
Chapter 8
Linear BSDEs and Predictable Representations
of Insurance Payment Processes

Abstract We solve linear BSDEs which may arise in actuarial applications. Since
solving a linear BSDE requires to find the predictable representation of a random
variable, we show how to derive the predictable representation of an insurance pay-
ment process. We consider the case of a life insurance and a non-life insurance
payment process under systematic and unsystematic claims risk. We apply both the
Itô’s formula and the Malliavin calculus to derive the control processes of linear BS-
DEs. The representations of the control processes involve conditional expectations
which can be explicitly calculated or estimated by Monte Carlo methods.

In this chapter we solve linear BSDEs which may arise in actuarial applications.
We illustrate two methods based on the Itô’s formula and the Malliavin calculus
which can be used to derive the control processes of linear BSDEs. Linear BSDEs
are important for applications. In Chap. 9 a linear BSDE is used to characterize
the replicating strategy for a liability, and in Chap. 10 linear BSDEs are used to
characterize the optimal (in the mean-square sense) hedging strategy for a liability.
We also remark that nonlinear BSDEs which we face when investigating pricing and
hedging of liabilities under model ambiguity and the entropic risk measure may be
reduced to linear BSDEs, see Propositions 3.3.3 and 3.4.3 and Example 3.4. Since
solving a linear BSDE requires to find the predictable representation of a random
variable, in this chapter we show how to derive the predictable representation of an
insurance payment process. We consider the case of a life insurance and a non-life
insurance payment process under systematic and unsystematic claims risk.

8.1 The Application of the Itô’s Formula

Let us investigate the financial model

dS0(t) = S0(t)rdt, S0(0) = 1,

dS(t) = μ
(
S(t)

)
dt + σ

(
S(t)

)
dW(t), S(0) = s > 0,
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and the equity-linked (life insurance) liabilities

P(t) =
∫ t

0

(
n − J (s−)

)
Ĥ

(
S(s)

)
ds +

∫ t

0
Ĝ

(
S(s)

)
dJ (s)

+ (
n − J (T )

)
F̂

(
S(T )

)
1{t = T }, 0 ≤ t ≤ T ,

where J denotes the deaths counting process for a life insurance portfolio consisting
of n policies. We assume that the mortality intensity is given by the dynamics

dλ(t) = μλ
(
λ(t)

)
dt + σλ

(
λ(t)

)
dB(t), λ(0) = λ > 0.

For an actuarial and financial motivation we refer to Examples 7.2 and 7.7. We
model the longevity risk by a stochastic process which solves a forward SDE de-
scribing the time evolution of the mortality intensity. Such stochastic models are
advocated in the actuarial literature, see Russo et al. (2011) and Schrager (2006).
We can also assume that r depends on S and allow for time-dependent dynamics.
Then, we can follow the same arguments to derive the control processes of a BSDE.
Let us recall that the jump measure N of the point process J has the compensator
ϑ(dt, {1}) = (n − J (t−))λ(t)dt .

The value of the insurance liabilities is given by

Y(t) = E

[
e−r(T −t)

(
n − J (T )

)
F̂

(
S(T )

) +
∫ T

t

e−r(s−t)Ĝ
(
S(s)

)
dJ (s)

+
∫ T

t

e−r(s−t)
(
n − J (s−)

)
Ĥ

(
S(s)

)
ds|Ft

]
, 0 ≤ t ≤ T . (8.1)

If we consider the market-consistent value, then the expectation should be taken
under an equivalent martingale measure, see Sect. 9.1. From Propositions 3.3.1 and
3.4.1 we conclude that the value process (8.1) satisfies the linear BSDE

Y(t) = (
n − J (T )

)
F̂

(
S(T )

) −
∫ T

t

Y (s−)rds +
∫ T

t

Ĝ
(
S(s)

)
dJ (s)

+
∫ T

t

(
n − J (s−)

)
Ĥ

(
S(s)

)
ds

−
∫ T

t

Z1(s)dW(s) −
∫ T

t

Z2(s)dB(s) −
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T .

(8.2)

The dynamics (8.2) is formulated under the real-world probability measure P. If
we took the expectation (8.1) under an equivalent probability measure Q, then the
BSDE (8.2) would be formulated under Q. Introducing the process V (t) = U(t) −
Ĝ(S(t)) and recalling the forward dynamics of S and λ, we can investigate the
FBSDE
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Y(t) = (
n − J (T )

)
F̂

(
S(T )

) +
∫ T

t

(−Y(s−)r + Ĝ
(
S(s)

)(
n − J (s−)

)
λ(s)

+ (
n − J (s−)

)
Ĥ

(
S(s)

))
ds

−
∫ T

t

Z1(s)dW(s) −
∫ T

t

Z2(s)dB(s) −
∫ T

t

V (s)Ñ(ds), 0 ≤ t ≤ T ,

S(t) = S(0) +
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T ,

λ(t) = λ(0) +
∫ t

0
μλ

(
λ(s)

)
ds +

∫ t

0
σλ

(
λ(s)

)
dB(s), 0 ≤ t ≤ T .

