
Computational Biology

Models and
Algorithms for
Genome Evolution

Cedric Chauve
Nadia El-Mabrouk
Eric Tannier Editors

Computational Biology

Editors-in-Chief
Andreas Dress
CAS-MPG Partner Institute for Computational Biology, Shanghai, China

Michal Linial
Hebrew University of Jerusalem, Jerusalem, Israel

Olga Troyanskaya
Princeton University, Princeton, NJ, USA

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

Editorial Board
Robert Giegerich, University of Bielefeld, Bielefeld, Germany
Janet Kelso, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
Gene Myers, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany
Pavel A. Pevzner, University of California, San Diego, CA, USA

Advisory Board
Gordon Crippen, University of Michigan, Ann Arbor, MI, USA
Joe Felsenstein, University of Washington, Seattle, WA, USA
Dan Gusfield, University of California, Davis, CA, USA
Sorin Istrail, Brown University, Providence, RI, USA
Thomas Lengauer, Max Planck Institute for Computer Science, Saarbrücken, Germany
Marcella McClure, Montana State University, Bozeman, MO, USA
Martin Nowak, Harvard University, Cambridge, MA, USA
David Sankoff, University of Ottawa, Ottawa, Ontario, Canada
Ron Shamir, Tel Aviv University, Tel Aviv, Israel
Mike Steel, University of Canterbury, Christchurch, New Zealand
Gary Stormo, Washington University in St. Louis, St. Louis, MO, USA
Simon Tavaré, University of Cambridge, Cambridge, UK
Tandy Warnow, University of Texas, Austin, TX, USA

The Computational Biology series publishes the very latest, high-quality research devoted to specific
issues in computer-assisted analysis of biological data. The main emphasis is on current scientific devel-
opments and innovative techniques in computational biology (bioinformatics), bringing to light methods
from mathematics, statistics and computer science that directly address biological problems currently
under investigation.
The series offers publications that present the state-of-the-art regarding the problems in question; show
computational biology/bioinformatics methods at work; and finally discuss anticipated demands regard-
ing developments in future methodology. Titles can range from focused monographs, to undergraduate
and graduate textbooks, and professional text/reference works.

Author guidelines: springer.com > Authors > Author Guidelines

For further volumes:
www.springer.com/series/5769

http://www.springer.com/series/5769

Cedric Chauve � Nadia El-Mabrouk � Eric Tannier
Editors

Models and
Algorithms for
Genome Evolution

Editors
Cedric Chauve
Department of Mathematics
Simon Fraser University
Burnaby, British Columbia, Canada

Nadia El-Mabrouk
Computer Science and Operations Research
University of Montreal
Montreal, Québec, Canada

Eric Tannier
Biometry and Evolutionary Biology
INRIA Rhône-Alpes
University of Lyon
Villeurbanne, France

ISSN 1568-2684 Computational Biology
ISBN 978-1-4471-5297-2 ISBN 978-1-4471-5298-9 (eBook)
DOI 10.1007/978-1-4471-5298-9
Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013949678

© Springer-Verlag London 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Foreword

It is hard to overestimate the impact of David Sankoff’s research on today’s com-
putational biology. His fingerprints are present in every curriculum and textbook.
Even more importantly, Sankoff’s studies have had a tremendous effect on the way
we think about computational problems in evolution and more broadly in biology.
This book contains articles written by experts in computational biology, summariz-
ing some of the past directions in the field, and paving the way into new directions
for the future. Not surprisingly, many of them build on ideas pioneered by Sankoff.

The volume starts with a chapter by Gene Myers, who describes the complexity-
theoretic ideas developed in the 1980s that led to the creation of the BLAST search
engine, perhaps the number one “killer application” of computational biology. In
Chap. 2 David Bryant and Jamie Kydd revisit a largely forgotten 1972 study by
Sankoff, a paper that turns out to be one of the pioneering treatise on model-based
phylogeography. They put this paper in the context of modern methods and show
how its merits have withstood the test of time. Chapter 3 by Miklos Csuros reviews
the problems of reconstructing evolutionary features of ancestors in a known phy-
logeny, taking as a springboard a 1975 paper of Sankoff and Rousseau.

Chapter 4, by Chauve, El-Mabrouk, Gueguen, Smeria and Tannier, discusses in-
tegrative models of evolution that simultaneously address the nucleotide, the gene
and the genome levels. The authors put a pioneering 2000 work of Sankoff and
El-Mabrouk in the context of novel developments. The following chapter, by Anne
Bergeron and Jens Stoye, describes the intuitions and methods that led to the double
cut and join (DCJ) distance formula, and put the formula in a broader theoretical
context. Chapter 6 by Tandy Warnow discusses new algorithms aimed to estimate
alignment and phylogeny on ultra-large datasets. Both theoretical and empirical as-
pects of the performance are portrayed.

In Chap. 7, Bernard Moret, Yu Lin and Jijun Tang discuss a way to use likeli-
hood methods with rearrangement models. The good performance of the method is
attributed to injecting a simple bias in the ground probabilities, an idea originally
proposed by Sankoff in 1998. Chapter 8, by Liqing Zhang, Mingming Liu and Layne
Watson, reviews the impact of insertion and deletion variants in human biology, evo-
lution and health. In addition, it describes extant and novel tools for predicting the

v

vi Foreword

functional effects of insertions and deletions. In the following chapter, Binhai Zhu
surveys the research on genomic distance in genomes with gene repetitions, missing
and redundant genes, pioneered by Sankoff. It also describes the consequences of
this research beyond computational biology.

In Chap. 10, Joao Meidanis and Sophia Yancopoulos discuss the DCJ distance
and the so-called algebraic distance, introduced recently by Feijao and Meidanis.
They compare the two distances using a new graph-based method, and explore pos-
sible weighting of the operations and their effects. In Chap. 11, David Sankoff and
Chunfang Zheng study the combined effect of whole-genome duplication and frac-
tionation, the process by which exactly one of the two copies of a duplicated gene is
lost. They develop a new strategy to use consolidated intervals in order to reconstruct
the ancestral gene order in the genome preceding duplication, and demonstrate it on
two plant species.

Chapter 12, by Maneul Lafond, Krister Swensen and Nadia El-Mabrouk, inves-
tigates several possible error sources in gene tree reconstruction, and suggests new
models to detect such errors. It demonstrates these error detection methods in an-
alyzing gene trees of several fish species. Chapter 13, by Braga, Chauve, Doerr,
Jahn, Stoye, Thevenin and Wittler, studies approaches in comparative genomics that
do not rely on identification of gene families. The authors investigate the effect of
such approaches on key problems in rearrangement phylogeny. The final chapter,
by Daniel Platt, Filippo Utro, Marc Pybus and Laxmi Parida, uses simulations of
human population histories to assess what fraction of genetic events are recover-
able from present data population data. The authors conclude that no more than two
thirds of the events are recoverable, but that the signal is still sufficient for resolution
between populations on many levels.

The broad spectrum of papers in this volume is a tribute to the richness of the
huge tree of research that David has developed, which undoubtedly will continue to
bear fruit, develop offshoots and shape research in biology for many years. At the
same time this volume also reflects the love and admiration of numerous colleagues
and generations of students that David has raised. Many happy returns, David!!

Ron ShamirTel Aviv University, Israel

Models and Algorithms for Genome
Evolution—Preface

Fifty years ago, Pauling and Zuckerkandl introduced the idea to reconstruct ances-
tral protein sequences from the comparison of extant protein sequences [1]. Roughly
at the same time, a young David Sankoff published his first scientific article [2],
a first step in an exceptional scientific career marked by fundamental contributions
in computational molecular evolution, building a theoretical ground to the idea of
Pauling and Zuckerkandl.

David Sankoff’s scientific contribution goes beyond molecular evolution, as he
is also very well known for his work on models and algorithms for comparative
linguistic, social sciences and music. However, the present volume “Models and
Algorithms for Genome Evolution” (MAGE) focuses on computational biology, and
celebrates David Sankoff’s work and impact in this field.

Indeed, as mathematicians and computer scientists interested in molecular evo-
lution, we feel that, in our research, almost every path we follow has been opened,
if not paved, by David Sankoff. This prompted us to dedicate the MAGE confer-
ence, held in August 2013 near Montréal, Canada, to the 50th anniversary of his
first scientific article. MAGE is also intended to follow up on a previous conference,
organized in 2000 by David Sankoff and Joseph Nadeau, near Montréal, entitled
Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dy-
namics, Map Alignment and the Evolution of Gene Families [3], that provided a
retrospective in comparative genomics and opened new avenues following the first
sequence of the human genome.

In the same spirit, the 2013 MAGE conference also offered a retrospective on the
past 50 years of the young field of computational molecular evolution, as well as a
prospective view on the challenges we expect to face in the near future.

The contributions presented here offer a wide panorama on comparative ge-
nomics today. We also learn from Gene Myers (Chap. 1) why the Blast heuristic,
although universally adopted by biologists and bioinformaticians, is sometimes un-
fairly disregarded by theoreticians. It is then recalled that some standard results in
computational biology are due to David Sankoff, such as the dynamic programming
principle for ancestral character reconstruction along a phylogenetic tree (Chap. 3).
Chapter 2, together with Chaps. 4, 7 and 9, illustrate that David Sankoff’s contribu-

vii

viii Models and Algorithms for Genome Evolution—Preface

tion stands out by the problems he introduced and the research avenues he opened,
that were followed by many others. David Sankoff is also an efficient publicist for
new models, approaches, and techniques, that turn out to become standard, as il-
lustrated by his role in establishing the Double Cut and Join distance (Chaps. 5
and 10). The present book also includes overviews on well established research
fields (Chaps. 6 and 8) and of new ideas which are likely to develop into active
research programs (Chaps. 11–14).

Although the research activity around the mathematical and computational as-
pects of molecular evolution has reached a certain maturity, thanks to influential re-
searchers such as David Sankoff, Joe Felsenstein, Gene Myers, Michael Waterman
and many others, yet challenges are still overwhelmingly numerous. Fifty years af-
ter Pauling and Zuckerkandl seminal work, we are probably still not aware of the
diversity of genome structures nor of the diversity of means genomes use to evolve.
We believe that the MAGE conference has been a good opportunity to share the
latest developments and discuss about future directions. We hope the book will give
the occasion to learn about and from the past of this young field, and will be a source
of inspiration for many researchers.

We thank reviewers for their work, Mathieu Blanchette, Guillaume Bourque, An-
thony Labarre, Anne Bergeron, Chunfang Zheng, Krister Swenson, David Bryant.
Thanks to Ron Shamir for writing the foreword.

References

1. Pauling, L., Zuckerkandl, E.: Chemical paleogenetics, molecular “restoration studies” of extinct
forms of life. Acta Chem. Scand. 17, 9–16 (1963)

2. Friesen, J., Sankoff, D., Siminovitch, L.: Radiobiological studies of vaccinia virus. Virology 21,
411–424 (1963)

3. Sankoff, D., Nadeau, J. (eds.): Comparative Genomics: Empirical and Analytical Approaches to
Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. Kluwer Academic,
Dordrecht (2000)

Cedric Chauve

Nadia El-Mabrouk

Eric Tannier

LaBRI, Université Bordeaux I, Talence, France
Department of Mathematics, Simon Fraser University,
Burnaby, BC, Canada

DIRO, Université de Montréal, Montréal, QC, Canada

LBBE, Université Lyon I Claude Bernard,
Villeurbanne, France
INRIA Rhône-Alpes, Montbonnot, France

Contents

Part I Emergence of Standard Algorithms

1 What’s Behind Blast . 3
Gene Myers

2 Forty Years of Model-Based Phylogeography 17
David Bryant and Jamie Kydd

3 How to Infer Ancestral Genome Features by Parsimony: Dynamic
Programming over an Evolutionary Tree 29
Miklós Csűrös

4 Duplication, Rearrangement and Reconciliation: A Follow-Up
13 Years Later . 47
Cedric Chauve, Nadia El-Mabrouk, Laurent Guéguen,
Magali Semeria, and Eric Tannier

5 The Genesis of the DCJ Formula 63
Anne Bergeron and Jens Stoye

Part II New Lights on Current Paradigms

6 Large-Scale Multiple Sequence Alignment and Phylogeny
Estimation . 85
Tandy Warnow

7 Rearrangements in Phylogenetic Inference: Compare, Model,
or Encode? . 147
Bernard M.E. Moret, Yu Lin, and Jijun Tang

8 Status of Research on Insertion and Deletion Variations
in the Human Population . 173
Liqing Zhang, Mingming Liu, and Layne T. Watson

ix

x Contents

9 A Retrospective on Genomic Preprocessing for Comparative
Genomics . 183
Binhai Zhu

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic
Distances . 207
Joao Meidanis and Sophia Yancopoulos

Part III Promising Directions

11 Fractionation, Rearrangement, Consolidation, Reconstruction . . . 247
David Sankoff and Chunfang Zheng

12 Error Detection and Correction of Gene Trees 261
Manuel Lafond, Krister M. Swenson, and Nadia El-Mabrouk

13 The Potential of Family-Free Genome Comparison 287
Marília D.V. Braga, Cedric Chauve, Daniel Doerr, Katharina Jahn,
Jens Stoye, Annelyse Thévenin, and Roland Wittler

14 Genetic History of Populations: Limits to Inference 309
Daniel E. Platt, Filippo Utro, Marc Pybus, and Laxmi Parida

Index . 325

Contributors

Anne Bergeron Lacim, Université du Québec à Montréal, Montréal, Canada

Marília D.V. Braga Inmetro, Duque de Caxias, Brazil

David Bryant University of Otago, Dunedin, New Zealand

Cedric Chauve Department of Mathematics, Simon Fraser University, Burnaby,
BC, Canada; LaBRI, Université Bordeaux I, Talence, France

Miklós Csűrös Department of Computer Science and Operations Research, Uni-
versity of Montréal, Montreal, QC, Canada

Daniel Doerr Genome Informatics, Faculty of Technology, Bielefeld University,
Bielefeld, Germany; Institute for Bioinformatics, CeBiTec, Bielefeld University,
Bielefeld, Germany

Nadia El-Mabrouk Département d’Informatique et de Recherche Opérationnelle
(DIRO), Université de Montréal, Montréal, QC, Canada

Laurent Guéguen LBBE, Université Lyon I Claude Bernard, Lyon, France

Katharina Jahn Genome Informatics, Faculty of Technology, Bielefeld Univer-
sity, Bielefeld, Germany; Institute for Bioinformatics, CeBiTec, Bielefeld Univer-
sity, Bielefeld, Germany

Jamie Kydd University of Auckland, Auckland, New Zealand

Manuel Lafond Département d’Informatique et de Recherche Opérationnelle
(DIRO), Université de Montréal, Montréal, QC, Canada

Yu Lin Laboratory for Computational Biology and Bioinformatics, EPFL, Lau-
sanne, Switzerland

Mingming Liu Department of Computer Science, Virginia Tech, Blacksburg, VA,
USA

Joao Meidanis Scylla Bioinformatics, Campinas, SP, Brazil; University of Camp-
inas, Campinas, SP, Brazil

xi

xii Contributors

Bernard M.E. Moret Laboratory for Computational Biology and Bioinformatics,
EPFL, Lausanne, Switzerland

Gene Myers MPI for Cellular Molecular Biology and Genetics, Dresden, Germany

Laxmi Parida IBM T.J. Watson Research, New York, USA

Daniel E. Platt IBM T.J. Watson Research, New York, USA

Marc Pybus Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain

David Sankoff University of Ottawa, Ottawa, ON, Canada

Magali Semeria LBBE, Université Lyon I Claude Bernard, Lyon, France

Jens Stoye Genome Informatics, Faculty of Technology, Bielefeld University,
Bielefeld, Germany; Institute for Bioinformatics, CeBiTec, Bielefeld University,
Bielefeld, Germany

Krister M. Swenson Département d’Informatique et de Recherche Opérationnelle
(DIRO), Université de Montréal, Montréal, QC, Canada; McGill University, Mon-
treal, QC, Canada

Jijun Tang Department of Computer Science and Engineering, University of South
Carolina, Columbia, SC, USA

Eric Tannier LBBE, Université Lyon I Claude Bernard, Lyon, France; INRIA
Rhône-Alpes, France

Annelyse Thévenin Genome Informatics, Faculty of Technology, Bielefeld Uni-
versity, Bielefeld, Germany; Institute for Bioinformatics, CeBiTec, Bielefeld Uni-
versity, Bielefeld, Germany

Filippo Utro IBM T.J. Watson Research, New York, USA

Tandy Warnow Department of Computer Science, University of Texas at Austin,
Austin, TX, USA

Layne T. Watson Dapartment of Computer Science, Virginia Tech, Blacks-
burg, VA, USA; Dapartment of Mathematics, Virginia Tech, Blacksburg, VA, USA

Roland Wittler Genome Informatics, Faculty of Technology, Bielefeld University,
Bielefeld, Germany; Institute for Bioinformatics, CeBiTec, Bielefeld University,
Bielefeld, Germany

Sophia Yancopoulos The Feinstein Institute for Medical Research, Manhasset,
NY, USA

Liqing Zhang Dapartment of Computer Science, Virginia Tech, Blacksburg, VA,
USA

Chunfang Zheng University of Ottawa, Ottawa, ON, Canada

Binhai Zhu Department of Computer Science, Montana State University, Boze-
man, MT, USA

Part I
Emergence of Standard Algorithms

Chapter 1
What’s Behind Blast

Gene Myers

Abstract The BLAST search engine was published and released in 1990. It is a
heuristic that uses the idea of a neighborhood to find seed matches that are then
extended. This approach came from work that this author was doing to lever these
ideas to arrive at a deterministic algorithm with a characterized and superior time
complexity. The resulting O(enpow(e/p) logn) expected-time algorithm for finding
all e-matches to a string of length p in a text of length n was completed in 1991. The
function pow(ε) is 0 for ε = 0 and concave increasing, so the algorithm is truly sub-
linear in that its running time is O(nc) for c < 1 for ε sufficiently small. This paper
reviews the history and the unfolding of the basic concepts, and it attempts to intu-
itively describe the deeper result whose time complexity, to this author’s knowledge,
has yet to be improved upon.

1.1 The Meeting

The 1980s were an active decade for basic advances in sequence comparison algo-
rithms. Michael Waterman, Temple Smith, Esko Ukkonen, Webb Miller, Gad Lan-
dau, David Lipman, Bill Pearson, and myself, among others, were all very active
in this period of time and were working out the basic algorithms for comparing se-
quences, approximate pattern matching, and database searching (e.g. [1–6]). During
this time, the BLAST heuristic was developed and deployed at the National Library
of Medicine in 1990 and the paper that described it became one of the most highly
cited papers in science [7]. This paper is about how the design for the algorithm
came about, from my point of view, and its relationship to the theoretical under-
pinnings of sequence comparison that I was exploring at the time that ultimately
lead to an efficient, deterministic, expected-time algorithm for finding approximate
matches using a precomputed index [8].

In 1988, Webb Miller and I organized a small bioinformatics meeting in
Bethesda, Maryland that included such notable figures as David Sankoff, Michael

G. Myers (B)
MPI for Cellular Molecular Biology and Genetics, 01307 Dresden, Germany
e-mail: myers@mpi-cbg.de

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_1,
© Springer-Verlag London 2013

3

mailto:myers@mpi-cbg.de
http://dx.doi.org/10.1007/978-1-4471-5298-9_1

4 G. Myers

Waterman, Temple Smith, Eric Lander, Zvi Galil, Esko Ukkonen, David Lipman
and other great investigators of that time. At the meeting Zvi Galil gave a talk about
suffix trees [9] and raised two questions that ultimately were answered:

1. Can suffix trees be built in a way that is independent of alphabet size s?
2. Can a precomputed index such as a suffix tree of a large text be used to speed up

searches for approximate matches to a string?

To understand the first question, one must recall that one can either use an s-
element array in each suffix tree node to permit a search for a string of length p

in a text of length n in O(p) time but requiring O(ns) space for the suffix tree, or
one can use only O(n) space by using binary trees to decide which edge to follow
out of a node, but resulting in O(p log s) time for the search. This question ulti-
mately led Udi Manber and I to develop suffix arrays in late 1990 [10], where a
suffix array occupies O(n) space, independent of s, and takes O(p + logn) time
to search for a string, again independent of s. This data structure in turn enables
the Burroughs–Wheeler Transform or BWT [11], that is now greatly in vogue for
next-gen sequencing (NGS) applications [12], to be computed in O(n) time.

1.2 Filters and Neighborhoods

But it was the second question on the use of an index, such as a suffix tree, to speed
searches for approximate matches that captured my attention immediately after the
meeting. Most algorithmicists work on deterministic search algorithms meaning that
the method finds exactly the set of locations in the text where a query approximately
matches within some specified threshold, whereas a heuristic is an algorithm that
finds most of the matches sought, but may miss a few, called a false negative, and
may further report a few locations where a match doesn’t actually occur, called a
false positive. In between these two types of algorithms, a filter is an algorithm that
has no false negatives but may produce false positives. That is, it produces a superset
of the instances sought, or equivalently it filters out most of the locations where
matches do not occur. A filter can be the first step of a deterministic algorithm simply
by running a deterministic checking algorithm on the subset of locations reported
by the filter. If the filter is much more efficient than the deterministic checker, then
one ends up with a much more efficient search.

At the time, there were surprisingly no published methods using the simple idea
of finding exact matches to k-mers (strings of length k) from the query string
[13, 14] even though this was fairly obvious and had been used in the heuristic
method of FASTA. Shortly after the Bethesda meeting, I had the first and most
important idea of looking for exact matches to strings in the neighborhood of
k-mers selected from the query string. Let δ be a sequence comparison measure
that given two strings v and w returns a numeric measure δ(v,w) of the degree to
which they differ (e.g. the generalized Levenshtein metric). Given a string w the
τ -neighborhood of w with respect to δ, ℵδ

τ (w) is the set of all strings v whose best
alignment with w under scoring scheme δ is less than τ , i.e. {v : δ(v,w)≤ τ }.

1 What’s Behind Blast 5

For this paper, except where mentioned otherwise, we are focusing on the ap-
proximate match problem where δ is the simple Levenshtein metric, which is the
minimum number of insertions, deletions, and substitutions possible in an alignment
between the two strings in question. That is, we seek matches of a query of length p

to a text of length n, where up to e differences are allowed. Another way to phrase
this, which we will use interchangeably, is that we seek ε-matches where ε = e/p is
the length relative fraction of differences allowed. To illustrate the idea of a neigh-
borhood under this metric, the 1-neighborhood of abba (or 25 %-neighborhood) is
ℵ1(abba)= {aaba,aabba,abaa,aba,abaa,ababa,abba,abbaa,abbab,abb,abbb,

abbba,babba,bba,bbba}.
For the example above, notice that wherever one finds abaa one will also

finds aba as it is a prefix of the former. So to find all matches to neighborhood
strings it suffices to look up in an index only those that are not an extension of
a shorter string in the same neighborhood. Let the condensed τ -neighborhood of
w be the subset of these strings, i.e. ℵ̄δ

τ (w) = {v : v ∈ ℵδ
τ (w) and �u ∈ ℵδ

τ (w)

such that u is a prefix of v}. For our example, the condensed 1-neighborhood of
abba is ℵ̄1(abba) = {aaba,aabba,aba,abb,babba,bba,bbba}, a considerably
smaller set of strings.

To illustrate the advantage of using (condensed) neighborhoods, consider looking
for a match with nine differences to a query of length say 100. If one partitions the
query into 10 strings of length 10, then by the Pigeon Hole principle, one of the 10
strings must exactly match in the database. So one can filter the text by looking for
one of these 10 strings of length 10. But if one partitions the query into 5 strings
of length 20, then by the Pigeon Hole principle, a string in the 1-neighborhoods
of the five query parts must exactly match in the database. A rough estimate for
the number of strings in the condensed e-neighborhood of a string of length k is
ℵ̄e(k)= (

k
e

)
(2s)e . Thus in our example we can filter the text by looking for one of

800 strings of length 20. Which filter is better? The probability of a random false
positive for the k-mer filter is 10/s10 and for the neighborhood filter it is 800/s20.
Thus the later filter produces s10/80 fewer false positives. If s is 4 (e.g. the DNA
alphabet) and n is 3×109 (e.g. the size of the human genome) then the neighborhood
filter produces 13,000 times fewer false positives, and reports in expectation 2.18
false positive, whereas the k-mer filter reports over 28,600!

1.3 Version 0.1

For every true positive location, i.e. an approximate match is present, one must
spend time proportional to the best algorithm available for aligning one sequence
to another. While there are some quite sophisticated algorithms, in practice, one of
the best is still the O(pe) algorithm discovered by Ukkonen [2] and a year later by
myself [6], where I further proved that the algorithm runs in O(p + e2) expected
time, and can be modified with a suffix tree and O(1) lca-finding [15] to take this
much time in the worst-case. If a search results in h true hits, we will assume for
simplicity that O(hep) time will be taken to confirm and report all the matches

6 G. Myers

and their alignments. The goal of a filter is to deliver the hits efficiently and to
waste as little time as possible on false positives. That is, the goal is to optimize
the time a filter would take on a random text that in expectation has no hits to
the query. The initial simple idea that I was working with in early 1989 was as
follows:

1. Partition the query into p/k k-mers.
2. Generate every string in the (εk)-neighborhood of the query k-mers and find all

the exact matches to these strings using an index.
3. Check each location reported above with the O(ep) algorithm.

The question is what k-mer size leads to the best expected-time performance of
the filter over a random text? Roughly, the number of neighborhood strings is
(p/k)ℵ̄εk(k) and the time spent looking up each is O(k) excluding the time to
check hits for each. Thus the lookup phase takes O(pℵ̄εk(k)) time. The expected
number of hits is (p/k)ℵ̄εk(k)(n/sk) and thus the expected time for checking pro-
posed locations is O((εp3/k)ℵ̄εk(k)(n/sk)). Thus the total expected time for the
filter is

O

(
pℵ̄εk(k)

(
1+ εp2n

ksk

))
(1.1)

I was unable to produce an analytic formula for the value of k that as a function
of n, p, and ε gives the minimum time. However, using Stirling’s Approximation,
I was able to demonstrate (unpublished) that the best value of k is always bigger
than logs n and less than (1+ α) logs n where α becomes increasingly closer to 0
as n/p goes to infinity. For typical values of the parameters, and especially when
n is much larger than p, α is quite close to zero. Thus one instinctively knows that
the k-mer size should be on the order of logs n. We will use this observation later
on.

1.4 BLAST

In May of 1989, I spent two weeks at the National Center for Biotechnology In-
formation (NCBI) with David Lipman. I was a smoker at the time and was having
a cigarette outside when David came out and showed me an article in Science in
which Lee Hood was extolling the virtues of a new systolic array chip built by
TRW called the Fast Data Finder (FDF) [16]. I proceeded, as a firm believer that
special hardware is not the way to solve problems, to explain to David my new
ideas for approximate search and how I thought we could do such searches just as
well in software rather than spend money on relatively expensive hardware. David
had previously developed FASTA with Bill Pearson [5], which at the time was the
best heuristic for searching protein databases. David listened carefully and started
to think about how the ideas could be used in a heuristic and efficient way to search
for significant locally aligned regions of a protein query against a protein database
under a general scoring scheme such as the PAM or BLOSSUM metrics. In short
order we had the following heuristic adaption of my first filter:

1 What’s Behind Blast 7

1. Consider the p− k + 1 overlapping k-mers of the query (to increase the chance
of not missing a true hit).

2. Generate every string in the τ -neighborhood of the query k-mers under a
similarity-based protein metric δ and find all the exact matches to these strings
by some means (an index may not be in practice the fastest way to do this).

3. Extend each seed match into a local alignment of significance by some means,
and report it if its score is sufficiently high.

Over the next several months a number of versions of codes based on the above
template were developed by myself, Webb Miller, and Warren Gish.

Webb tried a simple index for the look up and reported that it was quite slow.
In hindsight this was just at the time when the mismatch in speed between memory
access and processor speed was becoming severe enough that being aware of cache-
coherence was becoming essential for good performance. I still wonder if a better
design of an index and the order of lookups within it, e.g. sorting the strings to be
looked up, would not lead to a much speedier implementation. The other idea and
faster implementation was to generate a finite automaton of the neighborhood strings
and in an O(n) scan of the text with the automaton find all potential match locations.
Each state of the automaton had an s-array table of transitions. Gish realized that if
a Mealy machine [17] was used instead of a Moore machine [18] (i.e. report hits on
transitions rather than on states), a factor of s is saved in space. Given that s is 20
for protein alphabets this was a significant space saving.

For the extension step we tried simply extending forward and backward with
no indels. I proposed the idea that an extension step stop when the score of the
extension dropped too far below the best score seen (the X-factor). I also wrote a
version that extended with indels, again observing the X-factor, but Lipman deemed
that it was too slow and not worth the additional computer time. He later reversed
his position in 1989 with a second release and publication of BLAST [19], albeit
with Miller reinventing the gapped extension strategy.

Warren also wrote all the code for practical matters such as low-complexity se-
quence filtering and he built the initial web server [20]. Altschul, the first author,
added the calculation of the significance of each match based on work he and Sam
Karlin had published earlier in the year [21]. He also tested the sensitivity and per-
formance of the method and wrote the paper. An unfortunate consequence of this
was that the algorithm was inadequately described and led to much confusion about
what the BLAST algorithm was over the ensuing years. However, the use of the
match statistics was a great advance and enhanced the popularity of the engine,
as previously there had been much optimistic reporting of statistically insignificant
matches in the formal molecular biology literature.

