
Chapter 9
A Retrospective on Genomic Preprocessing
for Comparative Genomics

Binhai Zhu

Abstract In this paper, we present a survey of research on genomic preprocessing
for comparative genomics, i.e., handling genomes with gene repetitions, missing
or redundant genes, initiated by David Sankoff in 1999. The development of this
research ends with several interesting results within and beyond computational bi-
ology and bioinformatics, with possible new contributions in the future. We will
describe the history of development of this research and review the current status of
the corresponding problems. For the problem of handling missing genes (scaffold
filling), we also present some technical details which are not given in the previous
papers. Some open problems will be listed at the end for further research.

9.1 Introduction

In computational biology, we constantly need to process various biological data to
extract meaningful biological relation, like building a phylogenetic tree. Such a pro-
cess sometimes involves computing the genomic distance between two genomes,
which was first investigated as early as in 1926 [61, 62]. The problem was more for-
mally studied in 1990s and is in general polynomially solvable for signed genomes,
e.g., under the signed translocation distance [7, 37, 49, 56], under the signed re-
versal distance [3, 38, 48, 63, 64], and under the DCJ distance [69]. For unsigned
genomes, the problems are typically NP-hard, e.g., sorting by reversals [17], sort-
ing by translocations [71], sorting by DCJ operations [19], and sorting by transpo-
sitions [16]. But these problems on sort unsigned genomes do admit small-factor
(≤1.5) polynomial-time approximations, e.g., sorting by reversals [9, 28], sorting
by translocations [31, 46], sorting by DCJ operations [19, 20, 42], and sorting by
transpositions [33].

The above results are all under the assumption that each genome is given in
a form where there is no loss and duplication of genes and a genome is repre-
sented as a permutation of genes. For many genomes, due to the fast evolution/self-
reproduction process, duplicated (paralogous) genes are common. So it is useful to

B. Zhu (B)
Department of Computer Science, Montana State University, Bozeman, MT 59717-3880, USA
e-mail: bhz@cs.montana.edu

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_9,
© Springer-Verlag London 2013

183

mailto:bhz@cs.montana.edu
http://dx.doi.org/10.1007/978-1-4471-5298-9_9

184 B. Zhu

select the ancestral ortholog of a gene family on an evolutionary basis. In 1999,
David Sankoff first formulated this problem as an algorithmic problem, now known
as the Exemplar Breakpoint/Genomic Distance problem [59]. In Sect. 9.2, we will
survey the development of the follow-up research since 1999, mostly with negative
complexity results. Some of these methods and results have already been applied in
other (biological and non-biological) problems [6, 58, 67].

In some eukaryotic genomes, under many situations, like sequencing error or er-
rors due to an inappropriate design of the biological experiments, we might have
noise and redundant genes. Before eliminating these redundancies, using the given
genomes for many biological studies might introduce further errors. While this prob-
lem was known to the biologists long time ago, in 2007 David Sankoff again first
formulated this as an algorithmic problem, now known as the Maximal Strip Recov-
ery and the Complementary Maximal Strip Recovery problems [27, 70]. This again
led to a series of research on fixed-parameter tractable and approximation algo-
rithms, performed by several groups in US, Canada, Europe and China. In Sect. 9.3,
we will survey the most recent development of these researches.

Genome sequencing has been a hot research area for the last 20 years. Behind
the huge success a commonly ignored fact is that most genomes sequenced are not
really ‘sequences’; in fact, most of them are made of scaffolds, i.e., composed of
incomplete gene markers. David Sankoff and his group initiated this problem of
scaffold filling in 2010 [54]. My group and a group led by Prof. Daming Zhu at
Shandong University (China) have been following up this research. While initially
the work was done on filling scaffolds with no gene repetitions, which is a problem
polynomially solvable, recently a lot of effort has been put on filling scaffolds with
gene repetitions (which is in general NP-hard). In Sect. 9.4, we will survey the
current status of this research.

In the area of bioinformatics and computational biology, for a lot of NP-complete
problems one would typically apply three methods to handle them. One is to find an
approximation solution, with the requirement being that the approximation factor
is small (better close to one). The other is to look for an exact solution (FPT algo-
rithm) when some parameter (say, the solution size) of the problem is small. The
vast majority of practical solutions for bioinformatics and computational biology
are heuristic ones, which are possibly based on some formal methods like integer
linear programming, branch-and-bound, etc.

In this survey, we focus on the approximability and fixed-parameter tractability
results for the above three general problems related to computing genomic distance
with some preprocessing. In these problems, we are given some genomes or genetic
maps and we try to optimize some solution values by deleting some genes or gene
markers. So these problem fit naturally for approximation and/or FPT solutions.
Unfortunately, as we will review a bit later, some of these problems are very hard in
both aspects. In other words, it might be impossible to design good approximation
and/or FPT algorithms for them, unless P = NP, NP = ZPP or FPT = W[1]. On the
other hand, many problems are still open along these lines.

The paper is organized as follows. In Sect. 9.2, we first review the approxima-
bility and fixed-parameter tractability for the Exemplar Breakpoint Distance (EBD)

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 185

problem. We then review the approximability and fixed-parameter tractability for
the Exemplar Non-breaking Similarity (ENbS) problem (which is the dual of EBD).
In Sect. 9.3, we review the approximability and fixed-parameter tractability for the
Maximal Strip Recovery (MSR) problem and its complement, the Complementary
Maximal Strip Recover (CMSR) problem. In Sect. 9.4, we review the approxima-
tion results for the Scaffold Filling Problem, focusing on the One-sided Scaffold
Filling Problem with Gene Repetitions. In Sect. 9.5, we list a set of open problems
to conclude this paper.

9.2 The Exemplar Breakpoint Distance and Related Problems

As we have covered in the introduction, in the genome comparison and rearrange-
ment area, a standard problem is to compute the number (i.e., genetic distance) and
the actual sequence of genetic operations which converts a source genome to a tar-
get genome. This problem is important in evolutionary molecular biology as it gives
some useful information on genome evolution. Typical genetic distances include
edit [53], signed reversal [4, 38, 52, 57] and breakpoint [66], etc. In fact, the idea
of signed reversal and, implicitly, breakpoint, was initiated as early as in 1926 by
Sturtevant [61]. In the past years, conserved interval distance was also proposed to
measure the similarity of multiple sequences of genes [8]. Interested readers are
referred to [35] for a summary of the research performed in this area.

In genome rearrangement research, it is usually assumed that each gene ap-
pears in a genome exactly once. Under this assumption, the genome rearrange-
ment problem is in essence the problem of comparing and sorting signed permu-
tations [35, 38]. However, this assumption is very restrictive and is only justified in
several small virus genomes. For example, this assumption does not hold on eukary-
otic genomes where paralogous genes exist [55, 59]. So we have to handle this gene
duplication problem.

David Sankoff first considered the problem of computing the breakpoint distance
with duplicated genes. In [59], Sankoff proposed a way to select, from the dupli-
cated copies of genes, the common ancestor gene such that the breakpoint distance
between the reduced genomes (exemplar genomes) is minimized. The distance is
called the exemplar breakpoint distance henceforth. A general branch-and-bound
algorithm was also implemented in [59]. In [55], Nguyen, Tay and Zhang proposed
to use a divide-and-conquer method to compute the exemplar breakpoint distance
empirically.

For the theoretical part of research, it was shown that both of the problems of
computing the signed reversal and breakpoint distances between exemplar genomes
are NP-complete [14]. A few years ago, Blin and Rizzi further proved that comput-
ing the conserved interval distance between exemplar genomes is NP-complete [11];
moreover, it is NP-complete to compute the minimum conserved interval matching
(i.e., without deleting the duplicated copies of genes). Starting in 2005, we showed
much stronger inapproximability results for the exemplar breakpoint and conserved

186 B. Zhu

interval distance problems (even under a weaker model of approximation) [21, 24].
(In fact, a series of workshops were organized at University of Texas—Pan Amer-
ican between 2005 and 2008, focusing on this topic.) While various exemplar ge-
nomic distances have been researched before, in this survey we will focus on the
exemplar breakpoint distance. In fact, all the inapproximability result for exem-
plar breakpoint distance holds for any other genomic distance d(−,−) satisfying
d(G,H) = 0 implies G = H or G = −H .

