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Abstract Issues concerning polycyclic aromatic hydrocarbons (PAH) carcino-
genicity, and their important role in formation of dangerous pollutants, such as
soot, have motivated their study under a wide range of laboratory conditions and
for several kinds of thermochemical processes. Every experimental system,
depending on the operating conditions, demands a specific protocol for PAH
determination. This chapter aims to contribute to the knowledge of different
procedures for PAH quantification both at the gas phase and when they are
associated with soot particles. Different kinds of experimental set-ups for PAH
formation together with the collection systems to capture them are explained here.
Besides, some sample extraction techniques are reviewed, mainly focused on
Soxhlet extraction because of its inexpensive equipment and overall simplicity to
be applied by staff with limited analytical experience. Chromatographic techniques
are also considered, paying special attention to gas chromatography coupled to
mass spectrometry (GC–MS), popular in PAH analysis.

Abbreviations

PAH Polycyclic aromatic hydrocarbons
GC–MS Gas chromatography coupled to mass spectrometry
HACA H-abstraction/C2H2 addition route
EPA Environmental Protection Agency
EPA–PAH Polycyclic aromatic hydrocarbons classified by EPA

as priority pollutants
PUF Polyurethane foam
PTFE Polytetrafluoroethylene
DCM Dichloromethane
ASE Accelerated solvent extraction
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SFE Supercritical fluid extraction
GPT Thermochemical Processes Group
I3A Aragón Institute of Engineering Research
HPLC–UV Reversed-phase high performance liquid chromatograph with ultra-

violet detection
FID Flame ionization detection
SIM Selected ion monitoring
SRM Standard reference material

11.1 Introduction

Polycyclic aromatic hydrocarbons (PAH) are members of a class of air pollutants
relevant to many scientific issues from a variety of aspects: chemical, toxicolog-
ical, engineering, technological, public health, economic and regulatory (Finlay-
son-Pitts and Pitts 2000). They are a large number of compounds that consist of
fused aromatic rings (Sander and Wise 1997). PAH are mainly formed in the
combustion of fossil fuels and organic matter, and are ubiquitous in the atmo-
sphere. Anthropogenic activities are the major sources of emission of PAH (WHO
2000; Lee 2001; Tang et al. 2005). It is well established that these aromatic
compounds greatly contribute to the formation of primary soot particles, e.g. as
explained by the H-abstraction/C2H2 addition (HACA) route (Frenklach 2002;
Indarto et al. 2010), or they can appear adsorbed on the surface of soot. Thus,
determination of PAH is, with no doubt, a necessary step for achieving a better
understanding on the chemical details regarding the formation of nascent soot
particles, which is still poorly understood (Faccinetto et al. 2011).

Different studies have shown that PAH can cause harmful effects on the human
health and the environment (ATSDR 1996; Schneider et al. 2002; De Kok et al.
2006). This risk is increased because PAH exist as more or less pure particles,
associated with particulate matter and dust, the latter capable of penetrating into
the lower respiratory tract (Luch 2005). The Environmental Protection Agency of
the USA (EPA) has given priority to 16 PAH (EPA–PAH) (EPA 1998a) detailed in
Table 11.1, which are commonly called as ‘‘priority aromatic hydrocarbon pol-
lutants’’, because of their widespread presence and the fact that some of them are
considered as probable human carcinogens. Unquestionably, some PAH from this
list are important intermediates in the soot formation process, and they have been
studied in different modelling and experimental investigations (Appel et al. 2000;
Li et al. 2009; Norinaga et al. 2009).

