Re2)2 + (Im1 + Im2)2]k

(8.16)

where both sums run over all distances between the patients in each group (M1,
respectively, M2 are the total number of patients in each group used for calculating
distance measurement). The (ℵM1 +ℵM2)× (ℵM1 +ℵM2) symmetric MDS ma-
trix is constructed with the values resulting from the calculus of the corresponding
distances, where ℵ is the cardinal of the data set. The matrix can be visualized as
a three-dimensional plot, which takes an ni × ni distance matrix D, and returns an
ni × pi configuration matrix Y [101]. Rows of Y are the coordinates of ni points in
p-dimensional space for some pi < ni . When D is a Euclidean distance matrix, the
distances between those points are given by D. The variable pi is the dimension of
the smallest space in which the ni points whose inter-point distances are given by D

can be embedded. One can specify D as either a full dissimilarity matrix form of D,
or in upper triangle vector form (such as, e.g. the output by PDIST in Matlab). A full
dissimilarity matrix must be real and symmetric, and have zeros along the diagonal
and positive elements everywhere else. A dissimilarity matrix in upper triangle form
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Fig. 8.5 Values for the
respiratory impedance in
adults with KS:
kyphoscoliosis, COPD:
chronic obstructive
pulmonary disease and in H:
healthy adults

Fig. 8.6 Values for the
respiratory impedance in
children with A: asthma, CF:
cystic fibrosis and in Hc:
healthy children

must have real, positive entries. One can also specify D as a full similarity matrix,
with ones along the diagonal and all other elements less than 1. In this application
we use the dissimilarity matrix form for D.

8.2.2 Classification Ability with Pathology

Illustrative, averaged values of respiratory impedance in adults with COPD,
kyphoscoliosis, and healthy, are given in Fig. 8.5, by means of respective real and
imaginary parts obtained with (3.8). Similarly, the respiratory impedance values in
children are given in Fig. 8.6. Notice the differences in real and imaginary parts,
leading to differences in the MDS scaling matrix.

Before proceeding to the MDS plots, first we shall present the analysis for stress
and Shepard plots. The stress plots are always decreasing and they have a knee, i.e. a
change in the velocity of decreasing. That knee is usually adopted as an engineering
compromise for deciding the number of dimensions to adopt in the MDS plot. In
the stress plots we have for the adults in Fig. 8.7-A, for (8.15), stress plot “knee”
at ni = 3 and in Fig. 8.7-B for (8.16), stress plot “knee” at ni = 2. This suggests
that (8.16) is “less demanding” in what concerns the MDS plot dimension, hence
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Fig. 8.7 Stress plots. The adult data set using (8.15) in plot A and using (8.16) in plot B. The
children data set using (8.15) in plot C and using (8.16) in plot D

Fig. 8.8 Shepard plots for ni = 3 with adult data set (plot A) and with children data set (plot B)

a low-dimension MDS plot. For children, in Fig. 8.7-C we see that for (8.15), the
stress plot “knee” is at ni = 3, while in Fig. 8.7-D for (8.16) the stress plot “knee” is
at ni = 4. In this case, the opposite situation arises: that (8.16) is more demanding.
For the sake of uniformity, we shall choose ni = 3 for all MDS plots.

The Shepard plots are depicted in Figs. 8.8-A and 8.8-B for (8.15) and (8.16),
in adults and children, respectively. A Shepard plot is considered valid when the
dots follow the 45 degree line. For example, if the dots present a low dispersion but
following a curve (instead of the 45 degree line), it suggests that some nonlinear
relation exists. Usually, the Shepard plots are better the higher the dimension, but
“stabilize” for the ni value obtained from the stress plot. That is why the stress
and the Shepard plots are usually “redundant”. From both figures we conclude that
(8.16) delivers better dispersion than (8.15).

With the impedance data at hand, one can now assess the information from the
MDS plots for ni = 3. The mapping obtained with the MDS for relations (8.15) are
given in Figs. 8.9–8.10 for the comparison between healthy adults and those with
COPD and KS; respectively in Figs. 8.11–8.12 for the comparison between healthy
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Fig. 8.9 In adults: MDS plot, using expression (8.15), for healthy (H) vs. chronic obstructive
pulmonary disease (COPD), providing a perfect separation between the groups

Fig. 8.10 In adults: MDS plot, using expression (8.15), for healthy (H) vs. kyphoscoliosis (KS),
providing a perfect separation between the groups
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Fig. 8.11 In children: MDS plot, using expression (8.15), for healthy (Hc) vs. asthma (A); not a
clear separation due to controlled asthma medication prior to the lung function test

Fig. 8.12 In children: MDS plot, using expression (8.15), for healthy (Hc) vs. cystic fibrosis (CF);
relatively good separation, with 1–2 outliers
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Fig. 8.13 The MDS results for the adults, using (8.15), providing good separation between the
groups

children and those with asthma and CF. Similar results are obtained with relation
(8.16).

In Fig. 8.13, one can observe the MDS plot using all three groups of adults
(healthy, COPD, KS) in one matrix. A clear separation between these groups is
obtained using (8.15), but not when using (8.16). The choice of distance metrics is
therefore important when more than two groups are compared.

Further on, the mapping obtained with the MDS for relations (8.15) is given in
Fig. 8.14, respectively for (8.16) in Fig. 8.15, for all three children groups (healthy,
asthma, and cystic fibrosis).

Dendrograms are often used for displaying relationships among clusters. A den-
drogram shows the multi-dimensional distances between objects in a tree-like struc-
ture. Objects which are closest to each other in the multi-dimensional data space
are connected by a horizontal line, forming a cluster which can be regarded as a
“new” object. The new cluster and the remaining original data are again searched
for the closest pair, and so on. The distance of the particular pair of objects (or clus-
ters) is reflected in the height of the horizontal line. Therefore, for comparison with
MDS, using the same measure (8.15), the corresponding dendrograms for adults and
children are given in Figs. 8.16 and 8.17, respectively. From all possible variations,
the dendrogram using an unweighted average method provided reasonable cluster-
ing results. It is worth noticing that when applied in paired-sets, the dendrogram
clustering is more homogeneous and can be easily applied to clinical use.



8.2 Mapping the Impedance Values 153

Fig. 8.14 The MDS results for the first sum, in children, thus using (8.15)

Fig. 8.15 The MDS results for the second sum, in children, thus using (8.16)

The frequency where the imaginary part of the impedance Im(Zr) = 0 is called
the resonance frequency Fres and it depends on the balance between the different
kind of mechanical properties (elastic, inertial). This then allows for differentiating
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Fig. 8.16 The dendrogram tree clustering for the adult data set using (8.15), in healthy (H), chronic
obstructive pulmonary disease (COPD) and kyphoscoliosis (KS)

between healthy and pathologic cases, since the resonance frequency changes sig-
nificantly from typically 8 Hz for a healthy adult to 14 Hz for a patient with mild
airway obstruction, and about 20 Hz in cases of severe obstruction [116]. The val-
ues obtained for the respiratory impedance data and resonant frequency have been
compared with reported values from literature. We found that the values were very
close to those reported in literature, namely for healthy adults [116]; for COPD [6];
for asthmatic children [17]; for cystic fibrosis [15, 35]; for healthy children [33] and
for kyphoscoliosis [103]. Moreover, the impedance values and shape were signifi-
cantly close to those identified with several parametric models, such as in [29, 69].
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Fig. 8.17 The dendrogram tree clustering for the children data set using (8.15), in healthy (Hc),
asthma (A) and cystic fibrosis (CF)

Additionally, we also looked at the real part of impedance values at 6 Hz, i.e. R6,
which were also close to the reported and expected values from literature.

Before analyzing the MDS results, it is necessary to understand the nature of the
respiratory restrictions presented by these groups of patients. Normal quiet breath-
ing (such as during the forced oscillation technique lung function test) is accom-
plished by contraction of the diaphragm, the parasternal muscles and the scaleni.
During inspiration, the diaphragm pulls the lower surfaces of the lung downwards.
Expiration results from simple relaxation of these muscles. Changes in the elas-
tic recoil of the lungs (more, or less, stiffness) will affect their normal function, in
particular total lung volume and pressure–volume relationships.
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Some measurements are performed during forced inspirations and forced expi-
rations, that is, the spirometry lung function test. A person’s vital capacity can be
measured by a spirometer. In combination with other physiological measurements,
the vital capacity (VC) can help making a diagnosis of the underlying lung disease.
Vital capacity is the maximum amount of air a person can expel from the lungs after
a maximum inspiration. It is equal to the inspiratory reserve volume plus the tidal
volume plus the expiratory reserve volume. Force vital capacity (FVC) is the max-
imum volume of air that a person can exhale after maximum inhalation. Another
important measure during spirometry is the forced expired volume in one second
(FEV1). The FEV1/FVC ratio is used in the diagnosis of obstructive and restrictive
lung disease, and normal values are approximately 80 %. In obstructive lung dis-
ease, the FEV1 is reduced due to obstruction to air escape. Thus, the FEV1/FVC
ratio will be reduced. In restrictive lung disease, the FEV1 and FVC are equally re-
duced due to fibrosis or other lung pathology (not obstructive pathology). Thus, the
FEV1/FVC ratio should be approximately normal. From the above, we observe that
the spirometric values of the adults and children given in tables from Chap. 7 are in
agreement.

From Fig. 8.13 we notice that the decision of using one or another distance form
is important for the mapping representation. With the sum given by (8.15) the sep-
aration between groups is possible, whereas using (8.16) it becomes impossible to
strictly separate between groups. One can clearly distinguish separated high den-
sity nuclei for each of the three groups: healthy, COPD, and KS. This means that it
is possible to classify between these groups by means of MDS, given the suitable
distance measure. Some COPD outliers are present, denoting marked progress of
the obstructive disease, whereas majority of the KS objects lie fairly close to the
nuclei of COPD. The reason for this similitude is that, although being a restrictive
disease, KS affects in a similar manner the airway resistance. In spite of having
different origins, airway resistance increases in both COPD and KS. In a similar
manner, the compliance is lower in both COPD and KS. Nevertheless, different bal-
ance between these mechanical properties will place an object in the MDS map
closer or further from the nucleus of the group. This is usually the case with signifi-
cant pathologic restrictions, hence a more pronounced manifestation of the disease.
Our results suggest that MDS is able to distinguish between restrictive (KS) and
obstructive (COPD) pathologies, for clinical classification purposes. Moreover, the
corresponding dendrogram tree from Fig. 8.16 supports this conclusion, by similar
clustering.

