
Chapter 13
The Potential of Family-Free Genome
Comparison

Marília D.V. Braga, Cedric Chauve, Daniel Doerr, Katharina Jahn,
Jens Stoye, Annelyse Thévenin, and Roland Wittler

Abstract Many methods in computational comparative genomics require gene fam-
ily assignments as a prerequisite. While the biological concept of gene families is
well established, their computational prediction remains unreliable. This paper con-
tinues a new line of research in which family assignments are not presumed. We
study the potential of several family-free approaches in detecting conserved struc-
tures, genome rearrangements and in reconstructing ancestral gene orders.

13.1 Introduction

In more than 20 years of research in computational comparative genomics [44, 49]
a large variety of questions have been addressed. By now, strong methods are avail-
able to study the structural organization of genomes as well as to unravel their shared
and individual evolutionary histories. The structural organization of genomes does
not only give insights into species’ phylogeny, but also hints at interactions within
and between sets of genes by means of their involvement in metabolic and regulatory
networks. As such, one aims to understand cell functions. Whereas point mutations
generally affect one or a few nucleotides, large-scale mutations such as rearrange-
ments, deletions, substitutions, or insertions affect one or more genes. These mod-
ifications alter the structural organization of the genome which can cause profound
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changes in the cellular machinery. Identifying and quantifying such structural mod-
ifications is crucial in understanding the highly complex functions of organisms and
their interactions with the natural environment.

Initial approaches to study genome rearrangement considered pairwise compar-
isons with well identified one-to-one orthologous markers [44], for many of which
polynomial time algorithms for computing distances and evolutionary scenarios
could be designed [4, 6, 30, 47, 63]. Extensions considering more than two genomes
lead to hard problems [8, 13, 15, 41, 47, 61], with few exceptions [26, 54]. David
Sankoff initiated formulations and algorithms for genome rearrangement problems
with duplicated markers originating from gene families [45], quickly followed by
the outline of a general approach that would consider both gene orders and gene
family information as input to genome rearrangement problems [48]. Since then,
genome rearrangement with unequal gene content and gene families, where geno-
mes are represented by signed sequences, has been intensively explored; for reviews
see [17, 27].

Another line of research in computational genomics aims at the detection of ge-
nomic segments that are conserved across different species. The presence of such
structures often hints at functional coupling of the contained genes, or indicates
remnant ancestral gene order which is valuable information for phylogenetic re-
construction. Initial approaches in this field—like early rearrangement studies—
required the identification of one-to-one orthologous markers [5, 32, 33], but in the
following most of them were adapted to a more general genome model that allows
genomes to differ in their marker set and to have homologous markers on the same
genome [21, 31, 50].

All of the above methods, which we call family-based, require prior gene family
assignments. However, biological gene families are difficult to assess; commonly,
they are predicted computationally. In doing so, they can be either obtained from
databases [42, 55, 59] or directly computed based on the particular dataset under
consideration [36, 40, 51]. In either case, the obtained assignments are predicted by
some computational method which typically involves a clustering phase in which
genes are partitioned into groups representing the predicted families. Generally, the
results of such efforts depend on arbitrary parameters of sequence comparison, sim-
ilarity quantification and clustering. These parameters are user-controlled and in-
fluence the size and granularity of the computed gene families. In particular, when
genes within biological gene families are largely diverged, computational means
may not be able to resolve gene family assignments accurately [28]. Consequently,
errors are introduced into the primary dataset which deteriorate subsequent anal-
yses, a phenomenon that can be amplified when phylogenetic trees for the gene
families are considered [17, 39]. The quest to reduce misassignments in gene family
construction also led to the use of positional homology [10, 57, 58, 65].

Recently, in an attempt to avoid these problems, a family-free method, which
does not assume prior gene family assignment, has been proposed for computing
the adjacency score between two genomes [22]. In this approach, given the gene
similarities, the aim is to find pairwise gene assignments while maximizing the con-
served adjacency measure. In other words, next to finding the maximal number of
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adjacent genes along different genomes, the method also infers homologies between
genes. It should be noted that these homologies are not equivalent to gene families
in the classical sense, as by design only one-to-one relationships are detected, while
a gene family in general may consist of a potentially large set of orthologous and
paralogous genes. Given the nature of the detected one-to-one relationships, they
are not unlikely to form sub-families of biological gene families. Therefore they can
be further utilized in gene family construction.

Here we go beyond this one application and explore how various problems in
computational comparative genomics could be approached in a family-free setting.
We do not necessarily provide full solutions to the proposed problems.

This paper is organized as follows. After basic definitions in Sect. 13.2, we extend
earlier results on the adjacency measure to more than two genomes and to larger
conserved structures (gene clusters) in Sect. 13.3. A more dynamic view is taken in
Sect. 13.4, where we apply the ideas to rearrangement distances, most notably the
Double Cut and Join distance. In Sect. 13.5, finally, we indicate how the family-free
approach could be further extended to the reconstruction of ancestral genomes. The
paper concludes with a discussion in Sect. 13.6.

