
Chapter 2
Stochastic Calculus

Abstract We review important results of stochastic calculus. We introduce a Brow-
nian motion, a random measure and a compensated random measure. Examples of
Lévy processes, step processes and their jump measures are given. We investigate
stochastic integrals with respect to Brownian motion and compensated random mea-
sures and we recall their properties. We discuss the weak property of predictable
representation for local martingales. Equivalent probability measures are defined,
and Girsanov’s theorem for Brownian motion and random measures is stated. We
give differentiation rules of the Malliavin calculus.

We review important results of stochastic calculus which we use in this book. This
chapter is written in the spirit of a rèsume and we collect facts needed to investigate
BSDEs driven by Brownian motions and compensated random measures.

2.1 Brownian Motion and Random Measures

Let us consider a probability space (Ω,F ,P) with a filtration F = (Ft )0≤t≤T and
a finite time horizon T < ∞. We assume that the filtration F satisfies the usual
hypotheses of completeness (F0 contains all sets of P-measure zero) and right con-
tinuity (Ft = Ft+).

A stochastic process V (ω, t) is a real function defined on Ω × [0, T ] such that
ω �→ V (ω, t) is F -measurable for any t ∈ [0, T ]. A stochastic process V is called
F -adapted if ω �→ V (ω, t) is Ft -measurable for any t ∈ [0, T ]. The natural filtra-
tion generated by a process V is denoted by FV . We always assume that the natural
filtration is completed with sets of measure zero. By B(A) we denote the Borel
sets of A ⊂ R, by P we denote the σ -field on Ω × [0, T ] generated by all left-
continuous and adapted processes. The field P is called the predictable σ -field. A
process V : Ω × [0, T ] → R, or V : Ω × [0, T ] × E → R, is called F -predictable
if it is F -adapted and P-measurable, or P ⊗ B(E )-measurable. Clearly, the limit
of a converging sequence of predictable processes is a predictable process. If there
is no confusion, the reference to the filtration F is omitted. A process is called
càdlàg if its trajectories are right-continuous and have left limits. By K we denote
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14 2 Stochastic Calculus

constants, which are allowed to vary from line to line. The term a.s. means almost
surely with respect to the probability measure, and, unless specified, the term a.e.
means almost everywhere with respect to the Lebesgue measure. All statements for
random variables and stochastic processes should be understood a.s.

We introduce a Brownian motion and a random measure. Brownian motion and
random measures are used to develop financial and actuarial stochastic models.

Definition 2.1.1 An F -adapted process W := (W(t),0 ≤ t ≤ T ) with W(0) = 0 is
called a Brownian motion if

(i) for 0 ≤ s < t ≤ T , W(t) − W(s) is independent of Fs ,
(ii) for 0 ≤ s < t ≤ T , W(t) − W(s) is a Gaussian random variable with mean zero

and variance t − s.

There exists a modification of a Brownian motion which has continuous paths.

Definition 2.1.2 A function N defined on Ω × [0, T ] ×R is called a random mea-
sure if

(i) for any ω ∈ Ω , N(ω, .) is a σ -finite measure on B([0, T ]) ⊗ B(R),
(ii) for any A ∈ B([0, T ]) ⊗ B(R), N(.,A) is a random variable on (Ω,F ,P).

We remark that N(ω, [0, t],A) may be equal to infinity (see Example 2.3 and the
case of Lévy processes).

Example 2.1 Let (Tn)n≥1 denote the sequence of jump times of a Poisson process.
The function

N
(
ω, [s, t]) = �

{
n ≥ 1, Tn ∈ [s, t]}, 0 ≤ s < t ≤ T ,

which counts the number of jumps of the Poisson process in the time interval [s, t],
defines a random measure. If we fix ω, then the sequence of jump times (Tn)n≥1 of
the Poisson process is given on the time axis, and N as a function of [s, t] is a finite
measure which counts the number of (Tn)n≥1 which are in the interval [s, t]. If we
fix [s, t], then N is a Poisson distributed random variable which counts the number
of random jump times (Tn)n≥1 of the Poisson process which are in the interval [s, t].

Next, we introduce a predictable compensator of a random measure.

Definition 2.1.3 A random measure N is called F -predictable if for any F -
predictable process V such that the integral

∫ T

0

∫
R

|V (s, z)|N(ds, dz) exists, the
process (

∫ t

0

∫
R

V (s, z)N(ds, dz),0 ≤ t ≤ T ) is F -predictable.

Definition 2.1.4 For a random measure N we define

EN(A) = E

[∫

[0,T ]×R

1A(ω, t, z)N(ω,dt, dz)

]
, A ∈ F ⊗ B

([0, T ]) ⊗ B(R).
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If there exists an F -predictable random measure ϑ such that

(i) Eϑ is a σ -finite measure on P ⊗ B(R),
(ii) the measures EN and Eϑ are identical on P ⊗ B(R),

then we say that the random measure N has a compensator ϑ .

We remark that the compensator is uniquely determined, see Theorem 11.6 in He
et al. (1992).

Given the compensator ϑ of a random measure N , we can define the compen-
sated random measure

Ñ(ω, dt, dz) = N(ω,dt, dz) − ϑ(ω,dt, dz).

Random measures are usually related to jumps of discontinuous processes. We
state the following result, see Theorem 11.15 He et al. (1992).

Proposition 2.1.1 Let J := (J (t),0 ≤ t ≤ T ) be an F -adapted, càdlàg process,
and set D = {�J 
= 0}. Then

N(dt, dz) =
∑

s∈(0,T ]
1(s,�J (s))(dt, dz)1{�J(s) 
=0}(s)1D{s}, (2.1)

is an integer-valued random measure which has a unique F -predictable compen-
sator.

The measure N defined in Proposition 2.1.1 is called the jump measure of the
process J . The measure N([0, T ],A) counts the number of jumps of the process J

of size specified in the set A in the time interval [0, T ].
Two important families of discontinuous processes should be pointed out. In fi-

nancial and actuarial applications we usually deal with Lévy processes and step
processes.

Definition 2.1.5 An F -adapted process J := (J (t),0 ≤ t ≤ T ) with J (0) = 0 is
called a Lévy process if

(i) for 0 ≤ s < t ≤ T , J (t) − J (s) is independent of Fs ,
(ii) for 0 ≤ s < t ≤ T , J (t) − J (s) has the same distribution as J (t − s),

(iii) the process J is continuous in probability, for any t ∈ [0, T ] and ε > 0 we have
lims→t P(|L(t) − L(s)| > ε) = 0.

There exists a modification of a Lévy process which has càdlàg paths.

