

Human–Computer Interaction Series

Editors-in-chief

John Karat

Jean Vanderdonckt
Université catholique de Louvain, Louvain-la-Neuve, Belgium

Editorial Board

Ravin Balakrishnan, University of Toronto, Toronto, ON, Canada

Simone Barbosa, PUC-Rio, Rio de Janeiro, RJ, Brazil

Regina Bernhaupt, Ruwido, Salzburg, Austria

John Carroll, The Pennsylvania State University, University Park, PA, USA

Adrian Cheok, Keio University, Tokyo, Japan

Gilbert Cockton, Northumbria University, Newcastle upon Tyne, UK

Henry Been-Lirn Duh, University of Tasmania, Sandy Bay, TAS, Australia

Peter Forbrig, Universität Rostock, Rostock, Germany

Carla Freitas, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil

Hans Gellersen, Lancaster University, Lancaster, UK

Robert Jacob, Tufts University, Medford, MA, USA

Panos Markopoulos, Eindhoven University of Technology, Eindhoven, The Netherlands

Gerrit Meixner, Heilbronn University, Heilbronn, Germany

Dianne Murray, Putting People Before Computers, London, UK

Brad A. Myers, Carnegie Mellon University, Pittsburgh, PA, USA

Philippe Palanque, Université Paul Sabatier, Toulouse, France

Oscar Pastor, University of Valencia, Valencia, Spain

Beryl Plimmer, University of Auckland, Auckland, New Zealand

Desney Tan, Microsoft Research, Redmond, WA, USA

Manfred Tscheligi, Center for Usability Research and Engineering, Vienna, Austria

Gerrit van der Veer, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Shumin Zhai, IBM Almaden Research Center, San Jose, CA, USA

HCI is a multidisciplinary field focused on human aspects of the development of computer
technology. As computer-based technology becomes increasingly pervasive—not just in de-
veloped countries, but worldwide—the need to take a human-centered approach in the design
and development of this technology becomes ever more important. For roughly 30 years now,
researchers and practitioners in computational and behavioral sciences have worked to iden-
tify theory and practice that influences the direction of these technologies, and this diverse
work makes up the field of human-computer interaction. Broadly speaking it includes the
study of what technology might be able to do for people and how people might interact with
the technology. The HCI series publishes books that advance the science and technology of
developing systems which are both effective and satisfying for people in a wide variety of
contexts. Titles focus on theoretical perspectives (such as formal approaches drawn from a
variety of behavioral sciences), practical approaches (such as the techniques for effectively
integrating user needs in system development), and social issues (such as the determinants of
utility, usability and acceptability).

For further volumes:
http://www.springer.com/series/6033

http://www.springer.com/series/6033

Tim Hussein � Heiko Paulheim �

Stephan Lukosch � Jürgen Ziegler � Gaëlle Calvary
Editors

Semantic Models
for Adaptive
Interactive Systems

Editors
Tim Hussein
Interactive Systems Group
University of Duisburg-Essen
Duisburg, Germany

Heiko Paulheim
Data and Web Science Group
University of Mannheim
Mannheim, Germany

Stephan Lukosch
Faculty of Technology, Policy & Manageme
Delft University of Technology
Delft, The Netherlands

Jürgen Ziegler
Interactive Systems Group
University of Duisburg-Essen
Duisburg, Germany

Gaëlle Calvary
Grenoble Informatics Laboratory
Grenoble Institute of Technology
Grenoble, France

ISSN 1571-5035 Human–Computer Interaction Series
ISBN 978-1-4471-5300-9 ISBN 978-1-4471-5301-6 (eBook)
DOI 10.1007/978-1-4471-5301-6
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013943468

© Springer-Verlag London 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Preface

Semantic technologies and, in particular, ontologies as formal and shareable rep-
resentations of a domain play an increasingly important role in computer science,
especially for the design, development and execution of interactive systems. Se-
mantic models can serve a number of different purposes in this context. They can be
used as functional core or user interface models in model-driven analysis, design,
generation, and adaptation of user interfaces.

Ontologies may enhance the functional coverage of an interactive system as well
as its visualization and interaction capabilities in various ways, e.g., by providing
input assistance, intelligently clustering information, guiding collaborative interac-
tion, or adapting the user interface according to the user’s context. Especially in
the latter case, ontologies can be applied for representing the various kinds of con-
text information for context-aware and adaptive systems. In particular, they have
promised to provide a technique for representing external physical context factors
such as location, time or technical parameters, as well as “internal” context such as
user interest profiles or interaction context in a consistent, generalized manner. Ow-
ing to these properties, semantic models can also contribute to bridging gaps, e.g.,
between user models, context-aware interfaces and model-driven UI generation.

There is, therefore, a considerable potential for using semantic models as a basis
for adaptive interactive systems. The range of potential adaptations is wide com-
prising, for example, context- and user-dependent recommendations, interactive as-
sistance when performing application-specific tasks, adaptation of the application
functionality, adaptation of the collaboration process, or adaptive retrieval support.
Furthermore, a variety of reasoning and machine learning techniques exist, that can
be employed to achieve adaptive system behavior. Last, but not least, the advent and
rapid growth of Linked Open Data as a large-scale collection of semantic data has
paved the way for a new breed of intelligent, knowledge-intensive applications.

To explore that potential, we have established a workshop series called Semantic
Models for Adaptive Interactive Systems (SEMAIS). The workshop had its debut
at the ACM Intelligent User Interfaces conference in Hong Kong in 2010, and was
followed by two subsequent editions in Palo Alto in 2011, and in Lisbon in 2012. At
the workshop, we have seen cutting edge research spanning from the employment of

v

vi Preface

semantic models in the development and generation of interactive systems to novel
interaction paradigms and applications for semantic data.

This book collects enhanced, revised, and updated versions of the best papers
submitted to the three workshops editions, as well as additional original contribu-
tions. It provides insights into methodologies for designing adaptive systems based
on semantic data, introduces models that can be used for building interactive sys-
tems, and showcases applications made possible by the use of semantic models.

Book Outline

UI2Ont—A Formal Ontology on User Interfaces and Interactions by Heiko Paul-
heim and Florian Probst discusses the potentials of an encompassing ontology for
describing user interfaces and the way humans interact with them. The authors show
how such an ontology can be constructed from existing user interface description
languages and describe how it can be employed for application integration.

Generating Models of Recommendation Processes out of Annotated Ontologies
by Hermann Kaindl et al. shows how the development of interactive systems—in
that case recommendation systems—can be automated to a certain extent by the
use of ontologies. They discuss a methodology for turning a product ontology into
a discourse system in which users can interactively choose products. The system
was tested in active online stores, showing that the semi-automatically generated
discourses were competitive with manually designed ones.

Cognitive Semantic Categories as a Basis for a Prototype Adaptive Information
System by Evangelos Kapros and Simon McGinnes introduces a methodology for
generating applications offering basic general operations on a dynamic data struc-
ture. They leverage findings from neurology and cognitive semantics to derive a set
of archetypal categories, which is used as a top level for automatically generating
intuitive visual designs for adaptive information systems.

A Semantic Model for Adaptive Collaboration Support Systems by Stefan W.
Knoll et al. discusses an encompassing framework for fostering elastic collaboration
processes, i.e., collaboration processes that are not statically predefined, but may be
adapted to dynamic requirements and situational changes. Their approach is based
on a semantic model that can be used to express information about process steps as
well as the participants and their contexts, thus allowing for the implementation of
dynamic applications.

A Semantics-Based, End-User-Centered Information Visualization Process for
Semantic Web Data by Martin Voigt et al. introduces the VizBoard workbench,
a system which allows end users without specific Semantic Web skills to create in-
formative visualizations of Semantic Web data. By using semantic description of all
visualization components, complex adaptive and interactive views can be generated.

PASTREM: Proactive Ontology Based Recommendations for Information Work-
ers by Benedikt Schmidt et al. addresses the needs of information workers deal-
ing with multiple diverse resources in various processes. The chapter discusses a
recommender system that detects the user’s current context and work process and

Preface vii

identifies relevant items in the user’s system. The system was evaluated using data
collected from different work stations at an IT company, and is shown to provide
more meaningful recommendations than common recommendation algorithms.

Visualizing Search Results of Linked Open Data by Christian Stab et al. in-
troduces an approach for making search on Linked Open Data more intuitive for
end users. Their approach provides a means to translate natural language keyword
searches to formal queries on Linked Data, and gives the users visual feedback on
both the system’s understanding of the user’s query and the search results. The au-
thors show that users searching for information with their system are both faster as
well as more satisfied than with traditional approaches.

A Context-Aware Shopping Portal Based on Semantic Models by Tim Hussein et
al. illustrates how semantic models can be used as backend data source for both ex-
ploration and adaption of interactive systems. They show how semantic models can
be used to provide faceted browsing as well as user adaption and recommendation,
using spreading activitation on semantic data to make the system adapt to a user’s
preferences.

Semantic Models for Interactive Systems: The Case of Tagging and Folksonomies
by Steffen Lohmann is concerned with a specific interaction technique that has be-
come popular in the Web 2.0, i.e., tagging. User generated tags are used as a ba-
sis for finding and recommending content in large-scale platforms such as Flickr
or YouTube. The chapter introduces a formal ontology for describing tagging in-
teractions and the relations between individual tags, which can be used for novel
graphical visualizations.

User Interaction Templates for the Design of Lifelogging Systems by Frank Hopf-
gartner et al. shows how semantics can help organizing and analyzing the abundance
of data generated by lifelogging systems, i.e., systems that constantly track their
users. They discuss use cases, interaction techniques, and information visualization
approaches that are made possible by using semantic representations of the data
collected by lifelogging systems.

Acknowledgements

The editors would like to thank all the authors contributing chapters to this volume
and participating in the peer reviewing process, as well as Beverley Ford and Ben
Bishop at Springer for making this volume possible. Furthermore, we would like to
thank the organizers of the ACM Intelligent User Interfaces conferences 2010–2012
for providing the frame for the SEMAIS workshop series, and all the participants at
those workshops for their interesting submissions and stimulating discussions.

Tim Hussein
Heiko Paulheim

Stephan Lukosch
Jürgen Ziegler
Gaëlle Calvary

Duisburg, Mannheim, Delft, Grenoble
March 2013

Contents

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions . . 1
Heiko Paulheim and Florian Probst

2 Generating Models of Recommendation Processes out of Annotated
Ontologies . 25
Hermann Kaindl, Dominik Ertl, Roman Popp, Ralph Hoch, Jürgen Falb,
Edin Arnautovic, Ada Okoli, and Martin Schliefnig

3 Cognitive Semantic Categories as a Basis for a Prototype Adaptive
Information System . 43
Evangelos Kapros and Simon McGinnes

4 A Semantic Model for Adaptive Collaboration Support Systems . . . 59
Stefan W. Knoll, Jordan Janeiro, Stephan G. Lukosch, and
Gwendolyn L. Kolfschoten

5 A Semantics-Based, End-User-Centered Information Visualization
Process for Semantic Web Data . 83
Martin Voigt, Stefan Pietschmann, and Klaus Meißner

6 PASTREM: Proactive Ontology Based Recommendations for
Information Workers . 109
Benedikt Schmidt, Eicke Godehardt, and Heiko Paulheim

7 Visualizing Search Results of Linked Open Data 133
Christian Stab, Dirk Burkhardt, Matthias Breyer, and Kawa Nazemi

8 A Context-Aware Shopping Portal Based on Semantic Models 151
Tim Hussein, Timm Linder, and Jürgen Ziegler

9 Semantic Models for Interactive Systems: The Case of Tagging and
Folksonomies . 169
Steffen Lohmann

10 User Interaction Templates for the Design of Lifelogging Systems . . 187
Frank Hopfgartner, Yang Yang, Lijuan Marissa Zhou, and Cathal Gurrin

ix

Contributors

Edin Arnautovic Vienna, Austria

Matthias Breyer Fraunhofer Institute for Computer Graphics Research (IGD),
Darmstadt, Germany

Dirk Burkhardt Fraunhofer Institute for Computer Graphics Research (IGD),
Darmstadt, Germany

Dominik Ertl Vienna University of Technology, Vienna, Austria

Jürgen Falb Vienna University of Technology, Vienna, Austria

Eicke Godehardt SAP Research, Darmstadt, Germany

Cathal Gurrin Dublin City University, Dublin, Ireland

Ralph Hoch Vienna University of Technology, Vienna, Austria

Frank Hopfgartner TU Berlin, Berlin, Germany

Tim Hussein University of Duisburg-Essen, Duisburg, Germany

Jordan Janeiro Delft University of Technology, Delft, The Netherlands

Hermann Kaindl Vienna University of Technology, Vienna, Austria

Evangelos Kapros The University of Dublin, Dublin, Ireland

Stefan W. Knoll Delft University of Technology, Delft, The Netherlands

Gwendolyn L. Kolfschoten Delft University of Technology, Delft,
The Netherlands

Timm Linder University of Duisburg-Essen, Duisburg, Germany

Steffen Lohmann University of Stuttgart, Stuttgart, Germany

Stephan G. Lukosch Delft University of Technology, Delft, The Netherlands

Simon McGinnes The University of Dublin, Dublin, Ireland

xi

xii Contributors

Klaus Meißner TU Dresden, Dresden, Germany

Kawa Nazemi Fraunhofer Institute for Computer Graphics Research (IGD),
Darmstadt, Germany

Ada Okoli Smart Information Systems GmbH, Viena, Austria

Heiko Paulheim University of Mannheim, Mannheim, Germany

Stefan Pietschmann TU Dresden, Dresden, Germany

Roman Popp Vienna University of Technology, Vienna, Austria

Florian Probst SAP Research, Darmstadt, Germany

Martin Schliefnig Smart Information Systems GmbH, Viena, Austria

Benedikt Schmidt SAP Research, Darmstadt, Germany

Christian Stab Fraunhofer Institute for Computer Graphics Research (IGD),
Darmstadt, Germany

Martin Voigt TU Dresden, Dresden, Germany

Yang Yang Dublin City University, Dublin, Ireland

Lijuan Marissa Zhou Dublin City University, Dublin, Ireland

Jürgen Ziegler University of Duisburg-Essen, Duisburg, Germany

Chapter 1
UI2Ont—A Formal Ontology on User Interfaces
and Interactions

Heiko Paulheim and Florian Probst

Abstract Formal models of user interfaces are widely popular in the literature, and
various user interface description languages exist. For several use cases, the use of
ontologies as models for user interfaces has been discussed, leveraging the advan-
tages of a machine-interpretable semantics of user interface components. However,
a comprehensive ontology of user interfaces and interactions is not available. In this
chapter, we discuss the UI2Ont ontology, an ontology of user interfaces and inter-
actions, which reuses many concepts defined in different user interface description
languages and grounds them in the formal top level ontology DOLCE. We discuss
the rationales of developing the ontology, give an overview of its basic concepts, and
show its application in a framework for application integration on the user interface
level.

1.1 Introduction

Software systems are complex. This holds in particular for the user interfaces of
those software systems, which contribute about 50 % to the overall complexity of a
software system (Myers and Rosson 1992). To deal with that complexity, models as
abstractions of user interfaces are helpful.

To create such models, a variety of user interface description languages has been
proposed (Guerrero-Garcia et al. 2009; Paternò et al. 2008; Souchon and Vander-
donckt 2003). These languages, most of which are XML-based, allow for describ-
ing user interfaces on an abstract level. The goal is, most often, to generate user
interface code from them in a model-driven approach.

While most of those UI description languages are useful for their purpose, some
use cases require a stronger formalization than that given by a UML diagram or

H. Paulheim (B)
University of Mannheim, Mannheim, Germany
e-mail: heiko@informatik.uni-mannheim.de

F. Probst
SAP Research, Darmstadt, Germany
e-mail: f.probst@sap.com

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_1,
© Springer-Verlag London 2013

1

mailto:heiko@informatik.uni-mannheim.de
mailto:f.probst@sap.com
http://dx.doi.org/10.1007/978-1-4471-5301-6_1

2 H. Paulheim and F. Probst

an XML schema. A more formal approach is to use ontologies for describing the
categories of things that exist in the domain of user interfaces, and their possible
relations. An ontology is “a formal, shared conceptualization of a domain” (Gru-
ber 1995), i.e., it captures the categories of things that exist in a domain, and their
possible relations, in a formal manner.

Although ontologies have been widely adopted in other software engineering
fields, e.g., in the domain of web services (Studer et al. 2007), their employment
for user interface development is still rare. Although some first work is done, e.g.,
in the course of W3C’s WAI ARIA initiative (W3C 2011a), a universal ontology of
user interfaces is still missing.

This chapter discusses the development of UI2Ont,1 a formal ontology of user
interfaces, split into a top level and a detail level. The former describes the general
concepts that exist in the user interface domain (such as components and activities),
the latter contains detailed taxonomies of those concepts, i.e., a categorization of
component types etc. We have designed the UI2Ont ontology by examining existing
user interface description languages and formalizing the concepts contained therein
in a rigid ontology, based on the formal top level ontology DOLCE (Masolo et al.
2003).

The rest of this chapter is structured as follows. Section 1.2 motivates the de-
velopment of a formal ontology of user interfaces and interactions. and Sect. 1.3
discusses a number of potential use cases for such an ontology. Section 1.4 gives an
overview on existing ontologies of the domain. Section 1.5 discusses design deci-
sions and the building process of the UI2Ont ontology, while Sect. 1.6 depicts the
resulting ontology itself. A sample application using the ontology is discussed in
Sect. 1.7. We conclude with a summary and an outlook on future work in Sect. 1.8.

1.2 Ontologies vs. UI Models

Although ontologies and software models are related, they are not essentially the
same. Software models and ontologies are different by nature. An ontology claims
to be a generic, commonly agreed upon specification of a conceptualization of a
domain (Gruber 1993), with a focus on precisely capturing and formalizing the se-
mantics of terms used in a domain. A software model in turn is task-specific, with
the focus on an efficient implementation of an application for solving tasks in the
modeled domain (Atkinson et al. 2006; Ruiz and Hilera 2006; Spyns et al. 2002).
Thus, a software engineer would rather trade off precision for a simple, efficient
model, with the possibility of code generation, while an ontology engineer would
trade off simplicity for a precise representation (Paulheim et al. 2011). Another dif-
ference is that in software engineering, models are most often prescriptive models,
which are used to specify how a system is supposed to behave, while ontologies are
rather descriptive models, which describe how the world is (Aßmann et al. 2006).
Figure 1.1 illustrates those differences.

1http://www.ke.tu-darmstadt.de/resources/ui2-ontology.

http://www.ke.tu-darmstadt.de/resources/ui2-ontology

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 3

Fig. 1.1 Ontologies and modeling languages serve different purposes (reprinted from Paulheim
and Probst 2011)

Taking this thought to the domain of user interfaces and interactions, models
are used to define particular user interfaces (e.g. with the goal of generating code
implementing those interfaces), while a formal ontology would capture the nature
of things that exist in the domain, e.g., which types of user interfaces exist, and how
they are related.

Due to those differences, we argue that developing a formal ontology on user
interfaces will not lead to yet another user interface description language, but to a
highly formal model with different intentions and usages.

1.3 Use Cases

The literature discusses several use cases for employing ontologies in the field of
engineering user interfaces, e.g. the position paper by Rauschmayer (2005) and our
more recent survey (Paulheim and Probst 2010b). In the latter, we have identified
a number of use cases where an ontological representation of the domain of user
interfaces and interactions is required or at least beneficial. Those use cases address
improving both the development process as well as the user interface itself.

Automatic Generation of UI Code The classic use case for user interface mod-
els is generating user interface code from an abstract model, typically in an MDA
based setting. An example for using ontologies as input models to a code generator
is shown by Liu et al. (2005). The authors argue that employing background knowl-
edge from a richly axiomized ontology can improve the quality of the generated
user interfaces, e.g., by identifying useless interaction paths or illegal combinations
of interaction components (e.g., foreseeing a mouse-triggered interaction on a de-
vice without a mouse). Furthermore, domain ontologies may already be used for
other purposes in a software engineering project; they can be reused for creating the
description of UI components.

4 H. Paulheim and F. Probst

Supporting Repositories of User Interface Components Reusing existing UI
components is desirable to reduce development efforts. With a growing number of
components that can potentially be reused, it is not an easy task to find suitable
components. Happel et al. (2006) discuss an ontology-based repository for software
components (in general, not specifically UI components). Reasoning on those on-
tologies assists users in finding components which fit their needs, e.g., in terms of
license agreements, hardware platforms, or required libraries. For systems to be built
from a large number of components, conflicts which are hard to find manually can
be detected automatically by a reasoner.

Supporting Repositories of Usability Patterns Not only code artifacts such as
software components may be stored and reused, but also conceptual artifacts such as
design and usability patterns. Henninger et al. (2003) introduce an approach using
ontologies for classifying and annotating usability patterns. The authors propose the
use of ontologies for managing a repository of patterns. By representing those prop-
erties using formal ontologies, more sophisticated approaches could also validate
those patterns, find inconsistencies and incompatibilities between different patterns,
and identifying commonalities between different usability patterns.

Integration of UI Components Ontologies may not only be used for identifying,
but also for integrating user interface components. We have introduced an approach
which uses ontologies for annotating user interface components and messages ex-
changed by those components (Paulheim and Probst 2010a). A reasoner acts as a
central message processor which coordinates the interactions between the different
components, based on formalized rules, thus facilitating run-time integration of user
interface components. This example is discussed in more detail in Sect. 1.7.

UI Adaptation Different users have different expectations and needs towards an
application’s user interface. Therefore, making user interfaces adaptive is a signif-
icant improvement regarding usability. Different approaches have been discussed
to employ ontologies for building adaptive user interface have been discussed. The
W3C’s WAI ARIA initiative (W3C 2011a), for example, suggests the use of on-
tologies for annotating web based interfaces. Based on a user’s profile and semantic
annotations of the interface, a reasoner can decide on a optimal realizations for users
with impairments, such as color-blindness.

Self-explanatory User Interfaces User interfaces for complex systems are of-
ten difficult to understand. Therefore, users may need assistance in finding out how
to achieve their goals, how particular user interface components work, and how
they are related to each other. Kohlhase and Kohlhase (2009) discuss different ap-
proaches which use ontologies for automatically generating explanations in user
interfaces, both textually and graphically: ontology-based formalizations of user in-
terfaces are used to create help texts and visual hints at run-time.

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 5

1.4 Related Work

In the previous section, we have discussed a number of use cases for a formal on-
tology of the domain of user interfaces and interactions. Although there are some
prototypes for those use cases, most of them are built on top of only small, pragmatic
ontologies that fit the requirements of those use cases, but to the best of our knowl-
edge, there has not been an attempt to build a concise and comprehensive ontology
of the domain.

The WAI ARIA ontology (W3C 2011a), whose contents have been used as an
input for our ontology, provides a taxonomy of roles that elements in a web based
application can play, and a set of attributes of those elements. Annotations based on
that ontology can be used to make web pages accessible for people with different
impairments. The WAI ARIA ontology is not general, but has a strong bias towards
web based user interfaces, which makes it difficult to transfer it to other types of user
interfaces. The hardware parts of user interfaces are not contained in WAI ARIA,
neither are user interactions. Furthermore, it is does not follow a rigid ontology en-
gineering approach, but contains some questionable subclass relations. The top level
consists of the three categories WINDOW, WIDGET, and STRUCTURE, but there are
many categories which are sub-categories of more than one of those. For example,
ALERT DIALOG is at the same time a sub-category of WINDOW and of REGION

(a sub-category of STRUCTURE), where the latter is explained to be “a large per-
ceivable section of a web page or document”, while the former follows the notion
of being a browser displaying such web pages and documents. Such contradicting
axioms may cause some difficulties when reasoning on the ontology.

The GLOSS ontology (Coutaz et al. 2003) defines categories for multi surface in-
teractions, i.e., interactions with tangible user interface components, user interfaces
consisting of interactive surfaces (e.g., touch screens), and combinations thereof.
The ontology has a strong focus on the hardware aspects of interactive devices and
their relations. It contains a formalization of the top level, but omits a detail level
laying out different types of devices and their attributes, nor does it contain further
categorizations of interactions or user interface components.

The FIPA device ontology (Foundation for Intelligent Physical Agents 2002) is
also an ontology of user interface devices, which focuses on mobile devices, such
as smart phones. It provides means to describe the technical capabilities of such
devices, e.g., audio input and output, memory, and screen resolution. While being
suitable for certain use cases, such as comparing devices and their capabilities and
defining requirements of software for such devices, the ontology is not expressive
and detailed enough to be used for other scenarios in the user interface area.

A similar approach is taken by the W3C’s CC/PP (Composite Capability/
Preference Profiles) recommendation (W3C 2004a), where capabilities and pref-
erences of mobile devices are represented in RDF. While the recommendation con-
tains an informative example vocabulary for displays and printers, CC/PP, like the
GLOSS ontology, only defines the top level and leaves the specification of the detail
level open. Another (meanwhile discontinued) attempt was made by the W3C in the
course of the Delivery Context Ontology (W3C 2010), which focuses on mobile,

6 H. Paulheim and F. Probst

Java based application front ends to web services and provides means to formal-
ize both mobile hardware and Java software. Although its scope is rather limited, it
provides a reasonable degree of formalization.

Another aspect of user interfaces and interactions is addressed by the Computer
Work Ontology (CWO) (Schmidt et al. 2011). The ontology formalizes the way
people work with computers, the goals they pursue, and the actions they perform
to achieve these goals. While this ontology provides a concise formal description
of the activities, reusing top level ontologies such as DOLCE, it is not capable of
capturing interactions with the components and those components as such.

All of the ontologies discussed are rather narrow in scope and do not cover the
whole area of user interfaces. Furthermore, many of them are only weakly formal-
ized and do not leverage extensive formalizations of top level ontologies. In contrast,
UI2Ont is the first ontology covering the entire spectrum of user interfaces and in-
teractions, allowing for concise descriptions of interactions with classical interfaces
as well as the formalization of multi-modal interactions.

1.5 Building the Ontology

Most ontology engineering approaches start from collecting concepts from the do-
main (Fernández et al. 1997; Uschold and King 1995). To that end, we have first re-
viewed a number of user interface description languages and extracted a list of con-
cepts. Furthermore, we have re-used a number of top-level ontologies and aligned
the concepts identified in the first step to those ontologies in order to facilitate a rich
axiomatization.

1.5.1 Reuse of UI Description Languages

As discussed above, a number of user interface description languages already exists.
From the large variety presented in the surveys (Paternò et al. 2008; Souchon and
Vanderdonckt 2003), we picked a subset based on criteria such as popularity in the
literature, relevance with respect to the modeling goals of the ontology, availabil-
ity of detailed documentation (as the exact set of tags or keywords is needed for
identifying key concepts), and expressiveness.

Figure 1.2 depicts the chosen subset, organized along the three levels of the
Cameleon reference framework, i.e., the concepts and tasks level, the abstract user
interface level, and the concrete user interface level (Calvary et al. 2003).2

The set of languages taken into account for the development of the UI2Ont on-
tology consists of UIML (OASIS 2009), XIML (RedWhale Software 2000), the

2The fourth level, the final user interface level, consists of the interface as such, i.e., binary code,
and therefore usually does not involve any model.

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 7

Fig. 1.2 User interface description languages that have been used as input for our ontology
(reprinted from Paulheim 2011)

abstract roles defined in WAI ARIA (W3C 2011a), and the abstract user interface
parts of UsiXML (UsiXML Consortium 2007), TeresaXML (Paternò et al. 2008) and
its successor MARIA XML (Paternò et al. 2009). For the detail level, we have used
LZX (Laszlo Systems 2006), XUL (Mozilla 2011), XForms (W3C 2009) and HTML5
(W3C 2011b), the MONA UIML vocabulary (Simon et al. 2004), the concrete user
interface part of UsiXML, and the concrete roles defined in WAI ARIA.

Table 1.1 lists the key concepts from the different UI description languages that
we have examined on the abstract UI level. In addition to those 52 concepts, we
have identified 26 relations between those concepts. These collections have served
as input for building the ontology.

The table shows that there are some differences between the different UI defi-
nition languages. Besides different modeling scopes, one reason is that the border
between abstract and concrete user interface (Calvary et al. 2003) is not sharply de-
fined: e.g., Condition belongs to the abstract user interface part of MARIA, but to the
concrete user interface part of UsiXML. Since the table only depicts the languages’
respective abstract user interface parts, such deviations occurred.

For the detail level, we have collected definitions of user interface components
and user and system activities (which are often expressed as system events notifying
about those activities). Figure 1.3 exemplarily shows the distribution of user inter-
face component definitions across the concrete user interface languages examined.
The figure shows that there is a “long tail” of components that are only defined in
one or two languages. Therefore, it makes sense to unify the input of several lan-
guages when collecting concepts.

8 H. Paulheim and F. Probst

Ta
bl

e
1.

1
K

ey
co

nc
ep

ts
id

en
tifi

ed
fr

om
ex

am
in

ed
U

I
de

sc
ri

pt
io

n
la

ng
ua

ge
s.

A
n

X
de

no
te

s
th

at
th

e
co

nc
ep

t
is

pr
es

en
t

in
th

e
re

sp
ec

tiv
e

la
ng

ua
ge

,a
∗d

en
ot

es
th

at
it

is
pr

es
en

t,
bu

te
xp

re
ss

ed
as

a
re

la
tio

n.
T

he
ta

bl
e

lis
ts

al
lc

on
ce

pt
s

th
at

ex
is

ti
n

at
le

as
tt

w
o

of
th

e
la

ng
ua

ge
s.

T
he

la
st

lin
e

sh
ow

s
al

lt
he

co
nc

ep
ts

th
at

ex
is

t
in

on
ly

on
e

la
ng

ua
ge

L
an

gu
ag

e
U

se
r

in
te

rf
ac

e
co

m
po

-
ne

nt

U
se

r
in

te
r-

fa
ce

In
te

r-
ac

tio
n

In
pu

t
R

an
ge

O
ut

pu
t

C
on

tr
ol

C
on

di
-

tio
n

E
ve

nt
N

av
i-

ga
tio

n
St

yl
e

D
ia

lo
g

D
ia

lo
g

el
em

en
t

G
ro

u-
pi

ng
D

om
ai

n
m

od
el

D
at

a
ob

je
ct

O
th

er

U
si

X
M

L
X

X
X

X
X

X
X

X
*

1

X
IM

L
X

X
X

X
*

X
X

X
X

X
X

9

U
IM

L
X

X
X

X
X

X
3

W
A

I
A

R
IA

X
X

X
5

M
A

R
IA

X
M

L
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

18

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 9

Fig. 1.3 Distribution of UI
component definitions across
different UI description
languages (reprinted from
Paulheim 2011)

1.5.2 Reuse of Top Level Ontologies

We have reused a number of foundational and upper level ontologies for several rea-
sons. First of all, those ontologies already contain definitions for a larger number of
concepts, so they reduce the initial efforts of developing the ontology. Second, using
foundational level ontologies eases the interoperability with applications based on
ontologies using the same foundational level ontologies. Third, foundational level
ontologies provide a certain guidance which simplify the definition of useful cate-
gories and prevent typical modeling mistakes (Guarino and Welty 2009). Figure 1.4
shows the stack of ontologies that we have reused.

The scope of the UI description languages examined was in most cases limited to
or at least focused on the software part of user interfaces. Therefore, we have reused
the ontologies of software and of software components described by Oberle et al.
(2009). These two ontologies define categories such as SOFTWARE, SOFTWARE

COMPONENT, DATA, COMPUTATIONAL TASK, etc., and their relations, which form
a useful basis for ontological modeling of software related things. The core software
ontology defines software and software objects in general, while the core ontology
of software components can be used to describe properties of actual software com-
ponents, such as states and parameters.

These ontologies in turn build upon a set of top level ontologies: DOLCE (Ma-
solo et al. 2003) divides the top level of PARTICULARS into ENDURANTS (i.e.,
entities that are in time, such as physical objects), PERDURANTS (i.e., entities that
happen in time, such as events), QUALITIES inherent to other particulars (such as
color or spatial position), and ABSTRACTS (i.e., entities that have neither spatial

Fig. 1.4 Stack of the ontologies that have been reused. The top and detail level ontologies of the
user interfaces and interactions domain are located on the right hand side (reprinted from Paulheim
2011)

10 H. Paulheim and F. Probst

nor temporal qualities). These basic categories are then further subdivided to form
an abstract, very general level of categories.

There are various extensions to DOLCE. Two high-level extensions define spa-
tial and temporal relations between entities. The descriptions and situations exten-
sion, often referred to as DnS, is used to express descriptions about other entities.
It is a useful basis to define, e.g., communications and interpretations of utterances
(Gangemi and Mika 2003). INFORMATION OBJECTS, such as books, are a spe-
cial type of DESCRIPTIONS, which carry information about other entities (Gangemi
et al. 2005). Digital data objects in an information system are also considered in-
formation objects, therefore, information objects are the basic entities for defining
software.

When software is executed, tasks are performed by an information system. Such
tasks are defined by a plan, which is expressed by the software. Therefore, the on-
tology of plans (Bottazzi et al. 2006) is also reused by the ontology of software. It
in turn builds upon the ontology of functional participation (Masolo et al. 2003),
which defines relations between the execution of tasks and the entities involved in
those executions, such as an object serving as an INSTRUMENT or a RESOURCE in
a task execution process.

The basic categories and relations defined by the reused ontologies divide the
ontology of user interfaces and interactions along two axis, as depicted in Fig. 1.5:

• At design time, there are only instances of the DESCRIPTIONS of user interfaces,
such as the software specifications and the task descriptions. At run time, USER

INTERFACE DESCRIPTIONS are realized by COMPUTATIONAL OBJECTS and
TANGIBLE OBJECTS, and task descriptions are carried out as ACTIVITIES.

• TASKS and ACTIVITIES describe the interactions possible with user interfaces,
while USER INTERFACE COMPONENTS and their realizations describe the COM-
PONENTS that are involved.

Some of the concepts and relations identified in the first step are already con-
tained in the stack of reused ontologies. For example, tasks and events are already
defined in the DOLCE ontologies, and data types (e.g., of data entered in input
fields) are already defined in the ontology of software components.

Furthermore, there are constructs in some UI description languages that are in-
herent to most ontology languages, such as OWL. For example, XIML provides
generic slots for creating user defined relations, and UIML has means for defining
rules (which, in an ontology case, would be expressed with an ontology-based rule
language, such as SWRL (W3C 2004b)). Those constructs are omitted in the ontol-
ogy, as they can be provided by the ontology language used for coding the ontology.

1.6 The UI2Ont Ontology

The UI2Ont ontology consists of two levels: the top level ontology defines the ele-
mentary categories such as user interface components and interactions, and the basic

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 11

F
ig

.1
.5

T
he

to
p

le
ve

l
of

th
e

on
to

lo
gy

of
th

e
us

er
in

te
rf

ac
es

an
d

in
te

ra
ct

io
ns

do
m

ai
n.

In
th

e
up

pe
r

pa
rt

,
th

e
de

si
gn

tim
e

co
nc

ep
ts

ar
e

sh
ow

n,
th

e
lo

w
er

pa
rt

co
nt

ai
ns

th
e

ru
n

tim
e

co
nc

ep
ts

.
T

he
le

ft
pa

rt
de

al
s

w
ith

in
te

ra
ct

io
ns

,
th

e
ri

gh
t

pa
rt

w
ith

co
m

po
ne

nt
s.

T
he

w
hi

te
el

li
ps

es
de

no
te

co
nc

ep
ts

fr
om

th
e

re
us

ed
on

to
lo

gi
es

(w
ith

th
e

fo
llo

w
in

g
na

m
es

pa
ce

co
nv

en
tio

ns
:D

O
L

C
E

(d
ol

ce
),

In
fo

rm
at

io
n

O
bj

ec
ts

(i
o)

,T
em

po
ra

lR
el

at
io

ns
(t

r)
,F

un
ct

io
na

lP
ar

tic
ip

at
io

n
(f

p)
,P

la
ns

(p
la

n)
,

D
es

cr
ip

tio
ns

an
d

Si
tu

at
io

ns
(d

ns
),

C
or

e
So

ft
w

ar
e

O
nt

ol
og

y
(c

so
),

C
or

e
O

nt
ol

og
y

of
So

ft
w

ar
e

C
om

po
ne

nt
s

(c
os

c)
),

th
e

gr
ey

el
li

ps
es

de
no

te
co

nc
ep

ts
fr

om
th

e
to

p
le

ve
l

on
to

lo
gy

of
th

e
us

er
in

te
rf

ac
es

an
d

in
te

ra
ct

io
ns

do
m

ai
n.

T
he

gr
ay

tr
ia

ng
le

s
de

no
te

de
fin

iti
on

s
ca

rr
ie

d
ou

t
in

th
e

de
ta

il
on

to
lo

gy
(r

ep
ri

nt
ed

fr
om

Pa
ul

he
im

20
11

)

12 H. Paulheim and F. Probst

relations that can hold between objects of those categories. The detail level ontology
defines the sub-categories and actual types of components and interactions, based
on the concepts found in the user interface description languages used as input in
the design process.

1.6.1 The UI2Ont Top Level Ontology

We use the basic notion of software, as defined in the ontology of software, to cat-
egorize user interfaces. To this end, some fundamental extensions to the reused on-
tologies were necessary.

The first fundamental extension is that for describing user interfaces, COMPU-
TATIONAL TASKS are not enough. Instead, the plan expressed by a user interface
consists of both USER TASKS and COMPUTATIONAL TASKS.

For describing more complex interaction patterns, we use the top level concept
PLAN. Generally, a plan can be seen as a description of some interaction between a
user and an IT system. We derive the category INTERACTION PLAN, which defines
both COMPUTATIONAL TASKS and USER TASKS. Those tasks which are carried out
as COMPUTATIONAL ACTIVITIES and USER ACTIVITIES. A USER INTERFACE

COMPONENT expresses one or more INTERACTION PLANS. As a plan describes
interactions based on conceptual TASKS, not on actually carried out ACTIVITIES, it
can also be seen as a pattern for interactions.

In the descriptions and situations ontology, a TASK is a concept which defines
how ACTIVITIES are sequenced, while those ACTIVITIES are the perdurants which
are actually happening. In other words, tasks exist at design time, while activities
happen at run-time. As a task may sequence different activities, activities may be
used for more fine-grained definitions than tasks. For user interfaces, a typical task
is select an object. Corresponding activities for that task can be click a radio but-
ton, click on a drop down list and click an entry in that list, type a shortcut key,
etc.

We found this distinction quite useful, as a task can be sequenced by different
activities for different user interface modalities (e.g. speech input and typing can
be activities for data input). Thus, the task level is a modality independent descrip-
tion defining the purpose of a UI component, while the activity level is a modality
dependent description defining the usage of a UI component.

Following Fowler’s classic three tier architecture (Fowler 2003), we divide
SOFTWARE COMPONENTS into STORAGE COMPONENTS, PROCESSING COMPO-
NENTS, and USER INTERFACE COMPONENTS. The latter are realized at run time
by USER INTERFACE COMPONENT REALIZATIONS.

The last extension affects COMPUTATIONAL OBJECTS. Although we focus on
WIMP user interfaces, our intention was to design the top level of our ontology gen-
eral enough to cover other forms of user interfaces, such as tangible components, as
well. Therefore, we defined the category PERIPHERICAL HARDWARE, where TAN-
GIBLE HARDWARE OBJECTS, as well as non-physical VISUAL COMPUTATIONAL

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 13

OBJECTS, can realized USER INTERFACE COMPONENTS. This construction allows
our top level ontology to cover both WIMP based as well as tangible user interfaces.

Some of the UI description languages contain classes that have been modeled
as relations in the ontology, e.g., Abstract Adjacency in UsiXML, which has
been turned into the ADJACENT TO relation. Also, by aligning our ontology with
the respective top levels, the domain and range of relations has sometimes been
changed. The ADJACENT TO relation, for example, has been changed from a relation
between user interface components to a relation between the SCREEN REGIONS

they occupy.
The most specific categories in our top level ontology are at the level of USER

INTERFACE COMPONENTS and USER TASKS. The definition of the subtypes of
components and tasks is done in the detail level ontology.

Figure 1.5 shows the top level ontology. The size of the OWL implementation
of the top level ontology is depicted in Table 1.2. Although we defined a number of
additional classes, we have mostly reused existing relations. Therefore, the number
of relations is comparatively low.

While the top level contains definitions of generic categories and relations used
to describe user interfaces and interactions, the detail level aims at providing a cate-
gorization of user interface components and tasks which is as complete as possible.

As discussed above, we have followed the distinctions imposed by the reused
upper level ontologies, which encourage the separation of information objects and
their realizations, as well as of description of tasks and actually carried out activities.
Transferred to our domain, this results in separating the design time level from the
run time level.

Due to this distinction, there are various points where the detail level ontology
enhances the top level ontology: on the design time level, taxonomies of USER

INTERFACE COMPONENTS, USER TASKS, and COMPUTATIONAL TASKS, are de-
fined. On the run time level, hierarchies of USER ACTIVITIES are defined, as well as
HARDWARE ITEMS with which those activities are performed. We have intention-
ally not defined any axioms restricting the allocation of activities to tasks, in order
not to exclude any forms of interaction. Furthermore, user interface components are
realized at run time by computational objects (i.e., software) and tangible objects
(i.e., hardware), as shown in Fig. 1.6, or mixtures of both.

1.6.2 The UI2Ont Detail Level Ontology

On the other hand, COMPUTATIONAL TASKS and COMPUTATIONAL OBJECTS are
not further specified. Such as a specification is not necessary from a user interface
perspective: for describing a user interface, it may be beneficial to describe how a
user performs a selection task in a certain modality, but it is not relevant how the
computer performs a certain computational task.

Due to this distinction, two possibilities of locating the detail level layer are pos-
sible: defining the details of TASKS and USER INTERFACE COMPONENTS on the

14 H. Paulheim and F. Probst

Fig. 1.6 Different realizations of a slider user interface component3

Table 1.2 Size of the OWL version of the top and the detail level ontology, as well as the reused
ontologies

Classes Relations Axioms

Reused ontologies 169 331 2039

UI2Ont Top level ontology 15 2 75

UI2Ont Detail level ontology 179 11 448

design time level, or defining the details of ACTIVITIES and USER INTERFACE

COMPONENT REALIZATIONS on the run time level. We decided for the former,
since in some of the use cases discussed above, the run time level does not exist. In
a repository of UI components, for example, those components are not instantiated
and executed when the ontology is used, e.g., for querying the repository. Thus, only
instances of categories of the description level exist. Therefore, it is useful to put as
much detail as possible on that level.

In our analysis of user interface definition languages, we have identified 80 dif-
ferent types of user interface components, as shown in Fig. 1.7. Using a bottom-up
clustering approach, we have grouped them in seven central categories:

• DATA INPUT COMPONENTS are used by the user to manipulate data. Examples
are text input fields and radio buttons.

• PRESENTATION MANIPULATION COMPONENTS change the appearance of a user
interface component, which is usually another one than the presentation manipu-
lation component itself. Examples are scroll bars and window resizers.

• OPERATION TRIGGERING COMPONENTS are used to invoke system functionali-
ties. Examples are buttons in a tool bar, and menu items.

• DECORATIVE ELEMENTS improve the appearance of user interfaces, are neither
interactive nor informative. Examples are separation bars and empty spaces.

• OUTPUTS provide a human consumable representation of data. Examples are text
and speech output.

3Image sources: http://www.flickr.com/photos/anachrocomputer/2574918867/, http://zetcode.
com/tutorials/javaswttutorial/widgets/, accessed April 20th, 2011.

http://www.flickr.com/photos/anachrocomputer/2574918867/
http://zetcode.com/tutorials/javaswttutorial/widgets/
http://zetcode.com/tutorials/javaswttutorial/widgets/

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 15

F
ig

.1
.7

To
p

ca
te

go
ri

es
fo

r
U

I
co

m
po

ne
nt

s
(r

ep
ri

nt
ed

fr
om

Pa
ul

he
im

20
11

)

16 H. Paulheim and F. Probst

• LABELS assign meaning to other (most often interactive) UI components. Exam-
ples are text labels next to radio buttons.

• CONTAINERS group other UI components. Examples are windows and tool bars.

The first three are considered interactive components, as they allow the user to
act with them, while the latter four are presentation components, which are non-
interactive. We also introduced composite UI elements, which can contain both in-
teractive and presentation components.

By collecting tasks and activities and, as for components, clustering them, we
have identified four basic categories of user tasks:

• INFORMATION CONSUMPTION TASKS are tasks where information provided by
the system, typically through an OUTPUT component, is consumed by user.

• INFORMATION INPUT TASKS are tasks where the user provides information to
the system, typically through a DATA INPUT COMPONENT. Input tasks can be
performed as unbound input, e.g., entering text into a text field, or as bound input,
e.g., by selecting from a list of values.

• COMMAND ISSUING TASKS are all tasks where the user issues a system com-
mand, typically using an OPERATION TRIGGERING COMPONENT.

• INFORMATION ORGANIZATION TASKS are performed by the user to organize the
consumption of information, e.g., by scrolling through a document, following a
hyperlink, or fast-forwarding a video, typically using a PRESENTATION MANIP-
ULATION COMPONENT.

Unlike user tasks, user activities depend on user interface modalities, i.e., the ac-
tual interactive devices they are performed with. Consequently, we have clustered
them according to the devices that are required to perform those tasks, leading to cat-
egories such as keyboard activities, mouse activities, speech activities, touch activi-
ties, pen based activities, activities with special tangible objects (such as a reacTable
(Jordà et al. 2007)), as well as general perception activities. We have furthermore
defined 11 categories for the corresponding hardware items and relation axioms be-
tween those, as depicted in Fig. 1.8. The ontology can be extended to more activities
and hardware items for describing further modalities.

• DISPLAY, PLAY, and PRINT, which create different manifestations of an infor-
mation.

• HIGHLIGHT and DEHIGHLIGHT, which modify an existing presentation of ob-
jects, without changing there order, and REARRANGE, which changes the order
of an existing presentation.

• SUSPEND PLAYBACK and RESUME PLAYBACK, which modify a streaming pre-
sentation of information.

Computational tasks are roughly categorized into information administration, in-
formation modification and information presentation tasks, where the latter are the
ones which are most relevant for the domain of user interfaces and interactions, and
are thus defined in more detail in the ontology. There are three basic categories for
computational tasks defined in UI2Ont:

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 17

F
ig

.1
.8

U
se

r
ac

tiv
iti

es
an

d
th

ei
r

m
ap

pi
ng

to
ha

rd
w

ar
e

de
vi

ce
s,

as
de

fin
ed

in
U

I2
O

nt
(r

ep
ri

nt
ed

fr
om

Pa
ul

he
im

20
11

)

18 H. Paulheim and F. Probst

INFORMATION ADMINISTRATION TASKS are all tasks concerned with manag-
ing data stored in different media. Typical information administration tasks are
loading and saving data.
INFORMATION MANIPULATION TASKS are concerned with altering information
objects, e.g., creating, modifying, and deleting information objects.
INFORMATION PRESENTATION TASKS are particularly relevant for user inter-
faces, as they control the presentation of information. We distinguish INFOR-
MATION PRESENTATION INITIALIZATION TASKS, which start the presentation
of an information object, such as displaying or printing an information object,
and INFORMATION PRESENTATION MODIFICATION TASKS, which influence an
already started presentation, e.g., by highlighting or moving a VISUAL COMPU-
TATIONAL OBJECT.

As depicted in Table 1.2, the detail level ontology contains is richly axiomatized.
Those axioms also make explicit knowledge contained in the UI languages’ informal
documentations. For example, descriptions such as “a menu bar is a bar that contains
menus” can be directly translated into formal axioms in OWL. Such formalizations
assure that the ontology can provide meaningful information in use cases which
demand for a large amount of formal reasoning on user interfaces. In total, the detail
level ontology defines 80 categories of user interface components, 15 categories for
user tasks and 20 categories for computational tasks, and 38 categories for user
activities.

1.7 Case Study: Application Integration on the User Interface
Level

To test the applicability of our ontology, we employed it in a framework for integrat-
ing user interface components. Applications built using this framework instantiate
user interface components, and the coordination of cross-component interactions,
such as drag and drop from one component to the other, is performed centrally by
an ontology reasoner.

The ontology is used in that framework for describing the user interface compo-
nents that are to be integrated, to annotate events exchanged between those compo-
nents, and for providing the vocabulary for defining integration rules:

• Each component is described by using categories from the UI2Ont ontology. This
description defines which sub components the component is built from, and which
tasks can be performed with the component. Sub-categories of the existing ontol-
ogy categories may be defined to describe more specific UI components.

• At run-time, when a component is instantiated, instance data of the respective
realizations, e.g., computational objects, is provided to a reasoner.

• Each event issued by a component is annotated using the categories from the
ontology. The annotation contains information about the of activity (and corre-
sponding task type) that caused the event, as well as about the involved informa-
tion objects and UI components.

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 19

• Integration rules are defined that determine which (computational) activities are
triggered by events. Those rules are defined using the vocabulary from the ontol-
ogy.

The UI2Ont ontology alone is not enough to fulfill those functions. An additional
ontology of the real world domain that the application is built for is required. For
example, when annotating an event, the annotation may state that the user has se-
lected an object in a table which identifies a bank account. While concepts such as
SELECT ACTION, MOUSE, and TABLE are defined in the UI ontology, concepts like
BANK ACCOUNT or CUSTOMER are concepts from the real world domain ontology.

Since different applications may use incompatible programming models for rep-
resenting real world objects, but an exchange of that data is necessary in order to
facilitate seamless interaction (such as dragging and dropping and object from one
application to another), a rule-based mechanism is employed which supports a trans-
formation between the different programming models, using the domain ontology
as an interlingua (Paulheim et al. 2011).

A central event processor, based on an ontology reasoner and rule engine, pro-
cesses the events, based on the integration rules and the axioms encoded in the on-
tology, determines how to react to an event, and notifies the respective components
about the activities they are supposed to perform as a reaction. Those notifications
are again annotated using the ontology. The event processor thus acts as a central
coordinator facilitating the integration at run-time. Details about the framework can
be found in Paulheim and Probst (2010a).

The integration framework completely decouples the interactions between the
applications, which only communicate using the ontologies as an interlingua, form-
ing a comprehensive layer of abstraction over the actual implementation. This al-
lows the integration even of user interfaces developed with different technologies,
such as Java and Flex, while still supporting deep integration such as drag and drop
(Paulheim and Erdogan 2010).

We have applied the framework in the SoKNOS project for building an integrated
emergency management system (Babitski et al. 2011), comprised of 24 applications
(see Fig. 1.9). The respective integrated applications use 99 different annotated com-
ponent types (only those components had to be annotated that are used in some
cross-application interaction), and 189 different event types. For the prototype, we
have used an additional domain ontology of emergency management (Babitski et al.
2009), which consists of 214 classes, 330 relations, and 1514 axioms.

In the SoKNOS project, different types of interactions with multiple modalities
and user interface components have been combined, including desktop computers
and laptops, large touch screens, and speech interaction devices. With the narrower
scoped ontologies discussed in Sect. 1.4, that spectrum of interactions could not
have been covered. Furthermore, the use of a reasoner for the automatic computa-
tion of possible interactions at run-time was only possible through the rich axiom-
atization of the UI2Ont ontology. Although a reasoner is run every time an event is
processed, the event processing times are still below one second (Paulheim 2010).

20 H. Paulheim and F. Probst

Fig. 1.9 Screenshot of the SoKNOS project depicting the user interfaces of integrated applications
(reprinted from Paulheim et al. 2009). The arrows indicate examples for possible interactions

1.8 Conclusion

In this chapter, we have laid out a number of use cases in which an ontology of the
user interfaces and interactions domain can improve either the development process
of user interfaces, or the user interfaces themselves. Motivated by those use cases,
we have discussed the construction of a rigid, richly axiomized ontology of the
domain, divided into a top level and a detail level ontology. The former contains
modality-independent descriptions of tasks and components at design time, while
the latter contains modality-dependent descriptions of activities and components at
run time. The ontologies are based on a set of foundational ontologies, especially
the generic top level ontology DOLCE.

For identifying the relevant concepts, we have used a number of existing user in-
terface description languages. We have clustered the concepts identified and catego-
rized them using the top level categories given by the reused higher level ontologies.
Our analysis has shown that there is a “long tail” of concepts that are only covered
by a few user interface description languages. This shows that it is beneficial to use
the input of several of those languages.

From the use cases discussed as a motivation, we picked the use case of integra-
tion of user interface components to show how our ontology has been applied in a
real world scenario. Based on the case a large-scale emergency management system,
we have shown a real world application of the ontology discussed in this chapter.

Besides the use cases discussed in this paper, having an embracing and formal
ontology of the domain of user interfaces and interactions has a number of additional
advantages. As discussed above, several user interface description languages exist.
During the process of building the ontology, we have observed a number of seman-
tic ambiguities between those languages, e.g. the use of elements called Dialog with

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 21

different meanings in different languages (a set of interactions following each other,
a window on a screen blocking an application, etc.). Another example is the List
element, which is sometimes used for static lists in texts (such as in HTML), some-
times for interactive selections (such as combo boxes). Such ambiguities make it
difficult to work with different languages in parallel, especially without extensively
consulting the respective documentations. Annotating user interface descriptions in
different languages with a formal ontology can help identifying and resolving those
ambiguities and foster an easier understanding of user interface models.

In their classical paper from 1996, Uschold and Gruninger discussed the vision of
an ontology being used as an inter-lingua bridging different languages (Uschold and
Grüninger 1996). Transferred to the domain of user interfaces and interactions, this
vision could be embodied by a system able to translate between arbitrary user in-
terface description languages and automatically convert models from one language
to another, resulting in the ultimate portability of user interfaces across systems,
platforms, and modalities. Although this vision is still distant, we believe that we
have taken an important step in that direction by developing a unifying formal and
comprehensive ontology of the domain.

References

Aßmann, U., Zschaler, S., & Wagner, G. (2006). Ontologies, meta-models, and the model-driven
paradigm. In Ontologies for software engineering and software technology (pp. 249–273).
Chap. 9.

Atkinson, C., Gutheil, M., & Kiko, K. (2006). On the relationship of ontologies and models. In
S. Brockmans, J. Jung & Y. Sure (Eds.), LNI: Vol. 96. Workshop on meta-modelling (WoMM)
(pp. 47–60). Bonn: GI.

Babitski, G., Probst, F., Hoffmann, J., & Oberle, D. (2009). Ontology design for information inte-
gration in catastrophy management. In Proceedings of the 4th international workshop on appli-
cations of semantic technologies (AST’09).

Babitski, G., Bergweiler, S., Grebner, O., Oberle, D., Paulheim, H., & Probst, F. (2011).
SoKNOS—using semantic technologies in disaster management software. In The semantic web:
research and applications (ESWC 2011), Part II (pp. 183–197).

Bottazzi, E., Catenacci, C., Gangemi, A., & Lehmann, J. (2006). From collective intentionality to
intentional collectives: an ontological perspective. Cognitive Systems Research, 7(2–3), 192–
208.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., & Vanderdonckt, J. (2003).
A unifying reference framework for multi-target user interfaces. Interacting With Computers,
15(3), 289–308.

Coutaz, J., Lachenal, C., & Dupuy-Chessa, S. (2003). Ontology for multi-surface interaction. In
Proceedings of IFIP INTERACT03: human–computer interaction (pp. 447–454). IFIP Technical
Committee No 13 on Human-Computer Interaction.

Fernández, M., Gómez-Pérez, A., & Juristo, N. (1997). METHONTOLOGY: from ontological art
towards ontological engineering. In Proceedings of the AAAI97 spring symposium (pp. 33–40).

Foundation for Intelligent Physical Agents (2002). FIPA device ontology specification. http://www.
fipa.org/specs/fipa00091/index.html.

