
Chapter 12
Error Detection and Correction of Gene Trees

Manuel Lafond, Krister M. Swenson, and Nadia El-Mabrouk

Abstract Reconstructing the phylogeny of a gene family and reconciling the ob-
tained gene tree with the species tree reveals the history of duplications, losses, and
other events that have shaped the gene family, with important implications towards
the functional specificity of genes. However, evolutionary histories inferred by rec-
onciliation are strongly dependent upon the accuracy of the trees, and few misplaced
leaves will lead to a completely different history. Furthermore, sequence data alone
often lack the information to confidently support a gene tree topology. We outline
a number of criteria that can be used to detect erroneous gene trees. Analysing En-
sembl gene trees of the fish genomes Stickleback, Medaka, Tetraodon, and Zebrafish
reveals a significant number of erroneous gene trees. Finally, some potential direc-
tions for error correction of gene trees are explored.

12.1 Introduction

Duplication followed by modification is a major mechanism driving evolution. Con-
sequently, genes cannot be seen as independent entities, but rather as entities re-
lated through duplication and speciation events. Grouping genes into families of
homologs (i.e. copies originating from a single ancestral gene) and reconstructing
the phylogeny of each gene family is requisite for a variety of annotation, evolu-
tionary, and functional studies. By reconciling such a gene tree with a species tree,
one can infer the history of duplications, losses and other events that have shaped
the gene family. Such a history reveals the orthology (evolution of the ancestral
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copy by speciation) and paralogy (evolution by duplication) relationship between
genes, with important implications towards the functional relationship between gene
copies. However, uncertainty on gene trees is a serious limitation to reconciliation,
as well as to other applications. In particular, it has been reported that a few mis-
placed leaves can lead to a completely different history, possibly with significantly
more duplications and losses [30]. Thus, a great deal of effort has been put into
finding accurate gene trees.

Gene Tree Inference Inferring phylogenies from sequence similarity is a field
with a very long history that gave rise to a variety of distance, maximum parsimony,
maximum likelihood or Bayesian methods, and a variety of software (PHYLIP
[20, 21], NJ [47], PAUP [54], PhyML [28], MrBayes [44], RAxML [51]). However,
due to various limitations such as insufficient differentiation, alignment ambiguity,
or differing rates of evolution among gene copies, sequences alone do not always
support a single gene tree topology with high confidence.

Recently, several approaches have been developed to incorporate other genomic
information in the construction of gene trees. For example, the SYNERGY algo-
rithm [60] uses a “synteny similarity score” accounting for the position of genes in
the chromosome. Different ways of integrating species tree information have also
been considered. For example, the TreeBeST program from TreeFam [32, 45] (used
for constructing the Ensembl Compara gene trees) uses a likelihood factor reflecting
the number of duplications and losses inferred by reconciliation, the goal being to
minimize inconsistency with the species tree. Another example is GIGA [57], a sim-
ple and fast algorithm using a UPGMA like distance-based approach to construct
trees. In addition to the distance criterion, it relies on rules reflecting the species
tree constraints (choose topologies in agreement with the species tree), as well as
observations on lineage-specific evolution rates. This simple algorithm performs
surprisingly well, leading to the conclusion that other constraints are strong enough
to compensate for weak or misleading signals in gene sequences.

Other more sophisticated “species tree aware” methods have been developed,
such as GSR [1, 2] and Spimap [43] adopting a Bayesian approach, or PhylDog [3]
using a probabilistic model for simultaneously coestimating gene trees and the
species tree. These models tend to be computationally intensive.

Gene Tree Correction A complementary approach for producing “error-free”
gene trees is to develop appropriate evaluation and correction tools, based on vari-
ous genomic constraints, that can be applied subsequent to gene tree reconstruction.
TreeFix [62] offers an additional framework to unify the sequence and genomic
approaches, by suggesting a step following gene tree correction that performs sta-
tistical evaluation of a corrected tree, choosing it as a viable alternative only if it is
statistically equivalent to the original one. The strategies that have been considered
for gene tree correction are based on reconciliation, and can be grouped into three
different classes:

I. Explore the space of gene trees obtained from the original one by performing
some edit operations such as NNI [13, 25], SPR, or TBR [10] and select the tree
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having the minimum reconciliation cost. The “soft parsimony” algorithm [8]
extends this approach for reconciliation with an uncertain species tree.

II. Collapse weakly supported internal branches [4], which leads to a non-binary
gene tree, and then select the resolution minimizing the reconciliation cost
[9, 36, 41].

III. Identify potentially misplaced leaves and remove them from the gene tree.
In [12], vertices of a gene tree G labeled as Non-Apparent-Duplication (NAD)
vertices, were flagged as potentially resulting from the misplacement of leaves
in the gene tree. A duplication vertex x of G (according to the reconciliation
with a given species tree) is a NAD if genes from the same species do not appear
as a descendant of each of x’s children. The reason for doubting NADs is that
each one of these vertices reflects a phylogenetic incongruence with the species
tree that is not due to the presence of duplicated genes in a single genome.
Avoidance of NADs is one of the principles behind the GIGA algorithm [57].
We presented algorithmic results for removing, from a given gene tree, the min-
imum number of leaves or leaf-labels (species) leading to a tree without a NAD
vertex, under conditions of a known or an unknown species tree [16, 52]. All
known formulations of this version of the problem are NP-hard [14, 15].

Error Detection Known methods for correcting gene trees all rely on errors de-
tected through reconciliation with the species tree. Similarly, in the field of gene
tree reconstruction, most integrated methods rely on the species tree information,
although other criteria have been suggested such as gene order [60] and variability
of evolutionary rates [57]. In this paper, we follow up on this effort by exploring
these two directions.