In children, from Figs. 8.14–8.15 we can observe that some of the asthma patients
were fairly close to the healthy subjects nucleus. The underlying reason for this
result is that these asthma patients were controlled with specific medication, with
intake prior to the lung function test. Hence, no significant differences from the
healthy group can be seen, i.e. false ‘healthy points’. The other asthma patients,
who had exacerbations and a pronounced respiratory restriction, are either partially
controlled, or did not take the medication prior to the exam. As far as cystic fibrosis
is concerned, due to the nature of the disease, which affects in general the organism
and not only the respiratory system, a clear separation could not be made from
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the other objects in the MDS map. Although well grouped, the nuclei of the CF lie
within the surface of the other two groups (healthy children and asthma). Our results
suggest that MDS may not be able to distinguish between pathologies with similar
manifestations (both asthma and cystic fibrosis show presence of mucus, etc.). In
children, the difficulty of diagnostic remains more pronounced than in adults. This
conclusion is supported by Fig. 8.17 depicting the corresponding dendrogram tree.

8.3 Revealing the Hidden Information in Breathing at Rest

8.3.1 Pressure–Volume Loops, Work of Breathing and Fractal
Dimension

A delay differential equation is a description where the evolution of a system at a
certain time, depends on the state of the system at an earlier time. Such a relation
is usually graphically analyzed by means of phase-plots. Hence, intuitively, there
must exist a relationship between the information extracted from the phase-plots and
fractional calculus. This motivates our interest in evaluating the dynamic patterns of
the breathing, since it may provide useful insight into relating the changes in airway
structure and tissue properties with the changes in the respiratory dynamics.

The pseudo-phase space is used to analyze signals with nonlinear behavior. For
the two-dimensional case it is called pseudo-phase plane (PPP) [104]. To reconstruct
the PPP it is necessary to find the adequate time lag between the signal and one de-
layed image of the original signal. Since PPP proved successful in various technical
applications, we propose the use of PPP tools to analyze data from lung function
tests in healthy subjects and in patients with respiratory disorders. The novelty of
the proposed methodology is to combine the information from PPP with the corre-
sponding fractal dimension computed using the box-counting method. In this way,
the fractal dynamics of the respiratory system can be assessed and further analyzed.

One of the most common clinical features extracted from lung function tests is
the air-pressure and the airflow variation during forced breathing or during breathing
at rest. A standard measure of the work of breathing in lung function analysis is
obtained by means of pressure–volume loops acquired during spirometry (i.e. by
means of forced breathing maneuvers).

In clinical terms, the air-pressure and air-volume variations in one breathing cycle
plotted against each other form a closed loop known as the PV loop [112]. The area
inside this loop, and the slope of the axis of the minimal-to-maximal points in the PV
loop are used to evaluate the respiratory mechanics of the patient. The interpretation
of the PV loop is then made with respect to inspiratory and expiratory parameters,
such as airflow resistance and work of breathing.

The PV loops are defined by

Area =
∫ T

0
V (t) dP (t) =

∫ T

0
P(t) dV (t) (8.17)
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with P(t) the pressure and V (t) the volume at time instants t . The airflow is related
to the air volume by Q(t) = dV (t)/dt , and using this in (8.17) we find that the area
is the integral of the power:

Area =
∫ T

0
P(t)Q(t) dt (8.18)

which is by definition the work (energy) of breathing to perform the cycle over the
period T . With disease, the work of breathing is increased and the ratio between
peak pressure and peak volume is altered. However, for the purpose of this study,
the area within the PV loop is of interest to us within a geometrical context. The
volume has been obtained by integrating the measured airflow signal.

Usually, it is not possible to sense all the states in a system during the experimen-
tal study of its dynamics. The classical phase plane analysis provides information
upon the dynamics of a system by means of one measured output and its derivative.
However, other signals may be used to plot the phase dynamics, and these plans
are then called pseudo-phase planes. The PPP reconstruction mitigates some lack
of information about the system [31, 90]. The goal of the pseudo-phase space re-
construction is to view the signal in a higher-dimensional space taking a sample
measurement of its history. In order to achieve the phase space, the proper time lag
Td for the delay measurements and the adequate dimension d ∈ N (N natural num-
bers) of the space must be determined. In the pseudo-phase space, the measured
signal s(t) forms the pseudo-vector y(t) according to

y(t) = [s(t), s(t + Td), . . . , s
(
t + (d − 1)Td

)]
(8.19)

The vector y(t) can be plotted in a d-dimensional space forming a curve in the
pseudo-phase space. There is a one-to-one relationship between the data in the
pseudo-phase space and the associated data in the true state space. If d = 2 we have
a two-dimensional time delay space (i.e. the pseudo-phase plane). Therefore, us-
ing the shifted signal instead of its derivative will not affect substantially the result,
since the signal {s(t), s(t +Td)} is related by a time-shift with the model {s(t), ṡ(t)}.
More precisely, the signal ṡ(t) is calculated using the sampling period of the mea-
surements, whereas s(t + Td) requires a time delay value. In resume, the PPP pre-
serves the properties of the state space representation, and characterizes the system
dynamics.

Among other methods to extract PPP [104], the method of time-delays is the
most common method. Several techniques have been proposed to choose an appro-
priate time delay [90]. Usually the average mutual information (Iav) is referred as
the preferred alternative to select the proper time delay Td [31]. For the applica-
tion presented in this study, we found that Iav presents a certain degree of noise and
oscillations. Consequently, in order to use Iav in our study, an algorithm must be ap-
plied for smoothing the function values. Nevertheless, practice reveals that in some
cases it is difficult to find the first minimum of Iav due to noise. Hence, a simpler,
low-complexity alternative solution is proposed to select the best delay Td based on
the autocorrelation of the breathing signal [31].

A better value for Td is the value that corresponds to the first local minimum
of the mutual information. On the other hand, the mutual information is a measure
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of how much information can be predicted about one time series point giving full
information about the other. The values of Td at which the mutual information has
a local minimum are equivalent to the values of Td at which the logarithm of the
correlation sum has a local minimum. Optimal time delay values based on the linear
Pearson correlation function is a straightforward and low computational method
adopted in our experiments.

Since the value of the correlation is between −1 and 1, in order to have only
positive values, we will use its squared value.

From the correlation function, the first local minimum is detected and denoted
as the delay value Td . Consequently, the PPP two-dimensional plot results from
plotting the breathing pressure signal P(t) on the x-axis (in volts) and the shifted
breathing pressure signal P(t + Td) on the y-axis (in volts).

The area inside the PV loop, and the slope of the axis of the minimal-to-maximal
points in the PV loop are used to evaluate the respiratory mechanics of the patient.
The interpretation of the PV loop is then made with respect to inspiratory and expi-
ratory parameters, such as airflow resistance and work of breathing.

In the phase plane representation, we have

Area =
∫ T

0
P(t) · P(t + Td) dt (8.20)

with P(t) the breathing pressure signal and Td the time delay estimated for each
patient. One may notice that (8.20) is nothing else but the definition of the correla-
tion function of two signals in time [136]. Since pressure and volume are related,
the position of the air in the lungs is determined by each of these signals. Assum-
ing that the pressure is a measure of the position of the air in the lungs, its delayed
component is also related to the position. In this framework, we conclude that the
PPP plot provides information on the position of air in the lungs between two time
instants.

As given in the introductory chapter, the fractal dimension Fd is a quantity that
gives an indication of how completely a spatial representation appears to fill the
space. There are many specific methods to compute the fractal dimension. The most
popular and simple methods are the Hausdorff dimension and box-counting dimen-
sion [5]. The box-counting method is an iterative method. For each box size value
εFD, follows a corresponding number of boxes N(εFD) which will be needed in or-
der to cover the area of the PPP loop. At the next iteration, another (bigger) size of
the box is assumed and again used to cover the area in the PPP loop. The sequence
of box-sizes and their corresponding total number used covering the area of the PPP
loop will yield a straight line on a log–log graph:

Fd = ln[N(εFD)] − ln(C)

ln(1/εFD)
(8.21)

where C is a constant related to the total area, N(εFD) represents the minimal num-
ber of covering cells (e.g., boxes) of size εFD required to cover the PPP graph. The
slope of the straight line in the log–log plane provides the estimate of the fractal
dimension Fd :

N(εFD) = C(1/εFD)Fd (8.22)
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Fig. 8.18 Illustrative example for a healthy adult. (Left) the correlation function (time delay: 355
samples); (right) the mutual information (time delay: 350 samples)

Since we have a straight line in the log–log plot, from theoretical principles of frac-
tional calculus it follows that a power-law model can be fitted to each group of
patients [126], allowing deriving a model for each pathology:

C = A · FB
d (8.23)

with A and B identified constants.

8.3.2 Relations with Pathology

For each measured set of signals, we have extracted the breathing signal from the
pressure and flow signals by means of filtering. The volume was obtained by inte-
grating the flow and the pressure–volume loops were plotted for the entire signal
length.

From the breathing signal extracted from the pressure signal, the time delay value
Td was determined via the Pearson correlation function. For the sake of complete-
ness, the mutual information has also been calculated to check that similar time de-
lay values are obtained as with the correlation function (e.g. 355 and 350 samples,
respectively). An illustrative example for a healthy patient is given in Fig. 8.18.
Next, based on the extracted time delay value, the PPP plot can be obtained. The
corresponding values for the time delay are given in Table 8.3.

Figure 8.19 represents the evaluation of the obtained values for the time delay by
means of ANOVA tests (p was considered statistically significant for values lower
than 0.05). Statistically significant variations have been observed between the adult
groups (p � 0.001) and the children groups (p < 0.0155). These delay values were
also verified against the biometric values of each group in order to determine if any
correlation was present. The corresponding trends are given in Fig. 8.20 for age.
Similar results were obtained for height and weight, respectively. The dependency
of the delay values with the biometric values has not been observed consistently in
all the evaluated groups.



