
Chapter 12
Pricing and Hedging Under a Least Favorable
Measure

Abstract We consider two optimization problems which take into account the un-
certainty about the true probability (martingale) measure. First, we investigate pric-
ing and hedging under model ambiguity. We find the hedging strategy which min-
imizes the expected terminal shortfall under a least favorable probability measure
specifying the probability model for the risk factors and we set the price which off-
sets this worst shortfall. Next, we deal with no-good-deal pricing. We price the in-
surance payment process with a least favorable martingale measure under a Sharpe
ratio constraint which excludes prices leading to extraordinarily high gains. Both
pricing and hedging objectives lead to the same solution. We characterize the price
and the hedging strategy by a nonlinear BSDE.

In this chapter we solve two optimization problems which take into account the
uncertainty about the true probability (martingale) measure. We investigate pricing
and hedging under model ambiguity and we deal with no-good-deal pricing. Both
objectives have strong theoretical and practical justifications. In both cases the goal
is to derive a price and a hedging strategy by optimizing the expectation of a pay-
off over a set of equivalent probability (martingale) measures. The least favorable
measure is found and used for pricing and hedging. The connection between the ob-
jectives considered in this chapter and pricing and hedging under the instantaneous
mean-variance risk measure considered in Sect. 10.4 is given.

12.1 Pricing and Hedging Under Model Ambiguity

In previous chapters we assumed that we know the true real-world probability mea-
sure (the true probability law) or we know the true parameters of the combined
financial and insurance model. In real applications the true probabilities or the true
values of parameters are uncertain and we face so-called model ambiguity.

We consider the financial model (7.1)–(7.2) and the insurance payment process
(7.3). We assume that the process J is a point process and, consequently, the jump
measure N of the point process J has the compensator ϑ(dt, {1}) = η(t)dt . We
allow for model ambiguity or Knightian uncertainty, see Chen and Epstein (2002).
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We introduce the set of equivalent probability measures

Qs =
{
Q ∼ P,

dQ

dP

∣∣∣Ft = Ms(t), 0 ≤ t ≤ T

}
,

dMs(t)

Ms(t−)
= ψ(t)dW(t) + φ(t)dB(t) + κ(t)Ñ(dt), Ms(0) = 1,

(12.1)

where ψ , φ and κ are predictable processes such that

∣∣ψ(t)
∣∣2 + ∣∣φ(t)

∣∣2 + ∣∣κ(t)
∣∣2

η(t) ≤ ∣∣L(t)
∣∣2 ≤ K, κ(t) > −1, 0 ≤ t ≤ T ,

and L is a predictable process. The purpose of the set Qs is to represent different
beliefs (different assumptions) about the parameters or the probability laws of the
risk factors in our model. One way of determining the set Qs for ambiguity mod-
elling is to specify confidence sets around the estimates of the parameters and to
take for Qs the class of all measures that are consistent with these confidence sets.
Then, the process L can be interpreted as an estimation error. Alternatively, the ele-
ments of Qs can be interpreted as prior models which specify probabilities of future
scenarios for the risk factors. Then, the process L can define the range of equivalent
probabilities for every scenario.

Let us introduce the risk measure

ρ(ξ) = sup
Q∈Qs

EQ[−ξ ]. (12.2)

The risk measure (12.2) measures the risk of a financial position ξ . We remark
that ξ > 0 is interpreted as a profit and ξ < 0 as a loss. Under (12.2) we take the
supremum of all expected shortfalls for all prior models and we are interested in the
expected shortfall under the least favorable model (the least favorable assumptions).

We apply the conditional version of the risk measure (12.2) to the discounted
surplus at time T (the net asset value at time T ). We investigate the risk measures

ρt

(
e− ∫ T

t r(s)dsXπ(T ) − e− ∫ T
t r(s)dsF

)
, 0 ≤ t ≤ T , (12.3)

where the investment portfolio Xπ under an admissible investment strategy π ∈ A
is given by (7.11). The goal is to find an admissible investment strategy π which
minimizes the risk measures ρt for all t ∈ [0, T ] and a price Y which makes the risk
measures vanish in the sense that

ρt

(
e− ∫ T

t r(s)dsXπ(T ) − e− ∫ T
t r(s)dsF

) = 0, 0 ≤ t ≤ T ,

under the condition that X(t) = Y(t). The price and the hedging strategy are given
by

Y(t) = inf
π∈A

{
sup
Q∈Qs

EQ
[−(

e− ∫ T
t r(s)dsXπ(T ) − X(t)

− e− ∫ T
t r(s)dsF

)|Ft

]}
, 0 ≤ t ≤ T .
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The hedging strategy leads to the lowest expected terminal shortfall of the assets be-
low the liabilities under the least favorable probability measure from the set of prior
models. The price offsets this expected terminal shortfall. The objective seems to
be a sound pricing and hedging objective for insurers who are forced by regulators
to carry stress-tests on model parameters and hold sufficient capital to withstand
extreme scenarios. By applying the risk measure (12.3) the insurer protects the ter-
minal net asset wealth under the scenario in which the worst model assumptions
turn out to be the true assumptions. We remark that (12.3) is an example of robust
utility optimization, see Schied (2005) and Schied (2006).

