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The farther backward you can look, the
farther forward you are likely to see.
Winston Churchill



Preface

A linear backward stochastic differential equation was introduced by Bismut (1973)
in an attempt to solve an optimal stochastic control problem by the maximum prin-
ciple. The general theory of nonlinear backward stochastic differential equations
with Lipschitz generators was first presented by Pardoux and Peng (1990). Since
then, BSDEs have been thoroughly studied and found numerous applications. Back-
ward stochastic differential equations can be used to solve stochastic optimal control
problems, establish probabilistic representations of solutions to partial differential
equations and define nonlinear expectations. Since many financial problems can be
related to stochastic optimization problems and nonlinear expectations, it is not sur-
prising that BSDEs have become a very important tool in financial mathematics.
Nowadays, backward stochastic differential equations are an active field of research
which is stimulated by new financial and actuarial applications.

The first motivation for this book is to provide a self-contained overview of
the theory of backward stochastic differential equations with jumps and their ap-
plications to insurance and finance. Two classical books on BSDEs: “Backward
Stochastic Differential Equations” by El Karoui and Mazliak (1997) and “Forward-
Backward Stochastic Differential Equations and Their Applications” by Ma and
Yong (2000) target theory-oriented readers and miss some important applications
which were developed in financial mathematics in recent years. Possible insur-
ance applications are not mentioned at all in these books. The recent mono-
graph “Some Advances on Quadratic BSDE: Theory–Numerics–Applications” by
Dos Reis (2011) points out an actuarial and financial application but the author
focuses on advanced theory of quadratic BSDEs, which definitely is not the first
step in the study of BSDEs. All three books deal with BSDEs driven by Brownian
motions and omit BSDEs with jumps which are very important for actuarial and
financial modelling. There exists a considerable volume of mathematical papers on
BSDEs and BSDEs with jumps. However, these papers are quite difficult to access
by a beginner in the field of BSDEs and stochastic processes. Our goal is to present
a book on BSDEs with jumps which covers key theoretical results and focuses on
applications and which can be followed by nonspecialists in stochastic methods.

vii



viii Preface

The second motivation for this book is to promote backward stochastic differen-
tial equations in the actuarial community. BSDEs seem not to be well-known in in-
surance mathematics, despite their recognized advantages in financial mathematics
and optimal control theory. This state should be changed as many actuarial prob-
lems are closely related to financial problems, hence they can be approached with
BSDEs. Since optimization problems are gaining importance in actuarial mathemat-
ics, efficient and modern solution methods for stochastic control problems should
be presented. While the monograph “Stochastic Control in Insurance” by Schmidli
(2007) deals with Hamilton-Jacobi-Bellman equations, our goal is to show how to
apply BSDEs to solve optimization problems.

Jump processes play a leading role in actuarial modelling. Following Mikosch
(2009), we can say that modelling of claim numbers by point processes is bread and
butter for the actuary. Jump processes are also used in financial mathematics. Let
us remark that Lévy processes have been introduced with success to financial mod-
els, see the monograph by Cont and Tankov (2004) and the textbook by Øksendal
and Sulem (2004) where HJB equations are applied to solve financial optimization
problems for Lévy-driven processes. Due to the importance of jump processes in
actuarial and financial applications, we investigate BSDEs driven by a Brownian
motion and a compensated random measure (called BSDEs with jumps). Since BS-
DEs can be used in a general stochastic framework, we consider general (quasi-left
continuous) jump processes. Consequently, we also extend the actuary’s toolbox for
stochastic modelling.

We hope that this book will make BSDEs more accessible to those who are in-
terested in applying these equations to actuarial and financial problems. Our book
should be beneficial to students and researchers in applied probability and practi-
tioners. Students and researchers in applied probability should get a strong mathe-
matical introduction to the theory and applications of BSDEs. Practitioners should
learn how to derive asset-liability strategies in sophisticated internal models (advo-
cated by Solvency II Directive), set up hedging strategies and price complex insur-
ance products with financial guarantees. This book may also be useful in actuarial
education since it covers applied stochastic calculus and stochastic optimal control
theory, which are included in the educational syllabuses of the Groupe Consultatif
and the International Actuarial Association.

Łukasz DelongWarsaw, Poland
April 2013
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Chapter 1
Introduction

Abstract We discuss advantages of solving optimal control problems and defining
nonlinear expectations by backward stochastic differential equations. We comment
on applications of backward stochastic differential equations to pricing and hedging
of liabilities and modelling of dynamic risk measures.

A backward stochastic differential equation (BSDE) with jumps is an equation of
the form

Y(t) = ξ +
∫ T

t

f
(
s, Y (s),Z(s),U(s, .)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (1.1)

where W is a Brownian motion and Ñ is a compensated random measure. Given
a terminal condition ξ and a generator f , we are interested in finding a triple
(Y,Z,U) which solves (1.1). More precisely, we aim to find an adapted process
Y := (Y (t),0 ≤ t ≤ T ) which is modelled by the dynamics

dY (t)= −f
(
t, Y (t),Z(t),U(t, .)

)
dt +Z(t)dW(t)+

∫
R

U(t, z)Ñ(dt, dz), (1.2)

and satisfies Y(T ) = ξ where ξ is an FT -measurable random variable. At first
sight it seems to be a hopeless task to construct such a process. However, the dy-
namics (1.2) is driven by two predictable processes Z := (Z(t),0 ≤ t ≤ T ) and
U := (U(t, z),0 ≤ t ≤ T , z ∈ R) which are allowed to be chosen as the part of the
solution to the BSDE (1.1). The processes Z and U are called control processes.
They control the process Y so that Y satisfies the terminal condition.

It should be pointed out that we would not be able to find an adapted solution
to an equation with a random terminal condition if we did not introduce control
processes. Let us consider the equation

dY (t)= 0, Y (T )= ξ, (1.3)

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_1,
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2 1 Introduction

where ξ is an FT -measurable random variable. It is straightforward to conclude
that Y(t) = ξ , 0 ≤ t ≤ T , is the only solution to (1.3). Unfortunately, this solu-
tion is not adapted to the underlying filtration F and it would not be useful for
applications. The situation changes if we modify (1.3). Recalling the property of
predictable representation, we deduce that for a square integrable random variable
ξ and the square integrable martingale M(t) = E[ξ |Ft ], 0 ≤ t ≤ T , we can find
predictable processes (Z ,U ) such that

M(t)= E[ξ |Ft ] = E[ξ ] +
∫ t

0
Z (s)dW(s)+

∫ t

0

∫
R

U (s, z)Ñ(ds, dz),

0 ≤ t ≤ T .

Instead of (1.3) let us deal with the equation

dY (t)= Z(t)dW(t)+
∫
R

U(t, z)Ñ(dt, dz), Y (T )= ξ. (1.4)

We can now conclude that there exists an adapted solution to (1.4) which is of the
form Y(t) = M(t) = E[ξ |Ft ], 0 ≤ t ≤ T . The processes (Z,U), which are needed
for the complete characterization of the dynamics (1.4), coincide with the processes
(Z ,U ) which are derived from the predictable representation of ξ . The property
of predictable representation plays the crucial role in the theory of BSDEs since it
allows us to find an adapted solution to an equation with a random terminal condi-
tion.

Equation (1.4) is called a backward stochastic differential equation with zero
generator. A backward stochastic differential equation with zero generator is the
simplest example of a BSDE. The second key example of a BSDE is a linear back-
ward stochastic differential equation which has the dynamics

dY (t) =
(
α(t)Y (t)+ β(t)Z(t)+

∫
R

γ (t, z)U(t, z)Q(t, dz)η(t)

)
dt

+Z(t)dW(t)+
∫
R

U(t, z)Ñ(dt, dz),

Y (T ) = ξ,

where ϑ(dt, dz) = Q(t, dz)η(t)dt is the compensator of the random measure N .
Clearly, a BSDE with zero generator is the special case of a linear BSDE. Linear
BSDEs arise in many financial and actuarial applications. In this book we investigate
both linear and nonlinear BSDEs.

Backward stochastic differential equations have become a central method of
stochastic control theory. BSDEs have proved to be a useful and powerful alternative
to Hamilton-Jacobi-Bellman (HJB) equations. Let us recall that an HJB equation is
a partial differential equation which characterizes the optimal value function and the
optimal control strategy of an optimization problem. We now point out advantages
of characterizing optimal value functions and optimal control strategies by BSDEs.
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Firstly, BSDEs are applicable in the case of non-Markovian dynamics. Let us
recall that the Bellman programming principle, which leads to HJB equations, can
only be applied to Markovian state processes. Markovian BSDEs may arise as a
special type of BSDEs and they are called forward-backward stochastic differential
equations.

The second advantage of BSDEs concerns differentiability issues. We point out
that a classical Hamilton-Jacobi-Bellman equation for an optimal value function can
be derived provided that the value function is differentiable (sufficiently smooth)
with respect to state variables. Consequently, the main effort lies in proving differ-
entiability of the optimal value function. Let us remark that in sophisticated models,
including models with jumps, differentiability may not hold. In order to weaken dif-
ferentiability requirements in stochastic control problems, viscosity solutions can
be used. The notion of a viscosity solution allows us to characterize the optimal
value function as a viscosity solution of a HJB equation. However, in applications
of stochastic control models we are interested in the optimal control strategy which
is defined by derivatives of the optimal value function with respect to the state vari-
ables. In a viscosity setting we cannot use such strategies. Therefore, differentiabil-
ity of the value function has to be proved and strong (and cumbersome) assumptions
are introduced to succeed in the proof. At the same time, the existence of a solution
(Y,Z,U) to the BSDE (1.1) is not determined by differentiability of ξ and f . We
will see that a BSDE has a unique solution under square integrability assumptions. It
is mathematically convenient and beneficial to characterize the optimal value func-
tion of a stochastic control problem as a solution to a BSDE. If the optimal value
function is characterized by a BSDE, then the optimal control strategy is charac-
terized by the control processes of the same BSDE. Hence, we can define optimal
value functions and optimal strategies by BSDEs without imposing smoothness as-
sumptions.

Thirdly, BSDEs can be applied to solve optimization problems in models with
multiple state variables. Under the Bellman programming principle the optimal
value function is characterized as a function of the state variables and the time vari-
able. The reader who is familiar with HJB equations should recall that it is difficult
to derive value functions with more than two state variables. Mixed partial deriva-
tives complicate HJB equations and optimal strategies. Numerical schemes for HJB
equations use finite difference methods which are not efficient in high dimensions.
Consequently, independence of the state variables is often assumed in order to sep-
arate the variables in the optimal value function and reduce dimension of the HJB
equation. In our applications we investigate BSDEs driven by a two-dimensional
Brownian motion and a random measure on B(R). The extension to cover an n-
dimensional Brownian motion and a random measure on B(Rm) is straightforward
in most cases. We would have to add more control processes into our equations. In
some cases the generators would also change to reflect more control process. Fortu-
nately, we do not have to assume independence of the state variables. The BSDE is
always driven by orthogonal martingale terms. We point out that numerical schemes
for BSDEs use Monte Carlo methods which are efficient in high dimensions. More-
over, under the schemes proposed for solving BSDEs we do not have to estimate all
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control processes, we only need to estimate these control processes which appear in
the generator and are used in the optimal control strategy.

Optimization is often used in finance and insurance. Consequently, BSDEs are a
useful tool in financial and insurance mathematics. In this book we focus on opti-
mization problems which are related to perfect replication, partial hedging and asset
portfolio selection. In some of these applications, BSDEs arise very naturally. Let
us start by studying the classical problem of replicating a claim with a traded asset.
In this case the goal is to find an investment strategy under which the investment
portfolio process matches the terminal liability. Notice that the logic behind solving
BSDEs (1.1) is exactly the same: we aim to find a control process under which the
solution matches the terminal condition.

Example 1.1 We consider the Black-Scholes financial model with a bank account
S0 and a stock S. The prices of the assets are modelled by the equations

dS0(t)

S0(t)
= r

(
S(t)

)
dt,

dS(t)

S(t)
= μ

(
S(t)

)
dt + σ

(
S(t)

)
dW(t).

(1.5)

If r , μ, σ are constant, then we deal with the classical Black-Scholes model. We
are interested in finding a replicating strategy and a replicating portfolio for a claim
F(S(T )) contingent on the stock. The classical results from mathematical finance
yield that the price of the claim can be characterized as a unique solution to the
partial differential equation

ut (t, s)+ r(s)sus(t, s)+ 1

2
σ 2(s)s2uss(t, s)− r(s)u(t, s)= 0,

(t, s) ∈ [0, T )× (0,∞),

u(T , s)= F(s), s ∈ (0,∞),

and the replicating strategy for the claim is determined by the derivative us(t, s).
The solution to the perfect replication problem can be characterized with a partial
differential equation only if we deal with Markovian asset price processes modelled
by forward stochastic differential equations, the pay-off is contingent on the termi-
nal value of the stock and the price of the claim is sufficiently smooth in all state
variables. In general financial models these assumptions may not hold. First of all,
we may deal with non-Markovian price processes and path-dependent pay-offs. In
some cases we can introduce another state variable modelled by an auxiliary for-
ward stochastic differential equation and we can recover the Markovian structure.
However, this is not doable for all path-dependent pay-offs, and lookback options
are the key example when this technique fails. Secondly, existence of a smooth so-
lution to a partial differential equation is not guaranteed. It is a delicate matter to
impose conditions on the coefficients and the pay-off which lead to a sufficiently
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smooth price of the claim. Those conditions usually exclude many interesting and
practically relevant cases from considerations, such as binary options.

The difficulties, which we have mentioned, arise since the solution is derived
by exploiting the Markovian structure of the problem and applying the Itô’s for-
mula. However, we may follow a different approach. Let us consider a general non-
Markovian financial model with the price processes

dS0(t)

S0(t)
= r(t)dt,

dS(t)

S(t)
= μ(t)dt + σ(t)dW(t),

(1.6)

where r , μ, σ are predictable processes. We are interested in finding a replicating
strategy and a replicating portfolio for a path-dependent claim F = F(S(t),0 ≤ t ≤
T ). It is easy to notice that finding a solution to our replication problem is equivalent
to finding a solution (X,π) to the equation

dX(t) = π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
X(t)− π(t)

)
r(t)dt,

X(T ) = F,
(1.7)

which describes the dynamics of the replicating portfolio for F . We can observe
that (1.7) is a linear BSDE. Hence, finding a solution to the replication problem is
equivalent to finding a solution to a linear BSDE. Surprisingly, the derivation of the
replicating strategy and the replicating portfolio by solving a BSDE turns out to be
very intuitive. We will show that the linear BSDE (1.7) has a unique solution under
mild assumptions. The replicating strategy is now derived from the predictable rep-
resentation of the claim and in order to use the predictable representation property
we do not need to impose any smoothness (continuity, differentiability) assumptions
on the coefficients and the pay-off. Of course, the characterization of the replicat-
ing strategy in a non-Markovian model as a unique solution to a linear BSDE is
less explicit than in a Markovian model where we characterize the strategy as a
unique solution to a partial differential equation. Fortunately, the Malliavin calculus
for BSDEs allows us to derive more explicit results even in general models. Perfect
replication of claims is discussed in Sects. 9.2 and 9.4.

Since perfect replication of liabilities with traded assets is not always possible,
investors are also interested in finding investment portfolios which hedge claims
with a minimal replication error. More generally, the investor’s goal could be to op-
timize the investment performance of the assets while limiting the risk of not cov-
ering the liabilities. Such investment strategies can be derived by solving stochastic
optimal control problems. We would like to point out that optimization problems
have become an important part of asset-liability management and solvency capital
modelling. Nowadays, actuaries and risk managers model assets and liabilities and
try to identify actions which lead to optimal results.
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Example 1.2 We consider the Black-Scholes model (1.5) and an insurer who issues
a unit-linked endowment policy with a claim F(S(T )). The claim is paid if a poli-
cyholder is alive at time T . We assume that the future life-time τ of the policyholder
is exponentially distributed with parameter λ. We investigate the Markowitz portfo-
lio selection problem for the insurer. Let us remark that many financial institutions
based their asset-liability management programmes on the Markowitz risk-return
objective. We are interested in finding an investment strategy π which minimizes
the mean-square error

E
[∣∣Xπ(T )− F

(
S(T )

)
1{τ > T } −K11{τ > T } −K21{τ ≤ T }∣∣2]

, (1.8)

where K1, K2 are profit targets set by the insurer, and the insurer’s wealth process
Xπ is described by the dynamics

dX(t) = π(t)
(
μ

(
S(t)

)
dt + σ

(
S(t)

)
dW(t)

) + (
X(t)− π(t)

)
r
(
S(t)

)
dt,

X(0) = x.

Recalling classical results from the stochastic control theory, we have to solve the
system of HJB equations

ut (t, x, s)+ xr(s)ux(t, x, s)

+ inf
π

{(
μ(s)− r(s)

)
πux(t, x, s)+ 1

2
σ 2(s)π2uxx(t, x, s)+σ 2(s)πsuxs(t, x, s)

}

+μ(s)sus(t, x, s)+ 1

2
σ 2(s)s2uss(t, x, s) (1.9)

+ (
v(t, x, s)− u(t, x, s)

)
λ= 0, (t, x, s) ∈ [0, T )×R× (0,∞),

u(T , x, s)= (
x − F(s)−K1

)2
, (x, s) ∈ R× (0,∞),

and

vt (t, x, s)+ xr(s)vx(t, x, s)

+ inf
π

{(
μ(s)− r(s)

)
πvx(t, x, s)+ 1

2
σ 2(s)π2vxx(t, x, s)+σ 2(s)πsvxs(t, x, s)

}

+μ(s)svs(t, x, s)+ 1

2
σ 2(s)s2vss(t, x, s)= 0, (1.10)

(t, x, s) ∈ [0, T )×R× (0,∞),

v(T , x, s)= (x −K2)
2, (x, s) ∈ R× (0,∞).

If there exist smooth solutions to the HJB equations, then the optimal investment
strategy is defined with first and second derivatives of the optimal value function u

or v. However, the existence of differentiable solutions to the HJB equations (1.9)–
(1.10) is not guaranteed and, as already commented, (unnecessary) restrictions on
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the coefficients and the pay-off have to be introduced to conclude that the HJB
equations have smooth solutions. In real applications we would assume that the in-
terest rate and the volatility are not perfectly correlated with the traded stock and
that the claim is contingent on a financial asset that is only partially correlated with
the traded stock. These assumptions would further complicate the HJB equations
and make the proof of the regularity of the optimal value function harder. Even if
we succeed in establishing the existence of smooth solutions to the HJB equations
under restrictive conditions, then solving the partial differential equations with mul-
tiple state variables and mixed partial derivatives would be numerically difficult.
We should also keep in mind that HJB equations cannot be applied if we deal with
path-dependent pay-offs, which are often embedded in insurance contracts called
variable annuities.

BSDEs can be helpful since they can efficiently handle the difficulties which we
have discussed. In Sect. 10.2 we prove that in the non-Markovian financial model
(1.6) the optimal investment strategy for the quadratic hedging problem (1.8) with a
path-dependent claim F = F(S(t),0 ≤ t ≤ T ) can be characterized with the unique
solutions to the linear BSDEs

dŶ (t) = −
(∣∣∣∣μ(t)− r(t)

σ (t)

∣∣∣∣
2

− 2r(t)

)
Ŷ (t)dt + 2

μ(t)− r(t)

σ (t)
Ẑ(t)dt + Ẑ(t)dW(t),

Ŷ (T ) = 1,
(1.11)

and

dY (t) = r(t)Y (t)dt + μ(t)− r(t)

σ (t)
Z (t)dt + Z (t)dW(t)+ U (t)Ñ(dt),

Y (T ) = F1{τ > T } +K11{τ > T } +K21{τ ≤ T },
(1.12)

where Ñ is the compensated random measure generated by the point process
1{t ≥ τ }. We will show that the BSDEs (1.11)–(1.12) have solutions under mild
assumptions and smoothness (continuity, differentiability) assumptions are not rel-
evant. To some extent, we can introduce correlated risk factors into the model and
the solution can still be efficiently derived by solving linear BSDEs and applying
Monte Carlo methods. We would like to point out that in the case when we deal
with many risk factors solving a BSDE with Monte Carlo methods is much more
efficient than solving an HJB equation with finite difference methods, see Chap. 5.
We remark that a quadratic hedging problem in a general combined financial and
insurance model with correlated risk factors leads to a stochastic Riccati equation
which is a nonlinear BSDE.

Apart from applications in the field of optimal control, backward stochas-
tic differential equations are also used to define nonlinear expectations called g-
expectations. A nonlinear expectation is an operator which preserves all essential
properties of the standard expected value operator except linearity. The original
motivation for studying nonlinear expectations comes from the theory of decision



8 1 Introduction

making. It was shown that decisions made in the real world contradicted optimal
decisions based on additive probabilities and the expected utility theory. Conse-
quently, economists and mathematicians begun to look for a new notion of expec-
tation. The g-expectation, which is defined by a BSDE with a nonlinear genera-
tor g, is the fundamental example of a nonlinear expectation. The g-expectation has
become an important concept in probability since it gave rise to g-martingales, g-
supermartingales, g-submartingales and nonlinear versions of classical results such
as a nonlinear Doob-Meyer decomposition.

In financial and insurance applications we use g-expectations to define dynamic
risk measures. Static risk measures such as Value-at-Risk or Tail-Value-at-Risk over
5-day or 1-year horizon are well-understood. However, it is still challenging to
model dynamic risk measures which quantify the riskiness of financial positions
continuously during a specified period of time. It is clear that financial positions
should be consistently valued over time until they are liquidated. Properties of BS-
DEs indicate that g-expectations can be useful for modelling dynamic risk measures.

Example 1.3 We consider an aggregate insurance claims process modelled by a step
process J . We are interested in valuating the risk of a contract F(J (T )) contingent
on the claim process. The insurer may face a so-called model ambiguity and he
may not know the true claim intensity and the true claim distribution. This may be
the case if the historical data are scarce, if the intensity and the severity fluctuate
due to seasonal effect or if the intensity and the severity change in the case of a
random event (contagion risk). It is reasonable to assume that we measure the risk
of the liability F by considering all possible scenarios for the evolution of the claim
intensity and the claim distribution and taking the maximum loss from the liability
under all scenarios. We end up with the expectation

Y(t)= sup
Q∈Q

E
Q
[
F

(
J (T )

)|Ft

]
, 0 ≤ t ≤ T , (1.13)

where Q denotes the set of all possible (and equivalent) scenarios for the claim
intensity and the claim distribution of the claim process J . The risk measure (1.13)
is called a generalized-scenario-based risk measure, see Chap. 2.2.1 in McNeil et al.
(2005), and it is applied in practice. The set Q contains possible claim distributions
and claim intensities of J and it consists of the claim distributions and the claim
intensities which are of the form

qQ(t, dz) = 1 + κ(t, z)∫
R
(1 + κ(t, z))q(dz)

q(dz), 0 ≤ t ≤ T , z ∈ R,

λQ(t) =
∫
R

(
1 + κ(t, z)

)
q(dz)λ, 0 ≤ t ≤ T ,

where q is a probability distribution function, λ > 0 is a constant and κ is a process
which determines the set Q. Under the basic scenario, κ = 0, the aggregate claims
process J is the compound Poisson process with the jump size distribution q and
the intensity λ, and under any other scenario, κ �= 0, the aggregate claims process J
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is a step process with the jump size distribution qQ and the intensity λQ. The prob-
ability measure qQ is the Esscher transform of the probability measure q , and λQ

is defined by scaling the intensity λ in the way which guarantees that the set Q
contains equivalent scenarios for J . The set of equivalent scenarios is obtained by
applying Girsanov’s theorem, see Sect. 2.5. Let us assume that the distortion pro-
cess κ is bounded, i.e. |κ(t, z)| ≤ δ < 1. In Sect. 3.4 we show that Y solves the
nonlinear BSDE

dY (t) = −δ

∫
R

∣∣U(t, z)
∣∣λq(dz)dt +

∫
R

U(t, z)Ñ(dt, dz),

Y (T ) = F
(
J (T )

)
,

where Ñ is the compensated random measure generated by the compound Poisson
process with the intensity λ and the jump size distribution q . The theory of BS-
DEs yields that the operator (1.13) defines a time-consistent dynamic risk measure.
Dynamic risk measures under model ambiguity play an important role in the the-
ory of dynamic risk measures and we use them, and their BSDE representations, in
Chap. 12 to price and hedge insurance contracts.

This book is divided into three parts. In Part I we present the theory of BSDEs
with Lipschitz generators driven by a Brownian motion and a compensated random
measure. We put an emphasis on random measures generated by step processes and
Lévy processes. We present key results and techniques (including numerical algo-
rithms) for BSDEs with jumps. We also study filtration-consistent nonlinear expec-
tations and g-expectations. We remark that BSDEs with jumps are still at the stage
of development and we are not able to present the most general statements of math-
ematical results in all cases. We sometimes resign from presenting the most general
result since it would becloud the main idea. In Part I we focus on mathematical tools
and proofs which are crucial for understanding the theory and are useful for applica-
tions. We try to explain advanced mathematics behind BSDEs in detail. In Part II we
investigate actuarial and financial applications of BSDEs with jumps. We consider
a general financial and insurance model and we deal with pricing and hedging of
insurance equity-linked claims and asset-liability management problems. Different
pricing and hedging objectives are studied. We investigate perfect hedging, super-
hedging, quadratic optimization, utility maximization, indifference pricing, ambi-
guity risk minimization and no-good-deal pricing. We also consider dynamic risk
measures. In Part III we present some other useful classes of BSDEs and we com-
ment on their applications. Biographical notes do not represent a complete survey
on BSDEs and they only refer the reader to works which are closely related to the
topics considered.



Part I
Backward Stochastic Differential

Equations—The Theory



Chapter 2
Stochastic Calculus

Abstract We review important results of stochastic calculus. We introduce a Brow-
nian motion, a random measure and a compensated random measure. Examples of
Lévy processes, step processes and their jump measures are given. We investigate
stochastic integrals with respect to Brownian motion and compensated random mea-
sures and we recall their properties. We discuss the weak property of predictable
representation for local martingales. Equivalent probability measures are defined,
and Girsanov’s theorem for Brownian motion and random measures is stated. We
give differentiation rules of the Malliavin calculus.

We review important results of stochastic calculus which we use in this book. This
chapter is written in the spirit of a rèsume and we collect facts needed to investigate
BSDEs driven by Brownian motions and compensated random measures.

2.1 Brownian Motion and Random Measures

Let us consider a probability space (Ω,F ,P) with a filtration F = (Ft )0≤t≤T and
a finite time horizon T < ∞. We assume that the filtration F satisfies the usual
hypotheses of completeness (F0 contains all sets of P-measure zero) and right con-
tinuity (Ft = Ft+).

A stochastic process V (ω, t) is a real function defined on Ω × [0, T ] such that
ω �→ V (ω, t) is F -measurable for any t ∈ [0, T ]. A stochastic process V is called
F -adapted if ω �→ V (ω, t) is Ft -measurable for any t ∈ [0, T ]. The natural filtra-
tion generated by a process V is denoted by FV . We always assume that the natural
filtration is completed with sets of measure zero. By B(A) we denote the Borel
sets of A ⊂ R, by P we denote the σ -field on Ω × [0, T ] generated by all left-
continuous and adapted processes. The field P is called the predictable σ -field. A
process V : Ω × [0, T ] → R, or V : Ω × [0, T ] × E → R, is called F -predictable
if it is F -adapted and P-measurable, or P ⊗ B(E )-measurable. Clearly, the limit
of a converging sequence of predictable processes is a predictable process. If there
is no confusion, the reference to the filtration F is omitted. A process is called
càdlàg if its trajectories are right-continuous and have left limits. By K we denote

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_2,
© Springer-Verlag London 2013
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constants, which are allowed to vary from line to line. The term a.s. means almost
surely with respect to the probability measure, and, unless specified, the term a.e.
means almost everywhere with respect to the Lebesgue measure. All statements for
random variables and stochastic processes should be understood a.s.

We introduce a Brownian motion and a random measure. Brownian motion and
random measures are used to develop financial and actuarial stochastic models.

Definition 2.1.1 An F -adapted process W := (W(t),0 ≤ t ≤ T ) with W(0)= 0 is
called a Brownian motion if

(i) for 0 ≤ s < t ≤ T , W(t)−W(s) is independent of Fs ,
(ii) for 0 ≤ s < t ≤ T , W(t)−W(s) is a Gaussian random variable with mean zero

and variance t − s.

There exists a modification of a Brownian motion which has continuous paths.

Definition 2.1.2 A function N defined on Ω × [0, T ] ×R is called a random mea-
sure if

(i) for any ω ∈Ω , N(ω, .) is a σ -finite measure on B([0, T ])⊗ B(R),
(ii) for any A ∈ B([0, T ])⊗ B(R), N(.,A) is a random variable on (Ω,F ,P).

We remark that N(ω, [0, t],A) may be equal to infinity (see Example 2.3 and the
case of Lévy processes).

Example 2.1 Let (Tn)n≥1 denote the sequence of jump times of a Poisson process.
The function

N
(
ω, [s, t]) = �

{
n≥ 1, Tn ∈ [s, t]}, 0 ≤ s < t ≤ T ,

which counts the number of jumps of the Poisson process in the time interval [s, t],
defines a random measure. If we fix ω, then the sequence of jump times (Tn)n≥1 of
the Poisson process is given on the time axis, and N as a function of [s, t] is a finite
measure which counts the number of (Tn)n≥1 which are in the interval [s, t]. If we
fix [s, t], then N is a Poisson distributed random variable which counts the number
of random jump times (Tn)n≥1 of the Poisson process which are in the interval [s, t].

Next, we introduce a predictable compensator of a random measure.

Definition 2.1.3 A random measure N is called F -predictable if for any F -
predictable process V such that the integral

∫ T

0

∫
R

|V (s, z)|N(ds, dz) exists, the
process (

∫ t

0

∫
R
V (s, z)N(ds, dz),0 ≤ t ≤ T ) is F -predictable.

Definition 2.1.4 For a random measure N we define

EN(A)= E

[∫
[0,T ]×R

1A(ω, t, z)N(ω,dt, dz)

]
, A ∈ F ⊗ B

([0, T ]) ⊗ B(R).
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If there exists an F -predictable random measure ϑ such that

(i) Eϑ is a σ -finite measure on P ⊗ B(R),
(ii) the measures EN and Eϑ are identical on P ⊗ B(R),

then we say that the random measure N has a compensator ϑ .

We remark that the compensator is uniquely determined, see Theorem 11.6 in He
et al. (1992).

Given the compensator ϑ of a random measure N , we can define the compen-
sated random measure

Ñ(ω, dt, dz)=N(ω,dt, dz)− ϑ(ω,dt, dz).

Random measures are usually related to jumps of discontinuous processes. We
state the following result, see Theorem 11.15 He et al. (1992).

Proposition 2.1.1 Let J := (J (t),0 ≤ t ≤ T ) be an F -adapted, càdlàg process,
and set D = {�J �= 0}. Then

N(dt, dz)=
∑

s∈(0,T ]
1(s,�J (s))(dt, dz)1{�J(s) �=0}(s)1D{s}, (2.1)

is an integer-valued random measure which has a unique F -predictable compen-
sator.

The measure N defined in Proposition 2.1.1 is called the jump measure of the
process J . The measure N([0, T ],A) counts the number of jumps of the process J
of size specified in the set A in the time interval [0, T ].

Two important families of discontinuous processes should be pointed out. In fi-
nancial and actuarial applications we usually deal with Lévy processes and step
processes.

Definition 2.1.5 An F -adapted process J := (J (t),0 ≤ t ≤ T ) with J (0) = 0 is
called a Lévy process if

(i) for 0 ≤ s < t ≤ T , J (t)− J (s) is independent of Fs ,
(ii) for 0 ≤ s < t ≤ T , J (t)− J (s) has the same distribution as J (t − s),

(iii) the process J is continuous in probability, for any t ∈ [0, T ] and ε > 0 we have
lims→t P(|L(t)−L(s)|> ε)= 0.

There exists a modification of a Lévy process which has càdlàg paths.

Example 2.2 The Poisson process and the compound Poisson process are the prime
examples of discontinuous Lévy processes. It is easy to conclude that the jump
measure of a compound Poisson process with intensity λ and jump distribution q has
the compensator ϑ(dt, dz)= λq(dz)dt . The jump measure of a compound Poisson
process is a finite random measure.



16 2 Stochastic Calculus

Example 2.3 The family of Lévy processes contains Variance Gamma, Normal In-
verse Gaussian and stable processes, see Chap. 4 in Cont and Tankov (2004). In gen-
eral, the jump measure of a Lévy process has the compensator ϑ(dt, dz)= ν(dz)dt

where ν is a σ -finite measure (called a Lévy measure) satisfying
∫
|z|<1 z

2ν(dz) <

∞, see Proposition 3.7 in Cont and Tankov (2004). The measure ν determines prop-
erties of the Lévy process (we can have a finite variation or an infinite variation
process with an infinite number of small jumps in every finite time interval), see
Chaps. 3, 4 in Cont and Tankov (2004). For all Lévy processes except the com-
pound Poisson process, the jump measure of a Lévy process is a σ -finite random
measure with N([0, T ],R)= +∞.

If the random measure (2.1) is generated by a Lévy process, then it is called a
Poisson random measure.

Definition 2.1.6 A process J is called a step process if its trajectories are càdlàg
step functions having a finite number of jumps in every finite time interval. An F -
adapted step process J with J (0)= 0 has the representation

J (t)=
∞∑
n=1

ξn1{Tn ≤ t}, (2.2)

where

(i) (Tn)n≥1 is a sequence of F -stopping times such that 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn ↑
∞, n→ ∞,

(ii) ξn ∈ FTn , n≥ 1,
(iii) for each n≥ 1, Tn <∞ ⇒ Tn < Tn+1,
(iv) for each n≥ 1, ξn �= 0 ⇔ Tn <∞.

In representation (2.2), Tn denotes the nth jump time of J and ξn denotes the
jump size of J at time Tn. The sequence (Tn)n≥1 defines a non-explosive point
process. The jump measure of a step process is a finite random measure.

Example 2.4 The compound Poisson process is a step process.

Example 2.5 The compound Cox process is a second example of a step process.
The compound Cox process J can be defined by J (t) = j (

∫ t

0 λ(s)ds) where λ is
a stochastic intensity process and j is an independent compound Poisson process
with intensity 1 and jump size distribution q , see Theorem 12.2.3 in Rolski et al.
(1999). We can deduce that the compensator of the corresponding jump measure is
of the form ϑ(dt, dz)= λ(t)q(dz).

Example 2.6 Take a continuous process λ : Ω × [0, T ] → (0,∞) and define the
hazard process Ψ (t) = ∫ t

0 λ(s)ds. We introduce a random time τ which has the
conditional distribution

P
(
τ > t |F λ

t

) = e−Ψ (t) = e− ∫ t
0 λ(s)ds, 0 ≤ t ≤ T ,
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and we define the step process

J (t)= 1{t ≥ τ }, 0 ≤ t ≤ T .

The compensated process J (t)− Ψ (t ∧ τ) is an F λ ∨ F J -martingale, see Propo-
sition 2.13 in Jeanblanc and Rutkowski (2000), and the jump measure of J has the
compensator ϑ(dt, {1})= (1 − J (t−))λ(t)dt .

We remark that given the conditional distribution of (Tn+1, ξn+1) with respect to
FTn , it is possible to derive the compensator of the step process, see Theorem 11.49
in He et al. (1992).

We need some assumptions concerning the random measure and its compensator.
We always assume that

(RM) the random measure N is an integer-valued random measure with the com-
pensator

ϑ(dt, dz)=Q(t, dz)η(t)dt, (2.3)

where η : Ω × [0, T ] → [0,∞) is a predictable process, and Q is a kernel
from (Ω × [0, T ],P) into (R,B(R)) satisfying

∫ T

0

∫
R

z2Q(t, dz)η(t)dt <∞. (2.4)

We also set N({0},R)=N((0, T ], {0})= ϑ((0, T ], {0})= 0.

This is our standing assumption and any random measure N considered in this book
satisfies (RM). From the definition of a kernel we recall that for (ω, t) ∈Ω ×[0, T ],
Q(t, .) is a measure on B(R), and for A ∈ B(R), Q(.,A) is a predictable process.
Notice that the compensators considered in our examples satisfy assumption (2.3).
In fact, the representation of the compensator (2.3) holds in most practical cases, we
refer to Theorem II.1.8 in Jacod and Shiryaev (2003) for a general representation of
the compensator of a random measure. In (2.3) we assume that the compensator is
absolutely continuous with respect to the Lebesgue measure dt . The absolute conti-
nuity of the compensator with respect to the Lebesgue measure dt can be motivated
by financial and actuarial applications in which we investigate jump measures of
quasi-left continuous, càdlàg, adapted processes. Let us recall that a càdlàg, adapted
process is called quasi-left continuous if a sequence of totally inaccessible stopping
times exhausts its jump times, see Proposition I.2.26 and Corollary II.1.19 in Jacod
and Shiryaev (2003). In other words, quasi-left continuous processes and absolutely
continuous compensators of jump measures arise if we model jumps that arrive in
an unpredictable way. Indeed, this is the right probabilistic framework for discon-
tinuous processes used in insurance and finance. Assumption (2.4) implies that the
quasi-left continuous process related to the jump measure is locally square inte-
grable, see Theorem 11.31 in He et al. (1992) (in applications we deal with square
integrable processes). The measure zero of the set {0} indicates that N is indeed
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a jump measure, see Theorem 11.25 in He et al. (1992). In many actuarial applica-
tions, in which we deal with step processes, η can be interpreted as a claim intensity
and Q as a claim distribution. If we consider a Lévy process, then we simply set
η(t)= 1 and Q(t, dz)= ν(dz) where ν is a σ -finite Lévy measure.

2.2 Classes of Functions, Random Variables and Stochastic
Processes

We start with defining spaces of functions, random variables and stochastic pro-
cesses which we use in this book.

• Let L2
ν(R) denote the space of measurable functions ϕ : R → R satisfying

∫
R

∣∣ϕ(z)∣∣2
ν(dz) <∞,

where ν is a σ -finite measure,
• Let C 1,2([0, T ],R) denote the space of continuous functions ϕ : [0, T ] ×R →R

which have continuous partial derivatives ∂
∂t
ϕ(t, x), ∂

∂x
ϕ(t, x) and ∂2

∂x2 ϕ(t, x).
Partial derivatives are denoted by φt , φx , φxx . If there is no confusion, first deriva-
tive is denoted by φ′.

• Let L2(R) denote the space of random variables ξ :Ω → R satisfying

E
[|ξ |2]<∞.

• Let H2(R) denote the space of predictable processes Z : Ω × [0, T ] → R satis-
fying

E

[∫ T

0

∣∣Z(t)∣∣2
dt

]
<∞.

• Let H2
N(R) denote the space of predictable processes U : Ω × [0, T ] × R → R

satisfying

E

[∫ T

0

∫
R

∣∣U(t, z)
∣∣2
Q(t, dz)η(t)dt

]
<∞,

where we integrate with respect to the predictable compensator of the random
measure N .

• Let S2(R) denote the space of adapted, càdlàg processes Y : Ω × [0, T ] → R

satisfying

E

[
sup

t∈[0,T ]

∣∣Y(t)∣∣2
]
<∞.

• Let S2
inc(R) denote the subspace of S

2(R) which contains processes with non-
decreasing trajectories, and let S∞(R) denote the subspace of S2(R) which con-
tains bounded processes.
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The spaces H2(R), H2
N(R) and S

2(R) are endowed with the norms:

‖Z‖2
H2 = E

[∫ T

0
eρt

∣∣Z(t)∣∣2
dt

]
,

‖U‖2
H

2
N

= E

[∫ T

0

∫
R

eρt
∣∣U(t, z)

∣∣2
Q(t, dz)η(t)dt

]
,

‖Y‖2
S2 = E

[
sup

t∈[0,T ]
eρt

∣∣Y(t)∣∣2
]
,

with some ρ ≥ 0.
We also define classes of processes which are differentiable in the Malliavin

sense. First, we present the idea behind the Malliavin derivative.
If we investigate Malliavin differentiability, then we deal with the completed

filtration generated by a Lévy process. We work with the product of two canon-
ical spaces (ΩW × ΩN,FW ⊗ FN,PW ⊗ PN) completed with sets of measure
zero. The space (ΩW ,FW,PW) is the usual canonical space for a one-dimensional
Brownian motion (the space of continuous functions on [0, T ] with the σ -algebra
generated by the topology of uniform convergence and Wiener measure). The space
(ΩN,FN,PN) is a canonical space for a pure jump Lévy process, and for its proper
definition we refer to Solé et al. (2007). In the product space (ΩW × ΩN,FW ⊗
FN,PW ⊗ PN) we can study a two-parameter Malliavin derivative.

We follow the exposition from Solé et al. (2007). Let ν be a Lévy measure such
that

∫
R

|z|2ν(dz) <∞. Consider the finite measure υ

υ(A)=
∫
A(0)

σ 2dt +
∫
A′
z2ν(dz)dt, A ∈ B

([0, T ]) ⊗ B(R),

where A(0)= {t ∈ [0, T ]; (t,0) ∈A} and A′ =A \A(0). We define the martingale-
valued random measure Υ

Υ (A)=
∫
A(0)

σdW(t)+
∫
A′
zÑ(dt, dz), A ∈ B

([0, T ]) ⊗ B(R),

and its continuous and discontinuous parts

Υ c(t)=
∫ t

0
σdW(s), Υ d(t,A)=

∫ t

0

∫
A

zÑ(ds, dz), A ∈ B(R).

We introduce the multiple two-parameter integral with respect to Υ

In(ϕn)=
∫
([0,T ]×R)n

ϕ
(
(t1, z1), . . . (tn, zn)

)
Υ (dt1, dz1) · . . . ·Υ (dtn, dzn),

for functions ϕ ∈ L2
υ(([0, T ] ×R)n) satisfying

‖ϕn‖2
L2
υ

=
∫
([0,T ]×R)n

∣∣ϕn((t1, z1), . . . , (tn, zn)
)∣∣2

υ(dt1, dz1) · . . . · υ(dtn, dzn) <∞.
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We finally recall the chaotic decomposition property which states that any square
integrable random variable ξ measurable with respect to the completed natural fil-
tration generated by a Lévy process has the unique representation

ξ =
∞∑
n=0

In(ϕn), (2.5)

where ϕn ∈ L2
υ(([0, T ] × R)n) are symmetric in the n pairs (ti , zi), 1 ≤ i ≤ n. The

Malliavin derivative uses the chaotic decomposition property (2.5).
We consider the following spaces:

• Let D1,2(R) denote the space of random variables ξ ∈ L
2(R) which are measur-

able with respect to the natural filtration generated by a Lévy process and have
the representation ξ = ∑∞

n=0 In(ϕn) such that

∞∑
n=1

nn!‖ϕn‖2
L2
υ
<∞.

For a random variable ξ ∈ D
1,2(R) we define the Malliavin derivative Dξ : Ω ×

[0, T ] ×R → R to be a stochastic process of the form

Dt,zξ =
∞∑
n=1

nIn−1
(
ϕn

(
(t, z), ·)). (2.6)

• Let L1,2(R) denote the space of adapted and product measurable processes V :
Ω × [0, T ] ×R → R satisfying

E

[∫
[0,T ]×R

∣∣V (s, y)
∣∣2
υ(ds, dy)

]
<∞,

V (s, y) ∈D
1,2(R), υ-a.e. (s, y) ∈ [0, T ] ×R,

E

[∫
([0,T ]×R)2

∣∣Dt,zV (s, y)
∣∣2
υ(ds, dy)υ(dt, dz)

]
<∞.

Let us define a stopping time, (local) martingale, quadratic variation and BMO
martingale.

Definition 2.2.1 A random variable τ :Ω → [0, T ] is called an F -stopping time if
{τ ≤ t} ∈ Ft for every t ∈ [0, T ].

Definition 2.2.2 An F -adapted process M := (M(t),0 ≤ t ≤ T ) is called an F -
martingale (supermartingale/submartingale) if

(i) E[|M(t)|]<∞, 0 ≤ t ≤ T ,
(ii) E[M(t)|Fs] = M(s), 0 ≤ s < t ≤ T , (E[M(t)|Fs] ≤ M(s) /E[M(t)|Fs] ≥

M(s)).
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Definition 2.2.3 An F -adapted process M := (M(t),0 ≤ t ≤ T ) is called an F -
local martingale if there exists a sequence of F -stopping times (τn, n ∈ N) such
that τn → T , n→ ∞, and (M(t ∧ τn),0 ≤ t ≤ T ) is an F -martingale.

Definition 2.2.4 The quadratic variation process of a càdlàg semimartingale V is
defined by

[V,V ](t)= lim
n→∞

n∑
i=1

(
V

(
tni+1 ∧ t

) − V
(
tni ∧ t

))2
, 0 ≤ t ≤ T ,

where limn→∞ supi=1,...,n |tni+1 − tni | = 0, and the convergence is uniform in proba-
bility.

Example 2.7 The quadratic variation of a Brownian motion is given by
[W,W ](t) = t , and the quadratic variation of a quadratic pure jump process J

(a purely discontinuous Lévy process or a step process) is given by [J,J ](t) =∑
s≤t |�J(s)|2, see Theorems II.28 and II.39 in Protter (2004).

Definition 2.2.5 Let M := (M(t),0 ≤ t ≤ T ) be an F -local martingale. The pro-
cess M is called a BMO (bounded mean oscillation) martingale if there exists a
constant K such that

E
[[M,M](T )− [M,M](τ )|Fτ

] ≤K,∣∣�M(τ)
∣∣ ≤K,

for any F -stopping time τ ∈ [0, T ].

We end this chapter with two important martingale inequalities, which are often
applied in this book. We state the Burkholder-Davis-Gundy inequalities, see Theo-
rem IV.48 in Protter (2004).

Theorem 2.2.1 Let M be a local martingale. For any p ≥ 1 there exist constants
K1, K2, depending on p but independent from M , such that

E

[
sup

0≤t≤T

∣∣M(t)
∣∣p]

≤K1E
[∣∣[M,M](T )∣∣p/2] ≤K2E

[
sup

0≤t≤T

∣∣M(t)
∣∣p]

. (2.7)

We also recall the Doob’s inequality, see Theorem I.20 in Protter (2004).

Theorem 2.2.2 Let M be a positive submartingale. For any p > 1 we have

E

[
sup

0≤t≤T

∣∣M(t)
∣∣p]

≤K sup
0≤t≤T

E
[∣∣M(t)

∣∣p]
. (2.8)
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As a corollary, we can conclude that the martingale M(t)= E[ξ |Ft ], 0 ≤ t ≤ T ,
ξ ∈ L

2(R), satisfies the inequality

E

[
sup

0≤t≤T

∣∣M(t)
∣∣2

]
≤KE

[|ξ |2].

2.3 Stochastic Integration

We state main properties of stochastic integrals with respect to Brownian motion
and compensated random measures.

Theorem 2.3.1

(a) Let V :Ω × [0, T ] →R be a predictable process satisfying
∫ T

0

∣∣V (t)
∣∣2
dt <∞,

Then (
∫ t

0 V (s)dW(s),0 ≤ t ≤ T ) is a continuous local martingale with the
quadratic variation process

[∫ .

0
V (s)dW(s),

∫ .

0
V (s)dW(s)

]
(t)=

∫ t

0

∣∣V (s)
∣∣2
ds, 0 ≤ t ≤ T .

(b) Let V :Ω × [0, T ] ×R →R be a predictable process satisfying
∫ T

0

∫
R

∣∣V (t, z)
∣∣2
Q(t, dz)η(t)dt <∞,

where we integrate with respect to the compensator of a random measure N .
Then (

∫ t

0

∫
R
V (s, z)Ñ(ds, dz),0 ≤ t ≤ T ) is a càdlàg local martingale with the

quadratic variation process
[∫ .

0

∫
R

V (s, z)Ñ(ds, dz),

∫ .

0

∫
R

V (s, z)Ñ(ds, dz)

]
(t)

=
∫ t

0

∫
R

∣∣V (s, z)
∣∣2
N(ds, dz), 0 ≤ t ≤ T .

Proof Case (a) follows from Theorems IV.22 and IV.28 in Protter (2004). Case (b)
follows from Definition 11.16 and Theorem 11.21 in He et al. (1992). �

We also use the following result, see Theorem 11.21 in He et al. (1992).

Theorem 2.3.2 Let V :Ω × [0, T ] ×R →R be a predictable process satisfying
∫ T

0

∫
R

∣∣V (t, z)
∣∣Q(t, dz)η(t)dt <∞,
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where we integrate with respect to the compensator of a random measure N .
Then (

∫ t

0

∫
R
V (s, z)Ñ(ds, dz),0 ≤ t ≤ T ) is a càdlàg local martingale and

(
∫ t

0

∫
R
V (s, z)N(ds, dz),0 ≤ t ≤ T ) is a càdlàg process. Let N be the jump measure

of a càdlàg process J . We also have the property
∫ t

0

∫
R

V (s, z)N(ds, dz)=
∑

s∈(0,t]
V

(
s,�J (s)

)
1�J(s) �=0(s), 0 ≤ t ≤ T .

Notice that if V is a non-negative predictable process satisfying
E[∫ T

0

∫
R
V (t, z)Q(t, dz)η(t)dt]<∞, then

E

[∫ T

0

∫
R

V (t, z)N(dt, dz)

]
= E

[∫ T

0

∫
R

V (t, z)Q(t, dz)η(t)dt

]
. (2.9)

To prove (2.9), from Theorem 2.3.2 we first deduce

E

[∫ τn

0

∫
R

V (t, z)N(dt, dz)

]
= E

[∫ τn

0

∫
R

V (t, z)Q(t, dz)η(t)dt

]
,

where (τn)n≥1 is a sequence of stopping times, and we next apply the monotone
convergence theorem.

We need a stronger version of Theorem 2.3.1.

Theorem 2.3.3

(a) Let V ∈ H
2(R). Then (

∫ t

0 V (s)dW(s),0 ≤ t ≤ T ) is a continuous, square inte-
grable martingale which satisfies

E

[∣∣∣∣
∫ T

0
V (s)dW(s)

∣∣∣∣
2]

= E

[∫ T

0

∣∣V (s)
∣∣2
ds

]
.

(b) Let V ∈ H
2
N(R). Then (

∫ t

0

∫
R
V (s, z)Ñ(ds, dz),0 ≤ t ≤ T ) is a càdlàg, square

integrable martingale which satisfies

E

[∣∣∣∣
∫ T

0

∫
R

V (s, z)Ñ(ds, dz)

∣∣∣∣
2]

= E

[∫ T

0

∫
R

∣∣V (s, z)
∣∣2
Q(s, dz)η(s)ds

]
.

Proof Case (a) follows from Lemma IV.27 and Theorem IV.22 in Protter (2004).
We prove case (b). By Theorem 2.3.1 the process

∫ t

0

∫
R
V (s, z)Ñ(ds, dz) is a càdlàg

local martingale. By Theorem 2.3.2 and property (2.9) we obtain

E

[∫ T

0

∫
R

∣∣V (s, z)
∣∣2
N(ds, dz)

]
= E

[∫ T

0

∫
R

∣∣V (s, z)
∣∣2
Q(s, dz)η(s)ds

]
<∞.

Since
∫ t

0

∫
R
V (s, z)Ñ(ds, dz) is a local martingale with integrable quadratic varia-

tion, it is a square integrable martingale, see Corollary II.26.3 in Protter (2004). By
Corollary II.26.3 in Protter (2004) we also derive
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E

[∣∣∣∣
∫ T

0

∫
R

V (s, z)Ñ(ds, dz)

∣∣∣∣
2]

= E

[[∫ .

0

∫
R

V (s, z)Ñ(ds, dz),

∫ .

0

∫
R

V (s, z)Ñ(ds, dz)

]
(T )

]

= E

[∫ T

0

∫
R

∣∣V (s, z)
∣∣2
N(ds, dz)

]
,

and the proof is complete. �

From Sect. II.6 in Protter (2004) we also recall that
[∫ .

0
V1(s)dW(s),

∫ .

0

∫
R

V2(s, z)Ñ(ds, dz)

]
(T )= 0.

Finally, let us present the Itô’s formula, see Theorem II.32 in Protter (2004).

Theorem 2.3.4 Consider a process X := (X (t),0 ≤ t ≤ T ) which satisfies the
dynamics

X (t) = X (0)+
∫ t

0
μ(s)ds +

∫ t

0
σ(s)dW(s)

+
∫ t

0

∫
R

γ (s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

where μ, σ and γ are predictable processes such that
∫ T

0 |μ(s)|ds < ∞,∫ T

0 |σ(s)|2ds < ∞,
∫ T

0

∫
R

|γ (s, z)|2Q(s, dz)η(s)ds < ∞. Let ϕ ∈ C 1,2([0, T ] ×
R). Then

ϕ
(
τ,X (τ )

) = ϕ
(
0,X (0)

) +
∫ τ

0
ϕt

(
s,X (s−)

)
ds +

∫ τ

0
ϕx

(
s,X (s−)

)
dX (s)

+
∫ τ

0

1

2
ϕxx

(
s,X (s−)

)
σ 2(s)ds +

∫ τ

0

∫
R

(
ϕ
(
s,X (s−)+ γ (s, z)

)

− ϕ
(
s,X (s−)

) − ϕx
(
s,X (s−)

)
γ (s, z)

)
N(ds, dz),

for any stopping time 0 ≤ τ ≤ T .

Example 2.8 Let M(t)= eW(t)− 1
2 t , 0 ≤ t ≤ T . Then

M(t)= 1 +
∫ t

0
M(s)dW(s), 0 ≤ t ≤ T .

Let M(t) = e
∫ t

0

∫
R
zÑ(ds,dz)−∫ t

0

∫
R
(ez−z−1)Q(s,dz)η(s)ds , 0 ≤ t ≤ T , where N is a ran-

dom measure with a compensator satisfying
∫ T

0

∫
R
z2Q(s, dz)η(s)ds < ∞ and
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∫ T

0

∫
R
(ez − 1)2Q(ds, dz)η(s)ds <∞. Then

M(t)= 1 +
∫ t

0

∫
R

M(s−)
(
ez − 1

)
Ñ(ds, dz), 0 ≤ t ≤ T .

We also use the following result, which is a special case of the multidimensional
Itô’s formula, see Theorem II.33 in Protter (2004).

Proposition 2.3.1 Consider the processes Xi := (Xi (t),0 ≤ t ≤ T ), i = 1,2,
which satisfy the dynamics

Xi (t) = Xi (0)+
∫ t

0
μi(s)ds

+
∫ t

0
σi(s)dW(s)+

∫ t

0

∫
R

γi(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , i = 1,2,

where μi , σi and γi are predictable processes such that
∫ T

0 |μi(s)|ds < ∞,∫ T

0 |σi(s)|2ds <∞,
∫ T

0

∫
R

|γi(s, z)|2Q(s, dz)η(s)ds <∞, for i = 1,2. Then

X1(τ )X2(τ ) = X1(0)X2(0)+
∫ τ

0
X1(s−)dX2(s)+

∫ τ

0
X2(s−)dX1(s)

+
∫ τ

0
σ1(s)σ2(s)ds +

∫ τ

0

∫
R

γ1(s, z)γ2(s, z)N(ds, dz),

for any stopping time 0 ≤ τ ≤ T .

2.4 The Property of Predictable Representation

We now introduce the property of predictable representation, see Sect. XIII.2 in
He et al. (1992) and Sect. III.4 in Jacod and Shiryaev (2003). The predictable rep-
resentation property is the key concept in the theory of BSDEs which allows us to
construct a solution to a BSDE. From the practical point of view, the predictable
representation yields hedging strategies for financial claims.

Let us consider a probability space (Ω,F ,P) with a filtration F = (Ft )0≤t≤T .
In this book we always assume that the weak property of predictable representation
holds, that is

(PR) any F -local martingale M has the representation

M(t)=M(0)+
∫ t

0
Z(s)dW(s)+

∫ t

0

∫
R

U(s, z)Ñ(ds, dz) 0 ≤ t ≤ T ,

(2.10)

where Z and U are F -predictable processes integrable with respect to W

and Ñ .
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This is our second standing assumption, next to (RM) from Sect. 2.1. If M is a
locally square integrable local martingale, then the processes Z and U are locally
square integrable in the sense of the assumptions from Theorem 2.3.1, see Defini-
tion III.4.2 in Jacod and Shiryaev (2003) and Theorem 11.31 in He et al. (1992). By
Theorems 2.3.1–2.3.2 we also get

E
[[M,M](τn)

]

=M2(0)+E

[∫ τn

0

∣∣Z(s)∣∣2
ds

]
+E

[∫ τn

0

∫
R

∣∣U(s, z)
∣∣2
Q(s, dz)η(s)ds

]
, (2.11)

where (τn)n≥1 is a sequence of stopping times. If we now assume that M is a square
integrable martingale, then E[[M,M](T )] < ∞, see Corollary II.26.3 in Protter
(2004), and applying the monotone convergence theorem and Fatou’s lemma to
(2.11) we can conclude that Z ∈ H

2(R) and U ∈ H
2
N(R). Moreover, we can eas-

ily deduce that the representation of a square integrable martingale M is unique in
H

2(R)×H
2
N(R). Consequently, in this book we assume that any square integrable

F -martingale M has the unique representation

M(t)=M(0)+
∫ t

0
Z(s)dW(s)+

∫ t

0

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (2.12)

where (Z,U) ∈ H
2(R) × H

2
N(R). We can also assume that any square integrable

FT -measurable random variable ξ has the unique representation

ξ = E[ξ ] +
∫ T

0
Z(s)dW(s)+

∫ T

0

∫
R

U(s, z)Ñ(ds, dz), (2.13)

where (Z,U) ∈ H
2(R)×H

2
N(R). Representation (2.13) follows immediately from

(2.12) by taking the martingale M(t)= E[ξ |Ft ], 0 ≤ t ≤ T .
We point out that we introduce the predictable representation property (PR) as

an assumption. In general, the predictable representation property does not have to
hold. However, in our case it is possible to construct a probability space (Ω,F ,P)

in such a way that any F -local martingale has the predictable representation. It is
known that the weak property of predictable representation holds for a Brownian
motion, a Lévy process, a step process and the corresponding completed natural
filtration, see Theorems 13.19 and 13.49 in He et al. (1992). Moreover, given a
Brownian motion W and an independent jump process J (a Lévy process or a step
process), the weak property of predictable representation holds for (W,J ) and the
product of their completed natural filtrations. Finally, the weak property of pre-
dictable representation holds for (W,J ) under any equivalent probability measure,
see Theorem 13.22 in He et al. (1992). Hence, by the change of measure we can
establish the predictable representation for a Brownian motion and a jump process
with a random compensator (depending on W and J ), see Sect. 2.5. For such a con-
struction we refer to Becherer (2006) and Chap. 7 in Crépey (2011). We comment
on the predictable representation in our financial and insurance model in Sect. 7.2.
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2.5 Equivalent Probability Measures

Let us recall that for a semimartingale V such that V (0) = 0 there exists a unique
càdlàg solution E to the forward stochastic differential equation

dE (t)= E (t−)dV (t), E (0)= 1,

given by

E (t)= eV (t)− 1
2 [V,V ](t) ∏

0<u≤t

(
1 +�V (u)

)
e−�V (u)+ 1

2 |�V (u)|2, 0 ≤ t ≤ T . (2.14)

The process E is called the stochastic exponential of V , see Theorem II.37 in Protter
(2004). If �V (t) >−1, 0 ≤ t ≤ T , then the stochastic exponential E is positive.

Let P and Q be two equivalent probability measures, Q ∼ P. There exists a pos-
itive martingale M := (M(t),0 ≤ t ≤ T ) such that

dQ

dP

∣∣∣Ft =M(t), 0 ≤ t ≤ T , (2.15)

see Definition III.8.1 in Protter (2004) and Theorem 12.4 in He et al. (1992). In the
view of the predictable representation property, we define

dM(t)

M(t−)
= φ(t)dW(t)+

∫
R

κ(t, z)Ñ(dt, dz), M(0)= 1, (2.16)

where φ := (φ(t),0 ≤ t ≤ T ) and κ := (κ(t, z),0 ≤ t ≤ T , z ∈ R) are F -
predictable processes satisfying

∫ T

0

∣∣φ(t)∣∣2
dt <∞,

∫ T

0

∫
R

∣∣κ(t, z)∣∣2
Q(t, dz)η(t)dt <∞,

κ(t, z) >−1, 0 ≤ t ≤ T , z ∈ R.

(2.17)

The process M defined by (2.16) under assumptions (2.17) is only a local mar-
tingale, see Theorem 2.3.1. We have to impose stronger assumptions on (φ, κ) so
that the local martingale M is a true martingale. In this book we use the following
proposition.

Proposition 2.5.1 Let M := (M(t),0 ≤ t ≤ T ) be the stochastic exponential de-
fined by

dM(t)

M(t−)
= φ(t)dW(t)+

∫
R

κ(t, z)Ñ(dt, dz), M(0)= 1,

where φ and κ are predictable processes such that
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∣∣φ(t)∣∣ ≤K,

∫
R

∣∣κ(t, z)∣∣2
Q(t, dz)η(t)≤K, 0 ≤ t ≤ T ,

κ(t, z) >−1, 0 ≤ t ≤ T , z ∈ R.

The process M is a square integrable, positive martingale.

Proof From Theorem 2.3.1 and (2.14) we conclude that M is a positive local mar-
tingale. We define the sequence of stopping times τn = inf{t : |M(t)| ≥ n} ∧ T . We
can derive the inequality

E
[∣∣M(t)

∣∣21{t ≤ τn}
] ≤ E

[∣∣M(τn ∧ t)
∣∣2]

≤ KE

[
1 +

∣∣∣∣
∫ τn∧t

0
M(s−)φ(s)dW(s)

∣∣∣∣
2

+
∣∣∣∣
∫ τn∧t

0

∫
R

M(s−)κ(s, z)Ñ(ds, dz)

∣∣∣∣
2]

= K

(
1 +E

[∫ τn∧t

0

∣∣M(s−)φ(s)
∣∣2
ds

]

+E

[∫ τn∧t

0

∫
R

∣∣M(s−)κ(s, z)
∣∣2
Q(s, dz)η(s)ds

])

≤ K

(
1 +

∫ t

0
E

[∣∣M(s)
∣∣21{s ≤ τn}

]
ds

)
, 0 ≤ t ≤ T ,

where we use Theorem 2.3.3. By the Gronwall’s inequality, see Theorem V.68 in
Protter (2004), we obtain

E
[∣∣M(t)

∣∣21{t ≤ τn}
] ≤K, 0 ≤ t ≤ T .

We let n→ ∞, apply Fatous’ lemma and we can deduce that M is uniformly square
integrable. The uniform integrability yields that the local martingale M is a true
martingale, see Theorem I.51 in Protter (2004). �

We state Girsanov’s theorem which plays an important role in stochastic calculus
and financial mathematics.

Theorem 2.5.1 Let W and N be a (P,F )-Brownian motion and a (P,F )-random
measure with compensator ϑ(ds, dz) = Q(s, dz)η(s)ds. We define an equivalent
probability measure Q ∼ P with a positive F -martingale (2.16). The processes

WQ(t) = W(t)−
∫ t

0
φ(s)ds, 0 ≤ t ≤ T ,

ÑQ(t,A) = N(t,A) (2.18)

−
∫ t

0

∫
R

(
1 + κ(s, z)

)
Q(s, dz)η(s)ds, 0 ≤ t ≤ T , A ∈ B(R),

are a (Q,F )-Brownian motion and a (Q,F )-compensated random measure.
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Proof Let M denote the martingale (2.16) which changes the measure. The result
of our theorem follows from the Girsanov-Meyer theorem, see Theorem III.40 in
Protter (2004), which states that if for a P-local martingale V the sharp bracket
process 〈V,M〉 exists under P, then

V (t)−
∫ t

0

1

M(s−)
d〈V,M〉(s), 0 ≤ t ≤ T ,

is a Q-local martingale. The first assertion for the Brownian motion can be deduced
from Theorem III.46 in Protter (2004). We prove the second assertion for the com-
pensated random measure. The measure ϑ(dt, dz) = (1 + κ(t, z))Q(t, dz)η(t)dt

is an F -predictable random measure, see Definition 2.1.3. We choose a nonnega-
tive, predictable function V such that

∫ t

0

∫
R
V (s, z)N(ds, dz) is locally integrable

under Q. We set Vm(s, z) = V (s, z) ∧ (m|z|). We can now deal with the P-local
martingale

∫ t

0

∫
R
Vm(s, z)Ñ(ds, dz), see Theorem 2.3.1. We define the quadratic

covariation process
[∫ .

0

∫
R

Vm(s, z)Ñ(ds, dz),M

]
(t)

=
∫ t

0

∫
R

M(s−)κ(s, z)V m(s, z)N(ds, dz), 0 ≤ t ≤ T . (2.19)

Since the martingale M is càdlàg, we get

∫ T

0

∫
R

∣∣M(s−)κ(s, z)V m(s, z)
∣∣Q(s, dz)η(s)ds

≤K

√∫ T

0

∫
R

∣∣κ(s, z)∣∣2
Q(s, dz)η(s)ds

∫ τn

0

∫
R

m|z|2Q(s, dz)η(s)ds <∞,

and from Theorem 2.3.2 we deduce that the process
∫ t

0

∫
R
M(s−)κ(s, z)V m(s, z)×

Ñ(ds, dz) is a P-local martingale and the quadratic covariation process (2.19) is
locally integrable under P. Hence, the compensator of the covariation process (2.19)
(the sharp bracket) exists under P, see Sect. III.5 in Protter (2004), and it takes the
form〈∫ .

0

∫
R

Vm(s, z)Ñ(ds, dz),M

〉
(t)=

∫ t

0

∫
R

M(s−)κ(s, z)V m(s, z)Q(s, dz)η(s)ds.

The Girsanov-Meyer theorem now yields that
∫ t

0

∫
R

Vm(s, z)
(
N(ds, dz)− (

1 + κ(s, z)
)
Q(s, dz)η(s)ds

)
, 0 ≤ t ≤ T ,

is a Q-local martingale. Let (τk)k≥1 be a localizing sequence of stopping times for∫ t

0

∫
R
Vm(s, z)ÑQ(ds, dz), let (τn)n≥1 be a localizing sequence of stopping times

for
∫ t

0

∫
R
V (s, z)N(ds, dz), and let τ be a stopping time. We have
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E
Q

[∫ τk∧τn∧τ

0

∫
R

Vm(s, z)N(ds, dz)

]

= E
Q

[∫ τk∧τn∧τ

0

∫
R

Vm(s, z)
(
1 + κ(s, z)

)
Q(s, dz)η(s)ds

]
.

Taking the limit k → ∞, m → ∞ and applying the Lebesgue monotone conver-
gence theorem, we show

E
Q

[∫ τn∧τ

0

∫
R

V (s, z)N(ds, dz)

]

= E
Q

[∫ τn∧τ

0

∫
R

V (s, z)
(
1 + κ(s, z)

)
Q(s, dz)η(s)ds

]
.

Hence, by Lemma I.1.44 in Jacod and Shiryaev (2003) the process
∫ t

0

∫
R
V (s, z)×

ÑQ(ds, dz) is a Q-local martingale. We now choose a predictable function V such
that

∫ t

0

∫
R

|V (s, z)|N(ds, dz) is locally integrable under Q. Following the same
reasoning, we show that

∫ t

0

∫
R
V +(s, z)ÑQ(ds, dz) and

∫ t

0

∫
R
V −(s, z)ÑQ(ds, dz)

are Q-local martingales, and
∫ t

0

∫
R
V (s, z)ÑQ(ds, dz) is a Q-local martingale. The

proof is complete by Theorem II.1.8 in Jacod and Shiryaev (2003) and Defini-
tion 2.1.4. �

We give two examples which illustrate the change of measure.

Example 2.9 Consider the dynamics

dS(t)

S(t)
= μ(t)dt + σ(t)dW(t), S(0)= s,

where μ, σ are predictable, bounded processes. Let r be a predictable, nonnegative,
bounded process. Define the stochastic exponential

dM(t)

M(t)
= −μ(t)− r(t)

σ (t)
dW(t), M(0)= 1, (2.20)

and assume that t �→ μ(t)−r(t)
σ (t)

is a.s bounded. By Proposition 2.5.1 the stochastic
exponential M is a square integrable martingale. Hence, we can define an equivalent
probability measure Q by dQ

dP
|FT =M(T ). From Theorem 2.5.1 we deduce that the

dynamics of S under the new measure Q is given by

dS(t)

S(t)
= r(t)dt + σ(t)dWQ(t).

The Itô’s formula and Proposition 2.5.1 yield that e− ∫ t
0 r(s)dsS(t) is a Q-martingale.
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Example 2.10 Consider a compound Poisson process J with intensity λ and jump
size distribution q . Let N denote the corresponding jump measure. Choose a pre-
dictable process κ such that |κ(t, z)|< 1, (t, z) ∈ [0, T ]×R. We define the stochas-
tic exponential

dM(t)

M(t−)
=

∫
R

κ(t, z)Ñ(dt, dz), M(0)= 1. (2.21)

By Proposition 2.5.1 the stochastic exponential M is a square integrable martingale.
Hence, we can define an equivalent probability measure Q by dQ

dP
|FT = M(T ).

From Theorem 2.5.1 we deduce that

N(dt, dz)− (
1 + κ(t, z)

)
λq(dz)dt,

is the compensated random measure of the process J under the equivalent prob-
ability measure Q. Consequently, under the equivalent probability measure Q the
process J has the jump size distribution and the intensity

qQ(t, dz) = 1 + κ(t, z)∫
R
(1 + κ(t, z))q(dz)

q(dz), 0 ≤ t ≤ T , z ∈ R,

λQ(t) =
∫
R

(
1 + κ(t, z)

)
q(dz)λ, 0 ≤ t ≤ T .

In general, since κ is a stochastic process then the new distribution qQ and the new
intensity λQ are stochastic processes as well. The set of equivalent probability mea-
sures determined by the martingales (2.21) with processes κ such that |κ(t, z)| < 1,
(t, z) ∈ [0, T ] ×R defines the set of equivalent scenarios for the compound Poisson
process J , see Example 1.3.

2.6 The Malliavin Calculus

The Malliavin calculus plays an important role in the theory of BSDEs. It allows us
to characterize a solution to a BSDE, prove path regularities of a solution and de-
velop numerical schemes for finding a solution. Since Definition 2.6 of the Malliavin
derivative is not very useful in calculations, we present some practical differentia-
tion rules.

Consider the canonical Lévy space (ΩW ×ΩN,FW ⊗FN,PW ⊗PN) and recall
the Malliavin derivatives Dt,0, Dt,z and the measures ν, υ , Υ from Sect. 2.2. The
derivative Dt,0 is derivative with respect to the continuous component of a Lévy
process (the Brownian motion) and we can apply the classical Malliavin calculus
for Hilbert space-valued random variables, see Nualart (1995). By Dt we denote
the classical Malliavin derivative on the Wiener space (ΩW ,FW,PW). We state the
first result, see Proposition 3.5 in Solé et al. (2007).
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Proposition 2.6.1 If for P
N -a.e. ωN ∈ ΩN a random variable ξ(.,ωN) on

(ΩW ,FW,PW) is Malliavin differentiable, then

Dt,0ξ(ωW ,ωN)= 1

σ
Dtξ(.,ωN)(ωW ), a.s., a.e., (ω, t) ∈Ω × [0, T ], (2.22)

where Dt denotes the Malliavin derivative on the Wiener space.

The derivative Dt,z, for z �= 0, is derivative with respect to the pure jump com-
ponent of a Lévy process. In order to calculate this derivative, we use the following
increment quotient operator

It,zξ(ωW ,ωN)= ξ(ωW ,ω
t,z
N )− ξ(ωW ,ωN)

z
, (2.23)

where ω
t,z
N transforms a family ωN = ((t1, z1), (t2, z2), . . .) ∈ ΩN into a new fam-

ily ω
t,z
N = ((t, z), (t1, z1), (t2, z2), . . .) ∈ ΩN by adding a jump of size z at time t

into the trajectory of the Lévy process. We can state the second result, see Proposi-
tions 5.4 and 5.5 in Solé et al. (2007).

Proposition 2.6.2 Consider ξ ∈ L
2(R) which is measurable with respect to the

natural filtration generated by a Lévy process. If E[∫ T

0

∫
R\{0} |It,zξ |2z2ν(dz)dt]<

∞, then

Dt,zξ = It,zξ, a.s., υ-a.e. (ω, t, z) ∈Ω × [0, T ] × (
R \ {0}). (2.24)

Let us now present some differentiation rules.

Proposition 2.6.3 Consider the natural filtration F generated by a Lévy process
and let ξ ∈D

1,2(R). For 0 ≤ s ≤ T we have E[ξ |Fs] ∈ D
1,2(R), and

Dt,zE[ξ |Fs] = E[Dt,zξ |Fs]1{t ≤ s}, a.s., υ-a.e. (ω, t, z) ∈Ω × [0, T ] ×R.

Proof The result follows by adapting the proof of Proposition 1.2.8 from Nualart
(1995) into our setting. �

It follows from Proposition 2.6.3 that if ξ is Fs -measurable then Dt,zξ = 0 a.s.,
υ-a.e. (ω, t, z) ∈Ω × (s, T ] ×R, see Corollary 1.2.1 in Nualart (1995).

We state the chain rule.

Proposition 2.6.4 Let ϕ : R → R be a Lipschitz continuous function. Under the
assumptions of Propositions 2.6.1 and 2.6.2 we have ϕ(ξ) ∈D

1,2(R). Moreover:

(a) There exists an a.s. bounded random variable ζ such that

Dt,0ϕ(ξ)= ζDt,0ξ, a.s., a.e.(ω, t) ∈Ω × [0, T ].
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If the law of ξ is absolutely continuous with respect to the Lebesgue measure or
ϕ is continuously differentiable, then ζ = ϕ′(ξ).

(b) We have the relation

Dt,zϕ(ξ)= ϕ(ξ + zDt,zξ)− ϕ(ξ)

z
,

a.s., υ-a.e. (ω, t, z) ∈Ω × [0, T ] ×R \ {0}.

Proof Case (a) follows from Proposition 1.2.4 in Nualart (1995) and Proposi-
tion 2.6.1. Case (b) follows from Proposition 2.6.2 and the definition of the operator
(2.23). �

The next two results are taken from Delong and Imkeller (2010b).

Proposition 2.6.5 Consider a finite measure q on R. Let ϕ : Ω × [0, T ] × R → R

be a product measurable, adapted process which satisfies

E

[∫
[0,T ]×R

∣∣ϕ(s, y)∣∣2
q(dy)ds

]
<∞,

ϕ(s, y) ∈D
1,2(R), a.e. (s, y) ∈ [0, T ] ×R, (2.25)

E

[∫
([0,T ]×R)2

∣∣Dt,zϕ(s, y)
∣∣2
q(dy)dsυ(dt, dz)

]
<∞.

Then
∫
[0,T ]×R

ϕ(s, y)q(dy)ds ∈D
1,2(R) and we have the differentiation rule

Dt,z

∫ T

0

∫
R

ϕ(s, y)q(dy)ds =
∫ T

t

∫
R

Dt,zϕ(s, y)q(dy)ds,

a.s., υ-a.e. (ω, t, z) ∈Ω × [0, T ] ×R.

Proposition 2.6.6 Let ϕ :Ω × [0, T ] ×R →R be a predictable process which sat-
isfies E[∫[0,T ]×R

|ϕ(s, y)|2υ(ds, dy)]<∞. Then

ϕ ∈ L
1,2(R) if and only if

∫
[0,T ]×R

ϕ(s, y)Υ (ds, dy) ∈D
1,2(R).

Moreover, if
∫
[0,T ]×R

ϕ(s, y)Υ (ds, dy) ∈D
1,2(R), then

Dt,z

∫ T

0

∫
R

ϕ(s, y)Υ (ds, dy)= ϕ(t, z)+
∫ T

t

∫
R

Dt,zϕ(s, y)Υ (ds, dy),

a.s., υ-a.e. (ω, t, z) ∈ Ω × [0, T ] × R, and
∫
[0,T ]×R

Dt,zϕ(s, y)Υ (ds, dy) is a
stochastic integral in the Itô sense.
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Notice that we can also establish the following relation

Dt,z

∫ T

s

∫
R

ϕ(r, y)Υ (dr, dy)

=Dt,z

(∫ T

0

∫
R

ϕ(r, y)Υ (dr, dy)−
∫ s

0

∫
R

ϕ(r, y)Υ (dr, dy)

)

=
∫ T

s

∫
R

Dt,zϕ(r, y)Υ (dr, dy), 0 ≤ t ≤ s ≤ T , s > 0.

We now give examples which illustrate the differentiation rules.

Example 2.11 Consider a square integrable function V : R → R and a Lipschitz
continuous function ϕ : R →R. Let

ξ = ϕ

(∫ T

0
V (s)dW(s)

)
.

We can write ξ = ϕ(
∫ T

0
V (s)
σ

dΥ c(s)). It is know that the random variable∫ T

0 V (s)dW(s) is normally distributed, see Lemma 4.3.11 in Applebaum (2004).
By Propositions 2.6.4 and 2.6.6 we obtain

Dt,0ξ = ϕ′
(∫ T

0
V (s)dW(s)

)
V (t)

σ
,

a.s., a.e. (ω, t) ∈Ω × [0, T ].
Example 2.12 Consider the put option ξ = (K − V (T ))+ where V (T ) =
eσW(T )− 1

2σ
2T models the terminal value of a stock. In applications we would like

to use the Malliavin derivative of ξ . Unfortunately, we cannot use the result from
Example 2.11 since the exponential function is not Lipschitz continuous. We follow
a different approach. First, we find the Malliavin derivative of V (T ). Let us define

the process V (t)= eσW(t)− 1
2σ

2t , 0 ≤ t ≤ T , and by the Itô’s formula we get

V (t)= 1 +
∫ t

0
V (s)σdW(s), 0 ≤ t ≤ T .

In Sect. 4.1 we show that the process V , which solves a linear forward stochastic
differential equation, is Malliavin differentiable, see Theorem 4.1.2. We can now
apply Proposition 2.6.6 and we derive the equation

Du,0V (t)= V (u)+
∫ t

u

Du,0V (s)σdW(s), 0 ≤ u≤ t ≤ T .