9.2.1 Problem Definitions

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes where the order of the genes
corresponds to the position of them on the linear chromosome and the signs corre-
spond to which of the two DNA strands the genes are located. Here we interpret a
genome as a set of such sequences (chromosomes), though we focus mostly on sin-
gleton genomes, i.e., a single sequence, in this paper. When the input genomes con-
tain gene repetitions, Sankoff proposed a method to select an exemplar genome, by
deleting redundant copies of a gene, such that in an exemplar genome any gene ap-
pears exactly once; moreover, the resulting exemplar genomes should have a prop-
erty that a given genetic distance between them is minimized [59].

The following definitions are very much following those in [11]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that each
element is with a sign (+ or −). In general, we allow the repetition of a gene fam-
ily in any genome. Each occurrence of a gene family is called a gene, though we
will not try to distinguish a gene and a gene family if the context is clear. Given a
genome with no repetition of any gene G = g1g2 . . . gm, we say that gene gi imme-
diately precedes gj if j = i + 1. Given genomes G,H (with no gene repetition), if
gene a immediately precedes b in G and neither a immediately precedes b nor −b

immediately precedes −a in H , then they constitute a breakpoint in G. The break-
point distance is the number of breakpoints in G (symmetrically, it is the number of
breakpoints in H), denoted as bd(G,H).

The number of a gene g appearing in a genome G is called the cardinality of g

in G, written as card(g,G). A gene in G is called trivial if g has cardinality exactly 1;
otherwise, it is called non-trivial. A genome G is called r-repetitive, if all the genes
from the same gene family appear at most r times in G. For example, G = c−adc−
bdeb is 2-repetitive.

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears ex-
actly once in G′. For example, let G = −bcaadag − e, there are two exemplar
genomes: −bcadg − e and −bcdag − e.

The Exemplar Breakpoint Distance (EBD) problem is defined as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n gene fam-
ilies (i.e., at least one gene from each of the n gene families appears in both G
and H); integer K .

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 187

Question: Are there two respective exemplar genomes of G and H, G and H , such
that bd(G,H) ≤ K?

9.2.2 Algorithmic Foundations

In the next subsection, we present some hardness results on the approximability
and fixed-parameter tractability for EBD, namely, the hardness to compute or ap-
proximate the minimum value K in the above formulation. Here we give some stan-
dard definitions regarding approximation and FPT algorithms. Given a minimization
(maximization) problem Π , let the optimal solution value of Π be OPT. We say that
an approximation algorithm A provides a performance guarantee of α for Π if for
every instance I of Π , the solution value returned by A is at most α × OPT (at
least OPT/α). Usually we say that A is a factor-α approximation for Π . For the ob-
vious reason, we are only interested in polynomial-time approximation algorithms.
Readers are referred to [29, 34] for more details regarding the definitions related to
approximation algorithms and NP-completeness.

As a well-known subject as well, an FPT algorithm for a decision problem with
parameter k is an algorithm which solves the problem in O(f (k)nc) time, where f

is any function only on k and c is some fixed constant not related to k. More details
on FPT algorithms can be found in [32].

9.2.3 Hardness Results

In [21], we presented the first set of inapproximability results for the Exemplar
Breakpoint Distance problem, given two genomes each containing only one se-
quence of genes drawn from n gene families. We showed that even if a gene ap-
pears at most three times, deciding whether the optimal exemplar breakpoint dis-
tance is zero, i.e, whether G = H , is NP-complete. It was left as an open problem
whether the result holds when each gene appears at most twice in each of the input
genomes [2, 21]. Recently, this open question was finally answered, i.e., it remains
NP-complete even when each gene appears at most two times [13, 47]. Combining
these results, we have the following inapproximability result.

Theorem 1 If both G and H are 2-repetitive genomes, then the Exemplar Break-
point Distance problem does not admit any polynomial-time approximation (regard-
less of its approximation factor), unless P = NP.

Proof If we view the Exemplar Breakpoint Distance problem as a minimization
problem, then the result in [13], with an example presented at the end of this sub-
section, implies that deciding whether OPT = 0 is NP-complete (even if the input

188 B. Zhu

genomes are 2-repetitive). Let A be any approximation algorithm for EBD with
factor α. By definition, A returns an approximation solution value APP, with

APP ≤ α × OPT.

When OPT = 0, clearly APP must also satisfy APP = 0. In other words, A would
be able to solve the instance in [13] in polynomial time. This, however, contradicts
with the corresponding NP-completeness result (unless P = NP). �

Regarding the fixed-parameter intractability for EBD, we have the following the-
orem.

Theorem 2 If both G and H are 2-repetitive genomes, then the Exemplar Break-
point Distance problem does not admit any FPT algorithm, unless P = NP.

Proof Again, if we view the Exemplar Breakpoint Distance problem as a minimiza-
tion problem, then the result in [13, 47] implies that deciding whether OPT = 0 is
NP-complete (even if the input genomes are 2-repetitive). Let B be any FPT al-
gorithm for EBD which runs in O(f (k)nc) time. When OPT = k = 0, B solves
EBD in O(f (0)nc) = O(nc) time. In other words, B would be able to solve the
instance in [13] in polynomial time. This, again, contradicts with the corresponding
NP-completeness result, unless P = NP. �

On the other hand, it is necessary to point out that the reduction in [21, 24] is
much simpler than in [13, 47]. As a matter of fact, it has been applied to show the
NP-hardness of other problems in computational geometry [6], computational biol-
ogy [67] and program download [58]. We show a simple example on this reduction.

Given a 3SAT formula φ = F1 ∧ F2 ∧ F3 ∧ F4, where F1 = (x1 ∨ x2 ∨ x3),
F2 = (x1 ∨ x2 ∨ x4), F3 = (x2 ∨ x3 ∨ x4), and F4 = (x1 ∨ x3 ∨ x4), we want to
find a truth assignment for φ. For each variable xi , define Si (resp. S′

i) as the list
of clauses containing xi (resp. xi) followed by clauses containing xi (resp. xi). So
S1 = F1F4F2 and S′

1 = F2F1F4, etc.
Then we construct two sequence G = S1g1S2g2S3g3S4, H = S′

1g1S
′
2g2S

′
3g3S

′
4,

where gj ’s are peg genes only appearing once. Each gene appears at most three
times as each clause contains three literals. The truth assignment can be set as
follows: if xi = TRUE, then keep the clauses in Si and S′

i which contain xi ; if
xi = FALSE, then keep the clauses in Si and S′

i which contain xi . If there are
still duplicated clauses after this, then keep one such clause and delete the remain-
ing ones arbitrarily. Regarding the above example, we can have x1 = x3 = TRUE,
x2 = x4 = FALSE. So the corresponding exemplar genomes obtained are G = H =
F4g1F3g2F1g3F2, whose breakpoint distance is zero.

In different applications, Fi ’s and gj ’s can be constructed to fit the correspond-
ing problems, for instance as geometric points [6, 67] or programs to be down-
loaded [58].

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 189

9.2.4 The Complement Problem—ENbS

We comment that the negative results in Sect. 9.2.3 hold for any genomic distance
d(−,−) satisfying that d(G,H) = 0 implies G = H or G = −H . This, of course,
implies that all the exemplar genomic distance problems (like exemplar reversal,
exemplar transposition, and exemplar conserved interval distances) do not admit any
polynomial-time approximation algorithms or any FPT algorithm, unless P = NP.

There have been two ways to handle this problem. One is to use a weak model of
approximation, which will be covered as related to open problems in Sect. 9.5. The
other, on the other hand, is to use a different similarity measure. In this case, one
would try to maximize certain similarity measure. The most notable of such mea-
sures include non-breaking similarity (or number of adjacencies) [23] and the num-
ber of common intervals [12]. (A common interval is a pair of substrings appearing
in the two genomes with the same genes, but possibly different orders. Example.
G = abced , H = deacb. (abc, acb) is a length-3 common interval.) We will focus
on the non-breaking similarity, which is really the complement of the breakpoint
distance.