We now solve the optimization problem

Y(t) = inf
π

{
sup
Q∈Qs

EQ

[
e− ∫ T

t r(u)duF +
∫ T

t

e− ∫ s
t r(u)duH(s)ds

+
∫ T

t

e− ∫ s
t r(u)duG(s)dJ (s) −

∫ T

t

e− ∫ s
t r(u)duπ(s)

((
μ(s) − r(s)

)
ds

+ σ(s)dW(s)
)|Ft

]}
, 0 ≤ t ≤ T . (12.4)

We deal with three BSDE:

Yπ,ψ,φ,κ (t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

−
∫ T

t

π(s)
(
μ(s) − r(s)

)
ds −

∫ T

t

π(s)σ (s)dW(s)

+
∫ T

t

(−Yπ,ψ,φ,κ (s−)r(s) + Z
π,ψ,φ,κ

1 (s)ψ(s) + Z
π,ψ,φ,κ

2 (s)φ(s)

+ Uπ,ψ,φ,κ (s)κ(s)η(s)
)
ds

−
∫ T

t

Z
π,ψ,φ,κ

1 (s)dW(s) −
∫ T

t

Z
π,ψ,φ,κ

2 (s)dB(s)

−
∫ T

t

Uπ,ψ,φ,κ (s)Ñ(ds), 0 ≤ t ≤ T , (12.5)

where π ∈ A and (ψ,φ, κ) ∈ Qs ,

Yπ,∗(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

−
∫ T

t

π(s)
(
μ(s)− r(s)

)
ds −

∫ T

t

π(s)σ (s)dW(s) +
∫ T

t

(
−Yπ,∗(s−)r(s)

+ L(s)

√∣∣Zπ,∗
1 (s)

∣∣2 + ∣∣Zπ,∗
2 (s)

∣∣2 + ∣∣Uπ,∗(s)
∣∣2

η(s)
)
ds
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−
∫ T

t

Z
π,∗
1 (s)dW(s) −

∫ T

t

Z
π,∗
2 (s)dB(s)

−
∫ T

t

Uπ,∗(s)Ñ(ds), 0 ≤ t ≤ T , (12.6)

where π ∈ A , and

Y ∗,∗(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

+
∫ T

t

(
−Y ∗,∗(s−)r(s) − Z

∗,∗
1 (s)θ(s)

+
√∣∣L(s)

∣∣2 − ∣∣θ(s)
∣∣2

√∣∣Z∗,∗
2 (s)

∣∣2 + ∣∣U∗,∗(s)
∣∣2

η(s)
)
ds

−
∫ T

t

Z
∗,∗
1 (s)dW(s) −

∫ T

t

Z
∗,∗
2 (s)dB(s)

−
∫ T

t

U∗,∗(s)Ñ(ds), 0 ≤ t ≤ T . (12.7)

By Propositions 3.3.1 and 3.4.1 we can derive the representation

Yπ,ψ,φ,κ (t) = EQψ,φ,κ [−(
e− ∫ T

t r(s)dsXπ(T ) − X(t)

− e− ∫ T
t r(s)dsF

)|Ft

]
, 0 ≤ t ≤ T ,

where Qψ,φ,κ is induced by (ψ,φ, κ) ∈ Qs .

Theorem 12.1.1 Let us assume that (C1)–(C4) from Chap. 7 hold and the jump
measure N of the step process J has the compensator ϑ(dt, {1}) = η(t)dt . We con-
sider a predictable process L such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K ,
0 ≤ t ≤ T .

(a) There exist unique solutions (Y π,ψ,φ,κ ,Z
π,ψ,φ,κ

1 ,Z
π,ψ,φ,κ

2 ,Uπ,ψ,φ,κ ), (Y π,∗,
Z

π,∗
1 ,Z

π,∗
2 ,Uπ,∗) ∈ S2(R) × H2(R) × H2(R) × H2

N(R) to the BSDEs (12.5)
and (12.6) with π ∈ A and (ψ,φ, κ) ∈ Qs .