Since Du,0V turns out to be a stochastic exponential of the Brownian motion W ,

we conclude that Du,0V (t) = V (u)e
∫ t
u σdW(s)− 1

2

∫ t
u σ

2ds = V (t), 0 ≤ u ≤ t ≤ T . By
Proposition 2.6.4 we now get the Malliavin derivative
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Dt,0ξ = −eσW(T )− 1
2σ

2T 1
{
eσW(T )− 1

2σ
2T < K

}
,

a.s., a.e. (ω, t) ∈Ω × [0, T ].

Example 2.13 Let N be the jump measure of a compound Poisson process with
jump size distribution q . Consider a function V : [0, T ] × R → R such that∫ T

0

∫
R

|V (s, y)|2q(dy)ds <∞ and a Lipschitz continuous function ϕ :R → R. Let

ξ = ϕ

(∫ T

0

∫
R

V (s, y)Ñ(ds, dy)

)
.

We can write ξ = ϕ(
∫ T

0

∫
R

V (s,y)
y

Υ d(ds, dy)). By Propositions 2.6.6 and 2.6.4 we
obtain

Dt,zξ = ϕ(
∫ T

0

∫
R
V (s, y)Ñ(ds, dy)+ V (t, z))− ϕ(

∫ T

0

∫
R
V (s, y)Ñ(ds, dy))

z
,

a.s., υ-a.e. (ω, t, z) ∈Ω × [0, T ] ×R \ {0}.

Example 2.14 Let N be the jump measure of a compound Poisson process with
jump size distribution q . Consider the stop-loss contract ξ = (J (T ) − K)+ where
J (t) = ∫ t

0

∫ ∞
0 yN(ds, dy), 0 ≤ t ≤ T , is the compound Poisson process used for

modelling insurer’s claims. We assume that the claim size distribution q is supported
on (0,∞) and satisfies

∫ ∞
0 y2q(dy) < ∞. In applications we would like to use the

Malliavin derivative of ξ . From Example 2.13 we immediately deduce that

Dt,z = (J (T )+ z−K)+ − (J (T )−K)+

z
,

a.s., υ-a.e. (ω, t, z) ∈Ω × [0, T ] × (0,∞).

Bibliographical Notes Definitions are taken from He et al. (1992) and Protter
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calculus) and He et al. (1992), Jacod and Shiryaev (2003), Protter (2004) (see for
the general theory). Financial and actuarial applications of Brownian motions, Lévy
processes and step processes are investigated in Cont and Tankov (2004), Mikosch
(2009), Øksendal and Sulem (2004), Pham (2009), Rolski et al. (1999), Schmidli
(2007) and Shreve (2004).



Chapter 3
Backward Stochastic Differential
Equations—The General Case

Abstract We investigate BSDEs driven by a Brownian motion and a compensated
random measure. The case of Lipschitz continuous generators is considered. We
derive so-called a priori estimates, which are crucial in the study of BSDEs. We
prove existence and uniqueness of a solution. We state two versions of a comparison
principle which allows us to compare the solutions to BSDEs based on the terminal
conditions and the generators. Explicit solutions to some important types of BSDEs
(including the linear BSDE) are derived. In the case of a Lévy process, we prove
Malliavin differentiability of the solution and we characterize the solution by the
Malliavin derivative. The Clark-Ocone formula is obtained.

We deal with backward stochastic differential equations driven by a Brownian mo-
tion and a compensated random measure and we consider the case of Lipschitz
continuous generators. In this chapter we lay the foundations of BSDEs. Key results
for BSDEs are presented, which are further developed in next chapters.

3.1 Existence and Uniqueness of Solution

Our goal is to investigate the backward stochastic differential equation

Y(t) = ξ +
∫ T

t

f
(
s, Y (s−),Z(s),U(s, .)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.1)

Given a terminal condition ξ and a generator f , we are interested in finding a triple
(Y,Z,U) ∈ S

2(R)×H
2(R)×H

2
N(R) which satisfies (3.1). The processes Z and U

are called control processes. They control an adapted process Y so that Y satisfies
the terminal condition. Since for a càdlàg process Y the set {s ∈ [0, T ],�Y(s) �= 0}
is countable, we may also deal with the equation

Y(t) = ξ +
∫ T

t

f
(
s, Y (s),Z(s),U(s, .)

)
ds

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_3,
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−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

Before we study the BSDE (3.1), let us have a look at a BSDE with zero gener-
ator and a BSDE with generator independent of (Y,Z,U). Those equations are the
simplest examples of BSDEs. First, we are interested in finding a triple (Y,Z,U)

which satisfies

Y(t)= ξ −
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.2)

Equation (3.2) is called a BSDE with zero generator.

Proposition 3.1.1 Assume that ξ∈L2(R). There exists a unique solution (Y,Z,U)∈
S

2(R)×H
2(R)×H

2
N(R) to the BSDE (3.2). The process Y has the representation

Y(t)= E[ξ |Ft ], 0 ≤ t ≤ T ,

and the control processes (Z,U) are derived from the representation

ξ = E[ξ ] +
∫ T

0
Z(s)dW(s)+

∫ T

0

∫
R

U(s, z)Ñ(ds, dz).

Proof Notice that any solution (Y,Z,U) to the BSDE (3.2) must satisfy the equa-
tion

ξ = Y(0)+
∫ T

0
Z(s)dW(s)+

∫ T

0

∫
R

U(s, z)Ñ(ds, dz).

By the predictable representation property the processes (Z,U) are determined by
the predictable representation of ξ and Y(0) = E[ξ ]. Moreover, (Z,U) ∈ H

2(R)×
H

2
N(R) and the representation of ξ is unique. Taking the conditional expected value

on both sides of the BSDE (3.2), we immediately get Y(t) = E[ξ |Ft ], 0 ≤ t ≤ T .
We take the càdlàg modification of the martingale Y , see Theorem I.9 in Protter
(2004). By the Doob’s inequality we can show that Y ∈ S

2(R). �

We point out that finding a solution to the BSDE (3.2) is equivalent to finding the
predictable representation of the random variable ξ . The predictable representation
property is the key concept in the theory of BSDEs since it allows us to find a
solution to an equation with a random terminal condition.

Let us deal with the equation

Y(t) = ξ +
∫ T

t

f (s)ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (3.3)
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which we call a BSDE with generator independent of (Y,Z,U). We can immedi-
ately prove the following result.

Proposition 3.1.2 Assume that ξ ∈ L
2(R) and f :Ω ×[0, T ] →R is a predictable

process satisfying E[∫ T

0 |f (s)|2ds]<∞. There exists a unique solution (Y,Z,U) ∈
S

2(R)×H
2(R)×H

2
N(R) to the BSDE (3.2). The process Y has the representation

Y(t)= E

[
ξ +

∫ T

t

f (s)ds|Ft

]
, 0 ≤ t ≤ T ,

and the control processes (Z,U) are derived from the representation

ξ+
∫ T

0
f (s)ds = E

[
ξ+

∫ T

0
f (s)ds

]
+

∫ T

0
Z(s)dW(s)+

∫ T

0

∫
R

U(s, z)Ñ(ds, dz).

Since t �→ ∫ t

0 f (s)ds is a.s. continuous, see Sect. 4.3 in Applebaum (2004), the
càdlàg modification of Y can be defined.

We point out that in many applications we are able to reduce a BSDE to a BSDE
with zero generator or a BSDE with generator independent of (Y,Z,U), and use
Propositions 3.1.1–3.1.2 and the predictable representation property to derive the
solution.

Let us now investigate the BSDE (3.1). We recall that ϑ(dt, dz)=Q(t, dz)η(t)dt

denote the compensator of the random measure N . We assume that

(A1) the terminal value ξ ∈ L
2(R),

(A2) the generator f :Ω × [0, T ] ×R×R×L2
Q(R)→R is predictable and Lips-

chitz continuous in the sense that

∣∣f (ω, t, y, z, u)− f
(
ω, t, y′, z′, u′)∣∣2

≤K

(∣∣y − y′∣∣2 + ∣∣z− z′∣∣2 +
∫
R

∣∣u(x)− u′(x)
∣∣2
Q(t, dx)η(t)

)
,

a.s., a.e. (ω, t) ∈Ω × [0, T ], for all (y, z,u), (y′, z′, u′) ∈ R×R×L2
Q(R),

(A3) E[∫ T

0 |f (t,0,0,0)|2dt]<∞.

Assumptions (A1)–(A3) are called standard in the theory of BSDEs. These assump-
tions hold in all our applications and they should hold in most actuarial and finan-
cial applications. Let us recall that the predictability of the generator f means that
f :Ω × [0, T ] ×R×R×L2

Q(R)→R is P ⊗ B(R)⊗ B(R)⊗ B(L2
Q(R)) mea-

surable.
We derive so-called a priori estimates for a solution to (3.1).

Lemma 3.1.1 Assume that (ξ, f ) and (ξ ′, f ′) satisfy (A1)–(A3). Let (Y,Z,U) ∈
S

2(R)×H
2(R)×H

2
N(R) and (Y ′,Z′,U ′) ∈ S

2(R)×H
2(R)×H

2
N(R) be solutions
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to the BSDE (3.1) with (ξ, f ) and (ξ ′, f ′). We have the estimates
∥∥Z −Z′∥∥2

H2 + ∥∥U −U ′∥∥2
H

2
N

≤ K̂

(
E

[
eρT

∣∣ξ − ξ ′∣∣2]

+E

[∫ T

0
eρt

∣∣f (
t, Y (t),Z(t),U(t)

) − f ′(t, Y ′(t),Z′(t),U ′(t)
)∣∣2

dt

])
,

(3.4)
∥∥Z −Z′∥∥2

H2 + ∥∥U −U ′∥∥2
H

2
N

≤ K̂

(
E

[
eρT

∣∣ξ − ξ ′∣∣2]

+E

[∫ T

0
eρt

∣∣f (
t, Y (t),Z(t),U(t)

) − f ′(t, Y (t),Z(t),U(t)
)∣∣2

dt

])
,

(3.5)

and
∥∥Y − Y ′∥∥2

S2

≤ K̂

(
E

[
eρT

∣∣ξ − ξ ′∣∣2]

+E

[∫ T

0
eρt

∣∣f (
t, Y (t),Z(t),U(t)

) − f ′(t, Y ′(t),Z′(t),U ′(t)
)∣∣2

dt

])
,

(3.6)
∥∥Y − Y ′∥∥2

S2

≤ K̂

(
E

[
eρT

∣∣ξ − ξ ′∣∣2]

+E

[∫ T

0
eρt

∣∣f (
t, Y (t),Z(t),U(t)

) − f ′(t, Y (t),Z(t),U(t)
)∣∣2

dt

])
,

(3.7)

where the constant K̂ depends on T ,K,ρ > 0.

Proof 1. Estimate (3.4). We apply the Itô’s formula to eρt |Y(t) − Y ′(t)|2 and we
derive

eρt
∣∣Y(t)− Y ′(t)

∣∣2 + ρ

∫ τ

t

eρs
∣∣Y(s)− Y ′(s)

∣∣2
ds +

∫ τ

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds
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+
∫ τ

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

= eρτ
∣∣Y(τ)− Y ′(τ )

∣∣2

− 2
∫ τ

t

eρs
(
Y(s)− Y ′(s)

)

· (−f
(
s, Y (s),Z(s),U(s)

) + f ′(s, Y ′(s),Z′(s),U ′(s)
))
ds

− 2
∫ τ

t

eρs
(
Y(s−)− Y ′(s−)

)(
Z(s)−Z′(s)

)
dW(s)

− 2
∫ τ

t

∫
R

eρs
(
Y(s−)− Y ′(s−)

)(
U(s, z)−U ′(s, z)

)
Ñ(ds, dz)

−
∫ τ

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Ñ(ds, dz), 0 ≤ t ≤ τ ≤ T . (3.8)

We can notice that the stochastic integrals in (3.8) are local martingales, see Theo-
rem 2.3.1. From (3.8) we get

∣∣∣∣2
∫ τ

t

eρs
(
Y(s)− Y ′(s)

)(
Z(s)−Z′(s)

)
dW(s)

+ 2
∫ τ

t

∫
R

eρs
(
Y(s)− Y ′(s)

)(
U(s, z)−U ′(s, z)

)
Ñ(ds, dz)

+
∫ τ

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Ñ(ds, dz)

∣∣∣∣
=

∣∣∣∣eρτ
∣∣Y(τ)− Y ′(τ )

∣∣2

− 2
∫ τ

t

eρs
(
Y(s)− Y ′(s)

)(−f
(
s, Y (s),Z(s),U(s)

)

+ f ′(s, Y ′(s),Z′(s),U ′(s)
))
ds − eρt

∣∣Y(t)− Y ′(t)
∣∣2

− ρ

∫ τ

t

eρs
∣∣Y(s)− Y ′(s)

∣∣2
ds −

∫ τ

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds

−
∫ τ

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

∣∣∣∣,

and from the growth conditions for the Lipschitz generators f , f ′ and the assump-
tions that (Y,Z,U), (Y ′,Z′,U ′) ∈ S

2(R) × H
2(R) × H

2
N(R) we deduce that the

stochastic integrals are uniformly bounded by an integrable random variable ζ , i.e.

∣∣∣∣2
∫ τ

t

eρs
(
Y(s)− Y ′(s)

)(
Z(s)−Z′(s)

)
dW(s)
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+ 2
∫ τ

t

∫
R

eρs
(
Y(s)− Y ′(s)

)(
U(s, z)−U ′(s, z)

)
Ñ(ds, dz)

+
∫ τ

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Ñ(ds, dz)

∣∣∣∣ ≤ ζ, 0 ≤ t ≤ τ ≤ T .

Hence, the stochastic integrals in (3.8) are uniformly integrable martingales, see
Theorem I.51 in Protter (2004). Taking the expected value of (3.8) and estimating
the Lebesgue integral in (3.8) from above, we obtain

E
[
eρt

∣∣Y(t)− Y ′(t)
∣∣2] + ρE

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣2
ds

]

+E

[∫ T

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds

]

+E

[∫ T

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

]

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2] + 2E

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

]
, 0 ≤ t ≤ T .

(3.9)

Notice that for any α > 0 we have the inequality

2|uv| ≤ 1

α
|u|2 + α|v|2. (3.10)

Consequently, we have the estimate

2
∣∣Y(s)− Y ′(s)

∣∣∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣

≤ α
∣∣Y(s)− Y ′(s)

∣∣2 + 1

α

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣2

.

If we choose α = ρ and t = 0, then from (3.9) we deduce the estimate

E
[
eρt

∣∣Y(t)− Y ′(t)
∣∣2] + ∥∥Z −Z′∥∥2

H2 + ∥∥U −U ′∥∥2
H

2
N

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 1

ρ
E

[∫ T

0
eρt

∣∣f (
t, Y (t),Z(t),U(t)

) − f ′(t, Y ′(t),Z′(t),U ′(t)
)∣∣2

dt

]
,

(3.11)

which proves (3.4).
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2. Estimate (3.5). For any α > 0 we have the inequality

2
∣∣Y(s)− Y ′(s)

∣∣∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣

≤ 2
∣∣Y(s)− Y ′(s)

∣∣∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y (s),Z(s),U(s)
)∣∣

+ 2
∣∣Y(s)− Y ′(s)

∣∣∣∣f ′(s, Y (s),Z(s),U(s)
) − f ′(s, Y ′(s),Z′(s),U ′(s)

)∣∣
≤ 2α

∣∣Y(s)− Y ′(s)
∣∣2 + 1

α

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y (s),Z(s),U(s)
)∣∣2

+ K

α

(∣∣Y(s)− Y ′(s)
∣∣2 + ∣∣Z(s)−Z′(s)

∣∣2

+
∫
R

∣∣U(s, z)−U ′(s, z)
∣∣2
Q(s, dz)η(s)

)
.

If we now choose t = 0, α such that α > K and ρ = 2α + K
α

in (3.9), then we are
done. Such a choice of α is only possible if ρ is sufficiently large. Hence, we first
succeed in establishing (3.5) for large ρ. Next, we can easily deduce that (3.5) holds
for any ρ.

Starting from (3.9) and reasoning as above, we can also establish the following
estimates

E
[
eρt

∣∣Y(t)− Y ′(t)
∣∣2]

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 1

ρ
E

[∫ T

0
eρs

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣2

ds

]
,

0 ≤ t ≤ T , (3.12)

and

E
[
eρt

∣∣Y(t)− Y ′(t)
∣∣2]

≤ K̂

(
E

[
eρT

∣∣ξ − ξ ′∣∣2]

+E

[∫ T

0
eρs

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y (s),Z(s),U(s)
)∣∣2

ds

])
,

0 ≤ t ≤ T , (3.13)

which we use in the next part of this proof.
3. Estimate (3.6). From (3.8) we get

eρt
∣∣Y(t)− Y ′(t)

∣∣2 + ρ

∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣2
ds +

∫ T

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds
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+
∫ T

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
N(ds, dz)

= eρT
∣∣ξ − ξ ′∣∣2

− 2
∫ T

t

eρs
(
Y(s)− Y ′(s)

)

· (−f
(
s, Y (s),Z(s),U(s)

) + f ′(s, Y ′(s),Z′(s),U ′(s)
))
ds

− 2
∫ T

t

eρs
(
Y(s−)− Y ′(s−)

)(
Z(s)−Z′(s)

)
dW(s)

− 2
∫ T

t

∫
R

eρs
(
Y(s−)− Y ′(s−)

)(
U(s, z)−U ′(s, z)

)
Ñ(ds, dz),

0 ≤ t ≤ T . (3.14)

It is straightforward to derive the following estimate

sup
t∈[0,T ]

eρt
∣∣Y(t)− Y ′(t)

∣∣2

≤ eρT
∣∣ξ − ξ ′∣∣2

+ 2
∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

+ 2 sup
t∈[0,T ]

∣∣∣∣
∫ T

t

eρs
(
Y(s−)− Y ′(s−)

)(
Z(s)−Z′(s)

)
dW(s)

∣∣∣∣

+ 2 sup
t∈[0,T ]

∣∣∣∣
∫ T

t

∫
R

eρs
(
Y(s−)− Y ′(s−)

)(
U(s, z)−U ′(s, z)

)
Ñ(ds, dz)

∣∣∣∣
≤ eρT

∣∣ξ − ξ ′∣∣2

+ 2
∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

+ 4 sup
t∈[0,T ]

∣∣∣∣
∫ t

0
eρs

(
Y(s−)− Y ′(s−)

)(
Z(s)−Z′(s)

)
dW(s)

∣∣∣∣

+ 4 sup
t∈[0,T ]

∣∣∣∣
∫ t

0

∫
R

eρs
(
Y(s−)− Y ′(s−)

)(
U(s, z)−U ′(s, z)

)
Ñ(ds, dz)

∣∣∣∣.
(3.15)
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By the Burkholder-Davis-Gundy inequality and some classical estimates we can
deduce that for any α > 0 we have

E

[
sup

t∈[0,T ]
eρt

∣∣Y(t)− Y ′(t)
∣∣2

]

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 2E

[∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

]

+ 2K1E

[{∫ T

0
e2ρs

∣∣Y(s)− Y ′(s)
∣∣2∣∣Z(s)−Z′(s)

∣∣2
ds

}1/2]

+ 2K2E

[{∫ T

0

∫
R

e2ρs
∣∣Y(s−)−Y ′(s−)

∣∣2∣∣U(s, z)−U ′(s, z)
∣∣2
N(ds, dz)

}1/2]

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 2E

[∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

]

+ 2K1E

[
sup

t∈[0,T ]
e
ρ
2 t

∣∣Y(t)− Y ′(t)
∣∣
{∫ T

0
eρs

∣∣Z(s)−Z′(s)
∣∣2
ds

}1/2]

+ 2K2E

[
sup

t∈[0,T ]
e
ρ
2 t

∣∣Y(t)− Y ′(t)
∣∣

·
{∫ T

0

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
N(ds, dz)

}1/2]

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 2E

[∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

]

+ K1 +K2

α
E

[
sup

t∈[0,T ]
eρt

∣∣Y(t)− Y ′(t)
∣∣2

]

+K1αE

[∫ T

0
eρs

∣∣Z(s)−Z′(s)
∣∣2
ds

]
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+K2αE

[∫ T

0

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
N(ds, dz)

]

= E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 2E

[∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

]

+ K1 +K2

α
E

[
sup

t∈[0,T ]
eρt

∣∣Y(t)− Y ′(t)
∣∣2

]

+K1αE

[∫ T

0
eρs

∣∣Z(s)−Z′(s)
∣∣2
ds

]

+K2αE

[∫ T

0

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

]
. (3.16)

If we choose α >K1 +K2, then we can derive
∥∥Y − Y ′∥∥2

S2

≤ K̃

(
E

[
eρT

∣∣ξ − ξ ′∣∣2] + ∥∥Z −Z′∥∥2
H2 + ∥∥U −U ′∥∥2

H
2
N

+ 2E

[∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣ds

])
,

where the constant K̃ is independent of ρ. Estimates (3.10) and (3.11) yield

∥∥Y − Y ′∥∥2
S2

≤ K̃

(
2E

[
eρT

∣∣ξ − ξ ′∣∣2] + √
ρE

[∫ T

0
eρs

∣∣Y(s)− Y ′(s)
∣∣2
ds

]

+ 1√
ρ
E

[∫ T

0
eρs

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣2

ds

]

+ 1

ρ
E

[∫ T

0
eρs

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣2

ds

])
.

By (3.12) we finally get

∥∥Y − Y ′∥∥2
S2 ≤ K̃

(
(2 + √

ρT )E
[
eρT

∣∣ξ − ξ ′∣∣2]
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+
(

1

ρ
+ T + 1√

ρ

)

·E
[∫ T

0
eρs

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y ′(s),Z′(s),U ′(s)
)∣∣2

ds

])
,

(3.17)

which proves (3.6).
4. Estimate (3.7). From (3.17) we derive

∥∥Y − Y ′∥∥2
S2

≤ K̂

(
E

[
eρT

∣∣ξ − ξ ′∣∣2]

+E

[∫ T

0
eρs

∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y (s),Z(s),U(s)
)∣∣2

ds

]

+E

[∫ T

0
eρs

∣∣f ′(s, Y (s),Z(s),U(s)
) − f ′(s, Y ′(s),Z′(s),U ′(s)

)∣∣2
ds

])
.

We get (3.7) by the Lipschitz property of f ′ and inequalities (3.5) and (3.13). �

In Sect. 4.2 we need a modification of an estimate from Lemma 3.1.1. From (3.9)
we get

E
[
eρt

∣∣Y(t)− Y ′(t)
∣∣2] + ρE

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣2
ds

]

+E

[∫ T

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds

]

+E

[∫ T

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

]

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 2E

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y (s),Z(s),U(s)
)∣∣ds

]

+ 2E

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣

· ∣∣f ′(s, Y (s),Z(s),U(s)
) − f ′(s, Y ′(s),Z′(s),U ′(s)

)∣∣ds
]
.
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By the Lipschitz property of f ′ and (3.10) we derive

E
[
eρt

∣∣Y(t)− Y ′(t)
∣∣2] + ρE

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣2
ds

]

+E

[∫ T

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds

]

+E

[∫ T

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

]

≤ E
[
eρT

∣∣ξ − ξ ′∣∣2]

+ 2E

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y (s),Z(s),U(s)
)∣∣ds

]

+E

[∫ T

t

eρs
(
α + K

α

)∣∣Y(s)− Y ′(s)
∣∣2
ds

]

+E

[∫ T

t

eρs
K

α

∣∣Z(s)−Z′(s)
∣∣2
ds

]

+E

[∫ T

t

∫
R

eρs
K

α

∣∣U(s, z)−U ′(s, z)
∣∣2
Q(s, dz)η(s)ds

]
.

We choose sufficiently large ρ and α such that α > K and α + K
α

= ρ. We obtain
the estimate

E
[
eρt

∣∣Y(t)− Y ′(t)
∣∣2] +E

[∫ T

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds

]

+E

[∫ T

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

]

≤ K̂

(
E

[
eρT

∣∣ξ − ξ ′∣∣2] +E

[∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣

· ∣∣f (
s, Y (s),Z(s),U(s)

) − f ′(s, Y (s),Z(s),U(s)
)∣∣ds

])
, 0 ≤ t ≤ T .

(3.18)

The a priori estimates from Lemma 3.1.1 are very useful in the study of BSDEs,
and they are often applied in this book.

We now prove the existence of a unique solution to the BSDE (3.1). The idea
is to construct a sequence of solutions to simpler BSDEs for which the existence
of a unique solution can be established by Proposition 3.1.2 and the predictable
representation property. Next, we show convergence of the sequence by using the a
priori estimates.
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Theorem 3.1.1 Assume that (A1)–(A3) hold. The BSDE (3.1) has a unique solution
(Y,Z,U) ∈ S

2(R)×H
2(R)×H

2
N(R).

Proof 1. The Picard iteration. Let Y 0(t)= Z0(t)=U0(t, z)= 0, (t, z) ∈ [0, T ]×R

and consider the recursive equation

Yn+1(t) = ξ +
∫ T

t

f
(
s, Y n(s−),Zn(s),Un(s)

)
ds

−
∫ T

t

Zn+1(s)dW(s)−
∫ T

t

∫
R

Un+1(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

(3.19)

Assume that (Y n,Zn,Un) ∈ S
2(R)×H

2(R)×H
2
N(R). Then

E

[∫ T

0

∣∣f (
t, Y n(t),Zn(t),Un(t)

)∣∣2
dt

]

≤ 2E

[∫ T

0

∣∣f (t,0,0,0)
∣∣2
dt

]
+ 2K

(
T

∥∥Yn
∥∥2
S2 + ∥∥Zn

∥∥2
H2 + ∥∥Un

∥∥2
H

2
N

)
<∞.

Hence, by Proposition 3.1.2 there exists a unique solution (Y n+1,Zn+1,Un+1) ∈
S

2(R)×H
2(R)×H

2
N(R) to the BSDE (3.19) with the generator f independent of

(Y n+1,Zn+1,Un+1).
2. The convergence of the sequence (Y n,Zn,Un)n∈N. In step 1 we constructed

a sequence (Y n,Zn,Un) ∈ S
2(R) × H

2(R) × H
2
N(R). From (3.11) and (3.17) we

deduce the inequality
∥∥Yn+1 − Yn

∥∥2
S2 + ∥∥Zn+1 −Zn

∥∥2
H2 + ∥∥Un+1 −Un

∥∥2
H

2
N

≤
(
K̃ + 1

ρ
+ K̃(T + 1)√

ρ

)

·E
[∫ T

0
eρt

∣∣f (
t, Y n(t),Zn(t),Un(t)

)−f
(
t, Y n−1(t),Zn−1(t),Un−1(t)

)∣∣2
dt

]
,

(3.20)

where K̃ is independent of ρ. By the Lipschitz property of f we obtain
∥∥Yn+1 − Yn

∥∥2
S2 + ∥∥Zn+1 −Zn

∥∥2
H2 + ∥∥Un+1 −Un

∥∥2
H

2
N

≤ K̄

(
1

ρ
+ 1√

ρ

)(∥∥Yn − Yn−1
∥∥2
S2 + ∥∥Zn −Zn−1

∥∥2
H2 + ∥∥Un −Un−1

∥∥2
H

2
N

)
,

(3.21)

which proves the contraction property for sufficiently large ρ. Hence, there exists
a unique limit (Y,Z,U) ∈ S

2(R) × H
2(R) × H

2
N(R) of the converging sequence

(Y n,Zn,Un)n∈N.



50 3 Backward Stochastic Differential Equations—The General Case

3. The existence and uniqueness of a solution. The unique limit (Y,Z,U) satisfies
the BSDE (3.1). Indeed, it is easy to show

lim
n→∞E

[
sup

t∈[0,T ]

∣∣∣∣
∫ T

t

f
(
s, Y n(s),Zn(s),Un(s)

)
ds

−
∫ T

t

f
(
s, Y (s),Z(s),U(s)

)
ds

∣∣∣∣
2]

= 0,

lim
n→∞E

[
sup

t∈[0,T ]

∣∣∣∣
∫ T

t

Zn(s)dW(s)−
∫ T

t

Z(s)dW(s)

∣∣∣∣
2]

= 0,

lim
n→∞E

[
sup

t∈[0,T ]

∣∣∣∣
∫ T

t

∫
R

Un(s, z)Ñ(ds, dz)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz)

∣∣∣∣
2]

= 0.

The uniqueness of a solution to (3.1) follows immediately from the a priori estimates
(3.5) and (3.7). �

We point out that by setting ξ ′ = f ′ = Y ′ = Z′ = U ′ = 0 in (3.4)–(3.7) we can
derive some useful norm estimates for the solution (Y,Z,U).

In applications considered in this book we also deal with BSDEs of the form

Y(t) = ξ +
∫ T

t

f
(
s, Y (s),Z(s),U(s, .)

)
ds +

∫ T

t

C(s)dW(s)

+
∫ T

t

∫
R

V (s, z)N(ds, dz)−
∫ T

t

Z(s)dW(s)

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (3.22)

where C and V are given. If we assume that E[∫ T

0 |C(t)|2dt] < ∞,

E[∫ T

0

∫
R

|V (t, z)|2Q(t, dz)η(t)dt] < ∞, E[∫ T

0 | ∫
R
V (t, z)Q(t, dz)η(t)|2dt] < ∞,

then by the change of variables

Ẑ(t)= Z(t)−C(t), Û (t, z)=U(t, z)− V (t, z),

we can investigate the BSDE

Y(t) = ξ +
∫ T

t

f
(
s, Y (s), Ẑ(s)+C(s), Û (s, .)+ V (s, .)

)
ds

+
∫ T

t

∫
R

V (s, z)Q(s, dz)η(s)ds

−
∫ T

t

Ẑ(s)dW(s)−
∫ T

t

∫
R

Û (s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

which now fits (3.1).
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In this book we investigate BSDEs with jumps with Lipschitz generators and
Theorem 3.1.1 is sufficient for our investigation. However, BSDEs with quadratic
and exponential generators also play an important role in the theory and applica-
tions, see Sects. 3.3, 3.4, 13.1 and Chap. 11.

3.2 Comparison Principles

We state two versions of a comparison principle which allows us to compare the
solutions to BSDEs based on the terminal conditions and the generators.

The first comparison principle for BSDEs with jumps was established by Barles
et al. (1997).

Theorem 3.2.1 Consider the BSDE

Y(t) = ξ +
∫ T

t

f

(
s, Y (s),Z(s),

∫
R

U(s, z)δ(s, z)Q(s, dz)η(s)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.23)

Assume that

(i) the terminal value ξ ∈ L
2(R),

(ii) the generator f : Ω × [0, T ] × R × R × R → R is predictable and Lipschitz
continuous in the sense that

∣∣f (ω, t, y, z, u)− f
(
ω, t, y′, z′, u′)∣∣ ≤K

(∣∣y − y′∣∣ + ∣∣z− z′∣∣ + ∣∣u− u′∣∣),
a.s., a.e. (ω, t) ∈Ω × [0, T ], for all (y, z,u), (y′, z′, u′) ∈R×R×R,

(iii) for each (t, y, z) ∈ [0, T ] × R × R the mapping u �→ f (t, y, z, u) is non-
decreasing,

(iv) E[∫ T

0 |f (t,0,0,0)|2dt]<∞,
(v) the process δ :Ω × [0, T ] ×R → R is predictable, non-negative and the map-

ping t �→ ∫
R

|δ(t, z)|2Q(t, dz)η(t) is bounded,

and let (ξ ′, f ′) satisfy the same set of assumptions. Let (Y,Z,U) ∈ S
2(R) ×

H
2(R) × H

2
N(R) and (Y ′,Z′,U ′) ∈ S

2(R) × H
2(R) × H

2
N(R) be the unique so-

lutions to the BSDE (3.23) with (ξ, f ) and (ξ ′, f ′). If

• ξ̄ = ξ − ξ ′ ≥ 0,
• f̄ (t, y, z, u)= f (t, y, z, u)−f ′(t, y, z, u)≥ 0, (t, y, z, u) ∈ [0, T ]×R×R×R,

then Y(t)≥ Y ′(t), 0 ≤ t ≤ T . In addition, if Y(t0)= Y ′(t0) a.s. for some t0 ∈ [0, T ],
then Y(t)= Y ′(t), t0 ≤ t ≤ T .
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Proof The existence of unique solutions (Y,Z,U), (Y ′,Z′,U ′) follows from The-
orem 3.1.1. We next define

Ȳ (t)= Y(t)− Y ′(t), Z̄(t)= Z(t)−Z′(t), Ū (t)=U(t)−U ′(t),

and

�yf (t)

=
(
f

(
t, Y (t−),Z(t),

∫
R

U(t, z)δ(t, z)Q(t, dz)η(t)

)

− f

(
t, Y ′(t−),Z(t),

∫
R

U(t, z)δ(t, z)Q(t, dz)η(t)

))
/
(
Y(t−)−Y ′(t−)

)

· 1
{
Ȳ (t−) �= 0

}
,

�zf (t)

=
(
f

(
t, Y ′(t−),Z(t),

∫
R

U(t, z)δ(t, z)Q(t, dz)η(t)

)

− f

(
t, Y ′(t−),Z′(t),

∫
R

U(t, z)δ(t, z)Q(t, dz)η(t)

))
/
(
Z(t)−Z′(t)

)

· 1
{
Z̄(t) �= 0

}
,

�uf (t)

=
(
f

(
t, Y ′(t−),Z′(t),

∫
R

U(t, z)δ(t, z)Q(t, dz)η(t)

)

− f

(
t, Y ′(t−),Z′(t),

∫
R

U ′(t, z)δ(t, z)Q(t, dz)η(t)

))

/

(∫
R

(
U(t)−U ′(t)

)
δ(t, z)Q(t, dz)η(t)

)
1
{
Ū(t) �= 0

}
.

Notice that the processes �y , �z, �u are bounded by the Lipschitz property of f .
We get the BSDE

Ȳ (t)

= ξ̄

+
∫ T

t

(
�yf (s)Ȳ (s−)+�zf (s)Z̄(s)+�uf (s)

∫
R

Ū (s, z)δ(s, z)Q(s, dz)η(s)

+ f̄

(
s, Y ′(s−),Z′(s),

∫
R

U ′(s, z)δ(s, z)Q(s, dz)η(s)

))
ds

−
∫ T

t

Z̄(s)dW(s)−
∫ T

t

∫
R

Ū (s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,
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and we derive

Ȳ (t) = ξ̄ e
∫ T
t �yf (s)ds

+
∫ T

t

f̄

(
s, Y ′(s),Z′(s),

∫
R

U ′(s, z)δ(z, s)Q(s, dz)η(s)

)
e
∫ s
t �yf (u)duds

−
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudW(s)+

∫ T

t

Z̄(s)e
∫ s
t �yf (u)du�zf (s)ds

−
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)duÑ(ds, dz)

+
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)du�uf (s)δ(s, z)Q(s, z)η(s)ds, 0 ≤ t ≤ T .

Let us introduce an equivalent probability measure Q by the Radon-Nikodym
derivative

dQ

dP

∣∣∣
Ft

= M(t), 0 ≤ t ≤ T ,

dM(t) = M(t−)

(
�zf (t)dW(t)+

∫
R

�fu(t)δ(t, z)Ñ(dt, dz)

)
.

Since the process δ is non-negative and the generator f is non-decreasing in u,
the kernel �fu(t)δ(t, z) is non-negative. Since the mappings t �→ |�zf (t)|2 and
t �→ ∫

R
|�fu(t)|2|δ(t, z)|2Q(t, dz)η(t) are bounded, by Proposition 2.5.1 the pro-

cess M is a square integrable martingale. Hence, M defines an equivalent probability
measure. By the change of measure, see Theorem 2.5.1, we derive the equation

Ȳ (t) = ξ̄ e
∫ T
t �yf (s)ds

+
∫ T

t

f̄

(
s, Y ′(s),Z′(s),

∫
R

U ′(s, z)δ(s, z)Q(s, dz)η(s)

)
e
∫ s
t �yf (u)duds

−
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudWQ(s)

−
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)duÑQ(ds, dz), 0 ≤ t ≤ T . (3.24)

We conclude that the stochastic integrals in (3.24) are Q-local martingales. By the
Burkholder-Davis-Gundy inequality, the Cauchy-Schwarz inequality, boundedness
of �yf and Theorem 2.3.2 we obtain

E
Q

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
Z̄(s)e

∫ s
t �yf (u)dudWQ(s)

∣∣∣∣
]



54 3 Backward Stochastic Differential Equations—The General Case

≤KE
Q

[√∫ T

0

∣∣Z̄(s)e∫ s
0 �yf (u)du

∣∣2
ds

]
≤KE

[∣∣∣∣dQdP
∣∣∣∣
2]
E

[∫ T

0

∣∣Z̄(s)∣∣2
ds

]
<∞,

(3.25)

and

E
Q

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

∫
R

Ū (s, z)e
∫ s
t �yf (u)duÑQ(ds, dz)

∣∣∣∣
]

≤KE
Q

[√∫ T

0

∫
R

∣∣Ū (s, z)e
∫ s
t �yf (u)du

∣∣2
N(ds, dz)

]

≤KE

[∣∣∣∣dQdP
∣∣∣∣
2]
E

[∫ T

0

∫
R

∣∣Ū (s, z)
∣∣2
N(ds, dz)

]

=KE

[∣∣∣∣dQdP
∣∣∣∣
2]
E

[∫ T

0

∫
R

∣∣Ū (s, z)
∣∣2
Q(s, dz)η(s)ds

]
<∞. (3.26)

From the last two estimates we can conclude that the stochastic integrals in (3.24)
are true Q-martingales, see Theorem I.51 in Protter (2004). Taking the conditional
expectation of (3.24), we get

Ȳ (t) = E
Q

[
ξ̄ e

∫ T
t �yf (s)ds

+
∫ T

t

f̄

(
s, Y ′(s),Z′(s),

∫
R

U ′(s, z)δ(s, z)Q(s, dz)η(s)

)

· e
∫ s
t �yf (u)duds|Ft

]
. (3.27)

The first assertion of our theorem is proved by (3.27). We now prove the second
assertion. From (3.27) and the assumptions Ȳ (t0) = 0, ξ̄ ≥ 0, f̄ (s, Y ′(s),Z′(s),∫
R
U ′(s, z)δ(s, z)Q(s, dz)η(s)) ≥ 0 we deduce that ξ̄ = 0 a.s. and f̄ (s, Y ′(s),

Z′(s),
∫
R
U ′(s, z)δ(s, z)Q(s, dz)η(s)) = 0, a.s., a.e. t0 ≤ s ≤ T . Hence, from (3.24)

we obtain

Ȳ (t) = −
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudWQ(s)

−
∫ T

t

∫
R

Ū(s, z)e
∫ s
t �yf (u)duÑQ(ds, dz), t0 ≤ t ≤ T ,

and the second assertion is proved by taking the conditional expectation. �

The comparison principle from Theorem 3.2.1 holds for a special case of a BSDE
under strong assumptions on the generator. In order to weaken the assumptions on
the generator, Royer (2006) proved a different version of a comparison principle.
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Theorem 3.2.2 Consider the BSDE (3.1). Assume that

(i) the terminal value ξ ∈ L
2(R),

(ii) the generator f :Ω×[0, T ]×R×R×L2
Q(R)→ R is predictable and satisfies

∣∣f (ω, t, y, z, u)− f
(
ω, t, y′, z′, u

)∣∣ ≤K
(|y − y′| + |z− z′|),

f (ω, t, y, z, u)− f
(
ω, t, y, z, u′)

≤
∫
R

δy,z,u,u
′
(t, x)

(
u(x)− u′(x)

)
Q(t, dx)η(t),

a.s., a.e. (ω, t) ∈ Ω × [0, T ], for all (y, z,u), (y′z′, u), (y, z,u′) ∈ R × R ×
L2
Q(R), where δy,z,u,u

′ : Ω × [0, T ] × R → (−1,∞) is a predictable pro-

cess such that the mapping t �→ ∫
R

|δy,z,u,u′
(t, x)|2Q(t, dx)η(t) is uniformly

bounded in (y, z,u,u′),
(iii) E[∫ T

0 |f (t,0,0,0)|2dt]<∞,

and let (ξ ′, f ′) satisfy (A1)–(A3). Let (Y,Z,U) ∈ S
2(R) × H

2(R) × H
2
N(R) and

(Y ′,Z′,U ′) ∈ S
2(R)×H

2(R)×H
2
N(R) be the unique solutions to the BSDE (3.1)

with (ξ, f ) and (ξ ′, f ′). If

• ξ̄ = ξ − ξ ′ ≥ 0,
• f̄ (t, y, z, u)= f (t, y, z, u)−f ′(t, y, z, u)≥ 0, (t, y, z, u) ∈ [0, T ]×R×R×R,

then Y(t)≥ Y ′(t), 0 ≤ t ≤ T . In addition, if Y(t0)= Y ′(t0) a.s. for some t0 ∈ [0, T ],
then Y(t)= Y ′(t), t0 ≤ t ≤ T .

Proof From assumption (ii) we deduce that the generator f also satisfies the fol-
lowing inequality

f (ω, t, y, z, u)− f
(
ω, t, y, z, u′) ≥

∫
R

δ̃y,z,u,u
′
(t, x)

(
u(x)− u′(x)

)
Q(t, dx)η(t),

(3.28)

a.s., a.e. (ω, t) ∈ Ω × [0, T ], for all (y, z,u), (y, z,u′) ∈ R × R × L2
Q(R), where

δ̃y,z,u,u
′ : Ω × [0, T ] × R → (−1,∞) is a predictable process such that t �→∫

R
|δ̃y,z,u,u′

(t, x)|2Q(t, dx)η(t) is uniformly bounded in (y, z,u,u′). Hence, the
generator f is Lipschitz continuous in u in the sense of (A2). We conclude that
there exists a unique solution (Y,Z,U) to (3.1) with (ξ, f ). The existence of a
unique solution (Y ′,Z′,U ′) follows from Theorem 3.1.1.

Arguing as in the first part of the proof of Theorem 3.2.1, we get

Ȳ (t) = ξ̄ e
∫ T
t �yf (s)ds +

∫ T

t

f̄
(
s, Y ′(s),Z′(s),U ′(s)

)
e
∫ s
t �yf (u)duds

−
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudW(s)+

∫ T

t

Z̄(s)e
∫ s
t �yf (u)du�zf (s)ds
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−
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)duÑ(ds, dz)

+
∫ T

t

(
f

(
s, Y ′(s),Z′(s),U(s)

)

− f
(
s, Y ′(s),Z′(s),U ′(s)

))
e
∫ s
t �yf (u)duds, 0 ≤ t ≤ T . (3.29)

Applying (3.28), we derive the inequality

Ȳ (t) ≥ ξ̄ e
∫ T
t �yf (s)ds +

∫ T

t

f̄
(
s, Y ′(s),Z′(s),U ′(s)

)
e
∫ s
t �yf (u)duds

−
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudW(s)+

∫ T

t

Z̄(s)e
∫ s
t �yf (u)du�zf (s)ds

−
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)duÑ(ds, dz)

+
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)duδ̃(s, z)Q(s, dz)η(s)ds, 0 ≤ t ≤ T ,

and by the change of measure we obtain

Ȳ (t) ≥ ξ̄ e
∫ T
t �yf (s)ds +

∫ T

t

f̄
(
s, Y ′(s),Z′(s),U ′(s)

)
e
∫ s
t �yf (u)duds

−
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudWQ(s)

−
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)duÑQ(ds, dz), 0 ≤ t ≤ T , (3.30)

where we introduce

dQ

dP

∣∣∣
Ft

= M(t), 0 ≤ t ≤ T ,

dM(t) = M(t−)

(
�zf (t)dW(t)+

∫
R

δ̃(t, z)Ñ(dt, dz)

)
.

Taking the conditional expected value of (3.30) under Q and taking into account
the assumptions on the generators and the terminal conditions, we obtain Ȳ (t) ≥
0, 0 ≤ t ≤ T , and the first assertion of our theorem is proved, see the proof of
Theorem 3.2.1 for details. We prove the second assertion. From (3.30) we get

Ȳ (t0) ≥ E
Q

[
ξ̄ e

∫ T
t0
�yf (s)ds

+
∫ T

t0

f̄
(
s, Y ′(s),Z′(s),U ′(s)

)
e

∫ s
t0
�yf (u)du

ds|Ft0

]
, (3.31)
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which together with Ȳ (t0) = 0, ξ̄ ≥ 0, f̄ (s, Y ′(s),Z′(s),
∫
R
U ′(s, z)δ(s, z)×

Q(s, dz)η(s)) ≥ 0 yield that ξ̄ = 0 a.s. and f̄ (s, Y ′(s),Z′(s),
∫
R
U ′(s, z)δ(s, z)×

Q(s, dz)η(s)) = 0, a.s., a.e. t0 ≤ s ≤ T . From (3.29) and the assumption on the
generator f we now deduce the inequality

Ȳ (t) ≤ −
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudW(s)+

∫ T

t

Z̄(s)e
∫ s
t �yf (u)du�zf (s)ds

−
∫ T

t

∫
R

Ū (s, z)e
∫ s
t �yf (u)duÑ(ds, dz)

+
∫ T

t

Ū (s, z)e
∫ s
t �yf (u)duδ(s, z)Q(s, dz)η(s)ds, t0 ≤ t ≤ T .

By the change of measure we obtain Ȳ (t) ≤ 0, t0 ≤ t ≤ T . Hence, Ȳ (t) = 0, t0 ≤
t ≤ T . �

A comparison principle is an important tool in the study of BSDEs. In this book
we apply both versions of a comparison principle from Theorem 3.2.1 and Theo-
rem 3.2.2. In the financial context the comparison principle implies desirable prop-
erties of pricing equations. For example, it implies that a more severe claim (ξ ′ ≥ ξ )
must have a higher price (Y ′ ≥ Y ).

We point out that the comparison principle must be applied with care. Notice that
the assumptions of Theorems 3.2.1 and 3.2.2 are more restrictive than the assump-
tions of Theorem 3.1.1. We remark that under the assumptions of Theorem 3.1.1 a
comparison does not hold unless we deal with the natural Brownian filtration and a
BSDE driven by a Brownian motion.

Example 3.1 Consider the BSDE

Y(t)= ξ − 2
∫ T

t

U(s)ds −
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T ,

driven by the random measure N generated by the Poisson process with intensity 1.
Choose ξ = ∫ T

0 N(ds), then Y(t) = ∫ t

0 N(ds)− (T − t),Z(t) = 0,U(t) = 1 is the
unique solution to the BSDE. Choose ξ ′ = 0, then Y ′(t) = 0,Z′(t) = 0,U ′(t) = 0
is the unique solution to the BSDE. Even though ξ ≥ ξ ′, the inequality Y(t)≥ Y ′(t)
may fail.

A financial example in which a price process solves a BSDE with jumps but does
not satisfy the comparison principle and the property of monotonicity with respect
to the claim is presented in Sect. 10.4.
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3.3 Examples of Linear and Nonlinear BSDEs Without Jumps

In this chapter we consider the natural Brownian filtration FW and we investigate
three important types of BSDEs driven by a Brownian motion. Our goal is to illus-
trate some useful techniques for BSDEs and for this reason we omit jumps in the
equations. In particular, we show that some BSDEs can be reduce to a BSDE with
zero generator and, consequently, finding the solutions to those BSDEs can be re-
duced to finding the predictable representation of a random variable. BSDEs with
jumps are investigated in the next chapter.

Let us introduce a linear backward stochastic differential equation. A linear
BSDE is an equation of the form

Y(t) = ξ +
∫ T

t

α(s)Y (s)ds +
∫ T

t

β(s)Z(s)ds −
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T .

(3.32)

Proposition 3.3.1 Let ξ be an FW -measurable random variable such that ξ ∈
L

2(R), and let α and β be FW -predictable, bounded processes. There exists a
unique solution (Y,Z) ∈ S

2(R)×H
2(R) to the BSDE (3.32). The process Y has the

representation

Y(t)= E
Q
[
e
∫ T
t α(s)ds)ξ |FW

t

]
, 0 ≤ t ≤ T ,

and the control process Z is derived from

Z(t)= e− ∫ t
0 α(s)dsZ (t), 0 ≤ t ≤ T ,

and the representation

e
∫ T

0 α(s)dsξ = E
Q
[
e
∫ T

0 α(s)dsξ
] +

∫ T

0
Z (s)dWQ(s),

where the equivalent probability measure Q is defined by

dQ

dP

∣∣∣FW
T = e

∫ T
0 β(s)dW(s)− 1

2

∫ T
0 β2(s)ds .

Proof The existence of a unique solution (Y,Z) follows from Theorem 3.1.1. We
prove the representation of the solution. Recalling Proposition 2.5.1 and (2.15), we
notice that Q is an equivalent probability measure. We introduce the processes

Ŷ (t)= Y(t)e
∫ t

0 α(s)ds, Ẑ(t)= Z(t)e
∫ t

0 α(s)ds, 0 ≤ t ≤ T .

By the Itô’s formula the unique solution (Y,Z) to (3.32) must satisfies the BSDE

Ŷ (t)= e
∫ T

0 α(s)dsξ −
∫ T

t

Ẑ(s)dWQ(s), 0 ≤ t ≤ T ,



3.3 Examples of Linear and Nonlinear BSDEs Without Jumps 59

or

Ŷ (t)= Ŷ (0)+
∫ t

0
Ẑ(s)dWQ(s), 0 ≤ t ≤ T .

Since the process Ẑ is a.s. square integrable, we first deduce that Ŷ is a Q-local
martingale, and following (3.25) we next deduce that Ŷ is a Q-martingale. Hence,
we obtain the representation Ŷ (t)= E

Q[Ŷ (T )|FW
t ]. The process Ẑ is now derived

from the predictable representation of the Q-martingale Ŷ . �

We will observe that linear BSDEs arise when we investigate pricing and hedging
problems in complete markets and when we deal with quadratic pricing and hedging
in incomplete markets.

Next, we consider the backward stochastic differential equation

Y(t) = ξ +
∫ T

t

β(s)
∣∣Z(s)∣∣ds −

∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T . (3.33)

Proposition 3.3.2 Let ξ be an FW -measurable random variable such that ξ ∈
L

2(R), and let β be an FW -predictable, positive, bounded process. There exists
a unique solution (Y,Z) ∈ S

2(R)× H
2(R) to the BSDE (3.33). The process Y has

the representation

Y(t)= sup
Q∈Q

E
Q
[
ξ |FW

t

]
, 0 ≤ t ≤ T ,

where

Q =
{
Q ∼ P : dQ

dP

∣∣∣FW
T = e

∫ T
0 φ(s)dW(s)− 1

2

∫ T
0 |φ(s)|2ds,

φ is FW -predictable,
∣∣φ(t)∣∣ ≤ β(t)

}
.

Proof The existence of a unique solution (Y,Z) follows from Theorem 3.1.1. We
prove the representation of the solution. Let us deal with the BSDE

Yφ(t)= ξ +
∫ T

t

φ(s)Zφ(s)ds −
∫ T

t

Zφ(s)dW(s), 0 ≤ t ≤ T , (3.34)

with a predictable process φ such that |φ(t)| ≤ β(t). By Theorem 3.1.1 there exists a
unique solution (Y φ,Zφ) ∈ S

2(R)×H
2(R) to (3.34). Since |φ(t)| ≤ β(t), we have

φ(t)z ≤ β(t)|z|, (t, z) ∈ [0, T ] × R, and from the comparison principle we deduce
that Yφ(t)≤ Y(t), 0 ≤ t ≤ T . We get

sup
|φ(t)|≤β(t)

Y φ(t)≤ Y(t), 0 ≤ t ≤ T . (3.35)
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If we choose φ∗(t)= |Z(t)|
Z(t)

β(t)1{Z(t) �= 0}, then by uniqueness of solution to (3.34)

we must have Zφ∗
(t)= Z(t), Yφ∗

(t)= Y(t), 0 ≤ t ≤ T . We also get

Y(t)= Yφ∗
(t)≤ sup

|φ(t)|≤β(t)

Y φ(t), 0 ≤ t ≤ T . (3.36)

We can now deduce from (3.35)–(3.36) that Y(t) = sup|φ(t)|≤β(t) Y
φ(t), 0 ≤ t ≤ T .

Finally, Proposition 3.3.1 yields the representation

Yφ(t)= E
Q
φ [
ξ |FW

t

]
, 0 ≤ t ≤ T ,

under the equivalent probability measure

dQφ

dP

∣∣∣FW
T = e

∫ T
0 φ(s)dW(s)− 1

2

∫ T
0 |φ(s)|2ds . �

We will observe that nonlinear BSDEs of the form (3.33) arise when we deal
with an ambiguity risk measure and no-good-deal pricing. If the control process Z
does not change its sign, then the nonlinear BSDE (3.33) reduces to a linear BSDE.

Finally, let us investigate a backward stochastic differential equation with a
quadratic generator. We consider the following equation

Y(t) = ξ + 1

2

∫ T

t

β
∣∣Z(s)∣∣2

ds −
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T . (3.37)

Notice that the quadratic BSDE (3.37) does not fit directly into the framework of
Theorem 3.1.1 which only deals with Lipschitz generators.

Proposition 3.3.3 Let ξ be an FW -measurable, bounded random variable, and let
β �= 0. There exists a unique solution (Y,Z) ∈ S

2(R)×H
2(R) to the BSDE (3.37).

The process Y has the representation

Y(t)= 1

β
lnE

[
eβξ |FW

t

]
, 0 ≤ t ≤ T ,

and the control process Z is derived from

Z(t)= Z (t)

βE[eβξ |FW
t ] , 0 ≤ t ≤ T ,

and the representation

eβξ = E
[
eβξ

] +
∫ T

0
Z (s)dW(s).

Proof We change the variables

Ŷ (t)= eβY(t), Ẑ(t)= βŶ (t)Z(t), 0 ≤ t ≤ T .
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By the Itô’s formula any solution to (3.37) must also satisfy the BSDE

Ŷ (t)= eβξ −
∫ T

t

Ẑ(t)dW(t), 0 ≤ t ≤ T . (3.38)

By Theorem 3.1.1 there exists a unique solution (Ŷ , Ẑ) ∈ S
2(R) × H

2(R) to the
BSDE (3.38). Hence, the BSDE (3.37) has at most one solution. We also have
Ŷ (t) = E[eβξ |FW

t ], 0 ≤ t ≤ T . Since |ξ | ≤ K , we deduce 0 < k′ ≤ Ŷ (t) ≤ K ′,
0 ≤ t ≤ T . We obtain that (Y,Z) ∈ S

2(R)×H
2(R), and the proof is complete. �

Notice that square integrability of ξ is not sufficient for having a unique solution
to the quadratic BSDE (3.37). In this book we do not deal with quadratic BSDEs
but we will point out that BSDEs with quadratic generators may arise when we deal
with the entropic risk measure (the exponential premium principle) and optimization
problems for an exponential utility.

3.4 Examples of Linear and Nonlinear BSDEs with Jumps

The techniques discussed in Sect. 3.3 can also be applied to BSDEs with jumps.
However, some additional assumptions and modifications have to be introduced. We
now consider the natural filtration F J generated by a pure jump càdlàg process J .
Let N denote the jump measure of J .

First, we consider the linear BSDE

Y(t) = ξ +
∫ T

t

α(s)Y (s)ds +
∫ T

t

∫
R

γ (s, z)U(s, z)Q(s, dz)η(s)ds

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.39)

Proposition 3.4.1 Let ξ be an F J -measurable random variable such that ξ ∈
L

2(R), and let α and γ be F J -predictable processes such that

∣∣α(t)∣∣ ≤K,

∫
R

∣∣γ (t, z)∣∣2
Q(t, dz)η(t)≤K, 0 ≤ t ≤ T .

There exists a unique solution (Y,U) ∈ S
2(R)×H

2
N(R) to the BSDE (3.39). More-

over, let γ (t, z) >−1, 0 ≤ t ≤ T , z ∈ R. The process Y has the representation

Y(t)= E
Q
[
e
∫ T
t α(s)ds)ξ |F J

t

]
, 0 ≤ t ≤ T ,

and the control process U is derived from

U(t, z)= e− ∫ t
0 α(s)dsU (t, z), 0 ≤ t ≤ T , z ∈R,



62 3 Backward Stochastic Differential Equations—The General Case

and the representation

e
∫ T

0 α(s)dsξ = E
Q
[
e
∫ T

0 α(s)dsξ
] +

∫ T

0

∫
R

U (s, z)ÑQ(ds, dz),

where the equivalent probability measure Q is defined by

dQ

dP

∣∣∣F J
T = M(T ),

dM(t)

M(t−)
=

∫
R

γ (t, z)Ñ(dt, dz), M(0)= 1.

The proof of Proposition 3.4.1 is analogous to the proof of Proposition 3.3.1.
We remark that in order to change the measure and establish the representation of
the solution as the expectation under an equivalent probability measure we have to
assume that γ (t, z) >−1.

Next, we consider the nonlinear BSDE

Y(t) = ξ +
∫ T

t

∫
R

γ (s, z)
∣∣U(s, z)

∣∣Q(s, dz)η(s)ds

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.40)

Proposition 3.4.2 Let ξ be an F J -measurable random variable such that ξ ∈
L

2(R), and let γ be an F J -predictable process such that
∫
R

∣∣γ (t, z)∣∣2
Q(t, dz)η(t)≤K, 0 ≤ t ≤ T .

There exists a unique solution (Y,U) ∈ S
2(R)×H

2
N(R) to the BSDE (3.40). More-

over, let 0 < γ (t, z) < 1, 0 ≤ t ≤ T , z ∈R. The process Y has the representation

Y(t)= sup
Q∈Q

E
Q
[
ξ |F J

t

]
, 0 ≤ t ≤ T ,

where

Q =
{
Q ∼ P : dQ

dP

∣∣∣F J
T =M(T ),

dM(t)

M(t−)
=

∫
R

κ(t, z)Ñ(dt, dz), M(0)= 1,

κ is F J -predictable,
∣∣κ(t, z)∣∣ ≤ γ (t, z)

}
.

The proof of Proposition 3.4.2 is analogous to the proof of Proposition 3.3.2.
We remark that in order to apply the comparison principle from Theorem 3.2.2 and
establish the representation of the solution as the robust expectation with respect to
a set of equivalent probability measures we have to assume that 0 < γ (t, z) < 1.
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If the control process U does not change its sign, then the nonlinear BSDE (3.40)
reduces to a linear BSDE.

Finally, we investigate a BSDE with an exponential generator. We consider the
following equation

Y(t) = ξ +
∫ T

t

∫
R

(
1

γ

(
eγU(s,z) − 1

) −U(s, z)

)
Q(s, dz)η(s)ds

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.41)

Proposition 3.4.3 Let ξ be an F J -measurable, bounded random variable, and let
γ �= 0. There exists a unique solution (Y,U) ∈ S

2(R)×H
2
N(R) to the BSDE (3.41).

The process Y has the representation

Y(t)= 1

γ
lnE

[
eγ ξ |F J

t

]
, 0 ≤ t ≤ T ,

and the control process U is derived from

U(t, z)= 1

γ
ln

(
1 + U (t, z)e−γ Y (t−)

)
, 0 ≤ t ≤ T , z ∈ R

and the representation

eγ ξ = E
[
eγ ξ

] +
∫ T

0

∫
R

U (s, z)Ñ(ds, dz).

Proof The proof is analogous to the proof of Proposition 3.3.3. We only comment
on the property that U ∈ H

2
N(R). By the Itô’s formula the process Ŷ (t) = eγY (t)

satisfies the BSDE

Ŷ (t)= eγ ξ −
∫ T

t

∫
R

U (s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (3.42)

where

U (t, z)= Ŷ (t)
(
eγU(t,z) − 1

)
, 0 ≤ t ≤ T , z ∈ R.

We immediately get the solution Ŷ (t)= E[eγ ξ |F J
t ], 0 ≤ t ≤ T . Moreover, we have

0 < k′ ≤ Ŷ (t) ≤ K ′, 0 ≤ t ≤ T . From the dynamics (3.42) we can deduce that∫
R

U (t, z)N({t}, dz) = Ŷ (t) − Ŷ (t−). Hence, U (t, z) = Ŷ t,z(t) − Ŷ (t−) where

Ŷ t,z(t) denotes the expectation E[eγ ξ |F J
t ] given there is a jump of size z at time t .

Consequently, 1 + U (t, z)e−γ Y (t−) = 1 + U (t,z)

Ŷ (t−)
= Ŷ t,z(t)

Ŷ (t−)
is bounded away from

zero and bounded from above, and |U(t, z)| ≤ K|U (t, z)|. Since U ∈ H
2
N(R), we

can conclude that U ∈ H
2
N(R). �



64 3 Backward Stochastic Differential Equations—The General Case

It is interesting to note that in the jump setting the entropic risk measure, i.e.
the process Y(t) = 1

γ
lnE[eγ ξ |Ft ], leads to an exponential BSDE, whereas in the

diffusion setting the entropic risk measure leads to a quadratic BSDE.

3.5 Malliavin Differentiability of Solution

Let us consider the natural filtration generated by a Lévy process. In this chapter we
investigate the BSDE

Y(t) = ξ +
∫ T

t

f

(
s, Y (s),Z(s),

∫
R

U(s, z)δ(z)ν(dz)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (3.43)

where Ñ is a compensated Poisson random measure with a Lévy measure ν, and
δ : [0, T ] ×R → R is a measurable function satisfying

∣∣δ(z)∣∣ ≤Kz, z ∈R.

As in Sect. 2.2, we define

m(A)=
∫
A

z2ν(dz), υ(t,A)=
∫ t

0

∫
A

m(dz)ds +
∫ t

0
1{0 ∈A}σ 2ds,

Υ c(t)= σW(t), Υ d(t,A)=
∫ t

0

∫
A

zÑ(ds, dz), 0 ≤ t ≤ T ,A ∈ B(R).

Since we follow the exposition from Solé et al. (2007), let us redefine

Z(t) := Z(t)

σ
, U(t, z) := U(t, z)

z
, δ(z) := δ(z)

z
, (3.44)

and we deal with the following BSDE

Y(t) = ξ +
∫ T

t

f

(
s, Y (s),Z(s),

∫
R

U(s, z)δ(z)m(dz)

)
ds

−
∫ T

t

Z(s)dΥ c(s)−
∫ T

t

∫
R

U(s, z)Υ d(ds, dz), 0 ≤ t ≤ T . (3.45)

By H
2
Υ d (R) we denote the space of predictable processes U :Ω × [0, T ] ×R → R

satisfying

E

[∫ T

0

∫
R

∣∣U(t, z)
∣∣2
m(dz)dt

]
<∞.

We study Malliavin differentiability of the solution to the BSDE (3.45).
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Theorem 3.5.1 Assume that

(i) the filtration F is the natural filtration generated by a Lévy process,
(ii) the terminal value ξ ∈ D

1,2(R) satisfies

E

[∫
[0,T ]×R

|Ds,zξ |2υ(ds, dz)
]
<∞,

lim
ε↓0

E

[∫ T

0

∫
|z|≤ε

|Ds,zξ |2m(dz)ds
]

= 0,

(iii) the function δ :R → R is measurable and bounded,
(iv) the generator f : Ω × [0, T ] ×R×R×R → R is predictable and Lipschitz

continuous in the sense that
∣∣f (ω, t, y, z, u)− f

(
ω, t, y′, z′, u′)∣∣ ≤K

(∣∣y − y′∣∣ + ∣∣z− z′∣∣ + ∣∣u− u′∣∣),
a.s., a.e. (ω, t) ∈Ω × [0, T ], for all (y, z,u), (y′, z′, u′) ∈R×R×R,

(v) E[∫ T

0 |f (t,0,0,0)|2dt]<∞,
(vi) a.s., a.e. (ω, t) ∈ Ω × [0, T ] the mapping (y, z,u) �→ f (ω, t, y, z, u) is

continuously differentiable with uniformly bounded and continuous partial
derivatives fy,fz, fu,

(vii) for each (t, y, z, u) ∈ [0, T ] ×R×R×R we have f (ω, t, y, z, u) ∈D
1,2(R),

and

E

[∫
[0,T ]×R

∫ T

0

∣∣Ds,zf (ω, t,0,0,0)
∣∣2
dtυ(ds, dz)

]
<∞,

(viii) υ-a.e. (s, z) ∈ [0, T ] ×R we have
∣∣Ds,zf (ω, t, ỹ, z̃, ũ)− |Ds,zf

(
ω, t, y′, z′, u′)∣∣

≤K
(∣∣ỹ − y′∣∣ + ∣∣z̃− z′∣∣ + ∣∣ũ− u′∣∣),

a.s., a.e. (ω, t) ∈Ω × [0, T ], for all (ỹ, z̃, ũ), (y′, z′, u′) ∈R×R×R.
(a) There exists a unique solution (Y,Z,U) ∈ S

2(R) × H
2(R) × H

2
Υ d (R) to the

BSDE (3.45).
(b) There exists a unique solution (Y s,0,Zs,0,Us,0) ∈ S

2(R)×H
2(R)×H

2
Υ d (R)

to the BSDE

Y s,0(t) = Ds,0ξ +
∫ T

t

f s,0(r)dr −
∫ T

t

Zs,0(r)dΥ c(r)

−
∫ T

t

∫
R

Us,0(r, y)Υ d(dr, dy), 0 ≤ s ≤ t ≤ T , (3.46)

where

f s,0(r)=Ds,0f

(
ω, r,Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)
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+ fy

(
ω, r,Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)
Y s,0(r)

+ fz

(
ω, r,Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)
Zs,0(r)

+ fu

(
ω, r,Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)∫
R

Us,0(r, y)δ(y)m(dy).

(3.47)

(c) There exists a unique solution (Y s,z,Zs,z,Us,z) ∈ S
2(R)×H

2(R)×H
2
Υ d (R)

to the BSDE

Y s,z(t) = Ds,zξ +
∫ T

t

f s,z(r)dr −
∫ T

t

Zs,z(r)dΥ c(r)

−
∫ T

t

∫
R

Us,z(r, y)Υ d(dr, dy), 0 ≤ s ≤ t ≤ T , z �= 0,

(3.48)

where

f s,z(r)

=
{
f

(
ωs,z, r, zY s,z(r)+ Y(r),

zZs,z(r)+Z(r), z

∫
R

Us,z(r, y)δ(y)m(dy)+
∫
R

U(r, y)δ(y)m(dy)

)

− f

(
ω, r,Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)}
/z. (3.49)

(d) Set

Y s,z(t)= Zs,z(t)=Us,z(t, y)= 0, (y, z) ∈ R×R, t < s ≤ T .

We have (Y,Z,U) ∈ L
1,2(R) × L

1,2(R) × L
1,2(R) and (Y s,z(t),Zs,z(t),

Us,z(t, y))0≤s,t≤T ,(y,z)∈R×R is a version of the Malliavin derivative (Ds,zY (t),

Ds,zZ(t),Ds,zU(t, y))0≤s,t≤T ,(y,z)∈R×R.

Proof 1. The existence and uniqueness of solutions. By (3.44) and Theorem 3.1.1
there exists a unique solution (Y,Z,U) to (3.45), and for υ-a.e. (s, z) ∈ [0, T ] ×R

there exists a unique solution (Y s,z,Zs,z,Us,z) to (3.46) and (3.48).
2. The Picard iteration and the property that (Y n,Zn,Un) ∈

L
1,2(R) × L

1,2(R) × L
1,2(R). Referring to Theorem 3.1.1, we consider

a sequence (Y n,Zn,Un)n∈N, constructed by the Picard procedure, which
converges to (Y,Z,U). We show that (Y n,Zn,Un) ∈ L

1,2(R) ×
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L
1,2(R) × L

1,2(R) implies (Y n+1,Zn+1,Un+1) ∈ L
1,2(R) × L

1,2(R) × L
1,2(R)

and from E[∫[0,T ] supt∈[0,T ] |Ds,zY
n(t)|2υ(ds, dz)] < ∞ we can deduce

E[∫[0,T ]×R
supt∈[0,T ] |Ds,zY

n+1(t)|2υ(ds, dz)] < ∞. For that purpose we study
the iterations

Yn+1(t) = ξ +
∫ T

t

f n(r)dr

−
∫ T

t

Zn+1(r)dΥ c(r)−
∫ T

t

∫
R

Un+1(r, y)Υ d(dr, dy), 0 ≤ t ≤ T ,

(3.50)

where

f n(r)= f

(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)
.

We establish differentiability of all terms in (3.50). From Proposition 2.6.5 we
conclude that

∫
R
Un(r, y)δ(y)m(dy) is Malliavin differentiable. By the chain rule

from Proposition 2.6.4 the generator f n is Malliavin differentiable and we de-
rive

Ds,0f
n(r) = Ds,0f

(
ω, r,Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)

+ fy

(
ω, r,Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)
Ds,0Y

n(r)

+ fz

(
ω, r,Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)
Ds,0Z

n(r)

+ fu

(
ω, r,Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)

·
∫
R

Ds,0U
n(r, y)δ(y)m(dy), (3.51)

and for z �= 0

Ds,zf
n(r) =

{
f

(
ωs,z, r, zDs,zY

n(r)+ Yn(r), zDs,zZ
n(r)+Zn(r),

z

∫
R

Ds,zU
n(r, y)δ(y)m(dy)+

∫
R

Un(r, y)δ(y)m(dy)

)

− f

(
ω, r,Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)}
/z. (3.52)
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Applying Proposition 2.6.5 again, we deduce that
∫ T

t
f n(r)dr is Malliavin differ-

entiable. We obtain the derivative

Ds,z

(
ξ +

∫ T

t

f n(r)dr

)

=Ds,zξ +
∫ T

t

Ds,zf
n(r)dr, υ-a.e. (s, z) ∈ [0, T ] ×R, s ≤ t ≤ T .

By Proposition 2.6.3 we have

Yn+1(t)= E

[
ξ +

∫ T

t

f n(r)dr|Ft

]
∈D

1,2(R), 0 ≤ t ≤ T ,

and we conclude from (3.50) that

∫ T

t

Zn+1(r)dΥ c(r) ∈ D
1,2(R), 0 ≤ t ≤ T , (3.53)

and
∫ T

t

∫
R

Un+1(r, y)Υ d(dr, dy) ∈D
1,2(R), 0 ≤ t ≤ T . (3.54)

Proposition 2.6.6 shows that (Zn+1,Un+1) ∈ L
1,2(R) × L

1,2(R). We still have to
investigate Yn+1. We can differentiate the recursive equation (3.50) and by Propo-
sition 2.6.6 we obtain for υ-a.e. (s, z) ∈ [0, T ] ×R

Ds,zY
n+1(t) = Ds,zξ +

∫ T

t

Ds,zf
n(r)dr −

∫ T

t

Ds,zZ
n+1(r)dΥ c(r)

−
∫ T

t

∫
R

Ds,zU
n+1(r, y)Υ d(dr, dy), s ≤ t ≤ T . (3.55)

The BSDE (3.55) with the generator (3.51) or (3.52) satisfies the assumptions
of Theorem 3.1.1 and for υ-a.e. (s, z) ∈ [0, T ] × R there exists a unique so-
lution (Ds,zY

n+1,Ds,zZ
n+1,Ds,zU

n+1) ∈ S
2(R) × H

2(R) × H
2
Υ d (R) to (3.55).

By the a priori estimates (3.5) and (3.7), the Lipschitz properties of f and
Ds,zf and boundedness of derivatives fy , fz, fu we can derive the inequal-
ity

∥∥Ds,zY
n+1

∥∥2
S2 + ∥∥Ds,zZ

n+1
∥∥2
H2 + ∥∥Ds,zU

n+1
∥∥2
H

2
Υ d

≤KE

[
|Ds,zξ |2 +

∫ T

s

∣∣Ds,zf
n(r)

∣∣2
dr

]

≤K

(
E

[|Ds,zξ |2
] +E

[∫ T

0

∣∣Ds,zf (ω, r,0,0,0)
∣∣2
dr

]
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+ ∥∥Yn
∥∥2
S2 + ∥∥Zn

∥∥2
H2 + ∥∥Un

∥∥2
H

2
Υ d

+ ∥∥Ds,zY
n
∥∥2
S2 + ∥∥Ds,zZ

n
∥∥2
H2 + ∥∥Ds,zU

n
∥∥2
H

2
Υ d

)
. (3.56)

This in turn yields E[∫[0,T ]×R
supt∈[0,T ] |Ds,zY

n+1(t)|2υ(ds, dz)]<∞, and Yn+1 ∈
L

1,2(R).
3. The square integrability of the solution Y s,z(t),Zs,z(t),Us,z(t, y) with respect

to the product measure υ . Consider the unique solution (Y s,z,Zs,z,Us,z) ∈ S
2(R)×

H
2(R)×H

2
Υ d (R) to (3.46) or (3.48). The a priori estimates (3.5) and (3.7) and the

Lipschitz property of Ds,zf yield the inequality

∥∥Y s,z
∥∥2
S2 + ∥∥Zs,z

∥∥2
H2 + ∥∥Us,z

∥∥2
H

2
Υ d

≤KE

[
|Ds,zξ |2 +

∫ T

s

∣∣∣∣Ds,zf

(
ω, r,Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)∣∣∣∣
2

dr

]

≤K

(
E

[|Ds,zξ |2
] +E

[∫ T

0

∣∣Ds,zf (ω, r,0,0,0, )
∣∣2
dr

]

+ ‖Y‖2
S2 + ‖Z‖2

H2 + ‖U‖2
H

2
Υ d

)
,

and we also derive

E

[∫
([0,T ]×R)2

∣∣Y s,z(t)
∣∣2
υ(dt, dy)υ(ds, dz)

]
<∞,

E

[∫
([0,T ]×R)2

∣∣Zs,z(t)
∣∣2
υ(dt, dy)υ(ds, dz)

]
<∞,

E

[∫
([0,T ]×R)2

∣∣Us,z(t, y)
∣∣2
υ(dt, dy)υ(ds, dz)

]
<∞.

4. The convergence of (Y n,Zn,Un)n∈N in L
1,2(R) × L

1,2(R) × L
1,2(R). From

the proof of Theorem 3.1.1 we already know that (Y n,Zn,Un)n∈N converges in
S

2(R) × H
2(R) × H

2
Υ d (R). We have to prove that the corresponding Malliavin

derivatives converge. First, we prove the limit

lim
n→∞

∫ T

0

(∥∥Y s,0 −Ds,0Y
n+1

∥∥2
S2

+ ∥∥Zs,0 −Ds,0Z
n+1

∥∥2
H2 + ∥∥Us,0 −Ds,0U

n+1
∥∥2
H

2
Υ d

)
ds = 0. (3.57)

By the a priori estimates (3.4), (3.6) and the Cauchy-Schwarz inequality we derive

∥∥Y s,0 −Ds,0Y
n+1

∥∥2
S2 + ∥∥Zs,0 −Ds,0Z

n+1
∥∥2
H2 + ∥∥Us,0 −Ds,0U

n+1
∥∥2
H

2
Υ d
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≤KE

[∫ T

s

eρr
∣∣f s,0(r)−Ds,0f

n(r)
∣∣2
dr

]

≤KE

[∫ T

0
eρr

∣∣∣∣Ds,0f

(
r, Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)

−Ds,0f

(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)∣∣∣∣
2

dr

]

+KE

[∫ T

0
eρr

∣∣∣∣
(
fy

(
r, Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)

− fy

(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

))
Y s,0(r)

+
(
fz

(
r, Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)

− fz

(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

))
Zs,0(r)

+
(
fu

(
r, Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)

− fu

(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

))

·
∫
R

Us,0(r, y)δ(y)m(dy)

∣∣∣∣
2

dr

]

+KE

[∫ T

0
eρr

∣∣∣∣fy
(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)

· (Y s,0(r)−Ds,0Y
n(r)

)

+ fz

(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)(
Zs,0(r)−Ds,0Z

n(r)
)

+ fu

(
r, Y n(r),Zn(r),

∫
R

Un(r, y)δ(y)m(dy)

)

·
∫
R

(
Us,0(r, y)−Ds,0U

n(r, y)
)
δ(y)m(dy)

∣∣∣∣
2

dr

]
. (3.58)

The first expected value in (3.58) converges to zero by the Lipschitz property of
Ds,0f and the convergence of (Y n,Zn,Un) to (Y,Z,U). The second expected
value converges to zero by the dominated convergence theorem, continuity of
derivatives fy,fz, fu and the convergence of (Y n,Zn,Un) to (Y,Z,U). Since the
first two expected values in (3.58) converge to zero, for any small ε0 > 0 we can
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find sufficiently large n0 such that for all n≥ n0 we have

∫ T

0

(∥∥Y s,0 −Ds,0Y
n+1

∥∥2
S2 + ∥∥Zs,0 −Ds,0Z

n+1
∥∥2
H2 + ∥∥Us,0 −Ds,0U

n+1
∥∥2
H

2
Υ d

)
ds

< ε0 + K̃

∫ T

0

(∥∥Y s,0 −Ds,0Y
n
∥∥2
H2 + ∥∥Zs,0 −Ds,0Z

n
∥∥2
H2

+ ∥∥Us,0 −Ds,0U
n
∥∥2
H

2
Υ d

)
ds,

where we use boundedness of derivatives fy , fz, fu. From estimates (3.11) and
(3.17) we can conclude that the constant K in (3.58) can be made sufficiently small
by taking ρ sufficiently large. Consequently, we can choose ρ such that K̃ < 1. By
recursion we derive for n≥ n0

∫ T

0

(∥∥Y s,0 −Ds,0Y
n+1

∥∥2
S2 + ∥∥Zs,0 −Ds,0Z

n+1
∥∥2
H2 + ∥∥Us,0 −Ds,0U

n+1
∥∥2
H

2
Υ d

)
ds

< K̃

∫ T

0

(∥∥Y s,0 −Ds,0Y
n
∥∥2
S2 + ∥∥Zs,0 −Ds,0Z

n
∥∥2
H2 + ∥∥Us,0 −Ds,0U

n
∥∥2
H

2
Υ d

)
ds

+ ε0

< K̃n−n0

∫ T

0

(∥∥Y s,0 −Ds,0Y
n0

∥∥2
S2 + ∥∥Zs,0 −Ds,0Z

n0
∥∥2
H2

+ ∥∥Us,0 −Ds,0U
n0

∥∥2
H

2
Υ d

)
ds + ε0

1 − K̃
.