Fowler, M. (2003). Patterns of enterprise application architecture. Reading: Addison-Wesley.
Gangemi, A., & Mika, P. (2003). Understanding the semantic web through descriptions and situ-

ations. In LNCS: Vol. 2888. On the move to meaningful internet systems 2003: CoopIS, DOA,
and ODBASE (pp. 689–706). Berlin: Springer.

http://www.fipa.org/specs/fipa00091/index.html
http://www.fipa.org/specs/fipa00091/index.html

22 H. Paulheim and F. Probst

Gangemi, A., Borgo, S., Catenacci, C., & Lehmann, J. (2005). Task taxonomies for knowledge
content. http://www.loa-cnr.it/Papers/D07_v21a.pdf.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Ac-
quisition, 5(2), 199–220.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies, 43(5–6), 907–928.

Guarino, N., & Welty, C. A. (2009). An overview of OntoClean. In Handbook on ontologies
(pp. 201–220). Chap. 10.

Guerrero-Garcia, J., Gonzalez-Calleros, J. M., Vanderdonckt, J., & Munoz-Arteaga, J. (2009).
A theoretical survey of user interface description languages: preliminary results. In LA-WEB
’09: Proceedings of the 2009 Latin American web congress (LA-WEB 2009) (pp. 36–43). Los
Alamitos: IEEE Comput. Soc.

Happel, H.-J., Korthaus, A., Seedorf, S., & Tomczyk, P. (2006). KOntoR: an ontology-enabled
approach to software reuse. In K. Zhang, G. Spanoudakis & G. Visaggio (Eds.), Proceedings
of the eighteenth international conference on software engineering & knowledge engineering
(SEKE) (pp. 349–354).

Henninger, S., Keshk, M., & Kinworthy, R. (2003). Capturing and disseminating usability pat-
terns with semantic web technology. In CHI 2003 workshop: concepts and perspectives on HCI
patterns.

Jordà, S., Geiger, G., Alonso, M., & Kaltenbrunner, M. (2007). The reacTable: exploring the syn-
ergy between live music performance and tabletop tangible interfaces. In Proceedings of the
1st international conference on tangible and embedded interaction (pp. 139–146). New York:
ACM.

Kohlhase, A., & Kohlhase, M. (2009). Semantic transparency in user assistance systems. In Pro-
ceedings of the 27th annual ACM international conference on design of communication. Special
interest group on design of communication (SIGDOC-09), Bloomingtion, IN, United States (pp.
89–96). New York: ACM Special Interest Group for Design of Communication, ACM.

Laszlo Systems (2006). OpenLaszlo—an open architecture framework for advanced Ajax applica-
tions. http://www.openlaszlo.org/whitepaper/LaszloWhitePaper.pdf.

Liu, B., Chen, H., & He, W. (2005). Deriving user interface from ontologies: a model-based ap-
proach. In ICTAI ’05: Proceedings of the 17th IEEE international conference on tools with
artificial intelligence (pp. 254–259). Los Alamitos: IEEE Comput. Soc.

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., & Oltramari, A. (2003). WonderWeb deliverable
D18—ontology library (final). http://wonderweb.semanticweb.org/deliverables/documents/
D18.pdf.

Mozilla (2011). XUL. https://developer.mozilla.org/en/XUL.
Myers, B. A., & Rosson, M. B. (1992). Survey on user interface programming. In CHI ’92: Pro-

ceedings of the SIGCHI conference on human factors in computing systems (pp. 195–202). New
York: ACM.

OASIS (2009). User Interface Markup Language (UIML) version 4.0. http://docs.oasis-open.org/
uiml/v4.0/uiml-4.0.html.

Oberle, D., Grimm, S., & Staab, S. (2009). An ontology for software. In Handbook on ontologies
(pp. 383–402). Chap. 18.

Paternò, F., Santoro, C., & Spano, L. D. (2008). XML languages for user interface
models—deliverable D2.1 of the ServFace project. http://www.servface.org/index.php?option=
com_docman&task=doc_download&gid=5&Itemid=61.

Paternò, F., Santoro, C., & Spano, L. D. (2009). MARIA: a universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environments. ACM
Transactions on Computer-Human Interaction, 16(4), 1–30.

Paternò, F., Santoro, C., Mäntyjärvi, J., Mori, G., & Sansone, S. (2008). Authoring pervasive multi-
modal user interfaces. International Journal on Web Engineering & Technology, 4(2), 235–261.

Paulheim, H. (2010). Efficient semantic event processing: lessons learned in user interface integra-
tion. In The semantic web: research and applications (ESWC 2010), Part II (pp. 60–74).

Paulheim, H. (2011). Ontology-based application integration. Berlin: Springer.

http://www.loa-cnr.it/Papers/D07_v21a.pdf
http://www.openlaszlo.org/whitepaper/LaszloWhitePaper.pdf
http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf
http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf
https://developer.mozilla.org/en/XUL
http://docs.oasis-open.org/uiml/v4.0/uiml-4.0.html
http://docs.oasis-open.org/uiml/v4.0/uiml-4.0.html
http://www.servface.org/index.php?option=com_docman&task=doc_download&gid=5&Itemid=61
http://www.servface.org/index.php?option=com_docman&task=doc_download&gid=5&Itemid=61

1 UI2Ont—A Formal Ontology on User Interfaces and Interactions 23

Paulheim, H., & Erdogan, A. (2010). Seamless integration of heterogeneous UI components. In
Proceedings of the 2nd ACM SIGCHI symposium on engineering interactive computing systems
(EICS 2010) (pp. 303–308).

Paulheim, H., & Probst, F. (2010a). Application integration on the user interface level: an ontology-
based approach. Data & Knowledge Engineering Journal, 69(11), 1103–1116.

Paulheim, H., & Probst, F. (2010b). Ontology-enhanced user interfaces: a survey. International
Journal on Semantic Web and Information Systems, 6(2), 36–59.

Paulheim, H., & Probst, F. (2011). A formal ontology on user interfaces—yet another user interface
description language? In Proceedings of the second workshop on semantic models for adaptive
interactive systems (SEMAIS).

Paulheim, H., Döweling, S., Tso-Sutter, K., Probst, F., & Ziegert, T. (2009). Improving usability
of integrated emergency response systems: the SoKNOS approach. In LNI: Vol. 154. Proceed-
ings “39. Jahrestagung der Gesellschaft für Informatik e.V. (GI)—Informatik 2009” (pp. 1435–
1449).

Paulheim, H., Plendl, R., Probst, F., & Oberle, D. (2011). Mapping pragmatic class models
to reference ontologies. In The 2011 IEEE 27th international conference on data engineer-
ing workshops—2nd international workshop on data engineering meets the semantic web
(DESWeb) (pp. 200–205).

Rauschmayer, A. (2005). Semantic-web-backed GUI applications. In Proceedings of the ISWC
2005 workshop on end user semantic web interaction.

RedWhale Software (2000). The XIML specification. In XIML Starter Kit version 1.
http://www.ximl.org/download/step1.asp.

Ruiz, F., & Hilera, J. R. (2006). Using ontologies in software engineering and technology. In On-
tologies for software engineering and software technology (pp. 49–102). Chap. 2.

Schmidt, B., Paulheim, H., Stoitsev, T., & Mühlhäuser, M. (2011). Towards a formalization of
individual work execution at computer workplaces. In LNCS: Vol. 6828. 19th international con-
ference on conceptual structures (ICCS 2011) (pp. 270–283).

Simon, R., Kapsch, M. J., & Wegscheider, F. (2004). A generic UIML vocabulary for device- and
modality independent user interfaces. In WWW ALT ’04: Proceedings of the 13th international
world wide web conference on alternate track papers & posters (pp. 434–435). New York:
ACM.

Souchon, N., & Vanderdonckt, J. (2003). A review of XML-compliant user interface descrip-
tion languages. In LNCS: Vol. 2844. Interactive systems. Design, specification, and verification
(pp. 377–391). Berlin: Springer.

Spyns, P., Meersmanand, R., & Jarrar, M. (2002). Data modelling versus ontology engineering.
SIGMOD Record, 31(4), 12–17.

Studer, R., Grimm, S., & Abecker, A. (Eds.) (2007). Semantic web services—concepts, technolo-
gies and applications. Berlin: Springer.

Uschold, M., & Grüninger, M. (1996). Ontologies: principles, methods and applications. Knowl-
edge Engineering Review, 11, 93–136.

Uschold, M., & King, M. (1995). Towards a methodology for building ontologies. In Workshop on
basic ontological issues in knowledge sharing.

UsiXML Consortium (2007). USer interface extensible markup language, v1.8, reference
manual. http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-
Documentation.pdf.

W3C (2004a). Composite capability/preference profiles (CC/PP): structure and vocabularies 1.0.
http://www.w3.org/TR/CCPP-struct-vocab/.

W3C (2004b). SWRL: a semantic web rule language combining OWL and RuleML. http://www.
w3.org/Submission/SWRL/.

W3C (2009). XForms 1.1. http://www.w3.org/TR/xforms/l.
W3C (2010). Delivery context ontology. http://www.w3.org/TR/dcontology/.

http://www.ximl.org/download/step1.asp
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-Documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-Documentation.pdf
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/xforms/l
http://www.w3.org/TR/dcontology/

24 H. Paulheim and F. Probst

W3C (2011a). Accessible rich internet applications (WAI-ARIA) 1.0. http://www.w3.org/TR/
wai-aria/.

W3C (2011b). HTML5—a vocabulary and associated APIs for HTML and XHTML. http://www.
w3.org/TR/html5/.

http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

Chapter 2
Generating Models of Recommendation
Processes out of Annotated Ontologies

Hermann Kaindl, Dominik Ertl, Roman Popp, Ralph Hoch, Jürgen Falb,
Edin Arnautovic, Ada Okoli, and Martin Schliefnig

Abstract Creating content- and dialogue-based recommendation processes through
manual adaptations requires a lot of time and effort. Therefore, automated genera-
tion of such processes is desirable. We present an approach for generating models
of recommendation processes out of annotated ontologies. Such product ontologies
have to be provided manually, but certain adaptations to them can be discovered
from unstructured data (customer-generated content such as blog entries or customer
feedback on products in the Web). They are given input for our approach, which
applies semantic model-driven transformations to these ontologies for generating
discourse-based models of recommendation processes on a high conceptual level
first. These generated discourses essentially consist of questions and answers about

Dominik Ertl and Ralph Hoch did this work while being at the Vienna University of Technology.

H. Kaindl (B) · D. Ertl · R. Popp · R. Hoch · J. Falb
Vienna University of Technology, Vienna, Austria
e-mail: kaindl@ict.tuwien.ac.at

D. Ertl
e-mail: ertl@ict.tuwien.ac.at

R. Popp
e-mail: popp@ict.tuwien.ac.at

R. Hoch
e-mail: hoch@ict.tuwien.ac.at

J. Falb
e-mail: falb@ict.tuwien.ac.at

E. Arnautovic
Vienna, Austria
e-mail: edin.arnautovic@gmail.com

A. Okoli · M. Schliefnig
Smart Information Systems GmbH, Viena, Austria

A. Okoli
e-mail: a.okoli@smart-infosys.at

M. Schliefnig
e-mail: ms@smart-infosys.at

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_2,
© Springer-Verlag London 2013

25

mailto:kaindl@ict.tuwien.ac.at
mailto:ertl@ict.tuwien.ac.at
mailto:popp@ict.tuwien.ac.at
mailto:hoch@ict.tuwien.ac.at
mailto:falb@ict.tuwien.ac.at
mailto:edin.arnautovic@gmail.com
mailto:a.okoli@smart-infosys.at
mailto:ms@smart-infosys.at
http://dx.doi.org/10.1007/978-1-4471-5301-6_2

26 H. Kaindl et al.

those items annotated as important in the ontologies, and their possible sequences.
From such a high-level model, transformation rules create a model of an operational-
ized recommendation process. This model also represents a so-called concrete user
interface and consists of both the structure of the process and the course of events,
which defines how customers may navigate through the process. From such mod-
els, an already given infrastructure can generate running processes including their
final user interfaces, which have already been deployed successfully for real-world
use.

2.1 Introduction

A content- and dialogue-based recommendation process in the Web guides its user
interactively to the most suitable products, based on information it asks for and that
is provided by the user. In order to reduce the costs of creating such a recommen-
dation process for real-world use, we strived for automation. In addition or even
instead of manual work on it by trained people, we investigated automating its cre-
ation for various domains through model transformations. For the overall lifecycle
see Kaindl et al. (2013).

Figure 2.1 gives a schematic overview on how the transformation process is im-
plemented. Building upon annotated product ontologies, we realize the generation
of recommendation process models and a final user interface in two steps. First a
model on a high conceptual level is generated as a so-called Discourse-based Com-
munication Model (see, e.g., Popp and Raneburger 2011). This model consists of
three parts, the Domain-of-Discourse Model, the Discourse Model and the Action-
Notification Model. In the context of this chapter, the Action-Notification Model
is not so important, because we only use predefined elements from there, whereas
the other two models have to be generated. The Domain-of-Discourse Model gen-
erated in Step 1.1 contains the content of Communicative Acts (as derived from
speech acts; Searle 1969), which specify the core of the Discourse Model. Prop-
erties as well as additional information from the annotated ontology provide this
content. In this sense, the Discourse Model generated in Step 1.2 refers to the
Domain-of-Discourse Model and defines a sequence of question and answer pairs,
which are modeled as Adjacency Pairs (adopted from Conversation Analysis; Luff
et al. 1990) of Communicative Acts. These questions and answers are about recom-
mended products and, therefore created from properties from the annotated product
ontology as well. Step 2 transforms such a Communication Model into a model
of an operationalized recommendation process, which is presented in the Web as a
final user interface of the process for customers through an already given infrastruc-
ture.

The remainder of this chapter is organized in the following manner. First, in order
to make it self-contained, we present background material. Then we present our ap-
proach for generating recommendation process models as discourse-based models
out of (annotated) ontologies. Based on that, we explain both our approach for gen-
erating operationalized recommendation processes and how they are presented to

2 Generating Models of Recommendation Processes 27

F
ig

.2
.1

T
ra

ns
fo

rm
at

io
ns

fr
om

an
no

ta
te

d
on

to
lo

gy
to

op
er

at
io

na
liz

ed
re

co
m

m
en

da
tio

n
pr

oc
es

s

28 H. Kaindl et al.

the customers in the form of user interfaces. For explaining this generation process,
we use a mobile phone domain as a running example. A report on our evaluation of
such recommendation processes deployed in the real world follows, for the mobile
phone domain first, and then for seven other domains as well. Finally, we relate our
approach to other work and discuss it more generally.

2.2 Background

We first provide an overview of the complete process lifecycle, which includes also
the context of our approach as presented in this chapter. Since the annotated product
ontology is the key input, we explain it at a level of detail as required to understand
our approach.

2.2.1 Process Lifecycle

For semi-automatic generation of recommendation processes, we make (indirect)
use of knowledge sources on related products in the Web. In fact, this involves a
whole recommender lifecycle with the following ingredients and steps. First, cus-
tomer feedback on the given products can be found as unstructured text reviews of
products in the Web, and text mining techniques can be used to extract valuable in-
formation. With these processed values it is then possible to adapt a given ontology,
including its annotations like recommendation priorities, and thus to influence the
order of properties in later steps. Our approach uses the resulting ontology to gen-
erate a recommendation process, first on a high level of abstraction represented as
a Discourse-based Communication Model. This model already contains the overall
sequence as well as metadata information of the question and answer pairs. Using
domain-specific heuristics, this process is operationalized in all its details, including
a user interface for its actual use of the recommender by customers. When deploying
this process in a real-world setting, its results can be compared to other processes
(a manually created one first) using A/B-variant tests. More details on this process
lifecycle can be found in Kaindl et al. (2013).

2.2.2 Annotated Product Ontology

To allow transformation from an ontology into a discourse-based model, certain
specific model transformation rules are required and thus it was necessary to spec-
ify the structure of the ontology as well as additional information fields, such as
annotations, and what they represent. As given input for our approach, an anno-
tated ontology has been specified, which encapsulates both our overall structure and

2 Generating Models of Recommendation Processes 29

product individuals.1 It is specified in a way (as a metamodel) facilitating model
transformations.

This annotated ontology is designed according to GoodRelations2 and also con-
tains an individually defined namespace rdf4ec. Within this namespace all our cus-
tom properties and annotations, such as rdf4ec:DomainSegment, are defined and
enable to configure properties. For example, Domain-Segments are used to group
properties in a semantic and logical way, e.g., WeightAndDimension, which clas-
sifies all properties that characterize physical dimensions. Domain-Segments are
defined as custom individuals in this namespace and new Domain-Segments can be
introduced if necessary.

Individuals in the ontology are structured representations of kinds of real-world
products, such as different mobile phone models. Note, that these are not the con-
crete mobile phones to be finally delivered to the customer. These kinds of prod-
ucts can be characterized by their multiple features they have in common, such as
weight, resolution, etc., which are defined through the specified properties in our
rdf4ec namespace. As the interpretation of these properties may vary by product
domain, we use custom ontologies for different product domains.

Properties, as described above, belong to a specific domain segment and are cor-
related to a rdf4ec:DomainSegment via another annotation property that is set for
all properties, rdf4ec:belongsToDomainSegment, allowing us to arrange properties
in groups. This structure enables us in later process steps (compare Sect. 2.3) to
handle properties combined that belong to the same logical segment.

For customers, particular properties may be of more interest than others and the
ontology needs to support this fact. To facilitate this case, a property annotation
rdf4ec:priority has been introduced for specifying the relative interest of proper-
ties. Properties are defined within a range of 0 to 100, where a higher value means
a more important property. Comparing this to real-world products, as an example
we refer to mobile phones again. Some properties, such as resolution or screen
size, might be considered more important than others, weight for example, and thus
would have a higher priority assigned. A higher priority means, if suitable (for a
more detailed description see Sect. 2.3), a higher listing in the final recommenda-
tion process.

Figure 2.2 shows a schematic presentation of the annotated ontology as a class
and an object diagram. The upper part of the figure presents the ontology concepts
as a class diagram. The Property class defines all values that are necessary to spec-
ify a product property as well as additional annotations. Through an annotation be-
longsToDomainSegment it is related to another class DomainSegment. A Domain-
Segment can hold several Properties but one Property belongs only to one Domain-
Segment. The lower part of the figure shows instances of these classes in an object

1In the context of object-oriented software engineering and programming, individuals are typically
called instances. Since we follow the model-transformation approach from there in addition to
building on ontologies, we use these notions interchangeably in the remainder of this chapter.
2www.purl.org/goodrelations.

http://www.purl.org/goodrelations

30 H. Kaindl et al.

Fig. 2.2 Excerpt of schematic structure of the annotated ontology

diagram. Each class can have multiple instances and each instance has its own cus-
tom values. More details on this annotated product ontology can be found in Kaindl
et al. (2013).

2.3 Generating a Recommendation Process as a Discourse-Based
Model

From such a given annotated ontology, we automatically generate a recommenda-
tion process on a high conceptual level first. It is represented as a Discourse-based
Communication Model (for the background and a definition of such models see,
e.g., Falb et al. 2006; Popp and Raneburger 2011). The discourse structure (as ex-
plained in detail below) was actually predefined and given to the automated gen-
erator as a template. The overall pattern is a sequence of questions and answers
related to the recommended products, plus some background information (to be dis-
played optionally). This template is being filled with information about products to
be recommended as given in the product ontology. Its annotations are used by our
generator through (manually specified) heuristics to determine what to include in
the recommendation process and in which sequence.

Figure 2.3 shows an excerpt of such a Discourse Model. The pairs of related
questions and answers are modeled as so-called Adjacency Pairs and shown as dia-
monds, with opening and closing Communicative Acts (shown as lighter and darker
rounded rectangles, depending on whether they are to be executed by the system or
the customer, respectively). These Adjacency Pairs are linked with so-called Dis-
course Relations. In a model of such a recommendation process, only three types of
Discourse Relations are used. The first one, Sequence, is shown as a hexagon (since
it is more specifically a Procedural Construct), the second, Joint, and the third one,
Background, are shown as rectangles (since they are Rhetorical Relations inherited
from Rhetorical Structure Theory (RST); Mann and Thompson 1988). While such

2 Generating Models of Recommendation Processes 31

Fig. 2.3 Excerpt of Discourse Model of recommendation process

a model can have many Joint relations and many Question-Answer Pairs, only one
such element is shown in the figure and a second one is grayed out to indicate the
existence of more elements. An earlier version of the representation of a recommen-
dation process through a discourse-based model can be found in Ertl et al. (2011).
Note, however, that both the representation and the concrete generation process of
the recommender discourse have been changed meanwhile.

The automatic generation of such a model consists of two steps. In Step 1.1
of Fig. 2.1, our model-transformation approach transforms the individuals of the
annotated ontology and their concrete datatypes and object property values into
a model of the content of the communication (the Domain-of-Discourse model).
In Step 1.2 of Fig. 2.1, a set of model-transformation rules matches parts of the
annotated ontology (including its individuals) and transforms them automatically
into corresponding parts of a Discourse Model. This step also defines the content
of the Communicative Acts, so that the Discourse Model refers to the Domain-of-
Discourse Model.

2.3.1 Domain-of-Discourse Model Generation

In more detail, Step 1.1 analyses all properties of the ontology and processes them.
Each property is stored as a datatype in the Domain-of-Discourse Model. For most
of the datatypes, the values used by the individuals are added to the datatype. In
case of numeric properties, only the minimum and maximum values are stored as
only the boundaries are important. A definable minimum percentage for individuals
of properties can be set and only properties that reach this minimum percentage
are selected for the recommendation process currently being generated. This means
that not all properties from the ontology are taken into account in the course of
generating a recommendation process. Nevertheless, all properties are stored in the
Domain-of-Discourse Model and the properties that are not to be used are placed in
a special container (if a different kind of heuristics will be put in place later, some
of these properties might become important).

32 H. Kaindl et al.

Each property also stores meta-data information as annotations. These anno-
tations reassemble the annotations of the annotated ontology, especially Domain-
Segment, which is used to group properties such as priority. These enable ordering
of properties, and propertyType, which gives additional information on how numeric
properties are to be rendered. In later process steps, these annotations are used to or-
ganize the question-answer pairs.

All further processing in the course of generating a recommendation process
is based on the Domain-of-Discourse Model and thus it is necessary to allow a
customizable configuration for the generation process. This includes a configurable
value for minimum individual values as well as an extensible annotation container.
The latter helps to easily introduce new annotations and thus allows adaptation of
the generation process for other application areas.

2.3.2 Discourse Model Generation

In Step 1.2, a Discourse Model is created. For each property selected before for
the currently generated recommendation process, a question-answer pair is created
according to the predefined template. This template consists of a Question and a
corresponding Answer Communicative Act. The Answer part can have different in-
ternal structure to support single-valued (numeric) as well as multi-valued (string,
Boolean) answer sets. Furthermore a configuration value specifies if these answers
should be mutually exclusive or not. These Communicative Acts are connected with
an Adjacency Pair.

The description property of the transformed property is added to the defined Dis-
course Model part with a Background relation connecting the Question-Answer Ad-
jacency Pair with an Informing Communicative Act, which contains the description.
It is also possible that some properties of a domain segment are combined into a sin-
gle question. This combination is applied, if there is more than one property of type
Boolean from the same Domain-Segment. In our running example, the properties
of the domain segment Operating Systems are combined. Several individual prop-
erties like android, symbian, windowsMobile have been combined to form a single
question.

The generated Discourse Model parts are then sorted according to some heuris-
tics. An example of such a heuristic is, that the question for the producer property
is always the first question. Another heuristic is, that questions for properties with a
high priority are in front of properties with a lower priority. If the priorities of some
questions are the same, we apply another heuristic gained from previous tests of
manually created processes. It defines that string questions are asked first, followed
by numeric questions and at last combined Boolean questions.

This sorted list is then divided into logical units, which become pages in the
resulting user interface. Each of these logical units has a configurable number of
questions. In the Discourse Model, each of these logical units is represented with a

2 Generating Models of Recommendation Processes 33

Fig. 2.4 Part of an
operationalized
recommendation process at
the CUI level (reprinted from
Kaindl et al. 2013)

Joint Relation, which connects the parts created above. The generated Joint Rela-
tions are connected then with a Sequence Relation specifying the order of the logic
units.

2.4 Generating an Operationalized Recommendation Process
and Its User Interface

From such a generated high-level model, model transformations are used to create
a model of an operationalized recommendation process. This model also represents
a so-called concrete user interface (CUI) (Calvary et al. 2003) and consists of both
the structure of the process and the course of events, which defines how customers
may navigate through the process. A part of an example of such an operationalized
recommendation process can be seen in Fig. 2.4.

2.4.1 Generation of Recommendation Process Model

To generate the operationalized recommendation process model, transformations
are applied. Manually provided heuristics are used to refine the discourse-based
model and to transform elements into concrete representations. To illustrate this
task, we present selected specifications of the Question element as seen in Fig. 2.4:

• String-Question—a question that has several predefined answer sets:
Answers refer to a specific property, e.g., the “Producer” property in Fig. 2.4, as
each answer—in this case a brand—is only related to one property.

34 H. Kaindl et al.

• Combined Boolean-Question—a combined question with several predefined an-
swers to select or not:
In this case, the answers refer to different properties and belong to a specific
domain segment. An example can be seen in Fig. 2.4, where “Operating System”
is the domain segment and the answers are distinct properties that belong to this
segment.

• Numeric-Question—a question referring to a specific numeric property:
It enables the definition of a value range (e.g., “Display Size Cm”). Boundary
values and step-width are defined in the Domain-of-Discourse Model.

Furthermore, a specific representation of each question type is defined. A nu-
meric question, for example, can be represented by a single-slider (minimum or
maximum value) or a double-slider (range of values). An example can be seen
in Fig. 2.4, where “Display Size Cm” is a numeric question. Slider-Values—like
start and end value—are based on the actual minimum and maximum values of the
product instances and the specific representation is predefined in the Domain-Of-
Discourse Model. Similar definitions apply to the other question types as well.

There are several other heuristics in place for the model transformation. Some of
them cover

• text-patterns for questions,
• definition of background information,
• restricted answers per question,
• restricted answer selection per question, etc.

The resulting model consists of the logical layers used during a recommenda-
tion process. A root element ‘process’ is in place as a starting point, which con-
tains ordered pages. These pages serve as a container for question-answer pairs,
where each question can have multiple related answers. Answers themselves can
be restricted and special answer elements can be used to show/hide additional an-
swers (“More/Less” switch). In addition, questions are based on product properties
and have varying characteristics, which are rendered differently in the final user in-
terface. For an example see Fig. 2.5, where two different question types and their
representations are shown.

Allowing customers to easily navigate through the process and identify the parts
of importance is mandatory. Thus heuristics have been put in place to support this.
Let us demonstrate it with the Producer property. Text-patterns are used to au-
tomatically generate meaningful questions that can easily be understood by the
customers. Different approaches are used for different question types. In case of
a string question, the text-pattern uses the property name to create a comprehen-
sive question. Furthermore, the number of answers is limited and only a fragment
is shown, so that customers are not overwhelmed by options. A special switch can
be used to show/hide additional answers (“More/Less” switch). Note, that this is
a simplified description of the CUI Model as it is possible to parameterize the
model transformation, and various heuristics are in place for different require-
ments.

2 Generating Models of Recommendation Processes 35

Fig. 2.5 Example of a generated final user interface (reprinted from Kaindl et al. 2013)

Our model of the operationalized recommendation process can be seen as a 1:1
mapping for the final user interface but is still independent from a final implemen-
tation. An advantage of this method is that it supports, if necessary, manual ad-
justment of the process without changes at the implementation level. Adjustments
can involve, for example, adding/deleting elements (pages, questions and answers)
as well as changing question types. Another advantage of this approach is that it
enables the use of different implementations as well as layouts for the final UI.

2.4.2 Final User Interface

The final user interface (UI) presented in Fig. 2.5 corresponds to the model on the
CUI level in Fig. 2.4. The process together with instance data enables the recom-
mender to give specific recommendations based on the selection of the customer.
The combination of actual instance data (e.g., products of a specific Web-shop) is
done during runtime by an external engine.

This specific engine provides an interesting feature in addition to what the run-
time engine presented by Popp and Raneburger (2011) offers. The engine used for
the recommendation process allows the user to redefine her criteria and also to
go back in the process. In this case the final UI is generated as an HTML-based
Web-shop where various layouts, e.g. customizable color schemes, can be applied.

36 H. Kaindl et al.

Elements, such as the sliding controller, are rendered according to the settings on
the CUI level.

Figure 2.5 shows an example for such a generated UI. The UI mainly consists of
two parts, the top with a bar that allows the customer to navigate between different
pages and the question containers. These containers hold one question each (for
example Producer) and several of them are placed on one page. In our example two
representations are shown, one for a numeric question and one for a string question.
The string question furthermore holds a ‘More’/‘Less’ switch, which can be used to
display additional (hidden) answer options. Such a final UI is the end product of the
generation process.

2.5 Evaluation

With the aim of evaluating the possible application of such generated recommenda-
tion processes within real-world scenarios, we have deployed them in active online
shops.

2.5.1 Comparison of Recommendation Processes

In these real-world experiments, we have compared and identified differences be-
tween semi-automatically generated recommendation processes and manually cre-
ated ones that have been designed by human domain experts. Both the semi-
automatically generated and the manually created product recommendation pro-
cesses ranked product features according to the computationally inferred relevance
for customers. This is based on the underlying assumption that recommendation pro-
cesses in which the selectable product features are arranged according to their rele-
vance, would perform better than others. Prior to each test, we have set up suitable,
automated monitoring services that sent out notifications whenever a decreasing
performance (fewer successful recommendations) was detected. As the experiment
was carried out in the real-world environment of online shops, these precautionary
measures were important to anticipate and prevent any commercial losses due to
potentially deficient recommendation processes.

For the comparison, we use the performance measure of the “click-out rat” to
measure the success of the recommendation processes. It is a performance metric
that is commonly used to measure the success of individual online strategies. In our
case, it denotes the fraction of users who used a recommendation process to find
a product and followed a recommendation by selecting suggested products to view
them in a close-up view or by placing them into an electronic shopping cart (Per-
formed product click-outs/Number of unique clients). This measure is opposed by
the “cold exit rate”, which measures the rate of customers that have used a recom-
mendation process, but have left it without following a recommendation.

2 Generating Models of Recommendation Processes 37

Table 2.1 Comparison of
ranking of properties in
mobile phone
recommendation processes

(a) Manually created
recommendation process

(b) Semi-automatically generated
recommendation process

• Brand • Brand

• Price • Price

• Multimedia • Display

– Camera – Touch display

– Video – Color display

– MP3 – Display size

• Connectivity • Operating system

– WLAN – Android

– GPS – Symbian

– Bluetooth • Camera

• Operating system • Connectivity

– Android – WLAN

– Symbian – GPS

– Bluetooth

2.5.2 Empirical Results

Based on this way of comparing recommendation processes, let us present empirical
results from deploying semi-automatically generated processes. First, we look at
the data of one specific comparison in-depth. After that, we summarize results from
several different real-world domains and applications.

Let us first provide an example for mobile phones (from where our running ex-
ample has been distilled as well). Comparing the generated mobile phone recom-
mendation processes (Table 2.1), we found that the semi-automatically generated
recommendation process ranked features that were related to the mobile phone dis-
play and the operating system on higher positions, while they were neglected or
ranked differently in the manually created version. Also, product features that were
related to Multimedia (Camera, Video, MP3) and Connectivity (WLAN, GPS, Blue-
tooth) were listed on lower positions in the semi-automatically generated variant.
This suggests that these features have lost relevance over time, unrecognized by the
domain experts in time. These results reflect the relevance of properties as given in
Table 2.1. Here, the product features touchscreen, displaySizeInch and resolution-
Text (Display) and android (Operating system) received higher priorities than video-
Function and mp3Player (Multimedia) or WLAN, GPS and bluetooth (Connectivity)
from the given product ontology.

In a real-world experiment, we investigated measurable performance of the pur-
sued approach. As recommendation processes play an increasingly important role
in e-commerce, we conducted the experiment within the environment of a large
German online retailer. Here, recommendation processes are deployed to support
online customers at finding suitable products from vast assortments. The experi-

38 H. Kaindl et al.

Table 2.2 Results of A/B-variant test with (a) manually and (b) semi-automatically generated
mobile phone recommendation process instances

Process variant Unique
clients

Click-outs Click-out
rate

Cold-exit
rate

(a) Mobile phone rec. process (manual) 1,068 421 0.394 0.781

(b) Mobile phone rec. process (generated) 1,100 496 0.451 0.746

ment ran for 14 consecutive days and involved 2,168 uninformed online customers,
who accessed the recommendation processes to find suitable mobile phones.

An A/B-variant test, in which the participants were equally distributed to either
process variant, was set up to compare the performance of the semi-automatically
generated mobile phone recommendation process variant with the manually cre-
ated variant. Table 2.2 depicts the results of the A/B-variant tests, in which the
semi-automatically generated mobile phone recommendation variant (b) was tested
against a manually created variant (a). It shows that the semi-automatically gener-
ated version (b) led to an increase of the click-out rate by 14 % and a decrease of the
cold exit rate by 4 %. The result of this experiment indicates that our new approach
may lead to a higher click-out rate and, therefore, may evoke performance increases.

Now let us provide a general evaluation of the performance values for all 8 pro-
cesses that have been deployed and tested yet at the time of this writing within this
experiment series. The 8 recommendation process sets within the categories bluray-
player, camcorder, printer, receiver, videoprojector, DVD player, TFT screen, and
mobile phone, each comprising a manually created and a semi-automatically gener-
ated variant, were tested within the experiment series.

The results are given in Table 2.3. We observe that 5 out of 8 generated product
recommendation processes suggest improved data as compared with their manu-
ally created counterparts. A statistical analysis of the data is given by Kaindl et al.
(2013).

The 3 product recommendation processes that led to decreasing click-out rate
data (see Table 2.3c, f, g) had more complex process setups and involved higher
interdependencies between the selectable product features. This may be an indicator
that our current approach is better applicable for more basic process types.

Overall, the results of our real-world usage experiments provide some empiri-
cal evidence that the generation of process recommendation processes can be done
semi-automatically with competitive results.

Measuring and comparing the effort of manual creation of recommendation pro-
cesses with using the semi-automatic lifecycle showed that applying the latter led to
a reduction of the manual work by roughly up to 60 %.

2.6 Related Work

Ontologies have been used in many areas of software engineering (Coral et al. 2006)
and information systems (Guarino 1998). Paulheim and Probst (2010) present an

2 Generating Models of Recommendation Processes 39

Table 2.3 Results and comparison of A/B-variant tests of recommendation process instances in
8 product categories—manually vs. semi-automatically generated process instance

Domain Unique
clients

Click-out
rate A
(manual)

Click-out rate B
(semi-automatic)

Click-out
increase/
decrease of B

Cold-exit rate
increase/
decrease of B

(a) blurayplayer 1,631 0.458 0.509 +11.14 % −2.40 %

(b) camcorder 438 0.444 0.485 +9.23 % −2.12 %

(c) printer 746 0.683 0.547 −19.91 % +9.61 %

(d) receiver 1,363 0.316 0.319 +0.95 % −2.73 %

(e) videoprojector 329 0.429 0.462 +7.69 % −0.14 %

(f) DVD player 456 0.415 0.213 −48.67 % +12.19 %

(g) TFT screen 1,019 0.455 0.348 −23.52 % +3.91 %

(h) mobile phone 2,168 0.394 0.451 +14.47 % −4.4 %

extended survey on the usage of ontologies for the development and execution of
user interfaces. In particular, they focus on user interfaces “whose visualization ca-
pabilities, interaction possibilities, or development process are enabled or (at least)
improved by the employment of one or more ontologies”. They also propose a clas-
sification of this usage. For example, concerning the usage domain, ontologies can
be used to represent the concepts from the real world (as, e.g., products in our case),
IT system and their components, or users and their roles. Ontologies can also be
classified according to their role in the lifecycle, whether being used for design or
execution (or even both).

For recommendation processes, ontologies can be employed for user profiling
as shown by Middleton et al. (2004), where the authors use machine-learning tech-
niques to discover useful patterns in the users’ behavior and to improve the recom-
mendation process. In our current approach, we do not perform any user profiling,
but it could be integrated.

Klan and König-Ries (2011) present an interactive approach for service selection.
This approach can be compared to our approach, if we assume, that such a service
can be seen as a product. This approach also includes some heuristics in the selection
process. One heuristic is, that the questions are ranked according to the maximum
effect in the presented list. If the answer of one question reduces the list of possible
services more than another question, it is ranked higher.

The relationship between domain models and interaction models has been stud-
ied in the past. Rosson (1999) presented the integration of task models (which repre-
sent the user interactions and are related to our Discourse Models) and object mod-
els (related to our Domain-of Discourse Models). Another example of integrating
processes with high-level conceptual models is the field of Semantic Web Services
(Sheth et al. 2006). Adding semantics to “classical” Web Services could be done
with WSDL-S (Web Service Description Language-Semantics). In WSDL-S, Web
Services descriptions are annotated with domain-specific (e.g., of one particular in-
dustry) and domain-independent ontologies (e.g., for general contracts or agree-
ments).

40 H. Kaindl et al.

2.7 Discussion

While our approach works and even results in recommendation processes applicable
in practice, a few related questions should be discussed. In particular, is it necessary
or, at least useful to generate a high-level model of such a process first? Although
it seems possible to generate an operationalized process in one shot, we argue that
a two-step approach is useful by analogy to compiler construction. Typically, inter-
mediate languages are used on the way from a high-level programming language to
machine code. These provide useful levels of abstraction for the compiler develop-
ers, and so does our high-level model of recommendation processes.

Still, the question remains, whether other kinds of languages or models could
serve the same purpose, and possibly even better. This question cannot be answered
with certainty as it stands, since our approach seems to be the very first along these
lines.

As our discourse-based models are primarily used for specifying models on a
high abstraction level for automated generation of user interfaces, how about the
most often used approach for this purpose? Instead of our discourse-based models,
task-based ConcurTaskTrees from Paternò et al. (1997) may be used for bridging
the semantic gap between ontologies and user interfaces. ConcurTaskTrees facili-
tate modeling tasks and their causal and temporal relations. Such models are also
being transformed into a user interface semi-automatically. However, we are not
aware of any approach for generating ConcurTaskTrees out of ontologies. UsiXML
(Faure and Vanderdonckt 2010) is an XML-based specification language for user
interface design. It allows specifying a user interface at different levels of abstrac-
tion, from high-level task models (like ConcurTaskTrees) to the concrete code of a
user interface. Also for UsiXML, we are not aware of any approach for generating
UsiXML models out of ontologies. Since a recommendation process of the kind
generated here primarily consists of pairs of questions and related answers, Com-
municative Acts as used in our discourse-based approach are an excellent fit for
modeling them. In contrast, tasks would have to model questions and answers in the
sense of corresponding interactions with a specific kind of user interface. So, while
this would certainly be feasible, it appears to be less appealing than our approach.

Since this is about modeling processes, also languages for business process mod-
eling may be used. Such languages like Business Process Model and Notation
(BPMN) focus on the dynamics of such processes. However, BPMN appears to
lack means for specifying the structure of domains sufficient for the content of rec-
ommendation processes.

From Discourse-based Communication Models, it is possible to generate
general-purpose graphical user interfaces according to Falb et al. (2009) and even
optimized ones for devices with small screens according to Raneburger et al. (2011).
Contrasting them with the user interfaces generated for recommendation processes
as explained above, it is clear that the latter are preferable in terms of usability. As a
matter of fact, they have been successfully used for real-world application of these
recommendation processes. They are special-purpose, however, and their overall ap-
pearance was predefined, while only the content has been generated automatically
for the given structure and with many given heuristics.

2 Generating Models of Recommendation Processes 41

2.8 Conclusion

We show that it is possible, from a given annotated product ontology, to generate
dialogue-driven recommendation processes semi-automatically. The key reason is,
that such a process primarily consists of questions and answers about exactly the
products from such an ontology. Therefore, a template devised by us can be filled
based on products in the ontology. In addition, the annotations in this ontology are
key to select products for a related recommendation process based on their priority.

The semi-automatic generation requires much less effort than the manual cre-
ation. In addition, data from real-world deployment of this new and automated ap-
proach provide empirical evidence of its usefulness. For instance, in the real-world
application at a large e-commerce shop platform with about 1,500 different cus-
tomers, this approach increased the rate of customers who followed recommenda-
tions by 14 %. So, the generated processes seem to be competitive with processes
manually created by human experts (according to the same overall strategy).

Acknowledgements This research has been carried out in the SOFAR project (No. 825061),
partially funded by the Austrian FIT-IT Program of the FFG.

References

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., & Vanderdonckt, J. (2003).
A unifying reference framework for multi-target user interfaces. Interacting With Computers,
15(3), 289–308.

Coral, C., Francisco, R., & Mario, P. (2006). Ontologies for software engineering and software
technology. Berlin: Springer.

Ertl, D., Kaindl, H., Arnautovic, E., Falb, J., & Popp, R. (2011). Discourse-based interaction mod-
els for recommendation processes. In ACHI ’11: proceedings of the 4th international conference
on advances in computer-human interactions.

Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., & Arnautovic, E. (2006). A discourse
model for interaction design based on theories of human communication. In CHI ’06: extended
abstracts on human factors in computing systems (pp. 754–759). New York: ACM.

Falb, J., Kavaldjian, S., Popp, R., Raneburger, D., Arnautovic, E., & Kaindl, H. (2009). Fully
automatic user interface generation from discourse models. In IUI ’09: Proceedings of the 13th
international conference on intelligent user interfaces (pp. 475–476). New York: ACM.

Faure, D., & Vanderdonckt, J. (2010). User interface extensible markup language. In EICS ’10:
proceedings of the 2nd ACM SIGCHI symposium on engineering interactive computing systems
(pp. 361–362). New York: ACM.

Guarino, N. (1998). In Proceedings of the 1st international conference on formal ontology in in-
formation systems. Amsterdam: IOS Press.

Kaindl, H., Wach, E. P., Okoli, A., Popp, R., Hoch, R., Gaulke, W., & Hussein, T. (2013). Semi-
automatic generation of recommendation processes and their GUIs. In IUI ’13: proceedings of
the 2013 ACM international conference on intelligent user interfaces.

Klan, F., & König-Ries, B. (2011). A conversational approach to semantic web service selection.
In C. Huemer & T. Setzer (Eds.), Lecture notes in business information processing: Vol. 85.
E-commerce and web technologies (pp. 1–12). Berlin: Springer.

Luff, P., Frohlich, D., & Gilbert, N. (1990). Computers and conversation. London: Academic
Press.

42 H. Kaindl et al.

Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: toward a functional theory
of text organization. Text, 8(3), 243–281.

Middleton, S. E., Shadbolt, N. R., & De Roure, D. C. (2004). Ontological user profiling in recom-
mender systems. ACM Transactions on Information Systems, 22(1), 54–88.

Paternò, F., Mancini, C., & Meniconi, S. (1997). ConcurTaskTrees: a diagrammatic notation for
specifying task models. In Proceedings of the IFIP TC13 6th international conference on
human-computer interaction (pp. 362–369).

Paulheim, H., & Probst, F. (2010). Ontology-enhanced user interfaces: a survey. International
Journal on Semantic Web and Information Systems, 6(2), 36–59.

Popp, R., & Raneburger, D. (2011). A high-level agent interaction protocol based on a communi-
cation ontology. In C. Huemer, T. Setzer, W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J. Shaw
& C. Szyperski (Eds.), Lecture notes in business information processing: Vol. 85. E-commerce
and web technologies (pp. 233–245). Berlin: Springer.

Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., & Falb, J. (2011). Optimized GUI generation
for small screens. In H. Hussmann, G. Meixner & D. Zuehlke (Eds.), Studies in computational
intelligence: Vol. 340. Model-driven development of advanced user interfaces (pp. 107–122).
Berlin: Springer.

Rosson, M. B. (1999). Integrating development of task and object models. Communications of the
ACM, 42(1), 49–56.

Searle, J. R. (1969). Speech acts: an essay in the philosophy of language. Cambridge: Cambridge
University Press.

Sheth, A., Verma, K., & Gomadam, K. (2006). Semantics to energize the full services spectrum.
Communications of the ACM, 49(7), 55–61.

Chapter 3
Cognitive Semantic Categories as a Basis
for a Prototype Adaptive Information System

Evangelos Kapros and Simon McGinnes

Abstract A software application is demonstrated which exhibits conceptual data
independence. The application provides domain-specific functionality, yet its struc-
ture is domain-independent. Separation between conceptual model and structure is
achieved by encoding models as data and interpreting them at run-time. The overall
goal is to reduce cost and delay when conceptual models change, and to provide ap-
plication functionality in new domains without constructing new applications. Sev-
eral conceptual models are used, to illustrate domain-specific behavior in multiple
domains. Results suggest that domain-independent application design can reduce
the need for application development and maintenance effort, since each domain-
independent application can function in multiple domains and adapts smoothly to
changing conceptual models. This is especially meaningful for end users who usu-
ally have no development skills and rely on spreadsheet and database driven appli-
cations.

3.1 Introduction

Current best practice in software design produces applications that are domain-
specific in both behavior and structure. For example, accounting software might
be constructed from classes representing accounts and account entries, and might
store data in Account and Entry database tables. The application’s architecture is
described as domain-specific because its class and table structures mirror the con-
cepts (entity types and their relationships) in the application domain’s conceptual
model.

The use of domain-specific architecture is a familiar and relatively simple way
of constructing software. But it leads to high cost and delay when software must
be altered to match new or modified conceptual models. This remains a barrier to

E. Kapros (B) · S. McGinnes
The University of Dublin, Dublin, Ireland
e-mail: ekapros@tcd.ie

S. McGinnes
e-mail: Simon.McGinnes@tcd.ie

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_3,
© Springer-Verlag London 2013

43

mailto:ekapros@tcd.ie
mailto:Simon.McGinnes@tcd.ie
http://dx.doi.org/10.1007/978-1-4471-5301-6_3

44 E. Kapros and S. McGinnes

system evolution despite long attention from researchers (Hick and Hainaut 2006;
Hartung et al. 2011). It also makes it necessary to do development work when new
domain-specific functionality is required.

In conventional software design, software architectures are based on the assump-
tion that the end user’s mental concepts are relatively static. Conceptual data depen-
dence is the practice of embedding these mental concepts in software architectures.
Our goal is to construct applications which exhibit conceptual data independence,
such that minimal work is required in respect of new or changed conceptual mod-
els. The motivation is to reduce the cost and delay that organizations incur when
they develop and maintain software applications to match new or altered concep-
tual models. Development work causes cost and delay which mainly affects small
and medium enterprises and organizations, which employ staff with typically lit-
tle or no programming skills. Thus, they face the dilemma to buy applications that
match their requirements or fund the development of custom-made applications.
However, this dilemma is usually avoided and organizations rely on simple tools
such as spreadsheets (Chan and Storey 1996; Raden 2005).

We propose to reduce cost and delay by building an information system that is
adaptive to model changes (Adaptive Information System, or AIS). We implemented
this idea to show its feasibility, and present a software application which is simul-
taneously the authoring environment and the user interface of applications which
exhibit conceptual data independence. That is, the end users can manage the model
and the data through the same user interface. Moreover, the concepts of the model
and the data are represented in user-friendly forms. Thus, expert help concerning
change is minimized. In addition, conceptual data independence has implications
for the visual design of user interfaces.

3.2 Related Work

3.2.1 Relational Databases and Object-Oriented Design

The relational model proposed by Codd (1970) provides a standard way of trans-
lating concepts into data structures. A table represents a concept, while columns
represent the concept’s attributes. The concepts that describe the structure of the
database form its schema. Research in Schema Evolution focuses on the problem of
adapting a database schema to changes. This research field shows that changes in
schemas represent a significant cost to organizations. In Curino et al. (2008) changes
in the database schema are reported to affect up to 70 % of queries, which have to be
manually reconfigured. Some theoretical models to address this problem have been
constructed, but real systems incorporating schema evolution functionality are hard
to find (Roddick et al. 2000).

Other types of software design are subject to the same kinds of problem. Object-
oriented design in programming and in databases is one example. In object-oriented
design, concepts are represented as classes. Classes serve as blueprints for objects,

3 Cognitive Semantic Categories 45

which are specific instances of the concept. Changes to the underlying conceptual
structure implemented in a class structure make it necessary to alter the classes and
their relationships. This, in turn, makes it necessary to modify code which refers to
the altered classes. Hence there can be a high overhead cost arising from changes to
the underlying conceptual model of an application constructed using conventional
object-oriented design.

3.2.2 Ontologies and the Semantic Web

An ontology provides a semantic network of predefined concepts intended to de-
scribe the universe of knowledge for a particular domain. Domain-specific applica-
tions may define new end-user concepts as sub-concepts of the existing concepts in
the ontology.

It has been proposed (Berners-Lee et al. 2006; Alani et al. 2005, 2008) that web
applications should use ontologies as well. The so-called Semantic Web applica-
tions would, then, be able to share data freely using as mediators these predefined
concepts, without any need for prior programming. For this to work in the general
case, ontologies would have to be capable of being integrated with a common ontol-
ogy. Various semi-automatic tools have been developed for this task (McGuinness
et al. 2000; Noy and Musen 2000).

However, this is a non-trivial challenge. A lack of standardization in end-user
concepts leads to the Tower of Babel (Fonseca and Martin 2004) problem: the cre-
ation, in various ontologies, of incompatible definitions for the same entity. More-
over, since the existing ontologies are domain-specific, no large-scale cross-domain
implementations exist. For this reason, it is still unclear how web meta-data would
follow the conceptual vocabulary of the ontologies (Shirky 2003).

The idea of handling arbitrary schemas in software applications has not been
previously directly addressed. However, work on ontologies has given useful results
on change in semantics while using automatically generated interfaces (Ertl et al.
2011; Wach 2011). Similarly, work on dynamic data management has given use-
ful results (Fein et al. 2011; Kennedy et al. 2011; Sun et al. 2011) but has not, in
general, addressed user-interface or usability issues. While there have been design
efforts in web browsers such as LENA (LENA—a Fresnel LEns based RDF/Linked
Data NAvigator with SPARQL selector support n.d.) and Tabulator (Berners-Lee
et al. 2007) that offer views that depend on semantics, they are targeted to software
developers and not end users (SPARQL knowledge is essential). Moreover, they
differentiate the authoring environment of the applications from the applications
themselves, which serves well software developers but might be confusing to end
users. However, these are useful paradigms and offer valuable ideas for exploration.

3.2.3 Spreadsheets

Research has shown that most organizations still rely on spreadsheets for their data
management (Chan and Storey 1996; Raden 2005). There is a number of reasons

46 E. Kapros and S. McGinnes

why that happens, including failure to deliver end-user systems with usable schema
evolution. End users have been reported to “shun enterprise solutions” (Raden 2005)
and 70 % of them use spreadsheets on a frequent or occasional basis most commonly
for “sorting and database facilities” (Chan and Storey 1996). Spreadsheets are error-
prone and miss critical database functionality. There exists work on some database
functionality in spreadsheets such as managing plural relationships (Bakke et al.
2011), but not on conceptual modelling. Similarly, work on semantic spreadsheets
has improved modeling in spreadsheets, but still separates authoring and application
(Zhao et al. 2010; Kohlhase and Kohlhase 2011). Moreover, the problem of schema
evolution remains, since the practice of conceptual data dependence is still followed.

3.3 Conceptual Data Independence

3.3.1 Soft Schemas

We approach this problem by turning conceptual models into data. Current appli-
cation design practice embeds conceptual models into software structures (classes,
windows, tables, etc.) When building an AIS this practice is avoided. Instead, the
AIS is constructed from generic, domain-independent structures. The model-as-data
is termed a soft schema; in our prototype it is stored as XML, although any logically-
equivalent way of storing data would suffice. The soft schema is read and interpreted
by the AIS at run-time. The soft schema is a properly normalized relational data
model, with some additions, but it is stored as data rather than being hardcoded in
application structure.

To provide domain-specific functionality, yet also exhibit conceptual data inde-
pendence, the AIS must meet several conditions. First, it must react at run-time to a
soft schema, providing a user interface which looks and behaves similarly to those
of conventional domain-specific applications. This requires the AIS to mimic the de-
sign choices of a human designer, in real time. Our approach is to implement auto-
mated user interface design heuristics which are applied based on the contents of the
soft schema. We provide specialized behavior for different types of data by respond-
ing to known semantic categories embedded in the soft schema (see Sect. 3.3.2).

An AIS must also be able to store and retrieve data corresponding to multiple
soft schemas with guaranteed data integrity. The AIS has no advance knowledge of
the data and schemas it will be used with, and how they may change. An AIS would
be of little use if altering a schema rendered previously-stored data unusable, or if
it compromised data integrity. So the data corresponding to each soft schema must
be able to co-exist and be used with data stored for other soft schemas, regardless
of their structures. Our solution to this problem is to store data in a broadly domain-
independent way, but to retain intact the conceptual structure for each instance of
data. Our prototype meets that requirement by storing the data using XML and using
XML tags to denote structure. XML was chosen in this instance because of its sim-
plicity and flexibility which are desirable properties for building a proof-of-concept

3 Cognitive Semantic Categories 47

prototype. But, again, any logically-equivalent storage mechanism (such as RDF or
others) would suffice.

The intention in using soft schemas is to separate conceptual structure from ap-
plication structure, so that change to the former does not necessitate change to the
latter. But another, perhaps more far-reaching implication of this way of designing
software is that an AIS could conceivably operate in many application domains,
if supplied with appropriate soft schemas. Fewer applications would be required,
because a single AIS could fulfill the function of many distinct (domain-specific)
applications that must today be constructed separately, by hand using conventional
software design practices.

3.3.2 Archetypal Categories and Differential Design

The AIS provides domain-specific behavior by responding to the currently-active
soft schema. Each concept (entity type) in the soft schema represents something
that data can be stored about. The AIS provides CRUD (create, read, update, delete)
functionality in respect of every concept in the schema. Design heuristics are applied
automatically to produce a “reasonably usable” interface directly from the concep-
tual model. This principle has been applied and tested in a number of web and
client-server application environments (McGinnes 2005). Dialog design takes into
account general rules of interaction and layout, as well as responding specifically
to the data types used for attributes in the soft schema, the relationships between
concepts, and so on.

However, for an AIS to offer true domain-specific functionality, it is insufficient
to respond only to the conceptual model, because this provides a one-size-fits-all
user interface style for every concept in the model. The AIS must instead offer a
suitable interface style for each concept. Being able to do this depends on knowl-
edge which is not normally present in conceptual models. For example, an appli-
cation that stores data about geographical locations such as cities might offer an
interface based on maps. Data about activities such as appointments might be repre-
sented using a calendar or timeline. Other interface styles are appropriate for other
types of data. Normally, a software designer can choose appropriate interface styles
using their own background knowledge about the concepts included in the concep-
tual model. The user interface designer recognizes what each concept signifies, and
selects a suitable way of representing the concept and interacting with it (Liebenau
and Backhouse 1990).

We therefore sought to embed this kind of general knowledge into soft schemas,
so that it could be used automatically by an AIS to render more domain-specific
interfaces and behavior. It is achieved by linking each concept in the soft schema
with a particular archetypal category (major cognitive semantic category; Moore
and Price 1999; Markman and Wisniewski 1997; Caramazza et al. 2003). The proto-
type AIS uses nine archetypal categories: people, organizations, places, documents,
activities, physical objects, conceptual objects, systems and categories (McGinnes

48 E. Kapros and S. McGinnes

Fig. 3.1 Standard user profile design: the upper images represent domain-specific implementa-
tions. The generic wireframe below can load dynamically any domain-specific information at run-
time. Changing its layout could result in any of the upper profile UI components

2005). Using archetypal categories allows the AIS to offer a category-specific in-
terface style in respect of each concept in the soft schema. We refer to this process
as differential design; it is intended to mirror the use of general knowledge by soft-
ware designers (some related work exists in McGinnes 2005). An example is given
in Fig. 3.1: any concept that belongs to the category people could use a standard
design defined by a “user profile” visual component. This component could apply
general knowledge, such as the fact that people are often identified by a name and an
image, or that people usually reside at a location. This information can be required
by the data structure, but everything else can be loaded dynamically in the interface
and changes to the concept’s definition will not break the interface.

