
Chapter 10
Quadratic Pricing and Hedging

Abstract We investigate pricing and hedging of the insurance payment process
under quadratic objectives. Four types of quadratic loss functions are considered.
First, we deal with a minimal hedging error in a mean-square sense. The hedg-
ing error is evaluated both under an equivalent martingale measure and the real-
world measure. Next, we investigate locally risk minimizing strategies which lead
to non-self-financing investment portfolio processes. Finally, we minimize an in-
stantaneous mean-variance risk measure of the insurer’s surplus to derive a hedging
strategy. The pricing and hedging strategies are characterized by linear and nonlin-
ear BSDEs.

Since a self-financing investment portfolio cannot perfectly replicate the insurance
payment process, we aim to find an investment strategy which hedges the payment
process with a minimal replication error. It is natural to measure the replication
error with a quadratic function. In this chapter we investigate four types of quadratic
objectives for pricing and hedging in incomplete markets. Quadratic objectives have
gained their importance in portfolio optimization since Markowitz (1952) solved
a one-period portfolio selection problem. We point out that the Markowitz mean-
variance portfolio selection is used in practice for investment decision making and
asset-liability management, see Zenios and Ziemba (2006) and Adam (2007). Let
us also remark that replicating portfolios for insurance liabilities are constructed in
practice by means of a mean-square criterion, see Boekel et al. (2009).

10.1 Quadratic Pricing and Hedging Under an Equivalent
Martingale Measure

Let an equivalent martingale measure Q ∈ Qm be given. We formulate our pricing
and hedging objective under the measure Q. First, we define a class of admissible
strategies under Q.

Definition 10.1.1 A strategy π := (π(t),0 ≤ t ≤ T ) is called admissible under the
measure Q, written π ∈ A Q, if it satisfies the conditions:
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(i) π : [0, T ] × Ω → R is a predictable process,
(ii) EQ[∫ T

0 |π(t)σ (t)|2dt] < ∞,
(iii) there exists a unique càdlàg, adapted solution Xπ to (7.11) on [0, T ].

If assumptions (C2)–(C4) hold under Q, then the wealth process Xπ is square
integrable under Q for any admissible strategy π ∈ A Q, see (7.12).

The insurer faces the payment process (7.3). We control the wealth of the insurer
at time T which may denote the planning horizon in an ALM study or the point of
time when the insurance portfolio terminates. The goal is to find an initial capital
x and an admissible investment strategy π ∈ A Q which minimize the mean-square
hedging error

inf
x,π∈A Q

EQ
[∣
∣e− ∫ T

0 r(s)dsXπ,x(T ) − e− ∫ T
0 r(s)dsF

∣
∣2]

, (10.1)

where the investment portfolio process Xπ,x is given by (7.11). Hence, we aim to
find an investment portfolio which hedges the insurance payment process with a
minimal replication error at time T . The use of the mean-square objective for mea-
suring the replication error is very natural. The formulation of the objective under
an equivalent martingale measure is mathematically and practically convenient, as
we discuss later. The optimal capital, or the initial value of the optimal hedging
portfolio, yields the price of the payment process.

Theorem 10.1.1 Let an equivalent martingale measure Q ∈ Qm be given and as-
sume that (C1)–(C4) from Chap. 7 hold under Q. We consider the quadratic pricing
and hedging problem (10.1).

(a) There exists a unique solution (Y,Z1,Z2,U) ∈ S2(R) × H2(R) × H2(R) ×
H2

N(R) to the BSDE

Y(t) =
∫ T

0
e− ∫ s

0 r(u)dudP (s) −
∫ T

t

Z1(s)dWQ(s) −
∫ T

t

Z2(s)dBQ(s)

−
∫ T

t

∫

R

U(s, z)ÑQ(ds, dz), 0 ≤ t ≤ T , (10.2)

where the square integrability conditions for (Y,Z1,Z2,U) hold under Q.
(b) The optimal initial value of the hedging portfolio x∗ and the optimal admissible

hedging strategy π∗ ∈ A Q for the payment process P take the form

x∗ = Y(0) = EQ

[∫ T

0
e− ∫ s

0 r(u)dudP (s)

]

,

π∗(t) = Z1(t)

σ (t)
e
∫ t

0 r(s)ds, 0 ≤ t ≤ T .

Proof (a) The assertion follows from Theorem 3.1.1.
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(b) We recall that the dynamics of Xπ,x is described by (7.11). By the change of
measure, the Girsanov’s theorem and discounting we obtain

e− ∫ T
0 r(s)dsXπ,x(T )

= x +
∫ T

0
e− ∫ s

0 r(u)duπ(s)σ (s)dWQ(s)

−
∫ T

0
e− ∫ s

0 r(u)duH(s)ds −
∫ T

0

∫

R

e− ∫ s
0 r(u)duG(s, z)N(ds, dz). (10.3)

From (10.3) we conclude that the mean-square error (10.1) is given by

EQ

[∣
∣
∣
∣x +

∫ T

0
e− ∫ s

0 r(u)duπ(s)σ (s)dWQ(s) −
∫ T

0
e− ∫ s

0 r(u)dudP (s)

∣
∣
∣
∣

2]

,

and by (10.2) we get

EQ

[∣
∣
∣
∣x − Y(0) +

∫ T

0

(
e− ∫ s

0 r(u)duπ(s)σ (s) − Z1(s)
)
dWQ(s)

−
∫ T

0
Z2(s)dBQ(s) −

∫ T

0

∫

R

U(s, z)ÑQ(ds, dz)

∣
∣
∣
∣

2]

.

Taking the squares and using moment properties of stochastic integrals, see Theo-
rem 2.3.3, we derive

(
x − Y(0)

)2 +EQ

[∫ T

0

∣
∣e− ∫ s

0 r(u)duπ(s)σ (s) − Z1(s)
∣
∣2

ds

]

+EQ

[∫ T

0

∣
∣Z2(s)

∣
∣2

ds

]

+EQ

[∫ T

0

∫

R

∣
∣U(s, z)

∣
∣2

Q(s, dz)η(s)ds

]

− 2EQ

[∫ T

0

(
e− ∫ s

0 r(u)duπ(s)σ (s) − Z1(s)
)
dWQ(s)

∫ T

0
Z2(s)dBQ(s)

]

− 2EQ

[∫ T

0

(
e− ∫ s

0 r(u)duπ(s)σ (s) − Z1(s)
)
dWQ(s)

∫ T

0

∫

R

U(s, z)ÑQ(ds, dz)

]

+ 2EQ

[∫ T

0
Z2(s)dBQ(s)

∫ T

0

∫

R

U(s, z)ÑQ(ds, dz)

]

.

Finally, property (5.5) yields the hedging error

(
x − Y(0)

)2 +EQ

[∫ T

0

∣
∣e− ∫ s

0 r(u)duπ(s)σ (s) − Z1(s)
∣
∣2

ds

]

+EQ

[∫ T

0

∣
∣Z2(s)

∣
∣2

ds

]

+EQ

[∫ T

0

∫

R

∣
∣U(s, z)

∣
∣2

Q(s, dz)η(s)ds

]

,

and the optimality of (x∗,π∗) follows. The admissability of π∗ is clear. �



176 10 Quadratic Pricing and Hedging

The price and the hedging strategy for the payment process P are characterized
by the predictable representation of the discounted payments (or by the linear BSDE
(10.2)). The price x∗ is arbitrage-free. Recalling the interpretation given in Sect. 9.2
and Theorem 4.2.1, we can conclude that the hedging strategy π∗ is a delta-hedging
strategy. The hedging strategy π∗ is updated with the current information on the
financial and the insurance risk.

Example 10.1 We consider the classical Black-Scholes model with constant coef-
ficients r , μ, σ and an insurer who issues a portfolio of n unit-linked endowment
policies with a capital guarantee. We are interested in pricing and hedging the claim
F = (n − J (T ))(K − S(T ))+ where J is the deaths counting process for the in-
surance portfolio. We consider a constant mortality intensity λ and we choose the
equivalent martingale measure Q∗ defined in Theorem 9.2.1. In order to find the
price and the optimal hedging strategy for the claim F , we have to solve the BSDE

Y(t) = e−rT
(
n − J (T )

)(
K − S(T )

)+

−
∫ T

t

Z(s)dWQ∗
(s) −

∫ T

t

U(s)ÑQ∗
(ds), 0 ≤ t ≤ T . (10.4)

From Proposition 8.1.1 and formula (9.34) we conclude that the solution to the
BSDE (10.4) is given by the triple

Y(t) = (
n − J (t)

)
e−λ(T −t)e−rt

(
Ke−r(T −t)Φ

(−d
(
t, S(t)

) − σ
√

T − t
)

− S(t)Φ
(−d

(
t, S(t)

)))
, 0 ≤ t ≤ T ,

Z(t) = −(
n − J (t−)

)
e−λ(T −t)σS(t)e−rtΦ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

U(t) = −e−λ(T −t)e−rt
(
Ke−r(T −t)Φ

(−d
(
t, S(t)

) − σ
√

T − t
)

− S(t)Φ
(−d

(
t, S(t)

)))
, 0 ≤ t ≤ T .