(8.3)

The goal is to characterize the control processes (Z1,Z2,V ) of the linear BSDE
(8.3). We use the Itô’s formula.

Proposition 8.1.1 Consider the linear BSDE (8.3). Assume that

(i) the jump measure N of the point process J has the compensator ϑ(dt, {1}) =
(n − J (t−))λ(t)dt ,

(ii) the processes S and λ are positive,
(iii) the functions μ : (0,∞) → [0,∞), σ : (0,∞) → [0,∞) and μλ : (0,∞) →

[0,∞),σλ : (0,∞) → [0,∞) are Lipschitz continuous,
(iv) the functions F̂ : (0,∞) → [0,∞), Ĥ : (0,∞) → [0,∞) and Ĝ : (0,∞) →

[0,∞) are Lipschitz continuous.

We define measurable functions ĥ : [0, T ] × [0, T ] × (0,∞) → [0,∞), f̂ : [0, T ] ×
[0, T ] × (0,∞) → [0,∞), ĝ : [0, T ] × [0, T ] × (0,∞) → [0,∞),p : [0, T ] ×
[0, T ] × (0,∞) → (0,∞) and p̂ : [0, T ] × [0, T ] × (0,∞) → [0,∞) such that
for 0 ≤ t ≤ u ≤ T we set

ĥ(t, u, s) = E
[
e−r(u−t))Ĥ

(
S(u)

)|S(t) = s
]
,

f̂ (t, u, s) = E
[
e−r(u−t)F̂

(
S(u)

)|S(t) = s
]
,

ĝ(t, u, s) = E
[
e−r(u−t)Ĝ

(
S(u)

)|S(t) = s
]
, (8.4)

p(t, u,λ) = E
[
e− ∫ u

t λ(v)dv|λ(t) = λ
]
,

p̂(t, u,λ) = E
[
e− ∫ u

t λ(v)dvλ(u)|λ(t) = λ
]
,

and for 0 ≤ u < t ≤ T we set ĥ = f̂ = ĝ = p = p̂ = 0. We further assume that

(v) for each 0 ≤ u ≤ T the functions ĥ(., u, .), f̂ (., u, .), ĝ(., u, .), p(., u, .) and
p̂(., u, .) are of the class C ([0, u] × (0,∞)) ∩ C 1,2([0, u) × (0,∞)).

The control processes (Z1,Z2,V ) ∈ H
2(R) × H

2(R) × H
2
N(R) of the BSDE (8.3)

take the form
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Z1(t)

= (
n − J (t−)

)
σ
(
S(t)

)
p
(
t, T , λ(t)

)
f̂s

(
t, T , S(t)

)

+ (
n − J (t−)

)
σ
(
S(t)

)

·
∫ T

t

(
p
(
t, u,λ(t)

)
ĥs

(
t, u, S(t)

) + p̂
(
t, u,λ(t)

)
ĝs

(
t, u, S(t)

))
du, 0 ≤ t ≤ T ,

Z2(t)

= (
n − J (t−)

)
σλ

(
λ(t)

)
pλ

(
t, T , λ(t)

)
f̂

(
t, T , S(t)

)

+ (
n − J (t−)

)
σλ

(
λ(t)

)

·
∫ T

t

(
pλ

(
t, u,λ(t)

)
ĥ
(
t, u, S(t)

) + p̂λ

(
t, u,λ(t)

)
ĝ
(
t, u, S(t)

))
du, 0 ≤ t ≤ T ,

V (t)

= −p
(
t, T , λ(t)

)
f̂

(
t, T , S(t)

)

−
∫ T

t

(
p
(
t, u,λ(t)

)
ĥ
(
t, u, S(t)

) + p̂
(
t, u,λ(t)

)
ĝ
(
t, u, S(t)

))
du, 0 ≤ t ≤ T ,

where f̂s(t, u, s) = ∂
∂s

f̂ (t, u, s), ĥs(t, u, s) = ∂
∂s

ĥ(t, u, s), ĝs(t, u, s) = ∂
∂s

ĝ(t, u, s),
pλ(t, u,λ) = ∂

∂λ
p(t, u,λ), p̂λ(t, u,λ) = ∂

∂λ
p̂(t, u,λ).

Proof By Theorems 3.1.1 and 4.1.1 there exists a unique solution (Y,Z1,Z2,V ,S,λ)

to (8.3) and the processes S and λ have finite moments. From Propositions 3.3.1 and
3.4.1 we can deduce that the control processes (Z1,Z2,V ) are obtained from the
predictable representation of the martingale

M (t) = E

[
e−rT

(
n − J (T )

)
F̂

(
S(T )

) +
∫ T

0
e−ruĜ

(
S(u)

)(
n − J (u)

)
λ(u)du

+
∫ T

0
e−ru

(
n − J (u)

)
Ĥ

(
S(u)

)
du|Ft

]
, 0 ≤ t ≤ T . (8.5)

Let us consider the first martingale

M 1(t) = E
[
e−rT

(
n − J (T )

)
F̂

(
S(T )

)|Ft

]
, 0 ≤ t ≤ T .