1.5 Doubling Extension of logs n Seeds

While BLAST was being developed, I continued to pursue the quest for a provably
efficient deterministic algorithm. The simple seed and test strategy hadn’t yielded

8 G. Myers

an analytic expected-time complexity, but it did suggest that k = logs n might be
a good seed size. Indeed, I liked immediately that since slogs n = n, a simple 2n

integer index of all the k-mers in the text permits O(p + h) expected-time lookup
of all h exact matches to a string of length p in the text. Later I was further able to
give an analytic estimate for the size of neighborhoods of strings of this special size,
but at the time I was focused on the extension step, as it was the aspect that was not
yielding an analytic bound. Later I would prove it, but at the time I intuited that if
ε is small enough, then the probability, Pr(p, ε), of a random ε-match to a string
of length p is less than 1/αp for some fixed α > 1 that is a function of ε (just as
an exact match has probability 1/sp). If this is true, then as shown below, the time
for an extension strategy based on progressively doubling and checking seed hits
telescopes for false hits.

The basic “double and check” idea is as follows. Suppose a k-mer of the query,
s0, ε-matches a substring t0 of the database. The idea of doubling and checking, is to
try a 2k-mer s1 of the query that spans s0 and check with the customary zone-based
dynamic programming algorithm if there is a string t1 spanning t0 that ε-matches s1.
If not, then one can, under the right doubling protocol to be given shortly, conclude
that an ε-match to the query does not exist that spans t0. Otherwise, a match to the
query is still possible, so one proceeds to double s1 to a substring s2 of the query of
length 4k and then check for an ε-match to it spanning t1. And so on, until either
there is a failure to match at some doubling stage, or until all of the query is found
to match a string spanning the seed hit t0.

Returning to the complexity claim, if one assumes Pr(p, ε) < 1/αp for some α,
then one starts with h = (p/k)(n/αk) expected random k-mer seed matches. The
idea is to check if these can be extended to ε-matches of length 2k, and then to
ε-matches of length 4k, and so on. For a text that is random with respect to the
query, the extensions that survive diminish hyper-geometrically. Specifically, there
are n(p/k)/α2x−1k surviving hits at doubling stage x and it takes O(ε(2xk)2) time
to check each implying that the total expected time to eliminate all of these random
seeds is

n(p/k)

log2 p/k∑

x=1

ε
(
2xk

)2
/α2x−1k = nek/αk

log2 p/k∑

x=1

4x/α(2x−1−1)k

=O
(
nek/αk

)
(1.2)

But how are the doublings of the seeds arranged? To keep it simple, suppose k

divides p, and p/k = 2π is a power of 2. If a query w of length p has an ε-match to
a substring v of the text, then by the Pigeon Hole principle either the first or second
half of w, defined as w0 and w1, ε-matches a prefix v0 or suffix v1 of v, respec-
tively, where v0v1 = v. Inductively if wx has an ε-match to a string vx , then by the
Pigeon Hole principle either the first or second half of wx , defined as wx0 and wx1,
ε-matches a prefix vx0 or suffix vx1 of v, respectively, where vx0vx1 = vx . In other
words, if there is an ε-match to the query w, then there is at least one binary string
α of length π such that wβ has an ε-match to a string vβ for all prefixes β of α

1 What’s Behind Blast 9

where it is further true that vβx is a prefix or suffix of vβ according to whether x

is 0 or 1, respectively. So now reverse the logic and imagine one has found a seed
ε-match to a piece wα of the query where α = a1a2 . . . aπ . To determine if w has a
match involving this seed match, one considers checking for ε-matches to the dou-
bling sequence of strings w(a0a1...aπ−1),w(a0a1...aπ−2), . . . ,w(a0a1),w(a0),w(ε) = w,
discovering the prefix and/or suffixes vβ at each level, until either w is confirmed
or a check fails. This strategy is deterministic as it never misses a match, yet the
expected time spent on a false positive seed is O(εk2).

When there is a match present, the time spent confirming the match is

π∑

x=1

ε
(
2xk

)2 = εk2
π∑

x=1

4x = εk2(4π+1/3− 1
)
< 4/3εp2 =O(ep) (1.3)

So in the case that there are exactly h real matches to the query, the extension and
reporting phase of an algorithm using this strategy takes expected time:

O
(
nek/αk + hep

)
(1.4)

When in particular k is chosen to be logs n, then αk = nlogs α and so the extension
step takes O(en1−logs α logn + hep) time. This is exciting because as long as α

is greater than 1 (how much so depends on ε), then the time is O(nc) for c < 1
and hence truly sublinear in n. In the next section, we will confirm that indeed
Pr(k, ε) < 1/αk for an α that is a function of ε, and thus that the complexity of this
section holds.

1.6 Neighborhood Size

I was fairly confident I could come up with a good algorithm for generating neigh-
borhoods that was proportional to the size of the condensed neighborhood, but I was
less certain about arriving at an analytic upper bound for the size of a condensed
d-neighborhood of a string of length k, ℵ̄k

d . In the introduction I (inaccurately) es-

timated it as
(
k
d

)
(2s)d and in the previous section I guessed such a bound would

have the form α(ε)k where α depends on ε = d/k. I embarked on developing re-
currences for counting the number of sequences of d distinct edits that one could
perform on a string of length k. Rather than consider induction over the sequence
of edits, I thought about an induction along the characters of the string from left to
right. At each character one can either leave it alone, delete it, insert some number of
symbols after it, or substitute a different symbol for it and optionally insert symbols
after it. Note carefully that redundant possibilities, such as deleting the symbol and
then inserting a character after it, or substituting a symbol and then deleting it, need
not be counted. While I took some care to produce tight recurrences at the time, I re-
cently noted that I could improve the recurrences but interestingly I could not prove
a better complexity bound than with the original recurrence. We will present the
new recurrence with the idea that another investigator might prove a better bound.

10 G. Myers

Suppose one has k symbols left in the query, and needs to introduce d differences
into this string of remaining characters where insertions before the first symbol are
not allowed. Let S(k, d) be the number of such d-edit scripts. The new lemma is

Lemma If k ≤ d or d = 0 then S(k, d)= ℵ̄d(k)= 1. Otherwise,

S(k, d) = S(k− 1, d)+ (s − 1)S(k − 1, d − 1)

+ (s − 1)

d−1∑

j=0

sj S(k − 2, d − 1− j)

+ (s − 1)2
d−2∑

j=0

sj S(k − 2, d − 2− j)+
d−1∑

j=0

S(k − 2− j, d − 1− j)

ℵ̄d(k) ≤ S(k, d)+
d∑

j=1

sjS(k − 1, d − j)

Proof The new recurrences begins with the observations that (a) a deletion followed
by an insertion is the same as a substitution, (b) a deletion followed by a substitu-
tion is the same as a substitution followed by a deletion, (c) an insertion followed
by a substitution is the same as a substitution followed by an insertion, and (d) an
insertion followed by a deletion is the same as doing nothing. Therefore we need
only consider scripts in which deletions can only be followed by deletions or an un-
changed character, and in which insertions can only be followed by other insertions
or an unchanged character. A substitution or unchanged character can be followed
by any edit (or no edit). Furthermore, it is redundant to substitute a character for
itself implying there are only s − 1 choices for a substitution at a given position.
Moreover, an insertion following an unchanged or substituted character is redun-
dant if the inserted character is equal to the one behind it, because the net effect
is the same as inserting the given character before the symbol it follows. So there
are only s − 1 non-redundant characters for the first insert in a sequence of inserts.
Finally, we need only produce condensed neighborhoods, so when t ≤ d the num-
ber of scripts is 1 as the null string is in the neighborhood and hence the condensed
neighborhood contains only this string. Thus it is clear that S(k, d)= 1 when either
k ≤ d or d = 0. For all other values of k and d it follows from the “rules” above
that

S(k, d)= S(k − 1, d)+ (s − 1)
(
S(k − 1, d − 1)+ I (k − 1, d − 1)

)

+ (s − 1)2I (k − 1, d − 2)+D(k − 1, d − 1)

where I (k, d) is the number of d edit scripts that immediately follow one or more
inserts after the (k+ 1)st symbol in the query string, and D(k,d) is the number of d

edit scripts that immediately follow a deletion of the (k + 1)st symbol in the query

1 What’s Behind Blast 11

string. It follows from the “rules” that

I (k, d)= sI (k, d − 1)+ S(k − 1, d)

D(k, d)=D(k− 1, d − 1)+ S(k − 1, d)

Solving the recurrences for I and D in terms of S and substituting these back into
the recurrence for S gives the final recurrence of the lemma for S, and the bound
for ℵ̄d(k) simply considers that one can have one or more inserts before the first
character of the query. �

A simple but tedious exercise in induction reveals that for any value c ≥ 1,
S(k, d) ≤ B(k, d, c) and ℵd(k) ≤ c

c−1B(k, d, c) where B(k, d, c) = (c+1
c−1)kcdsd . It

further follows that B(k, d, c) is minimized for c = c� = ε−1 + √1+ ε−2 where
ε = d/k. Given that ε ∈ [0,1], it follows that c� ∈ [1+√2,∞] implying c� is al-
ways larger than 1 and that c

c−1 is always less than 1+√0.5. Therefore,

S(k, d)≤ B
(
k, d, c�

)
and ℵd(k)≤ 1.708B

(
k, d, c�

)
(1.5)

As in the original paper, one can similarly and easily develop recurrences for the
probability Pr(k, ε) of an ε-match to a string of length k in a uniformly random
text and show that the recurrence is bounded by c

c−1B(k, d, c)/sk where d = �εk	.
Therefore:

Pr(k, ε)≤ 1.708/α(ε)k where α(ε)=
(

c� − 1

c� + 1

)
c�−εs1−ε (1.6)

proving that the bound used in Sect. 1.5, and hence also the complexity of the ex-
tension step of the algorithm derived in that section.

Now consider the function pow(ε) = logs
c�+1
c�−1 + ε logs c� + ε. A little algebra

and the bounds in Eqs. (1.5) and (1.6) allow us to conclude the following rather
striking bounds:

ℵε(k)=O
((

spow(ε)
)k) and α(ε)=O

(
s1−pow(ε)

)
(1.7)

The first bound effectively says that one can think of each position in the string as
have a certain “flex factor” at a given rate ε, namely spow(ε), so that the neighborhood
size is the kth power of the flex factor. The second bound effectively says that the
“match specificity” of each position in the set of neighborhood strings is s(1−pow(ε)),
so that the probability of matching any string in the ε-neighborhood of a string of
length k is 1 over the kth power of this match specificity.

While quite complex in form, note that pow(ε) is monotone increasing and con-
cave in ε and pow(0)= 0. The last fact implies ℵ0(k)= 1 and α(0)= s as expected.
It rises to the value of 1 before ε becomes 1, and does so at a point that depends on
the size s of the alphabet. We plot it below in Fig. 1.1 for several value of s. Finally,
note that if k = logs n then ℵε(k)=O(npow(ε)).

12 G. Myers

Fig. 1.1 Pow(ε) plotted for
several values of s. For each
curve the percentage
mismatch at which Pow
becomes 1 is given

1.7 Generating Condensed Neighborhoods

With the analysis of complexity in hand, the only remaining problem was to ef-
ficiently generate all the strings in a condensed d-neighborhood of a string w of
length k. The basic idea is to explore the tree of all strings over the underlying al-
phabet, computing row by row the dynamic programming matrix of w versus the
string on the current path in the tree. That is, given the last row, Lv,w , of the dy-
namic programming matrix for w versus a string v, one computes, in O(k)-time,
the last row of the dynamic program matrix for w versus va for every letter a in the
alphabet. For the simple Levenshtein measure, the smallest value in a row is mono-
tonically increasing and therefore once a row R has a minimum value, min(R),
greater than d , one can certainly eliminate the current string and all extensions of
it as belong to the condensed neighborhood. Conversely, once a row is reached that
has d as its last entry, then a string in the condensed neighborhood has been reached
and one should report the current string and then backtrack. In pseudo code, one
calls Search(ε, [012 . . . k]), where Search is the routine:

Search(v,R)

if R[k] = d then
Report v

else if min(R)≤ d then
for a ∈Σ do

Compute S = Lva,w from R

Search(va,R)

The big problem above is that too much time is taken visiting words that are not
in the condensed neighborhood. As soon as min(R) is d , we know that the only
possible words in the condensed neighborhood are those that are extended by the
suffix wx for each x such that R[x] = d , where wx is the suffix of w consisting of
its last k− x symbols. This gives us the algorithm:

1 What’s Behind Blast 13

Search(v,R)

1. if min(R)= d then
2. for each x s.t. R[x] = d do
3. Report v ·wx

4. else # min(R) < d #
5. for a ∈Σ do
6. Compute S = Lva,w from R

7. Search(va,S)

Now the number of terminal strings visited (i.e., those for which no further recursion
is pursued) is less than the number of words in the condensed neighborhood as at
least one member is reported in lines 2 and 3. Moreover, the number of interior
strings is also less than the number of terminal strings as the recursion tree is an
s-ary complete tree. Thus the total number of calls to Search is O(ℵ̄d(k)) and each
call takes O(k) time.

Next, immediately note that one need only compute the 2d + 1 values of the
dynamic programming matrix that are in the band between diagonals −d and d as
one can easily show that any value outside this band must be greater than d . Thus
the relevant part of each row is computed in O(d) time. But then how does one look
up v ·wx in an index in less than O(k) time given that |wx | can be on the order of k?

The answer comes from the fact that k = logs N and thus we can build a very sim-
ple index based on directly encoding every k-mer w as an s-ary number, code(w),
in the range [0, sk − 1] = [0, n− 1]. It is an easy exercise (and shown in the ear-
lier paper [8]) that with two n-vectors of integers, one can build an index that
for each k-mer code delivers the positions, in the underlying text (of length n),
at which that k-mer occurs. So with such a simple structure, reporting a string in
the neighborhood requires only delivering its code. First note that one can incre-
mentally compute code(va) = code(v) · s + code(a) in O(1) time, and second,
that one can precompute code(wz) and power(z) = code(sz) for every z in a rel-
atively minuscule O(k) time before starting the search. So during the generation of
neighborhoods, one gets the code for v · wx in O(1) time by way of the fact that
code(v · x)= code(v) · power(k − x)+ code(wx).

The careful reader will note that there is one remaining problem. Namely, that in
line 2 of Search there could be two or more entries in R, say x and z > x such that
R[x] = R[z] = e and it could be that v · wx is not in the condensed neighborhood
because wz is a prefix of wx ! To me it was fascinating that the answer lies in the
failure function, φ, of the Knuth–Morris–Pratt (KMP) algorithm for finding matches
to a string in a linear time scan of a text. Recall that for a string v = a1a2 . . . ak that
φ(x) is the maximum y such that a1a2 . . . ay is a suffix of a1a2 . . . ax . A table of
φ[x] for all x was shown by KMP to be constructible in O(k) time. Building φ

on the reverse of w gives us exactly the relationships we want. That is, φ(x) is the
maximum y such that wy is a prefix of wx . To test in the general case that wz is a
prefix of wx , we test if φk(x)= z for some number of application k of φ. Since only
2e+ 1 contiguous suffixes will be considered at the most, using the failure function
to test if any one is a prefix of another takes O(e) time with a simple marking
strategy.

14 G. Myers

Thus, we have an O(dℵd(k)) algorithm for generating all the words in the con-
densed d neighborhood of a string w of length k. Given seed size k, there are p/k

seeds and so generating the strings in the condensed neighborhoods of all of them
takes O(p/k · εkℵε(k))=O(eℵε(k)) time.

1.8 Total Running Time

Putting the time complexities of Sect. 1.7 for the generation of neighborhoods and
Sect. 1.5 for the extension of seed matches, we have as a function of seed size k:

O
(
eℵε(k)+ nek/α(ε)k + hep

)
(1.8)

Using Eq. (1.7) from Sect. 1.6, the complexity excluding the O(hep) true positive
term is

O
(
e
(
spow(ε)k + nk/s(1−pow(ε))k

))=O

(
e
(
sk

)pow(ε)
(

1+ k
n

sk

))
(1.9)

When one chooses k = logs n as the seed size, then sk = n and we formally ar-
rive at the expected-time complexity for the entire algorithm given in the following
theorem.

Theorem Using a simple O(n) precomputed index, one can search for ε-matches
to a query of length p in a text of length n, in:

O
(
enpow(ε) logn+ hep

)
expected time (1.10)

where pow(ε)= logs
c�+1
c�−1 + ε logs c� + ε and c� = ε−1 +√1+ ε−2.

1.9 Final Remarks and Open Problems

In a hopefully intuitive style, the reader has been introduced to a fairly involved set
of theoretical ideas that underlie the BLAST heuristic and that give a deterministic,
expected-time algorithm that is provably sublinear in the size of the text for suitably
small ε. That is the algorithm’s running time is O(nc) for c < 1 (and not O(cn) for
c < 1 as in a “sublinear” method such as the Boyer-Moore exact match algorithm).
Interestingly, the author is not aware of any work that builds on this approach or
another that has a superior time complexity.

There are at least two interesting questions. The first involves the analysis of
neighborhood sizes. Is there a tighter bound to the recurrences formulated here
and/or are there better recurrences? Such bounds would give a tighter characteri-
zation of the running time of the algorithm. The second question is a bit harder to
formulate, but the essence of it is whether or not this algorithm can be shown to be a

1 What’s Behind Blast 15

lower bound on the time required to find all ε-matches. In other words, one wonders
whether the idea of using a logs n seed size and then carefully doubling such hits is
essential for ruling out false positive locations. That is, must one spend this amount
of time eliminating a near miss? If true, it would also explain why a better result of
its kind has not been forthcoming in the last 20 years since the first publication of
this result.

References

1. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol.
147(1), 195–197 (1981)

2. Ukkonen, E.: Algorithms for approximate string matching. Inf. Control 64, 100–119 (1985)
3. Myers, E., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci. 4(1), 11–17

(1988)
4. Landau, G., Vishkin, U.: Efficient string matching with k mismatches. Theor. Comput. Sci.

43, 239–249 (1986)
5. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Natl.

Acad. Sci. USA 85, 2444–2448 (1988)
6. Myers, E.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251–266

(1986)
7. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search

tool. J. Mol. Biol. 215(3), 403–410 (1990)
8. Myers, E.: A sublinear algorithm for approximate keyword searching. Algorithmica 12(4/5),

345–374 (1994)
9. Weiner, P.: Linear pattern matching algorithm. In: 14th Annual IEEE Symposium on Switch-

ing and Automata Theory, pp. 1–11 (1973)
10. Manber, U., Myers, E.: Suffix arrays: a new method for on-line searches. In: Proc. 1st ACM-

SIAM Symp. on Discrete Algorithms, pp. 319–327 (1990)
11. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm. Technical

Report 124, Digital Equipment Corporation (1994)
12. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling variants using

mapping quality scores. Genome Res. 18(11), 1851–1858 (2008)
13. Jokinen, P., Ukkonen, E.: Two algorithms for approximate string matching in static texts. In:

Proc. of MFCS’91. LNCS, vol. 520, pp. 240–248 (1991)
14. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theor. Com-

put. Sci. 92(1), 191–211 (1992)
15. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Com-

put. 13(2), 338–355 (1984)
16. Roberts, L.: New chip may speed genome analysis. Science 244, 655–656 (1989)
17. Mealy, G.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34, 1045–1079

(1955)
18. Moore, E.: Gedanken-experiments on sequential machines. In: Automata Studies. Annals of

Mathematical Studies, vol. 34, pp. 129–153. Princeton University Press, Princeton (1956)
19. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.:

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nu-
cleic Acids Res. 25(17), 3389–3402 (1997)

20. http://blast.ncbi.nlm.nih.gov/Blast.cgi
21. Karlin, S., Altschul, S.: Methods for assessing the statistical significance of molecular se-

quence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268
(1990)

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Chapter 2
Forty Years of Model-Based Phylogeography

David Bryant and Jamie Kydd

Abstract The roots of model-based phylogeography are usually traced back to the
celebrated papers of Wright, Kimura, Cavalli-Sforza and Edwards, and Thompson.
Here we discuss a 1972 paper of Sankoff which we believe also belongs among the
foundational papers of the field. In it, Sankoff presents a joint model of geographic
subdivision and genetics and shows how both geography and phylogeny can be esti-
mated simultaneously from data. We review the paper, and discuss how it connects
to contemporary work in the area.

2.1 Introduction

Spatial structure has played a fundamental role in the evolutionary history of most
organisms and any attempt at reliable phylogenetic inference needs to take this into
account. The real problem is how to do this in practice: how to incorporate sam-
ple locations, present and past geography, and the effect of spatial correlations into
phylogenetic inference. Integrating geography with phylogeny leads one quickly to
a quagmire of difficult modeling and methodological issues, many of which remain
unresolved.

It will come of no surprise to computational biologists that one of the first pa-
pers to develop methodology for model-based phylogeography is by David Sankoff.
His 1972 paper, Reconstructing the History and Geography of an Evolutionary Tree
[28] was, in many ways, 30–40 years ahead of its time. It describes a stochastic
model incorporating both genetics and geography and shows how both geography
and phylogeny can be estimated simultaneously from data. Sankoff’s model cap-
tures important features of a dynamic spatial structure without being bogged down
in a mass of geographic and environmental data. Curiously, the paper has been sel-
dom cited, and almost entirely only within the field of lexicostatistics. It appears

D. Bryant (B)
University of Otago, Dunedin, New Zealand
e-mail: david.bryant@otago.ac.nz

J. Kydd
University of Auckland, Auckland, New Zealand
e-mail: jamie.b.kydd@gmail.com

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_2,
© Springer-Verlag London 2013

17

mailto:david.bryant@otago.ac.nz
mailto:jamie.b.kydd@gmail.com
http://dx.doi.org/10.1007/978-1-4471-5298-9_2

18 D. Bryant and J. Kydd

to have been completely missed by the phylogeographers. Our opinion is that the
novelty of ideas and models places this work among the classic early papers of
model-based phylogeography.

In this chapter we review Sankoff’s article and argue that this paper merits revis-
iting. First we consider the problem of modeling geography, outlining the model
in Sankoff’s paper and demonstrating some links with related models. We then
consider the interaction of genetics and geography. Sankoff introduces an appeal-
ing method for reconstructing phylogeographic patterns, one which has analogues
in Markov random field theory. We compare this approach to some contemporary
methodology in phylogenetics. We argue that Sankoff’s approach is genuinely dif-
ferent and that it is not without its advantages.

2.2 Modeling Geography

2.2.1 Background

There are two key design decisions to be made in any model integrating geography
and genetics [13]. The first is the statistical unit of analysis: does the model describe
individuals, family units, villages, populations, species, or something in between.
The second is the effect of geography on movement between these groups, or more
correctly, on the gene flow between these groups.

The theoretical foundation for the most commonly used migration models in
population genetics is provided by the island models of Wright [32], the stepping
stone models [15] and their generalization to arbitrary migration matrices [3]. Under
these models, the ‘islands’ or subpopulations are fixed a priori. The rate of migration
or gene flow between different islands might be different for each pair, or equal to
a constant, or capturing some aspect of the geographic structure. In many cases
the choice of migration rates is governed more by mathematical convenience than
biological realism.

We note that there are several models which do not break the population up into
discrete chunks but instead consider a distribution of individuals in space. These
have had far less impact than the island-based models. One important reason for
the discrepancy is that it is straightforward to set up a working discrete popula-
tion model, whereas continuous space models have hidden difficulties. The contin-
uous space model of Malecot [23] appears, at least superficially, to be quite reason-
able and conservative. It is nevertheless internally inconsistent, as demonstrated by
Felsenstein [12].

2.2.2 A Joint Model for Phylogeny and Geography

In Sankoff’s 1972 paper, the (sub)-populations are represented as vertices in a pla-
nar graph or, equivalently, as regions in the plane. Migrations occur at a fixed and
constant rate between populations connected by an edge. There is, however, a ma-

2 Forty Years of Model-Based Phylogeography 19

Fig. 2.1 The splitting processed studied by Sankoff. Initially there is a single region, here repre-
sented by a single region A (on the left) or a single vertex in the adjacency graph (on the right). At
each splitting, a region is subdivided by selecting two edges and joining them with a new boundary
line. The corresponding adjacency (dual) graphs appear on the right

jor difference between Sankoff’s model and others based on networks on the plane:
Sankoff’s model is dynamic. The model includes not only the migration patterns
between contemporary populations; it also describes how these connections change
over time.

Initially, there is one region, corresponding to population at the root of the tree.
After each population split (divergence/speciation) the corresponding region is sub-
divided, thereby adding one new vertex to the dual graph describing adjacencies
(Fig. 2.1). This process continues until we obtain one region for every contempo-
rary population. In a way, the model describes a process of successive allopatric
speciations.

A splitting is carried out as follows. A region is chosen uniformly at random.
Two of the edges bounding that region are picked uniformly and the region is split
in a way that subdivides both edges. In the case that there is only one sequence,
the boundary of that region is subdivided twice and the points of subdivision are
joined by a new edge, creating two regions (Fig. 2.1). There is considerable scope
for different selection schemes, and Sankoff says as much in his paper.

20 D. Bryant and J. Kydd

One splitting process is illustrated in Fig. 2.1. Initially there is a single region A.
This is subdivided to give two regions A and B . Then B is subdivided, giving
three regions A,B,C, and a further splitting of B gives a map with four regions
A,B,C,D. The adjacencies between these regions are represented by the graphs
on the right.

One aspect of the model that is not completely clear from Sankoff’s paper is
whether the external region could be split. The process would still be well defined,
and these splittings could model expansion into new territory which lies outside
the boundary of the original region A. The adjacency graph would be modified to
include a specially marked vertex representing the external region, with edges to
every region adjacent to the exterior boundary.

In either case, the process captures many aspects of connectivity relating to spa-
tial structure. What is surprising is how much it leaves out. It contains no infor-
mation about region size, or different environments, or even (beyond adjacency)
the shape of the regions. This sparsity of information could turn out to be particu-
larly useful. The model is clearly more believable than, say, models of populations
distributed on a torus, or populations with no spatial structure at all. The model is
clearly less ‘realistic’ than those incorporating landscape simulators and small-scale
geographic niches. However, realism in any model is only relative, and a hyper-
realistic model is useless if it is not tractable.

2.2.3 Properties of Splitting

Sankoff’s splitting process produces random planar adjacency graphs. The first nat-
ural question is whether there is anything special about the particular graphs pro-
duced.

To answer this, we start by looking not at the graph, but at the configurations of
regions (or cells) produced by subdivision. Observe that the faces of the adjacency
graph correspond to places where more at least three regions meet at a point, and
that every time this happens, exactly three regions meet at that point. As a conse-
quence all of the faces of the adjacency graph, except perhaps the external face,
are triangular. It is not hold to show that this will always be the case, provided the
number n of regions is at least three.

In the second version of the splitting model we permit splittings of the external
vertex. In this case, all faces of the adjacency graph will be triangular, so that the
adjacency graph (as a drawing) is a planar triangulation. There has been a great deal
of work on these triangulations due to their application in surface visualization [14],
finite element methods [5] and spatial data analysis [22]. The splitting operation of
Sankoff corresponds exactly to vertex splitting; the reverse operation is called edge
contraction.

An edge is said to be contractible if contracting that edge produces a valid trian-
gulation. It can be easily shown that an edge e is contractible if and only if

• e does not lie on any triangle of the graph which is not a face of the graph; and
• The triangulation is not K4 embedded on a sphere.

2 Forty Years of Model-Based Phylogeography 21

Steinitz and Rademacher [30] proved in 1934 that every triangulation of the sphere
(assuming n ≥ 4) can be converted into K4 by a sequence of (valid) edge contrac-
tions. As a consequence, we see that the graphs produced by this version of the
splitting process are exactly the triangulations: planar graphs with triangular faces.

Now consider the version of the splitting process where splittings of the external
region are not allowed. This change makes the analysis a little more complicated.
The adjacency graph is still planar, and every face except the exterior face is triangu-
lar. The problem of finding valid edge contractions in this case is known as polygon
reduction, a problem with applications to 3D graphics in the gaming industry [24].
Conditions for a valid edge contraction in this instance were established by [14]:

• e does not lie on any non-facial triangle; and
• the triangulation is not K3 embedded in the plane.

An analogue of Steinitz and Rademacher’s result for this version follows from Theo-
rem 3 of [14] (which establishes that the triangle is a subdivision of a triangulation)
and Lemma 4 of [14] (which shows that a subdivision of these triangulations can
be obtained by edge contractions). Hence the adjacency graphs produced by this
version of Sankoff’s process are exactly the plane graphs with all triangular faces
except the exterior face (also called simplicial surfaces [14]).

There are many more avenues for mathematical investigation here. The split-
ting model generates a distribution on triangulations; what is that distribution? Is it
possible to compute, in polynomial time, the probability of a given planar triangula-
tion? This question has a similar flavor to analyses of processes generating random
trees [29].

2.3 Modeling Genetics

2.3.1 The Model

The genetic model described in Sankoff’s paper is essentially the infinitely many
alleles model, first introduced by [15]. It assumes a set Γ of genetic sites, and at
each site the populations (regions) have a particular state (allele). Every mutation
produces a new and unique type, and the only information available is whether two
individuals carry the same type of allele at a site. There is a further assumption that
there is no variation within each region (polymorphism). This is akin to assuming
that the population sizes are small so that any mutant is quickly lost or fixed. A sim-
ilar assumption is made by [27].

There are three distinct processes contributing to gene dynamics in the model.
First, mutation: for each region, mutations occur at a fixed rate, and each mutation
creates a new and distinct genetic type. Second, migration: at a fixed rate the type
of a region is transferred from one of the adjacent regions. Random processes of
this form are examples of Markov random fields, and appear in numerous guises in
fields ranging from statistical physics to epidemiology. Kindermann and Snell [16]

22 D. Bryant and J. Kydd

credit the first work on Markov random fields to mathematicians in the former So-
viet Union (e.g. [10]). Their appearance in the West coincided roughly with the
publication of Sankoff’s paper.

Of course the connection with Markov random fields only applies between split-
ting times, when the adjacency graph remains constant. This third process, splitting,
adds a fairly novel twist to the analysis (compare the ‘splitting operator’ of [31]).

For the moment, consider the dynamics of an individual site. The relevant state
information at a time t is then just the partition of the populations into types. We
can analyze the model as a Markov chain with a state space equal to the set of par-
titions. A mutation takes a population and puts it into a class by itself. A migration
(borrowing) transfers a population from one class to another. A splitting duplicates
an element contained in one of the classes.