By Theorem 10.1.1 the optimal hedging strategy is given by the formula

π∗(t) = −(
n − J (t−)

)
e−λ(T −t)S(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

and the price of the claim, and the initial value of the optimal hedging portfolio, is
equal to

x∗ = Y(0) = ne−λT
(
Ke−rT Φ

(−d
(
0, S(0)

) − σ
√

T
) − S(0)Φ

(−d
(
0, S(0)

)))
.

The value of the optimal hedging portfolio is determined by the process

X∗(t) = x∗ert +
∫ t

0
π∗(s)er(t−s)

(
θσds + σdW(s)

)
, 0 ≤ t ≤ T .

The solution to the optimization problem (10.1) is easy to derive but the objective
(10.1) has two drawback from the financial point of view. Firstly, we have to choose
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the equivalent martingale measure Q. This choice determines the price. When we
investigate pricing in incomplete markets we expect to find the equivalent martingale
measure. Consequently, the equivalent martingale measure used for pricing should
be the output of an optimization problem, rather than the input. Secondly, the use of
an equivalent martingale measure for evaluating the hedging error is questionable.
Profits and losses or the performance of the hedging portfolio should be evaluated
under the real-world measure.

10.2 Quadratic Pricing and Hedging Under the Real-World
Measure

We aim to find an investment portfolio which hedges the insurance payment process
(7.3) with a minimal replication error at time T and we evaluate the performance
of the hedging portfolio under the real-world measure. The goal is to find an initial
capital x and an admissible investment strategy π ∈ A which minimize the mean-
square hedging error

inf
x,π∈A

E
[∣
∣Xπ,x(T ) − F

∣
∣2]

, (10.5)

where Xπ,x is given by (7.11), and we use the class of admissible strategies A
from Definition 7.3.1. If one prefers to minimize the hedging error (10.5) for the
discounted quantities as in (10.1), then obvious modifications should be introduced.

We deal with two backward stochastic differential equations

Y(t) = 1 +
∫ T

t

(

2Y(s)r(s) − |Z(s)|2
Y(s)

− ∣
∣θ(s)

∣
∣2

Y(s) − 2θ(s)Z(s)

)

ds

−
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T , (10.6)

and

Y (t) = F +
∫ T

t

(

−Y (s−)r(s) + H(s) +
∫

R

G(s, z)Q(s, dz)η(s)

− Z1(s)θ(s)

)

ds −
∫ T

t

Z1(s)dW(s)

−
∫ T

t

Z2(s)dB(s) −
∫ T

t

∫

R

U (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.7)

Equation (10.6) is called a stochastic Riccati equation. First, we establish existence
and uniqueness results for these two BSDEs.
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Proposition 10.2.1 Assume that (C1)–(C2) from Chap. 7 hold. There exists a
unique solution (Y,Z) ∈ S∞(R) × H2(R) to the BSDE (10.6) such that Y(t) ≥
k > 0, 0 ≤ t ≤ T . Moreover, the process (

∫ t

0 Z(s)dW(s),0 ≤ t ≤ T ) is a BMO-
martingale.

Proof Since we look for a process Y which is uniformly bounded away from zero,
we can introduce new variables

Ŷ (t) = 1

Y(t)
, Ẑ(t) = −Z(t)

|Y(t)|2 , 0 ≤ t ≤ T .

The Itô’s formula yields

Ŷ (t) = 1 +
∫ T

t

((∣∣θ(s)
∣
∣2 − 2r(s)

)
Ŷ (s) − 2θ(s)Ẑ(s)

)
ds

−
∫ T

t

Ẑ(s)dW(s), 0 ≤ t ≤ T . (10.8)

We end up with a linear BSDE. By Proposition 3.3.1 there exists a unique solution
(Ŷ , Ẑ) ∈ S2(R) × H2(R) to the linear BSDE (10.8). From the representation of
the solution Ŷ and boundedness of θ and r we deduce that 0 < k ≤ Ŷ (t) ≤ K ,
0 ≤ t ≤ T . Hence, we conclude that there exists a unique solution (Y,Z) to the
nonlinear BSDE (10.6) and 0 < k ≤ Y(t) ≤ K , 0 ≤ t ≤ T . We now prove the BMO
property. By the Itô’s formula we obtain

d
(∣
∣Y(t)

∣
∣2) = 2Y(t)dY (t) + ∣

∣Z(t)
∣
∣2

dt,

and

∫ T

t

∣
∣Z(s)

∣
∣2

ds

= 1 − ∣
∣Y(t)

∣
∣2

+
∫ T

t

2Y(s)

(

2Y(s)r(s) − |Z(s)|2
Y(s)

− ∣
∣θ(s)

∣
∣2

Y(s) − 2θ(s)Z(s)

)

ds

−
∫ T

t

2Y(s)Z(s)dW(s)

≤ K + K

∫ T

t

∣
∣Z(s)

∣
∣ds −

∫ T

t

2Y(s)Z(s)dW(s)

≤ K + K
1

α

∫ T

t

∣
∣Z(s)

∣
∣2

ds + Kα −
∫ T

t

2Y(s)Z(s)dW(s), 0 ≤ t ≤ T ,

(10.9)
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where we use boundedness of r , θ and Y , strict positivity of Y and inequality (3.10).
Choosing α sufficiently large and taking the expectation, we derive

E

[∫ T

t

∣
∣Z(s)

∣
∣2

ds|Ft

]

≤ K, 0 ≤ t ≤ T , (10.10)

and the BMO property is proved. �

We will need higher moment estimates for the control process Z. From estimate
(10.9) we deduce that for any p ≥ 2 we have

(∫ T

0

∣
∣Z(s)

∣
∣2

ds

)p

≤ K + K
1

αp

(∫ T

0

∣
∣Z(s)

∣
∣2

ds

)p

+ Kαp

+
∣
∣
∣
∣

∫ T

0
2Y(s)Z(s)dW(s)

∣
∣
∣
∣

p

.

We choose α sufficiently large, take the expected value, apply the Burkholder-Davis-
Gundy inequality and we obtain the inequality

E

[(∫ T

0

∣
∣Z(s)

∣
∣2

ds

)p]

≤ Kp + KpE

[(∫ T

0

∣
∣Z(s)

∣
∣2

ds

)p/2]

. (10.11)

Starting with (10.10), by iteration we can derive the moment estimate

E

[(∫ T

0

∣
∣Z(s)

∣
∣2

ds

)p]

≤ Kp, p ≥ 1. (10.12)

We use estimate (10.12) in the sequel.
We now investigate the second BSDE.

Proposition 10.2.2 Assume that (C1)–(C4) from Chap. 7 hold.

(a) There exists a unique solution (Y ,Z1,Z2,U ) ∈ S2(R) × H2(R) × H2(R) ×
H2

N(R) to the BSDE (10.7). The process Y has the representation

Y (t)

= EQ∗
[

e− ∫ T
t r(s)dsF

+
∫ T

t

e− ∫ s
t r(u)du

(

H(s) +
∫

R

G(s, z)Q(s, dz)η(s)

)

ds|Ft

]

= EQ∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]

, 0 ≤ t ≤ T , (10.13)

where the equivalent martingale measure Q∗ is given by

dQ∗

dP

∣
∣
∣Ft = e− ∫ t

0 θ(s)dW(s)− 1
2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T .
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(b) If

E

[

|F |p +
(∫ T

0

∣
∣H(s)

∣
∣2

ds

)p/2

+
(∫ T

0

∫

R

∣
∣G(s, z)η(s)

∣
∣2

Q(s, dz)ds

)p/2]

<∞,

for some p > 2, then

E

[
sup

0≤t≤T

∣
∣Y (t)

∣
∣p

]
< ∞. (10.14)

Proof (a) The existence and the uniqueness follow from Theorem 3.1.1. Represen-
tation (10.13) can be derived by following the arguments from Proposition 3.3.1 and
the fact that the compensator of N remains unchanged under Q∗, see also the proof
of Theorem 9.4.1.

(b) By the Burkholder-Davis-Gundy inequality, the dynamics of the BSDE
(10.7), the Cauchy-Schwarz inequality and boundedness of r , θ we obtain

E

[(∫ T

0

∣
∣Z1(s)

∣
∣2

)p/2]

≤ E

[(∫ T

0

∣
∣Z1(s)

∣
∣2

ds +
∫ T

0

∣
∣Z2(s)

∣
∣2

ds +
∫ T

0

∫

R

∣
∣U (s, z)

∣
∣2

N(ds, dz)

)p/2]

≤ KE

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
Z1(s)dW(s)+

∫ t

0
Z2(s)dB(s)+

∫ t

0

∫

R

U (s, z)Ñ(ds, dz)

∣
∣
∣
∣

p]

= KE

[

sup
0≤t≤T

∣
∣
∣
∣Y (t) − Y (0) +

∫ t

0

(

−Y (s)r(s) + H(s)

+
∫

R

G(s, z)Q(s, dz)η(s) − Z1(s)θ(s)

)

ds

∣
∣
∣
∣

p]

≤ KE

[
(
1 + T p

)
sup

0≤t≤T

∣
∣Y (t)

∣
∣p + T p/2

(∫ T

0

∣
∣H(s)

∣
∣2

ds

)p/2

+ T p/2
(∫ T

0

∫

R

∣
∣G(s, z)η(s)

∣
∣2

Q(s, dz)ds

)p/2

+T p/2
(∫ T

0

∣
∣Z1(s)

∣
∣2

ds

)p/2]

.