8.3 Revealing the Hidden Information in Breathing at Rest 161

Table 8.3 Time delay in
samples; values are given as
mean ± standard deviation;
values in brackets indicate the
corresponding 95 %
confidence intervals

Mean ± std Confidence intervals

Healthy adults 545 ± 185 (487, 603)

COPD 798 ± 208 (733, 863)

Kyphoscoliosis 352 ± 50 (330, 373)

Healthy children 373 ± 96 (339, 407)

Asthma 336 ± 93 (308, 365)

Cystic fibrosis 377 ± 96 (345, 408)

Fig. 8.19 ANOVA test for the calculated delay values: (left) the adult groups (p � 0.001); (right)
the children groups (p < 0.0155)

Fig. 8.20 Dependence of
delay values with age in each
group

8.3.3 Fractal Dimension and Identification of Power-Law Trends

On each PV loop and PPP plot from each patient, the box-counting method was
applied to obtain the fractal dimension Fd and the constant C for each patient. The
models are identified for each set of measurements using the least-squares algo-
rithm [136]. Consequently, the box-counting values N(ε) and the box-sizes 1/ε
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Fig. 8.21 The dependency
with age for (top half ) the
constant C and (bottom half )
the fractal dimension Fd .
Blue stars denote the data
extracted from PPP plots,
while the red circles denote
the data extracted from the
PV plots

values are obtained for each patient, in each data set. The resulting data has been
analyzed against biometric values in order to verify dependence, and an illustra-
tive example is given in Fig. 8.21, for the age dependence. We found no consistent
dependency with age, height, and weight, respectively.

Next, the trends of the fractal dimension calculated for each group are given in
Fig. 8.22 by means of PV loops, and in Fig. 8.23 by means of PPP loops, respec-
tively. Finally, the loci of the identified power-law model parameters from relation
(8.23) are given in Fig. 8.24 and the values are listed in Table 8.4.

In its most simple representation, the respiratory system can be represented as a
series connection of a resistance Re and a compliance Ce. It assumes patient’s respi-
ratory muscles inactive and the external equipment is driving the flow into the lungs
[53, 112, 125]. The driving pressure P(t) generates flow Q(t) across the resistance
and the volume V (t) changes in the compliance. If Pr(t) and Pe(t) are the resistive
and elastic pressure drops, respectively, we have

Rr = Pr(t)

Q(t)
; Cr = V (t)

Pe(t)
and P(t) = Pe(t) + Pr(t). (8.24)
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Fig. 8.22 The information
extracted for each patient in
terms of C and Fd from the
PV plots

Fig. 8.23 The information
extracted for each patient in
terms of C and Fd from the
PPP plots

We have as a result

P(t) = Rr · Q(t) + V (t)

Cr

(8.25)

This represents the first order equation in the motion-equation for a single com-
partment model of the respiratory system: a single balloon with compliance Cr on
a pipeline with a resistance Rr . This system can be studied using the exponential
decay of volume V (t) as resulting from a step input V0: V (t) = V0e

−t/τ , where t

is time and τ is the time constant which characterizes the system, denoted by the
product of RrCr [116].

In the representation of the PPP plots, we have the breathing signal expressed
as pressure and its time-delayed derivative. From (8.25) can be observed that there
exists a relation between pressure and flow (Q(t) = dV/dt). In clinical terms, the
pressure–volume loop during one breathing period is able to tell the clinician some-
thing about the dynamic compliance of the respiratory system and its work. The
area enclosed by the PV loop is called the physiologic work of breathing, denoting
the resistive work performed by the patient to overcome the resistance present in the
airways [134].
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Table 8.4 Fitted power-law
models (8.23) for each group
of data. COPD: chronic
obstructive pulmonary
disease. KS: kyphoscoliosis.
CF: cystic fibrosis

DATA source A
PV/PPP

B
PV/PPP

Healthy adults 0.632/0.848 0.094/0.062

COPD 0.752/0.795 0.069/0.068

KS 0.882/0.844 0.062/0.067

Healthy children 0.557/0.704 0.127/0.090

Asthma 0.624/0.739 0.114/0.087

CF 0.478/0.640 0.147/0.104

As already explained in previous chapters, during cycling loading, the stress that
develops in the viscoelastic body (respiratory tissue) displays:

• a component in phase with strain, which is the elastic stress contributing to the
storage modulus ES (elastance); and

• a component out of phase with strain, corresponding to the viscous dissipation
and contributing to the loss modulus ED (damping).

In [9, 26] was shown that the respiratory system can be indeed modeled as a
combination of series RC elements in a cascade arrangement of consecutive airways,
by using their mechanical analogue representation, springs Krs and dashpots Brs . In
this mechanical model, it follows that the pressure–volume relationship equivalent
to the stress–strain relationship is given by

P(t) = Krs
rs

Ars

V (t) + Brs
rs

Ars

dV (t)

dt
(8.26)

with P the air-pressure, V the air volume, 
rs and Ars the changes in length and
area of airways during the breathing cycle, and Krs,Brs the constants of the spring
and dashpot, respectively [26]. This relation suggests that the PPP loop is a measure

Fig. 8.24 The plot of the identified A and B values from model (8.23) for each set of data
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of the mechanical properties in the lung parenchyma and airways during breathing.
The respiratory mechanical properties have been shown to be related to the structure
of the lungs, which consequently is altered by pathology [9, 87].

Normal quiet breathing (such as during the forced oscillation technique lung
function test) is accomplished by contraction of the diaphragm, the parasternal mus-
cles and the scaleni. During inspiration, the diaphragm pulls the lower surfaces of
the lung downwards. Expiration results from simple relaxation of these muscles.
Changes in the elastic recoil of the lungs (more, or less, stiffness) will affect their
normal function, in particular total lung volume and pressure–volume relationships.

It has been recognized that the structure of the respiratory tree is strongly related
to that of fractal structures [164]. Moreover, it has been shown that the particular
dichotomous structure is a necessity for optimality with respect to total volume and
resistance [66, 164]. The morphology of the human tree provides maximal efficiency
in assuring air distribution with minimal viscous dissipation. The geometrical and
morphological structure of the healthy lung has been shown to lead to lumped mod-
els of fractional order derivatives and integrals [70], which are by definition models
for systems with long-memory properties (e.g. the respiratory system).

In [99], it has been shown that the structure and its bifurcating geometry plays
an important role in ventilation. Assuming a ratio h between diameter and length
between two consecutive airway generations—the homothety factor—the authors
have shown that the volume and pressure drop can be written as

VN = V0

[
1 +

N∑
i=1

(
2h3)i

]
(8.27)

and

�PN = R0Q̄

[
1 +

N∑
i=1

1

(2h3)i

]
(8.28)

respectively, with Q̄ the global airflow, R0 and V0 some initial values for resistance
and volume, i the airway generation number and N the total number of airway
generations in the respiratory tree. The validity of these relations has been shown
for the lower part of the bronchial tree (i.e. generations 6–16). Since the same factor
(2h3)i appears in both equations, there is an interplay between pressure and volume
values. The fractal dimension in terms of lung structure is given by

FDs = log 2

log(1/h)
. (8.29)

For a realistic respiratory tree, the assumption of a fractal structure does not hold.
Nevertheless, it has been shown that although the structure is random, with different
reduction ratios in a dichotomous bifurcation, the total resistance is given by

RN = R0

[
1 +

N∑
i=1

(
1

h3
1 + h3

2

)i
]

(8.30)
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with h1 and h2 the homothety factors for the left and right branch, respectively.
The critical value for the lungs is given by h = 0.85, corresponding to a low resis-
tance and volume higher than necessary [164]. This value is higher than the value
h = 0.79 for the symmetric model [99]. The relation (8.30) gives the homothety
factor of h = 0.76, which is close to that given by the symmetrical structure model.
Hence, it follows that the resistance depends on the structure and not on the degree
of symmetry. Since the value of 0.85 > 0.79, it follows that the design of the lungs is
made with a safety margin for breathing in conditions of bronchial constriction [99].

The structural changes in the respiratory tree will change the value of the homo-
thety factor h and one can analyze the dynamics of the respiratory tree in terms of
pressure and volume variations. If the homothety factor decreases from ‘optimal’
then an increase in the pressure drop will occur (higher effort to breath). If the ho-
mothety factor increases from ‘optimal’, the resistance is small, i.e. the volume will
increase for lower pressure drop values.

In asthma, the inner diameters of the bronchioli, and not their lengths, are re-
duced. In this case, the airway ducts are no longer homothetic and the diameter and
length of the sequential bronchioles are altered. This implies that the pressure drop
is given by

�PN = R0Q̄

[
1 +

N∑
i=1

1

2i

h1

(h4
d)i

]
(8.31)

with h1 the length reduction ratio, hd the diameter reduction ratio. The nonlinear
effect of the constriction is more pronounced, since a small reduction in hd will
have a manifold effect in the total tree resistance.

The fractal dimension extracted from the PV and PPP loops is indirectly related
to the structure of the respiratory tree, since it quantifies the work of breathing, a
measure of the combined effect of pressure and volume. This implies that indirectly,
the proposed methods in this paper offer a measure of the degree of homothety in
the lungs. In other words, we indirectly evaluate the degree of optimality in the
respiratory process.

From Table 8.4, we observe that the values identified from mapping the informa-
tion obtained in the PV loops provide more consistent results than those given by
the PPP plots. Indeed, from Fig. 8.24, one can observe that the identified values for
(8.23) are more dispersed in the context of PV loop, allowing a clearer separation
between the groups. The data for the adults and the children do not overlap, thus
the validity of the results is supported. In terms of the A parameter, its value for the
adult group seems to be correlated directly with the airway resistance. Its values are
increasing with COPD and KS, which corresponds to the clinical pathology. For the
children group, its values are close to each other for healthy and asthma. We sus-
pect the reason might be the medication taken by the asthmatic patients, which had
mostly normal-to-the-exam spirometric values (i.e. controlled asthma). The values
for the children with pulmonary cystic fibrosis were lower than in healthy, indicat-
ing a lower resistance, either by means of lower pressure drop, either by means of
higher volume. In terms of the B parameter, its value seems to be correlated in-
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versely with the resistance, or, directly with the volume. The values in COPD and
KS were lower, indicating lower volumes, which corresponds to the clinical pathol-
ogy. In children, the values of healthy and asthma were again close to each other,
while in cystic fibrosis patients the values were higher (i.e. higher values). We con-
clude that the values for the CF group might be subject to the weight and height
biometric parameters.

One of the limitations of the study is that the groups of subjects and patients were
not equally balanced in terms of male/female distribution, hence dependency with
gender was not determined. Similarly, dependency may exist for the adult groups in
terms of age. The healthy adult group had an averaged age value significantly lower
than those diagnosed with COPD and KS. The dependency with height and weight
was not consistently observed in all groups, hence we could not conclude whether
or not these biometric parameters will influence our results. However, even if this is
the case, the seminal ideas presented in this work still hold, in the sense that there
exists a link between changes in the structure and dynamic patterns in the breathing.