2.3.2 Dynamic Similarity

The approach taken by Sankoff is to bypass computations over the space of par-
titions, and instead concentrate on the dynamics for pairs of populations. The re-
sulting calculations are still exact and take account of all populations simultane-
ously, they just do not capture all of the higher-order dependencies between popu-
lations.

Let Xt ,Yt be two populations at some time t in the past, where t ranges from
t = 0 (the present) to t = −T (time of the first splitting). Let s(Xt ,Yt) denote the
proportion of sites at which Xt and Yt share the same state. Sankoff’s calculations
assume that the set Γ of sites is large enough that s(Xt ,Yt) coincides with the prob-
ability that the populations have the same type at a particular site, or equivalently
that s(Xt ,Yt) is the expected proportion of sites at which the two populations have
the same state.

A system of differential equations can be derived for s(Xt ,Yt) by means of a
case-by-case analysis. For the moment, just consider time periods between popula-
tion splits, so that the only processes to analyse are mutations and migrations. For
each region X, let NX denote the set of neighboring vertices (excluding X itself)
and let k(X)= |NX|. Let r denote the rate of mutation (loss) of an allele at a single
locus and a the rate at which a region X adopts a type (borrows) from one of its
k(X) neighbors.

We then have

ds(Xt ,Yt)

dt
=−2rs(Xt ,Yt) (2.1)

+ (
1− s(Xt ,Yt)

)
a
(
1/k(X)+ 1/k(Y)

)
(2.2)

+ a

k(X)− 1

∑

Z∈NX−{Y}

(
1− s(Xt ,Yt)

)
s(Yt ,Zt)

− s(Xt ,Yt)
(
1− s(Yt ,Zt)

)
(2.3)

2 Forty Years of Model-Based Phylogeography 23

+ a

k(Y)− 1

∑

Z∈NY−{X}

(
1− s(Xt ,Yt)

)
s(Xt ,Zt)

− s(Xt ,Yt)
(
1− s(Xt ,Zt)

)
. (2.4)

Here (2.1) corresponds to the loss of identity following mutation in X or Y ; (2.2) fol-
lows from the gain in identity when X or Y obtain a state from each other; (2.3) cor-
responds to the event when a state is transferred from a neighbor of X to X which ei-
ther restores or removes identity;1 while (2.4) is the symmetric case for Y. Unaware
of Sankoff’s work, Bryant re-derived analogous equations in [6], a paper modeling
network breaking in the Polynesian languages.

Sankoff showed that if we are provided with the adjacency graph at time 0 (the
present) as well as the quantities s(X0,Y0) for all X,Y, the entire history of split-
tings can be reconstructed. The proof works by induction on the number of popula-
tions. Let U,V be the regions created in the most recent split, and suppose that this
occurred at time τ . We then have

• s(Uτ ,Vτ)= 1;
• s(Xτ ,Yτ) < 1 for all X,Y not resulting from a split at time τ ;
• s(Xt ,Yt) < 1 for all t > τ and all X,Y including U,V.

The case of multiple splittings at exactly the same time can be dealt with by picking
one pair arbitrarily.

The values s(Xt ,Yt) can be computed for t ≥ τ by solving the initial value prob-
lem (2.1)–(2.4) with initial values s(X0,Y0). In this way, U,V and τ can be identi-
fied as well as all of the values s(Xτ ,Yτ). Replacing U and V by a single population
we continue to obtain the second most recent splitting, and so on.

The analysis in Sankoff’s paper assumes that the rate of mutation r and the rate
of adoptions a are known. It is clear that we cannot identify both parameters given
just the similarity values s(X0,Y0): if we scale the rates and times simultaneously
we can obtain identical similarity values. In fact, the situation is even more difficult.
It was shown in [19] that in some cases one of these rates cannot be identified even
though the other is known.

Sankoff makes the convenient (and acknowledged) assumption that the probabil-
ities of identity s(Xt ,Yt) are known without error. Any serious application of the
approach to real data will require some degree of uncertainty quantification. In a pa-
per on Polynesian languages [6], Bryant used parametric bootstrapping to estimate
variance in parameter estimates. Unfortunately, parametric bootstrapping is compu-
tationally inefficient, and it can be problematic when faced with substantial model
error on top of sampling error.

2.3.3 Multiway Similarities

One way to potentially address the problem of parameter estimation and uncertainty
quantification is to follow the lead of Markov random field theory (e.g. [16, p. 76])

1A typo in Sankoff’s original version of (2.3) was pointed out, rather excitedly, by [11].

24 D. Bryant and J. Kydd

and compute probabilities of identity for not just pairs, but triples and larger sets of
regions.

Let Rt denote the set of regions present at time t . For Xt ⊆ Rt we let s(Xt)

denote the probability that all of the regions Xt ∈ Xt have the same state at a site.
Hence s({Xt ,Yt })= s(Xt ,Yt) for all pairs Xt ,Yt . We note that if we define

δ(X)= 1− s(X)

for all subsets X then (for generic t) the function δ satisfies the properties of a
diversity [7], that is, δ(X)≥ 0, δ(X)= 0 if and only if |X | = 1 and

δ(X ∪Z)≤ δ(X ∪Y)+ δ(Y ∪Z)

whenever Y �= ∅. This gives us access to a small, but growing, set of tools and
theorems to aid analysis and computation.

Our main observation here though is that Eqs. (2.1)–(2.4) translate quite ele-
gantly to this new context. Instead of computing probabilities for pairs of regions,
we compute s(Xt) for a set of regions Xt , this being the probability that all regions
in the set have the same type of allele at time t . It is now a straightforward matter to
derive the differential equations for the probabilities s(Xt).

ds(Xt)

dt
=−|Xt |rs(Xt) (2.5)

+ (
1− s(Xt)

) ∑

X∈X

∑

Y∈NX

a
1

k(X)
s
((
Xt \ {X}

)∪ {Y}) (2.6)

× s(Xt)
∑

X∈X

∑

Y∈NX−X
a

1

k(X)

(
1− s

((
Xt \ {X}

)∪ {Y})). (2.7)

Here, (2.5) captures the rate at which mutations occur within Xt ; (2.6) captures the
rate by which a migration removes a dissimilar element from within Xt , thereby
making all regions have the same allele type; (2.7) captures the rate at which migra-
tions from outside Xt introduce non-identical allele types.

A convenient property of (2.5)–(2.7) is that the equation for ds(X)
dt

involves only
variables s(X ′) with |X ′| ≤ |X |. Extending Sankoff’s approach to triples or quadru-
ples of regions will not generate an exponential explosion in complexity.

2.4 Alternative Methods for Analysis

2.4.1 The Structured Coalescent

Given that 40 years have passed since Sankoff’s model was published, we might
expect dramatic progress in the tools we can bring to the analysis. Here we briefly

2 Forty Years of Model-Based Phylogeography 25

consider the range of modern approaches which we might use to carry out inference
with the splitting model.

Perhaps the biggest methodological breakthrough in population genetics is due
to coalescent theory, originally published by Kingman [17] but greatly advanced by
a large number of mathematicians and statisticians. Let S denote the sequence data,
G the geography (adjacency graph and splittings) and T the genealogical tree for
a particular site. The tree is affected by both splittings and borrowings. Using the
structured coalescent (e.g. [25]) one obtains a distribution P(T |G) of the tree given
the adjacency graph and splittings. Following a Bayesian analysis, one uses Monte
Carlo algorithms to simulate values from the joint posterior distribution

P(G,T |S) ∝ P(S|G,T)P (G,T)

= P(S|T)P (T |G)P (G).

The posterior distribution P(G|S) follows directly.
One open problem is the calculation of P(T |G): given a splitting process and the

resulting adjacency graph, what is the distribution for a genealogical tree. If the rate
of borrowing or migration is low, then P(T |G) will primarily reflect the tree formed
from the splittings themselves. As the rate of borrowing increases, the distribution
will become more diffuse.

It may be useful to combine the multiway similarity method of the previous sec-
tion with the structured coalescent. Consider a subset X of regions and let L(X) be
the length of a gene tree with tips corresponding to these regions. The probability of
all regions sharing the same trait is the probability of no mutation along the length
of this tree, or eL(X). Hence for a random gene tree,

s(X)=E
[
eL(X)

]
.

This connection could, for example, be used to check convergence when sampling
gene trees.

2.4.2 Stochastic Diffusion Methods

The stochastic diffusion strategy [20, 21] is to rearrange the conditional probabili-
ties, to give

P(G,T |S) ∝ P(S|G,T)P (G,T) (2.8)

= P(S|T)P (G|T)P (T). (2.9)

The difference is that we now have to calculate P(G|T) instead of P(T |G). This
method has been widely used, including several high profile applications (e.g.
[4, 26]. The accompanying software produces beautiful graphics depicting phylo-
genies on maps.

In itself, (2.9) is, of course, completely correct, and is a simple consequence of
conditional probabilities. The problem is the computation of P(G|T). In [20] it is

26 D. Bryant and J. Kydd

assumed that computing P(G|T) is a simple matter of adapting standard algorithms
for phylogenetic characters. Kühnert et al. [18] dub these ‘migration’ models since
they analyze migrations using models designed for mutations.

They, and a large number of earlier likelihood-based analysis, have made a crit-
ical error in their probability calculations. When they calculate the probability of
the geographic locations on the tree, they assume that the same conditional inde-
pendence underlying likelihood calculations for genetic data also applies for geo-
graphic characters. However, by conditioning on a tree they are making an implicit
assumption that all lineages survive to the present.

If you consider an ancestral lineage, the rate of migration to a given island is one
thing, the rate of migration conditional on survival to the present is another. If the
islands (or regions) are small then any lineage is likely to be either lost or fixed.
Hence if one lineage in the tree occupies a particular island it is highly unlikely that
any other lineage will occupy the island at the same time. This conflict breaks down
the conditional independence that is so critical for the calculation of phylogenetic
likelihoods. Furthermore, ignoring these conflicts is essentially equivalent to ignor-
ing the interplay between geographic structure and drift, assuming infinite effective
population sizes within each region.

2.4.3 Approximate Bayesian Computation

Approximate Bayesian computation (ABC) [2, 8, 9] has grown immensely in popu-
larity, partly because it (at first glance) does not require much specialist mathemati-
cal knowledge to implement and partly because it is possible to set up analyses for
extremely complex models fairly simply.

The general idea is to use simulations in place of likelihood calculations, and
it can be proven that, with sufficient iterations and sufficient summary statistics,
the approach provably converges to the correct posterior distribution. The approach
has a simplicity and transparency which makes it especially attractive. There are,
unfortunately, serious issues in higher dimensional space, though recent techniques
have a great deal of potential [1]. Until these issues are resolved, we suspect that
we will not have the computational power to do more than infer, roughly, even the
smallest splitting history.

2.5 Future Work

We see two principal methodological advances made in Sankoff’s work. The first is
the idea to model adjacencies not by a single graph, but by a sequence of vertex split-
tings generating a graph. The model uses an abstraction of the spatial component, in
the sense that the vertices in the graph are not given specific geographic locations.
The potential advantage of this could be tractable inferential methods which still
capture aspects of geography essential to phylogenetics.

2 Forty Years of Model-Based Phylogeography 27

The second advance is the method for computing pairwise similarities. Bodmer
and Cavalli-Sforza [3] had investigated this problem for a general migration matrix,
but only derived approximate results. Sankoff’s approach computes exact proba-
bilities incorporating all regions simultaneously. We have shown that this extends
beyond pairwise comparisons, and that the approach has not been superseded by
modern developments, though many practical computational and statistical prob-
lems remain.

References

1. Beaumont, M.A., Nielsen, R., Robert, C., Hey, J., Gaggiotti, O., Knowles, L., Estoup, A., Pan-
chal, M., Corander, J., Hickerson, M.: In defence of model-based inference in phylogeography.
Mol. Ecol. 19(3), 436–446 (2010)

2. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population
genetics. Genetics 162(4), 2025–2035 (2002)

3. Bodmer, W.F., Cavalli-Sforza, L.L.: A migration matrix model for the study of random genetic
drift. Genetics 59(4), 565–592 (1968)

4. Bouckaert, R., Lemey, P., Dunn, M., Greenhill, S.J., Alekseyenko, A.V., Drummond, A.J.,
Gray, R.D., Suchard, M.A., Atkinson, Q.D.: Mapping the origins and expansion of the Indo-
European language family. Science 337(6097), 957–960 (2012)

5. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer,
Berlin (2008)

6. Bryant, D.: Radiation and network breaking in Polynesian linguistics. In: Forster, P., Ren-
frew, C. (eds.) Phylogenetic Methods and the Prehistory of Languages, McDonald Institute
for Archaeological Research, pp. 111–118. (2006)

7. Bryant, D., Tupper, P.F.: Hyperconvexity and tight-span theory for diversities. Adv. Math.
231(6), 3172–3198 (2012)

8. Cornuet, J.-M., Santos, F., Beaumont, M.A., Robert, C.P., Marin, J.-M., Balding, D.J., Guille-
maud, T., Estoup, A.: Inferring population history with DIY ABC: a user-friendly approach to
approximate Bayesian computation. Bioinformatics 24(23), 2713–2719 (2008)

9. Csilléry, K., Blum, M.G.B., Gaggiotti, O.E., François, O.: Approximate Bayesian computation
(ABC) in practice. Trends Ecol. Evol. 25(7), 410–418 (2010)

10. Dobrushin, R.L.: Gibbsian random fields for lattice systems with pairwise interactions. Funct.
Anal. Appl. 2(4), 292–301 (1968)

11. Embleton, S.: Lexicostatistical tree reconstruction incorporating borrowing. Toronto Working
Papers in Linguistics, 2 (1981)

12. Felsenstein, J.: A pain in the torus: some difficulties with models of isolation by distance. Am.
Nat. 109(967), 359–368 (1975)

13. Guillot, G., Leblois, R., Coulon, A., Frantz, A.C.: Statistical methods in spatial genetics. Mol.
Ecol. 18(23), 4734–4756 (2009)

14. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh Optimization (1993)
15. Kimura, M., Crow, J.F.: The number of alleles that can be maintained in a finite population.

Genetics 49(4), 725 (1964)
16. Kindermann, R., Snell, J.L.: Markov Random Fields and Their Applications. American Math-

ematical Society, Providence (1980)
17. Kingman, J.F.C.: The coalescent. Stoch. Process. Appl. 13(3), 235–248 (1982)
18. Kühnert, D., Wu, C.-H., Drummond, A.J.: Phylogenetic and epidemic modeling of rapidly

evolving infectious diseases. Infect. Genet. Evol. 11(8), 1825–1841 (2011)
19. Kydd, J.: The effect of horizontal transfer and borrowing on phylogenetic signal. Honours

dissertation, University of Auckland, Auckland (2007)

28 D. Bryant and J. Kydd

20. Lemey, P., Rambaut, A., Drummond, A.J., Suchard, M.A.: Bayesian phylogeography finds its
roots. PLoS Comput. Biol. 5(9), e1000520 (2009)

21. Lemey, P., Rambaut, A., Welch, J.J., Suchard, M.A.: Phylogeography takes a relaxed random
walk in continuous space and time. Mol. Biol. Evol. 27(8), 1877–1885 (2010)

22. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Appli-
cations. Springer, Berlin (2010)

23. Malécot, G.: The Mathematics of Heredity. Freeman, New York (1970)
24. Melax, S.: A simple, fast, and effective polygon reduction algorithm. Game Dev. 5(11), 44–49

(1998)
25. Notohara, M.: The coalescent and the genealogical process in geographically structured pop-

ulation. J. Math. Biol. 29(1), 59–75 (1990)
26. Okoro, C.K., Kingsley, R.A., Connor, T.R., Harris, S.R., Parry, C.M., Al-Mashhadani, M.N.,

Kariuki, S., Msefula, C.L., Gordon, M.A., de Pinna, E., Wain, J., Heyderman, R.S., Obaro, S.,
Alonso, P.L., Mandomando, I., MacLennan, C.A., Tapia, M.D., Levine, M.M., Tennant, S.M.,
Parkhill, J., Dougan, G.: Intracontinental spread of human invasive salmonella typhimurium
pathovariants in sub-Saharan Africa. Nat. Genet. 44(11), 1215–1221 (2012)

27. Robledo-Arnuncio, J.J., Rousset, F.: Isolation by distance in a continuous population under
stochastic demographic fluctuations. J. Evol. Biol. 23(1), 53–71 (2010)

28. Sankoff, D.: Reconstructing the history and geography of an evolutionary tree. Am. Math.
Mon. 79(6), 596–603 (1972)

29. Steel, M., McKenzie, A.: Properties of phylogenetic trees generated by Yule-type speciation
models. Math. Biosci. 170(1), 91 (2001)

30. Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Springer, Berlin
(1934)

31. Sumner, J.G., Jarvis, P.D.: Entanglement invariants and phylogenetic branching. J. Math. Biol.
51(1), 18–36 (2005)

32. Wright, S.: Isolation by distance. Genetics 28(2), 114–138 (1943)

Chapter 3
How to Infer Ancestral Genome Features
by Parsimony: Dynamic Programming
over an Evolutionary Tree

Miklós Csűrös

Abstract We review mathematical and algorithmic problems of reconstructing evo-
lutionary features at ancestors in a known phylogeny. In particular, we revisit a
generic framework for the problem that was introduced by Sankoff and Rousseau
(Math. Program. 9:240–246, 1975).

3.1 Introduction

If extant organisms descended from a common ancestor through modifications [13],
then their genomes carry clues about the extinct ancestors’ genomes. This simple
observation can lead to impressive insights when the descendants are sufficiently
diverse. For example, by Blanchette et al.’s estimate [4], more than 95 % of an early
mammalian genome can be inferred soundly from whole-genome sequences.

Linus Pauling proposed the reconstruction of ancestral molecular sequences as
early as 1962 (as recounted in [41]). Pauling presented the idea by the example of
70 homologous sites in four human hemoglobin peptide chains (α,β, γ, δ) and three
other related sequences available at the time. The alignment and the ancestral infer-
ence were done manually, using only amino acid identities. It took another decade
to work out general computational procedures to do alignment and reconstruction.
Dynamic programming, the key algorithmic technique for the task, was introduced
into molecular biology by Needleman and Wunsch [40] with cursory mathemati-
cal exposition. Subsequent work in the early 1970s, including notable foundational
contributions from David Sankoff, rigorously established the utility of the dynamic
programming approach in problems related to sequence alignment, phylogeny and
RNA secondary structure [44].

Phylogenetic reconstruction methods matured concomitantly with sequence
alignment. Edwards and Cavalli-Sforza [17] proposed the idea of “minimal evo-
lution” or parsimony [7]: the phylogeny should imply the least evolutionary change
leading to the features observed in extant organisms. The principle, recast into prob-

M. Csűrös (B)
Department of Computer Science and Operations Research, University of Montréal,
Montreal, QC, Canada
e-mail: csuros@iro.umontreal.ca

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_3,
© Springer-Verlag London 2013

29

mailto:csuros@iro.umontreal.ca
http://dx.doi.org/10.1007/978-1-4471-5298-9_3

30 M. Csűrös

abilistic terms, leads to likelihood methods in phylogenetic inference [22]. Alterna-
tive ways of quantifying “evolutionary change” give rise to a number of parsimony
varieties [23]. Efficient algorithms have been developed for many special cases of
parsimony [7, 19, 20, 24, 28, 35, 49]. Sankoff and Rousseau [47] proposed an ele-
gant method for parsimony inference that is general enough to apply to many spe-
cific variants and has been adapted often in contemporary approaches to ancestral
reconstruction.

Here, I aim to revisit the power of the Sankoff–Rousseau algorithm and explore
some modern applications.

3.2 Ancestral Reconstruction by Parsimony

We are interested in the problem of using homologous traits in extant organisms
to reconstruct the states of the corresponding phylogenetic character at their ances-
tors. The corresponding mathematical problem, called here parsimony labeling, is
introduced in Sect. 3.2.1. The discussed mathematical abstraction searches for an
assignment of states to the nodes of a known evolutionary tree which minimizes
a penalty imposed on state changes between parents and children. The penaliza-
tion represents the “surprise value” associated with an assumed state change in the
evolution of the studied phylogenetic character; searching for the least surprising
evolutionary history is intended to ensure the reconstruction’s biological plausibil-
ity. The most popular mathematical varieties of parsimony, involving different types
of characters and penalties, are reviewed in Sect. 3.2.2. Sankoff and Rousseau’s
generic algorithm is presented in Sect. 3.2.3, along with its applications in many
specific parsimony variants.

3.2.1 Parsimony Labeling

Consider a given phylogeny Ψ = (L,V,E) over the terminal taxa L, which is a tree
with node set V , leaves L⊆ V , and edge set E . The tree is rooted at a designated root
node ρ ∈ V : for every node u ∈ V , exactly one path leads from ρ to u. A node u ∈ V
and all its descendants form the subtree rooted at u, denoted by Ψu.

Every node u ∈ V is associated with a label ξ [u] ∈ F over some feature alpha-
bet F . The labels ξ [x] represent the states of a homologous character at different
nodes of the phylogeny. Labels are observed at the terminal nodes, but not at the
other nodes, which represent hypothetical ancestors; see Fig. 3.1.

We state the problem of ancestral reconstruction in an optimization setting, where
the label space is equipped with a cost function d : F × F �→ [0,∞]. Suppose we
are given a fixed leaf labeling Φ : L→F . The goal is to extend it to a joint labeling
ξ : V �→ F with minimum total cost between parent-edge labels on the edges. In
systematics, the labels are states of a phylogenetic character at the nodes. The cost
function reflects the evolutionary processes at play. Formally, we are interested in
the following optimization problem.

3 Ancestral Inference by Parsimony 31

Fig. 3.1 Ancestral inference. Node labels ξ [u] are observed at the leaves and need to be inferred
at ancestral nodes

General Parsimony Labeling Problem Consider a phylogeny Ψ = (L,V,E),
and a label space F equipped with a cost function d : F×F �→ [0,∞]. Find a joint
labeling ξ : V �→F that extends a given leaf labeling Φ : L→F and minimizes the
total change

f ∗ = min
ξ⊃Φ

f (ξ)= min
ξ⊃Φ

∑

uv∈E
d
(
ξ [u], ξ [v]). (3.1)

Parsimony labeling belongs to a large class of optimization problems related to
Steiner trees [29]. In a Steiner-tree problem, the pair (F , d) forms a metric space,
and the labels describe the placement of tree nodes in that space. Leaves have a
fixed placement and need to be connected by a minimal tree through additional
inner nodes, or so-called Steiner vertices. Classically, the placement is considered
in k-dimensional Euclidean space with F = Rk , and d is the ordinary Euclidean
distance. General parsimony labeling gives the optimal placement of Steiner vertices
for a fixed topology.

The algorithmic difficulty of parsimony labeling depends primarily on the as-
sumed cost function d . Finding the most parsimonious tree is NP-hard under all
traditional parsimony variants [14–16], but computing the score of a phylogeny is
not always difficult.

3.2.2 A Quick Tour of Parsimony Variants

The minimum total change of Eq. (3.1) measures the economy of the assumed
phylogeny, or its parsimony score minξ f (ξ). Systematicists have been routinely
constructing hypothetical phylogenies minimizing the parsimony score over some
chosen phylogenetic characters [23]. Provided that the cost function truly reflects
the economy of the implied evolutionary histories, parsimony is the phylogenetic
equivalent of Occam’s razor. Common parsimony variants use fairly simple abstrac-
tions about evolutionary processes. For instance, Dollo parsimony (Sect. 3.2.2.1)
and Fitch parsimony (Sect. 3.2.2.1), use cost functions that penalize every state

32 M. Csűrös

change the same way. In the following tour, we briefly discuss classic parsimony
variants for directed evolution (Sect. 3.2.2.1), numerical characters (Sect. 3.2.2.2)
and molecular sequences (Sect. 3.2.2.3), along with some historical notes.

3.2.2.1 Directed Evolution

The earliest formalizations of parsimony [7, 34] framed phylogenetic inference for
situations where evolutionary changes have a known (or assumed) directionality.
In Dollo– and Camin–Sokal parsimony, the directionality constraints yield simple
solutions to ancestral labeling.

Camin and Sokal [7] examine phylogenetic characters with some fixed ordering
across possible states. The ordering is ensured by cost asymmetry. If x ≺ y, then
0 ≤ d(x, y) <∞ and d(y, x) =∞. The cost function is additive over successive
states: for any three successive labels x ≺ y ≺ z, d(x, z)= d(x, y)+ d(y, z). In [7],
this type of scoring is introduced for morphological characters—nine characters
such as foot anatomy encoded by small integers—to establish a phylogeny for ten
horse fossils. Ancestral labeling is straightforward: set ξ [u] to the minimum label
seen at leaves in u’s subtree.

Dollo’s law [34] applies to rare evolutionary gains (e.g., complex morphological
structures) that subsequent lineages may lose. The principle translates into a binary
labeling problem where only one 0→ 1 transition is allowed in the entire phylogeny,
and the task is to minimize the number of 1→ 0 transitions. As first explained by
Farris [20], the optimal labeling is directly determined by the principle. The lowest
common ancestor w of leaves u with label ξ [u] = 1 is labeled as ξ [w] = 1. It is
either the root node, or the point of the single gain 0→ 1 in the entire phylogeny.
Outside w’s subtree, all nodes are labeled with 0. Within Ψw , every ancestral node v

is labeled by the maximum of the labels under it: if all its descendants are labeled
with 0, so is ξ [v] = 0; otherwise, ξ [v] = 1.

3.2.2.2 Numerical Labels

Cavalli-Sforza and Edward [9] pose the problem of inferring a phylogeny of popu-
lations from gene allele frequencies. Allele frequencies and many other interesting
characters are best captured by numerical labels as real-valued continuous variables.
When F = R, the absolute and the squared distances are common choices for par-
simony labeling.

Wagner parsimony [32] applies to a numerical label space (discrete or contin-
uous) and uses the distance d(x, y) = |x − y|. Farris [19] describes a linear-time
algorithm for labeling a binary tree, which was proven to be correct and adaptable
to non-binary trees by Sankoff and Rousseau [47].

Squared parsimony [35] employs the squared distance d(x, y) = (x − y)2 over
a continuous label space and gives a linear-time algorithm to compute the an-
cestral labeling in linear time. Squared parsimony has an attractive probabilis-
tic interpretation involving a Brownian motion model [35]. Suppose that changes

3 Ancestral Inference by Parsimony 33

along each edge follow a Brownian motion, so child labels have a normal distri-
bution centered around the parent’s label with variance proportional to the edge
length. If edge lengths are the same, then the ancestral labeling that maximizes the
likelihood also minimizes the parsimony score with the cost function d ′(x, y) =
− log(1

σ
√

2π
exp(− (x−y)2

2σ 2)), where σ is the common standard deviation of the child
labels. After stripping away the constant term and common scaling factors, only the
remaining squared distance d(x, y)= (x−y)2 determines the labeling’s optimality.

3.2.2.3 Molecular Sequences

For the purposes of phylogenetic inference and ancestral reconstruction from molec-
ular sequences, parsimony scoring has to capture the peculiarities of homologous
sequence evolution. One possibility is to consider a fixed multiple alignment and
use parsimony with residues at aligned sites. Fitch parsimony [24], which applies
to a finite label space such as the four-letter DNA alphabet, simply minimizes the
number of different labels on tree edges. Much more challenging is parsimony with
edit distance, first addressed by David Sankoff [43, 46], when the label space en-
compasses all possible sequences, and the scoring includes insertions and deletions.
Parsimony labeling with edit distance is NP-hard, since it is equivalent to multiple
alignment with a fixed guide tree, which is known to be NP-hard for any alignment
scoring [18].

Originally, Kluge and Farris [32] employed Wagner parsimony to six binary char-
acters derived from distinguishing body features in 12 frog families. When labels
are binary (F = {0,1}) in Wagner parsimony, there are only two possible distances:
d(x, y) = 0 if x = y and d(x, y) = 1 if not. Fitch parsimony [24] generalizes the
same scoring principle to any discrete alphabet:

d(x, y)= {x �= y} =
{

0 if x = y;
1 if x �= y

Computing the optimal labeling under this distance takes linear time in the tree
size [24, 28]. Fitch parsimony, in contrast to Wagner parsimony, accommodates
non-numerical phylogenetic characters, including amino acids and nucleotides. In
an early application, Fitch and Farris [25] apply the scoring method to nucleotides
in homologous positions in a multiple alignment in order to infer the most parsimo-
nious RNA coding sequences from protein data.

3.2.3 The Sankoff–Rousseau Technique

The crucial insight of [47] is that general parsimony labeling has a recursive struc-
ture that calls for solutions by dynamic programming.

34 M. Csűrös

For every node u ∈ V , define the subtree cost fu : F �→ [0,∞) as the minimum
total change implied by u’s label within its subtree:

fu(x)=min
∑

vw∈Eu;ξ [u]=x

d
(
ξ [v], ξ [w]),

where Eu are the edges within the subtree Ψu. The minimum is taken across all
ancestral node labelings with the same assignment x at u. By the principle of opti-
mality, the following recursions hold:

fu(x)=
{

0 if x =Φ[u];
∞ if x �=Φ[u]; {u ∈ L} (3.2a)

fu(x)=
∑

uv∈E
min
y∈F

(
d(x, y)+ fv(y)

) {u ∈ V \L} (3.2b)

In particular, the parsimony score is retrieved by considering the minimum total
penalty at different root labelings:

f ∗ =min
x∈F

fρ(x).

The recursions of Eqs. (3.2a), (3.2b) suggest a general outline for computing the best
ancestral labeling together with its score. First, compute all fu in a postfix traversal,
visiting parents after child nodes, as shown by the procedure ANCESTRAL below.
Second, retrieve the best labeling in a prefix traversal that realizes the computed
minimum f ∗ by standard backtracking, as shown by the procedure LABELING here.