For two exemplar genomes G and H over the same alphabet of size n, recall
that a breakpoint in G is a two-gene substring gigi+1 such that neither gigi+1 nor
−gi+1 − gi is a substring in H . A non-breaking point (or an adjacency) is a com-
mon two-gene substring gigi+1 that appears either as gigi+1 or as −gi+1 − gi in
G and H . The number of non-breaking points between G and H is also called the
non-breaking similarity between G and H , denoted as nbs(G,H). Clearly, we have
nbs(G,H) + bd(G,H) = n − 1. For two genomes G and H, their exemplar non-
breaking similarity enbs(G,H) is the maximum nbs(G,H), where G and H are ex-
emplar genomes derived from G and H. Again we have enbs(G,H) + ebd(G,H) =
n − 1.

The Exemplar Non-breaking Similarity (ENbS) problem is formally defined as
follows:

Instance: Genomes G and H, each is of length O(m) and each covers n gene fam-
ilies (i.e., at least one gene from each of the n gene families appears in both G
and H); integer K .

Question: Are there two respective exemplar genomes of G and H, G and H , such
that the non-breaking similarity between them is at least K?

We have the following negative results which have been proved in [23, 26].

Theorem 3 If one of G and H is exemplar and the other is 2-repetitive, then
the Exemplar Non-breaking Similarity problem does not admit any factor-n0.5−ε

polynomial-time approximation unless NP = ZPP.

Proof We give a sketch of proof from [23, 26]. In [23, 26], it was shown that Inde-
pendent Set can be linearly reduced to ENbS; i.e., the input graph has an indepen-
dent set of size k iff the constructed ENbS instance has a non-breaking similarity
(or number of adjacencies) equal to k. As Independent Set cannot be approximated

190 B. Zhu

within a factor of |V |1−ε unless NP = ZPP [39] and as in the reduction we use
Θ(|V |2) genes (where |V | is the number of vertices in the input graph), the theorem
follows. �

In [26], a factor-O(
√

n) approximation was presented for ENbS, show that the
above inapproximability result is tight.

Theorem 4 If one of G and H is exemplar and the other is 2-repetitive, the Ex-
emplar Non-breaking Similarity problem does not admit an FPT algorithm unless
FPT = W[1].

Proof It is noted that the reduction from Independent Set to ENbS in [23, 26] is
in fact an FPT reduction. As Independent Set is W[1]-complete [32], the theorem
simply follows. �

In fact, with the lower bound results proved in [18], Independent Set (hence
ENbS) cannot be solved in O(f (k)no(k)) time even if k is bounded by an arbi-
trarily small function of n, unless ETH fails. (ETH—Exponential Time Hypothesis:
3SAT cannot be solved in subexponential time.)

In the next section, we will survey another problem initiated by David Sankoff
on computing syntenic blocks from genetic maps.

9.3 Maximal Strip Recovery and Its Complement

In a genome or physical map, the distance between two genes is exact. This is differ-
ent in a genetic map, where only the relative positions between gene markers along
chromosomes are indicated. A genetic map is usually constructed from DAGs (Di-
rected Acyclic Graphs) which represent the partial order of gene markers. We omit
the construction of genetic maps and interested readers are referred to [10, 68]. It
should be noted that in a genetic map all the gene markers are distinct.

Given two genetic maps G and H represented by a sequence of n gene mark-
ers, a strip (syntenic block) is a sequence of distinct markers of length at least two
which appear as subsequences in both of the input maps, either directly or in re-
versed and negated form. The problem Maximal Strip Recovery (MSR) is to find
two subsequences G′ and H ′ of G and H , respectively, such that the total length of
disjoint strips in G′ and H ′ is maximized An example is as follows: G = abcdefgh,
H = h−g−f cbdae and the optimal solution is G′ = cdefg and H ′ = −g−f cde,
each containing two syntenic blocks cde and fg.

The MSR problem was proposed to handle the elimination of noise and ambi-
guities in genetic maps. This is related to the well-known problem in comparative
genomics—to decompose two given genomes into syntenic blocks, i.e., segments
of chromosomes which are deemed to be homologous in the two input genomes. In
2007, a heuristic method was proposed to handle the MSR problem [27, 70]. In [25],
a factor-4 polynomial-time approximation algorithm was proposed for the problem.
This was done by applying the Maximum Weight Independent Set on 2-interval

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 191

graphs, which admit a factor-4 approximation [5]. We also proved that several close
variants of MSR, MSR-d (with d > 2 input maps), MSR-DU (with marker dupli-
cations), and MSR-WT (with markers weighted) are all NP-complete. It was left
as an open problem whether the problem can be solved in polynomial time or is
NP-complete [25].

Recently, in [65] we showed that MSR is in fact NP-complete, via a polynomial-
time reduction from One-in-Three 3SAT (which was shown to be NP-complete
in [34, 60]). We summarize the results in [25, 65] as follows.

Theorem 5 MSR is NP-complete, and it admits a factor-4 polynomial-time approx-
imation.

As an effort to solve the MSR problem practically, we tried to handle MSR by
solving its complement (CMSR) with FPT algorithms, i.e., showing that CMSR is
fixed-parameter tractable [65]. Note that CMSR is a minimization problem where
one deletes some markers such that the remaining ones in the genetic maps all
belong to some syntenic blocks. With the previous example G = abcdefgh and
H = h − g − f cbdae, the optimal CMSR solution is to delete markers a, b,h.

Let k be the minimum number of markers deleted in some optimal solution
of CMSR, the running time of known algorithms are O(3kn + n2) [43], and
O(2.36kn + n2) [15]. In [45], we proved a 18k parameterized search space for
CMSR and subsequently obtained a linear kernel of size (the actual size should
be 78k, slight better than in the conference version). Combining all these results, we
have the following theorem.

Theorem 6 Let k be the optimal number of gene markers deleted from the input
genetic maps. CMSR can be solved in O(2.36kk + n2) time; i.e., CMSR is fixed-
parameter tractable.

Note that as k is typically greater than 50 in real datasets, our FPT algorithms are
not yet practical.

At the same time, approximation algorithms are presented for CMSR in the last
couple of years. In [43], a factor-3 approximation was presented. The current best
approximation factor is 2.33 [50]. Further improvement of approximation and FPT
algorithms for CMSR remains open.

In the next section, we will survey the scaffold filling problem, again initiated by
David Sankoff. Due to the technical difficulty of handling breakpoints and adjacen-
cies in sequences (which was not completely given in [44]), this time we focus more
on the details.

9.4 Approximation for Scaffold Filling with Gene Duplications

With respect to a target singleton genome, possibly with gene repetitions, a scaf-
fold is simply an incomplete sequence. It was found that most of the sequenced

192 B. Zhu

genomes are in fact in the form of scaffolds. Muñoz et al. first formulate the prob-
lem of filling an incomplete scaffold H into H ′, using a reference genome G, such
that certain genomic distance between H ′ and G is minimized [54]. More specifi-
cally, they showed for multichromosomal genomes, this (one-sided) scaffold filling
problem under the DCJ distance is polynomially solvable. David Sankoff visited
Montana State University in early 2010 and gave a talk on this topic. We then
started to collaborate by showing that for singleton genomes without gene repe-
titions, under the breakpoint distance, even the two-sided scaffold filling problem
(i.e., both G,H are incomplete scaffolds or permutations) is polynomially solv-
able [40]. Then this result is generalized to multichromosomal genomes under the
DCJ distance [44].