We have also concluded that the PV loop provides better results than PPP loop in
terms of separation of the groups. However, the PV loop requires the recording of
two signals: pressure and flow, or similarly, pressure, and volume. In the context of
FOT, there is a 25-fold difference in the cost of pressure sensors and flow sensors.
Therefore, measuring only one signal may be an interesting approach to support the
use of PPP plots instead of PV plots. The advantage would be that if the pressure
is available (i.e. the cheapest measurement), then the delayed derivative of pressure
can be used to plot the PPP.

From a clinical standpoint, it is clear that one of the proposed parameters (i.e. A)
is related to the resistive components of the breathing dynamics as extracted from
the PPP loops. However, we do not yet have a parameter which characterizes the
elastic components. Also, there is no information as to how the inhomogeneities in
the lung affect the results of the PPP loops. We conclude that in order to provide a
concise interpretation and mapping the short-term breathing dynamics by means of
PPP plots, a bigger database of patients should be analyzed.

8.4 Summary

Following the theoretical basis laid in the first chapters of this book and the fre-
quency domain identification from previous chapter, it was only natural to apply
our knowledge in the time domain. First, the link between fractional order paramet-
ric models and time response has been achieved by calculating the impulse response
of the respiratory system. It was shown that this response varies in healthy volun-
teers and in patients diagnosed with breathing impairment. Next, we employed the
notions of fractal dimension and pseudo-phase plot and correlate them to the dy-
namics of the breathing. Again, the link to power-law and implicit fractal dynamics
has been made and results were analyzed over several groups of patients. All these
investigations have been performed in the context of linear systems. The next chap-
ter in this book will tackle the problem from the nonlinear dynamics point of view
in order to excerpt new information from the system.



Chapter 9
Non-linear Effects in the Respiratory Impedance

9.1 The Principles of Detection of Non-linear Distortions
in a Non-linear System

This section addresses two problems: (i) the problem of breathing interference with
the excitation signal and (ii) the detection of non-linear contributions in the mea-
sured signals. The common solution to these problems is the optimization of the
excitation signal, further detailed hereafter.

9.1.1 Reducing the Breathing Interference

In the standard use of the FOT, the excitation signal (i.e. with frequencies from
4 Hz to 48 Hz) lies well above the breathing frequency (i.e. around 0.3 Hz), which
enables high-pass filtering as a separation technique for the useful signals to be pro-
cessed. Also, harmonics of the breathing frequency become small in amplitude as
the frequency increases, such that the estimation of the impedance using standard
estimation methods as explained in Chap. 3 poses no problem. However, when fre-
quencies closer to the breathing are used in the excitation signal, the breathing of
the patient must be modeled in order to provide a good separation of the overlap-
ping frequencies. The challenges in this modeling step are manifold: the breathing
is a non-stationary, time varying signal, whose frequency and amplitude may vary
in time. In addition, the corresponding harmonics are overlapping with the excited
frequencies. In the remainder of this work, it is assumed that the breathing fre-
quency F0 remains fixed during the measurement time, which is in fact a reasonable
assumption.

The following is an algorithm which estimates the breathing of the patient from
measured offline data [170]. Consider that the real breathing signal b(t) has the
following form (i denotes here the harmonics of the breathing frequency F0, going
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from 1 to k, with k = 5):

b(t) =
k∑

i=1

Ai(t) sin[2πiF0t] + Bi(t) cos[2πiF0t] + rez(t) (9.1)

with rez(t) denoting the residual values.
First, the matrix Φi corresponding to the ith harmonic is defined by

Φi =

⎡
⎢⎢⎢⎣

sin(Tsiω0)(Ts)
0 cos(Tsiω0)(Ts)

0 · · · sin(Tsiω0)(Ts)
β cos(Tsiω0)(Ts)

β

sin(2Tsiω0)(2Ts)
0 cos(2Tsiω0)(2Ts)

0 · · · sin(2Tsiω0)(2Ts)
β cos(2Tsiω0)(2Ts)

β

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

sin(nTsiω0)(nTs)
0 cos(nTsiω0)(nTs)

0 · · · sin(nTsiω0)(nTs)
β cos(nTsiω0)(nTs)

β

⎤
⎥⎥⎥⎦

(9.2)
where

• ω0 = 2πF0, with F0 the breathing frequency
• Ts is the sampling period (Ts = 1 ms)
• n is the sample used for estimation (in our case, a 40 seconds measurement

at Ts = 1 ms sampling period will result in a total number of samples of
N = 40.000)

• i is the breathing harmonic with i = 1, . . . , k, with k = 5 (the first five harmonics
were considered to be most significant in terms of amplitude) and

• β is the order of the estimated polynomial Ai(t) or Bi(t).

The matrix is then completed for each harmonic (without accounting for modu-
lation effects), resulting in

Φ = [Φ1 Φ2 · · · Φk] (9.3)

where k is the total number of harmonics which are estimated (k = 5). Then one
estimates the parameters in a vector Θ :

Θi = [A1i B1i · · · Api Bpi]
Θ = [Θ1 Θ2 · · · Θk]T

(9.4)

It follows that the reconstruction of the breathing is given by

b(n) = Φ · Θ (9.5)

The least square estimate of Θ is then given by

Θ̂ = (ΦT Φ
)−1

ΦT b(n) (9.6)

The estimation of the signal b(t) will be represented as b̂(t). The aim is to minimize
the cost function:

J = 1

N

N−1∑
n=0

[
b(n) − b̂(n)

]2 (9.7)
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Notice that if the breathing frequency F0 is perfectly known, the estimation is
straightforward. However, if the baseline frequency is not well known, then also
the harmonics are erroneously estimated [41, 111]. Therefore, the baseline fre-
quency needs to be estimated as well, resulting in a non-linear least squares prob-
lem [124, 138]. In addition, a higher polynomial degree β can lead to numerical
instability of the convergence matrix from (9.3). The numerical conditioning can be
improved by making the values dimensionless, i.e. introducing the variable:

t ′ = t

N · Ts

(9.8)

Additionally, one can introduce a diagonal matrix S:

b̂(n) = Φ · Θ
= Φ · S · S−1 · Θ
= Φ ′ · Θ ′ (9.9)

with Φ ′ = Φ · S and Θ ′ = S−1 · Θ . The matrix S is a diagonal matrix, with the
diagonal elements the Root Mean Squared values calculated per each column, which
can be depicted as

Φ =
⎡
⎢⎣

s11 0
. . .

0 spk

⎤
⎥⎦ (9.10)

To determine F0, we make use of the FFT-interpolation method. The method is
simplified for the case of a frequency F0 surrounded by two integer multiples of the
spectrum Sxx for the resolution frequency (f0) [52]:

f1 = max(Sxx)

δ = 2f1+f0
f1

− 1
f1+f0

f1
+ 1

F̂0 = (f1 − f0) + δ · (f0)

(9.11)

The optimized excitation signal is an odd random phase multisine defined as:

UFOT =
109∑
k=0

Ak sin
(
2π(2k + 1)f0t + φk

)
(9.12)

with

• frequency interval from 0.1 to 21.9 Hz
• frequency resolution f0 of 0.1 Hz
• only odd harmonics
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• only harmonics which are not overlapping with the first five breathing harmonics
are used

• equal amplitude Ak for all excited harmonics
• the phase φk uniformly distributed between [0,2π]
• one so-called detection line for each group of four excited odd harmonics is not

excited in order to check for odd non-linear distortion.

This algorithm has been broadly detailed elsewhere [77, 136]. The flowchart for the
measurement procedure can be summarized as follows:

• estimate the fundamental breathing frequency,
• make the excitation signal taking into account the information from the previous

step and
• filter the measured data and perform further signal processing (i.e. non-linear

distortions detection algorithm).

9.1.2 Non-linear Distortions

The standard procedure to obtain the impulse response g(t) of a linear system is
based on the correlation analysis:

Ryu(t) = g(t) ∗ Ruu(t) (9.13)

with u(t) the input signal, y(t) the output signal and ∗ denoting the convolution
product. Ryu(t) and Ruu(t) are the cross- and auto-correlations, respectively:

Ryu(τ) = E
{
y(t)u(t − τ)

}
Ruu(τ) = E

{
u(t)u(t − τ)

} (9.14)

with τ the shift interval. Applying Fourier transform to (9.13) results in

G(jω) = SYU(jω)

SUU(jω)
(9.15)

where the cross-spectrum SYU(jω), the auto-spectrum SUU(jω), and the frequency
response function (FRF) G(jω) are the Fourier transforms of RYU(t), RUU(t) and
g(t), respectively.

The Best Linear Approximation (BLA) [136, 137] of a non-linear system
gBLA(t) minimizes the mean squared error (MSE) between the real output of a
non-linear system y(t) − E{y(t)} and the output of a linear model approximation
gBLA(t) ∗ (u(t) − E{u(t)}):

E
{∥∥(y(t) − E

{
y(t)

})− gBLA(t) ∗ (u(t) − E
{
u(t)

})∥∥2} (9.16)
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Fig. 9.1 A schematic representation of the input–output contributions

where E denotes the expected value with respect to realizations of the input. In the
frequency domain, the solution to the optimization problem from (9.16) is given by

ĜBLA(jω) = ŜYU(jω)

ŜUU(jω)
(9.17)

where the cross-spectrum ŜYU(jω), the auto-spectrum ŜUU(jω), and the FRF
ĜBLA(jω) are the Fourier transforms of Ryu(t), Ruu(t) and gBLA(t), respectively.
In practice, this relation is simplified for periodical signals as:

ĜBLA(jωk) = 1

M

M∑
m=1

Y [m](k)

U [m](k)
(9.18)

where the notation X[m](k) has been used to describe the DFT spectrum of the mth
multisinus realization. The estimation of BLA, ĜBLA, described by relation (9.18)
can be re-written as:

ĜBLA(jωk) = GBLA(jωk) + GS(jωk) + NG(jωk) (9.19)

where GS is the non-linear noise term (E{GS} = 0) and NG is the measurement
noise. The non-linear stochastic contribution GS depends on the power spectrum
and the power distribution of the input signal, as well as on the even and odd non-
linear contributions. The effect of GS can be reduced by averaging the measure-
ments over several multisine realizations (i.e. multiple measurements m of the same
system, with different inputs of same amplitude distribution, but different random
phase realization in (9.12)). The effect of NG can be reduced by measuring longer
records (i.e. larger number of periods p during each measurement).