13.2 Basic Definitions

A chromosome is a DNA molecule composed of antiparallel strands and can be read
in either of the two possible directions. Since each gene, representing an interval
along the DNA, lies in one of the two strands of the chromosome, the orientation of
the gene depends on the adopted reading direction. The representation of a gene g

in a chromosome can then be the symbol g, if it is read in direct orientation, or
the symbol g, if it is read in reverse orientation. Without loss of generality, we will
assume in this paper that each chromosome has a canonical reading direction, giving
a natural left to right order of its genes.

A genome consists of one or more chromosomes that can be either linear or cir-
cular. For ease of presentation, throughout this paper we will consider only unichro-
mosomal linear genomes. The general case can be easily inferred with minor modi-
fications.

A unichromosomal linear genome is represented as a sequence of distinct sym-
bols, flanked by telomeric ends indicated by the ◦ sign: G = (◦ g1 g2 . . . gn ◦). The
size of G with n genes and two telomeric ends is |G| = n + 2. When we consider a
set of genomes, we will assume that all genes can be distinguished from each other,
i.e., every two genomes G �= H share only the telomeric ends.

Let A be the universe of all genes and let σ : A × A → [0,1] be a normalized
similarity measure between all pairs of genes.

Definition 1 (Gene similarity graph) For a set of k genomes {G1, . . . ,Gk}, the
gene similarity graph is defined as an ordered weighted undirected k-partite graph
B = (G1, . . . ,Gk,E), where each gene and each telomere represents a node, and
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Fig. 13.1 (a) Example of a gene similarity graph for k = 2. Part (b) shows a matching in which
the weak edge with weight 0.1 between genes 4 and 8 is selected, creating a conserved adjacency
between (3̄,4) and (7̄,8). In the matching of (c) the stronger edge with edge weight 0.8 between
genes 4 and 5 is selected

the nodes are ordered following the chromosomal order. Any two genes g and h,
belonging to two distinct genomes, are connected by an edge eg,h ≡ {g,h} ∈ E with
weight w(eg,h) := σ(g,h), if and only if σ(g,h) > 0. Telomeres in distinct geno-
mes are always connected with edges of weight 1.

We call a gene g ∈ G unconnected if there exists no other gene h in any of
the other genomes H �= G such that σ(g,h) > 0. An example of a gene similarity
graph for the case k = 2 is shown in Fig. 13.1(a). The k-partite gene similarity graph
features similarity relationships between genes of different genomes whereas simi-
larities between genes within the same genome are ignored. For now, if information
about paralogous relationships between genes within the same genome is desired, it
must be gained through a post-processing step incorporating the results obtained by
the methods presented herein.

13.3 Detecting Conserved Structures

Many gene order studies quantify conserved structures based on well-defined prox-
imity relations between the chromosomal locations of pairs or groups of genes. Typi-
cal proximity relations between pairs of genes are conserved adjacencies [44, 46, 60]
and generalized conserved adjacencies [62], whereas proximity relations between
groups of genes include common intervals [21, 33, 50, 56], max gap clusters (gene
teams) [5, 31], approximate common intervals [12, 34, 43], generalized adjacency
clusters [64, 67], and conserved intervals [4]. We discuss conserved adjacencies in
Sect. 13.3.1 and common intervals and some of its derivatives in Sect. 13.3.2.

Whenever one-to-one relationships between genetic markers, genes or genome
segments (identified through some proximity relation) between genomes must be
established, comparative genomics applications commonly incorporate matchings.
For example, in aligning whole genomes, one aims to find a matching between
genome segments that maximizes the similarity of the respective sequences, but also
minimizes the number of breakpoints (or other measures of structural dissimilarity)
in the final ordering of segments [19]. Similarly, recent methods in predicting co-
orthologs and gene families not only assess the sequence similarity between genes,
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but also their position within the genome [20]. In the following we describe ap-
proaches that incorporate matchings to identify conserved adjacencies and common
intervals without the use of gene family assignments.

13.3.1 Conserved Adjacencies

Previous Work Two genes that are located next to each other in a genome are said
to be adjacent, their adjoining extremities form an adjacency. An early measure for
family-based genome similarity was to count the number of conserved adjacencies,
i.e. those adjacencies that are common to two genomes, with the restriction that
the gene content of both genomes is identical [44, 60]. Thereby, the number of
conserved adjacencies constitutes the dual measure of the number of breakpoints
between both sequences [46].

With the adoption of gene families, gene duplicates are introduced, i.e., the oc-
currence of several members of the same family in one genome [45, 48]. Gene
duplicates allow for multiple scenarios of ancestral gene order. One possibility to
resolve the consequential ambiguities consists in computing a matching between
orthologous subsets of given family members, with some predefined constraints on
the structure of the matching. This general principle, which relates also to ortholog
identification [20], was introduced by David Sankoff with the notion of exemplar
distance [45], where the main ortholog (the exemplar) of each family is kept. This
initial model was later generalized to less constrained classes of matchings where
one or more genes per family is kept, always leading to NP-hard computational
problems [2, 11, 66], although practically efficient solutions were designed, using
heuristics [29] or integer linear programming [1].