(b) For any π ∈ A and (ψ,φ, κ) ∈ Qs we have Yπ,ψ,φ,κ (t) ≤ Yπ,∗(t), 0 ≤ t ≤ T .
(c) For any π ∈ A such that

L(t)Uπ,∗(t)√
|Zπ,∗

1 (t)|2+|Zπ,∗
2 (t)|2+|Uπ,∗(t)|2η(t)

· 1
{
Uπ,∗(t)η(t) �=0

}
>−1, 0≤ t ≤T ,

we have sup(ψ,φ,κ)∈Qs Y π,ψ,φ,κ (t) = Yπ,∗(t), 0 ≤ t ≤ T .

Proof (a) Choose π ∈ A and (ψ,φ, κ) ∈ Qs . By (3.22), (10.46) and Theorem 3.1.1
there exist unique solutions to the BSDEs (12.5) and (12.6).
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(b) Notice that the generator f of the BSDE (12.5) satisfies the property

f (t, y, z,u) − f
(
t, y, z, u′) = δy,z,u,u′

(t)
(
u − u′)η(t),

with δy,z,u,u′
(t) = κ(t), for (t, y, z, u), (t, y, z, u′) ∈ [0, T ] ×R×R×R. Recalling

the arguments from the proof of Theorem 3.2.2 that led to (3.31), we obtain

Yπ,∗(t) − Yπ,ψ,φ,κ (t)

= EQψ,φ,κ

[∫ T

t

e− ∫ s
t r(u)du

(
L(s)

√∣∣Zπ,∗
1 (s)

∣∣2 + ∣∣Zπ,∗
2 (s)

∣∣2 + ∣∣Uπ,∗(s)
∣∣2

η(s)

− Z
π,∗
1 (s)ψ(s) − Z

π,∗
2 (s)φ(s) − Uπ,∗(s)κ(s)η(s)

)
ds|Ft

]
, 0 ≤ t ≤ T ,

(12.8)

where Qψ,φ,κ is induced by (ψ,φ, κ) ∈ Qs . It is straightforward to check that the
triple

x∗ = δu√
u2 + w2 + v2η

1{u �= 0}

y∗ = δw√
u2 + w2 + v2η

1{w �= 0}, (12.9)

z∗ = δv√
u2 + w2 + v2η

1{vη �= 0},

is the solution to the optimization problem

ux + wy + vzη → max

x2 + y2 + z2η ≤ δ2,
(12.10)

and the global maximum of (12.10) is equal to δ
√

u2 + w2 + v2η. Hence, from
(12.8)–(12.10) we conclude that Yπ,∗(t)−Yπ,ψ,φ,κ (t) ≥ 0 for all t ∈ [0, T ] and any
π ∈ A , (ψ,φ, κ) ∈ Qs .

(c) Recalling (12.9), we define

ψ∗(t) = L(t)Z
π,∗
1 (t)√

|Zπ,∗
1 (t)|2 + |Zπ,∗

2 (t)|2 + |Uπ,∗(t)|2η(t)

1
{
Z

π,∗
1 (t) �= 0

}

φ∗(t) = L(t)Z
π,∗
2 (t)√

|Zπ,∗
1 (t)|2 + |Zπ,∗

2 (t)|2 + |Uπ,∗(t)|2η(t)

1
{
Z

π,∗
2 (t) �= 0

}
, (12.11)

κ∗(t) = L(t)Uπ,∗(t)√
|Zπ,∗

1 (t)|2 + |Zπ,∗
2 (t)|2 + |Uπ,∗(t)|2η(t)

1
{
Uπ,∗(t)η(t) �= 0

}
.
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The assumptions on π guarantee that (ψ∗, φ∗, κ∗) ∈ Qs . The solution
(Y π,ψ∗,φ∗,κ∗

,Z
π,ψ∗,φ∗,κ∗
1 ,Z

π,ψ∗,φ∗,κ∗
2 ,Uπ,ψ∗,φ∗,κ∗

) coincides with (Y π,∗,Zπ,∗
1 ,

Z
π,∗
2 ,Uπ,∗) by uniqueness of solution to (12.5). Hence, we conclude that

sup(ψ,φ,κ)∈Qs Y π,ψ,φ,κ (t) ≥ Yπ,ψ∗,φ∗,κ∗
(t) = Yπ,∗(t) for all t ∈ [0, T ] and any

π ∈ A . Since sup(ψ,φ,κ)∈Qs Y π,ψ,φ,κ (t) ≤ Yπ,∗(t) by item (b), the assertion of
item (c) can be immediately deduced. �

We remark that the assumption on π from item (c) guarantees that the inequality
κ(t) > −1 is strict in the optimum. Without this assumption, the least favorable
measure cannot be found in the set Qs .

Theorem 12.1.2 Let us assume that (C1)–(C4) from Chap. 7 hold and the jump
measure N of the step process J has the compensator ϑ(dt, {1}) = η(t)dt . We con-
sider a predictable process L such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K ,
0 ≤ t ≤ T .