In Fig. 9.1, the underpinning principle of detecting these non-linearities is repre-
sented.
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In time domain, the output y(t) of a non-linear system can be written as:

y(t) = gBLA(t) ∗ u(t) + ys(t) (9.20)

where gBLA(t) is the impulse response of the linear BLA, and ys(t) is the term in
the output signal as a result of the stochastic non-linear distortion.

Given that ny(t) is a stochastic process and ys(t) is a periodical signal dependent
on the realization r(t), the FRF of the mth realization and pth period, G[m,p](jωk)

can be described as [136]

G[m,p](jωk) = Y [m,p](k)

U
[m]
0 (k)

= GBLA(jωk) + Y
[m]
S (k)

U
[m]
0 (k)

+ N
[m,p]
Y (k)

U
[m]
0 (k)

(9.21)

where X[m,p](k) is the DFT spectrum of the pth period of the mth multisine real-
ization and X̂[m] is the estimated spectrum of the mth multisine realization.

Consequently, one can estimate the BLA, the variance of the stochastic non-
linear distortions and the noise variance, using

Ĝ[m](jωk) = 1

P

P∑
p=1

G[m,p](jωk)

ĜBLA(jωk) = 1

M

M∑
m=1

Ĝ[m](jωk)

(9.22)

σ̂ 2
Ĝ[m](k) =

P∑
p=1

|G[m,p](jωk) − Ĝ[m](jωk)|2
P(P − 1)

σ̂ 2
ĜBLA

(k) =
M∑

m=1

|G[m](jωk) − ĜBLA(jωk)|2
M(M − 1)

(9.23)

σ̂ 2
ĜBLA,n

(k) = 1

M2

M∑
m=1

σ̂ 2
Ĝ[m](k) (9.24)

var
(
GS(jωk)

)≈ M
(
σ̂ 2

ĜBLA
(k) − σ̂ 2

ĜBLA,n
(k)
)

(9.25)

where ĜBLA(jωk) is the estimated BLA, σ̂ 2
ĜBLA

(k) is the estimated total variance

(stochastic non-linear variance + noise variance) averaged over the m realizations,
σ̂ 2

ĜBLA,n

(k) is the estimated noise variance averaged over the m experiments and

var(GS(jωk)) the variance of the stochastic non-linear distortion with respect to
one multisine realization. This estimations can be done for odd and even frequencies
separately, depending on the selection of ωk .

The total variance and noise variance are averaged over the m experiments and
provide insight into the reliability of the FRF measurements over m different multi-
sine realizations. The variance of the stochastic non-linear distortion with respect to
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Fig. 9.2 Photo of the lab
prototype, only the
mechanical box. The tubing
segment connecting to the
patient is not shown

one realization provides insight into the amount of non-linear distortion in the sys-
tem. A comprehensive description of these methods and a manifold of illustrative
examples are given in [136].

9.2 Non-linear Effects from Measuring Device

The measurements of the signals analyzed in this paper have been performed us-
ing the device depicted in Fig. 9.2: the commercial FOT standard setup, assessing
respiratory mechanics in the range from 4 Hz to 48 Hz and a laboratory prototype
developed to measure a lower range of frequencies, namely 0.625 Hz to 22 Hz. The
low-frequency multisine in the prototype allows excitation of respiratory tissue at
frequencies where viscoelastic properties become important and relevant for clini-
cal insight.

The loudspeaker-based device from Fig. 3.1 was used as a reference for building
the lab prototype. To create a multisine with a frequency range below 4 Hz with a
pressure excitation signal of a sufficient amplitude, it is necessary to find an alter-
native actuator for the loudspeaker and build a lab prototype device. The presented
solution in this chapter is a pneumatic piston with an internal air-volume of ap-
proximately 8.4 liters, as in Fig. 9.2. This pneumatic piston is connected to a round
marionette, further connected through a gear to a stepper motor. By using a stepper
motor the device is able to reach a sufficient level of volume resolution, which is
necessary to create the desired multisine input signal. The large volume allows to
reliably create the desired multisine with a peak-to-peak amplitude of 0.35 kPa, or a
sinusoidal pressure wave of 0.35 kPa from 0.625 Hz onwards (a lower limit for the
excited frequency originated with the trade-off between device size and expected
performance).

During the measurements, the patient wears a nose clip (nc) and keeps the cheeks
firmly supported. Before starting the measurements, the frequency response of the
transducers (PT)—SensorTechnics HCLA 12X53B—and of the pneumotachograph
(PN)—Hans Rudolph 4830 series from 0–400 L/min—are calibrated with a known
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Fig. 9.3 BLA of the (left) commercial device and (right) prototype device. Bold black line: BLA;
blue dashed line: total variance (noise + stochastic non-linear distortion); red dotted line: noise
variance; green dash-dot line: variance of the stochastic non-linear distortion with respect to one
multisine realization. The values of the noise and variance in (left) are +20 dB enhanced for clarity
of observation (same Y-scale)

impedance (i.e. a calibration tube). The measurement of air pressure P and air flow
Q = dV/dt (with V as the air volume) during the FOT lung function test is done at
the mouth of the patient. The FOT lung function tests were performed according to
the recommendations described in [116]. The FOT excitation signal was kept within
a range of a peak-to-peak size of 0.1–0.3 kPa, in order to ensure patient comfort and
safety.

The BLA of both the commercial and the prototype devices are given in Fig. 9.3.
Notice the noise lines in Fig. 9.3-(left) are increased with 20 dB for illustrative pur-
poses only. In Fig. 9.3-(right), a significant improvement is done with respect to the
power of the low-frequency signal generator, namely an increase in amplitude with
10 dB and a flat amplitude curve at low frequencies in the BLA. The drawback is the
relatively high noise amplitudes. From this it follows that the noise in the prototype
is about 20 dB higher, partly due to the less amount of tubing between the actuator
and the mouthpiece and mechanical friction. The improved prototype device can
send reliably a multisine excitation as low as 0.625 Hz, as shown by Fig. 9.4. The
prototype has been further analyzed both experimentally and theoretically.

In order to validate the correctness of the measurement, a known impedance
is required. A calibration tube with the characteristics shown in Fig. 9.5 has been
measured by means of the prototype device, and the impedance results are given in
Fig. 9.6. The tube has been simply added to the device at the same position where the
mouthpiece is placed. The theoretical impedance has been also calculated, in order
to validate the measured data. The systematic difference in amplitude between the
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Fig. 9.4 Theoretical and
measured characteristic
between pressure signal
amplitude and frequency in
the proposed prototype device

Fig. 9.5 Schematic representation of the calibration tube. ID: inner diameter

Fig. 9.6 Impedance of the calibration tube by means of complex and Bode representations. Red
dotted line denotes the prototype with the first version of the excitation signal. Green line: proto-
type device, optimized signal with higher resolution at lower frequencies. Black line: theoretical
impedance
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Fig. 9.7 BLA of the calibration tube: left the commercial device, right the prototype device. Bold
black line: BLA; blue dashed line: total variance (noise + stochastic non-linear distortion); red
dotted line: noise variance; green dash-dot line: variance of the stochastic non-linear distortion
with respect to one multisine realization

commercial and the prototype device is due to difference in tubing length between
the actuator and the mouthpiece.

Next, the BLA of the calibration tube has been estimated, and Fig. 9.7 shows a
significant improvement by reducing the noise and non-linear contributions below
4 Hz. Although the prototype has higher level of noise at higher frequencies, this is
not significant, since we do not intend to use the device for high frequencies. For
the evaluation of the non-linear distortions present in the respiratory system, the
measured non-linear distortions from the generator alone will be taken into account
for correcting the final result in measured volunteers.

9.3 Clinical Markers for Quantifying Non-linear Effects

In order to quantify these non-linear contributions, let us introduce the following
index:

T = Peven + Podd

Pexc
· Uexc

Ueven + Uodd
(9.26)

where each variable is the sum of the absolute values of all the contributions in pres-
sure signal and input flow signal, respectively, at the even non-excited frequencies,
the odd non-excited frequencies and the excited odd frequencies. Only the corrected
output pressure has been taken into account when calculating (9.26).
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This index expresses a relative ratio of the contributions at the non-excited fre-
quency points, with respect to the contributions at the excited frequency points.
Furthermore, it gives a relative measure of the gain between contributions in the
input and in the output of the system. Since this is a non-linear system whose output
depends on the input, the choice for this relative measure is technically sound.

9.4 Non-linear Effects Originated with Pathology

The non-linear distortions introduced in the input signal due to the device itself are
corrected in the measured pressure before calculating the BLA or the respiratory
impedance of the volunteers. This is done using the BLA of the device itself and
(9.21). For the signal processing part, we used m = 6 realizations, p = 3 intervals
and n = 5000 samples.

Figure 9.8 shows the results obtained for a patient diagnosed with cystic fibrosis,
a patient diagnosed with asthma and a healthy volunteer. One can observe that the
non-excited even harmonics are relatively high in asthma. In order to make a statisti-
cal analysis, one can characterize the non-linear distortions present in the calculated
even and odd contributions using the index T from (9.26). The results are depicted
in Fig. 9.9 by means of boxplots and a significant difference has been found between
the two groups (p < 0.0107). No significant difference has been found between the
asthma and cystic fibrosis groups, perhaps due to small dataset.

One may conclude that the non-linear distortions tend to be significantly in-
creased in patients diagnosed with respiratory disease than in healthy subjects. From
clinical insight, this is indeed a valid conclusion (recall here structural changes
discussed in Chap. 2). The respiratory system affected by cystic fibrosis is filled
with viscous secretions which will change the heterogeneous appearance of the tis-
sues and introduce non-linear effects originated with turbulent flow, viscoelasticity,
excessive inflammation, and clogged airways. The respiratory system affected by
asthma is subject to airway hyperresponsiveness leading to airway chronic inflam-
mation. This affects the airway remodeling, changing air-flow dynamics and hence
introducing non-linear effects from turbulent flow, airway obstruction, airway mus-
cle fibrosis etc. In both cases, changes in structure and morphology will change
the non-linear behavior of the respiratory system, hence the values of the proposed
index will change as well.

