
Chapter 5
A Semantics-Based, End-User-Centered
Information Visualization Process for Semantic
Web Data

Martin Voigt, Stefan Pietschmann, and Klaus Meißner

Abstract Understanding and interpreting Semantic Web data is almost impossible
for novices as skills in Semantic Web technologies are required. Thus, Informa-
tion Visualization (InfoVis) of this data has become a key enabler to address this
problem. However, convenient solutions are missing as existing tools either do not
support Semantic Web data or require users to have programming and visualiza-
tion skills. In this chapter, we propose a novel approach towards a generic InfoVis
workbench called VizBoard, which enables users to visualize arbitrary Semantic
Web data without expert skills in Semantic Web technologies, programming, and
visualization. More precisely, we define a semantics-based, user-centered InfoVis
workflow and present a corresponding workbench architecture based on the mashup
paradigm, which actively supports novices in gaining insights from Semantic Web
data, thus proving the practicability and validity of our approach.

5.1 Introduction

With the advent of the Semantic Web technologies like RDF, RDFS, and OWL,
more and more organizations publish their information as so-called Linked Open
Data in the form of open semantic knowledge bases.1 Consequently, there is an
increasing need for tools to manage and process this rapidly-growing amount of
data. One important aspect in this regard is how to enable end-users, i.e., knowledge
workers, to analyze and gain insights from these data sets. Unfortunately, this task
is mainly reserved to tech-savvy users (Dadzie and Rowe 2011). Here is why:

1As of February 2013, the Data Hub (http://thedatahub.org/) hosts about 5100 data sets from vari-
ous domains.
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Primarily, end-users lack an understanding of Semantic Web data, its syntax and
structure. They may know spreadsheets and have an idea what the rows and columns
mean. However, they do not (and need not) know about concepts like triples, multi-
ple inheritance, or that properties are not hardly tied to classes. Hence, tools need to
present Semantic Web data in a reasonable, understandable way.

Various RDF browsers (Dadzie and Rowe 2011) and ontology visualization
methods have been proposed (Katifori et al. 2007). However, they are usually lim-
ited to graph- or list-based data representations and thus do not exploit capabilities
of prevalent visual analytic systems, e.g., support for generic charts, multiple coordi-
nated views, iterative mapping refinement, or the recommendation of visualizations.
Even more important, they are tailored (and limited) to specific domains and data
sets.

Unfortunately, well-established, generic InfoVis tools like Tableau2 do not sup-
port Semantic Web data, and there is no sign this is going to change soon. While
slowly, more promising concepts for generic RDF InfoVis are emerging like the
SPARQL result set visualization from the Data-Gov project (Ding et al. 2010), they
require users to employ expert knowledge in Semantic Web, programming and vi-
sualization.

Finally, even with proper Semantic Web InfoVis tools at hand, interpreting and
finding the right visualization for a certain data set and goal is a challenging task for
novices, because they lack the necessary visualization knowledge (Grammel et al.
2010). Knowledge-assisted visualization (Chen et al. 2009) tries to fill this gap by
using formalized expert knowledge and reasoning. Despite innovation in this direc-
tion, existing solutions, such as (Kadlec et al. 2010; Wang et al. 2009), are domain-
specific, self-contained, and not applicable for Semantic Web data. Furthermore,
they do not recognize and incorporate context information of the used device, e.g.,
screen estate, and the user, e.g., explicit or implicit preferences, to present the data
in a suitable manner.

In this chapter, we propose a novel concept for a generic, user-centered InfoVis
workflow geared towards novices, which allows for the context-aware mapping of
arbitrary data to appropriate visualization components. Further, we present the key
challenges as well as our solutions for its application on Semantic Web data. Finally,
we give an architectural overview of our InfoVis workbench VizBoard which im-
plements our novel approach based on the mashup platform CRUISe (Pietschmann
2009) and, thus, allows for presenting any Semantic Web data in a dashboard-like,
composite, and interactive visualization.

Our chapter is structured as follows: After giving a brief overview of related
work in the next section, we introduce the foundations of our concept in Sect. 5.3:
a context-aware application composition framework and a visualization knowledge-
base. In Sect. 5.4 we define a novel, user-centered InfoVis workflow which employs
shared semantics to assist the visualization process. Further, we highlight the chal-
lenges and solutions found while realizing this workflow for Semantic Web data.

2http://www.tableausoftware.com/.

http://www.tableausoftware.com/
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Then, Sect. 5.5 presents a corresponding software architecture which realizes the
process based on the mashup platform CRUISe to illustrate and evaluate its appli-
cability. Finally, we discuss our findings and point out future work in Sect. 5.6.

5.2 Related Work

Both the Semantic Web and InfoVis have received lots of attention by the research
community in the recent years. Thus, we need to analyze existing concepts with
respect to the goals and challenges lined out in the previous section. First, we give an
overview of how knowledge models can assist the visualization process in general.
Thereafter, we analyze existing generic approaches for the visualization of Semantic
Web data.

5.2.1 Understanding and Supporting the Visualization Process

As mentioned before, the vision of a semantics-based InfoVis for novices requires
both a formal knowledge model and a structured process which defines how to
bridge the gap from raw data to an appropriate graphical representation. To this
end, various visualization-specific process models and InfoVis concepts addressing
novices have been proposed.

The pipeline model is commonly used to describe visualization as a process.
In its elementary version it defines a sequence in which raw data is filtered and
enriched, mapped to an abstract visualization specification, and finally rendered to
a displayable image (Haber and McNabb 1990). This model has been successively
enhanced, e.g., to include the user and his tasks (Card et al. 1999) or to allow for
the coordination of independent views (Boukhelifa et al. 2003). In contrast to our
work, the pipeline model focuses firstly on system-side functionalities and not on the
(lay-)user in his struggle to gain insights from his data. Further, it does not employ
formalized knowledge to represent which graphic representation is the best within a
specific context.