In Sect. 12.3, we show how gene order may be inconsistent with a gene tree,
and state two error detection criteria based on gene order. To show the utility of
these criteria, we consider the Ensembl [23] gene trees for four fish genomes (Stick-
leback, Medaka, Tetraodon, Zebrafish) with human and mouse as outgroups. We
observe that more than 31 % of all trees exhibit at least one gene order contradic-
tion. In Sect. 12.4, we show how the presence of negative and positive selection
may be misleading for gene tree reconstruction, and suggest methodology for de-
tecting natural selection bias in a gene tree. Using the non-synonymous (dN ) versus
synonymous (dS) substitution ratio dN/dS as a criterion for detecting natural se-
lection, a clear selective pressure is observed on Ensembl gene trees as compared
to random trees. Finally, in Sect. 12.5 we give some avenues for developing a co-
herent tool for correcting gene trees, taking advantage of all available sequence and
genomic information.

12.2 Genomes, Trees, and Gene Family Histories

We begin by introducing the necessary notations and background concepts. Al-
though some of our experimental results could be explained without such formal-
ities, we find it important to be precise. Indeed, many of the terms introduced in
Sect. 12.2.5 have been used in multiple ways under diverse circumstances, some-
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times leading to confusion. Many concepts are also presented in a general way, in
the hopes of illuminating the potential for related work.

12.2.1 Genomes

Although our methods may be extended to arbitrary genomes, for simplicity of pre-
sentation we only consider single chromosomal genomes, represented as strings
of, possibly signed, genes. Let A = a1a2 . . . an be a string representing a genome.
For any i, j such that 1 ≤ i ≤ j ≤ n, A[i, j ] = aiai+1 . . . aj is a substring of A.
A string obtained from a substring of A by removing a subset of genes (possibly
empty), is called a subsequence of A. For 1 ≤ i1 < i2 < · · · < ip ≤ n, we denote by
A[i1, i2, . . . , ip] the subsequence A[i1]A[i2] . . .A[ip] of A.

12.2.2 Trees

A phylogeny is a rooted binary tree, uniquely leaf-labeled by some set. A species
tree S is a phylogeny over a set of species Σ , which represents the evolution-
ary relationships between these species. Similarly, we can consider the evolution-
ary relationships amongst a family of homologous genes Γ that appear in the
genomes of Σ . A gene tree G for Γ is a phylogeny accompanied by a function
s : Γ → Σ indicating the species where each gene is found. We will make no dif-
ference between a node and its associated gene. The tree G from Fig. 12.1 is a
gene tree for Γ = {Z1,M1,M2, S2} on species set Σ = {Z,M,S}. In this case,
s(M1) = s(M2) = M .

Given a tree T and a node x of T , we denote by Tx the subtree of T rooted at x

(i.e. the tree comprises x and all its descendants), and by L(Tx) the set of leaves
of Tx . The species set of x, denoted S(Tx), is the subset of Σ defined by the labels
of the leaves of Tx (if T is a gene tree then S(Tx) = {s(�) : � ∈ L(Tx)}). If there is no
ambiguity about the tree in question, we write S(Tx) as S(x). The lowest common
ancestor (LCA) of leaves x and y in a tree T , written lcaT (x, y), is the common
ancestor of x and y that is farthest from the root. Finally, for any internal node x of
a rooted binary tree T , we denote by x� and xr the two children (left and right) of x

in T .

12.2.3 Histories

As a set of modern species evolves from a single ancestral species, some of the
gene content of those species is modified through duplication within the genome,
and then loss. Traditionally, reconciliation between gene trees and species trees has
been used to reconstruct such histories. The basis for such methodology has been
a formal definition of what a reconciliation is, without a definition of the actual
history that is the ultimate objective. Indeed, for a family of genes related through
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duplications and speciations, there exists some true history—the actual duplications
and speciations that occurred in the past. So as not to put the cart in front of the
horse, we now define what we mean by a duplication/loss/speciation-history (dls-
history). We then define a reconciliation in terms of dls-histories. This perspective
facilitates the reasoning used in Sect. 12.3; knowing that there is one true history of
speciation/loss/duplication for a family of genes, we establish conditions that true
gene trees must possess.

A duplication of size k + 1 on genome A is an operation that copies a sub-
strings A[i, i + k] to a location j of A outside the interval [i, i + k] (i.e. pre-
ceding i or following i + k). A Loss of size k is an operation that removes a
substring of size k from A. Given a set of genes Γ from a set of genomes Σ ,
a duplication/loss/speciation-history H for Γ is a rooted tree “embedded” in the
species tree S of Σ , which reflects the evolution of the set from a single ancestral
copy through duplication, loss and speciation events. In other words, each inter-
nal node x of H represents the evolution of the set L(Hx) from an ancestral gene
copy xA, and corresponds to either a speciation or gene duplication event. The leaves
correspond to either the genes in question, or to losses, where each of the latter loss
leaves map to a single node of S. If a loss leaf � maps to a node x of S, we say that
Sx is the label of �.

Definition 1 (dls-history) Let Γ be a set of genes from a set of genomes Σ , and
let S be the true phylogeny for Σ . A duplication/loss/speciation-history H for Γ

consistent with S (or simply a dls-history if unambiguous) is a rooted binary tree
such that:

• each leaf is uniquely labeled by an element of Γ , or it is a loss leaf labeled by a
subtree of S;

• each internal node is labeled as a duplication or speciation; and
• H is consistent with S: Consider the tree H̄ obtained from H by replacing each

loss leaf by the subtree that labels it, and by replacing all other leaves by the
species to which the attached gene belongs. Then, for every internal node x of
H̄ such that |S(x)| ≥ 2, there exists a vertex u of S such that S(x) = S(u) and:
S(xr ) = S(x�) if x is a duplication, or S(xr ) = S(ur) and S(x�) = S(u�) if x is
a speciation node.