As a preliminary study, the information gathered in this work is crucial in the
further development and implementation of measuring devices and algorithms to
measure low-frequency respiratory impedance in a non-invasive and simple man-
ner, without requiring breathing maneuvers or complex respiratory tests. Although
this preliminary evaluation was performed on a limited number of volunteers, it sug-
gests that measuring non-linear contributions is beneficial to gather insight into the
evolution of respiratory diseases. The fact that respiratory mechanics at low frequen-
cies have inherent information on the viscoelastic properties of airways and tissue
is motivating the development of signal processing algorithms which can cancel the
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Fig. 9.8 Input (left column), output (middle column) and corrected DFT spectrum for non-linear
contributions (right column) of a cystic fibrosis (top row), asthma (middle row) and a healthy
volunteer (bottom row). Blue ‘+’: excited odd harmonics; red ‘o’: non-excited odd harmonics;
green ‘*’: non-excited even harmonics

Fig. 9.9 The boxplot of the
two groups of volunteers;
significant difference is
observed (p < 0.0107)

interference with the breathing of the patient. The challenge is that the amplitude
and frequency of the breathing signal may vary within the measurement and from
one measurement to another, making the detection lines prone to biased values. The
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results obtained in these initial steps are a proof of concept which motivates further
development of the FOT device and detection algorithm.

9.5 Detecting Non-linear Distortions at Low Frequencies

Having the proof of concept available from previous sections in this chapter, the
motivation to look at lower frequencies, where viscoelasticity plays an important
role, becomes justified. However, we are facing two problems at this turn-point:

• according to Fig. 9.4, the mechanical device from Fig. 9.2 can only reliably excite
frequencies as low as 0.6 Hz;

• the lower one tries to investigate the respiratory impedance, the closer one comes
to the breathing frequency of the individual under test.

Consequently, a different approach was necessary to endeavor this objective, further
detailed in the remainder of this chapter.

9.5.1 Prototype Device with Feedforward Compensation

In order to tackle the drawback of the loudspeaker (i.e. limitation in the lower fre-
quency band) and of the mechanical setup (i.e. noise, friction), a device for applying
FOT was designed by means of air-fans. The picture of the setup and its elements
are shown in Fig. 9.10. The setup consists of two fans which are forcing the air
through a PVC tube. The fans are driven by a pulse width modulated signal gener-
ated by a PIC 18F4550 microcontroller. Pressure and flow at the mouthpiece can be
obtained using two pressure sensors and a pneumotachograph, similarly to the other
FOT devices. The excitation pressure signal is kept below a peak-to-peak variation
of 0.2 kPa at the airway opening as recommended in [116].

The fans create turbulences, which result in increased measurement noise. To
reduce these turbulences [128], the PVC tube is filled with thin tubes (i.e. cocktail
straws) of 3 mm diameter whereas the middle part of the tube is left empty to pre-
serve a good air supply for the subject. The measured pressure values are quantized
within the pressure sensors and transmitted to the microcontroller.

Two complementary compensation methods are used to suppress the linear dy-
namic behavior, the non-linear distortions generated by the measurement system and
the disturbances introduced by the breathing of the patient. Firstly, a feedforward
compensation of the excitation signal is proposed to suppress the non-linear distor-
tions and the linear dynamic behavior of the measurement system. The feedforward
compensation of the measurement system has two goals. The feedforward signal is
generated in such a way that the bandwidth of the generated pressure signal is larger
than the bandwidth of the measurement system. Additionally, the non-linear distor-
tions are suppressed by use of an iterative scheme. Secondly, the residual dynamic
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Fig. 9.10 Photo and schematic setup of the novel FOT device for low-frequency impedance mea-
surement

non-linear distortions (after the feedforward compensation) and the disturbances re-
sulting from the subjects breathing are suppressed by a feedback control loop, a
simple proportional-integral (PI) control.

By applying these compensations, one can excite the respiratory properties of
the patient with a random phase multisine with a random harmonic grid and a flat
power spectrum in the frequency band 0.1–5 Hz. By use of a flat power spectrum,
a constant SNR can be obtained over the whole frequency band, as observed from
Fig. 9.11. More details about the design of multisine signals for frequency domain
identification can be found in [136].

9.5.2 Respiratory Impedance at Low Frequencies

With the novel device available, measurements have been performed on healthy
children, adults, and diagnosed patients with asthma and with COPD. The biomet-
ric data for the healthy groups are given in Table 9.1, whereas those for the diag-
nosed groups are given in Table 9.2. The COPD is further classified according to the
GOLD standard in several levels of disease severity, as given in Table 9.3.
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Fig. 9.11 Amplitude
spectrum of generated
pressure signals: the wanted
signal (+), generated pressure
on excited lines (◦), generated
pressure on the in-band
non-excited frequency lines
(�) and the sample
variance (x)

Table 9.1 Biometric parameters of the investigated healthy subjects. Values are given as mean
with standard deviations

14-years (20) 17-years (158) Adults (20) Elders (5)

Male/female 1/19 96/61 8/12 3/2

Age (yrs) 14 ± 0.3 17 ± 0.6 30 ± 6.3 54 ± 1.4

Height (m) 1.63 ± 0.05 1.74 ± 0.08 1.73 ± 0.08 1.74 ± 0.04

Weight (kg) 48 ± 8 62 ± 9 68 ± 9 75 ± 10

BMI 18 ± 2 20 ± 2 22 ± 3 24 ± 3

Smoking 0 9 3 2

Table 9.2 Biometric and
spirometric parameters of the
investigated diagnosed
subjects. Values are given as
mean with standard
deviations

Asthma (9) COPD (13)

Female/male 6/3 4/9

Age (yrs) 52 ± 14 66 ± 12

Height (m) 1.68 ± 0.05 1.67 ± 0.04

Weight (kg) 70 ± 11 80 ± 13

BMI 25 ± 5 28 ± 4

FEV1 % pred 67 ± 18 46 ± 8

Table 9.3 Biometric and
spirometric parameters of the
investigated COPD subjects
divided according to GOLD
classification. Values are
given as mean with standard
deviations

GOLD II (5) GOLD III (6) GOLD IV (2)

Male/female 3/2 5/1 2/0

Age (yrs) 58 ± 12 65 ± 8 68 ± 6

Height (m) 1.74 ± 0.08 1.73 ± 0.08 1.74 ± 0.04

Weight (kg) 62 ± 9 68 ± 9 75 ± 10

BMI 25 ± 2 28 ± 3 29 ± 3

FEV1 % pred 67 ± 8 42 ± 6 27 ± 4
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Fig. 9.12 Impedance in its complex representation and its equivalent Bode plot for healthy
group #1. The stars denote estimated impedance using (3.8), while a continuous line denotes the
averaged values

The respiratory impedance has been estimated by means of (3.8) and depicted
by means of its complex representation and its equivalent Bode plot. For healthy
groups, the impedance is given in Figs. 9.12, 9.13, 9.14, 9.15, and for the diag-
nosed groups, the impedance is depicted in Figs. 9.16–9.17. Their values have been
successfully validated with reference values from (7.12).

The distribution, median, and confidence intervals of the impedance values at
each excited frequency points are given in Figs. 9.18, 9.19, 9.20 and 9.21 for healthy,
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Fig. 9.13 Impedance in its complex representation and its equivalent Bode plot for healthy
group #2. The stars denote estimated impedance using (3.8), while a continuous line denotes the
averaged values

respectively, Figs. 9.22–9.23 for diagnosed patients, by means of boxplot represen-
tation.

The impedance values have been validated successfully against the reference val-
ues from [33, 121, 122]. Impedance values for both healthy and COPD patients are
similar to those reported in [40, 92, 94].
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Fig. 9.14 Impedance in its complex representation and its equivalent Bode plot for healthy
group #3. The stars denote estimated impedance using (3.8), while a continuous line denotes the
averaged values

9.5.3 Non-linear Distortions at Low Frequencies

Similar to the measurements described previously in this chapter, the available infor-
mation allows us to calculate the index from (9.26) in order to quantify the amount
of non-linear distortions coming from the airways and lung tissue. The results are
given in Fig. 9.24 for the healthy groups and in Fig. 9.25 for the diagnosed groups,
by means of boxplots. In both cases, statistically significant differences have been
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Fig. 9.15 Impedance in its complex representation and its equivalent Bode plot for healthy
group #4. The stars denote estimated impedance using (3.8), while a continuous line denotes the
averaged values

observed. The values for the confidence intervals of the index in these groups are
given in Table 9.4.

For the healthy groups, these differences are due to variations in the biomet-
ric data, i.e. with increasing age, the development of the respiratory system with
it inherent changes in structure and morphology will affect the non-linear dynam-
ics, hence the non-linear distortions will vary as well. For the diagnosed groups, the
marked changes in structure and morphology is indeed the origin for such variations
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Fig. 9.16 Impedance in its complex representation and its equivalent Bode plot for the asthma di-
agnosed group. The stars denote estimated impedance using (3.8), while a continuous line denotes
the averaged values

in non-linear dynamics and consequently the variations in the non-linear contribu-
tions. This suggests that the proposed index to quantify non-linear distortions is
indeed a valuable tool for diagnosis and follow-up. Of course, a larger population
database needs to be explored for diagnosed patients in order to provide reference
values.
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Fig. 9.17 Impedance in its complex representation and its equivalent Bode plot for the COPD di-
agnosed group. The stars denote estimated impedance using (3.8), while a continuous line denotes
the averaged values

To verify if the T index changes by COPD severity, the subdivision of the COPD
patients according to the GOLD classification is used. Although the number of pa-
tients is too low to provide a meaningful statistical difference, Fig. 9.26 shows a
clear difference in the amount of non-linear distortions with gradual severity of the
disease. This indeed delivers a proof of concept that non-linearity increases with
disease severity (p � 0.01).
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Fig. 9.18 Boxplot for healthy group #1

Fig. 9.19 Boxplot for healthy group #2

9.5.4 Relation to the FO Model Parameters

Apart from the non-parametric identification performed with (3.8), a parametric
identification has been performed for the FO model structure from (7.5). The identi-
fied values are given in Table 9.5. There were no statistically significant differences
between the asthma and COPD diagnosed groups in the parameters of the FO model.
When the additional Gr , Hr and ηr parameters were calculated as in (7.6)–(7.7) and
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Fig. 9.20 Boxplot for healthy group #3

Fig. 9.21 Boxplot for healthy group #4

given in Table 9.6, no statistically significant differences have been observed either.
One possible explanation might be the low number of patients measured. Another
explanation might be the fact that the compensation from the device for the breath-
ing effects is not perfect, hence breathing effects might still be present.