Within the area of knowledge-assisted visualization, several authors have pro-
posed ways to support the visualization process using knowledge models. Wang
et al. (2009) describe how knowledge “moves” through the visualization process in
a number of conversion steps, e.g., to externalize tacit user knowledge to explicit
system knowledge. Yet, information on how to employ these steps in generic In-
foVis systems to assist users in visualizing (Semantic Web) data, is missing. Chen
et al. (2009) sketch a high-level knowledge-based infrastructure in parallel to the
visualization system, which extracts information from data and uses it together with
predefined expert knowledge to adapt the visualization process. Despite the similar
goals, users’ interaction steps and the integration of the formal knowledge in every
stage of the InfoVis process is missing.
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Both the pipeline model and knowledge-assisted visualization are primarily fo-
cusing on how a system can create appropriate visualizations. An additional, or-
thogonal aspect we consider important in our work is active user support. The first
notable guidelines in this direction were given by Heer et al. (2008). They include
easy data input, user assistance in selecting graphical representations, and the use of
default mappings from data to visual variables. These principles have been under-
pinned by a recent user study (Grammel et al. 2010), wherein the authors suggest
some additional guidelines and requirements, such as (semantics-based) search fa-
cilities to narrow the data set, adaptation to the iterative nature of the visualization
process, and support for partial and uncertain input specifications of novices. Fi-
nally, Shneiderman’s mantra (Shneiderman 1996) defines the most fundamental de-
sign guideline for all interactive systems addressing information search: “Overview
first, zoom and filter, then details-on-demand”. This is especially true for novices,
who need a lightweight overview of the Semantic Web data before they dive into
details in an iterative way afterwards.

In summary, previous work shares our goal of actively supporting novices during
the InfoVis process by providing valuable advices. However, only Grammel et al.
emphasize the power of semantics to support novices.

5.2.2 Information Visualization of Semantic Web Data

With the growing amount of Semantic Web data sets, more and more methods (Kat-
ifori et al. 2007) and tools (Dadzie and Rowe 2011) for their visualization have been
proposed. Mostly, they focus on text- or graph-based visualization and are tailored
towards special purposes and data sets. In the following, we focus on the few very
generic InfoVis approaches.

An increasing number of US governmental data is made accessible in RDF (Ding
et al. 2010) by the Open Government Directive. Tutorials on their visualization using
popular APIs and widget libraries are published3 which imply, that every user has
the freedom to build his or her InfoVis of choice. Unfortunately, these tutorials—
including a proxy for data transformation—are little help for novices, as Semantic
Web, programming, and visualization skills are needed for their use.

Alternatively, the UISPIN framework provides means to describe user interfaces
for rendering Semantic Web data. This includes a chart library4 with various widgets
to visualize Semantic Web data. The library can be embedded in Semantic Web
tools, as it is the case for the TopBraid Composer.5 Thereby, users can include charts
without programming skills, but still need to define SPARQL queries for the data
to be visualized. As further assistance, e.g., recommendation of suitable widgets, is

3http://data-gov.tw.rpi.edu/wiki/How_to_use_Google_Visualization_API.
4http://uispin.org/charts.html.
5http://www.topbraidcomposer.com.

http://data-gov.tw.rpi.edu/wiki/How_to_use_Google_Visualization_API
http://uispin.org/charts.html
http://www.topbraidcomposer.com
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missing, users must know, which visualization to choose and how to define queries
in SPARQL.

A solution to one of these problems is given by Leida et al. (2010), who anno-
tate SPARQL queries with a shared vocabulary of visualization-specific concepts to
(semi-)automatically map RDF data to graphic representations. Since this promis-
ing approach focuses on the mapping only, a concrete semantic model for defining
visualization-specific knowledge is missing as well as its integration in an overall,
(lay-)user-centered InfoVis workflow.

Finally, Mazumdar et al. (2012) propose the .view. framework which employs
the dashboard metaphor to visualize Semantic Web data with well-know charts in
multiple views. We are also developing an interactive system to provide composite
visualization of any RDF data but our approach is more sophisticated as we employ
semantic models to allow for a context-aware, automatic mapping of data to the
widgets without the need to manually define any configuration files for the data set.
Furthermore, we provide a user-centred workflow comprising a data filtering and
widget selection geared towards novices.

All in all, current solutions from this field solely focus on the visualization of
SPARQL query results. Their common limitation on SELECT statements implies,
that graph-based visualizations are mostly excluded, even though these are better
suited and commonly used for Semantic Web data. With these concepts we share
the idea of combining arbitrary data sources with existing, web-based widgets from
different libraries, following the mashup paradigm. However, and most importantly,
prevalent solutions do not support novices adequately.

Before we present our concepts of a user-centered visualization process, the next
section provides details about the conceptual and practical basis we are building on.

5.3 Conceptual Foundation

As can be seen from the discussion so far, realizing a context-aware InfoVis work-
flow is far from trivial, since a broad number of challenges has to be addressed. To
this end, our solutions and the corresponding tooling are built on top of existing
concepts and practical results from other research projects.

Most importantly, we use the concept of universal application composition which
allows us to freely combine two types of building blocks: (semantic) data sets and
generic visualization components. This composition is supported by visualization
knowledge formalized as an ontology. In the following, we present some insights
on these foundations.

5.3.1 Universal Context-Aware Mashup Composition

In our work, we build on the results from the CRUISe project (Pietschmann 2009),
which provides a conceptual foundation as well as an ecosystem for the dynamic,
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Fig. 5.1 Architectural
overview of the CRUISe
ecosystem

context-aware composition of web applications from distributed building blocks.
The following paragraphs provide a brief overview of the corresponding concepts
and infrastructure parts illustrated in Fig. 5.1.

The idea of universal composition implies a uniform component model, to which
all parts of an application adhere. Such components are black-box pieces of inde-
pendent software that provide a dedicated functionality. It is important to note, that
this explicitly includes user interface, i.e., visualization components to be reused in
different contexts.