ANCESTRAL(u) // (computes fu for a node u)
A1 if u ∈L then fu(x)←{x =Φ[u]}?0 : ∞ // (leaf)
A2 else
A3 for uv ∈ E do // (for all children v)
A4 fv ← ANCESTRAL(v)

A5 compute huv(x)←miny∈F (d(x, y)+ fv(y))

A6 set fu(x)←∑
uv∈E huv(x)

A7 return fu

(Line A1 uses {x = Φ[u]}?0 : ∞ to denote the function for a forced labeling at a
terminal node u, from Eq. (3.2a).) Line A5 computes the stem cost huv(x) for a
child of u, which is the minimal change along the edge and within the subtree of v,
given that u is labeled with x. Line A6 sums the stem cost functions to construct fu.

LABELING(v) // (computes the best labeling)
L1 if v is the root then ξ [v] = arg minx fv(x)

L2 else
L3 u←parent of v; x← ξ [u]
L4 ξ [v]← arg miny∈F (d(x, y)+ fv(y))

L5 for vw ∈ E do LABELING(w) // (for all children of w, if any)

3 Ancestral Inference by Parsimony 35

Fig. 3.2 Inference of ancestral labels by parsimony. This example uses a binary character (pres-
ence-absence) with profile Φ , a loss penalty 1 and gain penalty g ≥ 0; i.e., the distance function
over the feature space F = {0,1} is defined as d(x, x)= 0 and d(0,1)= g, d(1,0)= 1. Depend-
ing on the gain penalty g, the optimal solution may imply two losses (score f = 2) or two gains
(f = 2g). The dynamic programming proceeds from the leaves towards the root, computing the
score fu(x) of the optimal reconstruction within each subtree Ψu, in the order indicated by the
arrows

For a finite label space, the minimum in Line A5 is found by examining all possible
values. At the same time, the best labeling y for each x is saved for backtracking in
Lines L1 and L4. For an infinite space or very large label space, it is not immediately
clear how the minimization can be done in practice. Luckily, it is possible to track f

and h by other means than tabulation in many important cases.

3.2.3.1 Few Possible Labels

The general Sankoff–Rousseau outline immediately yields an algorithm when la-
bels have only a few possible values. Figure 3.2 shows an example with absence-
presence labels (F = {0,1}). The distance metric is defined by the gain penalty g

and loss penalty 1, which apply on every edge uv to labelings ξ [u] = 0, ξ [v] = 1,
and ξ [u] = 1, ξ [v] = 0, respectively.

A computer implementation can tabulate fu(x) for all nodes u and possible val-
ues x. With a table-based implementation, the running time grows linearly with tree
size, but quadratically with possible labels. Note that the tables accommodate arbi-
trary cost functions, not only true distance metrics.

Theorem 1 For a finite label space of size r = |F |, and an evolutionary tree
with m edges, algorithms ANCESTRAL and LABELING compute an optimal label-
ing in O(mr2) time and O(mr) space.

Proof A table stores fu(x) for m+ 1 nodes and r possible labels. Line A1 is ex-
ecuted once for every terminal node. In Line A5, miny∈F is found in a loop over
possible child labelings y in O(r) time. Lines A5 and A6 are executed for each edge
and label x, in O(mr2) total time.

36 M. Csűrös

In order to use with backtracking, the minimal y found in Line A5 is saved for
every edge uv and label x, using m × r entries in a table. Line L4 takes O(1)

to retrieve the optimal labels on each edge, and Algorithm LABELING completes
in O(m) time. �

3.2.3.2 Molecular Sequences

Sankoff and Rousseau [47] generalize Sankoff’s previously developed method for
the ancestral reconstruction off-RNA sequences [43, 46], which is by far the most
challenging case of ancestral parsimony. The recursions for multiple alignment and
ancestral labeling can be combined to find an optimal solution, but the computation
takes an exponentially long time in the number of nodes [43].

3.2.3.3 Squared Parsimony

Squared parsimony was first proposed [9, 42] as an appropriate cost function
d(x, y)= (x − y)2 for inference from allele frequencies ξ ∈ [0,1] observed in pop-
ulations. Maddison [35] solved the parsimony labeling problem by directly employ-
ing the method of Sankoff and Rousseau [47]. Theorem 2 below restates the key
result: subtree and stem costs are quadratic functions, for which the parameters can
be computed recursively.

Theorem 2 In the general parsimony problem with F =R and d(x, y)= (y− x)2,
the subtree weight functions are quadratic. In other words, one can write the subtree
cost function at each non-leaf node u as

fu(x)= αu(x −μu)
2 + φu, (3.3)

with some parameters αu,φu,μu ∈ R. The parameters α,μ satisfy the following
recursions:

αu =
{

undefined if u is a leaf;
∑

uv∈E βv otherwise; (3.4a)

μu =
{

ξ [u] if u is a leaf;∑
uv∈E βvμv∑

uv∈E βv
otherwise; (3.4b)

where βv is defined for all v ∈ V by

βv =
{

1 if v is a leaf;
αv

αv+1 otherwise.
(3.4c)

By Theorem 2, ANCESTRAL can proceed by storing α and μ at every node.

3 Ancestral Inference by Parsimony 37

Theorem 3 For squared parsimony, algorithms ANCESTRAL and LABELING com-
pute an optimal labeling in O(m) time and O(m) space.

Proof Lines A5–A6 compute the subtree costs by the recursions of (3.4a)–(3.4c)
in O(m) total time. By Eq. (3.3), LABELING needs to set the root label in Line L1
as

ξ [ρ] = arg min
x

αρ(x −μρ)2 + φρ = μρ (3.5)

since αu > 0 at all nodes. The stem weight function huv(x) for an inner node v is

huv(x)=min
y

(
(x − y)2 + fv(y)

)= αv

αv + 1
(x −μv)

2 + φv,

with minimum at

y∗ = arg min
y

(
(x − y)2 + fv(y)

)= x + αvμv

αv + 1
. (3.6)

Therefore, Line L4 sets the child labeling as

ξ [v] = ξ [u] + αvμv

αv + 1
.

LABELING thus spends O(1) time on each node and finishes in O(m) time. �

Squared parsimony can be generalized to k-dimensional features F = Rk . The
optimal parsimony labeling with the squared Euclidean distance between labels
d(x, y) =∑k

i=1 = (xi − yi)
2 can be computed component-wise, since plugging it

into (3.1) gives

min
ξ⊃Φ

f (ξ)=
k∑

i=1

min
ξi⊃Φi

∑

uv∈E

(
ξi[u] − ξi[v]

)2

︸ ︷︷ ︸
best labeling in coordinate i

. (3.7)

It suffices to apply the recursions of (3.4a)–(3.4c) in each coordinate separately. In
an application where each label represents a distribution over k elements, it is not
immediately clear that the coordinate-wise reconstruction yields valid ancestral dis-
tributions, i.e., that

∑k
i=1 ξi[u] = 1 is ensured everywhere. Fortunately, the optimal

labeling formulas of (3.5) and (3.6) automatically ensure that the separate recon-
structions always add up to proper distributions [12].

3.2.3.4 Wagner (Linear) Parsimony

Wagner parsimony considers the linear cost function d(x, y) = |x − y| over a nu-
merical label space like F = R. A consequence of the linear cost is that the sub-
tree costs have a simple recursive structure [19, 47, 49], and the Sankoff–Rousseau

38 M. Csűrös

Fig. 3.3 Illustration of Theorem 4 about the shape of the cost functions. Left: for asymmetric
Wagner parsimony, the subtree cost function f is always piecewise linear with slopes a0, . . . , ak

(k = 5 here). Right: the stem cost function h(y)=minx(d(y, x)+ f (x)) is obtained by “shaving
off” the steep extremities of f and replacing them with slopes of (−λ) and ν, respectively

method can be carried out by tracking simple intervals. An asymmetric linear cost
function, examined by [12], leads to a similarly recursive structure. Namely, asym-
metric Wagner parsimony uses a linear cost function of the form

d(x, y)=
{

λ(y − x) {y ≥ x}
ν(x − y) {x > y},

with gain and loss penalties λ, ν. In asymmetric Wagner parsimony, the subtree cost
functions are continuous, convex and piecewise linear. Consequently, they can be
manipulated symbolically as vectors of slopes and breakpoints, see Fig. 3.3.

Theorem 4 For every non-leaf node u ∈ V \ L, there exist k ≥ 1, α0 < α1 < · · ·<
αk (slopes), x1 < x2 < · · ·< xk (breakpoints), and φ0, . . . , φk ∈ R that define fu in
the following manner:

fu(x)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ0 + α0x if x ≤ x1;
φ1 + α1(x − x1) if x1 < x ≤ x2;
. . .

φk−1 + αk−1(x − xk−1) if xk−1 < x ≤ xk;
φk + αk(x − xk) if xk < x,

(3.8)

where φ1 = φ0 + α0x1 and φi+1 = φi + αi(xi+1 − xi) for all 0 < i < k. Moreover,
if u has d children, then a0 =−dλ and ak = dν.

Figure 3.3 illustrates the proof of Theorem 4 from [12]. The Sankoff–Rousseau
algorithm can be implemented by storing the breakpoints for the slopes be-
tween (−λ) and ν. In classical Wagner parsimony, λ = ν = 1, and the two stored

3 Ancestral Inference by Parsimony 39

breakpoints define an interval of equivalently optimal labelings at every node, used
in the original algorithm of [19].

Theorem 5 Algorithms ANCESTRAL and LABELING find the optimal labeling by
asymmetric Wagner parsimony in O(nh logdmax) time for a phylogeny of height h

with n nodes and maximum node degree dmax. For integer-valued penalties λ, ν with
B = λ+ ν, the algorithms label the tree in O(nB) time.

Proof For general real-valued penalties λ and ν, the breakpoints and the slopes
defining the subtree cost functions are stored by ordered lists. The symbolic sum-
mation of stem costs in Line A6 involves merging ordered lists, leading to a running-
time bound of O(nh logdmax) [12].

For integer-valued penalties, it is enough to store the B = (λ+ν) possible break-
points associated with slopes between −λ and ν that can play a role in an optimal
labeling. By storing the breakpoints for fu in an array of length B , Line A6 sums
the stem costs in O(nB) time across all nodes, and an optimal labeling is found
in O(1) time per node. �

Wagner parsimony easily generalizes to the k-dimensional labels F = Rk with
the Manhattan distance d(x, y)=∑k

i=1 |xi − yi |. Just like with squared parsimony,
the optimal labeling can be decomposed by coordinates.

3.2.3.5 Multiple Reconstructions

The optimal ancestral labeling for Camin–Sokal and Dollo is always unique, due
to the directionality of the parsimony cost function. Squared parsimony, as well,
has a unique optimal solution by Theorem 2. Otherwise, the most parsimonious
labeling of Eq. (3.1) is not necessarily unique. For example, the two ancestral la-
belings depicted in Fig. 3.2 are both minimal when gains and losses are penalized
equally (g = 1): they entail either two loss events or two gain events. Even if mul-
tiple solutions are possible, the ancestral labeling algorithm can resolve the ties at
will between ancestral labels that yield the same minimum subtree costs either at
the root (Line L1 in LABELING) or on the edges (Line L4), following the normal
order of the algorithm.

Theorem 4 shows an important property of Wagner parsimony, first recognized
by Farris [19]. Namely, the minimum subtree score for an ancestral node is at-
tained either at a single label, or within a closed interval where the cost function
has slope 0. The ambiguity of optimal ancestral labelings can be characterized by
computing the set of possible labels (a closed interval, possibly containing a single
point) at each ancestral node in linear time [49]. When multiple ancestral labels are
equally optimal, one of two heuristics are traditionally chosen to resolve ties. The
first one, proposed in [19] and named ACCTRAN (for “accelerated transformation”)
by [49], chooses a reconstruction where label changes are placed closer to the root.

40 M. Csűrös

Mathematically, ACCTRAN is the unique optimal reconstruction in which all sub-
tree scores are minimized; i.e.,

∑
vw∈Tu

d(ξ [v], ξ [w]) takes its minimum value in
each subtree Tu among all reconstructions ξ with minimum parsimony score [39].
The other heuristic, called DELTRAN (“delayed transformation”), defers changes
away from the root [49]. ACCTRAN is believed to give biologically more plau-
sible reconstructions by minimizing parallel gains in different lineages, although
closer scrutiny shows that ACCTRAN and DELTRAN do not always behave as ex-
pected [1].

3.3 Applications and Extensions

Many authors built on the Sankoff–Rousseau technique to develop related efficient
algorithms. We sample a few algorithmic extensions in Sect. 3.3.1. A few biological
applications in Sect. 3.3.2 illustrate the pertinence of parsimony-based reconstruc-
tions in contemporary studies of genome evolution.

3.3.1 Algorithmic Extensions

Tree-Additive Cost Functions A somewhat inconvenient property of the generic
Sankoff–Rousseau algorithm is that it entails a quadratic dependence on the alphabet
size (Theorem 1). Its simplicity, however, lends itself to efficient parallel implemen-
tation [31]. The quadratic factor can be avoided for certain cost functions with an
additive structure, e.g., if d(x, y) is an ultrametric distance [10].

Parsimony on a Phylogenetic Network Kannan and Wheeler [30] address
the generalization of the Sankoff–Rousseau algorithm to a phylogenetic network.
Specifically, they consider networks with some reticulate nodes having two incom-
ing and one outgoing edges. The parsimony score sums the costs occurred along
all the edges, including those connecting reticulate vertices. The optimal labeling
can be computed by enumerating all possible joint labelings at reticulate nodes, in
O(mrk+2) time for m edges and k reticulate nodes over a r-letter alphabet.

Gain and Loss Edges After constructing an optimal ancestral labeling, it is triv-
ial to collect the lineages with similar state transitions such as the edges on which
some feature was lost (transition 1→ 0). In a binary labeling problem for absence-
presence data, it is practicable to track such sets of edges by the single traversal of
ANCESTOR [37]. Specifically, define the sets Luv(x) and Guv(x) for all edges uv as
sets of loss and gain edges, respectively, affecting v’s subtree when ξ [u] = x in an
optimal labeling ξ . For a terminal edge uv, Luv(0) = Guv(1) = ∅, Luv(1) = {uv}
if ξ [v] = 0, and Guv(0)= {uv} if ξ [v] = 1. For all non-leaf nodes u, let Lu∗(x)=

3 Ancestral Inference by Parsimony 41

⋃
uv∈E Luv(x) and Gu∗(x) = ⋃

uv∈E Guv(x). The following recursions hold, de-
pending on the event on the edge uv:

〈
Luv(1),Guv(1)

〉=
{
〈{uv} ∪Lv∗(0),Gv∗(0)〉 (loss on uv)

〈Lv∗(1),Gv∗(1)〉 (no loss on uv)

〈
Luv(0),Guv(0)

〉=
{
〈Lv∗(1), {uv} ∪Gv∗(1)〉 (gain on uv)

〈Lv∗(0),Gv∗(0)〉 (no gain on uv)

The stem cost for the edge huv counts the edges within the Luv and Guv sets. Using
asymmetric gain–loss costs as in Sect. 3.2.3.4, huv(x) = λ|Guv(x)| + ν|Luv(x)|.
The choices between loss vs. no-loss and gain vs. no-gain are made to minimize the
associated costs.

3.3.2 Applications

Parsimony’s simple assumptions are appreciated even in contemporary studies of
complex genome features. A case in point is Wagner parsimony that was re-
cently used to study genome size evolution [6] and short sequence length poly-
morphisms [51]. Genome size and tandem repeat copy numbers as well as the other
examples to follow are common in that they are difficult to address in probabilis-
tic models, either for technical reasons or simply because the relevant evolutionary
processes are still not understood well enough.

Phylogenetic Footprinting In phylogenetic footprinting, conserved short se-
quence motifs are discovered in a sample of unaligned sequences associated with
the terminal nodes of a known phylogeny [5]. It is assumed that the sequences con-
tain common regulatory signals with some level of conservation. The correspond-
ing ancestral reconstruction problem (Substring Parsimony) labels the nodes with
k-letter sequences F = {A,C,G,T}k for a fixed k. Leaves must be labeled by a word
that appears somewhere in the input sequence, and edge costs measure distance be-
tween parent and child labels. The algorithm of Sankoff and Rousseau can be readily
modified to initialize a set of possible labels at the leaves with 0 cost. [5] propose
practical algorithmic improvements for small k, but Substring Parsimony is NP-hard
in general [18].

Gene Family Evolution A number of software packages implement asymmet-
ric Wagner parsimony for the inference of ancestral gene family sizes [2, 8, 11].
Weighted parsimony has been used to study the frequency of gene loss and gain,
and to estimate ancestral genome sizes [36, 37]. Pioneering large-scale studies on
the phylogenetic distribution of gene families revealed a surprisingly gene-rich last
universal common ancestor by ancestral reconstruction [33]. Genes tend to be lost

42 M. Csűrös

more often than gained in the course of evolution, and asymmetric gain-loss penal-
ties can capture known discrepancies between the intensities of the two processes.
Selecting the relative costs between loss and gain entails additional considerations
such as the plausibility of the reconstructed ancestral genome size [33].

Han and Hahn [27] use k-dimensional linear parsimony to study gene dupli-
cations and losses concomitantly with transpositions between chromosomes. Ho-
molog genes for a family are encoded in a k-dimensional integer vector by the copy
numbers on k chromosomes. Homolog families over ten complete Drosophila re-
veal patterns of sex-specific gene movement to and from the X chromosome, overly
active functional categories, and other idiosyncrasies that characterize fly genome
evolution.

Splice Sites and Intron Length Gelfman and coauthors [26] resort to squared
parsimony to infer ancestral intron length from homologous introns in 17 vertebrate
genomes. The study links length constraints to splicing signal strength (the stronger
the signal, the longer the intron can be) and shows that the correlations specifically
pertain to vertebrates. In a related study, Schwartz et al. [48] infer ancestral splice
site signals. Starting with aligned 5’ splice sites and branch sites in different introns,
the nucleotide frequencies in each motif position are compiled into probabilistic
sequence motifs that label the leaf genomes. Ancestral nucleotide frequencies are
reconstructed separately in each motif position by squared parsimony. The recon-
struction implies that sites were degenerate in the earliest eukaryotes, hinting at the
prevalence of alternative splicing in deep eukaryotic ancestors.

Gene Order Ancestral reconstruction of gene order was pioneered as a parsi-
mony problem by Sankoff et al. [45]. In this context, nodes are labeled by gene
orders, which are the permutations defined by the physical order of genes (or other
genetic markers) along the chromosomes. Appropriate cost functions for such per-
mutations can be defined using an edit distance penalizing various rearrangement
events, or by counting conserved segments and breakpoints. Other contributions
in this volume address the mathematically rich field of gene order comparisons in
more detail (in particular, [38] discusses distances between gene orders): here, we
mention only some recent connections to classic parsimony variants.

Wang and Tang [50] explored an encoding of adjacencies that are suitable to
submit as phylogenetic characters to parsimony labeling. The reconstructions need
to be corrected to yield valid gene orders (the inferred ancestral adjacencies may
imply a circular chromosome)—the correction is shown to be NP-hard. Feijão and
Meidanis [21] give an edit distance function for which parsimony labeling is fea-
sible in polynomial time. They show in particular that by simply using adjacencies
as binary phylogenetic characters, and applying Fitch parsimony (with some small
algorithmic adjustments), one recovers a most parsimonious gene order history un-
der the so-called single-cut-and-join distance. Bérard et al. [3] also use parsimony
labeling for inferring ancestral adjacencies; the novelty of their approach is that it
incorporates gene duplications and losses by carrying out Sankoff’s dynamic pro-
gramming method simultaneously along two gene phylogenies reconciled with a
known species tree.

3 Ancestral Inference by Parsimony 43

3.4 Conclusion

Parsimony is not as popular as it once was, mostly because today’s large data sets
contain enough statistical signal to employ sophisticated probabilistic models. Nev-
ertheless, parsimony remains a viable choice in many contemporary applications,
where parameter-rich stochastic models are not available or are impractical. In-
deed, different scoring policies are available for the evolutionary analysis of “un-
conventional” genome features, including sequence motifs, copy numbers, genomic
lengths and distributions. Surprisingly diverse policies are amenable to exact op-
timization by dynamic programming following the same basic recipe. Along with
Felsenstein’s seminal work on likelihood calculations [22], Sankoff’s parsimony
minimization [47] established fundamental algorithmic techniques for modeling
evolutionary changes, which proved to be versatile enough to tackle new compu-
tational biology challenges for the past 40 years.

References

1. Agnarsson, I., Miller, J.A.: Is ACCTRAN better than DELTRAN? Cladistics 24, 1–7 (2008)
2. Ames, R.M., Money, D., Ghatge, V.P., Whelan, S., Lovell, S.C.: Determining the evolutionary

history of gene families. Bioinformatics 28(1), 48–55 (2012)
3. Bérard, S., Gallien, C., Boussau, B., Szöllősi, G.J., Daubin, V., Tannier, E.: Evolution of gene

neighborhoods within reconciled phylogenies. Bioinformatics 28, i382–i388 (2012)
4. Blanchette, M., Green, E.D., Miller, W., Haussler, D.: Reconstructing large regions of an

ancestral mammalian genome in silico. Genome Res. 12, 2412–2423 (2004)
5. Blanchette, M., Schwikowski, B., Tompa, M.: Algorithms for phylogenetic footprinting.

J. Comput. Biol. 9(2), 211–223 (2002)
6. Caetano-Anollés, G.: Evolution of genome size in the grasses. Crop Sci. 45, 1809–1816

(2005)
7. Camin, J.H., Sokal, R.R.: A method for deducing branching sequences in phylogeny. Evolu-

tion 19, 311–326 (1965)
8. Capra, J.A., Williams, A.G., Pollard, K.S.: Proteinhistorian: tools for the comparative analysis

of eukaryote protein origin. PLoS Comput. Biol. 8(6), e1002567 (2011)
9. Cavalli-Sforza, L.L., Edwards, A.W.H.: Phylogenetic analysis models and estimation proce-

dures. Am. J. Hum. Genet. 19(3), 233–267 (1967)
10. Clemente, J.C., Ikeo, K., Valiente, G., Gojobori, T.: Optimized ancestral state reconstruction

using Sankoff parsimony. BMC Bioinform. 10, 51 (2009)
11. Csűrös, M.: Count: evolutionary analysis of phylogenetic profiles with parsimony and likeli-

hood. Bioinformatics 26(15), 1910–1912 (2010)
12. Csűrös, M.: Ancestral reconstruction by asymmetric Wagner parsimony over continuous char-

acters and squared parsimony over distributions. In: Proc. Sixth RECOMB Comparative Ge-
nomics Satellite Workshop. Springer Lecture Notes in Bioinformatics, vol. 5267, pp. 72–86
(2008)

13. Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of
Favoured Races in the Struggle for Life. John Murray, London (1859)

14. Day, W.H.E.: Computationally difficult parsimony problems in phylogenetic systematics.
J. Theor. Biol. 103, 429–438 (1983)

15. Day, W.H.E., Johnson, D.S., Sankoff, D.: The computational complexity of inferring rooted
phylogenies by parsimony. Math. Biosci. 81, 33–42 (1986)

44 M. Csűrös

16. Day, W.H.E., Sankoff, D.: Computational complexity of inferring phylogenies by compatibil-
ity. Syst. Zool. 35, 224–229 (1986)

17. Edwards, A.W.F., Cavalli-Sforza, L.L.: Reconstructing evolutionary trees. In: Heywood, V.H.,
McNeill, J. (eds.) Phenetic and Phylogenetic Classification, vol. 6, pp. 67–76. Systematics
Association, London (1963)

18. Elias, I.: Settling the intractability of multiple alignment. J. Comput. Biol. 13(7), 1323–1339
(2006)

19. Farris, J.S.: Methods for computing Wagner trees. Syst. Zool. 19(1), 83–92 (1970)
20. Farris, J.S.: Phylogenetic analysis under Dollo’s law. Syst. Zool. 26(1), 77–88 (1977)
21. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement

problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)
22. Felsenstein, J.: Maximum likelihood and minimum-steps methods for estimating evolutionary

trees from data on discrete characters. Syst. Zool. 22(3), 240–249 (1973)
23. Felsenstein, J.: Parsomony in systematics: biological and statistical issues. Annu. Rev. Ecol.

Syst. 14, 313–333 (1983)
24. Fitch, W.M.: Toward defining the course of evolution: minimum changes for a specific tree

topology. Syst. Zool. 20, 406–416 (1971)
25. Fitch, W.M., Farris, J.S.: Evolutionary trees with minimum nucleotide replacements from

amino acid sequences. J. Mol. Evol. 3(4), 263–278 (1974)
26. Gelfman, S., Burstein, D., Penn, O., Savchenko, A., Amit, M., Schwartz, S., Pupko, T., Ast, G.:

Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of
exons. Genome Res. 22(1), 35–50 (2012)

27. Han, M.V., Hahn, M.W.: Inferring the history of interchromosomal gene transposition in
Drosophila using n-dimensional parsimony. Genetics 190, 813–825 (2012)

28. Hartigan, J.: Minimum mutation fits to a given tree. Biometrics 29, 53–65 (1973)
29. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22, 55–89 (1992)
30. Kannan, L., Wheeler, W.C.: Maximum parsimony on phylogenetic networks. Algorithms Mol.

Biol. 7, 9 (2012)
31. Kasap, S., Benkrid, K.: High performance phylogenetic analysis with maximum parsimony

on reconfigurable hardware. IEEE Trans. VLSI Syst. 19(5) (2011)
32. Kluge, A.R., Farris, J.S.: Quantitative phyletics and the evolution of anurans. Syst. Zool. 18,

1–32 (1969)
33. Koonin, E.V.: Comparative genomics, minimal gene sets and the last universal common an-

cestor. Nat. Rev. Microbiol. 1, 127–136 (2003)
34. Le Quesne, W.J.: The uniquely evolved character concept and its cladistic application. Syst.

Zool. 23, 513–517 (1974)
35. Maddison, W.P.: Squared-change parsimony reconstructions of ancestral states for continuous-

valued characters on a phylogenetic tree. Syst. Zool. 40(3), 304–314 (1991)
36. Makarova, K.S., Sorokin, A.V., Novichkov, P.S., Wolf, Y.I., Koonin, E.V.: Clusters of orthol-

ogous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea.
Biol. Direct 2, 33 (2007)

37. Mirkin, B.G., Fenner, T.I., Galperin, M.Y., Koonin, E.V.: Algorithms for computing evolu-
tionary scenarios for genome evolution, the last universal common ancestor and dominance of
horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3, 2 (2003)

38. Moret, B.M.E., Lin, Y., Tang, J.: Rearrangements in phylogenetic inference: compare or en-
code? In: Chauve, C. et al. (eds.) Models and Algorithms for Genome Evolution. Computa-
tional Biology, vol. 19. Springer, Berlin (2014). In this volume

39. Narushima, H., Misheva, N.: On characteristics of ancestral-state reconstructions under the
accelerated transformation optimization. Discrete Appl. Math. 122, 195–209 (2002)

40. Needleman, S.B., Wunsch, C.B.: A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)

41. Pauling, L., Zuckerkandl, E.: Chemical paleogenetics: molecular “restoration studies” of ex-
tinct forms of life. Acta Chem. Scand. 17, 9–16 (1963)

42. Rogers, J.S.: Deriving phylogenetic trees from allele frequencies. Syst. Zool., 52–63 (1984)

3 Ancestral Inference by Parsimony 45

43. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28(1) (1975)
44. Sankoff, D.: The early introduction of dynamic programming into computational biology.

Bioinformatics 16(1), 41–47 (2000)
45. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order com-

parisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad.
Sci. USA 89, 6575–6579 (1992)

46. Sankoff, D., Morel, C., Cedergren, R.J.: Evolution of 5S RNA and the non-randomness of
base replacement. Nat., New Biol. 245, 232–234 (1973)

47. Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in arbitrary metric space.
Math. Program. 9, 240–246 (1975)

48. Schwartz, S., Silva, J., Burstein, D., Pupko, T., Eyras, E., Ast, G.: Large-scale comparative
analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome
Res. 18, 88–103 (2008)

49. Swofford, D.L., Maddison, W.P.: Reconstructing ancestral states using Wagner parsimony.
Math. Biosci. 87, 199–229 (1987)

50. Tang, J., Wang, L.-S.: Improving genome rearrangement phylogeny using sequence-style par-
simony. In: Proceedings of the IEEE Fifth Symposium on Bioinformatics and Bioengineering
(BIBE’05), pp. 137–144 (2005)

51. Witmer, P.D., Doheny, K.F., Adams, M.K., Boehm, C.D., Dizon, J.S., Goldstein, J.L., Tem-
pleton, T.M., Wheaton, A.M., Dong, P.N., Pugh, E.W., Nussbaum, R.L., Hunter, K., Kelmen-
son, J.A., Rowe, L.B., Brownstein, M.J.: The development of a highly informative mouse
simple sequence length polymorphism (SSLP) marker set and construction of a mouse family
tree using parsimony analysis. Genome Res. 13, 485–491 (2003)

Chapter 4
Duplication, Rearrangement and Reconciliation:
A Follow-Up 13 Years Later

Cedric Chauve, Nadia El-Mabrouk, Laurent Guéguen, Magali Semeria,
and Eric Tannier

Abstract The evolution of genomes can be studied at least three different scales:
the nucleotide level, accounting for substitutions and indels, the gene level, account-
ing for gains and losses, and the genome level, accounting for rearrangements of
chromosome organization. While the nucleotide and gene levels are now often inte-
grated in a single model using reconciled gene trees, very little work integrates the
genome level as well, and considers gene trees and gene orders simultaneously. In a
seminal book chapter published in 2000 and entitled “Duplication, Rearrangement
and Reconciliation”, Sankoff and El-Mabrouk outlined a general approach, making
a step in that direction. This avenue has been poorly exploited by the community
for over ten years, but recent developments allow the design of integrated methods
where phylogeny informs the study of synteny and vice versa. We review these de-
velopments and show how this influence of synteny on gene tree construction can
be implemented.

