
Chapter 3
Cognitive Semantic Categories as a Basis
for a Prototype Adaptive Information System

Evangelos Kapros and Simon McGinnes

Abstract A software application is demonstrated which exhibits conceptual data
independence. The application provides domain-specific functionality, yet its struc-
ture is domain-independent. Separation between conceptual model and structure is
achieved by encoding models as data and interpreting them at run-time. The overall
goal is to reduce cost and delay when conceptual models change, and to provide ap-
plication functionality in new domains without constructing new applications. Sev-
eral conceptual models are used, to illustrate domain-specific behavior in multiple
domains. Results suggest that domain-independent application design can reduce
the need for application development and maintenance effort, since each domain-
independent application can function in multiple domains and adapts smoothly to
changing conceptual models. This is especially meaningful for end users who usu-
ally have no development skills and rely on spreadsheet and database driven appli-
cations.

3.1 Introduction

Current best practice in software design produces applications that are domain-
specific in both behavior and structure. For example, accounting software might
be constructed from classes representing accounts and account entries, and might
store data in Account and Entry database tables. The application’s architecture is
described as domain-specific because its class and table structures mirror the con-
cepts (entity types and their relationships) in the application domain’s conceptual
model.

The use of domain-specific architecture is a familiar and relatively simple way
of constructing software. But it leads to high cost and delay when software must
be altered to match new or modified conceptual models. This remains a barrier to

E. Kapros (B) · S. McGinnes
The University of Dublin, Dublin, Ireland
e-mail: ekapros@tcd.ie

S. McGinnes
e-mail: Simon.McGinnes@tcd.ie

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_3,
© Springer-Verlag London 2013

43

mailto:ekapros@tcd.ie
mailto:Simon.McGinnes@tcd.ie
http://dx.doi.org/10.1007/978-1-4471-5301-6_3


44 E. Kapros and S. McGinnes

system evolution despite long attention from researchers (Hick and Hainaut 2006;
Hartung et al. 2011). It also makes it necessary to do development work when new
domain-specific functionality is required.

In conventional software design, software architectures are based on the assump-
tion that the end user’s mental concepts are relatively static. Conceptual data depen-
dence is the practice of embedding these mental concepts in software architectures.
Our goal is to construct applications which exhibit conceptual data independence,
such that minimal work is required in respect of new or changed conceptual mod-
els. The motivation is to reduce the cost and delay that organizations incur when
they develop and maintain software applications to match new or altered concep-
tual models. Development work causes cost and delay which mainly affects small
and medium enterprises and organizations, which employ staff with typically lit-
tle or no programming skills. Thus, they face the dilemma to buy applications that
match their requirements or fund the development of custom-made applications.
However, this dilemma is usually avoided and organizations rely on simple tools
such as spreadsheets (Chan and Storey 1996; Raden 2005).

We propose to reduce cost and delay by building an information system that is
adaptive to model changes (Adaptive Information System, or AIS). We implemented
this idea to show its feasibility, and present a software application which is simul-
taneously the authoring environment and the user interface of applications which
exhibit conceptual data independence. That is, the end users can manage the model
and the data through the same user interface. Moreover, the concepts of the model
and the data are represented in user-friendly forms. Thus, expert help concerning
change is minimized. In addition, conceptual data independence has implications
for the visual design of user interfaces.

3.2 Related Work

3.2.1 Relational Databases and Object-Oriented Design

The relational model proposed by Codd (1970) provides a standard way of trans-
lating concepts into data structures. A table represents a concept, while columns
represent the concept’s attributes. The concepts that describe the structure of the
database form its schema. Research in Schema Evolution focuses on the problem of
adapting a database schema to changes. This research field shows that changes in
schemas represent a significant cost to organizations. In Curino et al. (2008) changes
in the database schema are reported to affect up to 70 % of queries, which have to be
manually reconfigured. Some theoretical models to address this problem have been
constructed, but real systems incorporating schema evolution functionality are hard
to find (Roddick et al. 2000).

Other types of software design are subject to the same kinds of problem. Object-
oriented design in programming and in databases is one example. In object-oriented
design, concepts are represented as classes. Classes serve as blueprints for objects,



3 Cognitive Semantic Categories 45

which are specific instances of the concept. Changes to the underlying conceptual
structure implemented in a class structure make it necessary to alter the classes and
their relationships. This, in turn, makes it necessary to modify code which refers to
the altered classes. Hence there can be a high overhead cost arising from changes to
the underlying conceptual model of an application constructed using conventional
object-oriented design.

