
Chapter 5
Numerical Methods for FBSDEs

Abstract We investigate numerical methods for forward-backward stochastic dif-
ferential equations driven by a Brownian motion and a compensated Poisson random
measure. We consider three approaches to solving FBSDEs. We apply discrete-time
approximations and we derive recursive representations of the solution involving
conditional expected values. In order to estimate the conditional expected values,
we use Least Squares Monte Carlo which overcomes nested Monte Carlo simula-
tions. In the case of a FBSDE driven by a Brownian motion and a compensated
Poisson process we replace the original driving noises by discrete-space martin-
gales. We also use the connection with partial integro-differential equations and we
present an explicit-implicit finite difference method for solving a PIDE.

We continue the study of (decoupled) forward-backward stochastic differential
equations driven by a Brownian motion and a compensated Poisson random mea-
sure, which we introduced in the previous chapter. In most cases we cannot derive
the solution to a FBSDE in an explicit form and we have to apply a numerical
method to solve a FBSDE. In this chapter we investigate three approaches to solv-
ing FBSDEs numerically.

5.1 Discrete-Time Approximation and Least Squares Monte
Carlo

Let assumptions (B1)–(B5) from Chap. 4 hold. We deal with the forward-backward
stochastic differential equation

X (t) = x +
∫ t

0
μ

(
X (s−)

)
ds +

∫ t

0
σ
(
X (s−)

)
dW(s)

+
∫ t

0

∫
R

γ
(
X (s−), z

)
Ñ(ds, dz), 0 ≤ t ≤ T ,

(5.1)

Y(t) = g
(
X (T )

) +
∫ T

t

f

(
s,X (s−), Y (s−),Z(s),

∫
R

U(s, z)δ(z)ν(dz)

)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .
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We denote

Ψ (t) =
∫
R

U(t, z)δ(z)ν(dz), 0 ≤ t ≤ T .

First, we consider the case of the random measure N generated by a compound
Poisson process.

We aim to solve the FBSDE (5.1). An intuitive idea is to discretize the forward
and the backward equation in the spirit of the Euler method. We choose a regular
time grid π = {ti = ih, i = 0,1, . . . , n} with step h = T

n
. The solution to the forward

equation (5.1) is approximated by

X n(0) = x,

X n(ti+1) = X n(ti) + μ
(
X n(ti)

)
h + σ

(
X n(ti)

)
�W(i + 1) (5.2)

+
∫
R

γ
(
X n(ti), z

)
Ñ

(
(ti , ti+1], dz

)
, i = 0, . . . , n − 1.

where �W(i + 1) = W(ti+1) − W(ti) denotes the increment of the Brownian
motion. Clearly, there exists a unique F -adapted, square integrable solution X n

to (5.2). We set X n(t) = X n(ti), ti ≤ t < ti+1. If we apply the Euler-type dis-
cretization to the backward equation (5.1), we obtain

Yn(T ) = g
(
X n(T )

)
,

Y n(ti) = Yn(ti+1) + f

(
ti ,X

n(ti), Y
n(ti),Z

n(ti),

∫
R

Un(ti , z)δ(z)ν(dz)

)
h

− Zn(ti)�W(i + 1) −
∫
R

Un(ti , z)Ñ
(
(ti , ti+1], dz

)
, i = n − 1, . . . ,0.

(5.3)

Unfortunately, the discrete-time equation (5.3) does not have a solution since the
time-discretized Brownian motion and compound Poisson process do not have the
predictable representation property, see Briand et al. (2002). However, we use the
following backward recursion

Yn(T ) = g
(
X n(T )

)
,

Zn(ti) = 1

h
E

[
Yn(ti+1)�W(i + 1)|Fti

]
, i = n − 1, . . . ,0,

Ψ n(ti) = 1

h
E

[
Yn(ti+1)

∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]
, i = n − 1, . . . ,0, (5.4)

Yn(ti) = E
[
Yn(ti+1)|Fti

]
+ f

(
ti ,X

n(ti), Y
n(ti),Z

n(ti),Ψ
n(ti)

)
h, i = n − 1, . . . ,0.