4.1 Introduction

Genomes evolve through a wide variety of mechanisms, not all of them well under-
stood, or even known to us. These mechanisms range from small-scale events, such
as point mutations or small insertions or deletions at the nucleotide level, to large-

C. Chauve
LaBRI, Université Bordeaux I, Talence, France

C. Chauve (B)
Department of Mathematics, Simon Fraser University, Burnaby BC, Canada
e-mail: cedric.chauve@sfu.ca

N. El-Mabrouk
DIRO, Université de Montréal, Montréal QC, Canada

L. Guéguen ·M. Semeria · E. Tannier
LBBE, Université Lyon I Claude Bernard, Lyon, France

E. Tannier
INRIA, Rhône-Alpes, France

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_4,
© Springer-Verlag London 2013

47

mailto:cedric.chauve@sfu.ca
http://dx.doi.org/10.1007/978-1-4471-5298-9_4

48 C. Chauve et al.

Fig. 4.1 Each of the three big sets represents one of the three kinds of mutations we are deal-
ing with. Dots, squares and stars are models of genome evolution handling these kinds of muta-
tions, respectively aimed at reconstructing phylogenies, gene content evolution and synteny evolu-
tion. If they lie in a set intersection, they integrate several kinds of mutations. Apart from the red
area, the names aside the dots, squares and stars are examples of softwares or methods achieving
the described goal (PhyML [2], Count [3], ODT [4], PhylDog [5], Exemplar [6], Pathgroup [7],
Grappa [8], Code [9]). They are often chosen among a lot of other examples which would have
been as relevant. The red area is the core of our chapter: the star refers to the 2000 Sankoff and
El-Mabrouk book chapter we are celebrating, the square is achieved in the present chapter, and the
dot is the still open problem toward which all integrative methods tend

scale cataclysmic events such as whole-genome duplications, through segmental
duplications or deletions, inversions, transpositions, insertion of mobile elements,
translocations, and chromosomes fusions and fissions [1]. While genome evolution
is a joint process that combines all such mechanisms, evolutionary studies through
computational and statistical methods are generally compartmentalized, as most of
them focus on one or few kinds of evolutionary events. Nucleotide level mutations,
inferred from alignments, are those considered by phylogenetic methods for gene
and species tree constructions. Duplications and other content-modifying operations
(gains, losses, transfers, . . .) are considered for the inference of evolutionary histo-
ries of gene families. Inversions, transpositions, translocations and other gene order
modifying rearrangements are the events considered in synteny evolution studies,
which aim at reconstructing ancestral genome organizations or inferring rearrange-
ment based phylogenies. Figure 4.1 attempts to represent some models for genome
evolution according to the type of mutations they handle. For example, the blue and
gray dots represent phylogenetic methods from nucleotide or genome level muta-
tions. The gray star and blue square, respectively, stand for evolutionary studies of
gene order and gene content accounting for rearrangement or gene gains and losses.

In this paper, we review the attempts to integrate this variety of multiple-scale
events into a single framework (red region in Fig. 4.1). In addition we contribute
to this integration by showing how reconciled gene trees can be improved using
synteny information.

4 Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later 49

Sequence evolution (substitutions and indels) and chromosome evolution (rear-
rangement, gene order) are traditionally two separate domains of study. This can be
traced back to the early stages of evolutionary studies based on molecular data. Usu-
ally, the first molecular phylogenies are dated back to the Pauling and Zuckerkandl
series of papers in the early 1960s [10]. Nevertheless 30 years before, Surtevant
and Dobzhansky were drawing Drosophila phylogenies comparing the structure of
polytene chromosomes [11]. Even the mathematics of chromosome rearrangements
were already investigated at that time, and computational problems were formally
stated [12]. However, these pioneering works have not been followed, and mathe-
matical and computational studies of genome rearrangements have been nearly ab-
sent for several decades. Instead methodologists did put a lot of effort into the mod-
elization of the evolution of DNA or protein sequences. Advanced models and algo-
rithms have been developed [13, 14] (see also Chap. 6 in this volume), integrating
character substitutions and indels, reconstructing phylogenies and ancestral states by
various statistical methods. It is only in the early 1980s that formal models of gene
order evolution were investigated again, after a nearly 50 year hiatus [15], mainly
following Sankoff’s efforts [16, 17]. As for today, despite significant progress, the
considered models for gene order evolution are still not reaching the sophistication
of those for sequence evolution [18] (see also Chap. 7 in this volume).

For a long time, in most phylogenetic studies based on sequence, only genes with
apparently simple histories, typically those present in a single copy in every genome,
were considered [19]. This aspect has changed during the last 20 years, driven by
the gene tree/species tree reconciliation studies pioneered by Goodman et al. [20].
Reconciliation gives a way of integrating gene family evolution into models of se-
quence evolution. Recently, many sophisticated methods for gene tree and/or species
tree inference, integrating gene sequence evolution and gene insertion, duplication,
loss or transfer, into a unified model have been developed [4, 5, 21–25]. This inte-
gration is represented by the purple square and dot in Fig. 4.1 (see also Chap. 12 in
this volume).

In parallel, genome rearrangement studies were at first developed in a context
where genomes were also assumed to have exactly the same set of genes, with ex-
actly one copy per genome. Such an assumption is reasonable for specific data sets
such as animal mitochondrial genomes [16], or in a more general context provided
an appropriate pre-processing of genomes [26–30]. In this context of single copies,
two kinds of models have been investigated: a “global model” where a genome is
encoded by a unique object (permutation, string, or a variant) with a value space of
size ≥ n! where n is the number of genes, and a “local model” in which a genome
is decomposed into O(n) characters as adjacencies evolving independently, each
taking two possible values (present/absent). For global models it was shown that
comparing two genomes can be done pretty efficiently [31, 32], while almost all
attempts to compare more than two genomes lead to intractable problems (survey
in [18]). The local model gave rise to easier problems [27–30, 33] (see also Chap. 7
in this volume), the drawback being that the independence hypotheses between ad-
jacencies lead to ancestral states that are not necessarily compatible with linear or
circular chromosomal structures, leading again to difficult linearization problems
(although few exceptions exist [34, 35]).

50 C. Chauve et al.

Integrating duplications and more generally gene families with complex histories
into the study of synteny evolution (the green star in Fig. 4.1) has been initiated by
David Sankoff with the so-called “exemplar approach” [6], which consists in en-
coding genomes as strings instead of permutations, allowing for the representation
of a single gene many times in a genome. In this spirit an insight on gene con-
tent evolution can be inferred from synteny by the detection of orthology relation-
ships [36–38]. But this direction was hampered by ubiquitous intractability results
even for the comparison of two genomes [18, 39, 40] (see also Chap. 9 of this vol-
ume). The local model has also allowed to overcome the computational complexity
in that direction [9] (red dot in Fig. 4.1, see also Chap. 7 of this volume).

In 2000, a conference was held named Comparative Genomics: Empirical and
Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution
of Gene Families [41], organized by Sankoff and Nadeau. The title of the confer-
ence, and of the companion book was already a manifest towards an integration of
gene evolution and genome evolution. The present chapter, the volume it is included
in, and the 2013 MAGE conference are also, in some ways, attempts to follow up on
this event. In particular, the book published in 2000 contained the “Duplication, Re-
arrangement and Reconciliation” chapter by Sankoff and El-Mabrouk [42], which
we revisit, 13 years later.

That chapter was one among several examples (see also Chap. 2 of the present
volume for example) of a work in which David Sankoff has laid the basis of a re-
search avenue several years before it was explored by the scientific community. We
feel the exploration of this avenue really starts now, 13 years later. To advocate
this, we first summarize the key concepts used by Sankoff and El-Mabrouk [42]
(Sect. 4.2). Then we describe the two lines of research that have been built on these
initial ideas: using phylogenetic information, by means of reconciliation, to study
gene-order evolution (Sect. 4.3, red star in Fig. 4.1), and using gene-order informa-
tion to study gene family evolution (Sect. 4.4, red square in Fig. 4.1). We give a
contribution to the latter part by constructing an accurate method of synteny-aware
gene tree correction. We conclude by some discussion points and perspectives on
possible integration of phylogenies, syntenies and histories in a unified framework
for studying genome evolution (Sect. 4.5, red dot in Fig. 4.1).

4.2 Duplication, Rearrangement and Reconciliation

In this section we revisit the 2000 Sankoff and El-Mabrouk chapter [42]. It is also
the occasion to introduce concepts and objects related to reconciliations and rear-
rangements.

Evolution of Species and Genes Species evolve through speciation, which is the
separation of one species into two distinct descendant species. The result of this
evolution is a set Σ of n extant species. A species tree on Σ is a binary rooted
tree whose leaves are in bijection with Σ , representing the evolutionary relationship

4 Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later 51

Fig. 4.2 (Copied from [42]). A reconciliation of a gene tree (on the left) with a species tree (on
the right). The genome (letter) to which each gene (number) belongs is indicated in the label of the
corresponding leaf in the gene tree. The mapping M is indicated by links between the two trees.
The mapping E is indicated on the gene tree: squares are duplication nodes, while other internal
nodes are speciations. In the species tree, ancestral nodes are labeled by their gene contents. Each
set corresponds to a single ancestral gene

between the species of Σ : an internal node is an ancestral species at the moment of
a speciation, and its two children are the descendent species.

Species are identified with their genomes, and a genome is a set of genes (plus a
structure for gene order detailed later). Genes undergo speciation when the species
to which they belong do. Within a species, genes can be duplicated, lost or gained.
Various mechanisms lead to duplications of various sizes, ranging from one single
gene (or segment of genes) to the whole genome [43]. Gene losses arise through the
pseudogenization of previously functional genes or the outright deletion of chromo-
somal fragments. There are other gene level events like transfers, but here we stay
with only duplication and losses as it was the context of the 2000 chapter [42].

A gene tree, representing the evolution of a gene family, is a binary rooted tree
where each leaf is labeled by a gene, belonging to a species in Σ . Each internal
node of a gene tree refers to an ancestral gene at the moment of an event (either
speciation or duplication) resulting in two copies of this gene. The lowest common
ancestor (LCA) of nodes x and y in a tree T , written lcaT (x, y), is the internal node
of T that is both an ancestor of x and y and is the farthest from the root of T .

In a gene tree, losses are invisible, and speciation and duplication events are not
distinguishable, unless we reconcile it with a species tree.

Reconciliation A reconciliation of a gene tree T with a species tree S consists
in assigning to each internal gene g of T a species M(g) = s, which is a node
of S (either extant or ancestral), indicating that gene g belongs to species s, and an
evolutionary event E(g) ∈ {speciation, duplication}. This is done in a way ensuring
that the evolutionary history of the gene family described by the reconciliation is in
agreement with the species evolution described by S. An example of reconciliation
is shown in Fig. 4.2.

The reconciliation of T with S gives information about the gene family history. In
particular, it defines the gene content of an ancestral species s at the time of specia-
tion. A reconciliation also implies the orthology and paralogy relationships between
genes: Two genes g and g′ of T are said to be orthologous if E(lcaT (g, g′))= Spec;
g and g′ are paralogous if E(lcaT (g, g′)) = Dup. They are said to be ohnologous
if they are paralogous and the duplication event at lcaT (g, g′) is due to a whole-
genome duplication.

52 C. Chauve et al.

Fig. 4.3 Gene order comparison of two genomes with duplications. Each genome is a signed string
on the gene family alphabet. The direction of each gene is written according to the relative orien-
tation on the two genomes. Homology relationships are edges between genes of the two different
genomes, and the comparison is achieved with matching problems on this bipartite graph. Black
links indicate adjacencies which are another way to encode the strings. Focusing on one adjacency
independently of the neighboring ones makes the comparison computations tractable, but the linear
structure of the ancestral genomes might be lost

Since the work of Page [44, 45] in the beginning of the 1990s, and with an
increasing interest in the last decade, several approaches have been developed to
reconcile a gene tree with a species tree. The main guiding principle has been to
optimize a given criterion such as parsimony in terms of duplications and/or losses
or maximum likelihood (see [46] for a recent review). Recent methods aim at re-
constructing gene trees and reconciliations simultaneously [22, 23, 25].

Gene Order and Genome Rearrangements We defined a genome as a set of
genes and a structure on these genes. This structure can be for example a signed per-
mutation which gives a total order to the genes, and a direction (±1) to each gene.
When two genomes have equal gene content (gene evolution is ignored), a rear-
rangement scenario is a sequence of operations on the permutation which transforms
one genome into the other. In that case efficient algorithms exist for many genome
rearrangement distances, often based on analyzing the structure of permutations and
of their breakpoint graph. They hardly generalize to more than two genomes: me-
dian problems, considering three genomes, are often intractable, and hardly allow
the exploration of solution spaces [18, 47].

When gene families may have several copies, a natural generalization of signed
permutations is given by signed strings over the gene families alphabet (see
Fig. 4.3). Each family is assigned an integer and each occurrence of this integer
indicates an occurrence of a gene from the corresponding family. The comparison
of two such strings can be achieved by finding an orthology assignment between
gene copies from the same family. Keeping only ortholog pairs of genes transforms
a signed string into a signed permutation, on which known algorithms apply. The or-
thology assignment is a matching in the bipartite graph over the string elements, in
which there is an edge between two genes of the same family in different genomes
(see Fig. 4.3). In his 1999 paper [6], Sankoff introduced the notion of exemplar
matching that assumes all duplications are posterior to the speciation between the

4 Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later 53

two genomes. This corresponds to taking only one edge per family in the bipartite
graph. But this also leads to hard problems: computing a parsimonious exemplar
matching is hard, even to approximate for the simplest distances (see [39, 48] and
references therein, as well as Chap. 9 in this volume). Other notions of matchings
were introduced later, not assuming the precedence of speciation over all duplica-
tions [36], also leading to hard optimization problems [18, 49]. Although reasonably
efficient exponential time algorithms have been developed [50], it is still an open
question as to whether these approaches will scale efficiently to more than three
genomes (see Chap. 13 in this volume).

Reconciliations and Rearrangements Interestingly, gene order provides formal
methods for inferring “positional homology” [37], which can be applied to the de-
tection of orthology [51] or ohnology [52, 53]. This places gene-order information
as a concurrent of reconciliation for orthology or ohnology detection. This, among
other reasons, calls for the use of reconciliation and gene order in the same frame-
work, because both carry information on gene family evolution. Synteny and recon-
ciled phylogenies have sometimes been used together to detect orthology or ohnol-
ogy [52–54] but rarely in a whole-genome evolution model integrating duplications
and rearrangements.

This is what was proposed by Sankoff and El-Mabrouk [42]. In their framework,
an arbitrary number of genomes are given, along with a species tree describing their
evolution. In addition, reconciled gene trees are given for all gene families and the
genes at the leaves of these gene trees are ordered in the genomes. Then, as orthol-
ogy is known from reconciliation, considerations on rearrangement distances be-
tween genomes can include duplications in the permutation model, tending to lower
the additional algorithmic complexity. Nevertheless the general problem still con-
tains two difficult problems, the median and the exemplar problems, as particular
cases.

A solution was proposed in that paper to infer gene content and order at each
internal node of a species tree, in a way that minimizes a total breakpoint distance
on the species tree. Handling multicopy gene families was undertaken by integrating
exemplar matching for the duplications that were identified by reconciliation to be
posterior to speciations. A heuristic was proposed for solving the general problem. It
was never applied on data, partly because it was developed before data was available
in a usable form, and partly because the aim of this article was to open a research
avenue more than to close a problem.

For several years this avenue has remained almost unexplored. But several recent
publications have followed this research program, at least in some way, with updated
genome rearrangement and reconciliation methods and some biological results.

4.3 Gene Tree Reconciliations Inform Synteny Evolution

Genome rearrangement studies with permutation or string models, i.e. global mod-
els, usually do not handle a large number of genomes or events. After the sem-

54 C. Chauve et al.

inal article by Sankoff and El-Mabrouk [42], we may mention a remarkable at-
tempt of Ma et al. [55] to devise an integrated global model of genome evolution
under certain restrictive conditions. But the computational complexity of global
models usually restrains them to the study of small gene clusters, while paradox-
ically the histories of whole genomes are often inferred with local models of evo-
lution. We describe the two possibilities, the first with a survey of existing litera-
ture and the second with a contribution to synteny-aware gene phylogeny construc-
tion.

4.3.1 Evolution of Gene Clusters with Global Models

A large fraction of duplications affecting genome organization consists of local du-
plications, mainly caused by unequal crossing-over during meiosis. As this phe-
nomenon is favored by the presence of repetitive sequences, a single duplication
can induce a chain reaction leading to further duplications, eventually creating large
repetitive regions. When those regions contain genes, the result is a Tandemly Ar-
rayed Gene (TAG) cluster: a group of paralogous genes that are adjacent on a chro-
mosome. In the 1970s, Fitch [56] introduced the first evolutionary model for TAGs
accounting for tandem duplication, in which the two descendent copies of a dupli-
cated gene are adjacent. Since then, several studies have considered the problem
of inferring an evolutionary history for TAG clusters [57–60]. These are essentially
phylogenetic inference methods using the additional constraint that the resulting tree
should be a duplication tree, i.e. induces a duplication history according to the given
gene order. However, due to the occurrence of mechanisms other than tandem dupli-
cations (losses, rearrangements), it is often impossible to reconstruct a duplication
tree [61].

In a series of papers [62–65], a solution is proposed to retrace the history of
gene clusters subject to tandem duplications, losses and rearrangements. The latest
developments allow us to study the evolution of orthologous TAG clusters in differ-
ent species, subject to tandem duplications, inverted tandem duplications, inversions
and deletions, each event involving one or a set of adjacent genes. Given the gene
trees, the species tree, and the order of genes in TAG clusters, the method for infer-
ring ancestral clusters combines reconciliation with gene-order information. First,
ignoring gene order, reconciliation is used to infer ancestral gene contents. Second,
ancestral gene orders are inferred that are consistent with minimizing the number of
rearrangement events required to obtain a duplication tree. Due to the NP-hardness
of the problem, exact approaches can hardly be envisaged, except for the special
case of clusters in a single species subject to simple duplications (duplications of
single genes) [62]. The DILTAG software [64, 65] developed for the most general
case is a heuristic, showing good performance in practice for the inference of recent
evolutionary events. Despite the uncertainty associated with the deeper parts of the
reconstructed histories, it can be used to infer the duplication size distribution with
some precision.

4 Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later 55

4.3.2 Evolution of Whole Genome with Adjacency Models

The structure of the genomes, as seen in Fig. 4.3, can be described by a set of
adjacencies instead of signed permutations or strings. Adjacencies are edges linking
gene extremities. If we wish to formalize the linear or circular structure of genomes,
the set of adjacencies should be a matching over gene extremities. This models all
types of genomes, from linear multichromosomal eukaryote genomes to circular
bacterial genomes, possibly including circular or linear plasmids.

The switch to local models is achieved by comparing adjacencies instead of
genomes. When extant genomes all have the same gene content, it is possible to
rapidly and accurately reconstruct ancestral genomes [27, 30, 66] or even species
phylogenies [67]. It is even possible to include no equal gene contents [9] for the
same purposes (see Chap. 7 in this volume).

If gene families are described with reconciled trees with duplications, the soft-
ware DupCAR [68] proposes the reconstruction of ancestral adjacencies. Never-
theless, its possible applications are rather limited as it does not handle losses and
requires fully dated gene trees and species tree, in order to compute reconciliations
that are compatible with the provided date information. Such precise information
about gene trees is rare.

The joint use of adjacencies and reconciled gene trees has really been exploited
in the last three years. Agora [66] or the method of El-Mabrouk and colleagues
[69, 70] reconstruct ancestral adjacencies with a sort of Dollo parsimony principle,
by pairwise comparisons of extant gene orders. Methods designed initially to handle
equal gene content [27, 30] can also naturally be extended to follow this principle,
by using orthology/paralogy information obtained from reconciliations. So adjacen-
cies are reconstructed but no evolutionary scenario is proposed to explain them. In
all such methods, linearization routines, based on the Traveling Salesman Problem
[69, 70] or on path/cycles graph covering techniques [27, 35] are used to linearize
ancestral genomes, that is, to remove a posteriori some of the proposed adjacencies
so that every gene (or gene extremity) has at most two (or one) neighbor.

DeCo [71] is an algorithm and a software which models the evolution of adja-
cencies, and reconstructs ancestral adjacencies by minimizing the number of gains
and losses of adjacencies (due to rearrangements) along the species tree. It is based
on a generalization of the Sankoff-Rousseau algorithm (see Chap. 3 in this vol-
ume) adapted to the presence/absence of adjacencies and to reconciled gene trees.
It has recently been extended to include transfers (Patterson et al., in preparation).
But here again, the resulting ancestral adjacencies might not be compatible with a
genome structure and require to be processed a posteriori.

4.4 Synteny Informs Gene Family Evolution

Synteny as a Control Synteny is usually a good way to infer orthologs [72]. As
reconciled gene trees also yield orthology relationships, it is possible to compare the

56 C. Chauve et al.

results from both independent methods. This is what is often done to assess the qual-
ity of gene trees [73, 74]. Orthologs obtained from synteny are assumed to represent
the truth, and can be compared with orthologs obtained from reconciliations.

An alternative idea is to use the structure of reconstructed ancestral genomes as
a quality index. We have seen that in the extant genomes, each gene shares two
adjacencies with other genes (except for chromosome extremities). Theoretically it
should also be the same in the ancestral genomes. But due to errors in gene trees, in
the species tree, or in the inference algorithms, in practice there are a lot of excep-
tions. And the number of exceptions should be correlated with the quality of gene
trees. So the quality of gene trees can be measured by the number of ancestral genes
with more or less than two adjacencies with other genees [5, 71].

These quality tests are first steps towards integrating synteny information into
the construction of gene trees. Indeed, if the quality of gene trees can be measured
with synteny, the next step is to integrate synteny into the objective function when
computing gene trees.

Synteny as an Input Data for Gene Trees Very few studies use synteny informa-
tion to construct gene trees. The only ones we are aware of are the ones of Wapinski
et al. [75, 76]. In these papers, family clustering as well as gene trees are constructed
with a “synteny score” as well as a “sequence score”.

In the present book three different contributions to this direction are given. Chap-
ter 13 deals with the construction of gene families with synteny information. Chap-
ter 12 proposes a method to detect inconsistencies in gene trees based on synteny
information.

In the present chapter we show how, by a simple procedure using available soft-
ware, it is possible to guide the construction of gene trees with gene-order informa-
tion. We retrieved all gene trees from the Ensembl database [73], version 70. Then
we applied the DeCo software [71] to infer ancestral adjacencies in a mammalian
species tree. As said before, DeCo does not guarantee that ancestral genes have
at most two neighbors, as extant genes. This apparent weakness was turned into a
strength as it was used for a quality control for gene trees. We show that it can be
used to construct better gene trees.

Take an ancestral gene g with three neighbors, such that two of them, g1 and g2,
are speciation nodes of the same gene tree, and are the two children of a duplica-
tion node d in this gene tree (see Fig. 4.4). Let then g11, g12 (resp g21 and g22)
be the children of g1 (resp g2). Transform the subtree ((g11, g12), (g21, g22)) to
((g11, g22), (g21, g12)) whenever this switches d to a speciation node in the rec-
onciliation (1519 trees out of 13132 Ensembl trees that contain mammalian genes
can be modified this way). This transformation is illustrated in Fig. 4.4.

For all 1519 trees, we retrieved the gene family alignment from Ensembl. With
PhyML [2] we computed the likelihood of two trees, before and after the transforma-
tion, given this alignment. These two likelihoods were compared with Consel [77].
For a majority of trees (773), the likelihood of the corrected tree is higher than the
likelihood of the initial tree. And the correction is rejected (probability of the cor-
rected tree <0.05) for only 281 of them (Fig. 4.5).

4 Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later 57

Fig. 4.4 Modifying a tree according to synteny information. The fact that gene g has three neigh-
bors according to DeCo points to a possible error in gene trees (every gene should have at most
two neighbors). In this situation we suspect the duplication d to be erroneous, as having only one
gene instead of the two (g1 and g2) would decrease the number of neighbors of g. So we propose
the correction in which there is only one gene, by rearranging the subtree rooted at d

Fig. 4.5 Each green bar gives, for a given interval of p-values (x-axis), the number of gene
families (y-axis), among the 1519 whom we corrected the tree, for which the corrected tree should
be preferred with a significance in the p-value interval. The shape of this graph shows that Ensembl
trees are in general not significantly preferred, showing the accuracy of most corrections

In conclusion, the synteny signal can be used to choose among the numerous
trees that are statistically equivalent according to the sequence signal. This choice
is sometimes in agreement with other reconciliation-based tree correction methods,
but sometimes adds additional information. This provides a step towards synteny-
aware gene tree construction methods (red square in Fig. 4.1).

58 C. Chauve et al.

4.5 Towards and Integrated Model

Boussau and Daubin [19] call for models of molecular evolution that would inte-
grate all kinds of mutations and find likely ones according to a mixture of objec-
tives. Because the species tree, gene trees and rearrangements all depend on each
other, an iterative method, computing these objects one after another would not find
an optimal solution. Integrated models of species and gene trees are already work-
ing [5, 25] (purple region in Fig. 4.1).

But despite the efforts we described here to mix gene trees and rearrangement
in the same framework, the three-way influence is far from reached. Some attempts
can be mentioned, as Ma et al.’s paper [55] gives a global algorithm under some very
strict conditions (exact molecular clock, no convergent evolution, no breakpoint re-
use, no gene loss).

Some other are less ambitious, like Kahn and colleagues who argued in a series
of papers (see [78] and references therein) that reconciled trees cannot describe
properly the evolutionary relationships and propose an extension to DAGs. They
give insights into handling both evolutionary relationships and synteny, to trace the
history of segmental duplications.

But 13 years after the paper of Sankoff and El-Mabrouk, which marked a first
star in the three-way intersection of Fig. 4.1, and accounts for an increasing interest
in this area over recent years, the existence of a phylogenetic method over all events
is still an open question (red dot in Fig. 4.1).

Acknowledgements This work is funded by the Agence Nationale pour la Recherche, Ances-
trome project ANR-10-BINF-01-01.

References

1. Graur, D., Li, W.H.: Fundamentals of Molecular Evolution, 2nd edn. Sinauer Associates, Sun-
derland (2000)

2. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New algo-
rithms and methods to estimate maximum-likelihood phylogenies: assessing the performance
of phyml 3.0. Syst. Biol. 59(3), 307–321 (2010)

3. Csurös, M.: Count: evolutionary analysis of phylogenetic profiles with parsimony and likeli-
hood. Bioinformatics 26(15), 1910–1912 (2010)

4. Szöllosi, G.J., Boussau, B., Abby, S.S., Tannier, E., Daubin, V.: Phylogenetic modeling of
lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl.
Acad. Sci. USA 109(43), 17513–17518 (2012)

5. Boussau, B., Szöllosi, G.J., Duret, L., Gouy, M., Tannier, E., Daubin, V.: Genome-scale coes-
timation of species and gene trees. Genome Res. 23(2), 323–330 (2013)

6. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917
(1999)

7. Zheng, C.: Pathgroups, a dynamic data structure for genome reconstruction problems. Bioin-
formatics 26(13), 1587–1594 (2010)

8. Tang, J., Moret, B.M.E.: Scaling up accurate phylogenetic reconstruction from gene-order
data. Bioinformatics 19(Suppl 1), i305–i312 (2003)

4 Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later 59

9. Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruction from
high-resolution whole-genome data and a tree of 68 eukaryotes. In: Pacific Symposium on
Biocomputing (2013)

10. Zuckerkandl, E., Pauling, L.: Molecules as documents of evolutionary history. J. Theor. Biol.
8(2), 357–366 (1965)

11. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila
pseudoobscura, and their use in the study of the history of the species. Proc. Natl. Acad. Sci.
USA 22, 448–450 (1936)

12. Sturtevant, A., Novitski, E.: The homologies of chromosome elements in the genus drosophila.
Genetics 26, 517–541 (1941)

13. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis: Probabilis-
tic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

14. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)
15. Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion problem.