When genomes contain some duplicated genes, the scenario is completely dif-
ferent. There are three general criteria (or distance) to measure the similarity of
genomes: the exemplar genomic distance [59], the minimum common string parti-
tion (MCSP) distance [30] and the maximum number of common string adjacen-
cies [2, 41, 44]. Unfortunately, as covered in Sect. 9.2, unless P = NP, there does
not exist any polynomial-time approximation (regardless of the factor) for comput-
ing the exemplar genomic distance even when each gene is allowed to repeat three
times [21, 24] or even two times [13, 47]. The MCSP problem is NP-complete even
if each gene repeats at most two times [36] and the best known approximation fac-
tor for the general problem is O(logn log∗ n) [30]. Based on the maximum number
of common string adjacencies, Jiang et al. proved that the one-sided scaffold filling
problem is also NP-complete, and designed a 1.33-approximation algorithm with a
greedy strategy [41, 44]. As some of the details on handling breakpoints/adjacencies
for sequences are missing in [44], we try to present the complete solution here. We
comment that handling breakpoints/adjacencies for permutations is much easier.

9.4.1 Preliminaries

At first, we revise some necessary definitions, which are also defined in [44], but
not in a perfect way. (Also, note that the breakpoint and adjacency definitions are
more general than in Sect. 9.2 which only handle permutations.) We assume that all
genes and genomes are unsigned, and it is straightforward to generalize the result
to signed genomes. Given a gene set Σ , a string P is called permutation if each
element in Σ appears exactly once in P . We use c(P) to denote the set of elements
in permutation P . A string A is called sequence if some genes appear more than
once in A, and c(A) denotes genes of A, which is a multi-set of elements in Σ .
For example, Σ = {a, b, c, d}, A = abcdacd , c(A) = {a, a, b, c, c, d, d}. A scaffold
is an incomplete sequence, typically obtained by some sequencing and assembling
process. A substring with m genes (in a sequence) is called an m-substring, and a
2-substring is also called a pair, as the genes are unsigned, the relative order of the
two genes of a pair does not matter, i.e., the pair xy is equal to the pair yx. Given
a scaffold A = a1a2a3 . . . an, let PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs
in A.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 193

scaffold A = 〈c b c e d a b a 〉
scaffold B = 〈a b a b d c〉

PA = {cb, bc, ce, ed, da, ab, ba}
PB = {ab, ba, ab, bd, dc}

matched pairs : (ab ↔ ba), (ba ↔ ab)

a(A,B) = {ab, ba}
bA(A,B) = {cb, bc, ce, ed, da}
bB(A,B) = {ab, bd, dc}

bp-strings in A : c b c e d a

bp-strings in B : a b, b d c

Fig. 9.1 An example for adjacency, breakpoint and the related definitions

Definition 1 Given two scaffolds A = a1a2 . . . an and B = b1b2 . . . bm, if aiai+1 =
bjbj+1 (or aiai+1 = bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB , we say that
aiai+1 and bjbj+1 are matched to each other. In a maximum matching of pairs in
PA and PB , a matched pair is called an adjacency, and an unmatched pair is called
a breakpoint in A and B , respectively.

It follows from the definition that scaffolds A and B contain the same set of adja-
cencies but distinct breakpoints. The maximum matched pairs in B (or equally, in A)
form the adjacency set between A and B , denoted as a(A,B). We use bA(A,B) and
bB(A,B) to denote the set of breakpoints in A and B , respectively. A gene is called
a bp-gene, if it appears in a breakpoint. A maximal substring T of A (or B) is call a
bp-string, if each pair in it is a breakpoint. The leftmost and rightmost genes of a bp-
string T are call the end-genes of T , the other genes in T are called the mid-genes
of T . We illustrate the above definitions in Fig. 9.1.

Given two scaffolds A = a1a2 . . . an and B = b1b2 . . . bm, as we can see, each
gene except the four ending ones is involved in two adjacencies or two breakpoints
or one adjacency and one breakpoint. To get rid of this imbalance, we add “#” to both
ends of A and B , which fixes a small bug in [41, 44]. From now on, we assume that
A = a0a1 . . . anan+1 and B = b0b1 . . . bmbm+1, where a0 = an+1 = b0 = bm+1 = #.

For a sequence A and a multi-set of elements X, let A + X be the set of all
possible resulting sequences after filling all the elements in X into A. Now, we
define the problems we study in this paper formally.

Definition 2 Scaffold Filling to Maximize the Number of (String) Adjacencies (SF-
MNSA).

Input: Two scaffolds A and B over a gene set Σ and two multi-sets of elements X

and Y , where X = c(B) − c(A) and Y = c(A) − c(B).
Question: Find A∗ ∈ A + X and B∗ ∈ B + Y such that |a(A∗,B∗)| is maximized.

The one-sided SF-MNSA problem is a special instance of the SF-MNSA problem
where one of X and Y is empty.

194 B. Zhu

Definition 3 One-sided SF-MNSA.

Input: A complete sequence G and an incomplete scaffold I over a gene set Σ ,
a multi-set X = c(G) − c(I) �= ∅ with c(I) − c(G) = ∅.

Question: Find I ∗ ∈ I + X such that |a(I ∗,G)| is maximized.

Note that while the two-sided SF-MNSA problem is more general and more diffi-
cult, the One-Sided SF-MNSA problem is more practical as a lot of genome analysis
are based on some reference genome [54].

We now list a few basic properties of this problem.

Lemma 1 Let G and I be the input of an instance of the One-sided SF-MNSA
problem, and x be any gene which appears the same times in G and I . If x does not
constitute breakpoint in G (resp. I), then it also does not constitute any breakpoint
in I (resp. G).

Proof W.L.O.G, assume that x appears q times in I and G, respectively. Also, as-
sume that there are q1 adjacencies in the form “xx”, and q2 adjacencies in the form
“xy” (y �= x) in G. In G, since each copy of x is involved in two adjacencies: one
adjacency on its left and one adjacency on its right, but the two x’s share the ad-
jacency “xx”, so the total number of adjacencies containing x is 2q − q1, then we
have 2q − q1 = q1 + q2, which implies 2q − 2q1 = q2.

In the scaffold I , there must be at least q1 “xx” adjacencies. As x appears only q

times, x has 2q neighbors where there are at least 2q1 x’s. So x has at most 2q −2q1

neighbors which are not x, which means that there are at most 2q − 2q1 (=q2) pairs
in the form “xy” (y �= x) in I . Since there are q2 “xy” (y �= x) adjacencies in G,
there must be q2 “xy” (y �= x) adjacencies in I . Therefore, there are exactly q1

adjacencies in the form “xx”, and all the q2 pairs in the form “xy” (y �= x) are
adjacencies in I , and none of them is a breakpoint. �

Lemma 2 Let G and I be the input of an instance of the One-sided SF-MNSA
problem, let bp(I) and bp(G) be the multi-set of bp-genes in I and G, respectively.
Then any gene in bp(G) appears in bp(I) ∪ X, and bp(I) ⊆ bp(G).

Proof Assume to the contrary that there exists a gene x, x ∈ bp(G), but x /∈
bp(I) ∪ X. Since x /∈ X, x appears the same number of times in G and I ; more-
over, x /∈ bp(I), then all the pairs in I containing x are adjacencies. From Lemma 1,
all the pairs involving x in G are adjacencies, contradicting the assumption that
x ∈ bp(G). So any gene in bp(G) appears in bp(I) ∪ X. By a similar argument, we
can prove bp(I) ⊆ bp(G). �

Each breakpoint contains two genes, from what we discussed in Lemma 2, ev-
ery breakpoint in the complete sequence G belongs to one of the three multi-sets
according to the affiliation of its two bp-genes.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 195

scaffold G = 〈#1 2 3 4 a x y b #〉
scaffold I = 〈#1 3 2 4 a b #〉

X = {x, y}
a(I,G) = {#1,23,4a, b#}

bG(I,G) = {12,34, ax, xy, yb}
BP1(G) = {ax, yb}
BP2(G) = {xy}
BP3(G) = {12,34}
bI (I,G) = {13,24, ab}

Fig. 9.2 Classification of the breakpoints

BP1(G): breakpoints with one bp-gene in X and the other bp-gene not in X.
BP2(G): breakpoints with both of the bp-genes in X.
BP3(G): breakpoints with both of the bp-genes not in X.

An example is shown in Fig. 9.2.