3.2.2 Ontologies and the Semantic Web

An ontology provides a semantic network of predefined concepts intended to de-
scribe the universe of knowledge for a particular domain. Domain-specific applica-
tions may define new end-user concepts as sub-concepts of the existing concepts in
the ontology.

It has been proposed (Berners-Lee et al. 2006; Alani et al. 2005, 2008) that web
applications should use ontologies as well. The so-called Semantic Web applica-
tions would, then, be able to share data freely using as mediators these predefined
concepts, without any need for prior programming. For this to work in the general
case, ontologies would have to be capable of being integrated with a common ontol-
ogy. Various semi-automatic tools have been developed for this task (McGuinness
et al. 2000; Noy and Musen 2000).

However, this is a non-trivial challenge. A lack of standardization in end-user
concepts leads to the Tower of Babel (Fonseca and Martin 2004) problem: the cre-
ation, in various ontologies, of incompatible definitions for the same entity. More-
over, since the existing ontologies are domain-specific, no large-scale cross-domain
implementations exist. For this reason, it is still unclear how web meta-data would
follow the conceptual vocabulary of the ontologies (Shirky 2003).

The idea of handling arbitrary schemas in software applications has not been
previously directly addressed. However, work on ontologies has given useful results
on change in semantics while using automatically generated interfaces (Ertl et al.
2011; Wach 2011). Similarly, work on dynamic data management has given use-
ful results (Fein et al. 2011; Kennedy et al. 2011; Sun et al. 2011) but has not, in
general, addressed user-interface or usability issues. While there have been design
efforts in web browsers such as LENA (LENA—a Fresnel LEns based RDF/Linked
Data NAvigator with SPARQL selector support n.d.) and Tabulator (Berners-Lee
et al. 2007) that offer views that depend on semantics, they are targeted to software
developers and not end users (SPARQL knowledge is essential). Moreover, they
differentiate the authoring environment of the applications from the applications
themselves, which serves well software developers but might be confusing to end
users. However, these are useful paradigms and offer valuable ideas for exploration.

3.2.3 Spreadsheets

Research has shown that most organizations still rely on spreadsheets for their data
management (Chan and Storey 1996; Raden 2005). There is a number of reasons



46 E. Kapros and S. McGinnes

why that happens, including failure to deliver end-user systems with usable schema
evolution. End users have been reported to “shun enterprise solutions” (Raden 2005)
and 70 % of them use spreadsheets on a frequent or occasional basis most commonly
for “sorting and database facilities” (Chan and Storey 1996). Spreadsheets are error-
prone and miss critical database functionality. There exists work on some database
functionality in spreadsheets such as managing plural relationships (Bakke et al.
2011), but not on conceptual modelling. Similarly, work on semantic spreadsheets
has improved modeling in spreadsheets, but still separates authoring and application
(Zhao et al. 2010; Kohlhase and Kohlhase 2011). Moreover, the problem of schema
evolution remains, since the practice of conceptual data dependence is still followed.

3.3 Conceptual Data Independence

3.3.1 Soft Schemas

We approach this problem by turning conceptual models into data. Current appli-
cation design practice embeds conceptual models into software structures (classes,
windows, tables, etc.) When building an AIS this practice is avoided. Instead, the
AIS is constructed from generic, domain-independent structures. The model-as-data
is termed a soft schema; in our prototype it is stored as XML, although any logically-
equivalent way of storing data would suffice. The soft schema is read and interpreted
by the AIS at run-time. The soft schema is a properly normalized relational data
model, with some additions, but it is stored as data rather than being hardcoded in
application structure.

To provide domain-specific functionality, yet also exhibit conceptual data inde-
pendence, the AIS must meet several conditions. First, it must react at run-time to a
soft schema, providing a user interface which looks and behaves similarly to those
of conventional domain-specific applications. This requires the AIS to mimic the de-
sign choices of a human designer, in real time. Our approach is to implement auto-
mated user interface design heuristics which are applied based on the contents of the
soft schema. We provide specialized behavior for different types of data by respond-
ing to known semantic categories embedded in the soft schema (see Sect. 3.3.2).