(a) There exist unique solutions (Y π,∗,Zπ,∗
1 ,Z

π,∗
2 ,Uπ,∗), (Y ∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,U∗,∗)∈

S2(R)×H2(R)×H2(R)×H2
N(R) to the BSDEs (12.6) and (12.7) with π ∈ A .

(b) Define the class of admissible strategies A s which consists of strategies π :=
(π(t),0 ≤ t ≤ T ) such that π ∈ A and

L(t)Uπ,∗(t)√
|Z∗,∗

1 (t)−π(t)σ (t)|2 +|Z∗,∗
2 (t)|2 +|Uπ,∗(t)|2η(t)

1
{
Uπ,∗(t)η(t) �=0

}
>−1,

0 ≤ t ≤ T ,

L(t)U∗,∗(t)√
|Z∗,∗

1 (t)−π(t)σ (t)|2 +|Z∗,∗
2 (t)|2 +|U∗,∗(t)|2η(t)

1
{
U∗,∗(t)η(t) �=0

}
>−1,

0 ≤ t ≤ T .

For any π ∈ A s we have Yπ,∗(t) ≥ Y ∗,∗(t), 0 ≤ t ≤ T .
(c) Let Y denote the optimal value function of the optimization problem (12.4) un-

der the new set of admissible strategies A s . If U∗,∗(t) ≥ 0 or |L(t)|2 < η(t) +
|θ(t)|2 on the set {η(t) > 0}, 0 ≤ t ≤ T , then infπ∈A s Y π,∗(t) = Y ∗,∗(t) = Y(t),
0 ≤ t ≤ T , and the optimal admissible hedging strategy π∗ ∈ A s takes the form

π∗(t) = 1

σ(t)

(
Z

∗,∗
1 (t) +

√
|θ(t)|2

|L(t)|2 − |θ(t)|2
√∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)
,

0 ≤ t ≤ T . (12.12)

Proof (a) Choose π ∈ A . By (3.22), (10.46) and Theorem 3.1.1 there exist unique
solutions to the BSDEs (12.6) and (12.7).

(b) We introduce the process

Ẑ
π,∗
1 (t) = Z

π,∗
1 (t) + π(t)σ (t), 0 ≤ t ≤ T , (12.13)
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and we get the BSDE

Yπ,∗(t) = F +
∫ T

t

(
−Yπ,∗(s−)r(s) + H(s)ds + G(s)dJ (s) − π(s)

(
μ(s) − r(s)

)

+ L(s)

√∣∣Ẑπ,∗
1 (s) − π(s)σ (s)

∣∣2 + ∣∣Zπ,∗
2 (s)

∣∣2 + ∣∣Uπ,∗(s)
∣∣2

η(s)
)
ds

−
∫ T

t

Ẑ
π,∗
1 (s)dW(s) −

∫ T

t

Z
π,∗
2 (s)dB(s) −

∫ T

t

Uπ,∗(s)Ñ(ds),

0 ≤ t ≤ T . (12.14)

Notice that the generator f of the BSDE (12.14) satisfies the property

f
(
t, Y ∗,∗(t),Z∗,∗

1 (t),Z
∗,∗
2 (t),Uπ,∗(t)

) − f
(
t, Y ∗,∗(t),Z∗,∗

1 (t),Z
∗,∗
2 (t),U∗,∗(t)

)

= δY ∗,∗,Z∗,∗
1 ,Z

∗,∗
2 ,Uπ,∗,U∗,∗

(t)
(
Uπ,∗(t) − U∗,∗(t)

)
η(t), 0 ≤ t ≤ T ,

where

δY ∗,∗,Z∗,∗
1 ,Z

∗,∗
2 ,Uπ,∗,U∗,∗

(t)

= L(t)
(√∣∣Z∗,∗

1 (t) − π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

−
√∣∣Z∗,∗

1 (t) − π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)

/
((

Uπ,∗(t) − U∗,∗(t)
)
η(t)

)
1
{(

Uπ,∗(t) − U∗,∗(t)
)
η(t) �= 0

}
, 0 ≤ t ≤ T .

