
Chapter 10
The Emperor Has No Caps! A Comparison
of DCJ and Algebraic Distances

Joao Meidanis and Sophia Yancopoulos

Abstract In this chapter we investigate the DCJ and algebraic distances and how
they are found. We introduce a new graphical method to determine the permutation
cycles which embody the composition permutation for the genome transformation in
the algebraic method. This graphical method helps tie the two approaches together.
In the usual approaches, the two methods differ only in the distance component due
to the even paths in the adjacency graph of Bergeron, Mixtacki, and Stoye involv-
ing operations changing type and number of chromosomes, such as fission, fusion,
altering chromosome type from circular to linear, and vice versa. Discussing each
distance individually, we compare their underlying assumptions. Both methods re-
sort to cycles to determine the distance, but the basic DCJ uses “caps” to close paths.
Without caps the algebraic distance differs from the standard DCJ for even paths.
However, if caps and null chromosomes are added, the weighting schemes agree.
A convention which can be done in multiple ways is the method of path closure. We
discuss implementation of the original closure rule to arrive at the usual weighting
scheme for the DCJ. Instead, by a new alternative closure rule which we intro-
duce, the distance diverts to the algebraic distance. Finally, we note that although
the Bergeron, Mixtacki, and Stoye DCJ approach via the adjacency graph does away
with “fictitious” caps and nulls, vestiges of fictitious operations may remain, as the
resulting weighting scheme is equivalent to that of the basic DCJ.

So now the Emperor walked under his high canopy in the midst of the procession, through
the streets of his capital; and all the people standing by, and those at the windows, cried out,
“Oh! How beautiful are our Emperor’s new clothes! What a magnificent train there is to the
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mantle; and how gracefully the scarf hangs!” in short, no one would allow that he could
not see these much-admired clothes; because, in doing so, he would have declared himself
either a simpleton or unfit for his office. Certainly, none of the Emperor’s various suits had
ever made so great an impression, as these invisible ones.
(Hans Christian Andersen, The Emperor’s New Clothes, Tales)

10.1 Introduction

The early history of genome rearrangements harks back to a groundbreaking paper
analyzing rearrangement scenarios in the fruit fly by Dobzhansky and Sturtevant in
1938 [7]. The onset of whole genome sequencing technologies made such studies
truly viable. Hot in pursuit of these developments, the field really took off when
David Sankoff and collaborators ushered in a new era of computationally based gene
order comparisons [16–18]. In a prescient paper, David Sankoff made a brilliant
intuitive leap to go from using edit distance based on the sequence level, to “non-
local” large-scale genome rearrangement operations [15].

The language and ideas of permutations have frequently been inextricably linked
with genome rearrangement studies [11, 12], however, much of the actual mechanics
of permutations has taken a back seat in theoretical developments, subsumed by
a graphical formalism that contains permutations implicitly, from the breakpoint
graph introduced by Bafna and Pevzner (1993) [3] to the more recent adjacency
graph of Bergeron et al. (2006) [4].

The recent reinjection of a more explicit algebraic formalism into the parlance
of genome rearrangements has reinvigorated the discourse and challenged some
of the basic underlying assumptions. Feijao and Meidanis’s Adjacency Algebraic
Method [9], a “hybrid” approach which combines the algebraic method with that
of the adjacency formalism inherent in the use of the adjacency graph, arrives at
some refreshingly unexpected results; these include a new weighting scheme for
previously considered operations, particularly linear fissions and fusions, and the
circularization or linearization of chromosomes.

In this chapter we focus on understanding the assumptions built into the new
(adjacency) algebraic formalism, comparing with those underlying the standard DCJ
approach. We explore how fundamental differences in the two approaches ultimately
lead to differences in the distance and weighting schemes.

We begin with an introduction to permutations and genome rearrangements, fol-
lowed by a brisk tour of classical models and operations. We introduce the DCJ and
the essentials of algebraic rearrangement theory. We proceed to examine transfor-
mations involving circular genomes, fundamentally suited to the algebraic approach.

We continue by presenting the DCJ as originally conceived, using caps and nulls
to effectively “circularize” all genomes. We transition to the algebraic method via
two new approaches, a capping scheme for the algebraic method which results in
the same distance as the standard DCJ and a new closure scheme that results in
the new distance implied by the algebraic method. These differences based on the
closure scenario allows us to realize the deep dependence of the capping and closure
schemes with the resulting distance and weights of operations.
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Fig. 10.1 Chapter overview. Fundamental assumptions affect distance and weighting schemes in
the standard DCJ and Algebraic methods

We move on to examine the Adjacency Algebraic Theory and how it can be ap-
plied to linear chromosomes and transformations. We discuss a decomposition of the
Adjacency Graph (AG) into components, and how these are independent and con-
tribute independently to the distance. The essential components of the Adjacency
Graph are cycles, and even and odd paths. We examine how these contribute to the
genomic distance by the Adjacency Algebraic Theory, and contrast these contribu-
tions with the corresponding contributions for the DCJ.

Having developed the essential formalism for both methods, we go on to under-
stand the consequences of the formalism on operations for different transformations
as well as on the weighting scheme. We examine issues that arise from the intro-
duction of “fictitious elements” (caps and nulls) including the possible artificial op-
erations that may result as a consequence. We compare weighting schemes to see
what consequences there are for these operations, and speculate on possible alter-
native weighting schemes as well as generalizations. We explore the implications
including the correspondence to biology and conclude with open questions.

Figure 10.1 shows an overview of the results of this chapter.

10.1.1 Permutations and the Genome Rearrangement Problem

Mathematically, a permutation is a bijective function, or a bijection, taking a set A

to itself. Bijections can be represented as directed graphs where all vertices have
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Fig. 10.2 Two permutations and their product. On top, we have the textual description of the
process. Below this, we show the directed graphs representing each permutation, with σ in red, π

in black, and the product σπ in blue

indegree 1 and outdegree 1. Such graphs are collections of directed cycles that we
call permutation cycles in this text.

Permutations are functions and can be composed as such. The composition of two
permutations σ and π , where π is applied before σ , is indicated as a product and
denoted by σπ (Fig. 10.2). In general σπ �= πσ . However, when two permutations
are disjoint, that is they do not have any elements in common, they commute and
σπ = πσ . The support of a permutation π is the set of elements that it moves, that
is, π(x) �= x. Disjoint permutations are permutations with disjoint supports.

In comparative genomics, evolutionary mutational processes causing large-scale
rearrangements involve a shuffling of syntenic segments [14]. Researches have mod-
eled this shuffling using permutations in a variety of ways.

For instance, in the paper by Bafna and Pevzner on the transposition problem [3],
a genome is defined as a function π : A �→ A, where A = {1,2, . . . , n} is used to
indicate both chromosome positions in the domain of π as well as genes in the
image of π . Transpositions are also modeled as permutations by Bafna and Pevzner.
Several other rearrangement problems have been modeled via permutations, with
adaptations for signed genes and multichromosomal settings [11, 12].

Meidanis and Dias [13] also use permutations, but in a different way. For them,
a genome is a function π : G �→ G, where G is the set of genes and their reverse
complements. No chromosomal positions are explicitly involved. The function π

indicates which gene follows another gene in the genome (they restrict their study
to circular genomes, where every gene in a chromosome has a successor). Feijao
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and Meidanis [9] introduced yet another way of coding a genome as a permutation,
by using the function π to indicate adjacencies between gene ends.

10.1.2 Genomes and the Chromosomal Notation

In this chapter, we deal with multichromosomal, signed genomes. We consider
genomes that are collections of strictly linear or circular chromosomes, or a com-
bination of both, made up of genes from a fixed set G. No gene repetitions are
allowed, but all genes are always used in a pairwise comparison. We will represent
linear chromosomes as lists of genes comprised in brackets, e.g., [1,2,3], and circu-
lar chromosomes as lists of genes in parentheses, e.g., (1,2,3). Gene orientation is
indicated by a sign. So, for instance, π = {[1,2], (−3,−4,5)} is a two-chromosome
genome, with one linear and one circular chromosome. When there is no risk of con-
fusion, we will drop the curly brackets, writing just π = [1,2], (−3,−4,5).

Notice that this representation is not unique. For linear chromosomes, their re-
verse complement indicates the same chromosome, e.g., [1,2] = [−2,−1]. For
circular chromosomes, apart from the reverse complement, we also arbitrarily
choose a gene to start, as there is no preferred starting point, e.g, (−3,−4,5) =
(−4,5,−3) = (5,−3,−4).