Example 2.2 The Poisson process and the compound Poisson process are the prime
examples of discontinuous Lévy processes. It is easy to conclude that the jump
measure of a compound Poisson process with intensity λ and jump distribution q has
the compensator ϑ(dt, dz) = λq(dz)dt . The jump measure of a compound Poisson
process is a finite random measure.
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Example 2.3 The family of Lévy processes contains Variance Gamma, Normal In-
verse Gaussian and stable processes, see Chap. 4 in Cont and Tankov (2004). In gen-
eral, the jump measure of a Lévy process has the compensator ϑ(dt, dz) = ν(dz)dt

where ν is a σ -finite measure (called a Lévy measure) satisfying
∫
|z|<1 z2ν(dz) <

∞, see Proposition 3.7 in Cont and Tankov (2004). The measure ν determines prop-
erties of the Lévy process (we can have a finite variation or an infinite variation
process with an infinite number of small jumps in every finite time interval), see
Chaps. 3, 4 in Cont and Tankov (2004). For all Lévy processes except the com-
pound Poisson process, the jump measure of a Lévy process is a σ -finite random
measure with N([0, T ],R) = +∞.

If the random measure (2.1) is generated by a Lévy process, then it is called a
Poisson random measure.

Definition 2.1.6 A process J is called a step process if its trajectories are càdlàg
step functions having a finite number of jumps in every finite time interval. An F -
adapted step process J with J (0) = 0 has the representation

J (t) =
∞∑

n=1

ξn1{Tn ≤ t}, (2.2)

where

(i) (Tn)n≥1 is a sequence of F -stopping times such that 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn ↑
∞, n → ∞,

(ii) ξn ∈ FTn , n ≥ 1,
(iii) for each n ≥ 1, Tn < ∞ ⇒ Tn < Tn+1,
(iv) for each n ≥ 1, ξn 
= 0 ⇔ Tn < ∞.

In representation (2.2), Tn denotes the nth jump time of J and ξn denotes the
jump size of J at time Tn. The sequence (Tn)n≥1 defines a non-explosive point
process. The jump measure of a step process is a finite random measure.

Example 2.4 The compound Poisson process is a step process.

Example 2.5 The compound Cox process is a second example of a step process.
The compound Cox process J can be defined by J (t) = j (

∫ t

0 λ(s)ds) where λ is
a stochastic intensity process and j is an independent compound Poisson process
with intensity 1 and jump size distribution q , see Theorem 12.2.3 in Rolski et al.
(1999). We can deduce that the compensator of the corresponding jump measure is
of the form ϑ(dt, dz) = λ(t)q(dz).

Example 2.6 Take a continuous process λ : Ω × [0, T ] → (0,∞) and define the
hazard process Ψ (t) = ∫ t

0 λ(s)ds. We introduce a random time τ which has the
conditional distribution

P
(
τ > t |F λ

t

) = e−Ψ (t) = e− ∫ t
0 λ(s)ds, 0 ≤ t ≤ T ,
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and we define the step process

J (t) = 1{t ≥ τ }, 0 ≤ t ≤ T .

The compensated process J (t) − Ψ (t ∧ τ) is an F λ ∨ F J -martingale, see Propo-
sition 2.13 in Jeanblanc and Rutkowski (2000), and the jump measure of J has the
compensator ϑ(dt, {1}) = (1 − J (t−))λ(t)dt .

We remark that given the conditional distribution of (Tn+1, ξn+1) with respect to
FTn , it is possible to derive the compensator of the step process, see Theorem 11.49
in He et al. (1992).

We need some assumptions concerning the random measure and its compensator.
We always assume that

(RM) the random measure N is an integer-valued random measure with the com-
pensator

ϑ(dt, dz) = Q(t, dz)η(t)dt, (2.3)

where η : Ω × [0, T ] → [0,∞) is a predictable process, and Q is a kernel
from (Ω × [0, T ],P) into (R,B(R)) satisfying

∫ T

0

∫

R

z2Q(t, dz)η(t)dt < ∞. (2.4)

We also set N({0},R) = N((0, T ], {0}) = ϑ((0, T ], {0}) = 0.

This is our standing assumption and any random measure N considered in this book
satisfies (RM). From the definition of a kernel we recall that for (ω, t) ∈ Ω ×[0, T ],
Q(t, .) is a measure on B(R), and for A ∈ B(R), Q(.,A) is a predictable process.
Notice that the compensators considered in our examples satisfy assumption (2.3).
In fact, the representation of the compensator (2.3) holds in most practical cases, we
refer to Theorem II.1.8 in Jacod and Shiryaev (2003) for a general representation of
the compensator of a random measure. In (2.3) we assume that the compensator is
absolutely continuous with respect to the Lebesgue measure dt . The absolute conti-
nuity of the compensator with respect to the Lebesgue measure dt can be motivated
by financial and actuarial applications in which we investigate jump measures of
quasi-left continuous, càdlàg, adapted processes. Let us recall that a càdlàg, adapted
process is called quasi-left continuous if a sequence of totally inaccessible stopping
times exhausts its jump times, see Proposition I.2.26 and Corollary II.1.19 in Jacod
and Shiryaev (2003). In other words, quasi-left continuous processes and absolutely
continuous compensators of jump measures arise if we model jumps that arrive in
an unpredictable way. Indeed, this is the right probabilistic framework for discon-
tinuous processes used in insurance and finance. Assumption (2.4) implies that the
quasi-left continuous process related to the jump measure is locally square inte-
grable, see Theorem 11.31 in He et al. (1992) (in applications we deal with square
integrable processes). The measure zero of the set {0} indicates that N is indeed
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a jump measure, see Theorem 11.25 in He et al. (1992). In many actuarial applica-
tions, in which we deal with step processes, η can be interpreted as a claim intensity
and Q as a claim distribution. If we consider a Lévy process, then we simply set
η(t) = 1 and Q(t, dz) = ν(dz) where ν is a σ -finite Lévy measure.

2.2 Classes of Functions, Random Variables and Stochastic
Processes

We start with defining spaces of functions, random variables and stochastic pro-
cesses which we use in this book.

• Let L2
ν(R) denote the space of measurable functions ϕ : R→ R satisfying

∫

R

∣
∣ϕ(z)

∣
∣2

ν(dz) < ∞,

where ν is a σ -finite measure,
• Let C 1,2([0, T ],R) denote the space of continuous functions ϕ : [0, T ] ×R→R

which have continuous partial derivatives ∂
∂t

ϕ(t, x), ∂
∂x

ϕ(t, x) and ∂2

∂x2 ϕ(t, x).
Partial derivatives are denoted by φt , φx , φxx . If there is no confusion, first deriva-
tive is denoted by φ′.

• Let L2(R) denote the space of random variables ξ : Ω → R satisfying

E
[|ξ |2] < ∞.

• Let H2(R) denote the space of predictable processes Z : Ω × [0, T ] → R satis-
fying

E

[∫ T

0

∣∣Z(t)
∣∣2

dt

]
< ∞.

• Let H2
N(R) denote the space of predictable processes U : Ω × [0, T ] × R → R

satisfying

E

[∫ T

0

∫

R

∣∣U(t, z)
∣∣2

Q(t, dz)η(t)dt

]
< ∞,

where we integrate with respect to the predictable compensator of the random
measure N .

• Let S2(R) denote the space of adapted, càdlàg processes Y : Ω × [0, T ] → R

satisfying

E

[
sup

t∈[0,T ]

∣∣Y(t)
∣∣2

]
< ∞.