The gene tree in agreement with H is the tree obtained from H by removing
loss leaves and the resulting internal nodes having one child. Consider the trees
from Fig. 12.1. The solid lines of G denote the gene tree corresponding to the his-
tory H .

As true histories are unknown, gene trees are usually inferred from sequence
data, and histories subsequently inferred from reconciliation with the species tree
(see the next section). In this paper, we will distinguish between the true gene tree,
which is the tree in agreement with the true dls-history of the gene family, and the
gene tree, which is a tree obtained from the observed gene sequences (e.g. a multiple
alignment of the sequences, the observed gene positions, or any other footprint of
evolution observed in the extant species).
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12.2.4 Reconciliation

Given an inferred gene tree G for a set Γ of genes from genomes Σ , and given a
species tree S for Σ , the problem is to recover a dls-history for Γ consistent with S,
such that G is in agreement with the history. Such a history is called a reconciliation.
Informally, a reconciliation R of G and S is a dls-history of Γ obtained by inserting
loss leaves in G. Let an extension of G be a tree obtained from G by a sequence
of loss insertions, where a loss insertion denotes the insertion of a new loss leaf
labeled by a subtree of S, by means of bisecting an existing edge of G with a new
edge. A rigorous definition of reconciliation follows.

Definition 2 (Reconciliation) A reconciliation R of gene tree G and species tree S

is an extension of G that is a dls-history consistent with S.

The parsimony criteria used to choose among the large set of possible reconcilia-
tions are usually the number of duplications (duplication cost), the number of losses
(loss cost) or the sum of the two (mutation cost). Many algorithms have been devel-
oped for computing the most parsimonious reconciliation, the most efficient ones
with running time proportional to the size of the gene tree [12, 19, 27, 67].

12.2.5 Perspectives on Homology

There have been many uses of the word homology and the related concepts, the
confusion due to the many possible measures of similarity between genes. Indeed,
evolutionary, sequence, functional, or positional constraints give rise to definitions
that are unfortunately not equivalent [35]. In this paper we adopt the original defini-
tions recommended by Fitch [22], corresponding to the evolutionary concepts.

Definition 3 (Homology) Two genes are homologous if and only if they are the
leaves of a dls-history H . A gene family is a set of homologous genes.

Although many genes share a common origin [56], and thus share the same dls-
history, the definition of homology given by Fitch does not include a necessary limit
on the evolutionary closeness between two homologous genes. To our knowledge,
this is an unfortunate and unstated ambiguity that we must live with for the time
being.

The remainder of the definitions describe a hierarchy of homologous genes, im-
plied by the dls-history H .

Definition 4 (Orthology) Genes a and b are orthologous if lcaH (a, b) is a specia-
tion node.

As duplications may arise following a speciation event, the orthology relation-
ship is not transitive. This property is inherent to the evolutionary definition of or-
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thology, which is not a definition about the functional relationship between genes,
nor the positional or direct descendant relationship. In this perspective, Fitch [22]
introduced the following notion of functional orthologs or isorthologs, for a given
function (in case of hemoglobin sequences for example, the function is the ability
of being the adult transporter of oxygen).

Definition 5 (Isorthology) Two orthologous genes that have retained the same func-
tion F of their LCA in H are called isorthologous for function F .

Isorthology relation is transitive. Therefore it makes sense to speak of sets of
isorthologs, or isorthogroups. Two genes are in the same isorthogroup if and only if
they are isorthologous. Finally, we introduce the notion of paralogy.

Definition 6 (Paralogy) Genes a and b are paralogous if lcaH (a, b) is a duplication
node.

Consider the histories from Fig. 12.2(a). Any two genes denoted by the same
letter are homologous. The history for homologous gene family c serves as a good
example. The gene from C1 is orthologous with all occurrences of c in C3 and C4,
while it is paralogous to the gene in C2. Further, the last occurrences of c in C4 is
paralogous to the second occurrence of the gene in C3.

12.3 Gene Order Inconsistency

In this section we explore how information on gene order can be used to discover
erroneous gene trees. The general idea is the following: look at the regions (for-
mally defined below) surrounding the genes of interest. If they are similar (in terms
of gene order), assuming that this cannot happen by chance, we can deduce that
they are homologous, i.e. they descend, through a duplication or speciation event,
from a common ancestral region. Such property on homology for regions leads to
properties on underlying genes: homologous genes in the two regions are either
all pairwise orthologous or all pairwise paralogous. These properties can then be
checked against gene trees, and used as criteria for correcting them.

In Sect. 12.3.1 we formally define homology on regions. This perspective allows
us to establish in Sects. 12.3.2 and 12.3.3 properties that sets of true gene trees must
possess when genes belong to similar regions, given that the following hypothesis
about convergent evolution is assumed:

Hypothesis NoConvergentEvol: Similar regions are homologous.

In the last 15 years many methods have been developed for the classification of
similar syntenic regions that have undergone gene order mutation [5–7, 31]. Hober-
man and Durand [33] give a nice treatment of the competing interests surrounding a
good definition of gene order similarity. David Sankoff has been ever present in the
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discussion [18, 34, 48, 63, 65, 66]. Whatever the definition, the underlying idea is
to maximize the probability that similar regions are indeed homologous.

Our study in Sect. 12.3.4 limits regions to the immediate left and right neighbors
of the genes in question; the regions of two homologous genes are similar if they
are directly surrounded by homologous genes. Under this definition, the substrings
aba of region C5 and aba of region C6 from Fig. 12.2 are similar, as do abc of C4
and cba of C3.