From the Lipschitz property (10.46) and boundedness of L we deduce that the map-
ping t 
→ |δY ∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,Uπ,∗,U∗,∗

(t)|2η(t) is uniformly bounded. We also have

δY ∗,∗,Z∗,∗
1 ,Z

∗,∗
2 ,Uπ,∗,U∗,∗

(t)

= L(t)
(
Uπ,∗(t) + U∗,∗(t)

)

/
(√∣∣Z∗,∗

1 (t) − π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

+
√∣∣Z∗,∗

1 (t) − π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)

· 1
{(

Uπ,∗(t) − U∗,∗(t)
)
η(t) �= 0

}

= απ L(t)Uπ,∗(t)√
|Z∗,∗

1 (t) − π(t)σ (t)|2 + |Z∗,∗
2 (t)|2 + |Uπ,∗(t)|2η(t)

· 1
{(

Uπ,∗(t) − U∗,∗(t)
)
η(t) �= 0

}
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+ (
1 − απ

) L(t)U∗,∗(t)√
|Z∗,∗

1 (t) − π(t)σ (t)|2 + |Z∗,∗
2 (t)|2 + |U∗,∗(t)|2η(t)

· 1
{(

Uπ,∗(t) − U∗,∗(t)
)
η(t) �= 0

}
,

where

απ =
√∣∣Z∗,∗

1 (t) − π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

/
(√∣∣Z∗,∗

1 (t) − π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

+
√∣∣Z∗,∗

1 (t) − π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)

· 1
{(

Uπ,∗(t) − U∗,∗(t)
)
η(t) �= 0

}
,

and απ ∈ [0,1]. We can conclude that δY ∗,∗,Z∗,∗
1 ,Z

∗,∗
2 ,Uπ,∗,U∗,∗

(t) > −1, 0 ≤ t ≤ T ,
for any admissible strategy π ∈ A s . Recalling the arguments from the proof of
Theorem 3.2.2 that led to (3.31), we obtain

Y ∗,∗(t) − Yπ,∗(t)

= EQ

[∫ T

t

e− ∫ s
t r(u)du

(√∣∣L(s)
∣∣2 − ∣∣θ(s)

∣∣2
√∣∣Z∗,∗

2 (s)
∣∣2 + ∣∣U∗,∗(s)

∣∣2
η(s)

− Z
∗,∗
1 (s)θ(s) + π(s)

(
μ(s) − r(s)

)

− L(s)

√∣∣Z∗,∗
1 (s) − π(s)σ (s)

∣∣2 + ∣∣Z∗,∗
2 (s)

∣∣2 + ∣∣U∗,∗(s)
∣∣2

η(s)
)
ds|Ft

]
,

0 ≤ t ≤ T , (12.15)

under some measure Q. We now introduce the function

ϕ(π) =
√

|L|2 − |θ |2
√∣∣z∗,∗

2

∣∣2 + ∣∣u∗,∗∣∣2
η − z

∗,∗
1 θ

+ π(μ − r) − L

√∣∣z∗,∗
1 − πσ

∣∣2 + ∣∣z∗,∗
2

∣∣2 + ∣∣u∗,∗∣∣2
η.

By classical differential calculus we can find the global maximum of ϕ and we can
show that ϕ(π) ≤ 0. Hence, from (12.15) we conclude that Y ∗,∗(t) − Yπ,∗(t) ≤ 0
for all t ∈ [0, T ] and any π ∈ A s .

(c) It is easy to show that ϕ(π∗) = 0 for π∗ defined in (12.12). We have to check
the admissibility of the candidate strategy π∗. Predictability and the square integra-
bility of π∗ are obvious. It is also clear that there exists an adapted, càdlàg solution
Xπ∗

to (7.11). Hence, π∗ ∈ A . By uniqueness of solution to (12.14) the solution
(Y π∗,∗, Ẑπ∗,∗

1 ,Z
π∗,∗
2 ,Uπ∗,∗) coincides with (Y ∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,U∗,∗). From (12.12)



12.1 Pricing and Hedging Under Model Ambiguity 229

we can now derive

Z
∗,∗
1 (t)−π∗(t)σ (t) =

√
|θ(t)|2

|L(t)|2 −|θ(t)|2
√∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t), 0≤ t ≤T ,

and, consequently, π∗ ∈ A s if

L(t)Uπ∗,∗(t)√
|Z∗,∗

1 (t) − π∗(t)σ (t)|2 + |Z∗,∗
2 (t)|2 + |Uπ∗,∗(t)|2η(t)

1
{
Uπ∗,∗(t)η(t) �= 0

}

= L(t)U∗,∗(t)√
|Z∗,∗

1 (t) − π∗(t)σ (t)|2 + |Z∗,∗
2 (t)|2 + |U∗,∗(t)|2η(t)

1
{
U∗,∗(t)η(t) �= 0

}

=
√|L(t)|2 − |θ(t)|2U∗,∗(t)√
|Z∗,∗

2 (t)|2 + |U∗,∗(t)|2η(t)

1
{
U∗,∗(t)η(t) �= 0

}
> −1, 0 ≤ t ≤ T ,

which holds if U∗,∗(t) ≥ 0 or |L(t)|2 < η(t) + |θ(t)|2 on the set {η(t) > 0}. We
can conclude that Y ∗,∗(t) = Yπ∗,∗(t) ≥ infπ∈A s Y π,∗(t) for all t ∈ [0, T ]. Since
Y ∗,∗(t) ≤ infπ∈A s Y π,∗(t) by item (b), the assertion of item (c) can be deduced. �

The additional constraints on the set of admissible strategies allow us to apply the
comparison principle in the proof of Theorem 12.1.2 and we succeed in obtaining
the optimal solution. We point out that the additional constraints are essential for
deriving the arbitrage-free price (12.4) which satisfies the comparison principle (the
property of monotonicity with respect to the claim and the Sharpe ratio).