Incidentally, the use of archetypal categories also presents advantages during
modeling; for example, it allows aspects of models to be predicted, helping to speed
up modeling and reduce error (McGinnes 2000).

3.3.3 Neurology and Cognitive Semantics

How much can we take these archetypal categories for granted? For many years a
belief was prevalent that specific brain areas facilitate domain specific knowledge;
this belief is referred to as localizationism. This idea has been challenged since
1891 (Freud 1953 (1891)). However, instances of damage to specific brain areas
have been shown to affect unique knowledge domain. For example, some subjects
have deficits in specific brain regions that prevented them from recognizing people
(prosopagnosia) (Caramazza et al. 2003). Similar results have been proposed after

3 Cognitive Semantic Categories 49

Fig. 3.2 fMRI showing approximate indicative positions of activation during Person and Object
trials. Composed according to data found in Mason et al. (2004), Mitchell et al. (2002), Tyler and
Moss (2001)

fMRI studies, where people, objects, and activities usually trigger signals in sepa-
rate brain areas (Caramazza et al. 2003; Mason et al. 2004; Mitchell et al. 2002).
Evolutionary theory has suggested that pressure from the environment resulted in
dedicated neural mechanisms for each domain of knowledge, effectively creating
categories that are in some sense “hard-wired” and therefore archetypal (Caramazza
et al. 2003).

Localizationism has been challenged recently, drawing from cases where sub-
jects have recovered from deficits of the aforementioned types. A known example
of regenerated brain functionality (neuroplasticity) is the ability of blind people to
substitute their visual cortex functionality with haptic input: brain areas that were
formerly dedicated to one function switch to another, so that blind people can “see”
what they touch (Pascual-Leone et al. 1999). However, research shows that archety-
pal categories still emerge, but this time in a distributed neural system rather than
in brain areas, and that differences in the content of concepts drive the evolutionary
categorization of cognitive semantics (Tyler and Moss 2001). There is no conflict be-
tween the fMRI results of Tyler and Moss (2001) and Mason et al. (2004), Mitchell
et al. (2002) (also see Fig. 3.2).

Moreover, research has shown that cognitive semantics are formed in a middle-
out way, in contrast with a bottom-up or a top-down one. That is, humans categorize
entities using basic level categories first, and then generalize into more abstract
entities or specialize into more concrete ones (Markman and Wisniewski 1997;
Klibanoff and Waxman 2003). In simple terms, one would first recognize a person
and then specialize it to, e.g., the particular individual Joanne Wall, or generalize it
to, e.g., an abstract concept such as “animate entity”.

In conclusion, given the slow pace of human evolution, we can assume it is safe
to use basic level cognitive semantic categories in the construction of soft schemas.

50 E. Kapros and S. McGinnes

Fig. 3.3 An interaction map of the prototype AIS. See Table 3.1 for explanation of the layout and
interaction

3.4 How the Prototype AIS Works

In this section we describe the visual and interaction design of the prototype AIS
and present a technical explanation of how it deals with soft schemas and data. The
present prototype implements soft schemas and archetypal categories with real-time
user interface generation. Differential design (Sect. 3.3.2) and end-user modeling
have yet to be implemented.

3.4.1 Visual and Interaction Design

The prototype’s layout, navigation, and interaction have been designed with end
users in mind, particularly given that the user interface evolves over time (O’Murchú
2009). There are two main panels, aligned vertically: the Model Manager and the
Data Manager (see Fig. 3.3). The Model Manager consists of a vertical button bar
and a tab bar. The buttons represent the nine archetypal categories. The tab bar
allows access to panels showing the soft schema and its contents.

The first panel (shown by default) offers a top-level view of the active schema. It
contains tiled icons, each denoting a particular concept in the schema. Labels help
to disambiguate the meaning of icons (Evamy 2003; Whitehouse 1999) (for brevity,
the term “icon” is used from this point to mean a labelled icon). The remaining

3 Cognitive Semantic Categories 51

Table 3.1 Functionality of the various AIS layout elements

Element Functionality

1. Categories button bar Each button represents one of the archetypal categories. Clicking
the button differentiates the concepts shown in the concept panel in
that only concepts of the relevant category are highlighted.

2. Model tab bar Allows the user to navigate through tabs containing the soft
schema and its individual concepts.

3. Concept panel Displays icons which represent concepts and attributes. Clicking
an icon displays the tab panel and populates the datagrid for that
concept.

4. Data management panel Allows the user to load and save data, perform search/filter
operations and manipulate data displayed in a dynamic grid.
Clicking each row makes relevant information appear in the
attributes panel.

5. Attributes panel Offers basic data manipulation functionality; allows the user to
enter, view and edit attribute values for particular concept
instances and to delete concept instances. When one of the buttons
is clicked a modal dialog appears, allowing the user to perform the
selected function.

sub-panels represent individual concepts in the soft schema, each with tiled icons
representing attributes or related concepts. For clarity, attributes have two labels: the
first (in boldface) is the parent concept and the second is the name of the attribute.
This way of presenting conceptual models, using icons and windows rather than
boxes and lines, has been shown to substantially improve model understandability,
particularly for non-experts (McGinnes and Amos 2001).

The Data Manager contains a data management panel and an attributes panel.
The data management panel includes three sets of elements. Two buttons allow
loading and saving of data, a set of elements facilitate searching and filtering, and
a grid displays data stored by the AIS. The grid dynamically loads columns for the
currently-selected concept’s attributes and rows for its instances.

A text field notifies the user on the success of their actions including loading and
saving data and data manipulation functions. To assist end users, action invitations
are also used throughout. Hover invitations are activated for the data management
panel, tabs, load/save buttons and concept icons. A cursor invitation is activated
in the search input field, and a tool-tip invitation displays information about each
archetypal category.

3.4.2 Handling Schemas and Data

The prototype AIS reads two types of XML file: schema files and data files. Each
schema file contains a soft schema. Each data file stores data consisting of a number

52 E. Kapros and S. McGinnes

of concept instances. Each concept instance contains data values with structure that
reflects the soft schema that the instance was created with.

Example 3.1 Schema file section describing the concept Customer:

<concept>
<conceptName>Customer</conceptName>
<category>People</category>
<attributes>

<attribute id="1">name</attribute>
<attribute id="2">id</attribute>
<attribute id="3">address</attribute>

</attributes>
</concept>

Once a schema file has been loaded, the AIS will enforce it for any new data in-
stances that are entered. Data instances already stored may be retrieved and viewed,
but will retain their original structure. Should the schema be altered (by loading a
new schema or editing the active schema), the AIS will enforce the altered schema
for any data that are subsequently entered but already-stored instances will not be
affected.

Example 3.2 Data file section containing data for two customers previously entered
using different soft schemas:

<customer>
<name>Joanne Wall</name>
<id>2012</id>
<address>43 Tows Str</address>

</customer>
<customer>

<firstname>Maurice</firstname>
<lastname>Smith</lastname>
<id>2002</id>
<address>3 Yannou Street</address>
<phone>2273034397</phone>

</customer>

The current schema file is not used for data retrieval and display, since any re-
trieved data may conform to a variety of soft schemas. Instead, the AIS interprets
the data structure of each data instance, and then does its best to display the data in-
stances together coherently, regardless of which soft schema each instance conforms
to. For example, where different customers have different sets of attributes, as in the
example above, the superset of the attributes is used to make up the list of columns
in the data grid. Assuming that initially a concept Σ has attributes A = {a, b, c}
and later is modified to have attributes B = {x, y, z}, then the end user will be able
to read instances of Σ with attributes A ∪ B , add a new instance of Σ with at-
tributes B , or delete an instance of Σ regardless of what attributes it has, subject

3 Cognitive Semantic Categories 53

Fig. 3.4 The data grid and the attributes panel after loading new data. Both automatically gener-
ated the columns and the text fields, thus adapting to the new data

to referential integrity constraints. Figure 3.4 illustrates the effect when a schema is
changed and new data added. The columns for newly-entered instances differ from
those for existing instances, yet all are displayed.

3.4.3 Applications in Reverse Engineering of Existing Data
Structures

We note that it is a conceptually-simple operation to reconstruct the conceptual
model underlying any database structure or XML data. Most of the semantics nec-
essary to recreate the conceptual model implemented by a software application are
implicit in, and capable of being determined by examination of, its data storage
structures. This makes it possible, in theory, to use an AIS with any arbitrary dataset,
regardless of whether its corresponding soft schema exists. The required soft schema
can simply be reconstructed by examining the data, and this process can be auto-
mated.

The ability to reconstruct soft schemas automatically has been demonstrated in
two AIS implementations to date. In the first, the AIS was capable of reading a
database structure and thereby producing a corresponding soft schema. The result-
ing soft schema could be used to store and manipulate data with equivalent structure
to that stored in the source database. But, unlike the source database, the AIS would
permit the schema subsequently to be modified at will. This proved useful as a first
stage in the reengineering of legacy database applications. The data structure from
an existing application could be turned into a soft schema, which could then evolve
relatively easily through a prototyping process to arrive at an improved structure
matching client user requirements.

The second implementation is capable of reading an XML data file and recon-
structing its corresponding soft schema. If the XML data file is an AIS data file, then
the resulting soft schema can immediately be used to add to, and modify, the data in
the file. This is useful, for example, if the soft schema for a particular data file has

54 E. Kapros and S. McGinnes

been lost for some reason. It is also useful where a schema has undergone substan-
tial evolution, so that the data in the data file corresponds to multiple soft schema
versions. In this case the reconstructed soft schema represents the superset of all soft
schemas implied by the data. Being able to reconstruct a superset schema is useful
where it is helpful to know the range of possible conceptual structures which could
be considered valid.

In reconstructing a soft schema, not all elements can always be deduced. For
instance, relationship cardinalities are often incompletely specified. The data may
make it clear that each customer can have multiple orders, but not specify whether
a customer must have any orders. Also it is rare, unless the data file is an AIS data
file, for the data to be tagged with archetypal categories, icons, or other semantic
information. Suitable categories and images can to some extent be automatically
suggested by recognizing common terms. For example, for an item of data with
XML tag <customer> it would be appropriate to suggest categories person or
organization. Similarly for tag <order> it would be relevant to suggest category
activity. Default images can be used according to the categories suggested. However,
this process of deducing categories and images is inherently hit-and-miss, and so
any suggested categories and images require review and possible modification by
the user.

3.5 Discussion and Future Work

At present the prototype successfully reads schema and data files and generates suit-
able user interfaces, allowing basic CRUD (create, read, update, delete) functions to
be performed on the data. This implementation demonstrates the feasibility of sepa-
rating conceptual models from application structures, and of automatically generat-
ing user interfaces in real time from soft schemas. The next stage of our project will
experimentally assess the usability of the prototype; however, related research has
shown that relatively sophisticated and usable interfaces can be created this way for
a variety of implementation platforms (McGinnes 2005).

Changing the schema presents no problem to the application, which continues
to work effectively. Since previously-entered data can still be viewed, the user can
upgrade the data to match the current schema at his or her leisure, or choose not to.
We envisage that tools can be provided to assist the user in this process, identifying
data which could be upgraded and automatically performing the upgrade where this
is feasible. We anticipate benefits to the end user from being able to continue to use
previously-entered data despite schema changes. For example, it will allow applica-
tions to grow and evolve as end user understanding improves through use. However,
it also opens the possibility that data will become chaotic and unusable, particu-
larly if many schema changes are made but data instances corresponding to earlier
schema versions are not upgraded to match the new schema structure. Usability test-
ing will reveal whether this ability to change the schema without affecting existing
data is helpful for end users, or merely results in chaotic datasets which are difficult
to understand and use.

3 Cognitive Semantic Categories 55

At present the AIS supports only simple soft schemas, as support for relationships
between concepts has yet to be implemented. We intend to add support for relation-
ships; this will require implementation of more sophisticated user interface heuris-
tics. Again, prior work has demonstrated that automated design can produce usable
interfaces for schemas with complex relationships between concepts (McGinnes
2005). The challenge in this instance is to make the automated design occur purely
at runtime rather than a mixture of design time and runtime.

In addition, functions will be added to allow the end user to visually manage
soft schemas. End-user modeling using a similar schema representation has been
tested in previous research (McGinnes 2000) but usability testing will help assess
how easy it is for end users to do their own modeling in the context of the prototype
AIS. We hypothesize that the ability to enter and retrieve data immediately upon
schema change, without the need for data transformation and reloading, will facili-
tate understanding and learning. We also plan to implement better support for data
types, with differential design, that is the dynamic selection of user interface style
depending on archetypal category. For example, map views could be provided for
places and calendar views for activities. It is hoped that this will improve the usabil-
ity of the AIS, making it look and feel more like a hand-coded application. Again,
usability testing will help evaluate and refine this feature.

Finally, the semantic categories are intended to serve as an examination ground
for a potential semantic standard. This would make software more interoperable and
consistent. Despite using XML at the moment, moving to OWL/RDF is an option.
In this way standardization would be enforced; in any case, this option needs to be
examined after adding support for relationships.

3.6 Conclusion

This chapter has presented a prototype user interface for an adaptive information
system. The system handles various conceptual structures at runtime, treating these
structures as data (soft schemas). It allows the user to handle (create, read, delete)
data, as well as update soft schemas or data.

The intention is to evaluate the usability of a system with separate data and con-
ceptual structures. Our hope is that software designed in this way could be more
flexible for end users; one piece of software could have more uses than the domain-
specific applications built according to current practices.

References

Alani, H., Kalfoglou, Y., O’Hara, K., & Shadbolt, N. (2005). Towards a killer app for the semantic
web. In The semantic Web–ISWC 2005 (pp. 829–843).

Alani, H., Hall, W., O’Hara, K., Shadbolt, N., Szomszor, M., & Chandler, P. (2008). Building a
pragmatic semantic web. IEEE Intelligent Systems, 23(3), 61–68.

56 E. Kapros and S. McGinnes

Bakke, E., Karger, D., & Miller, R. (2011). A spreadsheet-based user interface for managing plural
relationships in structured data. In Proceedings of the SIGCHI conference on human factors in
computing systems, CHI ’11 (pp. 2541–2550). New York: ACM.

Berners-Lee, T., Hall, W., Hendler, J., O’Hara, K., Shadbolt, N., Weitzner, D. J., et al. (2006).
A framework for web science. Foundations and Trends in Web Science, 1(1), 1–130.

Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Pru d’ommeaux, E., et al. (2007). Tabulator
redux: writing into the semantic web.

Caramazza, A., Mahon, B. Z., et al. (2003). The organization of conceptual knowledge: the evi-
dence from category-specific semantic deficits. Trends in Cognitive Sciences, 7(8), 354–361.

Chan, Y. E., & Storey, V. C. (1996). The use of spreadsheets in organizations: determinants and
consequences. Information & Management, 31(3), 119–134.

Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the
ACM, 13(6), 377–387.

Curino, C. A., Tanca, L., Moon, H. J., & Zaniolo, C. (2008). Schema evolution in Wikipedia:
toward a web information system benchmark. In International conference on enterprise infor-
mation systems (ICEIS). Citeseer.

Ertl, D., Kaindl, H., Arnautovic, E., Falb, J., & Popp, R. (2011). Generating high-level interaction
models out of ontologies. In IUI SEMAIS (Vol. 11, pp. 7–11).

Evamy, M. (2003). World without words. New York: Laurence King.
Fein, E., Razinkov, N., Shachor, S., Mazzoleni, P., Goh, S., Goodwin, R., et al. (2011). Using

MATCON to generate case tools that guide deployment of pre-packaged applications. In 2011
33rd international conference on software engineering (ICSE) (pp. 1016–1018). New York:
IEEE Press.

Fonseca, F. T., & Martin, J. E. (2004). Toward an alternative notion of information systems ontolo-
gies: information engineering as a hermeneutic enterprise. Journal of the American Society for
Information Science and Technology, 56(1), 46–57.

Freud, S. (1953 (1891)). On aphasia; a critical study. Madison: International Universities Press.
Hartung, M., Terwilliger, J. F., & Rahm, E. (2011). Recent advances in schema and ontology

evolution. In Schema matching and mapping (pp. 149–190).
Hick, J.-M., & Hainaut, J.-L. (2006). Database application evolution: a transformational approach.

Data & Knowledge Engineering, 59(3), 534–558.
Kennedy, O., Ahmad, Y., & Koch, C. (2011). DBToaster: agile views for a dynamic data man-

agement system. In Proc. of the fifth biennial conference on innovative data systems research
(CIDR 2011) (pp. 284–295).

Klibanoff, R. S., & Waxman, S. R. (2003). Basic level object categories support the acquisition of
novel adjectives: evidence from preschool-aged children. Child Development, 71(3), 649–659.

Kohlhase, A., & Kohlhase, M. K. (2011). Spreadsheets with a semantic layer. Electronic Commu-
nications of the EASST, 10, 1–18.

LENA—a Fresnel LEns based RDF/Linked Data NAvigator with SPARQL selector support (n.d.).
Liebenau, J., & Backhouse, J. (1990). Understanding information: an introduction. Basingstoke:

Palgrave Macmillan.
Markman, A. B., & Wisniewski, E. J. (1997). Similar and different: the differentiation of basic-

level categories. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23(1),
54.

Mason, M. F., Banfield, J. F., & Macrae, C. N. (2004). Thinking about actions: the neural substrates
of person knowledge. Cerebral Cortex, 14(2), 209–214.

McGinnes, S. (2000). Conceptual modelling: a psychological perspective. Doctoral dissertation,
London School of Economics and Political Science (University of London).

McGinnes, S. (2005). Systems and methods for software based on business concepts.
McGinnes, S., & Amos, J. (2001). Accelerated business concept modeling: combining user inter-

face design with object modeling. In Object modeling and user interface design (pp. 3–36).
Reading: Addison-Wesley.

3 Cognitive Semantic Categories 57

McGuinness, D. L., Fikes, R., Rice, J., & Wilder, S. (2000). An environment for merging and
testing large ontologies. In Principles of knowledge representation and reasoning-international
conference (pp. 483–493). San Mateo: Morgan Kaufmann.

Mitchell, J. P., Heatherton, T. F., & Macrae, C. N. (2002). Distinct neural systems subserve per-
son and object knowledge. Proceedings of the National Academy of Sciences, 99(23), 15238–
15243.

Moore, C. J., & Price, C. J. (1999). A functional neuroimaging study of the variables that generate
category-specific object processing differences. Brain, 122(5), 943–962.

Noy, N. F., & Musen, M. A. (2000). Algorithm and tool for automated ontology merging and
alignment. In Proceedings of the 17th national conference on artificial intelligence (AAAI-00).
Available as SMI technical report SMI-2000-0831.

O’Murchú, N. (2009). Understanding adaptive design and user experience. In Irish human com-
puter interaction (I-HCI) conference 2009.

Pascual-Leone, A., Hamilton, R., Tormos, J., Keenan, J., & Catala, M. (1999). Neuroplasticity in
the adjustment to blindness. In Neural plasticity: building a bridge from the laboratory to the
clinic (pp. 94–108). Berlin: Springer.

Raden, N. (2005). Shedding light on shadow it: is Excel running your business? DSSRe-
sources.com, 26.

Roddick, J. F., Al-Jadir, L., Bertossi, L., Dumas, M., Gregersen, H., Hornsby, K., et al. (2000). Evo-
lution and change in data management—issues and directions. ACM SIGMOD Record, 29(1),
21–25.

Shirky, C. (2003). The semantic web, syllogism and worldview. In Networks, economics, and cul-
ture.

Sun, Y., Gray, J., & White, J. (2011). Mt-scribe: an end-user approach to automate software model
evolution. In 2011 33rd international conference on software engineering (ICSE) (pp. 980–982).
New York: IEEE Press.

Tyler, L. K., & Moss, H. E. (2001). Towards a distributed account of conceptual knowledge. Trends
in Cognitive Sciences, 5(6), 244–252.

Wach, E. P. (2011). Automated ontology evolution as a basis for adaptive interactive systems. In
IUI SEMAIS 11 (pp. 467–468).

Whitehouse, R. (1999). The uniqueness of individual perception. In R. Jacobson (Ed.), Information
design (pp. 103–129). Cambridge: MIT Press.

Zhao, C.-c., Zhao, L.-y., & Wang, H.-l. (2010). A spreadsheet system based on data semantic
object. In 2010 the 2nd IEEE international conference on information management and engi-
neering (ICIME) (pp. 407–411).

Chapter 4
A Semantic Model for Adaptive Collaboration
Support Systems

Stefan W. Knoll, Jordan Janeiro, Stephan G. Lukosch,
and Gwendolyn L. Kolfschoten

Abstract Dynamic environments characterize today’s world. In complex design
and engineering processes, dynamic environments influence the requirements of an
ongoing collaboration process. They lead to process goal changes or reduce the time
available to achieve a collaborative goal. In such a case, collaboration support and
processes need to be adapted. Various collaboration support systems assist groups by
providing technological support to structure activities, generate and share data, and
to improve group communication. However, current support systems often prescribe
or assume a fixed process and a known group composition. As result, collabora-
tion support is needed that considers the changing environment and provides groups
with the support they need. Such support can range from a fixed process and tool
configuration to an open collaboration environment that enables groups to interact
in a self-organized way. This chapter introduces an elastic collaboration approach
that comprises a continuum of collaboration support, ranging from prescribed col-
laboration to new emerging forms of collaboration. The chapter discusses how the
concept of elastic collaboration can be implemented in an adaptive collaboration
support system using a semantic model to capture, manage and analyze a collabora-
tion environment. Based on this model, a sample application of the semantic model
is presented along with a collaborative problem-solving model.

S.W. Knoll (B) · J. Janeiro · S.G. Lukosch · G.L. Kolfschoten
Delft University of Technology, Delft, The Netherlands
e-mail: s.w.knoll@tudelft.nl

J. Janeiro
e-mail: j.janeiro@tudelft.nl

S.G. Lukosch
e-mail: s.g.lukosch@tudelft.nl

G.L. Kolfschoten
e-mail: g.l.kolfschoten@tudelft.nl

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_4,
© Springer-Verlag London 2013

59

mailto:s.w.knoll@tudelft.nl
mailto:j.janeiro@tudelft.nl
mailto:s.g.lukosch@tudelft.nl
mailto:g.l.kolfschoten@tudelft.nl
http://dx.doi.org/10.1007/978-1-4471-5301-6_4

60 S.W. Knoll et al.

4.1 Introduction

Nowadays, virtual teams comprise an important structural component of many or-
ganizations (Nunamaker et al. 2009). In order to lower travel and facility costs,
organizations use technological support to facilitate collaborative design and engi-
neering processes across virtual teams. In the context of engineering, “collaboration
occurs when a group of autonomous stakeholders of a problem domain engage in
an interactive process, using shared rules, norms, and structures, to act or decide
on issues related to that domain” (Wood and Gray 1991). According to this defi-
nition, collaboration in engineering is challenging, not just because of the nature
of a complex product, but also because collaboration is a dynamic process that is
based on human behavior. In complex design and engineering processes, a change
in the collaboration environment like a changing process goal or the reduction of
time available to achieve a collaborative goal can lead to a need for a process adap-
tation during runtime. Furthermore, the expertise of a group constellation for the
collaboration process or an adapted process stage can vary depending on the exper-
tise of the engineers who join or leave the group during the process. To deal with
these types of dynamics, teams need technological support that provide a range of
flexible features to adapt a collaboration process to a new collaboration situation.

Collaboration support has been studied in various research domains such as
groupware, group (decision) support systems, concurrent design and group facili-
tation (Nunamaker et al. 1996; Kolfschoten et al. 2007). As a result, different types
of collaboration support systems exist, which offer a variety of local and web-based
applications to support collaborative design and engineering processes. These sys-
tems assist groups in collaboration by providing technological support to structure
activities, generate and share data, and improve group communication (DeSanctis
and Gallupe 1987; Nunamaker et al. 1991).

Current collaboration support systems can be used to implement a collaboration
process in different ways. On the one hand, a prescribed collaboration process can
be implemented to support groups with less expertise in collaboration. Here, the
system guides a group through a predefined sequence of process stages. For each
stage, the system provides and configures a set of predefined tools that can be used
by the group to achieve an intended outcome of a stage. On the other hand, an emer-
gent collaboration process can be implemented to support an experienced group,
who prefers to coordinate themselves rather than being coordinated by the system.
Here, the system leaves the process coordination to the group and provides a set of
different tools that can be freely combined and used in a collaboration process.

In a dynamic collaboration environment, such as in complex design and engineer-
ing processes, where the requirements of collaboration are not fixed, a collaboration
support system needs to support different forms of collaboration in a flexible way,
similar to the elastic collaboration approach (Janeiro et al. 2012a). Elastic collabo-
ration comprises a continuum of collaboration forms, ranging from prescribed col-
laboration to support inexperienced groups, to new emergent forms of collaboration
that enables experienced groups to interact in a self-organized way. However, a col-
laboration support system that implements an elastic collaboration approach needs

4 Semantic Model for Adaptive Collaboration 61

adaptation strategies to offer collaboration support, ranging from a fixed process and
tool configuration to an open collaboration environment. Furthermore, to improve
the adaptation strategies over time, the system needs a component to learn from
executed elastic collaboration processes. Through this component, documented col-
laboration processes can be analyzed by experts in collaboration or by machine
learning algorithms to refine existing adaptation strategies or to define new collabo-
ration support.

To develop such an adaptive collaboration support system, it is essential to for-
mally describe collaboration processes, to monitor the progress of a collaboration
process and to log all activities in a collaboration process. This can only be achieved
by using a semantic model for collaboration processes. As a first step, this chapter
analyzes the use of a process definition languages to define adaptation strategies for
prescribed as well as emergent collaboration process. Different process definition
languages were analyzed with respect to their feasibility to describe, capture and
analyze elastic collaboration processes. The analysis shows that given languages
only provide limited process information to define adaption strategies as well as to
assess the quality of a collaborative process. As a result, the chapter introduces a
first approach of a semantic model that makes use of an ontology-based approach
to describe and capture more knowledge about the collaboration process than given
process definition languages. The chapter closes with a presentation of a sample ap-
plication of the semantic model to define adaptation strategies for elastic collabora-
tion and how the semantic model can be used to assess the quality of a collaboration
process.

4.2 Background

Based on a series of workshops and conference calls with experts from the con-
struction industry, collaboration in complex design and engineering processes was
analyzed (Janeiro et al. 2012b). Here, a product lifecycle process was used as a
possible scenario for a dynamic environment that involves collaboration between
groups with different needs. The experts analyzed different phases of the product
lifecycle against existing collaboration processes. During the workshop new chal-
lenges for collaboration in a dynamic situation were identified, which are not tra-
ditionally considered in collaboration process design. These challenges originate in
the dynamics and short problem-solving cycles in the process, causing uncertainty
about the time available, the goals, requirements and participants for the collabora-
tion process.

As an example for such collaboration processes, consider a diagnosis process of a
manufacturer that wants to increase the availability of its machines. These machines,
e.g. wheel loaders, are connected through a remote infrastructure that monitors their
performance data. If the machine emits degrading signals, the manufacturer has to
investigate a certain issue, according to a well-defined deadline to avoid a machine
breakdown. This situation forces engineers that have different backgrounds (e.g.

62 S.W. Knoll et al.

mechanical engineering, stress engineering and fluid engineering) to team up and
collaborate, formulating a diagnosis and preparing action plans.

4.2.1 A Collaborative Problem-Solving Model

Based on the workshop results, a process model was developed to describe the dif-
ferent collaborative processes that were identified during the workshop. The ex-
perts indicated that most of these processes represent problem-solving and decision-
making processes. As both processes combine similar phases of convergent and di-
vergent thinking, a collaborative problem-solving model was developed to identify
and discuss challenges of collaboration in dynamic environments of product lifecy-
cle.

This section introduces a model for collaborative problem solving. The model is
based on different stepwise models for problem solving (Wallas 1926; Osborn 1963;
Simon 1977; Warr and O’Neill 2005), which in common define problem solving
in three stages: Intelligence, Design and Choice. According to Simon (1977), the
stage Intelligence involves the identification and analysis of a problem. The resulting
knowledge about a problem is then used in the stage Design to develop or identify
alternative solutions to the problem. In the final stage Choice, these solutions are
evaluated and a solution is selected for implementation.

During the industry workshops, experts indicated that depending on the problem
complexity, a problem-solving process in a product lifecycle can be implemented
as an individual or collaborative process. As a result, the three-stage model was
adapted with respect to methods and components that can be used to support indi-
vidual as well as collaborative processes in a product lifecycle. The resulting col-
laborative problem-solving model considers the following stages (see Fig. 4.1):

• Problem Definition: This stage begins when an event in the product lifecycle ini-
tiates a problem-solving process. Similar to the stage Intelligence (Simon 1977),
the problem is analyzed by collecting relevant information, which will be used
to generate and select a problem definition. During the workshop, experts indi-
cate that the process can be supported by structuring the analysis of data related
to the event. In a collaborative mode, a group may need further support to cre-
ate shared understanding about possible problem definitions as well as to create
consensus during the selection of a working definition for the next stage. If the
problem cannot be defined, the stage can be repeated with further data or a new
group constellation.

• Solution Search: This stage represents a part of the original stage Design (Simon
1977). The subdivision in Solution Search and Solution Generation was made in
regard to the workshop results, where the experts indicate that a solution gener-
ation is only needed if there are no known existing solutions to a problem. As a
result, the stage is used to search for “off-the-shelve” solutions that can be used as
a whole or in a modified form to solve the problem. Support can be needed dur-
ing the gathering and analyzing process of data related to the problem definition.

4 Semantic Model for Adaptive Collaboration 63

F
ig

.4
.1

A
co

lla
bo

ra
tiv

e
pr

ob
le

m
-s

ol
vi

ng
m

od
el

64 S.W. Knoll et al.

Here, participants can be guided in exploring previous cases, lessons learned and
other documentations of organizational knowledge to find an existing solution.
Furthermore, during the collaborative phase, collaboration support can be needed
to create a shared understanding among the group members.

• Solution Generation: This stage represents the second part of the stage Design
(Simon 1977). The stage begins when no solution for the problem as defined is
available. During this stage, new alternative solutions for the given problem sit-
uation will be generated. This divergent process can be supported by providing
data like documentations or reports as stimuli for the brainstorming of solutions.
In a collaborative mode, the group can need support in creating a shared under-
standing about the solutions that are generated. If a possible solution cannot be
defined, the group can invite further experts and repeat the stage. With regard to
the dynamic environment, the group can further realize that the environment has
changed and that the problem definition needs to be adapted. In this case, the
group can go back to the Problem Definition stage.

• Solution Evaluation: This stage represents the original stage Choice (Simon
1977). Here, alternative solutions will be evaluated and compared by search-
ing and identifying information that can be used to foresee possible effects of
a solution on the given problem. Again, this divergent process can be supported
by providing data related to a solution. In a collaborative mode, support can be
needed during the consensus building process of a group. Similar to the previous
stages, a group can invite experts if the effects of a possible solution cannot be
foreseen. Furthermore, the group can go back to a previous stage if no solution
for implementation exists or the environment has changed.

• Solution Implementation: This final stage is used to implement the selected solu-
tion and evaluate its success. If the problem is not solved, the process iterates to
one of the previous stages. The resulting outcomes of the problem-solving process
can be documented and reused as support for different stages of a future problem-
solving process to facilitate organizational learning. It also should be noted that
an environmental change during the whole process could lead to the conclusion
that the problem cannot be solved at all. In this case, the process proposes the
group to document the process and the decisions made to allow future groups to
reuse their knowledge.

4.2.2 Flexible Collaboration Support

Engineers make use of software systems, e.g. dashboards, that enable them to use
and configure various diagnosis tools, such as telemetric data readers and collabo-
ration tools to discuss and formulate diagnosis. However, in diagnosis processes a
change in the machine performance may require process adaptations. For example,
assume the situation in which experts have a deadline to fix an underperforming
cooling sub-system of a machine. Based on the available time, they plan to discuss
and investigate the problem before taking actions. However, a faster overheating in

4 Semantic Model for Adaptive Collaboration 65

the machine’s engine forces the team to abandon the original plan and to quickly
brainstorm to prevent a machine breakdown. In this situation, the team needs guid-
ance from the software system to collaborative solve the problem in a short amount
of time. Need for support is also given if experts join or leave the team during the
diagnosis process. For example, it might be that an expert is required to analyze the
cooling sub-system. If an expert is not available, the team needs guidance to analyze
the cooling sub-system on their own.

The above collaborative problem-solving model covers such different collabora-
tion processes. Suitable support for the engineers, however, needs to be flexible and
adaptable to cover the different collaboration processes. Elastic collaboration offers
such support, as it comprises a continuum of collaboration support, ranging from
prescribed collaboration to emergent forms of collaboration (Janeiro et al. 2012a).
On the one extreme, prescribed collaboration supports less experienced groups by
predefining collaboration procedures and tools for every step of the collaborative
process. Here, a technological support system can be used to monitor the collabo-
ration environment and to provide support based on predefined rules. On the other
extreme, emergent collaboration supports expert groups that do not need guidance
and coordination during collaboration. Here, the group monitors the collaboration
environment and coordinates the use of collaboration methods and tools based on
their needs. During collaboration, the group or system can shift from one type of
collaboration to the other as in a continuum of collaboration.

Such elastic collaboration either needs context-aware or process-aware collab-
oration support. Process information can be used to define adaption strategies for
dynamic environments as well as to assess the quality of a collaborative process
during runtime. Context information about, e.g., the provided system components
can be used to define rules for their adaptation in relation to a possible change in the
collaboration environment. The following sections discuss such support.

Context-Awareness

The main goal of context-aware systems is to achieve automatic self-configuration
according to the context in which they are inserted, preventing users to deal with
such cumbersome task. This type of systems often employs adaptation mechanisms
based on rule systems. Once an event is detected and a condition satisfied, the system
executes actions, which represent foreseen adaptations.

As systems aim at performing automatic context-aware adaptations in differ-
ent application domains, it becomes difficult to establish a generic context model.
Rather, context models were categorized to tackle specific domains (Schilit et al.
1994): hardware context, user context, physical context and time context. Based on
this initial set, various context-aware systems emerged but the majority of the sys-
tems mainly focused on three context entities (Dey et al. 2001): places (rooms and
buildings), people (individuals and groups) and things (physical objects and com-
puter components).

66 S.W. Knoll et al.

Besides the popularity of these entities, other types of context-aware systems fo-
cusing on the adaptation of collaborative work environments evolved. Haake et al.
(2010) propose a framework for modeling context information and description of
adaptations in a shared workspace. In one of the scenarios the framework is used to
quickly switch tools for users, according to the projects in which they are assigned
to. Gross and Prinz (2004) propose a model for processing awareness context in-
formation enabling the presentation of notifications in the appropriate user situation
about: shared artifacts, presence of group members and user activities. Prinz and
Zaman (2005) propose a context model based on individual and group activities
combined with a content analysis of documents in shared workspaces. The context
model is used in a system to assist users in finding the right place for storing their
contributions.

Although using context models to execute adaptations, there is still a lack of
efforts in exploiting and defining models that provide contextualized guidance in
collaboration systems.

Process-Aware Systems

Process-Aware Systems have a process description that aims at coordinating users
to accomplish a goal. In this type of system the process logic is separated from the
application code to keep system flexibility if the process changes.

This type of systems is used for distribution and coordination of activities be-
tween users (Ellis et al. 2005) or to guide a group of users to accomplish expected
tasks (Knoll et al. 2009) through a set of collaboration techniques named thinkLets
(Briggs et al. 2003). However, these systems do not define support for the execution
of dynamic context-aware adaptations. In line with dynamic adaptations, Reichert
et al. (2003) propose the ADEPT-flex, a graph-based model that enables structural
adaptation of workflows. However, there is no context model that supports adapta-
tion. Instead, the adaptation is only interpreted as a user choice.

Rather than supporting just a process for collaboration, Bernstein (2000) pro-
poses to bridge the existing gap between process-aware systems and non-process-
aware systems (ad-hoc systems), which are open workspaces like dashboards. This
type of system allows users to have different types of system support, along a spec-
trum called the Specificity Frontier. Differently from the other process-aware sys-
tems of this section, the system implementing the Specificity Frontier (referred in
this chapter as the Specificity Frontier System) supports the transition between the
prescribed and ad-hoc execution types. However, the system does not define a con-
text model to support process adaptation or collaboration-based adaptations.

4.2.3 Summary

This section introduced a collaborative problem-solving model for complex and dy-
namic collaboration situations in design and engineering. The proposed model cov-
ers a range of different collaboration processes that require flexible collaboration

4 Semantic Model for Adaptive Collaboration 67

support. Many context-aware collaboration systems evolved since the populariza-
tion of the term. Often, these systems execute automatic adaptations to customize
shared workspaces. However, there is a lack of context-aware systems that can pro-
vide process guidance to a group. Such support is indirectly offered by process-
aware systems by specifying a process that leads users to achieve expected out-
comes. However, there is not a process-aware system that executes context-aware
adaptations based on a specific collaboration context model. Prerequisites for an
elastic collaboration support are the possibilities to formally describe collaboration
processes, monitor the progress of a collaboration process and log all activities in
a collaboration process. The following section analyzes different process definition
languages with respect to their feasibility to support the elastic collaboration ap-
proach by expressing prescribed as well as emergent collaboration processes.

4.3 Analysis of Process Definition Languages

Common process definition languages are designed to define the underlying process
logic of a collaboration process. Collaboration support systems make use of this
information to guide collaboration and provide technological support in relation to
a prescribed collaboration situation. These process definition languages are:

• XML Process Definition Language (XPDL): A graph-structured language to inter-
change business process definitions between different workflow products (Work-
flow Management Coalition 2008). XDPL provides an approach to support pre-
scribed collaboration by expressing executable processes that can be executed
collaboratively using groupware support. A process workflow is described by
flow objects like the entity activity, which represents Gateways, Events and Tasks
of a business process. However, process and workflow languages typically de-
scribe what needs to be done, not how it needs to be done (Deokar et al. 2008).
The language therefore provides less information about the end-user or the appli-
cation that will be used to execute a process task. These entities are represented
by attributes of a flow object. This characteristic reduces the feasibility of XPDL
to represent emergent collaboration processes in detail. However, detailed infor-
mation about the entities component, participant and activity could be used to
assess the quality of a collaboration process in more detail, which could help
to define adaptation strategies for dynamic environments. Especially, to detect
group behaviors that require a process adaptation, further knowledge about the
participants and their activities can be needed.

• WS-Business Process Execution Language Extension for People (BPEL4People):
A block-structured programming language for specifying human interactions
within business processes with web services (Alves et al. 2012; Kloppmann et al.
2005). In contrast to BPEL, BPEL4People provides an approach to express exe-
cutable processes that model human interactions as services implemented by peo-
ple. These human activities represent standalone tasks that could offer a callable
web service interface. Similar to XPDL, BPEL4People provides less information
about the process environment.

68 S.W. Knoll et al.

• IMS Learning Design (IMS LD): A meta-language to represent learning design
and units of learning (IMS Global Learning Consortium 2012). The language uses
the metaphor of a theatrical play to subdivide a learning process called Method
into one or more concurrent sub processes called Play. A Play contains differ-
ent sequential processes called Act, which are related to the entities participant
and activity via a role concept. With regard to the objective to express a learning
process, participants are defined as learner or staff who can execute learning or
support activities. IMS LD can support prescribed collaboration by adapting the
given entities to a collaborative context. An interesting approach is the use of the
entity Objective to specify the outcome of a process for the participants. Further-
more, the use of a metaphor to structure the learning process into sub processes
can also be used to structure a collaboration process. However, similar to XPDL
and BPEL4People, the concepts of the IMS LD provide fewer details to express
the environment of an emergent collaboration process.

• Collaborative Task Modeling Language (CTML): A formal task based specifi-
cation language to model actors, roles, collaborative tasks and their dependency
and impact on the domain (Wurdel et al. 2008). The language is based on the as-
sumptions that in limited and well-defined domains the behavior of an actor can
be approximated through a role. This behavior can be associated to a collabora-
tive task, which execution depends on the current state of the environment. The
language uses a task tree notation to express a collaboration process. CTML rep-
resent an interesting approach to support prescribed collaboration by its expres-
sion of a collaborative task and its dependency and impact on the environment.
However, the task tree notation seems not to be feasible to express an emergent
collaboration process.

• Collaboration Engineering Pattern Language: A pattern language for collabora-
tion using design patterns for best practices of facilitation (Briggs et al. 2003).
The approach classifies the collaboration process into patterns of collaboration.
Design patterns called thinkLets are used to prescribe reusable collaborative work
practices for groups. Here, a thinkLet provides information on how a group can
create a pattern of collaboration by using a set of capabilities (e.g. collabora-
tion support tools) in a specific configuration. A prescribed collaboration process
can be expressed by a sequence of thinkLets. However, the resulting process is
documented as a paper-based script that provides guidelines for a facilitator or
practitioner on how to support the collaboration process. This characteristic re-
duces the feasibility of this language approach to be used as a machine-readable
process definition language for a collaboration support system.

To summarize, the analyzed process definition languages are feasible to express
prescribed collaboration, but shows limitation in the expression of emergent col-
laboration. Most languages provide only abstract concepts to express information
about the participant or the application that will be used during collaboration. How-
ever, detailed information about process, participants and environment is needed to
assess the quality of a collaboration process during runtime and to define adapta-
tion strategies that support collaboration in dynamic environments. As a result, this
chapter proposes the need for a new formal model to express elastic collaboration

4 Semantic Model for Adaptive Collaboration 69

processes in a dynamic environment. In this context, the chapter defines the follow-
ing requirements:

R1: To guide collaboration, a formal model needs to express the underlying process
logic of a prescribed collaboration process. This captured data has to allow
an adaptive collaboration support system to provide technological support in
relation to a prescribed collaboration situation.

R2: To detect the need for collaboration support, a formal model needs to capture
data about prescribed as well as emergent collaboration processes and their
context at runtime. This data has to allow an adaptive collaboration support
system to assess the quality of a collaborative process and if needed to adapt
the collaboration process.

R3: To improve collaboration support, a formal model needs to log all activities
of a prescribed and emergent collaboration process. This data can be used to
evaluate existing collaboration processes as well as adaptation strategies.

Instead of adapting a process definition language, the chapter proposes a seman-
tic model to express elastic collaboration processes in dynamic environments. Haake
et al. (2010) shows that a model approach can be used to describe context informa-
tion in a collaboration environment, which can be used to configure a collaboration
support system. As a result, the chapter extends given context model approaches by
common entities of given process definition languages. Thereby, the chapter makes
use of an ontological approach.

By definition, an ontology is a formal specification of a conceptualization of a
domain of interest (Gruber 1993) that specifies a set of constraints that provide a
data dictionary for a class of systems. Ontologies are used to identify what is or can
be in the world. It is the intention to build a complete world model for describing
the semantics of information exchange. An adaptive collaboration support system,
implementing elastic collaboration, may benefit from ontologies to monitor and log
activities represented by ontology concepts.

4.4 A Semantic Model for Elastic Collaboration

Ontology engineering aims at building a formal representation of domain knowl-
edge (concepts in a domain) and creating a common understanding of the struc-
ture of information in the domain (relations between the concepts) among people
or software agents (Studer et al. 1998; Gruber 1995). Today, several methods and
methodologies for developing ontologies exist (Corcho et al. 2003). This chapter
adopts these methodologies for ontology building (Grueninger and Fox 1995; Pinto
and Martins 2004) and used the following steps:

• Purpose and scope: To conduct a literature research on collaboration as well as
to use the introduced collaborative problem-solving model to define possible sce-
narios for elastic collaboration in the context of a product lifecycle management.
Here, a set of questions is defined that a semantic model should be able to answer,
called competency questions.

70 S.W. Knoll et al.

• Capture and formalization: To explore and structure all potentially relevant terms
and phrases in a collaboration session and use the resulting elements to capture
key concepts and relationships. Common process definition languages and given
ontology-based approaches are analyzed to use previously established concep-
tualizations. A graphical representation is used to build a conceptual model for
collaboration that is transformed into a semantic model.

• Evaluation: To evaluate the semantic model in relation to the purpose and the de-
fined requirements. Here, the competency questions are used to verify the model
regarding its consistency and completeness.

• Documentation: To document the concepts and relationships in a data dictionary,
where each concept is describes by its name, description, cardinality, etc.

4.4.1 Purpose and Scope of the Semantic Model

The objective in developing a semantic model for elastic collaboration is to describe,
capture and analyze knowledge about collaboration in dynamic environments. The
chapter assumes that resulting information can be used to define adaptation strate-
gies for elastic collaboration as well as to assess the quality of a collaboration pro-
cess.

In this chapter collaboration is defined as an interactive process of a group in
which the group members work together to achieve a shared goal. To describe this
process, different entities from given process definition languages can be used to
define the workflow of a process (Thiagarajan et al. 2002; zur Muehlen and Indul-
ska 2010). To integrate human interaction into this definition, the entity Participant
needs to be included. The following resulting entities are required to define a col-
laboration process:

• Process: Describes a logically ordered set of activities and relevant data to pro-
duce a result.

• Activity: Describes a step within a process with a name, a type, pre- and post-
conditions and scheduling constraints.

• Component: Describes tools or artifacts that are used by an activity.
• Data: Describes the type and the value of the data elements that will be used or

developed by an activity.
• Flow connector: Describes the order in which activities are executed and data is

used between activities.
• Participant: Describes a human that act as the performer of the various activities.

These entities were used as a starting point to classify and define a set of com-
petency questions that a semantic model for collaboration should be able to answer.
For example, for the entity Process, questions were asked like “What is the objec-
tive of a process?”, “Who uses the process?”, “What are the activities of a process?”,
“What is the logical order of activities in a process?” or “When is a process effec-
tive?”.

4 Semantic Model for Adaptive Collaboration 71

4.4.2 Defining and Formalizing a Semantic Model

Defining a semantic model demands to identify abstract entities (key concepts),
naming important properties and defining relationships between the entities. To
make use of previously established conceptualizations, the chapter analyzes com-
mon process definition languages, given ontology-based (Rajsiri et al. 2008;
Oliveira et al. 2007; Pattberg and Fluegge 2007) as well as domain model ap-
proaches (Haake et al. 2010) to capture knowledge about collaboration.

Existing Approaches to Capture Knowledge about Collaboration

An ontology-based approach to conceptualize and formalize a common vocabulary
for a collaboration domain is given by Oliveira et al. (2007). Here, collaboration on-
tology is used to support the integration among different collaboration software ap-
plications within an organization. A collaboration session is defined by the concepts
participants, objectives, artifacts, coordination and communication. Participants are
the agents that can contribute in a meaningful way to achieve the objectives of the
session. The ontology defines these actions of the participants by the concept partic-
ipation, which denotes an atomic event that uses the concept protocol to coordinate
actions between the participants. During a collaboration session different collabora-
tion artifacts can be consumed or generated. The exchange of information between
the participants is defined by the send and receive participations. Here, information
is represented by the concept message that is expressed through a language. In con-
clusion, the presented collaboration ontology divides the key concepts for a collab-
oration domain into the sub-ontologies cooperation, communication and coordina-
tion. However, the ontology provides no concepts to define the software components
that can be used in a collaboration process. Furthermore, the ontology provides no
information about the logical order of activities in a process, which are needed to
define and log collaboration processes.

Pattberg and Fluegge (2007) use a design pattern approach to capture knowledge
about collaboration by creating an ontological approach that uses a structure of var-
ious levels of abstraction. These levels clarify the relation of a collaboration pattern
(proven solution for a collaboration problem) to collaboration services (reusable
implementation services) to the underlying communication technology of a collab-
oration process. This approach seems to be feasible to combine different concepts of
collaboration patterns and pattern language. However, the given approach leaves the
question open how detailed the information on the given layers need to be described.

Rajsiri et al. (2008) define an ontology-based approach to automate the specifica-
tion of collaborative processes for virtual organization networks. Their approach of a
collaboration network ontology consists of a collaboration ontology, a collaborative
process ontology, and deduction rules to automate the specification of a collabora-
tive process into a BPMN relevant model. Here, the collaboration ontology regards
the characterization of collaborative network, details and abstract services of par-
ticipants. The collaborative process ontology defines the task of the participants at

72 S.W. Knoll et al.

Fig. 4.2 A semantic model for elastic collaboration

a functional level, which has input and output resources. The authors provides a
supporting tool that applied the ontology, but indicates that the resulting BPMN
models miss elements such as gateways and events, which are also not defined by
the ontologies.

A collaboration domain model for describing collaboration environments and
collaborative situation is presented by Haake et al. (2010). Here, a global collabora-
tion space is defined by the interaction between the actors who uses the services of
different applications to work and share artifacts between different workspaces. The
concept of a role is used to define possible actions that an actor can execute within
an application. Each actor is assigned to a workspace that defines a set of available
applications. These applications implement the model-view-controller paradigm to
operate on shared artifacts. In conclusion, the proposed collaboration domain model
seems to be feasible to express collaboration situations as well as to define mean-
ingful adaptations of a user workspace for specific situations. However, the model
provides no concepts to define a collaboration process by a logical order of activities
that an actor needs to execute to achieve a shared goal.

To sum up, the analyzed ontology-based approaches and domain model capture
knowledge about collaboration in different ways. However, none of the approaches
provide all concepts to model a collaboration process in relation to a changing envi-
ronment or human behaviors. As a result, the chapter introduces a first approach of
a semantic model for collaboration that reuses and combines some of the provided
concept. Here, the competency questions were used to verify the resulting model
and the defined relationships between the entities.

A First Approach of a Semantic Model

A first approach of a semantic model for elastic collaboration is illustrated in Fig. 4.2
by the key concepts and their relations. Here, the concept Participant describes a

4 Semantic Model for Adaptive Collaboration 73

human being taking part in a process. This entity has certain Skills that can be a
prerequisite of a Role in a process. Similar to Haake et al. (2010), the concept Role
is used to denote abstractly a set of behaviors, rights and obligation of a Participant.
A Participant can be assigned to a Group in a specific Role. Besides the concept
Role, the concept Skill is used to distinguish different participants and thus to be
able to define requirements for the participants of a process. These concepts can
be used by an adaptive collaboration support system to define adaptation rules that
suggests experts for a team extension.

The entity Process describes a process in which a Group makes effort toward a
goal. Similar to Oliveira et al. (2007), a Process has an Objective, defining its main
purpose or goal. The chapter intents that a collaboration process can be character-
ized by observable group behaviors and the state of the concepts with which the
group works. How a group moves through this process to create an intended state in
the process can be prescribed by work tactics of a group, similar to the concept of a
collaboration pattern (Pattberg and Fluegge 2007). The semantic model represents
these work tactics by the concept Procedure that is related to a Group. During a
Procedure a Group of Participants moves through a sequence of activities. Similar
to given concepts like “Participation” (Oliveira et al. 2007) or Action (Haake et al.
2010), the concept Activity represents an atomic activity that will be executed by a
Participant using a software artifact represented by the concept Component. To con-
trol the collaboration process and allow the representation of parallel procedures, the
concept Gateway is used to implement given workflow patterns like parallel split,
exclusive choice or simple merge (van der Aalst et al. 2003).

4.5 Evaluation and Application

This section describes a first evaluation of the semantic model with regard to the
identified requirements (R1–R3) and presents an application scenario in which the
semantic model is used to support elastic collaboration.

4.5.1 To Guide a Collaboration Process (R1)

The semantic model can be used to define different collaborative problem-solving
processes with different task and group constellations as defined in the collaborative
problem-solving model (see Fig. 4.1). Here, competency questions are used to ver-
ify the consistence and completeness of the models. First analyses show that the se-
mantic model can be used to predefine the underlying process logic of a prescribed
collaboration process. For example, a stage of the problem-solving model can be
prescribed by the concept Process. Here, the concept Process is related to different
Procedures that represent different work tactics of a stage (for example, the stage So-
lution_Evaluation can be divided into the procedures Generate_Consequences and

74 S.W. Knoll et al.

Select_a_Solution). Each Procedure is related to a specified Group, which requires
Participants with a specific Role. The Procedure itself defines a sequence of Activi-
ties that are related to predefined Components (for example, the activity to generate
consequences for a possible solution can be implemented by a brainstorming tool).

4.5.2 To Detect the Need for Collaboration Support (R2)

The semantic model can be used to detect the need for collaboration support. The
language describes the concept Component by its fundamental and optional activi-
ties. For example, a component that implements a brainstorming process in a num-
ber of ways can be defined by the fundamental activities: Create_Idea and View_
Generated_Ideas, which are used to generate and share ideas in a global list. By us-
ing optional activities like Select_Idea, Create_Comment and View_Comment, the
component can further provide the functionality to comment on generated ideas. By
knowing possible activities that can be executed by a component, a model can be
used to express a more specific relation between the concepts of a Participant, its
Skills, the executed Activities and the used Components to generate or use Data.
This data can be used to assess the quality of a collaboration process during run-
time. For example, the quality of an ideation process can be assessed by monitoring
the number of a data element: Idea that a participant: Participant_A generates using
the activity: Create_Idea and the component: Brainstorming during the procedure:
Idea_Generation. However, a well-defined approach to measure the quality of a
collaborative problem solving still has to be defined. Especially, the identification
of group behaviors via a process log represents a challenge for future research. As
a result, the given semantic model is a first approach to assess the quality of elastic
collaboration.

4.5.3 To Improve Collaboration Support (R3)

Data from the semantic model can be used in a rule concept to describe the relation
between an intervention and a specific collaborative situation. In this context, the
concept of event-condition-action (ECA) rules seems to be feasible to define this
relation (Goh et al. 2001). Currently, different approaches offer libraries to handle
ECA-based rules, such as: the rule markup language (Boley et al. 2001) and Java
Expression Language (JEXL 2013). The semantics of an ECA rule (ON event IF
condition DO actions) can be defined as follows:

• Event: Specifies the situation in which a rule is used to coordinate the use of
interventions that are related to this situation. For example, the activation of a
predefined Procedure can be seen as an event were different rules are used to
monitor the process and provide support if needed.

4 Semantic Model for Adaptive Collaboration 75

• Condition: Defines a logical test that, if satisfied or evaluated to be true, causes
the action to be carried out. The expression of a condition can make use of given
logical operations and can refer to the concepts of the semantic model. For ex-
ample, a condition could check if a specific Procedure has been activated by a
Participant with a specific Role.

• Action: Defines a change or update in a collaboration process by means of an
intervention. These interventions can support collaboration by adapting the col-
laboration process, the involved participants or the resources used. For example,
the action component can specify the use of a specific Data element as a stimulus
for an Activity of the active Procedure.

Related to Niederman et al. (2008), adaptation rules can define interventions at
different levels:

• Design Level: Interventions guide participants in choosing appropriate tools,
techniques, and participants to structure a collaboration process that is effective
in achieving the group goal.

• Execution Level: Interventions guide a group step-by-step through the process or
workflow of a collaboration process and to adapt this workflow if needed.

• Activity Level: Interventions analyze the structure of activities of a collaboration
process and provide support to adapt these activities to stimulate effective, effi-
cient and rigorous problem solving.

• Behavior Level: Interventions analyze interaction and behavior of participants to
stimulate and reward collaborative behavior.

Adaptation rules can be defined concerning the identified stages of the introduced
collaborative problem-solving model. Each of these rules describes a possible inter-
vention with a specific level and a condition that causes its activation. Related to a
specific stage of a collaboration process, different adaptation rules at different levels
can be combined in rule-sets. For example, a rule-set for solution generation stage
can combine different adaptation rules at design and activity level to monitor the
ideation process and provide support, for instance to invite experts or to provide
additional data about a problem to improve the effectiveness of the collaboration.
Experts in collaboration can use the concept of a rule-set to define reusable adapta-
tion strategies for specific collaboration situation that can be used by an adaptable
collaboration support system in different processes.