Family-Free Adjacencies Recently, a gene family-free model was introduced to
compute the number of conserved adjacencies in pairwise comparison [22]. The
computational problem being NP-hard, exact and heuristic algorithms were pre-
sented with feasible running times in practice. In this section, we advance towards a
more general model applicable for the simultaneous study of several genomes. Con-
served adjacencies obtained in this approach can further benefit ancestral genome
reconstruction, as it will be explained in Sect. 13.5.

The genome model described in Sect. 13.2 is neither restricted to one-to-one
relations between genes, nor to closed sets of gene family members. In the subse-
quent analysis, unconnected genes are omitted from the chromosomal sequences.
The remaining genes form connected components of size two or larger. Their size
is typically greater than their gene family counterparts. Further, opposing the gene
family concept, these connected components are not required to equal their transi-
tive closure.

Given k ≥ 2 genomes, we aim to find a matching between genes, analogous to
previous family-based approaches [1, 9, 45]. One way is to find all completely
connected subgraphs of size k in the gene similarity graph and then perform a k-
dimensional matching (also known as k-matching). Yet, this approach eliminates
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Fig. 13.2 The 7 valid types
of components of a partial
3-matching

many connected components that do not form complete cliques or spread over only
a smaller subset of genomes. Consequently, with increasing number of genomes in
the dataset, the matching size will decrease until only few fully connected genes
remain. In this work we use a partial k-matching which allows for missing genes
and edges:

Definition 2 (Partial k-matching) Given a gene similarity graph B = (G1, . . . ,

Gk,E), a partial k-matching M ⊆ E is a selection of edges such that for each
connected component C ⊆ BM := (G1, . . . ,Gk,M) no two genes in C belong to
the same genome.

Figure 13.2 depicts all valid types of components in a partial k-matching for
k = 3. The partial k-matching is closely related to the intermediate matching [1] for
k = 2. Just as in the latter, a partial k-matching can saturate an arbitrary number of
edges of the initial k-partite graph B but differs in that it is not required to saturate
at least one edge per connected component. Our motivation to reject this constraint
is discussed further below.

Biological Interpretation Relating to the underlying mechanism of gene family
evolution, a connected component in the partial k-matching represents a tentative
sub-family assignment in which two intrinsic aspects of gene family prediction are
addressed; first, the similarity measure between genes is generally not transitive;
second, genes and gene families may arise or vanish along the evolutionary process
whereas some genes that are intermittently indispensable for the organism emerge
as main orthologs. The biological interpretation of the matching is limited by the
restriction to one-to-one assignments between genes and by the fact that the match-
ing does not consider the underlying phylogeny of species and thus is unable to
differentiate between orthologs and paralogs. As such, our method is susceptible to
non-ortholog assignments in entangled events of gene deletions. Thus it is deceptive
to relate a connected component in the partial k-matching to an ortholog assignment.
Rather, under the optimization problem stated further below, it represents a tenta-
tive sub-family determined by the most parsimonious homology assignment with
respect to gene similarity and gene order.

Constructing a Partial k-Matching We assume for now that a partial k-
matching M is given. For any two genomes G and H in the gene similarity graph
we define MGH ⊆ M as the set of matched edges between G and H . We call a
gene GH -saturated if it is incident to an edge in MGH . Two GH -saturated genes
are consecutive with respect to G and H if no GH -saturated gene lies between
them. Further, two pairs of consecutive GH -saturated genes (g, g′) in genome G,
with g to the left of g′, and (h,h′) in genome H , form a conserved adjacency if
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(a) for h left of h′ in H , sgn(g) = sgn(h) and sgn(g′) = sgn(h′) or
(b) for h right of h′ in H , sgn(g) �= sgn(h) and sgn(g′) �= sgn(h′),

where the orientation of a gene (or telomere) g is determined by the following func-
tion:

sgn(g) =
⎧
⎨

⎩

1 if g is in forward direction
−1 if g is in backward direction
0 if g is a telomere

For example, the consecutive pair of genes (2,3) and (6,7) in Fig. 13.1(b) represent
a conserved adjacency. Following [22], we define a scoring scheme for adjacencies:

s
(
g,g′, h,h′) =

{√
w(eg,h) · w(eg′,h′) if (g, g′), (h,h′) form a cons. adjacency

0 otherwise

The convex nature of the scoring scheme rewards conserved adjacencies between
high weighted edges the most, whereas combinations of high and low weighted, or
low weighted edges are decreasingly scored. While a matching that creates many
conserved adjacencies is often more appreciated than a matching with few con-
served adjacencies, maximizing the number of conserved adjacencies is not de-
sirable at any price. For example, the matching depicted in Fig. 13.1(b) contains
an adjacency between genes (3̄,4) and (7,8) at the expense of dismissing the
stronger edge between genes (4,8), which is selected in the matching displayed
in Fig. 13.1(c). Hence we view a matching as a trade-off between two competing
properties, namely similarity and synteny. We quantify both in a matching M be-
tween genomes G = {G1, . . . ,Gk} by means of the following measures:

adj(M) =
∑

G,H∈G

∑

g left of g′ in G

h,h′ in H

s
(
g,g′, h,h′), (13.1)

edg(M) =
∑

e∈M
w(e). (13.2)