Notice that the assumptions: θ(t) + ε ≤ L(t) and |L(t)|2 < η(t) + |θ(t)|2 on
the set {η(t) > 0} may hold only if η(t) ≥ ε > 0 on the set {η(t) > 0}. We remark
that it is reasonable to assume that there exists a positive lower bound on the claim
intensity, e.g. despite improvements in mortality, it is reasonable to assume that
there exists a natural limit in these improvements and the mortality intensity process
should be bounded away from zero. If θ(t) + ε ≤ L(t) <

√
η(t), then A s = A .

Theorem 12.1.2 shows that the price process and the optimal hedging strategy,
which are derived under the ambiguity risk minimization (12.4), can be charac-
terized with the solution to the nonlinear BSDE (12.7). The price process Y ∗,∗ is
arbitrage-free. From (12.7) we get

Y ∗,∗(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

+
∫ T

t

(
−Y ∗,∗(s−)r(s) − Z

∗,∗
1 (s)θ(s)

+ Z
∗,∗
2 (s)√

|Z∗,∗
2 (s)|2 + |U∗,∗(s)|2η(s)

√∣∣L(s)
∣∣2 − ∣∣θ(s)

∣∣2
Z

∗,∗
2 (s)
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+ U∗,∗(s)√
|Z∗,∗

2 (s)|2 + |U∗,∗(s)|2η(s)

√∣∣L(s)
∣∣2 − ∣∣θ(s)

∣∣2
U∗,∗(s)η(s)

)
ds

−
∫ T

t

Z
∗,∗
1 (s)dW(s) −

∫ T

t

Z
∗,∗
2 (s)dB(s)

−
∫ T

t

U∗,∗(s)Ñ(ds), 0 ≤ t ≤ T ,

and by the Girsanov’s theorem we obtain the representation

Y ∗,∗(t) = EQ∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T , (12.16)

where the equivalent martingale measure Q∗ is given by

dQ∗

dP

∣∣∣Ft = M∗(t), 0 ≤ t ≤ T ,

dM∗(t)
M∗(t−)

= −θ(t)dW(t) + Z
∗,∗
2 (t)√

|Z∗,∗
2 (t)|2 + |U∗,∗(t)|2η(t)

√∣∣L(t)
∣∣2 − ∣∣θ(t)

∣∣2
dB(t)

+ U∗,∗(t)√
|Z∗,∗

2 (t)|2 + |U∗,∗(t)|2η(t)

√∣∣L(t)
∣∣2 − ∣∣θ(t)

∣∣2
Ñ(dt). (12.17)

Since we assume that U∗,∗(t) ≥ 0 or |L(t)|2 < η(t) + |θ(t)|2, the process given
by (12.17) is a positive martingale and it defines an equivalent martingale measure.
We can also prove that Y ∗,∗ satisfies the comparison principle and the property of
monotonicity with respect to the claim, see Delong (2012a). The systematic and
unsystematic insurance risks are priced under Q∗ and the insurance risk premiums
can be deduced from (12.17). The pricing measure Q∗ depends on the financial
market, the insurance payment process and the control process L. Since Y ∗,∗ is an
arbitrage-free price of the liability and Z∗,∗ is the control process of the BSDE for
Y , we conclude that the optimal hedging strategy (12.12) is a delta hedging strategy
with a correction term.

Recall now the hedging strategy (10.43) and the price (10.44) derived under the
instantaneous mean-variance risk measure. There are obvious similarities between
the results from Sect. 10.4 and the results of this chapter. This should not mislead us.
We point out that the price process (10.44), which is obtained under the assumptions
of Theorem 10.4.1, may give rise to arbitrage opportunities, see Example 10.3. This
is never the case for the price process (12.7), which is obtained under the assump-
tions of Theorems 12.1.1 and 12.1.2. The stronger assumptions of Theorems 12.1.1
and 12.1.2 exclude those cases of (10.44) which lead to arbitrage prices, see Exam-
ples 10.3 and 10.4.