• Let S2
inc(R) denote the subspace of S

2(R) which contains processes with non-
decreasing trajectories, and let S∞(R) denote the subspace of S2(R) which con-
tains bounded processes.
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The spaces H2(R), H2
N(R) and S

2(R) are endowed with the norms:

‖Z‖2
H2 = E

[∫ T

0
eρt

∣∣Z(t)
∣∣2

dt

]
,

‖U‖2
H

2
N

= E

[∫ T

0

∫

R

eρt
∣∣U(t, z)

∣∣2
Q(t, dz)η(t)dt

]
,

‖Y‖2
S2 = E

[
sup

t∈[0,T ]
eρt

∣∣Y(t)
∣∣2

]
,

with some ρ ≥ 0.
We also define classes of processes which are differentiable in the Malliavin

sense. First, we present the idea behind the Malliavin derivative.
If we investigate Malliavin differentiability, then we deal with the completed

filtration generated by a Lévy process. We work with the product of two canon-
ical spaces (ΩW × ΩN,FW ⊗ FN,PW ⊗ PN) completed with sets of measure
zero. The space (ΩW ,FW,PW) is the usual canonical space for a one-dimensional
Brownian motion (the space of continuous functions on [0, T ] with the σ -algebra
generated by the topology of uniform convergence and Wiener measure). The space
(ΩN,FN,PN) is a canonical space for a pure jump Lévy process, and for its proper
definition we refer to Solé et al. (2007). In the product space (ΩW × ΩN,FW ⊗
FN,PW ⊗ PN) we can study a two-parameter Malliavin derivative.

We follow the exposition from Solé et al. (2007). Let ν be a Lévy measure such
that

∫
R

|z|2ν(dz) < ∞. Consider the finite measure υ

υ(A) =
∫

A(0)

σ 2dt +
∫

A′
z2ν(dz)dt, A ∈ B

([0, T ]) ⊗ B(R),

where A(0) = {t ∈ [0, T ]; (t,0) ∈ A} and A′ = A \ A(0). We define the martingale-
valued random measure Υ

Υ (A) =
∫

A(0)

σdW(t) +
∫

A′
zÑ(dt, dz), A ∈ B

([0, T ]) ⊗ B(R),

and its continuous and discontinuous parts

Υ c(t) =
∫ t

0
σdW(s), Υ d(t,A) =

∫ t

0

∫

A

zÑ(ds, dz), A ∈ B(R).

We introduce the multiple two-parameter integral with respect to Υ

In(ϕn) =
∫

([0,T ]×R)n
ϕ
(
(t1, z1), . . . (tn, zn)

)
Υ (dt1, dz1) · . . . · Υ (dtn, dzn),

for functions ϕ ∈ L2
υ(([0, T ] ×R)n) satisfying

‖ϕn‖2
L2

υ
=

∫

([0,T ]×R)n

∣∣ϕn

(
(t1, z1), . . . , (tn, zn)

)∣∣2
υ(dt1, dz1) · . . . · υ(dtn, dzn) < ∞.
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We finally recall the chaotic decomposition property which states that any square
integrable random variable ξ measurable with respect to the completed natural fil-
tration generated by a Lévy process has the unique representation

ξ =
∞∑

n=0

In(ϕn), (2.5)

where ϕn ∈ L2
υ(([0, T ] × R)n) are symmetric in the n pairs (ti , zi), 1 ≤ i ≤ n. The

Malliavin derivative uses the chaotic decomposition property (2.5).
We consider the following spaces:

• Let D1,2(R) denote the space of random variables ξ ∈ L
2(R) which are measur-

able with respect to the natural filtration generated by a Lévy process and have
the representation ξ = ∑∞

n=0 In(ϕn) such that

∞∑

n=1

nn!‖ϕn‖2
L2

υ
< ∞.

For a random variable ξ ∈ D
1,2(R) we define the Malliavin derivative Dξ : Ω ×

[0, T ] ×R → R to be a stochastic process of the form

Dt,zξ =
∞∑

n=1

nIn−1
(
ϕn

(
(t, z), ·)). (2.6)

• Let L1,2(R) denote the space of adapted and product measurable processes V :
Ω × [0, T ] ×R → R satisfying

E

[∫

[0,T ]×R

∣∣V (s, y)
∣∣2

υ(ds, dy)

]
< ∞,

V (s, y) ∈D
1,2(R), υ-a.e. (s, y) ∈ [0, T ] ×R,

E

[∫

([0,T ]×R)2

∣∣Dt,zV (s, y)
∣∣2

υ(ds, dy)υ(dt, dz)

]
< ∞.

Let us define a stopping time, (local) martingale, quadratic variation and BMO
martingale.

Definition 2.2.1 A random variable τ : Ω → [0, T ] is called an F -stopping time if
{τ ≤ t} ∈ Ft for every t ∈ [0, T ].

Definition 2.2.2 An F -adapted process M := (M(t),0 ≤ t ≤ T ) is called an F -
martingale (supermartingale/submartingale) if

(i) E[|M(t)|] < ∞, 0 ≤ t ≤ T ,
(ii) E[M(t)|Fs] = M(s), 0 ≤ s < t ≤ T , (E[M(t)|Fs] ≤ M(s) /E[M(t)|Fs] ≥

M(s)).
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Definition 2.2.3 An F -adapted process M := (M(t),0 ≤ t ≤ T ) is called an F -
local martingale if there exists a sequence of F -stopping times (τn, n ∈ N) such
that τn → T , n → ∞, and (M(t ∧ τn),0 ≤ t ≤ T ) is an F -martingale.

Definition 2.2.4 The quadratic variation process of a càdlàg semimartingale V is
defined by

[V,V ](t) = lim
n→∞

n∑

i=1

(
V

(
tni+1 ∧ t

) − V
(
tni ∧ t

))2
, 0 ≤ t ≤ T ,

where limn→∞ supi=1,...,n |tni+1 − tni | = 0, and the convergence is uniform in proba-
bility.

Example 2.7 The quadratic variation of a Brownian motion is given by
[W,W ](t) = t , and the quadratic variation of a quadratic pure jump process J

(a purely discontinuous Lévy process or a step process) is given by [J,J ](t) =∑
s≤t |�J(s)|2, see Theorems II.28 and II.39 in Protter (2004).

Definition 2.2.5 Let M := (M(t),0 ≤ t ≤ T ) be an F -local martingale. The pro-
cess M is called a BMO (bounded mean oscillation) martingale if there exists a
constant K such that

E
[[M,M](T ) − [M,M](τ )|Fτ

] ≤ K,
∣∣�M(τ)

∣∣ ≤ K,

for any F -stopping time τ ∈ [0, T ].

We end this chapter with two important martingale inequalities, which are often
applied in this book. We state the Burkholder-Davis-Gundy inequalities, see Theo-
rem IV.48 in Protter (2004).

