
Chapter 1
What’s Behind Blast

Gene Myers

Abstract The BLAST search engine was published and released in 1990. It is a
heuristic that uses the idea of a neighborhood to find seed matches that are then
extended. This approach came from work that this author was doing to lever these
ideas to arrive at a deterministic algorithm with a characterized and superior time
complexity. The resulting O(enpow(e/p) logn) expected-time algorithm for finding
all e-matches to a string of length p in a text of length n was completed in 1991. The
function pow(ε) is 0 for ε = 0 and concave increasing, so the algorithm is truly sub-
linear in that its running time is O(nc) for c < 1 for ε sufficiently small. This paper
reviews the history and the unfolding of the basic concepts, and it attempts to intu-
itively describe the deeper result whose time complexity, to this author’s knowledge,
has yet to be improved upon.

1.1 The Meeting

The 1980s were an active decade for basic advances in sequence comparison algo-
rithms. Michael Waterman, Temple Smith, Esko Ukkonen, Webb Miller, Gad Lan-
dau, David Lipman, Bill Pearson, and myself, among others, were all very active
in this period of time and were working out the basic algorithms for comparing se-
quences, approximate pattern matching, and database searching (e.g. [1–6]). During
this time, the BLAST heuristic was developed and deployed at the National Library
of Medicine in 1990 and the paper that described it became one of the most highly
cited papers in science [7]. This paper is about how the design for the algorithm
came about, from my point of view, and its relationship to the theoretical under-
pinnings of sequence comparison that I was exploring at the time that ultimately
lead to an efficient, deterministic, expected-time algorithm for finding approximate
matches using a precomputed index [8].

In 1988, Webb Miller and I organized a small bioinformatics meeting in
Bethesda, Maryland that included such notable figures as David Sankoff, Michael
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Waterman, Temple Smith, Eric Lander, Zvi Galil, Esko Ukkonen, David Lipman
and other great investigators of that time. At the meeting Zvi Galil gave a talk about
suffix trees [9] and raised two questions that ultimately were answered:

1. Can suffix trees be built in a way that is independent of alphabet size s?
2. Can a precomputed index such as a suffix tree of a large text be used to speed up

searches for approximate matches to a string?

To understand the first question, one must recall that one can either use an s-
element array in each suffix tree node to permit a search for a string of length p

in a text of length n in O(p) time but requiring O(ns) space for the suffix tree, or
one can use only O(n) space by using binary trees to decide which edge to follow
out of a node, but resulting in O(p log s) time for the search. This question ulti-
mately led Udi Manber and I to develop suffix arrays in late 1990 [10], where a
suffix array occupies O(n) space, independent of s, and takes O(p + logn) time
to search for a string, again independent of s. This data structure in turn enables
the Burroughs–Wheeler Transform or BWT [11], that is now greatly in vogue for
next-gen sequencing (NGS) applications [12], to be computed in O(n) time.

1.2 Filters and Neighborhoods

But it was the second question on the use of an index, such as a suffix tree, to speed
searches for approximate matches that captured my attention immediately after the
meeting. Most algorithmicists work on deterministic search algorithms meaning that
the method finds exactly the set of locations in the text where a query approximately
matches within some specified threshold, whereas a heuristic is an algorithm that
finds most of the matches sought, but may miss a few, called a false negative, and
may further report a few locations where a match doesn’t actually occur, called a
false positive. In between these two types of algorithms, a filter is an algorithm that
has no false negatives but may produce false positives. That is, it produces a superset
of the instances sought, or equivalently it filters out most of the locations where
matches do not occur. A filter can be the first step of a deterministic algorithm simply
by running a deterministic checking algorithm on the subset of locations reported
by the filter. If the filter is much more efficient than the deterministic checker, then
one ends up with a much more efficient search.

At the time, there were surprisingly no published methods using the simple idea
of finding exact matches to k-mers (strings of length k) from the query string
[13, 14] even though this was fairly obvious and had been used in the heuristic
method of FASTA. Shortly after the Bethesda meeting, I had the first and most
important idea of looking for exact matches to strings in the neighborhood of
k-mers selected from the query string. Let δ be a sequence comparison measure
that given two strings v and w returns a numeric measure δ(v,w) of the degree to
which they differ (e.g. the generalized Levenshtein metric). Given a string w the
τ -neighborhood of w with respect to δ, ℵδ

τ (w) is the set of all strings v whose best
alignment with w under scoring scheme δ is less than τ , i.e. {v : δ(v,w) ≤ τ }.