In this context, the characterization and quantification of PAH appearing in
combustion processes is needed for determining the possible toxicological effect of
the emission sources, or when a deeper understanding of soot formation is
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Table 11.1 Structures, common names, used abbreviations, molecular formulas and molecular
weights (MW) for the 16 EPA–PAH

Structure Common name Abbreviations
for PAH

Molecular
formula

MW
(g mol-1)

Naphthalene NAP C10H8 128.18

Acenaphthylene ACY C12H8 152.20

Acenaphthene ACE C12H10 154.20

Fluorene FLO C13H10 166.23

Phenanthrene PHE C14H10 178.23

Anthracene ANT C14H10 178.23

Fluoranthene FLA C16H10 202.26

Pyrene PYR C16H10 202.25

Benzo(a)anthracene BaA C18H12 228.28

Chrysene CHR C18H12 228.28

Benzo(b)fluoranthene BbF C20H12 252.32

Benzo(k)fluoranthene BkF C20H12 252.32

Benzo(a)Pyrene BaP C20H12 252.31

Indeno(1,2,3-cd)pyrene IcdP C22H12 276.34

Dibenzo(a,h)anthracene DahA C22H14 278.35

Benzo(g,h,i)perylene BghiP C22H12 276.34
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required. This knowledge would allow the relevant authorities to develop strate-
gies to reduce, if not eliminate, PAH emissions into our surrounding (Lee 2001).

Depending on the properties exhibited by PAH, mainly the vapour pressure,
they exist in the gas phase or as solid particles. PAH at the outlet gas stream of
combustion processes usually consist of compounds with few aromatic rings such
as naphthalene (Finlayson-Pitts and Pitts 2000). The processes, where both PAH
and particulate matter, such as soot, can be formed, require a specific method for
collection and especially for PAH analysis, since their nature and the variety of
organic matter need a particular technique capable to handle the complex mixture
of products at the outlet (Lee 2001).

The aim of this chapter is to present a number of devices used to study the PAH
formation in thermochemical processes. Different techniques for PAH determi-
nation/quantification are also considered, including PAH collection (taking into
account the different places where PAH are found), sample treatment by solvent
extraction techniques, and PAH analysis by chromatographic methodologies. An
example on formation, collection and quantification of the 16 EPA–PAH in a
specific tubular flow reactor in the pyrolysis of acetylene and ethylene will be also
shown.

11.2 Characterization and Formation of Polycyclic
Aromatic Hydrocarbons

Frequently for different processes, the concentration of PAH, such as the 16 EPA–
PAH (Table 11.1), needs to be monitored in different places: the atmosphere (e.g.
Mastral et al. 2003), soil (e.g. Ortiz et al. 2012), food (e.g. Viegas et al. 2012),
water (e.g. Ardag et al. 2011) and exhaust gases (e.g. Ballesteros et al. 2010). In
this latter case, PAH formation is evaluated for both pollution assessment and to
achieve a better understanding of the effect of different variables on their forma-
tion and/or their role in soot formation. Several investigations on PAH and soot
formation in flames have been carried out by using different devices: commercial
burners, such as a McKenna burner (Apicella et al. 2003; Wu et al. 2006; Fac-
cinetto et al. 2011), spray flames using spray burners (Allouis et al. 2003; Lemaire
et al. 2010), or open diffusion flames by an stainless steel conical container and
premixed flames by a flat-flame burner (Andrade-Eiroa et al. 2010a). Under
pyrolysis conditions in shock tubes (Wang and Cadman 1998; Mathieu et al. 2007)
(as it can be seen in Chaps. 6 and 24), tubular reactors (Mendiara et al. 2005;
Norinaga et al. 2007; Ruiz et al. 2007a; Thomas and Wornat 2008; Sánchez et al.
2012a) and a well stirred reactor coupled to a plug flow reactor (Macadam et al.
1996, Manzello et al. 2007).

As an example, Fig. 11.1 shows the EPA–PAH formed from ethylene pyrolysis
at 1,273 K at laboratory scale in a tubular reactor (Sánchez et al. 2012b). As it can
be observed, under these specific conditions a higher concentration of lighter PAH
(NAP and ACY, almost 60 % of the total) is formed. From Fig. 11.1, it is also
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deduced that the particle-gas phase PAH partitioning is an important issue to be
considered in this kind of experiments, especially for lighter PAH preferably
present at the gas phase, whereas the heavier ones are mainly found adsorbed on
the particle.