We can conclude that the limit (3.57) holds. Next, we prove the following limit

lim
n→∞

∫
[0,T ]×(R\{0})

(∥∥Y s,z −Ds,zY
n+1

∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
m(dz)ds = 0. (3.59)

By the a priori estimates (3.4) and (3.6), the Lipschitz property of f and the Cauchy-
Schwarz inequality we derive

∥∥Y s,z −Ds,zY
n+1

∥∥2
S2 + ∥∥Zs,z −Ds,zZ

n+1
∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

≤KE

[∫ T

s

eρr
∣∣f s,z(r)−Ds,zf

n(r)
∣∣2
dr

]

≤ K̃

(∥∥Y s,z −Ds,zY
n
∥∥2
S2 + ∥∥Zs,z −Ds,zZ

n
∥∥2
H2 + ∥∥Us,z −Ds,zU

n
∥∥2
H

2
Υ d

+
‖Yn − Y‖2

S2 + ‖Zn −Z‖2
H2 + ‖Un −U‖2

H
2
Υ d

z2

)
. (3.60)
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We notice that∫
[0,T ]×(R\{0})

(∥∥Y s,z −Ds,zY
n+1

∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
m(dz)ds

= lim
ε↓0

∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2
H2

+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
m(dz)ds, (3.61)

and we can prove that this convergence is uniform in n, see Theorem 4.1 in Delong
and Imkeller (2010b). We fix ε > 0. From (3.60) we obtain

∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
m(dz)ds

≤ K̃

{∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n
∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n
∥∥2
H2 + ∥∥Us,z −Ds,zU

n
∥∥2
H

2
Υ d

)
m(dz)ds

+ (∥∥Yn − Y
∥∥2
S2 + ∥∥Zn −Z

∥∥2
H2 + ∥∥Un −U

∥∥2
H

2
Υ d

)
T

∫
|z|>ε

ν(dz)

}
.

From estimates (3.11) and (3.17) we can conclude that the constant K in (3.60)
can be made sufficiently small by taking ρ sufficiently large. Hence, we can choose
K̃ < 1. Since (Y n,Zn,Un)n∈N converges, for any small ε0 > 0 we can find suffi-
ciently large n0 such that for all n≥ n0 we have

∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
m(dz)ds

< K̃

∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n
∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n
∥∥2
H2 + ∥∥Us,z −Ds,zU

n
∥∥2
H

2
Υ d

)
m(dz)ds + ε0.

By recursion we derive for n≥ n0

∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2
S2
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+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
m(dz)ds

< K̃n−n0

∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n0

∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n0

∥∥2
H2 + ∥∥Us,z −Ds,zU

n0
∥∥2
H

2
Υ d

)
m(dz)ds + ε0

1 − K̃
,

and we end up with the limit

lim
n→∞

∫ T

0

∫
|z|>ε

(∥∥Y s,z −Ds,zY
n+1

∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
m(dz)ds = 0, ε > 0.

The limit (3.59) follows by interchanging the limits in n and ε in (3.61). Combining
(3.57) and (3.59) we get

lim
n→∞

∫
[0,T ]×R

(∥∥Y s,z −Ds,zY
n+1

∥∥2
S2

+ ∥∥Zs,z −Ds,zZ
n+1

∥∥2
H2 + ∥∥Us,z −Ds,zU

n+1
∥∥2
H

2
Υ d

)
υ(ds, dz)= 0.

5. The Malliavin derivative process. Since the space L
1,2(R) is a Hilbert space

and the Malliavin derivative is a closed operator, the assertions that (Y,Z,U) ∈
L

1,2(R) × L
1,2(R) × L

1,2(R) and (Y s,z(t),Zs,z(t),Us,z(t, y))0≤s,t≤T ,(y,z)∈(R)R
is a version of the derivative (Ds,zY (t),Ds,zZ(t),Ds,zU(t, y))0≤s,t≤T ,(y,z)∈R×R

hold. �

The key consequence of Theorem 3.5.1 is that we can interpret the solution
(Z,U) as the Malliavin derivative of Y . Before we formally state this result, we
have to define the predictable projection of a process.

Definition 3.5.1 Let V be a measurable process such that for any predictable time τ
the random variable V (τ)1{τ <∞} is integrable with respect to the filtration Fτ−.
There exists a unique predictable process VP satisfying

E
[
V (τ)1{τ <∞}|Fτ−

] = VP (τ )1{τ <∞},
which is called the predictable projection of V .

We remark that for an adapted, càdlàg, quasi-left continuous process we have
VP (t)= V (t−), see Theorem 4.23 in He et al. (1992).

Proposition 3.5.1 Under the assumptions of Theorem 3.5.1 we have

((Dt,0Y)
P (t))0≤t≤T is a version of (Z(t))0≤t≤T ,
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((Dt,zY )
P (t))0≤t≤T ,z∈(R\{0}) is a version of (U(t, z))0≤t≤T ,z∈(R\{0}),

where (Y,Z,U) solves the BSDE (3.45).

Proof The solution to (3.45) satisfies

Y(s) = Y(0)−
∫ s

0
f

(
r, Y (r),Z(r),

∫
R

U(r, y)δ(y)m(dy)

)
dr

+
∫ s

0
Z(r)dΥ c(r)+

∫ s

0

∫
R

U(r, y)Υ d(dr, dy), 0 ≤ s ≤ T . (3.62)

Differentiating (3.62) in line with Proposition 2.6.6, we obtain for υ-a.e. (u, z) ∈
[0, T ] ×R

Du,0Y(s) = Z(u)−
∫ s

u

Du,0f (r)dr +
∫ s

u

Du,0Z(r)dΥ
c(r)

+
∫ s

u

∫
R

Du,0U(r, y)Υ d(dr, dy), 0 ≤ u≤ s ≤ T ,

Du,zY (s) = U(u, z)−
∫ s

u

Du,zf (r)dr +
∫ s

u

Du,zZ(r)dΥ
c(r)

+
∫ s

u

∫
R

Du,zU(r, y)Υ d(dr, dy), 0 ≤ u≤ s ≤ T , z �= 0,

where the derivative operators Du,z are defined by (3.47) and (3.49). Since the map-
pings s �→ ∫ s

u
Du,zf (r)dr , s �→ ∫ s

u
Du,zZ(r)dΥ

c(r) are continuous and the map-
ping s �→ ∫ s

u

∫
R
Du,zU(r, y)Υ d(dr, dy) is càdlàg, letting s ↓ u we get the following

relations

Du,0Y(u) = Z(u), a.s., a.e. (ω,u) ∈Ω × [0, T ],
Du,zY (u) = U(u, z), a.s., υ-a.e. (ω,u, z) ∈Ω × [0, T ] × (

R \ {0}).
Some measurability considerations complete the proof, see Corollary 4.1 in Delong
and Imkeller (2010b). �

Proposition 3.5.2 Under the assumptions of Theorem 3.5.1 and with |δ(z)| ≤ Kz,
z ∈R, we have

((DtY )
P (t))0≤t≤T is a version of (Z(t))0≤t≤T ,

((zDt,zY )
P (t))0≤t≤T ,z∈(R\{0}) is a version of (U(t, z))0≤t≤T ,z∈(R\{0}),

where (Y,Z,U) solves the BSDE (3.43).

We recall that Dt is the classical Malliavin derivative on the Wiener space, see
Sect. 2.2.
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Proposition 3.5.2 shows an important application of the Malliavin calculus to
BSDEs. The formulas from Proposition 3.5.2 can be used to derive the control pro-
cesses (Z,U) provided that we already have the solution Y . Examples are con-
sidered in Sect. 8.2. In Chap. 4 we use the Malliavin representations of (Z,U) to
establish explicit formulas for the control processes of a general Markovian BSDE.
In the financial context, Proposition 3.5.2 characterizes a hedging strategy, which
usually depends on (Z,U), as the Malliavin derivative of a price process or a repli-
cating portfolio Y . The Malliavin representations from Proposition 3.5.2 can also be
used in numerical algorithms.

We now use Proposition 3.5.2 to gain an insight into the predictable representa-
tion property. We recover the Clark-Ocone formula.

Theorem 3.5.2 Assume that ξ ∈D
1,2(R). We have the representation

ξ = E[ξ ] +
∫ T

0
Z P (s)dW(s)+

∫ T

0

∫
R

U P (s, z)Ñ(ds, dz),

where Z (s)= E[Dsξ |Fs] and U (s, z)= zE[Ds,zξ |Fs].

Proof Finding the predictable representation of ξ is equivalent to solving the BSDE

Y(t)= ξ −
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

Clearly, Y(t) = E[ξ |Ft ]. Moreover, Y ∈ D
1,2(R) by Proposition 2.6.3. We can

prove our result by following the reasoning from the proof of Proposition 3.5.1
and applying Propositions 2.6.3 and 2.6.6. If sup(t,z)∈[0,T ]×RE[|Dt,zξ |2]<∞, then
the result follows directly from Proposition 3.5.2. �

The Clark-Ocone formula gives a direct method for deriving the predictable rep-
resentation of a random variable. We notice that the Malliavin derivatives determine
the integrators in the predictable representation. We now present two examples.

Example 3.2 Let ξ = (K − eσW(T )− 1
2σ

2T )+. In Example 2.12 we show that

Dt,0ξ = −eσW(T )− 1
2σ

2T 1{eσW(T )− 1
2σ

2T < K}. By Proposition 2.6.1 we get Dtξ =
−σeσW(T )− 1

2σ
2T 1{eσW(T )− 1

2σ
2T < K}. We can conclude that there exists a mea-

surable function ϕ : [0, T ] ×R → R such that

ϕ
(
t,W(t)

) = −σE
[
eσW(T )− 1

2σ
2T 1

{
eσW(T )− 1

2σ
2T < K

}|Ft

]
, 0 ≤ t ≤ T ,

and the predictable representation of ξ is given by the formula

ξ = E[ξ ] +
∫ T

0
ϕ
(
s,W(s)

)
dW(s).
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Example 3.3 Let ξ = (J (T ) − K)+ where J is a compound Poisson process with
jump size distribution q . We assume that q is supported on (0,∞) and satisfies∫ ∞

0 y2q(dy) < ∞. In Example 2.14 we show that zDt,zξ = (J (T ) + z − K)+ −
(J (T )−K)+. We can conclude that there exists a measurable function ϕ : [0, T ] ×
[0,∞)→R such that

ϕ
(
t, J (t)

) = E
[(
J (T )−K

)+|Ft

]
, 0 ≤ t ≤ T ,

and the predictable representation of ξ is given by the formula

ξ = E[ξ ] +
∫ T

0

∫ ∞

0

(
ϕ
(
s, J (s−)+ z

) − ϕ
(
s, J (s−)

))
Ñ(ds, dz),

where we use the predictable projection of the càdlàg, quasi-left continuous pro-
cess J .

In Sects. 3.3 and 3.4 we point out that the nonlinear BSDE (3.33) or (3.40) can
be reduced to a linear BSDE if the control process does not change its sign. We may
deduce the sign of the control process by the applying Malliavin calculus.

Example 3.4 Let us recall Example 1.3 and the expectation

Y(t)= sup
Q∈Q

E
Q
[(
J (T )−K

)+|Ft

]
, 0 ≤ t ≤ T ,

where J is a compound Poisson process under P with jump size distribution q and
intensity λ, and

Q =
{
Q ∼ P : dQ

dP
|F J

T =M(T ),
dM(t)

M(t−)
=

∫
R

κ(t, z)Ñ(dt, dz), M(0)= 1,

κ is F J -predictable,
∣∣κ(t, z)∣∣ ≤ δ < 1

}
.

Under an equivalent probability measure Q ∈ Q determined by κ the process J has
the jump size distribution and the intensity

qQ(t, dz) = 1 + κ(t, z)∫
R
(1 + κ(t, z))q(dz)

q(dz), 0 ≤ t ≤ T , z ∈ R,

λQ(t) =
∫
R

(
1 + κ(t, z)

)
q(dz)λ, 0 ≤ t ≤ T .

Let us assume that the distribution q is supported on (0,∞) and satisfies∫ ∞
0 z2q(dz) <∞. By Proposition 3.4.2 the process Y solves the nonlinear BSDE

Y(t) = (
J (T )−K

)+ +
∫ T

t

∫ ∞

0
δ
∣∣U(s, z)

∣∣λq(dz)ds
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−
∫ T

t

∫ ∞

0
U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.63)

We now consider the linear BSDE

Y (t) = (
J (T )−K

)+ +
∫ T

t

∫ ∞

0
δU (s, z)λq(dz)ds

−
∫ T

t

∫ ∞

0
U (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (3.64)

By Proposition 3.4.1 the solution U is derived from the predictable representation

(
J (T )−K

)+ = E
Q

∗[(
J (T )−K

)+] +
∫ T

0

∫ ∞

0
U (s, z)ÑQ

∗
(ds, dz),

where Q
∗ is the equivalent probability measure under which J has the jump size

distribution q and the intensity (1 + δ)λ. Recalling the results from Example 3.3,
we can conclude that the control process U (s, z)= ϕ(s, J (s−)+ z)− ϕ(s, J (s−))

from the representation of the martingale ϕ(t, J (t)) = E
Q

∗ [(J (T ) − K)+|Ft ] is
non-negative. By uniqueness of solution to (3.63) we deduce that (Y,U) and
(Y ,U ) must coincide. Consequently, the nonlinear BSDE (3.63) reduces to the
linear BSDE (3.64).
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BSDEs with Lipschitz generators driven by Brownian motions is El Karoui et al.
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long and Imkeller (2010b). The Clark-Ocone formula for Lévy processes can be
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to a BSDE we refer to Buckdahn et al. (2004).



Chapter 4
Forward-Backward Stochastic Differential
Equations

Abstract We investigate a backward SDE with a generator and a terminal condition
which depend on the state of a Markov process solving a forward SDE driven by a
Brownian motion and a compensated Poisson random measure. Such an equation is
called a forward-backward SDE. In the Markovian setting we show that the unique
solution to a backward SDE can be written as a function of a forward state process.
We derive formulas for the control processes by applying the Itô’s formula and the
Malliavin calculus. We establish the connection between the solution to a BSDE and
the viscosity solution to a partial integro-differential equation. A generalization of
the Feynman-Kac formula is given. We also deal with a coupled forward-backward
SDE in which a solution to the backward component also affects the forward com-
ponent.

In Chap. 3 we study BSDEs with random terminal conditions and generators which
depend on a Brownian motion and a random measure in an arbitrary way. In this
chapter we assume that the randomness of the terminal condition and the generator
comes from the state of a Markov process solving a forward SDE. We deal with
forward-backward stochastic differential equations driven by a Brownian motion
and a compensated Poisson random measure. We derive crucial results, such as the
connection between BSDEs and PIDEs and the nonlinear Feynman-Kac formula.
Let us remark that in majority of applications we deal with FBSDEs where the
forward SDE models a risk factor.

4.1 The Markovian Structure of FBSDEs

We consider the forward stochastic differential equation

X (s) = x +
∫ s

t

μ
(
X (r−)

)
dr +

∫ s

t

σ
(
X (r−)

)
dW(r)

+
∫ s

t

∫
R

γ
(
X (r−), z

)
Ñ(dr, dz), 0 ≤ t ≤ s ≤ T . (4.1)
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© Springer-Verlag London 2013
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The process X is called a state process. By (X t,x(s), t ≤ s ≤ T ) we denote a
solution to (4.1) parametrized by the initial data (t, x). We set X t,x(s) = x, s ≤ t .
Let us assume that

(B1) the random measure N is a Poisson random measure generated by a Lévy
process with a Lévy measure ν,

(B2) the functions μ :R → R and σ : R → R are Lipschitz continuous,
(B3) the function γ : R×R →R is measurable and satisfies

∣∣γ (x, z)∣∣ ≤ K
(
1 ∧ |z|), (x, z) ∈R×R,∣∣γ (x, z)− γ

(
x′, z

)∣∣ ≤ K
∣∣x − x′∣∣(1 ∧ |z|), (x, z),

(
x′, z

) ∈R×R.

We deal with a time-homogenous dynamics of the state process but time-dependence
can be easily introduced. We also restrict our study to a Poisson random measure
generated by a Lévy process, which is the most common case investigated in the
literature. An extension to cover a general random measure is possible by using
formula (8.17) or considering an additional state process.

We state some properties of a solution to the forward SDE (4.1).

Theorem 4.1.1 Assume that (B1)–(B3) hold.

(a) For each (t, x) ∈ [0, T ] × R there exists a unique adapted, càdlàg solution
X t,x := (X t,x(s), t ≤ s ≤ T ) to (4.1).

(b) The solution X is a homogenous Markov process.
(c) For all (t, x), (t, x′)(t ′, x′) ∈ [0, T ] ×R and p ≥ 2 we have

E

[
sup

t≤s≤T

∣∣X t,x(s)− x
∣∣p]

≤ K
(
1 + |x|p)

(T − t),

E

[
sup

t≤s≤T

∣∣X t,x(s)− X t,x′
(s)

∣∣p]
≤ K

∣∣x − x′∣∣p, (4.2)

E

[
sup

t≤s≤T

∣∣X t,x(s)− X t ′,x′
(s)

∣∣p]
≤ K

(∣∣x − x′∣∣p + (
1 + ∣∣x ∨ x′∣∣p)∣∣t − t ′

∣∣).

Proof Case (a) follows from Theorem 6.2.9. in Applebaum (2004), case (b) follows
from Theorem 6.4.6 in Applebaum (2004). The first and the second estimates from
case (c) are taken from Proposition 1.1 in Barles et al. (1997), the third estimate
can be proved by classical techniques for SDEs, see Lemma II.2.2 in Gihman and
Skorohod (1979). �

Theorem 4.1.2 Let (B1)–(B3) hold.

(a) Assume that the functions μ and σ are continuously differentiable and γ is
continuously differentiable in the first variable x. Then, the process X t,x is
Malliavin differentiable and we have

sup
(s,z)∈[0,T ]×R

E

[
sup

r∈[s,T ]
∣∣Ds,zX

t,x(r)
∣∣2

]
<∞. (4.3)
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(b) Assume that

(i) the functions μ and σ are twice continuously differentiable and the first
derivatives satisfy (B2),

(ii) the function γ is twice continuously differentiable in the first variable x

and the first derivative satisfies (B3),
(iii) the function (x, z) �→ γx(x, z) is continuous,
(iv) σ(x) �= 0 and 1 + γx(x, z) �= 0 for (x, z) ∈ R×R.

Then, the probability law of X t,x(s), for s > t , is absolutely continuous with
respect to the Lebesgue measure.

Proof Assertion (a) follows from Theorem 3 in Petrou (2008). We prove asser-
tion (b). Choose s ∈ (t, T ]. By Propositions 2.6.1, 2.6.5 and 2.6.6 we derive

DuX
t,x(s)

= σ
(
X t,x(u)

) +
∫ s

u

μ′(X t,x(r−)
)
DuX

t,x(r−)dr

+
∫ s

u

σ ′(X t,x(r−)
)
DuX

t,x(r−)dW(r)

+
∫ s

u

∫
R

γ ′(X t,x(r−), z
)
DuX

t,x(r−)Ñ(dr, dz), 0 ≤ t ≤ u≤ s ≤ T .

(4.4)

It is clear that we have

DuX
t,x(s)

= σ
(
X t,x(u)

)
e
∫ s
u μ

′(X t,x (r))dr+∫ s
u σ

′(X t,x (r−))dW(r)+∫ s
u

∫
R
γ ′(X t,x (r−),z)Ñ(dr,dz)

· e
∫ s
u

∫
|z|≤1(ln(1+γ ′(X t,x (r),z))−γ ′(X t,x (r),z))ν(dz)dr− 1

2

∫ s
u |σ ′(X t,x (r))|2dr

·Π{u<r≤s:|�J(r)|>1}(1 + γ ′(X t,x(r−),�J (r)
)
e−γ ′(X t,x (r−),�J (r))

· e
∫ s
u

∫
|z|≤1(ln(1+γ ′(X t,x (r−),z))−γ ′(X t,x (r−),z))Ñ(dr,dz)

, 0 ≤ t ≤ u≤ s ≤ T .

From the càdlàg property of the integrals and the process X t,x and assump-
tion (iv) we can deduce that u �→ DuX t,x(s) is a.s. bounded away from zero on
[t, s]. Hence,

∫ s

t
|DuX t,x(s)|2du is a.s. invertible. We can show that X t,x(s) and

DuX t,x(s) have moments of all orders. We can also show that DuX t,x(s) is Malli-
avin differentiable and DvDuX t,x(s) has moments of all orders. Absolute continu-
ity of the probability law of X t,x(s) now follows from Theorem 18.3 in Øksendal
and Sulem (2004). �

We investigate a backward SDE with a terminal condition and a generator which
depend on the state process solving the forward SDE (4.1). We deal with the back-
ward stochastic differential equation
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Y t,x(s) = g
(
X t,x(T )

)

+
∫ T

s

f

(
r,X t,x(r−), Y t,x(r−),Zt,x(r),

∫
R

Ut,x(r, z)δ(z)ν(dz)

)
dr

−
∫ T

s

Zt,x(r)dW(r)−
∫ T

s

∫
R

Ut,x(r, z)Ñ(dr, dz), t ≤ s ≤ T . (4.5)

The form of the generator considered in (4.5) is most common in applications, see
also Sects. 3.2 and 3.5. The system of equations (4.1) and (4.5) is called a forward-
backward stochastic differential equation. A solution to the system (4.1), (4.5) is a
quadruple (X , Y,Z,U) ∈ S

2(R)× S
2(R)×H

2(R)×H
2
N(R).

We assume

(B4) the function f : [0, T ] ×R×R×R → R is continuous and satisfies the Lip-
schitz condition

∣∣f (t, x, y, z,u)− f
(
t, x′, y′, z′, u′)∣∣

≤K
(∣∣x − x′∣∣ + ∣∣y − y′∣∣ + ∣∣z− z′∣∣ + ∣∣u− u′∣∣),

for all (t, x, z, u), (t, x′, z′, u′) ∈ [0, T ] ×R×R×R,
(B5) the functions δ : R →R and g : R �→R are measurable and they satisfy

∣∣δ(z)∣∣ ≤ K
(
1 ∧ |z|), z ∈R,∣∣g(x)− g

(
x′)∣∣ ≤ K

∣∣x − x′∣∣, x, x′ ∈R,

(B6) for each (t, x, y, z) ∈ [0, T ] ×R×R×R the mapping u �→ f (t, x, y, z,u) is
non-decreasing, and δ(z)≥ 0, z ∈ R.

Assumptions (B1)–(B5) are standard in the theory of FBSDEs. Assumption (B6) is
needed in Sect. 4.2 where we apply a comparison principle.

Existence of a unique solution to the FBSDE can be immediately deduced from
Theorems 3.1.1 and 4.1.1.

Theorem 4.1.3 Under assumptions (B1)–(B5) there exists a unique solution
(X , Y,Z,U) ∈ S

2(R)× S
2(R)×H

2(R)×H
2
N(R) to the FBSDE (4.1), (4.5).

Intuitively, in our Markovian setting we expect to represent the solution to the
BSDE (4.5) as a function of time and the state process (4.1). The first result gives
such a representation for the process Y , see Corollary 2.3 and Remark 2.4 in Barles
et al. (1997).

Proposition 4.1.1 Under the assumptions of Theorem 4.1.3 there exists a measur-
able functions u : [0, T ] ×R → R such that

Y t,x(s)= u
(
s,X t,x(s)

)
, 0 ≤ t ≤ s ≤ T .

In particular, Y t,x(t)= u(t, x).
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We prove a technical, but useful, result which shows that the function u(t, x) is
Lipschitz continuous in x and locally 1

2 -Hölder continuous in t .

Lemma 4.1.1 Under the assumptions of Theorem 4.1.3 the function u(t, x) =
Y t,x(t) is continuous on [0, T ] ×R. Moreover, the function u satisfies

∣∣u(t, x)− u
(
t ′, x′)∣∣2

≤K
(∣∣x − x′∣∣2 + (

1 + ∣∣x ∨ x′∣∣2)∣∣t − t ′
∣∣), (t, x),

(
t ′, x′) ∈ [0, T ] ×R.

Proof Consider the parametrized BSDE

Y t,x(s)

= g
(
X t,x(T )

)

+
∫ T

s

1{t ≤ r ≤ T }f
(
r,X t,x(r), Y t,x(r),Zt,x(r),

∫
R

Ut,x(r, z)δ(z)ν(dz)

)
dr

−
∫ T

s

Zt,x(r)dW(r)−
∫ T

s

∫
R

Ut,x(r, z)Ñ(dr, dz), 0 ≤ s ≤ T .

We can define Y t,x(r) = Y t,x(t) = u(t, x) and Zt,x(r) = Ut,x(r, z) = 0 for r ≤ t .
By the a priori estimate (3.7), assumptions (B4)–(B5) and the moment estimates
(4.2) we derive

∣∣u(t, x)∣∣2 = ∣∣Y t,x(t)
∣∣2 ≤ ∥∥Y t,x

∥∥
S2

≤ KE

[∣∣g(
X t,x(T )

)∣∣2 +
∫ T

0
1{t ≤ r ≤ T }∣∣f (

r,X t,x(r),0,0,0
)∣∣2

dr

]

≤ KE

[
1 + sup

0≤r≤T

∣∣X t,x(r)
∣∣2

]
≤K

(
1 + |x|2). (4.6)

Let t ′ ≥ t . The a priori estimate (3.7) and assumptions (B4)–(B5) yield

∣∣Y t,x(t)− Y t ′,x′(
t ′
)∣∣2

= ∣∣Y t,x(0)− Y t ′,x′
(0)

∣∣2 ≤ E

[
sup

s∈[0,T ]

∣∣Y t,x(s)− Y t ′,x′
(s)

∣∣2
]

≤KE

[∣∣g(
X t,x(T )

) − g
(
X t ′,x′

(T )
)∣∣2

+
∫ T

0

∣∣∣∣1t≤r≤T f

(
r,X t,x(r), Y t ′,x′

(r),Zt ′,x′
(r),

∫
R

Ut ′,x′
(r, z)δ(z)ν(dz)

)

− 1t ′≤r≤T f

(
r,X t ′,x′

(r), Y t ′,x′
(r),Zt ′,x′

(r),

∫
R

Ut ′,x′
(r, z)δ(z)ν(dz)

)∣∣∣∣
2

dr

]
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≤KE

[∣∣X t,x(T )− X t ′,x′
(T )

∣∣2 +
∫ T

t ′

∣∣X t,x(r)− X t ′,x′
(r)

∣∣2
dr

+
∫ t ′

t

∣∣∣∣f
(
r,X t,x(r), Y t ′,x′

(r),Zt ′,x′
(r),

∫
R

Ut ′,x′
(r, z)δ(z)ν(dz)

)∣∣∣∣
2

dr

]

≤KE

[
sup

0≤r≤T

∣∣X t,x(r)− X t ′,x′
(r)

∣∣2

+
∫ t ′

t

(
1 + ∣∣X t,x(r)

∣∣2 + ∣∣Y t ′,x′
(r)

∣∣2

+ ∣∣Zt ′,x′
(r)

∣∣2 +
∫
R

∣∣Ut ′,x′
(r, z)

∣∣2
ν(dz)

)
dr

]
.

Since Y t ′,x′
(r) = u(t ′, x′) and Zt ′,x′

(r) = Ut ′,x′
(r, z) = 0 for r ≤ t ′, by (4.6) and

(4.2) we get

∣∣Y t,x(t)− Y t ′,x′(
t ′
)∣∣2 ≤ KE

[
sup

0≤r≤T

∣∣X t,x(r)− X t ′,x′
(r)

∣∣2

+
∫ t ′

t

(
1+|x|2 + sup

0≤r≤T

∣∣X t,x(r)−x
∣∣2 + ∣∣u(

t ′, x′)∣∣2
)
dr

]

≤ K
(∣∣x − x′∣∣2 + (

1 + ∣∣x ∨ x′∣∣2)∣∣t ′ − t
∣∣). �

We now characterize the control processes (Z,U).

Theorem 4.1.4 Assume that (B1)–(B5) hold. Let the generator f satisfy the as-
sumptions of Theorem 3.5.1 and let the functions μ and σ be continuously differ-
entiable and γ be continuously differentiable in the first variable x. Consider the
function u defined in Proposition 4.1.1. If u ∈ C 0,1([0, T ] × R) or the probability
law of X t,x(s), for s > t , is absolutely continuous with respect to the Lebesgue
measure, then

Zt,x(s) = ux
(
s,X t,x(s−)

)
σ
(
X t,x(s−)

)
, t ≤ s ≤ T ,

Ut,x(s, z) = u
(
s,X t,x(s−)+ γ

(
X t,x(s−), z

))
− u

(
s,X t,x(s−)

)
, t ≤ s ≤ T , z ∈ R.

Proof By Proposition 4.1.1 we have Y t,x(s)= u(s,X t,x(s)). From Theorem 4.1.2
we know that X is Malliavin differentiable. Property (4.3) yields that the assump-
tions required for the terminal condition from Theorem 3.5.1 are satisfied. Hence,
from Theorem 3.5.1 and Proposition 3.5.2 we deduce the representations

Zt,x(s)= (
Dsu

(
s,X t,x(s)

))P
, U t,x(s, z)= z

(
Ds,zu

(
s,X t,x(s)

))P
. (4.7)



4.1 The Markovian Structure of FBSDEs 85

Since x �→ u(t, x) is Lipschitz continuous, we can apply the chain rule from Propo-
sition 2.6.4 to (4.7). The derivative DsX t,x(s) = σ(X t,x(s)) can be immediately
deduced from (4.4). In a similar way to (4.4), we can prove that zDs,zX t,x(s) =
γ (X t,x(s), z). The representations for Z and U follow by taking the predictable
projections. �

We remark that ux denote first derivative of the function u(t, x) with respect to
the second state variable and X t,x denote the solution to the forward SDE (4.1) with
the initial condition X (t) = x. For assumptions under which u ∈ C 0,1([0, T ] ×
R) we refer to Bouchard and Elie (2008). Assumptions which guarantee that u ∈
C 1,2([0, T ]×R) can be found in Theorem 4.3.1. Assumptions under which the law
of X is absolutely continuous are given in Theorem 4.1.2.

We point out that Theorem 4.1.4 gives direct formulas for the control processes
(Z,U) of a BSDE, assuming that we already have the function u which charac-
terizes the solution Y . The formulas from Theorem 4.1.4 are of great importance
and they are used in applications (including in numerical algorithms). Examples are
considered in Sect. 8.2. In the financial context, Theorem 4.1.4 yields delta-hedging
strategies.

The question remains: how to find the function u and its derivative ux which
characterize the solution to a FBSDE. In the next chapter we show that u and ux
can be derived by solving a partial integro-differential equation. Before we move to
the next chapter which deals with PIDEs, let us consider a FBSDE with zero gen-
erator. For this special FBSDE we can show that the function u and its derivative
ux can be represented as conditional expectations of the state process. Such repre-
sentations allow us to calculate the solution to a FBSDE with zero generator or find
the predictable representation of a pay-off contingent on a Markov process by using
analytical formulas for expectations or applying Monte Carlo simulations.

Proposition 4.1.2 We investigate the FBSDE

X t,x(s) = x +
∫ s

t

μ
(
X t,x(r−)

)
dr +

∫ s

t

σ
(
X t,x(r−)

)
dW(r)

+
∫ s

t

∫
R

γ
(
X (r−), z

)
Ñ(dr, dz), 0 ≤ t ≤ s ≤ T ,

(4.8)
Y t,x(s) = g

(
X t,x(T )

)

−
∫ T

s

Zt,x(r)dW(r)−
∫ T

s

∫
R

Ut,x(r, z)Ñ(dr, dz), 0 ≤ t ≤ s ≤ T .

Let the assumptions of Theorem 4.1.2 hold and let the function g : R → R be Lips-
chitz continuous. Consider the function u defined in Proposition 4.1.1. We have the
representations

u(t, x)= E
[
g
(
X t,x(T )

)]
, (t, x) ∈ [0, T ] ×R, (4.9)
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and

ux(t, x) = ∂

∂x
E

[
g
(
X t,x(T )

)]

= E
[
g′(X t,x(T )

)
Y t,x(T )

]
, (t, x) ∈ [0, T )×R, (4.10)

where the process Y t,x satisfies the forward SDE

Y t,x(s) = 1 +
∫ s

t

Y t,x(r−)μ′(X t,x(r−)
)
dr

+
∫ s

t

Y t,x(r−)σ ′(X t,x(r−)
)
dW(r)

+
∫ s

t

∫
R

Y t,x(r−)γ ′(X t,x(r−), z
)
Ñ(dr, dz), 0 ≤ t ≤ s ≤ T ,

(4.11)

and Y t,x(ω, s)= ∂
∂x

X t,x(ω, s), (ω, s) ∈Ω × [t, T ].

Proof By Theorem 4.1.3 there exists a unique solution (X , Y,Z,U) to (4.8). Rep-
resentation (4.9) is obvious. We prove (4.10). From Theorem 3.4 in Kunita (2004)
we recall that x �→ X t,x(ω, s) is continuously differentiable and the derivative
∂
∂x

X t,x(ω, s) satisfies (4.11). By Theorem 4.1.2 the random variable X t,x(T )

has an absolutely continuous probability law with respect to the Lebesgue mea-
sure. Consequently, x �→ g(X t,x(T )) is a.s. differentiable. We now justify the in-
terchange of the limit and the expectation. We fix (t, x) ∈ [0, T )× R. We consider
a family (Aα)α∈R defined by

Aα =
∣∣∣∣g(X

t,x(T ))− g(X t,α(T ))

x − α

∣∣∣∣, α ∈R. (4.12)

The Lipschitz property of g and the moment estimate (4.2) yield

E

[∣∣∣∣g(X
t,x(T ))− g(X t,α(T ))

x − α

∣∣∣∣
2]

≤K
E[|X t,x(T )− X t,α(T )|2]

|x − α|2 ≤K, α ∈ R

which proves that the family (Aα)α∈R is uniformly integrable. Hence, we get

lim
α→x

E

[
g(X t,x(T ))− g(X t,α(T ))

x − α

]

= E

[
lim
α→x

g(X t,x(T ))− g(X t,α(T ))

x − α

]
= E

[
g′(X t,x(T )

)
Y t,x(T )

]
. �

We give an example illustrating the application of Theorem 4.1.4 and Proposi-
tion 4.1.2.
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Example 4.1 We are interested in finding the predictable representation of ξ =
(K − X (T ))+ where dX (t) = X (t)σdW(t), X(0) = x0 > 0. Let Y t,x(s) =
∂
∂x

X t,x(s). The process Y t,x satisfies the equation

Y t,x(s)= 1 +
∫ s

t

Y t,x(r)σdW(r), 0 ≤ t ≤ s ≤ T ,

and we immediately deduce that Y t,x(s) = X t,x (s)
x

, t ≤ s ≤ T . Let u(t, x) =
E[(K − X t,x(T ))+]. By Proposition 4.1.2 we derive

ux(t, x)= −E
[
1
{
X t,x(T ) < K

}
X t,x(T )

] 1

x
, (t, x) ∈ [0, T )× (0,∞). (4.13)

Recalling the formula for the control process from Theorem 4.1.4, we conclude that
the predictable representation of ξ takes the form

ξ = E[ξ ] +
∫ T

0
ϕ
(
t,X 0,x0(t)

)
dW(t),

where

ϕ(t, x) = ux(t, x)σx

= −σE
[
1
{
X t,x(T ) < K

}
X t,x(T )

]
, (t, x) ∈ [0, T ] × (0,∞).

Clearly, the representation coincides with the representation from Example 3.2
where we apply the Malliavin calculus. We remark that the approach based on the
Malliavin calculus can be used for a general non-Markovian BSDE, whereas Theo-
rem 4.1.4 and Proposition 4.1.2 only hold for Markovian BSDEs. It is well-known
that

ϕ(t, x)= −xσΦ

(
− ln( x

K
)+ σ 2/2(T − t)

σ
√
T − t

)
, (t, x) ∈ [0, T ] × (0,∞),

where Φ denote the distribution function of the standard normal random variable.

4.2 The Feynman-Kac Formula and the Connection with Partial
Integro-Differential Equations

In Proposition 4.1.1 and Theorem 4.1.4 we characterize the solution to a FBSDE
with a function u. For a FBSDE with zero generator and for a FBSDE with generator
independent of (Y,Z,U) we can use Proposition 4.1.2 to find the function u. For a
general FBSDE the function u can be derived by solving a partial integro-differential
equation. In this chapter we consider the PIDE
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−ut (t, x)− L u(t, x)

−f
(
t, x, u(t, x), ux(t, x)σ (x),J u(t, x)

) = 0, (t, x) ∈ [0, T )×R, (4.14)

u(T , x)= g(x), x ∈R,

where we introduce two operators

L u(t, x) = μ(x)ux(t, x)+ 1

2
σ 2(x)uxx(t, x)

+
∫
R

(
u
(
t, x + γ (x, z)

) − u(t, x)− γ (x, z)ux(t, x)
)
ν(dz),

J u(t, x) =
∫
R

(
u
(
t, x + γ (x, z)

) − u(t, x)
)
δ(z)ν(dz),

which are defined for u ∈ C 1,2([0, T ] × R), see Sect. 12.2 in Cont and Tankov
(2004).

First, we give a generalization the Feynman-Kac formula.

Theorem 4.2.1 Assume that (B1)–(B5) hold. Let u ∈ C 1,2([0, T ] ×R) satisfy the
PIDE (4.14) and the linear growth conditions

∣∣u(t, x)∣∣ ≤K
(
1 + |x|), ∣∣ux(t, x)∣∣ ≤K

(
1 + |x|), (t, x) ∈ [0, T ] ×R.

Then

Y t,x(s) = u
(
s,X t,x(s)

)
, t ≤ s ≤ T ,

Zt,x(s) = ux
(
s,X t,x(s−)

)
σ
(
X t,x(s−)

)
, t ≤ s ≤ T ,

(4.15)
Ut,x(s, z) = u

(
s,X t,x(s−)+ γ

(
X t,x(s−), z

))
− u

(
s,X t,x(s−)

)
, t ≤ s ≤ T , z ∈ R,

is the unique solution to the BSDE (4.5). Moreover, we have the representation

Y t,x(t) = u(t, x)

= E

[
g
(
X t,x(T )

)

+
∫ T

t

f

(
r,X t,x(r), Y t,x(r),Zt,x(r),

∫
R

Ut,x(r)δ(z)ν(dz)

)
dr

]
,

0 ≤ t ≤ T . (4.16)
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Proof By the Itô’s formula we obtain

u
(
T ,X t,x(T )

)

= u
(
s,X t,x(s)

) +
∫ T

s

ut
(
r,X t,x(r−)

)
dr

+
∫ T

s

ux
(
r,X t,x(r−)

)
dX t,x(r)

+
∫ T

s

1

2
uxx

(
r,X t,x(r−)

)
σ 2(X t,x(r−)

)
dr

+
∫ T

s

∫
R

(
u
(
r,X t,x(r−)+ γ

(
X t,x(r−), z

))

− u
(
r,X t,x(r−)

) − ux
(
r,X t,x(r−)

)
γ
(
X t,x(r−), z

))
N(dr, dz),

t ≤ s ≤ T .

Since the process X satisfies (4.1) and the function u satisfies (4.14), we derive

g
(
X t,x(T )

) = u
(
s,X t,x(s)

) −
∫ T

s

f
(
r,X t,x(r−), u

(
r,X t,x(r−)

)
,

ux
(
r,X t,x(r−)

)
σ
(
X t,x(r−)

)
,J u

(
r,X t,x(r−)

))
dr

+
∫ T

s

ux
(
r,X t,x(r−)

)
σ
(
X t,x(r−)

)
dW(r)

+
∫ T

s

∫
R

(
u
(
r,X t,x(r−)+ γ

(
X t,x(r−), z

))

−u
(
r,X t,x(r−)

))
Ñ(dr, dz), t ≤ s ≤ T . (4.17)

Hence, the candidate solution (4.15) satisfies the BSDE (4.5). By the growth con-
ditions for σ , γ , u, ux and the moment estimates for X we can show that
(Y t,x,Zt,x,Ut,x) ∈ S

2(R)×H
2(R)×H

2
N(R). By uniqueness of solution the candi-

date solution (4.15) is the unique solution to the BSDE (4.5). Representation (4.16)
can be established by taking the conditional expectation of (4.17). �

Theorem 4.2.1 establishes a probabilistic representation of a solution to the PIDE
(4.14). The result of that theorem shows that we can find the unique solution to the
BSDE (4.5), which has the representation (4.16), by finding the unique solution to
the PIDE (4.14). In the case when the generator f is independent of (Y,Z,U) we re-
cover the classical Feynman-Kac formula, which is well-known in financial mathe-
matics and option pricing. In the general case, we have the non-linear Feynman-Kac
formula.

Theorem 4.2.1 relies on the smoothness assumption for u. We cannot always
expect that a smooth function u solves (4.14), see Sect. 12.2 in Cont and Tankov
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(2004) and the discussion at the end of Sect. 4.3. In order to relax smoothness as-
sumption, we can work with the concept of a viscosity solution, see Definition 3.1
and Lemma 3.3 in Barles et al. (1997).

Definition 4.2.1 We say that u ∈ C ([0, T ] ×R) is

(i) a viscosity subsolution to (4.14) if

u(T , x)≤ g(x), x ∈R,

and for any ϕ ∈ C 1,2([0, T ] × R), whenever (t, x) ∈ [0, T ] × R is a global
maximum point of u− ϕ, we have

−ϕt (t, x)− L ϕ(t, x)− f
(
t, x, u(t, x),ϕx(t, x)σ (t, x),J ϕ(t, x)

) ≤ 0.

(ii) a viscosity supersolution to (4.14) if

u(T , x)≥ g(x), x ∈R,

and for any ϕ ∈ C 1,2([0, T ] × R), whenever (t, x) ∈ [0, T ] × R is a global
minimum point of u− ϕ, we have

−ϕt (t, x)− L ϕ(t, x)− f
(
t, x, u(t, x),ϕx(t, x)σ (t, x),J ϕ(t, x)

) ≥ 0.

(iii) a viscosity solution to (4.14) if it is both viscosity sub and supersolution
to (4.14).

We now prove that the unique solution to the BSDE (4.5) is linked to the unique
viscosity solution to the PIDE (4.14).

Theorem 4.2.2 Assume that (B1)–(B6) hold. Let Y t,x be the unique solution to the
FBSDE (4.1), (4.5). The function u(t, x) = Y t,x(t) is the unique viscosity solution
to the PIDE (4.14) in the class of solutions that satisfy the growth condition

lim|x|→∞
∣∣u(t, x)∣∣e−c log2(|x|) = 0, 0 ≤ t ≤ T , c > 0.

Proof By Theorem 4.1.3 and Proposition 4.1.1 there exist a unique solution
(Y t,x,Zt,x,Ut,x) to (4.5) and a measurable function u such that Y t,x(s) =
u(s,X t,x(s)), t ≤ s ≤ T . We prove that u(t, x)= Y t,x(t) is a subsolution to (4.14).
By Lemma 4.1.1 u is continuous on [0, T ] × R. Choose (t, x) ∈ [0, T ] × R and
ϕ ∈ C 1,2([0, T ] ×R) such that ϕ(t, x) = u(t, x) and ϕ ≥ u on [0, T ] ×R. For any
ϕ ∈ C 1,2([0, T ] × R) we can find a sequence of continuously differentiable func-
tions with bounded derivatives ϕn ∈ C ∞

b ([0, T ]×R) such that (ϕn)n≥1 (its first and
second derivatives) converges to ϕ (its first and second derivatives) uniformly on
compacts, see the proof of Theorem 4.2 in El Karoui et al. (1997b). Hence, we can
prove the subsolution property for ϕn ∈ C ∞

b ([0, T ] ×R) and then take the limit. In
the sequel w.l.o.g. we consider ϕ ∈ C ∞

b ([0, T ] ×R).
1. Initial estimates. Choose h > 0 such that t + h ≤ T . The solution to (4.5)

satisfies the equation
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Y(s) = u
(
t + h,X t,x(t + h)

)

+
∫ t+h

s

f

(
r,X t,x(r−), Y (r−),Z(r−),

∫
R

U(r, z)δ(z)ν(dz)

)
dr

−
∫ t+h

s

Z(r)dW(r)−
∫ t+h

s

∫
R

U(r, z)Ñ(dr, dz), t ≤ s ≤ t + h. (4.18)

Consider the BSDE

Ȳ (s) = ϕ
(
t + h,X t,x(t + h)

)

+
∫ t+h

s

f

(
r,X t.x(r−), Ȳ (r−), Z̄(r),

∫
R

Ū (r, z)δ(z)ν(dz)

)
dr

−
∫ t+h

s

Z̄(r)dW(r)−
∫ t+h

s

∫
R

Ū (r, z)Ñ(dr, dz), t ≤ s ≤ t + h.

(4.19)

Since ϕ ∈ C ∞
b ([0, T ] × R) and X t,x satisfies (4.2), from Theorem 4.1.3 we con-

clude that there exists a unique solution (Ȳ , Z̄, Ū ) ∈ S
2(R) × H

2(R) × H
2
N(R) to

(4.19). Since ϕ ≥ u, by Theorem 3.2.1 and the comparison between (4.18) and
(4.19) we obtain

Ȳ (s)≥ Y(s), t ≤ s ≤ t + h. (4.20)

Define

Θ(t, x) = ϕt (t, x)+ L ϕ(t, x), (t, x) ∈ [0, T ] ×R,

Γ (t, x, z) = ϕ
(
t, x + γ (x, z)

) − ϕ(t, x), (t, x) ∈ [0, T ] ×R.

From assumptions (B1)–(B3) and ϕ ∈ C ∞
b ([0, T ]×R) we can deduce the following

growth conditions
∣∣Θ(t, x)

∣∣ ≤K
(
1 + |x|2), ∣∣Γ (t, x, z)

∣∣ ≤K(1 ∧ z), (t, x, z) ∈ [0, T ] ×R×R.
(4.21)

We now define

Ŷ (s) = Ȳ (s)− ϕ
(
s,X t,x(s)

)
, t ≤ s ≤ t + h,

Ẑ(s) = Z̄(s)− ϕx
(
s,X t,x(s)

)
σ
(
X t,x(s−)

)
, t ≤ s ≤ t + h,

Û(s, z) = Ū (s, z)− Γ
(
s,X t,x(s−), z

)
, t ≤ s ≤ t + h,

and by the Itô’s formula we have

ϕ
(
s,X t,x(s)

)

= ϕ
(
t + h,X t,x(t + h)

) −
∫ t+h

s

Θ
(
r,X t,x(r−)

)
dr
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−
∫ t+h

s

ϕx
(
r,X t,x(r−)

)
σ
(
X t,x(r−)

)
dW(r)

−
∫ t+h

s

∫
R

Γ
(
r,X t,x(r−), z

)
Ñ(dr, dz), t ≤ s ≤ t + h. (4.22)

From (4.19) and (4.22) it is easy to observe that (Ŷ , Ẑ, Û ) ∈ S
2(R) × H

2(R) ×
H

2
N(R) is the unique solution to the BSDE

Ŷ (s) =
∫ t+h

s

{
Θ

(
r,X t,x(r−)

) + f

(
r,X t,x(r−), ϕ

(
r,X t,x(r−)

)

+ Ŷ (r−), ϕx
(
r,X t,x(r−)

)
σ
(
X t,x(r−)

) + Ẑ(r),

∫
R

(
Γ

(
r,X t,x(r−), z

) + Û (r, z)
)
δ(z)ν(dz)

)}
dr

−
∫ T

s

Ẑ(r)dW(r)−
∫ T

s

∫
R

Û (r, z)Ñ(dr, dz), t ≤ s ≤ t + h. (4.23)

Applying the a priori estimate (3.18) to the BSDE (4.23), we get

E

[∣∣Ŷ (s)∣∣2 +
∫ t+h

s

∣∣Ẑ(r)∣∣2
dr +

∫ t+h

s

∫
R

∣∣Û (r, z)
∣∣2
ν(dz)dr

]

≤KE

[∫ t+h

s

∣∣Ŷ (r)∣∣
∣∣∣∣Θ

(
r,X t,x(r)

)

+ f

(
r,X t,x(r), ϕ

(
r,X t,x(r)

)
, ϕx

(
r,X t,x(r)

)
σ
(
X t,x(r)

)
,

∫
R

Γ
(
r,X t,x(r), z

)
δ(z)ν(dz)

)∣∣∣∣dr
]

≤KE

[∫ t+h

s

∣∣Ŷ (r)∣∣(1 + ∣∣X t,x(r)
∣∣2)

dr

]

≤KE

[∫ t+h

s

∣∣Ŷ (r)∣∣(1 + |x|2 + ∣∣X t,x(r)− x
∣∣2)

dr

]

≤KE

[∫ t+h

s

(∣∣Ŷ (r)∣∣ + ∣∣Ŷ (r)∣∣2 + ∣∣X t,x(r)− x
∣∣4)

dr

]
, t ≤ s ≤ t + h, (4.24)

where we use the growth conditions for f , σ , Θ , Γ and the assumption that ϕ ∈
C ∞
b ([0, T ] ×R). By the classical estimate |y| ≤ 1 + |y|2 and the moment estimate

(4.2) we derive
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E
[∣∣Ŷ (s)∣∣2] ≤ KE

[∫ t+h

s

(
1 + ∣∣Ŷ (r)∣∣2 + h

)
dr

]

≤ K

(
h+ h2 +E

[∫ t+h

s

∣∣Ŷ (r)∣∣2
dr

])
, t ≤ s ≤ t + h,

and applying the Gronwall’s inequality, see Lemma 3 in Cohen (2011), for suffi-
ciently small h > 0 we have

E
[∣∣Ŷ (s)∣∣2] ≤K

(
h+ h2)eKh ≤Kh, t ≤ s ≤ t + h,

and

E
[∣∣Ŷ (s)∣∣] ≤Kh1/2, t ≤ s ≤ t + h. (4.25)

Combining (4.24), (4.25) and (4.2), for sufficiently small h > 0 we can now derive

E

[∫ t+h

t

∣∣Ẑ(r)∣∣2
dr +

∫ t+h

t

∫
R

∣∣Û (r, z)
∣∣2
ν(dz)dr

]

≤K

∫ t+h

t

(
h1/2 + h+ h

)
dr ≤Khh1/2. (4.26)

2. The proof of the subsolution property by contradiction. Suppose that for the
chosen (t, x) we have

−ϕt (t, x)− L ϕ(t, x)− f
(
t, x, u(t, x),ϕx(t, x)σ (x),J ϕ(t, x)

)
> 0. (4.27)

Consequently, there exist ε > 0 and h0 > 0, h′
0 > 0 such that for t − h0 ≤ r ≤ t +

h0, x − h′
0 ≤ y ≤ x + h′

0 we have

−ϕt (r, y)− L ϕ(r, y)− f
(
r, y,ϕ(r, y),ϕx(r, y)σ (y),J ϕ(r, y)

) ≥ ε. (4.28)

Choose small h > 0 such that h < h0. Define

ζh = 1

h
E

[∫ t+h

t

V
(
r,X t,x(r)

)
dr

]
, (4.29)

where

V (r, y)= ϕt (r, y)+ L ϕ(r, y)+ f
(
r, y,ϕ(r, y),ϕx(r, y)σ (y),J ϕ(r, y)

)
.

From (B1)–(B5) and (4.21) we can deduce the growth condition
∣∣V (r, y)

∣∣ ≤K
(
1 + |y|2), (r, y) ∈ [0, T ] ×R. (4.30)

We introduce a stopping time

τ = inf
{
s ≥ t : ∣∣X t,x(s)− x

∣∣> h′
0

}
.
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By the moment estimate (4.2) and the Chebyshev inequality we establish

P(τ ≤ h) = P

(
sup

t≤s≤t+h

∣∣X t,x(s)− x
∣∣> h′

0

)

≤ E[supt≤s≤t+h |X t,x(s)− x|2]
|h′

0|2
≤Kh. (4.31)

By (4.28), (4.30), (4.31) and the Cauchy-Schwarz inequality we derive

ζh = 1

h
E

[∫ t+h

t

V
(
r,X t,x(r)

)
dr1{τ > h}

]
+ 1

h
E

[∫ t+h

t

V
(
r,X t,x(r)

)
dr1{τ ≤ h}

]

≤ −εP(τ > h)+ 1

h

√
P(τ ≤ h)

√
h

√
E

[∫ t+h

t

∣∣V (
r,X t,x(r)

)∣∣2
dr

]

≤ −ε(1 −Kh)+K
√
h

√
E

[
1 + sup

t≤s≤t+h

∣∣X t,x(s)
∣∣4

]
, (4.32)

which shows that if (4.27) holds then there exist ε0 > 0 and h′′
0 > 0 such that for

all h < h′′
0 we have ζh ≤ −ε0. From (4.20) we now conclude that Ŷ (t) = Ȳ (t) −

ϕ(t,X t,x(t)) = Ȳ (t) − ϕ(t, x) = Ȳ (t) − u(t, x) = Ȳ (t) − Y t,x(t) ≥ 0, and from
(4.23) we obtain

0 ≤ 1

h
Ŷ (t)

= 1

h
E

[∫ t+h

t

Θ
(
r,X t,x(r)

)
dr +

∫ t+h

t

f

(
r,X t,x(r), ϕ

(
r,X t,x(r)

)

+ Ŷ (r), ϕx
(
r,X t,x(r)

)
σ
(
X t,x(r)

) + Ẑ(r),

∫
R

(
Γ

(
r,X t,x(r), z

) + Û (r, z)
)
δ(z)ν(dz)

)
dr

]
. (4.33)

Finally, from (4.29), (4.32) and (4.33) we conclude that for sufficiently small h > 0
we must have

ε0 ≤
∣∣∣∣ 1

h
Ŷ (t)− ζh

∣∣∣∣

= 1

h

∣∣∣∣E
[∫ t+h

t

f

(
r,X t,x(r), ϕ

(
r,X t,x(r)

) + Ŷ (r),

ϕx
(
r,X t,x(r)

)
σ
(
X t,x(r)

) + Ẑ(r),

∫
R

(
Γ

(
r,X t,x(r), z

) + Û (r, z)
)
δ(z)ν(dz)

)
dr
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−
∫ t+h

t

f

(
r,X t,x(r), ϕ

(
r,X t,x(r)

)
, ϕx

(
r,X t,x(r)

)
σ
(
X t,x(r)

)
,

∫
R

Γ
(
r,X t,x(r), z

)
δ(z)ν(dz)

)
dr

]∣∣∣∣

≤ KE

[
1

h

∫ t+h

t

∣∣Ŷ (r)∣∣dr + 1

h

∫ t+h

t

∣∣Ẑ(r)∣∣dr + 1

h

∫ t+h

t

∫
R

∣∣Û (r, z)δ(z)
∣∣ν(dz)dr

]

≤ K

(
sup

r∈[t,t+h]
E

[∣∣Ŷ (r)∣∣]

+
(

1

h
E

[∫ t+h

t

∣∣Ẑ(r)∣∣2
dr

])1/2

+
(

1

h
E

[∫ t+h

t

∫
R

∣∣Û (r, z)
∣∣2
ν(dz)dr

])1/2)

≤ K
(
h1/2 + h1/4 + h1/4) ≤Kh1/4,

where we use the Lipschitz property of f and estimates (4.25) and (4.26). We have
obtain a contradiction for sufficiently small h > 0. Hence, inequality (4.27) cannot
hold and u is a subsolution to (4.14).

The supersolution property of u is proved in an analogous way. For the unique-
ness we refer to Theorem 3.5 in Barles et al. (1997). �

Theorem 4.2.2 characterizes the unique solution Y to the BSDE (4.5) by the
unique viscosity solution to the PIDE (4.14). This characterization does not re-
quire smoothness assumptions. However, in applications we have to derive the con-
trol processes Z and U which cannot be characterized in the framework of Theo-
rem 4.2.2. We first use Theorem 4.2.2 to find the unique viscosity solution to the
PIDE (4.14). Next, under some additional smoothness assumptions we apply Theo-
rem 4.2.1 or 4.1.4 to derive the control processes.

4.3 Coupled FBSDEs

The FBSDE (4.1), (4.5) is called a decoupled forward-backward stochastic differen-
tial equation. In this book we focus on decoupled FBSDEs of the form (4.1), (4.5),
which arise in most applications, but it is also worth introducing coupled FBSDEs.
We point out that coupled FBSDEs extend the range of possible applications of
BSDEs. In Sect. 14.1 we give a financial application of a coupled FBSDE.

We consider the coupled forward-backward stochastic differential equation

X (t) = x +
∫ t

0
μ

(
X (s−), Y (s−),Z(s),

∫
R

U(s, z)δ(z)ν(dz)

)
ds

+
∫ t

0
σ
(
X (s−), Y (s−)

)
dW(s)
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+
∫ t

0

∫
R

γ
(
X (s−), Y (s−), z

)
Ñ(ds, dz), 0 ≤ t ≤ T ,

Y (t) = g
(
X (T )

) +
∫ T

t

f

(
s,X (s−), Y (s−),Z(s),

∫
R

U(s, z)δ(z)ν(dz)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (4.34)

Now, not only do the terminal condition and the generator of the backward SDE
depend on a solution to the forward SDE, but a solution to the backward SDE also
affects the coefficients of the forward SDE. We are interested in finding a solution
(X , Y,Z,U) ∈ S

2(R) × S
2(R) × H

2(R) × H
2
N(R) to the system (4.34). This is

much more difficult, compared to the decoupled case, due to the interactions be-
tween the backward and forward components. We still assume that N is a Poisson
random measure.

As in Sects. 4.1 and 4.2, we aim to derive a PIDE for a function which could
characterize the solution to the FBSDE. We present heuristic reasoning. Assume
that there exists a solution (X , Y,Z,U) to (4.34). We expect that there exists a
measurable function u such that Y(t) = u(t,X (t)). Let u ∈ C 1,2([0, T ] × R). We
apply the Itô’s formula and we derive

dY (t)

= du
(
t,X (t)

)

=
{
ut

(
t,X (t−)

)

+ ux
(
t,X (t−)

)
μ

(
X (t−), u

(
t,X (t−)

)
,Z(t),

∫
R

U(t, z)δ(z)ν(dz)

)

+ 1

2
uxx

(
t,X (t−)

)
σ 2(X (t−), u

(
t,X (t−)

))

+
∫
R

(
u
(
t,X (t−)+ γ

(
X (t−), u

(
t,X (t−)

)
, z

)) − u
(
t,X (t−)

)

− ux
(
t,X (t)

)
γ
(
X (t), u

(
t,X (t)

)
, z

))
ν(dz)

}
dt

+ ux
(
t,X (t−)

)
σ
(
X (t−), u

(
t,X (t−)

))
dW(t)

+
∫
R

(
u
(
t,X (t−)+γ

(
X (t−), u

(
t,X (t−)

)
, z

))

− u
(
t,X (t−)

))
Ñ(dt, dz). (4.35)

Comparing the coefficients in (4.34) and (4.35), we deduce

−f

(
t,X (t−), u

(
t,X (t−)

)
,Z(t),

∫
R

U(t, z)δ(z)ν(dz)

)
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= ut
(
t,X (t−)

)

+ ux
(
t,X (t−)

)
μ

(
X (t−), u

(
t,X (t−)

)
,Z(t),

∫
R

U(t, z)δ(z)ν(dz)

)

+ 1

2
uxx

(
t,X (t−)

)
σ 2(X (t−), u

(
t,X (t−)

))

+
∫
R

(
u
(
t,X (t−)+ γ

(
X (t−), u

(
t,X (t−)

)
, z

)) − u
(
t,X (t−)

)

− ux
(
t,X (t−)

)
γ
(
X (t−), u

(
t,X (t−)

)
, z

))
ν(dz), 0 ≤ t ≤ T ,

u
(
T ,X (T )

) = g
(
X (T )

)
,

(4.36)

and

Z(t) = ux
(
t,X (t−)

)
σ
(
X (t−), u

(
t,X (t−)

))
, 0 ≤ t ≤ T ,

U(t, z) = u
(
t,X (t−)+ γ

(
X (t−), u

(
t,X (t−)

)
, z

))
(4.37)

− u
(
t,X (t−)

)
, 0 ≤ t ≤ T , z ∈R.

We can define the scheme

(S1) Solve the PIDE

−ut (t, x)− ux(t, x)μ

(
x,u(t, x), ux(t, x)σ

(
x,u(t, x)

)
,

∫
R

(
u
(
t, x + γ

(
x,u(t, x), z

)) − u(t, x)
)
δ(z)ν(dz)

)

− 1

2
uxx(t, x)σ

2(x,u(t, x))

−
∫
R

(
u
(
t, x + γ

(
x,u(t, x), z

)) − u(t, x)− ux(t, x)γ
(
x,u(t, x), z

))
ν(dz),

− f

(
t, x, u(t, x), ux(t, x)σ

(
x,u(t, x)

)
,

∫
R

(
u
(
t, x + γ

(
x,u(t, x), z

)) − u(t, x)
)
δ(z)ν(dz)

)
= 0,

(t, x) ∈ [0, T )×R, u(T , x)= g(x), x ∈R.

(S2) Using u, solve the forward SDE

X (t)

= x +
∫ t

0
μ

(
X (s−), u

(
s,X (s−)

)
,
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ux
(
s,X (s−)

)
σ
(
X (s−), u

(
s,X (s−)

))
,∫

R

(
u
(
s,X (s−)+ γ

(
X (s−), u

(
s,X (s−)

)
, z

))

− u
(
s,X (s−)

))
δ(z)ν(dz)

)
ds

+
∫ t

0
σ
(
X (s−), u

(
s,X (s−)

))
dW(s)

+
∫ t

0

∫
R

γ
(
X (s−), u

(
s,X (s−)

)
, z

)
Ñ(ds, dz), 0 ≤ t ≤ T ,

(S3) Set

Y(t) = u
(
t,X (t)

)
, 0 ≤ t ≤ T ,

Z(t) = ux
(
t,X (t−)

)
σ
(
X (t−), u

(
t,X (t−)

))
, 0 ≤ t ≤ T ,

U(t, z) = u
(
t,X (t−)+ γ

(
X (t−), u

(
t,X (t−)

)
, z

)) − u
(
t,X (t−)

)
,

0 ≤ t ≤ T , z ∈ R.

The scheme (S1)–(S3) is closely related to the four step scheme which was orig-
inally developed by Ma et al. (1994) for BSDEs driven by Brownian motions. We
present the scheme by Ma et al. (2010) which is designed for BSDEs driven by a
Brownian motion and a Poisson random measure. However, the scheme does not
allow for dependence of σ and γ on (Z,U). In the case when σ and γ are indepen-
dent of (Z,U), the control processes can be directly determined by (4.37) and only
three steps are needed to solve (4.34). Otherwise, a preliminary step is needed to
determine the control processes (Z,U). To the best of our knowledge, the general
case with σ and γ dependent on (Z,U) has not been considered for fully coupled
FBSDEs driven by Brownian motions and random measures.

Theorem 4.3.1 Consider the scheme (S1)–(S3). Assume that

(i) the random measure N is a Poisson random measure generated by a Lévy
process with a Lévy measure ν,

(ii) μ, σ , γ and f are smooth functions with first order bounded derivatives,
(iii) |μ(x,0,0,0)| + |f (t, x,0, z, u)| ≤K for all (t, x, z, u) ∈ [0, T ] ×R×R×R,
(iv) 0 < ε ≤ σ 2(x, y)≤K for all (x, y) ∈R×R,
(v) γ (0,0, z)≤K(1 ∧ |z|2) and |δ(z)| ≤K(1 ∧ |z|) for all z ∈R,

(vi) g ∈ C 2+α(R) for some α ∈ (0,1) and g is bounded in C 2+α .

There exists a unique solution u ∈ C 1,2([0, T ]×R) to the PIDE defined in (S1). The
quadruple (X , Y,Z,U) defined in (S2)–(S3) is the unique solution to the coupled
FBSDE (4.34), and (X , Y,Z,U) ∈ S

2(R)× S
2(R)×H

2(R)×H
2
N(R).

For the proof we refer to Theorem 2 in Ma et al. (2010). We remark that a func-
tion is called smooth if it posses partial derivatives of all necessary orders, see Ma
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et al. (2010). The space C 2+α contains twice differentiable functions with α-Hölder
continuous second derivative. In particular, Theorem 4.3.1 gives assumptions under
which Theorem 4.2.1 can be applied.

The application of Theorem 4.3.1 relies on the existence of a smooth solution
to the PIDE. It is known that we should deal with a non-degenerate PIDE to have
a smooth solution, see Chap. 12 in Cont and Tankov (2004). In our framework,
σ 2(x, y) ≥ ε > 0 is the key assumption which guarantees that there exists a unique
smooth solution to the PIDE. In fact, the non-degeneracy of σ is responsible for
solvability of coupled FBSDEs. As pointed out by Ma and Yong (1995), in order to
make a fully coupled FBSDE solvable, it is necessary that the forward diffusion is
“random enough”. This is an important difference compared to a decoupled FBSDE
which has a unique solution even for a degenerate volatility coefficient σ . Notice
that in the case of a coupled FBSDE we used a PIDE to establish the existence of a
unique solution to the FBSDE, whereas in the case of a decoupled FBSDE we used
the method of contraction (see Theorem 3.1.1) to prove the existence of a unique
solution. If we used the method of contraction for a coupled FBSDE, then we could
only conclude that there exists a unique solution for sufficiently small time horizon
or sufficiently small Lipschitz constant of the generator. It turns out that assumptions
(B1)–(B5) are not enough to guarantee the existence of a unique solution to a cou-
pled FBSDE and some additional assumptions have to be introduced. Theorem 4.3.1
shows that if we consider smooth coefficients and a non-degenerate volatility coef-
ficient, then we can construct the unique solution by the scheme (S1)–(S3). Let us
point out that the four step scheme by Ma et al. (1994) was the first method for solv-
ing coupled FBSDEs which removed the restriction on the time horizon or the Lip-
schitz constant. Instead, strong regularity of the coefficients is required. In general,
a coupled FBSDE may have multiple solutions or may not have a solution. Multi-
ple solutions and non-existence of a solution to a coupled FBSDE are discussed in
Sect. 14.1.

Bibliographical Notes The proofs of Lemma 4.1.1, Theorems 4.1.4 and 4.2.1
are inspired by El Karoui et al. (1997b) and extended to cover the case of a Poisson
random measure, see also Barles et al. (1997). The proof of Theorem 4.2.2 is taken
from Barles et al. (1997). We note that the derivative ux can be characterized as a
solution to a FBSDE. Differentiability of a solution to a BSDE with respect to the
initial condition of a forward SDE is studied in El Karoui et al. (1997b), Ankirchner
et al. (2007) and Bouchard and Elie (2008). Fully coupled FBSDEs driven by Brow-
nian motions are deeply studied in the monograph by Ma and Yong (2000). More
recent methods of solving coupled FBSDEs are discussed by Ma et al. (2011).



Chapter 5
Numerical Methods for FBSDEs

Abstract We investigate numerical methods for forward-backward stochastic dif-
ferential equations driven by a Brownian motion and a compensated Poisson random
measure. We consider three approaches to solving FBSDEs. We apply discrete-time
approximations and we derive recursive representations of the solution involving
conditional expected values. In order to estimate the conditional expected values,
we use Least Squares Monte Carlo which overcomes nested Monte Carlo simula-
tions. In the case of a FBSDE driven by a Brownian motion and a compensated
Poisson process we replace the original driving noises by discrete-space martin-
gales. We also use the connection with partial integro-differential equations and we
present an explicit-implicit finite difference method for solving a PIDE.

We continue the study of (decoupled) forward-backward stochastic differential
equations driven by a Brownian motion and a compensated Poisson random mea-
sure, which we introduced in the previous chapter. In most cases we cannot derive
the solution to a FBSDE in an explicit form and we have to apply a numerical
method to solve a FBSDE. In this chapter we investigate three approaches to solv-
ing FBSDEs numerically.

5.1 Discrete-Time Approximation and Least Squares Monte
Carlo

Let assumptions (B1)–(B5) from Chap. 4 hold. We deal with the forward-backward
stochastic differential equation

X (t) = x +
∫ t

0
μ

(
X (s−)

)
ds +

∫ t

0
σ
(
X (s−)

)
dW(s)

+
∫ t

0

∫
R

γ
(
X (s−), z

)
Ñ(ds, dz), 0 ≤ t ≤ T ,

(5.1)

Y(t) = g
(
X (T )

) +
∫ T

t

f

(
s,X (s−), Y (s−),Z(s),

∫
R

U(s, z)δ(z)ν(dz)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .
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We denote

Ψ (t)=
∫
R

U(t, z)δ(z)ν(dz), 0 ≤ t ≤ T .

First, we consider the case of the random measure N generated by a compound
Poisson process.

We aim to solve the FBSDE (5.1). An intuitive idea is to discretize the forward
and the backward equation in the spirit of the Euler method. We choose a regular
time grid π = {ti = ih, i = 0,1, . . . , n} with step h= T

n
. The solution to the forward

equation (5.1) is approximated by

X n(0)= x,

X n(ti+1)= X n(ti)+μ
(
X n(ti)

)
h+ σ

(
X n(ti)

)
�W(i + 1) (5.2)

+
∫
R

γ
(
X n(ti), z

)
Ñ

(
(ti , ti+1], dz

)
, i = 0, . . . , n− 1.

where �W(i + 1) = W(ti+1) − W(ti) denotes the increment of the Brownian
motion. Clearly, there exists a unique F -adapted, square integrable solution X n

to (5.2). We set X n(t) = X n(ti), ti ≤ t < ti+1. If we apply the Euler-type dis-
cretization to the backward equation (5.1), we obtain

Yn(T )= g
(
X n(T )

)
,

Y n(ti)= Yn(ti+1)+ f

(
ti ,X

n(ti), Y
n(ti),Z

n(ti),

∫
R

Un(ti , z)δ(z)ν(dz)

)
h

−Zn(ti)�W(i + 1)−
∫
R

Un(ti , z)Ñ
(
(ti , ti+1], dz

)
, i = n− 1, . . . ,0.

(5.3)

Unfortunately, the discrete-time equation (5.3) does not have a solution since the
time-discretized Brownian motion and compound Poisson process do not have the
predictable representation property, see Briand et al. (2002). However, we use the
following backward recursion

Yn(T ) = g
(
X n(T )

)
,

Zn(ti) = 1

h
E

[
Yn(ti+1)�W(i + 1)|Fti

]
, i = n− 1, . . . ,0,

Ψ n(ti) = 1

h
E

[
Yn(ti+1)

∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]
, i = n− 1, . . . ,0, (5.4)

Yn(ti) = E
[
Yn(ti+1)|Fti

]
+ f

(
ti ,X

n(ti), Y
n(ti),Z

n(ti),Ψ
n(ti)

)
h, i = n− 1, . . . ,0.

We set Yn(t) = Yn(ti), Zn(t) = Zn(ti), Ψ n(t) = Ψ n(ti), ti ≤ t < ti+1. The back-
ward recursion (5.4) can be derived by a heuristic reasoning. Let us first recall that
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for square integrable martingales M1 and M2 we have

E
[
M1(T )M2(T )

] = E
[[M1,M2](T )

]
, (5.5)

see Corollary II.27.3 in Protter (2004). If we multiply (5.3) by �W(i + 1) and∫
R
δ(z)Ñ((ti , ti+1], dz), take the conditional expected value and use (5.5), then we

obtain

E
[
Yn(ti+1)�W(i + 1)|Fti

] = E
[
Zn(ti)|�W(i + 1)|2|Fti

] = Zn(ti)h,

E

[
Yn(ti+1)

∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]

= E

[∫
R

Un(ti , z)Ñ
(
(ti , ti+1], dz

)∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]

= E

[[∫ .

ti

∫
R

Un(ti , z)Ñ(dt, dz),

∫ .

ti

∫
R

δ(z)Ñ(dt, dz)

]
(ti+1)|Fti

]

= E

[∫
R

Un(ti , z)δ(z)N
(
(ti , ti+1], dz

)|Fti

]

=
∫
R

Un(ti, z)δ(z)ν(dz)h = Ψ n(ti)h,

and the formulas for Zn,Ψ n can be established. If we take the condition expected
value on both sides of (5.3), then the formula for Yn can be established.

The next theorem justifies the approximations (5.2) and (5.4), see Theorem 2.1,
Corollary 2.1 and Remark 2.7 in Bouchard and Elie (2008).

Theorem 5.1.1 Consider the FBSDE (5.1) and the random measure N generated
by a compound Poisson process. Assume that (B2)–(B5) from Sect. 4.1 hold and
let the generator f be 1/2-Hölder continuous in t . We deal with the approxima-
tions (5.2) and (5.4) of the solution to the FBSDE (5.1). We have

max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣X (t)− X n(ti)

∣∣2
]

+ max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣Y(t)− Yn(ti)

∣∣2
]

+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z(t)−Zn(ti)
∣∣2
dt

]
≤K

1

n
,

E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Ψ (t)−Ψ n(ti)
∣∣2
dt

]
≤K

(
1

n

)1−ε

, ε > 0.

In addition, if for each z ∈ R the mapping x �→ γ (x, z) is differentiable and
∣∣γx(x, z)+ 1

∣∣ ≥K > 0, (x, z) ∈ R×R,
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then

max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣X (t)− X n(ti)

∣∣2
]

+ max
i=0,1,...,n−1

E

[
sup

t∈[ti ,ti+1]
∣∣Y(t)− Yn(ti)

∣∣2
]

+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Z(t)−Zn(ti)
∣∣2
dt

]

+E

[
n−1∑
i=0

∫ ti+1

ti

∣∣Ψ (t)−Ψ n(ti)
∣∣2
dt

]
≤K

1

n
.

We remark that deriving Yn from (5.4) involves solving a fixed point equation.
For a Lipschitz continuous generator the fixed point procedure of solving (5.4) has
a convergence rate of 1/n. Hence, numerical cost is small. To overcome the fixed
point procedure, we can use the following scheme

Yn(T ) = g
(
X n(T )

)
,

Zn(ti) = 1

h
E

[
Yn(ti+1)�W(i + 1)|Fti

]
, i = n− 1, . . . ,0,

Ψ n(ti) = 1

h
E

[
Yn(ti+1)

∫
R

δ(z)Ñ
(
(ti , ti+1], dz

)|Fti

]
, i = n− 1, . . . ,0,

Y n(ti) = E
[
Yn(ti+1)

+ f
(
ti ,X

n(ti), Y
n(ti+1),Z

n(ti),Ψ
n(ti)

)
h|Fti

]
, i = n− 1, . . . ,0,

but more complicated conditional expected values have to be calculated instead.
The algorithm (5.4) is still not an implementable scheme since the conditional ex-

pectations have to be estimated. Performing Monte Carlo simulations at each point ti
would lead to so-called nested simulations and an enormous numerical cost. Least
Squares Monte Carlo can overcome nested simulations.

By the Markov property the conditional expected values in (5.4) can be repre-
sented as functions of the state process X . The idea is to approximate the unknown
functions by their projections on finite-dimensional function bases. At each point
ti we choose 3 function bases (bl,i (·))l=0,1,2 and we approximate each conditional
expected value in a vector space spanned by the basis. Each basis bl,i(·) is a dl,i -
dimensional vector of scalar functions. The vector space spanned by bl,i is denoted

by αbl,i(·)= ∑dl,i
k=1 αkb

k
l,i (·) where α ∈R

dl,i .
We can use the Least Squares Monte Carlo algorithm:

1. Simulate L independent copies of (�Wm(i + 1), i = 0,1, . . . , n − 1, m =
1, . . . ,L) and (Ñm((ti , ti+1], .), i = 0,1, . . . , n− 1, m= 1, . . . ,L),

2. Simulate L independent copies of (X n,m(ti), i = 1, . . . , n, m= 1, . . . ,L),
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3. Set Ŷ (T ,X n,m(T ))= g(X n,m(T )) for m= 1, . . . ,L,
4. Choose function bases (bl,i (.))l=0,1,2,i=0,1,...,n−1,
5. Going backwards, for i = n − 1, . . . ,0 solve the least squares regression prob-

lems

α1,i = arg inf
α

{
1

L

L∑
i=1

∣∣∣∣ 1

h
Ŷ

(
ti+1,X

n,m(ti+1)
)
�Wm(i+1)−αb1,i

(
X n,m(ti)

)∣∣∣∣
2
}
,

α2,i = arg inf
α

{
1

L

L∑
i=1

∣∣∣∣ 1

h
Ŷ

(
ti+1,X

n,m(ti+1)
) ∫

R

δ(z)Ñm
(
(ti , ti+1], dz

)

− αb2,i
(
X n,m(ti)

)∣∣∣∣
2
}
,

6. Set Ẑ(ti ,X n,m(ti)) = α1,ib1,i (X n,m(ti)) and Ψ̂ (ti ,X n,m(ti)) = α2,i

× b2,i (X n,m(ti)),
7. Solve the least squares regression problem

α0,i = arg inf
α

{
1

L

L∑
i=1

∣∣Ŷ (
ti+1,X

n,m(ti+1)
) + f

(
ti ,X

n,m(ti),

Ŷ
(
ti+1,X

n,m(ti+1)
)
, Ẑ

(
ti ,X

n,m(ti)
)
, Ψ̂

(
ti ,X

n,m(ti)
))
h

− αb0,i
(
X n,m(ti)

)∣∣2

}
,

8. Set Ŷ (ti ,X h,m(ti))= α0,ib0,i (X n,m(ti)),
9. Continue till t0 = 0.

Polynomials, hypercubes and Voronoi partitions are usually used as basis func-
tions, see Gobet et al. (2005). Notice that when we apply the Least Squares Monte
Carlo algorithm we additionally face the error of approximating the conditional ex-
pectations by estimated regression functions. The total error of the Least Squares
Monte Carlo algorithm depends on the number of time steps n, the number of simu-
lations L and the number of basis functions d . The total error is studied in Bouchard
and Touzi (2004), Gobet et al. (2005), Gobet et al. (2006), Gobet and Lemor (2006).
We also point out that some truncation procedures can be useful in the final appli-
cation of the algorithm, see Gobet et al. (2005).