In our conceptual space, components are characterized by three abstractions, na-
mely Property, Event, and Operation. The set of properties resembles the compo-
nent state and allows for its configuration. Whenever the internal state changes,
events are issued to inform the runtime system and other components. Finally, state
changes, calculations and other arbitrary functionality of a component can be trig-
gered by invoking its operations with the help of events. Events and operations may
themselves contain semantically typed parameters, thereby realizing the data flow
between components.

Using the Semantic Mashup Component Description Language (SMCDL), com-
ponents are described in a platform-independent, declarative way—comparable to
WSDL for the description of web services. SMCDL is used to specify the above-
mentioned interface parts as well as non-functional properties and information on
how concrete implementations are bound to the abstract interface at runtime.

End-user-oriented authoring tools are employed to create interactive applications
from these components, e.g., including search and recommendation features. Those
applications can be expressed formally as instances of the Mashup Composition
Model (MCM) (Pietschmann et al. 2010)—a description of the components, the
data and control flow, the visual layout and the adaptive behavior of a composition
on a platform-independent level.

For the visualization of Semantic Web data, our goal is to create a step-by-step
InfoVis workflow which semi-automatically binds generic visualization components
to given data providers, e.g., by finding and recommending suitable components
with respect to a given context, resulting in a composite application.
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For the interpretation and execution of universal compositions, CRUISe has come
up with a reference architecture of a Mashup Runtime Environment (MRE) and the
corresponding infrastructure. During the model interpretation, a MRE requests com-
ponents from a given Component Repository (CoRe). The latter always returns those
component instances, which fit the application requirements and context best. In
this discovery process, both implicit and explicit rules are used, e.g., to consider the
technological compatibility (implicit) or user preferences (explicit). There are more
services involved in the composition, but those are the main ones involved in our
approach.

This integration process and composition infrastructure form the basis for our
InfoVis workflow, as it allows to include visualization knowledge in the dynamic,
context-aware composition of applications. To realize this vision, a formalized rep-
resentation of this knowledge is required, though. Therefore, the next section intro-
duces a modular visualization ontology, which does just that.

5.3.2 Formalizing Visualization Knowledge

The fundamental problem of InfoVis, regardless if done manually or automatically,
is to find an appropriate mapping between data and visual attributes. Therefore,
visualization knowledge is required. Tools like Tableau already provide limited sup-
port for novices, who lack this kind of knowledge. However, they do not cover the
complete parameter space, e.g., including the used device or users’ preferences. As
mentioned in Sect. 5.2, few approaches facilitate semantic technologies to assist the
visualization process, yet a generic, formal, and freely distributed knowledge model
is still missing.

For this reason, we developed the modular visualization ontology (VISO, cf.
Fig. 5.2-1) (Voigt and Polowinski 2011). It provides a well-documented vocabu-
lary of concepts and relations to formally describe data, graphics, human activity,
as well as the user and system context. Since we focused on the first two modules,
we re-used existing and well-established ontologies whenever possible, such as the
DEMISA task ontology (Tietz et al. 2011). Based on the defined entities, we also
modeled factual expert knowledge (cf. Fig. 5.2-2), e.g., that using position instead
of color coding is more suitable to visualize quantitative data, which is used to
rank different mapping alternatives. Equally, users’ input data (cf. Fig. 5.2-3) can
be annotated with visualization semantics, e.g., an RDF property price may have a
quantitative scale of measurement and an assigned domain UnitPriceSpecification
of the GoodRelations ontology.6

With the help of VISO, user interface components of the CRUISe ecosystem can
be described (cf. Fig. 5.2-4) with regard to visualization specific aspects. Therefore,
the domain-independent SMCDL is extended to link to VISO concepts and prop-
erties. We annotate the data structures of the component interface—in Operations,

6GoodRelations ontology: http://purl.org/goodrelations/v1.

http://purl.org/goodrelations/v1
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Fig. 5.2 Generic visualization ontology (VISO) as conceptual foundation of our visualization
workflow (reprinted from Voigt et al. 2012d)

Events, and Properties—the kind of graphic representation used (map, scatter plot),
the visual complexity (high, low), or the interaction potential (zoom, filter). Finally,
the user and system contexts (cf. Fig. 5.2-5) are represented based on CRUISe’s
context service (cf. Fig. 5.1), e.g., in terms of preferences and user skills, the display
size or the available software infrastructure.

All in all, by using VISO as a common vocabulary, all stakeholders of an Info-
Vis process, including contextual information, are combined in one knowledge base,
thereby facilitating the context-aware recommendation of visualization components.
In the following section, we present the steps of this semantics-driven InfoVis work-
flow in detail.

5.4 Context-Aware Information Visualization Workflow
for Semantic Web Data

To address the problems lined out in Sect. 5.1, we propose a novel interactive, user-
driven InfoVis workflow (cf. Fig. 5.3) which builds on the common semantic vocab-
ulary provided by VISO and some insights retrieved from related work discussed
in Sect. 5.2. The workflow can be applied to arbitrary data models, however, the
following discussion specifically focuses on the visualization of RDF data and the
corresponding challenges.

The workflow design is inspired by the way (lay-)users naturally interact when
analyzing data. It consists of five stages users needs to pass: choosing or uploading
a data set (cf. Fig. 5.3-1), getting an overview of the data and choosing a subset (cf.
Fig. 5.3-3), selecting relevant data variables and suitable visualization components
(cf. Fig. 5.3-5), configuring them (cf. Fig. 5.3-7) and, finally, interacting with the
rendered data to gain the desired insights (cf. Fig. 5.3-9). Due to the interactive
nature of the visualization process, users can sequentially pass through, but may
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Fig. 5.3 Overview of the semantics-based visualization workflow (reprinted from Voigt et al.
2012d)

also move backwards. For instance, the configuration step can be skipped by using
default mappings. Furthermore, users may choose to search and integrate multiple,
alternative visualizations to benefit from multiple coordinated views of their data
after completing the workflow.

