
Chapter 6
Nonlinear Expectations and g-Expectations

Abstract We investigate nonlinear expectations. We briefly discuss Choquet ex-
pectations and we focus on g-expectations defined by BSDEs. The connection be-
tween filtration-consistent nonlinear expectations and g-expectations is presented.
We study the properties of translation invariance, positive homogeneity, convexity
and sub-linearity of g-expectations and we show that these properties are determined
by the generator of the BSDE defining the g-expectation.

The original motivation for studying nonlinear expectations comes from the the-
ory of decision making. The Allais paradox proved that the linear expectation (the
expected value operator) might fail in an attempt to describe choices made by deci-
sion makers and the Ellsberg’s paradox disqualified the notion of linear probability
in representing beliefs of decision makers. It was shown that decisions made in the
real world contradicted optimal decisions based on additive probabilities and the ex-
pected utility theory. Consequently, economists and mathematicians begun to look
for a new notion of expectation.

A nonlinear expectation is an operator which preserves all essential properties
of the standard expected value operator except linearity. In this chapter we focus
on nonlinear expectations called g-expectations which are defined by BSDEs. In
Chap. 13 we use g-expectations to define dynamic risk measures which can be used
for actuarial and financial valuation.

6.1 Choquet Expectations

Before we study g-expectations, we briefly discuss Choquet expectations. It is well-
known that the expected value can be calculated by the formula

E[ξ ] =
∫ 0

−∞
(
Pr(ξ ≥ x) − 1

)
dx +

∫ ∞

0
Pr(ξ ≥ x)dx. (6.1)

The idea by Choquet (1953) was to replace an additive probability measure Pr(·)
with a non-additive capacity measure V (·). We can define a nonlinear operator in
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the following way

C[ξ ] =
∫ 0

−∞
(
V (ξ ≥ x) − 1

)
dx +

∫ ∞

0
V (ξ ≥ x)dx. (6.2)

The nonlinear operator (6.2) is called the Choquet expectation or the Choquet inte-
gral.

The key example of a non-additive capacity measure, often applied in insurance
and finance, is a distorted probability. We can define a non-additive capacity mea-
sure by distorting the original probability

V (ξ ≥ x) = Ψ
(
Pr(ξ ≥ x)

)
, (6.3)

where we choose a nonlinear function Ψ : [0,1] → [0,1] such that Ψ (0) = 0,
Ψ (1) = 1 and x �→ Ψ (x) is non-decreasing. The function Ψ is called a distortion.
The Wang transform is an important distortion function used for actuarial and finan-
cial applications, see Wang (2000). We remark that Value-at-Risk and Tail-Value-at-
Risk are examples of the Choquet expectations derived under distorted probabilities.

The idea behind the Choquet expectation and distorted probabilities is clear. Con-
sequently, Choquet expectations have found numerous applications in insurance and
financial mathematics. Unfortunately, it is very difficult to define a dynamic version
of a Choquet expectation. It turns out that BSDEs can be very useful for defining
dynamic nonlinear expectations.

6.2 Filtration-Consistent Nonlinear Expectations
and g-Expectations

We define a nonlinear expectation and a filtration-consistent nonlinear expectation,
see Coquet et al. (2002).

Definition 6.2.1 A functional E : L2(Ω,FT ,P;R) → R is called a nonlinear ex-
pectation if it satisfies

(i) the property of strict monotonicity:

ξ1 ≥ ξ2 ⇒ E [ξ1] ≥ E [ξ2],
ξ1 ≥ ξ2 and E [ξ1] = E [ξ2] ⇔ ξ1 = ξ2,

for all ξ1, ξ2 ∈ L
2(R),

(ii) the invariance property:

E [c] = c, for all c ∈ R.
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Definition 6.2.2 A nonlinear expectation E is called an F -consistent nonlinear ex-
pectation if for each ξ ∈ L

2(Ω,FT ,P;R) and t ∈ [0, T ] there exists a random vari-
able ζ ∈ L

2(Ω,Ft ,P;R) such that

E [ξ1A] = E [ζ1A], A ∈ Ft .

We remark that ζ is uniquely determined, see Lemma 3.1 in Coquet et al. (2002).
The random variable ζ is denoted by E [ξ |Ft ]. Notice that the definition of an F -
consistent nonlinear expectation is analogous to the definition of the standard linear
conditional expectation but in Definition 6.2.2 the expectation is taken under a non-
linear operator.

We state properties of F -consistent nonlinear expectations, see Coquet et al.
(2002).