We comment on one modification of the algorithm presented. It is shown by
Bouchard and Touzi (2004), in the case of BSDEs driven by Brownian motions,
that the error of approximating the conditional expectation by an estimator explodes
when the mesh of time partition goes to zero, given the accuracy of the estimator. In
order to control this approximation error one is forced to simulate more paths as the
time partition becomes finer. This significantly increases computational cost. The
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idea of Bender and Denk (2007), who also investigate BSDEs driven by Brownian
motions, is first to approximate the solution (Y,Z) by the Picard iterations

Y I (t) = g
(
X (T )

) +
∫ T

t

f
(
s,X (s), Y I−1(s),ZI−1(s)

)
ds

−
∫ T

t

ZI (s)dW(s), 0 ≤ t ≤ T , (5.6)

and to apply the algorithm (5.4) to derive (Y I ,ZI ). The Picard procedure clearly
introduces an additional error, which converges to zero at geometric rate. The ad-
vantage of the scheme proposed by Bender and Denk (2007) is that the error of
approximating of the conditional expectation by an estimator is reduced and this er-
ror does not explode when the mesh of time partition tends to zero and the number
of the Picard iteration goes to infinity.

Let us now comment on the case when a FBSDE is driven by a general com-
pensated Poisson random measure. It is known that we cannot simulate small jumps
of a Lévy process with an infinite Lévy measure, see Chap. 6 in Cont and Tankov
(2004). The usual procedure is to cut off small jumps of a Lévy process and approx-
imate them by an independent Brownian motion. After cutting off small jumps, we
can investigate a FBSDE driven by a compensated compound Poisson process and
we can apply the algorithm presented in this chapter, see Aazizi (2011) for details.

Finally, we remark that in many applications we end up with a BSDE with zero
generator or with a BSDE with generator independent of (Y,Z,U) for which we
can derive representations of the solution Y and the control processes (Z,U) in
the form of conditional expectations of the state process, see Proposition 4.1.2 and
Chap. 8. In those cases the Monte Carlo algorithm is much simpler.

5.2 Discrete-Time and Discrete-Space Martingale
Approximation

We deal with the forward-backward stochastic differential equation

X (t)= x +
∫ t

0
μ

(
X (s−)

)
ds +

∫ t

0
σ
(
X (s−)

)
dW(s)

+
∫ t

0
γ
(
X (s−)

)
Ñ(ds), 0 ≤ t ≤ T ,

Y (t)= g
(
X (T )

) +
∫ T

t

f
(
s,X (s−), Y (s−),Z(s),U(s)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T ,

(5.7)
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where the measure N is the jump measure of a Poisson process with intensity λ. We
consider a discrete-time approximation to (5.7) and we approximate the Brownian
motion and the compensated random measure by two discrete-space martingales.

We choose a regular time grid π = {ti = ih, i = 0,1, . . . , n} with step h= T
n

. We

define two random walks Wn := (Wn(k), k = 0,1, . . . , n) and Ñn := (Ñn(k), k =
0,1, . . . , n) by

Wn(0)= 0, Wn(k)= √
h

k∑
i=1

ξni , k = 1,2, . . . , n,

Ñn(0)= 0, Ñn(k)=
k∑

i=1

ζ ni , k = 1,2, . . . , n,

(5.8)

where ξn1 , . . . , ξ
n
n are independent Bernoulli random variables with probabilities

P
(
ξnk = 1

) = P
(
ξnk = −1

) = 1

2
,

and ζ n1 , . . . , ζ
n
n are independent Bernoulli random variables with probabilities

P
(
ζ nk = e−λh − 1

) = 1 − P
(
ζ nk = e−λh

) = e−λh.

We also introduce the filtration F n
k = σ(ξn1 , . . . , ξ

n
k , ζ

n
1 , . . . , ζ

n
k ), k = 1, . . . , n. The

random walks Wn and Ñn are F n-discrete-time-space-martingales.
The first result shows that the random walks are good approximations of the

Brownian motion and the compensated Poisson process, see Lemma 3 in Lejay et al.
(2010).

Proposition 5.2.1 The processes (Wn([ t
h
]), Ñn([ t

h
]), 0 ≤ t ≤ T ) converge in the

J1-Skorokhod topology in probability to (W(t), Ñ(t), 0 ≤ t ≤ T ) as n→ ∞.

It is intuitive to approximate the solution to the forward equation (5.7) in the
following way

X n(0)= x,

X n(ti+1)= X n(ti)+μ
(
Xn(ti)

)
h+ √

hσ
(
X n(ti)

)
ξni+1 (5.9)

+ γ
(
X n(ti)

)
ζ ni+1, i = 0,1, . . . , n− 1.

Clearly, there exists a unique F n-adapted, square integrable solution X n to (5.9).
We set X n(t) = X n(ti), ti ≤ t < ti+1. In Sect. 5.1 we claim that the time-
discretized Brownian motion and compound Poisson process do not have the pre-
dictable representation property. However, in some cases an orthogonal martingale
term can be added to recover the predictable representation property, see Briand
et al. (2002) and Lejay et al. (2010). We approximate the solution to the backward
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stochastic differential equation (5.7) by solving the backward stochastic difference
equation

Yn(T )= g
(
X n(T )

)
,

Y n(ti)= Yn(ti+1)+ f
(
ti , Y

n(ti),Z
n(ti),U

n(ti)
)
h

− √
hZn(ti)ξ

n
i+1 −Un(ti)ζ

n
i+1 − V n(ti)ς

n
i+1, i = 0,1, . . . , n− 1,

(5.10)

where (ςni , i = 1, . . . , n) denotes the increments of a third orthogonal discrete-time-
space martingale. By the predictable representation property, for an F n-measurable
X n(T ) there exists a unique F n-adapted solution (Y n,Zn,Un,V n) to the back-
ward equation (5.10). We can also derive that solution. Multiplying both sides of
(5.10) by ξni+1 or ζ ni+1 and taking the conditional expected values, we obtain the
representations

Yn(T )= g
(
X n(T )

)
,

Zn(ti)= 1√
h
E

[
Yn(ti+1)ξ

n
i+1|F n

i

]
, i = n− 1, . . . ,0,

Un(ti)= 1

e−λh(1 − e−λh)
E

[
Yn(ti+1)ζ

n
i+1|F n

i

]
, i = n− 1, . . . ,0, (5.11)

Yn(ti)= E
[
Yn(ti+1)|F n

i

]
+ f

(
ti ,X

n(ti), Y
n(ti),Z

n(ti),U
n(ti)

)
h, i = n− 1, . . . ,0.

We set Yn(t) = Yn(ti), Zn(t) = Zn(ti), Un(t) = Un(ti), ti ≤ t < ti+1. The process
V n can also be derived from (5.10) but it is not needed for the approximation of
the solution to (5.7). Again, a fixed point procedure has to be applied to derive Yn

from (5.11).
We state the main result of this chapter, see Theorem 1 and Proposition 5 in Lejay

et al. (2010).

Theorem 5.2.1 Consider the FBSDE (5.7) and the random measure N generated
by a Poisson process. Assume that (B2)–(B5) from Sect. 4.1 hold and let the gener-
ator f satisfy

∣∣f (t, x, y, z,u)− f
(
t ′, x′, y′, z′, u′)∣∣

≤ ϕ
(
t ′ − t

) +K
(∣∣x − x′∣∣ + ∣∣y − y′∣∣ + ∣∣z− z′∣∣ + ∣∣u− u′∣∣),

for all (t, x, y, z,u), (t ′, x′, y′, z′, u′) ∈ [0, T ] × R × R × R × R, where ϕ is a
bounded, non-decreasing, continuous function such that ϕ(0) = 0. We deal with
the approximations (5.9) and (5.11) of the solution to the FBSDE (5.7).

(a) The process X n converges in the J1-Skorokhod topology in probability to X
as n→ ∞.
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(b) The processes (Y n,
∫ .

0 Z
n(s)ds,

∫ .

0 U
n(s)ds) converge in the J1-Skorokhod

topology in probability to (Y,
∫ .

0 Z(s)ds,
∫ .

0 U(s)ds) as n→ ∞.

The efficiency of the algorithm is studied numerically in Lejay et al. (2010).
In the discrete filtration F n it is straightforward to calculate the conditional ex-

pected values in (5.11). This is the key advantage of the approximation by discrete-
space martingales compared to the Least Squares Monte Carlo method. We can use
the formula

E
[
F

(
ξn1 , . . . , ξ

n
k , ξ

n
k+1, ζ

n
1 , . . . , ζ

n
k , ζ

n
k+1

)|F n
k

]

= F
(
ξn1 , . . . , ξ

n
k ,1, ζ n1 , . . . , ζ

n
k , e

−λh − 1
)e−λh

2

+ F
(
ξn1 , . . . , ξ

n
k ,−1, ζ n1 , . . . , ζ

n
k , e

−λh − 1
)e−λh

2

+ F
(
ξn1 , . . . , ξ

n
k ,1, ζ n1 , . . . , ζ

n
k , e

−λh
)1 − e−λh

2

+ F
(
ξn1 , . . . , ξ

n
k ,−1, ζ n1 , . . . , ζ

n
k , e

−λh
)1 − e−λh

2
.

In a low dimension the random walk approximation can provide a numerically effi-
cient alternative to the Monte Carlo simulation. However, complexity becomes very
large in multidimensional problems.

5.3 Finite Difference Method

In Sect. 4.2 we establish the connection between the solution to a FBSDE and the
solution to a PIDE. The results of that chapter show that in order to derive the
solution to the BSDE (4.5) or (5.1) we can solve the PIDE

− ut (t, x)− L u(t, x)

− f
(
t, x, u(t, x), ux(t, x)σ (x),J u(t, x)

) = 0, (t, x) ∈ [0, T )×R,

u(T , x)= g(x), x ∈ R.

(5.12)

We can apply a finite difference method to solve (5.12).
Let the random measure N be generated by a compound Poisson process. In order

to construct a finite difference scheme for (5.12), we have to consider the following
steps:

• Localization: the PIDE (5.12) is given on the unbounded domain R. We reduce
the original domain to a bounded domain [−A,A] and we impose boundary con-
ditions. The domain of the integral in the operator J is localized to [−B,B].
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• Discretization in space and time: we choose discrete grids tk = T
n
k, k =

0,1, . . . , n, and xi = −A+ 2A
m
i, i = 0,1, . . . ,m.

• Approximation of the derivatives: we use finite differences.
• Approximation of the integral in the operator J : we use the trapezoidal quadra-

ture rule.

If we deal with a Poisson random measure N with an infinite Lévy measure, then
an additional step is needed to approximate small jumps of a Lévy process by an
independent Brownian motion. Consequently, we end up with a random measure N
generated by a compound Poisson process.

Using the results from Sect. 12.4 in Cont and Tankov (2004), we can state the
following explicit-implicit scheme for solving the PIDE (5.12):

1. Choose n and m which define the spatial and time grid steps: �t = T
n

and
�x = 2A

m
,

2. Set un,m(tn, xi) = g(xi) and extend the grid values to all x ∈ [−A,A] by linear
interpolation,

3. Going backward, for k = n−1, . . . ,0 determine the grid values u(tk, xi) by solv-
ing the difference equation

0 = un,m(tk+1, xi)− un,m(tk, xi)

�t
+

(
μ(xi)

−
m∑
j=0

γ (xi, zj )ν
(
(zj − 1/2, zj + 1/2])

)
un,m(tk, xi+1)− un,m(tk, xi)

�x

+ 1

2
σ 2(xi)

un,m(tk, xi+1)− 2un,m(tk, xi)+ un,m(tk, xi−1)

|�x|2

+
m∑
j=0

(
un,m

(
tk+1, xi + γ (xi, zj )

) − un,m(tk+1, xi)
)
ν
(
(zj − 1/2, zj + 1/2])

+ f

(
tk+1, xi, u

n,m(tk+1, xi), σ (xi)
un,m(tk+1, xi+1)− un,m(tk+1, xi)

�x
,

m∑
j=0

(
un,m

(
tk+1, xi + γ (xi, zj )

) − un,m(tk+1, xi)
)

· δ(zj )ν
(
(zj − 1/2, zj + 1/2])

)
, (5.13)

where zj = −B + 2B
m
j, j = 0,1, . . . ,m, and extend the grid values to all x ∈

[−A,A] by linear interpolation.
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The implicit scheme is used for the differential operator and the explicit scheme is
used for the integral operator. Convergence of explicit-implicit schemes for PIDEs
is discussed in Sect. 12.4 in Cont and Tankov (2004).

We point out that solving a PIDE by a finite difference method is efficient in low
dimensions (when we deal with few state processes). Least Squares Monte Carlo
algorithms perform much better than finite difference methods in high dimensions.

Since in actuarial and financial applications we deal with many risk factors and
we consider multidimensional state processes, we can conclude that BSDEs and
Monte Carlo methods are more efficient than PDEs (HJB equations) and finite dif-
ference methods in solving applied problems. It should be noticed that in many cases
the solution to a problem does not involve all control processes of the BSDE and
we do not have to estimate all expected values in the algorithms (5.4), (5.11), which
simplifies numerical implementations of the algorithms.

Bibliographical Notes The Malliavin calculus plays an important role in prov-
ing convergence results for discrete-time approximations of BSDEs. Zhang (2004)
was the first who applied the Malliavin calculus to prove path regularity of the solu-
tion and convergence of a discrete-time approximation under a deterministic regular
time mesh. Bouchard and Elie (2008) followed the arguments from Zhang (2004)
and showed path regularity and convergence for BSDEs with Poisson jumps. Var-
ious modifications of the Least Squares Monte-Carlo algorithm can be found in
Gobet et al. (2006), Gobet and Lemor (2006). An alternative to the Least Square
Monte Carlo is to apply Malliavin weights, see Bouchard et al. (2004). A compar-
ison of the regression based approach, the Malliavin weights and the random walk
approximation can be found in Bouchard and Warin (2010). Convergence results for
discrete-time and martingale approximations to BSDEs driven by Brownian motions
are investigated in Briand et al. (2002). In the case of a fully coupled BSDE driven
by a Brownian motion, Douglas et al. (1996) provide a modification of a finite dif-
ference method from Sect. 5.3. Douglas et al. (1996) also prove convergence of an
approximation of the derivative of the value function, which is needed to obtain the
control process of a BSDE. Results on numerics for quadratic decoupled FBSDE
can be found in Imkeller et al. (2010).



Chapter 6
Nonlinear Expectations and g-Expectations

Abstract We investigate nonlinear expectations. We briefly discuss Choquet ex-
pectations and we focus on g-expectations defined by BSDEs. The connection be-
tween filtration-consistent nonlinear expectations and g-expectations is presented.
We study the properties of translation invariance, positive homogeneity, convexity
and sub-linearity of g-expectations and we show that these properties are determined
by the generator of the BSDE defining the g-expectation.

The original motivation for studying nonlinear expectations comes from the the-
ory of decision making. The Allais paradox proved that the linear expectation (the
expected value operator) might fail in an attempt to describe choices made by deci-
sion makers and the Ellsberg’s paradox disqualified the notion of linear probability
in representing beliefs of decision makers. It was shown that decisions made in the
real world contradicted optimal decisions based on additive probabilities and the ex-
pected utility theory. Consequently, economists and mathematicians begun to look
for a new notion of expectation.

A nonlinear expectation is an operator which preserves all essential properties
of the standard expected value operator except linearity. In this chapter we focus
on nonlinear expectations called g-expectations which are defined by BSDEs. In
Chap. 13 we use g-expectations to define dynamic risk measures which can be used
for actuarial and financial valuation.

6.1 Choquet Expectations

Before we study g-expectations, we briefly discuss Choquet expectations. It is well-
known that the expected value can be calculated by the formula

E[ξ ] =
∫ 0

−∞
(
Pr(ξ ≥ x)− 1

)
dx +

∫ ∞

0
Pr(ξ ≥ x)dx. (6.1)

The idea by Choquet (1953) was to replace an additive probability measure Pr(·)
with a non-additive capacity measure V (·). We can define a nonlinear operator in
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the following way

C[ξ ] =
∫ 0

−∞
(
V (ξ ≥ x)− 1

)
dx +

∫ ∞

0
V (ξ ≥ x)dx. (6.2)

The nonlinear operator (6.2) is called the Choquet expectation or the Choquet inte-
gral.

The key example of a non-additive capacity measure, often applied in insurance
and finance, is a distorted probability. We can define a non-additive capacity mea-
sure by distorting the original probability

V (ξ ≥ x)= Ψ
(
Pr(ξ ≥ x)

)
, (6.3)

where we choose a nonlinear function Ψ : [0,1] → [0,1] such that Ψ (0) = 0,
Ψ (1) = 1 and x �→ Ψ (x) is non-decreasing. The function Ψ is called a distortion.
The Wang transform is an important distortion function used for actuarial and finan-
cial applications, see Wang (2000). We remark that Value-at-Risk and Tail-Value-at-
Risk are examples of the Choquet expectations derived under distorted probabilities.

The idea behind the Choquet expectation and distorted probabilities is clear. Con-
sequently, Choquet expectations have found numerous applications in insurance and
financial mathematics. Unfortunately, it is very difficult to define a dynamic version
of a Choquet expectation. It turns out that BSDEs can be very useful for defining
dynamic nonlinear expectations.

6.2 Filtration-Consistent Nonlinear Expectations
and g-Expectations

We define a nonlinear expectation and a filtration-consistent nonlinear expectation,
see Coquet et al. (2002).

Definition 6.2.1 A functional E : L2(Ω,FT ,P;R) → R is called a nonlinear ex-
pectation if it satisfies

(i) the property of strict monotonicity:

ξ1 ≥ ξ2 ⇒ E [ξ1] ≥ E [ξ2],
ξ1 ≥ ξ2 and E [ξ1] = E [ξ2] ⇔ ξ1 = ξ2,

for all ξ1, ξ2 ∈ L
2(R),

(ii) the invariance property:

E [c] = c, for all c ∈ R.
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Definition 6.2.2 A nonlinear expectation E is called an F -consistent nonlinear ex-
pectation if for each ξ ∈ L

2(Ω,FT ,P;R) and t ∈ [0, T ] there exists a random vari-
able ζ ∈ L

2(Ω,Ft ,P;R) such that

E [ξ1A] = E [ζ1A], A ∈ Ft .

We remark that ζ is uniquely determined, see Lemma 3.1 in Coquet et al. (2002).
The random variable ζ is denoted by E [ξ |Ft ]. Notice that the definition of an F -
consistent nonlinear expectation is analogous to the definition of the standard linear
conditional expectation but in Definition 6.2.2 the expectation is taken under a non-
linear operator.

We state properties of F -consistent nonlinear expectations, see Coquet et al.
(2002).

Proposition 6.2.1 Let E be an F -consistent nonlinear expectation. The following
properties hold:

(a) E [E [ξ |Ft ]|Fs] = E [ξ |Fs] for all 0 ≤ s ≤ t ≤ T .
(b) E [ξ1A|Ft ] = 1AE [ξ |Ft ] for all 0 ≤ t ≤ T and A ∈ Ft .
(c) If ξ1 ≥ ξ2, then E [ξ1|Ft ] ≥ E [ξ2|Ft ] for all 0 ≤ t ≤ T . In addition, if

E [ξ1|Ft ] = E [ξ2|Ft ] a.s. for some t ∈ [0, T ], then ξ1 = ξ2.

Proposition 6.2.1 shows that all essential properties of the standard linear con-
ditional expectation, except linearity, are preserved under the notion of an F -
consistent nonlinear expectation.

From the modelling point of view, we should be able to generate F -consistent
nonlinear expectations in a feasible way. The next example shows one possible way
of generating F -consistent nonlinear expectations.

Example 6.1 Choose a continuous, strictly increasing function ϕ : R → R. The op-
erator

E [ξ |Ft ] = ϕ−1(
E

[
ϕ(ξ)|Ft

])
, 0 ≤ t ≤ T , (6.4)

is an F -consistent nonlinear expectation. The nonlinear expectation (6.4) can be
interpreted as the indifference price of ξ determined by an agent with utility ϕ, see
Royer (2006).

It turns out that F -consistent nonlinear expectations can be defined by nonlinear
BSDEs. In this chapter we study the BSDEs

Y(t) = ξ +
∫ T

t

g
(
s, Y (s),Z(s),U(s, .)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (6.5)

By a nonlinear BSDE we mean a BSDE with a nonlinear generator g.
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Definition 6.2.3 Consider g :Ω × [0, T ] ×R×R×L2
Q(R)→R such that

(i) g satisfies (A2) from Chap. 3,
(ii) g satisfies the inequality

g(ω, t, y, z, u)− g
(
ω, t, y, z, u′)

≤
∫
R

δy,z,u,u
′
(t, x)

(
u(x)− u′(x)

)
Q(t, dx)η(t),

a.s., a.e. (ω, t) ∈ Ω × [0, T ], for all (y, z,u), (y, z,u′) ∈ R × R × L2
Q(R),

where δy,z,u,u
′ : Ω × [0, T ] × R → (−1,∞) is a predictable process such

that the mapping t �→ ∫
R

|δy,z,u,u′
(t, x)|2Q(t, dx)η(t) is uniformly bounded

in (y, z,u,u′),
(iii) g(t, y,0,0)= 0 for all (t, y) ∈ [0, T ] ×R.

(a) We define the g-expectation Eg : L2(Ω,FT ,P;R) �→ R by

Eg[ξ ] = Y(0),

where Y(0) is the unique solution to the BSDE (6.5) with the generator g satis-
fying (i)–(iii) and the terminal condition ξ ∈ L

2(Ω,FT ,P;R).
(b) We define the conditional g-expectation Eg : L2(Ω,FT ,P;R) → L

2(Ω,Ft ,

P;R) by

Eg[ξ |Ft ] = Y(t), 0 ≤ t ≤ T ,

where Y(t) is the unique solution to the BSDE (6.5) with the generator g satis-
fying (i)–(iii) and the terminal condition ξ ∈ L

2(Ω,FT ,P;R).

Notice that for the g-expectation its dynamic version is naturally defined.
We state the first key result of this chapter.

Theorem 6.2.1 The g-expectation Eg is an F -consistent nonlinear expectation.

Proof The strict monotonicity of Eg follows from the comparison principle estab-
lished in Theorem 3.2.2. Since g(t, y,0,0) = 0, we can choose Y = c,Z = U = 0
as the unique solution to the BSDE (6.5) with ξ = c. Hence, the invariance property
of Eg holds. We now prove the F -consistency of Eg . Choose t ∈ [0, T ] and A ∈ Ft .
We investigate

Y(0)= Eg[ξ1A], Y ′(0)= Eg
[
Y(t)1A

]
,

where Y and Y ′ denote the unique solutions to the BSDEs

Y(u) = ξ1A +
∫ T

u

g
(
s, Y (s),Z(s),U(s)

)
ds

−
∫ T

u

Z(s)dW(s)−
∫ T

u

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ u≤ T ,
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Y ′(u) = Y(t)1A +
∫ T

u

g
(
s, Y ′(s),Z′(s),U ′(s)

)
ds

−
∫ T

u

Z′(s)dW(s)−
∫ T

u

∫
R

U ′(s, z)Ñ(ds, dz), 0 ≤ u≤ T .

Since g(t, y,0,0) = 0, we can put Y ′(s) = Y(t)1A, Z′(s) = U ′(s, z) = 0, (s, z) ∈
[t, T ] ×R. Consequently, we obtain the equations

Y(u) = Y(t)+
∫ t

u

g
(
s, Y (s),Z(s),U(s)

)
ds

−
∫ t

u

Z(s)dW(s)−
∫ t

u

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ u≤ t,

Y ′(u) = Y(t)1A +
∫ t

u

g
(
s, Y ′(s),Z′(s),U ′(s)

)
ds

−
∫ t

u

Z′(s)dW(s)−
∫ t

u

∫
R

U ′(s, z)Ñ(ds, dz), 0 ≤ u≤ t.

Consider the BSDE

Y ′′(u) = ξ +
∫ T

u

g
(
s, Y ′′(s),Z′′(s),U ′′(s)

)
ds

−
∫ T

u

Z′′(s)dW(s)−
∫ T

u

∫
R

U ′′(s, z)Ñ(ds, dz), 0 ≤ u≤ T .

Since g(t, y,0,0)= 0 we can also put Y(s)= Y ′′(s)1A, Z(s)= Z′′(s)1A, U(s, z)=
U ′′(s, z)1A (s, z) ∈ [t, T ] ×R. Hence, we end up with the equations

Y(u) = Y ′′(t)1A +
∫ t

u

g
(
s, Y (s),Z(s),U(s)

)
ds

−
∫ t

u

Z(s)dW(s)−
∫ t

u

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ u≤ t,

Y ′(u) = Y ′′(t)1A +
∫ t

u

g
(
s, Y ′(s),Z′(s),U ′(s)

)
ds

−
∫ t

u

Z′(s)dW(s)−
∫ t

u

∫
R

U ′(s, z)Ñ(ds, dz), 0 ≤ u≤ t.

By uniqueness of solutions we finally conclude that Y(s) = Y ′(s), Z(s) = Z′(s),
U(s, z) = U ′(s, z), (s, z) ∈ [0, t] × R. Hence, Eg is a filtration-consistent expecta-
tion with the conditional expectation Eg[ξ |Ft ] = Y(t). �

Any g-expectation clearly satisfies the properties from Proposition 6.2.1, which
can now be derived from properties of BSDEs.
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Example 6.2 If we consider a BSDE with zero generator, then the g-expectation
coincides with the linear conditional expectation. If we consider the BSDE from
Proposition 3.3.2 or 3.4.2, then the g-expectation is a filtration-consistent nonlinear
expectation.

We are now interested in a converse of Theorem 6.2.1. The first results in this
field were proved by Coquet et al. (2002) and Rosazza Gianin (2006) for the Brow-
nian filtration. We present the result proved by Royer (2006) for the filtration gener-
ated by a Lévy process. First, we introduce two particular types of g-expectations.

Proposition 6.2.2 Consider the natural filtration F generated by a Lévy process
with a Lévy measure ν. For α > 0 and −1 < β ≤ 0 we define the generators

g∗
α,β(t, z, u) = α|z| + α

∫
R

(
1 ∧ |x|)u+(x)ν(dx)− β

∫
R

(
1 ∧ |x|)u−(x)ν(dx),

g∗∗
α,β(t, z, u) = −α|z| − α

∫
R

(
1 ∧ |x|)u−(x)ν(dx)+ β

∫
R

(
1 ∧ |x|)u+(x)ν(dx).

The corresponding g-expectations have the representations

Eg∗
α,β

[ξ |Ft ] = sup
Q∈Q

E
Q[ξ |Ft ], 0 ≤ t ≤ T ,

Eg∗∗
α,β

[ξ |Ft ] = inf
Q∈Q

E
Q[ξ |Ft ], 0 ≤ t ≤ T ,

where

Q =
{
Q ∼ P,

dQ

dP

∣∣∣Ft =Mφ,κ(t), 0 ≤ t ≤ T

}
,

dMφ,κ(t)

Mφ,κ(t−)
= φ(t)dW(t)+

∫
R

κ(t, x)Ñ(dx, dt), Mφ,κ(0)= 1,

and (φ, κ) are F -predictable processes satisfying
∣∣φ(t)∣∣ ≤ α, κ(t, x) >−1,

κ+(t, x)≤ α
(
1 ∧ |x|), κ−(t, x)≤ −β

(
1 ∧ |x|), (t, x) ∈ [0, T ] ×R.

Proof The result can be derived by following the arguments from Propositions 3.3.2
and 3.4.2, see also Proposition 3.6 in Royer (2006). �

We now state the second key result of this chapter, see Theorem 4.6 in Royer
(2006).

Theorem 6.2.2 Consider the natural filtration F generated by a Lévy process with
a Lévy measure ν. Let E be an F -consistent nonlinear expectation such that
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(i) for all ξ1, ξ2 ∈ L
2(Ω,FT ,P;R)

E [ξ1 + ξ2] − E [ξ1] ≤ Eg∗
α,β

[ξ2], with some α ≥ 0, −1 < β ≤ 0,

where Eg∗
α,β

is the g-expectation defined in Proposition 6.2.2,

(ii) for all ξ1 ∈ L
2(Ω,FT ,P;R) and ξ2 ∈ L

2(Ω,Ft ,P;R)
E [ξ1 + ξ2|Ft ] = E [ξ1|Ft ] + ξ2, 0 ≤ t ≤ T .

Then, there exists a function g : Ω × [0, T ] × R × L2
Q → R and the g-expectation

Eg such that

E [ξ |Ft ] = Eg[ξ |Ft ], ξ ∈ L
2(Ω,FT ,P;R), 0 ≤ t ≤ T .

Moreover, the following properties hold:

(i) g satisfies (A2) from Chap. 3,
(ii) g satisfies the inequality

g(ω, t, z, u)− g
(
ω, t, z, u′) ≤

∫
R

δz,u,u
′
(t, x)

(
u(x)− u′(x)

)
ν(dx),

a.s., a.e. (ω, t) ∈Ω ×[0, T ], for all (z, u), (z, u′) ∈ R×L2
Q(R), where δz,u,u

′ :
Ω × [0, T ] × R → (−1,∞) is a predictable process such that δz,u,u

′
(t, x) >

−1 and |δz,u,u′
(t, x)| ≤ K(1 ∧ |x|) for all (t, x, z, u,u′) ∈ [0, T ] × R × R ×

L2
Q ×L2

Q,
(iii) g(t,0,0)= 0 for all t ∈ [0, T ],
(iv) g satisfies the growth conditions

g∗∗
α,β(t, z, u)≤ g(t, z, u)≤ g∗

α,β(t, z, u),

for (t, z, u) ∈ [0, T ] ×R×L2
Q(R).

The first condition of Theorem 6.2.2 is called the domination condition. We re-
mark that a large class of nonlinear expectations satisfies the domination condition,
see Rosazza Gianin (2006) and Royer (2006). The second condition requires transla-
tion invariance of the nonlinear expectation with respect to “known” pay-offs, which
is a reasonable assumption provided that discounting of pay-offs is not allowed in
the valuation, see Sect. 13.1.

The importance of Theorem 6.2.2 is obvious. Theorem 6.2.2 shows that all
filtration-consistent nonlinear expectations which satisfy the domination condition
and the translation invariance property can be derived from BSDEs. Consequently,
when we study “regular” filtration-consistent nonlinear expectations we can focus
on g-expectations. Notice that the generator derived under the assumptions of The-
orem 6.2.2 depends only on the control processes (Z,U) and is independent of Y .
This is the consequence of the assumed translation invariance property for the non-
linear expectation.
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It is clear that the generator g of a BSDE plays a crucial role in defining a g-
expectation. Some important properties of g-expectations can be related to proper-
ties of generators g.

Proposition 6.2.3 Let Eg be a g-expectation.

(a) If g is independent of y, then Eg is translation invariant

Eg[ξ + c|Ft ] = Eg[ξ |Ft ] + c, c ∈ R, 0 ≤ t ≤ T .

(b) If g is positively homogenous, then Eg is positively homogenous

Eg[cξ |Ft ] = cEg[ξ |Ft ], c > 0, 0 ≤ t ≤ T .

(c) If g is convex

g
(
t, cy1 + (1 − c)y2, cz1 + (1 − c)z2, cu1 + (1 − c)u2

)

≤ cg(t, y1, z1, u1)+ (1 − c)g(t, y2, z2, u2),

c ∈ (0,1), (t, y1, z1, u1), (t, y2, z2, u2) ∈ [0, T ] ×R×R×L2
Q,

then Eg is convex

Eg
[
cξ1 + (1 − c)ξ2|Ft

]

≤ cEg[ξ1|Ft ] + (1 − c)Eg[ξ2|Ft ], c ∈ (0,1), 0 ≤ t ≤ T .

(d) If g is sub-linear: sub-additive

g(t, y1 + y2, z1 + z2, u1 + u2)

≤ g(t, y1, z1, u1)+ g(t, y2, z2, u2),

(t, y1, z1, u1), (t, y2, z2, u2) ∈ [0, T ] ×R×R×L2
Q,

and positively homogenous, then Eg is sub-linear: sub-additive

Eg[ξ1 + ξ2|Ft ] ≤ Eg[ξ1|Ft ] + Eg[ξ2|Ft ], 0 ≤ t ≤ T ,

positively homogenous.

Proof (a) We deal with two BSDEs

Y ξ+c(t) = ξ + c+
∫ T

t

g
(
s,Zξ+c(s),Uξ+c(s)

)
ds

−
∫ T

t

Zξ+c(s)dW(s)−
∫ T

t

∫
R

Uξ+c(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,
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Y ξ (t) = ξ +
∫ T

t

g
(
s,Zξ (s),Uξ (s)

)
ds

−
∫ T

t

Zξ (s)dW(s)−
∫ T

t

∫
R

Uξ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

We can easily conclude that Y ξ+c(t) = Y ξ (t) + c, Zξ+c(t) = Zξ (t), Uξ+c(t, z) =
Uξ(t, z), (t, z) ∈ [0, T ] ×R.

(b) We deal with two BSDEs

Y cξ (t) = cξ +
∫ T

t

g
(
s, Y cξ (s),Zcξ (s),Ucξ (s)

)
ds

−
∫ T

t

Zcξ (s)dW(s)−
∫ T

t

∫
R

Ucξ (s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

Y ξ (t) = ξ +
∫ T

t

g
(
s, Y ξ (s),Zξ (s),Uξ (s)

)
ds

−
∫ T

t

Zξ (s)dW(s)−
∫ T

t

∫
R

Uξ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

We can easily conclude that Y cξ (t) = cY ξ (t), Zcξ (t) = cZξ (t), Ucξ (t, z) =
cUξ (t, z), (t, z) ∈ [0, T ] ×R.

(c) We deal with three BSDEs

Y cξ1+(1−c)ξ2(t) = cξ1 + (1 − c)ξ2

+
∫ T

t

g
(
s, Y cξ1+(1−c)ξ2(s),Zcξ1+(1−c)ξ2(s),Ucξ1+(1−c)ξ2(s)

)
ds

−
∫ T

t

Zcξ1+(1−c)ξ2(s)dW(s)

−
∫ T

t

∫
R

Ucξ1+(1−c)ξ2(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

Y ξi (t) = ξi +
∫ T

t

g
(
s, Y ξi (s),Zξi (s),Uξi (s)

)
ds

−
∫ T

t

Zξi (s)dW(s)−
∫ T

t

∫
R

Uξi (s, z)Ñ(ds, dz), i = 1,2, 0 ≤ t ≤ T .

We introduce the processes Y(t)= cY ξ1(t)+ (1 − c)Y ξ2(t), Z(t)= cZξ1(t)+ (1 −
c)Zξ2(t), U(t, z) = Uξ1(t, z)+ (1 − c)Uξ2(t, z). It is straightforward to notice that
(Y,Z,U) satisfies the BSDE

Y(t) = cξ1 + (1 − c)ξ2

+
∫ T

t

(
cg

(
s, Y ξ1(s),Zξ1(s),Uξ1(s)

)
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+ (1 − c)g
(
s, Y ξ2(s),Zξ2(s),Uξ2(s)

))
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (6.6)

Since g satisfies

cg
(
s, Y ξ1(s),Zξ1(s),Uξ1(s)

) + (1 − c)g
(
s, Y ξ2(s),Zξ2(s),Uξ2(s)

)
≥ g

(
s, Y (s),Z(s),U(s)

)
, 0 ≤ s ≤ T ,

the BSDE (6.6) can be written as

Y(t) = cξ1 + (1 − c)ξ2

+
∫ T

t

(
g
(
s, Y (s),Z(s),U(s)

)

+ h
(
s, Y ξ1(s),Zξ1(s),Uξ1(s), Y ξ2(s),Zξ2(s),Uξ2(s)

))
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

with a nonnegative function h. By the comparison principle we get Y cξ1+(1−c)x2(t)≤
Y(t)= cY ξ1(t)+ (1 − c)Y ξ2(t), 0 ≤ t ≤ T .

(d) Adapting the arguments from (b) and (c), we can prove the assertion. �

The properties from Proposition 6.2.3 are used in Chap. 13 where we deal with
dynamic risk measures.

Bibliographical Notes The Choquet expectation was introduced by Choquet
(1953). Properties of Choquet expectations and the Wang transform together with
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and Chen and Kulperger (2006). In the proof of Proposition 6.2.3 we follow the ar-
guments from Rosazza Gianin (2006) and Jiang (2008). We refer to Rosazza Gianin
(2006) and Jiang (2008) for stronger relations between static and dynamic proper-
ties of g-expectations and generators of BSDEs defining the g-expectations. For a
representation of a filtration-consistent nonlinear expectation in a general separable
space we refer to Cohen (2011). We remark that g-expectations allow for introduc-
ing nonlinear versions of some well-known probabilistic results, see Coquet et al.
(2002), Peng (1997), Rosazza Gianin (2006) and Royer (2006). For g-martingales,
g-submartingales, g-supermartingales and nonlinear Doob-Meyer decomposition
we refer to Coquet et al. (2002) and Royer (2006).
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Chapter 7
Combined Financial and Insurance Model

Abstract A combined financial and insurance model is introduced. We consider
a Black-Scholes financial model with stochastic coefficients. We use a step process
with a stochastic intensity and a random transition kernel to model claims. We inves-
tigate a stream of liabilities which consists of annuity, death and survival benefits.
We define a set of admissible investment strategies for an insurer (an investor) who
trades in the financial market and aims to replicate the stream of liabilities.

We still consider a probability space (!,F ,P) with a filtration F = (Ft )0≤t≤T

satisfying the usual hypotheses of completeness and right continuity and a finite time
horizon T < ∞. On the space (!,F ,P) we define two independent F -adapted
Brownian motions (W,B) and a random measure N generated by an F -adapted
step process.

The financial market, the insurance payment process and the set of admissible
investment strategies are introduced in this chapter. In next chapters we investigate
pricing and hedging problems in our combined financial and insurance model.

7.1 The Financial Market

We consider a Black-Scholes financial model with stochastic coefficients. The fi-
nancial market consists of a bank account and a stock. The dynamics of the bank
account S0 := (S0(t),0 ≤ t ≤ T ) is described by the equation

dS0(t)

S0(t)
= r(t)dt, S0(0)= 1, (7.1)

where r := (r(t),0 ≤ t ≤ T ) denotes the risk-free rate. The dynamics of the stock
price S := (S(t),0 ≤ t ≤ T ) is given by the forward stochastic differential equation

dS(t)

S(t)
= μ(t)dt + σ(t)dW(t), S(0)= s > 0, (7.2)

where μ := (μ(t),0 ≤ t ≤ T ) denotes the expected return on the stock and σ :=
(σ (t),0 ≤ t ≤ T ) denotes the stock volatility. We denote θ(t) = μ(t)−r(t)

σ (t)
. We as-

sume that
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(C1) the processes r : !× [0, T ] → [0,∞), μ : !× [0, T ] → [0,∞) and σ :!×
[0, T ] → (0,∞) are FW -predictable and they satisfy

∣∣r(t)∣∣ + ∣∣μ(t)∣∣ + ∣∣σ(t)∣∣ + ∣∣σ(t)∣∣−1 +
∣∣∣∣μ(t)− r(t)

σ (t)

∣∣∣∣ ≤K, 0 ≤ t ≤ T ,

μ(t)≥ r(t), 0 ≤ t ≤ T ,

(C2) there exists a unique process S which solves (7.2) such that
supt∈[0,T ] E[|S(t)|2]<∞.

These are standard assumptions in financial mathematics. We may relax the bound-
edness assumptions, but other integrability conditions would have to be imposed
instead so that we can solve our optimization problems. If r , μ and σ are exoge-
nously given and independent of S, then (C2) is satisfied, see Theorem II.37 in Prot-
ter (2004) and Theorem 4.1.1. Since the coefficients may depend on S, assumption
(C2) is added.

Continuous-time models (7.1)–(7.2) have become standard in financial applica-
tions, see Filipovic (2009), Fouque et al. (2000) and Shreve (2004). We give two
important examples of the financial model considered.

Example 7.1 Set r , μ and σ as constants. We can investigate the classical Black-
Scholes model with normally distributed log-price, see Shreve (2004).

Example 7.2 Let r : [0, T ] × (0,∞) → [0,∞), μ : [0, T ] × (0,∞) → [0,∞) and
σ : [0, T ] × (0,∞) → (0,∞) be measurable functions. We can investigate a local
volatility model of the form

dS0(t)

S0(t)
= r

(
t, S(t)

)
dt, S0(0)= 1,

dS(t)

S(t)
= μ

(
t, S(t)

)
dt + σ

(
t, S(t)

)
dW(t), S(0)= s > 0.

Local volatility models provide a better fit to quoted option prices and yield more
skewed distributions of asset returns, see Dupire (1997) and Fouque et al. (2000).

By a straightforward generalization we can also investigate stochastic economic
factor models such as stochastic interest rate models and stochastic volatility mod-
els. We have to introduce more driving noises into the model.

Example 7.3 Let X :!× [0, T ] → R denote an economic factor. We should use a
two-dimensional Brownian motion W = (W1,W2) to model the stock price S and
the economic factor X . Let r : [0, T ] × [0,∞) → [0,∞),μ : [0, T ] × [0,∞) →
[0,∞) and σ : [0, T ] × [0,∞) → (0,∞) be measurable functions and assume that
X is an FW1 ⊗ FW2 -adapted process. We define the dynamics

dS0(t)

S0(t)
= r

(
t,X (t)

)
dt, S0(0)= 1,
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dS(t)

S(t)
= μ

(
t,X (t)

)
dt + σ

(
t,X (t)

)
dW1(t), S(0)= s > 0.

We can now consider the Cox-Ingersoll-Ross interest rate model or the stochastic
volatility Heston model, see Filipovic (2009) and Fouque et al. (2000).

We can also assume that the stock price S is driven by a Brownian motion and
a pure jump Lévy process. Such a dynamics could be desirable in applications as
Lévy processes have proved to be very useful for financial modelling, see Cont and
Tankov (2004). Since the theory of BSDEs with jumps covers Lévy processes, the
extension of the model in this direction is possible. We decide to use a jump process
only for claim modelling.

7.2 The Insurance Payment Process

Insurance claims are modelled by a step process J . Let N denote the jump measure
of J . We assume that

(C3) the integer-valued random measure N has the F -predictable compensator

ϑ(dz, dt)=Q(t, dz)η(t)dt,

where η : !× [0, T ] ×R → [0,∞) is an F -predictable process, Q(t, ·) is a
probability measure on B(R) for (ω, t) ∈!×[0, T ], Q(·,A) :!×[0, T ] →
[0,1] is an F -predictable process for A ∈ B(R), and

N
([0, t], {0}) =Q

(
t, {0}) = 0, 0 ≤ t ≤ T ,

∫ T

0
η(t)dt <∞,

∫ T

0

∫
R

z2Q(t, dz)η(t)dt <∞.

Assumption (C3) is in line with assumption (RM) from Sect. 2.1. Since we con-
sider a step process, from the general representation of the compensator of the jump
measure, see (2.3), we conclude that Q is a probability transition kernel and η is
an integrable intensity of the underlying point process, see Definitions II.D7 and
VIII.D5 in Brémaud (1981) and Definition 2.1.6. Notice that both the intensity η

and the jump distribution Q are F -predictable processes which may depend on the
financial market, the number of claims paid and other sources of uncertainty cap-
tured by the filtration F .

We remark that step processes are very often used for claim modelling in actuarial
mathematics, see Mikosch (2009) and Rolski et al. (1999). In a more theoretical
setting we could also use a Lévy process with infinitely many jumps.

We investigate the insurance payment process

P(t)=
∫ t

0
H(s)ds +

∫ t

0

∫
R

G(s, z)N(ds, dz)+ F1t=T , 0 ≤ t ≤ T . (7.3)
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We will see that the payment process (7.3) can also be used for modelling financial
claims. We assume that

(C4) the processes H :!× [0, T ] → [0,∞) and G :!× [0, T ] ×R → [0,∞) are
F -predictable and the random variable F : ! → [0,∞) is FT -measurable.
The claims H , G and F satisfy

E

[∫ T

0

∣∣H(s)
∣∣2
ds

]
<∞, E

[∫ T

0

∫
R

∣∣G(s, z)
∣∣2
η(s)Q(s, dz)ds

]
<∞,

E

[∫ T

0

∫
R

∣∣G(s, z)η(s)
∣∣2
Q(s, dz)ds

]
<∞, E

[|F |2]<∞.

Square integrability assumptions are standard in financial mathematics. It is straight-
forward to conclude that under (C4) we have E[|P(T )|2] < ∞. We should notice
that the stochastic integral with respect to the random measure in (7.3) is a.s. well-
defined since the step process J generates a finite number of jumps on [0, T ]. Con-
sequently, the payment process can be written in the following form

P(t)=
∫ t

0
H(s)ds +

∑
s∈(0,t]

G
(
s,�J (s)

)
1{�J(s) �=0}(s)+ F1t=T , 0 ≤ t ≤ T .

The process P represents a very general stream of liabilities. It contains payments
H which occur continuously during the term of the contract (annuities), it contains
claims G which occur at random times triggered by the jumps of the step process
J (death benefits), and finally it contains the liability F which is settled at the end
of the contract (a survival benefit). The pay-offs H , G and F may depend on the
financial market, the number of claims paid and other sources of uncertainty mod-
elled by F . We point out that we can model unsystematic and systematic insurance
risk. By the unsystematic insurance risk we mean the risk of an uncertain number of
claims (which is here modelled by the step process J ), and by the systematic insur-
ance risk we mean the risk of unpredictable changes in the claim intensity (which is
here modelled by a stochastic intensity of the step process J ).

To enrich the liability model and extend the area of its applications, we introduce
a second F -adapted Brownian motion B independent of the Brownian motion W .
The Brownian motion B models a third risk factor (a background source of uncer-
tainty), next to the equity risk modelled by W and the claims risk modelled by N .
The Brownian motion B can affect both the claims’ pay-offs and the claim intensity.
The role of B is clarified in the next examples.

Example 7.4 Let F̂ : (0,∞) → [0,∞) be a measurable function. Set H = G =
0, F = F̂ (S(T )) and η = 0. We end up with the classical financial setting with a
terminal claim contingent on the traded asset S, see Shreve (2004).
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Example 7.5 Consider a process Ŝ which satisfies the forward SDE

dŜ(t)

Ŝ(t)
= μ̂(t)dt + σ̂1(t)dW(t)+ σ̂2(t)dB(t), Ŝ(0)= ŝ > 0,

where μ̂, σ̂1, σ̂2 are FW ⊗ FB -predictable processes. Let F̂ be a measurable
functional defined on the space of continuous functions. Set H = G = 0, F =
F̂ (Ŝ(t),0 ≤ t ≤ T ) and η = 0. We can investigate a terminal claim the value of
which depends on the path of the non-tradeable index Ŝ correlated with the traded
stock S. The Brownian motion W which is used for modelling the index Ŝ guar-
antees that Ŝ is correlated with the traded stock S, and the Brownian motion B

introduces an independent, non-tradeable source of risk which guarantees that Ŝ is
not perfectly correlated with S.

Example 7.6 Consider a predictable process λ : ! × [0, T ] → (0,∞). We define
the point process

J (t)=
n∑

i=1

1{τi ≤ t}, 0 ≤ t ≤ T , (7.4)

where (τi, i = 1, . . . , n) is a sequence of random variables which are, conditional
on the filtration F λ, independent and exponentially distributed

P
(
τi > t |F λ

t

) = e− ∫ t
0 λ(s)ds, i = 1, . . . , n.

In actuarial and financial applications the sequence (τi, i = 1, . . . , n) can model
defaults of securities, deceases of persons insured or surrenders of policies. The
corresponding characteristics of the point process J take the form

Q
(
t, {1}) = 1, η(t)= (

n− J (t−)
)
λ(t), 0 ≤ t ≤ T . (7.5)

Properties of the point process (7.4) are studied by Jeanblanc and Rutkowski (2000)
in a credit risk context and Dahl and Møller (2006) in a life insurance context.

Example 7.7 Let Ĥ : [0, T ] × (0,∞)→ [0,∞), Ĝ : [0, T ] × (0,∞)→ [0,∞) and
F̂ : (0,∞) → [0,∞) be measurable functions and let λ : ! × [0, T ] → (0,∞) be
an FB -predictable process. Set

H(t)= (
n− J (t−)

)
Ĥ

(
t, S(t)

)
, G(t, z)= Ĝ

(
t, S(t)

)
,

F = (
n− J (T )

)
F̂

(
T ,S(T )

)
, (7.6)

Q
(
t, {1}) = 1, η(t)= (

n− J (t−)
)
λ(t), 0 ≤ t ≤ T .

We can consider a portfolio consisting of n persons insured and we can investigate
life insurance equity-linked claims under longevity risk, see Dahl and Møller (2006)
and Dahl et al. (2008). By the longevity risk we mean the risk of uncertain future
mortality rates (which are likely to decrease in an unpredictable fashion), which is
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here modelled by a stochastic process λ independent of the financial market. Both
the financial risk of issued guarantees (equity-linked claims) and the longevity risk
are the main risk factors faced by life insurers.

If we still use characteristics (7.6) but we assume that λ is an FW -predictable
processes, then we can investigate equity-linked life insurance claims under irra-
tional lapse behavior of policyholders. By the irrational lapse behavior we mean the
decision to surrender the policy which is made by a policyholder in a non-optimal
way, but after taking into account alternative investment opportunities in the market.
Hence, we should model the lapse intensity by a stochastic process which is linked
to the financial market. The irrational lapse behavior represents an important risk
factor for life insurers, see TP.2.105-111 European Commission QIS5 (2010).

Example 7.8 Let λ :!× [0, T ] → (0,∞) be an FB -predictable process. Set

Q
(
t, {1}) = 1, η(t)= (

n− J (t−)
)
λ(t), 0 ≤ t ≤ T ,

and assume that the claims H,G,F are contingent on the number of deaths J or
the mortality intensity λ in a population. We can investigate mortality derivatives,
which are gaining popularity as securitization instruments. For example, a survivor
swap contingent on a population consisting of n individuals can be studied by setting
G= F = 0 and H(t)= (n−J (t))−np̂(t) where p̂(t) denotes a survival rate agreed
by the parties of the contract, see Dahl et al. (2008).

Example 7.9 Let q be a probability measure supported on (0,∞), and let λ > 0. Set
H = F = 0 and

G(t, z)= z, Q(t, dz)= q(dz), η(t)= λ, 0 ≤ t ≤ T , z ∈ (0,∞). (7.7)

We end up with a compound Poisson aggregate claims process, which plays a funda-
mental role in actuarial mathematics, see Mikosch (2009) and Rolski et al. (1999). If
we let λ :!×[0, T ] → (0,∞) be an FB -predictable process, then we can consider
a compound Cox aggregate claims process. The Cox process with an independent
stochastic intensity is a useful generalization of the Poisson process for actuarial
applications. It can be used for modelling catastrophic claims since catastrophic
claims are triggered by random natural disasters, see Dassios and Jang (2003). It
can also be used for modelling seasonal variations of the claim intensity, see Bening
and Korolev (2002).

Let Ĝ : [0, T ]× (0,∞)× (0,∞)→ [0,∞) and λ : [0, T ]× (0,∞)→ (0,∞) be
measurable functions, and let q be a probability transition kernel such that q(.,A) :
[0, T ]×(0,∞)→ [0,1] is a measurable function for A ∈ B((0,∞)) and q(t, s, .) is
a probability measure on B((0,∞)) for (t, s) ∈ [0, T ]×(0,∞). Set H = F = 0 and

G(t, z)= Ĝ
(
t, Ŝ(t), z

)
, Q(t, z)= q

(
t, Ŝ(t), dz

)
,

(7.8)
η(t)= λ

(
t, Ŝ(t)

)
, 0 ≤ t ≤ T , z ∈ (0,∞).
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In order to model aggregate payments we now use a step process with the claim
intensity λ and the claim severity q which depend on a non-tradeable asset Ŝ intro-
duced in Example 7.5. The pay-off Ĝ is contingent on the claim and also depends
on a non-tradeable index Ŝ. The payment process (7.8) may arise when we investi-
gate weather derivatives, see Ankirchner and Imkeller (2008). It is known that the
intensity and the severity of weather events (such as earthquakes or hurricanes) is
influenced by climate factors. Climate factors are not traded in the market but in-
vestors can find traded assets that are correlated with these climate factors. Hence,
we should use a non-tradeable index Ŝ to model a climate risk factor which ef-
fects the intensity and the severity of weather claims. We shall remark that weather
derivatives are gaining importance in financial markets.

Example 7.10 Let λ :!× [0, T ] → (0,∞), Ĥ :!× [0, T ] → [0,∞) and Ĝ :!×
[0, T ] → [0,∞) be FW -predictable processes and let F̂ :!→ [0,∞) be an FW -
measurable random variable. Set

H(t)= (
n− J (t−)

)
Ĥ (t), G(t, z)= Ĝ(t), F = (

n− J (T )
)
F̂ ,

(7.9)
Q

(
t, {1}) = 1, η(t)= (

n− J (t−)
)
λ(t), 0 ≤ t ≤ T .

We can investigate claims from a portfolio consisting of n defaultable securities, see
Bielecki et al. (2004) and Jeanblanc and Rutkowski (2000). In such a framework,
Ĥ denotes a dividend, Ĝ denotes a recovery rate paid at default and F̂ denotes a
promised pay-off. The pay-offs and the default intensity are linked to the financial
market. We can also introduce an independent, non-tradeable source of risk for the
pay-offs and the default intensity and we can assume that the claims and the intensity
are modelled by FW ⊗ FB -predictable processes. A classical credit default swap
(CDS) can be studied if we choose n= 1, F = 0, Ĥ = −ĥ and Ĝ= ĝ, see Bielecki
et al. (2008).

We can also investigate a collective credit risk model. Set H = F = 0 and

G
(
t, {1}) = Ĝ(t), Q

(
t, {1}) = 1, η(t)= λ(t), 0 ≤ t ≤ T .

The payment Ĝ represents a credit loss of a obligor given default. The corresponding
payment process models the aggregated credit losses from a portfolio of obligors,
see Gundlach and Lehrbass (2004). We can also assume that the credit loss Ĝ :
!× [0, T ] ×R → [0,∞) depends on the financial market and an exogenous factor
distributed with q(dz). Then, we set Q(t, dz)= q(dz).

As the examples show, the model (7.1)–(7.3) allows us to consider many desir-
able extensions of the classical Black-Scholes financial model and the compound
Poisson loss model. It is obvious to conclude that the payment process (7.3) can
also be used for modelling financial liabilities. The model (7.1)–(7.3) is mathemat-
ically tractable and can be used for pricing, hedging and risk management. Various
useful financial and insurance models with multiple risk factors can be developed
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based on (7.1)–(7.3). A further generalization is possible by introducing a regime
switching process, see Crépey and Matoussi (2008) and Crépey (2011).

Recalling the discussion in Sect. 2.4, we assume that the weak property of pre-
dictable representation holds in our combined financial and insurance model, that is
any F -local martingale M has the representation

M(t) = M(0)+
∫ t

0
Z1(s)dW(s)+

∫ t

0
Z2(s)dB(s)

+
∫ t

0

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

We point out that the predictable representation may fail under progressive enlarge-
ment of the Brownian filtration, which is usually considered in credit risk models,
see Jeanblanc and Le Cam (2009) and Jiao et al. (2013). Fortunately, if we construct
the default time by the standard method, by an exponentially distributed random
variable (see Example 7.6), then the so-called H-hypothesis is satisfied and the pre-
dictable representation holds under the progressive enlargement of the Brownian
filtration with the information generated by a default process. Consequently, we can
assume that the predictable representation holds for a Brownian motion and a com-
pensated default process, see Proposition 3.2 in Jeanblanc and Rutkowski (2000)
and Theorem 2.3 in Blanchet-Scalliet et al. (2008). By the construction, the H-
hypothesis is also fulfilled by the jumps of the Cox process. Hence, the predictable
representation for a Brownian motion and a compensated Cox process can be as-
sumed as well, see Lim (2005). In other cases, we can follow the arguments pre-
sented in Sect. 2.4 to conclude that the predictable representation holds. We remark
that the assumption of the predictable representation is not controversial for most
applications but the reader should be aware that some sophisticated models are ex-
cluded from the study, see Jeanblanc and Le Cam (2009) and Jiao et al. (2013).

7.3 Admissible Investment Strategies

We consider an insurer (an investor) who faces the stream of liabilities (7.3) and
invests in the bank account (7.1) and the stock (7.2). The insurer’s goal is to repli-
cate the liabilities by investing in the assets and to earn a profit from the investing
activities. We are interested in constructing investment strategies and investment
portfolios which would fulfill these two goals. Such constructions are discussed in
next chapters.

Our standing assumption is that

(AF) the combined financial and insurance market is arbitrage-free.

This is the key assumption in pricing and hedging models.
Let Xπ denote the insurer’s investment portfolio (the hedging or replicating port-

folio) under an investment strategy π . We assume that Xπ is self-financing in the
sense that the value of the portfolio results from investment gains and claims paid.
The dynamics of the investment portfolio Xπ := (Xπ(t),0 ≤ t ≤ T ) is given by the
forward SDE
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dXπ(t) = π(t)
dS(t)

S(t)
+ (

X(t)− π(t)
)dS0(t)

S0(t)
− dP (t)

= π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
Xπ(t−)− π(t)

)
r(t)dt − dP (t), (7.10)

X(0) = x > 0,

where π denotes the amount of wealth invested in the risky asset S, and x denotes
the initial capital including the premium collected at the inception of the contract.
In our applications it is more convenient to deal with the following dynamics

dXπ(t) = π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
Xπ(t−)− π(t)

)
r(t)dt,

−H(t)dt −
∫
R

G(t, z)N(dt, dz), (7.11)

X(0) = x > 0,

and subtract the claim F from the terminal wealth Xπ(T ). We define a class of
admissible investment strategies.

Definition 7.3.1 A strategy π := (π(t),0 ≤ t ≤ T ) is called admissible, written
π ∈ A , if it satisfies the conditions:

1. π : [0, T ] ×!→ R is an F -predictable process,
2. E[∫ T

0 |π(t)σ (t)|2dt]<∞,
3. there exists a unique càdlàg, F -adapted solution Xπ to (7.10) (or (7.11)) on

[0, T ].

If the admissible investment strategy π is independent of the investment portfolio
Xπ , then the unique solution to (7.10) is given by

Xπ(t) = xe
∫ t

0 r(s)ds +
∫ t

0

(
μ(s)− r(s)

)
e
∫ t
s r(u)duπ(s)ds

+
∫ t

0
σ(s)e

∫ t
s r(u)duπ(s)dW(s)−

∫ t

0

∫
R

e
∫ t
s r(u)dudP (s), 0 ≤ t ≤ T .

Moreover, the investment portfolio Xπ is square integrable under π ∈ A . Indeed,
by (C1)–(C4) and the Burkholder-Davis-Gundy inequality we can derive

E

[
sup

t∈[0,T ]
∣∣Xπ(t)

∣∣2
]

≤ K

(
1 +E

[∫ T

0

∣∣π(t)σ (t)∣∣2
dt

]

+E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
σ(s)e

∫ t
s r(u)duπ(s)dW(s)

∣∣∣∣
2]

+E
[∣∣P(T )∣∣2])

≤ K

(
1 +E

[∫ T

0

∣∣π(t)σ (t)∣∣2
dt

])
<∞. (7.12)
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We point out that square integrability assumptions have a strong financial jus-
tification. The next example shows that the square integrability of the investment
strategy is required in order to exclude arbitrage strategies.

Example 7.11 By Dudley (1977) it is possible to construct a predictable process V
such that

∫ T

0
V (s)dW(s)= 1,

∫ T

0

∣∣V (s)
∣∣2
ds <∞, a.s.

We now define

H (t) = e− ∫ t
0 r(s)ds−

∫ t
0 θ(s)dW(s)− 1

2

∫ t
0 θ

2(s)ds, 0 ≤ t ≤ T ,

X̂(t) = H −1(t)

∫ t

0
V (s)dW(s), 0 ≤ t ≤ T ,

π̂(t) = 1

σ(t)

(
H −1(t)V (t)+ X̂(t)θ(t)

)
, 0 ≤ t ≤ T .

Let P = 0. It is straightforward to show that (X̂, π̂) solves (7.10) with the initial
condition x = 0 and the terminal value X̂(T ) = H −1(T ) > 0. Hence, the strategy
π̂ is an arbitrage strategy.

Let us recall that in order to derive a square integrable control process of a BSDE,
which is next used to define an arbitrage-free, square integrable investment strategy,
we have to assume that the terminal condition and the generator of the BSDE are
square integrable. Hence, all our square integrability assumptions are justified.

Bibliographical Notes Detailed references are given in the text. The form of the
payment process (7.3) is inspired by Møller and Steffensen (2007). Example 7.11 is
taken from El Karoui et al. (1997b).



Chapter 8
Linear BSDEs and Predictable Representations
of Insurance Payment Processes

Abstract We solve linear BSDEs which may arise in actuarial applications. Since
solving a linear BSDE requires to find the predictable representation of a random
variable, we show how to derive the predictable representation of an insurance pay-
ment process. We consider the case of a life insurance and a non-life insurance
payment process under systematic and unsystematic claims risk. We apply both the
Itô’s formula and the Malliavin calculus to derive the control processes of linear BS-
DEs. The representations of the control processes involve conditional expectations
which can be explicitly calculated or estimated by Monte Carlo methods.

In this chapter we solve linear BSDEs which may arise in actuarial applications.
We illustrate two methods based on the Itô’s formula and the Malliavin calculus
which can be used to derive the control processes of linear BSDEs. Linear BSDEs
are important for applications. In Chap. 9 a linear BSDE is used to characterize
the replicating strategy for a liability, and in Chap. 10 linear BSDEs are used to
characterize the optimal (in the mean-square sense) hedging strategy for a liability.
We also remark that nonlinear BSDEs which we face when investigating pricing and
hedging of liabilities under model ambiguity and the entropic risk measure may be
reduced to linear BSDEs, see Propositions 3.3.3 and 3.4.3 and Example 3.4. Since
solving a linear BSDE requires to find the predictable representation of a random
variable, in this chapter we show how to derive the predictable representation of an
insurance payment process. We consider the case of a life insurance and a non-life
insurance payment process under systematic and unsystematic claims risk.

8.1 The Application of the Itô’s Formula

Let us investigate the financial model

dS0(t) = S0(t)rdt, S0(0)= 1,

dS(t) = μ
(
S(t)

)
dt + σ

(
S(t)

)
dW(t), S(0)= s > 0,

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_8,
© Springer-Verlag London 2013
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and the equity-linked (life insurance) liabilities

P(t) =
∫ t

0

(
n− J (s−)

)
Ĥ

(
S(s)

)
ds +

∫ t

0
Ĝ

(
S(s)

)
dJ (s)

+ (
n− J (T )

)
F̂

(
S(T )

)
1{t = T }, 0 ≤ t ≤ T ,

where J denotes the deaths counting process for a life insurance portfolio consisting
of n policies. We assume that the mortality intensity is given by the dynamics

dλ(t)= μλ
(
λ(t)

)
dt + σλ

(
λ(t)

)
dB(t), λ(0)= λ > 0.

For an actuarial and financial motivation we refer to Examples 7.2 and 7.7. We
model the longevity risk by a stochastic process which solves a forward SDE de-
scribing the time evolution of the mortality intensity. Such stochastic models are
advocated in the actuarial literature, see Russo et al. (2011) and Schrager (2006).
We can also assume that r depends on S and allow for time-dependent dynamics.
Then, we can follow the same arguments to derive the control processes of a BSDE.
Let us recall that the jump measure N of the point process J has the compensator
ϑ(dt, {1})= (n− J (t−))λ(t)dt .

The value of the insurance liabilities is given by

Y(t) = E

[
e−r(T−t)

(
n− J (T )

)
F̂

(
S(T )

) +
∫ T

t

e−r(s−t)Ĝ
(
S(s)

)
dJ (s)

+
∫ T

t

e−r(s−t)
(
n− J (s−)

)
Ĥ

(
S(s)

)
ds|Ft

]
, 0 ≤ t ≤ T . (8.1)

If we consider the market-consistent value, then the expectation should be taken
under an equivalent martingale measure, see Sect. 9.1. From Propositions 3.3.1 and
3.4.1 we conclude that the value process (8.1) satisfies the linear BSDE

Y(t) = (
n− J (T )

)
F̂

(
S(T )

) −
∫ T

t

Y (s−)rds +
∫ T

t

Ĝ
(
S(s)

)
dJ (s)

+
∫ T

t

(
n− J (s−)

)
Ĥ

(
S(s)

)
ds

−
∫ T

t

Z1(s)dW(s)−
∫ T

t

Z2(s)dB(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T .

(8.2)

The dynamics (8.2) is formulated under the real-world probability measure P. If
we took the expectation (8.1) under an equivalent probability measure Q, then the
BSDE (8.2) would be formulated under Q. Introducing the process V (t) = U(t)−
Ĝ(S(t)) and recalling the forward dynamics of S and λ, we can investigate the
FBSDE
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Y(t)= (
n− J (T )

)
F̂

(
S(T )

) +
∫ T

t

(−Y(s−)r + Ĝ
(
S(s)

)(
n− J (s−)

)
λ(s)

+ (
n− J (s−)

)
Ĥ

(
S(s)

))
ds

−
∫ T

t

Z1(s)dW(s)−
∫ T

t

Z2(s)dB(s)−
∫ T

t

V (s)Ñ(ds), 0 ≤ t ≤ T ,

S(t)= S(0)+
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T ,

λ(t)= λ(0)+
∫ t

0
μλ

(
λ(s)

)
ds +

∫ t

0
σλ

(
λ(s)

)
dB(s), 0 ≤ t ≤ T .

(8.3)

The goal is to characterize the control processes (Z1,Z2,V ) of the linear BSDE
(8.3). We use the Itô’s formula.

Proposition 8.1.1 Consider the linear BSDE (8.3). Assume that

(i) the jump measure N of the point process J has the compensator ϑ(dt, {1}) =
(n− J (t−))λ(t)dt ,

(ii) the processes S and λ are positive,
(iii) the functions μ : (0,∞) → [0,∞), σ : (0,∞) → [0,∞) and μλ : (0,∞) →

[0,∞),σλ : (0,∞)→ [0,∞) are Lipschitz continuous,
(iv) the functions F̂ : (0,∞) → [0,∞), Ĥ : (0,∞) → [0,∞) and Ĝ : (0,∞) →

[0,∞) are Lipschitz continuous.

We define measurable functions ĥ : [0, T ] × [0, T ] × (0,∞)→ [0,∞), f̂ : [0, T ] ×
[0, T ] × (0,∞) → [0,∞), ĝ : [0, T ] × [0, T ] × (0,∞) → [0,∞),p : [0, T ] ×
[0, T ] × (0,∞) → (0,∞) and p̂ : [0, T ] × [0, T ] × (0,∞) → [0,∞) such that
for 0 ≤ t ≤ u≤ T we set

ĥ(t, u, s) = E
[
e−r(u−t))Ĥ

(
S(u)

)|S(t)= s
]
,

f̂ (t, u, s) = E
[
e−r(u−t)F̂

(
S(u)

)|S(t)= s
]
,

ĝ(t, u, s) = E
[
e−r(u−t)Ĝ

(
S(u)

)|S(t)= s
]
, (8.4)

p(t, u,λ) = E
[
e− ∫ u

t λ(v)dv|λ(t)= λ
]
,

p̂(t, u,λ) = E
[
e− ∫ u

t λ(v)dvλ(u)|λ(t)= λ
]
,

and for 0 ≤ u < t ≤ T we set ĥ= f̂ = ĝ = p = p̂ = 0. We further assume that

(v) for each 0 ≤ u ≤ T the functions ĥ(., u, .), f̂ (., u, .), ĝ(., u, .), p(., u, .) and
p̂(., u, .) are of the class C ([0, u] × (0,∞))∩ C 1,2([0, u)× (0,∞)).

The control processes (Z1,Z2,V ) ∈ H
2(R) × H

2(R) × H
2
N(R) of the BSDE (8.3)

take the form
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Z1(t)

= (
n− J (t−)

)
σ
(
S(t)

)
p
(
t, T , λ(t)

)
f̂s

(
t, T , S(t)

)
+ (

n− J (t−)
)
σ
(
S(t)

)

·
∫ T

t

(
p
(
t, u,λ(t)

)
ĥs

(
t, u, S(t)

) + p̂
(
t, u,λ(t)

)
ĝs

(
t, u, S(t)

))
du, 0 ≤ t ≤ T ,

Z2(t)

= (
n− J (t−)

)
σλ

(
λ(t)

)
pλ

(
t, T , λ(t)

)
f̂

(
t, T , S(t)

)
+ (

n− J (t−)
)
σλ

(
λ(t)

)

·
∫ T

t

(
pλ

(
t, u,λ(t)

)
ĥ
(
t, u, S(t)

) + p̂λ
(
t, u,λ(t)

)
ĝ
(
t, u, S(t)

))
du, 0 ≤ t ≤ T ,

V (t)

= −p
(
t, T , λ(t)

)
f̂

(
t, T , S(t)

)

−
∫ T

t

(
p
(
t, u,λ(t)

)
ĥ
(
t, u, S(t)

) + p̂
(
t, u,λ(t)

)
ĝ
(
t, u, S(t)

))
du, 0 ≤ t ≤ T ,

where f̂s(t, u, s)= ∂
∂s
f̂ (t, u, s), ĥs(t, u, s)= ∂

∂s
ĥ(t, u, s), ĝs(t, u, s)= ∂

∂s
ĝ(t, u, s),

pλ(t, u,λ)= ∂
∂λ
p(t, u,λ), p̂λ(t, u,λ)= ∂

∂λ
p̂(t, u,λ).

Proof By Theorems 3.1.1 and 4.1.1 there exists a unique solution (Y,Z1,Z2,V ,S,λ)

to (8.3) and the processes S and λ have finite moments. From Propositions 3.3.1 and
3.4.1 we can deduce that the control processes (Z1,Z2,V ) are obtained from the
predictable representation of the martingale

M (t) = E

[
e−rT

(
n− J (T )

)
F̂

(
S(T )

) +
∫ T

0
e−ruĜ

(
S(u)

)(
n− J (u)

)
λ(u)du

+
∫ T

0
e−ru

(
n− J (u)

)
Ĥ

(
S(u)

)
du|Ft

]
, 0 ≤ t ≤ T . (8.5)

Let us consider the first martingale

M 1(t)= E
[
e−rT

(
n− J (T )

)
F̂

(
S(T )

)|Ft

]
, 0 ≤ t ≤ T .

We can derive

E
[
e−rT

(
n− J (T )

)
F̂

(
S(T )

)|Ft

]

= E

[
n∑

i=1

1{τi > T }e−rT F̂
(
S(T )

)|Ft

]
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=
n∑

i=1

1{τi > t}E[
1{τi > T , τi > t}e−rT F̂

(
S(T )

)|Ft

]

=
n∑

i=1

1{τi > t}E[
e−rT F̂

(
S(T )

)
E

[
1{τi > T , τi > t}|FW

T ∨ FB
T ∨ Ft

]|Ft

]

= (
n− J (t)

)
E

[
e− ∫ T

t λ(s)ds |Ft

]
E

[
e−rT F̂

(
S(T )

)|Ft

]
, 0 ≤ t ≤ T , (8.6)

where we use representation (7.4), the property of conditional expectations, the ex-
ponential conditional distribution of τi and the independence of W and B . We get

M 1(t)= e−rt
(
n− J (t)

)
f̂

(
t, T , S(t)

)
p
(
t, T , λ(t)

)
, 0 ≤ t ≤ T .

The Lipschitz property of F̂ , the moment estimate (4.2) for S and square integrabil-
ity of S imply that M 1 is square integrable. Hence, there exists a unique predictable
representation of the martingale M 1 in H

2(R)× H
2(R)× H

2
N(R) and the martin-

gale M 1 can be represented as a sum of three square integrable stochastic integrals
driven by W,B and Ñ . Since f̂ , p ∈ C 1,2([0, T )× (0,∞)), we can apply the Itô’s
formula and we immediately get the dynamics

M 1(t)

= M 1(0)+
∫ t

0
e−ru

(
n− J (u−)

)
f̂s

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
σ
(
S(u)

)
dW(u)

+
∫ t

0
e−ru

(
n− J (u−)

)
f̂

(
u,T ,S(u)

)
pλ

(
u,T ,λ(u)

)
σλ

(
λ(u)

)
dB(u)

−
∫ t

0
e−ruf̂

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
Ñ(du), 0 ≤ t < T . (8.7)

We remark that the Lebesque integral in the Itô’s formula must vanish by the martin-
gale property. Since f̂ , p ∈ C ([0, T ] × (0,∞)) and �J(T ) = 0 a.s. by quasi-left
continuity, then limt→T− M 1(t) = M 1(T ) a.s., and in L

2(R) by the dominated
convergence theorem. By the growth properties of f̂s , p, f̂ , pλ, which can be de-
duced from (4.2) and (8.4), the three stochastic integrals in (8.7) are well-defined
square integrable martingales on [0, T ]. Hence, we take the limit in L

2(R) and we
derive

M 1(t)

= M 1(0)+
∫ t

0
e−ru

(
n− J (u−)

)
f̂s

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
σ
(
S(u)

)
dW(u)

+
∫ t

0
e−ru

(
n− J (u−)

)
f̂

(
u,T ,S(u)

)
pλ

(
u,T ,λ(u)

)
σλ

(
λ(u)

)
dB(u)

−
∫ t

0
e−ruf̂

(
u,T ,S(u)

)
p
(
u,T ,λ(u)

)
Ñ(du), 0 ≤ t ≤ T . (8.8)
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We deal with the second martingale

M 2(t)= E

[∫ T

0
e−ru

(
n− J (u)

)
Ĥ

(
S(u)

)
du|Ft

]
, 0 ≤ t ≤ T .

Fix u ∈ [0, T ]. We introduce the process

M 2,u(t)= E
[
e−ru

(
n− J (u)

)
Ĥ

(
S(u)

)|Ft

]
, 0 ≤ t ≤ u.

Following the arguments which led to (8.8), we can obtain

M 2,u(t)= e−rt
(
n− J (t)

)
ĥ
(
t, u, S(t)

)
p
(
t, u,λ(t)

)
, 0 ≤ t ≤ u,

together with the representation

M 2,u(t)

= M 2,u(0)+
∫ t

0
e−rv

(
n− J (v−)

)
ĥs

(
v,u,S(v)

)
p
(
v,u,λ(v)

)
σ
(
S(v)

)
dW(v)

+
∫ t

0
e−rv

(
n− J (v−)

)
ĥ
(
v,u,S(v)

)
pλ

(
v,u,λ(v)

)
σλ

(
λ(v)

)
dB(v)

−
∫ t

0
e−rvĥ

(
v,u,S(v)

)
p
(
v,u,λ(v)

)
Ñ(dv)

= M 2,u(0)+
∫ t

0
Z u

1 (v)dW(v)

+
∫ t

0
Z u

2 (v)dB(v)+
∫ t

0
V u(v)Ñ(dv), 0 ≤ t ≤ u, (8.9)

where we introduce the processes Z u
1 , Z u

2 and V u. If we apply the a priori estimate
(3.4) to the BSDE (8.9) and we use the Lipschitz property of Ĥ and the moment
estimate (4.2) for S, then we can derive

E

[∫ u

0

∣∣Z u
1 (v)

∣∣2
dv +

∫ u

0

∣∣Z u
2 (v)

∣∣2
dv +

∫ u

0

∣∣V u(v)
∣∣2(

n− J (v)
)
λ(v)dv

]

≤KE
[∣∣e−ru

(
n− J (u)

)
Ĥ

(
S(u)

)∣∣2] ≤K
(

1 +E

[
sup

v∈[0,T ]
∣∣S(v)∣∣2

])
≤K, (8.10)

with K independent of u. Estimate (8.10) also yields

∫ T

0

∫ T

0

∣∣Z u
1 (v)

∣∣21{v ≤ u}dvdu+
∫ T

0

∫ T

0

∣∣Z u
2 (v)

∣∣21{v ≤ u}dvdu

+
∫ T

0

∫ T

0

∣∣V u(v)
∣∣21{v ≤ u}(n− J (v)

)
λ(v)dvdu <∞. (8.11)
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We now obtain the representation of the second martingale M 2. Using (8.9), we get

M 2(t)

=
∫ t

0
e−ru

(
n− J (u)

)
Ĥ

(
S(u)

)
du+E

[∫ T

t

e−ru
(
n− J (u)

)
Ĥ

(
S(u)

)
du|Ft

]

=
∫ t

0

(
M 2,u(0)+

∫ t

0
Z u

1 (v)1{v ≤ u}dW(v)+
∫ t

0
Z u

2 (v)1{v ≤ u}dB(v)

+
∫ t

0
V u(v)1{v ≤ u}Ñ(dv)

)
du

+
∫ T

t

(
M 2,u(0)+

∫ t

0
Z u

1 (v)1{v ≤ u}dW(v)+
∫ t

0
Z u

2 (v)1{v ≤ u}dB(v)

+
∫ t

0
V u(v)1{v ≤ u}Ñ(dv)

)
du

=
∫ T

0
M 2,u(0)du+

∫ T

0

(∫ t

0
Z u

1 (v)1{v ≤ u}dW(v)

)
du

+
∫ T

0

(∫ t

0
Z u

2 (v)1{v ≤ u}dB(v)
)
du

+
∫ T

0

(∫ t

0
V u(v)1{v ≤ u}Ñ(dv)

)
du, 0 ≤ t ≤ T . (8.12)

By the measurability assumptions and property (8.11) we can apply the Fubini’s
theorem for stochastic integrals, see Theorem IV.65 in Protter (2004). We change
the order of integration in (8.12) and we derive the representation

M 2(t) = M 2(0)+
∫ t

0

(∫ T

v

Z u
1 (v)du

)
dW(v)

+
∫ t

0

(∫ T

v

Z u
2 (v)du

)
dB(v)+

∫ t

0

(∫ T

v

V u(v)du

)
Ñ(dv), 0 ≤ t ≤ T .