9.4.2 Approximation Algorithm for One-Sided SF-MNSA

In this subsection, we present a 1.33-Approximation algorithm for the one-sided
SF-MNSA problem. The goal of solving this problem is, while inserting the genes
of X into the scaffold I , to obtain as many adjacencies as possible. No matter in
what order the genes are inserted, they appears in groups in the final I ′ ∈ I + X, so
we can consider that I ′ is obtained by inserting strings (composed of genes of X)
into I .

Obviously, inserting a string of length one (i.e., a single gene) will generate at
most two adjacencies, and inserting a string of length m will generate at most m+ 1
adjacencies. Therefore, we will have two types of inserted strings.

1. Type-1: a string of k missing genes x1, x2, . . . , xk are inserted in between yiyi+1
in the scaffold I to obtain k+1 adjacencies (i.e., yix1, x1x2, . . . , xk−1xk , xkyi+1),
where yiyi+1 is a breakpoint.

In this case, x1x2 . . . xk is called a k-Type-1 string, yiyi+1 is called a dock, and
we also say that yiyi+1 docks the corresponding k-Type-1 string x1x2 . . . xk .

2. Type-2: a sequence of l missing genes z1, z2, . . . , zl are inserted in between
yjyj+1 in the scaffold I to obtain l adjacencies (i.e., yj z1 or zlyj+1, z1z2, . . . ,
zl−1zl), where yjyj+1 is a breakpoint; or a sequence of l missing genes
z1, z2, . . . , zl are inserted in between yjyj+1 in the scaffold I to obtain l + 1
adjacencies (i.e., yj z1, z1z2, . . . , zl−1zl , zlyj+1), where yjyj+1 is an adja-
cency.

196 B. Zhu

This is the basic observation for devising our algorithm. Most of our work is
devoted to searching the Type-1 strings.

Searching the 1-Type-1 Strings To identify the 1-Type-1 strings, we use a greedy
method. For each gene xi of X and each breakpoint yjyj+1 of bI (I,G), if we can
obtain two adjacencies by inserting xi in between yjyj+1, then insert xi to yjyj+1.

Algorithm 1: Greedy1(G, I)
1 Insert xi in between yj yj+1 whenever two new adjacencies are generated,

where xi ∈ X and yj yj+1 ∈ bI (I,G).

Searching the 2-Type-1 Strings To identify the 2-Type-1 strings, we again use
a greedy method. For each pair of missing genes xixk if we can obtain three adja-
cencies by inserting xixk in between yjyj+1, where yjyj+1 ∈ bI (I,G), then insert
xixk in between yjyj+1.

Algorithm 2: Greedy2(G,I)
1 Insert xixk in between yj yj+1 whenever three new adjacencies are generated,

where xi, xk ∈ X and yj yj+1 ∈ bI (I,G).

Inserting the Remaining Genes In this subsection, we present a polynomial-
time algorithm guaranteeing that the number of adjacencies increases by the same
number of the genes inserted. A general idea of this algorithm was mentioned
in [44], with many details missing, and we will present the details here.

Given the complete sequence G and the scaffold I , as we discussed in Sect. 9.4.1,
the breakpoints in G can be divided into three sets: BP1(G), BP2(G), and BP3(G).
In any case, the breakpoints in BP3(G) cannot be converted into adjacencies; so we
try to convert the breakpoints in BP1(G) and BP2(G) into adjacencies.

Lemma 3 If BP1(G) �= ∅, then there exists a breakpoint in I where after some gene
of X is inserted, the number of adjacencies increases by one.

Proof Let ti ti+1 be a breakpoint in G, satisfying that ti ti+1 ∈ BP1(G), ti ∈ X, and,
from Lemma 2, ti+1 ∈ bp(I). Then, there exists a breakpoint ti+1sj or skti+1 in I .
Hence, if we insert ti in between that breakpoint, we will obtain a new adjacency
ti ti+1 without affecting any other adjacency. �

Thus, it is trivial to obtain one more adjacency whenever BP1(G) �= ∅.

Lemma 4 For any x ∈ X ∩ c(I), if there is an “xx” breakpoint in G then after
inserting x in between some “xy” pair in I , the number of adjacencies increases
by one.

Proof If “xy” is a breakpoint, then after inserting an ‘x’ in between it, we obtain a
new adjacency “xx”. If “xy” is an adjacency, then after inserting an ‘x’ in between
it, we have “xxy”. The adjacency “xy” still exists, and we obtain a new adjacency
“xx”. �

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 197

Lemma 5 If there is a breakpoint “xy” in BP2(G) and a breakpoint “xz” (resp.
“yz”) in I , then after inserting y (resp. x) in between “xz” (resp. “yz”) in I , the
number of adjacencies increases by one.

Proof From the definition of BP2(G), we know that x, y ∈ X. Since “xy” is a break-
point in G and “xz” is a breakpoint in I , we obtain a new adjacency “xy” by insert-
ing y in between “xz”, without affecting any other adjacency. A similar argument
for inserting x in between “yz” also holds. �

Next, we show that the following case is polynomially solvable. This case satis-
fies the following conditions.

1. BP1(G) = ∅;
2. It does not contain a breakpoint like “xx” in G unless x /∈ X ∩ c(I);
3. For any breakpoint of the form “xy” in BP2(G), all the pairs in I involving x or

y are adjacencies.

Let BS2(G) be the set of bp-strings in G with all breakpoints belonging to
BP2(G).

Lemma 6 In the case satisfying (1), (2) and (3), the number of times a gene appears
as an end-gene of some bp-string of BS2(G) is even.

Proof Let gene x = ti be an end-gene of some bp-string ti ti+1 . . . tj of BS2(G).
Since BP1(G) = ∅ and x will not be involved in any breakpoint of BP3(G), ti−1ti
must be an adjacency. Assume that x appears q times in G and q ′ (<q) times in I .
As there is no breakpoint in the form “xx” in G and I , we could assume that there
are q1 adjacencies in the form “xx” in G and I . Then, the total number of pairs
(adjacencies and breakpoints) involving x in G is 2(q−q1), and of which, 2(q ′−q1)

are adjacencies. So the number of breakpoints involving x in G is 2(q − q ′), which
is even. An end-gene only constitutes one breakpoint and other mid-genes each
constitutes two breakpoints. Therefore, any gene should appear at the end of some
bp-string of BS2(G) for an even number of times. �

From Lemma 6, if we denote each bp-string of BS2(G) by a vertex, and there
is an edge between two vertices iff their corresponding bp-strings have a common
end-gene, the resulting graph contains a cycle of distinct vertices. Traveling this
cycle, concatenating the bp-strings corresponding to the vertices, and deleting one
copy of the common end-gene, eventually we can obtain a string composed of genes
of X. The following lemma and corollary shows that this string can be inserted into
I entirely, generating no breakpoint at all.

Lemma 7 In the case satisfying (1), (2) and (3), for a gene x, let q1 be the number
that it appears as an end-gene, let q2 be the number that it appears in some bp-
string of BS2(G) as a mid-gene, and let r be the number that it appears in X. Then,
we have r = q1/2 + q2.

198 B. Zhu

Proof Assume that x appears q times in G, q ′ (< q) times in I , and there are p

adjacencies in the form “xx” in G and I . Then, the total number of pairs (adjacen-
cies and breakpoints) involving x in G is 2(q − p), and of which, 2(q ′ − p) are
adjacencies. So the number of breakpoints involving x in G is 2(q − q ′). Each x of
q1 end-genes contributes to one breakpoint, and each x of q2 mid-genes contributes
to two breakpoints, thus, 2(q − q ′) = q1 + 2q2. Note that (q − q ′) is exactly r ; and
following Lemma 6, q1 is even. Then, r = q1/2 + q2. �

We summarize the above ideas as the following algorithm, which ensures us to
obtain as many adjacencies as the number of missing genes inserted.

For two strings s1 and s2, if the right end-gene r(s1) of s1 is the same as the
left end-gene �(s2) of s2, we use s1 �� s2 to represent the string obtained by first
concatenating s1 with s2 and then delete one copy of r(s1) and �(s2). For example,
s1 = acbd , s2 = decb, then s1 �� s2 = abcdecb.