12.3.1 Region Homology

Homology on a set of genes is a property of the true history for that set, independent
of any similarity measure amongst them. Homology of a set of regions should also
be defined in a manner that is independent of any particular similarity measure on
those regions. To accomplish this we leverage the duplication/loss/speciation histo-
ries for the genes contained in the regions of interest.

A region of a genome A is simply a subsequence of A. An ancestral region is
a region occurring in some ancestral genome, while a modern region is a region
occurring in some modern genome.

Definition 7 (Region homology) Let Ck and C� be two modern regions defined
on a gene set Γ , subdivided into the gene families {Γ1,Γ2, . . . ,Γm}. Let H =
{H1,H2, . . . ,Hm} be the dls-histories corresponding to Γis, and let ai be the root
of Hi . Then Ck and C� are homologous if and only if the ais all belong to a region
CA = a1a2 . . . am of an ancestral genome A, and they are either all speciation nodes
or all duplication nodes. We call CA the LCA region for Ck and C�.

The case where the roots of the dls-histories are speciations corresponds to the
divergence of CA through a speciation event, while the latter case corresponds to
the divergence through a duplication event that has duplicated the entire ancestral
region CA.

Notice that the definition of region homology supports the possibility of rear-
rangements occurring during the evolution of regions; in Fig. 12.2(a) genes a and x

have been inverted in the branch from the ancestral genome to Species 1, yet re-
gions C1 and C3 are homologous. Local duplications of sub-regions (in tandem or
not) are also supported. In Fig. 12.2(a) for example, a duplication of gene c occurs in
the branch leading to Species 2 and 3, yet regions C1 and C3 are homologous. Inser-
tion and deletion of genes are supported as well. For example, gene c in Species 4,
which is not present in Species 5, does not prevent regions C5 and C6 from being
homologous. Moreover, the ancestral region CA may contain genes that have lost in
the dls-histories leading to modern regions.

Notice, however, that, in contrast to the homology relationship on genes, the ho-
mology relationship on regions is not transitive. Consequently, we are unable to
generalize the notion of gene families to the notion of homologous region fami-
lies.
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12.3.2 Homology Contradiction

Our definition of homologous regions, along with Hypothesis NoConvergentEvol,
provides us with a tool for testing the validity of gene trees. Remember that for a
pair of homologous regions, the roots of the genes trees that comprise the genes
contained in the two regions must all be the same type of node; they must all be
speciation nodes, or they must all be duplication nodes. Thus, for a pair of similar
regions—assumed from Hypothesis NoConvergentEvol to be a pair of homologous
regions—and an inferred set of gene trees—implying a set of homology relation-
ships between genes of the regions—we can confirm that indeed the gene trees have
such roots. If they do not, we say that the forest of gene trees exhibits a homology
contradiction.

12.3.3 Region Overlapping

In this subsection, we define the notion of a region surrounding a gene in a strict way
ensuring a single region assignment for each gene, and a fixed length for all regions.
Formally, for a given set of parameters 0 < l1 < · · · < lp and 0 < r1 < · · · < rq ,
the region Cx surrounding the gene at position x in genome A is the subsequence
A[x − lp, . . . , x − l1, x, x + r1, . . . , x + rq ]. In Sect. 12.3.4, the underlying param-
eters are p = q = 1, and l1 = r1 = 1. Now two regions Ck and C� are similar if an
only if, for any i, Ck[i] and C�[i] belong to the same gene family. This definition of
similarity ensures transitivity, which allows to define a similarity family as a family
of pairwise similar regions.

A stronger statement on no convergent evolution is also required:

Hypothesis StrongNoConvergentEvol: Two similar regions are homologous. In ad-
dition their similarity is inherited from their LCA region and preserved during the
course of evolution.

Stated formally, let Ck and C� be two similar regions surrounding two homolo-
gous genes xk and x� belonging to a gene family Γ , and let G be the true gene tree
for Γ . Then the regions surrounding ancestral genes corresponding to the nodes on
the path between xk and x� in G are similar to Ck and C�.

Take a gene tree G such that each gene (leaf of G) is assigned to a region, and
that regions are grouped into similarity families E = {F1,F2, . . . ,Fp}.

Let V (G) be the set of internal nodes of G. Consider the region labeling function
�G : V (G) → 2E (where 2E is the power set of E) that labels the nodes of G with
homologous families as follows:

1. for all x ∈ V (G), initialize �G(x) to ∅;
2. for each family Fi , include Fi in the label of any node on a path from a pair of

leaves with label Fi .

The following lemma provides a second criterion for error detection in gene
trees.
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Fig. 12.3 The gene tree of the “RAB27” gene family (ENSGACG00000003336) for the Stick-
leback (S), Medaka (M) and Tetraodon (T) species, exhibiting a region overlapping. The T1, S1
genes are in similarity family F1, while M2, S2 are in another similarity family F2. The internal
nodes are annotated by their łG labeling; all nodes on the dotted path are labeled by F1, and those
on the dashed path by F2

Lemma 1 If G is the true gene tree for some set of genes and Hypothesis Strong-
NoConvergentEvol holds, then for each node x of G, |�G(x)| ≤ 1.