J. Theor. Biol. 99, 1–7 (1982)
16. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order com-

parisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad.
Sci. USA 89(14), 6575–6579 (1992)

17. Sankoff, D.: Edit distances for genome comparisons based on non-local operations. In: Apos-
tolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) Proceedings: Combinatorial Pattern
Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, 29 April–1 May 1992.
Lecture Notes in Computer Science, vol. 644, pp. 121–135. Springer, Berlin (1992)

18. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rear-
rangements. MIT Press, Cambridge (2009)

19. Boussau, B., Daubin, V.: Genomes as documents of evolutionary history. Trends Ecol. Evol.
25(4), 224–232 (2010)

20. Goodman, M., Czelusniak, J., Moore, G., Romero-Herrera, A., Matsuda, G.: Fitting the gene
lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed
from globin sequences. Syst. Zool. 28, 132–163 (1979)

21. Durand, D., Halldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to
gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2006)

22. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree
reconstruction and reconciliation analysis. Proc. Natl. Acad. Sci. USA 106(14), 5714–5719
(2009)

23. Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruc-
tion. Mol. Biol. Evol. 28(1), 273–290 (2011)

24. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications,
losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformat-
ics 28(18), i409–i415 (2012)

25. Szöllosi, G.J., Rosikiewicz, W., Bousseau, B., Tannier, E., Daubin, V.: Efficient exploration of
the space of reconciled gene trees. Syst. Biol. (2013). doi:10.1093/sysbio/syt054

26. Pevzner, P.A., Tesler, G.: Genome rearrangements in mammalian evolution: lessons from hu-
man and mouse genomes. Genome Res. 13(1), 37–45 (2003)

27. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haus-
sler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Res.
16(12), 1557–1565 (2006)

28. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous
regions of ancestral genomes and its application to mammalian genomes. PLoS Comput. Biol.
4(11), e1000234 (2008)

29. Chauve, C., Gavranovic, H., Ouangraoua, A., Tannier, E.: Yeast ancestral genome reconstruc-
tions: the possibilities of computational methods ii. J. Comput. Biol. 17(9), 1097–1112 (2010)

30. Jones, B.R., Rajaraman, A., Tannier, E., Chauve, C.: Anges: reconstructing ancestral genomes
maps. Bioinformatics 28(18), 2388–2390 (2012)

http://dx.doi.org/10.1093/sysbio/syt054

60 C. Chauve et al.

31. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for
sorting signed permutations by reversals. In: Thomson Leighton, F., Borodin, A. (eds.) Pro-
ceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, Las Ve-
gas, Nevada, USA, 29 May–1 June 1995, pp. 178–189. ACM, New York (1995)

32. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for ge-
nomic distance problem). In: 36th Annual Symposium on Foundations of Computer Sci-
ence, Milwaukee, Wisconsin, 23–25 October 1995, pp. 581–592. IEEE Computer Society,
Los Alamitos (1995)

33. Zhang, Y., Hu, F., Tang, J.: A mixture framework for inferring ancestral gene orders. BMC
Genomics 13(Suppl 1), S7 (2012)

34. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement
problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)

35. Maňuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral
multichromosomal genomes. BMC Bioinform. 13(Suppl 19), S11 (2012)

36. Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: MSOAR: a high-throughput or-
tholog assignment system based on genome rearrangement. J. Comput. Biol. 14(9), 1160–
1175 (2007)

37. Dewey, C.N.: Positional orthology: putting genomic evolutionary relationships into context.
Brief. Bioinform. 12(5), 401–412 (2011)

38. Doerr, D., Thévenin, A., Stoye, J.: Gene family assignment-free comparative genomics. BMC
Bioinform. 13(Suppl 19), S3 (2012)

39. Zhu, B.: Approximability and fixed-parameter tractability for the exemplar genomic distance
problems. In: Chen, J., Cooper, S.B. (eds.) Proceedings: Theory and Applications of Models
of Computation, 6th Annual Conference, TAMC 2009, Changsha, China, 18–22 May 2009.
Lecture Notes in Computer Science, vol. 5532, pp. 71–80. Springer, Berlin (2009)

40. El-Mabrouk, N., Sankoff, D.: Analysis of gene order evolution beyond single-copy genes.
Methods Mol. Biol. 855, 397–429 (2012)

41. Sankoff, D., Nadeau, J. (eds.): Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families. Kluwer Aca-
demic, Dordrecht (2000)

42. Sankoff, D., El-Mabrouk, N.: Duplication, rearrangement and reconciliation. In: Compara-
tive Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Align-
ment and the Evolution of Gene Families. Computational Biology Series, vol. 1, pp. 537–550.
Kluwer Academic, Dordrecht (2000)

43. Gregory, T.R. (ed.): The Evolution of the Genome. Elsevier/Academic Press, Amsterdam
(2004)

44. Page, R.: Maps between trees and cladistic analysis of historical associations among genes,
organisms, and areas. Syst. Biol. 43, 58–77 (1994)

45. Page, R.: Genetree: comparing gene and species phylogenies using reconciled trees. Bioinfor-
matics 14, 819–820 (1998)

46. Doyon, J.P., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phy-
logeny reconciliation. Brief. Bioinform. 12(5), 392–400 (2011)

47. Miklos, I., Tannier, E.: Approximating the number of double cut-and-join scenarios. Theor.
Comput. Sci. 439, 30–40 (2012)

48. Bulteau, L., Jiang, M.: Inapproximability of (1,2)-exemplar distance. In: Bleris, L.G.,
Mandoiu, I.I., Schwartz, R., Wang, J. (eds.) Proceedings: Bioinformatics Research and
Applications—8th International Symposium, ISBRA 2012, Dallas, TX, USA, 21–23 May
2012. Lecture Notes in Computer Science, vol. 7292, pp. 13–23. Springer, Berlin (2012)

49. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approximability of com-
paring genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)

50. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the
number of breakpoints and the number of adjacencies between two genomes with duplicate
genes. J. Comput. Biol. 15(8), 1093–1115 (2008)

4 Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later 61

51. Goodstadt, L., Ponting, C.P.: Phylogenetic reconstruction of orthology, paralogy, and con-
served synteny for dog and human. PLoS Comput. Biol. 2(9), e133 (2006)

52. Ouangraoua, A., Tannier, E., Chauve, C.: Reconstructing the architecture of the ancestral am-
niote genome. Bioinformatics 27(19), 2664–2671 (2011)

53. Makino, T., McLysaght, A.: Positionally biased gene loss after whole genome duplication:
evidence from human, yeast, and plant. Genome Res. 22(12), 2427–2435 (2012)

54. Cai, B., Yang, X., Tuskan, G.A., Cheng, Z.M.: Microsyn: a user friendly tool for detection of
microsynteny in a gene family. BMC Bioinform. 12, 79 (2011)

55. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite sites model of
genome evolution. Proc. Natl. Acad. Sci. USA 105(38), 14254–14261 (2008)

56. Fitch, W.: Phylogenies constrained by cross-over process as illustrated by human hemoglobins
and a thirteen-cycle, eleven amino-acid repeat in human apolipoprotein A–I. Genetics 86, 623–
644 (1977)

57. Bertrand, D., Gascuel, O.: Topological rearrangements and local search method for tandem
duplication trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 2, 15–28 (2005)

58. Elemento, O., Gascuel, O., Lefranc, M.P.: Reconstructing the duplication history of tandemly
repeated genes. Mol. Biol. Evol. 19(3), 278–288 (2002)

59. Tang, M., Waterman, M., Yooseph, S.: Zinc finger gene clusters and tandem gene duplication.
In: Research in Molecular Biology (RECOMB 2001), pp. 297–304 (2001)

60. Zhang, L., Ma, B., Wang, L., Xu, Y.: Greedy method for inferring tandem duplication history.
Bioinformatics 19, 1497–1504 (2003)

61. Gascuel, O., Bertrand, D., Elemento, O.: Reconstructing the duplication history of tandemly
repeated sequences. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 205–
235. Oxford University Press, Oxford (2005)

62. Lajoie, M., Bertrand, D., El-Mabrouk, N., Gascuel, O.: Duplication and inversion history of a
tandemly repeated genes family. J. Comput. Biol. 14(4), 462–478 (2007)

63. Bertrand, D., Lajoie, M., El-Mabrouk, N.: Inferring ancestral gene orders for a family of
tandemly arrayed genes. J. Comput. Biol. 15(8), 1063–1077 (2008)

64. Lajoie, M., Bertrand, D., El-Mabrouk, N.: Inferring the evolutionary history of gene clusters
from phylogenetic and gene order data. Mol. Biol. Evol. 27(4), 761–772 (2010)

65. Tremblay-Savard, O., Bertrand, D., El-Mabrouk, N.: Evolution of orthologous tandemly ar-
rayed gene clusters. BMC Bioinform. 12(Suppl 9), S2 (2011)

66. Muffato, M., Louis, A., Poisnel, C.E., Crollius, H.R.: Genomicus: a database and a browser
to study gene synteny in modern and ancestral genomes. Bioinformatics 26(8), 1119–1121
(2010)

67. Hu, F., Gao, N., Zhang, M., Tang, J.: Maximum likelihood phylogenetic reconstruction using
gene order encodings. In: 8th Annual IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB’11) (2011)

68. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: Dupcar: recon-
structing contiguous ancestral regions with duplications. J. Comput. Biol. 15(8), 1007–1027
(2008)

69. Bertrand, D., Gagnon, Y., Blanchette, M., El-Mabrouk, N.: Reconstruction of ancestral
genome subject to whole genome duplication, speciation, rearrangement and loss. In: Moul-
ton, V., Singh, M. (eds.) Proceedings: Algorithms in Bioinformatics, 10th International Work-
shop, WABI 2010, Liverpool, UK, 6–8 September 2010. Lecture Notes in Computer Science,
vol. 6293, pp. 78–89. Springer, Berlin (2010)

70. Gagnon, Y., Blanchette, M., El-Mabrouk, N.: A flexible ancestral genome reconstruction
method based on gapped adjacencies. BMC Bioinform. 13(Suppl 19), S4 (2012)

71. Bérard, S., Gallien, C., Boussau, B., Szöllősi, G.J., Daubin, V., Tannier, E.: Evolution of gene
neighborhoods within reconciled phylogenies. Bioinformatics 28(18), i382–i388 (2012)

72. Jun, J., Mandoiu, I.I., Nelson, C.E.: Identification of mammalian orthologs using local syn-
teny. BMC Genomics 10, 630 (2009)

62 C. Chauve et al.

73. Vilella, A., Severin, J., Ureta-Vidal, A., Heng, L., Birney, E.: EnsemblCompara GeneTrees:
complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19(2), 327–335
(2009)

74. Wu, Y.C., Rasmussen, M.D., bansal, M.S., Kellis, M.: Treefix: statistically informed gene tree
error correction using species trees. Syst. Biol. 62(1), 110–120 (2013)

75. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Automatic genome-wide reconstruction of
phylogenetic gene trees. Bioinformatics 23(13), i549–i558 (2007)

76. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles
of gene duplication in fungi. Nature 449, 54–61 (2007)

77. Shimodaira, H., Hasegawa, M.: Consel: for assessing the confidence of phylogenetic tree se-
lection. Bioinformatics 17(12), 1246–1247 (2001)

78. Kahn, C.L., Hristov, B.H., Raphael, B.J.: Parsimony and likelihood reconstruction of human
segmental duplications. Bioinformatics 26(18), i446–i452 (2010)

Chapter 5
The Genesis of the DCJ Formula

Anne Bergeron and Jens Stoye

Abstract The formula N − (C + I/2) to compute the number of Double-Cut-and-
Join operations needed to transform one genome into another is both simple and
easy to prove. When it was published, in 2006, we omitted all details on how it was
constructed. In this chapter, we will give an elementary treatment on the intuitions
and methods underlying the formula, showing that simplicity is sometimes difficult
to achieve. We will also prove that this formula is one among an infinite number of
candidates, and that the techniques can be applied to other genomic distances.

5.1 Introduction

In May 2005, the authors attended the Recomb meeting in Boston, Mass. They had
an accepted paper on a tamed variant of the genome rearrangement problem. Hap-
pily for them, the presenter was a young graduate student, Julia Mixtacki, and the
authors had plenty of lounging time. On the sunny terraces, cafés and salons of
the MIT campus, David Sankoff managed to introduce us to Sophia Yancopoulos,
who had an original, thrilling, radical, but very informal view on genome rearrange-
ments, presented on a poster at that conference. Her paper [10], written with O. Attie
and R. Friedberg, appeared in the same month in Bioinformatics, but was a bit of a
challenge to read.

The authors’ team, including Julia who would play a determinant role in the
sequel, felt that there should exist a more formal way of computing this distance.
The road was bumpy. We first had to understand the real power of the Double-
Cut-and-Join (DCJ) operation introduced by Yancopoulos et al. The original paper
focused on the usefulness of the new concepts to explain known results, rather than
exploring the consequences of the new definition. It was necessary to forget, for the

A. Bergeron (B)
Lacim, Université du Québec à Montréal, Montréal, Canada
e-mail: bergeron.anne@uqam.ca

J. Stoye
Technische Fakultät, Universität Bielefeld, Bielefeld, Germany

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_5,
© Springer-Verlag London 2013

63

mailto:bergeron.anne@uqam.ca
http://dx.doi.org/10.1007/978-1-4471-5298-9_5

64 A. Bergeron and J. Stoye

time being, the results of the former decade that explored rearrangement operations
on linear genomes.

Immediately after Recomb, the authors and Julia spent three days together in
Montréal and started trying to understand and formalize the ideas they had been
introduced to. However, we completely failed, as we were too closely following the
Yancopoulos ‘recipe’, instead of starting from scratch and re-phrase the DCJ model
in our own language. Therefore, it was possibly a good idea to wait for eight months
before continuing, so we could leave behind most of that early attempt.

The first breakthrough occurred in February 2006 in Lisbon, Portugal, when AB
was giving a series of five lectures to graduate students at the Instituto Gulbenkian de
Ciencia. The lectures were given in the morning, and the lecturer had the afternoons
to herself to pursue her own research. Julia came from Bielefeld to Lisbon for a
week. This move resulted in the definition of the adjacency graph, and in a deep
grasp of the DCJ operations. While the shift of our underlying data structure, from
the breakpoint graph to the adjacency graph, was rather formal, the understanding
of the nature of the DCJ operations relied on a toy genome, made of black and
white electrical chords, together with male and female connections that stood for
double-stranded DNA, gene orientation, breaks and repairs. At one point, the two
researchers ‘executed’ all the variants of a DCJ operation, using their four hands
and the model genome. They were so concentrated on the ‘proof’ that it took them
a certain time to realize that maintenance people were peering at them through the
door’s window. These results are described in Sects. 5.2 and 5.3.

The next, and crucial, development happened in Montréal, in Spring 2006, when
JS came to visit as part of his sabbatical. At that point, the problem was not to
develop one formula, but to cope with too many formulas! One of the frustrated
authors decided, on one evening, to rely on a dirty mathematical trick, discussed in
Sect. 5.4, to come up with the ‘simplest’ formula among those candidates. The result
was suddenly quite simple, and the proof of the DCJ distance became elementary,
which is discussed in Sect. 5.5.

In fact, the DCJ model is only one out of many where the same technique can be
applied to quickly derive general and simple distance formulas, as we will show in
Sect. 5.6 for the algebraic, the breakpoint and two single-cut distances.

5.2 Rearrangement Operations and the Adjacency Graph

Here we will briefly recall the notation we use to represent and manipulate genomes.
While it may nowadays seem natural and many other authors have adopted the ter-
minology, in 2005–2006 we spent probably more time on the development of this
notation than on the derivation and proving of the DCJ distance formula and sorting
algorithm.

A gene is a piece of DNA with two extremities, its head and its tail. For a gene a

we denote its head by ah and its tail by at . A genome for a given set of genes G is a
set of adjacencies, consisting of pairs of gene extremities, where each extremity of
each gene in G is contained in exactly one adjacency. One of the two gene extremi-

5 The Genesis of the DCJ Formula 65

ties in an adjacency can be replaced by the telomere marker ◦, indicating the end of
a linear chromosome. Such an adjacency is called a telomere.

Example 1 Consider the gene set G= {a, b, c, d, e, f }. Then the following set A is
a genome for G:

A= {{◦, bt
}
,
{
bh, ah

}
,
{
at , ct

}
,
{
ch,◦},{et , dt

}
,
{
dh,f h

}
,
{
f t , eh

}}

A genome can be represented as a graph, called the genome graph, whose ver-
tices are the adjacencies and whose edges connect for each gene the adjacency con-
taining its head with the adjacency containing its tail. Clearly, each vertex of the
genome graph has degree one or two, and therefore the connected components are
either cycles, representing circular chromosomes, or paths, representing linear chro-
mosomes.

Example 1 (cont’d) The genome graph of A looks as follows:

It is easy to see that A has two connected components, one of which is linear and
the other one is circular.

We will also use a notation to represent the genome graph, in which a linear
chromosome is written as the sequence of its genes from one of its telomeres to the
other, where a gene is indicated by its name when it is read in tail-head direction, and
by its overlined name when it is read in head-tail direction. A circular chromosome
is represented similarly but, as it has no ends, spelling the genes can start anywhere,
in any of the two possible directions, and all these representations are equivalent.

Example 1 (cont’d) In the linear notation, our genome looks as follows:

A= {
(◦ b a c ◦) (d f e)

}

Note that our genome model is very general in the sense that a genome can be
a mix of circular and linear chromosomes. Other models have been considered, re-
stricting genomes to contain only linear or only circular chromosomes. These con-
straints can be added at any time to the general model in order to reflect biological
reality. However, as we will see in Sect. 5.3, rearrangement operations are indepen-
dent of chromosome structure.

Another graph that will be very useful in the sequel is the adjacency graph for
two genomes A and B containing the same genes. It will be the essential tool when
calculating their rearrangement distance. The vertices of the adjacency graph are the
adjacencies of the two genomes, and for each extremity of a gene from G we have
an edge, connecting the two adjacencies (one from A and one from B) in which it
is contained. Note that all vertices of the adjacency graph also have degree one or

66 A. Bergeron and J. Stoye

two, thus its connected components are again paths or cycles. However, because the
graph is bipartite, all cycles have even length.

Example 1 (cont’d) For A as above and genome B = {(◦ a b c d ◦) (◦ e f ◦)}, we
have the following adjacency graph:

In the sequel we will consider various models of genome comparison, most of
which realize some kind of edit distance, which in general can be phrased as follows.

Definition 1 (Genomic distance problem) Given two genomes A and B and a set
of operations to manipulate them, what is the minimum number of operations to
transform A into B?

If a corresponding sequence of operations realizing this number is actually re-
ported, this is called the genomic sorting problem, but we will not discuss it further
in this chapter.

5.3 An Illustrated Guide to the Double-Cut-and-Join Operation

In order to understand rearrangement operations it is necessary to have an idea of
the mechanisms underlying them. When a double-stranded DNA sequence is bro-
ken, the cell is usually able to repair the damage by joining the two hanging ends
together. However, as one wikipedian wrote in 2007 under the pseudonym Amaz-
inglarry [9]:

Double-strand breaks, in which both strands in the double helix are severed, are particularly
hazardous to the cell because they can lead to genome rearrangements.

Indeed, when a genome breaks at two positions that are physically close, creat-
ing four hanging ends of double-strand DNA, the repair mechanisms may join the
alternative ends together. This yields a deceptively simple definition of the Double-
Cut-and-Join (DCJ) operation as: the genome is cut in two places, and the pieces
are joined in a different way. This definition is correct, but it should be treated with
the care deserved to informal definitions: the oriented nature of a double-stranded
DNA sequence, and the fact that pieces may be lost or misplaced, introduce subtle
constraints that need to be formalized.

5 The Genesis of the DCJ Formula 67

Fig. 5.1 The top drawing represents a genome with one double-stranded circular chromosome
and four genes, a, b, c, and d . Genes are represented by arrows, and genes on opposite strands
have opposite orientation. This genome can be represented as (a b c d). Suppose the chromosome
is broken in two places, as illustrated, between genes a and b, and between genes c and d . The
strands may be repaired in three different ways: the original arrangement (a b c d), the middle
genome (a d) (b c) which is a fission of the top chromosome, and the bottom one (a c b d) that
contains an inversion with respect to the original arrangement

The Basic DCJ Operation Let us begin with Fig. 5.1. The top genome is a cir-
cular chromosome broken at two physically close positions. Two genes are marked
on each strand, a strand with genes a and c, and, in the opposite direction, a strand
with genes b and d . Starting from gene a, and going around the chromosome, the

68 A. Bergeron and J. Stoye

gene organization of this chromosome can be represented as

(a b c d).

The position of a break in the double-strand is described by the severed adja-
cency, which we say to be cut. In Fig. 5.1, the two adjacencies of the top genome:

{
ah, bh

}
and

{
ch, dh

}

are cut. If those two breaks are sufficiently close, the repair mechanisms, which have
a very restricted understanding of the global situation, may join the ah extremity
with any of bh, ch, or dh, whichever comes handy. The two remaining extremities
are joined together, provided no pieces are lost. Thus there are three possible results
of the repair, illustrated in Fig. 5.1:

(1) The original configuration, when bh is chosen. The shape and gene order of the
original genome are restored.

(2) An alternative configuration, when dh is chosen. The circular chromosome is
split in two circular chromosomes, in an event called a fission. The correspond-
ing genome can be represented by (a d) (b c). The reverse event is called a
fusion.

(3) An alternative configuration, when ch is chosen. The chromosome is still circu-
lar, but the original strands are mixed: genes a and b are now on the same strand,
opposite to genes c and d . This event is called an inversion. The new chromo-
some can be represented as (a c b d). Note the change in order and orientation
of genes c and b with respect to the original genome.

This is it! The essence of the DCJ operation is contained in this example. The vast
majority of identified rearrangement operations are based on this series of events,
and the variations in terminology usually come from factors that are not directly
related to the rearrangement operation itself.

A DCJ Within a Single Linear Chromosome Figure 5.2 is a reproduction of
Fig. 5.1 in which the circular genome has been transformed into a linear genome
by replacing a small segment of the double-stranded DNA with two telomeres. This
modification has been done far from the breaks, and the rest of the picture is exactly
the same. The genome organization would now be represented as

(◦ a b c d ◦),
to account for the new shape of the chromosome.

As in the circular case, the rearrangement operation between the top and bottom
chromosome is called an inversion: the original strands are mixed, but the shape and
gene content of the chromosome is the same. This type of rearrangements was first
identified on fruit fly chromosomes, at the beginning of the last century [3], giving
a founding example of rearranged genomes.

The middle genome of Fig. 5.2 is the only example in which linear and circular
chromosomes are mixed. The DCJ operations that transform a linear chromosome

5 The Genesis of the DCJ Formula 69

Fig. 5.2 In this figure, the top drawing represents a genome with one double-stranded linear chro-
mosome. It was obtained by a slight modification of the genome in Fig. 5.1, consisting in removing
a segment from the larger loop and capping the extremities with telomeres. This genome contains
the same genes as the one in Fig. 5.1, and is now represented as (◦ a b c d ◦) to account for
the telomeres, but the breaks and repairs are exactly at the same positions. The bottom genome
(◦ a c b d ◦) contains an inversion with respect to the original arrangement. The middle genome
has two chromosomes, one linear and one circular: (◦ a d ◦) (b c)

into such a genome is called a circular excision, and its reverse, a reincorporation.
Many models of genome evolution explicitly forbid this type of rearrangement, ar-
guing that, for example, the transformation of a genome consisting of linear chro-
mosomes into a similar genome should not involve circular chromosomes. This is
a quite natural requirement, but there is a tradeoff in the complexity of deriving the
distance formula [6].

70 A. Bergeron and J. Stoye

Fig. 5.3 This figure is another photoshopped version of Fig. 5.1 which produced two linear chro-
mosomes out of the original circular ones. The two breaks and the gene labels are untouched.
In this case, the operation that transforms one genome into any of the two others is called a re-
ciprocal translocation. The top genome is represented by (◦ a b ◦) (◦ c d ◦), the middle one by
(◦ a d ◦) (◦ c b ◦), and the bottom one by (◦ a c ◦) (◦ b d ◦)

A DCJ Between Two Linear Chromosomes In Fig. 5.3, telomeres are inserted
in both ends of the circular genome of Fig. 5.1, resulting in a genome consisting of
two linear chromosomes, represented by

(◦ a b ◦) (◦ c d ◦).
In this case, the DCJ operations are referred to as reciprocal translocations. Here
again, the modifications have been done far from the breaks, and the rest of the

5 The Genesis of the DCJ Formula 71

picture is the same, showing that the basic mechanics of DCJ cover a vast range of
rearrangement operations.

Reciprocal translocations change the sets of genes associated with a particular
chromosome, but do not modify the number of chromosomes in a genome. This
can be annoying, since there are examples of really close species, with virtually the
same set of genes, that have different number of chromosomes. This is the case,
for example, with the human and chimpanzee genome, the latter having an extra
chromosome. The DCJ model can be extended to cover this possibility as explained
in the next paragraph.

Single Breaks and Lost Pieces As we have seen, the vast majority of genome
rearrangements are caused by double breaks, but sometimes single breaks lead to
genome modifications. With a single break, the repair mechanism usually restores
the DNA strand but, in some rare instances, the break is never repaired. If this event
occurs in a linear chromosome, we model the operation as

(◦ a b ◦)−→ (◦ a ◦) (◦ b ◦),
which is called a fission. When such an event occurs in a circular chromosome, it
is called a linearization: the number of chromosomes is unchanged, but the genome
is clearly modified. Despite involving only one break, these two operations are in-
cluded in the DCJ model.

On the other hand, the reverse of these two operations, fusion of linear chro-
mosomes and circularization, require two breaks and can be explained using the
standard DCJ model and the loss of some hopefully redundant genetic material.
Figure 5.3 contains many instances of fusions of chromosome segments belonging
to different chromosomes: if all the necessary genetic information is contained in
two fused segments, the remaining segments can be lost without consequences. As
expected, we model this operation as the reverse of a fission:

(◦ a ◦) (◦ b ◦)−→ (◦ a b ◦),
where the telomere markers ‘◦’ stand in for the lost material. The circularization of
a segment of a linear chromosome is central in Fig. 5.2: again, if all the necessary
genetic information is contained in this circular segment, the two parts that contain
telomeres can be lost.

These four rearrangement operations are often described as “standard” DCJ op-
erations by introducing imaginary {◦,◦} adjacencies: a DCJ operation applied to
adjacencies {ah, bt } and {◦,◦} yields {ah,◦} and {bt ,◦} and models fissions and
linearizations. The reverse operation models fusions and circularizations.

5.4 Deriving the DCJ Formula

It was a clever observation by Sophia Yancopoulos that the DCJ operation subsumes
the two operations that have most prominently been discussed in the genome rear-
rangement literature up to 2005: inversions and translocations. In their paper [10],

72 A. Bergeron and J. Stoye

the authors also addressed the question of distance computation and gave the for-
mula D = b− c where b :=N − 1 is the number of initial breakpoints between the
N genes in the input genomes and c is a parameter closely related to the number of
cycles in our adjacency graph. Nevertheless, their argument was rather informal. As
said in the Introduction, it was our goal to formalize their approach and, if possible,
simplify the argument and solution.

It was somehow clear to us that this should be possible, but even after almost a
year of working on it, the exact way and the general DCJ formula still eluded our
grasp. Therefore, in May 2005, we resorted to a ‘dirty trick’, based on just a few
simple (and fortunately true) assumptions. Consider the following six parameters
computed on the genomes and on the adjacency graph:

N : number of genes in each genome
C: number of cycles in the adjacency graph
I : number of odd paths in the adjacency graph
P : number of even paths in the adjacency graph
L: total number of linear chromosomes
R: total number of circular chromosomes

We begin with a well known mathematical technique called guessing the solu-
tion. Here, the educated guess is that the formula for the DCJ distance depends
linearly on each of the above parameters, that is,

nN + cC + iI + pP + �L+ rR =D,

where the coefficients n, c, i, p, � and r are real numbers. Then we try to find the
values of the coefficients.

These values are not necessarily independent. The most obvious relation is that
the number L of linear chromosomes is related to the number of paths I and P by
the equation

L= I + P.

This means that we can keep one of the coefficient as an arbitrary constant, which we
choose to be � in the sequel. We will wait until all the values of the other coefficients
are known, and then choose a value of � that will make the formula look ‘simple’.

The next step is to consider a series of examples for which the DCJ distance is
known. Each example will give a linear equation relating the values of the coeffi-
cients. The examples that we used in 2006 were lost in various paper baskets. This
turns out to be a blessing, since recreating a suitable set of examples shows that only
five very elementary examples are sufficient to determine the DCJ distance.

The Simplest Circular Chromosomes In these first two examples, we apply
DCJ operations to a circular genome with two genes a and b. The graphs of Figs. 5.4
and 5.5 represent the two possible operations. Since a single DCJ has been applied
in each case, the distance is D = 1.

5 The Genesis of the DCJ Formula 73

Fig. 5.4 A fusion of two
circular chromosomes

Fig. 5.5 An inversion within
a circular chromosome

Fig. 5.6 Comparing a
circular chromosome to itself

Example 2 Consider genomes A= (a) (b) and B = (a b), as in Fig. 5.4. The corre-
sponding equation is

2n+ c+ 3r = 1.

Example 3 Consider genomes A = (a b) and B = (a b), as in Fig. 5.5, with the
corresponding equation:

2n+ c+ 2r = 1.

From these equations we immediately conclude that r = 0, meaning that the
distance is independent of the number of circular chromosomes. Setting r to its
value yields the equation

2n+ c= 1. (5.1)

Equality with One Circular Chromosome The next equation is obtained by
drawing the adjacency graph of a circular chromosome compared to itself. Obvi-
ously, the distance is D = 0 in this case, as in Fig. 5.6.

Example 4 Consider genomes A= (a) and B = (a). The corresponding equation is

n+ c= 0. (5.2)

Equations (5.1) and (5.2) yield n= 1 and c=−1.

74 A. Bergeron and J. Stoye

Fig. 5.7 Comparing a linear
chromosome to itself

Equality with One Linear Chromosome When comparing a linear chromosome
to itself, as in Fig. 5.7, we also get a distance of D = 0.

Example 5 Consider genomes A = (◦ a ◦) and B = (◦ a ◦). The corresponding
equation is

n+ 2i + 2�= 0. (5.3)

Knowing that n= 1 and using � as a constant, we get i =−1/2− �.

Fusion/Fission of Linear Chromosomes The last example is given by the fusion
of two linear chromosomes, and its dual operation, fission. In this case the distance
is D = 1, and the adjacency graph is shown in Fig. 5.8.

Example 6 Consider genomes A = (◦ a ◦) (◦ b ◦) and B = (◦ a b ◦). The corre-
sponding equation is

2n+ 2i + p+ 3�= 1, (5.4)

which gives p =−�.

A Simple Formula Summing up the work thus far, we get the following family
of distance formulas, indexed with �:

D =N −C − (1/2+ �)I − �P + �L.

Clearly, the ‘simplest’ formula is obtained by setting �= 0.
The formula D = N − C − I/2 is simple in the sense that it has the fewest

number of parameters. However, this simplicity does not impose an intrinsic value
on the parameter I and we will also see, in the subsections of Sect. 5.6, that setting
�= 0 does not always yield distance formulas with the least number of parameters.

5.5 Proving the DCJ Formula

Obtaining a formula based on a few examples does not mean that it computes the
correct distance between arbitrary genomes: a general proof is still needed. In this
section we discuss various topics associated with proving distance formulas, and we
refer the reader to [2] for formal proofs.

5 The Genesis of the DCJ Formula 75

Fig. 5.8 Fusion/fission of linear chromosomes

Fig. 5.9 The genome and adjacency graphs of two equal genomes

The formula D =N −C − I/2 of the preceding section is not only the simplest
but, as a nice added benefit, provides a roadmap for the general proof. The first
step is to prove that the distance between two genomes is 0 if and only if the two
genomes are equal. Here, this statement translates as

Two genomes A and B are equal if and only if N = C + I/2.