11.3 PAH Collection

The collection technique should consider that PAH can appear on different sur-
faces (soot and reactor walls) as well as at the outlet gas stream. This distribution
depends on their molecular weights, environment temperature, PAH concentration
and soot characteristics (Christensen 2003; Sánchez et al. 2012a). It must also be
taken into account that PAH cover a wide range of vapour pressures, e.g.
approximately 10.6 Pa for naphthalene versus 2.0 9 10-10 Pa for coronene, at
298 K in both cases (Finlayson-Pitts and Pitts 2000). Figure 11.2 shows the PAH
found in the particle phase and gas phase from biomass combustion in a cooking
stove (Shen et al. 2011). In agreement with the data of Fig. 11.1, in both cases the
lighter PAH remain preferentially at the gas phase, whereas the heavier ones show
almost complete association with particles.

Several works (e.g. Shen et al. 2011; Kim et al. 2012) on PAH distribution in
different conditions reveal the importance of considering their partitioning (par-
ticle-gas phase), especially when compounds involving only a few aromatic rings

NAP ACY ACE FLO PHE ANT FLA PYR BaA CHR BbF BkF BaP IcdP DBahA BghiP
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Fig. 11.1 PAH generated from ethylene pyrolysis at 1,273 K, with a fixed concentration of
30,000 ppmv in a tubular reactor (adapted with permission from Sánchez et al. 2012b. Copyright
2012 American Chemical Society)
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are evaluated, e.g. NAP and ACY. For airborne PAH both in gas and particle
phases, large volumes of air must be sampled to achieve a high enough concen-
tration factor. This is because their concentration in air at most locations is rela-
tively low (of order ng m-3) (Pandey et al. 2011), whereas in the laboratory, this
depends on the specific operating conditions.

11.3.1 PAH in the Gas Phase

The method for PAH sampling can vary depending on their partitioning in the
different phases. Beginning with the gas phase, NAP, ACY, methylnaphthalenes,
and other abundant and highly volatile PAH are frequently trapped with sorbent
materials. Polyurethane foam (PUF) and XAD resins are two of the adsorbents most
commonly used for PAH sampling in gas phase (e.g. Lee et al. 2004). Different
studies have proved that the XAD-2 resin exhibits a higher efficiency for PAH
adsorption and retention than PUF. Additionally, the XAD-2 resin shows higher
recovery of compounds with two and three aromatic rings, like NAP, which is
abundant in the combustion processes outlet gases (Chuang et al. 1987). Other
sorbent materials (e.g. XAD-4 and Tenax) have also been employed occasionally in
air sampling or under controlled laboratory conditions (e.g. Liu et al. 2001; Font
et al. 2003). Aromatic compounds can also be captured by other techniques, as
those used by Wornat’s group in their experiments (e.g. Somers et al. 2007).

NAP ACY ACE FLO PHE ANT FLA PYR BaA CHR BbF BkF BaP IcdPDBahABghiP
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Fig. 11.2 Stacked bars show the PAH emission from crop residues burned in the cooking stove
(combustion process) during a whole burning cycle (adapted with permission from Shen et al.
2011. Copyright 2012 American Chemical Society)
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Devices, like stainless steel probes or collectors equipped with a filter, for sampling
combustion products along the flame axis are used in flame studies (e.g. Ciajolo
et al. 2001; Bouvier et al. 2007; Andrade-Eiroa et al. 2010a). In conclusion, the
collection of PAH depends on the kind of specific experimental set-up used.

11.3.2 PAH in the Particle Phase

Semivolatile compounds, like PAH associated to particles, can be collected on
filters made of cellulose acetate, nylon or polytetrafluoroethylene (PTFE) (Mastral
et al. 1996, 2003), quartz and glass fibre (Ballesteros et al. 2010; Sánchez et al.
2012a). Frequently, in thermochemical experiments, when the temperature of the
outlet gas stream is high, glass or quartz fibre filters must be used. Therefore, it
must be emphasized, the best filter to be chosen is that viable for the specific
conditions used in the experiments (e.g. temperature, corrosion, high gas flow, size
of solid particle generated).