Theorem 2.2.1 Let M be a local martingale. For any p ≥ 1 there exist constants
K1, K2, depending on p but independent from M , such that

E

[
sup

0≤t≤T

∣∣M(t)
∣∣p

]
≤ K1E

[∣∣[M,M](T )
∣∣p/2] ≤ K2E

[
sup

0≤t≤T

∣∣M(t)
∣∣p

]
. (2.7)

We also recall the Doob’s inequality, see Theorem I.20 in Protter (2004).

Theorem 2.2.2 Let M be a positive submartingale. For any p > 1 we have

E

[
sup

0≤t≤T

∣∣M(t)
∣
∣p

]
≤ K sup

0≤t≤T

E
[∣∣M(t)

∣∣p]
. (2.8)
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As a corollary, we can conclude that the martingale M(t) = E[ξ |Ft ], 0 ≤ t ≤ T ,
ξ ∈ L

2(R), satisfies the inequality

E

[
sup

0≤t≤T

∣∣M(t)
∣∣2

]
≤ KE

[|ξ |2].

2.3 Stochastic Integration

We state main properties of stochastic integrals with respect to Brownian motion
and compensated random measures.

Theorem 2.3.1

(a) Let V : Ω × [0, T ] →R be a predictable process satisfying
∫ T

0

∣
∣V (t)

∣
∣2

dt < ∞,

Then (
∫ t

0 V (s)dW(s),0 ≤ t ≤ T ) is a continuous local martingale with the
quadratic variation process

[∫ .

0
V (s)dW(s),

∫ .

0
V (s)dW(s)

]
(t) =

∫ t

0

∣∣V (s)
∣∣2

ds, 0 ≤ t ≤ T .

(b) Let V : Ω × [0, T ] ×R→R be a predictable process satisfying
∫ T

0

∫

R

∣
∣V (t, z)

∣
∣2

Q(t, dz)η(t)dt < ∞,

where we integrate with respect to the compensator of a random measure N .
Then (

∫ t

0

∫
R

V (s, z)Ñ(ds, dz),0 ≤ t ≤ T ) is a càdlàg local martingale with the
quadratic variation process

[∫ .

0

∫

R

V (s, z)Ñ(ds, dz),

∫ .

0

∫

R

V (s, z)Ñ(ds, dz)

]
(t)

=
∫ t

0

∫

R

∣∣V (s, z)
∣∣2

N(ds, dz), 0 ≤ t ≤ T .

Proof Case (a) follows from Theorems IV.22 and IV.28 in Protter (2004). Case (b)
follows from Definition 11.16 and Theorem 11.21 in He et al. (1992). �

We also use the following result, see Theorem 11.21 in He et al. (1992).

Theorem 2.3.2 Let V : Ω × [0, T ] ×R →R be a predictable process satisfying
∫ T

0

∫

R

∣∣V (t, z)
∣∣Q(t, dz)η(t)dt < ∞,
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where we integrate with respect to the compensator of a random measure N .
Then (

∫ t

0

∫
R

V (s, z)Ñ(ds, dz),0 ≤ t ≤ T ) is a càdlàg local martingale and

(
∫ t

0

∫
R

V (s, z)N(ds, dz),0 ≤ t ≤ T ) is a càdlàg process. Let N be the jump measure
of a càdlàg process J . We also have the property

∫ t

0

∫

R

V (s, z)N(ds, dz) =
∑

s∈(0,t]
V

(
s,�J (s)

)
1�J(s) 
=0(s), 0 ≤ t ≤ T .

Notice that if V is a non-negative predictable process satisfying
E[∫ T

0

∫
R

V (t, z)Q(t, dz)η(t)dt] < ∞, then

E

[∫ T

0

∫

R

V (t, z)N(dt, dz)

]
= E

[∫ T

0

∫

R

V (t, z)Q(t, dz)η(t)dt

]
. (2.9)

To prove (2.9), from Theorem 2.3.2 we first deduce

E

[∫ τn

0

∫

R

V (t, z)N(dt, dz)

]
= E

[∫ τn

0

∫

R

V (t, z)Q(t, dz)η(t)dt

]
,

where (τn)n≥1 is a sequence of stopping times, and we next apply the monotone
convergence theorem.

We need a stronger version of Theorem 2.3.1.

Theorem 2.3.3

(a) Let V ∈ H
2(R). Then (

∫ t

0 V (s)dW(s),0 ≤ t ≤ T ) is a continuous, square inte-
grable martingale which satisfies

E

[∣∣∣∣

∫ T

0
V (s)dW(s)

∣∣∣∣

2]
= E

[∫ T

0

∣∣V (s)
∣∣2

ds

]
.

(b) Let V ∈ H
2
N(R). Then (

∫ t

0

∫
R

V (s, z)Ñ(ds, dz),0 ≤ t ≤ T ) is a càdlàg, square
integrable martingale which satisfies

E

[∣∣∣∣

∫ T

0

∫

R

V (s, z)Ñ(ds, dz)

∣∣∣∣

2]
= E

[∫ T

0

∫

R

∣∣V (s, z)
∣∣2

Q(s, dz)η(s)ds

]
.

Proof Case (a) follows from Lemma IV.27 and Theorem IV.22 in Protter (2004).
We prove case (b). By Theorem 2.3.1 the process

∫ t

0

∫
R

V (s, z)Ñ(ds, dz) is a càdlàg
local martingale. By Theorem 2.3.2 and property (2.9) we obtain

E

[∫ T

0

∫

R

∣∣V (s, z)
∣∣2

N(ds, dz)

]
= E

[∫ T

0

∫

R

∣∣V (s, z)
∣∣2

Q(s, dz)η(s)ds

]
< ∞.

Since
∫ t

0

∫
R

V (s, z)Ñ(ds, dz) is a local martingale with integrable quadratic varia-
tion, it is a square integrable martingale, see Corollary II.26.3 in Protter (2004). By
Corollary II.26.3 in Protter (2004) we also derive
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E

[∣∣∣∣

∫ T

0

∫

R

V (s, z)Ñ(ds, dz)

∣∣∣∣

2]

= E

[[∫ .

0

∫

R

V (s, z)Ñ(ds, dz),

∫ .

0

∫

R

V (s, z)Ñ(ds, dz)

]
(T )

]

= E

[∫ T

0

∫

R

∣∣V (s, z)
∣∣2

N(ds, dz)

]
,

and the proof is complete. �

From Sect. II.6 in Protter (2004) we also recall that
[∫ .

0
V1(s)dW(s),

∫ .

0

∫

R

V2(s, z)Ñ(ds, dz)

]
(T ) = 0.

Finally, let us present the Itô’s formula, see Theorem II.32 in Protter (2004).