Assume now that the time horizon T is sufficiently small. We get the inequality

E

[(∫ T

0

∣
∣Z1(s)

∣
∣2

)p/2]

≤ KT p/2

1 − KT p/2
+ K(1 + T p)

1 − KT p/2
E

[
sup

0≤t≤T

∣
∣Y (t)

∣
∣p

]
.

(10.15)

From representation (10.7), the Cauchy-Schwarz inequality and boundedness of r

and θ we deduce
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∣
∣Y (t)

∣
∣p =

∣
∣
∣
∣E

[

F +
∫ T

t

(

−Y (s)r(s) + H(s)

+
∫

R

G(s, z)Q(s, dz)η(s) − Z1(s)θ(s)

)

ds|Ft

]∣
∣
∣
∣

p

≤ K̂

(

E

[

|F |2 + T 2 sup
0≤s≤T

∣
∣Y (s)

∣
∣2 + T

∫ T

0

∣
∣H(s)

∣
∣2

ds

+ T

∫ T

0

∫

R

∣
∣G(s, z)η(s)

∣
∣2

Q(s, dz)ds + T

∫ T

0

∣
∣Z1(s)

∣
∣2

ds|Ft

])p/2

,

0 ≤ t ≤ T ,

which leads to the estimate

E

[
sup

0≤t≤T

∣
∣Y (t)

∣
∣p

]

≤ K̂E

[

|F |p + T p/2
(∫ T

0

∣
∣H(s)

∣
∣2

ds

)p/2

+ T p/2
(∫ T

0

∫

R

∣
∣G(s, z)η(s)

∣
∣2

Q(s, dz)ds

)p/2

+ T p sup
0≤t≤T

∣
∣Y (t)

∣
∣p + T p/2

(∫ T

0

∣
∣Z1(s)

∣
∣2

)p/2]

≤ K̂

(

1 + T p/2 + T pE

[
sup

0≤t≤T

∣
∣Y (t)

∣
∣p

]
+ T p/2E

[(∫ T

0

∣
∣Z1(s)

∣
∣2

)p/2])

≤ K̂

(

1+T p/2 + T p

1 − KT p/2
+

(

T p +T p/2 1 + T p

1 − KT p/2

)

E

[
sup

0≤t≤T

∣
∣Y (t)

∣
∣p

])

,

where we use the Doob’s martingale inequality, the Jensen’s inequality and inequal-
ity (10.15). If T is sufficiently small, then we conclude that E[sup0≤t≤T |Y (t)|p] <

KT,p . To prove estimate (10.14) for an arbitrary T , we divide the interval [0, T ] into
sufficiently small subintervals [Ti, Ti+1] and we consider the BSDEs

Y (t) = Y (Ti+1) +
∫ Ti+1

t

(

−Y (s−)r(s) + H(s) +
∫

R

G(s, z)Q(s, dz)η(s)

− Z1(s)θ(s)

)

ds −
∫ Ti+1

t

Z1(s)dW(s)

−
∫ Ti+1

t

Z2(s)dB(s) −
∫ Ti+1

t

∫

R

U (s, z)Ñ(ds, dz), Ti ≤ t ≤ Ti+1.
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We can establish the assertion E[supTi≤t≤Ti+1
|Y (t)|p] < Ki,p on each subinterval.

The global estimate for Y on [0, T ] follows by combining a finite number of local
estimates. �

We now derive the solution the quadratic optimization problem (10.5).

Theorem 10.2.1 Assume that (C1)–(C4) from Chap. 7 hold, and let

E

[

|F |p +
(∫ T

0

∣
∣H(s)

∣
∣2

ds

)p/2

+
(∫ T

0

∫

R

∣
∣G(s, z)η(s)

∣
∣2

Q(s, dz)ds

)p/2]

< ∞,

for some p > 2. We consider the quadratic hedging problem (10.5). The strategy of
the form

π∗(t) = Z1(t)

σ (t)

−
(

μ(t) − r(r)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)
(
X∗(t−) − Y (t−)

)
, 0 ≤ t ≤ T , (10.16)

where (Y,Z) and (Y ,Z ) solve the BSDEs (10.6) and (10.7), and the process X∗
is given by

dX∗(t) = π∗(t)
(
μ(t)dt + σ(t)dW(t)

) + (
X∗(t−) − π∗(t)

)
r(t)dt,

− H(t)dt −
∫

R

G(t, z)N(dt, dz), X(0) = x > 0,

are the optimal admissible hedging strategy π∗ ∈ A and the optimal hedging port-
folio for the payment process P .

Proof 1. The optimality. The proof is based on the method of completing the
squares. Consider the BSDEs (10.6) and (10.7) written in the shorthand notation

dY (t) = −f (t)dt + Z(t)dW(t), Y (T ) = 1,

dY (t) = −f ′(t)dt + Z1(t)dW(t) + Z2(t)dB(t)

+
∫

R

U (t, z)Ñ(dt, dz), Y (T ) = F,

where the generators f and f ′ are appropriately defined. Key properties of the so-
lutions to the BSDEs (10.6) and (10.7) are established in Propositions 10.2.1 and
10.2.2. We use these properties in the proof. We introduce the process

Ŷ (t) = −2Y(t)Y (t), 0 ≤ t ≤ T .

The Itô’s formula yields the dynamics

dŶ (t) = −f̂ (t)dt + Ẑ1(t)dW(t) + Ẑ2(t)dB(t) +
∫

R

Û (t, z)Ñ(dt, dz),

Ŷ (T ) = −2F,
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where

f̂ (t) = − 2
(
Y(t)f ′(t) + Y (t)f (t) − Z1(t)Z(t)

)
, 0 ≤ t ≤ T ,

Ẑ1(t) = − 2
(
Y(t)Z1(t) + Y (t)Z(t)

)
, 0 ≤ t ≤ T ,

Ẑ2(t) = − 2Y(t)Z2(t), 0 ≤ t ≤ T ,

Û (t, z) = − 2Y(t)U (t, z), 0 ≤ t ≤ T ,

(10.17)

and

f̂ (t) = Ŷ (t)r(t) − 2Y(t)H(t) − 2Y(t)

∫

R

G(t, z)Q(t, dz)η(t)

− θ(t)
Ŷ (t)(μ(t) − r(t)) + Ẑ1(t)σ (t)

σ (t)

− Z(t)
Ŷ (t)(μ(t) − r(t)) + Ẑ1(t)σ (t)

Y (t)σ (t)
, 0 ≤ t ≤ T . (10.18)

We choose an admissible strategy π ∈ A and we consider the investment port-
folio process Xπ given by (7.11). By the Itô’s formula we derive the dynamics

d
(
Y(t)

(
Xπ(t)

)2)

= Y(t)

(

2Xπ(t−)π(t)
(
μ(t)dt + σ(t)dW(t)

)

+ 2Xπ(t−)
(
Xπ(t−) − π(t)

)
r(t)dt − 2Xπ(t−)H(t)dt

−
∫

R

2Xπ(t−)G(t, z)N(dt, dz) + ∣
∣π(t)σ (t)

∣
∣2

dt +
∫

R

∣
∣G(t, z)

∣
∣2

N(dt, dz)

)

+ ∣
∣Xπ(t−)

∣
∣2(−f (t)dt + Z(t)dW(t)

) + 2Z(t)Xπ(t)π(t)σ (t)dt,

and

d
(
Ŷ (t)Xπ(t)

)

= Ŷ (t−)

(

π(t)
(
μ(t)dt + σ(t)dW(t)

)

+ (
Xπ(t−) − π(t)

)
r(t)dt − H(t)dt −

∫

R

G(t, z)N(dt, dz)

)

+ Xπ(t−)

(

−f̂ (t)dt + Ẑ1(t)dW(t) + Ẑ2(t)dB(t) +
∫

R

Û (t, z)Ñ(dt, dz)

)

+ Ẑ1(t)π(t)σ (t)dt −
∫

R

Û (t, z)G(t, z)N(dt, dz).
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We can notice that the stochastic integrals with respect to W , B and Ñ are locally
square integrable local martingales since Xπ and Ŷ are càdlàg, Y is bounded, π ,
ZẐ1, Ẑ2 and Û are square integrable, see Theorem 2.3.1. Furthermore, the stochas-
tic integrals with respect to N have locally integrable compensators since Xπ and Ŷ

are càdlàg, Y is bounded, G and Û are square integrable. Consequently, the com-
pensated integrals are local martingales, see Theorem 2.3.2. Let (τn)n≥1 denote a
localizing sequence for the local martingales such that τn → T , n → ∞. We obtain
the expectations

E
[
Y(τn)

∣
∣Xπ(τn)

∣
∣2]

= Y(0)x2 +E

[∫ τn

0

{

Y(t)

(

2Xπ(t−)π(t)
(
μ(t) − r(t)

)

+ 2
∣
∣Xπ(t−)

∣
∣2

r(t) − 2Xπ(t−)H(t) −
∫

R

2Xπ(t−)G(t, z)Q(t, dz)η(t)

+ ∣
∣π(t)σ (t)

∣
∣2 +

∫

R

∣
∣G(t, z)

∣
∣2

Q(t, dz)η(t)

)

− ∣
∣Xπ(t−)

∣
∣2

f (t) + 2Z(t)Xπ(t−)π(t)σ (t)

}

dt

]

, (10.19)

and

E
[
Ŷ (τn)X

π(τn)
]