11.3.3 Example of an Experimental Set-up for Formation
and Collection of PAH

An experimental set-up used in the pyrolysis and oxidation of light hydrocarbons
(e.g. C2H2, C2H4, CH4), under well-controlled conditions, is shown in Fig. 11.3. It
has been successfully used in several works (e.g. Ruiz et al. 2007a, b; Esarte et al.
2009; Sánchez et al. 2012a, b) and consists of different systems, namely: (1) gas
feeding system, with mass flow meters and the gases to be fed; (2) reaction system,
in which the reaction takes place in a quartz tube reactor of 45 mm internal
diameter and 800 mm in length, since the reactor inlet and outlet are cooled by air
flow; (3) soot and PAH collection system; (4) gas analysis system for volatile
compounds. In the PAH-soot collection system of Fig. 11.3, the soot and their PAH
associated are captured on a filter with fixed dimensions (30 mm external diameter,
100 mm length, and pore diameter lower than 1 mm). The PAH present at the gas
phase are trapped when they pass through a tube packed with XAD-2 resin. The
results showed in Fig. 11.1 were obtained by using this experimental system.

11.4 Sample Preparation and Extraction

Due to the high volatility of the lower molecular weight PAH, samples containing
PAH must be preserved carefully (Li-bin et al. 2007). Filters with the particulate
matter and their PAH adsorbed should be folded on the inner side, stored in glass
bottles under refrigeration and analysed as quickly as possible.
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The analysis of PAH commonly requires their trapping on a solid surface. This
section will focus on the preparation of solid samples, which are to undergo elution
with solvent. However, it is also worth mentioning that there are other solvent-free
extraction techniques (not less important), such as the thermal extraction together
with solid-phase micro-extraction (e.g. Ballesteros et al. 2009).

Sample preparation and extraction appear to be the most time-consuming stages
in the analytical procedures (Luque de Castro and Luque de García 2002). The risk
for analyte loss is also highest during this step. Hence, it is usually considered the
bottleneck of PAH analytical methodologies. This represents one of the major
problems associated with analysis of PAH in different samples. Other problems
include: (1) most of PAH in environment samples are normally present in trace
amounts (Lee 2001). On the contrary, some samples formed under laboratory
controlled conditions contain high PAH amount, which can also become a serious
problem due to saturation of the material used to collect them; (2) many organic
compounds can be coextracted with PAH, which could interfere with their sub-
sequent separation, identification and quantification; and (3) most of PAH are
similar structurally and present isomeric forms, which makes difficult their sepa-
ration and identification (Chen et al. 1996; Lee 2001). Hence, it is very important
to choose an appropriate methodology for PAH determination, taking into account
all these problems in any particular case.

Solvent-based extraction techniques for PAH determination are an active area
of research and many novel techniques have been developed, some of them
described below.

Fig. 11.3 Experimental set-up used for the light C2 hydrocarbon pyrolysis and oxidation
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Ultrasonic extraction of PAH is a popular method because of both time and
solvent-saving (Li-bin et al. 2007). Nevertheless, due to the limited contact time
between the solvent and the sample, ultrasonic extraction may not be as rigorous as
other extraction methods (EPA 2000), especially when the target sample contains a
high PAH concentration. However, this technique has been used with success in
several works (Kado et al. 2000; Mastral et al. 2001; Christensen et al. 2005).