Proof Let x be an internal node of G with surrounding region Cx , and suppose
�G(x) contains at least two elements Fi,Fj of E . From the definition of �G, it fol-
lows that x is on the path between some genes �i and ri with regions C�

i and Cr
i ,

both belonging to Fi . In the same manner, x is on the path between genes �j and rj
with region C�

j and Cr
j belonging to Fj . We see that x has at least one descendant

that is �i or ri , and at least another descendant that is �j or rj . Suppose without loss
of generality that �i and �j are descendants of x. By Hypothesis StrongNoConver-
gentEvol, C�

i and C�
j are both similar to Cx , and since similarity is transitive, C�

i is

similar to C�
j . It follows that Fi = Fj . �

A gene tree with an internal node possessing multiple labels is said to exhibit a
region overlap. Notice that for such a node, Lemma 1 holds whether it is a speciation
or a duplication. Figure 12.3 shows a gene tree with multiple region overlaps, which
are all duplications. Consider the overlapping occurring at the root of G, which we
denote by r . It might be tempting to explain this scenario by stating that since r is a
duplication, one copy of the ancestral gene belonged to the ancestral region similar
to F1, and the other to the ancestral region similar to F2, and thus both regions
could have propagated to their respective descendants. However, r refers to a single
ancestral gene, which may have belonged to one of the two ancestral regions, but
not to both, as we assume each gene is assigned a single region.

12.3.4 Results

We wanted to see the impact of using homology contradiction and Lemma 1 to re-
veal errors in gene trees. To this end, we considered the four fish genomes Gasteros-
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teus aculeatus (Stickleback), Oryzias latipes (Medaka), Tetraodon nigroviridis, and
Danio rerio (Zebrafish) with human and mouse as outgroups. We used the Ensembl
Genome Browser to collect all available gene trees, and filtered each tree to preserve
only genes from the taxa of interest. We then reconciled the trees with the known
species trees, and identified duplication and speciation nodes. Genes appearing in
the same gene tree in the database are considered to be part of the same homologous
gene family.

In this section, a region surrounding a gene is defined as the substring containing
the gene and both its left and right adjacencies. Two regions are similar if they con-
tain homologous genes in the same order or inverted order. More precisely, regions
Ck = x1a1y1 and C� = x2a2y2 (or C� = y2a2x2) are similar if x1 and x2 appear in
the same Ensembl gene tree, a1 and a2 appear in the same gene tree, and y1 and y2
appear in the same gene tree. We avoid tandem duplications by requiring the three
trees to be different.

In Sect. 12.3.2 we defined the homology contradiction property for a forest of
gene trees. Here, we identify problematic forests of gene trees using that property.
Let Ck = x1a1y1 and C� = x2a2y2 be two similar regions and Gx , Ga , and Gy

be the gene trees containing the pairs of homologs (x1, x2), (a1, a2) and (y1, y2),
respectively. Then, according to our definition, the forest {Gx,Ga,Gy} exhibits a
homology contradiction iff the set {lcaGx (x1, x2), lcaGa (a1, a2), lcaGy (y1, y2)} con-
tains at least one duplication node and at least one speciation node.

In this section we will focus on the gene tree of the central gene. We say that
Ga exhibits a paralogy contradiction iff lcaGa (a1, a2) is a duplication node, and
both lcaGx (x1, x2) and lcaGy (y1, y2) are speciation nodes. Conversely, we say that
Ga exhibits an orthology contradiction iff lcaGa (a1, a2) is a speciation node, and
both lcaGx (x1, x2) and lcaGy (y1, y2) are duplication nodes. Note that this notion of
contradiction is extremely conservative; if only a single neighbor disagrees with the
central gene, then we do not report it.

Results are summarized in Table 12.1. Among the 6241 trees in Ensembl, 6118 of
them have at least one pair of genes in the same context. More than 31 % of the 6241
trees exhibited at least one contradiction, the most frequent contradiction type being
paralogy contradiction. These numbers show that a very conservative application of
our methods uncovers a significant number of inconsistencies between gene order
and gene tree topology.

It is conceivable that a significant number of missing genes in the gene trees
could lead to a false homology contradiction. Also, poor detection of homology
relationships in Ensembl could yield false region overlaps. For example, two over-
lapping regions could have the form Ck = a1b1c1 and C� = x2b2c2. But if x2 should
in fact be in the same homologous gene family as a1, the overlap would no longer
exist. This is what happens in the example of Fig. 12.3. The F1 region consists
of “ASH1L” “RPS27” “KCNN3” genes, while the F2 region is made of “RAB13”
“RPS27” “KCNN3” genes. In fact, every single overlapping regions we found had
this form. Thus region overlaps in Ensembl gene trees might not occur because of
wrong topologies, but rather because of missing homologies. In any case, detection
of overlaps can identify possible improvements on the known relationship between
some pairs of genes.
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Table 12.1 Results obtained for Ensembl gene trees. Reported numbers are not mutually exclu-
sive, in the sense that a given tree may exhibit more than one type of contradiction, and thus be
included in more than one list. In brackets are the actual numbers of trees

Number of trees 6241

Region overlap 3.4 % (210)

Paralogy contradiction 22.5 % (1407)

Orthology contradiction 10.8 % (677)

At least one contradiction 31.3 % (1959)

To get an idea of how the numbers can change, we reran the test suite for a more
general notion of similarity: Ck and C� are similar if b1 and b2 are homologous, and
if there exists a pair of neighbors c1 and c2 that are homologous. Note that under
this definition, there are fewer region sets so region overlaps are harder to find. The
new definition finds 71 (2.38 %) gene trees with overlaps.