4.5.4 Application Scenario

This section discusses the application of the semantic model to define adaptation
strategies for elastic collaboration. Consider a diagnosis process of a manufacturer
that wants to increase the availability of its machines.

According to the collaborative problem-solving process (see Fig. 4.1), an adap-
tive collaboration support system initiates a diagnosis process by contacting a group
of available engineers. To contact the engineers that best fit to the diagnosis process,

76 S.W. Knoll et al.

the system makes use of interventions at design level. Here, adaptation rules use the
semantic model for collaboration to define and evaluate conditions for the selection
of an engineer, i.e. by focusing on the skills a participant may have to join a group
in a specific role.

ON Activation.Process.ProcessType == "’diagnosis"’
IF Group.RequiresRole("’manager"’)

&& Group.RequiresSkill("’hydraulics"’)
DO InviteParticipant("’manager"’,"’hydraulic"’)

As the invited engineers are novices in using the tools of the adaptive collabo-
ration support system, the system uses a prescribed collaboration process to guide
the group along the diagnosis process. Related to the semantic model, such a pro-
cess is predefined by different procedures that represent different work tactics for
the identified stages. Each procedure itself represents a sequence of activities that
are related to predefined component. Again adaptation rules make use of the cap-
tured knowledge to select a procedure that is suitable to the invited group and to
provide components that allow the group to execute the intended activities. For ex-
ample, during the problem definition stage, the system provides the composition of
tools enabling the group to analyze real-time machine telemetric data and define
hypothesis for a machine problem.

ON Activation.Process.Procedure.ProcedureType
== "’Generate_Problem_Definition"’

IF Process.Procedure.Group.RequestSupport == true
DO ActivateComponent ("’Data_Analyzer"’)
ProvideActivity ("’Analyze_Data"’,"’Create_Problem_Definition"’)

After defining a problem definition, the group continues the process with the so-
lution search stage. Here, the system provides a documentation exploration tool to
search for similar solutions that were previously documented. However, the engi-
neers could not find a possible solution. As a result, the solution generation stage is
used to identify and describe a possible solution for the previous formulated prob-
lem. During the solution generation stage, the system makes use of the semantic
model to log the process. The log establishes a relation between the participants,
skills, the executed activities and the used components to generate or use data. This
captured knowledge is used by different adaptation rules to assess the quality of the
process and to provide interventions at execution level. For example, if the system
detects that the group still analyzes data instead of generating possible solutions,
an intervention is to draw the attention of the group on the generation of possible
solutions.

ON Process.Procedure.CurrentActivityTime
< Process.Procedure.ActivityTimeLimit

IF Active.Process.Procedure.Component.ComponentType
== "’Data_Analyzer"’

DO ActivateWarning ("’You reached the deadline for analysis."’)
CloseComponent ("’Data_Analyzer"’)
ActivateComponent ("’Brainstorming"’)

4 Semantic Model for Adaptive Collaboration 77

During the process, interventions at an activity level are supported by enabling
the group to detect the need for adaptation and to initiate an intervention. Here,
the adaptive collaboration support system provides tools and methods to monitor
the diagnosis process. For example, during the solution generation phase, the group
members realize that they need to analyze historic machine telemetric data, and
not just current real-time data. However, the prescribed collaboration process does
not provide this functionality. This situation motivates the group to switch from a
prescribed to a more flexible form of collaboration. The group initiates an emergent
collaboration process and requests the system to provide different tools that can be
freely combined and used by the group to analyze historic machine telematics data.

ON Process.Procedure.collaborationForm == "’changed"’
IF Process.Procedure.collaborationForm == "’flexible"’ &&

Active.Process.Procedure == "’Generate_Possible_Solutions"’
DO ActivateComponent ("’Data_Analyzer_A"’, "’Data_Analyzer_B"’,

"’Data_Analyzer_C"’)

Still in the solution generation stage, the group generates a set of possible solu-
tions and continues the process with the solution evaluation stage. Here, the group
uses a rating tool to establish a priority among the proposed solutions. The group
is aware that during the evaluation of solutions consensus is important to create a
behavioral state where participants commit to a solution for implementation. How-
ever, the group detects a conflict between some of the engineers and asks the system
for support. As a result, the system requests the group to describe the problem and
compare their description to a set of possible behavioral state. By selecting a similar
state the system can provide a set of possible interventions to support the group, for
example by providing a template that support rational evaluation during the solu-
tion evaluation. This intervention helps the group to overcome the conflict and the
most rated proposed solution is then implemented in the solution implementation
stage. The success of the implementation will be documented for future diagnosis
processes.

4.6 Discussion and Conclusion

Collaboration has become a critical success factor for many organizations, as prod-
ucts and services are becoming increasingly complex and cannot be designed indi-
vidually. However, in complex design and engineering processes, a dynamic envi-
ronment can lead to process goal changes or reduce the time available to achieve
a collaborative goal. In such a case, a collaboration process needs to be adapted to
the dynamic environment. Available collaboration support systems often prescribe
or assume a fixed process and a known group composition. As result, such support
systems provide technological support for a predefined environment.

Based on a collaborative problem-solving model the chapter identified the need
for adaptive collaboration support systems that provide flexible collaboration sup-
port in dynamic environments. This collaborative problem-solving model can be

78 S.W. Knoll et al.

used to describe different collaborative problem-solving processes which use differ-
ent forms of collaboration support. The chapter proposed that an adaptive collabo-
ration support system can implement this flexible support by detecting the need for
collaboration support in dynamic environments by adapting collaboration in relation
to dynamic environments and by learning from collaboration in dynamic environ-
ments.

An analysis of existing collaboration support shows that current support sys-
tems either implement prescribed or emergent collaboration but do not provide a
continuum of collaboration support between process guidance and emergent col-
laboration. Current systems lack feasible functionalities to detect adaptation needs,
trigger adaptation mechanisms and learn from user activities. A prerequisite to of-
fer such support is a formal model for collaboration processes. Existing process
definition languages are feasible to express prescribed collaboration, but do not pro-
vide detailed process information to detect the need for adaptation. As a result, the
chapter proposed an ontology approach to develop a semantic model for elastic col-
laboration that allows us to describe and capture knowledge about collaboration in
dynamic environments.

The chapter presented a first version of a semantic model that can be used to
capture, share and reuse knowledge about collaboration. This semantic model com-
bines characteristics of process languages such as XPDL, BPEL4People or IMS LD
as well as domain model approaches to define collaboration processes and at the
same time provide more detailed information about the participants and used com-
ponents. First analyses showed that the semantic model can be used to prescribe,
adapt and log collaborative problem-solving processes.

The chapter discussed the application of the semantic model to define intelligent
adaptation strategies for elastic collaboration. Here, a new rule concept for a col-
laboration support system is introduced, which describes the relation between an
intervention and a specific collaborative situation. These rules can be combined in
rule-sets and related to a specific part of a collaboration process. The chapter pre-
sented first examples of possible adaptations for collaborative diagnosis process in a
dynamic environment. These adaptations go beyond existing technological support
for collaboration by providing support at different levels. These levels provide inter-
ventions to improve the selection of tools, techniques, and participants; to guide a
group through the process; to adapt process activities to stimulate effective, efficient
and rigorous problem solving; and to stimulate and reward collaborative behavior.

In the current form, the semantic model provides entities to describe the collabo-
ration environment. New concepts are needed to capture and analyze the behavior of
participants in detail. Finally, more research is needed to define a formal assessment
method to measure the quality of a prescribed as well as an emergent collaboration
process.

Acknowledgements This work has been partially supported by the FP7 EU Large-scale Inte-
grating Project SMART VORTEX (Scalable Semantic Product Data Stream Management for Col-
laboration and Decision Making in Engineering) co-financed by the European Union. For more
details, visit http://www.smartvortex.eu.

http://www.smartvortex.eu

4 Semantic Model for Adaptive Collaboration 79

References

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., et al. (2012). WSBPEL: web
services business process execution language version 2.0.

Bernstein, A. (2000). How can cooperative work tools support dynamic group process? Bridging
the specificity frontier. In Proceedings of the 2000 ACM conference on computer supported
cooperative work, CSCW 00 (pp. 279–288). New York: ACM.

Boley, H., Tabet, S., & Wagner, G. (2001). Design rationale of RuleML: a markup language
for semantic web rules. In Proceedings of the international semantic web working symposium
(pp. 381–402).

Briggs, R. O., de Vreede, G.-J., & Nunamaker Jr., J. F. (2003). Collaboration engineering with
ThinkLets to pursue sustained success with group support systems. Journal of Management
Information Systems, 19(4), 31–64.

Corcho, O., Fernández-López, M., & Gómez-Pérez, A. (2003). Methodologies, tools and languages
for building ontologies. Where is their meeting point? Data & Knowledge Engineering, 46(1),
41–64.

Deokar, A. V., Kolfschoten, G. L., & de Vreede, G.-J. (2008). Prescriptive workflow design for
collaboration-intensive processes using the collaboration engineering approach. Global Journal
of Flexible Systems Management, 9(4), 13–24.

DeSanctis, G., & Gallupe, R. B. (1987). A foundation for the study of group decision support
systems. Management Science, 33(5), 589–609.

Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and a toolkit for support-
ing the rapid prototyping of context-aware applications. Human-Computer Interaction, 16(2),
97–166.

Ellis, C. A., Barthelmess, P., Chen, J., & Wainer, J. (2005). Person-to-person processes: computer-
supported collaborative work. In M. Dumas, W. M. van der Aalst, & Arthur H. ter Hofstede
(Eds.), Process-aware information systems (pp. 37–60). New Jersey: Wiley.

Goh, A., Koh, Y. K., & Domazet, D. S. (2001). ECA rule-based support for workflows. Artificial
Intelligence in Engineering, 15(1), 37–46.

Gross, T., & Prinz, W. (2004). Modelling shared contexts in cooperative environments: concept,
implementation, and evaluation. Computer Supported Cooperative Work, 13(3–4), 283–303.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Ac-
quisition, 5(2), 199–220.

Gruber, T. R. (1995). Toward principles of the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies, 43(5–6), 907–928.

Grueninger, M., & Fox, M. S. (1995). Methodology for the design and evaluation of ontologies.
In Proceedings of the international joint conference on artificial intelligence, workshop on basic
ontological issues in knowledge sharing, IJCAI’95.

Haake, J. M., Hussein, T., Joop, B., Lukosch, S. G., Veiel, D., & Ziegler, J. (2010). Modeling and
exploiting context for adaptive collaboration. International Journal of Cooperative Information
Systems, 19(1–2), 71–120.

IMS Global Learning Consortium (2012). IMS learning design best practice and implementation
guide. http://imsglobal.org/learningdesign/ldv1p0/imsld_bestv1p0.html.

Janeiro, J., Lukosch, S. G., & Brazier, F. M. T. (2012a). Elastic collaboration support: from
workflow-based to emergent collaboration. In Proceedings of the 17th ACM international con-
ference on supporting group work (pp. 317–320). New York: ACM.

Janeiro, J., Knoll, S. W., Lukosch, S. G., Kolfschoten, G. L., & Brazier, F. M. T. (2012b). Designing
collaboration support for dynamic environments. In A. T. de Almeida, D. C. Morais & S. de
Franca Dantas Daher (Eds.), Proceedings of the group decision and negotiation 2012. Recife:
Universitaria da UFPE.

JEXL (2013). Website of the Java expression language. http://commons.apache.org/jexl/.
Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C., Schmidt, P.,

& Trickovic, I. (2005). WS-BPEL extension for people (BPEL4People).

http://imsglobal.org/learningdesign/ldv1p0/imsld_bestv1p0.html
http://commons.apache.org/jexl/

80 S.W. Knoll et al.

Knoll, S. W., Hörning, M., & Horton, G. (2009). Applying a ThinkLet- and ThinXel-based group
process modeling language: a prototype of a universal group support system. In R. H. Sprague Jr.
(Ed.), Proceedings of the 42nd Hawaii international conference on system sciences, HICSS’42
(pp. 1–10). Los Alamitos: IEEE Comput. Soc.

Kolfschoten, G. L., den Hengst-Bruggeling, M., & de Vreede, G.-J. (2007). Issues in the design of
facilitated collaboration processes. Group Decision and Negotiation, 16(4), 347–361.

Niederman, F., Briggs, R. O., de Vreede, G.-J., & Kolfschoten, G. L. (2008). Extending the con-
textual and organizational elements of adaptive structuration theory in GSS research. Journal of
the Association for Information Systems, 9(10), 633–652.

Nunamaker Jr., J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R., & George, J. F. (1991). Electronic
meeting systems to support group work. Communications of the ACM, 34(7), 40–61.

Nunamaker Jr., J. F., Briggs, R. O., Mittlemann, D. D., Vogel, D. R., & Balthazard, P. A. (1996).
Lessons from a dozen years of group support systems research: a discussion of lab and field
findings. Journal of Management Information Systems, 13(3), 163–207.

Nunamaker Jr., J. F., Reinig, B. A., & Briggs, R. O. (2009). Principles for effective virtual team-
work. Communications of the ACM, 52(4), 113–117.

Oliveira, F. F., Antunes, J. C. P., & Guizzardi, R. S. S. (2007). Towards a collaboration ontology.
In Proceedings of the 2nd workshop on ontologies and metamodeling in software and data
engineering, WOMSDE’07 (pp. 97–108).

Osborn, A. F. (1963). Applied imagination: principles and procedures of creative problem-solving.
New York: Scribner’s.

Pattberg, J., & Fluegge, M. (2007). Towards an ontology of collaboration patterns. In Proceedings
of the international workshop on challenges in collaborative engineering, CCE.

Pinto, H. S., & Martins, J. P. (2004). Ontologies: how can they be built? Knowledge and Informa-
tion Systems, 6, 441–464.

Prinz, W., & Zaman, B. (2005). Proactive support for the organization of shared workspaces us-
ing activity patterns and content analysis. In Proceedings of the 2005 international ACM SIG-
GROUP conference on supporting group work, GROUP’05. New York: ACM.

Rajsiri, V., Lorre, J.-P., Benaben, F., & Pingaud, H. (2008). Collaborative process definition us-
ing an ontology-based approach. In L. Camarinha-Matos & W. Picard (Eds.), IFIP—the in-
ternational federation for information processing: Vol. 283. Pervasive collaborative networks
(pp. 205–212). New York: Springer.

Reichert, M., Rinderle, S., & Dadam, P. (2003). ADEPT workflow management system: flexible
support for enterprise-wide business processes. In W. Aalst & M. Weske (Eds.), Lecture notes
in computer science: Vol. 2678. Business process management (pp. 370–379). Berlin: Springer.

Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications. In Proceedings
of the first workshop on mobile computing systems and applications.

Simon, H. A. (1977). The new science of management decision. New York: Prentice Hall.
Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and meth-

ods. Data & Knowledge Engineering, 25(1–2), 161–197.
Thiagarajan, R. K., Srivastava, A. K., Pujari, A. K., & Bulusu, V. K. (2002). BPML: a pro-

cess modeling language for dynamic business models. Proceedings of the fourth IEEE inter-
national workshop on advanced issues of e-commerce and web-based information systems,
WECWIS ’02. Washington: IEEE Comput. Soc.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., & Barros, A. P. (2003). Workflow
patterns. Distributed and Parallel Databases, 14(1), 5–51.

Wallas, G. (1926). The art of thought. New York: Harcourt, Brace & World.
Warr, A., & O’Neill, E. (2005). Understanding design as a social creative process. In Proceedings

of the 5th conference on creativity & cognition.
Wood, D. J., & Gray, B. (1991). Toward a comprehensive theory of collaboration. The Journal of

Applied Behavioral Science, 27(2), 139–162.
Workflow Management Coalition (2008). Workflow process definition interface—XML process def-

inition language (XPDL) version 2.1a (Technical Report No. WFMC-TC-1025).

4 Semantic Model for Adaptive Collaboration 81

Wurdel, M., Sinnig, D., & Forbrig, P. (2008). CTML: domain and task modeling for collaborative
environments. Journal of Universal Computer Science, 14(19), 3188–3201.

zur Muehlen, M., & Indulska, M. (2010). Modeling languages for business processes and business
rules: a representational analysis. Information Systems, 35(4), 379–390.

Chapter 5
A Semantics-Based, End-User-Centered
Information Visualization Process for Semantic
Web Data

Martin Voigt, Stefan Pietschmann, and Klaus Meißner

Abstract Understanding and interpreting Semantic Web data is almost impossible
for novices as skills in Semantic Web technologies are required. Thus, Informa-
tion Visualization (InfoVis) of this data has become a key enabler to address this
problem. However, convenient solutions are missing as existing tools either do not
support Semantic Web data or require users to have programming and visualiza-
tion skills. In this chapter, we propose a novel approach towards a generic InfoVis
workbench called VizBoard, which enables users to visualize arbitrary Semantic
Web data without expert skills in Semantic Web technologies, programming, and
visualization. More precisely, we define a semantics-based, user-centered InfoVis
workflow and present a corresponding workbench architecture based on the mashup
paradigm, which actively supports novices in gaining insights from Semantic Web
data, thus proving the practicability and validity of our approach.

5.1 Introduction

With the advent of the Semantic Web technologies like RDF, RDFS, and OWL,
more and more organizations publish their information as so-called Linked Open
Data in the form of open semantic knowledge bases.1 Consequently, there is an
increasing need for tools to manage and process this rapidly-growing amount of
data. One important aspect in this regard is how to enable end-users, i.e., knowledge
workers, to analyze and gain insights from these data sets. Unfortunately, this task
is mainly reserved to tech-savvy users (Dadzie and Rowe 2011). Here is why:

1As of February 2013, the Data Hub (http://thedatahub.org/) hosts about 5100 data sets from vari-
ous domains.

M. Voigt (B) · S. Pietschmann · K. Meißner
TU Dresden, Dresden, Germany
e-mail: martin.voigt@tu-dresden.de

S. Pietschmann
e-mail: stefan.pietschmann@tu-dresden.de

K. Meißner
e-mail: klaus.meissner@tu-dresden.de

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_5,
© Springer-Verlag London 2013

83

http://thedatahub.org/
mailto:martin.voigt@tu-dresden.de
mailto:stefan.pietschmann@tu-dresden.de
mailto:klaus.meissner@tu-dresden.de
http://dx.doi.org/10.1007/978-1-4471-5301-6_5

84 M. Voigt et al.

Primarily, end-users lack an understanding of Semantic Web data, its syntax and
structure. They may know spreadsheets and have an idea what the rows and columns
mean. However, they do not (and need not) know about concepts like triples, multi-
ple inheritance, or that properties are not hardly tied to classes. Hence, tools need to
present Semantic Web data in a reasonable, understandable way.

Various RDF browsers (Dadzie and Rowe 2011) and ontology visualization
methods have been proposed (Katifori et al. 2007). However, they are usually lim-
ited to graph- or list-based data representations and thus do not exploit capabilities
of prevalent visual analytic systems, e.g., support for generic charts, multiple coordi-
nated views, iterative mapping refinement, or the recommendation of visualizations.
Even more important, they are tailored (and limited) to specific domains and data
sets.

Unfortunately, well-established, generic InfoVis tools like Tableau2 do not sup-
port Semantic Web data, and there is no sign this is going to change soon. While
slowly, more promising concepts for generic RDF InfoVis are emerging like the
SPARQL result set visualization from the Data-Gov project (Ding et al. 2010), they
require users to employ expert knowledge in Semantic Web, programming and vi-
sualization.

Finally, even with proper Semantic Web InfoVis tools at hand, interpreting and
finding the right visualization for a certain data set and goal is a challenging task for
novices, because they lack the necessary visualization knowledge (Grammel et al.
2010). Knowledge-assisted visualization (Chen et al. 2009) tries to fill this gap by
using formalized expert knowledge and reasoning. Despite innovation in this direc-
tion, existing solutions, such as (Kadlec et al. 2010; Wang et al. 2009), are domain-
specific, self-contained, and not applicable for Semantic Web data. Furthermore,
they do not recognize and incorporate context information of the used device, e.g.,
screen estate, and the user, e.g., explicit or implicit preferences, to present the data
in a suitable manner.

In this chapter, we propose a novel concept for a generic, user-centered InfoVis
workflow geared towards novices, which allows for the context-aware mapping of
arbitrary data to appropriate visualization components. Further, we present the key
challenges as well as our solutions for its application on Semantic Web data. Finally,
we give an architectural overview of our InfoVis workbench VizBoard which im-
plements our novel approach based on the mashup platform CRUISe (Pietschmann
2009) and, thus, allows for presenting any Semantic Web data in a dashboard-like,
composite, and interactive visualization.

Our chapter is structured as follows: After giving a brief overview of related
work in the next section, we introduce the foundations of our concept in Sect. 5.3:
a context-aware application composition framework and a visualization knowledge-
base. In Sect. 5.4 we define a novel, user-centered InfoVis workflow which employs
shared semantics to assist the visualization process. Further, we highlight the chal-
lenges and solutions found while realizing this workflow for Semantic Web data.

2http://www.tableausoftware.com/.

http://www.tableausoftware.com/

5 Semantics-Based Information Visualization 85

Then, Sect. 5.5 presents a corresponding software architecture which realizes the
process based on the mashup platform CRUISe to illustrate and evaluate its appli-
cability. Finally, we discuss our findings and point out future work in Sect. 5.6.

5.2 Related Work

Both the Semantic Web and InfoVis have received lots of attention by the research
community in the recent years. Thus, we need to analyze existing concepts with
respect to the goals and challenges lined out in the previous section. First, we give an
overview of how knowledge models can assist the visualization process in general.
Thereafter, we analyze existing generic approaches for the visualization of Semantic
Web data.

5.2.1 Understanding and Supporting the Visualization Process

As mentioned before, the vision of a semantics-based InfoVis for novices requires
both a formal knowledge model and a structured process which defines how to
bridge the gap from raw data to an appropriate graphical representation. To this
end, various visualization-specific process models and InfoVis concepts addressing
novices have been proposed.

The pipeline model is commonly used to describe visualization as a process.
In its elementary version it defines a sequence in which raw data is filtered and
enriched, mapped to an abstract visualization specification, and finally rendered to
a displayable image (Haber and McNabb 1990). This model has been successively
enhanced, e.g., to include the user and his tasks (Card et al. 1999) or to allow for
the coordination of independent views (Boukhelifa et al. 2003). In contrast to our
work, the pipeline model focuses firstly on system-side functionalities and not on the
(lay-)user in his struggle to gain insights from his data. Further, it does not employ
formalized knowledge to represent which graphic representation is the best within a
specific context.

Within the area of knowledge-assisted visualization, several authors have pro-
posed ways to support the visualization process using knowledge models. Wang
et al. (2009) describe how knowledge “moves” through the visualization process in
a number of conversion steps, e.g., to externalize tacit user knowledge to explicit
system knowledge. Yet, information on how to employ these steps in generic In-
foVis systems to assist users in visualizing (Semantic Web) data, is missing. Chen
et al. (2009) sketch a high-level knowledge-based infrastructure in parallel to the
visualization system, which extracts information from data and uses it together with
predefined expert knowledge to adapt the visualization process. Despite the similar
goals, users’ interaction steps and the integration of the formal knowledge in every
stage of the InfoVis process is missing.

86 M. Voigt et al.

Both the pipeline model and knowledge-assisted visualization are primarily fo-
cusing on how a system can create appropriate visualizations. An additional, or-
thogonal aspect we consider important in our work is active user support. The first
notable guidelines in this direction were given by Heer et al. (2008). They include
easy data input, user assistance in selecting graphical representations, and the use of
default mappings from data to visual variables. These principles have been under-
pinned by a recent user study (Grammel et al. 2010), wherein the authors suggest
some additional guidelines and requirements, such as (semantics-based) search fa-
cilities to narrow the data set, adaptation to the iterative nature of the visualization
process, and support for partial and uncertain input specifications of novices. Fi-
nally, Shneiderman’s mantra (Shneiderman 1996) defines the most fundamental de-
sign guideline for all interactive systems addressing information search: “Overview
first, zoom and filter, then details-on-demand”. This is especially true for novices,
who need a lightweight overview of the Semantic Web data before they dive into
details in an iterative way afterwards.

In summary, previous work shares our goal of actively supporting novices during
the InfoVis process by providing valuable advices. However, only Grammel et al.
emphasize the power of semantics to support novices.

5.2.2 Information Visualization of Semantic Web Data

With the growing amount of Semantic Web data sets, more and more methods (Kat-
ifori et al. 2007) and tools (Dadzie and Rowe 2011) for their visualization have been
proposed. Mostly, they focus on text- or graph-based visualization and are tailored
towards special purposes and data sets. In the following, we focus on the few very
generic InfoVis approaches.

An increasing number of US governmental data is made accessible in RDF (Ding
et al. 2010) by the Open Government Directive. Tutorials on their visualization using
popular APIs and widget libraries are published3 which imply, that every user has
the freedom to build his or her InfoVis of choice. Unfortunately, these tutorials—
including a proxy for data transformation—are little help for novices, as Semantic
Web, programming, and visualization skills are needed for their use.

Alternatively, the UISPIN framework provides means to describe user interfaces
for rendering Semantic Web data. This includes a chart library4 with various widgets
to visualize Semantic Web data. The library can be embedded in Semantic Web
tools, as it is the case for the TopBraid Composer.5 Thereby, users can include charts
without programming skills, but still need to define SPARQL queries for the data
to be visualized. As further assistance, e.g., recommendation of suitable widgets, is

3http://data-gov.tw.rpi.edu/wiki/How_to_use_Google_Visualization_API.
4http://uispin.org/charts.html.
5http://www.topbraidcomposer.com.

http://data-gov.tw.rpi.edu/wiki/How_to_use_Google_Visualization_API
http://uispin.org/charts.html
http://www.topbraidcomposer.com

5 Semantics-Based Information Visualization 87

missing, users must know, which visualization to choose and how to define queries
in SPARQL.

A solution to one of these problems is given by Leida et al. (2010), who anno-
tate SPARQL queries with a shared vocabulary of visualization-specific concepts to
(semi-)automatically map RDF data to graphic representations. Since this promis-
ing approach focuses on the mapping only, a concrete semantic model for defining
visualization-specific knowledge is missing as well as its integration in an overall,
(lay-)user-centered InfoVis workflow.

Finally, Mazumdar et al. (2012) propose the .view. framework which employs
the dashboard metaphor to visualize Semantic Web data with well-know charts in
multiple views. We are also developing an interactive system to provide composite
visualization of any RDF data but our approach is more sophisticated as we employ
semantic models to allow for a context-aware, automatic mapping of data to the
widgets without the need to manually define any configuration files for the data set.
Furthermore, we provide a user-centred workflow comprising a data filtering and
widget selection geared towards novices.

All in all, current solutions from this field solely focus on the visualization of
SPARQL query results. Their common limitation on SELECT statements implies,
that graph-based visualizations are mostly excluded, even though these are better
suited and commonly used for Semantic Web data. With these concepts we share
the idea of combining arbitrary data sources with existing, web-based widgets from
different libraries, following the mashup paradigm. However, and most importantly,
prevalent solutions do not support novices adequately.

Before we present our concepts of a user-centered visualization process, the next
section provides details about the conceptual and practical basis we are building on.

5.3 Conceptual Foundation

As can be seen from the discussion so far, realizing a context-aware InfoVis work-
flow is far from trivial, since a broad number of challenges has to be addressed. To
this end, our solutions and the corresponding tooling are built on top of existing
concepts and practical results from other research projects.

Most importantly, we use the concept of universal application composition which
allows us to freely combine two types of building blocks: (semantic) data sets and
generic visualization components. This composition is supported by visualization
knowledge formalized as an ontology. In the following, we present some insights
on these foundations.

5.3.1 Universal Context-Aware Mashup Composition

In our work, we build on the results from the CRUISe project (Pietschmann 2009),
which provides a conceptual foundation as well as an ecosystem for the dynamic,

88 M. Voigt et al.

Fig. 5.1 Architectural
overview of the CRUISe
ecosystem

context-aware composition of web applications from distributed building blocks.
The following paragraphs provide a brief overview of the corresponding concepts
and infrastructure parts illustrated in Fig. 5.1.

The idea of universal composition implies a uniform component model, to which
all parts of an application adhere. Such components are black-box pieces of inde-
pendent software that provide a dedicated functionality. It is important to note, that
this explicitly includes user interface, i.e., visualization components to be reused in
different contexts.

In our conceptual space, components are characterized by three abstractions, na-
mely Property, Event, and Operation. The set of properties resembles the compo-
nent state and allows for its configuration. Whenever the internal state changes,
events are issued to inform the runtime system and other components. Finally, state
changes, calculations and other arbitrary functionality of a component can be trig-
gered by invoking its operations with the help of events. Events and operations may
themselves contain semantically typed parameters, thereby realizing the data flow
between components.

Using the Semantic Mashup Component Description Language (SMCDL), com-
ponents are described in a platform-independent, declarative way—comparable to
WSDL for the description of web services. SMCDL is used to specify the above-
mentioned interface parts as well as non-functional properties and information on
how concrete implementations are bound to the abstract interface at runtime.

End-user-oriented authoring tools are employed to create interactive applications
from these components, e.g., including search and recommendation features. Those
applications can be expressed formally as instances of the Mashup Composition
Model (MCM) (Pietschmann et al. 2010)—a description of the components, the
data and control flow, the visual layout and the adaptive behavior of a composition
on a platform-independent level.

For the visualization of Semantic Web data, our goal is to create a step-by-step
InfoVis workflow which semi-automatically binds generic visualization components
to given data providers, e.g., by finding and recommending suitable components
with respect to a given context, resulting in a composite application.

5 Semantics-Based Information Visualization 89

For the interpretation and execution of universal compositions, CRUISe has come
up with a reference architecture of a Mashup Runtime Environment (MRE) and the
corresponding infrastructure. During the model interpretation, a MRE requests com-
ponents from a given Component Repository (CoRe). The latter always returns those
component instances, which fit the application requirements and context best. In
this discovery process, both implicit and explicit rules are used, e.g., to consider the
technological compatibility (implicit) or user preferences (explicit). There are more
services involved in the composition, but those are the main ones involved in our
approach.

This integration process and composition infrastructure form the basis for our
InfoVis workflow, as it allows to include visualization knowledge in the dynamic,
context-aware composition of applications. To realize this vision, a formalized rep-
resentation of this knowledge is required, though. Therefore, the next section intro-
duces a modular visualization ontology, which does just that.

5.3.2 Formalizing Visualization Knowledge

The fundamental problem of InfoVis, regardless if done manually or automatically,
is to find an appropriate mapping between data and visual attributes. Therefore,
visualization knowledge is required. Tools like Tableau already provide limited sup-
port for novices, who lack this kind of knowledge. However, they do not cover the
complete parameter space, e.g., including the used device or users’ preferences. As
mentioned in Sect. 5.2, few approaches facilitate semantic technologies to assist the
visualization process, yet a generic, formal, and freely distributed knowledge model
is still missing.

For this reason, we developed the modular visualization ontology (VISO, cf.
Fig. 5.2-1) (Voigt and Polowinski 2011). It provides a well-documented vocabu-
lary of concepts and relations to formally describe data, graphics, human activity,
as well as the user and system context. Since we focused on the first two modules,
we re-used existing and well-established ontologies whenever possible, such as the
DEMISA task ontology (Tietz et al. 2011). Based on the defined entities, we also
modeled factual expert knowledge (cf. Fig. 5.2-2), e.g., that using position instead
of color coding is more suitable to visualize quantitative data, which is used to
rank different mapping alternatives. Equally, users’ input data (cf. Fig. 5.2-3) can
be annotated with visualization semantics, e.g., an RDF property price may have a
quantitative scale of measurement and an assigned domain UnitPriceSpecification
of the GoodRelations ontology.6

With the help of VISO, user interface components of the CRUISe ecosystem can
be described (cf. Fig. 5.2-4) with regard to visualization specific aspects. Therefore,
the domain-independent SMCDL is extended to link to VISO concepts and prop-
erties. We annotate the data structures of the component interface—in Operations,

6GoodRelations ontology: http://purl.org/goodrelations/v1.

http://purl.org/goodrelations/v1

90 M. Voigt et al.

Fig. 5.2 Generic visualization ontology (VISO) as conceptual foundation of our visualization
workflow (reprinted from Voigt et al. 2012d)

Events, and Properties—the kind of graphic representation used (map, scatter plot),
the visual complexity (high, low), or the interaction potential (zoom, filter). Finally,
the user and system contexts (cf. Fig. 5.2-5) are represented based on CRUISe’s
context service (cf. Fig. 5.1), e.g., in terms of preferences and user skills, the display
size or the available software infrastructure.

All in all, by using VISO as a common vocabulary, all stakeholders of an Info-
Vis process, including contextual information, are combined in one knowledge base,
thereby facilitating the context-aware recommendation of visualization components.
In the following section, we present the steps of this semantics-driven InfoVis work-
flow in detail.

5.4 Context-Aware Information Visualization Workflow
for Semantic Web Data

To address the problems lined out in Sect. 5.1, we propose a novel interactive, user-
driven InfoVis workflow (cf. Fig. 5.3) which builds on the common semantic vocab-
ulary provided by VISO and some insights retrieved from related work discussed
in Sect. 5.2. The workflow can be applied to arbitrary data models, however, the
following discussion specifically focuses on the visualization of RDF data and the
corresponding challenges.

The workflow design is inspired by the way (lay-)users naturally interact when
analyzing data. It consists of five stages users needs to pass: choosing or uploading
a data set (cf. Fig. 5.3-1), getting an overview of the data and choosing a subset (cf.
Fig. 5.3-3), selecting relevant data variables and suitable visualization components
(cf. Fig. 5.3-5), configuring them (cf. Fig. 5.3-7) and, finally, interacting with the
rendered data to gain the desired insights (cf. Fig. 5.3-9). Due to the interactive
nature of the visualization process, users can sequentially pass through, but may

5 Semantics-Based Information Visualization 91

Fig. 5.3 Overview of the semantics-based visualization workflow (reprinted from Voigt et al.
2012d)

also move backwards. For instance, the configuration step can be skipped by using
default mappings. Furthermore, users may choose to search and integrate multiple,
alternative visualizations to benefit from multiple coordinated views of their data
after completing the workflow.

This user-driven process is supported by five system-side functionalities which
make use of the VISO (the lower rectangles in Fig. 5.3). Elementary functionalities
like storing, querying, and supplying the data, graphic representations or knowledge
are omitted from the figure for the purpose of simplification. In the following, we
discuss each step of the workflow, point to major requirements and obstacles to
realize them, and—as far as we already solved them—present our solutions.

5.4.1 Data Upload and Augmentation

The starting point of every visualization process is the provision of the data set,
i.e., raw data (Card et al. 1999) (cf. Fig. 5.3-1). This data first needs to be trans-
formed into a suitable format for the remaining process steps. After this, it must to
be augmented (cf. Fig. 5.3-2) with visualization-specific knowledge, e.g., the kind
of scale of measurement (nominal, ordinal, or quantitative), using the VISO vocab-
ulary. This (semi-)automatic augmentation is the foundation for nearly all of the
following system-side tasks, like the recommendation of appropriate visualization
components or their coordination support.

The Data Upload is the most trivial part of the complete workflow. It requires
the user to select an RDF or OWL file, a URI of a data dump or a Web service API
and to submit it to the visualization system. It is also possible to support other data
formats, like tabular (spreadsheets, etc.) or relational data sets (MySQL database)
through a transformation step, as indicated in Fig. 5.4-2. In these cases, the data
needs to be transformed into RDF triples using corresponding APIs. Especially for
the mapping from relational databases to RDF a broad range of tools is already
available (Sahoo et al. 2009).

Data Augmentation is split in two parts: First, evident visualization knowledge
about the data is reasoned using information-retrieval techniques (cf. Fig. 5.4-3).
Second, the data is augmented with this semantics using the VISO vocabulary

92 M. Voigt et al.

Fig. 5.4 Data upload and augmentation in more detail

(cf. Fig. 5.4-4). Here, the benefits of the Semantic Web come in handy, as the data
can be easily linked to other concepts.

In this augmentation step, four distinct analyzers can be employed: (1) a schema
analyzer which extracts information about simple data types if they are not explic-
itly provided; (2) an instance analyzer which calculates metrics like the number
of distinct instances; (3) a lexicographical analyzer to identify more generic con-
cepts as well as categories from DBPedia7 with help of the WordNet8 knowledge
base to provide additional information to support the data to visualization mapping
step; (4) a rule engine can be used to add custom relationships in a flexible manner.
A common problem is the automatic identification of the Scale of Measurement of
a property according to its basic data type, instances, and already identified domain
concepts. A typical example would be to identify that a property called “school
grade” has an ordinal scale instead of a nominal.

In the end, the annotated RDF graph needs to be stored within a homogeneous
data layer—an RDF triple store—to allow for system-wide uniform data access in
the following workflow steps (cf. Fig. 5.4-5). As a side note, we suggest to include
a manual step in order to let an expert check and edit the automatically generated
annotations and the declarative rules.

5.4.2 Data Pre-Selection and Reduction

One of the key problems of a generic approach to visualize Semantic Web data is the
size of the data sets. In contrast to the findings of Sicilia et al. (2012) that most OWL
ontologies are small and flat, there exist quite a number of huge OWL ontologies,
especially in the public and medical sectors, e.g., the NCI thesaurus.9 Moreover,

7DBPedia: http://dbpedia.org/About.
8WordNet: http://wordnet.princeton.edu/.
9http://ncicb.nci.nih.gov/download/evsportal.jsp.

http://dbpedia.org/About
http://wordnet.princeton.edu/
http://ncicb.nci.nih.gov/download/evsportal.jsp

5 Semantics-Based Information Visualization 93

Fig. 5.5 Screenshot of our first prototype of the pre-selection

OWL has not yet “arrived” in the Linked Open Data (LOD) cloud (Glimm et al.
2012), which heavily relies on RDF and RDFS sets. Currently, it comprises 295 sets
with approximately 32 billion triples, which implies an average 107 million triples
per data set.10

In order to handle this amount of data, two challenges have to be addressed:
First, the data sets must be visualized in an understandable, interactive manner with
the goal to select classes, properties, or instances for more in-depth informations
visualizations (cf. Fig. 5.3-3). Second, techniques are required to reduce the data
sets to the relevant entities and point to interesting areas for the user respectively
(cf. Fig. 5.3-4). In the following, we present our solutions to these challenges.

Based on Shneiderman’s mantra, the purpose of the Data Pre-Selection (cf.
Fig. 5.3-3) is to give users a high-level view of a data structure. Through inter-
actions like zooming, panning, searching, or filtering he is able to find interesting
subsets of the data which are selected for an in-depth Information Visualization
through suitable components afterwards. For our InfoVis workflow this means to
provide novices with intelligent visualizations and convenient metaphors to interact
with data sets of more than a million entities.

A first prototype of a corresponding user interface is shown in Fig. 5.5. Its devel-
opment is based on best practices from related tools, e.g., the TopBraid Composer11

as well informal user studies with software prototypes. The frontend comprises the

10Information based on the State of the LOD Cloud report from October 2011, http://www4.
wiwiss.fu-berlin.de/lodcloud/state/.
11TopBraid Composer: http://www.topquadrant.com/products/TB_Composer.html.

http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://www.topquadrant.com/products/TB_Composer.html

94 M. Voigt et al.

following parts: At the left, we offer various options to filter the data (1) by terms
and facets, which are discussed below. The main view (2) shows all resources of the
selected type (classes, properties, or instances). Within this view, users may zoom
and pan while always having an overview of the dataset in (3). Further, the proto-
type offers methods for clustering, key concepts extraction, and path finding as well
as different graph layouts (4). On the right (5), users may see and traverse the hier-
archy of the resources selected in the main view. Of course, the size of both views
can be adapted on-demand. Our solution also offers a “basket” (6), which allows to
bookmark and collect resources of interest for later investigation or visualization. At
the bottom (7) a time line shows breakpoints of user interactions in different colors,
e.g., setting up a filter or zooming. Clicking them allows users to undo their interac-
tions up to this task. Finally, the UI suggests interesting resources (8) depending on
user selections, which are calculated using the pivoting algorithm sketched below.

All in all, the user interface for the Data Pre-Selection is functionally rich and
allows for a versatile navigation and reduction of the dataset. Unfortunately, pre-
liminary user tests show that lay-user are still overburdened to some extend. Hence,
we are going to conduct a broader user study to identify the right balance between
functionality and user satisfaction.

To assist the Data Pre-Selection in the frontend, a Data Reduction (cf. Fig. 5.3-4)
must take place. Therefore, we suggest to use different data mining strategies as
proposed in Fayyad et al. (1996): classification, clustering, summarization, or link
analysis. Unfortunately, many of those techniques are commonly geared towards
tabular data or relational databases. Thus, an adaptation is required which necessi-
tates a distinction of the different ingredients of an ontology, namely classes, (object
and data) properties, and instances. Currently, our conceptual workflow includes the
following techniques in combination to allow for differentiated data reduction.

Faceted-Based Filtering Based on different kinds of metrics, facets and facet values
can be created to allow for a target-oriented data filtering. The metrics calculation
depends on the resource type. For classes we suggest to use topological character-
istics like the number of subclasses, the number of instances, and the betweenness
(Brandes 2001). Properties can be filtered using their domain, range, and hierarchy.
Finally, instances may be distinguished by their class membership.

Clustering A number of different clustering algorithms like the wide-spread k-
Means algorithm allow to find and summarize similar entities. The metrics men-
tioned above can also be applied as distance functions for them to cluster classes,
properties, and instances.

Path Finding Another concept we employ for reducing the data set is path finding.
Here, the idea is to calculate the shortest path(s) between two or more classes or
instances of interest, and to filter out all resource outside these paths.

Key Concept Extraction Furthermore, we include the key concept extraction (Per-
oni et al. 2008) approach to identify and highlight the most relevant resources
within a data set. Therefore, it makes use of insights from cognitive science, net-
work algorithms, and lexicographical statistics. However, this solution is only ap-
plicable for classes.

5 Semantics-Based Information Visualization 95

Pivoting Another way to provide only a small subset of the data and to extend it on-
demand is called pivoting (Popov et al. 2011). To calculate potentially interesting
items we apply different metrics, e.g., the topological similarity for classes and
properties or the semantic similarity for instance data.

Association Rule Mining Finally, the tracking of navigation trails within the data set
in the Data Pre-Selection are analyzed using association rule mining techniques.
Its results allows to highlight interesting resources or reduce the cumbersome in-
formation overload.

5.4.3 Interactive Data and Visualization Selection

After a user has narrowed down his data set to a region of interest, the following
Selection step (cf. Fig. 5.3-5) covers the exploration and selection of interesting
data variables and suitable visualization components to represent them. This is es-
pecially challenging for end-users, as their lack of InfoVis knowledge often leads
to unsatisfying visualizations results (Grammel et al. 2010). In order to assist them,
the workflow must include support mechanisms, e.g., suggesting appropriate graph-
ical representations based on the selected data attributes and visualization charac-
teristics. While the latter recommendation algorithm is explained in Sect. 5.4, the
following paragraphs focus on the user interface and interaction.

For the design of a suitable search interface in this context it is fundamental to
decide between querying and browsing. For the user it is less mental work to scan
and choose from a list of entities than to think about appropriate query terms to
describe his information need (Hearst 2009). Thus, with respect to our target group
of novices, we suggest to use a browsing approach—in particular the interactive
faceted browsing paradigm. Thereby, empty result sets can be avoided and users
gain immediate feedback and can refine their queries iteratively. However, in our
research we also faced some problems with using faceted browsing for data and
visualization selection. Most importantly, users need to assign priorities to facets
within a search query. Thus, we extended the paradigm to weighted faceted browsing
introduced in Voigt et al. (2012b). In the following, be briefly describe these novel
concepts, which address the definition of search criteria, the result ranking, and the
corresponding, intuitive user interface.

First of all, we distinguish between mandatory and optional search criteria. To
narrow the results, a facet value needs to be added to the mandatory set where all
criteria are linked conjunctively—the standard behavior of a faceted browser. In
contrast, optional facets are combined disjunctively within a dedicated set and thus
do not constrain but rank the results. That way, the more optional criteria an item
satisfies the higher it is ranked. If multiple items meet the same number of optional
criteria, their ranking is the same. However, every criterion may be given an explicit
weight (between 1 and 100), which directly influences its ranking. Zero value is
neglected, as this means that facet can be omitted.

The input for calculating the overall result set is a query set of mandatory and
optional criteria. While the mandatory part simply constraints the set by removing

96 M. Voigt et al.

Fig. 5.6 Screenshot of our weighted faceted browsing prototype (reprinted from Voigt et al.
2012b)

all items not supporting a chosen facet value, the relevance ranking using multiple
optional facets is more complicated. To solve the multi-criteria optimization, we
combine the weighted sum model with lexicographic ordering in an iterative way
to interpret the criteria. If some elements still have the same weight we order them
alphabetically.

Of course, these theoretical concepts of weighted faceted browsing need not be
visible to the lay-user. Instead, we have designed an intuitive user interface which
consequently builds on the principles of existing facet browsers. The running pro-
totype is shown in Fig. 5.6. As can be seen, the view is split into three main areas:
facet widgets at the top (1), (2), the query visualization—called querycloud—in the
middle (3), and the results view at the bottom (4), (5). To search for a visualization
component, the user simply needs to drag a desired facet value—a RDF resource to
visualize (1) or a visualization characteristic (2)—and drop it at a desired spot in the
querycloud which is split into a mandatory and (weighted) optional area. The result
set visualization (4) updates subsequently. By selecting an item from the result list,
detailed information are displayed in (5).

We conducted a preliminary user study to test our hypotheses and the practicabil-
ity of weighted faceted browsing for visualization selection. After an introduction,
users had to handle five basic and five advanced search tasks to find appropriate
visualization for given data sets. To our delight, the subjects answered all ques-
tions correctly. They generally enjoyed the intuitive approach, in particular of the
querycloud. Whereas the basic tasks were solved without any help, we needed to
give some assistance at solving the advanced issues. This was mostly caused by the
missing understanding of the data set and the metadata of the visualization compo-
nents within the facet widgets. An exemplary questions was: “What does neutral
visual complexity mean?”. Thus, providing additional information on facet values
should prove beneficial.

5 Semantics-Based Information Visualization 97

Fig. 5.7 Overview of our visualization recommendation process

5.4.4 Context-Aware Recommendation of Visualization
Components

With respect to the knowledge and experience of novices, the exploration and selec-
tion of data variables and visualization facets as described in the previous section
should be actively supported with Visualization Recommendation techniques (cf.
Fig. 5.3-6). Of course, this functionality constitutes the heart of every visualization
process and it comes with a number of challenges: First, an algorithm needs to dis-
cover appropriate visualization components based on the selected Semantic Web
data using the aforementioned semantic annotations (cf. Sect. 5.3). Second, the al-
gorithm needs to rank every identified component due to its applicability within the
current context. In the following, we summarize the main concepts of our recom-
mendation algorithm which is described in more detail in Voigt et al. (2012a).

Figure 5.7 gives an overview of our recommendation process. It starts with the
selection of search criteria (1) which is realized by the weighted faceted browser.
Based on the selection, the matchmaking process (2) starts with a pre-selection
step. Thereby, the amount of components is reduced by matching the visualization-
specific criteria, e.g., the kind of representation, the level of detail, or the interaction
potential needed. Afterwards, a generic data schema is generated by mapping the
data structure selected by the user to a generic one based on VISO. This schema
then forms the basis for the retrieval of appropriate visualization components.

Subsequently, the list of suitable components is ranked (3) making use of the
semantic annotations and VISO rules introduced earlier. The ranking step includes
four criteria: First, the appropriateness is calculated with respect to visualization-
specific knowledge, e.g., the visual encodings for quantitative data (Cleveland and
McGill 1984). Second, the assigned domain concepts or categories of the data vari-
ables and the visualization component are employed. For each combination of those,
the semantic similarity is calculated. Third, contextual knowledge is included. Thus,

98 M. Voigt et al.

Fig. 5.8 Screenshot of the meta-visualization which allows to show and edit the coordination
between the integrated components

the context model is queried for user or device characteristics, such as the screen real
estate, in order to identify the best fitting visualization. Last but not least, we con-
sider user-based ratings of existing components. The collection of this information
is further described in Sect. 5.4.

Finally, combined rating for each component allows to establish a ranking order.
This sorted list is presented to the user, who may either adjust his search criteria (1)
or select one or more components to visualize the selected data with (5).

5.4.5 Visualization Integration and Configuration

Having selected one or more components to visualize his Semantic Web data, the
work of the user is done. For the underlying system it means, that all those compo-
nents need to be loaded and instantiated, “bound” to the selected data, configured
with respect to the users’ needs (cf. Fig. 5.3-7), and integrated with each other re-
sulting in a homogeneous user interface (cf. Fig. 5.3-8).

For the integration, we heavily build on the concepts and infrastructure of
CRUISe (cf. Sect. 5.3). It already provides means to load the selected, possibly
distributed components and to manage their life cycle including instantiation and
configuration. In a next step, we establish the “binding” to the selected Semantic
Web data. The corresponding data and mapping information directly result from
the previous workflow steps. By choosing several visualization recommendations
iteratively in the previous steps, users are (implicitly) building multiple coordinated
views of their data, which are finally presented interactively using CRUISe’s runtime
platform MRE.

Figure 5.8 shows such a user interface, overlayed with a meta-visualization. As
can be seen, the data set—in this case concert data—is shown with respect to four

5 Semantics-Based Information Visualization 99

different aspects (time, genre, artist, popularity) and corresponding visualizations
(calendar, lists, and a bar chart).

The meta-visualization in Fig. 5.8 is one way to let novices establish (or edit ex-
isting) coordination links. The latter allow for the integration of visualization com-
ponents on the data level by connecting their data variables for synchronization or
filtering. This way, selected data in one view, e.g., the genre in this example, can
be highlighted or act as a filter in another one. By establishing such links, users in-
tuitively create coordinated multiple views on their data sets from which they may
gain a better understanding of the displayed information.

Further mechanisms for user-driven adaptation may be provided, such as compo-
nent configuration, which highly depends on their implementation. Typical config-
uration parameters include color schemes and filters. If multiple mappings between
the underlying data and the component interface are possible, the user may as well
adapt them, e.g., to switch the data mapping between the axes of a scatter plot. More
sophisticated adaptation is possible as well, such as component exchange or layout
changes. These mechanisms are provided by the underlying platform—in our case
CRUISe—yet, their impact on user satisfaction are yet to be evaluated.

5.4.6 Perception and Knowledge Conversion

Once the coordinated view has been set up, novices can study and interact with the
visualized data with the goal of increasing their knowledge or solving specific tasks.
This phase is referred to as internalization Wang et al. (2009) (cf. Fig. 5.3-9). As
stated in van Wijk (2005), the amount of knowledge gained depends on the kinds
of visual representations used, the users’ prior knowledge and their perceptional
capabilities. Thus, we took care to address three requirements in our workflow to
enhance the internalization process.

To foster Perception and Internalization (cf. Fig. 5.3-9), we follow two ap-
proaches. First, as for every interactive application, the user interface and interaction
design of the visualization platform must be geared towards novices. As an exam-
ple, this includes self-descriptive and intuitive mechanisms to configure the coordi-
nation as discussed above (cf. Sect. 5.4). Based on our prototypes and a number of
small user studies, we are continuously working on these issues towards an elabo-
rated user study. Second, beside the platform itself, the visual representations, i.e.,
the resulting composite application plays the key role for successful internalization.
Thus, we consider the users’ contexts in the recommendation algorithm of visual-
ization components (cf. Sect. 5.4) to offer him the most suitable and understandable
graphical representations. Contextual triggers for this are basic user properties (age,
mother tongue, disabilities), preferences, usage (mobile vs. stationary) and device
characteristics (e.g., the available screen real estate).

Knowledge Tracking and Externalization (cf. Fig. 5.3-10) is a background task
that actively supports several phases of the Information Visualization workflow. As
Fig. 5.3 shows, its purpose is to extract implicit visualization knowledge in every

100 M. Voigt et al.

Fig. 5.9 Visualization
component with rating bar at
the bottom

workflow step to support the upcoming phases. In the following, we briefly present
possibilities we see and use in this regard.

Augmentation It is worth considering an expert review step for the data augmenta-
tion (cf. Sect. 5.4). By checking and updating automatically generated annotations,
their knowledge is externalized, which can be the input for further formalization.
Here, the proposed the usage of declarative annotation rules proves its value as
they (1) are independent of a special dataset and (2) can be revised by Semantic
Web experts without programming.

Reduction As mentioned in Sect. 5.4, we apply association rule mining based on
the navigation trails of users in their data sets during the data pre-selection phase.
This way, users’ understanding of entities and relations of the data is externalized.

Data and Visualization Selection Association rule mining can be employed here,
as well. Selected facet values, their assignment as mandatory or optional search
criteria, and the previewed visualization components can provide insights into the
users’ understandings and goals, and they can used to enhance the selection step,
e.g., by ordering or highlighting suitable facet values.

Configuration Tracking and externalization in the configuration stage includes the
analysis of chosen data mappings to a component, and of user-established coordi-
nation patterns between components.

Perception Finally, we use a mechanism to rate single combinations of data and
visualization components. Therefore, we distinguish between implicit and explicit
ratings. The former are deduced automatically based on the usage of a component
in different usage contexts, e.g., a repeated use leads to a higher implicit rating
while having only a glimpse on the component after the integration lowers the rat-
ing. The explicit rating is given manually by users clicking “Like” or “Dislike”
buttons added beneath every component (cf. Fig. 5.9). Using a collaborative fil-
tering algorithm we then exploit this knowledge to improve recommendations (cf.
Sect. 5.4).

5 Semantics-Based Information Visualization 101

Fig. 5.10 Overview of the architecture of VizBoard

Having presented all the steps of our semantics-driven, context-aware visualiza-
tion workflow for Semantic Web data, the following section covers our approach of
a corresponding software architecture to cover the whole process.

5.5 Component-Based Software Architecture

We specified a component-based software architecture for our visualization system—
called VizBoard—according the requirements which come along with our user-
centered, semantics-driven InfoVis workflow. As already mentioned in Sect. 5.3, we
are building on the CRUISe ecosystem which allows for the dynamic composition
of web applications from distributed building blocks. Figure 5.10 gives an overview
of the architecture of VizBoard. It comprises six primary parts. In comparison to the
architectural overview of CRUISe (cf. Fig. 5.1) we added the visualization-specific
vocabulary (1) defined by the VISO, which is the glue between the data and vi-
sualization components, and the Data Repository (DaRe) (2) which provides a
common data layer. In the following, we describe the DaRe and the extension made
within the CRUISe ecosystem (3)–(6) in more detail. Then, in Sect. 5.5 we give a
brief overview of some implementation details.

5.5.1 Data Repository

CRUISe allows for the composition of any data source, i.e., web service, with any
user interface widget as long as they are compatible according their semantic de-

102 M. Voigt et al.

Fig. 5.11 Separation of concerns within the Data Repository

scription of the API. Since its also a desired behavior for the InfoVis domain, it is
not applicable in the same way due to the following reasons.

Common Data Access The data to visualize arises from different sources, e.g., web
service, files, or databases, and may vary in their formats. Therefore, compo-
nents are required which allow for a common data access and hide data format
specifics like the connection or the query format.

Augmentation and Reduction The aforementioned workflow comprises essential
functionality to augment and reduce the data. Our prototypical test demon-
strates clearly that most of these functionalities are time consuming and not
applicable during the runtime so that a preprocessing is required. Further, the
data needs to be available for the asynchronous management of the annota-
tions by an expert.

Performance and Scalability Another problem is the varying performance of the
data sources. An own storage layer provides a stable performance and allows
to scale on demand.

Security Also if its out of scope, a common data layer enables the management of
access rights but also to use security mechanism, e.g., to prevent SQL injec-
tions.