Theorem 2.3.4 Consider a process X := (X (t),0 ≤ t ≤ T ) which satisfies the
dynamics

X (t) = X (0) +
∫ t

0
μ(s)ds +

∫ t

0
σ(s)dW(s)

+
∫ t

0

∫

R

γ (s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

where μ, σ and γ are predictable processes such that
∫ T

0 |μ(s)|ds < ∞,
∫ T

0 |σ(s)|2ds < ∞,
∫ T

0

∫
R

|γ (s, z)|2Q(s, dz)η(s)ds < ∞. Let ϕ ∈ C 1,2([0, T ] ×
R). Then

ϕ
(
τ,X (τ )

) = ϕ
(
0,X (0)

) +
∫ τ

0
ϕt

(
s,X (s−)

)
ds +

∫ τ

0
ϕx

(
s,X (s−)

)
dX (s)

+
∫ τ

0

1

2
ϕxx

(
s,X (s−)

)
σ 2(s)ds +

∫ τ

0

∫

R

(
ϕ
(
s,X (s−) + γ (s, z)

)

− ϕ
(
s,X (s−)

) − ϕx

(
s,X (s−)

)
γ (s, z)

)
N(ds, dz),

for any stopping time 0 ≤ τ ≤ T .

Example 2.8 Let M(t) = eW(t)− 1
2 t , 0 ≤ t ≤ T . Then

M(t) = 1 +
∫ t

0
M(s)dW(s), 0 ≤ t ≤ T .

Let M(t) = e
∫ t

0

∫
R

zÑ(ds,dz)−∫ t
0

∫
R
(ez−z−1)Q(s,dz)η(s)ds , 0 ≤ t ≤ T , where N is a ran-

dom measure with a compensator satisfying
∫ T

0

∫
R

z2Q(s, dz)η(s)ds < ∞ and
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∫ T

0

∫
R
(ez − 1)2Q(ds, dz)η(s)ds < ∞. Then

M(t) = 1 +
∫ t

0

∫

R

M(s−)
(
ez − 1

)
Ñ(ds, dz), 0 ≤ t ≤ T .

We also use the following result, which is a special case of the multidimensional
Itô’s formula, see Theorem II.33 in Protter (2004).

Proposition 2.3.1 Consider the processes Xi := (Xi (t),0 ≤ t ≤ T ), i = 1,2,
which satisfy the dynamics

Xi (t) = Xi (0) +
∫ t

0
μi(s)ds

+
∫ t

0
σi(s)dW(s) +

∫ t

0

∫

R

γi(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , i = 1,2,

where μi , σi and γi are predictable processes such that
∫ T

0 |μi(s)|ds < ∞,
∫ T

0 |σi(s)|2ds < ∞,
∫ T

0

∫
R

|γi(s, z)|2Q(s, dz)η(s)ds < ∞, for i = 1,2. Then

X1(τ )X2(τ ) = X1(0)X2(0) +
∫ τ

0
X1(s−)dX2(s) +

∫ τ

0
X2(s−)dX1(s)

+
∫ τ

0
σ1(s)σ2(s)ds +

∫ τ

0

∫

R

γ1(s, z)γ2(s, z)N(ds, dz),

for any stopping time 0 ≤ τ ≤ T .

2.4 The Property of Predictable Representation

We now introduce the property of predictable representation, see Sect. XIII.2 in
He et al. (1992) and Sect. III.4 in Jacod and Shiryaev (2003). The predictable rep-
resentation property is the key concept in the theory of BSDEs which allows us to
construct a solution to a BSDE. From the practical point of view, the predictable
representation yields hedging strategies for financial claims.

Let us consider a probability space (Ω,F ,P) with a filtration F = (Ft )0≤t≤T .
In this book we always assume that the weak property of predictable representation
holds, that is

(PR) any F -local martingale M has the representation

M(t) = M(0) +
∫ t

0
Z(s)dW(s) +

∫ t

0

∫

R

U(s, z)Ñ(ds, dz) 0 ≤ t ≤ T ,

(2.10)

where Z and U are F -predictable processes integrable with respect to W

and Ñ .
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This is our second standing assumption, next to (RM) from Sect. 2.1. If M is a
locally square integrable local martingale, then the processes Z and U are locally
square integrable in the sense of the assumptions from Theorem 2.3.1, see Defini-
tion III.4.2 in Jacod and Shiryaev (2003) and Theorem 11.31 in He et al. (1992). By
Theorems 2.3.1–2.3.2 we also get

E
[[M,M](τn)

]

= M2(0) +E

[∫ τn

0

∣
∣Z(s)

∣
∣2

ds

]
+E

[∫ τn

0

∫

R

∣
∣U(s, z)

∣
∣2

Q(s, dz)η(s)ds

]
, (2.11)

where (τn)n≥1 is a sequence of stopping times. If we now assume that M is a square
integrable martingale, then E[[M,M](T )] < ∞, see Corollary II.26.3 in Protter
(2004), and applying the monotone convergence theorem and Fatou’s lemma to
(2.11) we can conclude that Z ∈ H

2(R) and U ∈ H
2
N(R). Moreover, we can eas-

ily deduce that the representation of a square integrable martingale M is unique in
H

2(R) ×H
2
N(R). Consequently, in this book we assume that any square integrable

F -martingale M has the unique representation

M(t) = M(0) +
∫ t

0
Z(s)dW(s) +

∫ t

0

∫

R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (2.12)

where (Z,U) ∈ H
2(R) × H

2
N(R). We can also assume that any square integrable

FT -measurable random variable ξ has the unique representation

ξ = E[ξ ] +
∫ T

0
Z(s)dW(s) +

∫ T

0

∫

R

U(s, z)Ñ(ds, dz), (2.13)

where (Z,U) ∈ H
2(R) ×H

2
N(R). Representation (2.13) follows immediately from

(2.12) by taking the martingale M(t) = E[ξ |Ft ], 0 ≤ t ≤ T .
We point out that we introduce the predictable representation property (PR) as

an assumption. In general, the predictable representation property does not have to
hold. However, in our case it is possible to construct a probability space (Ω,F ,P)

in such a way that any F -local martingale has the predictable representation. It is
known that the weak property of predictable representation holds for a Brownian
motion, a Lévy process, a step process and the corresponding completed natural
filtration, see Theorems 13.19 and 13.49 in He et al. (1992). Moreover, given a
Brownian motion W and an independent jump process J (a Lévy process or a step
process), the weak property of predictable representation holds for (W,J ) and the
product of their completed natural filtrations. Finally, the weak property of pre-
dictable representation holds for (W,J ) under any equivalent probability measure,
see Theorem 13.22 in He et al. (1992). Hence, by the change of measure we can
establish the predictable representation for a Brownian motion and a jump process
with a random compensator (depending on W and J ), see Sect. 2.5. For such a con-
struction we refer to Becherer (2006) and Chap. 7 in Crépey (2011). We comment
on the predictable representation in our financial and insurance model in Sect. 7.2.
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2.5 Equivalent Probability Measures

Let us recall that for a semimartingale V such that V (0) = 0 there exists a unique
càdlàg solution E to the forward stochastic differential equation

dE (t) = E (t−)dV (t), E (0) = 1,

given by

E (t) = eV (t)− 1
2 [V,V ](t) ∏

0<u≤t

(
1 + �V (u)

)
e−�V (u)+ 1

2 |�V (u)|2, 0 ≤ t ≤ T . (2.14)

The process E is called the stochastic exponential of V , see Theorem II.37 in Protter
(2004). If �V (t) > −1, 0 ≤ t ≤ T , then the stochastic exponential E is positive.