Yet our region overlaps and homology contradictions tend to agree with mech-
anisms already in place for error detection in Ensembl gene trees. Based on the
structure of the tree, some duplication nodes, corresponding to NAD nodes [12], are
labeled as “dubious” in the Ensembl trees. As paralogy and orthology contradictions
are inferred according to duplication nodes (one duplication node involved in a par-
alogy contradiction and two in an orthology contradiction), we were interested to
see to which extent our results correlated with Ensembl observations about dubious
duplications. We found that 77.4 % of duplications involved in observed paralogy
contradictions are labeled as dubious, while 90.2 % of duplications involved in or-
thology contradictions are dubious. These number are significantly high considering
that the fraction of dubious duplications among the total number of duplications in
our trees is only 36 %. These observations validate the fact that gene order incon-
sistencies are likely to reveal errors in gene trees.

12.4 Positive and Negative Selection Bias

Classical phylogenetic methods, such as those using parsimony, distance or maxi-
mum likelihood models, are typically based upon the assumption of stochastic, neu-
tral, and site-independent processes. However, as few mutations may cause struc-
tural modification to protein coding genes with deleterious functional consequences,
isorthologous gene copies in multiple species are commonly subject to negative (pu-
rifying) selection pressure, leading to sequence stability inside isorthogroups. On the
other hand, positive selection, responsible for the creation of new function, is also
known to play a major role in the evolution of gene families. Under natural (positive
and negative) selection, a gene tree best reflecting the sequence similarity of gene
copies is more likely to reflect functional constraints rather than evolutionary and
ancestral relationships between gene copies. In particular, negative selection may
result in isorthologous genes being grouped into a subtree of the gene tree, leading
to erroneous ancestral inference for the isorthogroup.
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This grouping driven by function has been reported for different gene fami-
lies, such as GLP-1 [49] and opsin proteins [55]. An interesting study based on
simulations is also reported in [38]. In this study, DNA sequences encoding a
protein folding, with a predefined active site for the binding of a ligand, have
been generated. An A ligand initially bound stably at the beginning of the simu-
lation, while a B ligand did not. The proteins were evolved under constant pop-
ulation size and mutation rate. In every generation the individuals were picked
randomly, provided they folded stably and binded to a peptide. Moreover, to
simulate positive selection, a selective advantage of 5 % was given to individu-
als binding the new ligand B. Phylogenetic trees for simulated sequences were
then inferred using distance, parsimony and likelihood methods. Every gener-
ated tree exhibited a clustering by function rather than by ancestry (two mono-
phyletic groups, one for proteins binding to the ligand A and the other for pro-
teins binding to the ligand B). In the same paper, other results obtained on
multiple sequence alignments of Chordate genes also confirmed previous stud-
ies on the loss of the evolutionary signal due to negative and positive selection
[29, 46, 58].

12.4.1 Detecting Functional Bias

In the presence of negative and positive selection (i.e. confusion of the neutral phy-
logenetic signal), some studies have recommended different criteria for gene (site)
selection when reconstructing phylogenies. In particular, the filtering of fast evolv-
ing genes has been suggested to reduce the effect of positive selection [29]. On the
other hand, filtering slow evolving sites has been suggested to reduce the effect of
negative selection. However, as noticed in [38], these models for data filtering have
limitations as evolution speed does not always correlate with selection type.

Instead of an a priori selection of appropriate sites, we can alternatively a pos-
teriori detect gene trees reflecting a bias due to negative or positive selection.
Classical methods for evaluating selective pressures acting on homologous amino
acid sequences are based on computing the ratio dN/dS of the number of non-
synonymous (dN ) versus synonymous (dS) nucleotide substitutions per site of
a pairwise alignment [39]. Synonymous substitutions are those that do not re-
sult in change of amino acid (for instance most changes at the third codon posi-
tion), while non-synonymous substitutions are those altering the amino acid (for in-
stance changes at the second codon position). Under negative (purifying) selection,
most non-synonymous changes are eliminated, leading to an excess of synonymous
changes. On the other hand, positive selection leads to an excess of non-synonymous
substitutions. In general, negative selection is inferred if dN/dS < 1 and positive
selection is inferred if dN/dS > 1. We suggest the use of the synonymous/non-
synonymous substitution rate measure for detecting gene trees reflecting a selection
bias, formalized as trees reflecting the isolocalization property which is defined be-
low.



276 M. Lafond et al.

12.4.2 Formalizing the Functional Bias

Under the hypothesis that after a duplication, exactly one of the two gene copies
preserve the parental function, the isolocalization property was introduced in [53],
to characterize gene trees biased towards a grouping of isorthologous genes. Here,
we define a less constraining version of this property by asking for at least one
isorthogroup to appear as a monophyletic group (an isolated subtree). Notice that
results obtained in [53] (stated below and summarized in Sect. 12.5) about the effect
on reconciliation remain valid for this new definition.

Definition 8 (Isolocalization) Let G be a gene tree for a gene family Γ . Let I =
{a1, a2, . . . , an} ⊆ Γ be a maximal isorthogroup of Γ , meaning that no other gene
of Γ is isorthologous to an ai . A gene tree G respects the isolocalization property
for I if and only if there exists an x such that L(Gx) = I .

We say that G respects the isolocalization property if G respects the isolocaliza-
tion property for at least one maximal isorthogroup of Γ .

We showed in [53] that isolocalization confounds reconciliation, in the sense
that some histories (those with a duplication node descending from a speciation
node) can never be recovered through the reconciliation of a gene tree respecting
the isolocalization property. Following this observation, we proposed general ideas
for inferring true histories. Although presented as tools for correcting reconciliation,
they can alternatively be seen as tools for correcting gene trees, i.e. removing the
functional constraints exhibited by isorthogroups. An overview of the related open
problems is given in Sect. 12.5.

In the following, an isorthologous subtree of G is a speciation subtree of G with
a set of leaves corresponding a maximal isorthogroup.