Observe that there is nothing in this notation that requires genes to be identified
by integers. We can use letters, as in [a,−c,−b, d], or even the very names used in
biology to denote genes, such as dnaA, cox1, adh, or larger, contiguous regions, e.g.,
MHC, and so on. Nevertheless, for compatibility with the majority of theoretical
papers on rearrangements, we will represent genes by integers here.

We typically denote the total number of genes in genome π by Nπ , or just N

depending on context. We will also represent a gene a by its two gene ends or
extremities, with the tail denoted at , and its head, denoted by ah, where a gene is
typically oriented from tail to the head.

10.1.3 Genome Rearrangement Operations and Models

Given two genomes of equal gene content and a set of allowed operations, the most
basic question is to find the distance between these genomes, defined as the smallest
number of allowed operations that will transform one genome into the other. In its
full generality such a scheme allows for weights assigned to the operation, and the
distance then becomes the total weight of a minimum-weight series of allowed oper-
ations that transforms one genome into the other. An example of such an operation is
a reversal where a stretch of contiguous genes in a chromosome gets inverted, and
their signs flipped. For instance, genomes π = [1,2,3,4] and σ = [1,−3,−2,4]
differ by a reversal. Transforming one genome to another by a series of reversals is
a problem that has been well studied [3, 11, 12].
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Translocations involve multiple linear chromosomes and result in swapping
chromosomal ends between two chromosomes. For instance, genomes

π = {[1,−2,−3], [−4,5,6]}

and

σ = {[1,−2,5,6], [−4,−3]}

differ by a translocation. Formally, they are similar to reversals if one considers
concatenated chromosomes [19].

A transposition is defined as an operation that swaps two adjacent substrings in
a permutation. Genomes

π = (1,−2,−3,−4,5,−6)

and

σ = (1,−4,5,−2,−3,−6)

differ by a transposition. Sorting scenarios with transpositions were introduced by
Bafna and Pevzner [2]. This is more difficult than the reversal distance problem, and
there were various improvements in approximation methods for this problem.

Christie introduced block interchanges [6], which swap any two non-intersecting
substrings, a natural generalization of transpositions. Genomes

π = [1,−2,−3,−4,5,−6]
and

σ = [5,−6,−3,−4,1,−2]
differ by a block interchange.

It is reasonable for biologically realistic models of genome rearrangements to
include more than one kind of operation, however, in trying to consider generalized
reversals and transpositions together in the menu of operations, researchers were
somewhat baffled how to weight transpositions relative to reversals and translo-
cations, which occur more frequently. In an intriguing paper, Blanchette et al.
(1996) [5] allowed the weight of transpositions to vary relative to a weight of 1
for inversions in order to deduce the best weight. The authors noted there was a
trade-off between inversions and transpositions, although some transpositions do
not seem to be replaceable by inversions even with high values of the weighting
function for transpositions. Using a greedy algorithm for genome rearrangements,
they concluded that a weight just over 2 for transpositions and inverted transposi-
tions was best able to optimize the rearrangement distance score for bacterial and
mitochondrial genomes.

Recently, Bader and Ohlebusch [1], provided an algorithm for sorting by
weighted reversals, transpositions and inverted transpositions using realistic weights.
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Table 10.1 Examples of
rearrangement operations Operation Example

Linear reversal [1,2,3] �→ [1,−2,3]
Circular reversal (1,2,3) �→ (1,−2,3)

Linear translocation [1,2], [3,4] �→ [1,4], [3,2]
Circular fission (1,2) �→ (1), (2)

Other operations are possible, for instance, chromosome fissions and fusions, ex-
cisions of linear or circular pieces from linear or circular chromosomes, lineariza-
tion of a circular chromosome, circularization of a linear chromosome, and so forth.
Examples of some of these appear in Table 10.1.

10.1.4 The Basic DCJ

The DCJ, or double cut and join [4, 20], is a universal operation capable of modeling
a number of genome rearrangement operations, including inversions, translocations,
fissions, fusions, and the creation and absorption of circular chromosomes. The cor-
responding DCJ distance spurred a plethora of theoretical papers, and found its way
in the implementation of several genome comparison systems. Perhaps the main rea-
sons for its success are that, on the one hand it is easily computable by both humans
(simple theory) and machines (low computational complexity), and, on the other
hand, it models most operations observed to occur in real genomes, with reasonable
weights.

The DCJ paradigm permits generalizations which allow insertions, deletions and
duplications. Here we only entertain DCJ scenarios with equal gene content.

10.1.5 Algebraic Rearrangement Theory

Meidanis and Dias [13] used permutations to represent genomes, assigning a cycle
to each chromosomal strand. The permutation formalism is particularly suited for
circular genomes as these genomes automatically contain cycles by virtue of the
circularity of their chromosomes; permutations, when drawn as directed graphs,
also result in a collection of cycles. One interesting aspect of this approach is that
the usual rearrangement operations become permutations with small support.

Recently, Feijao and Meidanis [9] studied a novel way of representing genomes
as permutations, focusing on the adjacencies between gene ends rather than trying
to model each genome strand as a permutation cycle of chromosomes. This allows
both linear as well as circular chromosomes to be modeled. They also discovered a
formula relating their adjacency algebraic representation to the chromosomal alge-
braic representation of Meidanis and Dias. By going backwards from the adjacency
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Fig. 10.3 Algebraic representation of a circular genome. (a) Genome representation with adja-
cencies. (b) Algebraic chromosomal representation. (c) Algebraic adjacency representation

to the chromosomal representation, using this formula, they were able to unify both
theories, thus extending the chromosomal theory to encompass linear chromosomes
as well. The result was a new rearrangement distance between two signed, multi-
chromosomal genomes. The new distance is easy to compute and its value on ran-
dom genomes correlates well with the DCJ distance [9].

In Fig. 10.3 we see the chromosomal and adjacency representations of a genome
consisting of a single circular chromosome containing three genes.

10.1.6 Linear Chromosomes and “Fictitious” Elements (Caps)

Capping a linear chromosome is a technique that has been fruitful in many situa-
tions. For instance, in studying the unichromosomal transposition distance, Bafna
and Pevzner extend their linear genomes π with π(0) = 0 and π(n+ 1) = n+ 1 [3].
The extra elements 0 and n + 1 connected to the extremities of the linear chromo-
some are called caps and are useful in simplifying notation and arguments, avoiding
awkward special cases. Caps have been used extensively in the multichromosomal
context as well [12], and in studies with other operations, such as reversals and
translocations.

The “basic” DCJ [20] is also heavily rooted in the use of caps. In a way, capping
a linear chromosome is a device which transforms it into a circular one. Circular
chromosomes seem to be easier to deal with particularly, as we shall see, in the
context of permutations, and this is the rationale behind the use of caps.

However, a question lingers on. Does the introduction of caps somehow affect
the genomic distance being computed? We show that the addition of caps may affect
the resulting distance. As there is some flexibility in the ways of circularizing the
genomes via caps and closure scheme, according to the choices made, one may get
different distances. We will see that the DCJ and algebraic distances are two facets
of this phenomenon.

10.2 Transformations Involving Circular Genomes

We now consider distance scenarios involving circular genomes. These are particu-
larly suited to methods involving permutations. In Fig. 10.3 we saw the chromoso-
mal representation for a circular chromosome contains complete cycles.
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The goal of this section is to show that for circular genome transformations,
the DCJ distance is equivalent to the algebraic distance. Although both distances
have been covered in the literature, we offer here a self-contained treatment for
the benefit of newcomers. We begin by introducing the main graphs mentioned in
the literature, namely, the breakpoint graph, the adjacency graph, as well as the
master graph, from which the previous two can be derived. These are important for
visualizing the transformation and computing the genomic distance. We move on to
some examples of circular operations, that is, simple operations that take a circular
genome and transform it into another circular genome.

We note that even though such transformations may involve temporary states
containing linear chromosomes, these are ultimately either circularized or absorbed
into circular chromosomes so that the initial and final genomes are all circular. It
is interesting to observe that temporary linear chromosomes can result from single-
step operations such as single cuts in a circular. Operations such as single cuts or
single joins have been considered by others, including by Feijao and Meidanis [8].
This highlights the importance of the particular model used to effect the transforma-
tion.

Sections 10.2.3 and 10.2.5 show how to compute DCJ and algebraic distances,
respectively, and Sect. 10.2.6 contains a proof of the main result.