An AIS must also be able to store and retrieve data corresponding to multiple
soft schemas with guaranteed data integrity. The AIS has no advance knowledge of
the data and schemas it will be used with, and how they may change. An AIS would
be of little use if altering a schema rendered previously-stored data unusable, or if
it compromised data integrity. So the data corresponding to each soft schema must
be able to co-exist and be used with data stored for other soft schemas, regardless
of their structures. Our solution to this problem is to store data in a broadly domain-
independent way, but to retain intact the conceptual structure for each instance of
data. Our prototype meets that requirement by storing the data using XML and using
XML tags to denote structure. XML was chosen in this instance because of its sim-
plicity and flexibility which are desirable properties for building a proof-of-concept



3 Cognitive Semantic Categories 47

prototype. But, again, any logically-equivalent storage mechanism (such as RDF or
others) would suffice.

The intention in using soft schemas is to separate conceptual structure from ap-
plication structure, so that change to the former does not necessitate change to the
latter. But another, perhaps more far-reaching implication of this way of designing
software is that an AIS could conceivably operate in many application domains,
if supplied with appropriate soft schemas. Fewer applications would be required,
because a single AIS could fulfill the function of many distinct (domain-specific)
applications that must today be constructed separately, by hand using conventional
software design practices.

3.3.2 Archetypal Categories and Differential Design

The AIS provides domain-specific behavior by responding to the currently-active
soft schema. Each concept (entity type) in the soft schema represents something
that data can be stored about. The AIS provides CRUD (create, read, update, delete)
functionality in respect of every concept in the schema. Design heuristics are applied
automatically to produce a “reasonably usable” interface directly from the concep-
tual model. This principle has been applied and tested in a number of web and
client-server application environments (McGinnes 2005). Dialog design takes into
account general rules of interaction and layout, as well as responding specifically
to the data types used for attributes in the soft schema, the relationships between
concepts, and so on.

However, for an AIS to offer true domain-specific functionality, it is insufficient
to respond only to the conceptual model, because this provides a one-size-fits-all
user interface style for every concept in the model. The AIS must instead offer a
suitable interface style for each concept. Being able to do this depends on knowl-
edge which is not normally present in conceptual models. For example, an appli-
cation that stores data about geographical locations such as cities might offer an
interface based on maps. Data about activities such as appointments might be repre-
sented using a calendar or timeline. Other interface styles are appropriate for other
types of data. Normally, a software designer can choose appropriate interface styles
using their own background knowledge about the concepts included in the concep-
tual model. The user interface designer recognizes what each concept signifies, and
selects a suitable way of representing the concept and interacting with it (Liebenau
and Backhouse 1990).

We therefore sought to embed this kind of general knowledge into soft schemas,
so that it could be used automatically by an AIS to render more domain-specific
interfaces and behavior. It is achieved by linking each concept in the soft schema
with a particular archetypal category (major cognitive semantic category; Moore
and Price 1999; Markman and Wisniewski 1997; Caramazza et al. 2003). The proto-
type AIS uses nine archetypal categories: people, organizations, places, documents,
activities, physical objects, conceptual objects, systems and categories (McGinnes



48 E. Kapros and S. McGinnes

Fig. 3.1 Standard user profile design: the upper images represent domain-specific implementa-
tions. The generic wireframe below can load dynamically any domain-specific information at run-
time. Changing its layout could result in any of the upper profile UI components

2005). Using archetypal categories allows the AIS to offer a category-specific in-
terface style in respect of each concept in the soft schema. We refer to this process
as differential design; it is intended to mirror the use of general knowledge by soft-
ware designers (some related work exists in McGinnes 2005). An example is given
in Fig. 3.1: any concept that belongs to the category people could use a standard
design defined by a “user profile” visual component. This component could apply
general knowledge, such as the fact that people are often identified by a name and an
image, or that people usually reside at a location. This information can be required
by the data structure, but everything else can be loaded dynamically in the interface
and changes to the concept’s definition will not break the interface.

Incidentally, the use of archetypal categories also presents advantages during
modeling; for example, it allows aspects of models to be predicted, helping to speed
up modeling and reduce error (McGinnes 2000).