12.4.3 Results

By definition, a subtree Gx rooted at node x of a gene tree G is an isorthologous
subtree if L(Gx) is a maximal isorthogroup, i.e. elements of L(Gx) are pairwise
isorthologous, and there is no gene outside L(Gx) which is isorthologous to a gene
of L(Gx). As suggested by the discussion above, this can be tested by comparing the
dN/dS ratios of pairs (Ii, Ij ) of genes inside L(Gx), versus pairs (Ik,Ol), with Ik

being a gene inside L(Gx) and Ol being a gene outside L(Gx). Here, we consider
the average dN/dS ratios over all possible pairs. Namely, we define MI

x to be the
average over all (Ii, Ij ) inside pairs and MO

x to be the average over all (Ik,Ol)

inside-outside pairs. For an isorthologous subtree, we expect MI
x

MO
x

to be lower than

one. For any internal node x, if MI
x

MO
x

< 1 we say x is a winner; otherwise we say that

x is a loser. Note that the root of a tree cannot be a winner, since there are no genes
outside of its leafset.
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Fig. 12.4 Distribution of
original trees scores versus
random trees scores. The
score of a tree is its number
of winner nodes over its
number of internal nodes

We wanted to see to what extent the Ensembl gene trees reflect a natural selection
bias. We considered the same six species as in Sect. 12.3.4, namely four fish species
(Stickleback, Medaka, Tetraodon, Zebrafish) with human and mouse as outgroups.
We collected all available gene trees, restricted each of them to the taxa of interest,
reconciled the trees with the known species trees, and retained the “interesting” ones
according to [53], namely those reflecting a history with a “surviving” duplication
followed by a “surviving” speciation event. More precisely, a gene tree G was re-
tained if it contained at least one duplication node x such that Gx�

and Gxr were
both speciation subtrees, each containing at least two leaves and at least five leaves
together. This yielded 815 gene trees. We refer to this set as the original set. For
each tree G in the original set, we obtained the canonical nucleotide sequences of
its genes from Ensembl, and computed every pairwise dN/dS ratio using the PAML
package [64], which implements the Nei and Gojobori method [40]. The sequences
were aligned and prepared using ClustalW2 [37] in conjunction with the BioPerl
library [50].

We expect the topology of each tree G in the original set to contain more winner
nodes than most other topologies that share the same leaf set. We tested the null
hypothesis, which states that there is no relationship between the gene trees con-
structed by Ensembl and the proportion of winner nodes they contain. Thus for each
tree G, we considered a set of random trees, obtained from G by all possible per-
mutations on its leaves. We refer to the set of random trees for all the Ensembl trees
as the random set.

Figure 12.4 depicts, for both the original and the random tree sets, the proportion
of trees by score, defined for each tree as the number of winners over the number
of internal nodes. The original trees clearly tend to contain a higher ratio of winners
than random trees. In fact, the random trees’ percentages follow a distribution that
is not far from normal, whereas the original trees favor higher scores, hinting at the
invalidity of the null hypothesis.

Our analysis also showed some interesting numbers. Among all nodes (excluding
roots and leaves), 71 % of them are winners in the original set, as compared to 50 %
in the random set. Moreover, 81 % of the original trees have a majority of winner
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nodes (more than half), compared to 49 % for random trees. Say that a gene tree G is
optimal if the number of winner nodes in G is no less than the number in all random
trees for G. We find that the proportion of optimal gene trees over the original set is
45 %. Moreover, if we also count as winner nodes those having a winner ancestor
(i.e. not only those pointing to isorthogroup but also to subsets of isorthogroups),
then the proportion of optimal trees raises to 64 % of all original trees. Finally, 80 %
of the original trees have more winner nodes than at least half of their random trees.

More detailed statistical analysis are required to establish criteria for detecting
functional bias in a gene tree according to dN/dS ratios. However, this preliminary
study already reveals a possible negative selection bias in these Ensembl trees.

12.5 Gene Tree Correction

A significant obstacle to our understanding of evolution is the difficulty of infer-
ring accurate gene trees. It is now clear that methodology based solely on sequence
similarity are unable to produce a single well supported gene tree [42, 43, 59, 61].
Opposite to such a “sequence only” paradigm is the “sequence free” paradigm that
does not directly use the sequence information. An example is the polynomial-time
algorithm developed by Durand et al. [17] for inferring a gene tree minimizing the
reconciliation cost with a given species tree. Such an extreme strategy is of theo-
retical interest only, as an accurate reconstruction model should be “hybrid”, e.g.
account for both sequence and genomic information, the challenge being to find the
right balance between the two. Later in the same paper, a hybrid approach is in fact
presented.

Each one of the genomic constraints we have introduced in this paper can be
used to define, in the space of gene trees, points that best reflect the desired proper-
ties. As exploring the space of all topologies is time and space prohibitive, gene tree
correction methods explore the neighborhood of an input gene tree G, according to
a tree-distance measure, such as the Robinson–Foulds [11, 26], Nearest Neighbor
Interchange (NNI) [13, 24, 25], Subtree Prune and Regraft (SPR), or Tree Bisection
and Reconnection (TBR) [10] distances. In order to reduce the space of explored
gene trees, tree moves may be restricted to edges deemed suspect by the user, typi-
cally those with low bootstrap values [13, 17].

As in Durand et al., almost all hybrid methods that have been developed so far are
“species tree-aware” and consist in selecting, from a given neighborhood, a tree min-
imizing a reconciliation distance with a species tree. Beside reconciliation, other cri-
teria such as the number of NAD nodes [12, 16, 52] may be considered for a “species
tree-aware” hybrid method. On the other hand, a “gene order aware” method would
select, in a given neighborhood of G, the trees avoiding or minimizing gene or-
der inconsistencies (Sect. 12.3). A “negative selection aware” method would select
appropriate alternative trees, as we explain in Sect. 12.5.