We set Yn(t) = Yn(ti), Zn(t) = Zn(ti), Ψ n(t) = Ψ n(ti), ti ≤ t < ti+1. The back-
ward recursion (5.4) can be derived by a heuristic reasoning. Let us first recall that
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for square integrable martingales M1 and M2 we have

E
[
M1(T )M2(T )

] = E
[[M1,M2](T )

]
, (5.5)

see Corollary II.27.3 in Protter (2004). If we multiply (5.3) by �W(i + 1) and∫
R

δ(z)Ñ((ti , ti+1], dz), take the conditional expected value and use (5.5), then we
obtain

E
[
Yn(ti+1)�W(i + 1)|Fti

] = E
[
Zn(ti)|�W(i + 1)|2|Fti

] = Zn(ti)h,

E

[
Yn(ti+1)

∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]

= E

[∫
R

Un(ti , z)Ñ
(
(ti , ti+1], dz

)∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]

= E

[[∫ .

ti

∫
R

Un(ti , z)Ñ(dt, dz),

∫ .

ti

∫
R

δ(z)Ñ(dt, dz)

]
(ti+1)|Fti

]

= E

[∫
R

Un(ti , z)δ(z)N
(
(ti , ti+1], dz

)|Fti

]

=
∫
R

Un(ti, z)δ(z)ν(dz)h = Ψ n(ti)h,

and the formulas for Zn,Ψ n can be established. If we take the condition expected
value on both sides of (5.3), then the formula for Yn can be established.

The next theorem justifies the approximations (5.2) and (5.4), see Theorem 2.1,
Corollary 2.1 and Remark 2.7 in Bouchard and Elie (2008).

Theorem 5.1.1 Consider the FBSDE (5.1) and the random measure N generated
by a compound Poisson process. Assume that (B2)–(B5) from Sect. 4.1 hold and
let the generator f be 1/2-Hölder continuous in t . We deal with the approxima-
tions (5.2) and (5.4) of the solution to the FBSDE (5.1). We have

max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣X (t) − X n(ti)

∣∣2
]

+ max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣Y(t) − Yn(ti)

∣∣2
]

+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z(t) − Zn(ti)
∣∣2

dt

]
≤ K

1

n
,

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Ψ (t) − Ψ n(ti)
∣∣2

dt

]
≤ K

(
1

n

)1−ε

, ε > 0.

In addition, if for each z ∈ R the mapping x �→ γ (x, z) is differentiable and
∣∣γx(x, z) + 1

∣∣ ≥ K > 0, (x, z) ∈ R×R,
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then

max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣X (t) − X n(ti)

∣∣2
]

+ max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣Y(t) − Yn(ti)

∣∣2
]

+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z(t) − Zn(ti)
∣∣2

dt

]

+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Ψ (t) − Ψ n(ti)
∣∣2

dt

]
≤ K

1

n
.

We remark that deriving Yn from (5.4) involves solving a fixed point equation.
For a Lipschitz continuous generator the fixed point procedure of solving (5.4) has
a convergence rate of 1/n. Hence, numerical cost is small. To overcome the fixed
point procedure, we can use the following scheme

Yn(T ) = g
(
X n(T )

)
,

Zn(ti) = 1

h
E

[
Yn(ti+1)�W(i + 1)|Fti

]
, i = n − 1, . . . ,0,

Ψ n(ti) = 1

h
E

[
Yn(ti+1)

∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]
, i = n − 1, . . . ,0,

Y n(ti) = E
[
Yn(ti+1)

+ f
(
ti ,X

n(ti), Y
n(ti+1),Z

n(ti),Ψ
n(ti)

)
h|Fti

]
, i = n − 1, . . . ,0,

but more complicated conditional expected values have to be calculated instead.
The algorithm (5.4) is still not an implementable scheme since the conditional ex-

pectations have to be estimated. Performing Monte Carlo simulations at each point ti
would lead to so-called nested simulations and an enormous numerical cost. Least
Squares Monte Carlo can overcome nested simulations.

By the Markov property the conditional expected values in (5.4) can be repre-
sented as functions of the state process X . The idea is to approximate the unknown
functions by their projections on finite-dimensional function bases. At each point
ti we choose 3 function bases (bl,i (·))l=0,1,2 and we approximate each conditional
expected value in a vector space spanned by the basis. Each basis bl,i(·) is a dl,i -
dimensional vector of scalar functions. The vector space spanned by bl,i is denoted

by αbl,i(·) = ∑dl,i

k=1 αkb
k
l,i (·) where α ∈R

dl,i .
We can use the Least Squares Monte Carlo algorithm:

1. Simulate L independent copies of (�Wm(i + 1), i = 0,1, . . . , n − 1, m =
1, . . . ,L) and (Ñm((ti , ti+1], .), i = 0,1, . . . , n − 1, m = 1, . . . ,L),

2. Simulate L independent copies of (X n,m(ti), i = 1, . . . , n, m = 1, . . . ,L),
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3. Set Ŷ (T ,X n,m(T )) = g(X n,m(T )) for m = 1, . . . ,L,
4. Choose function bases (bl,i (.))l=0,1,2,i=0,1,...,n−1,
5. Going backwards, for i = n − 1, . . . ,0 solve the least squares regression prob-

lems

α1,i = arg inf
α

{
1

L

L∑
i=1

∣∣∣∣ 1

h
Ŷ

(
ti+1,X

n,m(ti+1)
)
�Wm(i +1)−αb1,i

(
X n,m(ti)

)∣∣∣∣
2
}

,

α2,i = arg inf
α

{
1

L

L∑
i=1

∣∣∣∣ 1

h
Ŷ

(
ti+1,X

n,m(ti+1)
) ∫

R

δ(z)Ñm
(
(ti , ti+1], dz

)

− αb2,i

(
X n,m(ti)

)∣∣∣∣
2
}

,

6. Set Ẑ(ti ,X n,m(ti)) = α1,ib1,i (X n,m(ti)) and Ψ̂ (ti ,X n,m(ti)) = α2,i

× b2,i (X n,m(ti)),
7. Solve the least squares regression problem

α0,i = arg inf
α

{
1

L

L∑
i=1

∣∣Ŷ (
ti+1,X

n,m(ti+1)
) + f

(
ti ,X

n,m(ti),

Ŷ
(
ti+1,X

n,m(ti+1)
)
, Ẑ

(
ti ,X

n,m(ti)
)
, Ψ̂

(
ti ,X

n,m(ti)
))

h

− αb0,i

(
X n,m(ti)

)∣∣2

}
,

8. Set Ŷ (ti ,X h,m(ti)) = α0,ib0,i (X n,m(ti)),
9. Continue till t0 = 0.

Polynomials, hypercubes and Voronoi partitions are usually used as basis func-
tions, see Gobet et al. (2005). Notice that when we apply the Least Squares Monte
Carlo algorithm we additionally face the error of approximating the conditional ex-
pectations by estimated regression functions. The total error of the Least Squares
Monte Carlo algorithm depends on the number of time steps n, the number of simu-
lations L and the number of basis functions d . The total error is studied in Bouchard
and Touzi (2004), Gobet et al. (2005), Gobet et al. (2006), Gobet and Lemor (2006).
We also point out that some truncation procedures can be useful in the final appli-
cation of the algorithm, see Gobet et al. (2005).

We comment on one modification of the algorithm presented. It is shown by
Bouchard and Touzi (2004), in the case of BSDEs driven by Brownian motions,
that the error of approximating the conditional expectation by an estimator explodes
when the mesh of time partition goes to zero, given the accuracy of the estimator. In
order to control this approximation error one is forced to simulate more paths as the
time partition becomes finer. This significantly increases computational cost. The
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idea of Bender and Denk (2007), who also investigate BSDEs driven by Brownian
motions, is first to approximate the solution (Y,Z) by the Picard iterations

Y I (t) = g
(
X (T )

) +
∫ T

t

f
(
s,X (s), Y I−1(s),ZI−1(s)

)
ds

−
∫ T

t

ZI (s)dW(s), 0 ≤ t ≤ T , (5.6)

and to apply the algorithm (5.4) to derive (Y I ,ZI ). The Picard procedure clearly
introduces an additional error, which converges to zero at geometric rate. The ad-
vantage of the scheme proposed by Bender and Denk (2007) is that the error of
approximating of the conditional expectation by an estimator is reduced and this er-
ror does not explode when the mesh of time partition tends to zero and the number
of the Picard iteration goes to infinity.

Let us now comment on the case when a FBSDE is driven by a general com-
pensated Poisson random measure. It is known that we cannot simulate small jumps
of a Lévy process with an infinite Lévy measure, see Chap. 6 in Cont and Tankov
(2004). The usual procedure is to cut off small jumps of a Lévy process and approx-
imate them by an independent Brownian motion. After cutting off small jumps, we
can investigate a FBSDE driven by a compensated compound Poisson process and
we can apply the algorithm presented in this chapter, see Aazizi (2011) for details.