Proposition 6.2.1 Let E be an F -consistent nonlinear expectation. The following
properties hold:

(a) E [E [ξ |Ft ]|Fs] = E [ξ |Fs] for all 0 ≤ s ≤ t ≤ T .
(b) E [ξ1A|Ft ] = 1AE [ξ |Ft ] for all 0 ≤ t ≤ T and A ∈ Ft .
(c) If ξ1 ≥ ξ2, then E [ξ1|Ft ] ≥ E [ξ2|Ft ] for all 0 ≤ t ≤ T . In addition, if

E [ξ1|Ft ] = E [ξ2|Ft ] a.s. for some t ∈ [0, T ], then ξ1 = ξ2.

Proposition 6.2.1 shows that all essential properties of the standard linear con-
ditional expectation, except linearity, are preserved under the notion of an F -
consistent nonlinear expectation.

From the modelling point of view, we should be able to generate F -consistent
nonlinear expectations in a feasible way. The next example shows one possible way
of generating F -consistent nonlinear expectations.

Example 6.1 Choose a continuous, strictly increasing function ϕ : R → R. The op-
erator

E [ξ |Ft ] = ϕ−1(
E

[
ϕ(ξ)|Ft

])
, 0 ≤ t ≤ T , (6.4)

is an F -consistent nonlinear expectation. The nonlinear expectation (6.4) can be
interpreted as the indifference price of ξ determined by an agent with utility ϕ, see
Royer (2006).

It turns out that F -consistent nonlinear expectations can be defined by nonlinear
BSDEs. In this chapter we study the BSDEs

Y(t) = ξ +
∫ T

t

g
(
s, Y (s),Z(s),U(s, .)

)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (6.5)

By a nonlinear BSDE we mean a BSDE with a nonlinear generator g.
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Definition 6.2.3 Consider g : Ω × [0, T ] ×R×R× L2
Q(R) →R such that

(i) g satisfies (A2) from Chap. 3,
(ii) g satisfies the inequality

g(ω, t, y, z, u) − g
(
ω, t, y, z,u′)

≤
∫
R

δy,z,u,u′
(t, x)

(
u(x) − u′(x)

)
Q(t, dx)η(t),

a.s., a.e. (ω, t) ∈ Ω × [0, T ], for all (y, z,u), (y, z,u′) ∈ R × R × L2
Q(R),

where δy,z,u,u′ : Ω × [0, T ] × R → (−1,∞) is a predictable process such
that the mapping t �→ ∫

R
|δy,z,u,u′

(t, x)|2Q(t, dx)η(t) is uniformly bounded
in (y, z,u,u′),

(iii) g(t, y,0,0) = 0 for all (t, y) ∈ [0, T ] ×R.

(a) We define the g-expectation Eg : L2(Ω,FT ,P;R) �→ R by

Eg[ξ ] = Y(0),

where Y(0) is the unique solution to the BSDE (6.5) with the generator g satis-
fying (i)–(iii) and the terminal condition ξ ∈ L

2(Ω,FT ,P;R).
(b) We define the conditional g-expectation Eg : L2(Ω,FT ,P;R) → L

2(Ω,Ft ,

P;R) by

Eg[ξ |Ft ] = Y(t), 0 ≤ t ≤ T ,

where Y(t) is the unique solution to the BSDE (6.5) with the generator g satis-
fying (i)–(iii) and the terminal condition ξ ∈ L

2(Ω,FT ,P;R).

Notice that for the g-expectation its dynamic version is naturally defined.
We state the first key result of this chapter.

Theorem 6.2.1 The g-expectation Eg is an F -consistent nonlinear expectation.

Proof The strict monotonicity of Eg follows from the comparison principle estab-
lished in Theorem 3.2.2. Since g(t, y,0,0) = 0, we can choose Y = c,Z = U = 0
as the unique solution to the BSDE (6.5) with ξ = c. Hence, the invariance property
of Eg holds. We now prove the F -consistency of Eg . Choose t ∈ [0, T ] and A ∈ Ft .
We investigate

Y(0) = Eg[ξ1A], Y ′(0) = Eg

[
Y(t)1A

]
,

where Y and Y ′ denote the unique solutions to the BSDEs

Y(u) = ξ1A +
∫ T

u

g
(
s, Y (s),Z(s),U(s)

)
ds

−
∫ T

u

Z(s)dW(s) −
∫ T

u

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ u ≤ T ,
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Y ′(u) = Y(t)1A +
∫ T

u

g
(
s, Y ′(s),Z′(s),U ′(s)

)
ds

−
∫ T

u

Z′(s)dW(s) −
∫ T

u

∫
R

U ′(s, z)Ñ(ds, dz), 0 ≤ u ≤ T .