We conclude that there is an equivalence between arbitrage-free pricing and
hedging under the instantaneous mean-variance risk measure and pricing and hedg-
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ing under the ambiguous risk measure, which, by construction, always leads to an
arbitrage-free price. Such an equivalence is beneficial for applications and interpre-
tations. Firstly, it is straightforward to justify that L(t) ≥ θ(t) + ε as the process L

can be related to the Sharpe ratio of the surplus process. Secondly, from (10.43) and
(10.56) we deduce that the correction term in the hedging strategy (10.43) or (12.12)
arises if the insurer applies the mean-variance risk measure instead of the variance
risk measure.

Example of pricing and hedging under model ambiguity are given in Exam-
ples 10.3 and 10.4.

12.2 No-Good-Deal Pricing

In the arbitrage-free financial and insurance model the payment process P should be
priced by the expectation EQ[∫ T

0 e−rt dP (t)] under an equivalent martingale mea-
sure Q ∈ Qm, see Sect. 9.1. Since the set of equivalent martingale measures Qm

is not a singleton, the first idea is to consider supQ∈Qm EQ[∫ T

0 e−rt dP (t)]. Such a
superhedging price is too high for practical applications, gives rise to arbitrage op-
portunities and cannot be used for pricing, see Sect. 9.3. The second idea is to con-
sider supQ∈Q′ EQ[∫ T

0 e−rt dP (t)] where Q′ ⊂ Qm. In order to apply such a price,
the form of the subset Q′ of the set of equivalent martingale measures Qm should
be specified and justified. In this chapter we present a financial motivation for con-
sidering a particular subset of Qm and we find the arbitrage-free price under the
least favorable martingale measure from this subset.

We investigate the insurance payment process (7.3). We assume that the pro-
cess J is a point process and, consequently, the jump measure N of the point pro-
cess J has the compensator ϑ(dt, {1}) = η(t)dt . From Propositions 3.3.1 and 3.4.1
we can conclude that an arbitrage-free price Y of the payment process P must sat-
isfy the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

+
∫ T

t

(−Y(s−)r(s) − Z1(s)θ(s) + Z2(s)φ(s) + U(s)κ(s)η(s)
)
ds

−
∫ T

t

Z1(s)dW(s) −
∫ T

t

Z2(s)dB(s)

−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T , (12.18)

where φ and κ denote the insurance risk premiums and (φ, κ) ∈ Qm. We aim to
constrain the possible values of (φ, κ) ∈ Qm in a financially sensible way. A rea-
sonable constraint on the risk premiums can be derived by referring to the theory of
no-good-deal pricing.



232 12 Pricing and Hedging Under a Least Favorable Measure

Sharpe ratios are often used to characterize investment opportunities. An invest-
ment opportunity with an extraordinarily high Sharpe ratio is called a good deal
and the theory of finance argues that good deals cannot survive in competitive mar-
kets, see Cochrane and Saá-Requejo (2000) and Björk and Slinko (2006). Empirical
studies also support the fact that Sharpe ratios of investment opportunities in com-
petitive markets take restricted range of values, see Lo (2002). These arguments lay
the foundation for no-good-deal pricing.

We assume that the stock and the insurance contract are traded in the market.
We remark that market-consistent valuation of insurance liabilities assumes that in-
surance obligations can be transferred between parties, see V.2.–V.3. in European
Commission QIS5 (2010). The insurer has two risky opportunities: he can invest in
the risky stock or he can sell the risky insurance payment process, collect a premium
and back the liability with the risk-free investment in the bank account. We define
the instantaneous Sharpe ratios of the investment in the stock S and the investment
in the insurance contract Y :

Sharpe Ratiot (S) = E[dS(t) − S(t)r(t)dt |Ft−]/dt√
E[d[S,S](t)|Ft−]/dt

= θ(t), 0 ≤ t ≤ T ,

Sharpe Ratiot (Y ) = E[dS (t) − S (t−)r(t)dt |Ft−]/dt√
E[d[S ,S ](t)|Ft−]dt

= E[−dY (t) + Y(t−)r(t)dt |Ft−]/dt√
E[d[Y,Y ](t)|Ft−]dt

= −Z1(t)θ(t) + Z2(t)φ(t) + U(t)κ(t)η(t)√|Z1(t)|2 + |Z2(t)|2 + |U(t)|2η(t)
, 0 ≤ t ≤ T ,

where we use the Sharpe ratio of the surplus S which is earned by the insurer who
takes the short position in the insurance contract and the long position in the bank
account, see (10.41) and (10.42). By the Schwarz inequality we get

∣∣−Z1(t)θ(t) + Z2(t)φ(t) + U(t)κ(t)η(t)
∣∣

≤
√∣∣Z1(t)

∣∣2 + ∣∣Z2(t)
∣∣2 + ∣∣U(t)

∣∣2
η(t)

√∣∣θ(t)
∣∣2 + ∣∣φ(t)

∣∣2 + ∣∣κ(t)
∣∣2

η(t),

(12.19)

which yields the inequality

∣∣Sharpe Ratiot (Y )
∣∣ ≤

√∣∣θ(t)
∣∣2 + ∣∣φ(t)

∣∣2 + ∣∣κ(t)
∣∣2

η(t), 0 ≤ t ≤ T .