Let P and Q be two equivalent probability measures, Q ∼ P. There exists a pos-
itive martingale M := (M(t),0 ≤ t ≤ T ) such that

dQ

dP

∣∣∣Ft = M(t), 0 ≤ t ≤ T , (2.15)

see Definition III.8.1 in Protter (2004) and Theorem 12.4 in He et al. (1992). In the
view of the predictable representation property, we define

dM(t)

M(t−)
= φ(t)dW(t) +

∫

R

κ(t, z)Ñ(dt, dz), M(0) = 1, (2.16)

where φ := (φ(t),0 ≤ t ≤ T ) and κ := (κ(t, z),0 ≤ t ≤ T , z ∈ R) are F -
predictable processes satisfying

∫ T

0

∣∣φ(t)
∣∣2

dt < ∞,

∫ T

0

∫

R

∣∣κ(t, z)
∣∣2

Q(t, dz)η(t)dt < ∞,

κ(t, z) > −1, 0 ≤ t ≤ T , z ∈ R.

(2.17)

The process M defined by (2.16) under assumptions (2.17) is only a local mar-
tingale, see Theorem 2.3.1. We have to impose stronger assumptions on (φ, κ) so
that the local martingale M is a true martingale. In this book we use the following
proposition.

Proposition 2.5.1 Let M := (M(t),0 ≤ t ≤ T ) be the stochastic exponential de-
fined by

dM(t)

M(t−)
= φ(t)dW(t) +

∫

R

κ(t, z)Ñ(dt, dz), M(0) = 1,

where φ and κ are predictable processes such that
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∣∣φ(t)
∣∣ ≤ K,

∫

R

∣∣κ(t, z)
∣∣2

Q(t, dz)η(t) ≤ K, 0 ≤ t ≤ T ,

κ(t, z) > −1, 0 ≤ t ≤ T , z ∈ R.

The process M is a square integrable, positive martingale.

Proof From Theorem 2.3.1 and (2.14) we conclude that M is a positive local mar-
tingale. We define the sequence of stopping times τn = inf{t : |M(t)| ≥ n} ∧ T . We
can derive the inequality

E
[∣∣M(t)

∣
∣21{t ≤ τn}

] ≤ E
[∣∣M(τn ∧ t)

∣
∣2]

≤ KE

[
1 +

∣
∣
∣
∣

∫ τn∧t

0
M(s−)φ(s)dW(s)

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∫ τn∧t

0

∫

R

M(s−)κ(s, z)Ñ(ds, dz)

∣
∣
∣
∣

2]

= K

(
1 +E

[∫ τn∧t

0

∣∣M(s−)φ(s)
∣∣2

ds

]

+E

[∫ τn∧t

0

∫

R

∣∣M(s−)κ(s, z)
∣∣2

Q(s, dz)η(s)ds

])

≤ K

(
1 +

∫ t

0
E

[∣∣M(s)
∣∣21{s ≤ τn}

]
ds

)
, 0 ≤ t ≤ T ,

where we use Theorem 2.3.3. By the Gronwall’s inequality, see Theorem V.68 in
Protter (2004), we obtain

E
[∣∣M(t)

∣∣21{t ≤ τn}
] ≤ K, 0 ≤ t ≤ T .

We let n → ∞, apply Fatous’ lemma and we can deduce that M is uniformly square
integrable. The uniform integrability yields that the local martingale M is a true
martingale, see Theorem I.51 in Protter (2004). �

We state Girsanov’s theorem which plays an important role in stochastic calculus
and financial mathematics.

Theorem 2.5.1 Let W and N be a (P,F )-Brownian motion and a (P,F )-random
measure with compensator ϑ(ds, dz) = Q(s, dz)η(s)ds. We define an equivalent
probability measure Q ∼ P with a positive F -martingale (2.16). The processes

WQ(t) = W(t) −
∫ t

0
φ(s)ds, 0 ≤ t ≤ T ,

ÑQ(t,A) = N(t,A) (2.18)

−
∫ t

0

∫

R

(
1 + κ(s, z)

)
Q(s, dz)η(s)ds, 0 ≤ t ≤ T , A ∈ B(R),

are a (Q,F )-Brownian motion and a (Q,F )-compensated random measure.
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Proof Let M denote the martingale (2.16) which changes the measure. The result
of our theorem follows from the Girsanov-Meyer theorem, see Theorem III.40 in
Protter (2004), which states that if for a P-local martingale V the sharp bracket
process 〈V,M〉 exists under P, then

V (t) −
∫ t

0

1

M(s−)
d〈V,M〉(s), 0 ≤ t ≤ T ,

is a Q-local martingale. The first assertion for the Brownian motion can be deduced
from Theorem III.46 in Protter (2004). We prove the second assertion for the com-
pensated random measure. The measure ϑ(dt, dz) = (1 + κ(t, z))Q(t, dz)η(t)dt

is an F -predictable random measure, see Definition 2.1.3. We choose a nonnega-
tive, predictable function V such that

∫ t

0

∫
R

V (s, z)N(ds, dz) is locally integrable
under Q. We set V m(s, z) = V (s, z) ∧ (m|z|). We can now deal with the P-local
martingale

∫ t

0

∫
R

V m(s, z)Ñ(ds, dz), see Theorem 2.3.1. We define the quadratic
covariation process

[∫ .

0

∫

R

V m(s, z)Ñ(ds, dz),M

]
(t)

=
∫ t

0

∫

R

M(s−)κ(s, z)V m(s, z)N(ds, dz), 0 ≤ t ≤ T . (2.19)

Since the martingale M is càdlàg, we get

∫ T

0

∫

R

∣∣M(s−)κ(s, z)V m(s, z)
∣∣Q(s, dz)η(s)ds

≤ K

√∫ T

0

∫

R

∣
∣κ(s, z)

∣
∣2

Q(s, dz)η(s)ds

∫ τn

0

∫

R

m|z|2Q(s, dz)η(s)ds < ∞,

and from Theorem 2.3.2 we deduce that the process
∫ t

0

∫
R

M(s−)κ(s, z)V m(s, z) ×
Ñ(ds, dz) is a P-local martingale and the quadratic covariation process (2.19) is
locally integrable under P. Hence, the compensator of the covariation process (2.19)
(the sharp bracket) exists under P, see Sect. III.5 in Protter (2004), and it takes the
form
〈∫ .

0

∫

R

V m(s, z)Ñ(ds, dz),M

〉
(t) =

∫ t

0

∫

R

M(s−)κ(s, z)V m(s, z)Q(s, dz)η(s)ds.

The Girsanov-Meyer theorem now yields that
∫ t

0

∫

R

V m(s, z)
(
N(ds, dz) − (

1 + κ(s, z)
)
Q(s, dz)η(s)ds

)
, 0 ≤ t ≤ T ,

is a Q-local martingale. Let (τk)k≥1 be a localizing sequence of stopping times for∫ t

0

∫
R

V m(s, z)ÑQ(ds, dz), let (τn)n≥1 be a localizing sequence of stopping times
for

∫ t

0

∫
R

V (s, z)N(ds, dz), and let τ be a stopping time. We have
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E
Q

[∫ τk∧τn∧τ

0

∫

R

V m(s, z)N(ds, dz)

]

= E
Q

[∫ τk∧τn∧τ

0

∫

R

V m(s, z)
(
1 + κ(s, z)

)
Q(s, dz)η(s)ds

]
.