Next step was to check whether a relation exists between the heterogeneity factor
ηr and the non-linear distortions index T . Figures 9.27 and 9.28 depict these two
factors.
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Fig. 9.22 Boxplot for the asthma diagnosed group

Fig. 9.23 Boxplot for the COPD diagnosed group

Although the results obtained cannot lead to a definite conclusion, they suggest
that both FO models and proposed non-linear distortion index have great potential in
characterizing mechanical properties of the lungs at low frequencies. Further serious
and industrious efforts are necessary to broaden the horizons of applicability of FOT
in clinical use.
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Fig. 9.24 Boxplot for the non-linear distortions in the healthy groups; there is a significant differ-
ence between groups (p < 0.0046)

Fig. 9.25 Boxplot for the non-linear distortions in the asthma and COPD diagnosed groups; there
is a significant difference between groups (p < 0.0113)

9.6 Summary

In this final chapter, some of the most revolutionary ideas with respect to analyzing
respiratory system have been put forward to the reader. The non-linear effects in the
respiratory signals and in the related measurement instrumentation during FOT tests
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Fig. 9.26 Boxplot for the
non-linear distortions within
COPD group for various
groups classified according to
GOLD; from left to right:
GOLD II, GOLD III and
GOLD IV; there is a
significant difference between
groups (p � 0.01)

Table 9.4 Confidence
intervals for the calculated
non-linear distortions index T

in the measured groups. Std
denotes standard deviation

Group Min Max Mean Std

Healthy Group #1 0.9127 0.9231 0.9179 0.0333

Healthy Group #2 0.9260 0.9472 0.9366 0.0277

Healthy Group #3 0.8885 0.9200 0.9043 0.0336

Healthy Group #4 0.8707 0.9147 0.8927 0.0177

Diagnosed Asthma 0.7518 0.8900 0.8209 0.0899

Diagnosed COPD 0.8728 0.9301 0.9014 0.0496

Table 9.5 Confidence intervals for the identified FO model parameters in the measured groups

Group Lr D = 1/Cr αr βr

Healthy Group #1 0.2314–0.3132 5.1519–5.6028 0.1610–0.2314 0.6401–0.6945

Healthy Group #2 0.0311–0.1189 4.7797–6.2203 0.0558–0.2442 0.6150–0.7250

Healthy Group #3 0.0410–0.2490 5.3760–8.1240 0.2069–0.5831 0.4966–0.6334

Healthy Group #4 0.1986–0.5886 4.1782–5.7865 0.0690–1.0690 0.2717–0.6483

Diagnosed Asthma 0.0129–0.2562 12.0768–27.9232 0.3640–1.0137 0.4506–0.7716

Diagnosed COPD 0.0123–0.0834 11.5293–31.3279 0.2804–0.8196 0.4273–0.7013

Table 9.6 Confidence intervals for the derived parameters in the measured groups

Group Gr Hr ηr

Healthy Group #1 0.5700–0.7118 0.8747–0.9512 0.5748–0.6953

Healthy Group #2 0.4526–0.6904 0.8436–1.0384 0.4805–0.7040

Healthy Group #3 0.8384–1.3536 1.0561–1.4818 0.6885–1.0960

Healthy Group #4 0.5470–2.1637 0.8991–1.2089 0.5791–1.9109

Diagnosed Asthma 1.3880–4.8148 2.2091–5.1828 0.4083–1.1916

Diagnosed COPD 1.7624–3.5918 2.1089–4.8446 0.6073–1.4115
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Fig. 9.27 Relation between the index of non-linear distortions T and the heterogeneity factor ηr

in the healthy groups

Fig. 9.28 Relation between the index of non-linear distortions T and the heterogeneity factor ηr

in the asthma and COPD diagnosed groups

have been acknowledged. The pioneering principle of sending detection lines in the
frequency domain for characterizing odd and even non-linear contributions from
a non-linear system are introduced to the reader. Two detection methods are pre-
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sented: a robust method based on multiple measurements and a fast method based
on a single measurement. The non-linear effects have been quantified by means of
a novel evaluation index. Observations of variations in this novel index values in
groups of asthma patients, COPD patients and healthy volunteers have suggested
that non-linear dynamic response of the lungs change with the type of disease. Fur-
thermore, the link between the non-linear distortions and the lumped fractional order
model parameters are introduced, thus completing the puzzle of this book.



Chapter 10
Conclusions

10.1 Main Results

In this book, the airway tree geometry and morphology was addressed to find the
origins of the fractional order appearance in impedance models of the respiratory
system. These models pose the characteristic of having a constant phase over a
frequency interval, suggesting a frequency independent mechanical efficiency of
the lungs (i.e. constant-phase models). After a careful investigation on the existing
models from literature for the input impedance, we conclude that the fractional order
models may outperform integer-order models in certain frequency intervals. Hence,
the natural question arises: why?

The work in this book is based on two characteristics of the respiratory sys-
tem:

1. the geometrical structure, using the intrinsic recurrence of the respiratory tree
and

2. the tissue structure, using the viscoelastic properties of lung parenchyma.

A mathematical model has been developed using the Navier–Stokes equations
and Womersley theory, leading to a relation between the air pressure and air-
flow in the airways, with respect to lung geometry, morphology and airway wall
(visco)elasticity. Further on, following the two characteristics of the respiratory sys-
tem, two analogues have been derived from this mathematical model:

1. an electrical analogue, based on the recurrent geometrical structure of the lung,
and

2. a mechanical analogue, based on tissue viscoelasticity.

Next, it was shown that the electrical analogue leads to an equivalent structure
of the respiratory tree, namely a ladder network. If approached with classic integer-
order modeling, it results in a very high-order impedance model. However, a con-
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vergence analysis reveals that this recurrent ladder network can be well approxi-
mated by a low-order lumped impedance model containing a FO, over a limited
range of frequencies. Similarly, we have shown that the mechanical analogue leads
also to a ladder structure, whose low-order lumped model also contains fractional
orders.

Therefore, a theoretical basis has been set onto which FO models arise. Fur-
thermore, the book explains and provides supportive data to claim that FO lumped
impedance models are able to classify between healthy groups of subjects and sev-
eral pathologies: Chronic Obstructive Pulmonary Disease, asthma, cystic fibrosis
and kyphoscoliosis. Some typical indices from the literature, which were derived
from the identified model parameters, as well as several novel indices, are dis-
cussed for each of the groups in relation to the specific lung pathology. The results
show good agreement with physiology and pathology of the lungs in all investigated
groups.

Apart from the frequency domain, the book contains also information about the
time domain signals. In this line of thought, the impulse response, pressure–volume
loops and multidimensional scaling tools are employed to analyze the breathing
dynamics and their relation to fractals.

The work presented in this book provides a mathematical basis for the phe-
nomena observed in the results coming from the experimental data. We describe
a physiologically consistent approach to model the respiratory tree and show the
appearance of the fractional order impedance model and its typical constant-phase
characteristic. Rather than dealing with a specific case study, the modeling approach
presents a general method which can be applied in many other similar systems (e.g.
leaves, circulatory system, liver, intestines, brain). Although recurrence is linked
to symmetry of the tree, we consider also the case when symmetry is not present,
showing that the constant-phase behavior is still present, hence justifying once again
the use of fractional order models.

The overall aim of the work bundled in this book is to provide a theoretical and
experimental basis of the information on the respiratory impedance extracted by
means of the forced oscillation technique lung function test. Although it has both
merit and simplicity, this lung function test is not a routinely used in clinical prac-
tice. I believe and I hope that this book will provide the necessary proof of added
value necessary for taking the steps towards standardization.

Apart from this, a major goal of this book is to bring forward the existence of
several emerging tools from fractional calculus in the biomedical engineering com-
munity. Although the content of the book is not focusing on the concepts of frac-
tional calculus, it provides a mere introduction which suffices to assist the reader in
this quest. The growing interest coming from the engineering community into these
emerging tools motivates all researchers at large to stay abreast latest applications.
On the other hand, biologists and doctors are encouraged to embrace these concepts
in order to achieve progress in their endeavor to understand the human body and its
features.
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10.2 Important Directions for Research

10.2.1 Relating the Fractional Order Parameter Values
to Pathology

It is significant to recognize the importance of relating the fractional order model
parameter values to the specific changes occurring in lung pathology. Since these
fractional orders are related to the physiology of the lungs, they give insight in the
changes occurring in the structure and morphology of the airways with the gradual
changes in the disease.

For instance, it has been shown that the fractional order arises from the recur-
rence ratio of the resistance and compliance per level. Most of the obstructive and
restrictive lung disorders have a crucial impact on the overall resistance and com-
pliance of the lungs, hence it is clear that changes in these properties will lead to
changes in the values obtained for the fractional orders.

10.2.2 Low Frequency Measurements

In this book, a broad range of frequencies have been covered in terms of respiratory
impedance. However, the most interesting for analysis of changes in the tissue with
disease evolution is the 0.1–1 Hz frequency band. Therefore, one needs to mea-
sure closer to the breathing frequency. This will then bias the estimates due to the
high noise level coming from the breathing signal itself. Hence, an interesting re-
search direction is that of improving the low frequency identification presented in
this book, in the presence of nonlinear distortions coming from the breathing of the
patient. This can be achieved by developing adaptive filtering methods for cancel-
ing non-stationary effects from the breathing of the individual under test. Eventually,
changes in the device components and setup may also be beneficial for improving
the overall performance.



Appendix
Useful Notes on Fractional Calculus

In this appendix, some useful concepts from fractional calculus will be presented for
the reader. For more details, the reader is encouraged to read more comprehensive
works on this topic [105, 118, 126, 129, 146, 147, 149, 150].

We will start by introducing some basic functions. The gamma function is in-
trinsically tied to fractional calculus by definition. The simplest interpretation of
the gamma function is the generalization of the factorial for all real numbers. The
definition of the gamma function is given by

�(z) =
∫ ∞

0
e−uuz−1du, for all z ∈ R (A.1)

The ‘beauty’ of the gamma function can be found in its properties:

�(z + 1) = z�(z)

�(z) = (z − 1)! (A.2)

The consequence of this relation for integer values of z is the definition for factorial.
Using the gamma function we can also define the function Φ(t), which later will
become useful for showing alternate forms of the fractional integral:

φα(t) = tα−1+
�(α)

(A.3)

Also known as the Euler Integral of the First Kind, the Beta Function is in impor-
tant relationship in fractional calculus. Its solution not is only defined through the
use of multiple Gamma Functions, but furthermore shares a form that is character-
istically similar to the Fractional Integral/Derivative of many functions, particularly
polynomials of the form tα and the Mittag–Leffer Function:

B(p,q) =
∫ 1

0
(1 − u)p−1uq − 1du

= �(p)�(q)

�(p + q)
= B(q,p), where p,q ∈ R+ (A.4)
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The Laplace Transform is a function transformation commonly used in the so-
lution of complicated differential equations. With the Laplace transform it is fre-
quently possible to avoid working with equations of different differential order di-
rectly by translating the problem into a domain where the solution presents itself
algebraically. The formal definition of the Laplace transform is given as

L
{
f (t)

}=
∫ ∞

0
e−stf (t) dt = f̃ (s) (A.5)

The Laplace Transform of the function f (t) is said to exist if the above definition is
a convergent integral. The requirement for this is that f (t) does not grow at a rate
higher than the rate at which the exponential term e−st decreases.