10.2.1 The Master, Breakpoint and Adjacency Graphs

The master graph, introduced by Friedberg, Darling, and Yancopoulos in 2008 [10],
is a graph that specifies both genomes, and also connects between them. The initial
genome, which we call π , is usually represented at the top (but as the diagram is
completely symmetric it could also be done the other way, and be on the bottom).
The gene extremities in this genome are linked by adjacencies which we color black
here. These are undirected edges. The target genome which we call σ , is at the bot-
tom and its gene extremities are linked by adjacencies that are colored red and are
also undirected. Finally we use “green edges” to link corresponding gene ends in
the two genomes. These are the “bridges” between the initial and target genomes.
The red and black edges run horizontally, while the green edges connect the two
genomes vertically. An example is shown in Fig. 10.4 in the next section. It is inter-
esting to note that the master graph is in some sense the “precursor” graph for other
important graphs. To see this:

• contract along the green edges and curve the black edges in the master graph to
get the breakpoint graph for the inverse transformation

• for the forward transformation breakpoint graph, contract along the green edges;
curve the red edges in the master graph, and invert the whole thing vertically

• to get the adjacency graph for the transformation, contract both red and black
edges in the master graph to become vertices.

In their paper on polynomially sorting by reversals, Hannenhalli and Pevzner define
a breakpoint graph slightly differently from the one defined here [11]. The reason
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Fig. 10.4 Inversion in circular. (a) Master graph (MG), (b) & (c) Breakpoint Graphs (BPG) for
inverse and forward transformation, (d) Adjacency Graph (AG)

is that the HP graph is for a linear problem and uses caps, while the master graph
described above has no caps. However, we will see in Sect. 10.3, which treats linear
chromosomes, there is a capped version of the master graph, for which the previous
bulleted items above still apply. The next section shows examples of these graphs.

10.2.2 Examples of Transformations in Circular Genomes

In this section we consider two examples of transformations in circular genomes.
First we consider an internal inversion and then a case of a fission.

10.2.2.1 An Inversion in a Circular from π = (1,2,3) to σ = (1,−2,3)

We construct the master graph and the other graphs as described in Sect. 10.2.1.
The master graph MG(π ,σ ) is shown in Fig. 10.4(a). Below it is the breakpoint

graph (BPG) for the inverse transformation. Note it is the inverse transformation as
the genome at the bottom is the target genome, with adjacencies in red. The genome
at top, is the current or initial genome. The BPG for the forward transition is shown
in Fig. 10.4(c) arrived at by inverting the MG so the target genome is at the bottom.
Its adjacencies are represented by black lines. As previously, the green and red lines
are then curved and colored red; these “desire lines” connect gene ends in the target
genome. The corresponding adjacency graph (AG), is shown in Fig. 10.4(d). As
before, we arrive at the AG by contracting red and black edges in the master graph.

Essentially, forward and inverse BPGs are contained in the MG. With practice,
we can see them directly. The forward transformation BPG is up side down! The AG
can also be visualized by mentally performing the procedure in the previous section.

10.2.2.2 Circular Fission from π = (1,2,3) to σ = (1), (2,3)

We show the master, breakpoint, genome, and adjacency graphs for the circular
fission in Fig. 10.5(a)–(d). Comparing these diagrams with those for the inversion,
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Fig. 10.5 The (a) MG, (b) BPG, (c) Genome Graph, and (d) AG for a circular fission

we see they are topologically similar in their adjacency graphs and both contain one
2-cycle and one 1-cycle.

A word about cycle notation: in a departure from the usual convention in the
genome rearrangement literature, we call a cycle in the adjacency graph containing
j adjacencies in only one genome a j-cycle. Usually it is called a 2j-cycle. In the
AG, 2-cycles look like bow ties.

10.2.3 How to Compute the DCJ Distance from the Master Graph

For circular genomes, computing the DCJ distance from the master graph is a simple
matter. All we have to do is compute

dDCJ(π,σ ) = N − C,

where N = Nπ = Nσ is the number of adjacencies (as well as the number of genes)
per genome, and C is the number of cycles in the master graph. To see this, we note
the master graph (or equivalently, the BPG or AG) for a transformation involving
only circular genomes consists completely of cycles and each cycle can be resolved
independently.

To resolve a k-cycle such as at the top of Fig. 10.6 by DCJs, we perform one DCJ
at a time. A single DCJ can increase or decrease the cycle count by one, or in the
case of an “improper” rejoining keep the cycle count unchanged [20]. If we perform
two cuts (in “consecutive” adjacencies) we can rejoin so that a target adjacency is
achieved. This forms a 1-cycle consisting of the target adjacency, and a remaining
cycle with one less adjacency. Proceeding until the remaining cycle is a 2-cycle,
the final 2-cycle is resolved by a single DCJ, transforming it into two 1-cycles.
As there are k adjacencies, the final graph has k 1-cycles. Each subsequent DCJ
produces a new 1-cycle except the last, which produces two. Since a single DCJ can
at most augment the total number of cycles by one, we see that it takes a minimum
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Fig. 10.6 Resolving a
k-cycle by DCJs takes k − 1
DCJs

of k − 1 DCJs to resolve a k-cycle. A non-minimal path can take more steps by
performing DCJs which decrease rather than increase the number of cycles. If the
graph is composed of cycles with sizes (counted as the number of adjacencies in
each cycle) k1, k2, . . ., to find the total distance, we sum on cycles:

dDCJ(π,σ ) =
∑

j

(kj − 1) = N − C (10.1)

since the total number of adjacencies N is equal to the adjacencies summed over all
cycles, N = ∑

j kj , and similarly, the total number of cycles is just C = ∑
j 1.

10.2.4 Finding the Permutation Cycles from the Master Graph

The algebraic (permutation) approach is essentially more symbolic whereas genome
rearrangement approaches from HP [11, 12], to the DCJ resort to graphical repre-
sentations. The master graph offers an excellent way to connect the DCJ approach
with the Algebraic Adjacency Method. In Fig. 10.7, which revisits the inversion in
a circular, we see that we can go directly from the adjacencies in the master graph
in (a) to the 2-cycles in the algebraic adjacency representation in (b). Hence, the
top and bottom of the master graph represent the initial and target genome in terms
of their adjacencies, and equivalently their 2-cycle algebraic adjacency representa-
tion.

To see how to arrive at the product permutation σπ from the initial to the target
genome, consider the red path in Fig. 10.7(d), where we trace going from a gene
end in π (e.g., 1h, which connects to 2t in π ) to the connecting gene end in σ (i.e.,
2t connects to 3t in σ ). Hence, the product permutation, where π is performed first
and then σ , results in a transition from 1h to 3t , shown in the σπ table in (d) and
also outlined in the red 3-step path in (a), leading to the blue line. Superimposing
all these blue lines on the master graph ((a) and (c)), will ultimately trace out the
product permutation cycles (Fig. 10.7(e)).

To find the product permutation cycles for transformations involving arbitrary
circular genomes, we generalize the procedure performed above. We proceed as
follows to generate the σπ permutation cycles:
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Fig. 10.7 From master graph to permutation cycles

1. construct the master graph (MG) of σ and π

2. for the blue lines, at each extremity in π walk three steps starting on a black line
3. dissolve red and black “adjacency” lines connecting gene ends in adjacencies
4. contract along “green” lines; the blue lines trace the permutation cycles.

10.2.5 Computing the Algebraic Distance for Circular Genomes

An important concept introduced within the algebraic theory is the norm of a per-
mutation, which measures the “complexity” of this permutation and equals n − p,
where n is the number of vertices and p the number of permutation cycles in the
corresponding directed graph. We note the DCJ distance is of the same form.

In order for dDCJ and dalg to coincide, the algebraic distance is defined to be
the norm of the composition permutation divided by two or they would differ by a
factor of two. For circular genomes, the master graph for the transformation resolves
completely into cycles which double in the permutation representation.

To visualize the cycle doubling from the master graph to the permutation cy-
cles, it is helpful to look at Fig. 10.8(b), where the 2-cycle from the previous ex-
ample (also shown here in Fig. 10.8(a)) is “opened up”. Adding blue lines as in
Fig. 10.8(c) one blue line emanates from each gene end in π and bypasses three
“BGR” (black-green-red) segments, ending at a gene end in σ . Traversing the next
green line returns us to π and after N traversals alternating between blue and green
lines, we return to our starting point.
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Fig. 10.8 Cycle doubling from master graph to permutation cycles

As the red and black adjacency lines are dissolved, separating gene ends in adja-
cencies, and the green lines contracted, the number of permutation cycles are double
those in the master graph. The number of gene ends (2N ) is twice the number of
genes (N ). Hence the norm of the composition permutation is 2N − 2C and the
corresponding distance is half, or N − C which agrees with the DCJ distance.