Theorem 7 The algorithm Insert-Whole-Strings(•) guarantees that the number of
adjacencies increased is not smaller than the number of genes inserted.

Proof At step 2, 3, 4 of the algorithm, one gene is inserted into I and each time one
more adjacency is obtained. At each round of step 6, a string of length l is inserted in
between an adjacency in I , then we obtain l+1 new adjacencies with one destroyed.
So the number of adjacencies increased is not smaller than the number of genes
inserted. �

Algorithm 3: Insert-Whole-Strings(G,I)
1 Identify the adjacencies and breakpoints in G and I .
2 If BP1(G) �= ∅,

Insert a gene of X into I according to Lemma 3.
3 If there is an “xx” breakpoint in G, x ∈ X

Insert x into I according to Lemma 4.
4 If there is an “xy” breakpoint in G and an “xz” breakpoint in I , x, y ∈ X,

Insert y into Y according to Lemma 5.
5 Compute the set of bp-strings BS2(G) = {s1, . . . , sp , where sj = xj,1 . . . xj,uj

and all xj,k ∈ X}.
6 WHILE (BS2(G) �= ∅)

\\ Compute a string L composed of some bp-strings of BS2(G)

whose two end-genes are the same.
{
(6.1) Choose any bp-string of BS2(G), say sj . Let L = sj = xj,1 . . . xj,uj

.
(6.2) WHILE (�(L) �= r(L))

Find a bp-string si = xi,1 . . . xi,ui
(or its reversal si = xi,ui

. . . xi,1) of
BS2(G), such that r(L) = �(si) or r(L) = �(si).
Update L ← L �� si or L ← L �� si .

(6.3) Replace some gene identical to �(L) in I by the string L.
(6.4) Update the set BS2(G).
}

7 Return the resulting I .

We run the above algorithm on the following example.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 199

G = #daebxceaf ceb1234#, I = #daf cxb1324#, X = {a, b, c, e, e, e},
BP1(G) = ∅, BP2(G) = {ae, eb, ce, ea, ce, eb}, BP3(G) = {12,34},

then the set of breakpoint strings BS2(G) = {aeb, cea, ceb}. According to the al-
gorithm, we have L = aebecea. Gene a in I is replaced with string L to obtain
sequence I ∗ = #daebeceaf cxb1324#. The number of adjacencies is added to by 6
and no new breakpoint is generated.

9.4.3 Analysis of the Approximation Algorithm

In this subsection, we will prove that the approximation factor of our algorithm
is 4/3. Firstly, we present a lower bound of the optimal solution.

A Lower Bound Given an instance of One-sided SF-MNSA, let I ∗ ∈ I + X

be the final scaffold in the optimal solution after inserting all genes of X into I .
Compared to I , all genes belonging to X appear as substrings in I ∗. Let x1x2 . . . xl

be a string inserted in between yiyi+1 in I ∗, then either yix1 or xlyi+1 or both
are adjacencies. Since otherwise, we could delete this string from I ∗ (number of
adjacencies decreases by at most l − 1), re-insert it following the algorithm Insert-
Whole-Strings(•) (number of adjacencies increases by at least l), and obtain one
more adjacency. Thus, we have the following corollary of Theorem 7,

Corollary 1 Each substring in I ∗ composed of genes of X is either Type-1 or
Type-2.

Now, we present a lower bound for the optimal number of adjacencies.

Lemma 8 Let OPT be the number of adjacencies between G and I ∗, k0 be the
number of adjacencies between G and I , and k1 = |X|. Let bi be the number of
i-Type-1 substrings and q be the maximum length of Type-1 substrings in the opti-
mal solution between G and I ∗. Then

OPT − k0 = k1 + b1 + b2 + · · · + bq ≤ 4

3

(
k1 + 1

2
b1 + 1

4
b2

)
(9.1)

Proof Define C as the total number of genes in Type-2 substrings in I ∗. Since insert-
ing an l-Type-1 string will generate l +1 more adjacencies, and inserting a l-Type-2
string will generate l more adjacencies, we have,

OPT = k0 +
q∑

i=1

(i + 1) × bi + C.

200 B. Zhu

By the definition of Type-1 and Type-2 substrings, we have

k1 =
q∑

i=1

(i × bi) + C ≥ b1 + 2b2 + 3(b3 + b4 + · · · + bq) + C.

Thus,
q∑

i=3

bi ≤ (k1 − C − b1 − 2b2)/3.

Hence, we have

OPT − k0 = C +
q∑

i=1

i × bi + b1 + b2 + · · · + bq

= k1 + b1 + b2 + · · · + bq

≤ k1 + b1 + b2 + (k1 − C − b1 − 2b2)/3

≤ 4

3

(
k1 + 1

2
b1 + 1

4
b2

)
. �

Lemma 8 shows that if the number of Type-1 substrings computed in the approx-
imation algorithm is not smaller than (2b1 + b2)/4, then the approximation factor
is 4/3.

Description of the Main Algorithm There are three main steps in our algorithm.
Firstly, we try to search the 1-Type-1 strings; secondly, we try to search the 2-Type-1
strings; finally, we insert the remaining genes in X, guaranteeing that on average we
will obtain at least one adjacency for each inserted missing gene.

Main Algorithm
Input: Complete sequence G and incomplete scaffold I , X = c(G) − c(I).
Output: I ′ ∈ I + X

1 Call Greedy1(G,I), let the resulting incomplete scaffold be I1.
2 Call Greedy2(G,I1), let the resulting incomplete scaffold be I2.
3 Call Insert-Whole-Strings(G,I2). Let the resulting complete scaffold be I ′.
4 Return I ′.

9.4.4 Proof of the Approximation Factor

In our algorithm, we make effort to insert Type-1 substrings as much as possible.
But a Type-1 substring (say Is) inserted by our algorithm may make other Type-1
substrings in some optimal solution infeasible, we say Is destroys them. The fol-
lowing lemma shows the number of Type-1 substrings that could be destroyed by a
given Type-1 substring.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 201

Lemma 9 A i-Type-1 substring can destroy at most i +1 Type-1 substrings in some
optimal solution.

Proof Assume that an i-Type-1 substring Is is inserted in between some breakpoint
yjyj+1 in I . Then each of the genes in Is , if not use by Is , could form a distinct
Type-1 substring in some optimal solution. Also, there may exist another Type-1
substring that could be inserted in between the breakpoint yjyj+1 in the optimal
solution. Totally, at most i + 1 Type-1 substrings in the optimal solution could be
destroyed by Is . �

We have the following lemma regarding this greedy algorithm.

Lemma 10 Let b′
1, b

′
2 be the number of type-1 1-substrings and 2-substrings in-

serted at Step 1 and Step 2 of our greedy algorithm, respectively. Then b′
1 + b′

2 ≥
b1
2 + b2

4 .

Proof Let k′
1, k

′
2 be the number of missing genes inserted at Step 1 and Step 2,

respectively. (So b′
1 = k′

1 and b′
2 = k′

2/2.) First, by Lemma 9, each of the k′
1 in-

serted missing genes can destroy at most two type-1 1-substrings in some optimal
solution. Moreover, each of the k′

1 inserted missing genes can destroy at most two
type-1 2-substrings in some optimal solution, this will be illustrated with an exam-
ple at the end of this paragraph. Let b′

10 be the number of missing genes inserted at
Step 1 which destroy exactly one type-1 1-substring (and some type-1 m-substring,
with m ≥ 3) in some optimal solution. Let b′

11 be the number of missing genes
inserted at Step 1 which destroy exactly two type-1 1-substrings in some optimal
solution. Let b′

12 be the number of missing genes inserted at Step 1 which destroy
one type-1 1-substring and one type-1 2-substring in some optimal solution. Let b′

13
be the number of missing genes inserted at Step 1 which destroy exactly two type-1
2-substrings in some optimal solution. Obviously,

k′
1 = b′

1 = b′
10 + b′

11 + b′
12 + b′

13.