= Ŷ (0)x +E

[∫ τn

0

{

Ŷ (t−)

(

π(t)
(
μ(t) − r(t)

) + Xπ(t−)r(t)

− H(t) −
∫

R

G(t, z)Q(t, dz)η(t)

)

− Xπ(t−)f̂ (t) + Ẑ1(t)π(t)σ (t)

−
∫

R

G(t, z)Û (t, z)Q(t, dz)η(t)

}

dt

]

. (10.20)

From (10.19)–(10.20), after some tedious calculations, we deduce the formula

E
[
Y(τn)

∣
∣Xπ(τn) − Y (τn)

∣
∣2]

= E
[
Y(τn)

∣
∣Xπ(τn)

∣
∣2 + Ŷ (τn)X

π(τn) + Y(τn)
∣
∣Y (τn)

∣
∣2]

= Y(0)x2 + Ŷ (0)x

+E

[∫ τn

0
Y(t)

∣
∣σ(t)

∣
∣2

{

π(t) +
(

μ(t) − r(t)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)

Xπ(t−)

+ Ŷ (t)

2Y(t)

μ(t) − r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

}2

dt
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+
∫ τn

0

∣
∣Xπ(t)

∣
∣2
(

−f (t)+2Y(t)r(t)− |Z(t)|2
Y(t)

− ∣
∣θ(t)

∣
∣2

Y(t)−2θ(t)Z(t)

)

dt

+
∫ τn

0
Xπ(t)

(

−f̂ (t)+ Ŷ (t)r(t)−2Y(t)H(t)−2Y(t)

∫

R

G(t, z)Q(t, dz)η(t)

− θ(t)
Ŷ (t)(μ(t) − r(t)) + Ẑ1(t)σ (t)

σ (t)

− Z(t)
Ŷ (t)(μ(t) − r(t)) + Ẑ1(t)σ (t)

Y (t)σ (t)

)

dt

]

+E

[

Y(τn)
∣
∣Y (τn)

∣
∣2 −

∫ τn

0

∣
∣
∣
∣
Ŷ (t)

2Y(t)

μ(t) − r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

∣
∣
∣
∣

2

Y(t)
∣
∣σ(t)

∣
∣2

dt

+
∫ τn

0

(

Y(t)

∫

R

∣
∣G(t, z)

∣
∣2

Q(t, dz)η(t) − Ŷ (t−)H(t)

− Ŷ (t−)

∫

R

G(t, z)Q(t, dz)η(t) −
∫

R

G(t, z)Û (t, z)Q(t, dz)η(t)

)

dt

]

,

and by the definition of the generators f and f̂ from (10.6) and (10.18) we obtain

E
[
Y(τn)

∣
∣Xπ(τn) − Y (τn)

∣
∣2]

= Y(0)x2 + Ŷ (0)x

+E

[∫ τn

0
Y(t)

∣
∣σ(t)

∣
∣2

{

π(t) +
(

μ(t) − r(t)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)

Xπ(t−)

+ Ŷ (t)

2Y(t)

μ(t) − r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

}2

dt

]

+E

[

Y(τn)
∣
∣Y (τn)

∣
∣2 +

∫ τn

0
ϕ(t)dt

]

, (10.21)

where the process ϕ collects all terms independent of π . We let n → ∞. We have
to justify the interchange of the limit n → ∞ and the expectation. First, we recall
that Y is uniformly bounded, E[supt∈[0,T ] |Y (t)|2] < ∞ since Y solves (10.7) and
E[supt∈[0,T ] |Xπ(t)|2] < ∞ by (7.12). From these properties we can conclude that

Y(τn)|Xπ(τn)|2, Ŷ (τn)X
π(τn) and Y(τn)|Y (τn)|2 are bounded uniformly in n by

an integrable random variable. Next, we deduce from the moment estimates (10.12)
and (10.14) that the process Ẑ1 is square integrable. Finally, under our assumptions
the process ϕ is integrable i.e. E[∫ T

0 |ϕ(t)|dt] < ∞. Hence, we apply the monotone
convergence theorem to the first expectation on the right hand side of (10.21), the
dominated convergence theorem to the second expectation on the right hand side of
(10.21) and the dominated convergence theorem on the left hand side of (10.21). We
end up with
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E
[∣
∣Xπ(T ) − F

∣
∣2]

= lim
n→∞E

[
Y(τn)

∣
∣Xπ(τn) − Y (τn)

∣
∣2]

= Y(0)x2 + Ŷ (0)x

+E

[∫ T

0
Y(t)

∣
∣σ(t)

∣
∣2

{

π(t) +
(

μ(t) − r(t)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)

Xπ(t−)

+ Ŷ (t)

2Y(t)

μ(t) − r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

}2

dt

]

+E

[

F 2 −
∫ T

0
ϕ(t)dt

]

. (10.22)

Since the last term in (10.22) does not depend on π , the optimal strategy can be
immediately derived from (10.22) and (10.17).

2. The admissability. Let π∗(t) = A(t)Xπ∗
(t−) + B(t). The dynamics of the

investment portfolio (7.11) under the candidate strategy (10.16) is given by

dXπ∗
(t) = Xπ∗

(t−)
(
r(t) + (

μ(t) − r(t)
)
A(t)

)
dt + Xπ∗

(t−)A(t)σ (t)dW(t)

+ B(t)
(
μ(t) − r(t)

)
dt + B(t)σ (t)dW(t)

− H(t)dt −
∫

R

G(t, z)N(dt, dz). (10.23)

Since (10.23) is a linear forward SDE, there exists a unique càdlàg, adapted solution
Xπ∗

to (10.23), see Theorem V.7 in Protter (2004). We can now conclude that π∗ is
a predictable process.

We are left with proving the square integrability of the strategy π∗. From (10.21)
and integrability of the processes Y,Y and ϕ we can deduce the uniform estimate

E
[
Y(τn)

∣
∣Xπ∗

(τn) − Y (τn)
∣
∣2]

= Y(0)x2 + Ŷ (0)x +E

[

Y(τn)
∣
∣Y (τn)

∣
∣2 +

∫ τn

0
ϕ(t)dt

]

≤ K,

and by Fatou’s lemma we get

K ≥ lim
n→∞E

[
Y(τn ∧ t)

∣
∣Xπ∗

(τn ∧ t) − Y (τn ∧ t)
∣
∣2]

≥ E
[
Y(t)

∣
∣Xπ∗

(t) − Y (t)
∣
∣2]

, 0 ≤ t ≤ T .

Consequently, we can prove square integrability of the investment portfolio by notic-
ing that

E
[∣∣Xπ∗

(t)
∣
∣2] ≤ 2E

[∣∣Xπ∗
(t) − Y (t)

∣
∣2 + ∣

∣Y (t)
∣
∣2]

≤ 2E

[
1

k
Y (t)

∣
∣Xπ∗

(t) − Y (t)
∣
∣2 + ∣

∣Y (t)
∣
∣2

]

≤ K, 0 ≤ t ≤ T ,
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where we use the lower bound k ≤ Y(t). Consider now the BSDE

Ȳ (t) = Xπ∗
(T ) +

∫ T

t

(−Ȳ (s−)r(s) − Z̄(s)θ(s)
)
ds

+
∫ T

t

H(s)ds +
∫ T

t

∫

R

G(s, z)N(ds, dz)

−
∫ T

t

Z̄(s)dW(s) −
∫ T

t

∫

R

Ū (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.24)

Since E[|Xπ∗
(T )|2] < ∞, there exists a unique solution (Ȳ , Z̄, Ū ) ∈ S2(R) ×

H2(R) × H2
N(R) to the BSDE (10.24). By (10.23) we get Ȳ (t) = Xπ∗

(t), Z̄(t) =
π∗(t)σ (t), Ū (t, z) = 0. The admissibility of π∗ has been proved. �

We remark that the arguments from the proof of Theorem 10.2.1 can be applied
to solve a general linear quadratic control problem, see Lim (2004), Lim (2005) and
Øksendal and Hu (2008).

Equation (10.22) gives the minimal hedging error under the optimal strategy π∗.
We can easily find the optimal initial capital.

Proposition 10.2.3 Under the assumptions of Propositions 10.2.1, 10.2.2 and The-
orem 10.2.1 the initial value of the investment portfolio which minimizes the
quadratic hedging error (10.5) takes the form

x∗ = Y (0) = EQ∗
[∫ T

0
e− ∫ s

0 r(u)dudP (s)

]

, (10.25)

where the equivalent martingale measure Q∗ is given by

dQ∗

dP

∣
∣
∣Ft = e− ∫ t

0 θ(s)dW(s)− 1
2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T .