10.2.6 Comparing Methods for Circular Chromosomes and Proof

We have seen that for circular genomes the following formula can be used to com-
pute the DCJ distance:

dDCJ(π,σ ) = N − C, (10.2)

where N = Nπ = Nσ is the number of adjacencies per genome, and C is the number
of cycles in the master graph.

On the other hand, we can compute the algebraic distance directly from the per-
mutation cycles by taking the norm (the difference between the number of vertices
and the number of cycles) and dividing by 2, which is equivalent to

dalg(π,σ ) = n − p

2
= 2N − p

2
= N − p

2
, (10.3)

where n is the number of gene ends (double the number of genes, which, in circular
genomes agrees with the number of adjacencies per genome, or N ), and p is the
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number of permutation cycles in the σπ . We saw in the examples in previous sec-
tions that p = 2C, because each master graph cycle gives rise to two permutation
cycles. As a result, the DCJ and algebraic distances agree.

Specifically, for the inversion of a circular (Fig. 10.4) and the circular fusion
(Fig. 10.5), both cases consisted of one 2-cycle and one 1-cycle in their adjacency
graphs. We recall that our cycle nomenclature labels a j -cycle by the number j of
adjacencies in only one of the genomes.

Now, 1-cycles do not contribute to the distance. To see this, note that in the DCJ
formulation, the distance contribution for N = 1 and C = 1 is 0. In the algebraic
formulation, we saw (Fig. 10.8) that the 1-cycle doubles into two cycles in the per-
mutation σπ , where the notation for the cycles is based on the number of gene ends
in the adjacency graph, which is n = 2N = 2 for a 1-cycle. In the permutation σπ ,
the two cycles each become n/2-cycles, or 1-cycles, for which the algebraic distance
is (n − p)/2 = (2 − 2)/2 = 0. As for the 2-cycle, it contributes N − C = 2 − 1 = 1
in the DCJ formulation and (n − p)/2 = (4 − 2)/2, which also equals 1, in the
algebraic formulation. Hence the two distances agree.

In this section, we go on to prove that the agreement between the two distances
(algebraic and DCJ) is a general result, as far as circular genomes are involved. This
cannot be considered a new result, because it is implied by formulas for the distances
given by Feijao and Meidanis [9], but since our approach here significantly differs
from previous treatments, and one of our goals here is to view the algebraic theory
in graphical terms, we developed the proof below.

Theorem 1 If π and σ are circular genomes with the same genes, then

dDCJ(π,σ ) = dalg(π,σ ).

Proof In view of formulas (10.2) and (10.3), it suffices to prove that the “cycle
doubling” occurs in general. To see that this is actually the case, reason as follows.
Every cycle in the master graph will have a number of edges that are a multiple of 4.
This is because the edges alternate between green and adjacency edges, and, more-
over, the adjacency edges alternate between red and black edges. In other words,
starting from any gene end in π , for instance, and following the direction of the
only black edge incident to it, we necessarily traverse four edges of colors black,
green, red, and green again before we have the chance of closing the cycle. So the
minimal cycle has four edges. If the cycle does not close after the first four edges,
this means we reached a new, free gene end in π , and must traverse a new 4-edge
walk (black, green, red, green) before being able to close.

Let’s now see what happens with each such cycle as we compute the permuta-
tion cycles. Each permutation cycle is formed by blue edges, and each blue edge is
the result of traversing a black-green-red walk in the master graph, that is, we are
effectively walking over a master graph cycle. Moreover, in the end the green edges
get contracted, and the net result of this can be seen to yield a blue line traversing
each consecutive black-red segment of the corresponding breakpoint graph cycle.

It follows that each edge in a permutation cycle corresponds to four consecutive
edges in the corresponding master cycle. In a master cycle with 4k edges, this will
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result in a permutation cycle with k edges. However, this permutation cycle involves
only half of the π gene ends in the master cycle, because the adjacency partner
of each gene end in the permutation cycle is missing from this cycle, since it is
reachable in just one step, which is not a multiple of 4. The missing gene ends will
be in another k cycle. It follows that each cycle in the master graph gives rise to two
permutation cycles, that is,

p = 2C,

and therefore dDCJ(π,σ ) = dalg(π,σ ). �

10.3 General Transformations Using “Fictitious” Elements

Having seen that for circular genome transformations the DCJ and algebraic dis-
tances turn out the same, we move on to the general case of multichromosomal
genomes with no restrictions on chromosome types: circular, linear, or a mixture.

We review the original construction by Yancopoulos et al. which effectively
transforms the general case into the circular case [20] by the addition of caps, and,
where needed, null chromosomes to restore the balance in number of chromosomes
between genomes. We call this procedure the original closure rule and the trans-
formed graph the augmented master graph. Once this is done, the DCJ distance can
be computed as in the circular case by using the augmented master graph.

Using the approach in the previous section, the augmented graph can also be used
to derive permutation cycles, and thereby the algebraic distance. We find, perhaps
not surprisingly, this coincides with the DCJ distance. We also investigate a new
closure rule that keeps the caps but closes the paths into cycles without resorting
to null chromosomes. Perhaps surprisingly, this alternative closure rule results in
exactly the algebraic distance.

A final subsection summarizes these observations and contains proofs of results.

10.3.1 Examples of Transformations with Linear Chromosomes

In this section we consider examples of transformations with linear chromosomes.
In examining their master graphs we observe that in addition to cycles they also con-
tain paths. Paths occur in the event of linear chromosomes, as there are vertices in
the adjacency graph corresponding to “telomeric” gene ends, gene ends at the ends
of chromosome without partners. We investigate how to close such paths to form
cycles, so that we will be able to compute the distance as previously, by subtracting
the number of cycles from the number of adjacencies.

10.3.1.1 Linearization

Consider the transformation from a genome with a circular chromosome, π = (1), to
that of a linear chromosome σ = [1]. This operation is the linearization of a circular
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Fig. 10.9 Linearization. (a) Master Graph, (b) Adjacency Graph, (c) Augmented Master Graph
with caps and null

chromosome. The master graph for this pair of genomes is shown in Fig. 10.9(a).
Contracting red and black edges we arrive at the adjacency graph in Fig. 10.9(b).

As a result of the linear chromosome in the transformation, the master graph and
adjacency graph have a path. To circularize this path, we add caps to the telomeres
(unpaired extremities) in σ = [1]. This results in a disequilibrium of adjacencies
in the two genomes π and σ . To restore the balance, we add a null chromosome
(c1, c2), containing the same caps added in σ , to π , and close the path by adding
connecting green lines to the null. The resulting augmented master graph can be
seen in Fig. 10.9(c).

10.3.1.2 Fission of a Linear Genome

Consider the transformation from a genome of a linear chromosome π = [1,2] fis-
sioning into two chromosomes σ = {[1], [2]}. The master graph for this pair of
genomes is shown in Fig. 10.10(a). Contracting red and black edges we arrive at
the adjacency graph, shown in Fig. 10.10(b).

Here again we have paths. To close them, we start by adding caps to each telom-
ere. There are two in π and four in σ . After adding these caps there is a resulting
imbalance of adjacencies in the two genomes. We compensate for that by adding a
null chromosome, (c2, c3), to π . Connecting corresponding gene ends with green
edges we arrive at the augmented master graph in Fig. 10.10(c).

10.3.2 The Original Closure Rule, Completing Paths with Caps
and Nulls

To understand the DCJ approach for general transformations including all kinds
of chromosomes, we note that, with linear chromosomes present, the master graph
contains paths in addition to cycles. The idea behind the method is to convert cases
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Fig. 10.10 Fission in a linear. (a) Master Graph (b) Adjacency Graph (c) Augmented Master
Graph

containing paths to the circular case by augmenting the master graph to circularize
paths into cycles.

Linear chromosomes have unpaired gene ends at their ends called telomeres. We
augment the master graph by attaching new, “dummy” gene ends called caps to the
telomeres. Effectively we cap the ends of paths with these fictitious elements.

Once we have capped the paths,we note there are two kinds of paths in their
master (or equivalently their adjacency) graphs, those with both capped ends in the
same genome, are called even paths, and those with their caps in opposite genomes,
are called odd paths.

To close paths into cycles in the master (or adjacency graph), we add green lines,
with two different approaches for odd and even paths. The original closure rules
from Yancopoulos et al. [20] are:

1. For odd paths join the caps at the ends of the paths directly by a green edge.
2. For even paths create a null chromosome containing two caps in the genome

opposite the genome with the two caps. Draw green edges linking each of the
caps in the first genome to the caps of the null chromosome in the other genome.