Finally, we remark that in many applications we end up with a BSDE with zero
generator or with a BSDE with generator independent of (Y,Z,U) for which we
can derive representations of the solution Y and the control processes (Z,U) in
the form of conditional expectations of the state process, see Proposition 4.1.2 and
Chap. 8. In those cases the Monte Carlo algorithm is much simpler.

5.2 Discrete-Time and Discrete-Space Martingale
Approximation

We deal with the forward-backward stochastic differential equation

X (t) = x +
∫ t

0
μ

(
X (s−)

)
ds +

∫ t

0
σ
(
X (s−)

)
dW(s)

+
∫ t

0
γ
(
X (s−)

)
Ñ(ds), 0 ≤ t ≤ T ,

Y (t) = g
(
X (T )

) +
∫ T

t

f
(
s,X (s−), Y (s−),Z(s),U(s)

)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T ,

(5.7)
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where the measure N is the jump measure of a Poisson process with intensity λ. We
consider a discrete-time approximation to (5.7) and we approximate the Brownian
motion and the compensated random measure by two discrete-space martingales.

We choose a regular time grid π = {ti = ih, i = 0,1, . . . , n} with step h = T
n

. We

define two random walks Wn := (Wn(k), k = 0,1, . . . , n) and Ñn := (Ñn(k), k =
0,1, . . . , n) by

Wn(0) = 0, Wn(k) = √
h

k∑
i=1

ξn
i , k = 1,2, . . . , n,

Ñn(0) = 0, Ñn(k) =
k∑

i=1

ζ n
i , k = 1,2, . . . , n,

(5.8)

where ξn
1 , . . . , ξn

n are independent Bernoulli random variables with probabilities

P
(
ξn
k = 1

) = P
(
ξn
k = −1

) = 1

2
,

and ζ n
1 , . . . , ζ n

n are independent Bernoulli random variables with probabilities

P
(
ζ n
k = e−λh − 1

) = 1 − P
(
ζ n
k = e−λh

) = e−λh.

We also introduce the filtration F n
k = σ(ξn

1 , . . . , ξn
k , ζ n

1 , . . . , ζ n
k ), k = 1, . . . , n. The

random walks Wn and Ñn are F n-discrete-time-space-martingales.
The first result shows that the random walks are good approximations of the

Brownian motion and the compensated Poisson process, see Lemma 3 in Lejay et al.
(2010).

Proposition 5.2.1 The processes (Wn([ t
h
]), Ñn([ t

h
]), 0 ≤ t ≤ T ) converge in the

J1-Skorokhod topology in probability to (W(t), Ñ(t), 0 ≤ t ≤ T ) as n → ∞.

It is intuitive to approximate the solution to the forward equation (5.7) in the
following way

X n(0) = x,

X n(ti+1) = X n(ti) + μ
(
Xn(ti)

)
h + √

hσ
(
X n(ti)

)
ξn
i+1 (5.9)

+ γ
(
X n(ti)

)
ζ n
i+1, i = 0,1, . . . , n − 1.

Clearly, there exists a unique F n-adapted, square integrable solution X n to (5.9).
We set X n(t) = X n(ti), ti ≤ t < ti+1. In Sect. 5.1 we claim that the time-
discretized Brownian motion and compound Poisson process do not have the pre-
dictable representation property. However, in some cases an orthogonal martingale
term can be added to recover the predictable representation property, see Briand
et al. (2002) and Lejay et al. (2010). We approximate the solution to the backward
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stochastic differential equation (5.7) by solving the backward stochastic difference
equation

Yn(T ) = g
(
X n(T )

)
,

Y n(ti) = Yn(ti+1) + f
(
ti , Y

n(ti),Z
n(ti),U

n(ti)
)
h

− √
hZn(ti)ξ

n
i+1 − Un(ti)ζ

n
i+1 − V n(ti)ς

n
i+1, i = 0,1, . . . , n − 1,

(5.10)

where (ςn
i , i = 1, . . . , n) denotes the increments of a third orthogonal discrete-time-

space martingale. By the predictable representation property, for an F n-measurable
X n(T ) there exists a unique F n-adapted solution (Y n,Zn,Un,V n) to the back-
ward equation (5.10). We can also derive that solution. Multiplying both sides of
(5.10) by ξn

i+1 or ζ n
i+1 and taking the conditional expected values, we obtain the

representations

Yn(T ) = g
(
X n(T )

)
,

Zn(ti) = 1√
h
E

[
Yn(ti+1)ξ

n
i+1|F n

i

]
, i = n − 1, . . . ,0,

Un(ti) = 1

e−λh(1 − e−λh)
E

[
Yn(ti+1)ζ

n
i+1|F n

i

]
, i = n − 1, . . . ,0, (5.11)

Yn(ti) = E
[
Yn(ti+1)|F n

i

]
+ f

(
ti ,X

n(ti), Y
n(ti),Z

n(ti),U
n(ti)

)
h, i = n − 1, . . . ,0.