Extending [22], we propose to find a partial k-matching that maximizes a linear
combination of both quantities:

Problem 1 (FF-Adjacencies) Given a gene similarity graph B = (G1, . . . ,Gk,E)

and some α ∈ [0,1], find a partial k-matching M such that the following formula is
maximized:

Fα(M) = α · adj(M) + (1 − α) · edg(M). (13.3)

Thereby α is a user-controlled parameter that can be adjusted in favor of similar-
ity or synteny.
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Rejection of Intermediate Matching Constraints Recall that a partial k-
matching for k = 2 differs from the intermediate matching only by omitting the con-
straint that for each connected component at least one edge must be matched. While
such restriction is reasonable in gene family studies, where family assignments act
as filter in reducing false positive associations between genes, the gene similarity
graph can include also small weakly connected components (depending on the par-
ticular similarity function) that most likely represent false positives. Substituting
the intermediate matching which was used in the initial gene family-free approach
[22] for the partial k-matching may have a crucial effect on α in solving Problem
FF-Adjacencies. While in pairwise comparison where α = 0, both matchings co-
incide, the choice of edges in the intermediate matching is increasingly limited,
when α > 0. Discarding the constraint of keeping at least one edge per connected
component allows more freedom in the choice of edges included in the matching
and thus may lower the number of false positive assignments. However, it does so
at the cost of increasing the combinatorial solution space that must be explored in
solving Problem FF-Adjacencies. That is because the constraints of the intermedi-
ate matching enable the reduction of the solution space by identifying anchors in
the gene similarity graph. Using a partial k-matching, we lack sensible constraints
of the matching that can be exploited to identify anchors beforehand. Nevertheless,
heuristic methods can be applied to establish anchors based on highly conserved
structures in the gene similarity graph that are likely preserved in optimal solutions
of Problem FF-Adjacencies. These methods will not be discussed here.

13.3.2 Common Intervals

The concept of common intervals is used to represent two or more genomic seg-
ments (usually from different genomes) that are composed of the same set of genes.
The presence of such segments in the genomes of different species suggests either
functional coupling of the involved genes, as observed in operons in prokaryotes, or
remnant ancestral gene order, often referred to as syntenic blocks, which are used
to study large-scale genome evolution. Over the past years, the common intervals
model has been generalized to increase its applicability: Starting from a model that
requires genomes to be permutations of each other [32, 33, 56], it extended to a
sequence-based model that allows multiple occurrences of the same gene and dif-
ferences in the gene composition of genomes [21, 50]. Finally it was redefined in
different ways to account for small differences in the gene content of otherwise well-
conserved segments. The most notable of the latter extensions are r-windows [23],
max-gap clusters [5, 31] and approximate common intervals [12, 34, 43].

Currently, all approaches to common interval detection require as a prerequisite
that the genes of the studied genomes are partitioned into gene families. It is evi-
dent that errors in this assignment can have a negative impact on common intervals
detection. In the classical common intervals model a single unrecognized homol-
ogy can prematurely end a conserved segment, or even cause the whole segment
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to remain unrecognized. Approximate common intervals are to some extent robust
against errors in gene family assignment. An unrecognized homology between two
genes may be interpreted as a combined gene insertion/gene deletion. However, in
presence of a large number of erroneous gene family assignments this workaround
quickly reaches its limits. Another drawback of the current approach is that all in-
formation on alignment scores is discarded once gene families are assigned, such
that later on, it makes no difference if two genes that are each others’ counterpart in
a pair of common intervals are strong bidirectional best hits or barely made it into
the same gene family and may not even be true homologs after all.

To make better use of positional information and pairwise gene similarity scores,
we can use a partial k-matching, as introduced earlier in this section, and simply
translate each connected component into one gene family. (Strictly speaking, these
are rather sub-families, as discussed previously.) However, conserved adjacencies,
the only type of positional information currently used to obtain partial k-matchings,
are not optimal in the context of common intervals detection. Typically their defini-
tion allows for unrestricted internal rearrangements and disregards gene orientation.
The rationale behind this approach is not that conservation of gene order and orien-
tation are supposed to be meaningless, but merely that it is difficult to decide ad hoc
how much internal rearrangement in a conserved segment is plausible. In practice,
a post-processing step can be applied to screen the predicted conserved segments
for these qualities. A more integrative approach are generalized adjacency clusters
which employ a user-defined parameter to restrict internal rearrangements [67].

The above considerations suggest that for common intervals more suitable po-
sitional information for gene family assignment could be obtained if the partial k-
matching was not only based on conserved adjacencies, but the conserved neigh-
borhood of up to θ > 0 genes to the left and right of each gene. To obtain such a
matching, we introduce the notion of θ -neighbors: Two genes g and g′ in genome
G are θ -neighbors with respect to G and H if at most θ − 1 GH -saturated genes lie
between them. Two pairs of θ -neighbors (g, g′) in genome G and (h,h′) in genome
H form a θ -adjacency if the corresponding edges eg,h and eg′,h′ are part of MGH .
An initial scoring scheme for θ -adjacencies could look as follows:

sθ
(
g,g′, h,h′) =

{√
w(eg,h) · w(eg′,h′) if (g, g′) and (h,h′) form a θ -adjacency

0 otherwise

It can be extended by a weighting scheme that values pairs of θ -neighbors the higher
the closer they are.