We notice that, this method generates null chromosomes. The total number of
adjacencies is augmented by counting nulls as a single adjacency and single caps as
half. The total number of adjacencies is balanced since adjacencies containing actual
gene ends are balanced in both genomes in cycles as well as in paths (where telom-
eres count as half an adjacency), odd paths have one cap in each of the genomes,
and even paths, have two caps in one of the genomes balanced by a null in the other.

Denoting the augmented number of adjacencies in either genome by N ′, and the
total number of cycles including paths closed by the closure rule by C′, the DCJ
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Fig. 10.11 A sample adjacency graph for a general transformation, that is, a transformation in-
volving linear chromosomes. Here the top genome is [1,2,3,4], [5,6,7,8,9], and the bottom
genome is [−1,−7,5,9,−8,−6], [2,−3,4]

distance can be computed as follows:

dDCJ = N ′ − C′.

10.3.3 Understanding the DCJ Distance for General
Transformations

Having extended the formalism of closed cycles to the general case including linear
chromosomes by our system of capping and the original closure rules, we now wish
to make contact with the Bergeron et al. [4] distance formula. Accordingly we will
focus on the adjacency graph, keeping in mind it can be derived from the master
graph simply by compressing adjacencies. We cap and close paths using the original
closure rule. Our goal is to reconsider the path formulation of Bergeron et al. in light
of caps, nulls and path closure. For illustrative purposes, consider the adjacency
graph in Fig. 10.11 containing paths and cycles.

Using the capping and closure formalism just developed, we know how to com-
plete paths to transform them into cycles. We take note of some general principles:

• In general, the Adjacency Graph (AG) contains cycles and (even and odd) paths.
• A component-wise decomposition of the AG resolves it into these components.
• Each component makes an independent contribution to the DCJ distance.

We now consider how each individual component contributes to the total distance
arrived at in the previous subsection.

10.3.3.1 Distance Contribution from Cycles

From Sect. 10.2.3 we know the distance contribution of an individual cycle con-
taining k adjacencies is just k − 1. Hence, if there are C cycles in the entire graph,
involving a total of Ncycle genes, there are also Ncycle adjacencies, and the total
contribution from cycles to the DCJ distance is

Ncycle − C.
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Fig. 10.12 Uncapped and capped even paths and their corresponding DCJ distances (called dYAF
in the picture)

10.3.3.2 Distance Contribution from (Closed) Even Paths

At the top of Fig. 10.12 we see a succession of even paths whose telomeric ends
start and end in the top genome. Below these are listed the corresponding number
of uncapped adjacencies belonging to each path, culminating in a general even path,
represented by a “squiggly W”, which does not have its adjacencies explicitly enu-
merated. For such a path involving k genes, there are k adjacencies, as there are
k − 1 “legitimate” adjacencies containing two gene ends, and two telomeric ends
counting half an adjacency each.

Below the illustration of the uncapped even paths is a corresponding row with
the paths closed by the original closure rule of Sect. 10.3.2 having caps attached in
the top genome and a null chromosome in the bottom genome. The caps count as
half an adjacency just as the telomeric ends. The two caps in the null chromosome
count also as 1, so the amended adjacency total for either genome for each of these
closed paths is one more than the previous uncapped version.

The path becomes a (k + 1)-cycle. Using the DCJ formula for cycles, a closed
general even path involving k genes contributes with

k + 1 − 1 = k

to the DCJ distance. The same holds if the even path starts and ends in the bottom
genome.

If we consider all even paths, involving Neven genes altogether, their contribution
to the DCJ distance is, therefore, Neven.

10.3.3.3 Distance Contributions from (Closed) Odd Paths

Applying the capping and original closure rules for the odd paths we note that, once
capped, an odd path involving k adjacencies becomes a closed (k + 1/2)-cycle,
as shown in Fig. 10.13, since the additional cap adds 1/2 to the adjacency count.
(The final count will still be an integer because odd paths occur in pairs.) Using
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Fig. 10.13 Uncapped and capped odd paths and their corresponding DCJ distances (called dYAF
in the picture)

the distance rule for closed cycles which is the number of adjacencies minus 1, this
leads to a DCJ distance contribution from this odd path of

k − 1/2.

Adding over all odd paths, a total contribution of Nodd − I/2 follows, where I is
the number of odd paths.

10.3.3.4 Adding All Contributions from Cycles, Even and Odd Paths

To make contact with the Bergeron et al. [4] formulation of the DCJ distance, we add
all contributions from all components to the distance for a general transformation
keeping in mind that each cycle, odd and even path contributes according to what
was previously found. Summing on all components we arrive at

dDCJ(π,σ ) = contribution from cycles + even paths + odd paths

= (Ncycle − C) + Neven + (Nodd − I/2)

= N − C − I/2,

because the total number of genes N is equal to Ncycle + Neven + Nodd, the number
of cycles is C, and the total number of odd paths is I .

10.3.4 Algebraic Distance for Permutation Cycles Using Caps
and Nulls

In the previous section we observed that a general transformation contains cycles,
and even and odd paths in the Adjacency Graph (AG) as first discussed by Berg-
eron, Mixtacki and Stoye [4] who introduced the AG. We went on to discuss how
each of these components contributes to the DCJ distance, noting that the paths can
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be circularized by the addition of caps (for odd paths) and both caps and null chro-
mosomes (for even paths). This circularization procedure using the original closure
rules is achieved by the use of “fictitious” elements, but it is still possible to use
the formalism for permutations as we did for pure circular genomes. Just as in the
strictly circular case, since we have circularized all paths, all cycles will double
when we go to the permutation cycles for the composition permutation. In addition,
the vertices in the permutations will be twice the number of adjacencies. Hence
since the algebraic distance is half of the norm for the permutation cycles, we find
that the algebraic distance using capped genomes with nulls is the same as the DCJ
distance.

10.3.5 Alternative Closure Scheme Bypassing Nulls

Instead of the “original closure rule” we can use an alternative closure scheme which
includes caps and closes odd paths in the same way, but, by avoiding nulls, closes
even paths by connecting the two cap-ends directly. Unlike the old closure rule, the
number of chromosomes is no longer the same in both genomes.

With the new rule we use the number of adjacencies after capping averaged over
both genomes, remembering that caps contribute 1/2 an adjacency, as do telomeres.
With the new rule, to average the number of adjacencies, we see that when two caps
are added to genome π they get “averaged”, so there is a resulting contribution of
1/2 to the total number of adjacencies. The same happens when two caps are added
to σ .

With the new closure rule, we introduce a new means of computing a distance,
which we will call dnew. Since cycles and odd paths do not change their contribu-
tions to the total distance, the only difference might possibly come from the even
paths. In fact, the new contribution from even paths differs from the DCJ contribu-
tion in −1/2 for each even path.

Summing over paths, we arrive at the new closure distance:

dnew(π,σ ) = N − C − I/2 − E/2 = N − C − P/2,

where E is the number of even paths and P = I + E is the total number of paths.
But this is a know alternative formula for the algebraic distance [9]. We conclude
that the new closure rule yields, in fact, the algebraic distance.

10.3.6 DCJ vs. Algebraic Distances for Capped Genomes

As we saw, there are ways of conceiving and computing the algebraic distance based
on a graphical approach, using either the master graph or the adjacency graph. How-
ever, there is also a way of computing the DCJ distance using the algebraic ap-
proach: using capped genomes and the original closing rule. Indeed, let us recall for
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Fig. 10.14 The augmented master graph for genomes π = [1,2] and σ = {[1], [2]}. Caps and nulls
were named with subscripts t and h to resemble gene ends. With this, the figure looks exactly like
the master graph of π ′ = {(1,2,−c), (n)} and σ ′ = (1, n,2,−c)

a moment the result of the original closure rule on the pair π = [1,2], σ = {[1], [2]}.
Figure 10.14 is just the same as Fig. 10.10(c), except that we named the caps with
subscripts t and h so that they become more like gene ends.

Doing this, we are able to write the chromosomal expression of the resulting
genomes. If we add arrows going from xt to the corresponding xh for all entities x,
be these genes or dummies, and follow the cycles formed by these arrow plus adja-
cencies, we end up with two circular genomes, namely, π ′ = {(1,2,−c), (n)} on top
and σ ′ = (1, n,2,−c) in the bottom. We can then compute the algebraic distance
between these two genomes, and the result, will be the same as the DCJ distance
between these genomes. It turns out that, given a black box that computes algebraic
distances, we are able to use it to compute the DCJ distance: just feed it with the
capped versions of the genomes, augmented by the original closure rule. This is
what the following result states.

Theorem 2 Let π and σ be multichromosomal genomes over the same gene set,
and let π ′ and σ ′ be their capped versions, augmented with the original closure
rules. Then

dDCJ(π,σ ) = dalg
(
π ′, σ ′).