This user-driven process is supported by five system-side functionalities which
make use of the VISO (the lower rectangles in Fig. 5.3). Elementary functionalities
like storing, querying, and supplying the data, graphic representations or knowledge
are omitted from the figure for the purpose of simplification. In the following, we
discuss each step of the workflow, point to major requirements and obstacles to
realize them, and—as far as we already solved them—present our solutions.

5.4.1 Data Upload and Augmentation

The starting point of every visualization process is the provision of the data set,
i.e., raw data (Card et al. 1999) (cf. Fig. 5.3-1). This data first needs to be trans-
formed into a suitable format for the remaining process steps. After this, it must to
be augmented (cf. Fig. 5.3-2) with visualization-specific knowledge, e.g., the kind
of scale of measurement (nominal, ordinal, or quantitative), using the VISO vocab-
ulary. This (semi-)automatic augmentation is the foundation for nearly all of the
following system-side tasks, like the recommendation of appropriate visualization
components or their coordination support.

The Data Upload is the most trivial part of the complete workflow. It requires
the user to select an RDF or OWL file, a URI of a data dump or a Web service API
and to submit it to the visualization system. It is also possible to support other data
formats, like tabular (spreadsheets, etc.) or relational data sets (MySQL database)
through a transformation step, as indicated in Fig. 5.4-2. In these cases, the data
needs to be transformed into RDF triples using corresponding APIs. Especially for
the mapping from relational databases to RDF a broad range of tools is already
available (Sahoo et al. 2009).

Data Augmentation is split in two parts: First, evident visualization knowledge
about the data is reasoned using information-retrieval techniques (cf. Fig. 5.4-3).
Second, the data is augmented with this semantics using the VISO vocabulary
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Fig. 5.4 Data upload and augmentation in more detail

(cf. Fig. 5.4-4). Here, the benefits of the Semantic Web come in handy, as the data
can be easily linked to other concepts.

In this augmentation step, four distinct analyzers can be employed: (1) a schema
analyzer which extracts information about simple data types if they are not explic-
itly provided; (2) an instance analyzer which calculates metrics like the number
of distinct instances; (3) a lexicographical analyzer to identify more generic con-
cepts as well as categories from DBPedia7 with help of the WordNet8 knowledge
base to provide additional information to support the data to visualization mapping
step; (4) a rule engine can be used to add custom relationships in a flexible manner.
A common problem is the automatic identification of the Scale of Measurement of
a property according to its basic data type, instances, and already identified domain
concepts. A typical example would be to identify that a property called “school
grade” has an ordinal scale instead of a nominal.

In the end, the annotated RDF graph needs to be stored within a homogeneous
data layer—an RDF triple store—to allow for system-wide uniform data access in
the following workflow steps (cf. Fig. 5.4-5). As a side note, we suggest to include
a manual step in order to let an expert check and edit the automatically generated
annotations and the declarative rules.

5.4.2 Data Pre-Selection and Reduction

One of the key problems of a generic approach to visualize Semantic Web data is the
size of the data sets. In contrast to the findings of Sicilia et al. (2012) that most OWL
ontologies are small and flat, there exist quite a number of huge OWL ontologies,
especially in the public and medical sectors, e.g., the NCI thesaurus.9 Moreover,

7DBPedia: http://dbpedia.org/About.
8WordNet: http://wordnet.princeton.edu/.
9http://ncicb.nci.nih.gov/download/evsportal.jsp.

http://dbpedia.org/About
http://wordnet.princeton.edu/
http://ncicb.nci.nih.gov/download/evsportal.jsp
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Fig. 5.5 Screenshot of our first prototype of the pre-selection

OWL has not yet “arrived” in the Linked Open Data (LOD) cloud (Glimm et al.
2012), which heavily relies on RDF and RDFS sets. Currently, it comprises 295 sets
with approximately 32 billion triples, which implies an average 107 million triples
per data set.10

In order to handle this amount of data, two challenges have to be addressed:
First, the data sets must be visualized in an understandable, interactive manner with
the goal to select classes, properties, or instances for more in-depth informations
visualizations (cf. Fig. 5.3-3). Second, techniques are required to reduce the data
sets to the relevant entities and point to interesting areas for the user respectively
(cf. Fig. 5.3-4). In the following, we present our solutions to these challenges.

Based on Shneiderman’s mantra, the purpose of the Data Pre-Selection (cf.
Fig. 5.3-3) is to give users a high-level view of a data structure. Through inter-
actions like zooming, panning, searching, or filtering he is able to find interesting
subsets of the data which are selected for an in-depth Information Visualization
through suitable components afterwards. For our InfoVis workflow this means to
provide novices with intelligent visualizations and convenient metaphors to interact
with data sets of more than a million entities.

A first prototype of a corresponding user interface is shown in Fig. 5.5. Its devel-
opment is based on best practices from related tools, e.g., the TopBraid Composer11

as well informal user studies with software prototypes. The frontend comprises the

10Information based on the State of the LOD Cloud report from October 2011, http://www4.
wiwiss.fu-berlin.de/lodcloud/state/.
11TopBraid Composer: http://www.topquadrant.com/products/TB_Composer.html.

http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://www.topquadrant.com/products/TB_Composer.html
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following parts: At the left, we offer various options to filter the data (1) by terms
and facets, which are discussed below. The main view (2) shows all resources of the
selected type (classes, properties, or instances). Within this view, users may zoom
and pan while always having an overview of the dataset in (3). Further, the proto-
type offers methods for clustering, key concepts extraction, and path finding as well
as different graph layouts (4). On the right (5), users may see and traverse the hier-
archy of the resources selected in the main view. Of course, the size of both views
can be adapted on-demand. Our solution also offers a “basket” (6), which allows to
bookmark and collect resources of interest for later investigation or visualization. At
the bottom (7) a time line shows breakpoints of user interactions in different colors,
e.g., setting up a filter or zooming. Clicking them allows users to undo their interac-
tions up to this task. Finally, the UI suggests interesting resources (8) depending on
user selections, which are calculated using the pivoting algorithm sketched below.