Since g(t, y,0,0) = 0, we can put Y ′(s) = Y(t)1A, Z′(s) = U ′(s, z) = 0, (s, z) ∈
[t, T ] ×R. Consequently, we obtain the equations

Y(u) = Y(t) +
∫ t

u

g
(
s, Y (s),Z(s),U(s)

)
ds

−
∫ t

u

Z(s)dW(s) −
∫ t

u

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ u ≤ t,

Y ′(u) = Y(t)1A +
∫ t

u

g
(
s, Y ′(s),Z′(s),U ′(s)

)
ds

−
∫ t

u

Z′(s)dW(s) −
∫ t

u

∫
R

U ′(s, z)Ñ(ds, dz), 0 ≤ u ≤ t.

Consider the BSDE

Y ′′(u) = ξ +
∫ T

u

g
(
s, Y ′′(s),Z′′(s),U ′′(s)

)
ds

−
∫ T

u

Z′′(s)dW(s) −
∫ T

u

∫
R

U ′′(s, z)Ñ(ds, dz), 0 ≤ u ≤ T .

Since g(t, y,0,0) = 0 we can also put Y(s) = Y ′′(s)1A, Z(s) = Z′′(s)1A, U(s, z) =
U ′′(s, z)1A (s, z) ∈ [t, T ] ×R. Hence, we end up with the equations

Y(u) = Y ′′(t)1A +
∫ t

u

g
(
s, Y (s),Z(s),U(s)

)
ds

−
∫ t

u

Z(s)dW(s) −
∫ t

u

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ u ≤ t,

Y ′(u) = Y ′′(t)1A +
∫ t

u

g
(
s, Y ′(s),Z′(s),U ′(s)

)
ds

−
∫ t

u

Z′(s)dW(s) −
∫ t

u

∫
R

U ′(s, z)Ñ(ds, dz), 0 ≤ u ≤ t.

By uniqueness of solutions we finally conclude that Y(s) = Y ′(s), Z(s) = Z′(s),
U(s, z) = U ′(s, z), (s, z) ∈ [0, t] × R. Hence, Eg is a filtration-consistent expecta-
tion with the conditional expectation Eg[ξ |Ft ] = Y(t). �

Any g-expectation clearly satisfies the properties from Proposition 6.2.1, which
can now be derived from properties of BSDEs.
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Example 6.2 If we consider a BSDE with zero generator, then the g-expectation
coincides with the linear conditional expectation. If we consider the BSDE from
Proposition 3.3.2 or 3.4.2, then the g-expectation is a filtration-consistent nonlinear
expectation.

We are now interested in a converse of Theorem 6.2.1. The first results in this
field were proved by Coquet et al. (2002) and Rosazza Gianin (2006) for the Brow-
nian filtration. We present the result proved by Royer (2006) for the filtration gener-
ated by a Lévy process. First, we introduce two particular types of g-expectations.

Proposition 6.2.2 Consider the natural filtration F generated by a Lévy process
with a Lévy measure ν. For α > 0 and −1 < β ≤ 0 we define the generators

g∗
α,β(t, z, u) = α|z| + α

∫
R

(
1 ∧ |x|)u+(x)ν(dx) − β

∫
R

(
1 ∧ |x|)u−(x)ν(dx),

g∗∗
α,β(t, z, u) = −α|z| − α

∫
R

(
1 ∧ |x|)u−(x)ν(dx) + β

∫
R

(
1 ∧ |x|)u+(x)ν(dx).

The corresponding g-expectations have the representations

Eg∗
α,β

[ξ |Ft ] = sup
Q∈Q

E
Q[ξ |Ft ], 0 ≤ t ≤ T ,

Eg∗∗
α,β

[ξ |Ft ] = inf
Q∈Q

E
Q[ξ |Ft ], 0 ≤ t ≤ T ,

where

Q =
{
Q ∼ P,

dQ

dP

∣∣∣Ft = Mφ,κ(t), 0 ≤ t ≤ T

}
,

dMφ,κ(t)

Mφ,κ(t−)
= φ(t)dW(t) +

∫
R

κ(t, x)Ñ(dx, dt), Mφ,κ(0) = 1,

and (φ, κ) are F -predictable processes satisfying
∣∣φ(t)

∣∣ ≤ α, κ(t, x) > −1,

κ+(t, x) ≤ α
(
1 ∧ |x|), κ−(t, x) ≤ −β

(
1 ∧ |x|), (t, x) ∈ [0, T ] ×R.