Another commonly used function is the Laplace convolution:

f (t) ∗ g(t) =
∫ t

0
f (t − τ)g(τ ) dτ = g(t) ∗ f (t) (A.6)

The convolution of two function in the domain of t is sometimes complicated to
resolve; however, in the Laplace domain (s), the convolution results in the simple
function multiplication:

L
{
f (t) ∗ g(t)

}= f̃ (s)g̃(s) (A.7)

One final important property of the Laplace transform that should be addressed
is the Laplace transform of a derivative of integer order n of the function f (t), given
by

L
{
f n(t)

}= snf̃ (s) −
n−1∑
k=0

sn−k−1f (0) = snf̃ (s) −
n−1∑
k=0

skf (n−k−1)(0) (A.8)

The Mittag–Leffer function is an important function that finds widespread use in
the world of fractional calculus. Just as the exponential naturally arises out of the
solution to integer order differential equations, the Mittag–Leffer function plays an
analogous role in the solution of non-integer order differential equations. In fact,
the exponential function itself is a very specific form, one of an infinite set, of this
seemingly ubiquitous function. The standard definition of the Mittag–Leffer is

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, α > 0 (A.9)

The exponential function corresponds to α = 1. It is also common to represent the
Mittag–Leffer function in two arguments, α and β , hence:

Eαβ(z) =
∞∑

k=0

zk

�(αk + β)
, α > 0, β > 0 (A.10)
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The common formulation for the fractional integral can be derived directly from
a traditional expression of the repeated integration of a function. This approach is
commonly referred to as the Riemann–Liouville approach:

∫
.....

∫ t

0︸ ︷︷ ︸
n

f (τ) dτ.....dτ︸ ︷︷ ︸
n

= 1

(n − 1)!
∫ t

0
(t − τ)n−1f (τ) dτ (A.11)

which demonstrates the formula usually attributed to Cauchy for evaluating the nth
integration of the function f (t). For the abbreviated representation of this formula,
we introduce the operator Jn such as shown in:

Jnf (t) = fn(t) = 1

(n − 1)!
∫ t

0
(t − τ)n−1f (τ) dτ (A.12)

Often, one will also find another operator, D−n, used in place of Jn. While they
represent the same formulation of the repeated integral function, and can be seen as
interchangeable, one will find that the us of D−n may become misleading, especially
when multiple operators are used in combination. For direct use in (A.11), n is
restricted to be an integer. The primary restriction is the use of the factorial which
in essence has no meaning for non-integer values. The gamma function is, however,
an analytic expansion of the factorial for all reals, and thus can be used in place of
the factorial as in (A.2). Hence, by replacing the factorial expression for its gamma
function equivalent, we can generalize (A.12) for all α ∈ R, as shown in:

Jαf (t) = f∞(t) = 1

�(α)

∫ t

0
(t − τ)α−1f (τ) dτ (A.13)

It is also possible to formulate a definition for the fractional-order derivative
using the definition already obtained for the analogous integral. Consider a dif-
ferentiation of order α = 1 = 2; α ∈ R+. Now, we select an integer m such that
m− 1 < α < m. Given these numbers, we now have two possible ways to define the
derivative. The first definition, which we will call the Left Hand Definition is

f (n) =
{

Dαf (t) = dm

dtm

[ 1
�(m−α)

∫ t

0
f (τ)

(t−τ)(α+1−m) dτ
]

m − 1 < α < m

dm

dtm
f (t), α = m

(A.14)

The second method, referred to here as the Right Hand Definition, is

f (n) =
{

Dα∗ f (t) := 1
�(m−α)

∫ t

0
f (m)

(t−τ)(α+1−m) dτ m − 1 < α < m

dm

dtm
f (t), α = m

}
(A.15)

Unlike the Riemann–Liouville approach, which derives its definition from the
repeated integral, the Grunwald–Letnikov formulation approaches the problem from
the derivative side. For this, we start from the fundamental definition a derivative:

f ′(x) = lim
h→0

f (x + h) − f (x)

h
(A.16)
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Applying this formula again, we can find the second derivative:

f ′′(x) = lim
h→0

f ′(x + h) − f ′(x)

h

= lim
h1→0

limh2→0
f (x+h1+h2)−f (x+h1)

h2 − limh2→0
f (x+h2)−f (x)

h2

h1
(A.17)

By choosing the same value of h, i.e. h = h1 = h2, the expression simplifies to

f ′′(x) = lim
h→0

f (x + 2h) − 2f (x + h) + f (x)

h2
(A.18)

For the nth derivative, this procedure can be consolidated into a summation. We
introduce the operator dn to represent the n-repetitions of the derivative:

dnf (x) = lim
h→0

1

hn

n∑
m=0

(−1)m
(

n

m

)
f (x − mh) (A.19)

This expression can be generalized for non-integer values for n with α ∈ R pro-
vided that the binomial coefficient be understood as using the Gamma Function in
place of the standard factorial. Also, the upper limit of the summation (no longer
the integer, n) goes to infinity as t−1

h
(where t and a are the upper and lower lim-

its of differentiation, respectively). We are left with the generalized form of the
Grunwald–Letnikov fractional derivative.

dnf (x) = lim
h→0

1

hn

t−a
h∑

m=0

(−1)m
�(α + 1)

m!�(α − m + 1)
f (x − mh) (A.20)

It is obvious that, just as the Riemann–Liouville definition for the fractional in-
tegral could be used to define the fractional derivative, the above form of the GL
derivative could be altered for use in an alternate definition of the fractional integral.
The most natural alteration of this form is to consider the GL derivative for negative
α. If we revert to the (A.19) form the most immediate problem is that (

(−n
m

)
) is not

defined using factorials. Expanded mathematically, (
(−n

m

)
) is given by

(−n

m

)
= −n(−n − 1)(−n − 2)(−n − 3) · · · (−n − m + 1)

m! (A.21)

This form can be rewritten as
(−n

m

)
= (−1)m

−n(−n − 1)(−n − 2)(−n − 3) · · · (−n − m + 1)

m!

= (−1)m
(n + m − 1)!
(n − 1)!m! (A.22)
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The factorial expression in (A.22) can be generalized for negative reals using the
gamma function, thus (−α

m

)
= (−1)m

�(α + m)

�(α)m! (A.23)

Using this relation we can now rewrite (A.20) for −α and thus are left with the
Grunwald–Letnikov fractional integral:

d−αf (x) = lim
h→0

hα

t−a
h∑

m=0

�(α + m)

m!�(α)
f (x − mh) (A.24)

The we discuss the form of the Fractional Integral Equation:

1

�(α)

∫ 0

t

u(τ )

(t − τ)1−α
dτ = f (t) (A.25)

or equivalently:

Jαu(t) = f (t) (A.26)

The solution of this kind is

u(t) = Dαf (t) (A.27)

In the Laplace domain, integral equations of the first kind assume the form

Jαu(t) = Φα(t) ∗ u(t) =⇒ L
{
Φα(t) ∗ u(t)

}= ũ(s)

sα
(A.28)

which can be rewritten as

ũ(s) = sαf̃ (s) = s

[
f̃ (s)

s1−α

]
(A.29)

or as:

ũ(s) = sαf̃ (s) =⇒ 1

a1−α

[
sf̃ (s) − f (0)

]+ f (0)

s1−α
(A.30)

Inverting the first form back into the time domain, we get

u(t) = 1

�(1 − α)

d

dt

∫ t

0

f (τ)

(t − τ)α
dτ = f (t) (A.31)

which is equivalent to solution of the equation with the Left Hand Definition. The
second form can be similarly inverted to yield

u(t) = 1

�(1 − α)

∫ t

0

f ′(τ )

(t − τ)α
dτ = f (t) + f (0)

t−α

�(1 − α)
(A.32)



206 Useful Notes on Fractional Calculus

The first element of this result is the Right Hand Definition, but as mentioned above,
one must include a remainder term that is dependent on the value of the function at 0.

In classic linear ODEs, there are typically two forms:

u′(t) = −u(t) + q(t) (A.33)

and

u′′(t) = −u(t) + q(t) (A.34)

Similarly, one may use the previously introduced definitions to obtain Linear
Fractional ODEs, which can be represented as follows:

Dα∗ u(t) = Dα

(
u(t) −

m−1∑
k=0

tk

k!u
(k)(0)

)
= −u(t) + q(t) (A.35)

Note the use of the Right Hand Definition in this definition. As was discussed above
in the properties of the Right Hand Definition and Left Hand Definition, the choice
to use this definition is based upon the ability to use integer order initial conditions
in the solution of problems of this kind. The most straightforward means of solving
(A.35) is by means of Laplace transform, and can be re-arranged as

sαũ(s) =
m−1∑
k=0

sα−k−1u(k)(0) = ũ(s) =
m−1∑
k=0

sα−k−1

sα + 1
(A.36)

The terms inside the sum can be rewritten

sα−k−1

sα + 1
= 1

sk

sα

sα + 1
= L

{
J kEα

(−tα
)}

(A.37)

and the terms

1

sα + 1
= −

(
s

sα−1

sα + 1
− 1

)
= L

{
d

dt

[
Eα

(−tα
)]}

(A.38)

Finally, using both (A.37) and (A.38) to define the inverse Laplace transform, it is
possible to transform (A.36) into an expression for u(t), and thus define the solution
to the fractional-order ODE:

u(t) =
m−1∑
k=0

J kEα

(−tα
)
u(k)(0) − q(t) ∗ E′

α

(−tα
)

(A.39)

In this book, the time-domain definitions have not been used; instead a simpler
form, that in the frequency domain, has been used. As the reader can see, the time-
domain definitions are of significant complexity and appealing to mathematicians
rather than pragmatic individuals. However, for the sake of completeness, these def-
initions have been included here, but a more comprehensive overview can be found
in [105, 118, 126].
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