Then, we show an example for a, one of the b′
13 inserted missing genes that de-

stroy two type-1 2-substrings in the optimal solution (i.e., counted into b2). Let
G = . . . αaβ . . . γ abδ . . . αuvβ . . . and let I = α . . . αβ . . . γ δ . . . β . . . a We need
to insert a, b,u, v into I . Due to the greedy fashion of the algorithm, a is inserted
between α,β in I to have αaβ (destroying the possibility of inserting uv at the same
location). On the other hand, due to the insertion of a (instead of ab), ab cannot be
inserted in between γ and δ. Therefore, we destroy the optimal adjacencies 〈αuvβ〉
and 〈γ abδ〉 (with the corresponding two type-1 2-substrings: uv and ab).

Again, by Lemma 9, at Step 2, each of the inserted 2-type-1 substrings can de-
stroy at most three 2-type-1 substrings in some optimal solution.

Now, putting all together,

b1 ≤ b′
10 + 2b′

11 + b′
12,

202 B. Zhu

and

b2 ≤ 3b′
2 + b′

12 + 2b′
13.

Then

b1

2
+ b2

4
≤ b′

10 + 2b′
11 + b′

12

2
+ 3b′

2 + b′
12 + 2b′

13

4

=
(

b′
10

2
+ b′

11 + 3b′
12

4
+ b′

13

2

)
+ 3b′

2

4

≤ b′
1 + b′

2 �

Theorem 8 There is a greedy algorithm which approximates One-sided SF-MNSA
with a factor of 1.33.

Proof Following the greedy algorithm, Theorem 7, Lemma 8, and Lemma 10, we
have the approximation solution value APP, which satisfies the following inequali-
ties:

APP − k0 = k1 + b′
1 + b′

2 ≥ k1 + 1

2
b1 + 1

4
b2 ≥ 3

4
(OPT − k0).

So, we have APP ≥ 3
4 OPT + 1

4k0 ≥ 3
4 OPT . Hence OPT

APP ≤ 1.33, and the theorem
is proven. �

In [51], a better factor-1.25 approximation was proposed. While the overall
framework is similar, the details are quite different. The new approximation is
achieved by a combination of maximum matching, local improvement and greedy
search.

9.5 Concluding Remarks and Open Problems

The negative results on EBD and ENbS do not mean that we have absolutely no way
to tackle these problems. For instance, in [1], with integer linear programming, very
nice empirical results are obtained. Here, we try to present a different way to handle
these problems formally.

In many biological problems, the optimal solution value OPT could be zero. (Be-
sides EBD, in some minimum recombination haplotype reconstruction problems the
optimal solution value could be zero.) As implied by Theorem 1, if computing such
an optimal solution with zero solution value is NP-complete then the problem does
not admit any polynomial-time approximation (unless P = NP). However, in reality
one would be satisfied to obtain a solution with value one or two. Due to this reason,
we can relax the traditional definition of approximation to a weak approximation.
Given a minimization problem Π , let the optimal solution of Π be OPT. We say
that a weak approximation algorithm W provides a performance guarantee of α

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 203

for Π if for every instance I of Π , the solution value returned by W is at most
α × (OPT + 1).

In [21, 22, 24] we showed that EBD and the exemplar conserved interval distance
problems are both hard to approximate even under the weak approximation model.
But for the exemplar reversal distance problem, no such result is known yet.

For the exemplar common interval number problem [12], the only negative re-
sult is its NP-hardness. It would also be interesting to know whether it admits an
efficient polynomial-time approximation. We conclude this paper with a list of open
problems.

1. For the One-sided Exemplar Breakpoint Distance problem, does there exist a
factor-o(n) approximation? The only known negative result is the APX-hardness
of the problem.

2. For the exemplar common interval number problem, does there exist a good ap-
proximation?

3. For the CMSR problem, does there exist faster FPT algorithm and/or a smaller
linear kernel?

4. For the One-side SF-MNSA problem, does there exist an FPT algorithm?

Acknowledgements I would like to thank my collaborators for this series of research: Zhixiang
Chen, Richard Fowler, Bin Fu, Haitao Jiang, Minghui Jiang, Zhong Li, Guohui Lin, Nan Liu, David
Sankoff, Weitian Tong, Lusheng Wang, Boting Yang, Zhiyu Zhao, Chunfang Zheng and Daming
Zhu.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the
number of breakpoints and the number of adjacencies between two genomes with duplicate
genes. J. Comput. Biol. 15, 1093–1115 (2008)

2. Angibaud, S., Fertin, G., Rusu, I., Thevenin, A., Vialette, S.: On the approximability of com-
paring genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)

3. Bader, D., Moret, B., Yan, M.: A linear-time algorithm for computing inversion distance be-
tween signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001)

4. Bafna, V., Pevzner, P.: Sorting by reversals: genome rearrangements in plant organelles and
evolutionary history of X chromosome. Mol. Biol. Evol. 12, 239–246 (1995)

5. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.(S.), Shachnai, H., Shapira, I.: Scheduling split
intervals. SIAM J. Comput. 36, 1–15 (2006)

6. Bereg, S., Jiang, M., Wang, W., Yang, B., Zhu, B.: Simplifying 3D polygonal chains under the
discrete Fréchet distance. In: Proc. 8th Latin American Theoretical Informatics Symposium
(LATIN’08), April 7–11, 2008. LNCS, vol. 4957, pp. 630–641 (2008)

7. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. J. Comput. Biol. 13(2),
567–578 (2006)

8. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to
genome comparison. In: Proc. 9th Intl. Ann. Comput. and Combinatorics (COCOON’03).
LNCS, vol. 2697, pp. 68–79 (2003)

9. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by
reversals. In: Proceedings of the 10th Annual European Symposium on Algorithms (ESA’02),
pp. 200–210 (2002)

204 B. Zhu

10. Bertrand, D., Blanchette, M., El-Mabrouk, N.: Genetic map refinement using a comparative
genomic approach. J. Comput. Biol. 16(10), 1475–1486 (2009)

11. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes.
In: Proc. 11th Intl. Ann. Comput. and Combinatorics (COCOON’05). LNCS, vol. 3595,
pp. 22–31 (2005)

12. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplicates:
a computational complexity point of view. IEEE/ACM Trans. Comput. Biol. Bioinform. 4,
523–534 (2007)

13. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The exemplar breakpoint distance for non-trivial
genomes cannot be approximated. In: Proc. 3nd Workshop on Algorithm and Computation
(WALCOM’09). LNCS, vol. 5431, pp. 357–368 (2009)

14. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.
(eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynam-
ics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Academic,
Dordrecht (2000)

15. Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and approximability of maximal strip
recovery. Theor. Comput. Sci. 440–441, 14–28 (2012)

16. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J. Discrete Math.
26(3), 1148–1180 (2012)

17. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM J.
Discrete Math. 12, 91–110 (1999)

18. Chen, J., Huang, X., Kanj, I., Xia, G.: Linear FPT reductions and computational lower bounds.
In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC’04), pp. 212–
221 (2004)

19. Chen, X.: On sorting permutations by double-cut-and-joins. In: Proc. of the 16th International
Conf. on Computing and Combinatorics (COCOON’10), pp. 439–448 (2010)

20. Chen, X., Sun, R., Yu, J.: Approximating the double-cut-and-join distance between unsigned
genomes. BMC Bioinform. 12(Suppl. 9), S17 (2011)

21. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem.
In: Proc. 2nd Intl. Conf. on Algorithmic Aspects in Information and Management (AAIM’06).
LNCS, vol. 4041, pp. 291–302 (2006)

22. Chen, Z., Fu, B., Fowler, R., Zhu, B.: Lower bounds on the approximation of the exemplar
conserved interval distance problem of genomes. In: Proc. 12th Intl. Ann. Comput. and Com-
binatorics (COCOON’06). LNCS, vol. 4112, pp. 245–254 (2006)

23. Chen, Z., Fu, B., Yang, B., Xu, J., Zhao, Z., Zhu, B.: Non-breaking similarity of genomes with
gene repetitions. In: Proceedings of the 18th Annual Symposium on Combinatorial Pattern
Matching (CPM’07). LNCS, vol. 4580, pp. 119–130 (2007)

24. Chen, Z., Fu, B., Fowler, R., Zhu, B.: On the inapproximability of the exemplar conserved
interval distance problem of genomes. J. Comb. Optim. 15(2), 201–221 (2008)

25. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps.
J. Comb. Optim. 18, 307–318 (2009)

26. Chen, Z., Fu, B., Goebel, R., Lin, G., Tong, W., Xu, J., Yang, B., Zhao, Z., Zhu, B.: On the
approximability of the exemplar non-breakpoint similarity problem of genomes with gene
repetitions. Theor. Comput. Sci. (2013, to appear)

27. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks
from comparative maps. In: Proc. of the 7th International Workshop on Algorithms in Bioin-
formatics (WABI’07), pp. 277–288 (2007)

28. Christie, D.: A 3/2-approximation algorithm for sorting by reversals. In: Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98), pp. 244–252 (1998)

29. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT
Press, Cambridge (2001)

30. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In:
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA’02), pp. 667–676 (2002)

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 205

31. Cui, Y., Wang, L., Zhu, D., Liu, X.: A (1.5+ε)-approximation algorithm for unsigned translo-
cation distance. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(1), 56–66 (2008)

32. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Berlin (1999)
33. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions.