While the use of positional information is most likely an advantage for gene
family assignment, the restriction of gene families to at most one gene per genome,
a consequence of the partial k-matching, is clearly not. In fact, it is not only unnec-
essary but even unwanted in common intervals detection. It prevents the detection
of duplicate occurrences of genes within a common interval, as well as multiple oc-
currences of common intervals in a genome. Both findings are certainly interesting
as they hint at segmental or whole genome duplications.

In the remainder of this section, we broach a gene family-free approach for com-
mon intervals detection that avoids the above mentioned restrictions. We first study
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the case of two genomes G and H . Any pair of intervals (I, J ) on G and H can be
common intervals. Therefore we build for each (I, J ) a maximum weighted bipar-
tite matching MI,J between the gene sets of I and J . This is equivalent to solving
Problem FF-Adjacencies with α = 0 for G1 = I and G2 = J .

An unmatched gene in I and J is either a duplicate occurrence if it is incident to
an unchosen edge within the interval pair, or an inserted gene, if there are no incident
edges or all of them point to a gene outside the interval pair. We obtain a matching
score score(MI,J ) = F0(MI,J ) that needs to be corrected for the number of genes
occurring in the intervals. Otherwise, the biggest score is obtained for (G,H), the
interval pair defined by the complete genomes. Simply normalizing score(MI,J )

by the length of I and J is also not advisable, as it causes the best-scoring common
intervals to be of length one, the best scoring pair of genes. Instead a trade-off be-
tween matching score and interval compactness needs to be defined. The corrected
score can then be used to decide whether an interval pair should pass for a conserved
segment or not. For k > 2 genomes, the matching score can be defined as the sum
over all pairwise matching scores which equals the score of a partial k-matching
over all genomes.

The computation of a single matching MI,J can be done in O(max{|I |, |J |}3)

time using the Hungarian Method [35]. However, already for two genomes there are
O(|G|2|H |2) interval combinations that need to be tested. One order of magnitude
is saved if the initial definition of common intervals is used that neither allows du-
plicate genes nor gene insertions/deletions. In this case, only intervals of the same
size need to be paired. For larger k, the complexity increases further, as all O(k2)

pairwise genome combinations need to be considered. With polynomials of such
high degrees in the asymptotic time complexity, it remains to be seen to what extent
matching-based approaches are feasible in practice.

13.4 Genome Rearrangements

The study of genome rearrangements leads to a better understanding of the dynamics
of genome structure over time. Typical rearrangement operations are the inversion
of a piece of a chromosome, the translocation of material between two chromo-
somes, or the fusion and fission of chromosomes. These operations are explicitly
modeling the modification of the genome over time and the methods therefore are
called rearrangement model-based [30, 44, 63], in contrast to the rearrangement
model-free methods that we discussed in the previous section, which only study and
compare static properties of the genomes.

In rearrangement model-based methods, given two genomes and a set of rear-
rangement operations, two problem variants are typically considered: (1) calculate
the minimum number of steps that are necessary to transform one genome into an-
other, the so-called genomic distance problem, and (2) find a series of operations that
perform such a transformation, the genomic sorting problem. Traditional approaches
to analyze these problems are family-based, and the vast majority of methods also
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adopt the simplifying assumption that exactly one occurrence of each family ap-
pears in each genome, which allows the existence of several polynomially-time
computable methods, including for the popular Double Cut and Join (DCJ) rear-
rangement model [7, 63].

While the sorting problem, especially for the case of multiple genomes and their
relation along the branches of a phylogenetic tree, will be addressed briefly in the
following Sect. 13.5, here we concentrate on distance calculations in a family-free
setting. In general, similarly to the rearrangement model-free measure of conserved
adjacencies described in Sect. 13.3, the challenge is finding pairwise gene assign-
ments based on similarities while minimizing the distance. In the following we will
sketch a natural modification of existing approaches for the DCJ model. Whether
this will lead to meaningful distances and allows for efficient algorithms has yet to
be shown.

13.4.1 The Weighted Adjacency Graph

Recall that a gene is an oriented interval of a chromosome. We now represent a
gene by the two extremities of its interval, called tail and head. The tail of gene g

is denoted by gt and the head by gh. In a family-based setting composed of n gene
families, consider that each one of two genomes G and H has exactly n genes, one
occurrence of each family. A data structure that has proven to be useful in the study
of the DCJ rearrangement model in this context is the adjacency graph AG(G,H).
This graph has a vertex for each adjacency of either of the two given genomes, and
for each one of the two extremities of each gene there is an edge connecting the
two vertices, one in G and the other in H , that contains this extremity. The graph is
bipartite and a collection of paths and cycles, because each vertex has either degree
one or degree two. The DCJ rearrangement distance can easily be calculated from
this graph using the formula dDCJ = n − c − i/2, where c is the number of cycles
and i is the number of paths with an odd number of edges in AG(G,H) [7]. Since, in
the linear unichromosomal case that we consider in this paper, the adjacency graph
has exactly two paths and otherwise only cycles, i/2 is either 0 or 1. Therefore, the
similarity of two genomes G and H is closely related to the number of cycles in the
adjacency graph AG(G,H).