We can derive

E
[
e−rT

(
n − J (T )

)
F̂

(
S(T )

)|Ft

]

= E

[
n∑

i=1

1{τi > T }e−rT F̂
(
S(T )

)|Ft

]
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=
n∑

i=1

1{τi > t}E[
1{τi > T , τi > t}e−rT F̂

(
S(T )

)|Ft

]

=
n∑

i=1

1{τi > t}E[
e−rT F̂

(
S(T )

)
E

[
1{τi > T , τi > t}|FW

T ∨ FB
T ∨ Ft

]|Ft

]

= (
n − J (t)

)
E

[
e− ∫ T

t λ(s)ds |Ft

]
E

[
e−rT F̂

(
S(T )

)|Ft

]
, 0 ≤ t ≤ T , (8.6)

where we use representation (7.4), the property of conditional expectations, the ex-
ponential conditional distribution of τi and the independence of W and B . We get

M 1(t) = e−rt
(
n − J (t)

)
f̂

(
t, T , S(t)

)
p
(
t, T , λ(t)

)
, 0 ≤ t ≤ T .

The Lipschitz property of F̂ , the moment estimate (4.2) for S and square integrabil-
ity of S imply that M 1 is square integrable. Hence, there exists a unique predictable
representation of the martingale M 1 in H

2(R) × H
2(R) × H

2
N(R) and the martin-

gale M 1 can be represented as a sum of three square integrable stochastic integrals
driven by W,B and Ñ . Since f̂ , p ∈ C 1,2([0, T ) × (0,∞)), we can apply the Itô’s
formula and we immediately get the dynamics

M 1(t)

= M 1(0) +
∫ t

0
e−ru

(
n − J (u−)

)
f̂s

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
σ
(
S(u)

)
dW(u)

+
∫ t

0
e−ru

(
n − J (u−)

)
f̂

(
u,T ,S(u)

)
pλ

(
u,T ,λ(u)

)
σλ

(
λ(u)

)
dB(u)

−
∫ t

0
e−ruf̂

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
Ñ(du), 0 ≤ t < T . (8.7)

We remark that the Lebesque integral in the Itô’s formula must vanish by the martin-
gale property. Since f̂ , p ∈ C ([0, T ] × (0,∞)) and �J(T ) = 0 a.s. by quasi-left
continuity, then limt→T − M 1(t) = M 1(T ) a.s., and in L

2(R) by the dominated
convergence theorem. By the growth properties of f̂s , p, f̂ , pλ, which can be de-
duced from (4.2) and (8.4), the three stochastic integrals in (8.7) are well-defined
square integrable martingales on [0, T ]. Hence, we take the limit in L

2(R) and we
derive

M 1(t)

= M 1(0) +
∫ t

0
e−ru

(
n − J (u−)

)
f̂s

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
σ
(
S(u)

)
dW(u)

+
∫ t

0
e−ru

(
n − J (u−)

)
f̂

(
u,T ,S(u)

)
pλ

(
u,T ,λ(u)

)
σλ

(
λ(u)

)
dB(u)

−
∫ t

0
e−ruf̂

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
Ñ(du), 0 ≤ t ≤ T . (8.8)
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We deal with the second martingale

M 2(t) = E

[∫ T

0
e−ru

(
n − J (u)

)
Ĥ

(
S(u)

)
du|Ft

]
, 0 ≤ t ≤ T .

Fix u ∈ [0, T ]. We introduce the process

M 2,u(t) = E
[
e−ru

(
n − J (u)

)
Ĥ

(
S(u)

)|Ft

]
, 0 ≤ t ≤ u.

Following the arguments which led to (8.8), we can obtain

M 2,u(t) = e−rt
(
n − J (t)

)
ĥ
(
t, u, S(t)

)
p
(
t, u,λ(t)

)
, 0 ≤ t ≤ u,

together with the representation

M 2,u(t)

= M 2,u(0) +
∫ t

0
e−rv

(
n − J (v−)

)
ĥs

(
v,u,S(v)

)
p
(
v,u,λ(v)

)
σ
(
S(v)

)
dW(v)

+
∫ t

0
e−rv

(
n − J (v−)

)
ĥ
(
v,u,S(v)

)
pλ

(
v,u,λ(v)

)
σλ

(
λ(v)

)
dB(v)

−
∫ t

0
e−rvĥ

(
v,u,S(v)

)
p
(
v,u,λ(v)

)
Ñ(dv)

= M 2,u(0) +
∫ t

0
Z u

1 (v)dW(v)