All in all, the user interface for the Data Pre-Selection is functionally rich and
allows for a versatile navigation and reduction of the dataset. Unfortunately, pre-
liminary user tests show that lay-user are still overburdened to some extend. Hence,
we are going to conduct a broader user study to identify the right balance between
functionality and user satisfaction.

To assist the Data Pre-Selection in the frontend, a Data Reduction (cf. Fig. 5.3-4)
must take place. Therefore, we suggest to use different data mining strategies as
proposed in Fayyad et al. (1996): classification, clustering, summarization, or link
analysis. Unfortunately, many of those techniques are commonly geared towards
tabular data or relational databases. Thus, an adaptation is required which necessi-
tates a distinction of the different ingredients of an ontology, namely classes, (object
and data) properties, and instances. Currently, our conceptual workflow includes the
following techniques in combination to allow for differentiated data reduction.

Faceted-Based Filtering Based on different kinds of metrics, facets and facet values
can be created to allow for a target-oriented data filtering. The metrics calculation
depends on the resource type. For classes we suggest to use topological character-
istics like the number of subclasses, the number of instances, and the betweenness
(Brandes 2001). Properties can be filtered using their domain, range, and hierarchy.
Finally, instances may be distinguished by their class membership.

Clustering A number of different clustering algorithms like the wide-spread k-
Means algorithm allow to find and summarize similar entities. The metrics men-
tioned above can also be applied as distance functions for them to cluster classes,
properties, and instances.

Path Finding Another concept we employ for reducing the data set is path finding.
Here, the idea is to calculate the shortest path(s) between two or more classes or
instances of interest, and to filter out all resource outside these paths.

Key Concept Extraction Furthermore, we include the key concept extraction (Per-
oni et al. 2008) approach to identify and highlight the most relevant resources
within a data set. Therefore, it makes use of insights from cognitive science, net-
work algorithms, and lexicographical statistics. However, this solution is only ap-
plicable for classes.
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Pivoting Another way to provide only a small subset of the data and to extend it on-
demand is called pivoting (Popov et al. 2011). To calculate potentially interesting
items we apply different metrics, e.g., the topological similarity for classes and
properties or the semantic similarity for instance data.

Association Rule Mining Finally, the tracking of navigation trails within the data set
in the Data Pre-Selection are analyzed using association rule mining techniques.
Its results allows to highlight interesting resources or reduce the cumbersome in-
formation overload.

5.4.3 Interactive Data and Visualization Selection

After a user has narrowed down his data set to a region of interest, the following
Selection step (cf. Fig. 5.3-5) covers the exploration and selection of interesting
data variables and suitable visualization components to represent them. This is es-
pecially challenging for end-users, as their lack of InfoVis knowledge often leads
to unsatisfying visualizations results (Grammel et al. 2010). In order to assist them,
the workflow must include support mechanisms, e.g., suggesting appropriate graph-
ical representations based on the selected data attributes and visualization charac-
teristics. While the latter recommendation algorithm is explained in Sect. 5.4, the
following paragraphs focus on the user interface and interaction.

For the design of a suitable search interface in this context it is fundamental to
decide between querying and browsing. For the user it is less mental work to scan
and choose from a list of entities than to think about appropriate query terms to
describe his information need (Hearst 2009). Thus, with respect to our target group
of novices, we suggest to use a browsing approach—in particular the interactive
faceted browsing paradigm. Thereby, empty result sets can be avoided and users
gain immediate feedback and can refine their queries iteratively. However, in our
research we also faced some problems with using faceted browsing for data and
visualization selection. Most importantly, users need to assign priorities to facets
within a search query. Thus, we extended the paradigm to weighted faceted browsing
introduced in Voigt et al. (2012b). In the following, be briefly describe these novel
concepts, which address the definition of search criteria, the result ranking, and the
corresponding, intuitive user interface.

First of all, we distinguish between mandatory and optional search criteria. To
narrow the results, a facet value needs to be added to the mandatory set where all
criteria are linked conjunctively—the standard behavior of a faceted browser. In
contrast, optional facets are combined disjunctively within a dedicated set and thus
do not constrain but rank the results. That way, the more optional criteria an item
satisfies the higher it is ranked. If multiple items meet the same number of optional
criteria, their ranking is the same. However, every criterion may be given an explicit
weight (between 1 and 100), which directly influences its ranking. Zero value is
neglected, as this means that facet can be omitted.

The input for calculating the overall result set is a query set of mandatory and
optional criteria. While the mandatory part simply constraints the set by removing
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Fig. 5.6 Screenshot of our weighted faceted browsing prototype (reprinted from Voigt et al.
2012b)

all items not supporting a chosen facet value, the relevance ranking using multiple
optional facets is more complicated. To solve the multi-criteria optimization, we
combine the weighted sum model with lexicographic ordering in an iterative way
to interpret the criteria. If some elements still have the same weight we order them
alphabetically.

Of course, these theoretical concepts of weighted faceted browsing need not be
visible to the lay-user. Instead, we have designed an intuitive user interface which
consequently builds on the principles of existing facet browsers. The running pro-
totype is shown in Fig. 5.6. As can be seen, the view is split into three main areas:
facet widgets at the top (1), (2), the query visualization—called querycloud—in the
middle (3), and the results view at the bottom (4), (5). To search for a visualization
component, the user simply needs to drag a desired facet value—a RDF resource to
visualize (1) or a visualization characteristic (2)—and drop it at a desired spot in the
querycloud which is split into a mandatory and (weighted) optional area. The result
set visualization (4) updates subsequently. By selecting an item from the result list,
detailed information are displayed in (5).