(8.13)

The representation of the third martingale

M 3(t)= E

[∫ T

0
e−ruĜ

(
S(u)

)(
n− J (u)

)
λ(u)du|Ft

]
, 0 ≤ t ≤ T ,

is obtained analogously to (8.13). From the representation of the martingale M
and Propositions 3.3.1 and 3.4.1 we deduce the formulas for the control processes
(Z1,Z2,V ). �

The assumptions of Proposition 8.1.1 should hold in many cases. We remark
that the Lipschitz continuity assumptions of Proposition 8.1.1 can be relaxed, but
additional existence and moment assumptions for S and λ would have to be intro-
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duced instead. The assumption that the functions f̂ , ĥ, ĝ, p̂ and p are of the class
C ([0, T ] × (0,∞)) ∩ C 1,2([0, T )× (0,∞)) is mathematically convenient. In fact,
this is the key assumption which allows us to apply the Itô’s formula and, conse-
quently, to find the predictable representation and the control processes of the linear
BSDE. We recall that prices of call options, put options and survival probabilities
in classical financial and actuarial models are sufficiently smooth under appropri-
ate conditions, see Sect. 12.1 in Cont and Tankov (2004) and Chap. 5 in Filipovic
(2009). However, the smoothness of prices is not guaranteed and it may require very
strong assumptions.

The representation of the control processes from Proposition 8.1.1 involve
derivatives. If we deal with the classical Black-Scholes model and we assume that
the mortality intensity follows the Cox-Ingersoll-Ross process, then f̂s , ĥs , ĝs , p̂λ
and pλ have closed form solutions, see Chap. 5 in Shreve (2004) and Chap. 5 in
Filipovic (2009). If we consider a more general model, then we can use Proposi-
tion 4.1.2 to calculate (or estimate) the derivatives.

8.2 The Application of the Malliavin Calculus

We investigate the financial model

dS0(t) = S0(t)rdt, S0(0)= 1,

dS(t) = μ
(
S(t)

)
dt + σ

(
S(t)

)
dW(t), S(0)= s > 0,

and the equity-linked (non-life insurance) liabilities

P(t)=
∫ t

0

∫
R

Ĝ
(
S(s), z

)
N(ds, dz), 0 ≤ t ≤ T ,

where the random measure N is generated by a compound Poisson process with
intensity λ and jump size distribution q . For an actuarial and financial motivation
we refer to Examples 7.9 and 7.10.

The value of the insurance liabilities is given by

Y(t) = E

[∫ T

t

∫
R

e−r(s−t)Ĝ
(
S(s), z

)
N(ds, dz)|Ft

]
, 0 ≤ t ≤ T .

Following the reasoning that led to (8.3), we consider the FBSDE

Y(t) =
∫ T

t

(
−Y(s−)r +

∫
R

Ĝ
(
S(s), z

)
λq(dz)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

V (s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (8.14)

S(t) = S(0)+
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T .
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Using the Malliavin calculus and the results for FBSDEs from Chap. 4, we show
how to derive the control processes (Z,V ) without applying the Itô’s formula. The
Malliavin calculus allows us to relax smoothness assumptions in our models.

Proposition 8.2.1 Consider the linear BSDE (8.14). Assume that

(i) the random measure N is generated by a compound Poisson process with in-
tensity λ and jump size distribution q ,

(ii) the process S is positive,
(iii) the functions μ : (0,∞) → [0,∞) and σ : (0,∞) → (0,∞) are twice contin-

uously differentiable with bounded derivatives,
(iv) the function Ĝ : (0,∞)× R → [0,∞) is measurable, Lipschitz continuous in

the sense that
∣∣Ĝ(s, z)− Ĝ

(
s′, z

)∣∣ ≤K
∣∣s − s′∣∣|z|, (s, z),

(
s′, z

) ∈ [0, T ] ×R,

and satisfies the growth condition

Ĝ(0, z)≤K|z|, z ∈ R.

The control processes (Z,V ) ∈ H
2(R)×H

2
N(R) of the BSDE (8.14) take the form

Z(t) = σ
(
S(t)

)
E

[∫ T

t

∫
R

e−r(u−t)Ĝs

(
S(u), z

)Y (u)

Y (t)
λq(dz)du|Ft

]
, 0 ≤ t ≤ T ,

V (t, z) = 0, 0 ≤ t ≤ T , z ∈R,

where

Y (t)= 1 +
∫ t

0
Y (u)μ′(S(u))du+

∫ t

0
Y (u)σ ′(S(u))dW(u), 0 ≤ t ≤ T ,

and Ĝs(s, z)= ∂
∂s
Ĝ(s, z).

Proof By Theorems 3.1.1 and 4.1.1 there exists a unique solution (Y,Z,V,S) to
(8.14). Since we deal with the Markovian dynamics, we have Y(t) = u(t, S(t))

where

u(t, s) = E

[∫ T

t

∫
R

e−r(u−t)Ĝ
(
St,s(u), z

)
λq(dz)du

]

=
∫ T

t

∫
R

e−r(u−t)
E

[
Ĝ

(
St,s(u), z

)]
λq(dz)du, (t, s) ∈ [0, T ] × (0,∞).

By Theorem 4.1.2 the law of S is absolutely continuous. From Theorem 4.1.2
we conclude that S is Malliavin differentiable and, next, from Propositions 2.6.4–
2.6.5 we deduce that

∫
R
Ĝ(S(s), z)λq(dz) is Malliavin differentiable for 0 ≤ s ≤ T .

Hence, Theorem 4.1.4 yields the control processes

Z(t)= us
(
t, S(t)

)
σ
(
S(t)

)
, V (t, z)= 0, 0 ≤ t ≤ T , z ∈ R.
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By the Lipschitz property of Ĝ and the moment estimates (4.2) we obtain the in-
equalities

E

[∣∣∣∣Ĝ(St,s(u), z)− Ĝ(St,s
′
(u), z)

s − s′

∣∣∣∣
]

≤K
E[|St,s(u)− St,s

′
(u)|]

|s − s′| |z| ≤K

√
E[|St,s(u)− St,s

′
(u)|2]

|s − s′| |z| ≤K|z|, (8.15)

and

E

[∣∣∣∣ Ĝ(St,s(u), z)− Ĝ(St,s
′
(u), z)

s − s′

∣∣∣∣
2]

≤K|z|2, (8.16)

for all (t, u, s, s′, z) ∈ [0, T ]× [0, t]× (0,∞)× (0,∞)×R. From (8.16) we deduce
that the family

As′ =
∣∣∣∣Ĝ(St,s(u), z)− Ĝ(St,s

′
(u), z)

s − s′

∣∣∣∣, s′ ∈ (0,∞),

is uniformly integrable for fixed (t, u, s, z) ∈ [0, T ] × [0, T ] × (0,∞)×R, see the
proof of Proposition 4.1.2. By (8.15), the dominated convergence theorem, the uni-
form integrability of As′ and Fubini’s theorem we finally derive

us(t, s) = lim
s′→s

u(t, s)− u(t, s′)
s − s′

= lim
s′→s

∫ T

t

∫
R

e−r(t−u)
E

[
Ĝ(St,s(u), z)− Ĝ(St,s

′
(u), z)

s − s′

]
λq(dz)du

= E

[∫ T

t

∫
R

e−r(t−u)Ĝs

(
St,s(u), z

)
Y t,s(u)λq(dz)du

]
,

(t, s) ∈ [0, T ] × (0,∞).

where

Y t,s (u) = 1 +
∫ u

t

Y t,s(v)μ′(St,s(v))dv

+
∫ u

t

Y t,s (v)σ ′(St,s(v))dW(v), 0 ≤ t ≤ u≤ T ,

and we use the fact that s �→ Ĝ(St,s(u), z) is a.s. differentiable for z ∈ R, u ∈
(t, T ]. �

The proof of Proposition 8.2.1 relies on Theorem 4.1.4 which we established for a
FBSDE driven by a Brownian motion and a compensated Poisson random measure.
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It is interesting to note that Theorem 4.1.4 can be applied to BSDEs driven by more
general random measures provided that appropriate modifications are introduced.

Let us investigate the financial model

dS0(t) = S0(t)rdt, S0(0)= 1,

dS(t) = μ
(
S(t)

)
dt + σ

(
S(t)

)
dW(t), S(0)= s > 0,

and the equity-linked (non-life insurance) liabilities

P(t)=
∫ t

0

∫
R

Ĝ
(
S(s), z

)
N(ds, dz), 0 ≤ t ≤ T ,

where the random measure N is generated by a compound Cox process with com-
pensator ϑ(dt, dz) = λ(S(t))q(dz)dt . Since the intensity λ is contingent on the
stock, the systematic claims risk is now considered. For an actuarial and financial
motivation we again refer to Examples 7.9 and 7.10. We show that we can replace
the random measure N generated by a compound Cox process with a Poisson ran-
dom measure.

Let us assume that the intensity λ is bounded and set E = {y : 0 ≤ y ≤
sups>0 λ(s)}. Let Np denote a Poisson random measure on ! × B([0, T ]) ×
B(R) × B(E). We assume that the compensator of the Poisson random measure
Np is ϑ(dt, dz, dy)= q(dz)dydt . We introduce the random measure

N (dt, dz)=
∫
E

1[0,λ(S(t))](y)Np(dt, dz, dy). (8.17)

We can notice that∫ t

0

∫
R

1A(ω, s, z)N (ds, dz)−
∫ t

0

∫
R

1A(ω, s, z)λ
(
S(s)

)
q(dz)ds

=
∫ t

0

∫
R×E

1A(ω, s, z)1[0,λ(S(s))](y)Ñp(ds, dz, dy), 0 ≤ t ≤ T ,

is a martingale for A ∈ P ⊗ B(R) by Theorem 2.3.3. Hence, by Definition 2.1.4
the random measure N has the compensator λ(S(t))q(dz)dt . From Theorem 11.5
in He et al. (1992) we conclude that the measures N and N are indistinguishable.
Consequently, we can use the results derived for BSDEs driven by Poisson random
measures also in the case when we deal with random measures generated by Cox
processes.

The value of the insurance liability is given by

Y(t) = E

[∫ T

t

∫
R

e−r(s−t)Ĝ
(
S(s), z

)
N(ds, dz)|Ft

]

= E

[∫ T

t

∫
R×E

e−r(s−t)Ĝ
(
S(s), z

)
1[0,λ(S(s))](y)Np(ds, dz, dy)|Ft

]
,

0 ≤ t ≤ T ,
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and we investigate the FBSDE

Y(t)=
∫ T

t

(
−Y(s−)r +

∫
R×E

Ĝ
(
S(s), z

)
1[0,λ(S(s))](y)q(dz)dy

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R×E

V (s, z, y)Ñp(ds, dz, dy), 0 ≤ t ≤ T ,

S(t)= S(0)+
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T .

(8.18)

Proposition 8.2.2 Consider the linear BSDE (8.18). Assume that

(i) the process S is positive,
(ii) the function λ : (0,∞) → E is positive and Lipschitz continuous, and the set

E is bounded,
(iii) the random measure Np is defined on !×B([0, T ])×B(R)×B(E) and it is

a Poisson random measure with the compensator ϑ(dt, dz, dy) = q(dz)dydt

such that q(R)= 1 and
∫
R

|z|2q(dz) <∞,
(iv) the functions μ : (0,∞) → [0,∞) and σ : (0,∞) → (0,∞) are twice contin-

uously differentiable with bounded derivatives,
(v) the function Ĝ : (0,∞)× R → [0,∞) is measurable, Lipschitz continuous in

the sense that
∣∣Ĝ(s, z)− Ĝ

(
s′, z

)∣∣ ≤K
∣∣s − s′∣∣|z|, (s, z),

(
s′, z

) ∈ (0,∞)×R,

and satisfies the growth condition

Ĝ(s, z)≤K|z|, (s, z) ∈ (0,∞)×R.

The control processes (Z,V ) ∈H
2(R)×H

2
Np(R) of the BSDE (8.18) take the form

Z(t) = σ
(
S(t)

)
E

[∫ T

t

∫
R

e−r(u−t)Ĝs

(
S(u), z

)Y (u)

Y (t)
λ
(
S(u)

)
q(dz)du|Ft

]

+ σ
(
S(t)

)
E

[∫ T

t

∫
R

e−r(u−t)Ĝ
(
S(u), z

)Y (u)

Y (t)
λ′(S(u))q(dz)du|Ft

]
,

0 ≤ t ≤ T ,

V (t, z, y) = 0, 0 ≤ t ≤ T , z ∈R, y ∈E,

where

Y (t)= 1 +
∫ t

0
Y (u)μ′(S(u))du+

∫ t

0
Y (u)σ ′(S(u))dW(u), 0 ≤ t ≤ T ,

and Ĝs(s, z)= ∂
∂s
Ĝ(s, z).
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Proof We cannot apply Proposition 8.2.1 since the indicator function in the genera-
tor of (8.18) is not smooth enough. Let E = {y : 0 ≤ y ≤ c} where c = sups>0 λ(s).
Choose a smooth function ϕ ∈ C 2(R) such that ϕ(x) = 1, x ≤ 0, and ϕ(x) = 0,
x ≥ 1. It is easy to show

lim
n→∞ϕ

(
n
(
y − λ(s)

)) = 1[0,λ(s)](y), (y, s) ∈E × (0,∞). (8.19)

By Theorems 3.1.1 and 4.1.1 there exists a unique solution (Y,Z,V,S) to (8.18),
and by Theorem 4.1.2 the law of S is absolutely continuous with respect to the
Lebesgue measure. Consider the FBSDE

Yn(t)=
∫ T

t

(
−Yn(s−)r +

∫
R×E

Ĝ
(
S(s), z

)
ϕ
(
n
(
y − λ

(
S(s)

)))
q(dz)dy

)
ds

−
∫ T

t

Zn(s)dW(s)−
∫ T

t

∫
R×E

V n(s, z, y)Ñp(ds, dz, dy),

0 ≤ t ≤ T ,

S(t)= S(0)+
∫ t

0
μ

(
S(s)

)
ds +

∫ t

0
σ
(
S(s)

)
dW(s), 0 ≤ t ≤ T .

(8.20)

By Theorems 3.1.1 and 4.1.1 there also exists a unique solution (Y n,Zn,V n,S)

to (8.20). The a priori estimates (3.4) and (3.6) together with the Cauchy-Schwarz
inequality yield

∥∥Y − Yn
∥∥2
S2 + ∥∥Z −Zn

∥∥2
H2 + ∥∥V − V n

∥∥2
H

2
Np

≤KE

[∫ T

0

∣∣∣∣
∫
R×E

Ĝ
(
S(u), z

)
1[0,λ(S(u))](y)q(dz)dy

−
∫
R×E

Ĝ
(
S(u), z

)
ϕ
(
n
(
y − λ

(
S(u)

)))
q(dz)dy

∣∣∣∣
2

du

]

≤KE

[∫ T

0

∫
R×E

∣∣Ĝ(
S(u), z

)∣∣2∣∣1[0,λ(S(u))](y)−ϕ
(
n
(
y−λ

(
S(u)

)))∣∣2
q(dz)dydu

]
,

and by the dominated convergence theorem and (8.19) we get

lim
n→∞

{∥∥Y − Yn
∥∥2
S2 + ∥∥Z −Zn

∥∥2
H2 + ∥∥V − V n

∥∥2
H

2
Np

} = 0.

In order to find the solution (Z,V ), we find the solution (Zn,V n) to the BSDE
(8.20) and we take the limit. We can now apply Proposition 8.2.1 to (8.20). We
obtain the control processes
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Zn(t)

= σ
(
S(t)

)
E

[∫ T

t

∫
R×E

e−r(u−t)Ĝs

(
S(u), z

)

· Y (u)

Y (t)
ϕ
(
n
(
y − λ

(
S(u)

)))
q(dz)dydu|Ft

]

+ σ
(
S(t)

)
E

[∫ T

t

∫
R×E

e−r(u−t)Ĝ
(
S(u), z

)

· (−ϕ′(n(y − λ
(
S(u)

)))
nλ′(S(u)))Y (u)

Y (t)
q(dz)dydu|Ft

]
, 0 ≤ t ≤ T ,

V n(t, z, y)= 0, 0 ≤ t ≤ T , z ∈R, y ∈E.

(8.21)

Notice that for a.a. s > 0, for which the derivative λ′(s) exists, we have

−
∫
E

ϕ′(n(y − λ(s)
))
nλ′(s)dy

= −
∫ (λ(s)+ 1

n
)∧c

λ(s)

ϕ′(n(y − λ(s)
))
ndyλ′(s)

= −
∫ 1

n
∧(c−λ(s))

0
ϕ′(nv)ndvλ′(s)= (

1 − ϕ
(
1 ∧ n

(
c− λ(s)

)))
λ′(s), (8.22)

and

lim
n→∞

(
1 − ϕ

(
1 ∧ n

(
c− λ(s)

)))
λ′(s)= λ′(s), (8.23)

where we use properties of ϕ. Combining (8.21) with (8.22), we get

Zn(t)

= σ
(
S(t)

)
E

[∫ T

t

∫
R×E

e−r(u−t)Ĝs

(
S(u), z

)

· Y (u)

Y (t)
ϕ
(
n
(
y − λ

(
S(u)

)))
q(dz)dydu|Ft

]

+ σ
(
S(t)

)
E

[∫ T

t

∫
R

e−r(u−t)Ĝ
(
S(u), z

)

· (1 − ϕ
(
1 ∧ n

(
c − λ

(
S(u)

))))
λ′(S(u))Y (u)

Y (t)
q(dz)dydu|Ft

]
, 0 ≤ t ≤ T ,

and the limit of Zn can be established by the dominated convergence theorem and
properties (8.19), (8.23). �
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The results derived so far are only applicable to Markovian dynamics. The power
of the Malliavin calculus lies in the fact that it can be applied in a general non-
Markovian setting. Let us investigate the financial model

dS0(t) = S0(t)rdt, S0(0)= 1,

dS(t) = S(t)
(
μ(t)dt + S(t)σ (t)dW(t)

)
, S(0)= s > 0,

and the liabilities

P(t)=
∫ t

0

∫
R

G(s, z)N(ds, dz), 0 ≤ t ≤ T ,

where the random measure N is generated by a compound Poisson process with
intensity λ and jump size distribution q . The drift and volatility of the stock S and
the claim G are non-Markov processes. We consider the BSDE

Y(t) =
∫ T

t

(
−Y(s−)r +

∫
R

G(s, z)λq(dz)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

V (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (8.24)

The next proposition shows the benefit of the Malliavin calculus in the theory
and applications of BSDEs. Recalling the key results established for the Malliavin
derivative and FBSDEs, we can immediately derive the control processes (Z,V ) of
the BSDE (8.24).

Proposition 8.2.3 Let us consider the natural filtration F generated by a Brown-
ian motion and a compound Poisson process with intensity λ and jump size distri-
bution q . We investigate the linear BSDE (8.24). Assume that

(i) (C1)–(C4) from Chap. 7 hold,
(ii) υ-a.e. (s, z) ∈ [0, T ] × R the random variable G(s, z) is Malliavin differen-

tiable, and the Malliavin derivative satisfies

E

[∫ T

0

∫ T

0

∫
R

∣∣DuG(s, z)
∣∣2
λq(dz)dsdu

]
<∞,

E

[∫ T

0

∫
R

∫ T

0

∫
R

∣∣Du,xG(s, z)
∣∣2
λq(dz)dsq(dx)du

]
<∞.

The control processes (Z,V ) ∈ H
2(R)×H

2
N(R) of the BSDE (8.24) take form

Z(t) =
(
E

[∫ T

t

∫
R

e−r(u−t)DtG(u, z)λq(dz)du|Ft

])P

, 0 ≤ t ≤ T ,

V (t, z) = z

(
E

[∫ T

t

∫
R

e−r(u−t)Dt,zG(u, z)λq(dz)du|Ft

])P

, 0 ≤ t ≤ T , z ∈R,

where (·)P denotes the predictable projection of the process.
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Proof The result follows from Theorem 3.5.1, Propositions 3.5.2, 2.6.3 and 2.6.5. �

Proposition 8.2.1 arises now as a special case of Proposition 8.2.3.
Let us remark that in applications we may face a linear BSDE with a generator

which also have a linear term in the control processes (Z,U). By Propositions 3.3.1
and 3.4.1 such a linear term may be absorbed by the random noises and the change
of measure. We end up with a linear BSDE with a generator independent of (Z,U)

with the dynamics under a different probability measure. After the change of mea-
sure, we can use the techniques presented in this chapter to derive the control pro-
cesses.

We have discussed two methods which can be applied to derive the predicable
representations of random variables and representations of the control processes
of linear BSDEs. The representations involve expectations of state processes. Such
representations are useful since we can use Monte Carlo simulations in numeri-
cal applications. As the control processes of BSDEs determine hedging strategies,
the results of this chapter point out methods which can be used to establish imple-
mentable formulas for hedging strategies.

Bibliographical Notes In the proof of Proposition 8.1.1 we closely follow the
proof from Delong (2010), see also Møller (2001). The idea of replacing a random
measure generated by a Cox process by a Poisson random measure is taken from
Ankirchner and Imkeller (2008). In the proof of Proposition 8.2.2 we closely follow
the arguments from Ankirchner and Imkeller (2008). For applications of the Malli-
avin calculus to linear BSDEs driven by Brownian motions we refer to El Karoui
et al. (1997b).



Chapter 9
Arbitrage-Free Pricing, Perfect Hedging
and Superhedging

Abstract We consider arbitrage-free pricing of assets and liabilities. We start with
perfect replication of a terminal financial claim in the Black-Scholes model. Next,
we study superhedging strategies for the insurance payment process. Finally, we in-
vestigate perfect replication of a stream of life insurance liabilities with a mortality
bond. We characterize the arbitrage-free prices and the replicating strategies by lin-
ear BSDEs. The superhedging price and the superhedging strategy are characterized
as a supersolution to a BSDE.

We give a brief introduction to arbitrage-free pricing of assets and liabilities. We
show that BSDEs arise naturally when we deal with hedging problems. In this chap-
ter we focus on perfect replication and superhedging of liabilities.

9.1 Arbitrage-Free Pricing and Market-Consistent Valuation

Traditional actuarial pricing is based on the law of large numbers and the idea of di-
versification. However, if we deal with equity-linked payments, then diversification
arguments cannot be applied. The risk of equity-linked claims can only be miti-
gated if an asset portfolio is found which is strongly correlated with the claims.
The cost of setting such an asset portfolio (called a hedging or replicating portfo-
lio) gives the price of the liability. Such an approach to pricing insurance liabilities
is called market-consistent valuation and refers to the non-arbitrage pricing theory
from financial mathematics. We should remark that market-consistent valuation is
advocated by Solvency II Directive and many accounting standards.

The fundamental theorem of financial mathematics states that in a market model
that is arbitrage-free (with No Free Lunch with Vanishing Risk) we can construct
an equivalent probability measure Q such that the discounted prices of traded in-
struments are Q-local martingales, see Delbaen and Schachermayer (1994). Such
a measure Q is called an equivalent martingale measure. The price of a liability is
given by the expectation of the discounted pay-off under an equivalent martingale
measure.

In order to price liabilities in our combined financial and insurance model (7.1)–
(7.3), we have to define the set of equivalent martingale measures Qm. From

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_9,
© Springer-Verlag London 2013
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Sect. 2.5 we conclude that the set Qm is of the form

Qm =
{
Q ∼ P,

dQ

dP

∣∣∣Ft =Mm(t), 0 ≤ t ≤ T ,

Mm is a positive F -martingale

}
, (9.1)

dMm(t)

Mm(t−)
= −θ(t)dW(t)+ φ(t)dB(t)+

∫
R

κ(t, z)Ñ(dt, dz), M(0)= 1,

where θ(t)= μ(t)−r(t)
σ (t)

, and φ and κ are F -predictable processes such that

∫ T

0

∣∣φ(t)∣∣2
dt <∞,

∫ T

0

∫
R

∣∣κ(t, z)∣∣2
Q(t, dz)η(t)dt <∞,

κ(t, z) >−1, (t, z) ∈ [0, T ] ×R.

It is easy to show that under (C1) the discounted stock price e− ∫ t
0 r(s)dsS(t) is a Q-

martingale for any Q ∈ Qm, see Example 2.9. The insurance payment process (7.3)
should be priced by the principle

Price of P at time t = E
Q

[∫ T

t

e− ∫ T
s r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T , (9.2)

with some Q ∈ Qm. The measure Q is determined by the triple (θ,φ, κ). The pro-
cess θ is called the market price of the financial risk or the risk premium required by
investors for taking the financial risk. The processes φ and κ are called the market
prices of the insurance risk or the risk premiums required by investors for taking,
respectively, the systematic and the unsystematic insurance risk. Notice that in our
combined financial and insurance model the risk premium for the financial risk can
be uniquely derived from the traded stock. The risk premiums for the systematic
and unsystematic insurance risks cannot be uniquely derived since “insurance in-
struments” are not traded in the market. In order to apply the principle (9.2), the
insurer has to decide on the insurance risk premiums. We remark that the insurance
risk premiums (φ, κ) and the corresponding equivalent martingale measure should
not be taken out of the blue. The price of a liability should be related to a hedging
portfolio. We should first state a hedging objective (a performance criterion) and
then we should derive the optimal hedging strategy. The cost of setting the hedging
portfolio gives the price of the liability, from which the insurance risk premiums can
be deduced. In next chapters of this book we will focus on hedging of liabilities.

9.2 Perfect Hedging in the Financial Market

We consider the financial market (7.1)–(7.2). We start with the simplest hedging
problem in which the insurer faces a terminal claim F depending on the perfor-
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mance of the financial market. We investigate perfect hedging (perfect replica-
tion) of the claim F . Let π ∈ A be an admissible investment strategy, see Defi-
nition 7.3.1. The dynamics of the investment portfolio Xπ under the strategy π is
given by the equation

dXπ(t)= π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
Xπ(t)− π(t)

)
r(t)dt. (9.3)

The goal is to find an initial value of the investment portfolio and an admissible
investment strategy which perfectly replicate the liability F , i.e. an initial capital
Xπ(0) and a strategy π ∈ A such that Xπ(T )= F . We set

Z(t)= π(t)σ (t), Y (t)=Xπ(t), 0 ≤ t ≤ T .

We can notice that the problem of finding a replicating strategy for the claim F in
the financial market (7.1)–(7.2) is equivalent to the problem of finding processes
(Y,Z) which satisfy the equation

dY (t)= Y(t)r(t)dt +Z(t)θ(t)dt +Z(t)dW(t),

with the terminal condition Y(T )= F . Consequently, the problem of finding a repli-
cating strategy for the claim F in the financial market (7.1)–(7.2) is equivalent to
the problem of solving the BSDE

Y(t) = F +
∫ T

t

(−Y(s)r(s)−Z(s)θ(s)
)
ds

−
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T . (9.4)

Hence, the fundamental problem in financial mathematics can be described by a
solution to a BSDE. Notice that the connection between the perfect replication of F
and the BSDE (9.4) arises very naturally.

Recalling Proposition 3.3.1, we can state the following result.

Theorem 9.2.1 Assume that (C1)–(C2) from Chap. 7 hold and let F be an FW -
measurable random variable. The replicating portfolio X∗ and the admissible repli-
cating strategy π∗ ∈ A for the claim F are given by

X∗(t) = Y(t)= E
Q

∗[
e− ∫ T

t r(s)dsF |FW
t

]
, 0 ≤ t ≤ T ,

π∗(t) = Z(t)

σ (t)
, 0 ≤ t ≤ T ,

where (Y,Z) ∈ S
2(R) × H

2(R) is the unique solution to the BSDE (9.4), and the
equivalent martingale measure Q

∗ is defined by

dQ∗

dP

∣∣∣FW
t = e− ∫ t

0 θ(s)dW(s)− 1
2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T .
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By Proposition 3.3.1 we have Z(t) = Z (t)e
∫ t

0 r(s)ds where Z is derived from
the predictable representation

e− ∫ T
0 r(s)dsF = E

Q
∗[
e− ∫ T

0 r(s)dsF
] +

∫ T

0
Z (s)dWQ

∗
(s). (9.5)

Theorem 9.2.1 shows that the replicating portfolio and the replicating strategy for
the claim F solve the linear BSDE (9.4). The price of the claim F , the value of the
replicating portfolio, is arbitrage-free since it is of the form (9.2). Notice that in the
case of the financial model (7.1)–(7.2) the set Qm consists of one equivalent martin-
gale measure, hence the arbitrage-free price is uniquely defined. The advantage of
formulating the BSDE (9.4), compared to referring directly to the fundamental pric-
ing theorem (9.2), is that the BSDE gives the replicating strategy and the price Y(0)
can be seen as the cost of setting the replicating portfolio. The square integrability
of the claim guarantees that there exists a unique solution to the BSDE (9.4) and,
consequently, a unique replicating portfolio for F . We already know from Exam-
ple 7.11 that the square integrability assumption excludes arbitrage strategies. We
remark that uniqueness of a replicating portfolio coincides with the notion of non-
arbitrage. Since solving the linear BSDE (9.4) requires to derive the predictable
representation (9.5), in Theorem 9.2.1 we prove the well-known result of financial
mathematics.

Example 9.1 We consider the classical Black-Scholes model with constant co-
efficients r,μ,σ . We are interested in pricing and hedging the put option F =
(K − S(T ))+. In order to find the replicating strategy and the replicating portfo-
lio for the claim F , we have to solve the BSDE

Y(t)= (
K − S(T )

)+ +
∫ T

t

(−Y(s)r −Z(s)θ
)
ds −

∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T .

By Proposition 3.3.1 we have to find the predictable representation of the random
variable e−rT (K − S(T ))+ under the equivalent martingale measure Q

∗ which is
defined in Theorem 9.2.1. Recalling Girsanov’s theorem and Example 2.9, we de-

duce that dS(t) = S(t)rdt + S(t)σdWQ
∗
(t), or S(T ) = S(0)erT− 1

2σ
2T+σWQ

∗
(T ).

Following the steps from Example 3.2 and applying the Clark-Ocone formula, we
can derive the representation

e−rT
(
K − S(T )

)+ = E
Q

∗[
e−rT

(
K − S(T )

)+] +
∫ T

0
ϕ
(
t, S(t)

)
dWQ

∗
(t),

where

ϕ
(
t, S(t)

) = −σe−rT
E
Q

∗[
S(T )1

{
S(T ) <K

}|Ft

]
, 0 ≤ t ≤ T .

By Proposition 3.3.1 and Theorem 9.2.1 the replicating strategy for the put option
is given by the formula

π∗(t) = −e−r(T−t)
E
Q

∗[
S(T )1

{
S(T ) <K

}|Ft

]
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= −S(t)Φ
(−d

(
t, S(t)

))
, 0 ≤ t ≤ T , (9.6)

and the price of the put option, and the initial value of the replicating portfolio, is
equal to

X∗(0) = Y(0)= E
Q

∗[
e−rT

(
K − S(T )

)+]

= Ke−rT Φ
(−d

(
0, S(0)

) − σ
√
T

) − S(0)Φ
(−d

(
0, S(0)

))
,

where Φ denotes the distribution function for the standard normal random variable
and d(t, s) = ln( s

K
)+(r+σ 2/2)(T−t)

σ
√
T−t

. The value of the replicating portfolio is deter-
mined by the process

X∗(t) = Y(t)= E
Q

∗[
e−r(T−t)

(
K − S(T )

)+|Ft

]

= Ke−r(T−t)Φ
(−d

(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T . (9.7)

Let us now focus on the Markovian dynamics

dS0(t)

S0(t)
= r

(
S(t)

)
dt, S0(0)= 1, (9.8)

dS(t)

S(t)
= μ

(
S(t)

)
dt + σ

(
S(t)

)
dW(t), S(0)= s > 0, (9.9)

and the terminal claim F = F̂ (S(T )). Clearly, the replicating portfolio and the repli-
cating strategy solve the FBSDE

S(t) = s +
∫ t

0
S(u)μ

(
S(u)

)
du+

∫ t

0
S(u)σ

(
S(u)

)
dW(u), 0 ≤ t ≤ T ,

Y (t) = F̂
(
S(T )

) +
∫ T

t

(−Y(u)r
(
S(u)

) −Z(u)θ
(
S(u)

))
du (9.10)

−
∫ T

t

Z(u)dW(u), 0 ≤ t ≤ T .

In the Markovian setting we can go beyond Theorem 9.2.1. We can recall results on
FBSDEs, and from Proposition 4.1.1, Theorems 4.2.2 and 4.1.4 we conclude that
the value of the replicating portfolio (the price) is given by

X∗(t) = Y(t)= u
(
t, S(t)

)

= E
Q

∗[
e− ∫ T

t r(S(u))duF̂
(
S(T )

)|FW
t

]
, 0 ≤ t ≤ T , (9.11)

and the replicating strategy takes the form

π∗(t)= Z(t)

σ (t)
= us

(
t, S(t)

)
S(t), 0 ≤ t ≤ T , (9.12)
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where the function u solves the PDE

ut (t, s)+ r(s)sus(t, s)+ 1

2
s2σ 2(s)uss(t, s)

− r(s)u(t, s)= 0, (t, s) ∈ [0, T )× (0,∞), (9.13)

u(T , s)= F̂ (s), s ∈ (0,∞).

These are classical results in financial mathematics, see Chaps. 5 and 6 in Shreve
(2004), which have been deduced from the properties of FBSDEs. The strategy
(9.12) is the delta hedging strategy and the PDE (9.13) is the Black-Scholes equa-
tion. The relation between the PDE (9.13) and the expectation (9.11) is the famous
Feynman-Kac formula. It should be now clear that there is a strong connection be-
tween the theory of BSDEs and financial applications.

From Chap. 4 we recall that in a Markovian model with a state process X the
control process Z of a BSDE can be related to derivative ux of the function u char-
acterizing the solution Y . If u denotes the arbitrage-free price of a liability in the
Markovian model (9.8)–(9.9) with the risk factor S, then the control process Z of
the BSDE (9.10) can be related to us and the famous delta hedging strategy (9.12)
arises. In the problems considered in this book we will characterize the price and
the hedging strategy as a unique solution to a BSDE. If the control process Z of a
BSDE can be related to the first derivatives of the price of a liability with respect
to risk factors driven by the Brownian motion W , then the investment strategy for
the stock S given by π(t) = Z(t)/σ (t) will be called a delta hedging strategy. We
point out that there is an advantage of characterizing hedging strategies by BSDEs.
Notice that the application of the delta hedging strategy (9.12) is possible only if we
deal with a Markovian model and there exists a smooth solution to the PDE (9.13),
whereas the control process Z of the BSDE (9.10) can be used both in a Markovian
model and a non-Markovian model and the control process Z exists under weak
square integrability assumption of the claim. Consequently, we can apply BSDEs
to solve hedging problems in more general models, where neither continuity of the
pay-off nor a Markovian dynamics is assumed.

We give two more examples of perfect replication.

Example 9.2 We consider the financial market (7.1)–(7.2). It is reasonable to as-
sume that the investor borrows at a rate rb which is greater than the rate r earned
in the bank account. If rb > r , then the investment portfolio process Xπ under a
strategy π is given by the equation

dXπ(t) = Xπ(t)r(t)+ π(t)σ (t)θ(t)− (
rb(t)− r(t)

)(
Xπ(t)− π(t)

)−
dt

+ π(t)σ (t)W(t).

For an FW -measurable, square integrable claim F we aim to find an initial capital
Xπ(0) and a strategy π ∈ A such that Xπ(T ) = F . As in (9.4), we end up with a
BSDE with a Lipschitz (but nonlinear) generator. We can conclude that there exists
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a unique admissible replicating strategy π∗ ∈ A and a unique replicating portfo-
lio Xπ∗

for F . Since we obtain a nonlinear BSDE, numerical methods have to be
applied to derive the solution.

Example 9.3 We consider the financial market (7.1)–(7.2) and an insurer who faces
the life insurance payment process introduced in Example 7.7. We may apply di-
versification arguments and assume that the insurance risk is fully diversified. We
replace the random evolution of the point process J , which counts the claims in
a life insurance portfolio, with deterministic expectations. Such an approach has
a long tradition in life insurance. By diversification arguments we investigate the
payment process

P e(t) =
∫ t

0
Ĥ

(
s, S(s)

)
npe(s)ds +

∫ t

0
Ĝ

(
s, S(s)

)
npe(s)λe(s)ds

+ F̂
(
S(T )

)
npe(T )1t=T , 0 ≤ t ≤ T ,

where pe(t) = e− ∫ t
0 λ

e(s)ds denotes the survival probability and λe is the expected
claim intensity. The expectations λe and pe are fixed at time t = 0. Notice that we
end up with purely financial claims weighted with some deterministic factors. The
goal is to find π ∈ A and Xπ which satisfy the equation

dXπ(t)= π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
Xπ(t)− π(t)

)
r(t)dt − dP e(t),

with the terminal condition Xπ(T ) = 0. Hence, if E[|P e(T )|2] < ∞, then the
unique replicating portfolio and the admissible replicating strategy for P e are given
by

X∗(t) = E
Q

∗
[∫ T

t

e− ∫ s
t r(u)dudP e(s)|FW

t

]
, 0 ≤ t ≤ T ,

π∗(t) = Z (t)

σ (t)
e
∫ t

0 r(s)ds, 0 ≤ t ≤ T ,

where Z is derived from the predictable representation

∫ T

0
e− ∫ s

0 r(u)dudP e(s)= E
Q

∗
[∫ T

0
e− ∫ s

0 r(u)dudP e(s)

]
+

∫ T

0
Z (s)dWQ

∗
(s),

and the equivalent martingale measure Q
∗ is defined in Theorem 9.2.1.

From the point of view of static pricing, the diversification argument leads to a
reasonable initial price. However, the diversification argument fails in the context
of dynamic pricing and hedging. The replicating strategy derived in Example 9.3
is based on the insurance assumptions made at time t = 0 which are not updated
over the lifetime of the contract. It is clear that the insurer should adapt the hedging
strategy and the hedging portfolio (the reserve) to the claim experience. More impor-
tantly, diversification turns the incomplete combined financial and insurance market,
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in which claims cannot be perfectly hedged, into a complete financial market, in
which all claims can be perfectly hedged. This is definitely too strong assumption
from the point of risk management. The insurer should quantify unhedgeable risks
and develop risk mitigating techniques such as efficient hedging strategies.

9.3 Superhedging in the Financial and Insurance Market

Let us assume that the insurer faces a terminal claim F which now depends on all
three sources of uncertainty (W,B,N). The predictable representation of the FT -
measurable, square integrable claim F under any equivalent martingale measure Q

gives

e− ∫ T
0 r(s)dsF = E

Q
[
e− ∫ T

0 r(s)dsF
] +

∫ T

0
Z1(s)dW

Q(s)

+
∫ T

0
Z2(t)dB

Q(s)+
∫ T

0

∫
R

U (t, z)ÑQ(dt, dz),

which cannot be matched with the dynamics of the investment portfolio (9.3).
Hence, the reasoning that led to Theorem 9.2.1 fails. We conclude that perfect
hedging of a general FT -measurable claim is not possible in the financial market
(7.1)–(7.2).

Let us consider the financial market (7.1)–(7.2) and the insurance payment pro-
cess (7.3). Let Xπ be the insurer’s investment portfolio given by (7.10). Since per-
fect hedging of the payment process is not possible, the insurer could be interested in
finding an investment strategy π which would yield Xπ(T ) ≥ 0. Such an objective
is called a superhedging objective.

We have to introduce a new definition of an admissible investment strategy and
an investment portfolio. We adapt the definition from El Karoui and Quenez (1995)
to our model.

Definition 9.3.1 A strategy (π,C) is called admissible for the superhedging prob-
lem, written (π,C) ∈ A super , if it consists of a predictable process π satisfying

∫ T

0

∣∣π(t)σ (t)∣∣2
dt <∞,

and a càdlàg, adapted, non-decreasing process C such that C(0)= 0. An investment
portfolio Xπ,C := (Xπ,C(t),0 ≤ t ≤ T ) under (π,C) ∈ A super is called admissible
if Xπ,C is a càdlàg, adapted, non-negative process which satisfies the dynamics

dXπ,C(t) = π(t)
(
μ(t)dt + σ(t)dW(t)

)
+ (

Xπ,C(t)− π(t)
)
r(t)dt − dP (t)− dC(t), 0 ≤ t ≤ T ,
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together with the terminal condition Xπ,C(T ) = 0. The lowest admissible invest-
ment portfolio is called the superhedging selling price of P and the corresponding
(π,C) ∈ A super is called the superhedging strategy for P .

In order to exclude arbitrage strategies, an admissible investment portfolio is here
constrained to take non-negative values, instead of assuming the square integrabil-
ity of an investment strategy as in Definition 7.3.1. The process π characterizes the
amount of wealth invested in the stock and the process C represents the cumulative
amount the insurer can withdraw from the investment portfolio. Under the super-
hedging objective the insurer requires a premium X(0) which suffices to cover the
payment process P in all scenarios. As time passes, the capital invested in the port-
folio may become too large, if some of the worst scenarios are no longer possible,
and the insurer can withdraw the capital from the investment portfolio. The process
C represents the profit arising from selling the payments P for the price X(0).

The arbitrage-free price of the insurance payment process is defined by

E
Q[∫ T

t
e− ∫ T

t r(s)dsdP (s)|Ft ] for some Q ∈ Qm. Notice that the set of equivalent
martingale measures Qm in the combined financial and insurance model is not a sin-
gleton. In the view of the superhedging objective applied, it is reasonable to study
the price

X∗(t)= ess sup
Q∈Qm

E
Q

[∫ T

t

e− ∫ T
t r(s)dsdP (s)|Ft

]
, 0 ≤ t ≤ T . (9.14)

We show that the process (9.14) defines the lowest admissible investment portfolio
in the sense of Definition 9.3.1. First, we state two important results from El Karoui
and Quenez (1995). By Q

0 we denote the equivalent martingale measure defined by
the Radon-Nikodym derivative (9.1) with φ = κ = 0.

Theorem 9.3.1 Consider the set of equivalent martingale measures Qm defined
by (9.1). Let ξ be an F -measurable random variable such that ξ ≥ 0 and
supQ∈Qm E

Q[ξ ]<∞. There exists a càdlàg, F -adapted process

Y(t)= ess sup
Q∈Qm

E
Q[ξ |Ft ], 0 ≤ t ≤ T .

The process Y is characterized as the smallest right-continuous Q-supermartingale,
for any Q ∈ Qm, which is equal to ξ at time T . Also, Q∗ ∈ Qm is optimal if and
only if Y is a Q

∗-martingale.

Theorem 9.3.2 Consider the set of equivalent martingale measures Qm defined
by (9.1). Let ξ be an F -measurable random variable such that ξ ≥ 0 and
supQ∈Qm E

Q[ξ ] < ∞. The process Y defined in Theorem 9.3.1 has the represen-
tation

Y(t)= Y(0)+
∫ t

0
Z(s)dWQ

0
(s)−C(t), 0 ≤ t ≤ T , (9.15)
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where Z is a predictable process such that

∫ T

0

∣∣Z(t)∣∣2
dt <∞,

and C is a càdlàg, adapted, non-decreasing process such that C(0)= 0.

We refer to Theorems 2.1.1, 2.1.2 and 2.3.1 in El Karoui and Quenez (1995).
The next result gives the solution to the superhedging problem.

Theorem 9.3.3 Consider the set of equivalent martingale measures Qm defined by
(9.1). Assume that (C1)–(C4) from Chap. 7 hold and let supQ∈Qm E

Q[P(T )] < ∞.
Define the process

Y (t)= ess sup
Q∈Qm

E
Q

[∫ T

0
e− ∫ s

0 r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T , (9.16)

which has the representation

Y (t)= Y (0)+
∫ t

0
π̂(s)σ (s)dWQ0(s)− Ĉ(t), 0 ≤ t ≤ T ,

where (π̂ , Ĉ) ∈ A super . Then the process

X∗(t)= ess sup
Q∈Qm

E
Q

[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T , (9.17)

is the superhedging selling price of the payment process P , and the investment strat-
egy

π∗(t)= π̂(t)e
∫ t

0 r(s)ds, 0 ≤ t ≤ T ,

is the superhedging strategy for the payment process P .

Proof It is straightforward to notice that we have

X∗(t)= Y (t)e
∫ t

0 r(s)ds − e
∫ t

0 r(s)ds

∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T . (9.18)

The process X∗ is càdlàg, adapted and non-negative by Theorem 9.3.1, representa-
tion (9.17) and non-negativity of the claims. We can derive the dynamics

dX∗(t) = r(t)X∗(t)+ π̂(t)σ (t)e
∫ t

0 r(s)dsdWQ
0
(t)− e

∫ t
0 r(s)dsdĈ(t)− dP (t)

= π∗(t)
(
μ(t)dt +σ(t)dW(t)

)+ (
X∗(t)−π∗(t)

)
r(t)dt − dC∗(t)−dP (t),

where we introduce C∗(t) = ∫ t

0 e
∫ s

0 r(u)dudĈ(s). From Theorem 9.3.2 we can con-
clude that (π∗,C∗) is an admissible investment strategy. Hence, the process X∗ is
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an admissible investment portfolio in the sense of Definition 9.3.1. We have to prove
that the candidate X∗ is the lowest admissible investment portfolio. To do this, we
first show that for any admissible control (π,C) ∈ A super the process

X̃π,C(t)=Xπ,C(t)e− ∫ t
0 r(s)ds +

∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T , (9.19)

is a Q-supermartingale, for any Q ∈ Qm. Clearly, X̃π,C is càdlàg and adapted. From
Definition 9.3.1 of an admissible process Xπ,C we deduce

Xπ,C(t)e− ∫ t
0 r(s)ds = Xπ,C(0)+

∫ t

0
π(s)σ (s)e− ∫ s

0 r(u)dudWQ0(s)

−
∫ t

0
e− ∫ s

0 r(u)dudC(s)−
∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T .

Hence, we get the representation

X̃π,C(t) = Xπ,C(0)+
∫ t

0
π(s)σ (s)e− ∫ s

0 r(u)dudWQ0(s)

−
∫ t

0
e− ∫ s

0 r(u)dudC(s), 0 ≤ t ≤ T . (9.20)

Since (π,C) ∈ A super , the process
∫ t

0 π(s)σ (s)e
− ∫ s

0 r(u)dudWQ
0
(s) is a Q-local

martingale, for any Q ∈ Qm, Xπ,C(t) ≥ 0 and X̃π,C(t) ≥ 0 by (9.19). From
these properties and representation (9.20) we conclude that the process Xπ,C(0)+∫ t

0 π(s)σ (s)e
− ∫ s

0 r(u)dudWQ
0
(s) is a non-negative Q-local martingale, hence a Q-

supermartingale, for any Q ∈ Qm. From (9.19), (9.20) and the terminal value
Xπ,C(T )= 0 we deduce

∫ T

0
e− ∫ s

0 r(u)dudC(s) = Xπ,C(0)− X̃π,C(T )+
∫ t

0
π(s)σ (s)e− ∫ s

0 r(u)dudWQ0(s)

= Xπ,C(0)+
∫ t

0
π(s)σ (s)e− ∫ s

0 r(u)dudWQ0(s)

−
∫ T

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T ,

and we conclude that
∫ T

0 e− ∫ s
0 r(u)dudC(s) is integrable under any Q ∈ Qm since the

stochastic integral and the aggregated discounted claims are integrable under any
Q ∈ Qm. The supermartingale property of X̃π,C now follows from representation
(9.20), the supermartingale property of Xπ,C(0)+ ∫ t

0 π(s)σ (s)e
− ∫ s

0 r(u)dudWQ
0
(s)

and non-negativity of the integrable process
∫ t

0 e
− ∫ s

0 r(u)dudC(s). By Theorem 9.3.1
we get Y (t) ≤ X̃π,C(t),0 ≤ t ≤ T , and finally X∗(t) ≤ Xπ,C(t),0 ≤ t ≤ T ,
by (9.18) and (9.19). �
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We remark that the strategy (Y , π̂ , Ĉ) from Theorem 9.3.3 can be viewed as a
supersolution to the BSDE

Y (t) =
∫ T

0
e− ∫ s

0 r(u)dudP (s)

−
∫ T

t

π̂(s)σ (s)dWQ
0
(s)+ (

Ĉ(T )− Ĉ(t)
)
, 0 ≤ t ≤ T . (9.21)

For the notion of a supersolution to a BSDE we refer to Sect. 2.3 in El Karoui et al.
(1997b) and Peng (1999).

The superhedging price and the superhedging strategy are difficult to compute.
Let us show that for the Brownian filtration F = FW ⊗ FB the process X∗ can be
approximated with a sequence of solutions to BSDEs which can be easily computed.
Since a comparison principle plays a crucial role in the proof, we restrict our study
to the Brownian filtration.

We define the set of equivalent martingale measures

Qm
n =

{
Q ∼ P,

dQ

dP

∣∣∣Ft =Mm
n (t), 0 ≤ t ≤ T ,

Mm
n is a positive FW ⊗ FB -martingale

}
, (9.22)

dMm
n (t)

Mm
n (t)

= −θ(t)dW(t)+ φn(t)dB(t), Mm
n (0)= 1,

where φn is an FW ⊗ FB -predictable process such that
∣∣φn(t)∣∣ ≤ n, 0 ≤ t ≤ T .

We investigate the optimization problem

Yn(t)= ess sup
Q∈Qm

n

E
Q[ξ |Ft ], 0 ≤ t ≤ T . (9.23)

Following the proof of Proposition 3.3.2, we can derive the solution to the prob-
lem (9.23).

Proposition 9.3.1 Let us deal with the Brownian filtration F = FW ⊗ FB , and
let us consider the set of equivalent martingale measures Qm

n defined by (9.22).
We assume that (C1)–(C2) from Chap. 7 hold and ξ is an F -measurable random
variable such that E[|ξ |2]<∞.

(a) For each n ∈N there exists a unique solution (Y n,Zn
1 ,Z

n
2 ) ∈ S

2(R)×H
2(R)×

H
2(R) to the BSDE

Yn(t) = ξ −
∫ T

t

Zn
1 (s)θ(s)ds +

∫ T

t

n
∣∣Zn

2 (s)
∣∣ds
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−
∫ T

t

Zn
1 (s)dW(s)−

∫ T

t

Zn
2 (s)dB(s), 0 ≤ t ≤ T , (9.24)

and the process Yn has representation (9.23).
(b) The optimal control φ∗

n for the optimization problem (9.23) is given by

φ∗
n(t)= n

|Zn
2 (t)|

Zn
2 (t)

1
{
Zn

2 (t) �= 0
}
, 0 ≤ t ≤ T .

Let Y(t) = ess supQ∈Qm E
Q[ξ |Ft ]. The superhedging price and the superhedg-

ing investment portfolio Y in the diffusion model can be obtained as an increasing
limit of the prices Yn solving the BSDEs (9.24).

Proposition 9.3.2 Under the assumptions of Theorem 9.3.1 and Proposition 9.3.1
we have limn→∞ Yn(t)= Y(t), 0 ≤ t ≤ T .

Proof It is clear that 0 ≤ Yn(t) ≤ Y(t), 0 ≤ t ≤ T . By the comparison principle
the sequence (Y n)n∈N is non-decreasing. Let us define Y∞(t) = limn→∞ Yn(t),
0 ≤ t ≤ T . We have 0 ≤ Yn(t) ≤ Y∞(t) ≤ Y(t), 0 ≤ t ≤ T . By Theorem 9.3.1 the
processes Yn and Y are càdlàg, FW ⊗ FB -adapted, Q0-supermartingales. We can
also deduce that Y∞ is càdlàg and FW ⊗ FB -adapted. By the dominated conver-
gence theorem Y∞ is a Q

0-supermartingale. Since the process Y is the smallest
Q

0-supermartingale, we get the inequality Y(t) ≤ Y∞(t), 0 ≤ t ≤ T . The proof is
complete. �

Superhedging strategies are not popular in financial markets. Firstly, they are
difficult to compute. Secondly, superhedging prices are not arbitrage-free and they
are usually too high to be accepted by buyers. Notice that the price process Yn from
Proposition 9.3.1 is arbitrage-free since Yn can be represented as the expectation un-
der an equivalent martingale measure. However, the limit of the sequence (Y n)n∈N
and the superhedging price process Y may not have such a representation.

Example 9.4 Consider the claim ξ = 1{J (T ) = 0} where J is a Poisson process
with intensity λ. The claim ξ may represent a survival benefit. Let r = 0. From
the representation of the superhedging price, see Theorem 9.3.1, we conclude that
Y(0)≤ 1. Let us introduce the subset of equivalent martingale measures Qm

κ ⊂ Qm

which arises from Qm by considering κ(t) = κ . An element of Qm
κ is denoted

by Qκ . We have

Y(0)≥ sup
κ∈(−1,∞)

E
Qκ

[
1
{
J (T )= 0

}] = sup
κ∈(−1,∞)

e−(1+κ)λT = 1, 0 ≤ t ≤ T ,

where we use the fact under Qκ the Poisson process has the intensity (1 + κ)λ.
Hence, the superhedging price Y(0) = 1. Clearly, this price is too high and the in-
surer would never sell the contract for such a price. The price Y(0) yields arbitrage
since it guarantees a profit with a positive probability and no shortfall for the insurer.
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One can show that the sequence of equivalent probability measures Qκ converges
weakly in distribution, as κ → −1, to a probability measure under which the Pois-
son process equals zero, see El Karoui and Quenez (1995). Hence, the limit is not
an equivalent probability measure.

Since superhedging strategies are too high to be of practical use in the markets,
we have to look for other strategies which minimize the risk of not fulfilling the
obligation. If the insurer has an access to a traded derivative which is perfectly
correlated with the insurance liability, then the risk can be eliminated. We consider
such a case in the next chapter. However, in most cases the insurer is not able to
find assets which perfectly match the insurance liabilities. Then, the goal should
be to replicate the liabilities as good as possible by optimizing a hedging error and
solving an asset allocation problem. We investigate such optimization problems in
Chaps. 10, 11, 12.

9.4 Perfect Hedging in the Financial and Insurance Market
Completed with a Mortality Bond

In order to help insurance companies to hedge mortality risk, mortality derivatives
have been introduced in global financial markets. In this chapter we assume that the
financial market consists of the bank account (7.1), the stock (7.2) and a mortality
bond. Since pay-offs from mortality bonds are contingent on the mortality experi-
ence in a population, see Blake et al. (2010) and Wills and Sherris (2010), the insurer
can use a mortality bond to hedge death and survival benefits from its portfolio.

We investigate a life insurance portfolio consisting of n persons insured whose
future lifetimes (τi, i = 1, . . . , n) are assumed to be independent and exponentially
distributed

P(τi > t)= e− ∫ t
0 λ(s)ds, i = 1, . . . , n,

where λ : [0, T ] → (0,∞) denotes a (deterministic) mortality intensity. We deal
with the life insurance payment process

P(t) =
∫ t

0

(
n− J (s)

)
Ĥ (s)ds +

∫ t

0
Ĝ(s)dJ (s)

+ (
n− J (T )

)
F̂1t=T , 0 ≤ t ≤ T , (9.25)

where J is the deaths counting process for the insurance portfolio. For details we
refer to Examples 7.6–7.7. We consider a mortality bond which pays a unit for each
insured person who survives till the maturity of the policy. We show that such a mor-
tality bond, which is assumed to be traded in the market, completes the combined
financial and insurance model (7.1), (7.2), (9.25) in the sense that the life insurance
payment process (9.25) can be perfectly replicated by investing in the bank account,
the stock and the mortality bond.
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First, we derive the price dynamics of the mortality bond. The combined finan-
cial and insurance market with the mortality bond is arbitrage-free. We assume that
the mortality bond is already priced by the market, i.e. the equivalent martingale
measure Q ∈ Qm or the process κ , which is used to price the unsystematic mortal-
ity risk, is given. We set φ = 0, since the Brownian motion B is not used here. The
arbitrage-free price of the mortality bond is given by

D(t)= E
Q
[
e− ∫ T

t r(s)ds
(
n− J (T )

)|Ft

]
, 0 ≤ t ≤ T . (9.26)

Proposition 9.4.1 Assume that

(i) (C1) from Chap. 7 holds,
(ii) the compensator of the point process J is of the form ϑ(dt, {1}) = (n −

J (t−))λ(t)dt where λ : [0, T ] → (0,∞) is continuous,
(iii) the equivalent martingale measure Q ∈ Qm is given by (9.1) with an FW -

predictable, bounded process κ .

The price of the mortality bond (9.26) satisfies the dynamics

dD(t) = D(t−)1
{
n− J (t−) > 0

}((
r(t)+ (

1 + κ(t)
)
λ(t)+ ZE(t)

E(t)
θ(t)

)
dt

− 1

n− J (t−)
dJ (t)+ ZE(t)

E(t)
dW(t)

)
, 0 ≤ t ≤ T , (9.27)

where

E(t)= E
Q
[
e− ∫ T

0 r(s)dse− ∫ T
0 (1+κ(s))λ(s)ds |FW

t

]
, 0 ≤ t ≤ T ,

E(t)=E(0)+
∫ t

0
ZE(s)dWQ(s), 0 ≤ t ≤ T .

(9.28)

Proof By the Girsanov’s theorem the compensator of the point process J under Q
is (1+κ(t))(n−J (t−))λ(t)dt . We can also deduce that the FW -conditional distri-
bution of the future lifetime τ of an insured is exponential under Q. Consequently,
we can derive

D(t) = (
n− J (t)

)
E
Q
[
e− ∫ T

t r(s)dse− ∫ T
t (1+κ(s))λ(s)ds |FW

t

]

= (
n− J (t)

)
e
∫ t

0 r(s)ds+
∫ t

0 (1+κ(s))λ(s)dsE(t), 0 ≤ t ≤ T ,

see also (8.6). By the predictable representation of E from (9.28) and the Itô’s for-
mula we obtain the dynamics

dD(t) = −e
∫ t

0 r(s)ds+
∫ t

0 (1+κ(s))λ(s)dsE(t)dJ (t)

+ (
n− J (t−)

)
e
∫ t

0 r(s)ds+
∫ t

0 (1+κ(s))λ(s)dsE(t)
(
r(t)+ (

1 + κ(t)
)
λ(t)

)
dt

+ (
n− J (t−)

)
e
∫ t

0 r(s)ds+
∫ t

0 (1+κ(s))λ(s)dsZE(t)dWQ(t)



166 9 Arbitrage-Free Pricing, Perfect Hedging and Superhedging

= D(t−)1
{
n− J (t−) > 0

}((
r(t)+ (

1 + κ(t)
)
λ(t)

)
dt − 1

n− J (t−)
dJ (t)

+ ZE(t)

E(t)
dWQ(t)

)
.

If we change the measure to P, then (9.27) can be derived. �

We remark that the restriction that the process κ (or the drift in (9.27)) is FW -
predictable is reasonable. In particular, it implies that the future lifetimes are, con-
ditional on FW , independent and exponentially distributed under Q. Notice that
the deterministic intensity λ can be changed into a random intensity if an FW -
predictable process κ is used. A deterministic κ is likely to be chosen in actuarial
applications.

We now solve the perfect replication problem for the insurance payment process
(9.25). Let π := (π(t),0 ≤ t ≤ T ) and χ := (χ(t),0 ≤ t ≤ T ) denote the amount
of wealth invested in the stock S and in the mortality bond D. The dynamics of the
investment portfolio is given by

dXπ,χ (t) = π(t)
dS(t)

S(t)
+χ(t)

dD(t)

D(t−)
+ (

Xπ,χ (t−)−π(t)−χ(t)
)dS0(t)

S0(t)
−dP (t)

= π(t)
(
μ(t)dt + σ(t)dW(t)

)

+ χ(t)1
{
n− J (t−) > 0

}((
r(t)+ (

1 + κ(t)
)
λ(t)+ ZE(t)

E(t)
θ(t)

)
dt

− 1

n− J (t−)
dJ (t)+ ZE(t)

E(t)
dW(t)

)

+ (
Xπ,χ (t−)− π(t)− χ(t)1

{
n− J (t−) > 0

})
r(t)dt

− dP (t), Xπ,χ (0)= x. (9.29)

We define a class of admissible investment strategies.

Definition 9.4.1 A strategy (π,χ) is called admissible, written (π,χ) ∈ A l , if it
satisfies the conditions:

(i) π : [0, T ] ×Ω → R and χ : [0, T ] ×Ω → R are predictable processes,
(ii) E[∫ T

0 |π(t)σ (t)|2dt] < ∞, E[∫ T

0 |χ(t)|2λ(t)dt] < ∞ and E[∫ T

0 |χ(t) ×
ZE(t)|2dt]<∞,

(iii) there exists a unique càdlàg, adapted solution Xπ,χ to (9.29) on [0, T ].

The goal is to find an initial value of the investment portfolio Xπ,χ (0) and an
admissible investment strategy (π,χ) ∈ A l such that Xπ,χ (T )= 0. This replication
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problem is equivalent to the problem of solving the BSDE

Y(t) = (
n− J (T )

)
F̂ +

∫ T

t

(−Y(s)r(s)− θ(s)Z(s)

+ (
n− J (s−)

)
U(s)κ(s)λ(s)+ Ĥ (s)

(
n− J (s−)

)

+ Ĝ(s)
(
1 + κ(s)

)(
n− J (s−)

)
λ(s)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T , (9.30)

which can be immediately derived from the wealth process (9.29) by introducing
the variables

Y(t) = Xπ,χ (t), 0 ≤ t ≤ T ,

Z(t) =
(
π(t)σ (t)+ χ(t)

ZE(t)

E(t)
1
{
n− J (t−) > 0

})
, 0 ≤ t ≤ T , (9.31)

U(t) = −χ(t)

n− J (t−)
1
{
n− J (t−) > 0

} − Ĝ(t), 0 ≤ t ≤ T ,

and the jump measure N of the point process J .
We state the main result of this chapter.

Theorem 9.4.1 Consider the payment process (9.25) with FW -measurable F̂ and
FW -predictable Ĝ and Ĥ . Assume that (C1)–(C4) from Chap. 7 hold and let the
assumptions of Proposition 9.4.1 be satisfied.

(a) There exists a unique solution (Y,Z,U) ∈ S
2(R) × H

2(R) × H
2
N(R) to the

BSDE (9.30).
(b) The replicating portfolio X∗ for the payment process P is given by

X∗(t)= Y(t)= E
Q

[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T ,

where the equivalent martingale measure Q is given by (9.26).
(c) If

E

[∫ T

0

∣∣U(t)ZE(t)
∣∣2
dt

]
<∞, E

[∫ T

0

∣∣Ĝ(t)ZE(t)
∣∣2
dt

]
<∞, (9.32)

then the admissible replicating strategy (π∗, χ∗) ∈ A l for the payment process
P takes the form

π∗(t) = Z(t)

σ (t)
− χ∗(t) ZE(t)

σ (t)E(t)
, 0 ≤ t ≤ T ,

χ∗(t) = −(
n− J (t−)

)(
U(t)+ Ĝ(t)

)
, 0 ≤ t ≤ T .
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Proof (a) The existence of a unique solution to the BSDE (9.30) follows from The-
orem 3.1.1.

(b) Following the proof of Propositions 3.3.1 and 3.4.1, we get the representation

Y(t) = E
Q

[
e− ∫ T

t r(s)ds
(
n− J (T )

)
F̂ +

∫ T

t

e− ∫ s
t r(u)du

(
Ĥ (s)

(
n− J (s−)

)

+ Ĝ(s)
(
1 + κ(s)

)(
n− J (s−)

)
λ(s)

)
ds|Ft

]
.

Since (1 + κ(t))(n− J (t−))λ(t)dt is the compensator of the jump measure N un-
der Q, we have

E
Q

[∫ τn

0
e− ∫ s

t r(u)duĜ(s)
(
1 + κ(s)

)(
n− J (s−)

)
λ(s)ds

]

= E
Q

[∫ τn

0
e− ∫ s

t r(u)duĜ(s)N(ds)

]
,

where (τn)n≥1 is a sequence of localizing stopping times, and we use Theorem 2.3.2.
By the monotone convergence theorem we obtain

E
Q

[∫ T

0
e− ∫ s

t r(u)duĜ(s)
(
1 + κ(s)

)(
n− J (s−)

)
λ(s)ds

]

= E
Q

[∫ T

0
e− ∫ s

t r(u)duĜ(s)N(ds)

]
,

and the representation of Y follows.
(c) The form of the replicating strategy follows from (9.31). From the square

integrability assumption (9.32) we deduce that the strategy (π∗, χ∗) is square inte-
grable. Clearly, there exists a unique, càdlàg, adapted solution Xπ∗,χ∗

to (9.29). The
admissibility of (π∗, χ∗) has been proved. �

Notice that if r and κ are deterministic, then ZE(t) = 0 and the square integra-
bility assumptions (9.32) are trivially satisfied. From Propositions 3.3.1 and 3.4.1
we deduce that

Z(t)= Z (t)e
∫ t

0 r(s)ds, U(t)+ Ĝ(t)= U (t)e
∫ t

0 r(s)ds, 0 ≤ t ≤ T ,

where Z and U are derived from the predictable representation

∫ T

0
e− ∫ s

0 r(u)dudP (s) = E
Q

[∫ T

0
e− ∫ s

0 r(u)dudP (s)

]

+
∫ T

0
Z (s)dWQ(s)+

∫ T

0
U (s)ÑQ(ds).
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Theorem 9.4.1 shows that the replicating portfolio and the replicating strategy
for the life insurance payment process (9.25) are characterized by the linear BSDE
(9.30). The price of the payment process, the initial value of the replicating portfo-
lio, is arbitrage-free. The unsystematic insurance risk of P is priced with the same
risk premium κ which is used to price the mortality bond, which agrees with the
concept of market-consistent valuation. Let us now focus on the replicating strategy
and the control processes of the linear BSDE (9.30). Recalling Theorem 4.2.1, we
can deduce that the amount χ∗ invested in the mortality bond hedges the change
in the price of the liability (including the death benefit) due to the death of a poli-
cyholder. Hence, χ∗ is a delta hedging strategy for the mortality risk. The strategy
π∗, which determines the amount invested in the stock, consists of two terms. From
Theorem 4.2.1 we conclude that the first term hedges the change in the price of the
liability due to movements in the financial market. Hence, the first term of π∗ is a
delta hedging strategy for the financial risk. Since the price of the mortality bond
depends on the financial market through the stochastic interest rate r and the risk
premium κ , the optimal strategy π∗, which hedges the financial risk, should also
take into account the position in the mortality bond kept for hedging the mortality
risk. Consequently, the second term of π∗ hedges the change in the price of the
mortality bond due to movements in the financial market.

We now study an example.

Example 9.5 We consider the classical Black-Scholes model with constant coef-
ficients r,μ,σ and an insurer who issues a portfolio of n unit-linked endowment
policies with a capital guarantee. We are interested in pricing and hedging the claim
F = (n − J (T ))(K − S(T ))+. We remark that put options on funds, which guar-
antee a minimal value of the terminal pay-off, are often embedded in unit-linked
insurance contracts. Let us consider a constant mortality intensity λ and assume that
the market believes that the unsystematic mortality risk can be diversified. Hence,
κ = 0. In order to find the replicating strategy and the replicating portfolio for the
claim F , we have to solve the BSDE

Y(t) = (
n− J (T )

)(
K − S(T )

)+ +
∫ T

t

(−Y(s)r − θZ(s)
)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T .

If we change the measure, then we end up with

Y(t) = (
n− J (T )

)(
K − S(T )

)+ −
∫ T

t

Y (s)rds

−
∫ T

t

Z(s)dWQ
∗
(s)−

∫ T

t

U(s)ÑQ
∗
(ds), 0 ≤ t ≤ T , (9.33)

where Q
∗ is the equivalent martingale measure defined in Theorem 9.2.1. Let

f̂ (t, s) = E
Q

∗ [e−r(T−t)(K − St,s(T ))+]. Recalling Examples 4.1 and 9.1 and for-
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mulas (4.13), (9.6), (9.7), we can derive

f̂ (t, s) = Ke−r(T−t)Φ
(−d(t, s)− σ

√
T − t

)
− sΦ

(−d(t, s)
)
, (t, s) ∈ [0, T ] × (0,∞), (9.34)

f̂s(t, s) = −Φ
(−d(t, s)

)
, (t, s) ∈ [0, T )× (0,∞).

From Proposition 8.1.1 we can now deduce that the solution to the BSDE (9.33)
takes the form

Y(t) = (
n− J (t)

)
e−λ(T−t)

(
Ke−r(T−t)Φ

(−d
(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

)))
, 0 ≤ t ≤ T ,

Z(t) = −(
n− J (t−)

)
e−λ(T−t)σS(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

U(t) = −e−λ(T−t)
(
Ke−r(T−t)Φ

(−d
(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

)))
, 0 ≤ t ≤ T .

By Theorem 9.4.1 the replicating strategy is given by the formulas

π∗(t) = −(
n− J (t−)

)
e−λ(T−t)S(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

χ∗(t) = (
n− J (t−)

)
e−λ(T−t)

(
Ke−r(T−t)Φ

(−d
(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

)))
, 0 ≤ t ≤ T ,

and the price of the claim, and the initial value of the replicating portfolio, is equal
to

X∗(0)= Y(0)= ne−λT
(
Ke−rT Φ

(−d
(
0, S(0)

) − σ
√
T

) − S(0)Φ
(−d

(
0, S(0)

)))
.

The value of the replicating portfolio is determined by the process

X∗(t)= Y(t) = (
n− J (t)

)
e−λ(T−t)

(
Ke−r(T−t)Φ

(−d
(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

)))
, 0 ≤ t ≤ T .

The results of this chapter can also be applied if we aim to hedge defaultable se-
curities with a defaultable bond, see Example 7.10. We remark that in credit risk
models it is usually assumed that the default intensity λ is an FW -predictable
process. Since we allow for an FW -predictable mortality intensity under Q, the
replicating strategy for defaultable securities can be found by following the same
arguments that led to Theorem 9.4.1, see Blanchet-Scalliet et al. (2008), Blanchet-
Scalliet and Jeanblanc (2004) and Kharroubi and Lim (2012).
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et al. (1997b). Example 9.2 is taken from El Karoui et al. (1997b). In the proof
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Blanchet-Scalliet et al. (2008) and Blanchet-Scalliet and Jeanblanc (2004).



Chapter 10
Quadratic Pricing and Hedging

Abstract We investigate pricing and hedging of the insurance payment process
under quadratic objectives. Four types of quadratic loss functions are considered.
First, we deal with a minimal hedging error in a mean-square sense. The hedg-
ing error is evaluated both under an equivalent martingale measure and the real-
world measure. Next, we investigate locally risk minimizing strategies which lead
to non-self-financing investment portfolio processes. Finally, we minimize an in-
stantaneous mean-variance risk measure of the insurer’s surplus to derive a hedging
strategy. The pricing and hedging strategies are characterized by linear and nonlin-
ear BSDEs.

Since a self-financing investment portfolio cannot perfectly replicate the insurance
payment process, we aim to find an investment strategy which hedges the payment
process with a minimal replication error. It is natural to measure the replication
error with a quadratic function. In this chapter we investigate four types of quadratic
objectives for pricing and hedging in incomplete markets. Quadratic objectives have
gained their importance in portfolio optimization since Markowitz (1952) solved
a one-period portfolio selection problem. We point out that the Markowitz mean-
variance portfolio selection is used in practice for investment decision making and
asset-liability management, see Zenios and Ziemba (2006) and Adam (2007). Let
us also remark that replicating portfolios for insurance liabilities are constructed in
practice by means of a mean-square criterion, see Boekel et al. (2009).

10.1 Quadratic Pricing and Hedging Under an Equivalent
Martingale Measure

Let an equivalent martingale measure Q ∈ Qm be given. We formulate our pricing
and hedging objective under the measure Q. First, we define a class of admissible
strategies under Q.

Definition 10.1.1 A strategy π := (π(t),0 ≤ t ≤ T ) is called admissible under the
measure Q, written π ∈ A Q, if it satisfies the conditions:
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(i) π : [0, T ] ×Ω → R is a predictable process,
(ii) E

Q[∫ T

0 |π(t)σ (t)|2dt]<∞,
(iii) there exists a unique càdlàg, adapted solution Xπ to (7.11) on [0, T ].

If assumptions (C2)–(C4) hold under Q, then the wealth process Xπ is square
integrable under Q for any admissible strategy π ∈ A Q, see (7.12).

The insurer faces the payment process (7.3). We control the wealth of the insurer
at time T which may denote the planning horizon in an ALM study or the point of
time when the insurance portfolio terminates. The goal is to find an initial capital
x and an admissible investment strategy π ∈ A Q which minimize the mean-square
hedging error

inf
x,π∈A Q

E
Q
[∣∣e− ∫ T

0 r(s)dsXπ,x(T )− e− ∫ T
0 r(s)dsF

∣∣2]
, (10.1)

where the investment portfolio process Xπ,x is given by (7.11). Hence, we aim to
find an investment portfolio which hedges the insurance payment process with a
minimal replication error at time T . The use of the mean-square objective for mea-
suring the replication error is very natural. The formulation of the objective under
an equivalent martingale measure is mathematically and practically convenient, as
we discuss later. The optimal capital, or the initial value of the optimal hedging
portfolio, yields the price of the payment process.

Theorem 10.1.1 Let an equivalent martingale measure Q ∈ Qm be given and as-
sume that (C1)–(C4) from Chap. 7 hold under Q. We consider the quadratic pricing
and hedging problem (10.1).

(a) There exists a unique solution (Y,Z1,Z2,U) ∈ S
2(R) × H

2(R) × H
2(R) ×

H
2
N(R) to the BSDE

Y(t) =
∫ T

0
e− ∫ s

0 r(u)dudP (s)−
∫ T

t

Z1(s)dW
Q(s)−

∫ T

t

Z2(s)dB
Q(s)

−
∫ T

t

∫
R

U(s, z)ÑQ(ds, dz), 0 ≤ t ≤ T , (10.2)

where the square integrability conditions for (Y,Z1,Z2,U) hold under Q.
(b) The optimal initial value of the hedging portfolio x∗ and the optimal admissible

hedging strategy π∗ ∈ A Q for the payment process P take the form

x∗ = Y(0)= E
Q

[∫ T

0
e− ∫ s

0 r(u)dudP (s)

]
,

π∗(t) = Z1(t)

σ (t)
e
∫ t

0 r(s)ds, 0 ≤ t ≤ T .

Proof (a) The assertion follows from Theorem 3.1.1.
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(b) We recall that the dynamics of Xπ,x is described by (7.11). By the change of
measure, the Girsanov’s theorem and discounting we obtain

e− ∫ T
0 r(s)dsXπ,x(T )

= x +
∫ T

0
e− ∫ s

0 r(u)duπ(s)σ (s)dWQ(s)

−
∫ T

0
e− ∫ s

0 r(u)duH(s)ds −
∫ T

0

∫
R

e− ∫ s
0 r(u)duG(s, z)N(ds, dz). (10.3)

From (10.3) we conclude that the mean-square error (10.1) is given by

E
Q

[∣∣∣∣x +
∫ T

0
e− ∫ s

0 r(u)duπ(s)σ (s)dWQ(s)−
∫ T

0
e− ∫ s

0 r(u)dudP (s)

∣∣∣∣
2]
,

and by (10.2) we get

E
Q

[∣∣∣∣x − Y(0)+
∫ T

0

(
e− ∫ s

0 r(u)duπ(s)σ (s)−Z1(s)
)
dWQ(s)

−
∫ T

0
Z2(s)dB

Q(s)−
∫ T

0

∫
R

U(s, z)ÑQ(ds, dz)

∣∣∣∣
2]
.

Taking the squares and using moment properties of stochastic integrals, see Theo-
rem 2.3.3, we derive

(
x − Y(0)

)2 +E
Q

[∫ T

0

∣∣e− ∫ s
0 r(u)duπ(s)σ (s)−Z1(s)

∣∣2
ds

]

+E
Q

[∫ T

0

∣∣Z2(s)
∣∣2
ds

]
+E

Q

[∫ T

0

∫
R

∣∣U(s, z)
∣∣2
Q(s, dz)η(s)ds

]

− 2EQ

[∫ T

0

(
e− ∫ s

0 r(u)duπ(s)σ (s)−Z1(s)
)
dWQ(s)

∫ T

0
Z2(s)dB

Q(s)

]

− 2EQ

[∫ T

0

(
e− ∫ s

0 r(u)duπ(s)σ (s)−Z1(s)
)
dWQ(s)

∫ T

0

∫
R

U(s, z)ÑQ(ds, dz)

]

+ 2EQ

[∫ T

0
Z2(s)dB

Q(s)

∫ T

0

∫
R

U(s, z)ÑQ(ds, dz)

]
.

Finally, property (5.5) yields the hedging error

(
x − Y(0)

)2 +E
Q

[∫ T

0

∣∣e− ∫ s
0 r(u)duπ(s)σ (s)−Z1(s)

∣∣2
ds

]

+E
Q

[∫ T

0

∣∣Z2(s)
∣∣2
ds

]
+E

Q

[∫ T

0

∫
R

∣∣U(s, z)
∣∣2
Q(s, dz)η(s)ds

]
,

and the optimality of (x∗,π∗) follows. The admissability of π∗ is clear. �
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The price and the hedging strategy for the payment process P are characterized
by the predictable representation of the discounted payments (or by the linear BSDE
(10.2)). The price x∗ is arbitrage-free. Recalling the interpretation given in Sect. 9.2
and Theorem 4.2.1, we can conclude that the hedging strategy π∗ is a delta-hedging
strategy. The hedging strategy π∗ is updated with the current information on the
financial and the insurance risk.