1 What’s Behind Blast 5

For this paper, except where mentioned otherwise, we are focusing on the ap-
proximate match problem where δ is the simple Levenshtein metric, which is the
minimum number of insertions, deletions, and substitutions possible in an alignment
between the two strings in question. That is, we seek matches of a query of length p

to a text of length n, where up to e differences are allowed. Another way to phrase
this, which we will use interchangeably, is that we seek ε-matches where ε = e/p is
the length relative fraction of differences allowed. To illustrate the idea of a neigh-
borhood under this metric, the 1-neighborhood of abba (or 25 %-neighborhood) is
ℵ1(abba) = {aaba,aabba,abaa,aba,abaa,ababa,abba,abbaa,abbab,abb,abbb,

abbba,babba,bba,bbba}.
For the example above, notice that wherever one finds abaa one will also

finds aba as it is a prefix of the former. So to find all matches to neighborhood
strings it suffices to look up in an index only those that are not an extension of
a shorter string in the same neighborhood. Let the condensed τ -neighborhood of
w be the subset of these strings, i.e. ℵ̄δ

τ (w) = {v : v ∈ ℵδ
τ (w) and �u ∈ ℵδ

τ (w)

such that u is a prefix of v}. For our example, the condensed 1-neighborhood of
abba is ℵ̄1(abba) = {aaba,aabba,aba,abb,babba,bba,bbba}, a considerably
smaller set of strings.

To illustrate the advantage of using (condensed) neighborhoods, consider looking
for a match with nine differences to a query of length say 100. If one partitions the
query into 10 strings of length 10, then by the Pigeon Hole principle, one of the 10
strings must exactly match in the database. So one can filter the text by looking for
one of these 10 strings of length 10. But if one partitions the query into 5 strings
of length 20, then by the Pigeon Hole principle, a string in the 1-neighborhoods
of the five query parts must exactly match in the database. A rough estimate for
the number of strings in the condensed e-neighborhood of a string of length k is
ℵ̄e(k) = (

k
e

)
(2s)e . Thus in our example we can filter the text by looking for one of

800 strings of length 20. Which filter is better? The probability of a random false
positive for the k-mer filter is 10/s10 and for the neighborhood filter it is 800/s20.
Thus the later filter produces s10/80 fewer false positives. If s is 4 (e.g. the DNA
alphabet) and n is 3×109 (e.g. the size of the human genome) then the neighborhood
filter produces 13,000 times fewer false positives, and reports in expectation 2.18
false positive, whereas the k-mer filter reports over 28,600!

1.3 Version 0.1

For every true positive location, i.e. an approximate match is present, one must
spend time proportional to the best algorithm available for aligning one sequence
to another. While there are some quite sophisticated algorithms, in practice, one of
the best is still the O(pe) algorithm discovered by Ukkonen [2] and a year later by
myself [6], where I further proved that the algorithm runs in O(p + e2) expected
time, and can be modified with a suffix tree and O(1) lca-finding [15] to take this
much time in the worst-case. If a search results in h true hits, we will assume for
simplicity that O(hep) time will be taken to confirm and report all the matches
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and their alignments. The goal of a filter is to deliver the hits efficiently and to
waste as little time as possible on false positives. That is, the goal is to optimize
the time a filter would take on a random text that in expectation has no hits to
the query. The initial simple idea that I was working with in early 1989 was as
follows:

1. Partition the query into p/k k-mers.
2. Generate every string in the (εk)-neighborhood of the query k-mers and find all

the exact matches to these strings using an index.
3. Check each location reported above with the O(ep) algorithm.

The question is what k-mer size leads to the best expected-time performance of
the filter over a random text? Roughly, the number of neighborhood strings is
(p/k)ℵ̄εk(k) and the time spent looking up each is O(k) excluding the time to
check hits for each. Thus the lookup phase takes O(pℵ̄εk(k)) time. The expected
number of hits is (p/k)ℵ̄εk(k)(n/sk) and thus the expected time for checking pro-
posed locations is O((εp3/k)ℵ̄εk(k)(n/sk)). Thus the total expected time for the
filter is

O

(
pℵ̄εk(k)

(
1 + εp2n

ksk

))
(1.1)

I was unable to produce an analytic formula for the value of k that as a function
of n, p, and ε gives the minimum time. However, using Stirling’s Approximation,
I was able to demonstrate (unpublished) that the best value of k is always bigger
than logs n and less than (1 + α) logs n where α becomes increasingly closer to 0
as n/p goes to infinity. For typical values of the parameters, and especially when
n is much larger than p, α is quite close to zero. Thus one instinctively knows that
the k-mer size should be on the order of logs n. We will use this observation later
on.