The best informal justification of this result is to show the adjacency graph of two
equal genomes with one circular and one linear chromosome, as in Fig. 5.9 with
genomes A = B = (a b) (◦ c d ◦). This figure also illustrates that the graph is a
collection of cycles of length 2 and paths of length 1.

The next step in proving the distance formula is to show that D ≥N −C − I/2.
This is done by considering the quantity C+ I/2 in the adjacency graph of genomes
A and B , and showing that it increases by at most 1 for any DCJ operation applied to
genome A. A nice way to enumerate all the cases is to realize that a DCJ operation
applied to genome A is also a DCJ operation applied to the adjacency graph. Thus,
for example, the number of cycles can be increased either by extracting a cycle, or by
creating a cycle from a path. In the first two cases, the number of paths is unchanged,
and, in the third case, the length of the path must be even, since the lengths of all
cycles of an adjacency graph are even. The reader is welcome to complete the details
for the case of odd paths.

The final step in the proof is to show that D ≤N −C − I/2. The easiest way to
prove this is to construct an algorithm that effectively sorts genome A into genome
B in exactly N−C−I/2 steps, by showing that there always exists a DCJ operation
on genome A that either increases the number of cycles by 1, or the number of odd
paths by 2. In fact, any adjacency of genome B that is not an adjacency of genome A

can be created in one DCJ operation on genome A: this operation creates a cycle of

76 A. Bergeron and J. Stoye

length 2, and increases the number of cycles by 1. Once all adjacencies of genome
B are created, the two genomes have the same adjacencies. If they are not equal,
genome B has more telomeres than genome A, and a few fissions should solve the
problem, each creating two paths of length 1.

5.6 Algebraic, Single-Cut and Breakpoint Distance Formulas

As mentioned in the Introduction, DCJ is just one of several rearrangement mod-
els by which genomes can be compared. Since many of the alternative models are
closely related to DCJ, it is not surprising that their distance formulas are somewhat
related as well. In this section we show in a systematic way how to derive the dis-
tance formulas for four other genome rearrangement models, using the techniques
introduced in Sect. 5.4. In fact, we can re-use much of the derivation of the DCJ
distance formula and only small modifications are necessary.

5.6.1 The Algebraic Distance

A line of research in genome rearrangement that has been introduced by Meida-
nis and Dias [7] uses algebraic operations acting on genomes represented as per-
mutations. Several “traditional” results can similarly be derived in that formalism,
and some new models have also been introduced, including the so-called algebraic
(ALG) distance [5]. In its most general version including linear and circular chro-
mosomes, it is identical to the DCJ distance, except that fissions and fusions weigh
1/2 instead of 1.

Therefore, Eqs. (5.1), (5.2), and (5.3) are valid as well, the only difference is that
Eq. (5.4) becomes

2n+ 2i + p+ 3�= 1/2.

The values of n, c and i are the same as in the DCJ model, but p becomes

p =−1/2− �.

Thus the corresponding family of distance formulas is

DALG =N −C − (1/2+ �)I − (1/2+ �)P + �L.

In this case, the ‘simplest’ formula is obtained by setting �=−1/2:

DALG =N −C −L/2.

However, this formula mixes parameters from the genome graph, L, and from the
adjacency graph, C. In Sect. 5.5, we saw that choosing both parameters from the ad-
jacency graph gave us a big advantage in interpreting and proving the DCJ distance
formula. It might be wise to do the same in this case.

5 The Genesis of the DCJ Formula 77

Fig. 5.10 A transposition
within a circular chromosome

5.6.2 The Single-Cut-or-Join Distance

Another rearrangement distance, that is particularly charming because it allows ef-
ficient computational solutions to complicated multi-genome comparison, is the
Single-Cut-or-Join (SCorJ) distance [4]. Here, any cut in a chromosome, and any
join of two chromosome ends is considered as an individual operation, each of
weight 1.

When deriving the SCorJ distance formula, we need one more pair of genomes
in order to distinguish the roles of the long and short cycles, and we must rewrite
the first four equations accordingly. The parameter C is split in two:

Cs : number of cycles of length 2
C�: number of long cycles

and the first four equations become

2n+ c� = 4

n+ cs = 0

n+ 2i + 2�= 0

2n+ 2i + p+ 3�= 1.

The simplest rearrangement operation that gives the required new equation is a
transposition, which exchanges two consecutive blocks of genes. In order to trans-
pose blocks in a circular chromosome with Single-Cut-or-Join operations, it is nec-
essary to cut three adjacencies, and join them at three different places.

Example 7 Consider the circular genomes A = (a b c) and B = (a c b), as in
Fig. 5.10. The corresponding equation is

3n+ c� = 6. (5.5)

The solution of the system is given by n= 2, c� = 0, cs =−2, i =−1− � and
p =−1− �, yielding the general formula

DSCorJ = 2N − 2Cs − (1+ �)I − (1+ �)P + �L.

Here we would want to set �=−1, to get the ‘simplest’ distance formula:

DSCorJ = 2N − 2Cs −L.

78 A. Bergeron and J. Stoye

Again, here, this simplest formula might not be the wisest, since it mixes parameters
from both the genome and the adjacency graphs.

5.6.3 The Single-Cut-and-Join Distance

Similar by name to SCorJ, but more closely related to the DCJ distance is the Single-
Cut-and-Join (SCandJ) distance [1] where a single operation comprises at most one
cut, followed by at most one join.

Again, we distinguish long and short cycles and get the following first four equa-
tions:

2n+ c� = 3

n+ cs = 0

n+ 2i + 2�= 0

2n+ 2i + p+ 3�= 1.

The final equation can be derived from a transposition as in Example 7, which
has distance1 D = 4, yielding a fifth equation:

3n+ c� = 4.

Therefore the solution is n= 1, c� = 1, cs =−1, 2i + 2�=−1, 2i + p + 3�=
−1, and we get the general formula:

DSCandJ =N +C� −Cs − (1/2+ �)I − �P + �L.

Setting �= 0, we find

DSCandJ =N +C� −Cs − I/2.

5.6.4 The Breakpoint Distance

Finally we consider the breakpoint (BRK) distance, which is possibly the most clas-
sical and simplest genomic distance. Different from the previous ones, the break-
point distance is not an edit distance, but just defined as the number of adjacencies
that are present in one, but not in the other of the two input genomes [8].

The breakpoint distance needs to distinguish the odd paths of length 1, that are
shared telomeres between genomes, from the longer odd paths. Thus we need two
more coefficients:

1Since Single-Cut-and-Join operations are sometimes less intuitive, here is a scenario that sorts
genome (a b c) to genome (a c b) in four steps. Cuts are indicated by vertical bars: (a b c |)−→
(◦ a | b c ◦)−→ (◦ a ◦) (b | c)−→ (◦ a c b ◦)−→ (a c b).

5 The Genesis of the DCJ Formula 79

Fig. 5.11 An inversion
inside a linear chromosome

Is : number of paths of length 1
I�: number of long odd paths

We also need a revised set of equations, reflecting the new values on our pet
examples for the breakpoint distance:

2n+ c� = 2

n+ cs = 0

n+ 2is + 2�= 0

2n+ 2is + p+ 3�= 1

3n+ c� = 3.

Finally, we need a last example to distinguish the roles of the short and long odd
paths. The simplest one is the linear variant of Example 2.

Example 8 Consider genomes A= (◦ a b ◦) and B = (◦ a b ◦) with the correspond-
ing equation

2n+ is + i� + 2l = 3/2, (5.6)

as in Fig. 5.11. The value 3/2 comes from the definition of the general breakpoint
distance for mixed multichromosomal genomes given in [8]. The solution is given
by n = 1, c� = 0, cs = −1, is = −1/2 − �, i� = −�,p = −� with the general for-
mula:

DBRK =N −Cs − (1/2+ �)Is − �I� − �P + �L.

Setting �= 0, as in the DCJ distance, we get the breakpoint distance formula of
David Sankoff and co-authors [8]:

DBRK =N −Cs − Is/2.

5.7 Conclusion

In this paper, we showed that many standard formulas for computing the rearrange-
ment distance between genomes can be obtained using a handful of very simple
genomes and a little linear algebra. Table 5.1 summarizes the principal results. It

80 A. Bergeron and J. Stoye

Table 5.1 Distance parameters for various genomes and rearrangement models

Genomes Equation DCJ ALG SCorJ SCandJ BRK

(a) (b) & (a b) 2n+ c� 1 1 4 3 2

(a) & (a) n+ cs 0 0 0 0 0

(◦ a ◦) & (◦ a ◦) n+ 2is + 2� 0 0 0 0 0

(◦ a ◦) (◦ b ◦) & (◦ a b ◦) 2n+ 2is + p+ 3� 1 1/2 1 1 1

(a b c) & (a c b) 3n+ c� 2 2 6 4 3

(◦ a b ◦) & (◦ a b ◦) 2n+ is + i� + 2� 1 1 2 4 3/2

Parameter Coefficient DCJ ALG SCorJ SCandJ BRK

Genes n 1 1 2 1 1

Long cycles c� −1 −1 0 1 0

Short cycles cs −1 −1 −2 −1 −1

Long odd paths i� −1/2− � −1/2− � −1− � 0 −�

Short odd paths is −1/2− � −1/2− � −1− � 0 −1/2− �

Even paths p −� −1/2− � −2− 2� −� −2�

Linear chromosomes � � � � � �

should be noted, though, that the formulas must be treated as conjectures. As for the
DCJ formula, independent correctness proofs are needed, and are available in the
literature.

These distance formulas are similar, in the sense that they all depend linearly on
the same set of parameters. However, in this setting, each model yields an infinite
number of formulas: finding the simplest, or one that depends on given parameters,
is just a mathematical trick. The important point is that the parameters should be
chosen for their practical implications on the formulas, such as ease of interpretation
or propensity toward elegant proofs.

References

1. Bergeron, A., Medvedev, P., Stoye, J.: Rearrangement models and single-cut operations.
J. Comput. Biol. 17(9), 1213–1225 (2010)

2. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proceed-
ings of WABI 2006. LNBI, vol. 4175, pp. 163–173 (2006)

3. Dobzhansky, T., Sturtevant, A.H.: Inversions in the chromosomes of drosophila pseudoob-
scura. Genetics 23(1), 28–64 (1938)

4. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement
problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)

5. Feijão, P., Meidanis, J.: Extending the algebraic formalism for genome rearrangements to in-
clude linear chromosomes. In: Proceedings of BSB 2012. LNBI, vol. 7409, pp. 13–24 (2012)

6. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for ge-
nomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592 (1995)

5 The Genesis of the DCJ Formula 81

7. Meidanis, J., Dias, Z.: An alternative algebraic formalism for genome rearrangements. In:
Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map
Alignment and the Evolution of Gene Families, pp. 213–223. Kluwer Academic, Dordrecht
(2000)

8. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under
different genomic distances. BMC Bioinform. 10, 120 (2009)

9. Wikipedia: http://en.wikipedia.org/wiki/DNA_repair
10. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translo-

cation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

http://en.wikipedia.org/wiki/DNA_repair

Part II
New Lights on Current Paradigms

Chapter 6
Large-Scale Multiple Sequence Alignment
and Phylogeny Estimation

Tandy Warnow

Abstract With the advent of next generation sequencing technologies, alignment
and phylogeny estimation of datasets with thousands of sequences is being at-
tempted. To address these challenges, new algorithmic approaches have been devel-
oped that have been able to provide substantial improvements over standard meth-
ods. This paper focuses on new approaches for ultra-large tree estimation, including
methods for co-estimation of alignments and trees, estimating trees without need-
ing a full sequence alignment, and phylogenetic placement. While the main focus
is on methods with empirical performance advantages, we also discuss the theoreti-
cal guarantees of methods under Markov models of evolution. Finally, we include a
discussion of the future of large-scale phylogenetic analysis.

6.1 Introduction

Evolution is a unifying principle for biology, as has been noted by Dobzhansky, de
Chardin, and others.1 Phylogenies are mathematical models of evolution, and there-
fore enable insights into the evolutionary relationships between organisms, genes,
and even networks. Indeed, phylogeny estimation is a major part of much biological
research, including the inference of protein structure and function, of trait evolution,
etc. [3].

Phylogeny estimation from molecular sequences generally operates as follows:
first the sequences are aligned through the insertion of spaces between letters (nu-
cleotides or amino-acids) in the sequences, and then a tree is estimated using the
alignment. This “two-phase” approach to phylogeny estimation can produce highly
accurate estimations of the tree for small to moderate-sized datasets that are fairly
closely related. However, datasets that contain sequences that are quite different

1The famous quote by Dobzhansky “Nothing in biology makes sense except in the light of evo-
lution” [1] reflects the less known quote by the Jesuit priest Pierre Teilhard de Chardin [2], who
wrote “Evolution is a light which illuminates all facts, a curve that all lines must follow.”

T. Warnow (B)
Department of Computer Science, University of Texas at Austin, Austin TX, USA
e-mail: tandy@cs.utexas.edu

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_6,
© Springer-Verlag London 2013

85

mailto:tandy@cs.utexas.edu
http://dx.doi.org/10.1007/978-1-4471-5298-9_6

86 T. Warnow

from each other (especially if the datasets are very large), can be very difficult to
align—and even considered “un-alignable”, and trees based on poor alignments can
have high error [4–11].

Although the estimation of both alignments and phylogenies is challenging for
large, highly divergent datasets, there is substantial evidence that phylogenetic anal-
yses of large datasets may result in more accurate estimations of evolutionary histo-
ries, due to improved taxonomic sampling [12–15]. Thus, although not all datasets
will be improved through the addition of taxa, some phylogenetic questions—
particularly the inference of deep evolutionary events—seem likely to require large
datasets.

In this chapter, we discuss the challenges involved in estimating large alignments
and phylogenies, and present some of the new approaches for large alignment and
tree estimation. Thus, this chapter does not attempt to survey alignment estimation
methods or tree estimation methods, each of which is an enormous task and dis-
cussed in depth elsewhere; see [16–20] for phylogeny estimation and [11, 21–27]
for alignment estimation.

We begin with the basics of alignment and phylogeny estimation in Sect. 6.2,
including Markov models of sequence evolution and statistical performance crite-
ria; this section also discusses the class of “absolute fast converging methods” and
presents one of these methods. Section 6.3 discusses some methods that co-estimate
alignments and trees (rather than operating in two phases). Section 6.4 presents
methods that estimate trees without needing a full multiple sequence alignment. We
close with a discussion about the future of large-scale alignment and phylogenetic
tree estimation in Sect. 6.5.

6.2 Two-Phase Alignment and Phylogeny Estimation

This section contains the basic material for this book chapter. We begin with a de-
scription of a phylogenomic pipeline (estimating the species history from a set of
genes), and discuss the issues involved in resolving incongruence between different
gene trees. We then discuss general issues for multiple sequence alignment estima-
tion and evaluation, including how alignments can be used for different purposes,
and hence evaluation metrics can differ. We describe certain algorithmic techniques
for multiple sequence alignment that have been used to enable large-scale analy-
ses, including template-based methods, divide-and-conquer, and progressive align-
ment, and we discuss some alignment methods that have been used on very large
datasets.

We then turn to tree estimation, beginning with stochastic models of sequence
evolution and statistical performance criteria for phylogeny estimation methods. We
provide a brief background in the theoretical guarantees of different phylogeny es-
timation methods (e.g., which methods are statistically consistent under the basic
sequence evolution models and the sequence-length requirements of methods), as
well as some discussion about their empirical performance on large datasets. We
discuss gap treatment methods and their performance guarantees, and the empiri-

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 87

Table 6.1 Table of methods for large-scale multiple sequence alignment estimation. We show
methods that have published results on datasets with at least 25,000 sequences, showing the type
of data (DNA, RNA, amino-acid, or all), the largest number of sequences in published dataset
analyses, publications for the method, and techniques used. The methods listed in the table for
co-estimation of alignments and trees can also be considered as alignment estimation methods, but
are not listed here. Finally, the largest dataset size we note here for each method may not be the
largest performed, but is the largest we were able to find and document. It is also possible that there
are publications we are not aware of that present analyses of datasets of this size using methods
not listed here

Alignment method Data Largest dataset Publications Techniques

MAFFT-PartTree All 93,681 [28] [29] Progressive

Clustal-Quicktree All 27,643 [30] [31] Progressive

Kalign-2 All 50,175 [28] [32] Progressive

Clustal-Omega Amino-acid 93,681 [28] [28] Progressive
HMMs

Neuwald’s method Amino-acid 400,000 (approx.) [33] [33] Template

Table 6.2 Table of methods for large-scale phylogeny estimation. We show methods that have
published results on datasets with at least 25,000 sequences, showing the type of data (DNA, RNA,
amino-acid, or all), the largest number of sequences in published dataset analyses, publications for
the method, and techniques used. We do not show results for distance-based methods, although
these tend to be able to run (efficiently) on very large datasets. With the exception of DACTAL,
these methods require an input alignment. The methods listed in the table for co-estimation of
alignments and trees can also be considered phylogeny estimation methods, but are not listed here.
Finally, the largest dataset size we note here for each method may not be the largest performed, but
is the largest we were able to find and document. It is also possible that there are publications we
are not aware of that present analyses of datasets of this size using methods not listed here

Phylogeny method Data Largest dataset Publications Techniques

FastTree-2 All 1.06 million (approx.) [34] Maximum likelihood

RAxML All 55,473[35] [36] Maximum likelihood

TNT All 73,060 [37] [38] Maximum parsimony

DACTAL
(almost alignment-free)

All 27,643 [30] [30] Iteration
divide-and-conquer
supertree

cal impact of these methods on phylogenetic analyses. We then discuss the analysis
of datasets that contain short sequences (i.e., fragments of full-length sequences),
including phylogenetic placement methods that insert short sequences into pre-
computed trees, and how these methods can be used in metagenomic analysis.

Although this chapter provides some discussion about many methods—both for
alignment estimation and phylogeny estimation—the focus is on those methods that
can analyze large datasets. The main effort, therefore, is to describe just a few meth-
ods, and to try to identify the algorithmic techniques that make them able to analyze
large datasets.

88 T. Warnow

Table 6.3 Table of methods for large-scale co-estimation of phylogenies and alignments. We show
methods that have published results on datasets with at least 25,000 sequences, showing the type
of data (DNA, RNA, amino-acid, or all), the largest number of sequences in published dataset
analyses, publications for the method, and techniques used. Finally, the largest dataset size we note
here for each method may not be the largest performed, but is the largest we were able to find and
document. It is also possible that there are publications we are not aware of that present analyses
of datasets of this size using methods not listed here

Phylogeny method Data Largest dataset Publications Techniques

SATé
co-estimates
alignments and trees

All 27,643 [39] [10, 39] Iteration, progressive
divide-and-conquer
maximum likelihood

Mega-phylogeny
co-estimates
alignments and trees

All 55,473 [35] [35] Divide-and-conquer
maximum likelihood

6.2.1 Standard Phylogenomic Analysis Pipelines

The focus of this paper is on the estimation of alignments and trees for single genes,
which normally follows a two-phase process: first the sequences are aligned, and
then a tree is estimated on the alignment. However, a description of how a species
tree is estimated can help put these methods into a larger context.

Because gene trees can differ from species trees due to biological causes (such
as incomplete lineage sorting, gene duplication and loss, and horizontal gene trans-
fer [40]), species tree estimations are based on multiple genes rather than any single
gene. At the simplest level, this can involve just a handful of genes, but increas-
ingly “phylogenomic” analyses (involving genes from throughout the genome) are
being performed [41–44], followed by biological discoveries based on these phy-
logenomic analyses [45]. The following approaches are the dominant methods used
to estimate species trees from multiple genes:

1. Markers are selected, and homologous regions within the genomes are identified
across the species; these homologous regions are sometimes limited to the or-
thologous parts, so that gene duplication and loss does not need to be considered
in estimating the species history.

2. Multiple sequence alignments are estimated on each marker.
3. At this point, the standard analysis pipeline continues in one of the following

ways:

(a) the gene sequence alignments can be concatenated, and a tree estimated on
the “supermatrix”,

(b) gene trees can be estimated, and then combined together into a species tree
using supertree methods [46–54] or methods that explicitly take biological
causes (e.g., incomplete lineage sorting and gene duplication and loss) for
gene tree incongruence into account [40, 42, 55–70], or

(c) the species tree can be estimated directly from the set of sequence align-
ments, taking biological causes for gene tree incongruence into account (an

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 89

example is *BEAST, which co-estimates the gene trees and species tree di-
rectly from the input set of alignments [71]).

The first approach is distinctly different in flavor from the last two approaches, and
is called the “supermatrix” or “combined analysis” approach. The relative merits of
these approaches with respect to accuracy are debated, but for statistical reasons, it
makes sense to use methods that consider biological causes for incongruence when
estimating species trees from multiple markers. The development and understanding
of methods for estimating species trees given multiple genes, taking incomplete lin-
eage sorting (ILS) and gene duplication and loss into account, is an active research
area; see, for example, papers on this subject in the session on Phylogenomics and
Population Genomics at the 2013 Pacific Symposium on Biocomputing [72–75].

6.2.2 Multiple Sequence Alignment

Introduction Alignment methods vary in type of data (DNA, RNA, or amino-
acid) they can handle, and also, to some extent, the objectives of the alignment
method. Thus, some methods are designed exclusively for proteins [33, 76–81],
some exclusively for RNAs [82–87], but many alignment methods can analyze both
protein and nucleotide datasets. We refer to methods that can analyze all types of
molecular sequences as “generic” methods.

Alignment methods are used to predict function and structure, to determine
whether a sequence belongs to a particular gene family or superfamily, to recognize
homology in the ‘twilight zone’ (where sequence similarity is so low that homol-
ogy is difficult to detect), to infer selection, etc. [11]. On the other hand, alignment
methods are also used in order to estimate a phylogeny. As we shall see, the design
of alignment methods and how they are evaluated depend on the purpose they are
being used for.

MSA Evaluation Criteria The standard criteria used to evaluate alignments for
accuracy are based on shared homologies between the true and the estimated align-
ment, with the SP-score [88, 89] (sum-of-pairs score) measuring the fraction of
the true pairwise homologies correctly recovered, and the TC-score (“total column”
score) measuring the number of identical columns. Variants on these criteria include
the true metrics suggested by Blackburne et al. [90] and the consideration of differ-
ent types of alignment error (i.e., both false positive and false negative) rather than
one overall measure of “alignment accuracy” [89]. Other criteria, such as the iden-
tification and correct alignment of specific regions within a protein or rRNA, have
also been used [33, 91]. Furthermore, because sequence alignment has the poten-
tial to impact phylogeny estimation, a third way of evaluating a multiple sequence
alignment method is via its impact on phylogeny estimation [11].

Thus, there are at least three different ways of assessing alignment accuracy: the
first type uses standard criteria and their variants (e.g., SP, TC, Cline Shift scores,
and the methods suggested in [89, 90]) that focus on shared homologies and treat

90 T. Warnow

them all identically; the second type reports accuracy with respect to only those sites
with functional or structural significance; and the third type focuses on phylogenetic
accuracy. These criteria are clearly related, but improved performance with respect
to one criterion may not imply improved performance with respect to another! An
example of this is given in [10], where some estimated alignments differed sub-
stantially in terms of their SP-scores, and yet maximum likelihood trees on these
alignments had the same accuracy. Similarly, when the objective is protein structure
and function prediction, mistakes in alignments that are not structurally or func-
tionally important may not impact these predictions, and so two alignments could
yield the same inferences for protein structure and function and yet have very dif-
ferent scores with respect to standard alignment evaluation criteria. Furthermore,
the algorithmic techniques that lead to improved results for one purpose may not
lead to improved performance for another, and benchmark datasets used to evaluate
methods may also not be identical.

Benchmark Datasets Many studies (see [21, 24, 27, 87, 92, 93] for examples)
have evaluated MSA methods using biological data for which structurally informed
alignments are available. The best known of these benchmark datasets is probably
BAliBASE [94], but others are also used [95–98]. The choice of benchmarks and
how they are used has a large impact on the result of the evaluation, and so has been
discussed in several papers [24, 78, 99–101].

However, the use of structurally defined benchmarks has also been criticized
[11, 100, 102] as being inappropriate for evaluating alignments whose purpose is
phylogenetic estimation. The main criticism is the observation that structural or
functional “homology” and “positional homology” (whereby two residues are posi-
tionally homologous if and only if they descend from a residue in their common an-
cestor by substitutions alone [103]) are different concepts, and that molecules with
residues that are functionally or structurally homologous due to convergent evolu-
tion without being positionally homologous have been found [11, 102, 104]. Thus,
alignments that are correct with respect to functional or structural homology may be
incorrect with respect to positional homology, and therefore violate the assumptions
used in phylogenetic estimation. However, even reputed benchmark alignments have
errors, as discussed in [11, 100], making the use of these benchmarks even for de-
tecting structural motifs questionable in some cases.

The use of benchmarks in general, and specifically structural benchmarks, is dis-
cussed at length by Iantoro et al. [100]. From the perspective of phylogeny esti-
mation, one of the most important of their observations is that structurally defined
benchmarks often omit the highly variable parts of the molecule, including introns.
Thus, an alignment can be considered completely correct as a structural alignment
if it aligns the conserved regions, even if it fails to correctly align the variable re-
gions. The problem with this criterion (as they point out) is that the highly variable
portions are often the sites that are of most use for phylogeny estimation, whereas
sites that change slowly have little phylogenetic signal.

An obvious response to the concerns about the potential disagreement between
positional homology and structural homology is that while they two concepts are

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 91

not identical, structural features tend to change slowly and so there is a close re-
lationship between the two concepts [105]. Thus, for many datasets, and perhaps
even most, these definitions may be identical, and so the use of structural bench-
marks is acceptable (and advisable) for most cases. However, the criticism raise by
Iantoro et al. regarding the elimination of the highly variable regions in the bench-
mark is more difficult to counter, except, perhaps, by saying that correct structural
alignments of the variable regions are much more difficult to establish.

This is one of the reasons that simulated data are also used to evaluate MSA
methods: the true alignment is known with certainty, including the alignment of
the hyper-variable regions. Another advantage of simulated datasets is that they en-
able the exploration of a larger range of conditions, whereas only a few biological
datasets are used as alignment benchmarks. Finally, simulated datasets, when simu-
lated on model trees under an evolutionary process, also provide a true tree to which
estimated trees can be compared. Thus, when the purpose of the alignment is to es-
timate the phylogeny, simulations of sequence evolution down model trees present
definite advantages over structural benchmarks, and have become the standard tech-
nique for evaluating alignments.

Relative Performance of MSA Methods While most studies have evaluated
alignment methods in terms of standard criteria (notably, SP and TC scores) on
biological benchmarks, some studies have explored alignment estimation for phy-
logeny estimation purposes. As commented on earlier, many studies have shown
that alignment estimation impacts phylogenetic estimation, and that alignment and
tree error increase with the rate of evolution. Also, on very large datasets, due to
computational limitations, only a few alignment methods can even be run (and typ-
ically not the most accurate ones), which results in increased alignment error [6].
On the other hand, on large trees with rates of evolution that are sufficiently low,
alignment estimation methods can differ substantially in terms of SP-score without
impacting the accuracy of the phylogenetic tree estimated using the alignment [10].
More generally, standard alignment metrics may be only poorly correlated with tree
accuracy in some conditions.

Not all alignment methods have been tested for their impact on phylogenetic ac-
curacy; however, among those that have been tested, MAFFT [106] (when run in its
most accurate settings) is among the best performing methods [4, 6, 10, 39] on both
proteins and nucleotides, especially on datasets with many sequences. For small nu-
cleotide datasets, especially those with relatively low rates of evolution, other meth-
ods (e.g., Probcons [107] and Prank [108]) can give excellent results [109, 110].

Progressive Aligners, and the Impact of Guide Trees Many alignment methods
use progressive alignment on a guide tree to estimate the alignment; thus the choice
of the guide tree and its impact on alignment and phylogeny estimation is also of
interest [109, 111–113]. Nelesen et al. [109] studied the impact of the guide tree
on alignment methods, and showed that improved phylogenetic accuracy can be
obtained by first estimating a tree from the input using a good two-phase method
(RAxML [36] on a MAFFT alignment). They noted particular benefits in using

92 T. Warnow

Probcons with this guide tree, and called the resultant method “Probtree”. Prank has
also been observed to be very sensitive to guide trees [113], and to give improved
results by the use of carefully computed guide trees (maximum likelihood on good
alignments) [10, 112]. Another study showed that even when the alignment score
does not change, the alignment itself can change in important ways when guide
trees are changed [111]. Finally, Capela-Gutierrez and Gabaldon [113] found that
the placement of gaps in an alignment results from the choice of the guide tree, and
hence the gaps are not phylogenetically informative. Based on these observations,
Capela-Gutierrez and Gabaldon recommended that alignment estimation methods
should use the true tree (if possible), or else use an iterative co-estimation method
that infers both the tree and the alignment.

Template-Based Methods Some alignment methods use a very different type of
algorithmic structure, which is referred to as being “template-based” [24]. Instead of
using progressive alignment on a guide tree, these methods use models (either pro-
files, templates, or Hidden Markov Models) for the gene of interest, and align each
sequence to the model in order to produce the final multiple sequence alignment,
as follows. First, a relatively small set of sequences from the family is assembled,
and an alignment estimated for the set. Then, some kind of model (e.g., a tem-
plate or a Hidden Markov Model) is constructed from this “seed” alignment. This
model can be relatively simple or quite complex, typically depending on whether
the model provides structural information. Once the model is estimated, the remain-
ing sequences are added to the growing alignment. The model is used to align each
sequence to the seed alignment (which does not change during the process), and
then inserted into the growing alignment. Since the remaining sequences are only
compared to the seed alignment, homologies between the remaining sequences can
only be inferred through their homologies to the seed alignment. Thus, the choice
of sequences in the seed alignment and how it is estimated can have a big impact on
the resultant alignment accuracy. By design, once the seed alignment and the model
are computed, the running time scales linearly with the number of sequences, and
the algorithm is trivially parallelizable. Thus, these methods, which we will refer to
jointly as “template-based methods”, can scale to very large datasets with hundreds
of thousands of sequences.