PAH extraction is also possible by means of microwaves, which are high fre-
quency (usually 2.45 GHz) electromagnetic waves that can be strongly absorbed
by polar molecules, whereas weak interaction occurs with non-polar solvents. This
results in accelerated extraction (through elevated temperatures) of polar com-
pounds from various matrices into non- or weak polar solvents. The efficiency of
extraction with microwaves lies in the ability of the bulk material to transform
electromagnetic radiation into heat, without the disadvantage of convection and
conduction, thus preventing loss of analyte (Lee 2001). The solvents commonly
used for PAH extraction with microwaves are hexane, acetone and dichloro-
methane (DCM), among others (Lee 2001). Some results on microwaves applied
for PAH determination are reported by Portet-Koltalo et al. (2008), who have used
this technique for extracting a complex mixture containing PAH, nitrated PAH and
heavy n-alkanes from a particularly refractory carbonaceous material resulting
from combustion in a diesel engine.

Accelerated solvent extraction (ASE) is a kind of pressurized-fluid extraction
method. Its advantage over classical techniques is to provide faster extraction
(5–15 min), and a relatively low consumption of organic solvents (Lee 2001).
However, ASE equipment is very expensive and this factor has limited its use.

Supercritical fluid extraction (SFE) is another technique commonly used in
PAH characterization, mainly in environment samples with low PAH concentra-
tion (e.g. Becnel and Dooley 1998; Librando et al. 2004). SFE uses supercritical
fluids (used as solvent) to seep through the pores of the sample, thus extracting the
analytes. CO2, NH3, C2H4, C2H6, N2O, C3H8, C3H6 and H2O are the most common
substances used in SFE (Li-bin et al. 2007). The use of SFE avoids the necessity of
a further extensive concentration and clean-up previous to analysis (Lee 2001).
EPA 3561 is a method recommended for PAH extraction from different sources by
using SFE (EPA 1996a). It suggests that the method performance demonstration
should be based on the extraction of a certified sample and, alternatively, a
comparison of SFE and Soxhlet extraction data using an environmentally con-
taminated PAH sample may be performed.

In this context, Soxhlet extraction is a reference extraction method for ana-
lysing the correct behaviour of emerging methods such as those above mentioned.
Filtration of the extract from Soxhlet extraction is not required and several
simultaneous extractions can be carried out by this inexpensive equipment (Luque
de Castro and Priego-Capote 2010). Moreover, it is not necessary to employ highly
qualified personnel for optimizing and carrying out extractions. In this way, the
Soxhlet method is a good option for laboratories with limited experience on
analytical chemistry or for researches not specifically devoted to the analytical
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procedures, or non-analytical research in general. Hence, the next section will be
focused mainly on this technique.

11.4.1 Soxhlet Extraction

Soxhlet extraction is a classical method because of its high extraction efficiency
(Li-bin et al. 2007). Nowadays, it represents the main method of reference to
compare the recovery obtained with other extraction techniques (e.g. Song et al.
2002; Gfrerer et al. 2004). Soxhlet extraction has some attractive advantages, since
the sample is repeatedly soaked in fresh portions of solvent, facilitating the dis-
placement of the transfer equilibrium.

Due to amount of PAH generated in combustion experiments, mainly when
light hydrocarbons (e.g. soot precursors such as C2H2, C2H4) are burned in fuel
rich conditions, the Soxhlet extraction is a good option. Indeed, the high solvent
volume used avoids the saturation of the extract, which may cause wrong results.
The solvent from the Soxhlet extraction can be recovered by rota-evaporation and,
after a distillation process, it could be used again.

The thermochemical processes group (GPT) of the Aragón Institute of Engi-
neering Research (I3A) of the University of Zaragoza has developed and opti-
mized an analytical method for PAH determination (Sánchez et al. 2013), which is
shown as an example of an extraction procedure applied to samples obtained from
pyrolysis processes. This method (GPT-I3A) includes the collection of PAH as
explained in Sect. 11.3, followed by sample treatment using the Soxhlet extraction
and subsequent extract analysis using gas chromatography coupled to mass
spectrometry (GC–MS).