We conducted a preliminary user study to test our hypotheses and the practicabil-
ity of weighted faceted browsing for visualization selection. After an introduction,
users had to handle five basic and five advanced search tasks to find appropriate
visualization for given data sets. To our delight, the subjects answered all ques-
tions correctly. They generally enjoyed the intuitive approach, in particular of the
querycloud. Whereas the basic tasks were solved without any help, we needed to
give some assistance at solving the advanced issues. This was mostly caused by the
missing understanding of the data set and the metadata of the visualization compo-
nents within the facet widgets. An exemplary questions was: “What does neutral
visual complexity mean?”. Thus, providing additional information on facet values
should prove beneficial.
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Fig. 5.7 Overview of our visualization recommendation process

5.4.4 Context-Aware Recommendation of Visualization
Components

With respect to the knowledge and experience of novices, the exploration and selec-
tion of data variables and visualization facets as described in the previous section
should be actively supported with Visualization Recommendation techniques (cf.
Fig. 5.3-6). Of course, this functionality constitutes the heart of every visualization
process and it comes with a number of challenges: First, an algorithm needs to dis-
cover appropriate visualization components based on the selected Semantic Web
data using the aforementioned semantic annotations (cf. Sect. 5.3). Second, the al-
gorithm needs to rank every identified component due to its applicability within the
current context. In the following, we summarize the main concepts of our recom-
mendation algorithm which is described in more detail in Voigt et al. (2012a).

Figure 5.7 gives an overview of our recommendation process. It starts with the
selection of search criteria (1) which is realized by the weighted faceted browser.
Based on the selection, the matchmaking process (2) starts with a pre-selection
step. Thereby, the amount of components is reduced by matching the visualization-
specific criteria, e.g., the kind of representation, the level of detail, or the interaction
potential needed. Afterwards, a generic data schema is generated by mapping the
data structure selected by the user to a generic one based on VISO. This schema
then forms the basis for the retrieval of appropriate visualization components.

Subsequently, the list of suitable components is ranked (3) making use of the
semantic annotations and VISO rules introduced earlier. The ranking step includes
four criteria: First, the appropriateness is calculated with respect to visualization-
specific knowledge, e.g., the visual encodings for quantitative data (Cleveland and
McGill 1984). Second, the assigned domain concepts or categories of the data vari-
ables and the visualization component are employed. For each combination of those,
the semantic similarity is calculated. Third, contextual knowledge is included. Thus,
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Fig. 5.8 Screenshot of the meta-visualization which allows to show and edit the coordination
between the integrated components

the context model is queried for user or device characteristics, such as the screen real
estate, in order to identify the best fitting visualization. Last but not least, we con-
sider user-based ratings of existing components. The collection of this information
is further described in Sect. 5.4.

Finally, combined rating for each component allows to establish a ranking order.
This sorted list is presented to the user, who may either adjust his search criteria (1)
or select one or more components to visualize the selected data with (5).

5.4.5 Visualization Integration and Configuration

Having selected one or more components to visualize his Semantic Web data, the
work of the user is done. For the underlying system it means, that all those compo-
nents need to be loaded and instantiated, “bound” to the selected data, configured
with respect to the users’ needs (cf. Fig. 5.3-7), and integrated with each other re-
sulting in a homogeneous user interface (cf. Fig. 5.3-8).

For the integration, we heavily build on the concepts and infrastructure of
CRUISe (cf. Sect. 5.3). It already provides means to load the selected, possibly
distributed components and to manage their life cycle including instantiation and
configuration. In a next step, we establish the “binding” to the selected Semantic
Web data. The corresponding data and mapping information directly result from
the previous workflow steps. By choosing several visualization recommendations
iteratively in the previous steps, users are (implicitly) building multiple coordinated
views of their data, which are finally presented interactively using CRUISe’s runtime
platform MRE.

Figure 5.8 shows such a user interface, overlayed with a meta-visualization. As
can be seen, the data set—in this case concert data—is shown with respect to four
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different aspects (time, genre, artist, popularity) and corresponding visualizations
(calendar, lists, and a bar chart).

The meta-visualization in Fig. 5.8 is one way to let novices establish (or edit ex-
isting) coordination links. The latter allow for the integration of visualization com-
ponents on the data level by connecting their data variables for synchronization or
filtering. This way, selected data in one view, e.g., the genre in this example, can
be highlighted or act as a filter in another one. By establishing such links, users in-
tuitively create coordinated multiple views on their data sets from which they may
gain a better understanding of the displayed information.

Further mechanisms for user-driven adaptation may be provided, such as compo-
nent configuration, which highly depends on their implementation. Typical config-
uration parameters include color schemes and filters. If multiple mappings between
the underlying data and the component interface are possible, the user may as well
adapt them, e.g., to switch the data mapping between the axes of a scatter plot. More
sophisticated adaptation is possible as well, such as component exchange or layout
changes. These mechanisms are provided by the underlying platform—in our case
CRUISe—yet, their impact on user satisfaction are yet to be evaluated.

5.4.6 Perception and Knowledge Conversion

Once the coordinated view has been set up, novices can study and interact with the
visualized data with the goal of increasing their knowledge or solving specific tasks.
This phase is referred to as internalization Wang et al. (2009) (cf. Fig. 5.3-9). As
stated in van Wijk (2005), the amount of knowledge gained depends on the kinds
of visual representations used, the users’ prior knowledge and their perceptional
capabilities. Thus, we took care to address three requirements in our workflow to
enhance the internalization process.

To foster Perception and Internalization (cf. Fig. 5.3-9), we follow two ap-
proaches. First, as for every interactive application, the user interface and interaction
design of the visualization platform must be geared towards novices. As an exam-
ple, this includes self-descriptive and intuitive mechanisms to configure the coordi-
nation as discussed above (cf. Sect. 5.4). Based on our prototypes and a number of
small user studies, we are continuously working on these issues towards an elabo-
rated user study. Second, beside the platform itself, the visual representations, i.e.,
the resulting composite application plays the key role for successful internalization.
Thus, we consider the users’ contexts in the recommendation algorithm of visual-
ization components (cf. Sect. 5.4) to offer him the most suitable and understandable
graphical representations. Contextual triggers for this are basic user properties (age,
mother tongue, disabilities), preferences, usage (mobile vs. stationary) and device
characteristics (e.g., the available screen real estate).