A wide range of theoretical and analytical open problems are implicit in the last
paragraph. In addition to developing the right data structures and algorithms for
efficient exploration of the neighborhood of a gene tree, the challenge is to explore



12 Error Detection and Correction of Gene Trees 279

ways of combining multiple criteria in a unified framework. Do repairs to a gene
tree suggested by the diversity of constraints coincide, or do they conflict? If they
conflict, how should relative importance be distributed over the various constraints?

Another concern is the development of a unified approach that accounts for both
sequence and genomic constraints simultaneously. Indeed, a significant drawback
of the hybrid methods developed so far is the sequential manner in which the se-
quence and genomic information are considered; the corrected gene tree is not sub-
sequently evaluated according to the sequence information, and thus may over fit
the species tree. From this perspective, an interesting framework is the one used in
TreeFix [62], as well as PhylDog [3] and Spimap [43]. Taking advantage of the fact
that phylogenetic methods usually lead to a set of statistically equivalent gene trees,
TreeFix is based on a heuristic that searches, among all topologies that are statisti-
cally equivalent to the input tree, one that minimizes a user-defined reconciliation
cost. The implicit hypothesis used in TreeFix is that regions of tree space with high
sequence likelihood and low reconciliation cost overlap, which they show to be true
in practice. Such a general framework can easily be adapted to account for various
types of constraints. However, the more constraints simultaneously considered, the
more challenging the problem of attributing relative weights to each of them and
managing conflicting requirements become (see also chapter Chauve et al. in this
volume).

We conclude this section by highlighting important results obtained in [53] that
show how the selection bias, formalized as the isolocalization property, can be used
for gene tree correction.

Isorthology Respecting Histories As recalled in Sect. 12.4.2, we showed that
gene trees respecting the isolocalization property can lead to erroneous histories
through reconciliation. This observation is not surprising as a gene tree reflecting
functional constraints rather than evolutionary constraints can hardly be confidently
used to infer evolutionary scenarios. Yet there must be some information in the gene
tree and species tree relationship. For instance, we expect subtrees corresponding to
isorthogroups in a well-supported gene tree to agree with the species tree. Define
a speciation subtree of G to be a subtree such that all internal nodes (if any) are
labeled as speciations by the reconciliation. The following result comes from Corol-
lary 3 of [53], and is adapted to our new definition of the isolocalization property.

Theorem 1 Let G be a gene tree satisfying the isolocalization property for an
isorthogroup I and reflecting the true phylogeny for I (see a precise definition
in [53]). Then I appears in G as the leaf-set of a speciation subtree.

Based on Theorem 1, the following definition can be used for gene tree correc-
tion.

Definition 9 (Isorthology respecting history (IRH)) Given a gene tree G and a
species tree S, a dls-history H is an isorthology respecting history for (G,S) if
and only if each isorthogroup inferred from H is the leaf-set of a speciation subtree
of G.
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Following a duplication, we assume that one of the two gene copies preserves
the ancestral function (Hypothesis 1 in [53]). Suppose that gene related by specia-
tion preserve the ancestral function. Then two isorthogroups {M1, S1, T 1,Z1} and
{M2, S2} are inferred from the history H in Fig. 12.5, and H is an isorthology re-
specting history for (G,S). Notice that H leads to the gene tree G′, which can be
seen as a correction of G.

As many IRHs are possible for a given pair (G,S), an appropriate criterion for
choosing most likely histories is required. For example the history R resulting from
the reconciliation of G with S in Fig. 12.5 is also an isorthology respecting history
for (G,S). However, while R has a mutation cost of 3 (one duplication and two
losses), the history H has a mutation cost of one (no loss). In [53] we considered
the Minimum Isorthology Respecting History Reconstruction (MIRH) Problem, which
asks for the IRH of minimum cost, and developed a linear-time algorithm for the
duplication cost. An algorithm for the mutation cost remains open.

The MIRH optimization problem as stated, is very conservative, in the sense that
nothing is trusted in the gene tree except the isorthology information. In particular, it
ignores all the information on duplication and speciation nodes of G that are above
the considered speciation subtrees. An alternative would be to account for the hier-
archy of deeper nodes in G. The notion of a Triplet Respecting History (TRH) [53]
is intended to account for such hierarchy. Efficient algorithms for inferring parsimo-
nious TRHs remain undiscovered.

Notice that Theorem 1 does not a priori give us the isorthogroups for a pair
(G,S), as the true isorthologous subtree could be part of a larger speciation sub-
tree. A restricted version of the MIRH problem considers the maximal speciation
subtrees of G as the definition of the isorthogroups. We showed in [53] that this
isorthology respecting partition of G is the one that would minimize the duplication
cost, but not necessarily the mutation cost.

An alternative approach would use some isorthogroup detection criteria, such as
the one given in Sect. 12.4.1, and correct according to the corresponding isorthol-
ogous subtrees. Such targeted reconstruction algorithms remain completely unex-
plored.

12.6 Conclusion

While gene trees have traditionally been constructed and validated using nucleotide
sequence or amino acid sequence information alone, more recently information
from the species tree has been used to both correct and validate gene trees. We
have introduced new methodology to further validate and correct gene trees through
the use of other data. Our novel use of syntenic information (homologous regions)
points to a significant number of flawed gene trees in the Ensembl database due
to homology contradiction or region overlapping. Our use of the dN/dS ratio on
gene trees points to a bias towards clustering of isorthologous genes in gene trees.
Although some potential avenues for improving gene trees are explored, our results
seem to pose more questions than they answer.
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