Taking the limit k → ∞, m → ∞ and applying the Lebesgue monotone conver-
gence theorem, we show

E
Q

[∫ τn∧τ

0

∫

R

V (s, z)N(ds, dz)

]

= E
Q

[∫ τn∧τ

0

∫

R

V (s, z)
(
1 + κ(s, z)

)
Q(s, dz)η(s)ds

]
.

Hence, by Lemma I.1.44 in Jacod and Shiryaev (2003) the process
∫ t

0

∫
R

V (s, z) ×
ÑQ(ds, dz) is a Q-local martingale. We now choose a predictable function V such
that

∫ t

0

∫
R

|V (s, z)|N(ds, dz) is locally integrable under Q. Following the same
reasoning, we show that

∫ t

0

∫
R

V +(s, z)ÑQ(ds, dz) and
∫ t

0

∫
R

V −(s, z)ÑQ(ds, dz)

are Q-local martingales, and
∫ t

0

∫
R

V (s, z)ÑQ(ds, dz) is a Q-local martingale. The
proof is complete by Theorem II.1.8 in Jacod and Shiryaev (2003) and Defini-
tion 2.1.4. �

We give two examples which illustrate the change of measure.

Example 2.9 Consider the dynamics

dS(t)

S(t)
= μ(t)dt + σ(t)dW(t), S(0) = s,

where μ, σ are predictable, bounded processes. Let r be a predictable, nonnegative,
bounded process. Define the stochastic exponential

dM(t)

M(t)
= −μ(t) − r(t)

σ (t)
dW(t), M(0) = 1, (2.20)

and assume that t �→ μ(t)−r(t)
σ (t)

is a.s bounded. By Proposition 2.5.1 the stochastic
exponential M is a square integrable martingale. Hence, we can define an equivalent
probability measure Q by dQ

dP
|FT = M(T ). From Theorem 2.5.1 we deduce that the

dynamics of S under the new measure Q is given by

dS(t)

S(t)
= r(t)dt + σ(t)dWQ(t).

The Itô’s formula and Proposition 2.5.1 yield that e− ∫ t
0 r(s)dsS(t) is a Q-martingale.
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Example 2.10 Consider a compound Poisson process J with intensity λ and jump
size distribution q . Let N denote the corresponding jump measure. Choose a pre-
dictable process κ such that |κ(t, z)| < 1, (t, z) ∈ [0, T ]×R. We define the stochas-
tic exponential

dM(t)

M(t−)
=

∫

R

κ(t, z)Ñ(dt, dz), M(0) = 1. (2.21)

By Proposition 2.5.1 the stochastic exponential M is a square integrable martingale.
Hence, we can define an equivalent probability measure Q by dQ

dP
|FT = M(T ).

From Theorem 2.5.1 we deduce that

N(dt, dz) − (
1 + κ(t, z)

)
λq(dz)dt,

is the compensated random measure of the process J under the equivalent prob-
ability measure Q. Consequently, under the equivalent probability measure Q the
process J has the jump size distribution and the intensity

qQ(t, dz) = 1 + κ(t, z)
∫
R
(1 + κ(t, z))q(dz)

q(dz), 0 ≤ t ≤ T , z ∈ R,

λQ(t) =
∫

R

(
1 + κ(t, z)

)
q(dz)λ, 0 ≤ t ≤ T .

In general, since κ is a stochastic process then the new distribution qQ and the new
intensity λQ are stochastic processes as well. The set of equivalent probability mea-
sures determined by the martingales (2.21) with processes κ such that |κ(t, z)| < 1,
(t, z) ∈ [0, T ] ×R defines the set of equivalent scenarios for the compound Poisson
process J , see Example 1.3.

2.6 The Malliavin Calculus

The Malliavin calculus plays an important role in the theory of BSDEs. It allows us
to characterize a solution to a BSDE, prove path regularities of a solution and de-
velop numerical schemes for finding a solution. Since Definition 2.6 of the Malliavin
derivative is not very useful in calculations, we present some practical differentia-
tion rules.

Consider the canonical Lévy space (ΩW ×ΩN,FW ⊗FN,PW ⊗PN) and recall
the Malliavin derivatives Dt,0, Dt,z and the measures ν, υ , Υ from Sect. 2.2. The
derivative Dt,0 is derivative with respect to the continuous component of a Lévy
process (the Brownian motion) and we can apply the classical Malliavin calculus
for Hilbert space-valued random variables, see Nualart (1995). By Dt we denote
the classical Malliavin derivative on the Wiener space (ΩW ,FW,PW). We state the
first result, see Proposition 3.5 in Solé et al. (2007).
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Proposition 2.6.1 If for P
N -a.e. ωN ∈ ΩN a random variable ξ(.,ωN) on

(ΩW ,FW,PW) is Malliavin differentiable, then

Dt,0ξ(ωW ,ωN) = 1

σ
Dtξ(.,ωN)(ωW ), a.s., a.e., (ω, t) ∈ Ω × [0, T ], (2.22)

where Dt denotes the Malliavin derivative on the Wiener space.

The derivative Dt,z, for z 
= 0, is derivative with respect to the pure jump com-
ponent of a Lévy process. In order to calculate this derivative, we use the following
increment quotient operator

It,zξ(ωW ,ωN) = ξ(ωW ,ω
t,z
N ) − ξ(ωW ,ωN)

z
, (2.23)

where ω
t,z
N transforms a family ωN = ((t1, z1), (t2, z2), . . .) ∈ ΩN into a new fam-

ily ω
t,z
N = ((t, z), (t1, z1), (t2, z2), . . .) ∈ ΩN by adding a jump of size z at time t

into the trajectory of the Lévy process. We can state the second result, see Proposi-
tions 5.4 and 5.5 in Solé et al. (2007).

Proposition 2.6.2 Consider ξ ∈ L
2(R) which is measurable with respect to the

natural filtration generated by a Lévy process. If E[∫ T

0

∫
R\{0} |It,zξ |2z2ν(dz)dt] <

∞, then

Dt,zξ = It,zξ, a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] × (
R \ {0}). (2.24)

Let us now present some differentiation rules.

Proposition 2.6.3 Consider the natural filtration F generated by a Lévy process
and let ξ ∈D

1,2(R). For 0 ≤ s ≤ T we have E[ξ |Fs] ∈ D
1,2(R), and

Dt,zE[ξ |Fs] = E[Dt,zξ |Fs]1{t ≤ s}, a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] ×R.

Proof The result follows by adapting the proof of Proposition 1.2.8 from Nualart
(1995) into our setting. �

It follows from Proposition 2.6.3 that if ξ is Fs -measurable then Dt,zξ = 0 a.s.,
υ-a.e. (ω, t, z) ∈ Ω × (s, T ] ×R, see Corollary 1.2.1 in Nualart (1995).