For this reasons, a common data layer for all visualizations components, the Data
Repository, is integrated. Its main components are presented in Fig. 5.11. They
could be distinguished into four blocks according their functionality needed within
the workflow. Hence, the data access, the analyzers, and the annotator are form-
ing a building block (1) to augment and thus to prepare the data for the following
process steps. Subsequently, the homogeneous data is stored within a triple store
which allows to request but also to filter the data (2). These functions are required
for instance during the integration of the visualization components (cf. Sect. 5.4).
To facilitate the data reduction (cf. Sect. 5.4) the components in block (3) query and
process the data from (2) on-demand. In the end, the DaRe offers a RESTful web
service interface (4) to allow for a platform-independent data access.

5 Semantics-Based Information Visualization 103

5.5.2 CRUISe Extensions

To enable the visualization of Semantic Web data according the proposed workflow
we also had to extend the CRUISe architecture. First, Visualization Components
(cf. Fig. 5.10-3) are specialized user interface components focusing on presentation
but mostly neglect other “CRUD” functions like the creation of new data. Thus,
we can rely on the component model of CRUISe without any difficulties but the
SMCDL is extended to describe visualization features with VISO concepts, e.g.,
the kind of graphic representation. As the properties as well as the parameters of
operations and events are already semantically typed, we can simply point to their
generic, semantics-based description of the data structure (Voigt et al. 2012a).

Also the CoRe (cf. Fig. 5.10-4) is extended to allow for the semantic-driven
management of visualization components based on the enhanced SMCDL. Further,
the recommendation for appropriate components (cf. Sect. 5.4) need to be integrated
as a multi-level process comprising the discovery and ranking (Voigt et al. 2012a).
And some of the knowledge externalization functionalities (cf. Sect. 5.4) are added,
especially the collaborative filtering approach for the user-based rating which is
employed during the recommendation.

The MRE (cf. Fig. 5.10-5) provides the interface between the user, DaRe, and
CoRe. Therefore, the complete user-driven workflow is implemented as wizard-like
composite CRUISe application comprising specialized and thus, efficient user in-
terface components for each stage. To enable novices to create, edit, and delete
communication connections between visualization components, we added a more
abstract coordination layer and a helpful meta visualization to show existing com-
munication relations (cf. Fig. 5.8). Further, the runtime is extended to handle RDF
data received from the DaRe as shared data layer for all components.

Finally, we utilize the CroCo context service (cf. Fig. 5.10-6) to track the user
and device context. We slightly extended its knowledge model using the VISO vo-
cabulary to store visualization specific preferences.

5.5.3 Implementation

All the parts presented in the architectural overview are prototypical implemented to
allow for an evaluation. Only single features, e.g., the association rule mining within
the data and visualization selection to extract implicit knowledge (cf. Sect. 5.4), are
missing. In the following, we highlight some of the implementation details of the
DaRe and CRUISe on the whole.

The DaRe is implemented using Java and is accessible through a RESTful web
service API using Java Jersey.12 Its core is a RDF triple store which allows to store

12http://jersey.java.net/.

http://jersey.java.net/

104 M. Voigt et al.

and filter the datasets. To identify an appropriate one, we conducted a benchmark us-
ing different real-world datasets on freely available triple stores (Voigt et al. 2012c).
Although no store stands out in this test, we decided on Jena TDB13 due to the exis-
tence of an extendable rule engine required for the analysis within the augmentation
step. We implemented various data access components to use RDF datasets from
uploaded files or received from web services. Further, we integrated Apache POI14

and the D2RQ engine15 to use Excel spreadsheets and MySQL databases as data
sources. To carried out the data reduction we implemented and integrated numerous
algorithms. For example, we employ the JGraphT16 library for graph calculations,
we reuse the key concept extraction API,17 and integrated RapidMiner 5.218 includ-
ing the RMonto plug-in (Potoniec and Ławrynowicz 2011) to cluster the Semantic
Web data.

As aforementioned, we are relying on the CRUISe ecosystem to enable the user-
centered, semantics-driven visualization of Semantic Web data. Therefore, we had
to extend the existing implementation mainly at three points. First, we integrated the
algorithm to recommendation visualization components into the Java-based CoRe.
In this regard, we had to extend the semantic model, which stores the informa-
tion about the registered components, according the visualization specifics from
VISO. Our algorithm makes use of the already integrated Apache Jena API and
its SPARQL functionality. Second, we developed CRUISe user interface compo-
nents to implemented the user-centered visualization workflow (cf. Fig. 5.3), e.g.,
the data pre-selection, and to visualize the data. Like other components, we rely
on HTML, JavaScript—using frameworks like D3.js19 or jQuery20—and partly on
Adobe Flash. Third, we extended the JavaScript-based MRE to enable the user
to create and manage the coordination behavior between components on runtime.
To visualize the connections in the meta-visualization we rely on the Raphael li-
brary.21

The mashup paradigm coming along with CRUISe allows to easily extend our
system with new visualization components but also the DaRe is adaptable to use
other data sources. All in all, our web-based visualization system VizBoard could
be adapted on current needs and thus is applicable on different devices in various
domains.

13http://jena.apache.org/documentation/tdb/.
14http://poi.apache.org/.
15http://d2rq.org/.
16http://jgrapht.org/.
17http://sourceforge.net/projects/kce/.
18http://rapid-i.com/.
19https://github.com/mbostock/d3.
20http://jquery.com/.
21http://raphaeljs.com/.

http://jena.apache.org/documentation/tdb/
http://poi.apache.org/
http://d2rq.org/
http://jgrapht.org/
http://sourceforge.net/projects/kce/
http://rapid-i.com/
https://github.com/mbostock/d3
http://jquery.com/
http://raphaeljs.com/

5 Semantics-Based Information Visualization 105

5.6 Conclusion and Future Work

Gaining insights from the growing amount of available Semantic Web data has be-
come seemingly impossible for novices. However, this is exactly the situation that
domain experts are facing, as more and more data is provided in the form of RDF,
RDFS or OWL. To address this need for user-centered Information Visualization,
we have proposed three ingredients: (1) a semantic model formalizing visualization
knowledge, (2) a user-centered, semantics-driven visualization workflow utilizing
the shared visualization model, and (3) a corresponding software architecture to re-
alize the workflow. While the model has been covered extensively in Voigt et al.
(2012a), this chapter has focused on the workflow and its application.

In contrast to existing InfoVis processes, e.g, the pipeline model, our novel visu-
alization workflow actively guides novices from a given set of semantic input data
to suitable visualization components using the shared visualization knowledge and
contextual information. Even though we have presented a corresponding software
system and composition architecture, all steps of the workflow are generic enough
to be realized and supported by other tools and frameworks. It should also be noted,
that the process itself remains independent from the underlying data models and can
thus be employed for arbitrary Semantic Web data. Thus, we facilitate and welcome
implementations and evaluations by the community.

As a manifestation of our concepts, we have presented an architecture which
implements the workflow and utilizes VISO as the semantic model. To this end,
we employ the mashup paradigm whose goal is the combination of existing web
resources—in our case RDF data and InfoVis widgets—to create an added value for
the user. The architecture is easily extensible with both new visualization compo-
nents and new data connectors. As it is web-based and includes context knowledge
in the composition process, it can be utilized on different devices, such as desktops,
tablets, and smartphones, independent of location and time.

As mentioned before, this chapter provides an overview of our work on a user-
centered, semantic-driven InfoVis workflow and its implementation in an extensible,
open workbench. While the core concepts—the recommendation and selection of
suitable visualization components—has already been validated (Voigt et al. 2012a,
2012b), a high-performance triple store for the DaRe has been identified (Voigt et al.
2012c), and large parts of the workbench have been realized based on the CRUISe
platform, a few things remain to be done. In particular, we are planning to conduct
three user studies to evaluate our concepts and prototypes of the data reduction (cf.
Sect. 5.4.2) and knowledge externalization (cf. Sect. 5.4.6) as well as the acceptance
of VizBoard in general.

References

Boukhelifa, N., Roberts, J. C., & Rodgers, P. J. (2003). A coordination model for exploratory
multiview visualization. In Coordinated and multiple views in exploratory visualization (pp. 76–
85).

106 M. Voigt et al.

Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical
Sociology, 25(2), 163–177. doi:10.1080/0022250X.2001.9990249.

Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization:
using vision to think. San Francisco: Morgan Kaufmann. ISBN: 1558605339.

Chen, M., Ebert, D., Hagen, H., Laramee, R. S., van Liere, R., Ma, K.-L., et al.(2009). Data,
information, and knowledge in visualization. IEEE Computer Graphics and Applications, 29(1),
12–19. doi:10.1109/MCG.2009.6.

Cleveland, W. S., & McGill, R. (1984). Graphical perception: theory, experimentation, and applica-
tion to the development of graphical methods. Journal of the American Statistical Association,
79(387), 531–554.

Dadzie, A.-S., & Rowe, M. (2011). Approaches to visualising linked data: a survey. Semantic Web,
2(1), 89–124. doi:10.3233/SW-2011-0037.

Ding, L., DiFranzo, D., Graves, A., Michaelis, J., Li, X., McGuinness, D. L., & Hendler, J. A.
(2010). TWC data-gov corpus: incrementally generating linked government data from data.gov.
In WWW’10 (pp. 1383–1386). doi:10.1145/1772690.1772937.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting
useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34.
doi:10.1145/240455.240464.

Glimm, B., Hogan, A., Krötzsch, M., & Polleres, A. (2012). Owl: yet to arrive on the web of data?
In Linked data on the web (LDOW2012).

Grammel, L., Tory, M., & Storey, M.-A. (2010). How information visualization novices construct
visualizations. IEEE Transactions on Visualization and Computer Graphics, 16, 943–952.

Haber, R., & McNabb, D. A. (1990). Visualization idioms: a conceptual model for scientific visu-
alization systems. In Visualization in scientific computing (pp. 74–93).

Hearst, M. A. (2009). Search user interfaces. Cambridge: Cambridge University Press.
Heer, J., van Ham, F., Carpendale, S., Weaver, C., & Isenberg, P. (2008). Creation and collabora-

tion: engaging new audiences for information visualization (pp. 92–133). Berlin, Heidelberg:
Springer. doi:10.1007/978-3-540-70956-5_5.

Kadlec, B. J., Tufo, H. M., & Dorn, G. A. (2010). Knowledge-assisted visualization and seg-
mentation of geologic features. IEEE Computer Graphics and Applications, 30(1), 30–39.
doi:10.1109/MCG.2010.13.

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., & Giannopoulou, E. (2007).
Ontology visualization methods—a survey. ACM Computing Surveys, 39(4), 10.
doi:10.1145/1287620.1287621.

Leida, M., Afzal, A., & Majeed, B. (2010). Outlines for dynamic visualization of semantic web
data. In LNCS: Vol. 6428. On the move to meaningful internet systems: OTM 2010 workshops
(pp. 170–179). Berlin: Springer.

Mazumdar, S., Petrelli, D., & Ciravegna, F. (2012). Exploring user and system requirements
of linked data visualization through a visual dashboard approach. Semantic Web Journal.
doi:10.3233/SW-2012-0072.

Peroni, S., Motta, E., & d’Aquin, M. (2008). Identifying key concepts in an ontology, through the
integration of cognitive principles with statistical and topological measures. In LNCS: Vol. 5367.
The semantic web (pp. 242–256). Berlin: Springer.

Pietschmann, S. (2009). A model-driven development process and runtime platform for adaptive
composite web applications. International Journal on Advances in Internet Technology, 4(1),
277–288.

Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., & Meißner, K. (2010). A meta-
model for context-aware component-based mashup applications. In Proc. of the 12th int. conf.
on information integration and web-based applications & services.

Popov, I., Schraefel, M., Hall, W., & Shadbolt, N. (2011). Connecting the dots: a multi-pivot ap-
proach to data exploration. In International semantic web conference.

Potoniec, J., & Ławrynowicz, A. (2011). RMonto: ontological extension to RapidMiner. In 10th
international semantic web conference (ISWC2011).

http://dx.doi.org/10.1080/0022250X.2001.9990249
http://dx.doi.org/10.1109/MCG.2009.6
http://dx.doi.org/10.3233/SW-2011-0037
http://dx.doi.org/10.1145/1772690.1772937
http://dx.doi.org/10.1145/240455.240464
http://dx.doi.org/10.1007/978-3-540-70956-5_5
http://dx.doi.org/10.1109/MCG.2010.13
http://dx.doi.org/10.1145/1287620.1287621
http://dx.doi.org/10.3233/SW-2012-0072

5 Semantics-Based Information Visualization 107

Sahoo, S. S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, Jr. T., Auer, S., et al. (2009). A survey
of current approaches for mapping of relational databases to RDF. W3C RDB2RDF Incubator
Group.

Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information visu-
alizations. In Proc. of IEEE symp. on visual languages (pp. 336–343). doi:10.1109/VL.1996.
545307.

Sicilia, M. A., Rodríguez, D., García-Barriocanal, E., & Sánchez-Alonso, S. (2012). Empirical
findings on ontology metrics. Expert Systems with Applications, 39(8), 6706–6711. doi:10.1016/
j.eswa.2011.11.094.

Tietz, V., Blichmann, G., Pietschmann, S., & Meißner, K. (2011). Task-based recommendation of
mashup components. In Proc. of the 3rd intern. workshop on lightweight integration on the web
(ComposableWeb 2011). Berlin: Springer.

van Wijk, J. J. (2005). The value of visualization. In Proceedings of IEEE visualization (pp. 79–86).
doi:10.1.1.75.6547.

Voigt, M., & Polowinski, J. (2011). Towards a unifying visualization ontology (Tech. Report No.
TUD-FI11-01). Dresden, Germany, TU Dresden. ISSN: 1430-211X.

Voigt, M., Pietschmann, S., Grammel, L., & Meißner, K. (2012a). Context-aware recommenda-
tion of visualization components. In Proc. of the 4th intern. conf. on information, process, and
knowledge management (eKNOW 2012).

Voigt, M., Werstler, A., Polowinski, J., & Meißner, K. (2012b). Weighted faceted brows-
ing for characteristics-based visualization selection through end users. In Proc. of the 4th
symp. on engineering interactive computing systems, Copenhagen, Denmark (pp. 151–156).
doi:10.1145/2305484.2305509.

Voigt, M., Mitschick, A., & Schulz, J. (2012c). Yet another triple store benchmark? Practical expe-
riences with real-world data. In Proc. of. the 2nd intern. workshop on semantic digital archives
(SDA).

Voigt, M., Pietschmann, S., Meißner, K. (2012d). Towards a semantics-based, end-user-centered
information visualization process. In Proc. of the 3rd international workshop on semantic mod-
els for adaptive interactive systems (SEMAIS 2012).

Wang, X., Jeong, D. H., Dou, W., Lee, S.-W., Ribarsky, W., & Chang, R. (2009). Defining and
applying knowledge conversion processes to a visual analytics system. Computers & Graphics,
33(5), 616–623.

http://dx.doi.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1016/j.eswa.2011.11.094
http://dx.doi.org/10.1016/j.eswa.2011.11.094
http://dx.doi.org/10.1.1.75.6547
http://dx.doi.org/10.1145/2305484.2305509

Chapter 6
PASTREM: Proactive Ontology Based
Recommendations for Information Workers

Benedikt Schmidt, Eicke Godehardt, and Heiko Paulheim

Abstract Information work involves the frequent (re)use of information objects
(e.g. files, web sites, emails) for different tasks. Information reuse is complicated
by the scattered organization of information among different locations. Therefore,
access support based on recommendations is beneficial. Still, support needs to con-
sider the ad-hoc nature of information work and the resulting uncertainty of informa-
tion requirements. We present PASTREM, an ontology-based recommender system
which proactively proposes information objects for reuse while a user interacts with
a computer. PASTREM reflects the ad-hoc nature of information work and allows
users to switch seamlessly between recommendations for more multitasking ori-
ented or more focused work. This chapter describes the PASTREM recommender,
the used data foundation of interaction histories, data storage in an ontology and the
process of recommendation elicitation. PASTREM is evaluated in comparison with
other, activity related recommendation approaches for information reuse, namely
last recently used, most often used, longest used and semantically related. We report
on strength and weaknesses of the approaches and show the benefits of PASTREM
as recommender which considers the difference between single task focused and
multitasking oriented recommendations.

6.1 Introduction

Information is a resource for as well as a product of information work. Within the
daily work process, numerous information objects (e.g. files, web sites) are created,
modified or consumed using different applications. The sheer amount of accessed

B. Schmidt (B) · E. Godehardt
SAP Research, Darmstadt, Germany
e-mail: benedikt.schmidt@sap.com

E. Godehardt
e-mail: eicke.godehardt@sap.com

H. Paulheim
University of Mannheim, Mannheim, Germany
e-mail: heiko@informatik.uni-mannheim.de

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_6,
© Springer-Verlag London 2013

109

mailto:benedikt.schmidt@sap.com
mailto:eicke.godehardt@sap.com
mailto:heiko@informatik.uni-mannheim.de
http://dx.doi.org/10.1007/978-1-4471-5301-6_6

110 B. Schmidt et al.

information and the difficulty or impossibility of managing the information results
in information overload (stated in a study among 124 managers) (Farhoomand and
Drury 2002), threatening the effective and efficient use of information to execute
work. As an effect, information retrieval and access present themselves as dominant
activities of the workday (Jensen et al. 2010). Interestingly enough, the same infor-
mation object might be searched for several times. Information objects are reused
when an interrupted task is resumed, when they seem appropriate in the context of
another task or as a template or data provider for other information objects (Jensen
et al. 2010). Each time, the location of an information object is forgotten a duplica-
tion of earlier retrieval activities follows.

Different tasks and different state of knowledge of the worker foster different
information needs and result in an uncertainty of an information workers’ informa-
tion requirements throughout the work day. An uncertainty which complicates the
support of retrieval and access activities.

The reuse of already accessed information objects is supported by features like
histories, recently used file lists or manually maintained favorite lists (Bergman
et al. 2009). Histories and recently used file lists show a list of previously accessed
information object (e.g. the last 10 accessed documents). Favorite lists are man-
ually maintained lists used to structure frequently used information objects. One
limitation of these approaches is the scope: generally they are limited to one spe-
cific application (e.g. history of a web browser, recently used files of a text proces-
sor). Additionally, the size of the lists is frequently restricted to maintain readability
(a list of more than 10 items is hard to read). Due to the limitations, other retrieval
techniques—not considering the reuse characteristic—like information search are
frequently applied for reused objects.

In this chapter, the access of previously used information objects is supported by
a recommender approach named PASTREM.1 Recommenders are generally used
to help users to explore information collections under uncertainty. This is achieved
based on rating the suitability of items for a user by identifying preference infor-
mation (Adomavicius and Tuzhilin 2005). Preference information results from ob-
served activities (e.g. which products were watched and which were bought in an
online store). The reuse of information in information work can benefit from a sim-
ilar approach. We consider user activities at the computer desktop as criteria for the
recommender system and previously accessed information objects as data source
to develop the PASTREM recommender. PASTREM uses a topic model based ap-
proach, resulting in the unsupervised recommendation of information objects based
on recent activities.

PASTREM has been developed in the context of a toolset to support information
work based on data collected from user activities (Schmidt et al. 2011a, 2012). The
existing architecture creates an ontology that contains detailed information about
the activities of the user, including accessed information objects, time spent with
the information objects, the respective content and the activities performed on the

1PASTREM refers to the supported process: the REMembering of useful information objects
which already have been used in the PAST.

6 Proactive Ontology Based Recommendations 111

information objects. PASTREM uses this data, extends it by a representation of
topics, relevant for the user, created by a topic model approach. The identified topics
are composed of words and are linked to information objects. While the user is
working, PASTREM basically identifies active topics based on the content of the
information objects in the interaction stream of the user. Within the ontology, the
active topics link to information objects which are ranked and which are proactively
proposed to the user.

The remainder of this chapter is structured as follows. First, information work
is discussed to underpin the claim that uncertainty with respect to the information
requirement exists, and to highlight the relevance of user activities to derive infor-
mation requirements. Second, existing recommender approaches in the domain of
information work are presented and claims for further research on recommender
approaches are derived. Third, the ContAct monitor is presented which is the core
component of the toolset PASTREM belongs to. The description of ContAct helps
to understand the data used by PASTREM to create recommendations. Core element
of ContAct is the computer work ontology (CWO) which formalizes identified user
activities. Fourth, the PASTREM recommender approach is described and evalu-
ated. PASTREM is evaluated by comparing the performance of PASTREM to other
recommendation approaches, namely last recently user, most often used, longest
used and semantically related. All recommenders are compared by measuring the
recommendation quality on two existing interaction history data sets of 24 work
days. Summary and outlook conclude the chapter.

6.2 Information Work

This section provides a basic understanding of information work. The relevance
of information within information work is shown while specific consideration is
given to the unpredictability of the information demand due to the dynamicity of
work execution. This is the foundations for the later review of existing recommender
systems for information work within this chapter.

6.2.1 Multitasking Coordinated by Interruptions

Information workers frequently have a set of different tasks they have to work on.
The ad-hoc nature of the information work process results from the way information
workers deal with those multiple tasks. Notably, tasks are not processed sequen-
tially, finalizing one task after another. To address constraints (e.g. time) or to react
on events, information workers switch tasks, which means that a task is set on hold
before it is finalized to start or continue working on a different tasks. Thus, tasks
are processed in parallel or in rapid succession (Link et al. 2005), coordinated by
interruptions.

112 B. Schmidt et al.

Two general types of interruptions can be distinguished (González and Mark
2004; Salvucci and Taatgen 2008): internal and external interruptions. Internal in-
terruptions result from the information worker himself. The information worker de-
cides to switch tasks because of internal stimuli. External interruptions result from
events in the environment, external stimuli. Different studies have shown indepen-
dently that interruptions are evenly distributed among internal and external interrup-
tions (González and Mark (2004) talks about 50 %, Czerwinski et al. (2004) talks
about 40 % self-initiated interruptions).

Interruptions at the computer workplace have become increasingly relevant with
the computer becoming a multi-task machine (Salvucci and Taatgen 2008). One-task
computers discouraged multitasking, whereas the ability to start multiple programs
at the same time and access multiple information objects at a time encourages the
described multitasking.

A study among Fortune 100 companies (Gallup and San Jose State University
and Park, Institute for the Future in Menlo 1999) showed that eighty-four percent
of the staffers are interrupted at least three times per hour by messages. In this
group, 51 % are interrupted six or more times per hour. Seventy-one percent feel
overwhelmed by the message traffic. Czerwinski et al. (2004) reports on an aver-
age of 50 goal shifts over a week that were relevant to realize complex goals. Most
shifts were triggered by interruptions. Apart from coordinative interruptions, inter-
ruptions may as well provide necessary information that is required to realize a goal
(González and Mark 2004; Morteo et al. 2004). In this sense, interruptions may even
be a core characteristic of work, as Sproull identifies for managers (Sproull 1984).

6.2.2 Uncertainty of Information Requirements

Information is outcome as well as raw material of information work (Aral and Bryn-
jolfsson 2007). First, information work produces information as instrument for il-
locutionary and perlocutionary acts in Austin’s sense (Austin 1962). The individual
executes an act by creating a certain piece of information (illocution)2 or the in-
dividual disseminates information (which can also be the modification of symbols
in computers) to have a following effect in the real world (perlocution). Second,
the work execution itself builds on information, external information accessed and
transformed within the work process as well as information which is internalized in
the individual (Polyanyi 1966).

Uncertainty with respect to the actual information requirements within informa-
tion work processes follows. Due to the lack of predefined work processes, the over-
all information requirement for a work task is unknown. Even if the information
requirement can be derived, the fragment of internalized information of the infor-
mation worker is unknown. Only the activities performed by the information worker
at least indicates the overall work domain and possible information requirements.

2An example is a priest who contracts a marriage.

6 Proactive Ontology Based Recommendations 113

6.2.3 Information Reuse

Each task switch modifies the information requirement of the information worker
and triggers processes of information retrieval and information access to find the
relevant information for the task the information worker switched to. If a task is
resumed, the search and access activities are duplications of earlier efforts. When
a task was tackled earlier, the subject already identified relevant information but
probably needs to identify this information again, once the task is resumed after an
interruption.

Barreau and Nardi (1995) classified information reuse as (1) ephemeral informa-
tion, (2) working information and (3) archived information. Ephemeral information
is information which has only a short lifespan, e.g. like some emails or a todo list.
Reuse of ephemeral information is unlikely. Working information is the informa-
tion which is actively produced or modified by the information worker over a longer
period of time. Reuse of working information is simple, as the information worker
generally spends much time with it and knows where he put it. Archived informa-
tion is information which is used in the work process and has relevance over a long
or very long period of time (e.g. weeks and month). Studies show that the reuse
of ephemeral and archived information is complex (Barreau and Nardi 1995). The
short time span and the large amount of different information types complicates the
access of this type of information.

Although the study by Barreau et al. is from 1995, the results seem not out-
dated. Techniques which support the quick and simple retrieval of earlier accessed
information objects without requiring substantial manual maintenance effort are re-
quired. Next to the already mentioned software features of recently used lists and fa-
vorites additionally, different personal organization techniques may be applied. Ex-
amples of personal organization techniques are tags as categorization system, folder
structures as classifying system, post-its etc. All techniques are frequently used and
require substantial manual maintenance effort while an increasing complexity of the
technique additionally complicates the retrieval (e.g. folder structure depth and size
positively correlate with retrieval time; Bergman and Whittaker 2012).

6.3 Related Work

Various recommender approaches exist to support information reuse. One way to
address the uncertainty of information requirements is the use of interaction histo-
ries. Interaction histories are logs of user system interactions generated by software
sensors (Kaptelinin 2003). This basic representation of activities gives an under-
standing of the information relevant for the information worker at that specific mo-
ment and to derive potential information requirements. The main differences of the
systems exist with respect to a limitation of recommended information types (e.g.
only web-sites) and the data source of information to be used for support.

114 B. Schmidt et al.

6.3.1 Overview of Approaches

The Dyonipos system (Makolm 2008; Rath and Weber 2008) uses the interaction
history to recommend documents, people and locations from the users’ personal and
the organizational information stores. The recommendations are based on classifiers
trained during design time for a set of tasks. The APOSDLE system analyzes user
work and identifies documents related to the activities of the user based on a dis-
tinction of navigational goals, information goals and transactional goal (Lokaiczyk
et al. 2007). Like Dyonipos, the APOSDLE system recommends based on trained
classifiers. A limitation of the Dyonipos and the APOSDLE approach is the need to
know about existing tasks and information requirements at design time of the sys-
tem. The TaskTracer system, a personal information management system, uses an
extension called TaskPredictor to train classifiers during work execution (Shen et al.
2006). Thus, the limited information about work tasks that occurs in information
work is addressed.

Dyonipos, APOSDLE and TaskTracer encapsulate the recommendation logic
and sometimes even the used data foundation in the trained model. The black box
characteristic of trained models complicates system maintenance and extension. An
open and transparent formalization of the used data source and the recommendation
logic in form of an ontology is an alternative approach. Middleton et al. developed
the Quickstep and the Foxtrot system (Middleton et al. 2004). The system creates
interaction histories for the access of research papers and uses the IBk (Aha et al.
1991) classifier to determines a paper class, a research paper belongs to which is
added to an ontology. The ontology is used to create recommendations based on the
types of research papers accessed over a day and additionally considers explicit user
feedback on paper types of interest.

The SPREADR system uses features of user history, location and local time to
create recommendations in a spreading activation network which is built based on
ontologies (Hussein et al. 2007). Activated features spread the activation among the
network. SPREADR has been used to recommend events and artists in an adaptive
music portal web-site.

While approaches like Dyonipos,3 APOSDLE and TaskTracer address all types
of information work at the computer workplace, a very straight forward method of
training recommendation is used, which requires training effort, during design time,
while later maintenance and extension is complex. The recommendations have a
short lifespan and are updated frequently. The approaches that use ontologies have
been used for specific domains like research papers or a music portal, considering
recommendations with a long lifespan.

To address information work based on recommender system that use ontologies,
respective domain ontologies are required. Two examples and important results of

3Dyonipos uses ontologies only to capture events in interaction histories. The classifiers do not
extend the ontology.

6 Proactive Ontology Based Recommendations 115

this research have been developed in the context of social semantic desktops, within
the Nepomuk4 and the Calo project (Cheyer et al. 2005). Both projects provide an
initial ontology which allows a basic classification of things which may have rel-
evance in different information work scenarios, including elements like files, loca-
tions and tasks. The ontology of the Nepomuk project is a RDF-S ontology named
PIMO (Personal Information Model). Similarly, IRIS provides a personal topic map
based on OWL ontologies. After crawling information stores, both ontologies pro-
vide a rich presentation of data users are working with. The main use of the data
is browsing of the personal information structure. We have developed a comparable
ontology, named computer work ontology (CWO) (Schmidt et al. 2011b). The com-
puter work ontologies is capable of managing very different types of information
objects which may be used in information work. It has been designed to be used by
tools to collect and process interaction histories.

6.3.2 Requirements for Information Reuse Support

Based on the reviewed recommender approaches, requirements for further research
in the domain of recommender for information reuse can be identified:

1. Characteristic: During design time, there is a lack of knowledge which types of
user tasks will be executed and which information requirements may occur when
the tool is used.
Requirement: Recommendation models need to derive recommendations based
on data which emerges when a recommender is used, not based on design time
assumptions.

2. Characteristic: Every required user input, e.g. the maintenance of models or the
supervision of a training is a potential interruption.
Requirement: The creation of recommendation models should require no, or min-
imal user input.

3. Characteristic: System requirements may change over times, requiring mainte-
nance or extension.
Requirement: Recommender approaches should structure the trained data and the
used data source in a way which is open to access, to increase maintainability and
extendibility.

4. Requirement: Information requirements change frequently during the work time
due to multitasking.
Characteristics: A recommender approach needs to monitor indicators of in-
formation requirements closely to align the recommendations, especially if task
switches occur.

4http://nepomuk.semanticdesktop.org/nepomuk/.

http://nepomuk.semanticdesktop.org/nepomuk/

116 B. Schmidt et al.

6.4 ContAct Monitor and the Computer Work Ontology

This section presents the ContAct monitor. The ContAct monitor collects interaction
histories, processes the interaction data and creates a formal representation of the
information workers’ work process. The PASTREM recommender approach pre-
sented later in this chapter builds on the output of the ContAct monitor.

Basically, the ContAct monitor realizes an interaction history management pro-
cess, composed of the steps (1) data collection, (2) data processing and (3) data
organization. A detailed overview of these steps is given in Schmidt and Godehardt
(2011). In this chapter, we give a summary of the involved components with a focus
on the computer work ontology, used to formalize the work process.

6.4.1 Data Collection

Data collection in the ContAct monitor is realized with software sensors to store
an interaction histories. The existing implementation of the ContAct monitor can
be used for Windows 7 and Windows 8. Each time the foreground process changes
or the user interacts with the computer, an event is generated which specifies the
foreground process, the information object accessed (if available) and the textual
content displayed by the object (if available). This data gives a detailed overview
of the sequence of the work process with detailed information about the type of
information, the user interacts with.

6.4.2 Data Processing

The data processing step enriches the interaction history and derives additional in-
formation from the history. The output is a classification of the user activities and
an aggregation of activities which were repeated during execution. For example, in
an interaction history, multiple switches to a word processor with a similar open
document may exist, always accompanied by multiple keyboard inputs. The data
processing classifies this as authoring of the respective document and aggregates all
respective events.

6.4.3 Data Organization

The work process data that results from the data collection and data processing is
stored in the computer work ontology (CWO). The CWO offers a vocabulary of
user system interactions based on the DOLCE foundation ontology (Gangemi et al.
2002). This brief presentation follows a detailed discussion of CWO in Schmidt
et al. (2011b). In the following, the specific characteristics of DOLCE and CWO are
provided.

6 Proactive Ontology Based Recommendations 117

DOLCE

DOLCE, the “descriptive ontology for linguistic and cognitive engineering” (Gan-
gemi et al. 2002), is a foundational ontology with its roots in cognitive science
and linguistics. It provides a top level of categories in which entities can be classi-
fied. Notably, the top level category is “particular”—where a particular is something
which cannot have direct instances, whereas a “universal” is something which can
have direct instances. For example, the Eiffel Tower is a universal, since there is
a direct instance of it. A building, on the other hand, is a particular, since there is
nothing that would be denoted as the building. Universals are members of the sets
defined by particulars (Masolo et al. 2001).

The top level of DOLCE is composed of four basic categories: ENDURANT, PER-
DURANT, QUALITY, and ABSTRACT. An endurant is something whose parts a fully
present at a given point in time (like a car), while a perdurant is something whose
parts are not fully present at a given point in time (like the process of driving with
a car). As a consequence, the parthood relation for endurants is only fully defined
when adding a time span (e.g. “Alan Wilder was a member of Depeche Mode from
1982 to 1995”), while the parthood relation for perdurants does not require such a
time span (e.g. “the 1980s were part of the 20th century”), as explained by Masolo
et al. (2001).

Typically, endurants participate in perdurants (like a car participating in the driv-
ing of that very car). Important distinctions of endurants encompass physical vs.
non-physical and agentive vs. non-agentive endurants.

Qualities are entities that can be perceived or measured, like the color and the
prize of a car. Every entity may have a set of qualities that exist as long as the entity
exists. DOLCE distinguishes physical qualities (such as size or color), temporal
qualities (like the duration of a process), and abstract qualities (such as a prize).

Abstracts are entities that neither have any qualities nor are qualities by them-
selves. A typical abstract is a spatial region or a time interval.

Several extensions to DOLCE exist (see Fig. 6.1). One of the most frequently
used is the DOLCE DNS (Descriptions and Situations) module, which is used to
formalize communication scenarios. The DNS ontology provides useful concepts
for describing such interoperations, such as parameters, functional roles, and com-
munication methods. Due to its wide usage, DOLCE and DOLCE DnS are bun-
dled together in one ontology as DOLCE-Lite. DOLCE-Lite consists of 37 classes,
70 object properties, and 349 axioms.

Based on the DnS extension, two other extensions to DOLCE have been pro-
posed, which are useful foundations for using ontologies in the field of software
engineering. The DDPO (Dolce and DnS Plan Ontology) (Gangemi et al. 2004),
which defines categories such as tasks and goals, as well as constructs needed to
account for the temporal relations, such as preconditions and postconditions. The
information object ontology (Gangemi et al. 2004) defines information objects (such
as printed or digital documents) and their relations to actors and real world entities.
Based on these foundations, Oberle et al. (2006) have defined ontologies of software
and software components.

118 B. Schmidt et al.

Fig. 6.1 Overview of the ontologies. Dotted lines represent dependencies between ontologies. An
ontology O1 depends on O2 if it specializes concepts of O2, has associations with domains and
ranges to O2 or reuses its axioms

CWO Modeling Computer Work

The CWO is modeled by considering the computer workplace as an environment
that offers functionalities of generating, displaying and transforming data which
can be consumed as information. The functionalities and the available information
define a possibility-space for the execution of work. Functionalities are encapsulated
in software tools and information is stored in files.

Aspects related to the computer like data are modeled based on the CSO ontology
(Oberle et al. 2006). Files realize a connection between meaningful information and
software as data in a digital encoded representation.

First, we describe the representation of information by files (see Fig. 6.2). We
model a CWO:FILE5 as a role played-by only CSO:DATA. As CSO:SOFTWARE is
a subclass of CSO:DATA, we cover software as files (see Fig. 6.2). CSO:Abstract
Data is another subclass of CSO:DATA, containing data that identifies something
different from itself, e.g. the word tree that stands for a mental image of a real
tree. As a file may be abstract data or software, two aspects of files are supported:
(1) being a static information object, and (2) being an information object for ex-
ecution to make plans accessible in a runtime representation. A file as a static in-
formation object is modeled by relating the file as CSO:DATA by DNS:ABOUT

with a DNS:DESCRIPTION. A file as an executable information object relates

5From now on and throughout the paper entities that belong to CWO are given without prefix. For
all other entities, the respective prefix is given.

6 Proactive Ontology Based Recommendations 119

Fig. 6.2 The classification of software with scenarios, functionalities, and files. Concepts taken
from DOLCE and accompanying ontologies are labeled with the respective name space

CSO:SOFTWARE with OOP:PLAN by the DNS:EXPRESSES relation. This is given
by the following definitions:

(D1) File-Format(x) → IO:Formal-System(x)
(D2) specializes(x, y) ∧ File-Format(x) → File-Format(y)
(D3) uses(x, y) ∧ File-Format(x) → File-Format(y)
(D4) File(x) =def DnS:Role(x) ∧ ∃y(ordered-by(x,y) ∧ File-Format(y)) ∧ ∃z

(played-by(z,x) ∧ (AbstractData(z) ∨ Software(z))) ∧ ∀f(inputFor(x, f) →
Functionality(f)) ∧ ∀g(outputFor(x,g → Functionality(g)))

A CWO:FILE is DNS:ORDERED-BY a CWO:FILE-FORMAT. A CWO:FILE

with specific CWO:FILE-FORMATS can be input for CWO:FUNCTIONALITY. This
connection organizes the file access by functionalities, which may range from open-
ing the file to displaying content in a work processor or to the interpretation of a
web page by a web browser.

To express content extracted from a file, a DNS:ABOUT relation between
CSO:ABSTRACTDATA and the respective entity is created.

By modeling files in a way that they can stand for software, a file which rep-
resents a website can capture a service. CSO:SOFTWARE is IO:REALIZEDBY a
CSO:COMPUTATIONALOBJECT. Services use functionalities to express scenarios.
This is given with the following definitions:

(D5) CSO:Functionality(x) =def OoP:BagTask(x) ∧ ∃y(DOLCE: part-of(y,x) ∧
ComputationalTask(y))

(D6) Scenario(x) =def OoP:Abstract-Plan(x) ∧ ∀y(DnS: defines(x,y) →
Functionality(y))

(D7) CSO:Application(x) =def CSO:Software(x) ∧ ∃y(IO: realizedBy(x,y) ∧
CSO: ComputationalObjects(y)) ∧ ∀z(IO: expresses(x, z) → Scenario(z))

The described aspects allow the use of the CWO ontology to create personal
information models comparable to those given with PIMO and the IRIS ontologies.

120 B. Schmidt et al.

Fig. 6.3 Work continuum, related recommendation continuum and influence of features

The output of the organization step of the ContAct monitor is a CWO represen-
tation of the user work. This data can be stored to create an archive of user system
interactions, or it can be directly forwarded to subscribed applications. In the follow-
ing, both types will be used. The stored history is used to get an understanding of the
general history of the user. The direct forwarding helps to understand the short term
activities of the user which describe his situation and hint to existing information
requirements.

6.5 PASTREM Recommender

This section presents the PASTREM recommender approach. The PASTREM rec-
ommender builds on the CWO instance data created by the ContAct monitor and
extends it. The PASTREM recommender approach supports information reuse for
information workers for a more focused or a more multitasking oriented work. The
approach especially tackles the requirements of (1) creating models for the recom-
mender based on and within the actual work process, (2) limiting the required user
input for the recommender system (3), structuring recommendation data in an eas-
ily accessible way to improve maintainability, and (4) respecting the dynamism of
information work.

6.5.1 PASTREM Recommendation Continuum

PASTREM builds recommendations for information object reuse with respect to a
work continuum which goes from an extremely focused, single task work to multi-
tasking with frequent task switches (see Fig. 6.3). The assumption is that the actual

6 Proactive Ontology Based Recommendations 121

useful recommendations differ. A very focused work may be supported by informa-
tion objects which are closely related to the task, considering even information ob-
jects which have been accessed very few times until that moment. In contrast, a mul-
titasking oriented work requires recommendations which support the task switches
by providing information objects as anchor points for upcoming tasks. An anchor
point is an information object of high relevance which helps the user to quickly re-
call conditions and requirements of a task, like a memory cue that supports a task
switch. Therefore, multitasking oriented work would probably be supported best
by information objects of general importance. Thus, the work continuum triggers a
continuum of recommendations, focusing more or less on focused or multitasking
work respectively.

For PASTREM three activity features are used: user topics, access count and ac-
cess duration. Topics capture an abstract representation of information requirements
of the user generally related to the task a user works on. A latest time segment of
user interaction is used to identify relevant topics which hint to related information
objects in the interaction history of the user captured by the CWO. Topics can be
understood as an information requirement following the assumption that a user con-
tinues to work on a focused task. Thus, topic related recommendations help users to
focus on specific topics. Access count and overall access duration are global char-
acteristics, not related to the given focus task. Therefore, access count and access
duration support task switches as they result in information object recommendations
of general high relevance, possibly unrelated to an active task but serving as memory
cues for task switches.

In the following, information about topic modeling and the integration of topics
into the CWO is provided. Then, the overall process of PASTREM is presented,
including data preparation and recommendation elicitation (see steps in Fig. 6.4).

6.5.2 Topic Modeling for CWO

Topic modeling stands for a group of approaches which use Bayesian parameter es-
timation on multinomial distributions frequently used to derive the latent semantics
of a text corpus. PASTREM uses the Latent Dirichlet Allocation (LDA) (Blei et al.
2003) to derive topics as latent semantics from a user interaction history as text cor-
pus. In the following, a brief description of LDA is provided and the integration of
topics, extracted from interaction histories, into the CWO is described.

The model assumption of LDA is that documents are composed of topics, while
each topic is a set of words. Creating a document means choosing the required
topics, their relevance for the document and sampling the words from the set of
topics. LDA reverts this process and extracts a generative probabilistic model from
a text corpus using Bayesian methods (for a good introduction, see Heinrich 2009).
The model describes the probability that a word is part of a topic and the probability
that a topic was used to generate a document.

Input for LDA is a bag of words representation of documents, i.e. the words used
in the corpus are enumerated and for each document the count of each word is noted.

122 B. Schmidt et al.

Fig. 6.4 Processes involved in the recommendation creation

6.5.3 Adding Topics, Access Count and Access Duration to CWO

The extended information object design pattern (Gangemi et al. 2004) describes the
modeling of an information object. An information object can be realized by any
sort of entity and can be about any sort of entity. To express that a file has a content
which stands for different topics the following model applies: the file plays the role
of abstract data, as discussed above, and the abstract data expresses a topic which
is modeled using the subject entity. As the topic extraction identifies a value which
stands for the relatedness of the data to the topic we have applied reification.

An IO:SUBJECT gets connected to a CSO:MEASUREMENT unit with a property
of type DNS:REFERENCES. The CSO:MEASUREMENTUNIT is again connected
to an IO:INFORMATIONOBJECT. The measurement unit contains the relatedness
value.

6 Proactive Ontology Based Recommendations 123

For access count and access duration, the extraction is simpler. They can be de-
rived from the CWO based on the logged work situations which refer to information
objects. The situation number for each information object needs to be counted to get
the access count while the access duration is provided by the sum of the situation
durations for each information object.

6.5.4 Data Preparation

The data preparation described in the following especially focuses on the extraction
of topics from the interaction which requires most effort within the recommendation
process. Data preparation creates two artifacts which are used in the recommenda-
tion process. On the one hand, an instance of the CWO ontology is created and
annotated with information about topics and the relatedness values for information
objects. On the other hand, a model of the user topics is created, which is later used
to infer topic distributions of new documents.

Data preparation is a time consuming task which needs to be performed on a
regular basis (e.g. daily):

1. Ontology creation: First, the CWO ontology is filled with instance data about
the elements the user interacts with. Based on the classification of information
objects and additional heuristics, CWO instances are extracted. The resulting
CWO ontology links information about the information objects, services and
applications a user interacted with. The CWO also includes information about
work episodes, thus providing data about access count and access duration of the
information objects. This is the output of the ContAct monitor.

2. Topic model creation and ontology enrichment: Second, the content of the inter-
action history is used to identify topics of the accessed content. This is done using
LDA, which requires a bag of words representation of the content as input. The
bag of words is created in a document processing pipeline, as it is frequently used
in natural language processing tasks (Nadkarni et al. 2011). The pipeline contains
the following elements: tokenizer, language detection based on n-grams, part of
speech tagging and stopword detection. Stopwords are deleted and only nouns
and verbs are processed further.
The pipeline creates content representations as bags of words: lists of words with
the number of occurrences.
The corpus represented by sets of bag of words is input to LDA. The LDA algo-
rithm creates two distributions: a distribution of words to topics and a distribution
of topics to documents. The LDA algorithm requires the input of topics before
the algorithm runs. As the amount of useful topics generally is not known, a
workaround can be used. The perplexity “is monotonically decreasing in the
likelihood of the test data, and is algebraically equivalent to the inverse of the
geometric mean per-word likelihood” (Blei et al. 2003). The lower the perplex-
ity score, the better the generalization performance. If LDA is executed several

124 B. Schmidt et al.

times for different amounts of topics, the perplexity indicates the topic amount
with the best generalization performance.
The ontology created in the previous step is enriched by the new data. Each
topic is added as a topic entity represented by IO:Subject to the ontology.
As described in the previous section, a CSO:MEASUREMENT unit connected
with DNS:REALIZES connects CSO:ABSTRACTDATA played by the file and the
IO:Subject.
The output of the step is not only the ontology enriched with the topic and topic
relatedness data. The second output is the model of document, word and topics
created by the LDA algorithm which is used later for inference.

6.5.5 Recommendation Creation

Recommendations are proactively generated while the user is working. While ac-
cess count and access duration are directly available, the relevant topics are derived
from the latest interaction history. Therefore, the most recent segment of the users’
interaction history is used as inference set to identify the relevant topics.

The textual content of the interaction history fragment is used to identify recom-
mendations based on the CWO ontology. To create recommendations, first a bag of
word representation of the content is created using the document processing pipeline
mentioned. The access date has no influence on the recommendation creation. The
topic distribution for the content is inferred based on the model of document, word
and topics created in the previous step. As a result a numerical representation of the
topic relevance for the work in the considered latest time frame is created. The infor-
mation object relevance (IOTOPICRel) value is composed of the accumulated relat-
edness of the inference set to the topics and of the topics to the information objects:
IOTOPICRel = (

∑T
t=1(ISt + ∑I

i=1 IOit)) with T = number of topics, I = number
of information objects, ISt = relatedness of Inference set to topic t , IOit as related-
ness of information object i to topic t . Thus, the relevance of a topic for the latest
time segment adds to the relevance of all information objects for the topic.

For each information object, the relevance (IORel) for the recommendation is cal-
culated as a product of the topic relevance, the access count and the access duration
weighted by factors to increase or decrease the relevance of focused or multitask-
ing work respectively: IORel = IOTOPICβ

Rel ∗ acα ∗ adα with ac as access count, ad
as access duration in minutes and α and beta to trigger the relevance of topics for
focused work and of ac and ad for multitasking oriented work.

6.5.6 PASTREM Discussion

PASTREM addresses the needs identified for recommendation approaches for in-
formation reuse based on topic extraction on the long term interaction history and

6 Proactive Ontology Based Recommendations 125

topic inference on the short term history. The specific demands are tackled by this
approach in the following way:

1. Requirement: Creating models for the recommender based on and within the
actual work process.
Addressed: The topic model created by LDA is the model used to generate rec-
ommendations based on the interaction history of a user.

2. Requirement: Limiting the required user input for the recommender system.
Addressed: LDA is an unsupervised algorithm which only requires the work pro-
cess information provided by the ContAct monitor and captured in the CWO.
Access count and access can be calculated from the interaction history.

3. Requirement: Structuring recommendation data in an easily accessible way to
improve maintainability.
Addressed: The use of the CWO to capture an abstract representation of the com-
puter work, accessed information objects, topics and the relatedness of topics to
information objects provides simple access to the data used for recommendation
elicitation. Extension of CWO to other types of accessed information is simple,
as long as a textual representation of the information is given.

4. Requirement: Respecting the dynamism of information work.
Addressed: The frequent creation of recommendations based on the most recent
interaction history segment helps to consider the latest topic of interest which
may change the information requirement quickly within the recommendation.
The ability to increase or decrease the relevance of topics on the one hand and
access count/access duration on the other hand helps to increase or decrease the
relevance of focused or multitasking oriented work episodes.

6.6 Evaluation

In the following, the PASTREM recommender is evaluated and compared to the
results of other activity related recommenders: last recently used (LRU), semantic
relatedness (TR), most often used (MOU) and longest used (LOU). LRU, MOU and
LOU are-self explaining. The TR algorithms recommends only based on the related-
ness of the topic of the considered time segment to stored topic models with related
information objects. Especially, MOU and LRU are frequently used recommender
types used in applications (often referred to as recently used lists or histories).

The evaluation is conducted in an ex post manner. Two interaction history data
sets are used to identify the number of correct recommendations at a given position
in the history by checking whether the elements actually accessed by the user would
have been recommended. This results in a binary decision whether a used resource
was recommended or not with a hit percentage.

The evaluation process is described in the following. Information objects are
identified which have been used in a real use time segment after a randomly selected
starting point (see Fig. 6.5, start point) in the interaction history and which were
used earlier. The information objects of the real use time segment are compared to

126 B. Schmidt et al.

Fig. 6.5 Timeframes relevant for recommendation analysis for a given starting point

the recommendations generated by the recommender approaches, i.e. it is checked
how many of the reused information objects in the real use slot are recommended
by the algorithms (see Fig. 6.5, use slots).

The events before the start position are used to create recommendations. There-
fore, they are separated in two sets: (1) Model foundation set (2) Inference set. To
ensure a sufficiently large number of events to build the model, it was enforced that
the start position was in the middle or later of the interaction history. The recom-
mendation inference set is a time segment of 10 minutes before the selected position.
This time segment is used for the recommendation creation. All events that occurred
before than the recommendation inference set are used to build the ontology and to
perform topic extraction (see Fig. 6.5, model foundation and inference set).

6.6.1 Evaluation Configuration

The performance of PASTREM as well as the performance of LRU is scaled by
the amount of elements included in the recommendation list. If both propose a list
of all elements the user ever interacted with, both have the best possible recall but
a low precision. This has practical relevance for the user interface of the recom-
mender. A longer list of recommendations complicates user interactions due to lim-
ited cognitive capabilities. Therefore, the number of recommended elements is of
high importance: the lower the number of recommendations required to make a
valid recommendation, the better.

To address this, different recommendation set sizes have been compared: 10, 15,
and 20 information objects. The ranking was performed as follows. For LRU the
last n elements which were used directly before the begin of the inference set have
been used. MOU uses the n most often used elements and LOU uses those n infor-
mation objects used for the longest amount of time. TR calculates the relatedness
of the inference set to topics of the model and the relatedness of the topics to the

6 Proactive Ontology Based Recommendations 127

information objects (actually the calculation of IOTOPICRel described in the pre-
vious section). Based on the resulting values, TR recommends the n elements with
the highest relatedness. In all cases, elements from the inference set were excluded
from the list of potential recommendations, as they are already used.

Another influence factor is the length of the real use slot. The longer the slot, the
higher the probability that a recommendation might fit. This has been addressed by
considering two different real use slot lengths: 15 and 20 minutes.

A third influence factor is the temporal length of the inference set. Based on
experience, we have set the length to 10 minutes. This value has not been changed
in the study, although it is worth to investigate it further. The assumption is that
the length of a useful inference time segment length depends on the homogeneity
of work as measure for multitasking. An inhomogeneous work probably requires
smaller inference time segments than homogeneous work.

Two interaction history data sets have been analyzed, using the described process.
The α and β value were both set to one, to balance between task-focus and multitask
orientation.

6.6.2 Evaluation Process

The interaction history data sets were created by researchers at an IT company. Data
set 1 contains 15 363 interaction events (e.g., mouse clicks, window focus, etc.) for
a period of 9 work days. Data set 2 contains 18 311 interaction events for 4 work
days. Information objects were only considered, if they were at least 10 seconds
focused. The data sets represent the normal working day of the two people, starting
emails, browsing the internet, reading emails, etc.

For data sets 1 (100 data points) and for data set 2 (80 data points) were cho-
sen randomly with the constraint that at least one third of the overall event num-
ber was recorded before the selected event as starting point. The constraint assured
that enough information objects and data for reasonable recommendations and topic
model creation existed.

Data set 1 contains 620 different information object accesses in all 100 real use
time segments for a 15 minutes time segment (elements not included in the infer-
ence set). Of those 620 elements, 384 elements had not been used earlier, while
272 elements were reused. For all 20 minute real use slots, overall 765 information
objects were used, 436 had not used been before, while 329 were reused. The av-
erage number of reused information objects for a 15 minutes real use time segment
was 2.7 and 3.2 for a 20 minutes real use time segment. Only three real use slots for
15 minutes as well as for 20 minutes reused more than 20 information objects which
means that only for these three elements the largest recommendation set would be
insufficient to recommend all items.

Data set 2 contained 287 different information objects accessed in all 80 real
use time segments of 15 minutes length. The 287 elements contained 237 elements
not used before and 50 reused elements. Within the 20 minute time segments 336

128 B. Schmidt et al.

elements were accessed, 267 were unknown before and 69 were reused. An average
number of 0.6 elements were reused within 15 minutes, 0.86 were reused within 20
minutes. No slot for 15 or 20 minutes contained more than 20 information objects,
thus the recommendations could have been sufficient to recommend all actually used
information objects.

The numbers already hint to different work styles captured by the data sets. In the
following evaluation, we will see that data set 1 is more multitasking oriented while
data set 2 stands for work with less multitasking which has effects on the different
assessed recommender algorithms.

6.6.3 Evaluation Results

The accuracy of recommended information objects for PASTREM, LRU, MOU,
LOU and TR for data set 1 is given in Table 6.1 and for data set 2 in 6.2. PASTREM
shows a good performance on both data sets, as up to 67.2 % and 71.0 % (15 min)
of accuracy is reached for a list of 20 recommendation elements and a 15 minutes
time segment. For 10 elements 58.1 % (data set 1), 54.7 % (data set 2) and for 10
elements 42.6 % (data set 1), 40.4 % (data set 2) of all information objects used in
a 15 minutes segment have been actually recommended.

Interesting results is the performance of MOU for data set 1 compared to the
MOU performance for data set 2. While data set 1 reaches 69.3 % of accuracy for
20 minutes length and 20 recommendations, data set 2 only shows an accuracy of
44.7 %. A similar peculiarity is the performance of LRU which shows a good per-
formance on data set 2 reaching an accuracy of 63.6 % for 15 minutes and 20 rec-
ommendations while for data set 1 only 49.6 % of accuracy are reached for the same
value. The overall weak performance of TR (23.5 % is the highest reached accuracy
value) is another notable result. The different performances and especially the pe-
culiarities with respect to the specific characteristics of the data sets are discussed
in the following.

6.6.4 Evaluation Discussion

The evaluation showed a good performance of PASTREM for both data sets. The
only algorithm with comparable results for data set 1 is MOU which shows a less
good performance on data set 2.