+
∫ t

0
Z u

2 (v)dB(v) +
∫ t

0
V u(v)Ñ(dv), 0 ≤ t ≤ u, (8.9)

where we introduce the processes Z u
1 , Z u

2 and V u. If we apply the a priori estimate
(3.4) to the BSDE (8.9) and we use the Lipschitz property of Ĥ and the moment
estimate (4.2) for S, then we can derive

E

[∫ u

0

∣∣Z u
1 (v)

∣∣2
dv +

∫ u

0

∣∣Z u
2 (v)

∣∣2
dv +

∫ u

0

∣∣V u(v)
∣∣2(

n − J (v)
)
λ(v)dv

]

≤ KE
[∣∣e−ru

(
n − J (u)

)
Ĥ

(
S(u)

)∣∣2] ≤ K
(

1 +E

[
sup

v∈[0,T ]
∣∣S(v)

∣∣2
])

≤ K, (8.10)

with K independent of u. Estimate (8.10) also yields

∫ T

0

∫ T

0

∣∣Z u
1 (v)

∣∣21{v ≤ u}dvdu +
∫ T

0

∫ T

0

∣∣Z u
2 (v)

∣∣21{v ≤ u}dvdu

+
∫ T

0

∫ T

0

∣∣V u(v)
∣∣21{v ≤ u}(n − J (v)

)
λ(v)dvdu < ∞. (8.11)
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We now obtain the representation of the second martingale M 2. Using (8.9), we get

M 2(t)

=
∫ t

0
e−ru

(
n − J (u)

)
Ĥ

(
S(u)

)
du +E

[∫ T

t

e−ru
(
n − J (u)

)
Ĥ

(
S(u)

)
du|Ft

]

=
∫ t

0

(
M 2,u(0) +

∫ t

0
Z u

1 (v)1{v ≤ u}dW(v) +
∫ t

0
Z u

2 (v)1{v ≤ u}dB(v)

+
∫ t

0
V u(v)1{v ≤ u}Ñ(dv)

)
du

+
∫ T

t

(
M 2,u(0) +

∫ t

0
Z u

1 (v)1{v ≤ u}dW(v) +
∫ t

0
Z u

2 (v)1{v ≤ u}dB(v)

+
∫ t

0
V u(v)1{v ≤ u}Ñ(dv)

)
du

=
∫ T

0
M 2,u(0)du +

∫ T

0

(∫ t

0
Z u

1 (v)1{v ≤ u}dW(v)

)
du

+
∫ T

0

(∫ t

0
Z u

2 (v)1{v ≤ u}dB(v)

)
du

+
∫ T

0

(∫ t

0
V u(v)1{v ≤ u}Ñ(dv)

)
du, 0 ≤ t ≤ T . (8.12)

By the measurability assumptions and property (8.11) we can apply the Fubini’s
theorem for stochastic integrals, see Theorem IV.65 in Protter (2004). We change
the order of integration in (8.12) and we derive the representation

M 2(t) = M 2(0) +
∫ t

0

(∫ T

v

Z u
1 (v)du

)
dW(v)

+
∫ t

0

(∫ T

v

Z u
2 (v)du

)
dB(v) +

∫ t

0

(∫ T

v

V u(v)du

)
Ñ(dv), 0 ≤ t ≤ T .

(8.13)

The representation of the third martingale

M 3(t) = E

[∫ T

0
e−ruĜ

(
S(u)

)(
n − J (u)

)
λ(u)du|Ft

]
, 0 ≤ t ≤ T ,

is obtained analogously to (8.13). From the representation of the martingale M
and Propositions 3.3.1 and 3.4.1 we deduce the formulas for the control processes
(Z1,Z2,V ). �

The assumptions of Proposition 8.1.1 should hold in many cases. We remark
that the Lipschitz continuity assumptions of Proposition 8.1.1 can be relaxed, but
additional existence and moment assumptions for S and λ would have to be intro-
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duced instead. The assumption that the functions f̂ , ĥ, ĝ, p̂ and p are of the class
C ([0, T ] × (0,∞)) ∩ C 1,2([0, T ) × (0,∞)) is mathematically convenient. In fact,
this is the key assumption which allows us to apply the Itô’s formula and, conse-
quently, to find the predictable representation and the control processes of the linear
BSDE. We recall that prices of call options, put options and survival probabilities
in classical financial and actuarial models are sufficiently smooth under appropri-
ate conditions, see Sect. 12.1 in Cont and Tankov (2004) and Chap. 5 in Filipovic
(2009). However, the smoothness of prices is not guaranteed and it may require very
strong assumptions.

The representation of the control processes from Proposition 8.1.1 involve
derivatives. If we deal with the classical Black-Scholes model and we assume that
the mortality intensity follows the Cox-Ingersoll-Ross process, then f̂s , ĥs , ĝs , p̂λ

and pλ have closed form solutions, see Chap. 5 in Shreve (2004) and Chap. 5 in
Filipovic (2009). If we consider a more general model, then we can use Proposi-
tion 4.1.2 to calculate (or estimate) the derivatives.