1.4 BLAST

In May of 1989, I spent two weeks at the National Center for Biotechnology In-
formation (NCBI) with David Lipman. I was a smoker at the time and was having
a cigarette outside when David came out and showed me an article in Science in
which Lee Hood was extolling the virtues of a new systolic array chip built by
TRW called the Fast Data Finder (FDF) [16]. I proceeded, as a firm believer that
special hardware is not the way to solve problems, to explain to David my new
ideas for approximate search and how I thought we could do such searches just as
well in software rather than spend money on relatively expensive hardware. David
had previously developed FASTA with Bill Pearson [5], which at the time was the
best heuristic for searching protein databases. David listened carefully and started
to think about how the ideas could be used in a heuristic and efficient way to search
for significant locally aligned regions of a protein query against a protein database
under a general scoring scheme such as the PAM or BLOSSUM metrics. In short
order we had the following heuristic adaption of my first filter:
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1. Consider the p − k + 1 overlapping k-mers of the query (to increase the chance
of not missing a true hit).

2. Generate every string in the τ -neighborhood of the query k-mers under a
similarity-based protein metric δ and find all the exact matches to these strings
by some means (an index may not be in practice the fastest way to do this).

3. Extend each seed match into a local alignment of significance by some means,
and report it if its score is sufficiently high.

Over the next several months a number of versions of codes based on the above
template were developed by myself, Webb Miller, and Warren Gish.

Webb tried a simple index for the look up and reported that it was quite slow.
In hindsight this was just at the time when the mismatch in speed between memory
access and processor speed was becoming severe enough that being aware of cache-
coherence was becoming essential for good performance. I still wonder if a better
design of an index and the order of lookups within it, e.g. sorting the strings to be
looked up, would not lead to a much speedier implementation. The other idea and
faster implementation was to generate a finite automaton of the neighborhood strings
and in an O(n) scan of the text with the automaton find all potential match locations.
Each state of the automaton had an s-array table of transitions. Gish realized that if
a Mealy machine [17] was used instead of a Moore machine [18] (i.e. report hits on
transitions rather than on states), a factor of s is saved in space. Given that s is 20
for protein alphabets this was a significant space saving.

For the extension step we tried simply extending forward and backward with
no indels. I proposed the idea that an extension step stop when the score of the
extension dropped too far below the best score seen (the X-factor). I also wrote a
version that extended with indels, again observing the X-factor, but Lipman deemed
that it was too slow and not worth the additional computer time. He later reversed
his position in 1989 with a second release and publication of BLAST [19], albeit
with Miller reinventing the gapped extension strategy.

Warren also wrote all the code for practical matters such as low-complexity se-
quence filtering and he built the initial web server [20]. Altschul, the first author,
added the calculation of the significance of each match based on work he and Sam
Karlin had published earlier in the year [21]. He also tested the sensitivity and per-
formance of the method and wrote the paper. An unfortunate consequence of this
was that the algorithm was inadequately described and led to much confusion about
what the BLAST algorithm was over the ensuing years. However, the use of the
match statistics was a great advance and enhanced the popularity of the engine,
as previously there had been much optimistic reporting of statistically insignificant
matches in the formal molecular biology literature.

1.5 Doubling Extension of logs n Seeds

While BLAST was being developed, I continued to pursue the quest for a provably
efficient deterministic algorithm. The simple seed and test strategy hadn’t yielded
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an analytic expected-time complexity, but it did suggest that k = logs n might be
a good seed size. Indeed, I liked immediately that since slogs n = n, a simple 2n

integer index of all the k-mers in the text permits O(p + h) expected-time lookup
of all h exact matches to a string of length p in the text. Later I was further able to
give an analytic estimate for the size of neighborhoods of strings of this special size,
but at the time I was focused on the extension step, as it was the aspect that was not
yielding an analytic bound. Later I would prove it, but at the time I intuited that if
ε is small enough, then the probability, Pr(p, ε), of a random ε-match to a string
of length p is less than 1/αp for some fixed α > 1 that is a function of ε (just as
an exact match has probability 1/sp). If this is true, then as shown below, the time
for an extension strategy based on progressively doubling and checking seed hits
telescopes for false hits.