Proof By definition, we know that

dDCJ(π,σ ) = dDCJ
(
π ′, σ ′),

since both pairs share the same master graph. Notice that the master graph of π ′ and
σ ′ does not have to be augmented, because it already consists of cycles only. This
means that π ′ and σ ′ are circular genomes. But for circular genomes, we know that
equality holds between the DCJ and algebraic distances:

dDCJ
(
π ′, σ ′) = dalg

(
π ′, σ ′),

because of Theorem 1. The result then follows from these two equalities. �

The consequence of this result is that properties of the algebraic distance can
be, in principle, applied to the DCJ distance via this correspondence. However, one
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Fig. 10.15 Linearization permutation cycles (PC) . (a) Blue lines in MG; (b) capped PC, (c) un-
capped PC

possible difficulty here is the fact that π ′ does not depend solely on π , as the notation
seems to imply. It also depends on σ .

10.4 Genome Permutations by the Adjacency Algebraic Theory

In this section we will apply algebraic rearrangement theory in its more recent,
adjacency-based formulation to understand the algebraic distance formula and to
see how differences with the DCJ distance can arise.

We start by revisiting two examples from the previous section, the linearization
example from Fig. 10.9 and the linear fission example from Fig. 10.10. We note they
both involve a single cut, which involves the breaking (or cutting) of exactly one ad-
jacency. The master graphs for the two examples are very similar in terms of their
both having a 2-cycle except that the master graph (Fig. 10.10(c)) for the linear fis-
sion is flanked by two 1-cycles. Since these are identity transformations, they do not
contribute to the distance, and so we focus on the 2-cycle as in Fig. 10.9(c). We use
the procedure in Sect. 10.2.4 to draw the “blue lines” (Fig. 10.15(a)) and then derive
the permutation cycles for the capped (Fig. 10.15(b)) and uncapped (Fig. 10.15(c))
master graphs.

To arrive at the uncapped permutation cycles, we can start from the capped master
graph and “identify” the caps, as a device to reconnect the path/cycle without them.
We imagine starting at a gene end such as (1h) in the capped master graph and
move along on an outgoing blue line; when we arrive at a cap (i.e. (c1)) we “jump”
immediately to the “identified” cap, (i.e. (c2)) and continue along the outgoing blue
lines onto gene end (1h), completing the cycle.

Having found the permutation cycles, we note that the 2-cycle in the capped
master graph resulted in two 2-cycles in the capped permutation cycles, and only a
single 2-cycle in the uncapped case. To derive the permutation cycles for uncapped
genomes in a general way, we move on to using the breakpoint graph, although we
could do it with other graphs. The virtue of the breakpoint graph here is that its lines
end on vertices representing gene ends just like the permutation cycles.
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10.4.1 Component-Wise Decomposition of the Adjacency Graph

As mentioned in Sect. 10.1, permutations can be represented by directed graphs that
are composed of one or more cycles. Every permutation can be written in an es-
sentially unique way as a product of disjoint cycles, apart from the order in which
the cycles are multiplied (recall that disjoint cycles commute). This is called the
cycle decomposition of a permutation. The transformation of a genome π to an-
other genome σ over the same genes is a permutation, and the master graph (MG),
adjacency graph (AG), or the breakpoint graph (BPG) of π and σ can graphically
represent the components of this transformation. The permutation that transforms
π into σ is σπ in the adjacency algebraic theory—and σπ−1 in the chromosomal
algebraic theory, which we will not delve into here.

We discussed the separation of the adjacency graph for a general transformation
into its connected components in Sect. 10.3.3, and saw they can be identified visu-
ally. As pointed out by Bergeron et al. [4] these components are essentially cycles
and paths in the AG. The same holds true for the breakpoint graph, which will be
our main graphical tool in this section. Since separate components have no elements
in common, their distance contributions can be resolved separately. We have seen in
the section on transformation of circular chromosomes, Sect. 10.2, that every cycle
in the MG (and hence in the breakpoint graph) generates two cycles in the permu-
tation σπ . We will show that paths generate a single cycle in σπ with the same
vertices.

10.4.2 The Breakpoint Graph and Permutation Cycles

We are interested in looking at the connected components of the breakpoint graph
between genomes π and σ to see how they contribute to the algebraic distance. In
terms of components, the master, adjacency, and breakpoint graphs are very much
alike: cycles in one graph will correspond to cycles in the other two, perhaps with a
different size, but always even. More specifically, a cycle with 4k edges in the MG
will correspond to a cycle with 2k edges in the AG, and to a cycle with 2k edges in
the BPG. And a path in one graph will always be a path in the other two, again with
a difference in size, but not, in general, of the same parity. Specifically, a path with
2k + 1 edges in the MG will correspond to a path with k + 1 edges in the AG, and
to a path with k edges in the BPG.

10.4.3 The Algebraic Distance for Paths

To understand more generally how permutation cycles result from paths in the
breakpoint graph, we take a look at some generic paths. Instead of going from the
construction just described for the previous example in Fig. 10.15, where we found
the permutation cycle by starting from the capped master graph and then identified
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Fig. 10.16 A path in the breakpoint graph that begins and ends with a black edge. The breakpoint
graph is drawn in zig-zag mode, much like the adjacency graph, to better illustrate the permuta-
tion cycle (in blue), obtained in general by starting first in π (black edges) then σ (red edges).
A possible pair of genomes that generates such a breakpoint graph is π = {(1), (2), (3), (4), (5)}
and σ = [1,2,3,4,5]

caps, we try to find a more direct root by starting with a path in the breakpoint graph
and proceeding to add the blue lines to it, as depicted in Fig. 10.16.

To find the permutation cycles associated with a path we compute σπ , that is,
apply π first and then σ . We indicate the permutation arrows in blue in Fig. 10.16.
They were obtained, from each gene end, following a black edge and then a red edge.
If there is no black edge incident to a certain gene end, just follow the red edge to
get to the image under σπ . And if, after following a black edge, there is no red edge
to continue, just take the result of the first step as the final result. Performing this
procedure for every gene end we get the blue arrows indicated in the figure. Notice
that they involve all gene ends in the path, “enclosing” the path like a cloud.

Similar results are obtained with any path, not unlike what we have seen already.
Paths of any size, starting with either black or red edges, and finishing with either
black or red edges, all result in an enclosing blue cycle involving all the gene ends
in the path.

We note that this procedure mimics that of Sect. 10.2.4, in tracing out the “blue
lines” by walking three steps starting at every vertex, which is a gene end in π .
In this method, the “three steps” reduce to two, which are the black and red edges
of the breakpoint graph since, in the breakpoint graph, the “green lines” have been
contracted out of the picture and are represented by vertex-gene ends.

To see more explicitly how this procedure connects to specific gene ends, we re-
turn to the more elaborate approach using the master graph and follow this protocol
for all three types of components in the MG, AG, or BPG, that is, for even and odd
paths as well as for cycles.

10.4.3.1 Even Paths

Let us consider the telomeres and adjacencies of a general even path in the AG
starting and ending in σ :

(e1)︸︷︷︸
σ

, (e1, e2)︸ ︷︷ ︸
π

, (e2, e3)︸ ︷︷ ︸
σ

, . . . , (en−1, en)︸ ︷︷ ︸
π

, (en)︸︷︷︸
σ

,

where n is an even integer.
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Fig. 10.17 An even path (n is an even integer). (a) Master Graph with caps and blue lines; π is
on top. (b) Breakpoint Graph and permutation lines with caps. c Breakpoint Graph and a single
permutation n-cycle without caps

Drawing the master graph with caps (Fig. 10.17(a)), we use the procedure in
Sect. 10.2.4 for constructing the “blue lines”. Contracting the green lines we ar-
rive at the “breakpoint graph” alternating between black and red edges, enveloped
by the permutation lines (Fig. 10.17(b)). By identifying the caps at the ends (and
eliminating them) we find that the permutation cycles of an even path involving
n gene ends (n being therefore an even integer) is a single permutation n-cycle
(Fig. 10.17(c)).

The entire construction works just as well if the even path starts and ends in π .
Hence, a general “even path” in the MG, AG or BP, (starting and ending in ei-
ther π or σ ), with k adjacencies in one genome in the AG, and n = 2k vertices
in the BPG, corresponds to an n-path in the AG and an n-cycle in the permuta-
tion σπ . The corresponding contribution to the algebraic distance from the even
path is

(n − 1)

2
= n

2
− 1

2
.