8.2 The Application of the Malliavin Calculus

We investigate the financial model

dS0(t) = S0(t)rdt, S0(0) = 1,

dS(t) = μ
(
S(t)

)
dt + σ

(
S(t)

)
dW(t), S(0) = s > 0,

and the equity-linked (non-life insurance) liabilities

P(t) =
∫ t

0

∫

R

Ĝ
(
S(s), z

)
N(ds, dz), 0 ≤ t ≤ T ,

where the random measure N is generated by a compound Poisson process with
intensity λ and jump size distribution q . For an actuarial and financial motivation
we refer to Examples 7.9 and 7.10.

The value of the insurance liabilities is given by

Y(t) = E

[∫ T

t

∫

R

e−r(s−t)Ĝ
(
S(s), z

)
N(ds, dz)|Ft

]
, 0 ≤ t ≤ T .

Following the reasoning that led to (8.3), we consider the FBSDE

Y(t) =
∫ T

t

(
−Y(s−)r +

∫

R

Ĝ
(
S(s), z

)
λq(dz)

)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

∫

R

V (s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (8.14)

S(t) = S(0) +
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T .
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Using the Malliavin calculus and the results for FBSDEs from Chap. 4, we show
how to derive the control processes (Z,V ) without applying the Itô’s formula. The
Malliavin calculus allows us to relax smoothness assumptions in our models.

Proposition 8.2.1 Consider the linear BSDE (8.14). Assume that

(i) the random measure N is generated by a compound Poisson process with in-
tensity λ and jump size distribution q ,

(ii) the process S is positive,
(iii) the functions μ : (0,∞) → [0,∞) and σ : (0,∞) → (0,∞) are twice contin-

uously differentiable with bounded derivatives,
(iv) the function Ĝ : (0,∞) × R → [0,∞) is measurable, Lipschitz continuous in

the sense that
∣
∣Ĝ(s, z) − Ĝ

(
s′, z

)∣∣ ≤ K
∣
∣s − s′∣∣|z|, (s, z),

(
s′, z

) ∈ [0, T ] ×R,

and satisfies the growth condition

Ĝ(0, z) ≤ K|z|, z ∈ R.

The control processes (Z,V ) ∈ H
2(R) ×H

2
N(R) of the BSDE (8.14) take the form

Z(t) = σ
(
S(t)

)
E

[∫ T

t

∫

R

e−r(u−t)Ĝs

(
S(u), z

)Y (u)

Y (t)
λq(dz)du|Ft

]
, 0 ≤ t ≤ T ,

V (t, z) = 0, 0 ≤ t ≤ T , z ∈R,

where

Y (t) = 1 +
∫ t

0
Y (u)μ′(S(u)

)
du +

∫ t

0
Y (u)σ ′(S(u)

)
dW(u), 0 ≤ t ≤ T ,

and Ĝs(s, z) = ∂
∂s

Ĝ(s, z).

Proof By Theorems 3.1.1 and 4.1.1 there exists a unique solution (Y,Z,V,S) to
(8.14). Since we deal with the Markovian dynamics, we have Y(t) = u(t, S(t))

where

u(t, s) = E

[∫ T

t

∫

R

e−r(u−t)Ĝ
(
St,s(u), z

)
λq(dz)du

]

=
∫ T

t

∫

R

e−r(u−t)
E

[
Ĝ

(
St,s(u), z

)]
λq(dz)du, (t, s) ∈ [0, T ] × (0,∞).

By Theorem 4.1.2 the law of S is absolutely continuous. From Theorem 4.1.2
we conclude that S is Malliavin differentiable and, next, from Propositions 2.6.4–
2.6.5 we deduce that

∫
R

Ĝ(S(s), z)λq(dz) is Malliavin differentiable for 0 ≤ s ≤ T .
Hence, Theorem 4.1.4 yields the control processes

Z(t) = us

(
t, S(t)

)
σ
(
S(t)

)
, V (t, z) = 0, 0 ≤ t ≤ T , z ∈ R.
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By the Lipschitz property of Ĝ and the moment estimates (4.2) we obtain the in-
equalities

E

[∣∣
∣∣
Ĝ(St,s(u), z) − Ĝ(St,s′

(u), z)

s − s′

∣∣
∣∣

]

≤ K
E[|St,s(u) − St,s′

(u)|]
|s − s′| |z| ≤ K

√
E[|St,s(u) − St,s′

(u)|2]
|s − s′| |z| ≤ K|z|, (8.15)

and

E

[∣
∣
∣
∣
Ĝ(St,s(u), z) − Ĝ(St,s′

(u), z)

s − s′

∣
∣
∣
∣

2]
≤ K|z|2, (8.16)

for all (t, u, s, s′, z) ∈ [0, T ]× [0, t]× (0,∞)× (0,∞)×R. From (8.16) we deduce
that the family