3.3.3 Neurology and Cognitive Semantics

How much can we take these archetypal categories for granted? For many years a
belief was prevalent that specific brain areas facilitate domain specific knowledge;
this belief is referred to as localizationism. This idea has been challenged since
1891 (Freud 1953 (1891)). However, instances of damage to specific brain areas
have been shown to affect unique knowledge domain. For example, some subjects
have deficits in specific brain regions that prevented them from recognizing people
(prosopagnosia) (Caramazza et al. 2003). Similar results have been proposed after



3 Cognitive Semantic Categories 49

Fig. 3.2 fMRI showing approximate indicative positions of activation during Person and Object
trials. Composed according to data found in Mason et al. (2004), Mitchell et al. (2002), Tyler and
Moss (2001)

fMRI studies, where people, objects, and activities usually trigger signals in sepa-
rate brain areas (Caramazza et al. 2003; Mason et al. 2004; Mitchell et al. 2002).
Evolutionary theory has suggested that pressure from the environment resulted in
dedicated neural mechanisms for each domain of knowledge, effectively creating
categories that are in some sense “hard-wired” and therefore archetypal (Caramazza
et al. 2003).

Localizationism has been challenged recently, drawing from cases where sub-
jects have recovered from deficits of the aforementioned types. A known example
of regenerated brain functionality (neuroplasticity) is the ability of blind people to
substitute their visual cortex functionality with haptic input: brain areas that were
formerly dedicated to one function switch to another, so that blind people can “see”
what they touch (Pascual-Leone et al. 1999). However, research shows that archety-
pal categories still emerge, but this time in a distributed neural system rather than
in brain areas, and that differences in the content of concepts drive the evolutionary
categorization of cognitive semantics (Tyler and Moss 2001). There is no conflict be-
tween the fMRI results of Tyler and Moss (2001) and Mason et al. (2004), Mitchell
et al. (2002) (also see Fig. 3.2).

Moreover, research has shown that cognitive semantics are formed in a middle-
out way, in contrast with a bottom-up or a top-down one. That is, humans categorize
entities using basic level categories first, and then generalize into more abstract
entities or specialize into more concrete ones (Markman and Wisniewski 1997;
Klibanoff and Waxman 2003). In simple terms, one would first recognize a person
and then specialize it to, e.g., the particular individual Joanne Wall, or generalize it
to, e.g., an abstract concept such as “animate entity”.

In conclusion, given the slow pace of human evolution, we can assume it is safe
to use basic level cognitive semantic categories in the construction of soft schemas.



50 E. Kapros and S. McGinnes

Fig. 3.3 An interaction map of the prototype AIS. See Table 3.1 for explanation of the layout and
interaction

3.4 How the Prototype AIS Works

In this section we describe the visual and interaction design of the prototype AIS
and present a technical explanation of how it deals with soft schemas and data. The
present prototype implements soft schemas and archetypal categories with real-time
user interface generation. Differential design (Sect. 3.3.2) and end-user modeling
have yet to be implemented.

3.4.1 Visual and Interaction Design

The prototype’s layout, navigation, and interaction have been designed with end
users in mind, particularly given that the user interface evolves over time (O’Murchú
2009). There are two main panels, aligned vertically: the Model Manager and the
Data Manager (see Fig. 3.3). The Model Manager consists of a vertical button bar
and a tab bar. The buttons represent the nine archetypal categories. The tab bar
allows access to panels showing the soft schema and its contents.

The first panel (shown by default) offers a top-level view of the active schema. It
contains tiled icons, each denoting a particular concept in the schema. Labels help
to disambiguate the meaning of icons (Evamy 2003; Whitehouse 1999) (for brevity,
the term “icon” is used from this point to mean a labelled icon). The remaining



3 Cognitive Semantic Categories 51

Table 3.1 Functionality of the various AIS layout elements

Element Functionality

1. Categories button bar Each button represents one of the archetypal categories. Clicking
the button differentiates the concepts shown in the concept panel in
that only concepts of the relevant category are highlighted.

2. Model tab bar Allows the user to navigate through tabs containing the soft
schema and its individual concepts.

3. Concept panel Displays icons which represent concepts and attributes. Clicking
an icon displays the tab panel and populates the datagrid for that
concept.

4. Data management panel Allows the user to load and save data, perform search/filter
operations and manipulate data displayed in a dynamic grid.
Clicking each row makes relevant information appear in the
attributes panel.