We state the chain rule.

Proposition 2.6.4 Let ϕ : R → R be a Lipschitz continuous function. Under the
assumptions of Propositions 2.6.1 and 2.6.2 we have ϕ(ξ) ∈D

1,2(R). Moreover:

(a) There exists an a.s. bounded random variable ζ such that

Dt,0ϕ(ξ) = ζDt,0ξ, a.s., a.e.(ω, t) ∈ Ω × [0, T ].
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If the law of ξ is absolutely continuous with respect to the Lebesgue measure or
ϕ is continuously differentiable, then ζ = ϕ′(ξ).

(b) We have the relation

Dt,zϕ(ξ) = ϕ(ξ + zDt,zξ) − ϕ(ξ)

z
,

a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] ×R \ {0}.

Proof Case (a) follows from Proposition 1.2.4 in Nualart (1995) and Proposi-
tion 2.6.1. Case (b) follows from Proposition 2.6.2 and the definition of the operator
(2.23). �

The next two results are taken from Delong and Imkeller (2010b).

Proposition 2.6.5 Consider a finite measure q on R. Let ϕ : Ω × [0, T ] × R → R

be a product measurable, adapted process which satisfies

E

[∫

[0,T ]×R

∣∣ϕ(s, y)
∣∣2

q(dy)ds

]
< ∞,

ϕ(s, y) ∈D
1,2(R), a.e. (s, y) ∈ [0, T ] ×R, (2.25)

E

[∫

([0,T ]×R)2

∣
∣Dt,zϕ(s, y)

∣
∣2

q(dy)dsυ(dt, dz)

]
< ∞.

Then
∫
[0,T ]×R

ϕ(s, y)q(dy)ds ∈D
1,2(R) and we have the differentiation rule

Dt,z

∫ T

0

∫

R

ϕ(s, y)q(dy)ds =
∫ T

t

∫

R

Dt,zϕ(s, y)q(dy)ds,

a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] ×R.

Proposition 2.6.6 Let ϕ : Ω × [0, T ] ×R→R be a predictable process which sat-
isfies E[∫[0,T ]×R

|ϕ(s, y)|2υ(ds, dy)] < ∞. Then

ϕ ∈ L
1,2(R) if and only if

∫

[0,T ]×R

ϕ(s, y)Υ (ds, dy) ∈D
1,2(R).

Moreover, if
∫
[0,T ]×R

ϕ(s, y)Υ (ds, dy) ∈D
1,2(R), then

Dt,z

∫ T

0

∫

R

ϕ(s, y)Υ (ds, dy) = ϕ(t, z) +
∫ T

t

∫

R

Dt,zϕ(s, y)Υ (ds, dy),

a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] × R, and
∫
[0,T ]×R

Dt,zϕ(s, y)Υ (ds, dy) is a
stochastic integral in the Itô sense.
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Notice that we can also establish the following relation

Dt,z

∫ T

s

∫

R

ϕ(r, y)Υ (dr, dy)

= Dt,z

(∫ T

0

∫

R

ϕ(r, y)Υ (dr, dy) −
∫ s

0

∫

R

ϕ(r, y)Υ (dr, dy)

)

=
∫ T

s

∫

R

Dt,zϕ(r, y)Υ (dr, dy), 0 ≤ t ≤ s ≤ T , s > 0.

We now give examples which illustrate the differentiation rules.

Example 2.11 Consider a square integrable function V : R → R and a Lipschitz
continuous function ϕ : R→R. Let

ξ = ϕ

(∫ T

0
V (s)dW(s)

)
.

We can write ξ = ϕ(
∫ T

0
V (s)
σ

dΥ c(s)). It is know that the random variable
∫ T

0 V (s)dW(s) is normally distributed, see Lemma 4.3.11 in Applebaum (2004).
By Propositions 2.6.4 and 2.6.6 we obtain

Dt,0ξ = ϕ′
(∫ T

0
V (s)dW(s)

)
V (t)

σ
,

a.s., a.e. (ω, t) ∈ Ω × [0, T ].
Example 2.12 Consider the put option ξ = (K − V (T ))+ where V (T ) =
eσW(T )− 1

2 σ 2T models the terminal value of a stock. In applications we would like
to use the Malliavin derivative of ξ . Unfortunately, we cannot use the result from
Example 2.11 since the exponential function is not Lipschitz continuous. We follow
a different approach. First, we find the Malliavin derivative of V (T ). Let us define

the process V (t) = eσW(t)− 1
2 σ 2t , 0 ≤ t ≤ T , and by the Itô’s formula we get

V (t) = 1 +
∫ t

0
V (s)σdW(s), 0 ≤ t ≤ T .

In Sect. 4.1 we show that the process V , which solves a linear forward stochastic
differential equation, is Malliavin differentiable, see Theorem 4.1.2. We can now
apply Proposition 2.6.6 and we derive the equation

Du,0V (t) = V (u) +
∫ t

u

Du,0V (s)σdW(s), 0 ≤ u ≤ t ≤ T .

Since Du,0V turns out to be a stochastic exponential of the Brownian motion W ,

we conclude that Du,0V (t) = V (u)e
∫ t
u σdW(s)− 1

2

∫ t
u σ 2ds = V (t), 0 ≤ u ≤ t ≤ T . By

Proposition 2.6.4 we now get the Malliavin derivative
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Dt,0ξ = −eσW(T )− 1
2 σ 2T 1

{
eσW(T )− 1

2 σ 2T < K
}
,

a.s., a.e. (ω, t) ∈ Ω × [0, T ].

Example 2.13 Let N be the jump measure of a compound Poisson process with
jump size distribution q . Consider a function V : [0, T ] × R → R such that∫ T

0

∫
R

|V (s, y)|2q(dy)ds < ∞ and a Lipschitz continuous function ϕ :R→ R. Let

ξ = ϕ

(∫ T

0

∫

R

V (s, y)Ñ(ds, dy)

)
.

We can write ξ = ϕ(
∫ T

0

∫
R

V (s,y)
y

Υ d(ds, dy)). By Propositions 2.6.6 and 2.6.4 we
obtain

Dt,zξ = ϕ(
∫ T

0

∫
R

V (s, y)Ñ(ds, dy) + V (t, z)) − ϕ(
∫ T

0

∫
R

V (s, y)Ñ(ds, dy))

z
,

a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] ×R \ {0}.

Example 2.14 Let N be the jump measure of a compound Poisson process with
jump size distribution q . Consider the stop-loss contract ξ = (J (T ) − K)+ where
J (t) = ∫ t

0

∫ ∞
0 yN(ds, dy), 0 ≤ t ≤ T , is the compound Poisson process used for

modelling insurer’s claims. We assume that the claim size distribution q is supported
on (0,∞) and satisfies

∫ ∞
0 y2q(dy) < ∞. In applications we would like to use the

Malliavin derivative of ξ . From Example 2.13 we immediately deduce that

Dt,z = (J (T ) + z − K)+ − (J (T ) − K)+

z
,

a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] × (0,∞).
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