The price and the hedging strategy for the payment process P can be obtained by
solving the nonlinear BSDE (10.6) and the linear BSDE (10.7). The price (10.25),
the initial value of the hedging portfolio, is arbitrage-free. We notice that the risk
premiums for the systematic insurance risk and the unsystematic insurance risk are
equal to zero and the insurance risk is not priced under the measure Q∗. In contrast
to Sect. 10.1 where the pricing measure were assumed to be given, here the pricing
measure Q∗ is derived by solving the optimization problem (10.5). We remark that
the pricing measure which arises from solving the quadratic pricing and hedging
problem (10.5) is called a minimal variance measure, see Lim (2004) and Schweizer
(2010). The optimal hedging strategy (10.16) consists of two terms: the first term is a
delta hedging strategy and the second term is a correction factor taking into account
discrepancies between the optimal hedging portfolio X∗ and the market-consistent
value Y of the insurance payment process (the reserve required for P ). The second
term adjusts the delta hedging strategy according to the shortfall or the surplus of
the assets over the liabilities.
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Example 10.2 We consider the classical Black-Scholes model with constant coef-
ficients r , μ, σ and an insurer who issues a portfolio of n unit-linked endowment
policies with a capital guarantee. We are again interested in pricing and hedging the
claim F = (n − J (T ))(K − S(T ))+ where J is the deaths counting process for the
insurance portfolio. We consider a constant mortality intensity λ. In order to find the
price and the optimal hedging strategy for the claim F , we have to solve the BSDEs

Y(t) = 1 +
∫ T

t

(

2Y(s)r − |Z(s)|2
Y(s)

− θ2Y(s) − 2θZ(s)

)

ds

−
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T , (10.26)

Y (t) = (
n − J (T )

)(
K − S(T )

)+ +
∫ T

t

(−Y (s−)r − Z (s)θ
)
ds

−
∫ T

t

Z (s)dW(s) −
∫ T

t

U (s)Ñ(ds), 0 ≤ t ≤ T . (10.27)

It is straightforward to notice that the solution to the BSDE (10.26) is of the form

Y(t) = e(2r−θ2)(T −t), 0 ≤ t ≤ T ,

Z(t) = 0, 0 ≤ t ≤ T .

Recalling the results from Example 9.5, we conclude that the solution to the BSDE
(10.27) is given by the triple

Y (t) = (
n − J (t)

)
e−λ(T −t)

· (Ke−r(T −t)Φ
(−d

(
t, S(t)

) − σ
√

T − t
) − S(t)Φ

(−d
(
t, S(t)

)))
,

0 ≤ t ≤ T ,

Z (t) = −(
n − J (t−)

)
e−λ(T −t)σS(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

U (t) = −e−λ(T −t)

· (Ke−r(T −t)Φ
(−d

(
t, S(t)

) − σ
√

T − t
) − S(t)Φ

(−d
(
t, S(t)

)))
,

0 ≤ t ≤ T .

By Theorem 10.2.1 and Proposition 10.2.3 the optimal hedging strategy is given by
the feedback formula

π∗(t) = −(
n − J (t−)

)
e−λ(T −t)S(t)Φ

(−d
(
t, S(t)

))

− μ − r

σ 2

(
X∗(t−) − Y (t−)

)
, 0 ≤ t ≤ T ,
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where the optimal hedging portfolio is determined by the process

X∗(t) = x∗ert +
∫ t

0
π∗(s)

(
θσds + σdW(s)

)
, X∗(0) = x∗,

and the price of the claim, and the initial value of the optimal hedging portfolio, is
equal to

x∗ = Y (0) = ne−λT
(
Ke−rT Φ

(−d
(
0, S(0)

) − σ
√

T
) − S(0)Φ

(−d
(
0, S(0)

)))
.

The quadratic objective (10.5) can be generalized by keeping its mathematical
tractability. We can solve the quadratic optimization problem

min
π

E

[∫ T

0

(
Xπ(s) − β(s)

)2
ds + (

Xπ(T ) − ξ
)2

]

, (10.28)

where a running cost is added. Under the objective (10.28) an investment strategy
is chosen in such a way that the investment portfolio is as close as possible, in
the mean-square sense, to the targets β and ξ . The targets β and ξ may represent
solvency constraints or profit expectations, see Detemple and Rindisbacher (2008)
and Delong (2010). We can also solve the Markowitz portfolio selection problem

min
π

Var
[
Xπ(T )

]

E
[
Xπ(T )

] = L,

(10.29)

where the variance of the terminal wealth is minimized given the constraint on the
expected return. We remark that the Markowitz portfolio selection is commonly
used for investment decision making and asset-liability management, see Chap. 4 in
Zenios and Ziemba (2006) and Sect. 23.2 in Adam (2007).

Notice that in order to apply the investment strategy (10.16) we have to estimate
the drift μ. The advantage of the quadratic optimization under an equivalent martin-
gale measure (10.1) over the quadratic optimization under the real-world measure
(10.5) is that the drift of the stock does not enter the optimal strategy in the for-
mer case. It is known that the estimation of the drift is challenging. Consequently,
the quadratic pricing and hedging under the real-world measure may be difficult to
implement in practice, see Sect. 10.4.3 in Cont and Tankov (2004) for a discussion.

10.3 Quadratic Pricing and Hedging Under Local
Risk-Minimization

We now investigate the objective of local risk-minimization which was developed
in Schweizer (1991) and Schweizer (2008). Local risk-minimization is an important
alternative to global quadratic hedging. We will see that the locally risk-minimizing
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strategy is derived by optimizing an objective formulated under the real-world mea-
sure but at the same time the optimal strategy does not depend on the drift of the
stock.

Let Ŝ(t) = e− ∫ t
0 r(s)dsS(t). The discounted stock price satisfies the dynamics

Ŝ(t) = Ŝ(0) +
∫ t

0
Ŝ(u)

(
μ(u) − r(u)

)
du +

∫ t

0
Ŝ(u)σ (u)dW(u), 0 ≤ t ≤ T .

We introduce a class of admissible investment strategies.

Definition 10.3.1 A strategy Π := (Π(t),0 ≤ t ≤ T ) is called admissible, written
Π ∈ A local

s , if it satisfies the conditions:

(i) Π : Ω × [0, T ] → R is a predictable process,
(ii) E[∫ T

0 |Ŝ(t)Π(t)σ (t)|2dt] < ∞.

A strategy Γ := (Γ (t),0 ≤ t ≤ T ) is called admissible, written Γ ∈ A local
b , if it

satisfies the conditions:

(i) Γ : Ω × [0, T ] → R is an adapted process,
(ii) the process X Π,Γ (t) = Π(t)Ŝ(t) + Γ (t) is right-continuous and square inte-

grable.

A strategy (Π,λ) is called admissible for the local risk-minimization problem, writ-
ten (Π,λ) ∈ A local, if Π ∈ A local

s and Γ ∈ A local
b

We remark that the strategy Π denotes the number of stock which are held in the
investment portfolio, Γ denotes the position in the bank account and X is the dis-
counted value of the investment portfolio. We point out that the investment portfolio
X Π,Γ is not self-financing under (Π,Γ ) ∈ A local.

We define the cost process and the risk process of a hedging strategy.

Definition 10.3.2 Assume that (C1)–(C4) from Chap. 7 hold. The cost process of
an admissible strategy (Π,Γ ) ∈ A local related to hedging the payment process P is
given by

CΠ,Γ (t) =
∫ t

0
e− ∫ s

0 r(u)dudP (s) + X Π,Γ (t) −
∫ t

0
Π(s)dŜ(s), 0 ≤ t ≤ T .

The risk process of an admissible strategy (Π,Γ ) ∈ A local related to hedging the
payment process P is given by

RΠ,Γ (t) = E
[∣
∣CΠ,Γ (T ) − CΠ,Γ (t)

∣
∣2|Ft

]
, 0 ≤ t ≤ T .

Since (Π,Γ ) ∈ A local, the integral
∫ t

0 Π(s)dŜ(s) is well-defined and CΠ,Γ is
square integrable.

The cost process CΠ,Γ describes accumulated discounted costs or profits (cash
inflows or outflows) for the insurer who applies an investment strategy (Π,Γ ), pays
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the benefits P and holds the investment portfolio X Π,Γ . If the payment process
can be perfectly replicated by (Π,Γ ), then

X Π,Γ (t) = X (0) +
∫ t

0
Π(s)dŜ(s) −

∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T ,

X Π,Γ (T ) = 0,

and the cost process related to hedging P is equal to the initial premium X (0) - the
cost of setting the replicating portfolio which matches the liability. If the payment
process cannot be perfectly replicated, then the insurer has to inject capital or with-
draw capital during the lifetime of the policy in order to match the assets with the
liabilities. These inflows and outflows of capital from the investment portfolio are
modelled by the cost process.

The idea of local risk-minimization is to find an admissible hedging strategy
(Π,Γ ) ∈ A local which minimizes the risk process RΠ,Γ for all t ∈ [0, T ]. The pre-
cise definition of the hedging objective is very technical and it involves limit con-
siderations and local perturbations of investment strategies, see Schweizer (1991)
and Schweizer (2008). We can say that under the local risk-minimization we aim to
find an asset portfolio which perfectly matches the liability with a minimal mean-
square cost of matching. We point out that the hedging objective, the risk process,
is evaluated under the real-world measure, as it should be.

We give the key result which characterizes a locally risk-minimizing strategy.

Theorem 10.3.1 Assume that (C1)–(C4) from Chap. 7 hold. The payment process
P admits an admissible locally risk-minimizing strategy (Π∗,Γ ∗) ∈ A local if and
only if the discounted payment process has the representation

∫ T

0
e− ∫ s

0 r(u)dudP (s) = ξ0 +
∫ T

0
ζ(s)dŜ(s) + H (T ), (10.30)

where ζ ∈ A local
s , and H is a right-continuous, square integrable martingale which

is strongly orthogonal to the martingale component of Ŝ and verifies H (0) = 0. In
this case, we define

Π∗(t) = ζ(t), 0 ≤ t ≤ T ,

X ∗(t) = ξ0 +
∫ t

0
ζ(s)dŜ(s) + H (t) −

∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T ,

Γ ∗(t) = X ∗(t) − Π∗(t)Ŝ(t), 0 ≤ t ≤ T .