5. Attributes panel Offers basic data manipulation functionality; allows the user to
enter, view and edit attribute values for particular concept
instances and to delete concept instances. When one of the buttons
is clicked a modal dialog appears, allowing the user to perform the
selected function.

sub-panels represent individual concepts in the soft schema, each with tiled icons
representing attributes or related concepts. For clarity, attributes have two labels: the
first (in boldface) is the parent concept and the second is the name of the attribute.
This way of presenting conceptual models, using icons and windows rather than
boxes and lines, has been shown to substantially improve model understandability,
particularly for non-experts (McGinnes and Amos 2001).

The Data Manager contains a data management panel and an attributes panel.
The data management panel includes three sets of elements. Two buttons allow
loading and saving of data, a set of elements facilitate searching and filtering, and
a grid displays data stored by the AIS. The grid dynamically loads columns for the
currently-selected concept’s attributes and rows for its instances.

A text field notifies the user on the success of their actions including loading and
saving data and data manipulation functions. To assist end users, action invitations
are also used throughout. Hover invitations are activated for the data management
panel, tabs, load/save buttons and concept icons. A cursor invitation is activated
in the search input field, and a tool-tip invitation displays information about each
archetypal category.

3.4.2 Handling Schemas and Data

The prototype AIS reads two types of XML file: schema files and data files. Each
schema file contains a soft schema. Each data file stores data consisting of a number



52 E. Kapros and S. McGinnes

of concept instances. Each concept instance contains data values with structure that
reflects the soft schema that the instance was created with.

Example 3.1 Schema file section describing the concept Customer:

<concept>
<conceptName>Customer</conceptName>
<category>People</category>
<attributes>

<attribute id="1">name</attribute>
<attribute id="2">id</attribute>
<attribute id="3">address</attribute>

</attributes>
</concept>

Once a schema file has been loaded, the AIS will enforce it for any new data in-
stances that are entered. Data instances already stored may be retrieved and viewed,
but will retain their original structure. Should the schema be altered (by loading a
new schema or editing the active schema), the AIS will enforce the altered schema
for any data that are subsequently entered but already-stored instances will not be
affected.

Example 3.2 Data file section containing data for two customers previously entered
using different soft schemas:

<customer>
<name>Joanne Wall</name>
<id>2012</id>
<address>43 Tows Str</address>

</customer>
<customer>

<firstname>Maurice</firstname>
<lastname>Smith</lastname>
<id>2002</id>
<address>3 Yannou Street</address>
<phone>2273034397</phone>

</customer>

The current schema file is not used for data retrieval and display, since any re-
trieved data may conform to a variety of soft schemas. Instead, the AIS interprets
the data structure of each data instance, and then does its best to display the data in-
stances together coherently, regardless of which soft schema each instance conforms
to. For example, where different customers have different sets of attributes, as in the
example above, the superset of the attributes is used to make up the list of columns
in the data grid. Assuming that initially a concept Σ has attributes A = {a, b, c}
and later is modified to have attributes B = {x, y, z}, then the end user will be able
to read instances of Σ with attributes A ∪ B , add a new instance of Σ with at-
tributes B , or delete an instance of Σ regardless of what attributes it has, subject



3 Cognitive Semantic Categories 53

Fig. 3.4 The data grid and the attributes panel after loading new data. Both automatically gener-
ated the columns and the text fields, thus adapting to the new data

to referential integrity constraints. Figure 3.4 illustrates the effect when a schema is
changed and new data added. The columns for newly-entered instances differ from
those for existing instances, yet all are displayed.

3.4.3 Applications in Reverse Engineering of Existing Data
Structures

We note that it is a conceptually-simple operation to reconstruct the conceptual
model underlying any database structure or XML data. Most of the semantics nec-
essary to recreate the conceptual model implemented by a software application are
implicit in, and capable of being determined by examination of, its data storage
structures. This makes it possible, in theory, to use an AIS with any arbitrary dataset,
regardless of whether its corresponding soft schema exists. The required soft schema
can simply be reconstructed by examining the data, and this process can be auto-
mated.