Example 10.1 We consider the classical Black-Scholes model with constant coef-
ficients r , μ, σ and an insurer who issues a portfolio of n unit-linked endowment
policies with a capital guarantee. We are interested in pricing and hedging the claim
F = (n − J (T ))(K − S(T ))+ where J is the deaths counting process for the in-
surance portfolio. We consider a constant mortality intensity λ and we choose the
equivalent martingale measure Q

∗ defined in Theorem 9.2.1. In order to find the
price and the optimal hedging strategy for the claim F , we have to solve the BSDE

Y(t) = e−rT
(
n− J (T )

)(
K − S(T )

)+

−
∫ T

t

Z(s)dWQ
∗
(s)−

∫ T

t

U(s)ÑQ
∗
(ds), 0 ≤ t ≤ T . (10.4)

From Proposition 8.1.1 and formula (9.34) we conclude that the solution to the
BSDE (10.4) is given by the triple

Y(t) = (
n− J (t)

)
e−λ(T−t)e−rt

(
Ke−r(T−t)Φ

(−d
(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

)))
, 0 ≤ t ≤ T ,

Z(t) = −(
n− J (t−)

)
e−λ(T−t)σS(t)e−rtΦ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

U(t) = −e−λ(T−t)e−rt
(
Ke−r(T−t)Φ

(−d
(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

)))
, 0 ≤ t ≤ T .

By Theorem 10.1.1 the optimal hedging strategy is given by the formula

π∗(t) = −(
n− J (t−)

)
e−λ(T−t)S(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

and the price of the claim, and the initial value of the optimal hedging portfolio, is
equal to

x∗ = Y(0)= ne−λT
(
Ke−rT Φ

(−d
(
0, S(0)

) − σ
√
T

) − S(0)Φ
(−d

(
0, S(0)

)))
.

The value of the optimal hedging portfolio is determined by the process

X∗(t)= x∗ert +
∫ t

0
π∗(s)er(t−s)

(
θσds + σdW(s)

)
, 0 ≤ t ≤ T .

The solution to the optimization problem (10.1) is easy to derive but the objective
(10.1) has two drawback from the financial point of view. Firstly, we have to choose
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the equivalent martingale measure Q. This choice determines the price. When we
investigate pricing in incomplete markets we expect to find the equivalent martingale
measure. Consequently, the equivalent martingale measure used for pricing should
be the output of an optimization problem, rather than the input. Secondly, the use of
an equivalent martingale measure for evaluating the hedging error is questionable.
Profits and losses or the performance of the hedging portfolio should be evaluated
under the real-world measure.

10.2 Quadratic Pricing and Hedging Under the Real-World
Measure

We aim to find an investment portfolio which hedges the insurance payment process
(7.3) with a minimal replication error at time T and we evaluate the performance
of the hedging portfolio under the real-world measure. The goal is to find an initial
capital x and an admissible investment strategy π ∈ A which minimize the mean-
square hedging error

inf
x,π∈A

E
[∣∣Xπ,x(T )− F

∣∣2]
, (10.5)

where Xπ,x is given by (7.11), and we use the class of admissible strategies A
from Definition 7.3.1. If one prefers to minimize the hedging error (10.5) for the
discounted quantities as in (10.1), then obvious modifications should be introduced.

We deal with two backward stochastic differential equations

Y(t) = 1 +
∫ T

t

(
2Y(s)r(s)− |Z(s)|2

Y(s)
− ∣∣θ(s)∣∣2

Y(s)− 2θ(s)Z(s)

)
ds

−
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T , (10.6)

and

Y (t) = F +
∫ T

t

(
−Y (s−)r(s)+H(s)+

∫
R

G(s, z)Q(s, dz)η(s)

− Z1(s)θ(s)

)
ds −

∫ T

t

Z1(s)dW(s)

−
∫ T

t

Z2(s)dB(s)−
∫ T

t

∫
R

U (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.7)

Equation (10.6) is called a stochastic Riccati equation. First, we establish existence
and uniqueness results for these two BSDEs.
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Proposition 10.2.1 Assume that (C1)–(C2) from Chap. 7 hold. There exists a
unique solution (Y,Z) ∈ S

∞(R) × H
2(R) to the BSDE (10.6) such that Y(t) ≥

k > 0, 0 ≤ t ≤ T . Moreover, the process (
∫ t

0 Z(s)dW(s),0 ≤ t ≤ T ) is a BMO-
martingale.

Proof Since we look for a process Y which is uniformly bounded away from zero,
we can introduce new variables

Ŷ (t)= 1

Y(t)
, Ẑ(t)= −Z(t)

|Y(t)|2 , 0 ≤ t ≤ T .

The Itô’s formula yields

Ŷ (t) = 1 +
∫ T

t

((∣∣θ(s)∣∣2 − 2r(s)
)
Ŷ (s)− 2θ(s)Ẑ(s)

)
ds

−
∫ T

t

Ẑ(s)dW(s), 0 ≤ t ≤ T . (10.8)

We end up with a linear BSDE. By Proposition 3.3.1 there exists a unique solution
(Ŷ , Ẑ) ∈ S

2(R) × H
2(R) to the linear BSDE (10.8). From the representation of

the solution Ŷ and boundedness of θ and r we deduce that 0 < k ≤ Ŷ (t) ≤ K ,
0 ≤ t ≤ T . Hence, we conclude that there exists a unique solution (Y,Z) to the
nonlinear BSDE (10.6) and 0 < k ≤ Y(t) ≤ K , 0 ≤ t ≤ T . We now prove the BMO
property. By the Itô’s formula we obtain

d
(∣∣Y(t)∣∣2) = 2Y(t)dY (t)+ ∣∣Z(t)∣∣2

dt,

and

∫ T

t

∣∣Z(s)∣∣2
ds

= 1 − ∣∣Y(t)∣∣2

+
∫ T

t

2Y(s)

(
2Y(s)r(s)− |Z(s)|2

Y(s)
− ∣∣θ(s)∣∣2

Y(s)− 2θ(s)Z(s)

)
ds

−
∫ T

t

2Y(s)Z(s)dW(s)

≤K +K

∫ T

t

∣∣Z(s)∣∣ds −
∫ T

t

2Y(s)Z(s)dW(s)

≤K +K
1

α

∫ T

t

∣∣Z(s)∣∣2
ds +Kα −

∫ T

t

2Y(s)Z(s)dW(s), 0 ≤ t ≤ T ,

(10.9)
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where we use boundedness of r , θ and Y , strict positivity of Y and inequality (3.10).
Choosing α sufficiently large and taking the expectation, we derive

E

[∫ T

t

∣∣Z(s)∣∣2
ds|Ft

]
≤K, 0 ≤ t ≤ T , (10.10)

and the BMO property is proved. �

We will need higher moment estimates for the control process Z. From estimate
(10.9) we deduce that for any p ≥ 2 we have

(∫ T

0

∣∣Z(s)∣∣2
ds

)p

≤ K +K
1

αp

(∫ T

0

∣∣Z(s)∣∣2
ds

)p

+Kαp

+
∣∣∣∣
∫ T

0
2Y(s)Z(s)dW(s)

∣∣∣∣
p

.

We choose α sufficiently large, take the expected value, apply the Burkholder-Davis-
Gundy inequality and we obtain the inequality

E

[(∫ T

0

∣∣Z(s)∣∣2
ds

)p]
≤Kp +KpE

[(∫ T

0

∣∣Z(s)∣∣2
ds

)p/2]
. (10.11)

Starting with (10.10), by iteration we can derive the moment estimate

E

[(∫ T

0

∣∣Z(s)∣∣2
ds

)p]
≤Kp, p ≥ 1. (10.12)

We use estimate (10.12) in the sequel.
We now investigate the second BSDE.

Proposition 10.2.2 Assume that (C1)–(C4) from Chap. 7 hold.

(a) There exists a unique solution (Y ,Z1,Z2,U ) ∈ S
2(R) × H

2(R) × H
2(R) ×

H
2
N(R) to the BSDE (10.7). The process Y has the representation

Y (t)

= E
Q

∗
[
e− ∫ T

t r(s)dsF

+
∫ T

t

e− ∫ s
t r(u)du

(
H(s)+

∫
R

G(s, z)Q(s, dz)η(s)

)
ds|Ft

]

= E
Q

∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T , (10.13)

where the equivalent martingale measure Q
∗ is given by

dQ∗

dP

∣∣∣Ft = e− ∫ t
0 θ(s)dW(s)− 1

2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T .
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(b) If

E

[
|F |p +

(∫ T

0

∣∣H(s)
∣∣2
ds

)p/2

+
(∫ T

0

∫
R

∣∣G(s, z)η(s)
∣∣2
Q(s, dz)ds

)p/2]
<∞,

for some p > 2, then

E

[
sup

0≤t≤T

∣∣Y (t)
∣∣p]

<∞. (10.14)

Proof (a) The existence and the uniqueness follow from Theorem 3.1.1. Represen-
tation (10.13) can be derived by following the arguments from Proposition 3.3.1 and
the fact that the compensator of N remains unchanged under Q∗, see also the proof
of Theorem 9.4.1.

(b) By the Burkholder-Davis-Gundy inequality, the dynamics of the BSDE
(10.7), the Cauchy-Schwarz inequality and boundedness of r , θ we obtain

E

[(∫ T

0

∣∣Z1(s)
∣∣2

)p/2]

≤ E

[(∫ T

0

∣∣Z1(s)
∣∣2
ds +

∫ T

0

∣∣Z2(s)
∣∣2
ds +

∫ T

0

∫
R

∣∣U (s, z)
∣∣2
N(ds, dz)

)p/2]

≤KE

[
sup

0≤t≤T

∣∣∣∣
∫ t

0
Z1(s)dW(s)+

∫ t

0
Z2(s)dB(s)+

∫ t

0

∫
R

U (s, z)Ñ(ds, dz)

∣∣∣∣
p]

=KE

[
sup

0≤t≤T

∣∣∣∣Y (t)− Y (0)+
∫ t

0

(
−Y (s)r(s)+H(s)

+
∫
R

G(s, z)Q(s, dz)η(s)− Z1(s)θ(s)

)
ds

∣∣∣∣
p]

≤KE

[(
1 + T p

)
sup

0≤t≤T

∣∣Y (t)
∣∣p + T p/2

(∫ T

0

∣∣H(s)
∣∣2
ds

)p/2

+ T p/2
(∫ T

0

∫
R

∣∣G(s, z)η(s)
∣∣2
Q(s, dz)ds

)p/2

+T p/2
(∫ T

0

∣∣Z1(s)
∣∣2
ds

)p/2]
.

Assume now that the time horizon T is sufficiently small. We get the inequality

E

[(∫ T

0

∣∣Z1(s)
∣∣2

)p/2]
≤ KT p/2

1 −KT p/2
+ K(1 + T p)

1 −KT p/2
E

[
sup

0≤t≤T

∣∣Y (t)
∣∣p]

.

(10.15)

From representation (10.7), the Cauchy-Schwarz inequality and boundedness of r
and θ we deduce
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∣∣Y (t)
∣∣p =

∣∣∣∣E
[
F +

∫ T

t

(
−Y (s)r(s)+H(s)

+
∫
R

G(s, z)Q(s, dz)η(s)− Z1(s)θ(s)

)
ds|Ft

]∣∣∣∣
p

≤ K̂

(
E

[
|F |2 + T 2 sup

0≤s≤T

∣∣Y (s)
∣∣2 + T

∫ T

0

∣∣H(s)
∣∣2
ds

+ T

∫ T

0

∫
R

∣∣G(s, z)η(s)
∣∣2
Q(s, dz)ds + T

∫ T

0

∣∣Z1(s)
∣∣2
ds|Ft

])p/2

,

0 ≤ t ≤ T ,

which leads to the estimate

E

[
sup

0≤t≤T

∣∣Y (t)
∣∣p]

≤ K̂E

[
|F |p + T p/2

(∫ T

0

∣∣H(s)
∣∣2
ds

)p/2

+ T p/2
(∫ T

0

∫
R

∣∣G(s, z)η(s)
∣∣2
Q(s, dz)ds

)p/2

+ T p sup
0≤t≤T

∣∣Y (t)
∣∣p + T p/2

(∫ T

0

∣∣Z1(s)
∣∣2

)p/2]

≤ K̂

(
1 + T p/2 + T p

E

[
sup

0≤t≤T

∣∣Y (t)
∣∣p]

+ T p/2
E

[(∫ T

0

∣∣Z1(s)
∣∣2

)p/2])

≤ K̂

(
1+T p/2 + T p

1 −KT p/2
+

(
T p +T p/2 1 + T p

1 −KT p/2

)
E

[
sup

0≤t≤T

∣∣Y (t)
∣∣p])

,

where we use the Doob’s martingale inequality, the Jensen’s inequality and inequal-
ity (10.15). If T is sufficiently small, then we conclude that E[sup0≤t≤T |Y (t)|p]<
KT,p . To prove estimate (10.14) for an arbitrary T , we divide the interval [0, T ] into
sufficiently small subintervals [Ti, Ti+1] and we consider the BSDEs

Y (t) = Y (Ti+1)+
∫ Ti+1

t

(
−Y (s−)r(s)+H(s)+

∫
R

G(s, z)Q(s, dz)η(s)

− Z1(s)θ(s)

)
ds −

∫ Ti+1

t

Z1(s)dW(s)

−
∫ Ti+1

t

Z2(s)dB(s)−
∫ Ti+1

t

∫
R

U (s, z)Ñ(ds, dz), Ti ≤ t ≤ Ti+1.
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We can establish the assertion E[supTi≤t≤Ti+1
|Y (t)|p]<Ki,p on each subinterval.

The global estimate for Y on [0, T ] follows by combining a finite number of local
estimates. �

We now derive the solution the quadratic optimization problem (10.5).

Theorem 10.2.1 Assume that (C1)–(C4) from Chap. 7 hold, and let

E

[
|F |p +

(∫ T

0

∣∣H(s)
∣∣2
ds

)p/2

+
(∫ T

0

∫
R

∣∣G(s, z)η(s)
∣∣2
Q(s, dz)ds

)p/2]
<∞,

for some p > 2. We consider the quadratic hedging problem (10.5). The strategy of
the form

π∗(t) = Z1(t)

σ (t)

−
(
μ(t)− r(r)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)(
X∗(t−)− Y (t−)

)
, 0 ≤ t ≤ T , (10.16)

where (Y,Z) and (Y ,Z ) solve the BSDEs (10.6) and (10.7), and the process X∗
is given by

dX∗(t) = π∗(t)
(
μ(t)dt + σ(t)dW(t)

) + (
X∗(t−)− π∗(t)

)
r(t)dt,

−H(t)dt −
∫
R

G(t, z)N(dt, dz), X(0)= x > 0,

are the optimal admissible hedging strategy π∗ ∈ A and the optimal hedging port-
folio for the payment process P .

Proof 1. The optimality. The proof is based on the method of completing the
squares. Consider the BSDEs (10.6) and (10.7) written in the shorthand notation

dY (t) = −f (t)dt +Z(t)dW(t), Y (T )= 1,

dY (t) = −f ′(t)dt + Z1(t)dW(t)+ Z2(t)dB(t)

+
∫
R

U (t, z)Ñ(dt, dz), Y (T )= F,

where the generators f and f ′ are appropriately defined. Key properties of the so-
lutions to the BSDEs (10.6) and (10.7) are established in Propositions 10.2.1 and
10.2.2. We use these properties in the proof. We introduce the process

Ŷ (t)= −2Y(t)Y (t), 0 ≤ t ≤ T .

The Itô’s formula yields the dynamics

dŶ (t) = −f̂ (t)dt + Ẑ1(t)dW(t)+ Ẑ2(t)dB(t)+
∫
R

Û (t, z)Ñ(dt, dz),

Ŷ (T ) = −2F,
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where

f̂ (t)= − 2
(
Y(t)f ′(t)+ Y (t)f (t)− Z1(t)Z(t)

)
, 0 ≤ t ≤ T ,

Ẑ1(t)= − 2
(
Y(t)Z1(t)+ Y (t)Z(t)

)
, 0 ≤ t ≤ T ,

Ẑ2(t)= − 2Y(t)Z2(t), 0 ≤ t ≤ T ,

Û (t, z)= − 2Y(t)U (t, z), 0 ≤ t ≤ T ,

(10.17)

and

f̂ (t) = Ŷ (t)r(t)− 2Y(t)H(t)− 2Y(t)
∫
R

G(t, z)Q(t, dz)η(t)

− θ(t)
Ŷ (t)(μ(t)− r(t))+ Ẑ1(t)σ (t)

σ (t)

−Z(t)
Ŷ (t)(μ(t)− r(t))+ Ẑ1(t)σ (t)

Y (t)σ (t)
, 0 ≤ t ≤ T . (10.18)

We choose an admissible strategy π ∈ A and we consider the investment port-
folio process Xπ given by (7.11). By the Itô’s formula we derive the dynamics

d
(
Y(t)

(
Xπ(t)

)2)

= Y(t)

(
2Xπ(t−)π(t)

(
μ(t)dt + σ(t)dW(t)

)

+ 2Xπ(t−)
(
Xπ(t−)− π(t)

)
r(t)dt − 2Xπ(t−)H(t)dt

−
∫
R

2Xπ(t−)G(t, z)N(dt, dz)+ ∣∣π(t)σ (t)∣∣2
dt +

∫
R

∣∣G(t, z)
∣∣2
N(dt, dz)

)

+ ∣∣Xπ(t−)
∣∣2(−f (t)dt +Z(t)dW(t)

) + 2Z(t)Xπ(t)π(t)σ (t)dt,

and

d
(
Ŷ (t)Xπ(t)

)

= Ŷ (t−)

(
π(t)

(
μ(t)dt + σ(t)dW(t)

)

+ (
Xπ(t−)− π(t)

)
r(t)dt −H(t)dt −

∫
R

G(t, z)N(dt, dz)

)

+Xπ(t−)

(
−f̂ (t)dt + Ẑ1(t)dW(t)+ Ẑ2(t)dB(t)+

∫
R

Û (t, z)Ñ(dt, dz)

)

+ Ẑ1(t)π(t)σ (t)dt −
∫
R

Û (t, z)G(t, z)N(dt, dz).
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We can notice that the stochastic integrals with respect to W , B and Ñ are locally
square integrable local martingales since Xπ and Ŷ are càdlàg, Y is bounded, π ,
ZẐ1, Ẑ2 and Û are square integrable, see Theorem 2.3.1. Furthermore, the stochas-
tic integrals with respect to N have locally integrable compensators since Xπ and Ŷ

are càdlàg, Y is bounded, G and Û are square integrable. Consequently, the com-
pensated integrals are local martingales, see Theorem 2.3.2. Let (τn)n≥1 denote a
localizing sequence for the local martingales such that τn → T , n→ ∞. We obtain
the expectations

E
[
Y(τn)

∣∣Xπ(τn)
∣∣2]

= Y(0)x2 +E

[∫ τn

0

{
Y(t)

(
2Xπ(t−)π(t)

(
μ(t)− r(t)

)

+ 2
∣∣Xπ(t−)

∣∣2
r(t)− 2Xπ(t−)H(t)−

∫
R

2Xπ(t−)G(t, z)Q(t, dz)η(t)

+ ∣∣π(t)σ (t)∣∣2 +
∫
R

∣∣G(t, z)
∣∣2
Q(t, dz)η(t)

)

− ∣∣Xπ(t−)
∣∣2
f (t)+ 2Z(t)Xπ(t−)π(t)σ (t)

}
dt

]
, (10.19)

and

E
[
Ŷ (τn)X

π(τn)
]

= Ŷ (0)x +E

[∫ τn

0

{
Ŷ (t−)

(
π(t)

(
μ(t)− r(t)

) +Xπ(t−)r(t)

−H(t)−
∫
R

G(t, z)Q(t, dz)η(t)

)
−Xπ(t−)f̂ (t)+ Ẑ1(t)π(t)σ (t)

−
∫
R

G(t, z)Û (t, z)Q(t, dz)η(t)

}
dt

]
. (10.20)

From (10.19)–(10.20), after some tedious calculations, we deduce the formula

E
[
Y(τn)

∣∣Xπ(τn)− Y (τn)
∣∣2]

= E
[
Y(τn)

∣∣Xπ(τn)
∣∣2 + Ŷ (τn)X

π(τn)+ Y(τn)
∣∣Y (τn)

∣∣2]

= Y(0)x2 + Ŷ (0)x

+E

[∫ τn

0
Y(t)

∣∣σ(t)∣∣2
{
π(t)+

(
μ(t)− r(t)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)
Xπ(t−)

+ Ŷ (t)

2Y(t)

μ(t)− r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

}2

dt
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+
∫ τn

0

∣∣Xπ(t)
∣∣2
(

−f (t)+2Y(t)r(t)− |Z(t)|2
Y(t)

− ∣∣θ(t)∣∣2
Y(t)−2θ(t)Z(t)

)
dt

+
∫ τn

0
Xπ(t)

(
−f̂ (t)+ Ŷ (t)r(t)−2Y(t)H(t)−2Y(t)

∫
R

G(t, z)Q(t, dz)η(t)

− θ(t)
Ŷ (t)(μ(t)− r(t))+ Ẑ1(t)σ (t)

σ (t)

−Z(t)
Ŷ (t)(μ(t)− r(t))+ Ẑ1(t)σ (t)

Y (t)σ (t)

)
dt

]

+E

[
Y(τn)

∣∣Y (τn)
∣∣2 −

∫ τn

0

∣∣∣∣ Ŷ (t)

2Y(t)

μ(t)− r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

∣∣∣∣
2

Y(t)
∣∣σ(t)∣∣2

dt

+
∫ τn

0

(
Y(t)

∫
R

∣∣G(t, z)
∣∣2
Q(t, dz)η(t)− Ŷ (t−)H(t)

− Ŷ (t−)

∫
R

G(t, z)Q(t, dz)η(t)−
∫
R

G(t, z)Û (t, z)Q(t, dz)η(t)

)
dt

]
,

and by the definition of the generators f and f̂ from (10.6) and (10.18) we obtain

E
[
Y(τn)

∣∣Xπ(τn)− Y (τn)
∣∣2]

= Y(0)x2 + Ŷ (0)x

+E

[∫ τn

0
Y(t)

∣∣σ(t)∣∣2
{
π(t)+

(
μ(t)− r(t)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)
Xπ(t−)

+ Ŷ (t)

2Y(t)

μ(t)− r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

}2

dt

]

+E

[
Y(τn)

∣∣Y (τn)
∣∣2 +

∫ τn

0
ϕ(t)dt

]
, (10.21)

where the process ϕ collects all terms independent of π . We let n → ∞. We have
to justify the interchange of the limit n → ∞ and the expectation. First, we recall
that Y is uniformly bounded, E[supt∈[0,T ] |Y (t)|2]<∞ since Y solves (10.7) and
E[supt∈[0,T ] |Xπ(t)|2] < ∞ by (7.12). From these properties we can conclude that

Y(τn)|Xπ(τn)|2, Ŷ (τn)X
π(τn) and Y(τn)|Y (τn)|2 are bounded uniformly in n by

an integrable random variable. Next, we deduce from the moment estimates (10.12)
and (10.14) that the process Ẑ1 is square integrable. Finally, under our assumptions
the process ϕ is integrable i.e. E[∫ T

0 |ϕ(t)|dt]<∞. Hence, we apply the monotone
convergence theorem to the first expectation on the right hand side of (10.21), the
dominated convergence theorem to the second expectation on the right hand side of
(10.21) and the dominated convergence theorem on the left hand side of (10.21). We
end up with
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E
[∣∣Xπ(T )− F

∣∣2]

= lim
n→∞E

[
Y(τn)

∣∣Xπ(τn)− Y (τn)
∣∣2]

= Y(0)x2 + Ŷ (0)x

+E

[∫ T

0
Y(t)

∣∣σ(t)∣∣2
{
π(t)+

(
μ(t)− r(t)

σ 2(t)
+ Z(t)

Y (t)σ (t)

)
Xπ(t−)

+ Ŷ (t)

2Y(t)

μ(t)− r(t)

σ 2(t)
+ Ẑ1(t)

2Y(t)σ (t)

}2

dt

]
+E

[
F 2 −

∫ T

0
ϕ(t)dt

]
. (10.22)

Since the last term in (10.22) does not depend on π , the optimal strategy can be
immediately derived from (10.22) and (10.17).

2. The admissability. Let π∗(t) = A(t)Xπ∗
(t−) + B(t). The dynamics of the

investment portfolio (7.11) under the candidate strategy (10.16) is given by

dXπ∗
(t) = Xπ∗

(t−)
(
r(t)+ (

μ(t)− r(t)
)
A(t)

)
dt +Xπ∗

(t−)A(t)σ (t)dW(t)

+B(t)
(
μ(t)− r(t)

)
dt +B(t)σ (t)dW(t)

−H(t)dt −
∫
R

G(t, z)N(dt, dz). (10.23)

Since (10.23) is a linear forward SDE, there exists a unique càdlàg, adapted solution
Xπ∗

to (10.23), see Theorem V.7 in Protter (2004). We can now conclude that π∗ is
a predictable process.

We are left with proving the square integrability of the strategy π∗. From (10.21)
and integrability of the processes Y,Y and ϕ we can deduce the uniform estimate

E
[
Y(τn)

∣∣Xπ∗
(τn)− Y (τn)

∣∣2]

= Y(0)x2 + Ŷ (0)x +E

[
Y(τn)

∣∣Y (τn)
∣∣2 +

∫ τn

0
ϕ(t)dt

]
≤K,

and by Fatou’s lemma we get

K ≥ lim
n→∞E

[
Y(τn ∧ t)

∣∣Xπ∗
(τn ∧ t)− Y (τn ∧ t)

∣∣2]

≥ E
[
Y(t)

∣∣Xπ∗
(t)− Y (t)

∣∣2]
, 0 ≤ t ≤ T .

Consequently, we can prove square integrability of the investment portfolio by notic-
ing that

E
[∣∣Xπ∗

(t)
∣∣2] ≤ 2E

[∣∣Xπ∗
(t)− Y (t)

∣∣2 + ∣∣Y (t)
∣∣2]

≤ 2E

[
1

k
Y (t)

∣∣Xπ∗
(t)− Y (t)

∣∣2 + ∣∣Y (t)
∣∣2

]
≤K, 0 ≤ t ≤ T ,
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where we use the lower bound k ≤ Y(t). Consider now the BSDE

Ȳ (t) = Xπ∗
(T )+

∫ T

t

(−Ȳ (s−)r(s)− Z̄(s)θ(s)
)
ds

+
∫ T

t

H(s)ds +
∫ T

t

∫
R

G(s, z)N(ds, dz)

−
∫ T

t

Z̄(s)dW(s)−
∫ T

t

∫
R

Ū (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.24)

Since E[|Xπ∗
(T )|2] < ∞, there exists a unique solution (Ȳ , Z̄, Ū ) ∈ S

2(R) ×
H

2(R) × H
2
N(R) to the BSDE (10.24). By (10.23) we get Ȳ (t) = Xπ∗

(t), Z̄(t) =
π∗(t)σ (t), Ū (t, z)= 0. The admissibility of π∗ has been proved. �

We remark that the arguments from the proof of Theorem 10.2.1 can be applied
to solve a general linear quadratic control problem, see Lim (2004), Lim (2005) and
Øksendal and Hu (2008).

Equation (10.22) gives the minimal hedging error under the optimal strategy π∗.
We can easily find the optimal initial capital.

Proposition 10.2.3 Under the assumptions of Propositions 10.2.1, 10.2.2 and The-
orem 10.2.1 the initial value of the investment portfolio which minimizes the
quadratic hedging error (10.5) takes the form

x∗ = Y (0)= E
Q

∗
[∫ T

0
e− ∫ s

0 r(u)dudP (s)

]
, (10.25)

where the equivalent martingale measure Q
∗ is given by

dQ∗

dP

∣∣∣Ft = e− ∫ t
0 θ(s)dW(s)− 1

2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T .

The price and the hedging strategy for the payment process P can be obtained by
solving the nonlinear BSDE (10.6) and the linear BSDE (10.7). The price (10.25),
the initial value of the hedging portfolio, is arbitrage-free. We notice that the risk
premiums for the systematic insurance risk and the unsystematic insurance risk are
equal to zero and the insurance risk is not priced under the measure Q

∗. In contrast
to Sect. 10.1 where the pricing measure were assumed to be given, here the pricing
measure Q

∗ is derived by solving the optimization problem (10.5). We remark that
the pricing measure which arises from solving the quadratic pricing and hedging
problem (10.5) is called a minimal variance measure, see Lim (2004) and Schweizer
(2010). The optimal hedging strategy (10.16) consists of two terms: the first term is a
delta hedging strategy and the second term is a correction factor taking into account
discrepancies between the optimal hedging portfolio X∗ and the market-consistent
value Y of the insurance payment process (the reserve required for P ). The second
term adjusts the delta hedging strategy according to the shortfall or the surplus of
the assets over the liabilities.
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Example 10.2 We consider the classical Black-Scholes model with constant coef-
ficients r , μ, σ and an insurer who issues a portfolio of n unit-linked endowment
policies with a capital guarantee. We are again interested in pricing and hedging the
claim F = (n− J (T ))(K − S(T ))+ where J is the deaths counting process for the
insurance portfolio. We consider a constant mortality intensity λ. In order to find the
price and the optimal hedging strategy for the claim F , we have to solve the BSDEs

Y(t) = 1 +
∫ T

t

(
2Y(s)r − |Z(s)|2

Y(s)
− θ2Y(s)− 2θZ(s)

)
ds

−
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T , (10.26)

Y (t) = (
n− J (T )

)(
K − S(T )

)+ +
∫ T

t

(−Y (s−)r − Z (s)θ
)
ds

−
∫ T

t

Z (s)dW(s)−
∫ T

t

U (s)Ñ(ds), 0 ≤ t ≤ T . (10.27)

It is straightforward to notice that the solution to the BSDE (10.26) is of the form

Y(t) = e(2r−θ2)(T−t), 0 ≤ t ≤ T ,

Z(t) = 0, 0 ≤ t ≤ T .

Recalling the results from Example 9.5, we conclude that the solution to the BSDE
(10.27) is given by the triple

Y (t) = (
n− J (t)

)
e−λ(T−t)

· (Ke−r(T−t)Φ
(−d

(
t, S(t)

) − σ
√
T − t

) − S(t)Φ
(−d

(
t, S(t)

)))
,

0 ≤ t ≤ T ,

Z (t) = −(
n− J (t−)

)
e−λ(T−t)σS(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

U (t) = −e−λ(T−t)

· (Ke−r(T−t)Φ
(−d

(
t, S(t)

) − σ
√
T − t

) − S(t)Φ
(−d

(
t, S(t)

)))
,

0 ≤ t ≤ T .

By Theorem 10.2.1 and Proposition 10.2.3 the optimal hedging strategy is given by
the feedback formula

π∗(t) = −(
n− J (t−)

)
e−λ(T−t)S(t)Φ

(−d
(
t, S(t)

))

− μ− r

σ 2

(
X∗(t−)− Y (t−)

)
, 0 ≤ t ≤ T ,
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where the optimal hedging portfolio is determined by the process

X∗(t)= x∗ert +
∫ t

0
π∗(s)

(
θσds + σdW(s)

)
, X∗(0)= x∗,

and the price of the claim, and the initial value of the optimal hedging portfolio, is
equal to

x∗ = Y (0)= ne−λT
(
Ke−rT Φ

(−d
(
0, S(0)

) − σ
√
T

) − S(0)Φ
(−d

(
0, S(0)

)))
.

The quadratic objective (10.5) can be generalized by keeping its mathematical
tractability. We can solve the quadratic optimization problem

min
π

E

[∫ T

0

(
Xπ(s)− β(s)

)2
ds + (

Xπ(T )− ξ
)2

]
, (10.28)

where a running cost is added. Under the objective (10.28) an investment strategy
is chosen in such a way that the investment portfolio is as close as possible, in
the mean-square sense, to the targets β and ξ . The targets β and ξ may represent
solvency constraints or profit expectations, see Detemple and Rindisbacher (2008)
and Delong (2010). We can also solve the Markowitz portfolio selection problem

min
π

Var
[
Xπ(T )

]

E
[
Xπ(T )

] = L,

(10.29)

where the variance of the terminal wealth is minimized given the constraint on the
expected return. We remark that the Markowitz portfolio selection is commonly
used for investment decision making and asset-liability management, see Chap. 4 in
Zenios and Ziemba (2006) and Sect. 23.2 in Adam (2007).

Notice that in order to apply the investment strategy (10.16) we have to estimate
the drift μ. The advantage of the quadratic optimization under an equivalent martin-
gale measure (10.1) over the quadratic optimization under the real-world measure
(10.5) is that the drift of the stock does not enter the optimal strategy in the for-
mer case. It is known that the estimation of the drift is challenging. Consequently,
the quadratic pricing and hedging under the real-world measure may be difficult to
implement in practice, see Sect. 10.4.3 in Cont and Tankov (2004) for a discussion.

10.3 Quadratic Pricing and Hedging Under Local
Risk-Minimization

We now investigate the objective of local risk-minimization which was developed
in Schweizer (1991) and Schweizer (2008). Local risk-minimization is an important
alternative to global quadratic hedging. We will see that the locally risk-minimizing
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strategy is derived by optimizing an objective formulated under the real-world mea-
sure but at the same time the optimal strategy does not depend on the drift of the
stock.

Let Ŝ(t)= e− ∫ t
0 r(s)dsS(t). The discounted stock price satisfies the dynamics

Ŝ(t)= Ŝ(0)+
∫ t

0
Ŝ(u)

(
μ(u)− r(u)

)
du+

∫ t

0
Ŝ(u)σ (u)dW(u), 0 ≤ t ≤ T .

We introduce a class of admissible investment strategies.

Definition 10.3.1 A strategy Π := (Π(t),0 ≤ t ≤ T ) is called admissible, written
Π ∈ A local

s , if it satisfies the conditions:

(i) Π :Ω × [0, T ] → R is a predictable process,
(ii) E[∫ T

0 |Ŝ(t)Π(t)σ (t)|2dt]<∞.

A strategy Γ := (Γ (t),0 ≤ t ≤ T ) is called admissible, written Γ ∈ A local
b , if it

satisfies the conditions:

(i) Γ :Ω × [0, T ] → R is an adapted process,
(ii) the process X Π,Γ (t) = Π(t)Ŝ(t) + Γ (t) is right-continuous and square inte-

grable.

A strategy (Π,λ) is called admissible for the local risk-minimization problem, writ-
ten (Π,λ) ∈ A local, if Π ∈ A local

s and Γ ∈ A local
b

We remark that the strategy Π denotes the number of stock which are held in the
investment portfolio, Γ denotes the position in the bank account and X is the dis-
counted value of the investment portfolio. We point out that the investment portfolio
X Π,Γ is not self-financing under (Π,Γ ) ∈ A local.

We define the cost process and the risk process of a hedging strategy.

Definition 10.3.2 Assume that (C1)–(C4) from Chap. 7 hold. The cost process of
an admissible strategy (Π,Γ ) ∈ A local related to hedging the payment process P is
given by

CΠ,Γ (t)=
∫ t

0
e− ∫ s

0 r(u)dudP (s)+ X Π,Γ (t)−
∫ t

0
Π(s)dŜ(s), 0 ≤ t ≤ T .

The risk process of an admissible strategy (Π,Γ ) ∈ A local related to hedging the
payment process P is given by

RΠ,Γ (t)= E
[∣∣CΠ,Γ (T )−CΠ,Γ (t)

∣∣2|Ft

]
, 0 ≤ t ≤ T .

Since (Π,Γ ) ∈ A local, the integral
∫ t

0 Π(s)dŜ(s) is well-defined and CΠ,Γ is
square integrable.

The cost process CΠ,Γ describes accumulated discounted costs or profits (cash
inflows or outflows) for the insurer who applies an investment strategy (Π,Γ ), pays
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the benefits P and holds the investment portfolio X Π,Γ . If the payment process
can be perfectly replicated by (Π,Γ ), then

X Π,Γ (t) = X (0)+
∫ t

0
Π(s)dŜ(s)−

∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T ,

X Π,Γ (T ) = 0,

and the cost process related to hedging P is equal to the initial premium X (0) - the
cost of setting the replicating portfolio which matches the liability. If the payment
process cannot be perfectly replicated, then the insurer has to inject capital or with-
draw capital during the lifetime of the policy in order to match the assets with the
liabilities. These inflows and outflows of capital from the investment portfolio are
modelled by the cost process.

The idea of local risk-minimization is to find an admissible hedging strategy
(Π,Γ ) ∈ A local which minimizes the risk process RΠ,Γ for all t ∈ [0, T ]. The pre-
cise definition of the hedging objective is very technical and it involves limit con-
siderations and local perturbations of investment strategies, see Schweizer (1991)
and Schweizer (2008). We can say that under the local risk-minimization we aim to
find an asset portfolio which perfectly matches the liability with a minimal mean-
square cost of matching. We point out that the hedging objective, the risk process,
is evaluated under the real-world measure, as it should be.

We give the key result which characterizes a locally risk-minimizing strategy.

Theorem 10.3.1 Assume that (C1)–(C4) from Chap. 7 hold. The payment process
P admits an admissible locally risk-minimizing strategy (Π∗,Γ ∗) ∈ A local if and
only if the discounted payment process has the representation

∫ T

0
e− ∫ s

0 r(u)dudP (s)= ξ0 +
∫ T

0
ζ(s)dŜ(s)+ H (T ), (10.30)

where ζ ∈ A local
s , and H is a right-continuous, square integrable martingale which

is strongly orthogonal to the martingale component of Ŝ and verifies H (0)= 0. In
this case, we define

Π∗(t) = ζ(t), 0 ≤ t ≤ T ,

X ∗(t) = ξ0 +
∫ t

0
ζ(s)dŜ(s)+ H (t)−

∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T ,

Γ ∗(t) = X ∗(t)−Π∗(t)Ŝ(t), 0 ≤ t ≤ T .

Proof The result follows from Proposition 5.2 from Schweizer (2008). �

We remark that two square integrable martingales are strongly orthogonal if
E[M1(t)M2(t)] = 0.
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Decomposition (10.30) is called the Föllmer-Schweizer decomposition. The lo-
cally risk-minimizing strategy (Π∗,Γ ∗) is called mean-self-financing as the opti-
mal cost process C∗(t) = ξ0 + H (t) is a martingale, i.e. the average future cost is
equal to zero. The strategy (Π∗,Γ ∗) is also called 0-achieving as X ∗(T ) = 0 and
all claims are covered.

The next result shows that the Föllmer-Schweizer decomposition can be derived
from a BSDE.

Proposition 10.3.1 Assume that (C1)–(C4) from Chap. 7 hold.

(a) The Föllmer-Schweizer decomposition of the discounted payment process is
given by

∫ T

0
e− ∫ s

0 r(u)dudP (s)

= Y(0)+
∫ T

0

Z1(s)

σ (s)Ŝ(s)
dŜ(s)

+
∫ T

0
Z2(s)dB(s)+

∫ T

0

∫
R

U(s, z)Ñ(ds, dz),

where (Y,Z1,Z2,U) ∈ S
2(R)×H

2(R)×H
2(R)×H

2
N(R) is the unique solu-

tion to the BSDE

Y(t) =
∫ T

0
e− ∫ s

0 r(u)dudP (s)−
∫ T

t

Z1(s)θ(s)ds

−
∫ T

t

Z1(s)dW(s)−
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.31)

(b) The admissible locally risk-minimizing strategy Π∗ ∈ A local and the optimal
discounted hedging portfolio for the payment process P are given by

Π∗(t) = Z1(t)

σ (t)Ŝ(t)
, 0 ≤ t ≤ T ,

X ∗(t) = Y(t)−
∫ t

0
e− ∫ s

0 r(u)dudP (s), 0 ≤ t ≤ T .

Proof (a) Consider the BSDE

Y(t) =
∫ T

0
e− ∫ s

0 r(u)dudP (s)+
∫ T

t

f (s)ds −
∫ T

t

Z1(s)dW(s)

−
∫ T

t

Z2(s)dB(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (10.32)
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where the generator f will be specified in the sequel. Assume there exists a solution
(Y,Z1,Z2,U) ∈ S

2(R) × H
2(R) × H

2(R) × H
2
N(R) to (10.32). From the BSDE

(10.32) we get the representation of the discounted payments

∫ T

0
e− ∫ s

0 r(u)dudP (s)

= Y(0)−
∫ T

0
f (s)ds +

∫ T

0
Z1(s)dW(s)

+
∫ T

0
Z2(s)dB(s)+

∫ T

0

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (10.33)

From property (5.5) we deduce that the stochastic integrals driven by B and Ñ

are strongly orthogonal to the martingale component of Ŝ, i.e. the stochastic inte-
gral driven by W . The discounted payment process (10.33) would now satisfy the
Föllmer-Schweizer decomposition (10.30) if for some ζ ∈ A local

s we had

∫ T

0
ζ(s)dŜ(s)=

∫ T

0
Z1(s)dW(s)−

∫ T

0
f (s)ds. (10.34)

Since

∫ T

0
ζ(s)dŜ(s)=

∫ T

0
ζ(s)Ŝ(s)

(
μ(s)− r(s)

)
ds +

∫ T

0
ζ(s)Ŝ(s)σ (s)dW(s),

we should choose

f ∗(s) = −Z1(s)θ(s), 0 ≤ s ≤ T ,

ζ ∗(s) = Z1(s)

σ (s)Ŝ(s)
, 0 ≤ s ≤ T .

With this choice, there exists a unique solution (Y,Z1,Z2,U) ∈ S
2(R)×H

2(R)×
H

2(R) × H
2
N(R) to (10.32) and ζ ∗ ∈ A local

s . From (10.33) and (10.34) we deduce
the Föllmer-Schweizer decomposition.

(b) The formulas for Π∗ and X ∗follow from item (a), (10.32)–(10.34) and The-
orem 10.3.1. �

We state an important corollary.

Corollary 10.3.1 Under the assumptions of Theorem 10.3.1 and Proposition 10.3.1
the optimal hedging portfolio process has the representation

X∗(t)= E
Q

∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T , (10.35)
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where

dQ∗

dP

∣∣∣Ft = e− ∫ t
0 θ(s)dW(s)− 1

2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T ,

and the optimal amount invested in the stock is given by

π∗(t)= Z1(t)

σ (t)
e
∫ t

0 r(s)ds, 0 ≤ t ≤ T . (10.36)

Proof Since X∗(t)= X ∗(t)e
∫ t

0 r(s)ds , the representation of X∗ follows from Propo-
sition 10.3.1 and the representation of the solution Y to the linear BSDE (10.31).
Since π∗(t) = Π∗(t)S(t), the formula for π∗ follows immediately from Proposi-
tion 10.3.1. �

The hedging portfolio (10.35) and the optimal amount invested in the stock
(10.36) can be obtained by solving the linear BSDE (10.31). The price of the in-
surance payment process, which is the initial value of the hedging portfolio, is
arbitrage-free. The insurance risk is not priced under the measure Q

∗. The hedging
strategy π∗ is a delta-hedging strategy which is updated with the current information
on the financial and the insurance risk. We notice that the optimal hedging portfolio
and the optimal hedging strategy are characterized under the equivalent martingale
measure Q∗, hence the drift of the stock does not enter the solution. We point out that
under the locally risk-minimizing strategy (Π∗,Γ ∗) there is no mismatch between
the assets and the liabilities. The hedging portfolio is forced to match the market-
consistent value of the liabilities, see Corollary 10.3.1. This equivalence holds since
the investment portfolio process X ∗ is not self-financing. By Proposition 10.3.1 we
obtain

dX∗(t) = r(t)e
∫ t

0 r(s)dsX ∗(t)dt + e
∫ t

0 r(s)dsdX ∗(t)

= X∗(t)r(t)dt + e
∫ t

0 r(s)ds
(
dY (t)− e− ∫ t

0 r(s)dsdP (t)
)

= X∗(t)r(t)dt

+ e
∫ t

0 r(s)ds
(
Π∗(t)Ŝ(t)

(
μ(t)− r(t)

)
dt +Π∗(t)Ŝ(t)σ (t)dW(t)

)

− dP (t)+ e
∫ t

0 r(s)dsZ2(t)dB(t)+
∫
R

e
∫ t

0 r(s)dsU(t, z)Ñ(dt, dz).

Using π∗, we derive the dynamics of the hedging portfolio

dX∗(t) = π∗(t)
(
μ(t)dt + σ(t)dW(t)

) + (
X∗(t)− π∗(t)

)
r(t)dt

− dP (t)+ e
∫ t

0 r(s)dsZ2(t)dB(t)+
∫
R

e
∫ t

0 r(s)dsU(t, z)Ñ(dt, dz).

(10.37)

The stochastic integrals driven by B and Ñ are interpreted as cash inflows/outflows
which guarantee that X∗(t) = E

Q
∗ [∫ T

t
e− ∫ s

t r(u)dudP (s)|Ft ] for all 0 ≤ t ≤ T . As
already noticed, the expected value of the cash inflows/outflows is zero
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E

[∫ T

0
e
∫ t

0 r(s)dsZ2(t)dB(t)+
∫ T

0

∫
R

e
∫ t

0 r(s)dsU(t, z)Ñ(dt, dz)

]
= 0,

and the hedging portfolio (10.37) is mean-self-financing. We remark that the locally
risk-minimizing strategy (10.36) for the stock would coincide with the minimum
mean-square error strategy for the stock derived in Theorem 10.1.1 if the measure
Q

∗ from Corollary 10.3.1 were chosen in the global quadratic hedging problem.
However, the investment strategy from Theorem 10.1.1 is obtained in the framework
of self-financing portfolios and X∗(t) �= E

Q
∗ [∫ T

t
e− ∫ s

t r(u)dudP (s)|Ft ] except at the
inception of the contract.

10.4 Quadratic Pricing and Hedging Under an Instantaneous
Mean-Variance Risk Measure

As discussed at the end of Sect. 10.2, the Markowitz mean-variance objective is
often used by financial institutions. In this chapter we investigate a local version of
the mean-variance objective.

In Sects. 10.1–10.2 where we were only interested in finding the price of the
payment process P at the initial time t = 0. We are now interested in dynamic
pricing of the payment process P over the period [0, T ]. We assume that the price
Y of the payment process P solves the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

∫
R

G(s, z)N(ds, dz)+
∫ T

t

f (s)ds

−
∫ T

t

Z1(s)dW(s)−
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (10.38)

with a generator f . By Propositions 3.3.1 and 3.4.1 an arbitrage-free price of P , i.e.
Y(t) = E

Q[∫ T

t
e− ∫ s

t r(u)dudP (s)|Ft ], Q ∈ Qm, has to solve a BSDE of the form
(10.38). Hence, it is reasonable to assume a priori that the price process satisfies
(10.38). In the sequel we use a local mean-variance objective to derive the generator
f of the BSDE (10.38), the price process and the hedging strategy.

We recall that the investment portfolio Xπ under an admissible investment
strategy π ∈ A is given by (7.11). We assume that there exists a solution
(Y,Z1,Z2,U) ∈ S

2(R) × H
2(R) × H

2(R) × H
2
N(R) to the BSDE (10.38). We in-

troduce a surplus process S := (S (t),0 ≤ t ≤ T ) which models the excess of the
wealth of the insurer over the price of the payment process. We set

S (t)=Xπ(t)− Y(t), 0 ≤ t ≤ T .
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We can derive the dynamics of the surplus process. We get the equation

dS (t) = Xπ(t−)r(t)dt + π(t)
(
μ(t)− r(t)

)
dt + f (t)dt

+ (
σ(t)π(t)−Z1(t)

)
dW(t)−Z2(t)dB(t)−

∫
R

U(t, z)Ñ(dt, dz),

(10.39)

with the initial condition S (0)= 0, since we should have X(0)= Y(0). We remark
that S is square integrable for any π ∈ A . Since Y can be interpreted as the market-
consistent reserve for the liabilities, the surplus process S models the excess of the
assets over the liabilities—the net asset wealth. The surplus process S models the
profit earned by the insurer. We recall that the net asset wealth is the key object
investigated in Solvency II Directive, see European Commission QIS5 (2010). In
Leitner (2007) the process S is called a tracking error.

We define the mean-variance Markowitz risk measure

ρ(ξ)= L
√

Var[ξ ] −E[ξ ], (10.40)

where the parameter L is a risk aversion coefficient which sets the trade-off between
variance minimization and expected return maximization. Following Leitner (2007),
we apply the risk measure (10.40), with a time-varying risk aversion coefficient L, to
the infinitesimal change in the surplus process S . We investigate the instantaneous
mean-variance risk measures

ρ
(
dS (t)

)
/dt

= L(t)

√
E

[
d[S ,S ](t)|Ft−

]
/dt −E

[
dS (t)− S (t−)r(t)dt |Ft−

]
/dt

= L(t)

√∣∣π(t)σ (t)−Z1(t)
∣∣2 + ∣∣Z2(t)

∣∣2 +
∫
R

∣∣U(t, z)
∣∣2
Q(t, z)η(t)

− (
Y(t−)r(t)+ π(t)

(
μ(t)− r(t)

) + f (t)
)
, 0 ≤ t ≤ T . (10.41)

The quadratic variation is now used for modelling the instantaneous variance. The
moments in (10.41) are derived by Theorems 2.3.2–2.3.3. The goal is to find an ad-
missible hedging strategy π ∈ A which minimizes the instantaneous risk measures
ρ(dS (t)) for all t ∈ [0, T ] and choose a generator f of the price dynamics Y which
makes the instantaneous risk measures vanish ρ(dS (t))= 0 for all t ∈ [0, T ]. This
is a reasonable pricing and hedging objective. The insurer should be interesting in
applying an investment strategy under which the expected excess return on the sur-
plus over the risk-free return on the surplus is maximized. At the same time, the
insurer should choose an investment strategy under which the return on the surplus
(the tracking error) is not volatile. Hence, the mean-variance objective is used for
choosing the hedging strategy. The insurance payment process is next priced by
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requiring that the instantaneous Sharpe ratio of the surplus process equals a pre-
specified target L, i.e. the insurance payment process is priced by requiring that

Sharpe Ratio
(
S (t)

)

= E[dS (t)− S (t−)r(t)dt |Ft−]/dt√
E[d[S ,S ](t)/dt |Ft−] = L(t), 0 ≤ t ≤ T . (10.42)

We can now interpret L as a process which controls the ratio of the expected earned
surplus (the net asset wealth) to its deviation over time or as a profit, specified by
a Sharpe ratio, which is demanded by the insurer who sells the insurance contract.
We assume that L(t) ≥ θ(t) + ε, ε > 0. The former inequality is obvious since
the investment in the payment process P carries an additional risk compared to the
investment in the risky stock S and the insurer is interested in earning a risk premium
strictly above θ , which is the risk premium earned by investing in the stock. For the
instantaneous Sharpe ratio pricing we refer to Bayraktar and Young (2007), Young
(2008), Bayraktar and Young (2008) and Bayraktar et al. (2009), for the connection
with the cost of capital pricing we refer to Pelsser (2011).

Theorem 10.4.1 Assume that (C1)–(C4) from Chap. 7 hold and let L be a pre-
dictable process such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K , 0 ≤ t ≤ T . The
admissible investment strategy π∗ ∈ A which minimizes the risk measures (10.41)
for all t ∈ [0, T ] and the generator f ∗ which makes the risk measures (10.41) vanish
for all t ∈ [0, T ] take the form

π∗(t)= 1

σ(t)

(
Z1(t)

+
√

|θ(t)|2
|L(t)|2 − |θ(t)|2

√∣∣Z2(t)
∣∣2 +

∫
R

∣∣U(t, z)
∣∣2
Q(t, dz)η(t)

)
,

0 ≤ t ≤ T ,

f ∗(t)= − Y(t−)r(t)−Z1(t)θ(t)

+
√∣∣L(t)∣∣2 − ∣∣θ(t)∣∣2

√∣∣Z2(t)
∣∣2 +

∫
R

∣∣U(t, z)
∣∣2
Q(t, dz)η(t), 0 ≤ t ≤ T ,

(10.43)

where (Y,Z1,Z2,U) ∈ S
2(R)×H

2(R)×H
2(R)×H

2
N(R) is the unique solution to

the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

∫
R

G(s, z)N(ds, dz)

+
∫ T

t

(
−Y(s−)r(s)−Z1(s)θ(s)
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+
√∣∣L(s)∣∣2 − ∣∣θ(s)∣∣2

√∣∣Z2(s)
∣∣2 +

∫
R

∣∣U2(s, z)
∣∣2
Q(s, dz)η(s)

)
ds

−
∫ T

t

Z1(s)dW(s)−
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.44)

Proof The form of the generator and the strategy are deduced from properties of the
function

w(π)= L
√
(πσ − z)2 + u2 + v2 − ry − π(μ− r)− f.

It is straightforward to find a unique minimizer π∗ of the function w and f ∗ such
that w(π∗)= 0. We now study the BSDE (10.44). By the Schwarz inequality

∣∣∣∣zz′ +
∫
R

u(z)u′(z)Q(t, dz)η

∣∣∣∣

≤
√

|z|2 +
∫
R

∣∣u(z)∣∣Q(t, dz)η

√∣∣z′∣∣2 +
∫
R

∣∣u′(z)
∣∣2
Q(t, dz)η, (10.45)

we can prove the following inequality

∣∣∣∣
√

|z|2 +
∫
R

∣∣u(z)∣∣2
Q(t, dz)η −

√∣∣z′∣∣2 +
∫
R

∣∣u′(z)
∣∣2
Q(t, dz)η

∣∣∣∣
2

≤ ∣∣z− z′∣∣2 +
∫
R

∣∣u(z)− u′(z)
∣∣2
Q(t, dz)η. (10.46)

Hence, the generator (10.44) is Lipschitz continuous in the sense of Theorem 3.1.1.
From (3.22) and Theorem 3.1.1 we conclude that there exists a unique solution to
the BSDE (10.44). It is clear that the investment strategy (10.43) is admissible. �

The price process of the payment process P solves the nonlinear BSDE (10.44).
It is important to point out that the price process (10.44) may not be represented as
the expected value of the future discounted claims under an equivalent martingale
measure. We also remark that the price process (10.44) may not satisfy the property
of monotonicity with respect to the claim in the sense that a more severe claim may
have a lower price. Hence, the price derived in Theorem 10.4.1 may give rise to
arbitrage opportunities. In the language of BSDEs the solution to the BSDE (10.44)
does satisfy the comparison principle with respect to the terminal condition and the
BSDE (10.44) does not have a measure solution. This problem, which arises for
BSDEs with jumps, was pointed out in Sect. 3.2.
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Example 10.3 We consider the classical Black-Scholes model with constant coeffi-
cients r , μ, σ and an insurer who issues an endowment policy. We are interested in
pricing and hedging the claim F = 1 − J (T ) where J is the death counting process
for the policy. We consider a constant mortality intensity λ and a constant Sharpe ra-
tio L. In order to find the optimal price process and the optimal investment strategy
for the claim F , we have to solve the BSDE

Y(t) = 1 − J (T )

+
∫ T

t

(−Y(s−)r −Z(s)θ +
√
L2 − θ2

∣∣U(s)
∣∣√(

1 − J (s−)
)
λ
)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.47)

Clearly, we can set Z(t) = 0, 0 ≤ t ≤ T . Let us guess that U(t) = −Y(t−), Y(t) ≥
0, 0 ≤ t ≤ T . We end up with the equation

dY (t) = Y(t−)rdt −
√
L2 − θ2Y(t−)

√(
1 − J (t−)

)
λdt − Y(t−)Ñ(dt),

Y (T ) = 1 − J (T ).

First, it is straightforward to derive the dynamics

d
(
Y(t)e− ∫ t

0 (r−
√

L2−θ2
√
(1−J (s−))λ)ds

)

= −e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)dsY (t−)Ñ(dt), (10.48)

Y(T )= 1 − J (T ).

Integrating and taking the expected value, we can obtain the candidate solution

Y(t) = E
[(

1 − J (T )
)
e− ∫ T

t (r−
√

L2−θ2
√
(1−J (s−))λ)ds |Ft

]

= (
1 − J (t)

)
e−(r+λ−

√
L2−θ2

√
λ)(T−t), 0 ≤ t ≤ T , (10.49)

where we use the fact that J (T )= 0 implies J (t)= 0, 0 ≤ t ≤ T . Next, from (10.49)
we derive the dynamics

dY (t)= −e−(r+λ−
√

L2−θ2
√
λ)(T−t)dJ (t)+ (

r + λ−
√
L2 − θ2

√
λ
)
Y(t−)dt,

and

d
(
Y(t)e− ∫ t

0 (r−
√

L2−θ2
√
(1−J (s−))λ)ds

)

= e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)ds

(−e−(r+λ−
√

L2−θ2
√
λ)(T−t)dJ (t)

+ (
r + λ−

√
L2 − θ2

√
λ
)
Y(t−)dt

)
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− Y(t−)e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)ds

(
r −

√
L2 − θ2

√(
1 − J (t−)

)
λ
)
dt

= e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)ds

(−e−(r+λ−
√

L2−θ2
√
λ)(T−t)

(
1 − J (t−)

)
dJ (t)

+ λY(t−)
(
1 − J (t−)

))
dt

= −e− ∫ t
0 (r−

√
L2−θ2

√
(1−J (s−))λ)dsY (t−)Ñ(dt),

which agrees with (10.48). Our candidate solution (Y,Z,U), where Y is given by
(10.49), Z(t) = 0, U(t) = −Y(t−), 0 ≤ t ≤ T , is square integrable. Hence, the
unique solution to the BSDE (10.47) is found. By Theorem 10.4.1 the optimal price
process is defined by

Y(t)= (
1 − J (t)

)
e−(r+λ−

√
L2−θ2

√
λ)(T−t), 0 ≤ t ≤ T , (10.50)

the optimal investment strategy is given by

π∗(t)= (
1 − J (t−)

) θ
√
λ

σ
√
L2 − θ2

e−(r+λ−
√

L2−θ2
√
λ)(T−t), 0 ≤ t ≤ T .

We have obtained the unique solution to the pricing and hedging problem under
the instantaneous mean-variance risk measure. If λ − √

L2 − θ2
√
λ ≤ 0, then the

price of the endowment policy is larger than e−r(T−t) which is the price of the bond
paying 1 at the maturity. The property of monotonicity of the pricing operator with
respect to the claim is not satisfied. The insurer can buy the bond which hedges the
payment from the endowment policy and earns a risk-free profit. We can conclude
that the price (10.50) may give rise to arbitrage opportunities. To get the arbitrage-
free price, we have to introduce the constraint λ−√

L2 − θ2
√
λ > 0, or equivalently

L2 < λ+ θ2.
We are now interested in pricing and hedging the claim F = (1 − J (T ))(K −

S(T ))+. In order to find the optimal price process and the optimal hedging strategy
for the claim F , we have to solve the BSDE

Y(t) = (
1 − J (T )

)(
K − S(T )

)+

+
∫ T

t

(−Y(s−)r −Z(s)θ +
√
L2 − θ2

∣∣U(s)
∣∣√(

1 − J (s−)
)
λ
)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.51)

We can conclude that the unique solution to the BSDE (10.51) is given by the triple

Y(t) = (
1 − J (t)

)
e−(λ−

√
L2−θ2

√
λ)(T−t)

· (Ke−r(T−t)Φ
(−d

(
t, S(t)

) − σ
√
T − t

) − S(t)Φ
(−d

(
t, S(t)

)))
,

0 ≤ t ≤ T ,
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Z(t) = −(
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T−t)σS(t)Φ

(−d
(
t, S(t)

))
, 0 ≤ t ≤ T ,

U(t) = −(
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T−t)

· (Ke−r(T−t)Φ
(−d

(
t, S(t)

) − σ
√
T − t

) − S(t)Φ
(−d

(
t, S(t)

)))
,

0 ≤ t ≤ T ,

where we use (9.6) and (9.7). The optimal price process is defined by

Y(t) = (
1 − J (t)

)
e−(λ−

√
L2−θ2

√
λ)(T−t)

· (Ke−r(T−t)Φ
(−d

(
t, S(t)

) − σ
√
T − t

)
− S(t)Φ

(−d
(
t, S(t)

)))
, 0 ≤ t ≤ T , (10.52)

and the optimal hedging strategy is given by

π∗(t) = −(
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T−t)S(t)Φ

(−d
(
t, S(t)

))

+ (
1 − J (t−)

)
e−(λ−

√
L2−θ2

√
λ)(T−t) θ

√
λ

σ
√
L2 − θ2

· (Ke−r(T−t)Φ
(−d

(
t, S(t)

) − σ
√
T − t

) − S(t)Φ
(−d

(
t, S(t)

)))
,

0 ≤ t ≤ T .

The price (10.52) is arbitrage-free if L2 < λ+ θ2.

We also give an example which shows that the price from Theorem 10.4.1 may
be arbitrage-free without any additional assumptions on the parameters. It turns out
that arbitrage-free prices arise for specific types of claims.

Example 10.4 Let the assumptions from Example 10.3 hold. We consider an insurer
who issues a life insurance policy paying 1 at maturity of the contract provided that
the policyholder dies within the duration of the contract. We are interested in pricing
and hedging the claim F = J (T ) where J is the death counting process for the
policy. In order to find the optimal price process and the optimal investment strategy
for the claim F , we have to solve the BSDE

Y(t) = J (T )

+
∫ T

t

(−Y(s−)r −Z(s)θ +
√
L2 − θ2

∣∣U(s)
∣∣√(

1 − J (s−)
)
λ
)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.53)
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Clearly, we can set Z(t)= 0, 0 ≤ t ≤ T . Let us guess that U(t)≥ 0, 0 ≤ t ≤ T . We
end up with the BSDE

Y(t) = J (T )

+
∫ T

t

(−Y(s−)r +
√
L2 − θ2U(s)

√(
1 − J (s−)

)
λ
)
ds

−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (10.54)

By Proposition 3.4.1 and a similar reasoning as in Example 10.3, the solution to the
BSDE (10.54) is of the form

Y(t)= e−r(T−t) − (
1 − J (t)

)
e−(r+λ+

√
L2−θ2

√
λ)(T−t), 0 ≤ t ≤ T ,

U(t)= e−(r+λ+
√

L2−θ2
√
λ)(T−t), 0 ≤ t ≤ T ,

(10.55)

and we see that U(t)≥ 0, 0 ≤ t ≤ T . Our candidate solution (Y,Z,U), where (Y,Z)
is given by (10.55), Z(t) = 0, 0 ≤ t ≤ T , is square integrable. Hence, the unique
solution to the BSDE (10.53) is found. By Theorem 10.4.1 the arbitrage-free optimal
price process is defined by

Y(t)= e−r(T−t) − (
1 − J (t)

)
e−(r+λ+

√
L2−θ2

√
λ)(T−t), 0 ≤ t ≤ T ,

and the optimal investment strategy is given by the formula

π∗(t)= (
1 − J (t−)

) θ
√
λ

σ
√
L2 − θ2

e−(r+λ+
√

L2−θ2
√
λ)(T−t), 0 ≤ t ≤ T .

By Theorem 10.4.1 the hedging strategy for the payment process P is character-
ized by the control processes of the nonlinear BSDE (10.44). The investment strat-
egy (10.43) is studied in Chap. 12 where the results of this chapter are derived again
under different pricing and hedging objectives. In Chap. 12 we also give condi-
tions which guarantee that the price process (10.44) derived under the instantaneous
mean-variance risk measure is arbitrage-free.

Instead of the mean-variance minimization, we can use the approach proposed by
Bayraktar and Young (2007), Young (2008), Bayraktar and Young (2008), Bayraktar
et al. (2009), and we can find a hedging strategy π∗ which minimizes the instanta-
neous variation E[d[S ,S ](t)|Ft−] for all t ∈ [0, T ] together with a generator f ∗
which makes the instantaneous mean-variance risk measures vanish ρ(dS (t)) = 0
for all t ∈ [0, T ]. We obtain

π∗(t) = 1

σ(t)
Z1(t), 0 ≤ t ≤ T ,

f ∗(t) = −Y(t−)r(t)−Z1(t)θ(t) (10.56)

+L(t)

√∣∣Z2(t)
∣∣2 +

∫
R

∣∣U(t, z)
∣∣2
Q(t, dz)η(t), 0 ≤ t ≤ T ,
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where (Y,Z1,Z2,U) ∈ S
2(R)×H

2(R)×H
2(R)×H

2
N(R) is the unique solution to

the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

∫
R

G(s, z)N(ds, dz)

+
∫ T

t

(
−Y(s−)r(s)−Z1(s)θ(s)

+L(s)

√∣∣Z2(s)
∣∣2 +

∫
R

∣∣U2(s, z)
∣∣2
Q(s, dz)η(s)

)
ds

−
∫ T

t

Z1(s)dW(s)−
∫ T

t

Z2(s)dB(s)

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (10.57)

Again, the price process (10.57) may lead to arbitrage opportunities.
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Chapter 11
Utility Maximization and Indifference Pricing
and Hedging

Abstract We investigate portfolio optimization and pricing and hedging of the in-
surance payment process under the exponential utility function. First, we find the
investment strategy under which the expected exponential utility of the insurer’s
terminal wealth is maximized. We characterize the optimal value function of the op-
timization problem and the optimal investment strategy by a nonlinear BSDE. Next,
we solve the exponential indifference pricing and hedging problem. We show that
the indifference price and the indifference hedging strategy solve a nonlinear BSDE.

In this chapter we use the theory of decision making under uncertainty by von Neu-
mann and Morgenstern which plays a fundamental role in economics. In the context
of dynamic asset allocation, Merton (1969) was the first who found the optimal dy-
namic investment strategy for an agent maximizing the expected utility from the
terminal wealth. Since then, utility maximization objectives have gained great pop-
ularity in portfolio optimization. In the case when an agent can dynamically trade in
a financial market, Hodges and Neuberger (1989) introduced utility indifference ar-
guments for pricing and hedging of financial claims, and Young and Zariphopoulou
(2002) applied these arguments to price and hedge insurance claims. The utility
indifference arguments have proved to be very useful for pricing and hedging of
claims in incomplete markets.

In this chapter we solve the utility maximization problem and the indifference
pricing and hedging problem for an insurer who dynamically trades in the financial
market and faces the payment process. We should point out that the utility-based
approach to pricing and hedging has a strong economic justification, see Carmona
(2008). We use the exponential utility. From the point of view of decision making
the exponential utility has many advantages, see Chaps. 1 and 5 in Denuit et al.
(2001) and Sect. 10.3.3. in Cont and Tankov (2004).

11.1 Exponential Utility Maximization

The insurer faces the payment process (7.3). The insurer’s investment portfolio Xπ

under an investment strategy π is given by (7.11). We assume that r = 0 or, in
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other words, we consider discounted quantities. We define a class of admissible
investment strategies.

Definition 11.1.1 A strategy π is called admissible for the exponential utility max-
imization problem, written A exp, if π ∈ A , see Definition 7.3.1, and

the family
{
e−αXπ (τ), F -stopping times τ

}
is P-uniformly integrable.

The uniform integrability condition arises since we deal with exponential prefer-
ences.

We control the wealth of the insurer at time T . The goal is to find an admissible
investment strategy π ∈ A exp under which the expected exponential utility of the
terminal wealth (the total return on the business) is maximized. We aim to solve the
optimization problem

sup
π∈A exp

E
[−e−α(Xπ (T )−F)

]
, (11.1)

where α > 0 denotes the insurer’s risk aversion coefficient. Notice that losses of the
investment portfolio are heavier penalized than profits under the exponential utility,
in contrast to the quadratic objective under which losses and profits are treated in
a symmetric manner. Since the exponential utility can be related to the entropic
risk measure, see Sect. 13.1, the goal is to find an investment strategy under which
the entropic risk measure of the insurer’s terminal wealth is minimized. We remark
utility maximization and risk measure minimization can be used to derive ALM
strategies, see Chap. 5 in Zenios and Ziemba (2006) and Sect. 23.2 in Adam (2007).

In this chapter we consider the filtration F = FW ∨F J generated by the Brow-
nian motion W used for stock modelling and the step process J used for claims
modelling. This restriction is introduced since the general case with two Brown-
ian motions W and B would lead to a nonlinear BSDE for which existence of a
solution has not been established yet. Despite the restriction, we can still consider
general streams of liabilities. In particular, we can investigate traditional and equity-
linked life and non-life claims under the unsystematic insurance risk, life insurance
equity-linked claims under irrational lapses, see Example 7.7, weather derivatives,
Example 7.9, and credit default claims, see Example 7.10.

Let us solve the optimization problem (11.1). We consider the BSDE

Y(t) = F +
∫ T

t

f (s)ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (11.2)

where the generator f will be specified in the sequel. We introduced the process
Aπ := (Aπ(t),0 ≤ t ≤ T ) defined by

Aπ(t)= −e−α(Xπ (t)−Y(t)), 0 ≤ t ≤ T , π ∈ A exp.
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We have

E
[−e−α(Xπ (T )−F)

] = E
[−e−α(Xπ (T )−Y(T ))

] = E
[
Aπ(T )

]
.

The process Aπ plays a crucial role in establishing the optimality of a strategy. If
Aπ is a supermartingale for any π ∈ A exp, then we obtain the inequality

E
[
Aπ(T )

] = E
[−e−α(Xπ (T )−Y(T ))

] ≤A(0), (11.3)

and if Aπ∗
is a martingale for some π∗ ∈ A exp, then we derive the equality

E
[
Aπ∗

(T )
] = E

[−e−α(Xπ∗
(T )−Y(T ))

] =A(0). (11.4)

Combining (11.3) with (11.4), we get

E
[−e−α(Xπ (T )−Y(T ))

] ≤ E
[−e−α(Xπ∗

(T )−Y(T ))
]
,

and we conclude that the strategy π∗ is optimal and Aπ∗
is the optimal value func-

tion of the dynamic optimization problem (11.1). Therefore, we aim to find a gen-
erator f ∗ of the BSDE (11.2), independent of π , such that the process Aπ is a
supermartingale for all π ∈ A exp and Aπ∗

is a martingale for some π∗ ∈ A exp.
We show how to find (f ∗,π∗). From (7.11) and (11.2) we obtain

−α
(
Xπ(t)− Y(t)

)

= −α

(
x +

∫ t

0
π(s)μ(s)ds +

∫ t

0
π(s)σ (s)dW(s)

−
∫ t

0
H(s)ds −

∫ t

0

∫
R

G(s, z)Q(s, dz)η(s)ds −
∫ t

0

∫
R

G(s, z)Ñ(ds, dz)

− Y(0)+
∫ t

0
f (s)ds −

∫ t

0
Z(s)dW(s)−

∫ t

0

∫
R

U(s, z)Ñ(ds, dz)

)

= −α
(
x − Y(0)

) − α

∫ t

0
π(s)μ(s)ds − α

∫ t

0

(
π(s)σ (s)−Z(s)

)
dW(s)

+ α

∫ t

0

(
H(s)+

∫
R

G(s, z)Q(s, dz)η(s)

)
ds

+ α

∫ t

0

∫
R

(
G(s, z)+U(s, z)

)
Ñ(ds, dz)− α

∫ t

0
f (s)ds, 0 ≤ t ≤ T .

(11.5)

For π ∈ A exp we define three processes:

MW,π(t) = e−α
∫ t

0 (π(s)σ (s)−Z(s))dW(s)− 1
2α

2
∫ t

0 (π(s)σ (s)−Z(s))2ds, 0 ≤ t ≤ T ,
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MN(t) = eα
∫ t

0

∫
R
(G(s,z)+U(s,z))Ñ(ds,dz) (11.6)

· e+ ∫ t
0

∫
R
(α(G(s,z)+U(s,z))−eα(G(s,z)+U(s,z))+1)Q(s,dz)η(s)ds, 0 ≤ t ≤ T ,

and

Dπ(t) = −απ(t)μ(t)+ 1

2
α2(π(t)σ (t)−Z(t)

)2

− αf (t)+ α

(
H(t)+

∫
R

G(t, z)Q(t, dz)η(t)

)

−
∫
R

(
α
(
G(t, z)+U(t, z)

) − eα(G(t,z)+U(t,z)) + 1
)
Q(t, dz)η(t),

0 ≤ t ≤ T . (11.7)

By (11.5)–(11.7) we derive the following relation

Aπ(t) = −e−α(Xπ (t)−Y(t))

= −MW,π(t)MN(t)e−α(x−Y(0))+∫ t
0 D

π(s)ds, 0 ≤ t ≤ T . (11.8)

We choose a strategy π∗ which minimizes Dπ(s) for all s ∈ [0, T ], i.e. we solve

min
π

{
−απ(s)μ(s)+ 1

2
α2(π(s)σ (s)−Z(s)

)2
}
, 0 ≤ s ≤ T .

We get the candidate strategy

π∗(s)= 1

σ(s)

(
Z(s)+ μ(s)

ασ(s)

)
, 0 ≤ s ≤ T . (11.9)

Next, we choose a generator f ∗ in such a way that Dπ∗
(s) = 0 for all s ∈ [0, T ].

We get

f ∗(s) = −π∗(s)μ(s)+ 1

2
α
(
π∗(s)σ (s)−Z(s)

)2

+
(
H(s)+

∫
R

G(s, z)Q(s, dz)η(s)

)

− 1

α

∫
R

(
α
(
G(s, z)+U(s, z)

) − eα(G(s,z)+U(s,z)) + 1
)
Q(s, dz)η(s)

= − μ2(s)

2ασ 2(s)
− μ(s)

σ (s)
Z(s)+H(s)

+
∫
R

(
1

α

(
eα(G(s,z)+U(s,z)) − 1

) −U(s, z)

)
Q(s, dz)η(s), 0 ≤ s ≤ T .

(11.10)
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Notice that for any π we have Dπ(s)≥ 0, 0 ≤ s ≤ T . Moreover, f ∗ is independent
of π . The above heuristic reasoning has now to be made more formal.

First, we recall Theorem 3.5 from Becherer (2006).

Proposition 11.1.1 Consider the BSDE

Y(t) = ξ +
∫ T

t

f
(
s, Y (s),Z(s),U(s, .)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

(11.11)

We assume that

(i) the filtration F = FW ∨ F J where J is a step process,
(ii) the terminal value ξ is a bounded random variable,

(iii) the intensity process η of the step process J is bounded,
(iv) the generator f :Ω × [0, T ] ×R×R×L2

Q(R)→ R is predictable and takes
the form

f (t, y, z, u)= f̂ (t, y, z, u)+
∫
R

f̃
(
t, u(z)

)
Q(t, dz)η(t),

where f̂ : Ω × [0, T ] × R × R × L2
Q(R) → R is Lipschitz continuous in the

sense of Theorem 3.1.1 and satisfies

∣∣f̂ (ω, t, y, z, u)∣∣ ≤K
(
1 + |y|),

(y, z, u) ∈R×R×L2
Q(R), a.s., a.e. (ω, t) ∈Ω × [0, T ],

f̃ : Ω × [0, T ] × R → R is locally Lipschitz continuous in u, uniformly in
(ω, t), and satisfies

f̃ (ω, t, u) ≤ −u, u≤ 0, a.s., a.e. (ω, t) ∈Ω × [0, T ],
f̃ (ω, t, u) ≥ −u, u≥ 0, a.s., a.e. (ω, t) ∈Ω × [0, T ].

There exists a unique solution (Y,Z,U) ∈ S
∞(R)×H

2(R)×H
2
N(R) to the BSDE

(11.11). Moreover, U is bounded ϑ -a.e. (t, z) ∈ [0, T ] ×R.

We point out a useful property. From (11.11) we conclude
∫
R

∣∣U(t, z)
∣∣N({t}, dz) = ∣∣Y(t)− Y(t−)

∣∣ ≤ 2 sup
0≤t≤T

∣∣Y(t)∣∣, (11.12)

and, consequently, if Y is bounded, then U is bounded ϑ -a.e. (t, z) ∈ [0, T ] ×R.
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We give the main result of this chapter.

Theorem 11.1.1 Consider the filtration F = FW ∨ F J . Assume that (C1)–(C4)
from Chap. 7 hold and let F , H , G, η be bounded and r = 0.

(a) There exists a unique solution (Y,Z,U) ∈ S
∞(R) × H

2(R) × H
2
N(R) to the

BSDE

Y(t) = F +
∫ T

t

(
− μ2(s)

2ασ 2(s)
− μ(s)

σ (s)
Z(s)+H(s)

+
∫
R

(
1

α

(
eα(G(s,z)+U(s,z)) − 1

) −U(s, z)

)
Q(s, dz)η(s)

)
ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T .

(11.13)

(b) The optimal admissible investment strategy π∗ ∈ A exp for the utility maximiza-
tion problem (11.1) is given by

π∗(t)= 1

σ(t)

(
Z(t)+ μ(t)

ασ(t)

)
, 0 ≤ t ≤ T . (11.14)

The optimal value function of the optimization problem (11.1) at time t = 0
equals −e−α(x−Y(0)).

Proof (a) Since s �→ μ(s)
σ (s)

is bounded, we can define the equivalent probability mea-
sure

dQ0

dP

∣∣∣Ft = e
− ∫ t

0
μ(s)
σ (s)

dW(s)− 1
2

∫ t
0 |μ(s)

σ (s)
|2ds

, 0 ≤ t ≤ T .

We change the measure in (11.13) and we derive the BSDE

Y(t) = F +
∫ T

t

(
− μ2(s)

2ασ 2(s)
+H(s)

+
∫
R

(
1

α

(
eα(G(s,z)+U(s,z)) − 1

) −U(s, z)

)
Q(s, dz)η(s)

)
ds

−
∫ T

t

Z(s)dWQ
0
(s)−

∫ T

t

∫
R

U(s, z)ÑQ
0
(ds, dz), 0 ≤ t ≤ T .

(11.15)

Notice that the generator f of (11.15) can be divided into two parts:

f (s) = f̂ (s)+
∫
R

f̃
(
U(s, z)

)
Q(s, dz)η(s), 0 ≤ s ≤ T ,
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where

f̂ (s) = − μ2(s)

ασ 2(s)
+H(s)+ 1

α

∫
R

(
eαG(s,z) − 1

)
Q(s, dz)η(s), 0 ≤ s ≤ T ,

f̃
(
U(s, z)

) = 1

α

(
eα(G(s,z)+U(s,z)) − eαG(s,z)

) −U(s, z), 0 ≤ s ≤ T , z ∈ R.