Proof The result follows from Proposition 5.2 from Schweizer (2008). �

We remark that two square integrable martingales are strongly orthogonal if
E[M1(t)M2(t)] = 0.
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Decomposition (10.30) is called the Föllmer-Schweizer decomposition. The lo-
cally risk-minimizing strategy (Π∗,Γ ∗) is called mean-self-financing as the opti-
mal cost process C∗(t) = ξ0 + H (t) is a martingale, i.e. the average future cost is
equal to zero. The strategy (Π∗,Γ ∗) is also called 0-achieving as X ∗(T ) = 0 and
all claims are covered.

The next result shows that the Föllmer-Schweizer decomposition can be derived
from a BSDE.

Proposition 10.3.1 Assume that (C1)–(C4) from Chap. 7 hold.

(a) The Föllmer-Schweizer decomposition of the discounted payment process is
given by

∫ T

0
e− ∫ s

0 r(u)dudP (s)

= Y(0) +
∫ T

0

Z1(s)

σ (s)Ŝ(s)
dŜ(s)

+
∫ T

0
Z2(s)dB(s) +

∫ T

0

∫

R

U(s, z)Ñ(ds, dz),

where (Y,Z1,Z2,U) ∈ S2(R) ×H2(R) ×H2(R) ×H2
N(R) is the unique solu-

tion to the BSDE

Y(t) =
∫ T

0
e− ∫ s

0 r(u)dudP (s) −
∫ T

t

Z1(s)θ(s)ds

−
∫ T

t

Z1(s)dW(s) −
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫

R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.31)

(b) The admissible locally risk-minimizing strategy Π∗ ∈ A local and the optimal
discounted hedging portfolio for the payment process P are given by

Π∗(t) = Z1(t)

σ (t)Ŝ(t)
, 0 ≤ t ≤ T ,

X ∗(t) = Y(t) −
∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T .

Proof (a) Consider the BSDE

Y(t) =
∫ T

0
e− ∫ s

0 r(u)dudP (s) +
∫ T

t

f (s)ds −
∫ T

t

Z1(s)dW(s)

−
∫ T

t

Z2(s)dB(s) −
∫ T

t

∫

R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (10.32)
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where the generator f will be specified in the sequel. Assume there exists a solution
(Y,Z1,Z2,U) ∈ S2(R) × H2(R) × H2(R) × H2

N(R) to (10.32). From the BSDE
(10.32) we get the representation of the discounted payments

∫ T

0
e− ∫ s

0 r(u)dudP (s)

= Y(0) −
∫ T

0
f (s)ds +

∫ T

0
Z1(s)dW(s)

+
∫ T

0
Z2(s)dB(s) +

∫ T

0

∫

R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (10.33)

From property (5.5) we deduce that the stochastic integrals driven by B and Ñ

are strongly orthogonal to the martingale component of Ŝ, i.e. the stochastic inte-
gral driven by W . The discounted payment process (10.33) would now satisfy the
Föllmer-Schweizer decomposition (10.30) if for some ζ ∈ A local

s we had

∫ T

0
ζ(s)dŜ(s) =

∫ T

0
Z1(s)dW(s) −

∫ T

0
f (s)ds. (10.34)

Since

∫ T

0
ζ(s)dŜ(s) =

∫ T

0
ζ(s)Ŝ(s)

(
μ(s) − r(s)

)
ds +

∫ T

0
ζ(s)Ŝ(s)σ (s)dW(s),

we should choose

f ∗(s) = −Z1(s)θ(s), 0 ≤ s ≤ T ,

ζ ∗(s) = Z1(s)

σ (s)Ŝ(s)
, 0 ≤ s ≤ T .

With this choice, there exists a unique solution (Y,Z1,Z2,U) ∈ S2(R) ×H2(R) ×
H2(R) × H2

N(R) to (10.32) and ζ ∗ ∈ A local
s . From (10.33) and (10.34) we deduce

the Föllmer-Schweizer decomposition.
(b) The formulas for Π∗ and X ∗follow from item (a), (10.32)–(10.34) and The-

orem 10.3.1. �

We state an important corollary.

Corollary 10.3.1 Under the assumptions of Theorem 10.3.1 and Proposition 10.3.1
the optimal hedging portfolio process has the representation

X∗(t) = EQ∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]

, 0 ≤ t ≤ T , (10.35)
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where

dQ∗

dP

∣
∣
∣Ft = e− ∫ t

0 θ(s)dW(s)− 1
2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T ,

and the optimal amount invested in the stock is given by

π∗(t) = Z1(t)

σ (t)
e
∫ t

0 r(s)ds, 0 ≤ t ≤ T . (10.36)

Proof Since X∗(t) = X ∗(t)e
∫ t

0 r(s)ds , the representation of X∗ follows from Propo-
sition 10.3.1 and the representation of the solution Y to the linear BSDE (10.31).
Since π∗(t) = Π∗(t)S(t), the formula for π∗ follows immediately from Proposi-
tion 10.3.1. �

The hedging portfolio (10.35) and the optimal amount invested in the stock
(10.36) can be obtained by solving the linear BSDE (10.31). The price of the in-
surance payment process, which is the initial value of the hedging portfolio, is
arbitrage-free. The insurance risk is not priced under the measure Q∗. The hedging
strategy π∗ is a delta-hedging strategy which is updated with the current information
on the financial and the insurance risk. We notice that the optimal hedging portfolio
and the optimal hedging strategy are characterized under the equivalent martingale
measure Q∗, hence the drift of the stock does not enter the solution. We point out that
under the locally risk-minimizing strategy (Π∗,Γ ∗) there is no mismatch between
the assets and the liabilities. The hedging portfolio is forced to match the market-
consistent value of the liabilities, see Corollary 10.3.1. This equivalence holds since
the investment portfolio process X ∗ is not self-financing. By Proposition 10.3.1 we
obtain

dX∗(t) = r(t)e
∫ t

0 r(s)dsX ∗(t)dt + e
∫ t

0 r(s)dsdX ∗(t)

= X∗(t)r(t)dt + e
∫ t

0 r(s)ds
(
dY (t) − e− ∫ t

0 r(s)dsdP (t)
)

= X∗(t)r(t)dt

+ e
∫ t

0 r(s)ds
(
Π∗(t)Ŝ(t)

(
μ(t) − r(t)

)
dt + Π∗(t)Ŝ(t)σ (t)dW(t)

)

− dP (t) + e
∫ t

0 r(s)dsZ2(t)dB(t) +
∫

R

e
∫ t

0 r(s)dsU(t, z)Ñ(dt, dz).

Using π∗, we derive the dynamics of the hedging portfolio

dX∗(t) = π∗(t)
(
μ(t)dt + σ(t)dW(t)

) + (
X∗(t) − π∗(t)

)
r(t)dt

− dP (t) + e
∫ t

0 r(s)dsZ2(t)dB(t) +
∫

R

e
∫ t

0 r(s)dsU(t, z)Ñ(dt, dz).

(10.37)

The stochastic integrals driven by B and Ñ are interpreted as cash inflows/outflows
which guarantee that X∗(t) = EQ∗ [∫ T

t
e− ∫ s

t r(u)dudP (s)|Ft ] for all 0 ≤ t ≤ T . As
already noticed, the expected value of the cash inflows/outflows is zero
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E

[∫ T

0
e
∫ t

0 r(s)dsZ2(t)dB(t) +
∫ T

0

∫

R

e
∫ t

0 r(s)dsU(t, z)Ñ(dt, dz)

]

= 0,

and the hedging portfolio (10.37) is mean-self-financing. We remark that the locally
risk-minimizing strategy (10.36) for the stock would coincide with the minimum
mean-square error strategy for the stock derived in Theorem 10.1.1 if the measure
Q∗ from Corollary 10.3.1 were chosen in the global quadratic hedging problem.
However, the investment strategy from Theorem 10.1.1 is obtained in the framework
of self-financing portfolios and X∗(t) �= EQ∗ [∫ T

t
e− ∫ s

t r(u)dudP (s)|Ft ] except at the
inception of the contract.

10.4 Quadratic Pricing and Hedging Under an Instantaneous
Mean-Variance Risk Measure

As discussed at the end of Sect. 10.2, the Markowitz mean-variance objective is
often used by financial institutions. In this chapter we investigate a local version of
the mean-variance objective.

In Sects. 10.1–10.2 where we were only interested in finding the price of the
payment process P at the initial time t = 0. We are now interested in dynamic
pricing of the payment process P over the period [0, T ]. We assume that the price
Y of the payment process P solves the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

∫

R

G(s, z)N(ds, dz) +
∫ T

t

f (s)ds

−
∫ T

t

Z1(s)dW(s) −
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫

R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (10.38)

with a generator f . By Propositions 3.3.1 and 3.4.1 an arbitrage-free price of P , i.e.
Y(t) = EQ[∫ T

t
e− ∫ s

t r(u)dudP (s)|Ft ], Q ∈ Qm, has to solve a BSDE of the form
(10.38). Hence, it is reasonable to assume a priori that the price process satisfies
(10.38). In the sequel we use a local mean-variance objective to derive the generator
f of the BSDE (10.38), the price process and the hedging strategy.