While the original adjacency graph clearly depends on the assignment of gene
families, we observe that based on the information in the gene similarity graph from
Sect. 13.2 we can obtain a data structure that resembles some of the properties of the
adjacency graph. This new data structure might thus be a good basis for DCJ-like
rearrangement distance calculations in a family-free setting:

Definition 3 (Weighted adjacency graph) The weighted adjacency graph
WAG(G,H) of two genomes G and H has a vertex for each adjacency in G and a
vertex for each adjacency in H . For a gene g in G and a gene h in H with similarity
σ(g,h) > 0 there is one edge connecting the vertices containing the two heads gh
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Fig. 13.3 Gene similarity graph (left) and the resulting weighted adjacency graph WAG(G,H)

(right) for two genomes G = (◦ 1 2 3 4 ◦) and H = (◦ 5 6 7 8 9 ◦)

and hh and one edge connecting the vertices containing the two tails gt and ht . The
weight of each of these edges is w(eg,h) := σ(g,h).

As an example, the gene similarity graph for the two genomes G = (◦ 1 2 3 4 ◦)

and H = (◦ 5 6 7 8 9 ◦) and six edges with non-zero weight, and the corresponding
weighted adjacency graph are given in Fig. 13.3.

Note that if G and H have the same number of genes and the similarity mea-
sure σ forms a perfect matching with weight 1 for all edges of the matching and
weight 0 otherwise, then the weighted adjacency graph reduces to the ordinary ad-
jacency graph.

13.4.2 The Weighted Double-Cut-and-Join Distance

As for the case of conserved adjacencies, where instead of the breakpoint distance
we calculate a matching maximizing an adjacency score in Eq. (13.3), here we first
define a similarity measure that, if needed, can easily be converted into a distance.

Again, the similarity measure is based on a matching M of the genes in G and
the genes in H . Let I(G,H ;M) be a graph derived from the weighted adjacency
graph WAG(G,H) and the matching M by first removing from WAG(G,H) each
unmatched gene, consequently merging the two vertices containing its extremities,
and second keeping only the edges representing extremities of gene pairs from M.
This graph has the shape of a standard adjacency graph and thus is a collection of
cycles and paths. We denote by C(M) ≡ C(G,H ;M) the set of connected compo-
nents of I(G,H ;M).

The graph derived from the weighted adjacency graph of Fig. 13.3 and the match-
ing M = {(1,5), (2,6), (3,8), (4,9)} is given in Fig. 13.4.

Since we know that the number of DCJ operations is closely related to the num-
ber of cycles in the adjacency graph, we define a score function whose domain is
defined by gene similarities and cycles in the matching. Therefore, in analogy to
the corresponding formula for conserved adjacencies in Eq. (13.3), we propose the
following objective function:

FDCJ
α (M) = α · cyc(M) + (1 − α) · edg(M)
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Fig. 13.4 The graph derived
from the weighted adjacency
graph of Fig. 13.3 and the
matching M = {(1,5), (2,6),

(3,8), (4,9)}

where

cyc(M) =
∑

C∈C(M)

(
1

|C|
∑

e∈C

w(e)

)

and edg(M) is the same as in Eq. (13.2). Again, α ∈ [0,1] is a parameter that
allows to balance between the two extremes, here between rearrangements (α = 1)
and gene similarities (α = 0). Nevertheless, even for α = 1 gene similarities are
not ignored since the weights w(e) also form an essential part of the cycle score
cyc(M). Note that the normalization 1/|C| in cyc(M) is designed such that many
short cycles are preferred over fewer long ones. For example, if all edges have the
same weight w, two cycles of length 2 receive the score 2w, which is twice the
score of one cycle of length 4. The cycle score of the graph shown in Fig. 13.4 is
cyc(M) = 1

1 · 1.0 + 1
2 · (1.0 + 0.7) + 1

4 · (0.7 + 0.9 + 0.6 + 0.9) + 1
1 · 0.6 = 3.225.

It is unlikely to find an efficient algorithm to compute a matching M that max-
imizes FDCJ

α (M), but the solution of this optimization problem through integer
linear programming seems possible and will be the subject of further research.

It is also an open question how to treat genes that are not covered by M. They
can be explained as being inserted or deleted during the course of evolution. Thus,
a more general score function might consider these genes and prefer sorting scenar-
ios with a low number of insertion/deletion events, similar to existing family-based
approaches [14, 25].

Even further reaching might be approaches that do not rely on any matching, and
instead optimize an objective directly defined on the weighted adjacency graph, for
example a weighted version of maximum cycle decomposition.