We set Yn(t) = Yn(ti), Zn(t) = Zn(ti), Un(t) = Un(ti), ti ≤ t < ti+1. The process
V n can also be derived from (5.10) but it is not needed for the approximation of
the solution to (5.7). Again, a fixed point procedure has to be applied to derive Yn

from (5.11).
We state the main result of this chapter, see Theorem 1 and Proposition 5 in Lejay

et al. (2010).

Theorem 5.2.1 Consider the FBSDE (5.7) and the random measure N generated
by a Poisson process. Assume that (B2)–(B5) from Sect. 4.1 hold and let the gener-
ator f satisfy

∣∣f (t, x, y, z, u) − f
(
t ′, x′, y′, z′, u′)∣∣

≤ ϕ
(
t ′ − t

) + K
(∣∣x − x′∣∣ + ∣∣y − y′∣∣ + ∣∣z − z′∣∣ + ∣∣u − u′∣∣),

for all (t, x, y, z,u), (t ′, x′, y′, z′, u′) ∈ [0, T ] × R × R × R × R, where ϕ is a
bounded, non-decreasing, continuous function such that ϕ(0) = 0. We deal with
the approximations (5.9) and (5.11) of the solution to the FBSDE (5.7).

(a) The process X n converges in the J1-Skorokhod topology in probability to X
as n → ∞.
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(b) The processes (Y n,
∫ .

0 Zn(s)ds,
∫ .

0 Un(s)ds) converge in the J1-Skorokhod
topology in probability to (Y,

∫ .

0 Z(s)ds,
∫ .

0 U(s)ds) as n → ∞.

The efficiency of the algorithm is studied numerically in Lejay et al. (2010).
In the discrete filtration F n it is straightforward to calculate the conditional ex-

pected values in (5.11). This is the key advantage of the approximation by discrete-
space martingales compared to the Least Squares Monte Carlo method. We can use
the formula

E
[
F

(
ξn

1 , . . . , ξn
k , ξn

k+1, ζ
n
1 , . . . , ζ n

k , ζ n
k+1

)|F n
k

]

= F
(
ξn

1 , . . . , ξn
k ,1, ζ n

1 , . . . , ζ n
k , e−λh − 1

)e−λh

2

+ F
(
ξn

1 , . . . , ξn
k ,−1, ζ n

1 , . . . , ζ n
k , e−λh − 1

)e−λh

2

+ F
(
ξn

1 , . . . , ξn
k ,1, ζ n

1 , . . . , ζ n
k , e−λh

)1 − e−λh

2

+ F
(
ξn

1 , . . . , ξn
k ,−1, ζ n

1 , . . . , ζ n
k , e−λh

)1 − e−λh

2
.

In a low dimension the random walk approximation can provide a numerically effi-
cient alternative to the Monte Carlo simulation. However, complexity becomes very
large in multidimensional problems.

5.3 Finite Difference Method

In Sect. 4.2 we establish the connection between the solution to a FBSDE and the
solution to a PIDE. The results of that chapter show that in order to derive the
solution to the BSDE (4.5) or (5.1) we can solve the PIDE

− ut (t, x) − L u(t, x)

− f
(
t, x, u(t, x), ux(t, x)σ (x),J u(t, x)

) = 0, (t, x) ∈ [0, T ) ×R,

u(T , x) = g(x), x ∈ R.

(5.12)

We can apply a finite difference method to solve (5.12).
Let the random measure N be generated by a compound Poisson process. In order

to construct a finite difference scheme for (5.12), we have to consider the following
steps:

• Localization: the PIDE (5.12) is given on the unbounded domain R. We reduce
the original domain to a bounded domain [−A,A] and we impose boundary con-
ditions. The domain of the integral in the operator J is localized to [−B,B].