Prior to Soxhlet extraction, each sample is placed in a cellulose cartridge,
whose packaging consists of quartz wool at the bottom, followed by 3 g of sodium
sulphate anhydrous to absorb sample moisture. The target sample with 10 lL of a
solution of the five deuterated internal standards is added after the drying com-
pound. Then, the cartridge is covered with quartz wool to prevent sample loss
during extraction cycles. Finally, the cartridge, as a whole, is situated inside the
thimble of the Soxhlet extractor.

Internal standards are used for correcting the possible losses of analytes during
sample preparation, since the chromatographic signal of both the target compound
and its internal standard have a similar response. Thus, if target compounds are lost
during sample treatment, a proportional amount of their internal standard is lost as
well. This ratio of signals, which is independent on the sampling history, is used to
obtain the calibration curves and subsequently, the analyte concentration (Ferreira
2007).

Once the cartridge with the sample is placed within the thimble of the Soxhlet
extractor, it is gradually filled with solvent from a distillation flask. The assembly
extractor is operated as a batch system, since vapours of solvent move up to a
condenser and flood over the thimble. When the liquid reaches the overflow level,
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a siphon aspirates the solvent from the thimble-holder and unloads it back into the
distillation flask (Luque de Castro and Priego-Capote 2010). This process is
repeated until complete extraction is achieved. The extraction time for the opti-
mized method is fixed at 24 h using a total amount of 200 mL of dichloromethane
(DCM) and 4 extraction cycles per hour, in accordance with the EPA method
3540C (EPA 1996b). Other solvents can also be used, such as acetone, ethanol and
hexane. Similar conditions have been used by other authors (Levendis et al. 2001;
Moltó et al. 2005, 2011). Xue et al. (2007) showed that using Soxhlet extraction
24 h is suitable for PAH extraction from different coal samples, with DCM more
effective than hexane.

Sometimes, PAH are present at low concentration, and thus further concen-
tration of the extract is needed because of the large amount of solvent present. The
most common solvent concentration process is done by rota-evaporation followed
by a micro-concentration under gentle nitrogen stream. This is especially valid for
relatively clean samples, since an additional careful concentration is required to
achieve the detection limits. The aromatic compounds may be lost during the
evaporation process of the solvent. For this reason, the sample concentration is
another critical step during the sample treatment. In this way, compounds such as
DCM offer an advantage due to their low boiling point, far below of those at which
target compounds are evaporated, thus avoiding significant losses of analytes.

11.5 Identification and Quantification of PAH

The complex characterization of the PAH extract requires that analytical proce-
dures must be able to detect relevant substances in a mixture of compounds with a
wide range of volatilities, sizes and polarities. In case very little amount of
material is available, PAH can be advantageously desorbed from material (soot)
and then identified by using laser desorption/laser ionisation/mass spectrometry
technique as detailed in Chap. 12. Additional studies using laser diagnostic
techniques for determining the PAH-soot distribution and for their characterization
are reported in Wartel et al. (2010) and Furuhata et al. (2012).

Others use chromatographic methods such as reversed-phase high performance
liquid chromatograph with ultraviolet detection (HPLC-UV) or GC–MS, com-
bined with extraction processes (Poster et al. 2006; Borrás and Tortajada-Genaro
2007; Andrade-Eiroa et al. 2010a, b). Nevertheless, other techniques have been
used (e.g. supercritical fluid chromatography and capillary electrophoresis) but are
not generally acceptable (Lee 2001).

The capillary column technique in GC, used to separate PAH, has progressed
since the sixties and has now become the standard method for the determination of
these compounds. The main advantage of using GC for PAH analysis is that a
slight modification of an existing GC protocol is usually enough to meet the
requirements of a particular application. Further, by adjusting the carrier gas flow
rate, temperature programming, and switching to a similar stationary phase,
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different types of matrices can be effectively analysed using GC with detectors
such as flame ionisation detection (FID). However, GC–MS coupling is nowadays
preferred for the analysis of complex matrices. Mainly, the application of selected
ion monitoring (SIM) represents an integrated tool for separation, identification,
and quantification of PAH, because generally it affords greater selectivity, reso-
lution and sensitivity than other techniques (Lee 1995; Poster et al. 2006).