The ability to reconstruct soft schemas automatically has been demonstrated in
two AIS implementations to date. In the first, the AIS was capable of reading a
database structure and thereby producing a corresponding soft schema. The result-
ing soft schema could be used to store and manipulate data with equivalent structure
to that stored in the source database. But, unlike the source database, the AIS would
permit the schema subsequently to be modified at will. This proved useful as a first
stage in the reengineering of legacy database applications. The data structure from
an existing application could be turned into a soft schema, which could then evolve
relatively easily through a prototyping process to arrive at an improved structure
matching client user requirements.

The second implementation is capable of reading an XML data file and recon-
structing its corresponding soft schema. If the XML data file is an AIS data file, then
the resulting soft schema can immediately be used to add to, and modify, the data in
the file. This is useful, for example, if the soft schema for a particular data file has



54 E. Kapros and S. McGinnes

been lost for some reason. It is also useful where a schema has undergone substan-
tial evolution, so that the data in the data file corresponds to multiple soft schema
versions. In this case the reconstructed soft schema represents the superset of all soft
schemas implied by the data. Being able to reconstruct a superset schema is useful
where it is helpful to know the range of possible conceptual structures which could
be considered valid.

In reconstructing a soft schema, not all elements can always be deduced. For
instance, relationship cardinalities are often incompletely specified. The data may
make it clear that each customer can have multiple orders, but not specify whether
a customer must have any orders. Also it is rare, unless the data file is an AIS data
file, for the data to be tagged with archetypal categories, icons, or other semantic
information. Suitable categories and images can to some extent be automatically
suggested by recognizing common terms. For example, for an item of data with
XML tag <customer> it would be appropriate to suggest categories person or
organization. Similarly for tag <order> it would be relevant to suggest category
activity. Default images can be used according to the categories suggested. However,
this process of deducing categories and images is inherently hit-and-miss, and so
any suggested categories and images require review and possible modification by
the user.

3.5 Discussion and Future Work

At present the prototype successfully reads schema and data files and generates suit-
able user interfaces, allowing basic CRUD (create, read, update, delete) functions to
be performed on the data. This implementation demonstrates the feasibility of sepa-
rating conceptual models from application structures, and of automatically generat-
ing user interfaces in real time from soft schemas. The next stage of our project will
experimentally assess the usability of the prototype; however, related research has
shown that relatively sophisticated and usable interfaces can be created this way for
a variety of implementation platforms (McGinnes 2005).

Changing the schema presents no problem to the application, which continues
to work effectively. Since previously-entered data can still be viewed, the user can
upgrade the data to match the current schema at his or her leisure, or choose not to.
We envisage that tools can be provided to assist the user in this process, identifying
data which could be upgraded and automatically performing the upgrade where this
is feasible. We anticipate benefits to the end user from being able to continue to use
previously-entered data despite schema changes. For example, it will allow applica-
tions to grow and evolve as end user understanding improves through use. However,
it also opens the possibility that data will become chaotic and unusable, particu-
larly if many schema changes are made but data instances corresponding to earlier
schema versions are not upgraded to match the new schema structure. Usability test-
ing will reveal whether this ability to change the schema without affecting existing
data is helpful for end users, or merely results in chaotic datasets which are difficult
to understand and use.



3 Cognitive Semantic Categories 55

At present the AIS supports only simple soft schemas, as support for relationships
between concepts has yet to be implemented. We intend to add support for relation-
ships; this will require implementation of more sophisticated user interface heuris-
tics. Again, prior work has demonstrated that automated design can produce usable
interfaces for schemas with complex relationships between concepts (McGinnes
2005). The challenge in this instance is to make the automated design occur purely
at runtime rather than a mixture of design time and runtime.

In addition, functions will be added to allow the end user to visually manage
soft schemas. End-user modeling using a similar schema representation has been
tested in previous research (McGinnes 2000) but usability testing will help assess
how easy it is for end users to do their own modeling in the context of the prototype
AIS. We hypothesize that the ability to enter and retrieve data immediately upon
schema change, without the need for data transformation and reloading, will facili-
tate understanding and learning. We also plan to implement better support for data
types, with differential design, that is the dynamic selection of user interface style
depending on archetypal category. For example, map views could be provided for
places and calendar views for activities. It is hoped that this will improve the usabil-
ity of the AIS, making it look and feel more like a hand-coded application. Again,
usability testing will help evaluate and refine this feature.