10.4.3.2 Odds Paths

Similarly, let us consider the telomeres and adjacencies of a general odd path starting
in σ and ending in π .
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Fig. 10.18 An odd path (n is odd). (a) capped MG and blue lines (π on top). (b) capped BPG.
(c) BPG and n-cycle, no caps

(e1)︸︷︷︸
σ

, (e1, e2)︸ ︷︷ ︸
π

, (e2, e3)︸ ︷︷ ︸
σ

, . . . , (en−1, en)︸ ︷︷ ︸
σ

, (en)︸︷︷︸
π

,

where n is an odd integer.
Using a similar construction as for the general even path, we draw the capped

master graph (Fig. 10.18(a)) and add blue lines as previously. In Fig. 10.18(b) we
show the breakpoint graph containing alternating black and red lines and show the
permutation lines with caps. In Fig. 10.18(c) we “absorb” the caps into their adja-
cency partner. What results is a permutation cycle with n edges, as each of the n

vertices has an incoming and outgoing blue permutation line.
Even though this path starts in σ and ends in π , the odd path could “start” in π

instead. Hence, for a general “odd path” in the MG, AG or BPG, with n gene ends,
and n vertices in the BP, the contribution to the algebraic distance is

(n − 1)

2
= n

2
− 1

2
.

10.4.4 The Algebraic Distance for Cycles

We already discussed the algebraic distance for cycles in the section on circular
transformations Sect. 10.2. To put our current treatment on par with that for paths,
we will also treat cycles using the general framework of the previous sections. Con-
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Fig. 10.19 A general cycle (n is even). (a) MG with blue lines (π on top). (b) BPG showing an
MG cycle becomes 2 permutation cycles

sider a cycle containing n edges (corresponding to n “gene ends”) in the adjacency
graph of the transformation from π to σ corresponding to a master graph cycle
component pictured in Fig. 10.19(a).

(e1, e2)︸ ︷︷ ︸
π

, (e2, e3)︸ ︷︷ ︸
σ

, . . . , (en−1, en)︸ ︷︷ ︸
π

, (en, e1)︸ ︷︷ ︸
σ

,

where n is necessarily even.
As we saw in Sect. 10.2.4, when following the procedure illustrated in Fig. 10.8

to find the composition permutation cycles from the master graph for circular
genomes, there is a doubling of cycles which occurs in going from the master graph
(MG) to the permutation cycles (PCs). At the same time, the number of vertices in
the BPG (equivalent to the number of red and black edges in the AG), is halved in
a PC. This is easy to see in Fig. 10.19(b), where it is clear that the splitting of the
cycle segregates even and odd numbered adjacencies into two different permutation
cycles. We note that n = 2k is even, where k is the number of adjacencies in the
cycle in either genome in the AG, and the permutation cycles each contain n/2 ver-
tices. To find the contribution to the algebraic distance of a cycle in the AG (BPG, or
MG) we find the norm of the corresponding permutation and divide by two. Hence,
the contribution is

2
( n

2 − 1)

2
= n

2
− 1.

10.4.5 Total Algebraic Distance in the Adjacency Graph

As we discussed, the adjacencies of the master graph can be segregated separately
into connected components which contribute independently to the distance. We just
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saw how both even and odd paths in the adjacency graph (and also the master graph
and breakpoint graph) turn into single cycles in the permutation σπ , whereas cycles
in the adjacency graph double in number while halving their vertex counts.

Since we know how to compute the contribution of each individual component,
it remains to tally all contributions from components in the adjacency graph. Col-
lecting these, we sum distance contributions over all cycles and even and odd paths.
The ith cycle contributes n

cycle
i /2 − 1 to the distance, where n

cycle
i is the number of

gene ends in the ith cycle. As for the paths, as we found, each path (even or odd)
contributes n

path
j /2 − 1/2, where n

path
j is the number of gene ends in the j th path.

Summing over all components we get

dalg(π,σ ) = cycle contribution + path contribution

= ncycles

2
− C + npaths

2
− P

2

= N − C − P

2

where ncycles = ∑
n

cycle
i and C = ∑

i 1 are summed over cycles, and npaths =
∑

n
path
j , is summed over paths. Notice that ncycles + npath = 2N , because each gene

corresponds to two gene ends. Since both even and odd cycles have the same formal
contribution in this approach, we do not have to separate them in the sum over paths.

10.4.6 DCJ Distance vs. Algebraic Distance

The difference between the DCJ distance and the (Adjacency) Algebraic distance
boils down to the difference in the distance for even paths. For the DCJ distance the
contribution from even and odd paths is asymmetric, whereas, as we just saw, for
the algebraic method both contribute in the same way. Since both formulas can be
stated simply in terms of the number of adjacencies and the number of odd and even
paths, we can easily compute the difference. The distance dDCJ = N − C − I/2,
where, as we recall, I is the number of odd paths, while dalg = N −C −P/2 where
P = I + E is the sum over the number of odd and even paths. The difference, is
therefore just E/2 which is just half the number of even paths!

Since we can say even paths occur whenever the number of chromosomes
changes, or the type of chromosome changes, either from linear to circular or vice
versa, these transformations may occur relatively rarely in genome transformations,
in which case the two distances will appear to be nearly the same. We next re-
examine some previous examples to compare similarities and differences between
methods.

So, for example, operations considered in Sect. 10.2 which dealt with circular
transformations were operations such as (internal) inversions, and the creation and
absorption of circular chromosomes (from other circular chromosomes) have only
cycles in their adjacency graph, and, as we have seen, cycles are treated in the same
way by both methods.
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Fig. 10.20 Component-wise summary of DCJ vs. algebraic distances

We also know that differences can arise with the use of caps, and in the section in-
volving such general transformations which include caps (Sect. 10.3), we discussed
two transformations in particular where this may be the case, in particular, that of a
linearization involving a circular transforming to a linear chromosome, and a linear
fission of a single linear chromosome. Not only did these transformations involve
caps, with the DCJ approach, but their “bare” uncapped master graphs contained
even paths, signaling there is likely to be a discrepancy. In fact, since both trans-
formations contain exactly one even path, we know there is a difference: the DCJ
distance is 1 for both the linearization and the linear fission, whereas the algebraic
approach yields a distance of 1/2.

Even though these are rather simple examples, there is more that can be gleaned
from them. Not only can we compare the forward transformations, but the inverse
transformations as well. And so we can also deduce that for the DCJ, a circulariza-
tion of a linear chromosome, or a fusion of two linear chromosomes into one also
costs a single DCJ, whereas the algebraic method yields again, a distance of 1/2
for each. Finally, even if there are more “bystander” genes which are not actually
involved in the transformation, these operations will still cost the same.

We conclude by summarizing the similarities and differences of the two methods
for cycles, and odd and even paths in Fig. 10.20. This table shows the different
contributions of each kind of component, with emphasis on cases where DCJ and
algebraic distances differ, namely, the even paths. We examine these differences and
the implications in further detail in the next section.

10.5 Weights, Operations, and Biology

In this section we discuss the biological implications of the two approaches particu-
larly by looking at the DCJ and algebraic formulations as methods which minimize
the number of weighted operations needed to transform one genome into the other.
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Table 10.2 A complete list of DCJ operations

Operation Example

Linear translocation (incl. fission/fusion) [1,2], [3,4] �→ [1,4], [3,2]
Linear reversal [1,2,3] �→ [1,−2,3]
Creation of circular from linear (including circularization) [1,2,3] �→ [1,3], (2)

Absorption of circular by linear (incl. linearization) Inverse of previous

Circular reversal (1,2,3) �→ (1,−2,3)

Circular fission/fusion (1,2) �→ (1), (2)

10.5.1 The Relative Weights of Operations

Part of the challenge of modeling genome rearrangements is to find a successful
strategy for dealing with the relative weights of operations. One of the original
dilemmas for the DCJ was the relative weight of a transposition or a block inter-
change to an inversion. Our examination of the underpinnings of the DCJ and alge-
braic methods, has brought to light an interesting challenge: the relative weight of
operations such as fissions, fusions, linearizations or circularizations vs. inversion.
In comparing these methods we saw that ultimately, the determination of this rela-
tive weight comes down to the underlying assumptions in the method. If caps are
used, the ratio is 1 and when they are not it depends on the method.

10.5.2 Comparing Weights for DCJ vs. Algebraic Method

Yancopoulos and others [20] describe a complete list of operations characterized as
DCJ. Table 10.2 shows the list adapted from their 2005 paper. We use “circular”
in places where they use “circular intermediate” because here we study the general
case, where the start and target genomes can have both types of chromosomes, linear
and circular. Therefore, we do not necessarily think of circular chromosomes as
intermediate. Each of these operations has a weight of 1 DCJ.