As′ =
∣
∣∣∣
Ĝ(St,s(u), z) − Ĝ(St,s′

(u), z)

s − s′

∣
∣∣∣, s′ ∈ (0,∞),

is uniformly integrable for fixed (t, u, s, z) ∈ [0, T ] × [0, T ] × (0,∞) ×R, see the
proof of Proposition 4.1.2. By (8.15), the dominated convergence theorem, the uni-
form integrability of As′ and Fubini’s theorem we finally derive

us(t, s) = lim
s′→s

u(t, s) − u(t, s′)
s − s′

= lim
s′→s

∫ T

t

∫

R

e−r(t−u)
E

[
Ĝ(St,s(u), z) − Ĝ(St,s′

(u), z)

s − s′

]
λq(dz)du

= E

[∫ T

t

∫

R

e−r(t−u)Ĝs

(
St,s(u), z

)
Y t,s(u)λq(dz)du

]
,

(t, s) ∈ [0, T ] × (0,∞).

where

Y t,s (u) = 1 +
∫ u

t

Y t,s(v)μ′(St,s(v)
)
dv

+
∫ u

t

Y t,s (v)σ ′(St,s(v)
)
dW(v), 0 ≤ t ≤ u ≤ T ,

and we use the fact that s 	→ Ĝ(St,s(u), z) is a.s. differentiable for z ∈ R, u ∈
(t, T ]. �

The proof of Proposition 8.2.1 relies on Theorem 4.1.4 which we established for a
FBSDE driven by a Brownian motion and a compensated Poisson random measure.
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It is interesting to note that Theorem 4.1.4 can be applied to BSDEs driven by more
general random measures provided that appropriate modifications are introduced.

Let us investigate the financial model

dS0(t) = S0(t)rdt, S0(0) = 1,

dS(t) = μ
(
S(t)

)
dt + σ

(
S(t)

)
dW(t), S(0) = s > 0,

and the equity-linked (non-life insurance) liabilities

P(t) =
∫ t

0

∫

R

Ĝ
(
S(s), z

)
N(ds, dz), 0 ≤ t ≤ T ,

where the random measure N is generated by a compound Cox process with com-
pensator ϑ(dt, dz) = λ(S(t))q(dz)dt . Since the intensity λ is contingent on the
stock, the systematic claims risk is now considered. For an actuarial and financial
motivation we again refer to Examples 7.9 and 7.10. We show that we can replace
the random measure N generated by a compound Cox process with a Poisson ran-
dom measure.

Let us assume that the intensity λ is bounded and set E = {y : 0 ≤ y ≤
sups>0 λ(s)}. Let Np denote a Poisson random measure on � × B([0, T ]) ×
B(R) × B(E). We assume that the compensator of the Poisson random measure
Np is ϑ(dt, dz, dy) = q(dz)dydt . We introduce the random measure

N (dt, dz) =
∫

E

1[0,λ(S(t))](y)Np(dt, dz, dy). (8.17)

We can notice that
∫ t

0

∫

R

1A(ω, s, z)N (ds, dz) −
∫ t

0

∫

R

1A(ω, s, z)λ
(
S(s)

)
q(dz)ds

=
∫ t

0

∫

R×E

1A(ω, s, z)1[0,λ(S(s))](y)Ñp(ds, dz, dy), 0 ≤ t ≤ T ,

is a martingale for A ∈ P ⊗ B(R) by Theorem 2.3.3. Hence, by Definition 2.1.4
the random measure N has the compensator λ(S(t))q(dz)dt . From Theorem 11.5
in He et al. (1992) we conclude that the measures N and N are indistinguishable.
Consequently, we can use the results derived for BSDEs driven by Poisson random
measures also in the case when we deal with random measures generated by Cox
processes.

The value of the insurance liability is given by

Y(t) = E

[∫ T

t

∫

R

e−r(s−t)Ĝ
(
S(s), z

)
N(ds, dz)|Ft

]

= E

[∫ T

t

∫

R×E

e−r(s−t)Ĝ
(
S(s), z

)
1[0,λ(S(s))](y)Np(ds, dz, dy)|Ft

]
,

0 ≤ t ≤ T ,
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and we investigate the FBSDE

Y(t) =
∫ T

t

(
−Y(s−)r +

∫

R×E

Ĝ
(
S(s), z

)
1[0,λ(S(s))](y)q(dz)dy

)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

∫

R×E

V (s, z, y)Ñp(ds, dz, dy), 0 ≤ t ≤ T ,

S(t) = S(0) +
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T .

(8.18)

Proposition 8.2.2 Consider the linear BSDE (8.18). Assume that

(i) the process S is positive,
(ii) the function λ : (0,∞) → E is positive and Lipschitz continuous, and the set

E is bounded,
(iii) the random measure Np is defined on �×B([0, T ])×B(R)×B(E) and it is

a Poisson random measure with the compensator ϑ(dt, dz, dy) = q(dz)dydt

such that q(R) = 1 and
∫
R

|z|2q(dz) < ∞,
(iv) the functions μ : (0,∞) → [0,∞) and σ : (0,∞) → (0,∞) are twice contin-

uously differentiable with bounded derivatives,
(v) the function Ĝ : (0,∞) × R → [0,∞) is measurable, Lipschitz continuous in

the sense that
∣∣Ĝ(s, z) − Ĝ

(
s′, z

)∣∣ ≤ K
∣∣s − s′∣∣|z|, (s, z),

(
s′, z

) ∈ (0,∞) ×R,

and satisfies the growth condition

Ĝ(s, z) ≤ K|z|, (s, z) ∈ (0,∞) ×R.