We recall that the investment portfolio Xπ under an admissible investment
strategy π ∈ A is given by (7.11). We assume that there exists a solution
(Y,Z1,Z2,U) ∈ S2(R) × H2(R) × H2(R) × H2

N(R) to the BSDE (10.38). We in-
troduce a surplus process S := (S (t),0 ≤ t ≤ T ) which models the excess of the
wealth of the insurer over the price of the payment process. We set

S (t) = Xπ(t) − Y(t), 0 ≤ t ≤ T .
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We can derive the dynamics of the surplus process. We get the equation

dS (t) = Xπ(t−)r(t)dt + π(t)
(
μ(t) − r(t)

)
dt + f (t)dt

+ (
σ(t)π(t) − Z1(t)

)
dW(t) − Z2(t)dB(t) −

∫

R

U(t, z)Ñ(dt, dz),

(10.39)

with the initial condition S (0) = 0, since we should have X(0) = Y(0). We remark
that S is square integrable for any π ∈ A . Since Y can be interpreted as the market-
consistent reserve for the liabilities, the surplus process S models the excess of the
assets over the liabilities—the net asset wealth. The surplus process S models the
profit earned by the insurer. We recall that the net asset wealth is the key object
investigated in Solvency II Directive, see European Commission QIS5 (2010). In
Leitner (2007) the process S is called a tracking error.

We define the mean-variance Markowitz risk measure

ρ(ξ) = L
√

Var[ξ ] −E[ξ ], (10.40)

where the parameter L is a risk aversion coefficient which sets the trade-off between
variance minimization and expected return maximization. Following Leitner (2007),
we apply the risk measure (10.40), with a time-varying risk aversion coefficient L, to
the infinitesimal change in the surplus process S . We investigate the instantaneous
mean-variance risk measures

ρ
(
dS (t)

)
/dt

= L(t)

√
E

[
d[S ,S ](t)|Ft−

]
/dt −E

[
dS (t) − S (t−)r(t)dt |Ft−

]
/dt

= L(t)

√
∣
∣π(t)σ (t) − Z1(t)

∣
∣2 + ∣

∣Z2(t)
∣
∣2 +

∫

R

∣
∣U(t, z)

∣
∣2

Q(t, z)η(t)

− (
Y(t−)r(t) + π(t)

(
μ(t) − r(t)

) + f (t)
)
, 0 ≤ t ≤ T . (10.41)

The quadratic variation is now used for modelling the instantaneous variance. The
moments in (10.41) are derived by Theorems 2.3.2–2.3.3. The goal is to find an ad-
missible hedging strategy π ∈ A which minimizes the instantaneous risk measures
ρ(dS (t)) for all t ∈ [0, T ] and choose a generator f of the price dynamics Y which
makes the instantaneous risk measures vanish ρ(dS (t)) = 0 for all t ∈ [0, T ]. This
is a reasonable pricing and hedging objective. The insurer should be interesting in
applying an investment strategy under which the expected excess return on the sur-
plus over the risk-free return on the surplus is maximized. At the same time, the
insurer should choose an investment strategy under which the return on the surplus
(the tracking error) is not volatile. Hence, the mean-variance objective is used for
choosing the hedging strategy. The insurance payment process is next priced by
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requiring that the instantaneous Sharpe ratio of the surplus process equals a pre-
specified target L, i.e. the insurance payment process is priced by requiring that

Sharpe Ratio
(
S (t)

)

= E[dS (t) − S (t−)r(t)dt |Ft−]/dt
√
E[d[S ,S ](t)/dt |Ft−] = L(t), 0 ≤ t ≤ T . (10.42)

We can now interpret L as a process which controls the ratio of the expected earned
surplus (the net asset wealth) to its deviation over time or as a profit, specified by
a Sharpe ratio, which is demanded by the insurer who sells the insurance contract.
We assume that L(t) ≥ θ(t) + ε, ε > 0. The former inequality is obvious since
the investment in the payment process P carries an additional risk compared to the
investment in the risky stock S and the insurer is interested in earning a risk premium
strictly above θ , which is the risk premium earned by investing in the stock. For the
instantaneous Sharpe ratio pricing we refer to Bayraktar and Young (2007), Young
(2008), Bayraktar and Young (2008) and Bayraktar et al. (2009), for the connection
with the cost of capital pricing we refer to Pelsser (2011).

Theorem 10.4.1 Assume that (C1)–(C4) from Chap. 7 hold and let L be a pre-
dictable process such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K , 0 ≤ t ≤ T . The
admissible investment strategy π∗ ∈ A which minimizes the risk measures (10.41)
for all t ∈ [0, T ] and the generator f ∗ which makes the risk measures (10.41) vanish
for all t ∈ [0, T ] take the form

π∗(t) = 1

σ(t)

(

Z1(t)

+
√

|θ(t)|2
|L(t)|2 − |θ(t)|2

√
∣
∣Z2(t)

∣
∣2 +

∫

R

∣
∣U(t, z)

∣
∣2

Q(t, dz)η(t)

)

,

0 ≤ t ≤ T ,

f ∗(t) = − Y(t−)r(t) − Z1(t)θ(t)

+
√∣

∣L(t)
∣
∣2 − ∣

∣θ(t)
∣
∣2

√
∣
∣Z2(t)

∣
∣2 +

∫

R

∣
∣U(t, z)

∣
∣2

Q(t, dz)η(t), 0 ≤ t ≤ T ,

(10.43)

where (Y,Z1,Z2,U) ∈ S2(R)×H2(R)×H2(R)×H2
N(R) is the unique solution to

the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

∫

R

G(s, z)N(ds, dz)

+
∫ T

t

(

−Y(s−)r(s) − Z1(s)θ(s)
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+
√∣

∣L(s)
∣
∣2 − ∣

∣θ(s)
∣
∣2

√
∣
∣Z2(s)

∣
∣2 +

∫

R

∣
∣U2(s, z)

∣
∣2

Q(s, dz)η(s)

)

ds

−
∫ T

t

Z1(s)dW(s) −
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫

R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.44)

Proof The form of the generator and the strategy are deduced from properties of the
function

w(π) = L
√

(πσ − z)2 + u2 + v2 − ry − π(μ − r) − f.

It is straightforward to find a unique minimizer π∗ of the function w and f ∗ such
that w(π∗) = 0. We now study the BSDE (10.44). By the Schwarz inequality

∣
∣
∣
∣zz

′ +
∫

R

u(z)u′(z)Q(t, dz)η

∣
∣
∣
∣

≤
√

|z|2 +
∫

R

∣
∣u(z)

∣
∣Q(t, dz)η

√
∣
∣z′∣∣2 +

∫

R

∣
∣u′(z)

∣
∣2

Q(t, dz)η, (10.45)

we can prove the following inequality

∣
∣
∣
∣

√

|z|2 +
∫

R

∣
∣u(z)

∣
∣2

Q(t, dz)η −
√

∣
∣z′∣∣2 +

∫

R

∣
∣u′(z)

∣
∣2

Q(t, dz)η

∣
∣
∣
∣

2

≤ ∣
∣z − z′∣∣2 +

∫

R

∣
∣u(z) − u′(z)

∣
∣2

Q(t, dz)η. (10.46)

Hence, the generator (10.44) is Lipschitz continuous in the sense of Theorem 3.1.1.
From (3.22) and Theorem 3.1.1 we conclude that there exists a unique solution to
the BSDE (10.44). It is clear that the investment strategy (10.43) is admissible. �

The price process of the payment process P solves the nonlinear BSDE (10.44).
It is important to point out that the price process (10.44) may not be represented as
the expected value of the future discounted claims under an equivalent martingale
measure. We also remark that the price process (10.44) may not satisfy the property
of monotonicity with respect to the claim in the sense that a more severe claim may
have a lower price. Hence, the price derived in Theorem 10.4.1 may give rise to
arbitrage opportunities. In the language of BSDEs the solution to the BSDE (10.44)
does satisfy the comparison principle with respect to the terminal condition and the
BSDE (10.44) does not have a measure solution. This problem, which arises for
BSDEs with jumps, was pointed out in Sect. 3.2.
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Example 10.3 We consider the classical Black-Scholes model with constant coeffi-
cients r , μ, σ and an insurer who issues an endowment policy. We are interested in
pricing and hedging the claim F = 1 − J (T ) where J is the death counting process
for the policy. We consider a constant mortality intensity λ and a constant Sharpe ra-
tio L. In order to find the optimal price process and the optimal investment strategy
for the claim F , we have to solve the BSDE

Y(t) = 1 − J (T )

+
∫ T

t

(−Y(s−)r − Z(s)θ +
√

L2 − θ2
∣
∣U(s)

∣
∣
√(

1 − J (s−)
)
λ
)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.47)

Clearly, we can set Z(t) = 0, 0 ≤ t ≤ T . Let us guess that U(t) = −Y(t−), Y(t) ≥
0, 0 ≤ t ≤ T . We end up with the equation

dY (t) = Y(t−)rdt −
√

L2 − θ2Y(t−)

√(
1 − J (t−)

)
λdt − Y(t−)Ñ(dt),

Y (T ) = 1 − J (T ).