Knowledge Tracking and Externalization (cf. Fig. 5.3-10) is a background task
that actively supports several phases of the Information Visualization workflow. As
Fig. 5.3 shows, its purpose is to extract implicit visualization knowledge in every
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Fig. 5.9 Visualization
component with rating bar at
the bottom

workflow step to support the upcoming phases. In the following, we briefly present
possibilities we see and use in this regard.

Augmentation It is worth considering an expert review step for the data augmenta-
tion (cf. Sect. 5.4). By checking and updating automatically generated annotations,
their knowledge is externalized, which can be the input for further formalization.
Here, the proposed the usage of declarative annotation rules proves its value as
they (1) are independent of a special dataset and (2) can be revised by Semantic
Web experts without programming.

Reduction As mentioned in Sect. 5.4, we apply association rule mining based on
the navigation trails of users in their data sets during the data pre-selection phase.
This way, users’ understanding of entities and relations of the data is externalized.

Data and Visualization Selection Association rule mining can be employed here,
as well. Selected facet values, their assignment as mandatory or optional search
criteria, and the previewed visualization components can provide insights into the
users’ understandings and goals, and they can used to enhance the selection step,
e.g., by ordering or highlighting suitable facet values.

Configuration Tracking and externalization in the configuration stage includes the
analysis of chosen data mappings to a component, and of user-established coordi-
nation patterns between components.

Perception Finally, we use a mechanism to rate single combinations of data and
visualization components. Therefore, we distinguish between implicit and explicit
ratings. The former are deduced automatically based on the usage of a component
in different usage contexts, e.g., a repeated use leads to a higher implicit rating
while having only a glimpse on the component after the integration lowers the rat-
ing. The explicit rating is given manually by users clicking “Like” or “Dislike”
buttons added beneath every component (cf. Fig. 5.9). Using a collaborative fil-
tering algorithm we then exploit this knowledge to improve recommendations (cf.
Sect. 5.4).
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Fig. 5.10 Overview of the architecture of VizBoard

Having presented all the steps of our semantics-driven, context-aware visualiza-
tion workflow for Semantic Web data, the following section covers our approach of
a corresponding software architecture to cover the whole process.

5.5 Component-Based Software Architecture

We specified a component-based software architecture for our visualization system—
called VizBoard—according the requirements which come along with our user-
centered, semantics-driven InfoVis workflow. As already mentioned in Sect. 5.3, we
are building on the CRUISe ecosystem which allows for the dynamic composition
of web applications from distributed building blocks. Figure 5.10 gives an overview
of the architecture of VizBoard. It comprises six primary parts. In comparison to the
architectural overview of CRUISe (cf. Fig. 5.1) we added the visualization-specific
vocabulary (1) defined by the VISO, which is the glue between the data and vi-
sualization components, and the Data Repository (DaRe) (2) which provides a
common data layer. In the following, we describe the DaRe and the extension made
within the CRUISe ecosystem (3)–(6) in more detail. Then, in Sect. 5.5 we give a
brief overview of some implementation details.

5.5.1 Data Repository

CRUISe allows for the composition of any data source, i.e., web service, with any
user interface widget as long as they are compatible according their semantic de-
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Fig. 5.11 Separation of concerns within the Data Repository

scription of the API. Since its also a desired behavior for the InfoVis domain, it is
not applicable in the same way due to the following reasons.

Common Data Access The data to visualize arises from different sources, e.g., web
service, files, or databases, and may vary in their formats. Therefore, compo-
nents are required which allow for a common data access and hide data format
specifics like the connection or the query format.

Augmentation and Reduction The aforementioned workflow comprises essential
functionality to augment and reduce the data. Our prototypical test demon-
strates clearly that most of these functionalities are time consuming and not
applicable during the runtime so that a preprocessing is required. Further, the
data needs to be available for the asynchronous management of the annota-
tions by an expert.

Performance and Scalability Another problem is the varying performance of the
data sources. An own storage layer provides a stable performance and allows
to scale on demand.

Security Also if its out of scope, a common data layer enables the management of
access rights but also to use security mechanism, e.g., to prevent SQL injec-
tions.

For this reasons, a common data layer for all visualizations components, the Data
Repository, is integrated. Its main components are presented in Fig. 5.11. They
could be distinguished into four blocks according their functionality needed within
the workflow. Hence, the data access, the analyzers, and the annotator are form-
ing a building block (1) to augment and thus to prepare the data for the following
process steps. Subsequently, the homogeneous data is stored within a triple store
which allows to request but also to filter the data (2). These functions are required
for instance during the integration of the visualization components (cf. Sect. 5.4).
To facilitate the data reduction (cf. Sect. 5.4) the components in block (3) query and
process the data from (2) on-demand. In the end, the DaRe offers a RESTful web
service interface (4) to allow for a platform-independent data access.
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5.5.2 CRUISe Extensions

To enable the visualization of Semantic Web data according the proposed workflow
we also had to extend the CRUISe architecture. First, Visualization Components
(cf. Fig. 5.10-3) are specialized user interface components focusing on presentation
but mostly neglect other “CRUD” functions like the creation of new data. Thus,
we can rely on the component model of CRUISe without any difficulties but the
SMCDL is extended to describe visualization features with VISO concepts, e.g.,
the kind of graphic representation. As the properties as well as the parameters of
operations and events are already semantically typed, we can simply point to their
generic, semantics-based description of the data structure (Voigt et al. 2012a).

Also the CoRe (cf. Fig. 5.10-4) is extended to allow for the semantic-driven
management of visualization components based on the enhanced SMCDL. Further,
the recommendation for appropriate components (cf. Sect. 5.4) need to be integrated
as a multi-level process comprising the discovery and ranking (Voigt et al. 2012a).
And some of the knowledge externalization functionalities (cf. Sect. 5.4) are added,
especially the collaborative filtering approach for the user-based rating which is
employed during the recommendation.