The control processes (Z,V ) ∈H
2(R) ×H

2
Np(R) of the BSDE (8.18) take the form

Z(t) = σ
(
S(t)

)
E

[∫ T

t

∫

R

e−r(u−t)Ĝs

(
S(u), z

)Y (u)

Y (t)
λ
(
S(u)

)
q(dz)du|Ft

]

+ σ
(
S(t)

)
E

[∫ T

t

∫

R

e−r(u−t)Ĝ
(
S(u), z

)Y (u)

Y (t)
λ′(S(u)

)
q(dz)du|Ft

]
,

0 ≤ t ≤ T ,

V (t, z, y) = 0, 0 ≤ t ≤ T , z ∈R, y ∈ E,

where

Y (t) = 1 +
∫ t

0
Y (u)μ′(S(u)

)
du +

∫ t

0
Y (u)σ ′(S(u)

)
dW(u), 0 ≤ t ≤ T ,

and Ĝs(s, z) = ∂
∂s

Ĝ(s, z).
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Proof We cannot apply Proposition 8.2.1 since the indicator function in the genera-
tor of (8.18) is not smooth enough. Let E = {y : 0 ≤ y ≤ c} where c = sups>0 λ(s).
Choose a smooth function ϕ ∈ C 2(R) such that ϕ(x) = 1, x ≤ 0, and ϕ(x) = 0,
x ≥ 1. It is easy to show

lim
n→∞ϕ

(
n
(
y − λ(s)

)) = 1[0,λ(s)](y), (y, s) ∈ E × (0,∞). (8.19)

By Theorems 3.1.1 and 4.1.1 there exists a unique solution (Y,Z,V,S) to (8.18),
and by Theorem 4.1.2 the law of S is absolutely continuous with respect to the
Lebesgue measure. Consider the FBSDE

Yn(t) =
∫ T

t

(
−Yn(s−)r +

∫

R×E

Ĝ
(
S(s), z

)
ϕ
(
n
(
y − λ

(
S(s)

)))
q(dz)dy

)
ds

−
∫ T

t

Zn(s)dW(s) −
∫ T

t

∫

R×E

V n(s, z, y)Ñp(ds, dz, dy),

0 ≤ t ≤ T ,

S(t) = S(0) +
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T .

(8.20)

By Theorems 3.1.1 and 4.1.1 there also exists a unique solution (Y n,Zn,V n,S)

to (8.20). The a priori estimates (3.4) and (3.6) together with the Cauchy-Schwarz
inequality yield

∥∥Y − Yn
∥∥2
S2 + ∥∥Z − Zn

∥∥2
H2 + ∥∥V − V n

∥∥2
H

2
Np

≤ KE

[∫ T

0

∣
∣∣∣

∫

R×E

Ĝ
(
S(u), z

)
1[0,λ(S(u))](y)q(dz)dy

−
∫

R×E

Ĝ
(
S(u), z

)
ϕ
(
n
(
y − λ

(
S(u)

)))
q(dz)dy

∣∣∣∣

2

du

]

≤ KE

[∫ T

0

∫

R×E

∣∣Ĝ
(
S(u), z

)∣∣2∣∣1[0,λ(S(u))](y)−ϕ
(
n
(
y −λ

(
S(u)

)))∣∣2
q(dz)dydu

]
,

and by the dominated convergence theorem and (8.19) we get

lim
n→∞

{∥∥Y − Yn
∥∥2
S2 + ∥∥Z − Zn

∥∥2
H2 + ∥∥V − V n

∥∥2
H

2
Np

} = 0.

In order to find the solution (Z,V ), we find the solution (Zn,V n) to the BSDE
(8.20) and we take the limit. We can now apply Proposition 8.2.1 to (8.20). We
obtain the control processes
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Zn(t)

= σ
(
S(t)

)
E

[∫ T

t

∫

R×E

e−r(u−t)Ĝs

(
S(u), z

)

· Y (u)

Y (t)
ϕ
(
n
(
y − λ

(
S(u)

)))
q(dz)dydu|Ft

]

+ σ
(
S(t)

)
E

[∫ T

t

∫

R×E

e−r(u−t)Ĝ
(
S(u), z

)

· (−ϕ′(n
(
y − λ

(
S(u)

)))
nλ′(S(u)

))Y (u)

Y (t)
q(dz)dydu|Ft

]
, 0 ≤ t ≤ T ,

V n(t, z, y) = 0, 0 ≤ t ≤ T , z ∈R, y ∈ E.