First, it is straightforward to derive the dynamics

d
(
Y(t)e− ∫ t

0 (r−
√

L2−θ2
√

(1−J (s−))λ)ds
)

= −e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)dsY (t−)Ñ(dt), (10.48)

Y(T ) = 1 − J (T ).

Integrating and taking the expected value, we can obtain the candidate solution

Y(t) = E
[(

1 − J (T )
)
e− ∫ T

t (r−
√

L2−θ2
√

(1−J (s−))λ)ds |Ft

]

= (
1 − J (t)

)
e−(r+λ−

√
L2−θ2

√
λ)(T −t), 0 ≤ t ≤ T , (10.49)

where we use the fact that J (T ) = 0 implies J (t) = 0, 0 ≤ t ≤ T . Next, from (10.49)
we derive the dynamics

dY (t) = −e−(r+λ−
√

L2−θ2
√

λ)(T −t)dJ (t) + (
r + λ −

√
L2 − θ2

√
λ
)
Y(t−)dt,

and

d
(
Y(t)e− ∫ t

0 (r−
√

L2−θ2
√

(1−J (s−))λ)ds
)

= e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)ds

(−e−(r+λ−
√

L2−θ2
√

λ)(T −t)dJ (t)

+ (
r + λ −

√
L2 − θ2

√
λ
)
Y(t−)dt

)
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− Y(t−)e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)ds

(
r −

√
L2 − θ2

√(
1 − J (t−)

)
λ
)
dt

= e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)ds

(−e−(r+λ−
√

L2−θ2
√

λ)(T −t)
(
1 − J (t−)

)
dJ (t)

+ λY(t−)
(
1 − J (t−)

))
dt

= −e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)dsY (t−)Ñ(dt),

which agrees with (10.48). Our candidate solution (Y,Z,U), where Y is given by
(10.49), Z(t) = 0, U(t) = −Y(t−), 0 ≤ t ≤ T , is square integrable. Hence, the
unique solution to the BSDE (10.47) is found. By Theorem 10.4.1 the optimal price
process is defined by

Y(t) = (
1 − J (t)

)
e−(r+λ−

√
L2−θ2

√
λ)(T −t), 0 ≤ t ≤ T , (10.50)

the optimal investment strategy is given by

π∗(t) = (
1 − J (t−)

) θ
√

λ

σ
√

L2 − θ2
e−(r+λ−

√
L2−θ2

√
λ)(T −t), 0 ≤ t ≤ T .

We have obtained the unique solution to the pricing and hedging problem under
the instantaneous mean-variance risk measure. If λ − √

L2 − θ2
√

λ ≤ 0, then the
price of the endowment policy is larger than e−r(T −t) which is the price of the bond
paying 1 at the maturity. The property of monotonicity of the pricing operator with
respect to the claim is not satisfied. The insurer can buy the bond which hedges the
payment from the endowment policy and earns a risk-free profit. We can conclude
that the price (10.50) may give rise to arbitrage opportunities. To get the arbitrage-
free price, we have to introduce the constraint λ−√

L2 − θ2
√

λ > 0, or equivalently
L2 < λ + θ2.

We are now interested in pricing and hedging the claim F = (1 − J (T ))(K −
S(T ))+. In order to find the optimal price process and the optimal hedging strategy
for the claim F , we have to solve the BSDE

Y(t) = (
1 − J (T )

)(
K − S(T )

)+

+
∫ T

t

(−Y(s−)r − Z(s)θ +
√

L2 − θ2
∣
∣U(s)

∣
∣
√(

1 − J (s−)
)
λ
)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.51)

We can conclude that the unique solution to the BSDE (10.51) is given by the triple

Y(t) = (
1 − J (t)

)
e−(λ−

√
L2−θ2

√
λ)(T −t)

· (Ke−r(T −t)Φ
(−d

(
t, S(t)

) − σ
√

T − t
) − S(t)Φ

(−d
(
t, S(t)

)))
,

0 ≤ t ≤ T ,
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Z(t) = −(
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T −t)σS(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

U(t) = −(
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T −t)

· (Ke−r(T −t)Φ
(−d

(
t, S(t)

) − σ
√

T − t
) − S(t)Φ

(−d
(
t, S(t)

)))
,

0 ≤ t ≤ T ,

where we use (9.6) and (9.7). The optimal price process is defined by

Y(t) = (
1 − J (t)

)
e−(λ−

√
L2−θ2

√
λ)(T −t)

· (Ke−r(T −t)Φ
(−d

(
t, S(t)

) − σ
√

T − t
)

− S(t)Φ
(−d

(
t, S(t)

)))
, 0 ≤ t ≤ T , (10.52)

and the optimal hedging strategy is given by

π∗(t) = −(
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T −t)S(t)Φ

(−d
(
t, S(t)

))

+ (
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T −t) θ

√
λ

σ
√

L2 − θ2

· (Ke−r(T −t)Φ
(−d

(
t, S(t)

) − σ
√

T − t
) − S(t)Φ

(−d
(
t, S(t)

)))
,

0 ≤ t ≤ T .

The price (10.52) is arbitrage-free if L2 < λ + θ2.

We also give an example which shows that the price from Theorem 10.4.1 may
be arbitrage-free without any additional assumptions on the parameters. It turns out
that arbitrage-free prices arise for specific types of claims.

Example 10.4 Let the assumptions from Example 10.3 hold. We consider an insurer
who issues a life insurance policy paying 1 at maturity of the contract provided that
the policyholder dies within the duration of the contract. We are interested in pricing
and hedging the claim F = J (T ) where J is the death counting process for the
policy. In order to find the optimal price process and the optimal investment strategy
for the claim F , we have to solve the BSDE

Y(t) = J (T )

+
∫ T

t

(−Y(s−)r − Z(s)θ +
√

L2 − θ2
∣
∣U(s)

∣
∣
√(

1 − J (s−)
)
λ
)
ds

−
∫ T

t

Z(s)dW(s) −
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.53)
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Clearly, we can set Z(t) = 0, 0 ≤ t ≤ T . Let us guess that U(t) ≥ 0, 0 ≤ t ≤ T . We
end up with the BSDE

Y(t) = J (T )

+
∫ T

t

(−Y(s−)r +
√

L2 − θ2U(s)

√(
1 − J (s−)

)
λ
)
ds

−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.54)

By Proposition 3.4.1 and a similar reasoning as in Example 10.3, the solution to the
BSDE (10.54) is of the form

Y(t) = e−r(T −t) − (
1 − J (t)

)
e−(r+λ+

√
L2−θ2

√
λ)(T −t), 0 ≤ t ≤ T ,

U(t) = e−(r+λ+
√

L2−θ2
√

λ)(T −t), 0 ≤ t ≤ T ,

(10.55)

and we see that U(t) ≥ 0, 0 ≤ t ≤ T . Our candidate solution (Y,Z,U), where (Y,Z)

is given by (10.55), Z(t) = 0, 0 ≤ t ≤ T , is square integrable. Hence, the unique
solution to the BSDE (10.53) is found. By Theorem 10.4.1 the arbitrage-free optimal
price process is defined by

Y(t) = e−r(T −t) − (
1 − J (t)

)
e−(r+λ+

√
L2−θ2

√
λ)(T −t), 0 ≤ t ≤ T ,

and the optimal investment strategy is given by the formula

π∗(t) = (
1 − J (t−)

) θ
√

λ

σ
√

L2 − θ2
e−(r+λ+

√
L2−θ2

√
λ)(T −t), 0 ≤ t ≤ T .

By Theorem 10.4.1 the hedging strategy for the payment process P is character-
ized by the control processes of the nonlinear BSDE (10.44). The investment strat-
egy (10.43) is studied in Chap. 12 where the results of this chapter are derived again
under different pricing and hedging objectives. In Chap. 12 we also give condi-
tions which guarantee that the price process (10.44) derived under the instantaneous
mean-variance risk measure is arbitrage-free.

Instead of the mean-variance minimization, we can use the approach proposed by
Bayraktar and Young (2007), Young (2008), Bayraktar and Young (2008), Bayraktar
et al. (2009), and we can find a hedging strategy π∗ which minimizes the instanta-
neous variation E[d[S ,S ](t)|Ft−] for all t ∈ [0, T ] together with a generator f ∗
which makes the instantaneous mean-variance risk measures vanish ρ(dS (t)) = 0
for all t ∈ [0, T ]. We obtain

π∗(t) = 1

σ(t)
Z1(t), 0 ≤ t ≤ T ,

f ∗(t) = −Y(t−)r(t) − Z1(t)θ(t) (10.56)

+ L(t)

√
∣
∣Z2(t)

∣
∣2 +

∫

R

∣
∣U(t, z)

∣
∣2

Q(t, dz)η(t), 0 ≤ t ≤ T ,
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where (Y,Z1,Z2,U) ∈ S2(R)×H2(R)×H2(R)×H2
N(R) is the unique solution to

the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

∫

R

G(s, z)N(ds, dz)

+
∫ T

t

(

−Y(s−)r(s) − Z1(s)θ(s)

+ L(s)

√
∣
∣Z2(s)

∣
∣2 +

∫

R

∣
∣U2(s, z)

∣
∣2

Q(s, dz)η(s)

)

ds

−
∫ T

t

Z1(s)dW(s) −
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫

R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.57)

Again, the price process (10.57) may lead to arbitrage opportunities.
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