The goal is to find a least favorable martingale measure for pricing the insurance
payment process under the constraint that the Sharpe ratio of the insurance contract
is within the no-good-deal range given by the market. In order to guarantee that
in the combined financial and insurance market the instantaneous Sharpe ratios are
bounded by a process L, which itself should be bounded to exclude good deals, we
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have to introduce the constraint
∣∣θ(t)

∣∣2 + ∣∣φ(t)
∣∣2 + ∣∣κ(t)

∣∣2
η(t) ≤ ∣∣L(t)

∣∣2 ≤ K, 0 ≤ t ≤ T . (12.20)

The bound L for the Sharpe ratio of the insurance contract should be greater than
θ since the risk premium θ can be earned by investing in the stock. The insurance
contract carries an additional risk and the risk premium for the insurance contract
has to be strictly above θ . Hence, we should consider L(t) ≥ θ(t) + ε, ε > 0.

We now define the no-good-deal price of the insurance payment process P . We
choose a process L which represents the bound on possible gains in the market mea-
sured by instantaneous Sharpe ratios. We introduce the set of equivalent martingale
measures

Qngd =
{
Q ∼ P,

dQ

dP

∣∣∣Ft = Mngd(t), 0 ≤ t ≤ T

}
,

dMngd(t)

Mngd(t−)
= −θ(t)dW(t) + φ(t)dB(t) + κ(t)Ñ(dt), Mngd(0) = 1, (12.21)

where φ and κ are predictable processes such that

∣∣φ(t)
∣∣2 + ∣∣κ(t)

∣∣2
η(t)dt ≤ ∣∣L(t)

∣∣2 − ∣∣θ(t)
∣∣2

, κ(t) > −1, 0 ≤ t ≤ T .

The no-good-deal price is defined by

Y(t) = sup
Q∈Qngd

EQ

[
e− ∫ T

t r(s)dsF +
∫ T

t

e− ∫ s
t r(u)duG(s)dJ (s)

+
∫ T

t

e− ∫ s
t r(u)duH(s)ds|Ft

]
, 0 ≤ t ≤ T . (12.22)

We price the insurance payment process with a least favorable martingale measure
under the Sharpe ratio constraint which excludes too good prices leading to extraor-
dinarily high gains. The constraint (12.20) has a financial justification and leads to
the well-defined optimization problem (12.22).

Following the steps from the proofs of Theorems 12.1.1 and 12.1.2, we can derive
the no-good-deal price.

Theorem 12.2.1 Let us assume that (C1)–(C4) from Chap. 7 hold and the jump
measure N of the step process J has the compensator ϑ(dt, {1}) = η(t)dt . We con-
sider a predictable process L such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K ,
0 ≤ t ≤ T . Let us investigate the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)N(ds) +
∫ T

t

(
−Y(s−)r(s) − Z1(s)θ(s)

+
√∣∣L(s)

∣∣2 − ∣∣θ(s)
∣∣2

√∣∣Z2(s)
∣∣2 + ∣∣U(s)

∣∣2
η(s)

)
ds −

∫ T

t

Z1(s)dW(s)
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−
∫ T

t

Z2(s)dB(s) −
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (12.23)

If U(t) ≥ 0 or |L(t)|2 < η(t) + |θ(t)|2 on the set {η(t) > 0}, 0 ≤ t ≤ T , then the
no-good-deal price process (12.22) is the unique solution to the BSDE (12.23). The
no-good-deal price process has the representation

Y(t) = EQ∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T ,

where the least favorable martingale measure Q∗ is given by

dQ∗

dP

∣∣∣Ft = M∗(t), 0 ≤ t ≤ T ,

dM∗(t)
M∗(t−)

= −θ(t)dW(t) + Z2(t)√|Z2(t)|2 + |U(t)|2η(t)

√∣∣L(t)
∣∣2 − ∣∣θ(t)

∣∣2
dB(t)

+ U(t)√|Z2(t)|2 + |U(t)|2η(t)

√∣∣L(t)
∣∣2 − ∣∣θ(t)

∣∣2
Ñ(dt).

The no-good-deal price (12.23) coincides with the price (12.7) derived in Theo-
rem 12.1.2 under the ambiguity risk minimization.
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