110 5 Numerical Methods for FBSDEs

• Discretization in space and time: we choose discrete grids tk = T
n
k, k =

0,1, . . . , n, and xi = −A + 2A
m

i, i = 0,1, . . . ,m.
• Approximation of the derivatives: we use finite differences.
• Approximation of the integral in the operator J : we use the trapezoidal quadra-

ture rule.

If we deal with a Poisson random measure N with an infinite Lévy measure, then
an additional step is needed to approximate small jumps of a Lévy process by an
independent Brownian motion. Consequently, we end up with a random measure N

generated by a compound Poisson process.
Using the results from Sect. 12.4 in Cont and Tankov (2004), we can state the

following explicit-implicit scheme for solving the PIDE (5.12):

1. Choose n and m which define the spatial and time grid steps: �t = T
n

and
�x = 2A

m
,

2. Set un,m(tn, xi) = g(xi) and extend the grid values to all x ∈ [−A,A] by linear
interpolation,

3. Going backward, for k = n−1, . . . ,0 determine the grid values u(tk, xi) by solv-
ing the difference equation

0 = un,m(tk+1, xi) − un,m(tk, xi)

�t
+

(
μ(xi)

−
m∑

j=0

γ (xi, zj )ν
(
(zj − 1/2, zj + 1/2])

)
un,m(tk, xi+1) − un,m(tk, xi)

�x

+ 1

2
σ 2(xi)

un,m(tk, xi+1) − 2un,m(tk, xi) + un,m(tk, xi−1)

|�x|2

+
m∑

j=0

(
un,m

(
tk+1, xi + γ (xi, zj )

) − un,m(tk+1, xi)
)
ν
(
(zj − 1/2, zj + 1/2])

+ f

(
tk+1, xi, u

n,m(tk+1, xi), σ (xi)
un,m(tk+1, xi+1) − un,m(tk+1, xi)

�x
,

m∑
j=0

(
un,m

(
tk+1, xi + γ (xi, zj )

) − un,m(tk+1, xi)
)

· δ(zj )ν
(
(zj − 1/2, zj + 1/2])

)
, (5.13)

where zj = −B + 2B
m

j, j = 0,1, . . . ,m, and extend the grid values to all x ∈
[−A,A] by linear interpolation.
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The implicit scheme is used for the differential operator and the explicit scheme is
used for the integral operator. Convergence of explicit-implicit schemes for PIDEs
is discussed in Sect. 12.4 in Cont and Tankov (2004).

We point out that solving a PIDE by a finite difference method is efficient in low
dimensions (when we deal with few state processes). Least Squares Monte Carlo
algorithms perform much better than finite difference methods in high dimensions.

Since in actuarial and financial applications we deal with many risk factors and
we consider multidimensional state processes, we can conclude that BSDEs and
Monte Carlo methods are more efficient than PDEs (HJB equations) and finite dif-
ference methods in solving applied problems. It should be noticed that in many cases
the solution to a problem does not involve all control processes of the BSDE and
we do not have to estimate all expected values in the algorithms (5.4), (5.11), which
simplifies numerical implementations of the algorithms.

Bibliographical Notes The Malliavin calculus plays an important role in prov-
ing convergence results for discrete-time approximations of BSDEs. Zhang (2004)
was the first who applied the Malliavin calculus to prove path regularity of the solu-
tion and convergence of a discrete-time approximation under a deterministic regular
time mesh. Bouchard and Elie (2008) followed the arguments from Zhang (2004)
and showed path regularity and convergence for BSDEs with Poisson jumps. Var-
ious modifications of the Least Squares Monte-Carlo algorithm can be found in
Gobet et al. (2006), Gobet and Lemor (2006). An alternative to the Least Square
Monte Carlo is to apply Malliavin weights, see Bouchard et al. (2004). A compar-
ison of the regression based approach, the Malliavin weights and the random walk
approximation can be found in Bouchard and Warin (2010). Convergence results for
discrete-time and martingale approximations to BSDEs driven by Brownian motions
are investigated in Briand et al. (2002). In the case of a fully coupled BSDE driven
by a Brownian motion, Douglas et al. (1996) provide a modification of a finite dif-
ference method from Sect. 5.3. Douglas et al. (1996) also prove convergence of an
approximation of the derivative of the value function, which is needed to obtain the
control process of a BSDE. Results on numerics for quadratic decoupled FBSDE
can be found in Imkeller et al. (2010).
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