The basic “double and check” idea is as follows. Suppose a k-mer of the query,
s0, ε-matches a substring t0 of the database. The idea of doubling and checking, is to
try a 2k-mer s1 of the query that spans s0 and check with the customary zone-based
dynamic programming algorithm if there is a string t1 spanning t0 that ε-matches s1.
If not, then one can, under the right doubling protocol to be given shortly, conclude
that an ε-match to the query does not exist that spans t0. Otherwise, a match to the
query is still possible, so one proceeds to double s1 to a substring s2 of the query of
length 4k and then check for an ε-match to it spanning t1. And so on, until either
there is a failure to match at some doubling stage, or until all of the query is found
to match a string spanning the seed hit t0.

Returning to the complexity claim, if one assumes Pr(p, ε) < 1/αp for some α,
then one starts with h = (p/k)(n/αk) expected random k-mer seed matches. The
idea is to check if these can be extended to ε-matches of length 2k, and then to
ε-matches of length 4k, and so on. For a text that is random with respect to the
query, the extensions that survive diminish hyper-geometrically. Specifically, there
are n(p/k)/α2x−1k surviving hits at doubling stage x and it takes O(ε(2xk)2) time
to check each implying that the total expected time to eliminate all of these random
seeds is

n(p/k)

log2 p/k∑

x=1

ε
(
2xk

)2
/α2x−1k = nek/αk

log2 p/k∑

x=1

4x/α(2x−1−1)k

= O
(
nek/αk

)
(1.2)

But how are the doublings of the seeds arranged? To keep it simple, suppose k

divides p, and p/k = 2π is a power of 2. If a query w of length p has an ε-match to
a substring v of the text, then by the Pigeon Hole principle either the first or second
half of w, defined as w0 and w1, ε-matches a prefix v0 or suffix v1 of v, respec-
tively, where v0v1 = v. Inductively if wx has an ε-match to a string vx , then by the
Pigeon Hole principle either the first or second half of wx , defined as wx0 and wx1,
ε-matches a prefix vx0 or suffix vx1 of v, respectively, where vx0vx1 = vx . In other
words, if there is an ε-match to the query w, then there is at least one binary string
α of length π such that wβ has an ε-match to a string vβ for all prefixes β of α
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where it is further true that vβx is a prefix or suffix of vβ according to whether x

is 0 or 1, respectively. So now reverse the logic and imagine one has found a seed
ε-match to a piece wα of the query where α = a1a2 . . . aπ . To determine if w has a
match involving this seed match, one considers checking for ε-matches to the dou-
bling sequence of strings w(a0a1...aπ−1),w(a0a1...aπ−2), . . . ,w(a0a1),w(a0),w(ε) = w,
discovering the prefix and/or suffixes vβ at each level, until either w is confirmed
or a check fails. This strategy is deterministic as it never misses a match, yet the
expected time spent on a false positive seed is O(εk2).

When there is a match present, the time spent confirming the match is

π∑

x=1

ε
(
2xk

)2 = εk2
π∑

x=1

4x = εk2(4π+1/3 − 1
)
< 4/3εp2 = O(ep) (1.3)

So in the case that there are exactly h real matches to the query, the extension and
reporting phase of an algorithm using this strategy takes expected time:

O
(
nek/αk + hep

)
(1.4)

When in particular k is chosen to be logs n, then αk = nlogs α and so the extension
step takes O(en1−logs α logn + hep) time. This is exciting because as long as α

is greater than 1 (how much so depends on ε), then the time is O(nc) for c < 1
and hence truly sublinear in n. In the next section, we will confirm that indeed
Pr(k, ε) < 1/αk for an α that is a function of ε, and thus that the complexity of this
section holds.