Finally, the semantic categories are intended to serve as an examination ground
for a potential semantic standard. This would make software more interoperable and
consistent. Despite using XML at the moment, moving to OWL/RDF is an option.
In this way standardization would be enforced; in any case, this option needs to be
examined after adding support for relationships.

3.6 Conclusion

This chapter has presented a prototype user interface for an adaptive information
system. The system handles various conceptual structures at runtime, treating these
structures as data (soft schemas). It allows the user to handle (create, read, delete)
data, as well as update soft schemas or data.

The intention is to evaluate the usability of a system with separate data and con-
ceptual structures. Our hope is that software designed in this way could be more
flexible for end users; one piece of software could have more uses than the domain-
specific applications built according to current practices.

References

Alani, H., Kalfoglou, Y., O’Hara, K., & Shadbolt, N. (2005). Towards a killer app for the semantic
web. In The semantic Web–ISWC 2005 (pp. 829–843).

Alani, H., Hall, W., O’Hara, K., Shadbolt, N., Szomszor, M., & Chandler, P. (2008). Building a
pragmatic semantic web. IEEE Intelligent Systems, 23(3), 61–68.



56 E. Kapros and S. McGinnes

Bakke, E., Karger, D., & Miller, R. (2011). A spreadsheet-based user interface for managing plural
relationships in structured data. In Proceedings of the SIGCHI conference on human factors in
computing systems, CHI ’11 (pp. 2541–2550). New York: ACM.

Berners-Lee, T., Hall, W., Hendler, J., O’Hara, K., Shadbolt, N., Weitzner, D. J., et al. (2006).
A framework for web science. Foundations and Trends in Web Science, 1(1), 1–130.

Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Pru d’ommeaux, E., et al. (2007). Tabulator
redux: writing into the semantic web.

Caramazza, A., Mahon, B. Z., et al. (2003). The organization of conceptual knowledge: the evi-
dence from category-specific semantic deficits. Trends in Cognitive Sciences, 7(8), 354–361.

Chan, Y. E., & Storey, V. C. (1996). The use of spreadsheets in organizations: determinants and
consequences. Information & Management, 31(3), 119–134.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the
ACM, 13(6), 377–387.

Curino, C. A., Tanca, L., Moon, H. J., & Zaniolo, C. (2008). Schema evolution in Wikipedia:
toward a web information system benchmark. In International conference on enterprise infor-
mation systems (ICEIS). Citeseer.

Ertl, D., Kaindl, H., Arnautovic, E., Falb, J., & Popp, R. (2011). Generating high-level interaction
models out of ontologies. In IUI SEMAIS (Vol. 11, pp. 7–11).

Evamy, M. (2003). World without words. New York: Laurence King.
Fein, E., Razinkov, N., Shachor, S., Mazzoleni, P., Goh, S., Goodwin, R., et al. (2011). Using

MATCON to generate case tools that guide deployment of pre-packaged applications. In 2011
33rd international conference on software engineering (ICSE) (pp. 1016–1018). New York:
IEEE Press.

Fonseca, F. T., & Martin, J. E. (2004). Toward an alternative notion of information systems ontolo-
gies: information engineering as a hermeneutic enterprise. Journal of the American Society for
Information Science and Technology, 56(1), 46–57.

Freud, S. (1953 (1891)). On aphasia; a critical study. Madison: International Universities Press.
Hartung, M., Terwilliger, J. F., & Rahm, E. (2011). Recent advances in schema and ontology

evolution. In Schema matching and mapping (pp. 149–190).
Hick, J.-M., & Hainaut, J.-L. (2006). Database application evolution: a transformational approach.

Data & Knowledge Engineering, 59(3), 534–558.
Kennedy, O., Ahmad, Y., & Koch, C. (2011). DBToaster: agile views for a dynamic data man-

agement system. In Proc. of the fifth biennial conference on innovative data systems research
(CIDR 2011) (pp. 284–295).

Klibanoff, R. S., & Waxman, S. R. (2003). Basic level object categories support the acquisition of
novel adjectives: evidence from preschool-aged children. Child Development, 71(3), 649–659.

Kohlhase, A., & Kohlhase, M. K. (2011). Spreadsheets with a semantic layer. Electronic Commu-
nications of the EASST, 10, 1–18.