Proof The result can be derived by following the arguments from Propositions 3.3.2
and 3.4.2, see also Proposition 3.6 in Royer (2006). �

We now state the second key result of this chapter, see Theorem 4.6 in Royer
(2006).

Theorem 6.2.2 Consider the natural filtration F generated by a Lévy process with
a Lévy measure ν. Let E be an F -consistent nonlinear expectation such that
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(i) for all ξ1, ξ2 ∈ L
2(Ω,FT ,P;R)

E [ξ1 + ξ2] − E [ξ1] ≤ Eg∗
α,β

[ξ2], with some α ≥ 0, −1 < β ≤ 0,

where Eg∗
α,β

is the g-expectation defined in Proposition 6.2.2,

(ii) for all ξ1 ∈ L
2(Ω,FT ,P;R) and ξ2 ∈ L

2(Ω,Ft ,P;R)

E [ξ1 + ξ2|Ft ] = E [ξ1|Ft ] + ξ2, 0 ≤ t ≤ T .

Then, there exists a function g : Ω × [0, T ] × R × L2
Q → R and the g-expectation

Eg such that

E [ξ |Ft ] = Eg[ξ |Ft ], ξ ∈ L
2(Ω,FT ,P;R), 0 ≤ t ≤ T .

Moreover, the following properties hold:

(i) g satisfies (A2) from Chap. 3,
(ii) g satisfies the inequality

g(ω, t, z, u) − g
(
ω, t, z, u′) ≤

∫
R

δz,u,u′
(t, x)

(
u(x) − u′(x)

)
ν(dx),

a.s., a.e. (ω, t) ∈ Ω ×[0, T ], for all (z, u), (z, u′) ∈ R×L2
Q(R), where δz,u,u′ :

Ω × [0, T ] × R → (−1,∞) is a predictable process such that δz,u,u′
(t, x) >

−1 and |δz,u,u′
(t, x)| ≤ K(1 ∧ |x|) for all (t, x, z, u,u′) ∈ [0, T ] × R × R ×

L2
Q × L2

Q,
(iii) g(t,0,0) = 0 for all t ∈ [0, T ],
(iv) g satisfies the growth conditions

g∗∗
α,β(t, z, u) ≤ g(t, z, u) ≤ g∗

α,β(t, z, u),

for (t, z, u) ∈ [0, T ] ×R× L2
Q(R).

The first condition of Theorem 6.2.2 is called the domination condition. We re-
mark that a large class of nonlinear expectations satisfies the domination condition,
see Rosazza Gianin (2006) and Royer (2006). The second condition requires transla-
tion invariance of the nonlinear expectation with respect to “known” pay-offs, which
is a reasonable assumption provided that discounting of pay-offs is not allowed in
the valuation, see Sect. 13.1.

The importance of Theorem 6.2.2 is obvious. Theorem 6.2.2 shows that all
filtration-consistent nonlinear expectations which satisfy the domination condition
and the translation invariance property can be derived from BSDEs. Consequently,
when we study “regular” filtration-consistent nonlinear expectations we can focus
on g-expectations. Notice that the generator derived under the assumptions of The-
orem 6.2.2 depends only on the control processes (Z,U) and is independent of Y .
This is the consequence of the assumed translation invariance property for the non-
linear expectation.
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It is clear that the generator g of a BSDE plays a crucial role in defining a g-
expectation. Some important properties of g-expectations can be related to proper-
ties of generators g.

Proposition 6.2.3 Let Eg be a g-expectation.

(a) If g is independent of y, then Eg is translation invariant

Eg[ξ + c|Ft ] = Eg[ξ |Ft ] + c, c ∈ R, 0 ≤ t ≤ T .

(b) If g is positively homogenous, then Eg is positively homogenous

Eg[cξ |Ft ] = cEg[ξ |Ft ], c > 0, 0 ≤ t ≤ T .

(c) If g is convex

g
(
t, cy1 + (1 − c)y2, cz1 + (1 − c)z2, cu1 + (1 − c)u2

)

≤ cg(t, y1, z1, u1) + (1 − c)g(t, y2, z2, u2),

c ∈ (0,1), (t, y1, z1, u1), (t, y2, z2, u2) ∈ [0, T ] ×R×R× L2
Q,

then Eg is convex

Eg

[
cξ1 + (1 − c)ξ2|Ft

]

≤ cEg[ξ1|Ft ] + (1 − c)Eg[ξ2|Ft ], c ∈ (0,1), 0 ≤ t ≤ T .