1.6 Neighborhood Size

I was fairly confident I could come up with a good algorithm for generating neigh-
borhoods that was proportional to the size of the condensed neighborhood, but I was
less certain about arriving at an analytic upper bound for the size of a condensed
d-neighborhood of a string of length k, ℵ̄k

d . In the introduction I (inaccurately) es-

timated it as
(
k
d

)
(2s)d and in the previous section I guessed such a bound would

have the form α(ε)k where α depends on ε = d/k. I embarked on developing re-
currences for counting the number of sequences of d distinct edits that one could
perform on a string of length k. Rather than consider induction over the sequence
of edits, I thought about an induction along the characters of the string from left to
right. At each character one can either leave it alone, delete it, insert some number of
symbols after it, or substitute a different symbol for it and optionally insert symbols
after it. Note carefully that redundant possibilities, such as deleting the symbol and
then inserting a character after it, or substituting a symbol and then deleting it, need
not be counted. While I took some care to produce tight recurrences at the time, I re-
cently noted that I could improve the recurrences but interestingly I could not prove
a better complexity bound than with the original recurrence. We will present the
new recurrence with the idea that another investigator might prove a better bound.
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Suppose one has k symbols left in the query, and needs to introduce d differences
into this string of remaining characters where insertions before the first symbol are
not allowed. Let S(k, d) be the number of such d-edit scripts. The new lemma is

Lemma If k ≤ d or d = 0 then S(k, d) = ℵ̄d(k) = 1. Otherwise,

S(k, d) = S(k − 1, d) + (s − 1)S(k − 1, d − 1)

+ (s − 1)

d−1∑

j=0

sj S(k − 2, d − 1 − j)

+ (s − 1)2
d−2∑

j=0

sj S(k − 2, d − 2 − j) +
d−1∑

j=0

S(k − 2 − j, d − 1 − j)

ℵ̄d(k) ≤ S(k, d) +
d∑

j=1

sjS(k − 1, d − j)

Proof The new recurrences begins with the observations that (a) a deletion followed
by an insertion is the same as a substitution, (b) a deletion followed by a substitu-
tion is the same as a substitution followed by a deletion, (c) an insertion followed
by a substitution is the same as a substitution followed by an insertion, and (d) an
insertion followed by a deletion is the same as doing nothing. Therefore we need
only consider scripts in which deletions can only be followed by deletions or an un-
changed character, and in which insertions can only be followed by other insertions
or an unchanged character. A substitution or unchanged character can be followed
by any edit (or no edit). Furthermore, it is redundant to substitute a character for
itself implying there are only s − 1 choices for a substitution at a given position.
Moreover, an insertion following an unchanged or substituted character is redun-
dant if the inserted character is equal to the one behind it, because the net effect
is the same as inserting the given character before the symbol it follows. So there
are only s − 1 non-redundant characters for the first insert in a sequence of inserts.
Finally, we need only produce condensed neighborhoods, so when t ≤ d the num-
ber of scripts is 1 as the null string is in the neighborhood and hence the condensed
neighborhood contains only this string. Thus it is clear that S(k, d) = 1 when either
k ≤ d or d = 0. For all other values of k and d it follows from the “rules” above
that

S(k, d) = S(k − 1, d) + (s − 1)
(
S(k − 1, d − 1) + I (k − 1, d − 1)

)

+ (s − 1)2I (k − 1, d − 2) + D(k − 1, d − 1)

where I (k, d) is the number of d edit scripts that immediately follow one or more
inserts after the (k + 1)st symbol in the query string, and D(k,d) is the number of d

edit scripts that immediately follow a deletion of the (k + 1)st symbol in the query
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string. It follows from the “rules” that

I (k, d) = sI (k, d − 1) + S(k − 1, d)

D(k, d) = D(k − 1, d − 1) + S(k − 1, d)

Solving the recurrences for I and D in terms of S and substituting these back into
the recurrence for S gives the final recurrence of the lemma for S, and the bound
for ℵ̄d(k) simply considers that one can have one or more inserts before the first
character of the query. �

A simple but tedious exercise in induction reveals that for any value c ≥ 1,
S(k, d) ≤ B(k, d, c) and ℵd(k) ≤ c

c−1B(k, d, c) where B(k, d, c) = ( c+1
c−1 )kcdsd . It

further follows that B(k, d, c) is minimized for c = c� = ε−1 + √
1 + ε−2 where

ε = d/k. Given that ε ∈ [0,1], it follows that c� ∈ [1 + √
2,∞] implying c� is al-

ways larger than 1 and that c
c−1 is always less than 1 + √

0.5. Therefore,

S(k, d) ≤ B
(
k, d, c�

)
and ℵd(k) ≤ 1.708B

(
k, d, c�

)
(1.5)

As in the original paper, one can similarly and easily develop recurrences for the
probability Pr(k, ε) of an ε-match to a string of length k in a uniformly random
text and show that the recurrence is bounded by c

c−1B(k, d, c)/sk where d = �εk	.
Therefore:

Pr(k, ε) ≤ 1.708/α(ε)k where α(ε) =
(

c� − 1

c� + 1

)
c�−εs1−ε (1.6)

proving that the bound used in Sect. 1.5, and hence also the complexity of the ex-
tension step of the algorithm derived in that section.