The MRE (cf. Fig. 5.10-5) provides the interface between the user, DaRe, and
CoRe. Therefore, the complete user-driven workflow is implemented as wizard-like
composite CRUISe application comprising specialized and thus, efficient user in-
terface components for each stage. To enable novices to create, edit, and delete
communication connections between visualization components, we added a more
abstract coordination layer and a helpful meta visualization to show existing com-
munication relations (cf. Fig. 5.8). Further, the runtime is extended to handle RDF
data received from the DaRe as shared data layer for all components.

Finally, we utilize the CroCo context service (cf. Fig. 5.10-6) to track the user
and device context. We slightly extended its knowledge model using the VISO vo-
cabulary to store visualization specific preferences.

5.5.3 Implementation

All the parts presented in the architectural overview are prototypical implemented to
allow for an evaluation. Only single features, e.g., the association rule mining within
the data and visualization selection to extract implicit knowledge (cf. Sect. 5.4), are
missing. In the following, we highlight some of the implementation details of the
DaRe and CRUISe on the whole.

The DaRe is implemented using Java and is accessible through a RESTful web
service API using Java Jersey.12 Its core is a RDF triple store which allows to store

12http://jersey.java.net/.

http://jersey.java.net/
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and filter the datasets. To identify an appropriate one, we conducted a benchmark us-
ing different real-world datasets on freely available triple stores (Voigt et al. 2012c).
Although no store stands out in this test, we decided on Jena TDB13 due to the exis-
tence of an extendable rule engine required for the analysis within the augmentation
step. We implemented various data access components to use RDF datasets from
uploaded files or received from web services. Further, we integrated Apache POI14

and the D2RQ engine15 to use Excel spreadsheets and MySQL databases as data
sources. To carried out the data reduction we implemented and integrated numerous
algorithms. For example, we employ the JGraphT16 library for graph calculations,
we reuse the key concept extraction API,17 and integrated RapidMiner 5.218 includ-
ing the RMonto plug-in (Potoniec and Ławrynowicz 2011) to cluster the Semantic
Web data.

As aforementioned, we are relying on the CRUISe ecosystem to enable the user-
centered, semantics-driven visualization of Semantic Web data. Therefore, we had
to extend the existing implementation mainly at three points. First, we integrated the
algorithm to recommendation visualization components into the Java-based CoRe.
In this regard, we had to extend the semantic model, which stores the informa-
tion about the registered components, according the visualization specifics from
VISO. Our algorithm makes use of the already integrated Apache Jena API and
its SPARQL functionality. Second, we developed CRUISe user interface compo-
nents to implemented the user-centered visualization workflow (cf. Fig. 5.3), e.g.,
the data pre-selection, and to visualize the data. Like other components, we rely
on HTML, JavaScript—using frameworks like D3.js19 or jQuery20—and partly on
Adobe Flash. Third, we extended the JavaScript-based MRE to enable the user
to create and manage the coordination behavior between components on runtime.
To visualize the connections in the meta-visualization we rely on the Raphael li-
brary.21

The mashup paradigm coming along with CRUISe allows to easily extend our
system with new visualization components but also the DaRe is adaptable to use
other data sources. All in all, our web-based visualization system VizBoard could
be adapted on current needs and thus is applicable on different devices in various
domains.

13http://jena.apache.org/documentation/tdb/.
14http://poi.apache.org/.
15http://d2rq.org/.
16http://jgrapht.org/.
17http://sourceforge.net/projects/kce/.
18http://rapid-i.com/.
19https://github.com/mbostock/d3.
20http://jquery.com/.
21http://raphaeljs.com/.

http://jena.apache.org/documentation/tdb/
http://poi.apache.org/
http://d2rq.org/
http://jgrapht.org/
http://sourceforge.net/projects/kce/
http://rapid-i.com/
https://github.com/mbostock/d3
http://jquery.com/
http://raphaeljs.com/
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5.6 Conclusion and Future Work

Gaining insights from the growing amount of available Semantic Web data has be-
come seemingly impossible for novices. However, this is exactly the situation that
domain experts are facing, as more and more data is provided in the form of RDF,
RDFS or OWL. To address this need for user-centered Information Visualization,
we have proposed three ingredients: (1) a semantic model formalizing visualization
knowledge, (2) a user-centered, semantics-driven visualization workflow utilizing
the shared visualization model, and (3) a corresponding software architecture to re-
alize the workflow. While the model has been covered extensively in Voigt et al.
(2012a), this chapter has focused on the workflow and its application.

In contrast to existing InfoVis processes, e.g, the pipeline model, our novel visu-
alization workflow actively guides novices from a given set of semantic input data
to suitable visualization components using the shared visualization knowledge and
contextual information. Even though we have presented a corresponding software
system and composition architecture, all steps of the workflow are generic enough
to be realized and supported by other tools and frameworks. It should also be noted,
that the process itself remains independent from the underlying data models and can
thus be employed for arbitrary Semantic Web data. Thus, we facilitate and welcome
implementations and evaluations by the community.

As a manifestation of our concepts, we have presented an architecture which
implements the workflow and utilizes VISO as the semantic model. To this end,
we employ the mashup paradigm whose goal is the combination of existing web
resources—in our case RDF data and InfoVis widgets—to create an added value for
the user. The architecture is easily extensible with both new visualization compo-
nents and new data connectors. As it is web-based and includes context knowledge
in the composition process, it can be utilized on different devices, such as desktops,
tablets, and smartphones, independent of location and time.

As mentioned before, this chapter provides an overview of our work on a user-
centered, semantic-driven InfoVis workflow and its implementation in an extensible,
open workbench. While the core concepts—the recommendation and selection of
suitable visualization components—has already been validated (Voigt et al. 2012a,
2012b), a high-performance triple store for the DaRe has been identified (Voigt et al.
2012c), and large parts of the workbench have been realized based on the CRUISe
platform, a few things remain to be done. In particular, we are planning to conduct
three user studies to evaluate our concepts and prototypes of the data reduction (cf.
Sect. 5.4.2) and knowledge externalization (cf. Sect. 5.4.6) as well as the acceptance
of VizBoard in general.
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