Consequently, from Proposition 11.1.1 we can conclude that there exists a unique
solution (Y,Z,U) to the BSDE (11.15) which verifies

E
Q

0
[∫ T

0

∣∣Z(s)∣∣2
ds

]
<∞,

∣∣Y(s)∣∣ ≤K, 0 ≤ s ≤ T , (11.16)∣∣U(s, z)
∣∣ ≤K, ϑ-a.e. (s, z) ∈ [0, T ] ×R.

Moreover, by (11.15), (5.5) and Theorem 2.3.3 we obtain

E
Q

0
[∣∣∣∣F +

∫ T

t

(
− μ2(s)

2ασ 2(s)
+H(s)

+
∫
R

(
1

α

(
eα(G(s,z)+U(s,z)) − 1

) −U(s, z)

)
Q(s, dz)η(s)

)
ds − Y(t)

∣∣∣∣
2

|Ft

]

= E
Q

0
[∣∣∣∣

∫ T

t

Z(s)dWQ
0
(s)+

∫ T

t

∫
R

U(s, z)ÑQ
0
(ds, dz)

∣∣∣∣
2

|Ft

]

= E
Q

0
[∫ T

t

∣∣Z(s)∣∣2
ds|Ft

]

+E
Q

0
[∫ T

t

∫
R

∣∣U(s, z)
∣∣2
Q(s, dz)η(s)ds|Ft

]
, 0 ≤ t ≤ T ,

and from (11.16) and the boundedness assumptions for the coefficients we deduce
the uniform bound

E
Q

0
[∫ T

τ

∣∣Z(s)∣∣2
ds|Fτ

]
≤K, (11.17)

for any stopping time τ ∈ [0, T ]. Estimate (11.17) yields that the process∫ t

0 Z(s)dW
Q

0
(s) is a BMO Q

0-martingale, see Definition 2.2.5. We consider the
change of measure

dP

dQ0

∣∣∣Ft = e
∫ t

0
μ(s)
σ (s)

dWQ
0
(s)− 1

2

∫ t
0 |μ(s)

σ (s)
|2ds

, 0 ≤ t ≤ T ,

which is defined by the stochastic exponential of the martingale M(t) =∫ t

0
μ(s)
σ (s)

dWQ
0
(s). It is clear that the martingale M is a BMO Q

0-martingale. Hence,
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by Theorem 3.6 in Kazamaki (1994), the BMO Q
0-martingale

∫ t

0 Z(s)dW(s) is

also a BMO P-martingale. Consequently, EP[∫ T

τ
|Z(s)|2ds|Fτ ] ≤ K for any stop-

ping time τ ∈ [0, T ]. Finally, we can conclude that there exists a solution (Y,Z,U)

to the BSDE (11.13) which verifies

E
P

[∫ T

0

∣∣Z(s)∣∣2
ds

]
<∞,

∣∣Y(s)∣∣ ≤K, 0 ≤ s ≤ T , (11.18)∣∣U(s, z)
∣∣ ≤K, ϑ-a.e. (s, z) ∈ [0, T ] ×R.

To show the uniqueness of a solution, assume there are two solutions (Y,Z,U),

(Y ′Z′,U ′) ∈ S
∞(R)×H

2(R)×H
2
N(R). From property (11.12) we conclude that U

and U ′ are ϑ -a.e. bounded. Hence, the generator of the BSDE (11.13) is Lipschitz
continuous in the sense of (A2) from Sect. 3.1 and the uniqueness of a solution
follows from the a priori estimates (3.5) and (3.7).

(b) We prove the supermartingale property (11.3). We introduce the process

Mπ(t)=MW,π(t)MN(t), 0 ≤ t ≤ T , π ∈ A exp,

and from (11.6) we obtain the dynamics

dMπ(t)

Mπ(t)
= −α

(
π(t)σ (t)−Z(t)

)
dW(t)

+
∫
R

(
eα(G(t,z)+U(t,z)) − 1

)
Ñ(dt, dz). (11.19)

For any π ∈ A exp the process Mπ is the stochastic exponential of a local martingale,
hence it is a local martingale by (2.16). Moreover, since eα(G(t,z)+U(t,z)) − 1 >−1,
we conclude that the local martingale Mπ is positive. We also notice that for any
π ∈ A exp the process Dπ defined by (11.7) is a.s. integrable, i.e.

∫ T

0 |Dπ(s)|ds <∞
a.s. Recalling (11.8), we get

Aπ(t)= −e−α(Xπ (t)−Y(t)) = −Mπ(t)e−α(x−Y(0))+∫ t
0 D

π(s)ds, 0 ≤ t ≤ T . (11.20)

Since Mπ is a positive local martingale and Dπ(s)≥ 0, we can derive

E
[
Aπ(t ∧ τn)|Fs

]

= E
[−Mπ(t ∧ τn)e

−α(x−Y(0))+∫ t∧τn
0 Dπ(u)du|Fs

]

≤ E
[−Mπ(t ∧ τn)|Fs

]
e−α(x−Y(0))+∫ s∧τn

0 Dπ(u)du

= −Mπ(s ∧ τn)e
−α(x−Y(0))+∫ s∧τn

0 Dπ(u)du =Aπ(s ∧ τn), 0 ≤ s ≤ t ≤ T ,

(11.21)
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where (τn)n≥1 denotes a localizing sequence for the local martingale Mπ . From the
uniform integrability of the family {e−αXπ (τ),F -stopping times τ } for π ∈ A exp

and boundedness of Y we conclude that the family {Aπ(τ),F -stopping times τ } is
uniformly integrable for π ∈ A exp. Taking the limit n → ∞ in (11.21), we obtain
the supermartingale property of Aπ for any π ∈ A exp.

We prove the martingale property (11.4). We have Dπ∗
(t) = 0, 0 ≤ t ≤ T . We

next notice that π∗(t)σ (t)−Z(t)= μ(t)
ασ(t)

and the local martingale Mπ∗
is a square

integrable martingale by Proposition 2.5.1. Hence, Aπ∗
is a martingale by (11.20).

The supermartingale and martingale properties (11.3)–(11.4) yield the optimality of
the candidate strategy π∗.

We are left with proving the admissability. The strategy π∗ is predictable and
square integrable. It is clear that there exists a unique adapted, càdlàg solution Xπ∗

to (7.11). By (11.20) we get

e−αXπ∗(τ ) =Mπ∗
(τ )e−αY(τ)−α(x−Y(0)).

Since Mπ∗
is uniformly integrable by Proposition 2.5.1 and Y is bounded, the family

{e−αXπ∗
(τ ),F -stopping times τ } is uniformly integrable. �

We remark that the boundedness assumptions are essential for establishing the
existence of a unique solution to the nonlinear BSDE (11.13).

Theorem 11.1.1 shows that the optimal value function of the optimization prob-
lem (11.1) and the corresponding optimal investment strategy can be derived from
the nonlinear BSDE (11.13). The optimal investment strategy π∗ is independent of
wealth. If we investigate the pure investment problem without the payment process
and we set μ(t)= μ, σ(t)= σ , then the control process of the BSDE (11.13) satis-
fies Z = 0 and the optimal investment strategy is given by π∗(t)= μ

ασ 2 , 0 ≤ t ≤ T ,
which is the well-know optimal investment strategy under exponential preferences
in the classical Black-Scholes model. A non-zero control process Z arises in the
optimal investment strategy (11.14) if we allow for a random drift and volatility of
the stock and equity-linked claims.

If we considered the insurance payment process (7.3) driven by three random
noises (W,B,N), then the generator of the BSDE (11.13) would have quadratic
and exponential terms for the control processes. In such a case we could not use
Proposition 11.1.1. However, if we assumed that the step process J has only a fi-
nite number of jumps, which is the case for the deaths counting process for a life
insurance portfolio, then we could use the recent results by Jiao et al. (2013) and
Kharroubi and Lim (2012) to establish existence of a unique solution to a BSDE
with quadratic and exponential terms in the generator.

11.2 Exponential Indifference Pricing and Hedging

We are interested in finding a price and a hedging strategy for the insurance payment
process. We use the utility indifference arguments under which the expected utility
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of the insurer’s wealth at a specified future date remains unchanged if the insurer
decides to sell the contract today.

Let V P and V 0 denote the optimal value functions of the exponential utility
maximization problems for the insurer who, respectively, faces the payment process
P and is free from the liability. The optimal value function V P follows from Theo-
rem 11.1.1, and the optimal value function V 0 for the pure investment problem also
follows from Theorem 11.1.1 by setting F = H = G = 0. We can conclude that
the optimal value functions V P and V 0 are characterized by the insurer’s current
capital and the solutions YP and Y 0 to the BSDEs

YP (t) = F +
∫ T

t

(
− μ2(s)

2ασ 2(s)
− μ(s)

σ (s)
ZP (s)+H(s)

+
∫
R

(
1

α

(
eα(G(s,z)+UP (s,z)) − 1

) −UP (s, z)

)
Q(s, dz)η(s)

)
ds

−
∫ T

t

ZP (s)dW(s)−
∫ T

t

∫
R

UP (s, z)Ñ(ds, dz), (11.22)

0 ≤ t ≤ T ,

Y 0(t) =
∫ T

t

( −μ2(s)

2ασ 2(s)
− μ(s)

σ (s)
Z0(s)

)
ds −

∫ T

t

Z0(s)dW(s), 0 ≤ t ≤ T .

The indifference price Y (t) makes the insurer indifferent at time t between selling
the contract insuring the stream of claims P , collecting the premium Y (t), paying
the future claims P and not selling the contract. The indifference price process Y :=
(Y (t),0 ≤ t ≤ T ) is defined as a solution to the equation

V P
(
t, x + Y (t)

) = V 0(t, x), 0 ≤ t ≤ T , (11.23)

where x denotes the insurer’s wealth at time t , and we equate the maximal expected
utilities of the insurer’s wealth at time T under two decisions. By Theorem 11.1.1
the indifference pricing principle takes the form

−e−α(x+Y (t)−YP (t)) = −e−α(x−Y 0(t)), 0 ≤ t ≤ T ,

and the price process satisfies

Y (t)= YP (t)− Y 0(t), 0 ≤ t ≤ T . (11.24)

First, we characterize the indifference price process Y . The indifference hedging
strategy will be next deduced from Y .

Theorem 11.2.1 Consider the filtration F = FW ∨ F J . Assume that (C1)–(C4)
from Chap. 7 hold and let F , H , G, η be bounded and r = 0.
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(a) There exists a unique solution (Y ,Z ,U ) ∈ S
∞(R)×H

2(R)×H
2
N(R) to the

BSDE

Y (t) = F +
∫ T

t

(
−μ(s)

σ (s)
Z (s)+H(s)

+
∫
R

(
1

α

(
eα(G(s,z)+U (s,z)) − 1

) − U (s, z)

)
Q(s, dz)η(s)

)
ds

−
∫ T

t

Z (s)dW(s)−
∫ T

t

∫
R

U (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (11.25)

(b) The indifference price process Y := (Y (t),0 ≤ t ≤ T ) of the payment process
P , defined by (11.23), solves the BSDE (11.25). The indifference price process
has the representation

Y (t)= E
Q

∗
[∫ T

t

dP (s)|Ft

]
, 0 ≤ t ≤ T , (11.26)

where the equivalent martingale measure Q
∗ is given by

dQ∗

dP

∣∣∣Ft = M∗(t), 0 ≤ t ≤ T ,

dM∗(t)
M∗(t−)

= −μ(t)

σ (t)
dW(t)+

∫
R

(
eα(G(t,z)+U (t,z)) − 1

α(G(t, z)+ U (t, z))
− 1

)
Ñ(dt, dz).

Proof (a) The result can be proved by following the reasoning from Theorem 11.1.1.
(b) By Theorem 11.1.1 there exist unique solutions (YP ,ZP ,UP ),

(Y 0,Z0,U0) ∈ S
∞(R) × H

2(R) × H
2
N(R) to the BSDEs (11.22). Substituting the

dynamics of YP and Y 0 into (11.24) and introducing new control processes Z =
ZP −Z0 and U =UP , we can show that the indifference price process Y satisfies
the BSDE (11.25). We prove the representation of Y . Let M∗ = (M∗(t),0 ≤ t ≤ T )

be given by the dynamics

dM∗(t)
M∗(t−)

= −μ(t)

σ (t)
dW(t)+

∫
R

(
eα(G(t,z)+U (t,z)) − 1

α(G(t, z)+ U (t, z))
− 1

)
Ñ(dt, dz), (11.27)

with M∗(0) = 1. Notice that the function ϕ(y) = ey−1
y

− 1 is continuous, with

ϕ(0) = 0, and satisfies |ϕ(y)| ≤ e|y| + 1, ϕ(y) > −1, y ∈ R. These properties of
ϕ together with boundedness of U ,G and μ

σ
yield that M∗ is a positive, square in-

tegrable martingale, see Proposition 2.5.1. Hence, we conclude that Q∗ is an equiv-
alent probability measure. Moreover, the measure Q

∗ is an equivalent martingale
measure since the process S is a Q

∗-martingale. We change the measure in (11.25)
and the Girsanov’s theorem yields the BSDE
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Y (t) = F +
∫ T

t

(
H(s)+

∫
R

G(s, z)
(
1 + κ∗(s, z)

)
Q(s, dz)η(s)

)
ds

−
∫ T

t

Z (s)dWQ
∗
(s)−

∫ T

t

∫
R

U (s, z)ÑQ
∗
(ds, dz), 0 ≤ t ≤ T ,

(11.28)

where

κ∗(s, z)= eα(G(s,z)+U (s,z)) − 1

α(G(s, z)+ U (s, z))
− 1, (s, z) ∈ [0, T ] ×R. (11.29)

We deduce that the stochastic integrals in (11.28) are Q
∗-martingales, see (3.25)–

(3.26). Taking the expected value, we obtain the representation

Y (t) = E
Q

∗
[
F +

∫ T

t

(
H(s)+

∫
R

G(s, z)
(
1 + κ∗(s, z)

)
Q(s, dz)η(s)

)
ds|Ft

]

= E
Q

∗
[
F +

∫ T

t

(
H(s)+

∫
R

G(s, z)N(ds, dz)

)
ds|Ft

]
,

= E
Q

∗
[∫ T

t

dP (s)|Ft

]
, 0 ≤ t ≤ T , (11.30)

where we use the fact that (1 + κ∗(s, z))Q(s, dz)η(s)ds is the compensator of the
random measure N under Q∗. �

The indifference price process of the insurance payment process P solves the
non-linear BSDE (11.25). Notice that the BSDE (11.25) has a Lipschitz genera-
tor as U is bounded. Representation (11.26) shows that the indifference price Y is
arbitrage-free. The pricing measure Q

∗ results from solving the optimization prob-
lem (11.23). The unsystematic insurance risk is priced under Q∗ and the insurance
risk premium is given by (11.29). Notice that the pricing measure Q∗ depends on the
financial market, the insurance payment process and the risk aversion coefficient α.

We can derive the indifference hedging strategy.

Proposition 11.2.1 Under the assumptions of Theorem 11.2.1 the indifference
hedging strategy for the payment process P takes the form

Π∗(t)= Z (t)

σ (t)
, 0 ≤ t ≤ T . (11.31)

Following Ankirchner et al. (2010) and Becherer (2006), we call the process

Π∗(t)= Z (t)
σ (t)

= ZP (t)−Z0(t)
σ (t)

the indifference hedging strategy. The process Π∗ rep-
resents the change in the optimal investment strategy π∗, for an insurer who aims
to maximize the expected utility of the terminal wealth, resulting from selling the
payment process P and hedging the claims. Since Y is an arbitrage-free price of
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the liability P and Z is the control process of the BSDE for Y , we conclude that
the investment strategy Π∗ is a delta hedging strategy, see Sect. 9.2. From (11.27),
(11.28) and (11.31) we deduce that the indifference price process satisfies the dy-
namics

Y (t) = Y (0)+
∫ t

0
Π∗(s)

(
μ(s)+ σ(s)dW(s)

) − P(t)

+
∫ t

0

∫
R

(
U (s, z)+G(s, z)

)
ÑQ

∗
(ds, dz)

= Y (0)+
∫ t

0
Π∗(s)dS(s)

S(s)
− P(t)

+
∫ t

0

∫
R

(
U (s, z)+G(s, z)

)
ÑQ

∗
(ds, dz), 0 ≤ t ≤ T .

The strategy Π∗ can be interpreted as the amount of wealth which should be in-
vested in the stock S and the integral with respect to the random measure can be
interpreted as the cash inflows/outflows, over the gains from the self-financing hedg-
ing strategy Π∗, which are needed to match the optimal investment portfolio XΠ∗

with the market-consistent value of the liability Y .

Example 11.1 We consider the classical Black-Scholes model with constant co-
efficients μ, σ and a non-life insurer who has a stop-loss contract on aggregate
claims J . We are interested in pricing and hedging the claim F = J (T ) ∧ K =
J (T )− (J (T )−K)+ where J is a compound Poisson process with intensity λ and
jump size distribution q defined on a positive support. In order to find the indiffer-
ence price process of the claim F , we have to solve the BSDE

Y (t) = J (T )∧K

+
∫ T

t

(
−μ

σ
Z (s)+

∫ ∞

0

1

α

((
eαU (s,z) − 1

) − U (s, z)
)
λq(dz)

)
ds

−
∫ T

t

Z (s)dW(s)−
∫ T

t

∫ ∞

0
U (s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (11.32)

Clearly, we can set Z (t)= 0, 0 ≤ t ≤ T . By Proposition 11.2.1 the optimal hedging
strategy for the claim F is Π∗(t) = 0, 0 ≤ t ≤ T . This strategy agrees with our
intuition since the claim is independent of the financial market and it cannot be
hedged by investment into the stock. At the same time, from Theorem 11.1.1 we can
conclude that the optimal investment strategy for an insurer who faces the claim F

and maximizes the expected exponential utility from his terminal wealth is π∗(t)=
μ

ασ 2 , 0 ≤ t ≤ T . By Proposition 3.4.3 the solution to the BSDE (11.32) is of the
form

Y (t) = 1

α
lnE

[
eα(J (T )∧K)|F J

t

]
, 0 ≤ t ≤ T ,
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U (t, z) = 1

α
ln

(
1 +U(t, z)e−αY (t−)

)
, 0 ≤ t ≤ T , z ∈ (0,∞),

where U is derived from the predictable representation

eα(J (T )∧K) = E
[
eα(J (T )∧K)

] +
∫ T

0

∫ ∞

0
U(t, z)Ñ(dt, dz).

Let ϕ : [0, T ] × [0,∞)→R denote a measurable function such that

ϕ
(
t, J (t)

) = E
[
eα(J (T )∧K)|F J

t

]
, 0 ≤ t ≤ T .

Applying the Malliavin calculus, Propositions 2.6.4 and 2.6.6 and Theorem 3.5.2,
we get the formula

eα(J (T )∧K) = E
[
eα(J (T )∧K)

] +
∫ T

0

∫ ∞

0
(ϕ

(
t, J (t−)+ z

) − ϕ
(
t, J (t−)

)
Ñ(dt, dz),

and the solution to the BSDE (11.32) is now completely characterized. By Theo-
rem 11.2.1 we can also establish the representation

Y (t)= E
Q

∗[
J (T )∧K|F J

t

]
, 0 ≤ t ≤ T ,

where the equivalent probability measure Q
∗ is defined by the Radon-Nikodym

derivative with the kernel

κ∗(t, z)= eαU (t,z) − 1

αU (t, z)
− 1, 0 ≤ t ≤ T , z ∈ (0,∞).
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Chapter 12
Pricing and Hedging Under a Least Favorable
Measure

Abstract We consider two optimization problems which take into account the un-
certainty about the true probability (martingale) measure. First, we investigate pric-
ing and hedging under model ambiguity. We find the hedging strategy which min-
imizes the expected terminal shortfall under a least favorable probability measure
specifying the probability model for the risk factors and we set the price which off-
sets this worst shortfall. Next, we deal with no-good-deal pricing. We price the in-
surance payment process with a least favorable martingale measure under a Sharpe
ratio constraint which excludes prices leading to extraordinarily high gains. Both
pricing and hedging objectives lead to the same solution. We characterize the price
and the hedging strategy by a nonlinear BSDE.

In this chapter we solve two optimization problems which take into account the
uncertainty about the true probability (martingale) measure. We investigate pricing
and hedging under model ambiguity and we deal with no-good-deal pricing. Both
objectives have strong theoretical and practical justifications. In both cases the goal
is to derive a price and a hedging strategy by optimizing the expectation of a pay-
off over a set of equivalent probability (martingale) measures. The least favorable
measure is found and used for pricing and hedging. The connection between the ob-
jectives considered in this chapter and pricing and hedging under the instantaneous
mean-variance risk measure considered in Sect. 10.4 is given.

12.1 Pricing and Hedging Under Model Ambiguity

In previous chapters we assumed that we know the true real-world probability mea-
sure (the true probability law) or we know the true parameters of the combined
financial and insurance model. In real applications the true probabilities or the true
values of parameters are uncertain and we face so-called model ambiguity.

We consider the financial model (7.1)–(7.2) and the insurance payment process
(7.3). We assume that the process J is a point process and, consequently, the jump
measure N of the point process J has the compensator ϑ(dt, {1}) = η(t)dt . We
allow for model ambiguity or Knightian uncertainty, see Chen and Epstein (2002).

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_12,
© Springer-Verlag London 2013
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We introduce the set of equivalent probability measures

Qs =
{
Q ∼ P,

dQ

dP

∣∣∣Ft =Ms(t), 0 ≤ t ≤ T

}
,

dMs(t)

Ms(t−)
=ψ(t)dW(t)+ φ(t)dB(t)+ κ(t)Ñ(dt), Ms(0)= 1,

(12.1)

where ψ , φ and κ are predictable processes such that

∣∣ψ(t)
∣∣2 + ∣∣φ(t)∣∣2 + ∣∣κ(t)∣∣2

η(t)≤ ∣∣L(t)∣∣2 ≤K, κ(t) >−1, 0 ≤ t ≤ T ,

and L is a predictable process. The purpose of the set Qs is to represent different
beliefs (different assumptions) about the parameters or the probability laws of the
risk factors in our model. One way of determining the set Qs for ambiguity mod-
elling is to specify confidence sets around the estimates of the parameters and to
take for Qs the class of all measures that are consistent with these confidence sets.
Then, the process L can be interpreted as an estimation error. Alternatively, the ele-
ments of Qs can be interpreted as prior models which specify probabilities of future
scenarios for the risk factors. Then, the process L can define the range of equivalent
probabilities for every scenario.

Let us introduce the risk measure

ρ(ξ)= sup
Q∈Qs

E
Q[−ξ ]. (12.2)

The risk measure (12.2) measures the risk of a financial position ξ . We remark
that ξ > 0 is interpreted as a profit and ξ < 0 as a loss. Under (12.2) we take the
supremum of all expected shortfalls for all prior models and we are interested in the
expected shortfall under the least favorable model (the least favorable assumptions).

We apply the conditional version of the risk measure (12.2) to the discounted
surplus at time T (the net asset value at time T ). We investigate the risk measures

ρt
(
e− ∫ T

t r(s)dsXπ(T )− e− ∫ T
t r(s)dsF

)
, 0 ≤ t ≤ T , (12.3)

where the investment portfolio Xπ under an admissible investment strategy π ∈ A
is given by (7.11). The goal is to find an admissible investment strategy π which
minimizes the risk measures ρt for all t ∈ [0, T ] and a price Y which makes the risk
measures vanish in the sense that

ρt
(
e− ∫ T

t r(s)dsXπ(T )− e− ∫ T
t r(s)dsF

) = 0, 0 ≤ t ≤ T ,

under the condition that X(t) = Y(t). The price and the hedging strategy are given
by

Y(t) = inf
π∈A

{
sup
Q∈Qs

E
Q
[−(

e− ∫ T
t r(s)dsXπ(T )−X(t)

− e− ∫ T
t r(s)dsF

)|Ft

]}
, 0 ≤ t ≤ T .
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The hedging strategy leads to the lowest expected terminal shortfall of the assets be-
low the liabilities under the least favorable probability measure from the set of prior
models. The price offsets this expected terminal shortfall. The objective seems to
be a sound pricing and hedging objective for insurers who are forced by regulators
to carry stress-tests on model parameters and hold sufficient capital to withstand
extreme scenarios. By applying the risk measure (12.3) the insurer protects the ter-
minal net asset wealth under the scenario in which the worst model assumptions
turn out to be the true assumptions. We remark that (12.3) is an example of robust
utility optimization, see Schied (2005) and Schied (2006).

We now solve the optimization problem

Y(t) = inf
π

{
sup
Q∈Qs

E
Q

[
e− ∫ T

t r(u)duF +
∫ T

t

e− ∫ s
t r(u)duH(s)ds

+
∫ T

t

e− ∫ s
t r(u)duG(s)dJ (s)−

∫ T

t

e− ∫ s
t r(u)duπ(s)

((
μ(s)− r(s)

)
ds

+ σ(s)dW(s)
)|Ft

]}
, 0 ≤ t ≤ T . (12.4)

We deal with three BSDE:

Yπ,ψ,φ,κ (t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

−
∫ T

t

π(s)
(
μ(s)− r(s)

)
ds −

∫ T

t

π(s)σ (s)dW(s)

+
∫ T

t

(−Yπ,ψ,φ,κ (s−)r(s)+Z
π,ψ,φ,κ

1 (s)ψ(s)+Z
π,ψ,φ,κ

2 (s)φ(s)

+Uπ,ψ,φ,κ (s)κ(s)η(s)
)
ds

−
∫ T

t

Z
π,ψ,φ,κ

1 (s)dW(s)−
∫ T

t

Z
π,ψ,φ,κ

2 (s)dB(s)

−
∫ T

t

Uπ,ψ,φ,κ (s)Ñ(ds), 0 ≤ t ≤ T , (12.5)

where π ∈ A and (ψ,φ, κ) ∈ Qs ,

Yπ,∗(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

−
∫ T

t

π(s)
(
μ(s)− r(s)

)
ds −

∫ T

t

π(s)σ (s)dW(s)+
∫ T

t

(
−Yπ,∗(s−)r(s)

+L(s)

√∣∣Zπ,∗
1 (s)

∣∣2 + ∣∣Zπ,∗
2 (s)

∣∣2 + ∣∣Uπ,∗(s)
∣∣2
η(s)

)
ds
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−
∫ T

t

Z
π,∗
1 (s)dW(s)−

∫ T

t

Z
π,∗
2 (s)dB(s)

−
∫ T

t

Uπ,∗(s)Ñ(ds), 0 ≤ t ≤ T , (12.6)

where π ∈ A , and

Y ∗,∗(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

+
∫ T

t

(
−Y ∗,∗(s−)r(s)−Z

∗,∗
1 (s)θ(s)

+
√∣∣L(s)∣∣2 − ∣∣θ(s)∣∣2

√∣∣Z∗,∗
2 (s)

∣∣2 + ∣∣U∗,∗(s)
∣∣2
η(s)

)
ds

−
∫ T

t

Z
∗,∗
1 (s)dW(s)−

∫ T

t

Z
∗,∗
2 (s)dB(s)

−
∫ T

t

U∗,∗(s)Ñ(ds), 0 ≤ t ≤ T . (12.7)

By Propositions 3.3.1 and 3.4.1 we can derive the representation

Yπ,ψ,φ,κ (t) = E
Q
ψ,φ,κ [−(

e− ∫ T
t r(s)dsXπ(T )−X(t)

− e− ∫ T
t r(s)dsF

)|Ft

]
, 0 ≤ t ≤ T ,

where Q
ψ,φ,κ is induced by (ψ,φ, κ) ∈ Qs .

Theorem 12.1.1 Let us assume that (C1)–(C4) from Chap. 7 hold and the jump
measure N of the step process J has the compensator ϑ(dt, {1})= η(t)dt . We con-
sider a predictable process L such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K ,
0 ≤ t ≤ T .

(a) There exist unique solutions (Y π,ψ,φ,κ ,Z
π,ψ,φ,κ

1 ,Z
π,ψ,φ,κ

2 ,Uπ,ψ,φ,κ ), (Y π,∗,
Z
π,∗
1 ,Z

π,∗
2 ,Uπ,∗) ∈ S

2(R) × H
2(R) × H

2(R) × H
2
N(R) to the BSDEs (12.5)

and (12.6) with π ∈ A and (ψ,φ, κ) ∈ Qs .
(b) For any π ∈ A and (ψ,φ, κ) ∈ Qs we have Yπ,ψ,φ,κ (t)≤ Yπ,∗(t), 0 ≤ t ≤ T .
(c) For any π ∈ A such that

L(t)Uπ,∗(t)√
|Zπ,∗

1 (t)|2+|Zπ,∗
2 (t)|2+|Uπ,∗(t)|2η(t)

· 1
{
Uπ,∗(t)η(t) �=0

}
>−1, 0≤ t ≤T ,

we have sup(ψ,φ,κ)∈Qs Y π,ψ,φ,κ (t)= Yπ,∗(t), 0 ≤ t ≤ T .

Proof (a) Choose π ∈ A and (ψ,φ, κ) ∈ Qs . By (3.22), (10.46) and Theorem 3.1.1
there exist unique solutions to the BSDEs (12.5) and (12.6).
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(b) Notice that the generator f of the BSDE (12.5) satisfies the property

f (t, y, z, u)− f
(
t, y, z, u′) = δy,z,u,u

′
(t)

(
u− u′)η(t),

with δy,z,u,u
′
(t)= κ(t), for (t, y, z, u), (t, y, z, u′) ∈ [0, T ] ×R×R×R. Recalling

the arguments from the proof of Theorem 3.2.2 that led to (3.31), we obtain

Yπ,∗(t)− Yπ,ψ,φ,κ (t)

= E
Q
ψ,φ,κ

[∫ T

t

e− ∫ s
t r(u)du

(
L(s)

√∣∣Zπ,∗
1 (s)

∣∣2 + ∣∣Zπ,∗
2 (s)

∣∣2 + ∣∣Uπ,∗(s)
∣∣2
η(s)

−Z
π,∗
1 (s)ψ(s)−Z

π,∗
2 (s)φ(s)−Uπ,∗(s)κ(s)η(s)

)
ds|Ft

]
, 0 ≤ t ≤ T ,

(12.8)

where Q
ψ,φ,κ is induced by (ψ,φ, κ) ∈ Qs . It is straightforward to check that the

triple

x∗ = δu√
u2 +w2 + v2η

1{u �= 0}

y∗ = δw√
u2 +w2 + v2η

1{w �= 0}, (12.9)

z∗ = δv√
u2 +w2 + v2η

1{vη �= 0},

is the solution to the optimization problem

ux +wy + vzη → max

x2 + y2 + z2η ≤ δ2,
(12.10)

and the global maximum of (12.10) is equal to δ
√
u2 +w2 + v2η. Hence, from

(12.8)–(12.10) we conclude that Yπ,∗(t)−Yπ,ψ,φ,κ (t)≥ 0 for all t ∈ [0, T ] and any
π ∈ A , (ψ,φ, κ) ∈ Qs .

(c) Recalling (12.9), we define

ψ∗(t) = L(t)Z
π,∗
1 (t)√

|Zπ,∗
1 (t)|2 + |Zπ,∗

2 (t)|2 + |Uπ,∗(t)|2η(t)
1
{
Z
π,∗
1 (t) �= 0

}

φ∗(t) = L(t)Z
π,∗
2 (t)√

|Zπ,∗
1 (t)|2 + |Zπ,∗

2 (t)|2 + |Uπ,∗(t)|2η(t)
1
{
Z
π,∗
2 (t) �= 0

}
, (12.11)

κ∗(t) = L(t)Uπ,∗(t)√
|Zπ,∗

1 (t)|2 + |Zπ,∗
2 (t)|2 + |Uπ,∗(t)|2η(t)

1
{
Uπ,∗(t)η(t) �= 0

}
.
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The assumptions on π guarantee that (ψ∗, φ∗, κ∗) ∈ Qs . The solution
(Y π,ψ∗,φ∗,κ∗

,Z
π,ψ∗,φ∗,κ∗
1 ,Z

π,ψ∗,φ∗,κ∗
2 ,Uπ,ψ∗,φ∗,κ∗

) coincides with (Y π,∗,Zπ,∗
1 ,

Z
π,∗
2 ,Uπ,∗) by uniqueness of solution to (12.5). Hence, we conclude that

sup(ψ,φ,κ)∈Qs Y π,ψ,φ,κ (t) ≥ Yπ,ψ∗,φ∗,κ∗
(t) = Yπ,∗(t) for all t ∈ [0, T ] and any

π ∈ A . Since sup(ψ,φ,κ)∈Qs Y π,ψ,φ,κ (t) ≤ Yπ,∗(t) by item (b), the assertion of
item (c) can be immediately deduced. �

We remark that the assumption on π from item (c) guarantees that the inequality
κ(t) > −1 is strict in the optimum. Without this assumption, the least favorable
measure cannot be found in the set Qs .

Theorem 12.1.2 Let us assume that (C1)–(C4) from Chap. 7 hold and the jump
measure N of the step process J has the compensator ϑ(dt, {1})= η(t)dt . We con-
sider a predictable process L such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K ,
0 ≤ t ≤ T .

(a) There exist unique solutions (Y π,∗,Zπ,∗
1 ,Z

π,∗
2 ,Uπ,∗), (Y ∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,U∗,∗)∈

S
2(R)×H

2(R)×H
2(R)×H

2
N(R) to the BSDEs (12.6) and (12.7) with π ∈ A .

(b) Define the class of admissible strategies A s which consists of strategies π :=
(π(t),0 ≤ t ≤ T ) such that π ∈ A and

L(t)Uπ,∗(t)√
|Z∗,∗

1 (t)−π(t)σ (t)|2 +|Z∗,∗
2 (t)|2 +|Uπ,∗(t)|2η(t)

1
{
Uπ,∗(t)η(t) �=0

}
>−1,

0 ≤ t ≤ T ,

L(t)U∗,∗(t)√
|Z∗,∗

1 (t)−π(t)σ (t)|2 +|Z∗,∗
2 (t)|2 +|U∗,∗(t)|2η(t)

1
{
U∗,∗(t)η(t) �=0

}
>−1,

0 ≤ t ≤ T .

For any π ∈ A s we have Yπ,∗(t)≥ Y ∗,∗(t), 0 ≤ t ≤ T .
(c) Let Y denote the optimal value function of the optimization problem (12.4) un-

der the new set of admissible strategies A s . If U∗,∗(t)≥ 0 or |L(t)|2 < η(t)+
|θ(t)|2 on the set {η(t) > 0}, 0 ≤ t ≤ T , then infπ∈A s Y π,∗(t)= Y ∗,∗(t)= Y(t),
0 ≤ t ≤ T , and the optimal admissible hedging strategy π∗ ∈ A s takes the form

π∗(t) = 1

σ(t)

(
Z

∗,∗
1 (t)+

√
|θ(t)|2

|L(t)|2 − |θ(t)|2
√∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)
,

0 ≤ t ≤ T . (12.12)

Proof (a) Choose π ∈ A . By (3.22), (10.46) and Theorem 3.1.1 there exist unique
solutions to the BSDEs (12.6) and (12.7).

(b) We introduce the process

Ẑ
π,∗
1 (t)= Z

π,∗
1 (t)+ π(t)σ (t), 0 ≤ t ≤ T , (12.13)
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and we get the BSDE

Yπ,∗(t) = F +
∫ T

t

(
−Yπ,∗(s−)r(s)+H(s)ds +G(s)dJ (s)− π(s)

(
μ(s)− r(s)

)

+L(s)

√∣∣Ẑπ,∗
1 (s)− π(s)σ (s)

∣∣2 + ∣∣Zπ,∗
2 (s)

∣∣2 + ∣∣Uπ,∗(s)
∣∣2
η(s)

)
ds

−
∫ T

t

Ẑ
π,∗
1 (s)dW(s)−

∫ T

t

Z
π,∗
2 (s)dB(s)−

∫ T

t

Uπ,∗(s)Ñ(ds),

0 ≤ t ≤ T . (12.14)

Notice that the generator f of the BSDE (12.14) satisfies the property

f
(
t, Y ∗,∗(t),Z∗,∗

1 (t),Z
∗,∗
2 (t),Uπ,∗(t)

) − f
(
t, Y ∗,∗(t),Z∗,∗

1 (t),Z
∗,∗
2 (t),U∗,∗(t)

)

= δY
∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,Uπ,∗,U∗,∗

(t)
(
Uπ,∗(t)−U∗,∗(t)

)
η(t), 0 ≤ t ≤ T ,

where

δY
∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,Uπ,∗,U∗,∗

(t)

= L(t)
(√∣∣Z∗,∗

1 (t)− π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

−
√∣∣Z∗,∗

1 (t)− π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)

/
((
Uπ,∗(t)−U∗,∗(t)

)
η(t)

)
1
{(
Uπ,∗(t)−U∗,∗(t)

)
η(t) �= 0

}
, 0 ≤ t ≤ T .

From the Lipschitz property (10.46) and boundedness of L we deduce that the map-
ping t �→ |δY ∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,Uπ,∗,U∗,∗

(t)|2η(t) is uniformly bounded. We also have

δY
∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,Uπ,∗,U∗,∗

(t)

= L(t)
(
Uπ,∗(t)+U∗,∗(t)

)

/
(√∣∣Z∗,∗

1 (t)− π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

+
√∣∣Z∗,∗

1 (t)− π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)

· 1
{(
Uπ,∗(t)−U∗,∗(t)

)
η(t) �= 0

}

= απ
L(t)Uπ,∗(t)√

|Z∗,∗
1 (t)− π(t)σ (t)|2 + |Z∗,∗

2 (t)|2 + |Uπ,∗(t)|2η(t)
· 1

{(
Uπ,∗(t)−U∗,∗(t)

)
η(t) �= 0

}
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+ (
1 − απ

) L(t)U∗,∗(t)√
|Z∗,∗

1 (t)− π(t)σ (t)|2 + |Z∗,∗
2 (t)|2 + |U∗,∗(t)|2η(t)

· 1
{(
Uπ,∗(t)−U∗,∗(t)

)
η(t) �= 0

}
,

where

απ =
√∣∣Z∗,∗

1 (t)− π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

/
(√∣∣Z∗,∗

1 (t)− π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣Uπ,∗(t)

∣∣2
η(t)

+
√∣∣Z∗,∗

1 (t)− π(t)σ (t)
∣∣2 + ∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t)

)

· 1
{(
Uπ,∗(t)−U∗,∗(t)

)
η(t) �= 0

}
,

and απ ∈ [0,1]. We can conclude that δY
∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,Uπ,∗,U∗,∗

(t) > −1, 0 ≤ t ≤ T ,
for any admissible strategy π ∈ A s . Recalling the arguments from the proof of
Theorem 3.2.2 that led to (3.31), we obtain

Y ∗,∗(t)− Yπ,∗(t)

= E
Q

[∫ T

t

e− ∫ s
t r(u)du

(√∣∣L(s)∣∣2 − ∣∣θ(s)∣∣2
√∣∣Z∗,∗

2 (s)
∣∣2 + ∣∣U∗,∗(s)

∣∣2
η(s)

−Z
∗,∗
1 (s)θ(s)+ π(s)

(
μ(s)− r(s)

)

−L(s)

√∣∣Z∗,∗
1 (s)− π(s)σ (s)

∣∣2 + ∣∣Z∗,∗
2 (s)

∣∣2 + ∣∣U∗,∗(s)
∣∣2
η(s)

)
ds|Ft

]
,

0 ≤ t ≤ T , (12.15)

under some measure Q. We now introduce the function

ϕ(π) =
√

|L|2 − |θ |2
√∣∣z∗,∗

2

∣∣2 + ∣∣u∗,∗∣∣2
η − z

∗,∗
1 θ

+ π(μ− r)−L

√∣∣z∗,∗
1 − πσ

∣∣2 + ∣∣z∗,∗
2

∣∣2 + ∣∣u∗,∗∣∣2
η.

By classical differential calculus we can find the global maximum of ϕ and we can
show that ϕ(π) ≤ 0. Hence, from (12.15) we conclude that Y ∗,∗(t) − Yπ,∗(t) ≤ 0
for all t ∈ [0, T ] and any π ∈ A s .

(c) It is easy to show that ϕ(π∗)= 0 for π∗ defined in (12.12). We have to check
the admissibility of the candidate strategy π∗. Predictability and the square integra-
bility of π∗ are obvious. It is also clear that there exists an adapted, càdlàg solution
Xπ∗

to (7.11). Hence, π∗ ∈ A . By uniqueness of solution to (12.14) the solution
(Y π∗,∗, Ẑπ∗,∗

1 ,Z
π∗,∗
2 ,Uπ∗,∗) coincides with (Y ∗,∗,Z∗,∗

1 ,Z
∗,∗
2 ,U∗,∗). From (12.12)
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we can now derive

Z
∗,∗
1 (t)−π∗(t)σ (t)=

√
|θ(t)|2

|L(t)|2 −|θ(t)|2
√∣∣Z∗,∗

2 (t)
∣∣2 + ∣∣U∗,∗(t)

∣∣2
η(t), 0≤ t ≤T ,

and, consequently, π∗ ∈ A s if

L(t)Uπ∗,∗(t)√
|Z∗,∗

1 (t)− π∗(t)σ (t)|2 + |Z∗,∗
2 (t)|2 + |Uπ∗,∗(t)|2η(t)

1
{
Uπ∗,∗(t)η(t) �= 0

}

= L(t)U∗,∗(t)√
|Z∗,∗

1 (t)− π∗(t)σ (t)|2 + |Z∗,∗
2 (t)|2 + |U∗,∗(t)|2η(t)

1
{
U∗,∗(t)η(t) �= 0

}

=
√|L(t)|2 − |θ(t)|2U∗,∗(t)√
|Z∗,∗

2 (t)|2 + |U∗,∗(t)|2η(t)
1
{
U∗,∗(t)η(t) �= 0

}
>−1, 0 ≤ t ≤ T ,

which holds if U∗,∗(t) ≥ 0 or |L(t)|2 < η(t) + |θ(t)|2 on the set {η(t) > 0}. We
can conclude that Y ∗,∗(t) = Yπ∗,∗(t) ≥ infπ∈A s Y π,∗(t) for all t ∈ [0, T ]. Since
Y ∗,∗(t)≤ infπ∈A s Y π,∗(t) by item (b), the assertion of item (c) can be deduced. �

The additional constraints on the set of admissible strategies allow us to apply the
comparison principle in the proof of Theorem 12.1.2 and we succeed in obtaining
the optimal solution. We point out that the additional constraints are essential for
deriving the arbitrage-free price (12.4) which satisfies the comparison principle (the
property of monotonicity with respect to the claim and the Sharpe ratio).

Notice that the assumptions: θ(t) + ε ≤ L(t) and |L(t)|2 < η(t) + |θ(t)|2 on
the set {η(t) > 0} may hold only if η(t) ≥ ε > 0 on the set {η(t) > 0}. We remark
that it is reasonable to assume that there exists a positive lower bound on the claim
intensity, e.g. despite improvements in mortality, it is reasonable to assume that
there exists a natural limit in these improvements and the mortality intensity process
should be bounded away from zero. If θ(t)+ ε ≤ L(t) <

√
η(t), then A s = A .

Theorem 12.1.2 shows that the price process and the optimal hedging strategy,
which are derived under the ambiguity risk minimization (12.4), can be charac-
terized with the solution to the nonlinear BSDE (12.7). The price process Y ∗,∗ is
arbitrage-free. From (12.7) we get

Y ∗,∗(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

+
∫ T

t

(
−Y ∗,∗(s−)r(s)−Z

∗,∗
1 (s)θ(s)

+ Z
∗,∗
2 (s)√

|Z∗,∗
2 (s)|2 + |U∗,∗(s)|2η(s)

√∣∣L(s)∣∣2 − ∣∣θ(s)∣∣2
Z

∗,∗
2 (s)
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+ U∗,∗(s)√
|Z∗,∗

2 (s)|2 + |U∗,∗(s)|2η(s)

√∣∣L(s)∣∣2 − ∣∣θ(s)∣∣2
U∗,∗(s)η(s)

)
ds

−
∫ T

t

Z
∗,∗
1 (s)dW(s)−

∫ T

t

Z
∗,∗
2 (s)dB(s)

−
∫ T

t

U∗,∗(s)Ñ(ds), 0 ≤ t ≤ T ,

and by the Girsanov’s theorem we obtain the representation

Y ∗,∗(t)= E
Q

∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T , (12.16)

where the equivalent martingale measure Q
∗ is given by

dQ∗

dP

∣∣∣Ft = M∗(t), 0 ≤ t ≤ T ,

dM∗(t)
M∗(t−)

= −θ(t)dW(t)+ Z
∗,∗
2 (t)√

|Z∗,∗
2 (t)|2 + |U∗,∗(t)|2η(t)

√∣∣L(t)∣∣2 − ∣∣θ(t)∣∣2
dB(t)

+ U∗,∗(t)√
|Z∗,∗

2 (t)|2 + |U∗,∗(t)|2η(t)

√∣∣L(t)∣∣2 − ∣∣θ(t)∣∣2
Ñ(dt). (12.17)

Since we assume that U∗,∗(t) ≥ 0 or |L(t)|2 < η(t) + |θ(t)|2, the process given
by (12.17) is a positive martingale and it defines an equivalent martingale measure.
We can also prove that Y ∗,∗ satisfies the comparison principle and the property of
monotonicity with respect to the claim, see Delong (2012a). The systematic and
unsystematic insurance risks are priced under Q∗ and the insurance risk premiums
can be deduced from (12.17). The pricing measure Q

∗ depends on the financial
market, the insurance payment process and the control process L. Since Y ∗,∗ is an
arbitrage-free price of the liability and Z∗,∗ is the control process of the BSDE for
Y , we conclude that the optimal hedging strategy (12.12) is a delta hedging strategy
with a correction term.

Recall now the hedging strategy (10.43) and the price (10.44) derived under the
instantaneous mean-variance risk measure. There are obvious similarities between
the results from Sect. 10.4 and the results of this chapter. This should not mislead us.
We point out that the price process (10.44), which is obtained under the assumptions
of Theorem 10.4.1, may give rise to arbitrage opportunities, see Example 10.3. This
is never the case for the price process (12.7), which is obtained under the assump-
tions of Theorems 12.1.1 and 12.1.2. The stronger assumptions of Theorems 12.1.1
and 12.1.2 exclude those cases of (10.44) which lead to arbitrage prices, see Exam-
ples 10.3 and 10.4.

We conclude that there is an equivalence between arbitrage-free pricing and
hedging under the instantaneous mean-variance risk measure and pricing and hedg-
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ing under the ambiguous risk measure, which, by construction, always leads to an
arbitrage-free price. Such an equivalence is beneficial for applications and interpre-
tations. Firstly, it is straightforward to justify that L(t) ≥ θ(t)+ ε as the process L
can be related to the Sharpe ratio of the surplus process. Secondly, from (10.43) and
(10.56) we deduce that the correction term in the hedging strategy (10.43) or (12.12)
arises if the insurer applies the mean-variance risk measure instead of the variance
risk measure.

Example of pricing and hedging under model ambiguity are given in Exam-
ples 10.3 and 10.4.

12.2 No-Good-Deal Pricing

In the arbitrage-free financial and insurance model the payment process P should be
priced by the expectation E

Q[∫ T

0 e−rt dP (t)] under an equivalent martingale mea-
sure Q ∈ Qm, see Sect. 9.1. Since the set of equivalent martingale measures Qm

is not a singleton, the first idea is to consider supQ∈Qm E
Q[∫ T

0 e−rt dP (t)]. Such a
superhedging price is too high for practical applications, gives rise to arbitrage op-
portunities and cannot be used for pricing, see Sect. 9.3. The second idea is to con-
sider supQ∈Q′ EQ[∫ T

0 e−rt dP (t)] where Q′ ⊂ Qm. In order to apply such a price,
the form of the subset Q′ of the set of equivalent martingale measures Qm should
be specified and justified. In this chapter we present a financial motivation for con-
sidering a particular subset of Qm and we find the arbitrage-free price under the
least favorable martingale measure from this subset.

We investigate the insurance payment process (7.3). We assume that the pro-
cess J is a point process and, consequently, the jump measure N of the point pro-
cess J has the compensator ϑ(dt, {1})= η(t)dt . From Propositions 3.3.1 and 3.4.1
we can conclude that an arbitrage-free price Y of the payment process P must sat-
isfy the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)dJ (s)

+
∫ T

t

(−Y(s−)r(s)−Z1(s)θ(s)+Z2(s)φ(s)+U(s)κ(s)η(s)
)
ds

−
∫ T

t

Z1(s)dW(s)−
∫ T

t

Z2(s)dB(s)

−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T , (12.18)

where φ and κ denote the insurance risk premiums and (φ, κ) ∈ Qm. We aim to
constrain the possible values of (φ, κ) ∈ Qm in a financially sensible way. A rea-
sonable constraint on the risk premiums can be derived by referring to the theory of
no-good-deal pricing.
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Sharpe ratios are often used to characterize investment opportunities. An invest-
ment opportunity with an extraordinarily high Sharpe ratio is called a good deal
and the theory of finance argues that good deals cannot survive in competitive mar-
kets, see Cochrane and Saá-Requejo (2000) and Björk and Slinko (2006). Empirical
studies also support the fact that Sharpe ratios of investment opportunities in com-
petitive markets take restricted range of values, see Lo (2002). These arguments lay
the foundation for no-good-deal pricing.

We assume that the stock and the insurance contract are traded in the market.
We remark that market-consistent valuation of insurance liabilities assumes that in-
surance obligations can be transferred between parties, see V.2.–V.3. in European
Commission QIS5 (2010). The insurer has two risky opportunities: he can invest in
the risky stock or he can sell the risky insurance payment process, collect a premium
and back the liability with the risk-free investment in the bank account. We define
the instantaneous Sharpe ratios of the investment in the stock S and the investment
in the insurance contract Y :

Sharpe Ratiot (S) = E[dS(t)− S(t)r(t)dt |Ft−]/dt√
E[d[S,S](t)|Ft−]/dt = θ(t), 0 ≤ t ≤ T ,

Sharpe Ratiot (Y ) = E[dS (t)− S (t−)r(t)dt |Ft−]/dt√
E[d[S ,S ](t)|Ft−]dt

= E[−dY (t)+ Y(t−)r(t)dt |Ft−]/dt√
E[d[Y,Y ](t)|Ft−]dt

= −Z1(t)θ(t)+Z2(t)φ(t)+U(t)κ(t)η(t)√|Z1(t)|2 + |Z2(t)|2 + |U(t)|2η(t) , 0 ≤ t ≤ T ,

where we use the Sharpe ratio of the surplus S which is earned by the insurer who
takes the short position in the insurance contract and the long position in the bank
account, see (10.41) and (10.42). By the Schwarz inequality we get

∣∣−Z1(t)θ(t)+Z2(t)φ(t)+U(t)κ(t)η(t)
∣∣

≤
√∣∣Z1(t)

∣∣2 + ∣∣Z2(t)
∣∣2 + ∣∣U(t)

∣∣2
η(t)

√∣∣θ(t)∣∣2 + ∣∣φ(t)∣∣2 + ∣∣κ(t)∣∣2
η(t),

(12.19)

which yields the inequality

∣∣Sharpe Ratiot (Y )
∣∣ ≤

√∣∣θ(t)∣∣2 + ∣∣φ(t)∣∣2 + ∣∣κ(t)∣∣2
η(t), 0 ≤ t ≤ T .

The goal is to find a least favorable martingale measure for pricing the insurance
payment process under the constraint that the Sharpe ratio of the insurance contract
is within the no-good-deal range given by the market. In order to guarantee that
in the combined financial and insurance market the instantaneous Sharpe ratios are
bounded by a process L, which itself should be bounded to exclude good deals, we
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have to introduce the constraint
∣∣θ(t)∣∣2 + ∣∣φ(t)∣∣2 + ∣∣κ(t)∣∣2

η(t)≤ ∣∣L(t)∣∣2 ≤K, 0 ≤ t ≤ T . (12.20)

The bound L for the Sharpe ratio of the insurance contract should be greater than
θ since the risk premium θ can be earned by investing in the stock. The insurance
contract carries an additional risk and the risk premium for the insurance contract
has to be strictly above θ . Hence, we should consider L(t)≥ θ(t)+ ε, ε > 0.

We now define the no-good-deal price of the insurance payment process P . We
choose a process L which represents the bound on possible gains in the market mea-
sured by instantaneous Sharpe ratios. We introduce the set of equivalent martingale
measures

Qngd =
{
Q ∼ P,

dQ

dP

∣∣∣Ft =Mngd(t), 0 ≤ t ≤ T

}
,

dMngd(t)

Mngd(t−)
= −θ(t)dW(t)+ φ(t)dB(t)+ κ(t)Ñ(dt), Mngd(0)= 1, (12.21)

where φ and κ are predictable processes such that

∣∣φ(t)∣∣2 + ∣∣κ(t)∣∣2
η(t)dt ≤ ∣∣L(t)∣∣2 − ∣∣θ(t)∣∣2

, κ(t) >−1, 0 ≤ t ≤ T .

The no-good-deal price is defined by

Y(t) = sup
Q∈Qngd

E
Q

[
e− ∫ T

t r(s)dsF +
∫ T

t

e− ∫ s
t r(u)duG(s)dJ (s)

+
∫ T

t

e− ∫ s
t r(u)duH(s)ds|Ft

]
, 0 ≤ t ≤ T . (12.22)

We price the insurance payment process with a least favorable martingale measure
under the Sharpe ratio constraint which excludes too good prices leading to extraor-
dinarily high gains. The constraint (12.20) has a financial justification and leads to
the well-defined optimization problem (12.22).

Following the steps from the proofs of Theorems 12.1.1 and 12.1.2, we can derive
the no-good-deal price.

Theorem 12.2.1 Let us assume that (C1)–(C4) from Chap. 7 hold and the jump
measure N of the step process J has the compensator ϑ(dt, {1})= η(t)dt . We con-
sider a predictable process L such that L(t) ≥ θ(t) + ε, ε > 0, and L(t) ≤ K ,
0 ≤ t ≤ T . Let us investigate the BSDE

Y(t) = F +
∫ T

t

H(s)ds +
∫ T

t

G(s)N(ds)+
∫ T

t

(
−Y(s−)r(s)−Z1(s)θ(s)

+
√∣∣L(s)∣∣2 − ∣∣θ(s)∣∣2

√∣∣Z2(s)
∣∣2 + ∣∣U(s)

∣∣2
η(s)

)
ds −

∫ T

t

Z1(s)dW(s)
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−
∫ T

t

Z2(s)dB(s)−
∫ T

t

U(s)Ñ(ds), 0 ≤ t ≤ T . (12.23)

If U(t) ≥ 0 or |L(t)|2 < η(t) + |θ(t)|2 on the set {η(t) > 0}, 0 ≤ t ≤ T , then the
no-good-deal price process (12.22) is the unique solution to the BSDE (12.23). The
no-good-deal price process has the representation

Y(t)= E
Q

∗
[∫ T

t

e− ∫ s
t r(u)dudP (s)|Ft

]
, 0 ≤ t ≤ T ,

where the least favorable martingale measure Q
∗ is given by

dQ∗

dP

∣∣∣Ft = M∗(t), 0 ≤ t ≤ T ,

dM∗(t)
M∗(t−)

= −θ(t)dW(t)+ Z2(t)√|Z2(t)|2 + |U(t)|2η(t)
√∣∣L(t)∣∣2 − ∣∣θ(t)∣∣2

dB(t)

+ U(t)√|Z2(t)|2 + |U(t)|2η(t)
√∣∣L(t)∣∣2 − ∣∣θ(t)∣∣2

Ñ(dt).

The no-good-deal price (12.23) coincides with the price (12.7) derived in Theo-
rem 12.1.2 under the ambiguity risk minimization.
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(2009), Schied (2005), Schied (2006) and McNeil et al. (2005). Becherer (2009)
found the hedging strategy which minimizes the expected terminal shortfall under a
least favorable probability measure and solved the no-good-deal pricing problem in
a diffusion model by applying BSDEs. We use the arguments from Becherer (2009)
and we solve the pricing and hedging problems in the model with jumps. Cochrane
and Saá-Requejo (2000) introduced the theory of no-good-deal pricing into the fi-
nancial literature, and Björk and Slinko (2006) were the first to investigate a Lévy-
driven asset model. Robust pricing and no-good-deal pricing in insurance is also
investigated by Pelsser (2011). Utility maximization and optimal investment and
consumption problems under model ambiguity in a jump-diffusion financial mar-
ket consisting of assets modelled with Itô-Lévy processes are studied by Øksendal
and Sulem (2011), Øksendal and Sulem (2012) and Laeven and Stadje (2012). We
remark that the min-max problem (12.4) is an example of a stochastic differential
game in which two players choose strategies, the first player wishes to minimize
a pay-off and the second player wishes to maximize the same pay-off. Stochastic
differential games and related BSDEs are considered in Hamadène and Lepeltier
(1995), El Karoui and Hamadène (2003), Øksendal and Sulem (2011), Øksendal
and Sulem (2012).



Chapter 13
Dynamic Risk Measures

Abstract We investigate dynamic risk measures which describe the riskiness of
financial positions taken by investors. We deal with dynamic risk measures which
are modelled by g-expectations. We study properties of dynamic risk measures and
we show that properties of dynamic risk measures are determined by the generator of
the BSDE defining the g-expectation and the risk measure. We discuss methods for
choosing the generator of a g-expectation. We also solve a problem of optimal risk
sharing between two parties and we find the optimal derivative for the risk transfer.
Properties of the prices (risk measures) derived in previous chapters are investigated.

In actuarial mathematics we can find many principles for pricing insurance risks.
Properties of these actuarial premium principles have been well studied, see Chap. 5
in Denuit et al. (2001). Since the publication by Artzner et al. (1999), the notion of
a risk measures have gained importance in financial and insurance mathematics.
A risk measure provides a general description of the riskiness of a financial position
taken by an investor.

Quantifying the risk of financial positions is the key task of risk management.
Financial practice indicates that an operator used for quantifying the risk should
be nonlinear. It is straightforward to notice that only a nonlinear risk measure can
reflect a diversification effect. Static risk measures, which quantify the risk of a
financial position over a specified period of time, provide useful information for
risk management. However, we should be more interested in dynamic risk mea-
sures which can quantify the riskiness of a financial position continuously during a
specified period of time. Since the information about the future liability arrives con-
tinuously in time, the investor should continuously update the capital requirement
for the liability. In this chapter we investigate dynamic risk measures modelled by
g-expectations. We study properties of dynamic risk measures and discuss methods
for choosing the generator of a g-expectation. We also solve a problem of optimal
risk sharing between two parties.

13.1 Dynamic Risk Measures by g-Expectations

Let ξ represent a financial position taken by an investor. By a financial position
we mean the terminal value of an investment portfolio or the terminal net asset

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_13,
© Springer-Verlag London 2013

235

http://dx.doi.org/10.1007/978-1-4471-5331-3_13


236 13 Dynamic Risk Measures

value of an insurance company (the terminal surplus). A positive value ξ > 0 is
interpreted as a profit and a negative value ξ < 0 as a loss. The goal is to summarize
the information about the riskiness of the financial position ξ in a single number. A
risk measures ρ(ξ) is used for that purpose. We give a definition of a dynamic risk
measure.

Definition 13.1.1 A family (ρt )0≤t≤T of mappings ρt : L2(Ω,FT ,P;R) →
L

2(Ω,Ft ,P;R) such that ρT (ξ)= −ξ is called a dynamic risk measure.

The measure ρt (ξ) quantifies at time t the risk of the position ξ which is going to
be liquidated (or reported at a balance sheet) at time T . It is clear that the risk of the
terminal pay-off ξ should be consistently quantified during the time period [0, T ].
The risk ξ is called acceptable at time t if ρt (ξ)≤ 0.

A reasonable risk measure should satisfy properties which agree with financial
practice and views of investors. We introduce the key properties (sometimes called
the axioms of risk measures) which should be satisfied by a risk measure:

• Convexity

ρt
(
cξ1 + (1 − c)ξ2

) ≤ cρt (ξ1)+ (1 − c)ρt (ξ2),

0 ≤ t ≤ T , c ∈ (0,1), ξ1, ξ2 ∈ L
2(Ω,FT ,P;R).

• Monotonicity

ξ1 ≥ ξ2 ⇒ ρt (ξ1)≤ ρt (ξ2), 0 ≤ t ≤ T , ξ1, ξ2 ∈ L
2(Ω,FT ,P;R).

• Cash invariance

ρt (c)= −c, 0 ≤ t ≤ T , c ∈R.

• Translation invariance

ρt (ξ1 + ξ2)= ρt (ξ1)− ξ2,

0 ≤ t ≤ T , ξ1 ∈ L
2(Ω,FT ,P;R), ξ2 ∈ L

2(Ω,Ft ,P;R).
• Sub-linearity: sub-additivity and positively homogeneity

ρt (ξ1 + ξ2)≤ ρt (ξ1)+ ρt (ξ2), ρt (cξ)= cρt (ξ),

0 ≤ t ≤ T , c > 0, ξ1, ξ2, ξ ∈ L
2(Ω,FT ,P;R).

• Time-consistency

ρs(ξ)= ρs
(−ρt (ξ)

)
, 0 ≤ s ≤ t ≤ T , ξ1, ξ2 ∈ L

2(Ω,FT ,P;R).
All these properties have their financial interpretations, see Goovaerts et al.

(2003) for the actuarial point of view. The convexity implies that diversification



13.1 Dynamic Risk Measures by g-Expectations 237

through “weighted” sums of positions (portfolios) reduces the risk. Let λ denote a
fraction of the wealth invested in ξ1. Given the total wealth available, it is better to
pool two portfolios and diversify the wealth between ξ1 and ξ2. The monotonicity
reflects the common rule that a position is less risky if it yields a higher pay-off
in all scenarios. The cash invariance means that the riskiness of a constant pay-off
is equal to the opposite of that pay-off. In order to protect the loss c, the insurer
has to keep the reserve in the amount of c. The translation invariance implies that
the riskiness of a position is only affected by the uncertainty of this position and
additive components that are determined by the current information are treated as
constant pay-offs. The translation invariance allows for the interpretation of ρt (ξ)
as the amount of money which makes the position ξ acceptable. Indeed, we have

ρt
(
ξ + ρt (ξ)

) = ρt (ξ)− ρt (ξ)= 0.

Consequently, a risk measure is also called a capital requirement. The sub-linearity
again encourages diversification: the riskiness of two combined portfolios is smaller
than the riskiness of two separate portfolios. The positive homogeneity arises since
the riskiness of a liquid position should be proportional to the volume of the risk
taken. The property of positive homogeneity assumes that there is no liquidity risk
in the market. The time-consistency implies that in order to quantify the risk of a
position at time s, we can first quantify the risk of the position at an intermediate
point of time t > s and next quantify the risk from time t to time s.

Notice that the cash invariance excludes the time value of money. The time-value
of money is a celebrated property in finance. The minimal requirement which allows
for the time-value of money is a cash sub-additivity, see El Karoui and Ravanelli
(2009). We introduce the property

• Cash sub-additivity

the mapping c �→ ρt (ξ + c)+ c is non-decreasing on R, 0 ≤ t ≤ T , ξ ∈ L
2(R).

The cash sub-additivity yields ρt (ξ + c)≥ ρt (ξ)− c for c > 0, which means that if
c units are added as a profit at time T , then the capital reserve for the new position
is reduced by less than c units. We also have ρt (ξ − c)≤ ρt (ξ)+ c for c > 0, which
means that if c units are added as a liability at time T , then the capital reserve for
the new position is increased by less than c units.

We define two important families of risk measures, see Artzner et al. (1999) and
Föllmer and Schied (2002).

Definition 13.1.2 A dynamic risk measure ρ := (ρt )0≤t≤T is called

(i) coherent: if it is monotone, translation invariant and sub-linear,
(ii) convex: if it is convex and ρt (0)= 0, 0 ≤ t ≤ T .

Since g-expectations are useful for modelling filtration-consistent nonlinear ex-
pectations, we can use g-expectations to model dynamic risk measures. It is clear
that the generator of the g-expectation determines properties of the dynamic risk
measure.



238 13 Dynamic Risk Measures

Proposition 13.1.1 Let Eg be a g-expectation and set ρt (ξ) = Eg[−ξ |Ft ], 0 ≤
t ≤T . Then ρ is a monotone, time-consistent dynamic risk measure. In addition,

(a) if g is sublinear in (z, u) and independent of y, then ρ is a coherent dynamic
risk measure.

(b) if g is convex in (y, z,u), then ρ is a convex dynamic risk measure.

Proof The results follow from Theorem 6.2.1 and Proposition 6.2.3. �

Proposition 13.1.2 Let Eg be a g-expectation and set ρt (ξ) = Eg[−ξ |Ft ], 0 ≤
t ≤T . If y �→ g(ω, t, y, z, u) is non-increasing a.s. for all (t, z, u) ∈ [0, T ] × R ×
L2
Q, then ρ is a cash sub-additive dynamic risk measure.

Proof Consider the BSDE

Y ξ (t) = −ξ +
∫ T

t

g
(
s, Y ξ (s),Zξ (s),Uξ (s)

)
ds

−
∫ T

t

Zξ (s)dW(s)−
∫ T

t

∫
R

Uξ(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (13.1)

which describes the evolution of the risk measure ρt (ξ) = Y ξ (t). Notice that
Y ξ,c(t)= ρt (ξ + c)+ c = Y ξ+c + c satisfies the BSDE

Y ξ,c(t) = −ξ +
∫ T

t

g
(
s, Y ξ,c(s)− c,Zξ,c(s),Uξ,c(s)

)
ds −

∫ T

t

Zξ,c(s)dW(s)

−
∫ T

t

∫
R

Uξ,c(s, z)Ñ(ds, dz), 0 ≤ t ≤ T . (13.2)

The comparison principle yields

Y ξ,c1(t) ≥ Y ξ,c2(t), 0 ≤ t ≤ T , c1 ≥ c2. �

Notice that the generator of a BSDE defining a cash sub-additive risk measure
depends on the current level of the risk measure, which is never the case for a transla-
tion invariant (and coherent) risk measure, see Proposition 13.1.1 and Theorems 3.1
and 3.2 in Jiang (2008).

Example 13.1 Let us give examples of well-known dynamic risk measures which
can be derived from g-expectations. We consider the Brownian filtration FW . In
finance we often use the following risk measures:

• The linear expectation ρt (ξ)= E
Q[−e− ∫ T

t α(s)dsξ |FW
t ] can derived from the lin-

ear BSDE

Y(t)= −ξ +
∫ T

t

(−α(s)Y (s)+ β(s)Z(s)
)
ds −

∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T ,

(13.3)
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where dQ
dP

= e
∫ T

0 β(s)dW(s)− 1
2

∫ T
0 |β(s)|2ds , and β is an FW -predictable, bounded

process,
• The ambiguous risk measure ρt (ξ)= supQ∈Q E

Q[−ξ |FW
t ] where Q = {Q∼ P :

dQ
dP

= e
∫ T

0 φ(s)dW(s)− 1
2

∫ T
0 |φ(s)|2ds, φ is FW -predictable, |φ(t)| ≤ β(t) ≤ K} can

be derived from the nonlinear BSDE

Y(t)= −ξ +
∫ T

t

β(s)
∣∣Z(s)∣∣ds −

∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T , (13.4)

• The entropic risk measure ρt (ξ) = 1
β

lnE[e−βξ |FW
t ] can be derived from the

nonlinear BSDE

Y(t)= −ξ + 1

2

∫ T

t

β
∣∣Z(s)∣∣2

ds −
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T . (13.5)

In Chaps. 9–12 we derived prices of the insurance payment process under various
objectives. We can view these prices as examples of g-expectations. We remark that
prices are closely related to risk measures since a price is just the opposite of a
risk measure. We can now study properties of the g-expectations which were used
in previous chapters to price the insurance payment process. We point out that the
properties of monotonicity and time-consistency for prices should be now defined
in accordance with the pricing axioms, see Chap. 6 in Barrieu and El Karoui (2005).

Proposition 13.1.3

(a) The prices from Theorems 9.2.1 and 9.4.1 derived under perfect replication are
linear, monotone, time-consistent and cash sub-additive.

(b) The price for a bounded claim from Theorem 9.3.3 derived under superhedg-
ing is nonlinear, convex, monotone, sub-linear, time-consistent and cash sub-
additive.

(c) The prices from Theorems 10.1.1, 10.2.3 and Corollary 10.3.1 derived under
quadratic loss minimization are linear, monotone, time-consistent and cash sub-
additive.

(d) The price from Theorem 11.2.1 derived under exponential indifference pricing
is nonlinear, convex, monotone, cash invariant, translation invariant and time-
consistent.

(e) The price from Theorem 12.2.1 derived under no-good-deal pricing and the
price from Theorem 12.1.2 derived under ambiguity risk minimization is non-
linear, convex, monotone, sub-linear, time-consistent and cash sub-additive.

Proof The assertions follow from the arbitrage-free representations of the prices,
the comparison principles and Propositions 13.1.1 and 13.1.2. The time-consistency
of the superhedging price follows from Theorem 6.2 and Proposition 9.1 in Delbaen
(2006). �

We point out that BSDEs and g-expectations are also useful for modelling re-
cursive stochastic differential utilities, see Duffie and Epstein (1997), Lazrak and
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Quenez (2003), Skiadas (2003). A recursive utility extends the classical notion of
a utility by disentangling the risk aversion and the intertemporal substitutability of
preferences.

13.2 Generators of Dynamic Risk Measures

In order to define a dynamic risk measure by a BSDE, we need to specify the gen-
erator. The choice of the generator of a g-expectation is a crucial point in modelling
dynamic risk measures. We present two approaches which may be helpful in deriv-
ing the generator. Under the first approach we should specify a pricing and hedging
objective. Then, the solution of the optimization problem determines the generator
and the g-expectation. We followed this approach in Chaps. 9–12. Under the sec-
ond approach we directly specify the generator of a BSDE. To follow the second
approach, we have to be able to interpret the generator of a g-expectation.

Let us focus on the Brownian filtration and the BSDE

Y(t)= −ξ +
∫ T

t

g
(
s, Y (s),Z(s)

)
ds −

∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T . (13.6)

Heuristically, the BSDE (13.6) yields the relation

E
[
dY (t)|Ft

] = −g
(
t, Y (t),Z(t)

)
dt, 0 ≤ t ≤ T . (13.7)

From (13.7) we deduce that the coefficient g describes investors’ beliefs about the
expected infinitesimal change of the risk measure. Consequently, we can interpret g
as an instantaneous risk measure or a local preference-based pricing rule. We also
have the following relation

E
[
d[Y,Y ](t)|Ft

] = ∣∣Z(t)∣∣2
dt, 0 ≤ t ≤ T , (13.8)

and we can interpret Z as an intensity of variability of the risk measure. Moreover,
by the comparison principle we can also establish the following property

g ≤ g′ ⇒ Eg[−ξ |Ft ] ≤ Eg′ [−ξ |Ft ], 0 ≤ t ≤ T , ξ ∈ L
2(R),

from which we conclude that the greater the generator g is, the more conservative
the corresponding risk measure Eg is.

In order to define a dynamic risk measure, we can proceed as follows. First, we
choose an instantaneous risk measure g which should be justified in a financially
sensible way by referring to (13.7) and (13.8). Given the local valuation rule g, we
solve the BSDE (13.6) with the generator g to obtain a global valuation rule Y .
Such an approach to constructing dynamic risk measures and recursive utilities was
developed by Barrieu and El Karoui (2005), Rosazza Gianin (2006), El Karoui and
Ravanelli (2009) and Lazrak and Quenez (2003).
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Example 13.2 For the expectation E[−e−r(T−t)ξ |Ft ] the instantaneous risk mea-
sure takes the form

E
[
dY (t)|Ft

] = rY (t)dt, 0 ≤ t ≤ T . (13.9)

It is known that investors have to deal with interest rate ambiguity. It is easy to
modify the generator (13.9) so that it allows for interest rate ambiguity. We can
introduce the instantaneous risk measure

E
[
dY (t)|Ft

] = sup
α(t)≤r(t)≤β(t)

{
r(t)Y (t)

}
dt, 0 ≤ t ≤ T . (13.10)

Under (13.10) a dynamic risk measure is locally driven by the worst case scenario
for the interest rate. Following the proof of Proposition 3.3.2, we conclude that the
local valuation rule (13.10) yields the global valuation rule

ρt (ξ)= ess sup
α(t)≤r(t)≤β(t)

E
[−e− ∫ T

t r(s)dsξ |Ft

]
, 0 ≤ t ≤ T .

In spite of the interpretations which can be deduced from (13.7) and (13.8), it
is still difficult to come up with interpretable generators. Since the generator of a
g-expectation is interpreted as an infinitesimal risk measure, we can try to relate the
generator of a dynamic risk measure to static risk measures over short period of time.
If we succeeded in obtaining the generator as a limit of static risk measures, then
the generator could be justified by the interpretations of static risk measures and the
limiting procedure. Such a construction would be helpful since static risk measures
are well-studied and have clear interpretations. We now present the construction by
Stadje (2010).

We consider a partition 0 = t0 < t1 < · · · < tn = T and we denote �ti+1 =
ti+1 − ti . Let (Bn

j )j=1,...,n be a sequence of independent Bernoulli random variables
such that P(Bn

j = 1)= P(Bn
j = −1)= 0.5. We introduce the random walk

Rn(0)= 0, Rn(ti)=
i∑

j=1

√
�tjB

n
j , i = 1, . . . , n, (13.11)

and the natural filtration F n
ti

= σ(R(t1), . . . ,R(ti)). Let ρti ,ti+1 : L2(Ω,F n
ti+1

,P;
R) �→ L

2(Ω,F n
ti
,P;R), for i = 0,1, . . . , n− 1, be one-period static risk measures

which are assumed to be monotone and translation invariant. The risk measure
ρti ,ti+1 quantifies the risk over the period [ti , ti+1]. We define the scaled and tilted
static risk measures

ρ̂ti ,ti+1(ξ)= −(1 − √
�ti+1)E

[
ξ |F n

ti

] +�ti+1ρti ,ti+1

(
ξ√
�ti+1

)
,

ξ ∈ L
2(Ω,F n

ti+1
,P

)
, i = 0,1, . . . , n− 1. (13.12)
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Using the one-period risk measures ρ̂ti ,ti+1 , we define the multi-period risk measure

ρnT
(
ξn

) = −ξn

ρnti

(
ξn

) = ρ̂ti ,ti+1

(−ρnti+1

(
ξn

))
, i = 0, . . . , n− 1,

for ξn ∈ L
2(Ω,F n

T ,P). The risk measure ρnti (ξ
n) quantifies the risk of an F n

T -
measurable position ξn at time ti . From the predictable representation property for
one-dimensional Bernoulli random walk we deduce that for an F n

ti+1-measurable
ρnti+1

there exist F n
ti

-measurable random variables αn(ti) and ψn(ti) such that

ρnti+1

(
ξn

) = αn(ti)+ψn(ti)�Rn(ti+1).

By (13.12), the predictable representation property and the translation invariance of
ρti ,ti+1 we derive

�ρnti

(
ξn

) = ρnti+1

(
ξn

) − ρnti

(
ξn

) = ρnti+1

(
ξn

) − ρ̂ti ,ti+1

(−ρnti+1

(
ξn

))

= αn(ti)+ψn(ti)�Rn(ti+1)− ρ̂ti ,ti+1

(−αn(ti)−ψn(ti)�Rn(ti+1)
)

= αn(ti)+ψn(ti)�Rn(ti+1)

−
(
(1 − √

�ti+1)α
n(ti)+�ti+1

(
αn(ti)√
�ti+1

+ ρti ,ti+1

(−ψn(ti)B
n
i+1

)))

= −gn
(
ti ,ψ

n(ti)
)
�ti+1 +ψn(ti)�Rn(ti+1), i = 0,1, . . . , n− 1

(13.13)

where we introduce the discrete-time generator

gn(ti , z)= ρti ,ti+1

(−zBn
i+1

)
, i = 0, . . . , n− 1, z ∈ R. (13.14)

From (13.13) we can conclude that the risk measure ρnt satisfies the backward
stochastic difference equation

ρnti

(
ξn

) = −ξn +
n−1∑
j=i

gn
(
tj ,ψ

n(tj )
)
�tj+1

−
n−1∑
j=i

ψn(tj )�Rn(tj+1), i = 0,1, . . . , n− 1. (13.15)

We set ψn(s)=ψn(ti), ρns = ρnti , g
n(s,ψn(s))= gn(ti ,ψ

n(ti)), ti ≤ s < ti+1.
We have glued the one-period static risk measures ρti ,ti+1 and we have obtained

the multi-period, discrete-time risk measure ρnti . Now, we are interested in conver-
gence to a continuous-time risk measure. We state Theorem 6.4 from Stadje (2010).

Theorem 13.2.1 Choose a partition 0 = t0 < t1 < · · · < tn = T . Let FW be the
filtration generated by a Brownian motion and let F n be the filtration generated by
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the random walk (13.11). Let ρti ,ti+1 : L2(Ω,F n
ti+1

,P;R) �→ L
2(Ω,F n

ti
,P;R) be a

family of monotone and translation invariant operators satisfying ρti ,ti+1(0)= 0. We
consider the backward stochastic difference equation (13.15) with the generator gn

given by (13.14). We assume that

(i) ξn ∈ F n
T , ξ ∈ FW

T and ξn, ξ ∈ L
2(R),

(ii) limn→∞ E[|ξn − ξ |2] = 0,
(iii) there exists a function g :Ω × [0, T ] ×R → R such that

lim
n→∞E

[
sup

0≤t≤T

∣∣gn(t, z)− g(t, z)
∣∣2

]
= 0, z ∈ R,

∣∣g(t, z)− g
(
t, z′)∣∣ ≤K

∣∣z− z′∣∣, (t, z),
(
t, z′) ∈ [0, T ] ×R,

E

[∫ T

0

∣∣g(t,0)
∣∣2
dt

]
<∞.