Now consider the function pow(ε) = logs
c�+1
c�−1 + ε logs c� + ε. A little algebra

and the bounds in Eqs. (1.5) and (1.6) allow us to conclude the following rather
striking bounds:

ℵε(k) = O
((

spow(ε)
)k) and α(ε) = O

(
s1−pow(ε)

)
(1.7)

The first bound effectively says that one can think of each position in the string as
have a certain “flex factor” at a given rate ε, namely spow(ε), so that the neighborhood
size is the kth power of the flex factor. The second bound effectively says that the
“match specificity” of each position in the set of neighborhood strings is s(1−pow(ε)),
so that the probability of matching any string in the ε-neighborhood of a string of
length k is 1 over the kth power of this match specificity.

While quite complex in form, note that pow(ε) is monotone increasing and con-
cave in ε and pow(0) = 0. The last fact implies ℵ0(k) = 1 and α(0) = s as expected.
It rises to the value of 1 before ε becomes 1, and does so at a point that depends on
the size s of the alphabet. We plot it below in Fig. 1.1 for several value of s. Finally,
note that if k = logs n then ℵε(k) = O(npow(ε)).
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Fig. 1.1 Pow(ε) plotted for
several values of s. For each
curve the percentage
mismatch at which Pow
becomes 1 is given

1.7 Generating Condensed Neighborhoods

With the analysis of complexity in hand, the only remaining problem was to ef-
ficiently generate all the strings in a condensed d-neighborhood of a string w of
length k. The basic idea is to explore the tree of all strings over the underlying al-
phabet, computing row by row the dynamic programming matrix of w versus the
string on the current path in the tree. That is, given the last row, Lv,w , of the dy-
namic programming matrix for w versus a string v, one computes, in O(k)-time,
the last row of the dynamic program matrix for w versus va for every letter a in the
alphabet. For the simple Levenshtein measure, the smallest value in a row is mono-
tonically increasing and therefore once a row R has a minimum value, min(R),
greater than d , one can certainly eliminate the current string and all extensions of
it as belong to the condensed neighborhood. Conversely, once a row is reached that
has d as its last entry, then a string in the condensed neighborhood has been reached
and one should report the current string and then backtrack. In pseudo code, one
calls Search(ε, [012 . . . k]), where Search is the routine:

Search(v,R)

if R[k] = d then
Report v

else if min(R) ≤ d then
for a ∈ Σ do

Compute S = Lva,w from R

Search(va,R)

The big problem above is that too much time is taken visiting words that are not
in the condensed neighborhood. As soon as min(R) is d , we know that the only
possible words in the condensed neighborhood are those that are extended by the
suffix wx for each x such that R[x] = d , where wx is the suffix of w consisting of
its last k − x symbols. This gives us the algorithm:
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Search(v,R)

1. if min(R) = d then
2. for each x s.t. R[x] = d do
3. Report v · wx

4. else # min(R) < d #
5. for a ∈ Σ do
6. Compute S = Lva,w from R

7. Search(va,S)

Now the number of terminal strings visited (i.e., those for which no further recursion
is pursued) is less than the number of words in the condensed neighborhood as at
least one member is reported in lines 2 and 3. Moreover, the number of interior
strings is also less than the number of terminal strings as the recursion tree is an
s-ary complete tree. Thus the total number of calls to Search is O(ℵ̄d(k)) and each
call takes O(k) time.

Next, immediately note that one need only compute the 2d + 1 values of the
dynamic programming matrix that are in the band between diagonals −d and d as
one can easily show that any value outside this band must be greater than d . Thus
the relevant part of each row is computed in O(d) time. But then how does one look
up v ·wx in an index in less than O(k) time given that |wx | can be on the order of k?