IEEE/ACM Trans. Comput. Biol. Bioinform. 3, 369–379 (2006)
34. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Complete-

ness. Freeman, San Francisco (1979)
35. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford

(2004)
36. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning problem: hard-

ness and approximations. In: Proc.15th Intl. Symposium on Algorithms and Computation
(ISAAC’04). LNCS, vol. 3341, pp. 473–484 (2011). Also in: Electron. J. Comb. 12, paper
R50 (2005)

37. Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between
genomes. Discrete Appl. Math. 71(1–3), 137–151 (1996)

38. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sort-
ing signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

39. Hästad, J.: Clique is hard to approximate within n1−ε . Acta Math. 182, 105–142 (1999)
40. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint distance.

In: Proc. of the 2010 International RECOMB-CG Workshop (RECOMB-CG’10). LNBI,
vol. 6398, pp. 83–92 (2010)

41. Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: maximizing the num-
ber of adjacencies. In: Proc. 22nd Annual Symposium on Combinatorial Pattern Matching
(CPM’11). LNCS, vol. 6661, pp. 55–64 (2011)

42. Jiang, H., Zhu, B., Zhu, D.: Algorithms for sorting unsigned linear genomes by the DCJ oper-
ations. Bioinformatics 27(3), 311–316 (2011)

43. Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms for the
complementary maximal strip recovery problem. J. Comb. Optim. 23(4), 493–506 (2012)

44. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and related
distances. IEEE/ACM Trans. Bioinform. Comput. Biol. 9(4), 1220–1229 (2012)

45. Jiang, H., Zhu, B.: A linear kernel for the complementary maximal strip recovery problem. In:
Proc. 23rd Annual Combinatorial Pattern Matching Symposium (CPM’12). LNCS, vol. 7354,
pp. 349–359 (2012)

46. Jiang, H., Wang, L., Zhu, B., Zhu, D.: A (1.408 + ε)-approximation algorithm for sorting
unsigned genomes by reciprocal translocations. In: RECOMB’13, poster (2013)

47. Jiang, M.: The zero exemplar distance problem. In: Proc. of the 2010 International RECOMB-
CG Workshop (RECOMB-CG’10). LNBI, vol. 6398, pp. 74–82 (2010)

48. Kaplan, H., Shamir, R., Tarjan, R.: A faster and simpler algorithm for sorting signed permu-
tations by reversals. SIAM J. Comput. 29, 880–892 (1999)

49. Li, G., Qin, X., Wang, X., Zhu, B.: A linear-time algorithm for computing translocation dis-
tance between signed genomes. In: Proc. of the 15th Annual Symposium on Combinatorial
Pattern Matching (CPM’04), pp. 323–332 (2004)

50. Lin, G., Goebel, R., Li, Z., Wang, L.: An improved approximation algorithm for the comple-
mentary maximal strip recovery problem. J. Comput. Syst. Sci. 78(3), 720–730 (2012)

51. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An improved approximation algorithm for scaffold filling
to maximize the common adjacencies. In: Proc. of the 19th Intl. Conf. on Computing and
Combinatorics (COCOON’13). LNCS, vol. 7936, pp. 397–408 (2013)

52. Makaroff, C., Palmer, J.: Mitochondrial DNA rearrangements and transcriptional alternatives
in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474–1480 (1988)

53. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theor.
Comput. Sci. 325(3), 347–360 (2004)

54. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling, contig
fusion and gene order comparison. BMC Bioinform. 11, 304 (2010)

206 B. Zhu

55. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint
distance. Bioinformatics 21(10), 2171–2176 (2005)

56. Ozery-Flato, M., Shamir, R.: An O(n
3
2
√

logn) algorithm for sorting by reciprocal transloca-
tions. J. Discrete Algorithms 9(4), 344–357 (2011)

57. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in
sequence. J. Mol. Evol. 27, 87–97 (1988)

58. Peng, C., Zhou, J., Zhu, B., Zhu, H.: The program download problem: complexity and algo-
rithms. In: Proc. of the 19th Intl. Conf. on Computing and Combinatorics (COCOON’13).
LNCS, vol. 7936, pp. 688–695 (2013)

59. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–917
(1999)

60. Schaefer, T.: The complexity of satisfiability problem. In: Proceedings of the 10th ACM Sym-
posium on Theory of Computing (STOC’78), pp. 216–226 (1978)

61. Sturtevant, A.: A crossover reducer in Drosophila melanogaster due to inversion of a section
of the third chromosome. Biol. Zent.bl. 46, 697–702 (1926)

62. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila
pseudoobscura, and their use in the study of the history of the species. Proc. Natl. Acad. Sci.
USA 22, 448–450 (1936)

63. Swenson, K., Rajan, V., Lin, Y., Moret, B.: Sorting signed permutations by inversions in
O(n logn) time. J. Comput. Biol. 17(3), 489–501 (2010)

64. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Proc. of 15th Symp.
Combinatorial Pattern Matching (CPM’04), pp. 1–13 (2004)

65. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. J. Comput. Biol. 17(7), 907–
914 (2010). (Correction, 18(1) (Jan. 2011))

66. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theor.
Biol. 99, 1–7 (1982)

67. Wylie, T., Zhu, B.: Protein chain pair simplification under the discrete Frechet dis-
tance. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013). doi:167B699B-E22D-471A-8EE7-
01F51E8230D4. Special Issue of ISBRA’12

68. Yap, I., Schneider, D., Kleinberg, J., et al.: A graph-theoretic approach to comparing and
integrating genetic, physical and sequence-based maps. Genetics 165, 2235–2247 (2003)

69. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translo-
cation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)

70. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in
rearrangement analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 515–522 (2007)

71. Zhu, D., Wang, L.: On the complexity of unsigned translocation distance. Theor. Comput. Sci.
352(1–3), 322–328 (2006)

http://dx.doi.org/167B699B-E22D-471A-8EE7-01F51E8230D4
http://dx.doi.org/167B699B-E22D-471A-8EE7-01F51E8230D4

	Chapter 9: A Retrospective on Genomic Preprocessing for Comparative Genomics
	9.1 Introduction
	9.2 The Exemplar Breakpoint Distance and Related Problems
	9.2.1 Problem Deﬁnitions
	9.2.2 Algorithmic Foundations
	9.2.3 Hardness Results
	9.2.4 The Complement Problem-ENbS

	9.3 Maximal Strip Recovery and Its Complement
	9.4 Approximation for Scaffold Filling with Gene Duplications
	9.4.1 Preliminaries
	9.4.2 Approximation Algorithm for One-Sided SF-MNSA
	Searching the 1-Type-1 Strings
	Searching the 2-Type-1 Strings
	Inserting the Remaining Genes

	9.4.3 Analysis of the Approximation Algorithm
	A Lower Bound
	Description of the Main Algorithm

	9.4.4 Proof of the Approximation Factor

	9.5 Concluding Remarks and Open Problems
	References