If limn→∞ supj=1,...,n �tj = 0, then

lim
n→∞E

[
sup

0≤t≤T

∣∣ρnt (
ξn

) − Y(t)
∣∣2

]
= 0, lim

n→∞E

[∫ T

0

∣∣ψn(t−)−Z(t)
∣∣2
dt

]
= 0,

where (Y,Z) ∈ S
2(R)×H

2(R) is the unique solution to the BSDE

Y(t)= −ξ +
∫ T

t

g
(
s,Z(s)

)
ds −

∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T .

As far as the approximation of ξ with ξn is concerned, we can rely on two possi-
bilities: we can choose ξn = E[ξ |F n

T ] or in the case when ξ = ϕ(W(T )) we can set
ξn = ϕ(Rn(T )).

Theorem 13.2.1 shows that it is possible to construct a generator g of a dynamic
risk measure by means of a discrete-time analog gn and one-period static risk mea-
sures ρti ,ti+1 whose behaviors are better-understood. It turns out that the generator
can be formally interpreted as an infinitesimal version of a static risk measure. We
point out that tilting and scaling (13.12) is necessary. Without the tilting and scal-
ing procedure the operator ρti ,ti+1(−ρti+1(ξ

n)) would blow up when more and more
time instances are taken into account, see Proposition 5.1 in Stadje (2010). Stadje
(2010) derives the generators of dynamic risk measures which correspond to the
semi-deviation pricing principle, the Value-at-Risk pricing principle, the Average-
Value-at-Risk pricing principle and the Gini pricing principle.

13.3 Optimal Risk Sharing

We investigate a problem of optimal risk sharing between two parties who value
their future risky positions with dynamic risk measures. Since Borch (1962) and
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Arrow (1963), optimal risk sharing problems have become classical topics in eco-
nomics, insurance and finance.

Consider two agents A and B . Agent A takes a risky position ξ . In order to reduce
the risk exposure, agent A issues a financial derivative F and tries to sell F to agent
B for a price π . The derivative F transfers the risk from agent A to agent B and
after the transaction the risky position ξ is shared between agents A and B . Agent B
is willing to accept the risk if the risk transfer is favorable to him. In the insurance
context, agent A plays the role of an insured who is interested in having an insurance
protection against claims and agent B plays the role of an insurer. Agents A and B

may also represent an insurer and a reinsurer, and F may describe a reinsurance
treaty. We aim to find an optimal derivative F (an optimal insurance contract) and
a price π of this derivative. In other words, the goal is to establish an optimal risk
transfer (F,π ) between agents A and B.

Let us start with a static model. We assume that agents A and B value their
positions with translation invariant and convex risk measures ρA and ρB . Agent A
aims to reduce his risk exposure, hence he chooses F and π which minimize the
risk measure of his position after the transaction

min
F,π

ρA(ξ − F + π). (13.16)

Agent B is interested in the transaction provided that the risk of his position does
not increase after the transaction, hence he requires

ρB(F − π)≤ ρB(0). (13.17)

By the translation invariance property of the risk measures ρA, ρB we can conclude
that the optimal price is given by

π∗ = ρB(0)− ρB(F ),

and the optimal contract solves the optimization problem

inf
F∈L2(R)

{
ρA(ξ − F)+ ρB(F )

}
, ξ ∈ L

2(R).

We now move to a dynamic model. We consider the natural Brownian filtration
FW . We are interested in solving the following optimization problem

ρAt �ρBt (ξ)= ess inf
F∈L2(R)

{
ρAt (ξ − F)+ ρBt (F )

}
, 0 ≤ t ≤ T , ξ ∈ L

2(R),

(13.18)

where ρA and ρB are translation invariant and convex dynamic risk measures de-
fined by g-expectations. We can assume that the generators gA and gB of the BS-
DEs defining the risk measures depend only on (t, z), are convex in z and satisfy
gA(t,0)= gB(t,0)= 0, see Definition 6.2.3 and Proposition 6.2.3 as well as Theo-
rems 3.1 and 3.2 in Jiang (2008).

We will use the operation of infimal-convolution for convex functions, see Bar-
rieu and El Karoui (2005) and Barrieu and El Karoui (2004).
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Definition 13.3.1 Let α and β be two closed convex functions. The infimal-
convolution of α and β is defined by

α�β(z)= inf
x

{
α(z− x)+ β(x)

}
, z ∈R.

Let α be a closed convex function. The recession function associated with α is
defined by

α0+(z)= lim
c→0+ cα

(
z

c

)
, z ∈R.

We recall the key result on the inf-convolution, see Proposition 8.1 in Barrieu
and El Karoui (2005).

Lemma 13.3.1 Let α and β be two closed convex functions. If

α0+(z)+ β0+(−z) > 0, z �= 0,

then the infimal-convolution α�β is exact and the infimum is attained for some x∗,
i.e.

α�β(z)= α
(
z− x∗) + β

(
x∗), z ∈R.

We now solve the optimal risk sharing problem (13.18). We consider three BS-
DEs

ρAt (ξ − F) = −ξ + F +
∫ T

t

gA
(
s,ZA(s)

)
ds

−
∫ T

t

ZA(s)dW(s), 0 ≤ t ≤ T , (13.19)

ρBt (F ) = −F +
∫ T

t

gB
(
s,ZB(s)

)
ds

−
∫ T

t

ZB(s)dW(s), 0 ≤ t ≤ T , (13.20)

ρ
A,B
t (ξ) = −ξ +

∫ T

t

gA�gB
(
s,ZA,B(s)

)
ds

−
∫ T

t

ZA,B(s)dW(s), 0 ≤ t ≤ T . (13.21)

Theorem 13.3.1 Consider the optimization problem (13.18) and the BSDEs
(13.19)–(13.21). We assume

(i) ξ and F are FW -measurable and ξ,F ∈ L
2(R),

(ii) the generators gA : [0, T ] × R → R and gB : [0, T ] × R → R are Lipschitz
continuous and convex in z, uniformly in t , they satisfy gA(t,0)= gB(t,0)= 0,
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0 ≤ t ≤ T , and

gA0+(t, z)+ gB0+(t,−z) > 0, z �= 0, 0 ≤ t ≤ T . (13.22)

The following results hold:

(a) There exist unique solutions (ρA,ZA) ∈ S
2(R)× H

2(R), (ρB,ZB) ∈ S
2(R)×

H
2(R), (ρA,B,ZA,B) ∈ S

2(R)×H
2(R) to the BSDEs (13.19)–(13.21).

(b) We have

ρ
A,B
t (ξ)≤ ρAt �ρBt (ξ)≤ ρAt (ξ − F)+ ρBt (F ), 0 ≤ t ≤ T .

(c) If there exists a progressively measurable and square integrable process Z∗ such
that

Z∗(t)= arg min
x

{
gA

(
t,ZA,B(t)− x

) + gB(t, x)
}
, 0 ≤ t ≤ T ,

then there exists an optimal solution F ∗ ∈ L
2(R) of the optimization problem

(13.18) given by

F ∗ =
∫ T

0
gB

(
s,Z∗(s)

)
ds −

∫ T

0
Z∗(s)dW(s).

Moreover, we have

ρ
A,B
t (ξ)= ρAt �ρBt (ξ)= ρAt

(
ξ − F ∗) + ρBt

(
F ∗), 0 ≤ t ≤ T .

Proof (a) By Theorem 3.1.1 there exist unique solutions (ρA,ZA) and (ρB,ZB) to
the BSDEs (13.19)–(13.20). From Sect. 9.3.4 in Barrieu and El Karoui (2005) we
recall that the mapping z �→ gA�gB(t, z) is Lipschitz. Hence, by Theorem 3.1.1
there also exists a unique solution (ρA,B,ZA,B) to the BSDE (13.21).

(b) We set ρt = ρAt (ξ − F)+ ρBt (F ) and Z(t) = ZA(t)+ ZB(t) and we derive
the BSDE

ρt = −ξ +
∫ T

t

(
gA

(
s,Z(s)−ZB(s)

) + gB
(
s,ZB(s)

))
ds

−
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T . (13.23)

The inequality

gA�gB(t, z)≤ gA
(
t, z−ZB(t)

) + gB
(
t,ZB(t)

)
, z ∈ R, 0 ≤ t ≤ T ,

and the comparison principle yield

ρ
A,B
t (ξ)≤ ρt = ρAt (ξ − F)+ ρBt (F ), 0 ≤ t ≤ T .

We can conclude that ρA,Bt (ξ)≤ ρAt �ρBt (ξ), 0 ≤ t ≤ T .
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(c) From Lemma 13.3.1 we deduce that there exists a measurable process Z∗.
For the square integrability of Z∗ and the BMO property of

∫
Z∗(t)dW(t) we refer

to Theorem 8.4 in Barrieu and El Karoui (2005). We introduce the process

V (t)=
∫ t

0
gB

(
s,Z∗(s)

)
ds −

∫ t

0
Z∗(s)dW(s), 0 ≤ t ≤ T .

We conclude that V ∈ S
2(R) and the pair (−V,Z∗) solves

−V (t)= −F ∗ +
∫ T

t

gB
(
s,Z∗(s)

)
ds −

∫ T

t

Z∗(s)dW(s), 0 ≤ t ≤ T ,

where

F ∗ =
∫ T

0
gB

(
s,Z∗(s)

)
ds −

∫ T

0
Z∗(s)dW(s).

Hence, the pair (−V,Z∗) ∈ S
2(R) × H

2(R) is the unique solution to the BSDE
(13.20) with the terminal condition F ∗. We have ρBt (F

∗)= −V (t), ZB(t)= Z∗(t),
0 ≤ t ≤ T . The BSDE (13.23) yields the dynamics

ρt = −ξ +
∫ T

t

(
gA

(
s,Z(s)−Z∗(s)

) + gB
(
s,Z∗(s)

))
ds

−
∫ T

t

Z(s)dW(s), 0 ≤ t ≤ T . (13.24)

Since there exists a unique solution to (13.24), we must have

Z(t) = ZA,B(t), 0 ≤ t ≤ T ,

ρt = ρAt
(
ξ − F ∗) + ρBt

(
F ∗) = ρ

A,B
t (ξ), 0 ≤ t ≤ T ,

where we use the solution to the BSDE (13.21) and the definitions of Z∗ and
gA�gB . We now conclude that ρA,Bt (ξ) = ρAt (ξ − F ∗) + ρBt (F

∗) ≥ ρAt �ρBt (ξ),
0 ≤ t ≤ T . Combining the last statement with the assertion of item (b), we get
ρ
A,B
t (ξ) = ρAt �ρBt (ξ), 0 ≤ t ≤ T . The optimality and the admissability of F ∗ can

now be established. �

Condition (13.22) has an economic interpretation in terms of a conservative seller
price and a conservative buyer price, see Sect. 4.2 in Barrieu and El Karoui (2005).
By the translation invariance of ρA and ρB the optimal derivative F ∗ is determined
uniquely up to a constant.

Going through the proof of Theorem 13.3.1, we can notice that we need an ex-
istence result for the BSDEs (13.19)–(13.21) and a comparison principle to derive
the optimal structure of the derivative. We remark that existence and comparison
results also hold for BSDEs with generators having a quadratic growth in z, see
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Theorem 5.3 in Barrieu and El Karoui (2005). In particular, the assertions of The-
orem 13.3.1 remain true if we consider the entropic risk measure (13.5), see Theo-
rem 8.2 in Barrieu and El Karoui (2005) and Barrieu and El Karoui (2004).

For a special family of risk measures we can derive an explicit form of the opti-
mal derivative.

Proposition 13.3.1 Let the assertions of Theorem 13.3.1 hold. Assume that the gen-
erators gA and gB belong to the family of functions gc that satisfy the so-called
tolerance property

gc(t, z)= cg

(
t,

1

c
z

)
, 0 ≤ t ≤ T , z ∈R, c > 0. (13.25)

The random variable

F ∗ = cB

cA + cB
ξ,

solves the optimization problem (13.18).

Proof We first recall Proposition 3.5 from Barrieu and El Karoui (2005) which says
that a function g satisfying (13.25) also satisfies the following property

gcA�gcB (t, z)= gcA+cB (t, z), 0 ≤ t ≤ T , z ∈R. (13.26)

We guess that Z∗(t) = cB
cA+cB

ZA,B(t), where Z∗ is defined in Theorem 13.3.1 and

ZA,B solves the BSDE (13.21). We verify our guess. From (13.25) and (13.26) we
obtain

gcA
(
t,ZA,B(t)−Z∗(t)

) + gcB
(
t,Z∗(t)

)

= gcA
(
t,

cA

cA + cB
ZA,B(t)

)
+ gcB

(
t,

cB

cA + cB
ZA,B(t)

)

= cAg

(
t,

1

cA + cB
ZA,B(t)

)
+ cBg

(
t,

1

cA + cB
ZA,B(t)

)

= (cA + cB)g

(
t,

1

cA + cB
ZA,B(t)

)

= gcA+cB
(
t,ZA,B(t)

) = gcA�gcB
(
t,ZA,B(t)

)
, 0 ≤ t ≤ T ,

and we conclude that our guess is indeed optimal. We can now derive F ∗. Theo-
rem 13.3.1, properties (13.25)–(13.26) and the third BSDE (13.21) yield

F ∗ =
∫ T

0
gcB

(
t,

cB

cA + cB
ZA,B(t)

)
dt −

∫ T

0

cB

cA + cB
ZA,B(t)dW(t)

= cB

cA + cB

(∫ T

0
(cA + cB)g

(
t,

1

cA + cB
ZA,B(t)

)
dt −

∫ T

0
ZA,B(t)dW(t)

)
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= cB

cA + cB

(∫ T

0
gcA�gcB

(
ZA,B(t)

)
dt −

∫ T

0
ZA,B(t)dW(t)

)

= cB

cA + cB

(
ξ + ρ

cA,cB
0 (ξ)

)
.

The result is proved as F ∗ is determined uniquely up to a constant. �

Proposition 13.3.1 specifies dynamic risk measures which lead to proportional
risk sharing rules. In particular, the quadratic generator of the entropic risk measure
(13.5) in the natural Brownian filtration satisfies the tolerance property (13.25).
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Chapter 14
Other Classes of BSDEs

Abstract We investigate three classes of backward stochastic differential equations
which can be useful for applications. First, we introduce a time-delayed BSDE in
which the terminal condition and the generator depend on the past values of the solu-
tion. Next, we consider a reflected BSDE in which the solution is constrained to stay
above a barrier. Finally, we deal with a constrained BSDE in which all components
of the solution are forced to satisfy a constraint.

In this last chapter we investigate three classes of BSDEs. We deal with time-
delayed BSDEs, reflected BSDEs and constrained BSDEs. We discuss key theo-
retical properties of these equations and we point out their actuarial and financial
applications. BSDEs considered in this chapter extend the range of applications of
BSDEs which we investigated in Part II.

14.1 Time-Delayed Backward Stochastic Differential Equations

A time-delayed backward stochastic differential equation is an equation of the form

Y(t) = ξ(YT ,ZT ,UT )+
∫ T

t

f (s, Ys,Zs,Us)ds

−
∫ T

t

Z(s)dW(s)−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (14.1)

where Ys := (Y (s + v))−T≤v≤0, Zs := (Z(s + v))−T≤v≤0 and Us := (U(s +
v, .))−T≤v≤0, 0 ≤ s ≤ T . We set Z(t)= U(t, z) = 0 and Y(t) = Y(0) for t < 0, z ∈
R. Given a terminal condition ξ and a generator f , we are interested in finding a
triple (Y,Z,U) ∈ S

2(R) × H
2(R) × H

2
N(R) which satisfies (14.1). The novel fea-

ture of the BSDE (14.1) is that the generator f and the terminal condition ξ depend
on the past values of the solution.

Time-delayed BSDEs (14.1) are related to fully coupled FBSDEs considered in
Sect. 4.3. A fully coupled BSDE only allows for a delay generated by a forward
SDE, whereas under a time-delayed BSDE we can investigate more general types

Ł. Delong, Backward Stochastic Differential Equations with Jumps and Their Actuarial
and Financial Applications, EAA Series, DOI 10.1007/978-1-4471-5331-3_14,
© Springer-Verlag London 2013
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of delays. Under a time-delayed BSDE we can consider fixed time delays Yt =
Y(t − r), Zt = Z(t − r), Ut = ∫

R
U(t − r, z)δ(t − r, z)Q(t − r, dz)η(t − r), delays

of the integral form Yt = ∫ t

0 Y(s)ds, Zt = ∫ t

0 Z(s)ds, Ut = ∫ t

0

∫
R
U(s, z)δ(s, z)×

Q(s, dz)η(s)ds, and the running supremum Yt = sup0≤s≤t Y (s).
We can prove the following result on existence and uniqueness of a solution to

the time-delayed BSDE (14.1).

Theorem 14.1.1 Assume that

(i) the generator f :Ω×[0, T ]×S
2(R)×H

2(R)×H
2
N(R) and the terminal value

ξ : Ω × [0, T ] × S
2(R)×H

2(R)×H
2
N(R) are adapted, measurable and they

satisfy

E
[∣∣f (t, Yt ,Zt ,Ut )− f

(
t, Y ′

t ,Z
′
t ,U

′
t

)∣∣2]

≤K1E

[
sup

0≤u≤t

∣∣Y(u)− Y ′(u)
∣∣2 +

∫ 0

−T

∣∣Z(t + u)−Z′(t + u)
∣∣2
α(du)

+
∫ 0

−T

∫
R

∣∣U(t + u, z)−U ′(t + u, z)
∣∣2
Q(t + u,dz)η(t + u)α(du)

]
,

E
[∣∣ξ(YT ,ZT ,UT )− ξ

(
Y ′
T ,Z

′
T ,U

′
T

)∣∣2]

≤K2E

[
sup

0≤u≤T

∣∣Y(u)− Y ′(u)
∣∣2 +

∫ T

0

∣∣Z(u)−Z′(u)
∣∣2
du

+
∫ T

0

∫
R

∣∣U(u, z)−U ′(u, z)
∣∣2
Q(u,dz)η(u)du

]
,

with a probability measure α defined on B([−T ,0]), for a.e. t ∈ [0, T ] and for
all (Y,Z,U),(Y ′,Z′,U ′) ∈ S

2(R)×H
2(R)×H

2
N(R),

(ii) E[∫ T

0 |f (t,0,0,0)|2dt]<∞ and E[|ξ(0,0,0)|2]<∞,
(iii) f (ω, t, y,0,0)= 0 for (ω, y) ∈Ω ×R and t < 0.

For sufficiently small time horizon T and sufficiently small Lipschitz constant K2 or
for sufficiently small Lipschitz constants K1 and K2 the time-delayed BSDE (14.1)
has a unique solution (Y,Z,U) ∈ S

2(R)×H
2(R)×H

2
N(R).

Proof The result can be established by applying the arguments of the fixed point
procedure from the proof of Theorem 3.1.1, for details we refer to Theorem 2.1
from Delong and Imkeller (2010b). �

We point out that we cannot expect that a time-delayed BSDE has a unique solu-
tion for arbitrary K1,K2 and T under the Lipschitz assumptions of Theorem 14.1.1,
see Delong and Imkeller (2010a). This feature was already pointed out at the end of
Sect. 4.3 in the context of fully coupled BSDEs.

Time-delayed BSDEs (and coupled FBSDEs) may arise in insurance and finance
in an attempt to find an investment strategy and an investment portfolio which repli-
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cate a liability depending on the investment strategy and the investment portfolio. In
some applications, an investment portfolio may serve simultaneously as the under-
lying security on which the liability is contingent and as a replicating portfolio for
that liability. We give two examples.

Example 14.1 Let us consider a Black-Scholes financial model consisting of a risky
stock and a risk-free bank account. We investigate the perfect replication problem
for a large investor. We recall that an investor is called large if his investment de-
cisions affect market prices of securities. Let us assume that in our model the in-
vestor’s strategy π and the investment portfolio Xπ affect the drift μ of the stock
and the interest rate r . Such a feedback may arise because of the size of transactions
made by the large investor or because other agents in the market believe that the
large investor has superior information. Consequently, we deal with the dynamics

dXπ(t) = π(t)
dS(t)

S(t)
+ (

Xπ(t)− π(t)
)dS0(t)

S0(t)
dt, X(0)= x > 0,

dS0(t)

S0(t)
= r

(
t, π(t),Xπ(t)

)
dt, S0(0)= 1,

dS(t)

S(t)
= μ

(
t, π(t),Xπ(t)

)
dt + σ(t)dW(t), S(0)= s > 0,

where r,μ,σ are FW -predictable processes. The goal is to find an admissible repli-
cating strategy π ∈ A for a claim F̂ (S(T )). It is straightforward to notice that the
problem of finding a replicating strategy is equivalent to the problem of solving the
coupled FBSDE

X(t) = F̂
(
S(T )

) +
∫ T

t

(−π(s)
(
μ

(
s,π(s),X(s)

) − r
(
s,π(s),X(s)

))

−X(s)r
(
s,π(s),X(s)

))
ds −

∫ T

t

π(s)σ (s)dW(s), 0 ≤ t ≤ T , (14.2)

S(t) = s +
∫ t

0
S(s)μ

(
s,π(s),X(s)

)
ds +

∫ t

0
S(s)σ (s)dW(s), 0 ≤ t ≤ T .

Under further assumptions the coupled FBSDE (14.2) fits into the setting of
Sect. 4.3. Notice that the coupled FBSDE (14.2) is a time-delayed BSDE (14.1)
since the terminal condition of the backward component of (14.2) depends on
(πT ,XT ). We remark that the solution to the replication problem for a large investor
in a more general financial model was found by Cvitanić and Ma (1996) where the
authors proved existence of a solution to a fully coupled FBSDE.

Example 14.2 The key feature of a participating contract is that it provides a guaran-
teed rate of return together with a bonus which is linked, by a so-called profit-sharing
rule, to the performance of an asset portfolio held and managed by the insurer. Such
a construction implies that the insurer’s asset allocation π and the asset portfolio
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Xπ affect the final pay-off from the policy. According to Solvency II Directive, see
V.2.2 in European Commission QIS5 (2010), the insurance reserve must include an
estimate of the value of the liability arising under the contract including all possible
guarantees, profits and bonuses. When valuating the liability under a participating
contract, the future asset allocation strategy for the asset portfolio should be taken
into account, see TP.2.92 in European Commission QIS5 (2010). On the other hand,
the insurer’s asset portfolio must match the reserve (the value of the liability) and
the assets held by the insurer must finance the liability which depends on the past
and future performance of the asset portfolio and the allocation strategy. The as-
sets and the liabilities interact with each other. An appropriate investment strategy
should be identified to match the assets with the liabilities and fulfill the obligation.
For applications of time-delayed BSDEs in this field we refer to Delong (2012c).

Let us consider an example of the investment problem from Example 14.2. We
assume that a financial institution issues a wealth management product which offers
a ratchet option as a capital guarantee. Under the ratchet option any intermediate
investment gain earned by the financial institution is locked in as the liability and
guaranteed to be paid back at maturity, i.e. under the ratchet option the highest value
of the investment portfolio, which is managed by the financial institution, is paid.
Ratchet options of this type are offered as wealth-dependent guarantees (capital
protections) by investment funds, variable annuities and pension plans.

We consider the financial market (7.1)–(7.2). Let π ∈ A be an admissible invest-
ment strategy, see Definition 7.3.1, and let the investment portfolio Xπ := (Xπ(t),

0 ≤ t ≤ T ) be given by the dynamics

dXπ(t) = π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
Xπ(t)− π(t)

)
r(t)dt.

The ratchet option takes the form

ξ = sup
s∈[0,T ]

{
Xπ(s)

}
.

The goal is to find an admissible investment strategy under which the pay-off from
the ratchet option can be delivered by managing the assets in the investment port-
folio. It is easy to notice that this investment problem can be solved by finding a
solution to the time-delayed BSDE

X(t) = sup
s∈[0,T ]

{
X(s)

} +
∫ T

t

(−X(s)r(s)− π(s)σ (s)θ(s)
)
ds

−
∫ T

t

π(s)σ (s)dW(s), 0 ≤ t ≤ T . (14.3)

Let us investigate the time-delayed BSDE (14.3). We introduce the bond price
process

D(t)= E
Q

∗[
e− ∫ T

t r(s)ds |FW
t

]
, 0 ≤ t ≤ T , (14.4)
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where

dQ∗

dP

∣∣∣FW
t = e− ∫ t

0 θ(s)dW(s)− 1
2

∫ t
0 |θ(s)|2ds, 0 ≤ t ≤ T ,

is the unique equivalent martingale measure for the financial model considered. We
can deduce from the predictable representation property and positivity of the bond
price D that there exists an FW -predictable process σD := (σD(t),0 ≤ t ≤ T ) such
that

dD(t)

D(t)
= r(t)dt + σD(t)θ(t)dt + σD(t)dW(t). (14.5)

First, we prove a preliminary result, which is interesting in its own right.

Proposition 14.1.1 Assume that (C1)–(C2) from Chap. 7 hold and let the inter-
est rate r be a strictly positive process. Let the bond price (14.4) satisfy the dy-
namics (14.5) with a bounded volatility σD . Choose an FW -predictable process
ϕ := (ϕ(t),0 ≤ t ≤ T ) such that

E

[∫ T

0

∣∣ϕ(t)σ (t)∣∣2
dt

]
<∞,

and consider a process Ŝ := (Ŝ(t),0 ≤ t ≤ T ) given by the dynamics

dŜ(t)= ϕ(t)
dS(t)

S(t)
+ (

Ŝ(t)− ϕ(t)
)
r(t)dt, Ŝ(0)= ŝ > 0.

There exists a unique square integrable solution X ∈ S
2(R) to the forward SDE

dX (t)= sup
0≤s≤t

{
X (s)

}
D(t)

dD(t)

D(t)

+
(
X (t)− sup

0≤s≤t

{
X (s)

}
D(t)

)
1
{
Ŝ(t) > 0

}dŜ(t)
Ŝ(t)

, X (0)= x > 0,

(14.6)

which satisfies X (t)≥ sup0≤s≤t {X (s)}D(t), 0 ≤ t ≤ T .

Proof We introduce the discounted processes V (t)= X (t)
D(t)

and R(t)= Ŝ(t)
D(t)

. By the
Itô’s formula we derive

dV (t)=
(
V (t)− sup

0≤s≤t

{
V (s)D(s)

})
1
{
R(t) > 0

}dR(t)
R(t)

, (14.7)

and

dR(t) =
(
−R(t)θ(t)σD(t)+R(t)

∣∣σD(t)
∣∣2 + ϕ(t)

D(t)
θ(t)σ (t)− ϕ(t)

D(t)
σ (t)σD(t)

)
dt

+
(
ϕ(t)

D(t)
σ (t)−R(t)σD(t)

)
dW(t). (14.8)
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Let us denote A(t) = sup0≤s≤t {V (s)D(s)
D(0) }. We notice that dA(t) �= 0 if and only if

A(t)= V (t)D(t)
D(0) . We rewrite (14.7) in the form

dV (t)= (
V (t)−A(t)D(0)

)
1
{
R(t) > 0

}dR(t)
R(t)

. (14.9)

Let us consider the sequence of stopping times τn = τDn ∧ τRn where τDn = inf{t :
D(t) = 1 − 1

n
} and τRn = inf{t : R(t) = 1

n
}. We first solve (14.9) on [0, τn]. By the

Itô’s formula we get

d

(
V (t)

A(t)

)
=

(
V (t)

A(t)
−D(0)

)
dR(t)

R(t)
− V (t)

dA(t)

A2(t)

=
(
V (t)

A(t)
−D(0)

)
dR(t)

R(t)
− D(0)

D(t)

dA(t)

A(t)
,

and

d

(
log

(
V (t)

A(t)
−D(0)

))
= dR(t)

R(t)
− 1

2

d[R,R](t)
R2(t)

− 1
V (t)
A(t)

−D(0)

D(0)

D(t)

dA(t)

A(t)

= dR(t)

R(t)
− 1

2

d[R,R](t)
R2(t)

− 1

1 −D(t)

dA(t)

A(t)
. (14.10)

In order to establish (14.10), we first use the localizing sequence τm = inf{t : V (t)
A(t)

−
D(0) = 1

m
} and we next let m → ∞. Consequently, V (t) > A(t)D(0), 0 ≤ t ≤ τn.

From (14.10) we deduce

log

(
V (t)

A(t)
−D(0)

)
− log

(
D(0)

D(t)
−D(0)

)

= log
(
1 −D(0)

) − log

(
D(0)

D(t)
−D(0)

)
+ logR(t)− logR(0)

−
∫ t

0

1

1 −D(s)

dA(s)

A(s)
, 0 ≤ t ≤ τn.

Referring to the Skorohod equation, see Lemma 6.14 in Karatzas and Shreve (1988),
we can obtain unique processes (L, L̂) such that

L(t)= log
(
1 −D(0)

) − log

(
D(0)

D(t)
−D(0)

)

+ logR(t)− logR(0), 0 ≤ t ≤ τn,

L̂(t)=
∫ t

0

1

1 −D(s)

dA(s)

A(s)
= sup

0≤s≤t

L(t), 0 ≤ t ≤ τn,

L(t)− L̂(t)= log

(
V (t)

A(t)
−D(0)

)
− log

(
D(0)

D(t)
−D(0)

)
, 0 ≤ t ≤ τn.

(14.11)
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We clearly have L(0) = L̂(0) = 0 and L̂(t) ≥ 0, 0 ≤ t ≤ τn. From (14.11) we can
conclude that there exists a unique solution to (14.9) on [0, τn] which is of the form

V (t)=A(t)

[
D(0)+ (

1 −D(0)
)R(t)
R(0)

e−L̂(t)

]
, 0 ≤ t ≤ τn,

A(t)= V (0)e
∫ t

0 (1−D(s))dL̂(s), 0 ≤ t ≤ τn.

(14.12)

Let τ∞ = limn→∞ τDn ∧ τRn . Taking the limits, we can consider progressively
measurable processes (L, L̂) and (A,V ) on [0, τ∞] defined by (14.11) and (14.12).

It is straightforward to observe that A(t) ≤ V (0)eL̂(t), 0 ≤ t ≤ τ∞. Hence, by
(14.12) we obtain the estimate

0 ≤ V (t)−A(t)D(0)≤ (
1 −D(0)

)
V (0)

R(t)

R(0)
, 0 ≤ t ≤ τ∞. (14.13)

We now investigate the process

V̂ (t)= V (0)+
∫ t

0

(
V (s)−A(s)D(0)

)
1
{
R(s) > 0

}dR(s)
R(s)

, 0 ≤ t ≤ τ∞,

which coincides on [0, τn] with the process V given by (14.12). One can show that
V̂ is a continuous semimartingale such that E[supt∈[0,τ∞] |V̂ (t)|2]<∞. Hence, we
obtain the convergence

V̂ (t)= lim
n→∞ V̂ (t ∧ τn)= lim

n→∞V (t ∧ τn), 0 ≤ t ≤ τ∞.

Consequently, the process A given by (14.12) can be extended as an a.s. finite pro-
cess to [0, τ∞]. By (14.12) the solution V satisfies V (t)≥A(t)D(0), 0 ≤ t ≤ τ∞.

Notice that we have R(τ∞)e−L̂(τ∞) = 0 and we end up with V (τ∞) =
A(τ∞)D(0). If τ∞ < T , i.e. if R(τ∞) = 0, then from (14.9) we conclude that
dV (t) = 0 for t > τ∞. Hence, the solution V is defined as constant after τ∞. We
also have

A(t) = sup
0≤s≤t

{
V (s)D(s)

D(0)

}

= max

{
A(τ∞), sup

τ∞≤s≤t

{
V (s)D(s)

D(0)

}}

= max
{
A(τ∞),A(τ∞) sup

τ∞≤s≤t

{
D(s)

}} =A(τ∞), t ≥ τ∞.

The process V satisfies V (t) ≥ A(t)D(0), 0 ≤ t ≤ T . This yields X (t) ≥
sups≤t {X (s)}D(t), 0 ≤ t ≤ T . The square integrability of X can be immediately
deduced from the square integrability of V . �
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We remark that Proposition 14.1.1 gives the dynamics of the investment portfolio
under the so-called drawdown constraint. The process Ŝ can be interpreted as an
unconstrained investment portfolio.

We now prove the main result on the time-delayed BSDE.

Theorem 14.1.2 Let the assumptions of Proposition 14.1.1 hold. There exist mul-
tiple solutions (X∗,π∗) ∈ S

2(R) × A to the time-delayed BSDE (14.3) which are
defined by

X∗(t) = X (t), 0 ≤ t ≤ T ,

π∗(t) = sup
0≤s≤t

{
X (s)

}
D(t)

σD(t)

σ (t)

+ ϕ(t)

Ŝ(t)

(
X (t)− sup

0≤s≤t

{
X (s)

}
D(t)

)
1
{
Ŝ(t) > 0

}
, 0 ≤ t ≤ T ,

where we can choose x > 0 and an FW -predictable process ϕ such that

E

[∫ T

0

∣∣ϕ(t)σ (t)∣∣2
]
<∞.

Proof First, we show that any solution X to the time-delayed BSDE (14.3) must
satisfy X(t) ≥ sups≤t {X(s)}D(t), 0 ≤ t ≤ T , see Theorem 4.1 in Delong (2012c)
for details. Such a solution X ∈ S

2(R) is constructed in Proposition 14.1.1. Next,
we can notice that the process X satisfies the terminal condition of the time-delayed
BSDE since X (T ) = V (T ) = A(τ∞)D(0) = A(T )D(0) = ξ . The strategy π∗ can
be deduced from (14.6) and the dynamics of D and Ŝ. The square integrability of
π∗ follows from (14.13). Hence, π∗ ∈ A . �

The investment strategy derived in Theorem 14.1.2 is an extension of the one-
period Option Based Portfolio Insurance strategy which protects the initial capital.
Applying the continuous-time strategy from Theorem 14.1.2, we are able to protect
the maximal value of the investment process. Under the strategy (X∗,π∗) the assets
and the liabilities are matched in the sense that the market-consistent value, or the
arbitrage-free value, of the ratchet option contingent on the investment portfolio
is equal to the value of the investment portfolio. We remark that the investment
strategies π∗ yield different final pay-offs Xπ∗

(T ) depending on ϕ and risk-return
analysis should be applied to choose the strategy for the application.

14.2 Reflected Backward Stochastic Differential Equations

A reflected backward stochastic differential equation is an equation of the form

Y(t) = ξ +
∫ T

t

f
(
s, Y (s),Z(s),U(s, .)

)
ds −

∫ T

t

Z(s)dW(s)
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−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz)+C(T )−C(t), 0 ≤ t ≤ T , (14.14)

with the constraints

Y(t)≥R(t), 0 ≤ t ≤ T ,

∫ T

0

(
Y(t)−R(t)

)
dC(t)= 0. (14.15)

Given a terminal condition ξ , a generator f and a barrier R, we are interested in
finding a quadruple (Y,Z,U,C) ∈ S

2(R)×H
2(R)×H

2
N(R)×S

2
inc(R) which satis-

fies (14.14)–(14.15). Since constraints on the solution are introduced, an additional
control process has to be added into the dynamics of the BSDE. The process C arises
now in (14.14) and its purpose is to force the process Y to stays above the barrier R.
The activity of C should be minimal in the sense that the process C acts only when
Y touches the lower barrier R. In other words, the process C aims to reflect the pro-
cess Y on the barrier R. We remark that a solution (Y,Z,U,C) to (14.14)–(14.15)
is also called a supersolution to the reflected BSDE (14.14)–(14.15), see Sect. 2.3
in El Karoui et al. (1997b) and Peng (1999).

We prove existence and uniqueness of a solution to the reflected BSDE (14.14)–
(14.15) by a fixed point procedure. First, we investigate the case of a generator
independent of (Y,Z,U). This case is important in its own right.

Theorem 14.2.1 Consider the BSDE

Y(t) = ξ +
∫ T

t

f (s)ds −
∫ T

t

Z(s)dW(s)

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz)+C(T )−C(t), 0 ≤ t ≤ T , (14.16)

with the constraints

Y(t)≥R(t), 0 ≤ t ≤ T ,

∫ T

0

(
Y(t)−R(t)

)
dC(t)= 0. (14.17)

Assume that

(i) the terminal value ξ ∈ L
2(R),

(ii) the generator f :Ω × [0, T ] → R is predictable,
(iii) E[∫ T

0 |f (t)|2dt]<∞,
(iv) the barrier R is a quasi-left continuous process such that R ∈ S

2(R).

There exists a unique solution (Y,Z,U,C) ∈ S
2(R) × H

2(R) × H
2
N(R) × S

2
inc(R)

to the reflected BSDE (14.16)–(14.17) such that C is continuous. The process Y has
the representation

Y(t)= ess sup
τ∈Tt

E

[
ξ1{τ = T } +R(τ)1{τ < T } +

∫ τ

t

f (s)ds|Ft

]
, 0 ≤ t ≤ T ,

(14.18)
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where

Tt = {τ is an F -stopping time such that t ≤ τ ≤ T }.

Proof Let us consider the process

V (t)= ξ1{t = T } +R(t)1{t < T } +
∫ t

0
f (s)ds, 0 ≤ t ≤ T . (14.19)

The process V is càdlàg, adapted and sup0≤t≤T |V (t)| ∈ L
2(R). Hence, V is of

Class D, see Sect. III.3 in Protter (2004). We can conclude that there exists the
Snell envelope of V , which is the smallest càdlàg supermartingale dominating the
process V , see Appendix in Hamadène and Ouknine (2011). The Snell envelope is
defined by

EV (t)= ess sup
τ∈Tt

E
[
V (τ)|Ft

]
, 0 ≤ t ≤ T .

The process EV is also of Class D since

E

[
sup

0≤t≤T

∣∣EV (t)
∣∣2

]
≤ E

[
sup

0≤t≤T

∣∣∣E
[

sup
0≤u≤T

V (u)|Ft

]∣∣∣2]

≤ KE

[
sup

0≤u≤T

∣∣V (u)
∣∣2

]
<∞,

where we use an estimate for EV and the Doob’s inequality. Consequently, we can
apply the Doob-Meyer theorem, see Theorem III.11 in Protter (2004), and we derive
the unique decomposition

EV (t)=M(t)−C(t), 0 ≤ t ≤ T , (14.20)

where M is a càdlàg martingale, and C is a predictable, non-decreasing process
such that C(0) = 0. Moreover, the process C is square integrable, see Appendix
in Hamadène and Ouknine (2011). Hence, from (14.20) we can deduce that the
martingale M is square integrable and the predictable representation theorem yields
the unique representation

M(t)=M(0)+
∫ t

0
Z(s)dW(s)+

∫ t

0

∫
R

U(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

where (Z,U) ∈ H
2(R) × H

2
N(R). Since the martingale M and the process V are

quasi-left continuous and the process V has a positive jump at the terminal time
(notice that ξ = Y(T ) ≥ R(T )), the arguments from the proof of Proposition 1.4.a
from Hamadène and Ouknine (2003) lead us to the conclusion that the Snell enve-
lope EV is regular and the process C is continuous.
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We define

Y(t)=EV (t)−
∫ t

0
f (s)ds

= ess sup
τ∈Tt

E

[
ξ1{τ = T } +R(τ)1{τ < T } +

∫ τ

t

f (s)ds|Ft

]
, 0 ≤ t ≤ T .

(14.21)

Since EV ∈ S
2(R) and f is square integrable, we have that Y ∈ S

2(R). We can
observe that

Y(t)+
∫ t

0
f (s)ds =EV (t)=M(t)−C(t), 0 ≤ t ≤ T ,

and we conclude that the candidate solution (Y,Z,U,C) ∈ S
2(R) × H

2(R) ×
H

2
N(R) × S

2
inc(R) satisfies the BSDE (14.16). From representation (14.21) we de-

duce that our candidate solution also satisfies the first constraint Y(t) ≥ R(t), 0 ≤
t ≤ T . We are left with proving the second constraint

∫ T

0 (Y (s)−R(s))dC(s) = 0.
Fix t ∈ [0, T ]. We define the stopping time

τ ∗
t = inf

{
s > t,C(s) > C(t)

} ∧ T .

Since EV is regular, then EV (τ ∗
t ) = V (τ ∗

t ) and τ ∗
t is the optimal stopping time

after t , see Appendix in Hamadène and Ouknine (2011). From (14.19) and (14.21)
we obtain

Y
(
τ ∗
t

) +
∫ τ∗

t

0
f (s)ds = EV

(
τ ∗
t

)

= V
(
τ ∗
t

) = ξ1
{
τ ∗
t = T

} +R
(
τ ∗
t

)
1
{
τ ∗
t < T

} +
∫ τ∗

t

0
f (s)ds,

and we conclude that Y(τ ∗
t ) = R(τ ∗

t ) if τ ∗
t < T . Hence, we have (Y (s) −

R(s))dC(s)= 0 for s ∈ [t, τ ∗
t ] and, consequently,

∫ T

0 (Y (s)−R(s))dC(s)= 0. The
uniqueness of a solution to (14.16)–(14.17) is proved in the first part of the proof of
Theorem 14.2.2. �

We remark that the proof of Theorem 14.2.1 relies on quasi-left continuity of the
barrier and the jump process related to the random measure (which is our standing
assumption in this book). We recall that the assumption of quasi-left continuity is
reasonable in actuarial and financial applications, see the end of Sect. 2.1.

Theorem 14.2.1 shows that the process Y which solves the reflected BSDE
(14.16)–(14.17) coincides with the optimal value function of the optimal stopping
problem (14.18). Since optimal stopping problems are often applied to solve finan-
cial and insurance problems, reflected BSDEs are very important for actuarial and
financial applications.



264 14 Other Classes of BSDEs

Now, we can investigate the reflected BSDE (14.14)–(14.15).

Theorem 14.2.2 Assume that

(i) the terminal value ξ ∈ L
2(R),

(ii) the generator f :Ω × [0, T ] ×R×R×L2
Q(R)→R is predictable and Lips-

chitz continuous in the sense that
∣∣f (t, y, z, u)− f

(
t, y′, z′, u′)∣∣2

≤K

(∣∣y − y′∣∣2 + ∣∣z− z′∣∣2 +
∫
R

∣∣u(x)− u′(x)
∣∣2
Q(t, dx)η(t)

)
,

a.e., a.s. (ω, t) ∈Ω × [0, T ], for all (y, z,u), (y′, z′, u′) ∈R×R×L2
Q(R),

(iii) E[∫ T

0 |f (t,0,0,0)|2dt]<∞,
(iv) the barrier R is a quasi-left continuous process such that R ∈ S

2(R).

There exists a unique solution (Y,Z,U,C) ∈ S
2(R)× H

2(R)× H
2
N(R)× S

2
inc(R)

to the reflected BSDE (14.14)–(14.15) such that C is continuous.

Proof 1. The uniqueness of a solution. Assume there are two solutions (Y,Z,U,C),
(Y ′,Z′,U ′,C′) ∈ S

2(R)×H
2(R)×H

2
N(R)×S

2
inc(R) and C and C′ are continuous.

By the Itô’s formula we derive

eρt
∣∣Y(t)− Y ′(t)

∣∣2 + ρ

∫ T

t

eρs
∣∣Y(s)− Y ′(s)

∣∣2
ds +

∫ T

t

eρs
∣∣Z(s)−Z′(s)

∣∣2
ds

+
∫ T

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

= −2
∫ T

t

eρs
(
Y(s)− Y ′(s)

)(−f
(
s, Y (s),Z(s),U(s)

)

+ f
(
s, Y ′(s),Z′(s),U ′(s)

))
ds−2

∫ T

t

eρs
(
Y(s)−Y ′(s)

)(−dC(s)+dC′(s)
)

− 2
∫ T

t

eρs
(
Y(s−)− Y ′(s−)

)(
Z(s)−Z′(s)

)
dW(s)

− 2
∫ T

t

∫
R

eρs
(
Y(s−)− Y ′(s−)

)(
U(s, z)−U ′(s, z)

)
Ñ(ds, dz)

−
∫ T

t

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Ñ(ds, dz), 0 ≤ t ≤ T . (14.22)

We also notice that(
Y(s)− Y ′(s)

)(
dC(s)− dC′(s)

)
= (

Y(s)−R(s)
)
dC(s)+ (

Y ′(s)−R(s)
)
dC′(s)

− (
Y(s)−R(s)

)
dC′(s)− (

Y ′(s)−R(s)
)
dC(s)

= −(
Y(s)−R(s)

)
dC′(s)− (

Y ′(s)−R(s)
)
dC(s)≤ 0. (14.23)
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Applying inequality (14.23) and following the arguments from the proof of
Lemma 3.1.1 which led to (3.5) and (3.7), we obtain the estimate

E

[
sup

s∈[0,T ]
eρs

∣∣Y(s)− Y ′(s)
∣∣2
ds +

∫ T

0
eρs

∣∣Z(s)−Z′(s)
∣∣2
ds

+
∫ T

0

∫
R

eρs
∣∣U(s, z)−U ′(s, z)

∣∣2
Q(s, dz)η(s)ds

]
≤ 0.

Hence, there exists a unique triple (Y,Z,U) ∈ S
2(R) × H

2(R) × H
2
N(R) which

solves (14.14)–(14.15). The uniqueness of the process C ∈ S
2
inc(R) follows

from (14.14).
2. The existence of a solution. Let Y 0(t)= Z0(t)=U0(t, z)= 0, (t, z) ∈ [0, T ]×

R and consider the recursive equation

Yn+1(t)= ξ +
∫ T

t

f
(
s, Y n(s),Zn(s),Un(s)

)
ds −

∫ T

t

Zn+1(s)dW(s)

−
∫ T

t

∫
R

Un+1(s, z)Ñ(ds, dz)+Cn+1(T )−Cn+1(t), 0 ≤ t ≤ T ,

(14.24)

with the constraints

Yn+1(t)≥R(t), 0 ≤ t ≤ T ,

∫ T

0

(
Yn+1(t)−R(t)

)
dCn+1(t)= 0. (14.25)

By Theorem 14.2.1 there exists a sequence of unique solutions (Y n+1,Zn+1,Un+1,

Cn+1) ∈ S
2(R) × H

2(R) × H
2
N(R) × S

2
inc(R) to the reflected BSDEs (14.24)–

(14.25). Property (14.23) and the fixed point arguments from the proof of Theo-
rem 3.1.1 yield the convergence

∥∥Yn+1 − Yn
∥∥2
S2 + ∥∥Zn+1 −Zn

∥∥2
H2 + ∥∥Un+1 −Un

∥∥2
H

2
N

→ 0, n→ ∞. (14.26)

Since

Cn+1(t) = Yn+1(0)− Yn+1(t)−
∫ t

0
f

(
s, Y n(s),Zn(s),Un(s)

)
ds

+
∫ t

0
Zn+1(s)dW(s)+

∫ t

0

∫
R

Un+1(s, z)Ñ(ds, dz), 0 ≤ t ≤ T ,

we obtain

sup
t∈[0,T ]

∣∣Cn+1(t)−Cn(t)
∣∣2

≤K

(
sup

t∈[0,T ]
∣∣Yn+1(t)− Yn(t)

∣∣2
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+
∫ T

0

∣∣f (
s, Y n(s),Zn(s),Un(s)

) − f
(
s, Y n−1(s),Zn−1(s),Un−1(s)

)∣∣2
ds

+ sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(
Zn+1(s)−Zn(s)

)
dW(s)

∣∣∣∣
2

+ sup
t∈[0,T ]

∣∣∣∣
∫ t

0

∫
R

(
Un+1(s, z)−Un(s, z)

)
Ñ(ds, dz)

∣∣∣∣
2)

.

By the Lipschitz property of the generator f and the Burkholder-Davis-Gundy in-
equality we derive the estimate

∥∥Cn+1 −Cn
∥∥2
S2 ≤ K

(∥∥Yn+1 − Yn
∥∥2
S2 + ∥∥Zn+1 −Zn

∥∥2
H2 + ∥∥Un+1 −Un

∥∥2
H

2
N

+ ∥∥Yn − Yn−1
∥∥2
S2 + ∥∥Zn −Zn−1

∥∥2
H2 + ∥∥Un −Un−1

∥∥2
H

2
N

)
,

and the sequence (Cn)n∈N converges by (14.26). We can conclude that there exists
a unique limit (Y,Z,U,C) ∈ S

2(R)×H
2(R)×H

2
N(R)× S

2
inc(R) of the sequence

(Y n,Zn,Un,Cn)n∈N. It is easy to show that the limit (Y,Z,U,C) satisfies the
BSDE (14.14), see the proof of Theorem 3.1.1. Moreover, the process C is contin-
uous by the uniform convergence and non-decreasing, and Y(t) ≥ R(t), 0 ≤ t ≤ T .
One can also prove that

∫ T

0 (Y (s)−R(s))dC(s)= 0, see step 6 in the proof of The-
orem 1.2 from Hamadène and Ouknine (2003). Hence, the limit (Y,Z,U,C) solves
the reflected BSDE (14.14)–(14.15). �

It is worth pointing out the connection in the spirit of a non-linear Feynman-Kac
formula between the solution to a reflected FBSDE and the solution to variational
inequalities. It is well known that in a Markovian setting the optimal value function
of the stopping problem (14.18) can be characterized as a unique solution to varia-
tional inequalities, see Theorem 2.2 in Øksendal and Sulem (2004). It turns out that
the unique solution to a reflected FBSDE provides a probabilistic representation of
the unique viscosity solution to variational inequalities, see El Karoui et al. (1997a)
and Crépey (2011) for details.

We give examples of insurance and finance optimal stopping problems which can
be studied with reflected BSDEs.

Example 14.3 We consider the financial market (7.1)–(7.2) and an American put
option. The buyer of an American put option has the right to sell the stock S for a
given price K at the time favorable to him. The goal is to find a replicating strat-
egy and a replicating portfolio for the American put option. Let π ∈ A be an ad-
missible replicating strategy. Since the American option can be exercised at any
time, the replicating portfolio Xπ must satisfy the constraint Xπ(t)≥ (K − S(t))+,
0 ≤ t ≤ T . It is reasonable to assume that the replicating portfolio Xπ is given by
the dynamics

dXπ(t)= π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
Xπ(t)− π(t)

)
r(t)dt − dC(t).
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The process C represents the premium for the right to exercise the option at a fa-
vorable time and the value of the replicating portfolio (or the price of the Amer-
ican option) decreases whenever the right to exercise the option should be exe-
cuted. Since the right to exercise the option should only be executed if the price
of the option is equal to (K − S(t))+, we should also impose the constraint∫ T

0 (Xπ(t)− (K − S(t))+)dC(t)= 0. Consequently, the problem of finding a repli-
cating portfolio and a replicating strategy for the American put option is equivalent
to the problem of solving the reflected BSDE

Y(t) = (
K − S(T )

)+ +
∫ T

t

(−Y(s)r(s)−Z(s)θ(s)
)
ds

−
∫ T

t

Z(s)dW(s)+C(T )−C(t), 0 ≤ t ≤ T ,

Y (t) ≥ (
K − S(t)

)+
, 0 ≤ t ≤ T ,

∫ T

0

(
Y(t)− (

K − S(t)
)+)

dC(t)= 0.

By the change of measure and Theorem 14.2.1 the unique replicating portfolio has
the representation

Y(t)= sup
τ∈Tt

E
Q
[
e− ∫ τ

t r(s)ds
(
K − S(τ)

)+|Ft

]
, 0 ≤ t ≤ T , (14.27)

and, as expected, the arbitrage-free price of the American option is given by a solu-
tion to an optimal stopping problem.

Example 14.4 American options arise in life insurance. The holder of a unit-linked
policy is entitled to a terminal guarantee F and, in addition, he has the right to sur-
render the policy with a benefit G. The value of the embedded surrender option can
be treated as the value of an American option, see Milevsky and Salisbury (2002).
The value of the policy is defined by

sup
τ∈Tt

E
Q
[
e− ∫ T

t r(s)ds
(
F1{τ = T } +G(τ)1{τ < T })|Ft

]
, 0 ≤ t ≤ T . (14.28)

By Theorem 14.2.1 the value of the surrender option (14.28) can be characterized
as a unique solution to a reflected BSDE. We point out that the optimal stopping
problem (14.28) and a reflected BSDE arise if we assume that the policyholder
makes an optimal (rational) decision to surrender the policy. Let us recall that in
Example 7.7 and Chaps. 9–12 we considered irrational lapse decisions modelled by
inaccessible jump times of jump measures.

Example 14.5 A recallable option or an Israeli’s option is an example of an Amer-
ican option under which the buyer of the option has the right to sell a stock and
the issuer of the option has the right to recall the option. A convertible bond gives
the holder of the contract the right to convert a bond into a stock and the issuer of
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the contract has the right to recall the bond. In both cases we deal with a so-called
Dynkin game. The value of the contract is defined as a solution to the optimal stop-
ping problem

sup
τ∈Tt

inf
δ∈Tt

E
Q
[
e− ∫ δ

t r(s)dsF s(δ)1{δ < τ } + e− ∫ τ
t r(s)dsF b(τ )1{τ ≤ δ < T }

+ e− ∫ T
t r(s)dsF (T )1{τ = δ = T }|Ft

]
, 0 ≤ t ≤ T . (14.29)

The value function (14.29), the price of an Israeli’s option and the price of a con-
vertible bond, can be characterized as a solution to a doubly reflected BSDE, see
Hamadène (2006), Bielecki et al. (2009), Hamadène and Wang (2009), Crépey and
Matoussi (2008), Hamadène and Hassani (2006). A doubly reflected BSDE is an
equation in which the solution is reflected at a lower and an upper barrier. We re-
mark that the existence of a solution to a doubly reflected BSDE is proved under the
so-called Mokobodski condition.

Example 14.6 Doubly reflected BSDEs can also be used to solve starting and stop-
ping problems (two modes switching problems), see Hamadène and Jeanblanc
(2007) and Hamadène and Zhang (2010).

14.3 Constrained Backward Stochastic Differential Equations

In the case of a reflected BSDE the process Y is constrained to stay above a barrier.
Now, we introduce constraints on all components of the solution to a BSDE.

A constrained backward stochastic differential equation is an equation of the
form

Y(t) = ξ +
∫ T

t

f
(
s, Y (s),Z(s),U(s, .)

)
ds −

∫ T

t

Z(s)dW(s)

−
∫ T

t

∫
R

U(s, z)Ñ(ds, dz)+C(T )−C(t), 0 ≤ t ≤ T , (14.30)

with the constraint

ψ
(
t, Y (t),Z(t),U(t, z)

) ≥ 0, a.s., ϑ-a.e. (ω, t, z) ∈Ω × [0, T ] ×R. (14.31)

Given a terminal condition ξ , a generator f and a constraint function ψ , we are in-
terested in finding a quadruple (Y,Z,U,C) ∈ S

2(R)×H
2(R)×H

2
N(R)× S

2
inc(R)

which satisfies (14.30)–(14.31). A solution (Y,Z,U,C) is also called a supersolu-
tion to the constrained BSDE (14.30)–(14.31).

We assume that the random measure N is generated by a compound Poisson
process with intensity λ and jump size distribution q . We find a solution to the
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constrained BSDE (14.30)–(14.31) by a penalization argument. We introduce the
sequence of BSDEs

Yn(t) = ξ +
∫ T

t

(
f

(
s, Y n(s),Zn(s),Un(s, .)

)

+ n

∫
R

ψ−(
s, Y n(s),Zn(s),Un(s, z)

)
λq(dz)

)
ds

−
∫ T

t

Zn(s)dW(s)−
∫ T

t

∫
E

Un(s, z)Ñ(ds, dz), 0 ≤ t ≤ T , (14.32)

where ψ− denotes the negative part of ψ . In the sequel we denote

Cn(t)= n

∫ t

0

∫
R

ψ−(
s, Y n(s),Zn(s),Un(s, z)

)
λq(dz)ds, 0 ≤ t ≤ T .

We show that the constrained BSDE (14.30)–(14.31) has a minimal solution which
can be approximated by the sequence of unique solutions to the penalized BSDEs
(14.32). The negative part of the constraint function ψ− is interpreted as a penalty.
We point out that penalization arguments are often applied in the theory of BSDEs.
For example, the solution to a reflected BSDE can be found by a penalization argu-
ment, see Hamadène and Ouknine (2003).

Theorem 14.3.1 Let us consider the filtration F generated by a Brownian motion
and a compound Poisson process with intensity λ and jump size distribution q . We
investigate the constrained BSDE (14.30)–(14.31) and the BSDE (14.32). We as-
sume that

(i) the generator f : Ω × [0, T ] × R × R × L2
q(R) → R is F -predictable and

satisfies
∣∣f (t, y, z, u)− f

(
t, y′, z′, u

)∣∣ ≤ K
(∣∣y − y′∣∣ + ∣∣z− z′∣∣),

f (t, y, z, u)− f
(
t, y, z, u′) ≤

∫
R

δy,z,u,u
′
(t, x)

(
u(x)− u′(x)

)
λq(dx),

a.s., a.e. (ω, t) ∈ Ω × [0, T ], for all (y, z,u), (y′, z′, u), (y, z,u′) ∈ R × R ×
L2
q(R), where δy,z,u,u

′ :Ω × [0, T ] ×R → (−1,∞) is an F -predictable pro-

cess such that the mapping t �→ ∫
R

|δy,z,u,u′
(t, x)|2q(dx) is uniformly bounded

in (y, z,u,u′),
(ii) the constraint function ψ : Ω × [0, T ] × R × R × R → R is F -predictable,

Lipschitz continuous in the sense that
∣∣ψ(t, y, z, v)−ψ

(
t, y′, z′, v′)∣∣ ≤ K

(∣∣y − y′∣∣ + ∣∣z− z′∣∣ + ∣∣v − v′∣∣),
a.s., a.e. (ω, t) ∈Ω × [0, T ], for all (y, z, v), (y′, z′, v′) ∈R×R×R, and the
mapping v �→ψ(t, y, z, v) is non-increasing for all (t, y, z) ∈ [0, T ] ×R×R,
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(iii) E[|ξ |2]<∞, E[∫ T

0 |f (t,0,0,0)|2dt]<∞ and E[∫ T

0 |ψ(t,0,0,0)|2dt]<∞,

(iv) there exists a solution (Ŷ , Ẑ, Û , Ĉ) ∈ S
2(R) × H

2(R) × H
2
N(R) × S

2
inc(R) to

the constrained BSDE (14.30)–(14.31).

The following results hold:

(a) For each n ∈N there exists a unique solution (Y n,Zn,Un) ∈ S
2(R)×H

2(R)×
H

2
N(R) to the BSDE (14.32).

(b) There exists a unique minimal solution (Y ∗,Z∗,U∗,C∗) ∈ S
2(R) × H

2(R) ×
H

2
N(R) × S

2
inc(R) to the constrained BSDE (14.30)–(14.31) such that C∗ is

F -predictable. Moreover, we have the strong convergence

lim
n→∞

{
E

[∫ T

0

∣∣Yn(t)− Y ∗(t)
∣∣2
dt

]
+E

[∫ T

0

∣∣Zn(t)−Z∗(t)
∣∣pdt

]

+E

[∫ T

0

∫
R

∣∣Un(t, z)−U∗(t, z)
∣∣pλq(dz)dt

]}
= 0, 1 ≤ p < 2,

and C∗ is the weak limit of Cn in H
2(R).

Proof (a) It is easy to notice that the generator of the BSDE (14.32) is Lipschitz
continuous in the sense of (A2) from Sect. 3.1. Hence, by Theorem 3.1.1 there
exists a unique solution (Y n,Zn,Un,Cn) to (14.32). Moreover, the generator of the
BSDE (14.32) satisfies the property

f (t, y, z, u)+ n

∫
R

ψ−(
t, y, z, u(x)

)
λq(dx)

− f
(
t, y, z, u′) − n

∫
R

ψ−(
t, y, z, u′(x)

)
λq(dx)

≤
∫
R

(
δy,z,u,u

′
(t, x)+Kn1{u(x)≥u′(x)}

)(
u(x)− u′(x)

)
λq(dx),

a.s., a.e. (ω, t) ∈ Ω × [0, T ], for all (y, z,u), (y, z,u′) ∈ R × R × L2
q(R). Conse-

quently, the assumptions of Theorem 3.2.2 are satisfied and a comparison principle
can be applied.

(b) 1. The convergence of (Y n)n∈N. The comparison principle yields Yn(t) ≤
Yn+1(t), 0 ≤ t ≤ T , for any n ∈ N. Since ψ−(t, Ŷ (t), Ẑ(t), Û (t, z)) = 0 for ϑ -a.e.
(t, z) ∈ [0, T ] ×R, we can write

Ŷ (t) = ξ +
∫ T

t

(
f

(
s, Ŷ (s), Ẑ(s), Û (s, .)

)
ds

+ n

∫
R

ψ−(
s, Ŷ (s), Ẑ(s), Û (s, z)

)
λq(dz)

)
ds

−
∫ T

t

Ẑ(s)dW(s)−
∫ T

t

∫
R

Û (s, z)Ñ(ds, dz)+ Ĉ(T )− Ĉ(t), 0 ≤ t ≤ T .
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Following the arguments that led to (3.29), we obtain

Ŷ (t)− Yn(t) = −
∫ T

t

Z̄(s)e
∫ s
t �yf (u)dudW(s)+

∫ T

t

Z̄(s)e
∫ s
t �yf (u)du�zf (s)ds

−
∫ T

t

∫
R

Ū(s, z)e
∫ s
t �yf (u)duÑ(ds, dz)

+
∫ T

t

(
f

(
s, Y n(s),Zn(s), Û (s)

)

+ n

∫
R

ψ−(
s, Y n(s),Zn(s), Û (s, z)

)
λq(dz)

− f
(
s, Y n(s),Zn(s),Un(s)

)

− n

∫
R

ψ−(
s, Y n(s),Zn(s),Un(s, z)

)
λq(dz)

)
e
∫ s
t �yf (u)duds

+
∫ T

t

e
∫ s
t �yf (u)dudĈ(s), 0 ≤ t ≤ T ,

and we conclude that Yn(t) ≤ Ŷ (t), 0 ≤ t ≤ T , for any n ∈ N. Since the se-
quence (Y n)n∈N is monotone, lower-bounded by Y 0 ∈ S

2(R) and upper-bounded
by Ŷ ∈ S

2(R), the sequence (Y n)n∈N has a square integrable limit Y ∗. Moreover,
the dominated convergence theorem yields the strong convergence E[∫ T

0 |Yn(t) −
Y ∗(t)|2dt] → 0, n→ ∞.

2. The convergence of (Zn,Un,Cn)n∈N. From (14.32) we deduce

E
[∣∣Cn(T )

∣∣2] ≤ K

(
E

[|ξ |2] +E

[∫ T

0

∣∣f (s,0,0,0)
∣∣2
ds

]
+E

[
sup

0≤s≤T

∣∣Yn(s)
∣∣2

]

+E

[∫ T

0

∣∣Zn(s)
∣∣2
ds

]
+E

[∫ T

0

∫
R

∣∣Un(s, z)
∣∣2
λq(dz)ds

])

≤ K

(
E

[|ξ |2] +E

[∫ T

0

∣∣f (s,0,0,0)
∣∣2
ds

]

+E

[
sup

0≤s≤T

∣∣Ŷ (s)∣∣2
]
+E

[
sup

0≤s≤T

∣∣Y 0(s)
∣∣2

]

+E

[∫ T

0

∣∣Zn(s)
∣∣2
ds

]
+E

[∫ T

0

∫
R

∣∣Un(s, z)
∣∣2
λq(dz)ds

])

≤ K

(
1 +E

[∫ T

0

∣∣Zn(s)
∣∣2
ds

]
+E

[∫ T

0

∫
R

∣∣Un(s, z)
∣∣2
λq(dz)ds

])
,

(14.33)

where we use the growth condition for f , the bound for Yn and Theorem 2.3.3.
From the dynamics of |Yn(t)|2, see (3.8), we also obtain
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∣∣Yn(0)
∣∣2 +E

[∫ T

0

∣∣Zn(s)
∣∣2
ds

]
+E

[∫ T

0

∫
R

∣∣Un(s, z)
∣∣2
λq(dz)ds

]

= E
[|ξ |2] + 2E

[∫ T

0
Yn(s)f

(
s, Y n(s),Zn(s),Un(s)

)
ds

]

+ 2E

[∫ T

0
Yn(s)dCn(s)

]

≤K

(
E

[|ξ |2] + 1

α
E

[∫ T

0

∣∣f (s,0,0,0)
∣∣2
ds

]
+

(
α + 1

α
+ β

)(
E

[
sup

0≤s≤T

∣∣Ŷ (s)∣∣2
]

+E

[
sup

0≤s≤T

∣∣Y 0(s)
∣∣2

])
+ 1

α
E

[∫ T

0

∣∣Zn(s)
∣∣2
ds

]

+ 1

α
E

[∫ T

0

∫
R

∣∣Un(s, z)
∣∣2
λq(dz)ds

]
+ 1

β
E

[∣∣Cn(T )
∣∣2])

, (14.34)

where we use the growth condition for f , inequality (3.10) and the bound for Yn.
Choosing α and β sufficiently large and combining (14.33) with (14.34), we can
derive the uniform bound

E

[∫ T

0

∣∣Zn(s)
∣∣2
ds

]
+E

[∫ T

0

∫
R

∣∣Un(s, z)
∣∣2
λq(dz)ds

]
+E

[∣∣Cn(T )
∣∣2] ≤K.

(14.35)

We can conclude that there exists a subsequence of (Zn,Un,Cn)n∈N which con-
verges weakly to (Z∗,U∗,C∗) in H

2(R)×H
2
N(R)×H

2(R).
3. The existence of a minimal solution to (14.30)–(14.31). One can show that

(Y ∗,Z∗,U∗,C∗) ∈ S
2(R) × H

2(R) × H
2
N(R) × S

2
inc(R), the convergence results

from item b) hold and (Y ∗,Z∗,U∗,C∗) satisfies the equation

Y ∗(t) = ξ +
∫ T

t

f
(
s, Y ∗(s),Z∗(s),U∗(s, .)

)
ds −

∫ T

t

Z∗(s)dW(s)

−
∫ T

t

∫
R

U∗(s, z)Ñ(ds, dz)+C∗(T )−C∗(t), 0 ≤ t ≤ T .

Moreover, the process C∗ is predictable. We omit the details and we refer to
Lemma 3.5 in Kharroubi et al. (2010) and Proposition 4.2 in Bouchard and Elie
(2008). We now prove that the triple (Y ∗,Z∗,U∗) satisfies the constraint (14.31) and
that Y ∗ is a minimal solution to (14.30)–(14.31), i.e. Y ∗(t) ≤ Y(t), 0 ≤ t ≤ T , for
any other solution (Y,Z,U,C) ∈ S

2(R) × H
2(R) × H

2
N(R) × S

2
inc(R) to (14.30)–

(14.31). By the Lipschitz property of ψ− we have
∣∣∣∣E

[∫ T

0

∫
R

ψ−(
t, Y n(t),Zn(t),Un(t, z)

)
λq(dz)dt

]

−E

[∫ T

0

∫
R

ψ−(
t, Y ∗(t),Z∗(t),U∗(t, z)

)
λq(dz)dt

]∣∣∣∣
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≤K

(
E

[∫ T

0

∣∣Yn(t)− Y ∗(t)
∣∣dt

]
+E

[∫ T

0

∣∣Zn(t)−Z∗(t)
∣∣dt

]

+E

[∫ T

0

∫
R

∣∣Un(t, z)−U∗(t, z)
∣∣λq(dz)dt

])
, (14.36)

and from the convergence of (Y n,Zn,Un)n∈N we deduce that the left-hand side of
(14.36) converges to zero. Hence, we get

lim
n→∞

E[Cn(T )]
n

= lim
n→∞E

[∫ T

0

∫
R

ψ−(
s, Y n(s),Zn(s),Un(s, z)

)
λq(dz)ds

]

= E

[∫ T

0

∫
R

ψ−(
s, Y ∗(s),Z∗(s),U∗(s, z)

)
λq(dz)ds

]
. (14.37)

By (14.35) the left-hand side of (14.37) converges to zero. Hence, the constraint
(14.31) is satisfied for (Y ∗,Z∗,U∗). Since the sequence (Y n)n∈N is upper-bounded
by the solution Ŷ , the limit Y ∗ is also bounded by Ŷ and, consequently, Y ∗ is a
minimal solution to (14.30)–(14.31) in the sense that Y ∗(t) ≤ Y(t), 0 ≤ t ≤ T , for
any solution Y to (14.30)–(14.31).

4. The uniqueness of a minimal solution to (14.30)–(14.31). If Y is a minimal
solution, then Y is unique by the definition of a minimal solution. Assume that
we have two minimal solutions (Y,Z,U,C), (Y,Z′,U ′,C′) ∈ S

2(R) × H
2(R) ×

H
2
N(R) × S

2
inc(R) to the BSDE (14.30) and C and C′ are predictable. Then, from

(14.30) we obtain
∫ t

0

∫
R

(
U(s, z)−U ′(s, z)

)
N(ds, dz)

=
∫ t

0

(
f

(
s, Y (s),Z(s),U(s)

) − f
(
s, Y (s),Z′(s),U ′(s)

))
ds

−
∫ t

0

(
Z(s)−Z′(s)

)
dW(s)+

∫ t

0

∫
R

(
U(s, z)−U ′(s, z)

)
λq(dz)ds

+C′(t)−C(t), 0 ≤ t ≤ T . (14.38)

Since the process on the right-hand side of (14.38) is predictable, the process on
the left-hand side of (14.38) is predictable as well. Recalling Theorem 2.3.2, Defi-
nition 3.5.1 and the remark after that definition, we deduce that

∫
R

(
U(t, z)−U ′(t, z)

)
N

({t}, dz) = 0, 0 ≤ t ≤ T , (14.39)

and, consequently, we get
∫ t

0

(
Z(s)−Z′(s)

)
dW(s)

=
∫ t

0

(
f

(
s, Y (s),Z(s),U(s)

) − f
(
s, Y (s),Z′(s),U ′(s)

))
ds
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−
∫ t

0

∫
R

(
U(s, z)−U ′(s, z)

)
λq(dz)ds +C′(t)−C(t), 0 ≤ t ≤ T .

(14.40)

From (14.39) we get that U(t, z) = U ′(t, z) a.s., ϑ -a.e. (ω, t, z) ∈ Ω × [0, T ] ×R.
From (14.40) we have Z(t) = Z′(t) a.s., a.e. (ω, t) ∈ Ω × [0, T ] since a fi-
nite variation, continuous martingale is constant. The uniqueness of C follows
from (14.30). �

Assumptions under which there exists a solution (Ŷ , Ẑ, Û , Ĉ) ∈ S
2(R) ×

H
2(R)×H

2
N(R)× S

2
inc(R) to the constrained BSDE (14.30)–(14.31) can be found

in Kharroubi et al. (2010) and Elie and Kharroubi (2013). In the proof of Theo-
rem 14.3.1 we applied the so-called monotonic limit theorem for BSDEs to establish
the convergence of the sequence (Y n,Zn,Un,Cn)n∈N, see Peng (1999), Kharroubi
et al. (2010) and Elie and Kharroubi (2013).

We now investigate an investment problem which naturally leads to a constrained
BSDE. The next example also shows why in finance we should be interested in
finding a minimal solution to a BSDE.

Example 14.7 We consider the financial market (7.1)–(7.2). The goal is to find a
replicating strategy and a replicating portfolio for a financial claim F . However,
admissible replicating strategies π ∈ A are now constrained to satisfy ψ(t,π(t))≥
0, 0 ≤ t ≤ T , e.g. short-selling of the stock is not allowed. We can deduce that the
replicating portfolio Xπ is given by the dynamics

dXπ(t)= π(t)
(
μ(t)dt + σ(t)dW(t)

) + (
Xπ(t)− π(t)

)
r(t)dt − dC(t).

The initial value of the replicating portfolio should be sufficiently high so that the in-
vestor can replicate the claim despite the constraint imposed on the strategy. As time
passes, the capital invested in the portfolio may become too large, the constraint may
not be binding and the investor can withdraw capital from the replicating portfolio.
The process C represents the cumulative amount withdrawn from the replicating
portfolio (i.e. the profit to the hedger). We can notice that the problem of replicating
a financial claim F under a constraint ψ on the replicating strategy is equivalent to
the problem of solving the constrained BSDE

Y(t) = F +
∫ T

t

(−Y(s)r(s)−Z(s)θ(s)
)
ds

−
∫ T

t

Z(s)dW(s)+C(T )−C(t), 0 ≤ t ≤ T , (14.41)

ψ
(
t,Z(t)

) ≥ 0, a.s., a.e. (ω, t) ∈Ω × [0, T ].
Moreover, we are interested in finding the smallest replicating portfolio for the
claim (the smallest price process). Hence, we should aim to find a minimal so-
lution (Y ∗,Z∗,C∗) to the constrained BSDE (14.41). Such a solution exists by
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Theorem 14.3.1. Investment problems under constraints on investment portfolios
and investment strategies and constrained BSDEs are investigated in Cvitanić et al.
(1998).

Let us now require that the control process U related to the jump component of
a BSDE is non-positive. Such a constraint is of great importance for the theory and
applications.

Proposition 14.3.1 Let the random measure N be generated by a compound Pois-
son process. We assume that the compensator of the random measure is defined on
B([0, T ]) × B(E) where E ⊂ R is a compact set. We investigate the constrained
FBSDE

X (t)= x +
∫ t

0
μ

(
X (s−)

)
ds +

∫ t

0
σ
(
X (s−)

)
ds

+
∫ t

0

∫
E

γ
(
X (s−), z

)
N(ds, dz), 0 ≤ t ≤ T ,

Y (t)= g
(
X (T )

) +
∫ T

t

f
(
s,X (s−)

)
ds −

∫ T

t

Z(s)dW(s)

−
∫ T

t

∫
E

(
U(s, z)−R

(
X (s−), z

))
N(ds, dz)

+C(T )−C(t), 0 ≤ t ≤ T ,

U(t, z)≤ 0, a.s., ϑ-a.e. (ω, t, z) ∈Ω × [0, T ] ×R.

(14.42)

There exists a unique minimal solution (Y ∗,Z∗,U∗,C∗) ∈ S
2(R) × H

2(R) ×
H

2
N(R) × S

2
inc(R) to the constrained FBSDE (14.42). Moreover, the process Y ∗

has the representation

Y ∗(t)= sup
(τi ,χi )∈(t,T ]×E

E

[
g
(
X t,x(T )

) +
∫ T

t

f
(
s,X t,x(s−)

)
ds

+
∑

t<τi≤T

R
(
X t,x(τi−),χi

)]
, 0 ≤ t ≤ T ,

X t,x(s)= x +
∫ s

t

μ
(
X t,x(r−)

)
dr +

∫ s

t

σ
(
X t,x(r−)

)
dW(r)

+
∑

t<τi≤s

γ
(
X t,x(τi−),χi

)
, t ≤ s ≤ T .

(14.43)

For detailed formulation and the proof we refer to Kharroubi et al. (2010).
By Proposition 14.3.1 the minimal solution Y ∗ to the constrained FBSDE (14.42)

coincides with the optimal value function of the impulse control problem (14.43).
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Since impulse control processes are common in insurance and finance, constrained
BSDEs are also useful for solving actuarial and financial optimization problems.

Example 14.8 Let X denote a wealth process of a financial institution. The share-
holders are allowed to pay out dividends (χi)i≥1. However, the dividend payment
χ yields cost α + βχ . The goal is to find an optimal dividend plan. Let g and R

denote two utility functions. We are interested in solving the following optimization
problem

Y ∗(t) = sup
(τi ,χi )∈(t,T ]×E

E

[
e−δ(T−t)g

(
X t,x(T )

)

+
∑

t<τi≤T

e−δ(τi−t)R(χi)

]
, 0 ≤ t ≤ T ,

X t,x(s) = x +
∫ s

t

μ
(
X t,x(r−)

)
dr +

∫ s

t

σ
(
X t,x(r−)

)
dW(r)

−
∑

t<τi≤s

(α + βχi), t ≤ s ≤ T .

By Proposition 14.3.1 the optimal value function Y ∗ can be characterized as a min-
imal solution to a constrained BSDE.

Example 14.9 Let us consider a swing option. The holder of a swing option has the
right to sell, whenever he wants over a time period [0, T ], an underlying asset S
against a fixed strike K . The holder can exercise the right at most n times and the
interval between two consecutive exercise date must be at least δ. The price of the
swing option can be characterized as a minimal solution to a constrained BSDE, see
Bernhart et al. (2010).

Finally, it is worth pointing out the connection in the spirit of a non-linear
Feynman-Kac formula between the solution to a constrained FBSDE and the so-
lution to quasi-variational inequalities. It is well known that in a Markovian setting
the optimal value function of the impulse control problem (14.43) can be charac-
terized as a unique solution to quasi-variational inequalities, see Theorem 6.2 in
Øksendal and Sulem (2004). It turns out that the minimal solution to a constrained
FBSDE provides a probabilistic representation of the unique viscosity solution to
quasi-variational inequalities, see Kharroubi et al. (2010) for details.

Bibliographical Notes Time-delayed BSDEs were introduced in Delong and
Imkeller (2010a) and Delong and Imkeller (2010b). The proof of Proposition 14.1.1
is a slight modification of the proof from Delong (2012c) and it uses the arguments
developed by Cvitanić and Karatzas (1994). Reflected BSDEs were introduced by
El Karoui et al. (1997a). The proofs of Theorems 14.2.1 and 14.2.2 are taken from
Hamadène and Ouknine (2003). For reflected BSDEs with non-Lipschitz generators



14.3 Constrained Backward Stochastic Differential Equations 277

we refer to Kobylanski et al. (2002), Bahlali et al. (2002), Bahlali et al. (2005). Con-
strained BSDEs were introduced in Kharroubi et al. (2010) and Elie and Kharroubi
(2013). The proof of Theorem 14.3.1 is taken from Elie and Kharroubi (2013). Nu-
merical methods for reflected BSDEs have been well-studied, and we refer to Gobet
and Lemor (2006) for the regression-based approach and to Peng and Xu (2011) for
a random walk approximation. A numerical method for solving a constrained BSDE
was suggested by Kharroubi et al. (2010). We point out that in the literature we also
find second order BSDEs which were introduced by Cheridito et al. (2007) and de-
veloped by Soner et al. (2012), as well as reflected second order BSDEs which were
introduced by Matoussi et al. (2013).
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