Discussion of LOU and TR: LOU shows stable results between 24 and 50 %
recommendation successes which show that the usage duration indicates relevance
while it is not very useful on its own. The TR recommender shows exceptionally
weak results. The assumption is that considering topic relatedness fails to rank the
information objects which belong to the relevant topics. Additional relevance in-
dicators are required to rank the information objects of one topic, e.g. frequently

6 Proactive Ontology Based Recommendations 129

Table 6.1 Data set 1:
Accuracy of
recommendations for
PASTREM, LRU, MOU,
LOU, TR for a short (15 min)
and longer (20 min) real use
time segment of
recommendation validity with
lists of 10, 15 and 20
elements

Number of recommendations

10 15 20

PASTREM 15 minutes 42.6 % 58.1 % 67.2 %

PASTREM 20 minutes 35.6 % 39.2 % 68.1 %

LRU 15 minutes 41.5 % 42.2 % 49.6 %

LRU 20 minutes 40.1 % 41.3 % 49.2 %

MOU 15 minutes 43.7 % 64.7 % 69.1 %

MOU 20 minutes 43.2 % 64.7 % 69.3 %

LOU 15 minutes 24.2 % 37.5 % 54.0 %

LOU 20 minutes 24.3 % 37.1 % 54.7 %

TR 15 minutes 13.6 % 17.2 % 23.5 %

TR 20 minutes 12.7 % 16.5 % 22.4 %

Table 6.2 Data set 2:
Accuracy of
recommendations for
PASTREM, LRU, MOU,
LOU, TR for a short (15 min)
and longer (20 min) real use
time segment of
recommendation validity with
lists of 10, 15 and 20
elements

Number of recommendations

10 15 20

PASTREM 15 minutes 40.4 % 54.7 % 71.0 %

PASTREM 20 minutes 36.0 % 47.5 % 59.6 %

LRU 15 minutes 29.5 % 47.7 % 63.6 %

LRU 20 minutes 25.3 % 44.4 % 60.3 %

MOU 15 minutes 31.7 % 41.5 % 44.7 %

MOU 20 minutes 28.3 % 38.3 % 40.3 %

LOU 15 minutes 30.0 % 40.0 % 48.0 %

LOU 20 minutes 27.5 % 37.7 % 44.9 %

TR 15 minutes 16.0 % 20.0 % 20.0 %

TR 20 minutes 14.5 % 18.8 % 18.8 %

used for longer periods of time should be ranked higher than a resource which is
only infrequently used for a short time. This is considered in PASTREM based on
the integration of additional relevance factors which always influence the semantic
relatedness based on an overall relevance (ac and ad are always bigger than 1).

PASTREM, MOU and LRU: A closer investigation of data set 1 showed a strong
tendency of the user to switch between tasks. The good performance of MOU most
likely results from the frequent task switches which are best supported by recom-
mending resources of an overall relevance without paying much attention to the
topic which will change only minutes later. The second data set shows a more fo-

130 B. Schmidt et al.

cused work type, even including phases of several minutes without any switch of the
focus application. The good performance of LRU results from the stable work pro-
vided with data set 2 which creates strong local contexts of a high return probability
to earlier used resources. For PASTREM, this data set benefits from topic specific
recommendations ranked by access count and access duration.

Overall, the combination of semantic relatedness and relevance within PAS-
TREM shows promising results. Next to the accuracy, the type of recommendations
is of relevance. LRU and MOU tend to propose elements which were recently and
often used, therefore it is likely that the subject remembers those resources and the
respective locations without help. In contrast, a review of the PASTREM recom-
mendations showed that often elements not used for a longer period of time or with
a medium access count (not the top 4 and not the last 4) were recommended. Those
elements probably represent archived and ephemeral elements which is of specific
benefit, as the recall of those elements is complex.

6.7 Conclusion

We have presented PASTREM, a recommender system to support information reuse
in information work. PASTREM extends existing work on recommender systems
for information work in several respects. The approach covers a broad range of dif-
ferent data types, is completely unsupervised and requires few user input. The use
of the CWO ontology to structure the data integrates PASTREM into an existing
infrastructure for information work support. A specific benefit of PASTREM is the
modification of the algorithm for a more focused or a more multitasking oriented
work execution. As the respective calculation is a “cheap” reordering of a list, this
modification of recommendations can be triggered by the user during runtime. An-
other aspect of PASTREM is that it provides an entry point to an ontology based
on the topic. The abstract nature of topics seem to be a valuable entry point for
browsing and extension of the recommender by other, topic related elements.

PASTREM, TR, LRU, MOU and LOU were evaluated by comparing the recom-
mendations to real information object usages in two collected interaction histories.
PASTREM showed better results for both data sets, with a balanced influence of
topic relatedness to duration and access count.

Future work will investigate into a user interface for PASTREM. A first imple-
mentation makes use of the jumplist in Windows 7. Further research will try to
improve the accuracy and consider the automatic calibration of the algorithm to the
preferred work style of the user. A calibration which is feasible by applying the
technique used to evaluate the recommender performance.

References

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems:
a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 33(6), 81–749.

6 Proactive Ontology Based Recommendations 131

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine
Learning, 6(1), 37–66.

Aral, S., & Brynjolfsson, E. (2007). Information, technology and information worker productivity:
task level evidence. Cambridge: National Bureau of Economic Research.

Austin, J. L. (1962). How to do things with words. Cambridge: Harvard University Press.
Barreau, D., & Nardi, B. (1995). Finding and reminding: file organization from the desktop. ACM

SIGCHI Bulletin, 27(3), 39–43.
Bergman, O., & Whittaker, S. (2012). How do we find personal files?: the effect of OS, presentation

& depth on file navigation. In Proceedings of the 2012 ACM annual conference on human
factors in computing systems.

Bergman, O., Tucker, S., Beyth-marom, R., Cutrell, E., & Whittaker, S. (2009). It’s not that im-
portant: demoting personal information of low subjective importance using GrayArea.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine
Learning Research, 3(4–5), 993–1022.

Cheyer, A., Park, J., & Giuli, R. (2005). IRIS: integrate, relate. infer. share. DTIC Document.
Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A diary study of task switching and interrup-

tions. In Proceedings of the SIGCHI.
Farhoomand, B. A. F., & Drury, D. H. (2002). Managerial information overload. Communications

of the ACM, 45(10), 127–131.
Gallup and San Jose State University and Park, Institute for the Future in Menlo (1999). Managing

corporate communications. In The information age. Stamford: Pitney Bowes.
Gangemi, A., Borgo, S., & Catenacci, C. (2004). Task taxonomies for knowledge content.

METOKIS deliverable D.
Gangemi, A., Guarino, N., & Masolo, C. (2002). Sweetening ontologies with DOLCE. In Knowl-

edge engineering and knowledge management: ontologies and the semantic web (pp. 223–233).
Berlin: Springer.

González, V. M., & Mark, G. (2004). Constant, constant, multi-tasking craziness: managing multi-
ple working spheres. In Proceedings of the SIGCHI conference on human factors in computing
systems (Vol. 6, pp. 113–120). New York: ACM.

Heinrich, G. (2009). Parameter estimation for text analysis (Fraunhofer Technology Report).
Hussein, T., Westheide, D., & Ziegler, J. (2007). Context-adaptation based on ontologies and

spreading activation. In Proceedings of ABIS ’07: 15th workshop on adaptivity and user mod-
eling in interactive systems.

Jensen, C., Lonsdale, H., Wynn, E., & Cao, J. (2010). The life and times of files and information: a
study of desktop provenance. In Proceedings of the 28th CHI (pp. 767–776). New York: ACM.

Kaptelinin, V. (2003). UMEA: translating interaction histories into project contexts. In Proceedings
of the SIGCHI conference on human factors in computing systems (Vol. 5, pp. 353–360). New
York: ACM.

Link, H., Lane, T., & Magliano, J. (2005). Models and model biases for automatically learning task
switching behavior. In Foundations of augmented cognition (Vol. 5, pp. 510–519). Hillsdale:
Erlbaum.

Lokaiczyk, R., Faatz, A., Beckhaus, A., & Goertz, M. (2007). Enhancing just-in-time E-learning
through machine learning on desktop context sensors. In Modeling and using context (pp. 330–
341). Berlin: Springer.

Makolm, J. (2008). DYONIPOS: proactive knowledge management. In BLED 2008 proceedings
(pp. 475–482).

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., & Horrocks, I. (2001). WonderWeb
deliverable D18. Ontology library (final). WonderWeb project.

Middleton, S. E., Shadbolt, N. R., & Roure, D. C. D. E. (2004). Ontological user profiling in
recommender systems. ACM Transactions on Information Systems, 22(1), 54–88.

Morteo, R., Gonzalez, V. M., Favela, J., & Mark, G. (2004). Sphere juggler: fast context retrieval
in support of working spheres. In Proceedings of the fifth Mexican international conference in
computer science, 2004. ENC 2004 (pp. 361–367).

132 B. Schmidt et al.

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: an
introduction. Journal of the American Medical Informatics Association, 18(5), 544–551.

Oberle, D., Lamparter, S., Grimm, S., & Vrande, D. (2006). Towards ontologies for formaliz-
ing modularization and communication in large software systems. In Handbook on ontologies.
Berlin: Springer.

Polyanyi, M. (1966). The tacit dimension. London: Routledge & Kegan Paul.
Rath, A., & Weber, N. (2008). Context-aware knowledge services. In Personal Information Man-

agement: PIM (pp. 1–11).
Salvucci, D., & Taatgen, N. (2008). Threaded cognition: an integrated theory of concurrent multi-

tasking. Psychological Review, 115(1), 101–130.
Schmidt, B., & Godehardt, E. (2011). Interaction data management. In Knowledge-based and in-

telligent information and engineering systems. Berlin: Springer.
Schmidt, B., Kastl, J., Stoitsev, T., & Mühlhäuser, M. (2011a). Hierarchical task instance mining

in interaction histories. In Proceedings of the 29th annual international conference on design of
communication (SIGDOC). New York: ACM.

Schmidt, B., Paulheim, H., Stoitsev, T., & Mühlhäuser, M. (2011b). Towards a formalization of
individual work execution at computer workplaces. In Lecture notes in artificial intelligence.
Conceptual structures for discovering knowledge (pp. 270–284). Berlin: Springer.

Schmidt, B., Godehardt, E., & Pantel, B. (2012). Visualizing the work process—situation aware-
ness for the knowledge worker. In 3rd IUI workshop on semantic models for adaptive interactive
systems (SEMAIS 2012).

Shen, J., Li, L., Dietterich, T. G., & Herlocker, J. L. (2006). A hybrid learning system for rec-
ognizing user tasks from desktop activities and email messages. In Proceedings of the 11th
international conference on intelligent user interfaces—IUI ’06 (pp. 86–92).

Sproull, L. S. (1984). The nature of managerial attention. In Advances in information processing
in organizations (pp. 9–27). London: JAI Press.

Chapter 7
Visualizing Search Results of Linked Open Data

Christian Stab, Dirk Burkhardt, Matthias Breyer, and Kawa Nazemi

Abstract Finding accurate information of high quality is still a challenging task
particularly with regards to the increasing amount of resources in current informa-
tion systems. This is especially true if policy decisions that impact humans, econ-
omy or environment are based on the demanded information. For improving search
result generation and analyzing user queries more and more information retrieval
systems utilize Linked Open Data and other semantic knowledge bases. Neverthe-
less, the semantic information that is used during search result generation mostly
remains hidden from the users although it significantly supports users in under-
standing and assessing search results. The presented approach combines informa-
tion visualizations with semantic information for offering visual feedback about the
reasons the results were retrieved. It visually represents the semantic interpretation
and the relation between query terms and search results to offer more transparency
in search result generation and allows users to unambiguously assess the relevance
of the retrieved resources for their individual search. The approach also supports the
common search strategies by providing visual feedback for query refinement and
enhancement. Besides the detailed description of the search system, an evaluation
of the approach shows that the use of semantic information considerably supports
users in assessment and decision-making tasks.

7.1 Introduction

Assessing information is a common task for decision makers. Especially in the area
of policy modeling, analysts have to consider different perspectives when designing
a new policy that impacts humans, economy and the environment. So homogeneous
access possibilities as well as adequate representations for distributed data plays a
major role for providing adequate tools that facilitate decision making. Thereby, se-
mantic technologies provide adequate tools for linking heterogeneous data sources
and for generating broader contexts that facilitate information access and enables

C. Stab (B) · D. Burkhardt · M. Breyer · K. Nazemi
Fraunhofer Institute for Computer Graphics Research (IGD), Darmstadt, Germany
e-mail: christian.stab@igd.fraunhofer.de

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_7,
© Springer-Verlag London 2013

133

mailto:christian.stab@igd.fraunhofer.de
http://dx.doi.org/10.1007/978-1-4471-5301-6_7

134 C. Stab et al.

data exchange between different systems (Shadbolt et al. 2006). With the ongoing
establishment of semantic technologies like the Resource Description Framework
(RDF), the Web Ontology Language (OWL), semantic-oriented query languages
like SPARQL and Linked Open Data (LOD) platforms like DBpedia (Auer et al.
2007) these developments are not only limited to specific domains but also adopted
in daily search processes (Fernandez et al. 2008) and even for interlinking govern-
ment data in so-called Linked Government Data (LGD) platforms (Ding et al. 2010;
Wood 2011). For accessing these large amounts of interlinked data usually informa-
tion retrieval methods are utilized that retrieve relevant resources by means of given
search terms or keywords. The results of search processing are usually presented in
sorted lists and in most cases the ordering of list entries represents the relevance of
the results for the individual search according to various criteria (Cutrell et al. 2006).
So the most relevant result is placed in the first row followed by less important ones.
The semantic information of the resources that is used during the search result gen-
eration and the analysis of search terms remains hidden from the user in most cases,
though this information considerably supports users in information-seeking tasks
and selection of appropriate documents for further examination.

For designing search user interfaces efficient and informative feedback about
the retrieved resources is critically important for the user to be able to assess the
presented search results (Hearst 2009). In particular this includes feedback about
query formulation and about reasons the results were retrieved from the information
system. However, the use of additional relevance indicators in result lists besides
relevance ordering such as numerical scores or special icons turned out to be not
successful for supporting users in understanding the retrieved results because the
meaning of the relevance score is opaque to the user (White et al. 2007). This is
because the majority of existing relevance indicators only presents a single relevance
per search result that summarizes all criteria instead of offering a more fine-grained
insight to search result processing.

In contrast to common search result presentations the presented approach makes
use of information visualizations for representing search results of semantically
modeled data. In order to offer users an adequate tool for assessing the relevance
of the retrieved search results the approach combines information visualization
techniques with semantic information and different weights that emerge during the
search process. The approach also visually supports the common search strategies
by providing visual feedback for query evolution. The main contributions and ben-
efits of the presented approach are:

• Query-Result-Relations: The semantic search processing of the approach ana-
lyzes the given queries and identifies relations between query terms and search re-
sults. The visualization of these relations offers a fine-grained overview of search
result relevancies and facilitates information seeking and assessment tasks.

• Relevance Assessment: The inclusion of semantic information in search result
presentation offers more transparency in search result generation and successfully
supports user in assessing the relevance of the presented resources.

• Visual Query Enhancement: The visual recommendation of additional query
terms related to the set of search results supports the common search strategy and

7 Visualizing Search Results 135

allows users to narrow current search results and to immediately receive visual
feedback.

In the next section we give an overview of related work that influenced the devel-
opment of our approach. Subsequently, we introduce our approach for processing
and visualizing searches in semantic domains and give a detailed description of
each component. We present the results of an evaluation comparing our approach
to already existing solutions followed by an outlook of its application in the area of
policy modeling.

7.2 Related Work

Semantic models are increasingly used for linking heterogeneous data sources as
well as for generating broader contexts that facilitate information access (Shadbolt
et al. 2006). Nowadays, these technologies are not only limited to specific domains
but also adopted in daily search processes of web-based search engines (Fernandez
et al. 2008). A commonly used and useful approach for representing search results
is the term highlighting technique (Aula 2004) where the terms of a given query
are highlighted in the surrogates of search result lists. This approach is also referred
to as Keyword-In-Context (KWIC). For example the BioText System (Hearst et al.
2007) represents beside extracted figures from relevant articles, query terms high-
lighted in the title and boldfaced in the text excerpts for communicating reasons
the particular results were retrieved. Even though term highlighting can be useful
for improving search result list presentations, it does not reveal the semantic inter-
pretation of search results and prevent users from scanning the whole result list for
getting an overview.

Although the initial intention of semantic technologies was not focused on pre-
senting semantics to end-users, there are several approaches that benefit thereby.
SemaPlorer (Schenk et al. 2009) is an interactive application that makes use of mul-
tiple semantic data sources and allows users to visualize results of their search in var-
ious views. The user interface of SemaPlorer combines a geographic visualization
and a media view for visualizing geospatially annotated data and picture galleries
respectively. The approach also includes facettation of search results and focuses on
combining search results from different heterogeneous knowledge bases. Another
approach of presenting semantic information to the user is the Relfinder interface
(Heim et al. 2010). It supports users in interactively discovering relations between
resources in semantic knowledge spaces. Users can prompt two or more resources
and the relations between them are shown in a graph-based visualization. Although
this approach demonstrates the benefit of communicating semantic knowledge to
users, it is strictly limited to relation discovery.

Other approaches utilize different information visualization techniques for im-
proving search result presentations. To name only a few, the Microsoft Academic
Search interface1 incorporates geographic, graph-based and temporal visualization

1http://academic.research.microsoft.com.

http://academic.research.microsoft.com

136 C. Stab et al.

techniques for searching and exploring publications or authors and offers also a
stacked area chart for analyzing trends in the field of computer science. Skyline-
Search (Stoyanovich et al. 2011) is a search interface that supports life science re-
searchers in performing scientific literature search. It leverages semantic annotations
to visualize search results in a scatterplot representing relevance against publication
date. Even though semantic annotations are used for search processing and esti-
mating relevance values, semantic knowledge is not directly presented to the user.
The WebSearchViz (Nguyen and Zhang 2006) is an approach for visualizing web
search results based on the metaphor of the solar system. It offers users the pos-
sibility to observe the relevance between a query and a web search result by the
spatial proximity between objects. However, the system does not visualize semantic
interpretations of search results or semantic structures.

The visual design of the presented visualization is based on a force-based visual-
ization method similar to RadVis (Hoffman et al. 1997). Force-based visualization
methods utilize physical laws (e.g. Hooke’s Law) to locate each data record on a two
dimensional screen by assigning different forces between the visual representations
of each record. By adapting these forces in an iterative simulation, the physical
system reaches a mechanical equilibrium resulting in an aesthetical layout of the
given data. Originally, RadVis is a visualization technique for multivariate data. For
each dimension this visualization locates an anchor point on a circle. Theses anchor
points can be seen as fixed ends of springs. Each representation of a data record
is attached to all related anchor points and the attraction force for each spring is
weighted with the value of the record for the specific dimension. This results in
different distances between the data records and the anchor points that represent the
characteristics of each record according to the visualized dimensions. This approach
is especially useful for identifying outliers in the data and for recognizing clusters.

Although there are different approaches that make use of semantic information
for improving search results or result presentation and approaches that utilize infor-
mation visualization for representing search results, there is still a gap in combining
semantic search processing, information visualization and search user interfaces.
The approach presented in this chapter aims at combining these three technologies
into an interactive search user interface that facilitates information access and rele-
vance assessment.

7.3 Search Procedure

For visualizing search results, there are also additional requirements for the search
procedure and in particular the result generation. In contrast to commonly used tex-
tual list presentations that are based on ordered result lists, for the visualization
of search results structured data is needed. For instance these additional structures
may include clusters, relations, or labeled taxonomies that can be exploited for pro-
viding meaningful visual representations. The semantic information provided e.g.
in Linked Open Data databases provides a useful starting point for extracting this
structural information.

7 Visualizing Search Results 137

Fig. 7.1 Process for
retrieving search results,
query-result-relations and
recommendations from
semantic databases

The procedure used for retrieving the needed result structures from a seman-
tic database consists of several steps at two different stages (Fig. 7.1). In the first
stage the given user query is analyzed and dissembled into n-grams. Each of these
n-grams is then mapped to an instance in the semantic data base e.g. by using an
entity recognition approach like that described in Paulheim and Fümkranz (2012).
Additionally, the type label of each recognized entity is retrieved by identifying the
most specific concept in the semantic structure. So the result of the query analysis
is a set of n-grams related to an instance and its most specific concept. We also con-
sidered different filtering strategies for discarding incomplete results. In particular
there are two different filters: (1) an entity filter that filters all n-grams that could not
be mapped to an entity and (2) a type filter that removes all entities whose concepts
could not be retrieved. The search system can be parameterized to use one, both or
none of these filters.

In the second stage the results for each recognized entity are retrieved and ex-
tended with additional structural information. In the first step each recognized entity
that meets the given filter condition is searched in the semantic data base using an in-
dexed search. The result lists are combined using two sorting fields. The first sorting
field refers to the number of occurrences for each retrieved resource in the retrieved
lists and the second sort field is the number of references that each retrieved resource
has in the underlying semantics data base. So the first element is the element that
is retrieved for most of the recognized query terms. Based on the combined result
list, the search system extracts relations between the recognized query terms and re-

138 C. Stab et al.

sults and retrieves additional recommendations as resources related to the result list
(Fig. 7.1). The relation extraction creates for each resource a set of relations to re-
lated n-grams. These relations are weighted according to the rank of the resource in
the result list. Thus the result of the relation extraction is a set of relations between
query parts that are recognized as entities and the results in the combined result list.
For providing additional information about the search, the procedure retrieves also
resources that are related to the result list. These recommendations are extracted
by querying all related entities of the resources in the combined result list from the
semantic database. For each of these related resources the most specific concept is
extracted. The result is a set of concepts with associated resources that are related to
the search result list. These concepts are ordered according to the number of related
resources. So each recommendation is a concept with a set of associated resources
that are related to the search result list.

For our visualization approach we implemented the described search procedure
as a web service using the DBpedia SPARQL-Endpoint. Besides the access to the
semantics, the system also requires an indexed search for retrieving the result lists.
For our prototype we used the DBpedia Lookup Service2 that ranks the results ac-
cording to the number of references (refCount). In the following section we describe
how the results of the semantic search procedure are presented to the user and how
the visualization interacts with the search system.

7.4 Visualizing Semantic Search Results

Our visualization approach for representing search results in semantic domains is
based on the semantics visualization framework SemaVis3 (Nazemi et al. 2013).
The Framework includes several aspect-oriented visualization techniques (e.g. sun-
burst visualizations (Stab et al. 2010b), timelines (Stab et al. 2010a), map-based ap-
proaches (Nazemi et al. 2009), etc.) that can be combined to an application-specific
visualization cockpit to represent different aspects of the underlying data (Nazemi
et al. 2010). Several data providers for common semantic file formats and service
APIs, a modular representation model for adapting the visual appearance (Nazemi
et al. 2011) as well as a script-based configuration language called Semantics Vi-
sualization Markup Language (SVML) (Nazemi et al. 2013) are also included in
the framework. In the following, we will first describe the basic concepts of the
visualization component before introducing the details in succeeding sections.

The approach for visualizing semantic search results distinguishes between two
different node types: (1) Term Nodes and (2) Result Nodes. Each node type is treated
by different layout algorithms in the visualization and used to represent different
information:

2For the prototype we use the DBpedia lookup service that is available at http://wiki.dbpedia.org/
lookup/.
3SemaVis Framework: http://www.semavis.net.

http://wiki.dbpedia.org/lookup/
http://wiki.dbpedia.org/lookup/
http://www.semavis.net

7 Visualizing Search Results 139

• Term Nodes represent the terms recognized by the described search process.
These nodes are placed by a concentric layout algorithm at the startup of the
visualization. Users are also able to freely move and order them on the surface
according to their individual preferences.

• Result Nodes represent the hits in the combined result list that are found for the
given user query. These nodes are visually connected to related term nodes with
directed edges and are treated by a force-based layout algorithm according to
their weights to the surrounding term nodes.

The placement of the result nodes in the center of the visualization is done by a
force-based layout algorithm. The algorithm positions nodes in a two-dimensional
space by assigning different forces to the edges and the nodes of a graph. These
forces are adapted during the layout process in an iterative simulation until the
physical system reaches a mechanical equilibrium. Due to this layout technique,
the overlapping of nodes and edges is prevented as far as possible and an aestheti-
cal layout of the graph is achieved. Another interesting characteristic of force-based
layout methods is that the forces between the nodes can be weighted with differ-
ent similarity values. As a result of the weighting, different distances between the
nodes are derived and the placement of the nodes is affected. To exploit this feature
we assign different values to the visualized result nodes and their edges and utilize
a model based on the weights emerged during the semantic retrieval process. In the
representation, a result node is then placed nearer to similar term nodes and further
away from terms that are less related to it. So the placement of the result nodes in-
dicates the relevance of the results to the surrounding terms and users are able to
distinguish different characteristics of retrieved hits.

Figure 7.2 shows an example of the visualization approach4 for the query term
“apple computer steve jobs”. The query analysis stage of the search process identi-
fied the six terms “apple computer”, “steve jobs”, “apple”, “computer”, “steve” and
“jobs” and for 4 of these terms the most specific concepts “company”, “person”,
“plant” and “given name”. Each of these identified terms is represented in a term
node and the retrieved result nodes are attached to them using the weights identified
during the relation extraction step. In the next section, we describe how this visual-
ization metaphor can be used for providing more transparency in search processing
and how it can be utilized for fostering search result comprehension.

7.4.1 Query-Result-Relations

Semantic technologies enable information retrieval systems to “understand” on the
one hand the query terms given by the user (Sect. 7.3) and on the other hand different
properties of the underlying resources. Based on the occurrences of the query terms

4A version using the DBpedia database and the described search processing is available at
http://semanticsearch.semavis.net.

http://semanticsearch.semavis.net

140 C. Stab et al.

Fig. 7.2 Semantic search result visualization presenting the six most relevant search results for the
query “apple computer steve jobs”. Each result is attached between the terms recognized during
the semantic query analysis and according to the retrieved query-result-relations

either in the content, in the semantic properties or even in the semantic neighbor-
hood, the underlying resources are filtered and ranked using information retrieval
methods for presenting the result resource to the end user. In this process semantic
information improves the retrieval process by providing an extended feature space
for each resource as well as by offering methods for disambiguating and interpret-
ing the query terms given by the user. However, the semantic information utilized
during the retrieval process remains in most cases hidden from the user though it
provides useful feedback about the reasons the results were retrieved. For example
the query term “ford” might be interpreted as the name-property of a car manu-
facturer, as the surname-property of the famous inventor or the title-property of an
activity for crossing rivers. Each of these interpretations will deliver a completely
different result set. So it is not sufficient to only present the relations between rec-
ognized query terms and results, but it is also necessary to point out the semantic
interpretation of the given query terms to allow an unambiguous assessment of re-
trieved results.

To meet these demands and to provide an adequate tool that allows users to
unambiguously determine the most relevant result for their individual search, our
approach visualizes both query-result-relations and the interpreted semantic mean-
ing of query terms. Therefore, each term of the given query is presented in a term
node of the visualization. The interpreted semantic meaning emerged during search

7 Visualizing Search Results 141

Fig. 7.3 Left: The visualization of query-result-relations reveals that only one of the ten results is
related to the requested person name. Right: The visual representation of the results avoids mistakes
in result assessment tasks

processing (the label of the most specific concept) is visible in the label of the term
node. So for every possible interpretation a new node is created that represents the
query term and its retrieved interpretation. The relations between search results and
the term nodes are depicted as directed and weighted edges between term nodes and
result nodes. As mentioned above, the weighting of a query-result-relation is derived
according to the rank of the result in the individual result list. As consequence of
this weighting, the results are placed nearer to more relevant entities and term nodes
respectively.

Figure 7.3 shows two examples of the visualization approach representing two
different queries and in each case the first ten hits of the result set. For the sake of
clarity, we limited the number of simultaneously visible results to a fixed number
and added common paging functions for switching between pages. The left example
shows the visualization of the results for the query “Henry Ford” where the term
“Henry Ford” is identified as person and the term “Ford” as company. Additionally,
the term “Henry” is recognized by the query analysis step of the search processing
but there is no specific type other than owl:Thing available. So the type for this
query part is not evident. However, the visualization of the results reveals that only
one of the results is related to the queried person whereas other results are related to
the recognized company (Fig. 7.3 left).

The second example shows the visualization of the results for the query “Pirates
of the Caribbean” (Fig. 7.3 right). For the given query the system identifies two
entities “Pirates” and “Caribbean”. By visualizing the connections between search
results and query terms, users are able to recognize the four movies that are related
to both search terms.

142 C. Stab et al.

7.4.2 Mapping Results’ Relevance to Visual Properties

When designing search result visualizations it is crucially important to provide fine-
grained insights to search result processing so that the user is able to explore more
details about the retrieved results. As mentioned in the introduction, the integration
of additional relevance indicators in search result lists turned out to be not suffi-
cient for supporting users in understanding the retrieved results because common
relevance indicators only presents a single relevance per search result.

For improving the result presentation in the presented visualization approach dif-
ferent values that emerge during the result retrieval process are utilized and com-
bined with the visualization of query-result-relations. In particular there are two
different values that are mapped to visual properties of the visualization to indicate
a more fine-grained relevance metrics:

• Relation Weights indicate the relevance between a query term and a retrieved
search result. These weights are the result of the relation extraction step described
in Sect. 7.3. With respect to the presented visualization, these weights correspond
to a relevance metric between the result nodes and related term nodes.

• Result Rank indicates the overall relevance of a search result according to the
given query. The result rank is equivalent to the rank identified during the result
combination step of the described search process.

In order to make the optimum use of these values, each of them is mapped to
specific visual properties like length, color and size that can be preattentively per-
ceived (Ward et al. 2010). Thanks to the characteristic of preattentive perception,
these relevance indicators can be perceived faster and easier by the users compared
to common indicators that are often represented as textual percentages. To take these
advantages, the result rank is used to adjust the size and the intensity of the result
nodes. Thereby the resource that has the highest overall rank for a specific search
query is presented most conspicuous whereas resources with minor rank are visu-
alized less notable (Fig. 7.2). On the other hand the relation weights are used to
adapt the weighting of edges between results and term nodes. This results in differ-
ent lengths of the visible connections and indicates the relevance between specific
query terms and search results.

7.4.3 Visual Support for Query Evolution

A search process of common users includes various search requests and queries
until the needed information is found. Usually such a process starts with a general
query that is revised in consecutive search queries until some resources for further
exploration are found in the result set. This kind of search strategy was also revealed
in several studies which showed that it is a common strategy for the user to first issue
a general query, then review a few results, and if the desired information is not found,
to reformulate or to enhance the query (Hearst 2009; Jansen et al. 2005, 2007). To

7 Visualizing Search Results 143

support this behavior of common users when searching for information in query-
based information retrieval systems, we integrated several features that enable users
to interactively change their queries in the visualization.

In the presented visualization approach the query terms of the user are visual-
ized in term nodes that are arranged in a circular form around the result nodes. Ac-
cording to this characteristic, the state of these visible term nodes and the included
terms reflect the current search intention of the user. Transferred to the visualiza-
tion approach, the before mentioned strategy of query evolution corresponds to a
substitution, reassignment, creation or removal of term nodes. Hence, the change
of the current state of the term nodes results in a new search condition that in turn
changes the visible result set or the visible relations between result and term nodes.
On the one hand, the creation of further terms defines a more specific search condi-
tion and on the other hand, the removal of term nodes results in wider-ranged search
spaces. In contrast to commonly used search user interfaces, the influence of chang-
ing search conditions is immediately visible in the visualization. The representation
of query-result-relations reveals which of the current search results fulfill new con-
ditions (Fig. 7.4) and provides an immediate visual feedback of the users’ query
evolution.

To ensure that users are aware of additional terms and resources respectively, the
visualization also represents the recommendations retrieved by the semantic search
process for supporting users in finding needed information. These recommenda-
tions are visualized as additional term nodes that are labeled with a question mark
to encourage users to instantiate them for narrowing their search. The size of the
recommended term nodes is mapped to their influence to the current result set. So
term nodes whose instantiation will cause major changes of the result set are repre-
sented larger than term nodes whose instantiation will only affect smaller parts. By
selecting a specific recommendation, users are able to select different resources for
instantiating the term node and narrowing their retrieved results (Fig. 7.4).

7.5 Evaluation of the Visualization Approach

For assessing the effectiveness of the presented approach we performed a user study
in which we compared the visualization approach with a common list view that
includes the identical information for each result resource. The main focus of the
evaluation was to answer the question whether the presented visualization approach
can support users in assessing search results and if our approach satisfies the needs
of searchers. For verifying our assumption we investigated the task completion time
and formulated the following hypothesis:

• H1: There is a difference in task completion time between the list view and the
visualization in assessing search results.

In addition to the task completion time we considered several subjective criteria
that were collected with additional questionnaires for each task and participants. In

144 C. Stab et al.

F
ig

.7
.4

T
he

re
co

m
m

en
da

tio
n

of
ad

di
tio

na
lt

er
m

s
su

pp
or

ts
us

er
s

in
th

ei
r

co
m

m
on

se
ar

ch
st

ra
te

gy
an

d
pr

ov
id

es
a

vi
su

al
to

ol
fo

r
qu

er
y

ev
ol

ut
io

n
an

d
na

rr
ow

in
g

se
ar

ch
re

su
lts

.T
he

im
pa

ct
of

qu
er

y
ch

an
ge

s
is

im
m

ed
ia

te
ly

vi
si

bl
e

in
th

e
vi

su
al

iz
at

io
n

7 Visualizing Search Results 145

particular, we captured the user satisfaction and the following three additional items
for getting an impression of the user experience:

• Q1: With the help of the system, I was able to quickly and effectively solve the
given task.

• Q2: The system presented the information needed for answering the question
clear and unambiguous.

• Q3: Would you use the system in the future for similar search tasks?

Each of these items was rated by the participants on a five point Likert scale from
1 (strongly disagree) to 5 (strongly agree).

7.5.1 Experimental Design

According to the hypothesis that contains one independent variable with two differ-
ent conditions (list view and visualization) the design of our experiment is based on
a basic design (Lazar et al. 2010). Additionally, we decided to use a within-group
design for our experiment where each participant accomplishes the given tasks in
each condition (in this case the different user interfaces). In contrast to between-
group designed experiments, in within-group designs less participants are needed
and individual differences between the participants are isolated more effectively
(Lazar et al. 2010). Possible learn effects when switching between conditions are
controlled by a systematic randomization of condition- and task-ordering. Further-
more, participants were advised to disregard the knowledge from previous condi-
tions and to explicitly show the solution of tasks by means of elements in the user
interface.

Altogether, the experiment contains three tasks that had to be accomplished from
every participant with both conditions (list view and visualization). Because the
focus of the evaluation is the comparison of two different user interfaces and not the
investigation of the whole search process, we were able to pre-assign the query terms
for every task. So every participant retrieves the same results for every task and thus
also the same visual representation and the evaluation outcome is not influenced by
other factors.

In the first task participants had to identify the relations between each search re-
sult and the recognized terms of the given query. The second task was of the same
type as the first task with the difference that the result set contains more complex
relations. In the third task participants had to identify the most relevant item for a
specific search situation. To ensure that the solution could be found in each condi-
tion, we performed several pretests. We also ensured that each participant gets the
same visual presentation for each task and condition. The time limit for each task
was set to three minutes. If a wrong answer was given or a participant could not
solve a task, the completion time of the task was also set to three minutes.

146 C. Stab et al.

Fig. 7.5 Task completion time and user satisfaction

7.5.2 Procedure

17 participants, mainly graduates and students attended the evaluation. The partic-
ipants were between 24 and 29 years old and mainly involved in computer science
(M = 4.65; SD = 0.6).5 After a general introduction to the user study and an ex-
planation of the procedure and tasks, participants got a brief introduction to both
systems in systematically randomized ordering. Both systems were queried with a
reference query and participants had the chance to ask questions about the systems.
After each task, participants had to rate their overall satisfaction with the system on
a scale from 1 to 9 and the three before mentioned items concerning their subjective
opinion about the system on a Likert scale from 1 (strongly disagree) to 5 (strongly
agree). After participants had completed all tasks, they had to answer a brief demo-
graphic questionnaire.

7.5.3 Results

Figure 7.5 shows the average task completion times for each of the three tasks and
both conditions. The direct comparison of the average task completion times reveals
that participants performed better with our visualization approach (avg(t) = 51.3 s;
SD = 25.8) compared to the list view (avg(t) = 88.1 s; SD = 30.1).

A paired-samples t-test also suggests that there is a significant difference in the
task completion time between the group who used the list view and the group who
used our visualization approach (t(50) = 7.8028, p < 0.05). Hence, the null hypoth-
esis is refuted and the alternative hypothesis confirmed. The comparison of means
also indicates that users performed significantly faster with the visualization ap-
proach compared to the list presentation. So we can proceed from the assumption
that visualizing search results taking semantic information into account has a posi-
tive effect on the efficiency when assessing the relevance of search results.

5Measured on a five point scale (5 = very much experience; 1 = very little experience) in the
demographic part of the questionnaire.

7 Visualizing Search Results 147

Table 7.1 Results of the
subjective ratings indicate
that users prefer the
visualization approach

Presentation Q1 Q2 Q3

Visualization 4.33 4.37 4.25

Listview 3.15 3.03 3.14

The evaluation of satisfaction ratings indicates that participants feel more com-
fortable with our visualization approach instead of the commonly used list view.
The list view obtained an average rating of 5.31 with a standard deviation of 1.91
whereas the visualization obtained an average rating of 7.57 and a standard deviation
of 1.10. Additionally, the result of the subjective ratings (Table 7.1) and in particular
question “Would you use the system in the future for similar search tasks?” confirms
the assumption that users prefer the visualization to the list presentation (list: M =
3.14; SD = 0.87; visualization: M = 4.25; SD = 0.77).

7.6 Visualizations and Linked Data in the Policy Modeling
Process

Retrieving and accessing information is a challenging task and crucially important
in many different domains. This is especially true in the area of policy modeling
where decisions impact humans, economy or environment. The creation of novel
policies is a very complex task that requires several process steps (Macintosh 2004)
to ensure validity and positive effects. It is easy to imagine that an insufficient anal-
ysis of the underlying problem and the consideration of all impact factors will result
in a policy that fails the intended goals. Accurate decision making in this domain
not only requires the consideration of diverse impact factors but also the inclusion
of increasingly complex and dynamic scenarios. For improving this process and
the quality of the achieved policies respectively, recent initiatives, like Open Gov-
ernment Data or Linked Government Data aim at publishing and interlinking vast
amounts of data for enabling accurate decision support and innovative ICT solutions
for fostering political decision making. However, the amount of available data that
contains implicit and hidden information relevant for specific policy decisions and
scenarios continuously increases and the access gets more and more complicated.

To improve the retrieval tools, not only the interlinking of open administrative
data gains enormous importance for policy modeling but also the development of
novel result presentations and exploration tools. Present systems for searching and
accessing this information are currently limited to textual result presentations and
require comprehensive knowledge about the domain for finding the information that
fits to the specific case. Approaches, like the presented visualization technique, will
on the one hand provide a homogeneous access for distributed and interlinked data
and on the other hand enable political decision makers to identify unknown and
hidden information. In particular during the information foraging step of the policy
modeling process (Kohlhammer et al. 2012), visualization techniques will enable

148 C. Stab et al.

an optimal analysis of the need for a policy and accurate assessment of issues rel-
evant to a specific scenario. In order to further develop this idea, we investigate
different visualization approaches along each step of the policy modeling process in
the European project FUPOL 287119: Future Policy Modeling, partially supported
by the European Commission. The FUPOL project proposes a comprehensive and
new governance model to support the policy design lifecycle. The innovations are
driven by the demand of citizens and political decision makers to support the policy
domains in urban regions with appropriate ICT technologies.

References

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). DBpedia: a nu-
cleus for a web of open data. In Proceedings of the 6th international semantic web and 2nd
Asian semantic web conference, ISWC’07/ASWC’07, Busan, Korea (pp. 722–735).

Aula, A. (2004). Enhancing the readability of search result summaries. In Proceedings of HCI
2004, the 18th British HCI group annual conference (Vol. 2, pp. 1–4).

Cutrell, E., Robbins, D., Dumais, S., & Sarin, R. (2006). Fast, flexible filtering with phlat. In Pro-
ceedings of the SIGCHI conference on human factors in computing systems, CHI ’06, Montreal,
Quebec, Canada (pp. 261–270).

Ding, L., DiFranzo, D., Graves, A., Michaelis, J. R., Li, X., McGuinness, D. L., & Hendler, J. A.
(2010). TWC data-gov corpus: incrementally generating linked government data from data.gov.
In Proceedings of the 19th international conference on world wide web, WWW ’10. Raleigh,
North Carolina, USA (pp. 1383–1386).

Fernandez, M., Lopez, V., Sabou, M., Uren, V., Vallet, D., Motta, E., & Castells, P. (2008). Se-
mantic search meets the web. In 2008 IEEE international conference on semantic computing
(pp. 253–260).

Hearst, M. A. (2009). Search user interfaces (1st ed.). New York: Cambridge University Press.
Hearst, M. A., Divoli, A., Guturu, H., Ksikes, A., Nakov, P., Wooldridge, M. A., & Ye, J. (2007).

BioText search engine: beyond abstract search. Bioinformatics, 23(16), 2196–2197.
Heim, P., Lohmann, S., & Stegemann, T. (2010). Interactive relationship discovery via the semantic

web. In Proceedings of the 7th international conference on the semantic web: research and
applications, Part I, ESWC’10. Heraklion, Crete, Greece (pp. 303–317).

Hoffman, P., Grinstein, G., Marx, K., Grosse, I., & Stanley, E. (1997). DNA visual and analytic
data mining. In Visualization ’97, proceedings (pp. 437–441).

Jansen, B. J., Spink, A., & Pedersen, J. (2005). A temporal comparison of AltaVista web searching:
research articles. Journal of the American Society for Information Science and Technology,
56(6), 559–570.

Jansen, B. J., Spink, A., & Koshman, S. (2007). Web searcher interaction with the dogpile.com
metasearch engine. Journal of the American Society for Information Science and Technology,
58(5), 744–755.

Kohlhammer, J., Nazemi, K., Ruppert, T., & Burkhardt, D. (2012). Toward visualization in policy
modeling. IEEE Computer Graphics and Applications, 32(5), 84–89.

Lazar, J., Feng, J. H., & Hochheiser, H. (2010). Research methods in human-computer interaction.
New York: Wiley.

Macintosh, A. (2004). Characterizing e-participation in policy-making. In Proceedings of the 37th
annual Hawaii international conference on system sciences, 2004.

Nazemi, K., Breyer, M., & Hornung, C. (2009). SEMAP: a concept for the visualization of seman-
tics as maps. In C. Stephanidis (Ed.), Lecture notes in computer science: Vol. 7. HCI (pp. 83–91).
Berlin: Springer.

7 Visualizing Search Results 149

Nazemi, K., Breyer, M., Burkhardt, D., & Fellner, D. W. (2010). Visualization cockpit: orchestra-
tion of multiple visualizations for knowledge-exploration. International Journal of Advanced
Corporate Learning, 3(4), 26–34.

Nazemi, K., Stab, C., & Kuijper, A. (2011). A reference model for adaptive visualization systems.
In Proceedings of the 14th international conference on human-computer interaction: design
and development approaches, Part I, HCII’11. Orlando, FL (pp. 480–489).

Nazemi, K., Breyer, M., Burkhardt, D., Stab, C., & Kohlhammer, J. (2013). SemaVis—a new
approach for visualizing semantic information. Towards the internet of services: the Theseus
project.

Nguyen, T., & Zhang, J. (2006). A novel visualization model for web search results. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5), 981–988.

Paulheim, H., & Fümkranz, J. (2012). Unsupervised generation of data mining features from linked
open data. In Proceedings of the 2nd international conference on web intelligence, mining and
semantics, WIMS ’12 (pp. 31:1–31:12).

Schenk, S., Saathoff, C., Staab, S., & Scherp, A. (2009). SemaPlorer—interactive semantic explo-
ration of data and media based on a federated cloud infrastructure. Journal of Web Semantics,
7(4), 298–304.

Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The semantic web revisited. IEEE Intelligent
Systems, 21(3), 96–101.

Stab, C., Nazemi, K., & Fellner, D. W. (2010a). SemaTime—timeline visualization of time-
dependent relations and semantics. In Proceedings of the 6th international conference on ad-
vances in visual computing, Part III, ISVC’10. Las Vegas, NV, USA (pp. 514–523).

Stab, C., Breyer, M., Nazemi, K., Burkhardt, D., Hofmann, C. E., & Fellner, D. W. (2010b).
SemaSun: visualization of semantic knowledge based on an improved sunburst visualization
metaphor. In ED-media 2010 (pp. 911–919). Chesapeake: AACE.

Stoyanovich, J., Lodha, M., Mee, W., & Ross, K. A. (2011). SkylineSearch: semantic ranking
and result visualization for PubMed. In Proceedings of the 2011 ACM SIGMOD international
conference on management of data, SIGMOD ’11. Athens, Greece (pp. 1247–1250).

Ward, M., Grinstein, G., & Keim, D. (2010). Interactive data visualization: foundations, tech-
niques, and applications. Natick: AK Peters.

White, R. W., Bilenko, M., & Cucerzan, S. (2007). Studying the use of popular destinations to
enhance web search interaction. In Proceedings of the 30th annual international ACM SIGIR
conference on research and development in information retrieval, SIGIR ’07. Amsterdam, The
Netherlands (pp. 159–166).

Wood, D. (2011). Linking government data. New York, Dordrecht, Heidelberg, London: Springer.

Chapter 8
A Context-Aware Shopping Portal Based
on Semantic Models

Tim Hussein, Timm Linder, and Jürgen Ziegler

Abstract This chapter illustrates how semantic models can be used as a backend
data source for both exploration and adaptation purposes. For a fictitious shopping
portal, we implemented a faceted navigation approach that provides means for ex-
ploring the portal’s content manually. In addition to that, we implemented an adapta-
tion mechanism based on spreading activation that also exploits the semantic struc-
ture of the underlying data.

8.1 Introduction

The overwhelming amount of information contained in large web applications, such
as online shops or news portals, can make these systems difficult to use. Finding the
appropriate content within the flood of data can be challenging and may eventually
even cause a user to reject the web application. Various approaches have been pro-
posed to overcome these problems by using recommendation techniques for content
adaptation, each with its particular advantages and drawbacks. In this chapter, we
present Discovr, the prototype of a fictitious context-aware shopping portal based on
semantic models. We show how a context-aware recommendation algorithm based
on spreading activation can be used to adapt the web site to the user’s situation and
interest. In addition to that, we demonstrate how these models can also be used to
automatically create widgets for manually navigating the content.

We start this chapter by giving a short overview of recent research in the areas
of exploration and recommendation in Sect. 8.2, including content-based recom-
mendation algorithms based upon semantic models like spreading activation-based
approaches. After that, we introduce Discovr in Sect. 8.3 and explain in detail how

T. Hussein (B) · T. Linder · J. Ziegler
University of Duisburg-Essen, Duisburg, Germany
e-mail: tim.hussein@uni-due.de

T. Linder
e-mail: timm.linder@uni-due.de

J. Ziegler
e-mail: juergen.ziegler@uni-due.de

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_8,
© Springer-Verlag London 2013

151

mailto:tim.hussein@uni-due.de
mailto:timm.linder@uni-due.de
mailto:juergen.ziegler@uni-due.de
http://dx.doi.org/10.1007/978-1-4471-5301-6_8

152 T. Hussein et al.

context, products and users are modeled and how these models can be used for
navigation purposes (Sect. 8.4). In addition to that, we illustrate how these models
can be exploited for adaptation purposes (8.5). Finally, Sect. 8.6 summarizes our
contributions in this chapter, and shortly discusses future plans for enhancement.

8.2 Exploration and Recommendation of Content

A major challenge of large web applications is to help the user find interesting con-
tent fast and with little effort. Often, the information flood is just overwhelming for
the user—especially in environments with lots of items to choose from (which is
very typical for online e-commerce portals or news sites). There are several ways
to overcome this problem, each with its own benefits and drawbacks. This is usu-
ally done by either providing means for manual exploration or adapting the content
automatically to his or her needs.

Faceted browsing is an approach of navigating structured data that has recently
gained much attention (Yee et al. 2003). The basic idea is to filter items by attributes
(e.g. shoes by size and color). If the items that are supposed to be explored can
be classified by certain characteristic features, faceted browsing is a suitable way
of narrowing alternatives. This is especially useful if the user does not look for a
particular item, but for alternatives meeting certain requirements.

Adaptation, on the other hand, is often realized with the help of recommender
systems (Ricci et al. 2010). A recommender system can be defined as a software sys-
tem that attempts to identify a subset of items from a—typically large—information
space that meet a user’s interests and preferences best among all alternatives, and
which subsequently presents those items to the user in a suitable manner. Formal
definitions specifying this view more precisely can be found in, for instance (Ado-
mavicius and Tuzhilin 2005). Recommender systems can be found in entirely dif-
ferent areas of application, such as e-commerce (Linden et al. 2003), education
(Manouselis et al. 2010), news (Li et al. 2010), media libraries (Davidson et al.
2010), or social networks (Freyne et al. 2010).

8.2.1 Exploration Techniques

A relatively novel approach of navigating structured data is called faceted browsing
(Plaisant et al. 1999; Gibbins et al. 2003). The basic idea is, to filter items by their
attributes (e.g. shoes by size and color). If the items that are supposed to be explored
can be classified by certain characteristic features, faceted browsing is a suitable way
of narrowing alternatives. This is especially useful, if the user does not look for a
particular item, but for alternatives meeting certain requirements.

Based on the facet theory (Ranganathan 1962), the information space is parti-
tioned using conceptual dimensions of the data. Faceted browsing is used to narrow

8 Context-Aware Shopping Portal 153

the search space gradually by means of so called facets, until the user finds what he
or she is looking for. This theoretical concept has been adopted to the semantic web
scenarios in the last years: There have been various approaches of browsing seman-
tic data sets modeled in OWL or RDF (Yee et al. 2003; Quan et al. 2003; Hildebrand
et al. 2006; Heim et al. 2008) by using facets.

Each facet is able to filter the relevant items in a different way (Oren et al. 2006).
An important advantage of facets is the flexible exploration of the data space from
various entry points reflecting the features of the items. The user does not have to
know the underlying structure or the objects itself. Instead, he uses the navigation
structure automatically generated from the objects and is able to narrow the search
space until he finds what he is looking for. As a convenient side effect, the user
implicitly learns about the items’ features, which might help him to find them even
more efficiently in the future.

In order to classify objects, we need some kind of metadata about them. Usually,
the objects features are used for that purpose. We want to illustrate this technique
by using the example of an electronic product catalog for books, CDs, DVDs, and
other items. Each of these products can be described in a certain manner: A book has
specific features such as title, author, publisher, year of publication and more. In this
fashion, other products can be classified as well: DVDs by using actors, directors,
and so on. These features then can be grouped to categories such as author, title,
publisher, etc., which are used as facets. The user can use an arbitrary facet as the
entry point for the navigation. After he or she selects a certain facet, for instance
author, all possible values are listed for filtering the items. In this case, all authors
of all books would be displayed.

8.2.2 Recommender Systems

Having their roots in various disciplines such as cognitive science (Rich 1979) and
information retrieval (Salton and Buckley 1988), recommender systems have been
established as an independent research area during the 1990s. Most techniques can
be roughly divided into content-based (Mooney and Roy 2000), collaboration-based
(Goldberg et al. 1992; Resnick et al. 1994) and hybrid approaches (Claypool et al.
1999; Burke 2002). Content-based (CB) systems incorporate features associated to
the objects of interest. User ratings or transactions can be analyzed in order to find
out his or her interests, to recommend items similar to those bought in the past or
rated as positive. Neural networks, decision trees and vector-based representations
can be used for that purpose for instance.

Collaborative filtering (CF) methods are probably the most widely implemented
ones. They can be partitioned into classical user-based CF and Item-based CF. User-
based techniques generate recommendations for a user by first identifying other
users with similar purchase or rating patterns. These users are usually called “men-
tors” or “neighbors”. Items that have been purchased or rated very positively by the
mentors are then advertised as recommendations. These computations may be time-
consuming and are often inappropriate for real-time recommendations with massive

154 T. Hussein et al.

data sets and tens of millions of customers. Depending on the number of users and
items that are supposed to use the system, item-based CF techniques (Sarwar et al.
2001; Linden et al. 2003) may be more appropriate in certain cases. For each prod-
uct, a list of similar items is pre-computed regularly based on which products users
tend to purchase together.

Different recommendation approaches are often combined into so called hybrid
recommender systems (which may also incorporate information like social or de-
mographic data for instance). The majority of hybrid recommender systems use
collaborative filtering as the core method while content-based filtering offers solu-
tions to the shortcomings of CF (Balabanovic and Shoham 1997; Pazzani 1999; Han
and Karypis 2005). A systematic approach for classifying hybrid recommenders has
been taken by Burke (2002, 2007). He identifies the following recurring patterns for
hybrid recommendation generation.

8.2.3 Context-Aware Recommendations

Most recommender systems base their results only on the user and his or her inter-
ests independently of the usage context, which is sufficient in many cases. There
are, however, situations in which including contextual information can be benefi-
cial for producing meaningful recommendations. For instance, a tourist guide only
based on user preferences might suggest outdoor venues even when it is raining. Ex-
amples like this create the motivation for investigating context-aware recommender
systems (Adomavicius et al. 2005; Adomavicius and Tuzhilin 2010; Kaminskas and
Ricci 2011). A typical field of application for context-aware recommendations are
mobile guides (Abowd et al. 1997; Carmagnola et al. 2008). However, factors such
as mood, company of other people, daytime, season, upcoming holidays, or others
may be used for recommendation generation as well.

Context-aware recommending may also be influenced by factors that are not di-
rectly observable such as the user’s task (although not all authors use the term con-
text in this case). One of the first approaches that takes user tasks into consideration
has been proposed by Herlocker and Konstan (2001). They use task profiles either
specified manually or derived from user behavior to improve the recommendation
process. Jin et al. (2005) model the behavior of web users based on task patterns
and infer underlying interests or goals from those patterns (Jin et al. 2005). The task
context then is exploited during the recommendation process. Anand and Mobasher
(2007) suggest deriving contextual cues from a user’s long-term profile that is gen-
erated from interaction (Anand and Mobasher 2007).

Different approaches have been proposed to address context-awareness in rec-
ommender systems. So-called “item-splitting” approaches have been presented by
Baltrunas and Ricci (2013). The underlying idea is to record and incorporate the cir-
cumstances under which items are rated. If a certain item is rated significantly dif-
ferent under different contextual circumstances, it is split into virtual items that take
the particular context into account. The modified 2-dimensional matrix can then be
used as a basis for collaborative filtering. Finally, the recommendations are derived

8 Context-Aware Shopping Portal 155

from the item ratings under the given context. Hussein et al. (2013) introduce a soft-
ware framework for hybrid and context-aware recommendation generation (Hussein
et al. 2013).1

8.2.4 Recommender Systems Based on Semantic Models

Recommender systems that use ontologies as a representation for user interests have
been introduced, for instance, by Middleton et al. (2004), where the authors present
two systems for the recommendation of academic research papers. The papers are
divided into ontology classes based upon an existing research paper taxonomy, mak-
ing it possible to build user interest profiles relating to these classes from browsing
and rating behavior. Recommendations for potentially interesting research papers
are then generated by ontological inference.

Sieg et al. (2010) use an ontology as the basis for their user profiles. For each
user, the concepts in the ontology are weighted based upon the user’s recent inter-
ests. The learning of new weights occurs via a spreading activation algorithm (ex-
plained below). Recommendations are then generated in a collaborative fashion, by
comparing the weight vectors of individual users. Kim and Kwon (2007) describe a
recommender system for a grocery store, based upon an ontology that is split into
four parts: The products, location information (i.e. context), as well as consumers
and their shopping records. In Loizou and Dasmahapatra (2006), not only items,
user profiles or context are modeled in an ontology, but also different components
of the recommender system such as clustering mechanisms or classifiers which can
be dynamically selected at runtime. Mobasher et al. augment an item-based CF rec-
ommender with semantic attributes that are mined automatically from a web-based
ontology, subsequently calculating item similarities as a linear combination of rat-
ing and semantic values to alleviate the cold start and new item problems (Mobasher
et al. 2004).

8.2.5 Recommendations Based on Spreading Activation and
Ontologies

The concept of Spreading Activation was first proposed by Collins and Loftus
(1975), when they applied the corresponding networks in the fields of psycho-
linguistics and semantic priming (Anderson 1983). Later, the idea was adopted by
computer scientists. The principles have successfully been used in several research
areas in computer science, most notably in information retrieval (Cohen and Kjeld-
sen 1987; Crestani 1997; Berger et al. 2004). Spreading Activation has also been
used by Pirolli and Card (1995) in their information foraging theory.

1The authors of this chapter co-authored that publication as well. Some of the ideas presented in
this chapter have already been introduced in there.