The same operations are available in the algebraic approach, but the weights
are different. Table 10.3 shows the same operations with weights in both the DCJ
scheme and the algebraic scheme. Notice that we have to split some operation
classes because not all members have the same algebraic weight. In general, opera-
tions involving null chromosomes are weighted half a DCJ in the algebraic scheme.

10.5.3 Fact or Artifact: Fictitious Objects and Dummy Elements

We have discussed how it is possible to use caps and nulls and other such “fictitious”
objects in order to close paths in the adjacency graph so as to use the formalism de-
veloped for cycles. We have shown how it is possible to arrive at the transformation
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Table 10.3 A comparison of weights in the DCJ and algebraic schemes. Operations described as
‘proper’ may not involve null chromosomes

Operation DCJ weight Algebraic weight Example

Linear translocation, proper 1 1 [1,2], [3] �→ [1], [3,2]
Linear fission/fusion 1 1/2 [1,2] �→ [1], [2]
Linear reversal 1 1 [1,2,3] �→ [1,−2,3]
Creation of circular from linear, proper 1 1 [1,2,3] �→ [1,3], (2)

Circularization of linear 1 1/2 [1] �→ (1)

Absorption of circular by linear, proper 1 1 [1,2], (3) �→ [1,3,2]
Linearization of circular 1 1/2 (1) �→ [1]
Circular Reversal 1 1 (1,2,3) �→ (1,−2,3)

Circular fission/fusion 1 1 (1,2) �→ (1), (2)

distance, using capped versions of genomes. As caps and nulls are not “real” it
may be thought that somehow these should not “count” or “weigh in”. Hence, some
might think that the algebraic method, which does not use them, may seem more le-
gitimate. Others may argue that, though these dummy elements are strictly a device,
they aid in simplifying the distance equations.

10.5.4 Fictitious Operations and the “Basic” DCJ

We have made no bones about discussing the artificiality of caps; having given them
the “power” of appearances, it remains to discuss the consequences in terms of the
kinds of operations that result in the “basic” DCJ.

Ultimately, the double cut and join is a series of four more “elemental” indi-
vidual cut and join operations, two of each. When the “single” DCJ operation is
performed between two “real” adjacencies, then two “actual cuts” and two “actual
joins” happen between “real” gene ends.

With the use of caps in the “basic” DCJ, concomitant fictitious operations can
arise, which have no ultimate “reality”. These fictitious operations involve any type
of cut or join involving a cap. There are two possible adjacencies involving caps
in the basic DCJ schema: either an adjacency between two caps which is a null
chromosome, or an adjacency between a cap and single gene end, also known as a
telomere. We define a fictitious operation as any operation involving either a cut or
a join in an adjacency containing at least one cap.

To understand this in the context of an example, consider the case of the lineariza-
tion example discussed in Sect. 10.3 using the capped master graph. Just as with any
DCJ, there are essentially two cuts and two joins, but now, some of these involve
caps. The null chromosome contains an adjacency which is severed as well as the
adjacency between the two gene ends in the circular chromosome (1t and 1h). So
one of the cuts performed in this DCJ is fictitious, and the other is real. After these
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Fig. 10.21 Linearization in BPG representation. (a) MG with blue lines. (b) BPG with capped PC.
(c) uncapped PC

adjacencies are broken, the gene ends are reconnected with caps, and both of these
operations are fictitious. The total operation gets a DCJ “weight” of 1.

One might be tempted to infer that each individual cut and join is 1/4, after all,
there are four operations and the whole operation has a unit weight. If we do this,
then in the linearization example the only “real” operation is the cut between 1t and
1h; the remaining three operations (the cut of the null chromosome and the joining
of the two caps) are fictitious, so the “true cost” of this operation should only be 1/4!

In fact, Feijao and Meidanis [8] considered such a possible scheme with their
“SCJ” operation such that any single cut or single join is weighted as little as 1/4.

10.5.5 Fictitious Operations and the Algebraic Approach

What about fictitious operations for examples like these? First let us start with the
algebraic distance for these examples. As we know and saw in Fig. 10.15(c), or here
in Fig. 10.21, the permutation cycles for linearization consist of a single 2-cycle,
the norm of which is n − 1 = 2 − 1 = 1; dividing by two, the distance is 1/2. We
have reached the irreducible quantum operation in the algebraic approach in a single
fission/fusion/linearization. As we can see from Fig. 10.21(c), the only “step down”
from here which is a PC “cloud” surrounding a single breakpoint, or adjacency, is
a single n = 1-cycle with a single gene end. But this last has no distance or cost.
Hence, in the algebraic schema there is no “step down” below this operation which
has a cost. The lowest we can go is to a cost of 1/2 which straddles between the
DCJ and the SCJ. This leaves us with more questions than answers. Had the cost of
the operation been 1/4 of a full DCJ we might not be as perplexed, since it would
seem the “fictitious” operations no longer “weigh in”.

10.5.6 Does the BMS- DCJ Do Away with Fictitious Operations?

The beautiful formalism developed by Bergeron et al. [4] in their approach to the
DCJ, including the adjacency graph and the idea of odd and even paths, seems to
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liberate the DCJ from the clumsy use of caps and nulls. The beauty of the new
approach was welcomed by many because of its elegant formulation, ease of calcu-
lation, and also because at least for some who may have been bothered by them, it
seemed to do away with caps, and the issues that come with them; after all, caps are
not only a bother, but they are an artificial construction.

Interestingly, even though the DCJ approach as formulated by Bergeron et al. [4]
does not appear to have caps and nulls explicitly, nevertheless, their version of the
distance agrees in value with that of the “basic” DCJ distance computed with the
use of caps and nulls. The weighting scheme of Bergeron et al. is also identical to
that of the DCJ with caps and nulls.

The fact that the algebraic distance agrees with the DCJ distance (BMS [4] or
YAF [20]) when caps and nulls are used, but differs when they are not, begs the
question: does the BMS approach somehow retain vestiges of fictitious operations?

10.5.7 Biological Interpretation

The difference in weights between the DCJ and algebraic schemes poses interesting
questions. For instance, is it biologically meaningful to give less weight to opera-
tions involving null chromosomes? On the one hand, this may make sense because
apparently less “modification effort” is needed to effect, say, a linear fission than
a linear translocation: in the first case, a single “cut” occurs, while in the second,
there are actually two cuts and two rejoins. On the other hand, the creation of a new
chromosome is no easy task biologically. A chromosome is not just genes. It needs,
to begin with, a duplication apparatus, which includes a centromere or at least an
origin of replication. Simplified genome modeling does not take these into account.

We must remember that a mutation has to be accepted by the environment to
survive as such. Therefore, a lasting rearrangement must be “easy” with respect to
modification effort, but also “stable” in terms of genome structure, and these two
components should contribute to its weight.

To further illustrate this discussion, consider the following scenario: π = [1,2]
and σ = [2,1]. This is a linear transposition, and the DCJ distance between these
two genomes is 2. However, the algebraic distance is just 1! How come? Because
the algebraic method finds a shorter path of going from π to σ : linear fission of π ,
giving [1], [2], which is the same as [2], [1], and then linear fusion of these two chro-
mosomes yielding σ . Since a linear fission or fusion is worth 1/2, the total comes
to 1. Notice that this is only possible because the two blocks being interchanged
comprise the entire chromosome.

One could argue that the algebraic path is way out of scope, since it involves both
the creation and the destruction of a chromosome, which are supposedly expensive
biological operations. However, one could also argue that this argument holds only
if you assume that these two changes occurred separated by millions of years of
evolution. What if they occurred in the same cell division?

It is hard to say what is correct or not in modeling biological processes. It may
be the case that in some situations one approach is more suitable, while in other
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situations the opposite is true. Experimental use of the distances will help us to shed
more light into this issue.

10.5.8 Implications and Concluding Remarks

The fact that the algebraic method leads to a different weighting scheme than the
standard DCJ not only lends a new approach to calculating the genomic distance,
but offers the possibility of addressing issues having to do with the use of “dummy”
elements such as caps and nulls. It is intriguing that we have found that by use
of these elements in the algebraic approach, the distance agrees with the standard
DCJ, but bypassing their use we arrive at a different distance and weighting scheme
for the operations, primarily those involving even paths in the adjacency graph, and
ultimately fissions and fusions in the transformation

By comparing the two formulations we have come to realize the consequences
involving the assumptions behind the two methods. Ultimately we feel that neither
method is “superior” in that either weighting scheme may be considered valuable
under some circumstances and the possible use of either of these two methods in-
creases the number of available options in analyzing genome transformations.
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