(d) If g is sub-linear: sub-additive

g(t, y1 + y2, z1 + z2, u1 + u2)

≤ g(t, y1, z1, u1) + g(t, y2, z2, u2),

(t, y1, z1, u1), (t, y2, z2, u2) ∈ [0, T ] ×R×R× L2
Q,

and positively homogenous, then Eg is sub-linear: sub-additive

Eg[ξ1 + ξ2|Ft ] ≤ Eg[ξ1|Ft ] + Eg[ξ2|Ft ], 0 ≤ t ≤ T ,

positively homogenous.

Proof (a) We deal with two BSDEs

Y ξ+c(t) = ξ + c +
∫ T

t

g
(
s,Zξ+c(s),Uξ+c(s)

)
ds

−
∫ T

t

Zξ+c(s)dW(s) −
∫ T

t

∫
R

Uξ+c(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,
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Y ξ (t) = ξ +
∫ T

t

g
(
s,Zξ (s),Uξ (s)

)
ds

−
∫ T

t

Zξ (s)dW(s) −
∫ T

t

∫
R

Uξ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

We can easily conclude that Y ξ+c(t) = Y ξ (t) + c, Zξ+c(t) = Zξ (t), Uξ+c(t, z) =
Uξ(t, z), (t, z) ∈ [0, T ] ×R.

(b) We deal with two BSDEs

Y cξ (t) = cξ +
∫ T

t

g
(
s, Y cξ (s),Zcξ (s),Ucξ (s)

)
ds

−
∫ T

t

Zcξ (s)dW(s) −
∫ T

t

∫
R

Ucξ (s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

Y ξ (t) = ξ +
∫ T

t

g
(
s, Y ξ (s),Zξ (s),Uξ (s)

)
ds

−
∫ T

t

Zξ (s)dW(s) −
∫ T

t

∫
R

Uξ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

We can easily conclude that Y cξ (t) = cY ξ (t), Zcξ (t) = cZξ (t), Ucξ (t, z) =
cUξ (t, z), (t, z) ∈ [0, T ] ×R.

(c) We deal with three BSDEs

Y cξ1+(1−c)ξ2(t) = cξ1 + (1 − c)ξ2

+
∫ T

t

g
(
s, Y cξ1+(1−c)ξ2(s),Zcξ1+(1−c)ξ2(s),Ucξ1+(1−c)ξ2(s)

)
ds

−
∫ T

t

Zcξ1+(1−c)ξ2(s)dW(s)

−
∫ T

t

∫
R

Ucξ1+(1−c)ξ2(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

Y ξi (t) = ξi +
∫ T

t

g
(
s, Y ξi (s),Zξi (s),Uξi (s)

)
ds

−
∫ T

t

Zξi (s)dW(s) −
∫ T

t

∫
R

Uξi (s, z)Ñ(ds, dz), i = 1,2, 0 ≤ t ≤ T .

We introduce the processes Y(t) = cY ξ1(t) + (1 − c)Y ξ2(t), Z(t) = cZξ1(t) + (1 −
c)Zξ2(t), U(t, z) = Uξ1(t, z) + (1 − c)Uξ2(t, z). It is straightforward to notice that
(Y,Z,U) satisfies the BSDE

Y(t) = cξ1 + (1 − c)ξ2

+
∫ T

t

(
cg

(
s, Y ξ1(s),Zξ1(s),Uξ1(s)

)
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+ (1 − c)g
(
s, Y ξ2(s),Zξ2(s),Uξ2(s)

))
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (6.6)

Since g satisfies

cg
(
s, Y ξ1(s),Zξ1(s),Uξ1(s)

) + (1 − c)g
(
s, Y ξ2(s),Zξ2(s),Uξ2(s)

)
≥ g

(
s, Y (s),Z(s),U(s)

)
, 0 ≤ s ≤ T ,

the BSDE (6.6) can be written as

Y(t) = cξ1 + (1 − c)ξ2

+
∫ T

t

(
g
(
s, Y (s),Z(s),U(s)

)

+ h
(
s, Y ξ1(s),Zξ1(s),Uξ1(s), Y ξ2(s),Zξ2(s),Uξ2(s)

))
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

with a nonnegative function h. By the comparison principle we get Y cξ1+(1−c)x2(t) ≤
Y(t) = cY ξ1(t) + (1 − c)Y ξ2(t), 0 ≤ t ≤ T .

(d) Adapting the arguments from (b) and (c), we can prove the assertion. �

The properties from Proposition 6.2.3 are used in Chap. 13 where we deal with
dynamic risk measures.
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