156 T. Hussein et al.

Fig. 8.1 The basic principle
of Spreading Activation:
node A receives an initial
activation of 1.0. This
activation is spread to
adjacent nodes with
decreasing activation

The basic concept behind Spreading Activation is that all relevant information
is mapped onto a graph as nodes with a certain activation level. Relations between
two concepts are represented by a link between the corresponding nodes. If, for
any reason, one or more nodes are activated, their activation level rises and the
activation is spread to adjacent nodes (and their neighbors, in turn, and so on) like
water flowing through a river bed. While doing so, the flow of activation is reduced
the more it strides away from the initially activated node(s). Eventually, several
nodes are activated to a certain degree expressing how they semantically related to
the concepts originally selected. Figure 8.1 illustrates the basic concept.

8.3 The Discovr Portal

We implemented a fictitious shopping and information portal Discovr to demon-
strate the versatility of semantic models as a backend data source for web portals.
Discovr presents information to the user about several hundreds of CDs, DVDs and
books, as well as descriptions of concerts and sport events or venues such as restau-
rants or pubs. The user can browse through the content using a faceted navigation
approach. Depending on the user’s current context and previous interaction with
the system, Discovr recommends potentially interesting items to the user at a num-
ber of different places within the portal. Figure 8.2 shows how Discovr looks like.
A faceted navigation menu is located on the left side, while several areas display
certain items that are supposed to meet the user’s interests in the context at hand.

8.3.1 User, Product, and Context Modeling

Discovr comprises several semantic RDF/OWL models. First and foremost, all
products offered in the shop are modeled in such a fashion. In addition to that, sev-
eral context dimensions (time, weather, etc.) are modeled semantically as well. At
runtime, all these models are aggregated (like the Linked Data cloud) and constitute
the information backend for Discovr. As an example, Fig. 8.3 shows small excerpts

8 Context-Aware Shopping Portal 157

Fig. 8.2 Screenshot of the fictitious Discovr shopping and information portal (reprinted from Hus-
sein et al. 2013)

Fig. 8.3 Two of many models used in Discovr. At system start, the models are aggregated, so that
relations across different models can be exploited. “Metal”, for instance, is a concept that is used
in both the location and the CD model

158 T. Hussein et al.

Fig. 8.4 Facets for DVD
browsing (reprinted from
Hussein and Münter 2010)

from the location model and the cd model both used in Discovr. In this particular
case, the node “Metal” would be an aggregation point for the models. OWL models
in Discovr are handcrafted, but in principle it is possible to use existing RDF Data
Sets or SPARQL endpoints such as http://www.dbpedia.org.

8.4 Exploring the Discovr Portal

In this section, we present a concept for the automated generation of faceted nav-
igation widgets that was implemented in Discovr (Fig. 8.2 on the left or Fig. 8.4).
These navigation widgets are generated on-the-fly depending on the type of data at
hand, and are based upon the models used in Discovr. By applying generic SPARQL
queries, the generation of navigation structures can be made completely independent
from both content and structure of the underlying models.

One advantage of faceted browsing is that it supports multiple entry points for
navigation. To illustrate the facet creation process, we assume that the user is look-
ing for a particular DVD. So we use “DVD” as the entry point. Listing 8.1 shows
a small OWL example of how a certain DVD is modeled in Discovr. As can be
seen, items themselves do not provide further information for navigation or display
purposes; instead, Discovr’s models just contain a semantic description of the item
itself and how individual items are related to each other.

<DVD rdf:about="#dvd_big_fish">
<rdfs:label rdf:datatype="&xsd;string"> Big Fish</rdfs:label>
<genre rdf:resource="#fantasy"/>
<participant rdf:resource="#ewan_mcgregor"/>
<participant rdf:resource="#steve_buscemi"/>
<produced_by rdf:resource="#tim_burton"/>
</DVD>

Listing 8.1 Semantic encoding of the DVD “Big Fish”

As all items in our database are semantically structured, we can use SPARQL
queries to select a certain subset of those items. SPARQL is a SQL-like query lan-
guage that can be used to filter OWL or RDF data by semantic queries. Listing 8.2

http://www.dbpedia.org

8 Context-Aware Shopping Portal 159

shows a simple example on how to select all DVDs from the entire data set. A query
like this would be triggered to start the facet creation process.

SELECT DISTINCT ?item WHERE {
?item rdf:type domain:DVD .

}

Listing 8.2 SPARQL query to retrieve all DVDs

Clicking on a certain button or link triggers a filtering of the content—for in-
stance, for retrieving all items of type “DVD”. The request is encoded into SPARQL
by the server-side back end, and that SPARQL request then gets applied to the un-
derlying semantic model. The result of the query is converted into an HTML repre-
sentation and delivered to the browser. The underlying process is relatively simple:
All relations of all items returned by the query are examined and grouped by type,
for instance “Producer” or “Participant”, and a facet is created for each type of rela-
tion. Of course, most real web shops contain a very large amount of DVDs. This is a
typical case where faceted browsing makes sense to further narrow down the results.
Here, we can make use of the additional features that are encoded in the RDF data
set. In this example, the user can browse a collection of DVDs by filtering by pro-
ducer, genre, participating actors, etc. Upon each click on a certain element within
a facet, the selection is further narrowed down. A typical workflow could look thus
like this:

• The user clicks on a (statically predefined) “Browse all DVDs” button.
• This triggers a request like the one shown in Listing 8.2.
• A navigation structure like the one from Fig. 8.4 is created on-the-fly.
• The user can filter the content by selecting one or more options, in this case e.g.

by selecting “Tim Burton” as a producer.
• The selected facet items are encoded into a SPARQL query that is then used to

narrow down the result set. The process is similar to step 2.
• The original selection (all DVDs) is constrained to only those items that fulfill all

conditions: They have to be DVDs and they have to be produced by Tim Burton.
• In a third step, the user could, for instance, select “Ewan McGregor” as an actor

that has to appear in the movie, which is another constraint that is treated in the
same way as above.

• At any time, the user can release a facet condition to expand the result set again.

In this way, the user is able to explore the item space in many different ways.

8.4.1 Widget Decoration

The example illustrated in the previous section entirely used nominal data, a form of
categorical data where the order of the categories is not significant (Stevens 1946).

160 T. Hussein et al.

Fig. 8.5 An automatically generated facet for filtering by date. This facet uses a slider instead of a
selection box. Depending on the type of data to be displayed, certain navigation widgets are more
useful than others

The categories are, for instance “Movies with Ewan McGregor”, “Movies with Matt
Damon”, and so on. A selection box like the one in Fig. 8.4 is a good form of
representation. In our case, only the top n values are displayed with the option to
show the other entries by using a “more”-button (or constraining the option by using
other facets). Showing all possible alternatives, however, is not suitable in case of
ordinal or interval data. Figure 8.5 is an example for an automatically generated
facet based on dates.

As dates follow a certain order and can be restricted by intervals, a navigation
widget using a slider is a better approach to restrict the selection. It therefore makes
sense to always choose a meaningful display widget depending on the type of data.
Fortunately, we can again use SPARQL for this purpose. Using a query like the
one presented in Listing 8.3, the data type can be determined in order to select the
appropriate widget as a representation.

SELECT DISTINCT ?facetType ?facetLabel
WHERE {
?individual rdf:type ?type ;
?facetType ?restriction .
?facetType rdfs:label ?facetLabel .

}
ORDER BY ?facetType

Listing 8.3 Text

In 8.1, we used only one variable (?item). Now, we query the data that we want
to create a facet for, and use two variables: ?facetType and ?facetLabel. We use
the label just for sorting the elements within the facet. The facetType, on the other
hand, is the key for the widget selection process. This type is expressed as an XML
schema data type, such as xsd:integer, xsd:string or xsd:date. With that in mind,
a mapping is created for all the possible types of facets to corresponding widget
types: For example, string data can be mapped to selection boxes, and date values
to slider widgets. We here make use of the Decorator design pattern (Gamma et al.
1993) to automatically create a suitable navigation widget that is intuitive to use for
that kind of data.

8 Context-Aware Shopping Portal 161

Fig. 8.6 Individual weights are assigned to the semantic models to reflect the user’s situation
(reprinted from Hussein and Münter 2010)

8.5 Context-Aware Adaptation in Discovr

The semantic data structure that serves as an information backend (see Fig. 8.3) is
identical for each user. In Discovr, we assign weights from 0 to 1 to the semantic
entities and concepts to reflect the user’s current interests and situation at hand.
1 means that a certain entity or concept is important for the user under the current
circumstances, 0 means that it is not important. Weights between 0 and 1 indicate
importance to a certain degree. If the user, for instance, is located in Duisburg and
expresses interest in the album “Powerslave” by clicking on it, we assign 1 to both
Duisburg and Powerslave (see Fig. 8.6).

This allows us to create individual weighted networks for each user that represent
his or her personal interests and situation at hand. We will later describe how we use
these weights to adapt the web site. While it relatively easy to keep track of the user’s
interests (simply interpreting each click on an entity as an expression of interest),
identifying the user’s current context is not so easy.

8.5.1 Determining Relevant Context Factors

Discovr uses a set of software-based sensors to identify the user’s context at hand.
For most context factors, this happens once when the user first accesses the portal.
Figure 8.7 shows the home page of the Discovr portal, which displays a selection of
the context factors at session start.

For each context factor, a particular sensor or resolver takes care of identify-
ing its current value. A sensor determines its current value directly, whereas a re-
solver “post-processes” the output of another sensor or resolver to deduce additional
knowledge. An example of a sensor might be a date or time sensor. A component
which deduces the next upcoming holiday based upon a previously sensed date and
time, possibly also taken a geographical position into account, however, is a resolver
according to our definition. Context factors determined by resolvers, in general,

162 T. Hussein et al.

Fig. 8.7 Home page of Discovr, which gives an overview of the external context factors that were
detected at session start (except for date and time, which are updated during each request)

need to be updated once the particular inputs that they depend on have changed.2

The following types of sensors and resolvers have been implemented in Discovr to
showcase this functionality:

• IP Sensor: This sensor is particularly important because it provides the input for
the following chain of resolvers. The IP address of the current user is extracted
from the initial HTTP request, once an HTTP session has started.

• Geo Resolver: Determines the user’s current geographical coordinates (latitude
and longitude) and closest city, by providing the IP address sensed by the IP
sensor to an external web service.

• Time Resolver: Determines the current time, season, time of day (morning, noon,
afternoon, evening, night) and upcoming holidays. Because the time may vary
with the user’s position, the geo coordinates determined by the Geo resolver are
taken into account. The holidays are modeled locally in an OWL model (only for
Germany, for demonstration purposes).

• Weather Resolver: An external web service provides the current weather at the
user’s current location.

2Further information on the sensing mechanism applied in Discovr can be found in a different
publication by the authors (Hussein et al. 2013).

8 Context-Aware Shopping Portal 163

Fig. 8.8 Resolvers used in Discovr and their respective input and output properties (the Time
Resolver needs the user’s location in order to correctly determine holidays and seasons: January,
for instance is a winter month in Europa but summer in Australia. Upcoming holidays are derived
from time and location information, but only for Germany in this use case)

Figure 8.8 depicts the flow of information between the resolvers implemented in
Discovr.

8.5.2 Spreading-Activation-Based Adaptation

For adapting the web site to reflect the user’s situation and interests, we use a spread-
ing activation approach. Whenever a context factor is recognized/updated or a user
clicks on a certain entity (a music album for instance), we assign a 1 to the respective
node in the semantic model, call this input “activation” and “spread” this activation
through the model following the principles illustrated in Fig. 8.1. Applying this ap-
proach to the example depicted in Fig. 8.6, the node “Turok”, a metal club in Essen
receives activation from both the user’s location (Essen) as well as from an album,
he/she expressed interest in (“Powerslave” by Iron Maiden).

We can use this information to generate context-aware recommendations for the
user. In areas that show recommended clubs, we can use SPARQL queries in order
to retrieve those clubs with the highest activation for a particular user. This princi-
ple can be extended to other types of recommendation as well (movie and music
recommendations, events, etc.).

8.6 Conclusions

In this chapter we have presented Discovr, a prototype of a fictitious shopping portal,
in which both item data (products, events, venues, etc.) and context dimensions
are modeled in RDF/OWL. User preferences are expressed by assigning individual
weights to the different concepts and instances in the ontology.

Although creating an extensive OWL model for the particular use case can be a
time-consuming task, we have shown that these semantic models can successfully
be exploited for a number of different purposes. We have discussed how semantic

164 T. Hussein et al.

models can be used as the basis for a context-aware recommendation algorithm as
well as for automatically generating faceted navigation widgets. This approach is
independent from the actual items to be displayed and exploits the type of feature to
automatically create a widget that is suitable for the type of data.

Acknowledgements Discovr and several predecessors that have been implemented over the
years, have been mentioned in publications by the authors: Hussein and Ziegler 2008, 2010, Hus-
sein and Gaulke 2010, Hussein and Neuhaus 2010, Hussein and Münter 2010, Hussein 2010, Hus-
sein et al. 2007, 2009, 2010a, 2010b, 2013.

References

Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R., & Pinkerton, M. (1997). Cyberguide:
a mobile context-aware tour guide. Wireless Networks, 3(5), 421–433.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems:
a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17(6), 734–749.

Adomavicius, G., & Tuzhilin, A. (2010). Context-aware recommender systems. In F. Ricci,
L. Rokach, B. Shapira & P. B. Kantor (Eds.), Recommender systems handbook (pp. 217–253).
Berlin: Springer.

Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual
information in recommender systems using a multidimensional approach. ACM Transactions
on Information Systems, 23(1), 103–145.

Anand, S., & Mobasher, B. (2007). Contextual recommendation. In B. Berendt, A. Hotho,
D. Mladenic & G. Semeraro (Eds.), From web to social web: discovering and deploying user
and content profiles (pp. 142–160). Berlin: Springer.

Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and
Verbal Behavior, 22, 261–295.

Balabanovic, M., & Shoham, Y. (1997). Combining content-based and collaborative recommenda-
tion. Communications of the ACM, 40, 66–72.

Baltrunas, L., & Ricci, F. (2013). Experimental evaluation of context-dependent collaborative
filtering using item splitting. User Modeling and User-Adapted Interaction. doi:10.1007/
s11257-012-9137-9.

Berger, H., Dittenbach, M., & Merkl, D. (2004). An adaptive information retrieval system based
on associative networks. In APCCM ’04: proceedings of the 1st Asian-Pacific conference on
conceptual modeling (pp. 27–36). Darlinghurst: Australian Computer Society.

Burke, R. (2002). Hybrid recommender systems: survey and experiments. User Modeling and
User-Adapted Interaction, 12(4), 331–370.

Burke, R. (2007). Hybrid web recommender systems. In P. Brusilovsky, A. Kobsa & W. Nejdl
(Eds.), Lecture notes in computer science: Vol. 4321. The adaptive web. Methods and strategies
of web personalization (pp. 377–408). Berlin: Springer.

Carmagnola, F., Cena, F., Console, L., Cortassa, O., Gena, C., Goy, A., et al. (2008). Tag-based user
modeling for social multi-device adaptive guides. User Modeling and User-Adapted Interaction,
18(5), 497–538.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining
content-based and collaborative filters in an online newspaper. In Proceedings of ACM SIGIR
workshop on recommender systems. New York: ACM.

Cohen, P. R., & Kjeldsen, R. (1987). Information retrieval by constrained spreading activation in
semantic networks. Information Processing & Management, 23(4), 255–268.

Collins, A. M., & Loftus, E. F. (1975). A spreading activation theory of semantic processing.
Psychological Review, 82(6), 407–428.

http://dx.doi.org/10.1007/s11257-012-9137-9
http://dx.doi.org/10.1007/s11257-012-9137-9

8 Context-Aware Shopping Portal 165

Crestani, F. (1997). Application of spreading activation techniques in information retrieval. Artifi-
cial Intelligence Review, 11(6), 453–482.

Davidson, J., Liebald, B., Liu, J., Nandy, P., van Vleet, T., Gargi, U., et al. (2010). The YouTube
video recommendation system. In RecSys ’10: proceedings of the 4th ACM conference on rec-
ommender systems (pp. 293–296). New York: ACM.

Freyne, J., Berkovsky, S., Daly, E. M., & Geyer, W. (2010). Social networking feeds: recommend-
ing items of interest. In RecSys ’10: proceedings of the 4th ACM conference on recommender
systems (pp. 277–280). New York: ACM.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: abstraction and reuse
in object-oriented designs. In ECOOP ’93: proceedings of the 7th European conference on
object-oriented programming. Berlin: Springer.

Gibbins, N., Harris, S., Dix, A., & Schraefel, M. C. (2003). Electronics and computer sci-
ence: Vol. 8639. Applying mSpace interfaces to the semantic web. Southampton: University
of Southampton.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave
an information tapestry. Communications of the ACM, 35(12), 61–70.

Han, E.-H., & Karypis, G. (2005). Feature-based recommendation system. In CIKM ’05: proceed-
ings of the 14th ACM international conference on information and knowledge management
(pp. 446–452). New York: ACM. ISBN: 1-59593-140-6.

Heim, P., Ziegler, J., & Lohmann, S. (2008). Gfacet: a browser for the web of data. In S. Auer,
S. Dietzold, S. Lohmann & J. Ziegler (Eds.), IMC-SSW’08: proceedings of the international
workshop on interacting with multimedia content in the social semantic web (pp. 49–58).

Herlocker, J. L., & Konstan, J. A. (2001). Content-independent task-focused recommendation.
IEEE Internet Computing, 5(6), 40–47.

Hildebrand, M., van Ossenbruggen, J. R., & Hardman, L. (2006). Gfacet: a browser for heteroge-
neous semantic web repositories. In ISWC ’06: proceedings of the 5th international semantic
web conference (pp. 272–285). Berlin: Springer.

Hussein, T. (2010). Interfaces and interaction design for learning and simulation environments. In
N. Baloian, W. Luther, D. Söffker & Y. Urano (Eds.), Context-aware recommendations. Berlin:
Logos.

Hussein, T., & Gaulke, W. (2010). Hybride, kontext-sensitive Generierung von Produktempfehlun-
gen. i-com. Zeitschrift für interaktive und kooperative Medien, 9(2), 16–23.

Hussein, T., & Münter, D. (2010). Automated generation of a faceted navigation interface using se-
mantic models. In T. Hussein, J. Ziegler, S. Lukosch & A. Dix (Eds.), SEMAIS ’10: proceedings
of the 1st workshop on semantic models for adaptive interactive systems.

Hussein, T., & Neuhaus, S. (2010). Explanation of spreading activation based recommendations. In
T. Hussein, J. Ziegler, S. Lukosch & A. Dix (Eds.), SEMAIS ’10: proceedings of 1st workshop
on semantic models for adaptive interactive systems.

Hussein, T., & Ziegler, J. (2008). Adapting web sites by spreading activation in ontologies.
ReColl ’08: proceedings of the international workshop on recommendation and collaboration.
New York: ACM.

Hussein, T., & Ziegler, J. (2010). Situationsgerechtes recommending. Informatik Spektrum, 34(2),
143–152.

Hussein, T., Westheide, D., & Ziegler, J. (2007). Context-adaptation based on ontologies and
spreading activation. In I. Brunkhorst, D. Krause & W. Sitou (Eds.), Proceedings of ABIS ’07:
15th workshop on adaptivity and user modeling in interactive systems.

Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. (2009). Context-aware recommendations on rails.
CARS ’ 09: proceedings of the 1st workshop on context-aware in recommender systems. New
York.

Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. (2010a). A framework and an architecture for
context-aware group recommendations. In G. Kolfschoten, T. Herrmann & S. Lukosch (Eds.),
Lecture notes in computer science: Vol. 6257. CRIWG ’10: proceedings of the 16th conference
on collaboration and technology (pp. 121–128). Berlin: Springer.

166 T. Hussein et al.

Hussein, T., Gaulke, W., Linder, T., & Ziegler, J. (2010b). Improving collaboration by using context
views. In CAICOLL ’10: proceedings of the 1st workshop on context-adaptive interaction for
collaborative work.

Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. (2013). Hybreed: A software framework for
developing context-aware hybrid recommender systems. User Modeling and User-Adapted In-
teraction. doi:10.1007/s11257-012-9134-z.

Jin, X., Zhou, Y., & Mobasher, B. (2005). Task-oriented web user modeling for recommendation.
In Lecture notes in computer science: Vol. 3538. UM ’05: proceedings of the 10th international
conference on user modeling (pp. 109–118).

Kaminskas, M., & Ricci, F. (2011). Location-adapted music recommendation using tags. In J. A.
Konstan, J. L. Marzo, R. Conejo & N. Oliver (Eds.), UMAP ’11: proceedings of the 19th inter-
national conference on user modeling, adaptation, and personalization (pp. 183–194).

Kim, S., & Kwon, J. (2007). Effective context-aware recommendation on the semantic web. Inter-
national Journal of Computer Science and Network Security, 7(8), 154–159.

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to per-
sonalized news article recommendation. In WWW ’10: proceedings of the 19th international
conference on world wide web.

Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collabora-
tive filtering. IEEE Internet Computing, 7(1), 76–80.

Loizou, A., & Dasmahapatra, S. (2006). Recommender systems for the semantic web. In ECAI 06:
recommender systems workshop.

Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2010). Recommender
systems in technology enhanced learning. In F. Ricci, L. Rokach, B. Shapira & P. B. Kantor
(Eds.), Recommender systems handbook (pp. 387–415). Berlin: Springer.

Middleton, S. E., Shadbolt, N. R., & de Roure, D. C. (2004). Ontological user profiling in recom-
mender systems. ACM Transactions on Information Systems, 22(1), 54–88.

Mobasher, B., Jin, X., & Zhou, Y. (2004). Semantically enhanced collaborative filtering on the
web. In B. Berendt, A. Hotho, D. Mladenic, M. van Someren Myra Spiliopoulou & G. Stumme
(Eds.), Lecture notes in computer science: Vol. 3209. Web mining: from web to semantic web.
Berlin: Springer.

Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text cate-
gorization. In Proceedings of the 5th ACM conference on digital libraries (pp. 195–204). New
York: ACM. ISBN: 1-58113-231-X.

Oren, E., Delbru, R., & Decker, S. (2006). Extended faceted navigation for RDF data. In ISWC
’06: proceedings of the 5th international semantic web conference (pp. 559–572).

Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review, 13(5–6), 393–408.

Pirolli, P., & Card, S. (1995). Information foraging in information access environments. In I. R.
Katz, R. Mack, L. Marks, M. B. Rosson & J. Nielsen (Eds.), CHI ’95: proceedings of the 1995
SIGCHI conference on human factors in computing systems (pp. 51–58). Denver: ACM.

Plaisant, C., Shneiderman, B., Doan, K., & Bruns, T. (1999). Interface and data architecture for
query preview in networked information systems. ACM Transactions on Information Systems,
17(3), 320–341.

Quan, D., Huynh, D., & Karger, D. R. (2003). Haystack: a platform for authoring end user semantic
web applications. In ICSW ’06: proceedings of the 2nd international semantic web conference
(pp. 738–753). Berlin: Springer.

Ranganathan, S. R. (1962). Elements of library classification. Bombay: Asia Publishing House.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open ar-

chitecture for collaborative filtering of netnews. In CSCW ’94: proceedings of the 1994 ACM
conference on computer supported cooperative work (pp. 175–186). New York: ACM. ISBN:
0-89791-689-1.

Ricci, F., Rokach, L., & Shapira, B. (2010). Introduction to recommender systems handbook.
In F. Ricci, L. Rokach, B. Shapira & P. B. Kantor (Eds.), Recommender systems handbook
(pp. 1–35). Berlin: Springer.

http://dx.doi.org/10.1007/s11257-012-9134-z

8 Context-Aware Shopping Portal 167

Rich, E. (1979). User modeling via stereotypes. Cognitive Science, 3(4), 329–354.
Salton, G., & Buckley, C. (1988). On the use of spreading activation methods in automatic infor-

mation retrieval. In Y. Chiaramella (Ed.), Proceedings of the 11th annual international ACM
SIGIR conference on research and development in information retrieval (pp. 147–160). New
York: ACM.

Sarwar, B., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based collaborative filtering rec-
ommendation algorithms. In V. Y. Shen, N. Saito, M. R. Lyu & M. E. Zurko (Eds.), WWW ’11:
proceedings of the 10th international conference on world wide web (pp. 285–295). Hong Kong:
ACM. ISBN: 1-58113-348-0.

Sieg, A., Mobasher, B., & Burke, R. (2010). Improving the effectiveness of collaborative recom-
mendation with ontology-based user profiles. In HetRec ’10: proceedings of the 1st interna-
tional workshop on information heterogeneity and fusion in recommender systems (pp. 39–46).
New York: ACM.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 193(2684), 677–680.
Yee, K.-P., Swearingen, K., Li, K., & Hearst, M. (2003). Faceted metadata for image search and

browsing. In CHI ’03: proceedings of the 2003 SIGCHI conference on human factors in com-
puting systems (pp. 401–408). New York: ACM. ISBN: 1-58113-630-7.

Chapter 9
Semantic Models for Interactive Systems:
The Case of Tagging and Folksonomies

Steffen Lohmann

Abstract Tagging, i.e. the annotation of resources with arbitrary text labels by
users, has become a popular indexing method for interactive systems in the last few
years. The linked vocabulary resulting from tagging is known as folksonomy and
provides a valuable source for the exploration of digital resources. However, the in-
teroperable use of folksonomies and related user interface components requires a
consistent and comprehensive domain description. For this purpose, we developed a
semantic model that describes the main concepts and relationships in the domain of
tagging in a consistent and extensible way. It contributes to a better domain under-
standing and facilitates the development of interactive systems that use tagging as
indexing method. By using the semantic model, folksonomies become independent
from individual systems, which increases their interoperability and the reusability
of related user interface components.

9.1 Introduction

Having its roots in social bookmarking and media sharing, tagging has become a
popular indexing method in the last few years and can now be found in many in-
teractive systems. In this indexing method, users annotate digital resources with ar-
bitrary text labels, so-called tags, in order to organize the resources for themselves
and/or others. What is considered a resource depends on the application context. It
can be a web page tagged with social bookmarking services like Delicious, a photo
or video on media sharing websites like Flickr or YouTube, or a mail in an email
client. Even digital references of physical objects can be tagged, as long as they
are uniquely addressable. For instance, books that are referenced in cataloging web-
sites like LibraryThing or products in online shops like the one of Amazon are also
subject to tagging.

In contrast to other keyword-based indexing methods, the people who perform
the tagging are not professionals (e.g., authors, publishers, librarians, etc.) but com-
mon users. Furthermore, tagging breaks radically with most traditional forms of

S. Lohmann (B)
University of Stuttgart, Stuttgart, Germany
e-mail: steffen.lohmann@vis.uni-stuttgart.de

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_9,
© Springer-Verlag London 2013

169

mailto:steffen.lohmann@vis.uni-stuttgart.de
http://dx.doi.org/10.1007/978-1-4471-5301-6_9

170 S. Lohmann

indexing by using neither a controlled vocabulary nor a hierarchical structure for
classification. Instead, a tag can be any character string a user considers helpful in
organizing a resource. Even though many interactive systems recommend tags, no
terms are ‘forced’ onto users but people are free to use their own vocabulary. This
vocabulary of the people along with the many links resulting from tagging has come
to be called folksonomy.

Tagging and folksonomies have also become popular research topics in the last
few years. They have been analyzed and utilized in a number of works, resulting in
several interesting findings, for example, on tag use and distribution (Peters 2009).
However, they still lack a shared understanding and common conceptualization.
Though several models and representations have been proposed (Kim et al. 2008;
Lohmann et al. 2011), a consistent and comprehensive description of tagging is still
missing. Such a consistent domain description is not only important for a better un-
derstanding of tagging and folksonomies but can also improve the interoperability
and reusability of interactive systems that use tagging as indexing method. Espe-
cially reusable user interface components require a conceptual representation that is
independent from individual systems.

In order to close this gap, we developed a semantic model that describes the main
concepts and relationships in the domain of tagging. In the following, we present this
model and illustrate its benefits for interactive systems. We start with a description
of the core concepts and relationships in the domain of tagging and folksonomies
in Sect. 9.2. In Sect. 9.4, we present an ontology that implements our semantic
model. We illustrate its application by an example scenario in Sect. 9.5 and show
how graph visualizations can be derived from it in Sect. 9.6. In Sect. 9.3, we discuss
related work before we conclude this chapter in Sect. 9.7.

9.2 Concepts and Relationships

In order to create a semantic model for tagging and folksonomies, we first need to
identify the core concepts and relationships in the domain. Apart from basic struc-
tures and elements, we must also consider related and more advanced concepts.

9.2.1 Basic Concepts and Relationships

Tagging consists of three sets of elements that form the basis for the semantic model
(Mika 2005; Heymann and Garcia-Molina 2006; Smith 2008; Peters 2009, p. 157):

1. Resources that are being tagged. As mentioned in the introduction, these re-
sources can be anything, as long as they are uniquely addressable by the in-
teractive system.

2. Users who perform the tagging. In tagging contexts, the term ‘user’ denotes all
people who use an interactive system for tagging, independently of their role and
motivation.

9 Semantic Models for Interactive Systems 171

3. Tags that are associated with the resources. Tags can be common words, slang,
abbreviations, emoticons, star-ratings, or even individual text strings that are only
meaningful to the person who assigns them, but not for others.

Though these elements are differently named in the literature, their semantics
and relationships are always the same: One or more users (or people, actors, etc.)
annotate resources (or objects, instances, etc.) with one or more tags (or keywords,
labels, etc.). This fundamental principle of tagging can be defined as an axiom, as it
has to be true for any folksonomy:

Axiom 1 Each tagging links exactly one resource with one user account and one or
more tags.

Apart from that, there are some additional principles that are key to tagging and
that can also be defined as axioms:

Axiom 2 Each tag can be assigned at most once to each resource by each user
account.

Axiom 3 A tag has always exactly one label—otherwise it is not a tag.

More formally, a semantic model for tagging and folksonomies consists of
three finite and disjoint sets R = {r1, r2, . . . , rk}, T = {t1, t2, . . . , tl}, and U =
{u1, u2, . . . , um} that represent the resources, tags, and users. They are intercon-
nected by taggings, i.e. the set of annotations A = {a1, a2, . . . , an} that defines
the relationships according to the axioms given above. A basic model for folk-
sonomies can thus be described by the quadruple F = (R,T ,U,A) (Hotho et al.
2006; Lohmann and Díaz 2012).

9.2.2 Further Concepts and Relationships

However, there is more than the interlinked resources, tags, and users that must
be considered in a comprehensive description of the domain of tagging and folk-
sonomies. Another important piece of information is the date and time of tagging.
Many interactive systems use this information to display taggings in reverse chrono-
logical order, while others enable users to define time intervals when browsing folk-
sonomies (Li et al. 2007). This is why some consider time as another core element
of folksonomies (Wu et al. 2006; Smith 2008, p. 101).

Others emphasize the source of tagging as an important piece of information
(Gruber 2007). This is particularly true with regard to the interoperability of folk-
sonomies: Source information is important if folksonomies leave the borders of one
interactive system, for example, to be shared with other systems and/or merged with
other folksonomies. In these cases, it may be relevant to know which parts of the
folksonomy are from which system.

172 S. Lohmann

Examples of further concepts that need to be taken into account are comments
added to taggings or hierarchical tag relations, as they can be defined in some in-
teractive systems (e.g. Bibsonomy). Likewise, there can also be links between re-
sources (e.g. hyperlinks) or users (e.g. group links). Though these relationships are
not part of the folksonomy itself, they must be taken into account by the conceptu-
alization.

A comprehensive semantic model must also consider more advanced forms of
tagging. For instance, some systems (e.g. Flickr or Bibsonomy) support group tag-
ging by enabling the creation of a group account that single user accounts can be
linked to. Other systems (e.g. Faviki) offer features for semantic tagging, where
the meaning of tags is disambiguated by linking them to well-defined entities, such
as DBpedia resources (Bizer et al. 2009) or Wordnet terms (Miller 1995). Finally,
automatic tagging denotes tagging with automatic tags, i.e. text labels that are au-
tomatically assigned to a resource by the interactive system. Strictly speaking, the
latter is not really tagging, as there is no user involved. However, since automatic
tagging is an important concept of the domain, it should also be taken into account
by the semantic model.

A powerful way to formally describe all this information is an ontology. In com-
puter science, an ontology is briefly defined as “an explicit specification of a concep-
tualization” (Gruber 1993). Ontologies gained much popularity with the rise of the
Semantic Web as a way to give information well-defined meaning. They describe
the concepts and relationships of a semantic model in a logic-based language that
allows for machine interpretation and automated reasoning.

9.3 Existing Ontologies

Before starting to develop a new ontology, it is recommended to look for exist-
ing ontologies that describe the same or a similar domain and examine if they can
reasonably be reused (Noy and McGuinness 2001). In case of tagging and folk-
sonomies, there already exist several ontologies.

Early conceptualizations have been presented by Gruber (2007, 2005), New-
man (2005) and Mika (2005). They do a good job in describing the basic con-
cepts and relationships of tagging and folksonomies, as they were defined above.
While Gruber’s conceptualization is a rather informal description of ideas and
Mika’s model has only little explicit semantics, the conceptualization of Newman
is already a well-defined ontology implemented in the OWL Web Ontology Lan-
guage.

Newman’s early ontology was followed by a number of other ontologies in the
subsequent years. Table 9.1 lists nine ontologies we found in an extensive survey
of the literature and web. It gives the main purpose of the ontologies along with the
OWL sublanguage and OWL 2 profile they are compliant with. A detailed discus-
sion of the ontologies can be found in Lohmann et al. (2011). An earlier review of a
part of the ontologies is provided by Kim et al. (2008).

9 Semantic Models for Interactive Systems 173

Table 9.1 Related ontologies in the domain of tagging and folksonomies that our semantic model
is based on

Name Authors Release date
(latest update)

Main purpose OWL
sublanguage

OWL 2
profile

Tag ontology Newman
et al.

2005-03-23
(2005-12-21)

First tagging
ontology

OWL Full –

Tagging
ontology

Kner 2006
(2007-01-15)

Domain
description

OWL Full –

Ontology of
folksonomy

Echarte
et al.

2007
(–)

Domain
description

OWL DL –

Social semantic
cloud of tags

Kim et al. 2007-03-23
(2008-06-13)

Tag clouds OWL Full –

Meaning of a
tag

Passant &
Laublet

2008-01-15
(–)

Semantic
tagging

OWL Full –

Upper tag
ontology

Ding et al. 2008
(–)

Upper ontology OWL Lite OWL 2 RL

Common tag Tori et al. 2009-06-08
(–)

Minimal
ontology

OWL Full –

TAGora tagging
ontology

Szomszor
et al.

2009
(2010)

Automatic
disambiguation

OWL Lite OWL 2 RL

NiceTag
ontology

Limpens
et al.

2009-01-09
(2010-09-09)

Taggings as
speech acts

OWL Full –

Though the ontologies describe many important aspects of tagging, none of them
defines all of the aforementioned concepts and relationships needed for a compre-
hensive domain description. Taking one ontology and extending it is difficult due to
various conceptual limitations. An integration and alignment of a part of the ontolo-
gies results in similar problems (Lohmann et al. 2011).

Hence, we finally decided to develop a new ontology that takes the best parts of
the reviewed ontologies, adds missing pieces and combines all in one consistent con-
ceptualization. To keep the ontology compact and understandable, we decided for a
modular approach that separates rare and very specific concepts from the core on-
tology. Such a separation of concerns is well-known from ontologies and schemata
like SIOC (with its access, types, and services modules) or RSS (with its
dc, syndication, and content modules).1 It also helps to keep the core on-
tology relatively stable with regard to future changes in the domain of tagging and
folksonomies.

Certain concepts of the domain, such as the resources that are being tagged or
the users who perform the tagging, are already well described in other contexts or
more general ontologies. Therefore, we also surveyed ontologies of related domains.

1Ontologies and schemata are abbreviated by their common namespace prefixes in the following.
The namespace prefixes and URIs of all referenced vocabularies are given in Table 9.2 at the end
of this chapter.

174 S. Lohmann

Fig. 9.1 Core concepts and relationships of the Modular Unified Tagging Ontology (MUTO)

In particular, we considered ontologies that are widely used and investigated, such
as SKOS or FOAF, as we can expect their conceptualizations to be comparatively
mature and stable.

9.4 An Ontology for Tagging and Folksonomies

Based on the previous considerations, we developed the Modular Unified Tagging
Ontology (MUTO) to formally describe the semantic model. Like the related tag-
ging ontologies listed in Table 9.1, it is implemented in the OWL Web Ontology
Language. This language is based on the Resource Description Framework (RDF)
and closely related to RDF Schema (RDFS). All three languages are recommenda-
tions of the World Wide Web Consortium (W3C). With regard to the first version of
OWL, MUTO is compliant to the sublanguage OWL Lite; with regard to the second
OWL version, it is compliant with the OWL 2 RL profile. This profile fits particu-
larly well in our case, as it is recommended for “relatively lightweight ontologies
[that] are used to organize large numbers of individuals” and approaches “where it
is useful or necessary to operate directly on data in the form of RDF triples” (W3C
OWL Working Group 2012).

We presented an earlier version of MUTO in (Lohmann et al. 2011). In the fol-
lowing, we describe the core conceptualization of version 1.0 of the ontology, as it
is depicted in Fig. 9.1. Note that inverse properties and subproperty axioms are not
shown in this compact diagram. The complete specification is publicly available on
the web at the persistent URL http://purl.org/muto.

The ontology defines two core classes, one for the taggings A (muto:Tagging)
and one for the tags T (muto:Tag), which form the center of the ontology. They
are both specializations of more general classes from the well-known SIOC and

http://purl.org/muto

9 Semantic Models for Interactive Systems 175

SKOS vocabularies. The other two key concepts, the resources R and users U ,
are not unique to tagging. We do not need to define new classes or specializa-
tions here, as we can directly reuse concepts from existing vocabularies, namely
sioc:UserAccount and rdfs:Resource. Based on these four key concepts,
we present the MUTO ontology in more detail in the following.

9.4.1 Taggings

The central muto:Tagging class describes the taggings, i.e. the set of annota-
tions A. It contains the n-ary relations that link the resources, tags, and users. Using
classes to represent n-ary relations is well-known from many modeling languages
(e.g., UML with its association class construct) and common practice in OWL (Noy
et al. 2006).
muto:Tagging is defined as a subclass of sioc:Item. We regard this as an

adequate alignment, since SIOC has been designed to describe “user-generated con-
tent” from “online community sites” (Bojars et al. 2008). Apart from sioc:Item,
there is a number of other concepts of the SIOC vocabulary that can be fruitfully
reused in the domain of tagging. For instance, we do not need to create a new con-
cept for comments assigned to taggings, as we can take sioc:note. Likewise,
we can reuse concepts of SIOC to describe the source of tagging by first grouping
taggings with sioc:Container and then linking them to a joined source with
sioc:has_space.

9.4.2 Tags

The second core class of the MUTO ontology is muto:Tag. It describes the set of
tags T . Each tag is an instance of this class with its own URI. Using class instances
for tags instead of simple literals allows for the definition of tag properties, such as
the later described muto:tagMeaning and muto:nextTag.

It is important to note that tags with the same label are not merged in MUTO,
as this would not only affect the labels but also other tag properties. In our under-
standing, aggregations of tags with the same label (e.g. for the generation of tag
cloud visualizations) are not a part of the semantic model but are rather performed
by the interactive system. However, the MUTO core ontology can be extended by
a module for aggregated tags if this information should be included in the semantic
model.

Semantically, tags are very close to what is commonly represented by skos:
Concept. We thus made muto:Tag a subclass of skos:Concept, which re-
sults in similar benefits to those described above for the subclassing of sioc:Item.
For instance, it allows us to reuse SKOS concepts in MUTO, such as skos:
narrower and skos:broader to represent hierarchical relations between tags.
Likewise, skos:related can be used to describe tag relations of a more general

176 S. Lohmann

nature. The description of other tag relations is not part of the MUTO core ontology,
but could easily be integrated with a corresponding module if needed.

The only tag relation we explicitly defined in the MUTO core ontology is
muto:nextTag (and its inverse counterpart muto:previousTag) to describe
the sequential order in which tags are entered by the users during the act of tag-
ging. Usually, people enter more than one tag per tagging (Halpin et al. 2007) and
they expect the ordering of the tags to remain the same whenever they access a tag-
ging. Using property relations to represent sequences is common practice in OWL
(Drummond et al. 2006).

MUTO strictly distinguishes between tags (which have exactly one label ac-
cording to Axiom 3) and concepts (which can have more than one label). How-
ever, it supports the mapping between tags and concepts with the property
muto:tagMeaning. This is particularly useful in the aforementioned case of
semantic tagging where the meaning of tags is made explicit by linking them to
well-defined entities, such as DBpedia resources (see Sect. 9.2.2 and the example in
Sect. 9.5). muto:tagMeaning can also be used to indicate synonym tags, simply
by linking all tags with identical meaning to the same resource. This includes dif-
ferent tags that are variations of the same term (e.g. if one tag has an underscore as
delimiter and the other a hyphen).

9.4.3 Users

MUTO reuses sioc:UserAccount to represent the accounts of the users who
created the taggings (i.e. the set of users U). Linking users by their accounts is more
accurate and flexible than linking them directly (e.g. by using foaf:Person), as
it allows one user to have several accounts (e.g. one for work-related and one for
personal taggings).

An alternative to sioc:UserAccount would have been the semantically
closely related class foaf:OnlineAccount. We decided for the SIOC variant
because we also used other concepts of this vocabulary along with muto:Tagging
and can thus stay in one namespace. Moreover, it provides flexible support for
group tagging (see Sect. 9.2.2) with its class sioc:Usergroup that sioc:
UserAccount can be linked to. Yet, since sioc:UserAccount is a subclass
of foaf:OnlineAccount, concepts from the FOAF vocabulary can also be used
to describe users and user-related information.

9.4.4 Resources

Resources are linked to taggings by the property muto:taggedResource. Like
muto:tagMeaning and muto:grantAccess, the property has no explicit
range and can thus be linked to all instances of rdfs:Resource, as indicated

9 Semantic Models for Interactive Systems 177

in Fig. 9.1. Since rdfs:Resource is “the class of everything” and “all other
classes are subclasses of this class” in RDF (Brickley and Guha 2004), it means
that taggings can be linked to any kind of resource. This is in line with the gen-
eral idea of tagging, where the interactive system determines what is considered a
resource.

9.4.5 Further Concepts

In addition, we reused concepts from the Dublin Core vocabulary (DCMI Usage
Board 2012) to enrich the instances of both muto:Tagging and muto:Tag with
date and time information. Instead of directly linking Dublin Core properties, we de-
fined own subproperties in order to equip them with exact domain and range axioms.
We defined two such properties for muto:Tagging, one describing the creation
date and time (muto:taggingCreated) and the other one tracking every single
edit (muto:taggingModified). The latter can be useful, for instance, to sort
taggings by date of last modification.

The date and time information of tags (muto:tagCreated) is conceptually
separated from that of taggings. This is useful if certain tags of a tagging are added
at a later time. Omitting the separate date and time information in these cases
can result in biased tag statistics and wrong conclusions about the evolution of
the folksonomy. However, since the creation dates and times of tags are usually
the same as the creation dates and times of the associated taggings, we defined
muto:tagCreated as an optional property to prevent a redundant representation
of this information. If no separate date and time information is given for a tag, it is
assumed that the tag has been created at the same date and time as the associated
tagging (i.e., muto:tagCreated = muto:taggingCreated). The ranges
of all three subproperties muto:tagCreated, muto:taggingCreated, and
muto:taggingModified are given with xsd:dateTime in order to force a
standardized format and improve interoperability.

Finally, the MUTO core ontology includes the domain-specific concepts of pri-
vate and automatic tagging (see Sect. 9.2.2). They are defined as specializations
of the central muto:Tagging and muto:Tag classes. A private tagging is only
visible to its creator, unless the creator has not explicitly granted access to it by
others, as expressed by the muto:grantAccess property. Note that the ontology
can only provide a description of the concept; the correct implementation of privacy
constraints remains the duty of the interactive system.

As automatic tagging denotes tagging with automatic tags, muto:AutoTag is
a subclass of muto:Tag. Describing manual and automatic tagging in the same
ontology makes sense, as it avoids redundant modeling and allows for an easier
transformation of automatic tags into manual (i.e. user validated) ones. In addi-
tion, it allows to associate both types of tags with the same tagging instance, which

178 S. Lohmann

is conceptually consistent with how automatic tags are often applied, namely as a
complement to the tags entered by the user.

Note that there is no need to define the ‘counterpart’ concepts of public and
manual tagging, as these are the default modes, i.e. the usual case is public
tagging with user-assigned tags. Therefore, taggings that are not instances of
muto:PrivateTagging are public by default. Likewise, all tags that are not
instances of muto:AutoTag are assumed to be manually entered.

9.4.6 Cardinality Constraints

We equipped the MUTO ontology with cardinality constraints to ensure that the
fundamental principles of tagging (as defined by the axioms in Sect. 9.2.1) are not
violated. Since these fundamental principles are important for the interoperability
and processability of folksonomies, we decided to define them globally. That is,
we used functional properties (owl:FunctionalProperty) instead of prop-
erty restrictions (owl:Restriction), what is different from earlier versions of
MUTO which used property restrictions exclusively (Lohmann et al. 2011). This
decision was also motivated by the fact that the maximum cardinality is one for all
properties that need to be constrained in MUTO. Furthermore, functional proper-
ties do not force their use but can be omitted, keeping MUTO flexible despite all
constraints.

Taggings and tags are linked by the property muto:hasTag. The cardinality of
this property is not restricted, as there is no restriction on the number of tags that
a tagging may consist of (see Axiom 1). MUTO even allows for taggings without
tags to support cases where users first simply index a resource and add tags later, as
possible in some systems (e.g. Delicious).

In contrast, we defined muto:taggedResource to be functional, since each
tagging is uniquely linked to a single resource according to Axiom 1. The axiom
states the same for the user account, i.e. each tagging is created by one user. Hence,
muto:hasCreator is also a functional property in MUTO.

As tags have always exactly one label (Axiom 3), muto:tagLabel has also
a cardinality of one. Finally, muto:taggingCreated, muto:tagCreated,
and muto:nextTag have a cardinality of one, since multiple definitions of these
properties for the same instance would not make sense. Apart from these cardinality
constraints we have avoided to overly specify the ontology. In particular, we did not
use OWL constructs that are not part of OWL Lite, such as owl:disjointWith
or owl:unionOf, to not unnecessarily increase the formal complexity of the on-
tology.

9.5 Application Example

Figure 9.2 depicts a sample scenario of using the MUTO ontology with the social
bookmarking system Example.org. It shows the RDF graph of user Alice who an-

9 Semantic Models for Interactive Systems 179

Fig. 9.2 Example RDF graph depicting a private tagging of a photo by user Alice

notated a photo from the website Example.net. Assume that Alice interacts with a
well-designed user interface. She does not get in touch with the ontology but it is
rather used for the design and internal representation in the interactive system and/or
for sharing the folksonomy with other systems. Listing 9.1 provides the OWL code
of the example in RDF/Turtle format.

9.5.1 Scenario

Imagine the following scenario that led to the creation of the tagging instance:2 Al-
ice logs into her account of the social networking service Example.com
(sioc:hasCreator). From there, she uses the social bookmarking system Ex-
ample.org to annotate a photo she uploaded to the media sharing website Ex-
ample.net (muto:taggedResource). As the photo shows her friend Bob in
downtown Madrid, she starts tagging with entering the tag ‘madrid’ (muto:Tag).
Then, she recognizes that the system has automatically identified Bob on the photo
and added his name as a tag (muto:AutoTag). The system got his name (and
further information) from the social networking service Example.com, of which
Bob is also a member. In addition, the system links Bob’s name to his account
(muto:autoMeaning, a subproperty of muto:tagMeaning). Though Alice

2In brackets, we give the ontology classes and properties used to represent the information.

180 S. Lohmann

@pref ix muto : < h t t p : / / p u r l . o rg / muto / c o r e #> .
@pref ix s i o c : < h t t p : / / r d f s . o rg / s i o c / ns #> .
@pref ix skos : < h t t p : / / www. w3 . org / 2 0 0 4 / 0 2 / skos / c o r e #> .
< h t t p : / / example . o rg / t a g g i n g / t a g g i n g 1 > a muto : P r i v a t e T a g g i n g ;

muto : t a g g e d R e s o u r c e < h t t p : / / example . n e t / p h o t o s / photo1 >;
muto : h a s C r e a t o r < h t t p : / / example . com / u s e r / a l i c e > ;
muto : hasTag < h t t p : / / example . o rg / t a g / tag1 > ,

< h t t p : / / example . o rg / t a g / tag2 > ,
< h t t p : / / example . o rg / t a g / tag3 >;

muto : t a g g i n g C r e a t e d "2011−11−11T11 : 1 1 : 1 1 Z " ;
muto : t a g g i n g M o d i f i e d "2011−11−12T09 : 4 3 : 0 3 Z " ;
muto : g r a n t A c c e s s < h t t p : / / example . com / u s e r / bob >;
s i o c : h a s _ c o n t a i n e r < h t t p : / / example . o rg / t a g g i n g s / group1 >;
s i o c : n o t e " Photo o f Bob i n downtown Madrid . " .

< h t t p : / / example . o rg / t a g / tag1 > a muto : Tag ;
muto : t a g L a b e l " madr id " ;
muto : nex tTag < h t t p : / / example . o rg / t a g / tag2 > .

< h t t p : / / example . o rg / t a g / tag2 > a muto : Tag ;
muto : t a g L a b e l " s o l " ;
muto : t a g C r e a t e d "2011−11−12T09 : 4 3 : 0 3 Z " ;
muto : tagMeaning < h t t p : / / d b p e d i a . o rg / r e s o u r c e /

P u e r t a _ d e l _ S o l > ;
skos : b r o a d e r < h t t p : / / example . o rg / t a g / tag1 > .

< h t t p : / / example . o rg / t a g / tag3 > a muto : AutoTag ;
muto : t a g L a b e l " bob " ;
muto : au toMeaning < h t t p : / / example . com / u s e r / bob > .

< h t t p : / / example . o rg / t a g g i n g s / group1 > a s i o c : C o n t a i n e r ;
s i o c : h a s _ s p a c e < h t t p : / / example . org > .

Listing 9.1 OWL code of the example in RDF/Turtle format (‘a’ = rdf:type)

marked the tagging as private (muto:PrivateTagging), she decides to share it
with Bob and grants him access (muto:grantAccess). She also adds a comment
to the tagging describing the contents of the photo (sioc:note).

One day later, Alice looks at the photo again and recognizes that it was taken at
Puerta del Sol, a central square in Madrid. She opens the tagging and adds the tag
‘sol’ (muto:Tag) to the previously assigned tags ‘madrid’ and ‘bob’. Furthermore,
she decides to ‘semantify’ the tag so that she will later remember what ‘sol’ means.
First, she makes ‘sol’ a subtag of ‘madrid’ (skos:broader) to indicate that it is
a specific location in Madrid. Second, she gives the tag explicit meaning by linking
it to the corresponding DBpedia resource (muto:tagMeaning).

The information that the tag ‘sol’ was added at a later time than the other two tags
is given by its property muto:tagCreated. This property would not be necessary
if the tag would have been entered along with the others. Accordingly, the time-
stamp of muto:tagCreated is the same as of muto:taggingModified but

9 Semantic Models for Interactive Systems 181

different from the one of muto:taggingCreated. Source information is linked
with sioc:has_space after the tagging has been assigned to a container with
sioc:has_container.

9.5.2 Discussion

The example illustrates an advanced case of tagging that uses many of the concepts
from the semantic model. The most basic variant of tagging—a list of tags with-
out disambiguations, hierarchical relations, comments, or automatic tags—can be
described with much fewer concepts. This capability of supporting different levels
of tagging, from simple to semantic, from manual to automatic, and from public to
private, was one of the main goals in the development of the semantic model. On
the other hand, we avoided to make the semantic model unnecessary complex but
kept it understandable to people who use it. Finding a good balance between com-
prehensiveness and compactness was thus another major goal in the development of
the semantic model.

The example also indicates the benefits of a precise domain description for the
development of interactive systems. There would be many different ways to repre-
sent the information from the scenario; having one common conceptualization helps
to create a joint understanding among the developers of an interactive system. More
importantly, the semantic model can also increase the interoperability between dif-
ferent interactive systems, as illustrated by the scenario: It links taggings of a social
bookmarking system with photos from a media sharing website and user profiles of
a social networking service.

9.6 Visualization

If folksonomies are based on the semantic model, they become independent from
individual interactive systems. This opens up possibilities for developing user inter-
face components that can be used in multiple systems. In the following, we illus-
trate these possibilities on the example of graph visualizations. Such visualizations
nicely depict the core structure of folksonomies, as described by the annotations A

which link the resources R, tags T , and users U . If we consider the MUTO on-
tology, these sets are represented by the classes rdfs:Resource, muto:Tag,
sioc:UserAccount, and muto:Tagging.

This core structure forms a hypergraph that can be split into several subgraphs
representing specific parts of the folksonomy (Mika 2005). In particular, we de-
rive three bipartite graphs G(RT), G(TU), and G(UR) that describe the relations
between each two of the basic element sets.

An example for the graph G(RT) with V = R ∪ T is shown in Fig. 9.3a.
The nodes represent the resources and tags, i.e. instances of rdfs:Resource

182 S. Lohmann

Fig. 9.3 Graph visualizations: (a) photos linked by tags, (b) links between tags without photos

(or some more specific subclass) and muto:Tag, while the edges represent
the links between them. These links are given by the muto:hasTag and
muto:taggedResource property relations. Unlike in the semantic model, we
merged tags with same labels in the graph visualization.

Continuing from the above scenario, assume that the graph was generated from
the taggings of user Alice. The resources are a selection of photos which Alice
uploaded to the media sharing website Example.net and which she annotated with
tags. The graph visualization helps to explore relationships between the photos. We
see, for instance, that there are other photos also showing Bob. These photos can
then be selected and viewed in detail.

All three bipartite graphs G(RT), G(TU), and G(UR) derived from the basic
folksonomy structure can be further reduced, depending on what the user is inter-
ested in. If we split G(RT) again, we get two graphs showing the set of resources
and the set of tags, respectively. An example of the latter is shown in Fig. 9.3b. It
visualizes the same tags as graph G(RT) from Fig. 9.3a but without the resources,
i.e. the tagged photos. Instead, it shows only the links that result from the tagging of
the photos. This kind of visualization is sometimes called tag graph, as it is related
to tag cloud visualizations but additionally displays the links between the tags based
on their co-use (Lohmann and Díaz 2012). It can be extended in various directions,

9 Semantic Models for Interactive Systems 183

e.g. by weighting the font sizes of the tags like in tag clouds or by weighting the tag
relations.

Apart from that, a large number of other graph visualizations can be derived
from folksonomies; in particular, if we consider not only the basic folksonomy tuple
F = (R,T ,U,A) but also other concepts of the semantic model, such as time in-
formation (muto:taggingCreated). Generally speaking, we are free to create
all kinds of user interfaces, as long as they are consistent with the semantic model.
This allows even for adaptable user interface components where users select the
parts of the folksonomy they are interested in (e.g. choose from a selection of dif-
ferent graph visualizations). Thus, not only the folksonomies become independent
from individual interactive system but also the related user interface components.

9.7 Conclusions and Future Work

In this chapter, we have presented a semantic model for the domain of tagging and
folksonomies. It not only contributes to a better domain understanding but also im-
proves the interoperability of folksonomies and the reusability of related user in-
terface components. It is formally described in an OWL ontology allowing for ma-
chine interpretation and automated reasoning. We have illustrated how the model
can support the graph-based representation and visualization of folksonomies. If
folksonomies are based on it, they can be shared among interactive systems and the
same program code (e.g. SPARQL queries) can be used to access and visualize parts
of the folksonomies. This allows for the development of reusable and adaptable user
interface components which offer different perspectives on folksonomies depending
on the interests of the users.