(8.21)

Notice that for a.a. s > 0, for which the derivative λ′(s) exists, we have

−
∫

E

ϕ′(n
(
y − λ(s)

))
nλ′(s)dy

= −
∫ (λ(s)+ 1

n
)∧c

λ(s)

ϕ′(n
(
y − λ(s)

))
ndyλ′(s)

= −
∫ 1

n
∧(c−λ(s))

0
ϕ′(nv)ndvλ′(s) = (

1 − ϕ
(
1 ∧ n

(
c − λ(s)

)))
λ′(s), (8.22)

and

lim
n→∞

(
1 − ϕ

(
1 ∧ n

(
c − λ(s)

)))
λ′(s) = λ′(s), (8.23)

where we use properties of ϕ. Combining (8.21) with (8.22), we get

Zn(t)

= σ
(
S(t)

)
E

[∫ T

t

∫

R×E

e−r(u−t)Ĝs

(
S(u), z

)

· Y (u)

Y (t)
ϕ
(
n
(
y − λ

(
S(u)

)))
q(dz)dydu|Ft

]

+ σ
(
S(t)

)
E

[∫ T

t

∫

R

e−r(u−t)Ĝ
(
S(u), z

)

· (1 − ϕ
(
1 ∧ n

(
c − λ

(
S(u)

))))
λ′(S(u)

)Y (u)

Y (t)
q(dz)dydu|Ft

]
, 0 ≤ t ≤ T ,

and the limit of Zn can be established by the dominated convergence theorem and
properties (8.19), (8.23). �
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The results derived so far are only applicable to Markovian dynamics. The power
of the Malliavin calculus lies in the fact that it can be applied in a general non-
Markovian setting. Let us investigate the financial model

dS0(t) = S0(t)rdt, S0(0) = 1,

dS(t) = S(t)
(
μ(t)dt + S(t)σ (t)dW(t)

)
, S(0) = s > 0,

and the liabilities

P(t) =
∫ t

0

∫

R

G(s, z)N(ds, dz), 0 ≤ t ≤ T ,

where the random measure N is generated by a compound Poisson process with
intensity λ and jump size distribution q . The drift and volatility of the stock S and
the claim G are non-Markov processes. We consider the BSDE

Y(t) =
∫ T

t

(
−Y(s−)r +

∫

R

G(s, z)λq(dz)

)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

∫

R

V (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (8.24)

The next proposition shows the benefit of the Malliavin calculus in the theory
and applications of BSDEs. Recalling the key results established for the Malliavin
derivative and FBSDEs, we can immediately derive the control processes (Z,V ) of
the BSDE (8.24).

Proposition 8.2.3 Let us consider the natural filtration F generated by a Brown-
ian motion and a compound Poisson process with intensity λ and jump size distri-
bution q . We investigate the linear BSDE (8.24). Assume that

(i) (C1)–(C4) from Chap. 7 hold,
(ii) υ-a.e. (s, z) ∈ [0, T ] × R the random variable G(s, z) is Malliavin differen-

tiable, and the Malliavin derivative satisfies

E

[∫ T

0

∫ T

0

∫

R

∣∣DuG(s, z)
∣∣2

λq(dz)dsdu

]
< ∞,

E

[∫ T

0

∫

R

∫ T

0

∫

R

∣∣Du,xG(s, z)
∣∣2

λq(dz)dsq(dx)du

]
< ∞.

The control processes (Z,V ) ∈ H
2(R) ×H

2
N(R) of the BSDE (8.24) take form

Z(t) =
(
E

[∫ T

t

∫

R

e−r(u−t)DtG(u, z)λq(dz)du|Ft

])P

, 0 ≤ t ≤ T ,

V (t, z) = z

(
E

[∫ T

t

∫

R

e−r(u−t)Dt,zG(u, z)λq(dz)du|Ft

])P

, 0 ≤ t ≤ T , z ∈R,

where (·)P denotes the predictable projection of the process.
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Proof The result follows from Theorem 3.5.1, Propositions 3.5.2, 2.6.3 and 2.6.5. �

Proposition 8.2.1 arises now as a special case of Proposition 8.2.3.
Let us remark that in applications we may face a linear BSDE with a generator

which also have a linear term in the control processes (Z,U). By Propositions 3.3.1
and 3.4.1 such a linear term may be absorbed by the random noises and the change
of measure. We end up with a linear BSDE with a generator independent of (Z,U)

with the dynamics under a different probability measure. After the change of mea-
sure, we can use the techniques presented in this chapter to derive the control pro-
cesses.

We have discussed two methods which can be applied to derive the predicable
representations of random variables and representations of the control processes
of linear BSDEs. The representations involve expectations of state processes. Such
representations are useful since we can use Monte Carlo simulations in numeri-
cal applications. As the control processes of BSDEs determine hedging strategies,
the results of this chapter point out methods which can be used to establish imple-
mentable formulas for hedging strategies.
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