Determinations of PAH from combustion in flow reactors by using GC–MS
have been carried out over the past twenty years. Howard et al. (1995) studied the
concentration ratios of the isomer pairs of some PAH in ethylene combustion with
naphthalene injection using a plug flow reactor. The main objective of this work
was to evaluate the mutagenic effect of the combustion products. Durlak et al.
(1998) used GC–MS for determining PAH from polystyrene combustion in order
to evaluate the feasibility of incineration for this material. Another point of view
was considered by Wornat’s group (Ledesma et al. 2002) who analysed PAH by
means of GC–MS to obtain kinetic parameters on PAH formation relevant to the
combustion of solid fuels. Other works (Thomas et al. 2007; Thomas and Wornat
2008, 2009) using GC–MS have been developed throughout this decade with
different purposes, such as those developed by connecting a laminar flow muffle
furnace to a laminar flow reactor for the combustion of different polymers, and
using GC–MS to determine PAH (Wang et al. 2002, 2003).

HPLC has also been applied for several years ago in PAH separation. This
technique is the method of choice for analysing moderate to high molecular weight
PAH (Furton and Pentzke 1998; Ledesma et al. 2002). It also offers advantages,
such as selectivity and use of sensitive detectors, as well as the possibility to be
used as a PAH fractionation to other chromatography techniques, even though, it
also provides high efficiency and short analysis time (Ferreira 2007).

The analytical method optimised by the GPT-I3A of the University of Zaragoza
allows the determination and quantification of PAH by means of GC–MS, and it is
presented here as an example of technique for determination of PAH in thermo-
chemical processes. Chromatographic conditions used are shown in Table 11.2.
The different parameters were chosen following the EPA recommendations (EPA
1998b, 1999). All analyses are performed in the SIM mode of the MS in order to
enhance the selectivity and sensitivity of the method. Table 11.3 shows the SIM
profile programmed in the MS for PAH quantification; values in bold refer to the
ion used for quantification and the MS window time in which each ion is moni-
tored. The GC-MS system consisted of a 7890A gas chromatograph with a 7683B
autosampler coupled to a MSD 5975C mass selective detector from Agilent
Technologies. The capillary column was a DB-17 ms 60 m 9 0.25 mm
ID 9 0.25 lm film thickness also supplied by Agilent.

It is important to highlight that prior to the application of any method, an
appropriated calibration of every compound together with validation of the method
must be carried out in order to ensure the quality of results. It is common to use
standard reference materials (SRM) with similar matrices to those which will be
analysed to ensure that the method provides good agreement with the values of
certified materials. The GPT-I3A method was validated using SRM 1650b, a fully
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Table 11.2 GC-MS
operating conditions

Parameter Value

Carrier gas Helium at 1 mL min-1

Injection mode Splitless
Injection volume 1 lL
Injector temperature 300 8C
Temperature program
Initial temperature 80 8C
Initial hold time 15 min
Ramp rate 1 5 8C min-1

Final temperature 1 110 8C
Hold time 1 5 min
Ramp rate 2 5 8C min-1

Final temperature 2 290 8C
Hold time 2 35 min
Ramp rate 3 1.5 8C min-1

Final temperature 3 320 8C
Final hold time 3 5 min
Transfer line temperature 280 8C

Table 11.3 Monitoring
ion profile (SIM)

Compounds Monitored ions MS window
time (min)