LENA—a Fresnel LEns based RDF/Linked Data NAvigator with SPARQL selector support (n.d.).
Liebenau, J., & Backhouse, J. (1990). Understanding information: an introduction. Basingstoke:

Palgrave Macmillan.
Markman, A. B., & Wisniewski, E. J. (1997). Similar and different: the differentiation of basic-

level categories. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23(1),
54.

Mason, M. F., Banfield, J. F., & Macrae, C. N. (2004). Thinking about actions: the neural substrates
of person knowledge. Cerebral Cortex, 14(2), 209–214.

McGinnes, S. (2000). Conceptual modelling: a psychological perspective. Doctoral dissertation,
London School of Economics and Political Science (University of London).

McGinnes, S. (2005). Systems and methods for software based on business concepts.
McGinnes, S., & Amos, J. (2001). Accelerated business concept modeling: combining user inter-

face design with object modeling. In Object modeling and user interface design (pp. 3–36).
Reading: Addison-Wesley.



3 Cognitive Semantic Categories 57

McGuinness, D. L., Fikes, R., Rice, J., & Wilder, S. (2000). An environment for merging and
testing large ontologies. In Principles of knowledge representation and reasoning-international
conference (pp. 483–493). San Mateo: Morgan Kaufmann.

Mitchell, J. P., Heatherton, T. F., & Macrae, C. N. (2002). Distinct neural systems subserve per-
son and object knowledge. Proceedings of the National Academy of Sciences, 99(23), 15238–
15243.

Moore, C. J., & Price, C. J. (1999). A functional neuroimaging study of the variables that generate
category-specific object processing differences. Brain, 122(5), 943–962.

Noy, N. F., & Musen, M. A. (2000). Algorithm and tool for automated ontology merging and
alignment. In Proceedings of the 17th national conference on artificial intelligence (AAAI-00).
Available as SMI technical report SMI-2000-0831.

O’Murchú, N. (2009). Understanding adaptive design and user experience. In Irish human com-
puter interaction (I-HCI) conference 2009.

Pascual-Leone, A., Hamilton, R., Tormos, J., Keenan, J., & Catala, M. (1999). Neuroplasticity in
the adjustment to blindness. In Neural plasticity: building a bridge from the laboratory to the
clinic (pp. 94–108). Berlin: Springer.

Raden, N. (2005). Shedding light on shadow it: is Excel running your business? DSSRe-
sources.com, 26.

Roddick, J. F., Al-Jadir, L., Bertossi, L., Dumas, M., Gregersen, H., Hornsby, K., et al. (2000). Evo-
lution and change in data management—issues and directions. ACM SIGMOD Record, 29(1),
21–25.

Shirky, C. (2003). The semantic web, syllogism and worldview. In Networks, economics, and cul-
ture.

Sun, Y., Gray, J., & White, J. (2011). Mt-scribe: an end-user approach to automate software model
evolution. In 2011 33rd international conference on software engineering (ICSE) (pp. 980–982).
New York: IEEE Press.

Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends
in Cognitive Sciences, 5(6), 244–252.

Wach, E. P. (2011). Automated ontology evolution as a basis for adaptive interactive systems. In
IUI SEMAIS 11 (pp. 467–468).

Whitehouse, R. (1999). The uniqueness of individual perception. In R. Jacobson (Ed.), Information
design (pp. 103–129). Cambridge: MIT Press.

Zhao, C.-c., Zhao, L.-y., & Wang, H.-l. (2010). A spreadsheet system based on data semantic
object. In 2010 the 2nd IEEE international conference on information management and engi-
neering (ICIME) (pp. 407–411).


	Chapter 3: Cognitive Semantic Categories as a Basis for a Prototype Adaptive Information System
	3.1 Introduction
	3.2 Related Work
	3.2.1 Relational Databases and Object-Oriented Design
	3.2.2 Ontologies and the Semantic Web
	3.2.3 Spreadsheets

	3.3 Conceptual Data Independence
	3.3.1 Soft Schemas
	3.3.2 Archetypal Categories and Differential Design
	3.3.3 Neurology and Cognitive Semantics

	3.4 How the Prototype AIS Works
	3.4.1 Visual and Interaction Design
	3.4.2 Handling Schemas and Data
	3.4.3 Applications in Reverse Engineering of Existing Data Structures

	3.5 Discussion and Future Work
	3.6 Conclusion
	References