13.5 Ancestral Genome Reconstruction

Studying conservation of gene order or rearrangement processes in the light of
a phylogeny—given or unknown—can provide deeper insight into evolutionary
mechanisms, gene functions, or the phylogeny itself. In this section, we will dis-
cuss how a partial k-matching can be used for ancestral genome reconstruction.

Phylogeny Aware Optimization A natural first step when reconstructing ances-
tral gene orders is to take phylogenetic information into account. Apart from an-
cestral reconstruction, this can actually be done in general to improve the construc-
tion of the partial k-matching. Given an edge-weighted phylogenetic tree, say T ,
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for the species under consideration where the edge weights reflect the phyloge-
netic/evolutionary distance, the lengths of the paths between all pairs of species
define an additive distance matrix DT . As additivity gives a one-to-one correspon-
dence of DT and T , including the pairwise distances into the optimization implic-
itly also includes the topology of T . These distances can be used to scale the pair-
wise scores in the objective function—close relatives receive a higher score than
more distant pairs:

Fα,T (M) = α ·
∑

G,H

(
DT

max − DT
GH

)
adj(MGH)

+ (1 − α) ·
∑

G,H

(
DT

max − DT
GH

)
edg(MGH)

=
∑

G,H

(
DT

max − DT
GH

)(
α · adj(MGH) + (1 − α) · edg(MGH)

)

where

DT
max = max

G,H

{
DT

GH

} + ε

(ε > 0, a constant to avoid nullity in the case of the two most distant genomes).

Ancestral Genes To be able to reconstruct ancestral gene orders, we first need
to define ancestral genes and the ancestral gene content of ancestral genomes. To
this end, we leave the family-free approach and rely on the assignments given by
the partial k-matching. From such assignments, gene families can be derived by
simply assigning all genes from a connected component in a partial k-matching to
one family. As mentioned in Sect. 13.3.2, strictly speaking, these are rather gene
sub-families. Recall further that the partial k-matching is defined such that within
each connected component formed by saturated edges no two genes belong to the
same genome. If all components are k-cliques, then genomes can be modeled as
signed permutations. But in general, components might cover less than k genomes,
i.e., not all genomes have the same gene content, although genomes do not have
duplicated genes, thus leading to easier problems.

Based on the gene sub-families, we can infer the ancestral gene content from
standard methods [18] or methods tailored for genome rearrangement problems
[24, 53].

Ancestral Gene Orders Similarly to the computation of genomic distances
(Sect. 13.4), the reconstruction of ancestral gene orders can be seen from two points
of view—incorporating a rearrangement model-based approach or not. Once gene
families have been defined from the partial k-matching, we have the gene orders of
the extant genomes. Thus, we can apply rearrangement model-based methods allow-
ing for unequal gene content such as [24, 48, 53]. Usually, such methods, following a
parsimony approach, would aim at minimizing the total number of operations along
the tree edges, which in most cases will lead to computationally hard optimization
problems.
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In the rearrangement model-free approach, ancestral syntenic characters are de-
termined which induce a (partial) gene order. In our case, adjacencies qualify as
ancestral syntenic characters. The remaining questions are then (1) how to infer the
ancestral adjacencies, and (2) whether a set of adjacencies assigned to an ances-
tral node is concordant with some valid gene order, i.e., a collection of linear (and
circular) chromosomes where each gene has at most two neighbors.

For a median-of-three, the above questions can easily be answered. Following a
parsimony approach, the 0/1-assignment of an adjacency to the median boils down
to a majority vote. Further, in almost all rearrangement median models, any adja-
cency present in at least two genomes is contained in any optimal median. In the
case of signed gene orders, this selection will always ensure compatibility with a
collection of linear and circular gene orders, and the inferred partial k-matching de-
fines implicitly a set of linear or circular genome segments. Note, however, that this
median genome might not be optimal for a given rearrangement model; however, it
is a valid set of ancestral genome segments that has been inferred in a joint process,
together with putative gene sub-families.

For general trees, one could follow rearrangement model-free approaches that
try to find a most parsimonious labeling of the whole tree that is at the same time
consistent with some linear or circular gene order [52], or one could concentrate on
a single ancestral node as, e.g., done in several recent works [16, 37]. The method
by Chauve and Tannier [16] relies on the Dollo principle, where only adjacencies
conserved in pairs of genomes whose path in the species tree contain that ancestor
are deemed ancestral; other approaches can select or score adjacencies using a Fitch
principle [37].

The Dollo principle can easily be included into the optimization of the partial
k-matching by introducing a factor πA

GH that equals one if the path between G and
H contains the ancestor A and zero otherwise:

Fα,T ,A(M) =
∑

G,H

πA
GH

(
DT

max − DT
GH

)(
α adj(MGH) + (1 − α) edg(MGH)

)
.

Thus, adding this feature to the objective function allows to select a set of putative
ancestral adjacencies that can also receive a phylogenetic score as we described it
earlier. Then existing methods that select a subset of adjacencies that form a valid
genome can be used (see [38] for an example).