Naphthalene 128–129 31.00–36.00
Naphthalene-d8 136–108
Acenaphthylene 152–153 43.00–47.00
Acenaphthene 154–153
Acenaphthene-d10 164–162
Fluorene 166–165 47.01–56.00
Phenanthrene 178–179
Anthracene 178–179
Phenanthrene-d10 188–189
Fluoranthene 202–203 58.00–63.00
Pyrene 202–203
Benzo(a)anthracene 228–226 67.00–72.00
Chrysene 228–226
Chrysene-d12 240–236
Benzo(b)fluoranthene 252–253 81.00–84.00
Benzo(k)fluoranthene 252–253
Benzo(a)pyrene 252–253 88.00–93.00
Perylene-d12 264–260
Indeno(1,2,3-cd)pyrene 276–277 110.00–114.00
Dibenz(a,h)anthracene 278–279
Benzo(g,h,i)perylene 276–277 116.00–120.00
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characterized soot from a diesel engine (NIST 2006), and a commercial soot used
as diesel soot surrogate called Printex-U. The recoveries of the EPA–PAH for
SRM 1650b were higher than 80 % in most of the cases and the PAH analysis
using the Printex-U showed good method repeatability with a standard deviation
for individual PAH as low as 0.5 ppmv (Sánchez et al. 2013). This fact proves its
effectiveness to be applied in samples containing PAH formed in pyrolysis
processes.

Figure 11.4 shows some results of individual PAH concentration obtained by
using the analytical method developed by the GPT-I3A. These outcomes were
obtained from ethylene and acetylene pyrolysis operating under different reaction
temperatures ranging between 1,073 and 1,323 K. Extended details can be found
elsewhere (Sánchez et al. 2010, 2012a, b).

11.6 Summary

The aim of this chapter is to provide practical information about different proce-
dures to be used in the determination and quantification of PAH, mainly coming
from thermochemical processes.

The methodology for quantifying the PAH usually consists of: (a) an efficient
sample collection, (b) the sample treatment, and (c) the quantification of target
compounds. During step (a), the different surfaces where the PAH can be adsorbed
should be taken into consideration. PAH associated with particulate matter or/and
at the gas phase are typically found in thermochemical processes. Frequently, this
latter fraction is collected by sorbent materials (e.g. XAD resins and/or polyure-
thane foam, PUF). At the gas phase in flames, PAH can be collected by using
apparatus like stainless steel probes or collectors, equipped with a filter for sam-
pling combustion products along the flame axis. Thus, in general, the suitable
collection depends on the facility where PAH are formed. PAH adsorbed on soot
are often collected on filters. In the second stage, (b), the collection of samples is
normally followed by an extraction process. Finally, in the (c) stage, the obtained
extract is usually characterized by chromatographic techniques. Other approaches
for PAH characterization, not requiring the extraction step, include laser diagnostic
techniques which are commonly used in flames.

Despite of the fact that solvent-free techniques such as solid-phase microex-
traction (SPME) can be successfully used for PAH analysis, those based on sol-
vents are normally preferred for extraction of samples from thermochemical
processes. Some examples of solvent-based techniques include: ultrasonic
extraction, extraction by microwaves, supercritical fluid extraction (SFE), accel-
erated solvent extraction (ASE) and Soxhlet extraction.

The high performance liquid chromatography with ultraviolet detection
(HPLC–UV) and the gas chromatography-mass spectrometry (GC–MS) are the
techniques mainly used for the identification and quantification of PAH.
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Nowadays, successful combinations of these techniques have been used for
attaining the best results during the PAH speciation from thermochemical pro-
cesses. Our experience suggests that the mentioned method (GPT-I3A), including
the collection of PAH by using XAD-2 resin and quartz filters, followed by
Soxhlet extraction of the samples and PAH quantification by means of GC–MS,

Fig. 11.4 Experimental results of PAH concentration obtained by GPT-I3A method, in the
pyrolysis of acetylene and ethylene at different reaction temperatures: a 1073 K, b 1123 K,
c 1173 K, d 1223 K, e 1273 K and f 1323 K (reprinted with permission from Sánchez et al.
2012b. Copyright 2012 American Chemical Society)

11 Formation and Characterization of Polyaromatic Hydrocarbons 297



would be a good procedure for application to thermochemical processes. The main
reasons include its proved effectiveness, as well as the fact that it does not require
expensive equipment and its simplicity to be applied by limited analytical expe-
rience staff.
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