Our goal was to develop a compact yet comprehensive semantic model that con-
siders all important concepts and relationships in the domain of tagging and folk-
sonomies. Furthermore, we wanted to keep it as understandable as possible for the
people who use it. If we compare it with existing conceptualizations, it is most
closely related to the “Tag Ontology” developed by Newman (2005) and the “Book-
mark Schema” of the Annotea project (Koivunen 2006). However, it additionally
considers several concepts that are missing in these approaches, such as some ad-
vanced tagging concepts described in the ontologies of Echarte et al. (2007) as well
as Passant and Laublet (2008).

Two major challenges in the application of semantic models are performance
and scalability. In this work, we have focused on a precise conceptualization rather
than on a technical optimization for large folksonomies. In such cases, other repre-
sentations that allow for a fast processing and efficient storage of the folksonomy
might be more useful. Furthermore, specific modules may be integrated into the
MUTO ontology that speed up processing, such as properties that directly link the
resources, tags, and users in order to avoid the indirection via taggings. However,
such pragmatic extensions should be used with care as they may lead to conceptual
inconsistencies (e.g. direct relations between tags and resources can conflict with
the concept of private tagging).

184 S. Lohmann

Table 9.2 Alphabetical list of the names, namespace prefixes, and URIs of the referenced vocab-
ularies

Vocabulary name Prefix URI reference

Common tag CTAG http://commontag.org/ns#

Friend of a friend FOAF http://xmlns.com/foaf/0.1/

Meaning of a tag MOAT http://moat-project.org/ns#

Modular unified tagging
ontology

MUTO http://purl.org/muto/core#

NiceTag ontology NT http://ns.inria.fr/nicetag/2010/09/09/voc

Ontology of folksonomy OF http://www.eslomas.com/tagontology-1.owl

RDF schema RDFS http://www.w3.org/2000/01/rdf-schema#

RDF site summary RSS http://purl.org/rss/1.0/

Semantically-interlinked online
communities

SIOC http://rdfs.org/sioc/ns#

Simple knowledge organization
system

SKOS http://www.w3.org/2004/02/skos/core

Social semantic cloud of tags SCOT http://scot-project.org/scot/ns#

Tag ontology TAGS http://www.holygoat.co.uk/owl/redwood/0.1/tags/

Tagging ontology TO http://bubb.ghb.fh-furtwangen.de/TagOnt/tagont.owl

TAGora tagging ontology TT http://tagora.ecs.soton.ac.uk/schemas/tagging

Upper tag ontology UTO http://info.slis.indiana.edu/dingying/uto.owl

XML schema XSD http://www.w3.org/2001/XMLSchema#

Future work includes the application and extension of the semantic model in
various contexts. In particular, we are interested in ontology modules that add ad-
vanced tagging concepts to represent, for instance, specific types of tags (geotags,
star ratings, etc.) or tag relations (synonymy, part-of, etc.). Furthermore, we plan
to test the semantic model with different interactive systems to evaluate its general
applicability and identify issues for improvement.

References

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., et al. (2009). DBpedia—
a crystallization point for the web of data. Journal of Web Semantics, 7(3), 154–165.

Bojars, U., Breslin, J. G., Peristeras, V., Tummarello, G., & Decker, S. (2008). Interlinking the
social web with semantics. IEEE Intelligent Systems, 23(3), 29–40.

Brickley, D., & Guha, R. V. (2004). RDF vocabulary description language 1.0: RDF schema.
http://www.w3.org/TR/rdf-schema/.

DCMI Usage Board (2012). DCMI metadata terms. http://dublincore.org/documents/dcmi-terms/.
Drummond, N., Rector, A., Stevens, R., Moulton, G., Horridge, M., Wang, H., et al. (2006). Putting

OWL in order: patterns for sequences in OWL. In CEUR-WS.org: Vol. 216. Proceedings of the
OWLED ’06 workshop on OWL: experiences and directions.

http://commontag.org/ns
http://xmlns.com/foaf/0.1/
http://moat-project.org/ns
http://purl.org/muto/core
http://ns.inria.fr/nicetag/2010/09/09/voc
http://www.eslomas.com/tagontology-1.owl
http://www.w3.org/2000/01/rdf-schema
http://purl.org/rss/1.0/
http://rdfs.org/sioc/ns
http://www.w3.org/2004/02/skos/core
http://scot-project.org/scot/ns
http://www.holygoat.co.uk/owl/redwood/0.1/tags/
http://bubb.ghb.fh-furtwangen.de/TagOnt/tagont.owl
http://tagora.ecs.soton.ac.uk/schemas/tagging
http://info.slis.indiana.edu/dingying/uto.owl
http://www.w3.org/2001/XMLSchema
http://www.w3.org/TR/rdf-schema/
http://dublincore.org/documents/dcmi-terms/

9 Semantic Models for Interactive Systems 185

Echarte, F., Astrain, J. J., Córdoba, A., & Villadangos, J. E. (2007). Ontology of folksonomy:
a new modelling method. In CEUR-WS.org: Vol. 289. Proceedings of the semantic authoring,
annotation and knowledge markup workshop (SAAKM ’07).

Gruber, T. (1993). A translation approach to portable ontology specifications. Knowledge Acquisi-
tion, 5(2), 199–220.

Gruber, T. (2005). TagOntology—a way to agree on the semantics of tagging data.
http://tomgruber.org/writing/tagontology.htm.

Gruber, T. (2007). Ontology of folksonomy: a mash-up of apples and oranges. In Proceedings of
the 1st conference on metadata and semantics research (MTSR ’05). International Journal on
Semantic Web and Information Systems, 3(2), 1–11.

Halpin, H., Robu, V., & Shepherd, H. (2007). The complex dynamics of collaborative tagging. In
Proceedings of the 16th international conference on world wide web (WWW ’07) (pp. 211–220).
New York: ACM.

Heymann, P., & Garcia-Molina, H. (2006). Collaborative creation of communal hierarchical tax-
onomies in social tagging systems (Technical Report No. 2006-10). Stanford InfoLab.

Hotho, A., Jäschke, R., Schmitz, C., & Stumme, G. (2006). Information retrieval in folksonomies:
search and ranking. In LNCS: Vol. 4011. Proceedings of the 3rd European semantic web con-
ference (ESWC ’06) (pp. 411–426). Berlin: Springer.

Kim, H. L., Scerri, S., Breslin, J. G., Decker, S., & Kim, H. G. (2008). The state of the art in tag
ontologies: a semantic model for tagging and folksonomies. In Proceedings of the international
conference on Dublin core and metadata applications (DC ’08) (pp. 128–137). Dublin: DCMI.

Koivunen, M.-R. (2006). Semantic authoring by tagging with annotea social bookmarks and topics.
In CEUR-WS.org: Vol. 209. Proceedings of the 1st semantic authoring and annotation workshop
(SAAW ’06).

Li, R., Bao, S., Yu, Y., Fei, B., & Su, Z. (2007). Towards effective browsing of large scale social
annotations. In Proceedings of the 16th international conference on world wide web (WWW
’07) (pp. 943–952). New York: ACM.

Lohmann, S., & Díaz, P. (2012). Representing and visualizing folksonomies as graphs: a reference
model. In Proceedings of the international working conference on advanced visual interfaces
(AVI ’12) (pp. 729–732). New York: ACM.

Lohmann, S., Díaz, P., & Aedo, I. (2011). MUTO: the modular unified tagging ontology. In Pro-
ceedings of the 7th international conference on semantic systems (I-SEMANTICS ’11) (pp. 95–
104). New York: ACM.

Mika, P. (2005). Ontologies are us: a unified model of social networks and semantics. In LNCS:
Vol. 3729. Proceedings of the 4th international semantic web conference 2005 (ISWC ’05)
(pp. 522–536). Berlin: Springer.

Miller, G. A. (1995). Wordnet: a lexical database for English. Communications of the ACM, 38,
39–41.

Newman, R. (2005). Tag ontology design. http://www.holygoat.co.uk/projects/tags.
Noy, N., & McGuinness, D. (2001). Ontology development 101: a guide to creating your first

ontology (Technical Report No. SMI-2001-0880). Stanford Medical Informatics.
Noy, N., Rector, A., Hayes, P., & Welty, C. (2006). Defining N-ary relations on the semantic web.

http://www.w3.org/TR/swbp-n-aryRelations/.
Passant, A., & Laublet, P. (2008). Meaning of a tag: a collaborative approach to bridge the gap

between tagging and linked data. In CEUR-WS.org: Vol. 369. Proceedings of the WWW2008
workshop on linked data on the web (LDOW ’08).

Peters, I. (2009). Folksonomies: indexing and retrieval in web 2.0. Berlin: de Gruyter.
Smith, G. (2008). Tagging: people-powered metadata for the social web. Berkeley: New Riders.
W3C OWL Working Group (2012). OWL 2 web ontology language document overview (2nd ed.).

http://www.w3.org/TR/owl2-overview/.
Wu, X., Zhang, L., & Yu, Y. (2006). Exploring social annotations for the semantic web. In Pro-

ceedings of the 15th international conference on world wide web (WWW ’06) (pp. 417–426).
New York: ACM.

http://tomgruber.org/writing/tagontology.htm
http://www.holygoat.co.uk/projects/tags
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.w3.org/TR/owl2-overview/

Chapter 10
User Interaction Templates for the Design
of Lifelogging Systems

Frank Hopfgartner, Yang Yang, Lijuan Marissa Zhou, and Cathal Gurrin

Abstract A variety of life-tracking devices are being created to give opportunity to
track our daily lives accurately and automatically through the application of sensing
technologies. Technology allows us to automatically and passively record life ac-
tivities in previously unimaginable detail, in a process called lifelogging. Captured
materials may include text, photos/video, audio, location, Bluetooth logs and infor-
mation from many other sensing modalities, all captured automatically by wearable
sensors. Experience suggests that it can be overwhelming and impractical to man-
ually scan through the full contents of these lifelogs. A promising approach is to
apply visualization to large-scale data-driven lifelogs as a means of abstracting and
summarizing information. In this chapter, we outline various UI templates that sup-
port different visualization schemes.

10.1 Introduction

Traditionally, in terms of us remembering important events and activities of our
own lives, the written diary has been the first choice. But with modern technol-
ogy, the diary recording of our lives is now digital. Emails sent and received, web
pages viewed and interacted with, photos and videos taken, viewed and shared, blog
postings and tweets written, on-line social network activities, calendars, goods pur-
chased and so on. These represent our present day. Through advances in wearable

F. Hopfgartner (B)
TU Berlin, Berlin, Germany
e-mail: frank.hopfgartner@tu-berlin.de

Y. Yang · L.M. Zhou · C. Gurrin
Dublin City University, Dublin, Ireland

Y. Yang
e-mail: yyang@computing.dcu.ie

L.M. Zhou
e-mail: mzhou@computing.dcu.ie

C. Gurrin
e-mail: cgurrin@computing.dcu.ie

T. Hussein et al. (eds.), Semantic Models for Adaptive Interactive Systems,
Human–Computer Interaction Series, DOI 10.1007/978-1-4471-5301-6_10,
© Springer-Verlag London 2013

187

mailto:frank.hopfgartner@tu-berlin.de
mailto:yyang@computing.dcu.ie
mailto:mzhou@computing.dcu.ie
mailto:cgurrin@computing.dcu.ie
http://dx.doi.org/10.1007/978-1-4471-5301-6_10

188 F. Hopfgartner et al.

sensors, we now have the capability to automatically record at large–scale the places
that we have been to, things we have seen, people we encountered and how active
we are. Almost everything we do these days, on-line and physically, is in some
way monitored, sensed and logged. Further, with the introduction of Facebook’s
Timeline (Sittig and Zuckerberg 2010), we have come to accept, or maybe we just
ignore, this massive surveillance of our lives from a variety of sensors. This can be
our smartphones, e.g. Reddy et al. (2007), Qiu et al. (2012), intelligent devices like
TVs and cars but also the surveillance cameras, recording of travel data at subways
and buses and purchases with credit cards. The creation of such multi-modal human
media archives, or lifelogs, will be commonplace.

In 2011, the European Union agency ENISA1 evaluated the risks, threats and
vulnerabilities of lifelogging applications with respect to central topics such as pri-
vacy and trust issues. In their final report, they highlight that lifelogging itself is still
in its infancy but nevertheless will play an important role in the near future (Daskala
et al. 2011). Therefore, they recommend further research in order to influence its
evolution to “be better prepared to mitigate the risks and [to] maximize the bene-
fits of these technologies”. Various researchers have worked on handling lifelogs,
starting from identifying important events in the data stream, analyzing the sensor
data to generating semantically meaningful annotations that describe these events
and the implications on privacy (O’Hara et al. 2008; Gedik and Liu 2008).

Due to the characteristics of the capturing devices, we know that these lifelogs
can be large and contain chronological ordered data. Captured materials may include
text, photos/video, audio, location, Bluetooth logs and information from many other
sensing modalities, all captured automatically by wearable sensors. Experience sug-
gests that it can be overwhelming and impractical to manually scan through the full
contents of these lifelogs. A promising approach is to apply visualization to large-
scale data-driven lifelogs, as a means of abstracting and summarizing information.

Data visualization supports representation of abstract information, which facili-
tates further exploration (Shneiderman 1996). Previous studies mainly focused on
plain numerical data, often in the form of charts, tables, figures, diagrams, etc. How-
ever, in the case of lifelogging, data generated from multiple sensor sources are
more complex, requiring careful consideration of how to summarize and represent
this information. In visual lifelogging, it is common for the sensing devices to auto-
matically capture thousands of photos and tens of thousands of sensor readings per
day (Kalnikaite and Whittaker 2012).

We argue that lifelog visualization should be capable of displaying the sheer
quantity of mixed multimedia content in a meaningful way, taking into considera-
tion user behaviors and needs. It requires incorporating domain knowledge into the
data aggregation, compression and rendering process. Through different means of

1The objective of the European Network and Information Security Agency (ENISA) is to advise
European institutions and Member states to improve network and information security for the
benefit of all citizens and organizations in the union. More details can be found on their website at
http://www.enisa.europa.eu/.

http://www.enisa.europa.eu/

10 User Interaction Templates 189

interaction, the visualizations should provide an insight to help users improve self-
awareness, support retrospective memory access, and furthermore, discover their
own stories and life events. Hence, lifelogging provides a new domain for the de-
velopment of adaptive interactive systems.

In this chapter, we discuss the use of context-based HCI design templates, which
support a more systematic approach in exploring the match between user needs
and interaction provision. Template-based user interface development aims at pro-
viding a systematic approach to specify the user interface by means of models. It
helps us to design for maximum usability. We will focus on different user scenarios,
including (a) the creation of personal lifelogging legacies, (b) energy expenditure
measurements, (c) reminiscence therapy and (d) social activity capturing. These UI
templates serve as guidelines towards increasing the use of HCI design patterns for
lifelogging devices.

The chapter is structured as follows. In Sect. 10.2, we provide a brief overview
over existing lifelogging technology. Section 10.3 introduces use cases that demon-
strate the application of these technologies, In Sect. 10.4, we introduce different
interaction patterns for different lifelogging scenarios. Section 10.5 concludes this
chapter.

10.2 Lifelogging Devices

Digital lifelogging is an ubiquitous concept and exists in various forms. As men-
tioned above, it includes any digital document one creates every day, e.g., letters
that are typed on a personal computer, pictures taken with a digital camera or mo-
bile phone, posts in the Internet, etc. Further, it can be automatically captured data
such as GPS records, personal health information or ambient living awareness sys-
tems in an intelligent housing system. As the prevalence of digital logging devices,
we now have the ability to gather and store large volumes of personal data under
a meticulous concern of privacy. Furthermore, people have always collected me-
mentos over lifetime. Besides, sharing digital information is already commonplace,
through emails, mobile phones and social network. Focusing on an individual (i.e.,
the lifelogger), various lifelogging devices provide a constant stream of personal
data. The functionality of lifelogging devices is as diverse as the data that is recorded
by these devices. We classify these devices into four categories: (1) Portable Cam-
eras, (2) Biometric Devices, (3) Other Portable Devices and (4) Networked Systems.
All devices allow users to record some part of their daily life (GPS tracking, envi-
ronmental surroundings, our body metrical information, etc.). The categories are
introduced in the remainder of this section.

10.2.1 Portable Cameras

The most advanced application of personal lifelogs is the storage of pictures and
videos that depict people’s life. Various devices have been introduced that can be
used to achieve this task.

190 F. Hopfgartner et al.

An early product is Microsoft’s SenseCam (Hodges et al. 2006), a camera with
fisheye lens and various additional sensors which is worn around the neck. Sense-
Cam has been used extensively in the MyLifeBits project (Gemmell et al. 2006),
a research project aimed at creating lifetime storage databases. SenseCam is a small
lightweight wearable camera used to passively capture photos and other sensor data
(temperature, accelerometer, magnitude, infrared ray etc.). A similar product will
soon be launched by the Swedish startup company Memoto,2 who successfully
raised money via crowdsourcing to start the production of a small lifelogging cam-
era. Their funding campaign attracted world-wide media attention (e.g., by Wired
Magazine, Wall Street Journal, The Guardian, The Huffington Post, BBC, Die Zeit,
and others), indicating the growing attention that lifelogging receives nowadays.
Other potential lifelogging cameras are Google’s Project Glass, an augmented re-
ality head-mounted display (Olsson 2012) and Looxcie (Boland and Pereira 2011),
a mobile-connected, handsfree, streaming video camera.

A collection consisting of over 10.5 million personal lifelogging images (Do-
herty et al. 2009) has been used for the development and testing of various algo-
rithms to automatically categorize image content. For example, researchers studied
techniques to automatically segment the stream of daily lifelogging pictures into
semantically coherent events and to group them in categories such as socializing,
eating, travel behaviour, environments that people experience, or movements (Do-
herty 2009; Byrne et al. 2008; Doherty et al. 2008; Li et al. 2013). Doherty et al.
(2012) introduce a browser that allows users to view of summary of daily events
instead of watching all pictures of a day.

Apart from focusing on the technical handling of this big data, various research
has been performed to study the potentials of lifelogging images in medical and
other settings. For example, studies have shown (e.g., Berry et al.2007) that the pro-
cess of reviewing lifelogging pictures has a positive effect on memory recall, with
even better effects than the more traditional personal diary. The authors report that
enabling patients with limbic encephalitis to relieve their day by exploring lifelog-
ging images has a positive impact on the patients’ confidence, stress level and their
ability to cope with their impairment. Further, neuroscientists observed that viewing
personal lifelogging images triggers activity in parts of the brain that is associated
with normal autobiographical remembering (Berry et al. 2009). Similar results are
reported by Piasek et al. (2011), Pauly-Takacs et al. (2011), who asked memory
impaired patients to include lifelogging technologies in their daily lives.

10.2.2 Biometric Devices

Another popular domain where users rely on sensors to record aspects of their life
is the health market. As shown in a recent survey (Zhou and Gurrin 2012), many

2http://www.memoto.com/.

http://www.memoto.com/

10 User Interaction Templates 191

sports enthusiasts are keen to record their sports life. There are a bundle of biomet-
ric devices that are capable of logging biometric information such as Galvanic skin
response, skin temperature, heart rate or increased sweat production, sympathetic
nervous activities, etc. These devices are mainly used to interpret physiological re-
sponses that provide evidence for the personal well being. Commercial products
include ReadiBand from Fatigue Science,3 a tiny device that has to be worn around
the wrist and Bodymedia,4 which is designed to determine energy expenditure and
other biometric information. Targeting the amateur sports market, devices such a Fit-
Bit5 and Nike+iPod6 promise fitness monitoring facilities based on internal sensor
data. Both devices have in common that they are rather small and are comfortable
to wear. Given their small size, these small devices play an essential role in the
evaluation of sports and health related studies (e.g. Cole et al. 2004). Consequently,
the underlying technology, i.e., the analysis of sensor data such as accelerometer
data to determine energy expenditure has been studied extensively, e.g., by Albi-
nali et al. (2010), Swartz et al. (2000), Montoye et al. (1983). Further related re-
search includes the analysis of sensor data to determine biometric features include
device-independent gesture recognition (Kratz et al. 2011) and the continuous and
non-intrusive user identity verification in real-time environments (Messerman et al.
2011).

10.2.3 Other Portable Devices

Apart from devices that record visual or biometric data, various other portable de-
vices exist that can be used for logging parts of our lives. For example, GPS data
trackers constantly create time-annotated location points that allow tracking move-
ments. These devices are often used to track animals, (e.g. Weimerskirch et al.
2002; Schofield et al. 2007), vehicles, employees, children and/or elderly people.
Further, GPS sensors are used to geotag pictures and record travel, hiking, cycling,
flying or racing routes, thus revealing information such as individual travel behavior
(Clements et al. 2010) or general places of interest (Kennedy and Naaman 2008).
Rekimoto et al. (2007) rely on WiFi signals to create such patterns. Further, Miyaki
and Rekimoto introduce a mobile sensor which measures ambient air environment
(Miyaki and Rekimoto 2008). By plugging the sensor on a mobile phone, a detailed
record of air quality will be created, thus revealing details about one’s personal eco-
logical environment.

A promising portable device that comes with various internal sensors is the
smartphone. A standard smartphone contains a wealth of sensors: a camera, a GPS

3http://www.fatiguescience.com/products/readiband.
4http://www.bodymedia.com/.
5http://www.fitbit.com/.
6http://www.apple.com/ipod/nike/.

http://www.fatiguescience.com/products/readiband
http://www.bodymedia.com/
http://www.fitbit.com/
http://www.apple.com/ipod/nike/

192 F. Hopfgartner et al.

chip, an audio recorder, a 3-axis accelerometer, an ambient light sensor and a dig-
ital compass. In essence, a standard smartphone contains the full specification for
recording the entire physical and digital environment that a user is experiencing. Ad-
ditionally, Bluetooth headsets that can record, store and upload 5+ hours of medium
quality video are already available for less than EUR 200.

Hence, we have the ability to gather and store large volumes of personal data
(location, photos, motion, orientation, etc.) in a very cheap manner. Exploiting the
idea of using a smartphone as the primary tool for gathering lifelogging data, MIT’s
Media-Lab introduced the Funf Open Sensing Framework7 which creates a snapshot
of the user’s life by recording data from over 30 sensors, including Wifi signals, lo-
cations, usage of apps on the phone, and others. Data will automatically be uploaded
to the cloud and can then be analyzed by the user (Aharony et al. 2011). A similar
framework has been presented by Rawassizadeh et al. (2011). Further, a framework
is currently developed within the SenseSeer project.8 The aim of this project is to
develop a software platform that will automatically record, annotate and interpret
a user’s life activities, based upon the sensor data that they gather unobtrusively as
part of daily life. Using a smartphone, the system can recognize activities like ac-
tions (sitting, eating, driving), people (who is nearby), places (physical locations,
indoor/outdoor, office/home) or nearby objects (screen, steering wheel, people). In
addition, the SenseSeer application supports automatically taking pictures, thus em-
ulating the functionalities of a SenseCam (Qiu et al. 2012).

10.2.4 Networked Systems

The vast majority of devices that are used to record parts of our life are used to mon-
itor the environment (e.g. CCTV cameras, digital time sheets) or to provide some
customer-oriented services (e.g. ATM machines, Online web services, etc.). Com-
bining all personal data streams that have been recorded by these networked systems
can result in a detailed description of our every day activities. Elliott et al. (2009)
propose a framework for capturing all personal data in a personal archive. However,
the data that is recorded using these devices is often beyond our control. Besides,
these systems are often networked with other systems and services, hence distribut-
ing this personal data. Therefore, combining personal data under these conditions
should be examined with caution.

Recently, the European Commission funded the Dem@Care9 project via its FP7
funding scheme. The aim of Dem@Care is to provide multi-parametric remote mon-
itoring and enabling for persons with dementia, allowing them to live an indepen-
dent life in their community. The analysis of multi-parametric sensor data has also

7http://funf.org/.
8http://senseseer.com/.
9http://www.demcare.eu/.

http://funf.org/
http://senseseer.com/
http://www.demcare.eu/

10 User Interaction Templates 193

been studied within the context of the SmartSenior10 project. The aim of this project
was to improve life quality of elderly people at home, e.g., by enabling them to sus-
tain mobility, safety and independence.

10.3 Use Cases

As shown in the previous section, various devices exist that can be used to record
aspects of our lives. Bell and Gemmell (2009) argue that this is just the beginning
of a “total recall revolution”. The authors researched digital lifelogging for several
years, concluding that technology is developed (or might be developed soon) that
allows us to remember everything. In this section, we provide four use cases that
illustrate the motivation that users of lifelogging technologies might have to create
such digital memories.

10.3.1 Personal Lifelogging Legacy

Scenario

“John Doe is a technology enthusiast. Hence, it did not take much to convince him to
buy one of those lifelogging devices that everyone was speaking about these days.
Buy one of our devices, their marketing slogan said. Leave a legacy behind that
really represents you: A record of your every-day activities. This promise fascinated
him. Wearing a lifelogging device, he could record everything he did, day by day.
People he met, places he had been to, . . . everything! The longer he would use the
device, the more of his data would be available, leaving a “digital fingerprint” of his
life. In a way, this data would keep a record of his life, the essence of his experiences.
Of course it would not make him immortal, but still, with conscientious data storage,
he would leave something behind that those about to follow could get back to”

Comment

With the rise of Facebook, Twitter and other social network services, we already
have access to technologies that allow us to share certain moments of our lives
online. Nadkarni and Hofmann (2012) argue that social network services satisfy two
primary human needs: (1) the need to belong and (2) the need for self-presentation.
Thus, we argue that above scenario is very close to real life. John could be anyone,
his need to share life moments drives many users of social network services to post
aspects of their lives (pictures, videos, text, . . .) online.

10http://www.smart-senior.de/.

http://www.smart-senior.de/

194 F. Hopfgartner et al.

Above scenario has been addressed by Bluepatch Productions and Floating
World Productions in their theatre play Oh look, hummingbirds, which premiered
at the 2012 Dublin Fringe Festival. In this play, a journalist is given the experience
to view the memories of a loved-one who passed away. This service is provided by
a futuristic company that specializes on keeping one’s lifelogging legacy and en-
abling selected persons to access this data. Although the play is set in the future,
the technology to record such lifelogging databases already exist and indeed, early
adopters already created their own personal lifelogs covering several years of life
experience (Doherty et al. 2009).

10.3.2 Energy Expenditure Measurement

Scenario

“Mandy never was a very disciplined person. Therefore, it probably is no big sur-
prise that every diet she tried so far was meant to fail. Although she initially manages
to lose some weight by changing her food consumption habits, she eventually breaks
in and eats that extra piece of cake again . . . Following up on her medical doctor’s
advise, she finally decides to get more physically active, hence losing weight by
burning more calories rather than just reducing food intake. Knowing about her
weak discipline, she joins a supervised fitness programme in her local gym where
she is asked to monitor her physical activities and to discuss this activity log with
her coach and other members of the training programme.”

Comment

As argued in Sect. 10.2.2, various biometric devices exist that can be used to mea-
sure physical activities. Further, weight losing programmes as offered by Weight-
watchers rely on recording, sharing and discussing food consumption habits with
members of a self-help group. A discussion on the psychological impact of sharing
and discussing such information with members of a group is discussed by Weiner
(1998).

10.3.3 Reminiscence Therapy

Scenario

“Alzheimer! It hit him like a ton of bricks. When Pete started to forget things, he first
blamed it on the stress he faced every day. But the more he forgot, the less he felt
that it was due to stress. He finally decided to go to a specialist to have his memory

10 User Interaction Templates 195

checked. Then, the verdict came: We are sorry to inform you that you suffer from
an early form of Alzheimer’s disease. Alzheimer! It effects concentration, memory,
judgement, rendering its victims helpless over the years. He did not want to forget!
He wanted to remember his life! If only there was a way to help him remember his
life”

Comment

Reminiscence enables us to relive events from our past. The American Psycholog-
ical Association defines reminiscence therapy as “the use of life histories—written
or oral, or both—to improve psychological well-being” (VandenBos 2006). It is one
of the most popular therapies in dementia care (Woods et al. 2009; Pittiglio 2000).
Lifelogging technology has been successfully used to support such reminiscence
sessions (Piasek et al. 2011; Bharoucha et al. 2009). The authors of these studies
conclude that lifelogging material such as personal pictures can be used as memory
trigger to help Alzheimer patients to remember certain events of their life and thus
helps to improve their quality of life.

10.3.4 Social Activity Capturing

Scenario

“Carina was about to experience the time of her life. Months ago, she received the
confirmation that she was selected to participate in the Erasmus programme, i.e., she
would be allowed to go abroad and study at another university in Europe for a year.
From what she has heard from previous participants of this programme, an Erasmus
year was all about exploring the host nation’s country and culture, meeting new
people from all over the world and, most of all, party, party, party. Willing to share
this experience with her friends at home, she installs a novel lifelogging application
on her mobile phone which creates a daily log of her activities, locations and people
she meets.”

Comment

Technologies, e.g., mobile phone apps, that allow to capture various aspects of the
life logger’s life have been presented in Sect. 2.3. Various patents have been granted
that lay ground for technology that enable tracking of activity and location (Haner
2002; Olmassakian 1999). A discussion on ethical issues regarding human centric
GPS tracking and monitoring is provided by Michael et al. (2006).

The danger of sharing social activity data online is illustrated by Friedland and
Sommer (2010), who present an algorithm that can be used to identify potential

196 F. Hopfgartner et al.

burglary targets based on the geo-location of videos and pictures that have been
shared online by the potential victims. They refer to this as cybercasing, i.e., the
method of “using online tools to check out details, make inferences from related
data, and speculate about a location in the real world for questionable purposes”.

10.4 Visualization Use Cases

As stated, personal lifelogs are voluminous and complex. Thus, visualization of
the lifelog collection should be intuitive, logical and comprehensible. In this chap-
ter, we discuss three use cases of lifelogs visualization. In each subsection talking
about each pattern, we give some examples of this pattern. We demonstrate exam-
ples of our context-based visualization and hope that this research may invoke fur-
ther research interest and efforts towards better visualizations for lifelogging con-
tent/information.

10.4.1 Visual Diary

A wearable camera passively captures thousands of photos per day. For example,
SenseCam takes approximately 5500 images per day. Hence, grouping sequences of
related images into events is necessary in order to reduce complexity (Doherty et al.
2008). This event recognition involves the segmentation of all photos into distinct
groups, or events, e.g., having breakfast, talking to a work colleague, meeting a
friend at a restaurant, etc. To achieve this goal, context-based sensor analysis is
required in conjunction with content-based image analysis. Further, representative
photos for each event have to be selected, namely a single photo from within an
event which represents the event’s content.

We observed that the user interest in visual logs is twofold: to gain an overview,
and to find important events of interest. In this section, we present different visu-
alization techniques to best display this information back to the user. Hence, this
pattern addresses Use Cases 3.1 (Personal Lifelogging Legacy), 3.3 (Reminiscence
therapy) and 3.4 (Social Activity Capturing) where a summary of the lifelogger’s
day/week/life is required. The different approaches are introduced in the remainder
of this section.

Comic-Book Style Visual Diary

A Comic-book style interface requires least space when the screen space is limited.
The design is inspired by the Squarified treemap (Bruls et al. 2000) pattern. In order
to better utilize the limited screen space, compact view of the visual lifelog is dis-
played to fit full screen. As shown in Fig. 10.1, it provides a summary of user’s daily

10 User Interaction Templates 197

Fig. 10.1 Interactive visual diary generated for one day, showing event segmentation (reprinted
from Jung et al. 2013)

Fig. 10.2 Each event has multiple images that allows further interaction on demand (reprinted
from Jung et al. 2013)

visual log on one single page, with emphasis placed on more important events. Each
grid represents an event (typically, about 20–25 events are detected for a normal
day). The size of the grid provides an immediate visual cue to the events importance
level, which offers users a clear entry point for exploration. The position of the grid
depicts the time sequence.

Each picture that is displayed in this comic-style visual diary represents multiple
similar images that depict the same event. At the same time, users are allowed to
drill down (full photo stream and sensor log) inside each event. By clicking on one
of the pictures, a user can view these additional pictures, together with a textual
description as complementary information. Users tap on other view options to see
lifelog data over a different timespan (week/month/year). An example is shown in
Fig. 10.2.

198 F. Hopfgartner et al.

Fig. 10.3 Visualization of an interactive timeline

Timeline (Relive the Day)

While the previous visualization focuses on highlighting important events, the fol-
lowing visualization theme allows users to browse through the entire collection
chronologically. It is referred to as “timeline”, i.e., users can see what they have
done on a specific day. It can help users to see the relationship between events and
comparison across historical data. Firstly, all images are segmented in to different
event, then they are displayed on an interactive timeline series. For example, in
Fig. 10.3, a list of events is displayed on a timeline for further exploration. For fur-
ther exploration, users are allowed to access details by clicking or hovering over an
event, i.e., users can see what they have done on a specific day. A short text descrip-
tion is generated automatically for each event, which acts as memory for better user
experience.

Master-Detailed

Applying Shneiderman’s mantra of “overview first, zoom and filter, then details-on-
demand” (Shneiderman 1996), another visualization pattern allows users to browse
a large archive collection in one single place. The visual log is summarized in a
master-list (thumbnail) of events and a text abstract representation of each event is
shown. This example illustrate a thumbnail gallery to navigate visual life logs. This
pattern displays visual lifelogs as a series of thumbnails of grids that users can hover
over and zoom in to find more details. Drill-down is supported to reveal a detailed
view. An example is shown in Fig. 10.4.

10.4.2 Social Interaction Radar Graph

Our goal is to build a visualization that users could use to facilitate discovery and in-
creased awareness of their social activities. Sensor data from Bluetooth, Wi-Fi, and
phone call logs, instant message logs, etc. can be used to gather users’ social inter-
action information. This social context data is potentially valuable to life memories.
Hence, the pattern can be applied in Use Case 3.4 (Social Activity Capturing).

10 User Interaction Templates 199

Fig. 10.4 Master detailed view of visual log

Displaying one type of data along only reflects one aspect of social interaction
activity. Aggregating all related sensors together can provide an informative and
complete presentation to end-users.

This visual representation, Fig. 10.5, utilizes three embedded sensors’ loggings
(i.e., Bluetooth, Wi-Fi, GPS) to automatically identify social context data of indi-
vidual users over the course of a whole year. Each concentric circle represents one
type of sensor data. This radar graph has three dimensions: (1) type of sensor (dif-
ferent color been used), (2) social activity level (length of each area), (3) time (cir-
cular radar graph divided into 12 sections, one month per section). Scrolling around
the circle enable rapid exploration and comparison between different months. The
combination of visual attributes (length and coloring) leverages pre attentive pro-
cessing to facilitate easy detection of trends or patterns over a year. For example,
we can quickly perceive large clumps of gray sections in March, May and Oc-
tober, which tell us that the user experienced higher social activities during these
months.

200 F. Hopfgartner et al.

Fig. 10.5 Social interaction
radar graph (reprinted from
Jung et al. 2013)

10.4.3 Activity Yearly Calendar

We want to design a visualization that provides users an overview of the whole year
on user’s activities, thus addressing Use Case 3.2 (Energy Expenditure Measure-
ment). We focus on the accelerometer and GPS in this visualization because these
two types of data are essential to reveal physical movement level directly.

Figure 10.6 shows the Activity view, which allows users gain a detailed under-
standing of their physical activities. The level of physical activity can be derived
from the accelerometer and GPS data. We visualize the data in an annual calendar
layout, with color-coding to present the activity intensity. A darker color indicates
more activity involved in a given day. By investigating the activity pattern over the
course of a full year, it is possible to detect a user’s extreme days (i.e., the most ac-
tive or the most quite days). This visualization method has a relatively high data-ink
ratio, a concept defined by Tufte (1983). For example, in this graph, we can quickly
see that the darker green grids are more heavily distributed towards beginning of
April, May, July and August, indicating that more activities happened during that
time.

10.5 Conclusion

Most existing approaches to the presentation of lifelog data use a generic type of
user interface (UI) to present all their life-log collection. Given the fact that users
may access their lifelogging data under different contexts and goals, we argue that
the efficiency and accuracy or user interaction may suffer by relying on a single
interface type. In this chapter, we have introduced different HCI design patterns that
can be used as guidelines for the development of different lifelogging visualization
tools. Therefore, we first introduce different lifelogging technologies that illustrate
how this domain has already reached our every-day life. Further, we introduced
different use cases that demonstrate different lifelogging scenarios. Based on these
scenarios, we then outlined UI templates. We argue that applying these templates
can ease the development of lifelogging visualization tools. As future research, we

10 User Interaction Templates 201

Fig. 10.6 Activity Calendar
View (reprinted from Jung et
al. 2013)

will develop various demonstrator systems based on these templates and aim to
design common UI design pattern solutions for the visualization of lifelogging data.

Acknowledgements This research was supported by the Norwegian Research Council (CRI
number: 174867) and Science Foundation Ireland under Grant No. 07/CE/I1147.

References

Aharony, N., Pan, W., Ip, C., Khayal, I., & Pentland, A. (2011). Social fMRI: investigating and
shaping social mechanisms in the real world. Pervasive and Mobile Computing, 7(6), 643–659.

Albinali, F., Intille, S., Haskell, W., & Rosenberger, M. (2010). Using wearable activity type detec-
tion to improve physical activity energy expenditure estimation. In UbiComp ’10. Proceedings
of the 12th ACM international conference on Ubiquitous computing (pp. 311–320). New York:
ACM.

Bell, G., & Gemmell, J. (2009). Total recall. New York: Dutton.
Berry, E., Kapur, N., Williams, L., Hodges, S., Watson, P., Smyth, G., et al. (2007). The use of

a wearable camera, SenseCam, as a pictorial diary to improve autobiographical memory in a
patient with limbic encephalitis: a preliminary report. Neuropsychological Rehabilitation, 17(4–
5), 582–601.

202 F. Hopfgartner et al.

Berry, E., Hampshire, A., Rowe, J., Hodges, S., Kapur, N., Watson, P., et al. (2009). The neural
basis of effective memory therapy in a patient with limbic encephalitis. Journal of Neurology,
Neurosurgery and Psychiatry, 80(11), 1202–1205.

Bharoucha, A., Anand, V., Forlizzi, J., Dew, M., Reynolds, C. S. S., & Wactlar, H. (2009). Intel-
ligent assistive technology applications to dementia care: current capabilities, limitations, and
future challenges. American Journal of Geriatric Psychiatry, 17(2), 88–104.

Boland, J., & Pereira, R. (2011). Wireless headset camera lens.
Bruls, D. M., Huizing, C., & van Wijk, J. J. (2000). Squarified treemaps. In Data visualization ’00.

Proceedings of the joint Eurographics and IEEE TCVG symposium on visualization (pp. 33–
42). Berlin: Springer.

Byrne, D., Doherty, A. R., Snoek, C. G., Jones, G. G., & Smeaton, A. F. (2008). Validating the
detection of everyday concepts in visual lifelogs. In SAMT ’08. Proceedings of the 3rd interna-
tional conference on semantic and digital media technologies: semantic multimedia (pp. 15–30).
Berlin, Heidelberg: Springer.

Clements, M., Serdyukov, P., de Vries, A. P., & Reinders, M. J. T. (2010). Using flickr geotags to
predict user travel behaviour. In SIGIR ’10. Proceedings of the 33rd international ACM SIGIR
conference on research and development in information retrieval (pp. 851–852). New York:
ACM.

Cole, P., LeMura, L., Klinger, T., Strohecker, K., & McConnell, T. (2004). Measuring energy ex-
penditure in cardiac patients using the body media armband versus indirect calorimetry. A vali-
dation study. The Journal of Sports Medicine and Physical Fitness, 44(3), 262–271.

Daskala, B., Askoxylakis, I., Brown, I., Dickman, P., Friedewald, M., Irion, K., et al. (2011). Risks
and benefits of emerging life-logging applications (Final report). Iraklio, Greece: European
Network and Information Security Agency (ENISA).

Doherty, A. (2009). Providing effective memory retrieval cues through automatic structuring and
augmentation of a lifelog of images. PhD diss., Dublin City University.

Doherty, A. R., Ó Conaire, C., Blighe, M., Smeaton, A. F., & O’Connor, N. E. (2008). Combining
image descriptors to effectively retrieve events from visual lifelogs. In MIR ’08. Proceedings
of the 1st ACM international conference on multimedia information retrieval (pp. 10–17). New
York: ACM.

Doherty, A., Pauly-Takacs, K., Gurrin, C., Moulin, C., & Smeaton, A. F. (2009). Three years of
SenseCam images—observations on cued recall. In Invited speech at SenseCam 2009 sympo-
sium at the 39th annual meeting of the society for neuroscience.

Doherty, A., Pauly-Takacs, K., Capriani, N., Gurrin, C., Moulin, C., O’Connor, N., & Smeaton,
A. F. (2012). Experiences of aiding autobiographical memory using the SenseCam. Human-
Computer Interaction, 27(1–2), 151–174.

Elliott, D., Hopfgartner, F., Leelanupab, T., Moshfeghi, Y., & Jose, J. M. (2009). An architecture
for life-long user modelling. In LLUM ’09 (pp. 9–16).

Friedland, G., & Sommer, R. (2010). Cybercasing the joint: on the privacy implications of geotag-
ging. In Usenix security conference.

Gedik, B., & Liu, L. (2008). Protecting location privacy with personalized k-anonymity: Architec-
ture and algorithms. IEEE Transactions on Mobile Computing, 7(1), 1–18.

Gemmell, J., Bell, G., & Lueder, R. (2006). MyLifeBits: a personal database for everything. Com-
munications of the ACM, 49(1), 88–95.

Haner, L. (2002). Child monitoring system.
Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., et al. (2006). SenseCam: a

retrospective memory aid. In UbiComp ’06. Proceedings of the 8th international conference on
ubiquitous computing (pp. 177–193). Berlin: Springer.

Jung, H., Kim, T., Yang, Y., Carli, L., Carnesecchi, M., Rizzo, A., & Gurrin, C. (2013, to appear).
Aesthetics in data visualization: case studies and design issues. In Huang, M. & Huang, W.
(eds.), Innovative approaches of data visualization and visual analytics. Hershey: IGI Global.

Kalnikaite, V., & Whittaker, S. (2012). Synergetic recollection: how to design lifelogging tools that
help locate the right information. In Studies in computational intelligence: Vol. 396. Human-
computer interaction: the agency perspective (pp. 329–348). Berlin: Springer.

10 User Interaction Templates 203

Kennedy, L. S., & Naaman, M. (2008). Generating diverse and representative image search results
for landmarks. In WWW (pp. 297–306).

Kratz, S., Rohs, M., Wolf, K., Müller, J., Wilhelm, M., Johansson, C., et al. (2011). Body, move-
ment, gesture & tactility in interaction with mobile devices. In MobileHCI ’11. Proceedings
of the 13th international conference on human computer interaction with mobile devices and
services (pp. 757–759). New York: ACM.

Li, N., Crane, M., Ruskin, H., & Gurrin, C. (2013). Multiscaled cross-correlation dynamics on
SenseCam lifelogged data. In MMM ’13. Proceedings of the 19th international conference on
multimedia modeling, Part I (pp. 490–501). Berlin: Springer.

Messerman, A., Mustafić, T., Camtepe, S. A., & Albayrak, S. (2011). Continuous and non-intrusive
identity verification in real-time environments based on free-text keystroke dynamics. In IEEE
international joint conference on biometrics (IJCB 11): international conference on biometrics
(ICB) and the biometrics theory, application and systems (BTAS).

Michael, K., McNamee, A., & Michael, M. (2006). The emerging ethics of humancentric GPS
tracking and monitoring. In ICMB ’06: Proceedings of the international conference on mobile
business (p. 34).

Miyaki, T., & Rekimoto, J. (2008). Sensonomy: envisioning folksonomic urban sensing. In Ubi-
Comp 2008 workshop programs (pp. 187–190).

Montoye, H. J., Washburn, R., Servais, S., Ertl, A., Webster, J. G., & Nagle, F. J. (1983). Esti-
mation of energy expenditure by a portable accelerometer. Medicine and Science in Sports and
Exercise, 15(5), 403–407.

Nadkarni, A., & Hofmann, S. G. (2012). Why do people use Facebook? Personality and Individual
Differences, 52(3), 243–249.

O’Hara, K., Tuffield, M. M., & Shadbolt, N. (2008). Lifelogging: privacy and empowerment with
memories for life. Identity in the Information Society, 1(1), 155–172.

Olmassakian, V. (1999). Child monitoring system.
Olsson, M. I. (2012). Wearable display device.
Pauly-Takacs, K., Moulin, C. J. A., & Estlin, E. J. (2011). SenseCam as a rehabilitation tool in a

child with anterograde amnesia. Memory, 19(7), 705–712.
Piasek, P., Irving, K., & Smeaton, A. F. (2011). SenseCam intervention based on cognitive stimu-

lation therapy framework for early-stage dementia. In PervasiveHealth (pp. 522–525).
Pittiglio, L. (2000). Use of reminiscence therapy in patients with Alzheimer’s disease. Lippincott’s

Case Management, 5(6), 216–220.
Qiu, Z., Gurrin, C., Doherty, A. R., & Smeaton, A. F. (2012). A real-time life experience logging

tool. In MMM’12 (pp. 636–638).
Rawassizadeh, R., Anjomshoaa, A., & Tomitsch, M. (2011). A framework for long-term archiving

of pervasive device information. MoMM ’11. Proceedings of the 9th international conference
on advances in mobile computing and multimedia (pp. 244–247). New York: ACM.

Reddy, S., Burke, J., Estrin, D., Hansen, M. H., & Srivastava, M. B. (2007). A framework for data
quality and feedback in participatory sensing. In SenSys’07: Proceedings of the 5th international
conference on embedded networked sensor systems (pp. 417–418).

Rekimoto, J., Miyaki, T., & Ishizawa, T. (2007). LifeTag: a WiFi-based location life-logging de-
vice. In ACM symposium on user interface and software technology.

Schofield, G., Bishop, C. M., MacLean, G., Brown, P., Baker, M., Katselidis, K. A., et al. (2007).
Novel GPS tracking of sea turtles as a tool for conservation management. Journal of Experi-
mental Marine Biology and Ecology, 347(1–2), 58–68.

Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information visual-
izations. In VL ’96. Proceedings of the 1996 IEEE symposium on visual languages (p. 336).
Washington: IEEE Comput. Soc..

Sittig, A., & Zuckerberg, M. (2010). Managing information about relationships in a social network
via a social timeline.

Swartz, A. M., Strath, S. J., Bassett, D. R., Obrien, W. L., King, G. A., & Ainsworth, B. E. (2000).
Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Medicine
and Science in Sports and Exercise, 32, 450–456.

204 F. Hopfgartner et al.

Tufte, E. (1983). The visual display of quantitative information. Cheshire: Graphics Press.
VandenBos, G. (Ed.) (2006). APA dictionary of psychology (1st ed.). Washington: American Psy-

chol. Assoc.
Weimerskirch, H., Bonadonna, F., Bailleul, F., Mabille, G., Dell’Omo, G., & Lipp, H.-P. (2002).

GPS tracking of foraging albatrosses. Science, 295(5558), 1259.
Weiner, S. (1998). The addiction of overeating: self-help groups as treatment models. Journal of

Clinical Psychology, 54(2), 163–167.
Woods, B., Spector, A., Jones, C., Orrell, M., & Davies, S. (2009). Reminiscence therapy for

dementia. In Cochrane Database of Systematic Reviews 2005.
Zhou, M., & Gurrin, C. (2012). A survey on life logging data capture. In SenseCam ’12.

	Semantic Models for Adaptive Interactive Systems
	Preface
	Contents
	Contributors

	Chapter 1: UI2Ont-A Formal Ontology on User Interfaces and Interactions
	1.1 Introduction
	1.2 Ontologies vs. UI Models
	1.3 Use Cases
	Automatic Generation of UI Code
	Supporting Repositories of User Interface Components
	Supporting Repositories of Usability Patterns
	Integration of UI Components
	UI Adaptation
	Self-explanatory User Interfaces

	1.4 Related Work
	1.5 Building the Ontology
	1.5.1 Reuse of UI Description Languages
	1.5.2 Reuse of Top Level Ontologies

	1.6 The UI2Ont Ontology
	1.6.1 The UI2Ont Top Level Ontology
	1.6.2 The UI2Ont Detail Level Ontology

	1.7 Case Study: Application Integration on the User Interface Level
	1.8 Conclusion
	References

	Chapter 2: Generating Models of Recommendation Processes out of Annotated Ontologies
	2.1 Introduction
	2.2 Background
	2.2.1 Process Lifecycle
	2.2.2 Annotated Product Ontology

	2.3 Generating a Recommendation Process as a Discourse-Based Model
	2.3.1 Domain-of-Discourse Model Generation
	2.3.2 Discourse Model Generation

	2.4 Generating an Operationalized Recommendation Process and Its User Interface
	2.4.1 Generation of Recommendation Process Model
	2.4.2 Final User Interface

	2.5 Evaluation
	2.5.1 Comparison of Recommendation Processes
	2.5.2 Empirical Results

	2.6 Related Work
	2.7 Discussion
	2.8 Conclusion
	References

	Chapter 3: Cognitive Semantic Categories as a Basis for a Prototype Adaptive Information System
	3.1 Introduction
	3.2 Related Work
	3.2.1 Relational Databases and Object-Oriented Design
	3.2.2 Ontologies and the Semantic Web
	3.2.3 Spreadsheets

	3.3 Conceptual Data Independence
	3.3.1 Soft Schemas
	3.3.2 Archetypal Categories and Differential Design
	3.3.3 Neurology and Cognitive Semantics

	3.4 How the Prototype AIS Works
	3.4.1 Visual and Interaction Design
	3.4.2 Handling Schemas and Data
	3.4.3 Applications in Reverse Engineering of Existing Data Structures

	3.5 Discussion and Future Work
	3.6 Conclusion
	References

	Chapter 4: A Semantic Model for Adaptive Collaboration Support Systems
	4.1 Introduction
	4.2 Background
	4.2.1 A Collaborative Problem-Solving Model
	4.2.2 Flexible Collaboration Support
	Context-Awareness
	Process-Aware Systems

	4.2.3 Summary

	4.3 Analysis of Process Deﬁnition Languages
	4.4 A Semantic Model for Elastic Collaboration
	4.4.1 Purpose and Scope of the Semantic Model
	4.4.2 Deﬁning and Formalizing a Semantic Model
	Existing Approaches to Capture Knowledge about Collaboration
	A First Approach of a Semantic Model

	4.5 Evaluation and Application
	4.5.1 To Guide a Collaboration Process (R1)
	4.5.2 To Detect the Need for Collaboration Support (R2)
	4.5.3 To Improve Collaboration Support (R3)
	4.5.4 Application Scenario

	4.6 Discussion and Conclusion
	References

	Chapter 5: A Semantics-Based, End-User-Centered Information Visualization Process for Semantic Web Data
	5.1 Introduction
	5.2 Related Work
	5.2.1 Understanding and Supporting the Visualization Process
	5.2.2 Information Visualization of Semantic Web Data

	5.3 Conceptual Foundation
	5.3.1 Universal Context-Aware Mashup Composition
	5.3.2 Formalizing Visualization Knowledge

	5.4 Context-Aware Information Visualization Workﬂow for Semantic Web Data
	5.4.1 Data Upload and Augmentation
	5.4.2 Data Pre-Selection and Reduction
	5.4.3 Interactive Data and Visualization Selection
	5.4.4 Context-Aware Recommendation of Visualization Components
	5.4.5 Visualization Integration and Conﬁguration
	5.4.6 Perception and Knowledge Conversion

	5.5 Component-Based Software Architecture
	5.5.1 Data Repository
	5.5.2 CRUISe Extensions
	5.5.3 Implementation

	5.6 Conclusion and Future Work
	References

	Chapter 6: PASTREM: Proactive Ontology Based Recommendations for Information Workers
	6.1 Introduction
	6.2 Information Work
	6.2.1 Multitasking Coordinated by Interruptions
	6.2.2 Uncertainty of Information Requirements
	6.2.3 Information Reuse

	6.3 Related Work
	6.3.1 Overview of Approaches
	6.3.2 Requirements for Information Reuse Support

	6.4 ContAct Monitor and the Computer Work Ontology
	6.4.1 Data Collection
	6.4.2 Data Processing
	6.4.3 Data Organization
	DOLCE
	CWO Modeling Computer Work

	6.5 PASTREM Recommender
	6.5.1 PASTREM Recommendation Continuum
	6.5.2 Topic Modeling for CWO
	6.5.3 Adding Topics, Access Count and Access Duration to CWO
	6.5.4 Data Preparation
	6.5.5 Recommendation Creation
	6.5.6 PASTREM Discussion

	6.6 Evaluation
	6.6.1 Evaluation Conﬁguration
	6.6.2 Evaluation Process
	6.6.3 Evaluation Results
	6.6.4 Evaluation Discussion

	6.7 Conclusion
	References

	Chapter 7: Visualizing Search Results of Linked Open Data
	7.1 Introduction
	7.2 Related Work
	7.3 Search Procedure
	7.4 Visualizing Semantic Search Results
	7.4.1 Query-Result-Relations
	7.4.2 Mapping Results' Relevance to Visual Properties
	7.4.3 Visual Support for Query Evolution

	7.5 Evaluation of the Visualization Approach
	7.5.1 Experimental Design
	7.5.2 Procedure
	7.5.3 Results

	7.6 Visualizations and Linked Data in the Policy Modeling Process
	References

	Chapter 8: A Context-Aware Shopping Portal Based on Semantic Models
	8.1 Introduction
	8.2 Exploration and Recommendation of Content
	8.2.1 Exploration Techniques
	8.2.2 Recommender Systems
	8.2.3 Context-Aware Recommendations
	8.2.4 Recommender Systems Based on Semantic Models
	8.2.5 Recommendations Based on Spreading Activation and Ontologies

	8.3 The Discovr Portal
	8.3.1 User, Product, and Context Modeling

	8.4 Exploring the Discovr Portal
	8.4.1 Widget Decoration

	8.5 Context-Aware Adaptation in Discovr
	8.5.1 Determining Relevant Context Factors
	8.5.2 Spreading-Activation-Based Adaptation

	8.6 Conclusions
	References

	Chapter 9: Semantic Models for Interactive Systems: The Case of Tagging and Folksonomies
	9.1 Introduction
	9.2 Concepts and Relationships
	9.2.1 Basic Concepts and Relationships
	9.2.2 Further Concepts and Relationships

	9.3 Existing Ontologies
	9.4 An Ontology for Tagging and Folksonomies
	9.4.1 Taggings
	9.4.2 Tags
	9.4.3 Users
	9.4.4 Resources
	9.4.5 Further Concepts
	9.4.6 Cardinality Constraints

	9.5 Application Example
	9.5.1 Scenario
	9.5.2 Discussion

	9.6 Visualization
	9.7 Conclusions and Future Work
	References

	Chapter 10: User Interaction Templates for the Design of Lifelogging Systems
	10.1 Introduction
	10.2 Lifelogging Devices
	10.2.1 Portable Cameras
	10.2.2 Biometric Devices
	10.2.3 Other Portable Devices
	10.2.4 Networked Systems

	10.3 Use Cases
	10.3.1 Personal Lifelogging Legacy
	Scenario
	Comment

	10.3.2 Energy Expenditure Measurement
	Scenario
	Comment

	10.3.3 Reminiscence Therapy
	Scenario
	Comment

	10.3.4 Social Activity Capturing
	Scenario
	Comment

	10.4 Visualization Use Cases
	10.4.1 Visual Diary
	Comic-Book Style Visual Diary
	Timeline (Relive the Day)
	Master-Detailed

	10.4.2 Social Interaction Radar Graph
	10.4.3 Activity Yearly Calendar

	10.5 Conclusion
	References