In this section we outlined how the family-free principle can fit quite naturally
in existing approaches to reconstruct ancestral gene orders. This preliminary study
opens several interesting research avenues. For example, it is worth to mention
that rearrangement model-free reconstruction methods can utilize larger conserved
structures than just adjacencies. Thus, e.g., common intervals could be included by
integrating the scoring for θ -adjacencies as proposed in Sect. 13.3.2. Also, progress-
ing toward a fully integrated inference process, it would be natural to incorporate
the constraints posed by the structure of an ancestral genome; with adjacencies, this
reduces to ensuring that every ancestral gene has at most two adjacent neighbor-
ing genes. However, integrating such constraints—even if only for a single internal
node of a species tree (ancestral genome)—seems to be very challenging. Finally,
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it would also be interesting to move on from reconstructing the states of the inter-
nal nodes of a given phylogeny (the small phylogeny problem) to reconstructing
the tree itself. It is known that using gene order data for phylogenetic reconstruc-
tions can be more accurate and robust than sequence-based methods since they are
not affected by gene-tree species-tree issues and less affected by small sequence
or alignment errors. Not relying on purely sequence-based homology assignments
could be a benefit for such reconstructions.

13.6 Discussion

In this paper we have outlined the potential of family-free methods in various aspects
of genome comparison. Gene families are generally computationally predicted and
serve as basis for a large variety of current comparative genomics studies. Since the
predicted families may not be concordant with the underlying true biological gene
families, erroneous gene family assignments can deteriorate subsequent analyses.
Most importantly, comparative genomics methods require prior gene family assign-
ments, yet the attained information about the structural organization of the genome
may in turn actually help to improve the initially required gene family assignments.
Consequently we propose the use of a gene similarity graph as underlying data
structure in genome comparison. Therein genes are associated with each other by
weighted edges according to a normalized similarity measure. In practice, sequence
similarity scores can be employed in constructing the graph.

The underlying strategy of almost all presented methods is tantalizingly simple
and boils down to obtain a one-to-one matching between orthologous genes of the
gene similarity graph by solving an optimization problem. More specifically, a linear
combination of a synteny (or rearrangement) score and a similarity score, parame-
terized by α, between saturated genes is optimized. Here, we give users the choice
in favoring one of the two quantities over the other by adjusting α in each particular
analysis. At this point, we like to acknowledge an inherent disadvantage of a one-
to-one matching, namely its inability to account for inparalogous genes. Thus, the
detection of inparalogs remains part of post-processing steps which identify unsat-
urated genes with high similarities to other genes of the same genome.

In Sect. 13.3 we studied two forms of conserved structures: adjacencies and com-
mon intervals. In the former, we generalized the problem of family-free computation
of adjacencies of [22], called FF-Adjacencies, towards the simultaneous study of
more than two genomes. Thereby we introduced the notion of a partial k-matching,
which allows to incorporate in solutions of Problem FF-Adjacencies sparsely inter-
connected genes as well as connected components that are only contained in sub-
sets of the genomes. We also discussed two possible approaches towards family-
free common intervals by introducing a scoring scheme for θ -adjacencies, which
is a co-localization measure for genes similar to adjacencies. We further outlined
a more dynamic, but also computationally more expensive approach based on per-
forming local maximum matchings. Complementing the study of conserved struc-
tures, we turned in Sect. 13.4 to model-based genome comparison by introducing
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Fig. 13.5 Various fields of comparative genomics can be explored under the family-free model
such as conserved structure detection or reconstruction of ancestral genomes, employing different
gene similarity measures (based on alignment scores, functional similarity, etc.)

the weighted adjacency graph. On this basis we proposed a weighted DCJ dis-
tance following a similar strategy as in the previous section. We further showed
in Sect. 13.5 how the reconstruction of ancestral genomes can be performed using
the family-free principle. Thereby we studied the concept of family-free adjacencies
in a phylogeny-aware setting using existing approaches of reconstructing ancestral
gene orders.

This work presents a number of initial studies in a new field of genome compari-
son which aims at developing methods where prior gene family assignments are no
longer required. It consequently offers many directions in which these studies can
be extended (see Fig. 13.5). Most evidently, the principle of family-free genome
comparison can be applied to the numerous existing family-based studies. More in-
terestingly, the family-free principle could even be integrated into a methodology
for joint inference of gene families, conserved structures and ancestral gene orders
at the same time, extending presented work in reconstructing ancestral gene or-
ders. Even though such venture most likely involves a more complex data structure
and a potentially increased solution space, the question remains unanswered if the
stronger signal gained from harvesting more information from the genomic datasets
may reduce the computational cost in finding optimal solutions. Finally, it is worth
to mention that the family-free principle may be particularly beneficial in studying
partially sequenced (or assembled) genomes, as methods in gene family prediction
tend to be susceptible for missing genes. Here, the family-free approach can offer
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improvements for inferring phylogenetic distances of incomplete genomes, but also
in detecting conserved structures, which may lead to improved methods in contig
layouting.

While sequence similarity between genes is an obvious and reasonable measure
in constructing the gene similarity graph, similarity scores can also integrate addi-
tional information such as functional similarity. Such information can be obtained
from various databases, most notably, from the Gene Ontology database [3]. Family-
free genome comparisons of this kind may give further insights into the functional
organization of the genome.
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