The answer comes from the fact that k = logs N and thus we can build a very sim-
ple index based on directly encoding every k-mer w as an s-ary number, code(w),
in the range [0, sk − 1] = [0, n − 1]. It is an easy exercise (and shown in the ear-
lier paper [8]) that with two n-vectors of integers, one can build an index that
for each k-mer code delivers the positions, in the underlying text (of length n),
at which that k-mer occurs. So with such a simple structure, reporting a string in
the neighborhood requires only delivering its code. First note that one can incre-
mentally compute code(va) = code(v) · s + code(a) in O(1) time, and second,
that one can precompute code(wz) and power(z) = code(sz) for every z in a rel-
atively minuscule O(k) time before starting the search. So during the generation of
neighborhoods, one gets the code for v · wx in O(1) time by way of the fact that
code(v · x) = code(v) · power(k − x) + code(wx).

The careful reader will note that there is one remaining problem. Namely, that in
line 2 of Search there could be two or more entries in R, say x and z > x such that
R[x] = R[z] = e and it could be that v · wx is not in the condensed neighborhood
because wz is a prefix of wx ! To me it was fascinating that the answer lies in the
failure function, φ, of the Knuth–Morris–Pratt (KMP) algorithm for finding matches
to a string in a linear time scan of a text. Recall that for a string v = a1a2 . . . ak that
φ(x) is the maximum y such that a1a2 . . . ay is a suffix of a1a2 . . . ax . A table of
φ[x] for all x was shown by KMP to be constructible in O(k) time. Building φ

on the reverse of w gives us exactly the relationships we want. That is, φ(x) is the
maximum y such that wy is a prefix of wx . To test in the general case that wz is a
prefix of wx , we test if φk(x) = z for some number of application k of φ. Since only
2e + 1 contiguous suffixes will be considered at the most, using the failure function
to test if any one is a prefix of another takes O(e) time with a simple marking
strategy.
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Thus, we have an O(dℵd(k)) algorithm for generating all the words in the con-
densed d neighborhood of a string w of length k. Given seed size k, there are p/k

seeds and so generating the strings in the condensed neighborhoods of all of them
takes O(p/k · εkℵε(k)) = O(eℵε(k)) time.

1.8 Total Running Time

Putting the time complexities of Sect. 1.7 for the generation of neighborhoods and
Sect. 1.5 for the extension of seed matches, we have as a function of seed size k:

O
(
eℵε(k) + nek/α(ε)k + hep

)
(1.8)

Using Eq. (1.7) from Sect. 1.6, the complexity excluding the O(hep) true positive
term is

O
(
e
(
spow(ε)k + nk/s(1−pow(ε))k

)) = O

(
e
(
sk

)pow(ε)
(

1 + k
n

sk

))
(1.9)

When one chooses k = logs n as the seed size, then sk = n and we formally ar-
rive at the expected-time complexity for the entire algorithm given in the following
theorem.

Theorem Using a simple O(n) precomputed index, one can search for ε-matches
to a query of length p in a text of length n, in:

O
(
enpow(ε) logn + hep

)
expected time (1.10)

where pow(ε) = logs
c�+1
c�−1 + ε logs c� + ε and c� = ε−1 + √

1 + ε−2.

1.9 Final Remarks and Open Problems

In a hopefully intuitive style, the reader has been introduced to a fairly involved set
of theoretical ideas that underlie the BLAST heuristic and that give a deterministic,
expected-time algorithm that is provably sublinear in the size of the text for suitably
small ε. That is the algorithm’s running time is O(nc) for c < 1 (and not O(cn) for
c < 1 as in a “sublinear” method such as the Boyer-Moore exact match algorithm).
Interestingly, the author is not aware of any work that builds on this approach or
another that has a superior time complexity.

There are at least two interesting questions. The first involves the analysis of
neighborhood sizes. Is there a tighter bound to the recurrences formulated here
and/or are there better recurrences? Such bounds would give a tighter characteri-
zation of the running time of the algorithm. The second question is a bit harder to
formulate, but the essence of it is whether or not this algorithm can be shown to be a
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lower bound on the time required to find all ε-matches. In other words, one wonders
whether the idea of using a logs n seed size and then carefully doubling such hits is
essential for ruling out false positive locations. That is, must one spend this amount
of time eliminating a near miss? If true, it would also explain why a better result of
its kind has not been forthcoming in the last 20 years since the first publication of
this result.
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