There are several examples of methods that use this approach [33, 85–87, 114–
116] (see pp. 526–529 in [11]). Some of these methods use curated seed align-
ments based on structure and function of well-characterized proteins or rRNAs; for
example, the protein alignment method by Neuwald [33] and the rRNA sequence
alignment method by Gardner et al. [87] use curated alignments. Constraint-based
methods, such as COBALT [117], 3DCoffee [79] and PROMALS [76], similarly use
external information like structure and function, but then use progressive alignment
techniques (or other such methods) to produce the final alignment. Clustal-Omega
also has a version, called “External Profile Alignment”, which uses external infor-
mation (in the form of alignments) to improve the alignment step.

Finally, PAGAN [116] is another member of this class of methods; however, it
has some specific methodological differences to the others. First, unlike several of

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 93

the others, it does not use external biological information (about structure, func-
tion, etc.) to define its seed alignment. Second, while the others tend to use either
HMMs, profiles, or templates as a model to define the alignment of the remaining
sequences, PAGAN estimates a tree on its seed alignment, and estimates sequences
for the internal nodes. These sequences are then used to define the incorporation
of the remaining sequences to the seed alignment. This technique is very similar
to the technique used in PaPaRa [118], which was developed for the phylogenetic
placement problem (see Sect. 6.2.4). Thus, PAGAN is one of the “phylogeny-aware”
alignment methods, a technique that is atypical of these template-based methods, but
shared by progressive aligners. PAGAN was compared to an HMM-based method
(using HMMER on the reference alignment to build an HMM, and then using HM-
MALIGN to align the sequences to the HMM) on several datasets [116]. The com-
parison showed that PAGAN had very good accuracy, better than HMMALIGN,
under low rates of evolution, and that both methods had reduced accuracy under
high rates of evolution. They also noted that PAGAN failed to align some sequences
under model conditions with high rates of evolution, while HMMER aligned all
sequences; however, the sequences that both HMMER and PAGAN aligned were
aligned more accurately using PAGAN.

Several studies [21, 33, 76, 80, 81, 87, 119] have shown that alignment methods
that use high quality external knowledge can surpass the accuracy of some of the
best purely sequence-based alignment methods. However, none of these template-
based and constraint-based alignment estimation methods (whether or not based
upon external biological knowledge) have been tested for their impact on phyloge-
netic estimation; instead, they have only been tested with respect to standard align-
ment criteria (e.g., SP-score), identification of functional or structural residues, or
membership in a gene family. Thus, we do not know whether the improvements
obtained with respect to traditional alignment accuracy metrics will translate to im-
provements in phylogeny estimation.

Methods that Use Divide-and-Conquer on the Taxon Set Some alignment
methods use a divide-and-conquer strategy in which the taxon set is divided into
subsets (rather than the sites) in order to estimate the alignment; these include
the mega-phylogeny method developed by Smith et al. [120], SATé [10, 39],
SATCHMO-JS [78], PROMALS [76], and the method by Neuwald [33]. (The SATé
and SATCHMO-JS methods co-estimate alignments and trees, and so are not strictly
speaking just alignment methods.) Neuwald’s method is a bit of an outlier in this set,
because the user provides the dataset decomposition, but we include it here for com-
parative purposes.

While the methods differ in some details, they use similar strategies to estimate
alignments. Most estimate an initial tree, and then use the tree to divide the dataset
into subsets. The method to compute the initial trees differs, with SATCHMO-JS
using a neighbor joining [121] (NJ) tree on a MAFFT alignment, SATé using a
maximum likelihood tree on a MAFFT alignment, PROMALS using a UPGMA
tree on k-mer distances, and mega-phylogeny using a reference tree and estimated
alignment. (See the description of mega-phylogeny provided by Roquet et al. [122]
for more details.)

94 T. Warnow

The subsequent division into subsets is performed in two ways. In the case of
mega-phylogeny, SATCHMO-JS, and PROMALS, the division into subsets is per-
formed by breaking the starting tree into clades so as to limit the maximum dis-
similarity between pairs of sequences in each set. In contrast, SATé-2 [39] removes
centroid edges from the unrooted tree, recursively, until each subset is small enough
(below 200 sequences). Thus, the sets produced by the SATé-2 decomposition do
not form clades in the tree, unlike the other decompositions. Furthermore, the sets
produced by the SATé-2 decomposition are guaranteed to be small (at most 200
taxa) but are not constrained to have low pairwise dissimilarities between sequences.

Alignments are then produced on each subset, with PROMALS, SATé, and
mega-phylogeny estimating alignments on each subset, and SATCHMO-JS using
the alignment induced on the subset by the initial MAFFT alignment.

These alignments are then merged together into an alignment on the full set,
but the methods use different techniques. PROMALS and mega-phylogeny use
template-based methods to merge the alignments together, while SATCHMO-JS and
SATé use progressive alignment techniques. PROMALS also uses external knowl-
edge about protein structure to guide the template-based merger of the alignments
together. PROMALS, SATCHMO-JS, and mega-phylogeny use sophisticated meth-
ods to merge subset-alignments, but SATé uses a very simple method (Muscle) to
merge subset-alignments.

Neuwald’s method [33] shares many features with these four methods, but has
some unique features that are worth pointing out. First, like SATCHMO-JS and
PROMALS, Neuwald’s method can only be used on proteins (mega-phylogeny
and SATé can be used on both nucleotides and protein sequences). Neuwald’s
method requires the user to provide a dataset decomposition and also a manually
curated seed alignment reflecting structural and functional features of the protein
family. The algorithm operates by estimating alignments on the subsets using sim-
ple methods, and then uses the seed alignment to merge the subset-alignments to-
gether.

Note that Neuwald’s method, PROMALS, and mega-phylogeny are essentially
template-based methods, and as such are very scalable once their templates are
computed (this first step, however, can be very labor-intensive, if it depends on
expert curation). Mega-phylogeny has been used to analyze a dataset with more
than 50,000 nucleotide sequences [35], and Neuwald’s method has been used to
analyze a dataset with more than 400,000 protein sequences. By contrast, because
SATCHMO-JS and SATé both rely upon progressive alignment, their running times
are longer. Furthermore, SATé uses iteration to obtain improved results (even though
the first iteration gives the most improvement), and although most runs finish in just
a few iterations, this also adds to the running time. SATé has been used to analyze a
dataset with approximately 28,000 nucleotide sequences, but has not been tested on
larger datasets.

In terms of performance evaluations, Neuwald’s method, SATCHMO-JS, and
PROMALS, have been assessed using protein alignment benchmarks, and shown to
give excellent results over standard methods. Ortuno et al. [21] explored the condi-
tions in which PROMALS gave improvements over the other methods, and showed
that the conditions in which the improvements were substantial were when the se-

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 95

quences were close to the ‘twilight zone’ (i.e., almost random with respect to each
other), which is where sequence homology is difficult to detect, and information
about structure is the most helpful.

The accuracy of SATé has been assessed using nucleotide alignments, and shown
to be very good, both for standard alignment criteria and for phylogenetic accu-
racy [39]. A recent study [119] evaluated protein alignment methods (including
SATé) on large datasets with respect to the TC (total column) score. They found
substantial differences in running time between the template-based methods (which
had the best speed) and other methods, including SATé, and so only ran the fastest
methods on the largest datasets, which had 50,000 protein sequences. To the best of
our knowledge, the mega-phylogeny method has not been compared to other meth-
ods on benchmark datasets with curated alignments or trees.

Very Large-Scale Alignment When the datasets are very large, containing many
thousands of sequences, only a few alignment estimation methods are able to run.
As noted, the template-based methods (including PROMALS and mega-phylogeny)
scale linearly with the number of taxa, and so can be used with very large datasets.
SATé and SATCHMO-JS are not quite as scalable; however, SATé has been able to
analyze nucleotide datasets with about 28,000 sequences. Other methods that have
been shown to run on very large datasets include Clustal-Omega [28], MAFFT-
PartTree [29], and Kalign-2 [32], but many methods fail to run on datasets with
tens of thousands of sequences [6]. Of these, Clustal-Omega is only designed for
protein sequences, but MAFFT-PartTree and Kalign-2 can analyze both nucleotide
and amino-acid sequences.

SATé is computationally limited by its use of progressive alignment and maxi-
mum likelihood method (RAxML or FastTree-2 [34]) in each iteration; both impact
the running time and—in the case of large numbers of long sequences—memory
usage. However, although limited to datasets with perhaps only 30,000 sequences
(or so), on fast-evolving datasets with 1000 or more sequences, SATé provides im-
provements in phylogenetic accuracy relative to competing methods [6, 39].

6.2.3 Tree Estimation

Most phylogeny estimation methods are designed to be used with sequence align-
ments, and so presume that the alignment step is already completed. These methods
are generally studied with respect to their performance under Markov models of
evolution in which sequences evolve only with substitutions. Therefore, we begin
with a discussion about site substitution models, and about statistical performance
guarantees under these models.

6.2.3.1 Stochastic Models of Sequence Evolution

We begin with a description of the simplest stochastic models of DNA sequence evo-
lution, and then discuss amino-acid sequence evolution models and codon evolution

96 T. Warnow

models. The simplest models of DNA sequence evolution treat the sites within the
sequences independently. Thus, a model of DNA sequence evolution must describe
the probability distribution of the four states, A,C,T ,G, at the root, the evolution
of a random site (i.e., position within the DNA sequence) and how the evolution
differs across the sites. Typically the probability distribution at the root is uniform
(so that all sequences of a fixed length are equally likely). The evolution of a single
site is modeled through the use of “stochastic substitution matrices,” 4× 4 matrices
(one for each tree edge) in which every row sums to 1. A stochastic model of how a
single site evolves can thus have up to 12 free parameters. The simplest such model
is the Jukes–Cantor model, with one free parameter, and the most complex is the
General Markov model, with all 12 parameters [123]:

Definition 1 The General Markov (GM) model of single-site evolution is defined
as follows.

1. The nucleotide in a random site at the root is drawn from a known distribution,
in which each nucleotide has positive probability.

2. The probability of each site substitution on an edge e of the tree is given by a
4× 4 stochastic substitution matrix M(e) in which det(M(e)) is not 0, 1, or −1.

This model is generally used in a context where all sites evolve identically
and independently (the i.i.d. assumption), with rates of evolution drawn typically
drawn from a gamma distribution. (Note that the distribution of the rates across
sites has an impact on phylogeny estimation and dating, as discussed by Evans and
Warnow [124].) In what follows, we will address the simplest version of the GM
model so that all sites have the same rate of evolution.

We denote a model tree in the GM model as a pair, (T , {M(e) : e ∈ E(T)}),
or more simply as (T ,M). For each edge e ∈ E(T), we define the length of the
edge λ(e) to be − log |det(M(e))|. This allows us to define the matrix of leaf-to-leaf
distances, {λij }, where λij =∑

e∈Pij
λ(e), and where Pij is the path in T between

leaves i and j . A matrix defined by path distances in a tree with edge weights is
called “additive”, and it is a well-known fact that given any additive matrix, it is
easy to recover the underlying leaf-labeled tree T for that matrix in polynomial
time.

This general model of site evolution subsumes the great majority of other mod-
els examined in the phylogenetic literature, including the popular General Time Re-
versible (GTR) model [125], which requires only that M(e) =M(e′) for all edges
e and e′. Further constraints on the matrix M(e) produce the Hasegawa–Kishino–
Yang (HKY) model, the Kimura 2-parameter model (K2P), the Kimura 3-ST model
(K3ST), the Jukes–Cantor model (JC), etc. These models are all special cases of the
General Markov model, because they place restrictions on the form of the stochastic
substitution matrices. The standard model used for nucleotide phylogeny estimation
is GTR+gamma, i.e., the General Time Reversible (GTR) model of site substitution,
equipped with a gamma distribution of rates across sites.

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 97

Protein Models Just as with DNA sequence evolution models, there are Markov
models of evolution for amino-acid sequences, and also for coding DNA sequences.
These models are described in the same way—a substitution matrix that governs
the tree, and then branch lengths. While the GTR model can be extended to amino-
acids (to produce a 20× 20 matrix) or to codon-based models (to produce a 64× 64
matrix), both of which must be estimated from the data, in practice these models use
fixed matrices, each of which was estimated from external biological data. The most
well known protein model is the Dayhoff model [126], but improved models have
been developed in recent years [127–133]. Similarly, codon-based models have also
been based on fixed 64 × 64 matrices (e.g., [134–136]). In practice, the selection
of a protein model for a given dataset is often done using a statistical test, such as
ProtTest [137], and then fixed. In the subsequent tree estimation performed under
that model, only the tree and its branch lengths need to be estimated.

More General Site Evolution Models The models that are typically used in phy-
logenetic estimation tend to be fairly simple, and have come under serious criticism
as a result, especially when used with proteins [138, 139]. For example, these mod-
els fail to account for GC content variation across the tree, rates of evolution that are
not drawn from the gamma distribution (or similarly simple models), or heterotachy
(where the substitution matrix depends on the edge and the site [140–143]). Studies
of gene family evolution have also shown that the neutral model of evolution is un-
realistic [144]. More general models of site evolution have been proposed, including
the non-stationary, non-homogeneous model of Galtier and Guoy [145].

6.2.3.2 Phylogeny Estimation Methods

There are many different phylogeny estimation methods, too numerous to mention
here. However, the major ones can be classified into the following types:

• distance-based methods, which first compute a pairwise distance matrix (usually
based on a statistical model) and then compute the tree from the matrix [17],

• maximum parsimony and its variants [146], which seek a tree with a total mini-
mum number of changes (as defined by edit distances between sequences at the
endpoints on the edges of the tree),

• maximum likelihood [147], which seeks the model tree that optimizes likelihood
under the given Markov model, and

• Bayesian MCMC methods, which return a distribution on trees rather than a sin-
gle tree, and also use likelihood to evaluate a model tree.

6.2.3.3 Statistical Performance Criteria

We discuss three concepts here: identifiability, statistical consistency, and sequence-
length requirements.

98 T. Warnow

Identifiability A statistical model or one of its parameters is said to be “iden-
tifiable” if it is uniquely determined by the probability distribution defined by the
model. Thus, in the context of phylogeny estimation, the unrooted model tree topol-
ogy is identifiable if it is determined by the probability distribution (defined by the
model tree, which includes the numeric parameters) on the patterns of nucleotides
at the leaves of the tree. In the case of nucleotide models, the state at each leaf can
be A, C, T , or G, and so there are 4n possible patterns in a tree with n leaves (sim-
ilarly, there are 20n possible patterns for amino-acid models). It is well known that
the unrooted tree topology is identifiable under the General Markov model [123],
and recent work has extended this to other models [148–150].

Statistical Consistency We say that a method Φ is “statistically consistent” for
estimating the topology of the model tree (T , θ) if the trees estimated by Φ con-
verges to the unrooted version of T (denoted by T u) as the number of sites increases.
(Note that under this definition, we are not concerned with estimating the numeric
parameters.) Equivalently, for all ε > 0 there is a sequence length K so that if a set
S of sequences of length k ≥ K are generated by (T , θ), then the probability that
Φ(S) = T u is at least 1− ε. We say that a method is statistically consistent under
the GM model if it is statistically consistent for all model trees in the GM model.
Similarly, we say a method is statistically consistent under the GTR model if it is
statistically consistent under all model trees in the GTR model.

Many phylogenetic methods are statistically consistent under the GM model,
and hence also under its submodels (e.g., the GTR model). For example, maxi-
mum likelihood, neighbor joining (and other distance-based methods) for properly
computed pairwise “distances”, and Bayesian MCMC methods, are all statistically
consistent [17, 151–153]. On the other hand, maximum parsimony and maximum
compatibility are not statistically consistent under the GM model [154]. In addition,
it is well known that maximum likelihood can be inconsistent if the generative model
is different from the model assumed by maximum likelihood, but maximum likeli-
hood can even be inconsistent when its assumptions match the generative model, if
the generative model is too complex! For example, Tuffley and Steel showed that
maximum likelihood is equivalent to maximum parsimony under a very general
“no-common-mechanism” model [142], and so is inconsistent under this model. In
this case, the model itself is not identifiable, and this is why maximum likelihood is
not consistent [155–157]. However, there are identifiable models for which ML is
not consistent, as observed by Steel [143].

Sequence-Length Requirement Clearly, statistical consistency under a model
is a desirable property. However, statistical consistency does not address how well
a method will work on finite data. Here, we address the “sequence-length require-
ment” of a phylogeny estimation method Φ , which is the number of sites that Φ

needs to return the (unrooted version of the) true tree with probability at least 1− ε

given sequences that evolve down a given model tree (T , θ). Clearly, the number of
sites that suffices for accuracy with probability at least 1− ε will depend on Φ and
ε, but it also depends on both T and θ .

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 99

We describe this concept in terms of the Jukes–Cantor model, since this is the
simplest of the DNA sequence evolution models, and the ideas are easiest to under-
stand for this model. However, the same concepts can be applied to the more general
models, and the theoretical results that have been established regarding sequence-
length requirements extend to the GM (General Markov) model, which contains the
GTR model and all its submodels.

In the Jukes–Cantor (JC) model, all substitutions are equally likely, and all nu-
cleotides have equal probability for the root state. Thus, a Jukes–Cantor model tree
is completely defined by the rooted tree T and the branch lengths λ(e), where λ(e) is
the expected number of changes for a random site on the edge e. It is intuitively ob-
vious that as the minimum branch length shrinks, the number of sites that are needed
to reconstruct the tree will grow, since a branch on which no changes occur cannot
be recovered with high probability (the branch will appear in an estimated tree with
probability at most one-third, since at best it can result from a random resolution
of a node of degree at least 4). It is also intuitively obvious that as the maximum
branch length increases, the number of sites that are needed will increase, since the
two sides of the long branch will seem random with respect to each other. Thus,
the sequence-length requirement for a given method to be accurate with probabil-
ity at least 1− ε will be impacted by the shortest branch length f and the longest
branch length g. It is also intuitively obvious that the sequence-length requirement
will depend on the number of taxa in the tree.

Expressing the sequence-length requirement for the method Φ as a function of
these parameters (f , g, n and ε) enables a different—and finer—evaluation of the
method’s performance guarantees under the statistical model. Hence, we consider
f , g, and ε as fixed but arbitrary, and we let JCf,g denote all Jukes–Cantor model
trees with 0 < f ≤ λ(e)≤ g <∞ for all edges e. This lets us bound the sequence-
length requirement of a method as a function only of n, the number of leaves in the
tree.

The definition of “absolute fast convergence” under the Jukes–Cantor model is
formulated as an upper bound on the sequence-length requirement, as follows:

Definition 2 A phylogenetic reconstruction method Φ is absolute fast-converging
(afc) for the Jukes–Cantor (JC) model if, for all positive f , g, and ε, there is a
polynomial p(n) such that, for all (T , θ) in JCf,g , on set S of n sequences of length
at least p(n) generated on T , we have Pr[Φ(S)= T u]> 1− ε.

Note also that this statement only refers to the estimation of the unrooted tree
topology T u and not the numeric parameters θ . Also, note that the method Φ op-
erates without any knowledge of parameters f or g—or indeed any function of f

and g. Thus, although the polynomial p depends upon both f and g, the method
itself will not. Finally, this is an upper bound on the sequence-length requirement,
and the actual sequence-length requirement could be much lower.

The function p(n) can be replaced by a function f (n) that is not polynomial to
provide an upper bound on the sequence-length requirement for methods that are
not proven to be absolute fast converging.

100 T. Warnow

In a sequence of papers, Erdős et al. [158–160] presented the first absolute fast
converging methods for the GM model, and presented techniques for establish-
ing the sequence length requirements of distance-based methods. Following this,
the sequence-length requirement of neighbor joining (NJ) was studied, and lower
bounds and upper bounds that are exponential in n were established [151, 161].
These papers were followed by a number of other studies presenting other afc meth-
ods (some with even better theoretical performance than the first afc methods) or
evaluating the sequence-length requirements of known methods [162–175].

6.2.3.4 Empirical Performance

So far, these discussions have focused on theoretical guarantees under a model, and
have addressed whether a method will converge to the true tree given long enough
sequences (i.e., statistical consistency), and if so, then how long the sequences need
to be (sequence-length requirements). However, these issues are purely theoretical,
and do not address how accurate the trees estimated by methods are in practice
(i.e., on data). In addition, the computational performance (time and memory usage)
of phylogeny estimation methods is also important, since a method that is highly
accurate but will use several years of compute time will not generally be useful in
most analyses.

Phylogenetic tree accuracy can be computed in various ways, and there are sub-
stantive debates on the “right” way to calculate accuracy [176, 177]; however, al-
though disputed, the Robinson-Foulds [178] (RF) distance, also called the “biparti-
tion distance”, is the most commonly used metric on phylogenetic trees. We describe
this metric here.

Given a phylogenetic tree T on n taxa, each edge can be associated with the
bipartition it induces on the leaf set; hence, the tree itself can be identified with
the set of leaf-bipartitions defined by the edges in the tree. Therefore, two trees on
the same set of taxa can be compared with respect to their bipartition sets. The RF
distance between two trees is the size of the symmetric difference of these two sets,
i.e., it is the number of bipartitions that are in one tree’s dataset but not both. This
number can be divided by 2(n−3) (where n is the number of taxa) to obtain the “RF
rate.” In the context of evaluating phylogeny estimation methods, the RF distance is
sometimes divided into false negatives and false positives, where the false negatives
(also called “missing branches”) are branches in the true tree that are not present
in the estimated tree, and the false positives are the branches in the estimated tree
that are not present in the true tree. This distinction between false positives and false
negatives enables a more detailed comparison between trees that are not binary.

Many studies have evaluated phylogeny estimation methods on simulated data,
varying the rate of evolution, the branch lengths, the number of sites, etc. These
studies have been enormously informative about the differences between methods,
and have helped biologists make informed decisions regarding methods for their
phylogenetic analyses. Some of the early simulation studies explored performance
on very small trees, including the fairly exhaustive study by Huelsenbeck and Hillis

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 101

on 4-leaf trees [179], but studies since then have explored larger datasets [4, 10, 180,
181] and more complex questions. For example, studies have explored the impact
of taxon sampling on phylogenetic inference [12, 180, 182, 183], the impact of
missing data on phylogenetic inference [184–187], and the number of sites needed
for accuracy with high probability [188]. In fact, simulation studies have become,
perhaps, the main way to explore phylogenetic estimation.

Distance-Based Methods Distance-based methods operate by first computing a
matrix of distances (typically using a statistically defined technique, to correct for
unseen changes) between every pair of sequences, and then construct the tree based
on this matrix. Most, but not all, distance-based methods are statistically consis-
tent, and so will be correct with high probability, given long enough sequences. In
general, distance-based methods are polynomial time, and so have been popular for
large-scale phylogeny estimation. While the best known distance-based method is
probably neighbor joining [121], there are many others, and many are faster and/or
more accurate [189–194].

One of the interesting properties about distance-based methods is that although
they are typically guaranteed to be statistically consistent, not all distance-based
methods have good empirical performance! A prime example of this lesson is the
Naive Quartet Method, a method that estimates a tree for every set of four leaves
using the Four-Point Method (a statistically consistent distance method) and then
returns the tree that is consistent with all the quartets if it exists [17]. It is easy to
show that the Naive Quartet Method runs in polynomial time and is statistically
consistent under the General Markov model; however, because it requires that every
quartet be accurately estimated, it has terrible empirical performance! Thus, while
statistical consistency is desirable, in many cases statistically inconsistent methods
can outperform consistent ones [195, 196].

Maximum Parsimony Maximum parsimony (MP) is NP-hard [146], and so the
methods for MP use heuristics (most without any performance guarantees). The
most efficient and accurate maximum parsimony software for very large datasets is
probably TNT [38], but PAUP* [197] is also popular and effective on datasets that
are not extremely large. TNT is a particularly effective parsimony heuristic for large
trees [54], and has been able to analyze a multi-marker sequence dataset with more
than 73,000 sequences [37].

Maximum Likelihood Maximum likelihood (ML) is also NP-hard [198], and so
attempts to solve ML are also made using heuristics. While the heuristics for MP
used to be computationally more efficient than the heuristics for ML, the current
set of methods for ML are quite effective at “solving” large datasets. (Here the
quotes indicate that there is no guarantee, but reasonably good results do seem to be
obtained using the current best software.)

The leading methods for large-scale ML estimation under the GTR+Gamma
model include RAxML [36], FastTree-2 [34], PhyML [199], and GARLI [200]. Of
these four methods, RAxML is clearly the most frequently used ML method, in part

102 T. Warnow

because of its excellent parallel implementations. However, a recent study [201]
showed that trees estimated by FastTree-2 were almost as accurate as those esti-
mated by RAxML, and that FastTree-2 finished in a fraction of the time; for ex-
ample, FastTree-2 was able to analyze an alignment with almost 28,000 rRNA se-
quences in about 5 hours, but RAxML took much longer. Furthermore, FastTree-2
has been used to analyze larger datasets (ones with more sequences) than RAxML:
the largest dataset published with a RAxML analysis had 55,000 nucleotide se-
quences [35], but FastTree has analyzed larger datasets. For example, FastTree-2
has analyzed a dataset with more than 1 million nucleotide sequences [202], and
another with 330,556 sequences [203]. The reported running time for these anal-
yses are 203 hours for the million-taxon dataset, and 13 hours (with 4 threads)
for the 330 K-taxon dataset.2 By comparison, the RAxML analysis of 55,000 nu-
cleotide sequences took between 100,000 and 300,000 CPU hours.3 The difference
in running time is substantial, but we should note two things: the RAxML analysis
was a multi-marker analysis, and so the sequences were much longer (which im-
pacts running time), and because RAxML is highly parallelized, the impact of the
increased running time is not as significant (if one has enough processors). Nev-
ertheless, for maximum likelihood analysis of alignments with large numbers of
sequences, FastTree-2 provides distinct speed advantages over RAxML.

There are a few important limitations for FastTree-2, compared to RAxML. First,
FastTree-2 obtains its speed by somewhat reducing the accuracy of the search; thus,
the trees returned by FastTree-2 may not produce maximum likelihood scores that
are quite as good as those produced by RAxML. Second, FastTree-2 does not handle
very long alignments with hundreds of thousands of sites very well, while RAxML
has a new implementation that is designed specifically for long alignments. Third,
FastTree-2 has a smaller set of models for amino-acid analyses than RAxML. There-
fore, in some cases (e.g., for wide alignments, and perhaps for amino-acid align-
ments), RAxML may be the preferred method.

However, the ML methods discussed above estimate trees under the GTR+Gam-
ma model, which has simplifying assumptions that are known to be violated in
biological data. The nhPhyml [204] method is a maximum likelihood method for
estimating trees under the non-stationary, non-homogeneous model of Galtier and
Guoy [145], and hence provides an analytical advantage in that it can be robust
to some violations of the GTR+Gamma model assumptions. However, nhPhyml
seems to be able to give reliably good analyses only on relatively small datasets (i.e.,
with at most a few hundred sequences, or fewer sequences if they are very long). The
explanation is computational—it uses NNI (nearest neighbor interchanges, see be-
low) to search tree space, but NNI is relatively ineffective [205, 206], which means
that it is likely to get stuck in local optima. This is unfortunate, since large datasets
spanning substantial evolutionary distances are most likely to exhibit an increased
incidence in model violations. Therefore, highly accurate phylogeny estimation of

2Morgan Price, personal communication, 1 May 2013.
3Alexis Stamatakis, personal communication, 1 May 2013.

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 103

large datasets may require the use of new methods that are based upon more realis-
tic, and more general, models of sequence evolution.

Bayesian MCMC Methods Bayesian methods are similar to maximum likeli-
hood methods in that the likelihood of a model tree with respect to the input se-
quence alignment is computed during the analysis; the main difference is that maxi-
mum likelihood selects the model tree (both topology and numeric parameters) that
optimizes the likelihood, while a Bayesian method outputs a distribution on trees.
However, once the distribution is computed, it can be used to compute a single
point estimate of the true tree using various techniques (e.g., a consensus tree can
be computed, or the model tree topology with the maximum total probability can be
returned).

The standard technique used to estimate this distribution is a random walk
through the model tree space, and the distribution is produced after the walk has
converged to the stationary distribution.

There are many different Bayesian methods (e.g., MrBayes [207], BEAST [208],
PhyloBayes [209], Foster [210], and BayesPhylogenies [211]), differing in terms of
the techniques used to perform the random walk, and the model under which the
likelihood is computed; however, MrBayes [212] is the most popular of the methods.
Bayesian methods provide theoretical advantages compared to maximum likelihood
methods [213–216]. However, the proper use of a Bayesian MCMC method requires
that it run to convergence, and this can take a very long time on large datasets [61].
Thus, from a purely empirical standpoint, Bayesian methods do not yet have the
scalability of the best maximum likelihood methods, and they are generally not used
on very large datasets.

Comparisons Between Methods Simulation studies have shown some interest-
ing differences between methods. For example, the comparison between neighbor
joining and maximum parsimony reveals that the relative performance may de-
pend on the number of taxa and the rate of evolution, with maximum parsimony
sometimes performing better on large trees with high rates of evolution [195], even
though the reverse generally holds for smaller trees [179].

More generally, most simulation studies have shown that maximum likelihood
and Bayesian methods (when they can be run properly) outperform maximum par-
simony and distance-based methods in many biologically realistic conditions (see
Wang et al. [4] for one such study).

Heuristics for Exploring Tree Space Since both maximum likelihood and max-
imum parsimony are NP-hard, methods for “solving” these problems use heuristics
to explore the space of different tree topologies. These heuristics differ by the tech-
niques they use to score a candidate tree (with the best ones typically using informa-
tion from previous trees that have already been scored), and how they move within
tree space.

The standard techniques for exploring tree space (i.e., for changing the un-
rooted topology of the current tree) use either NNI (nearest neighbor interchanges),

104 T. Warnow

SPR (subtree prune-and-regraft) or TBR (tree-bisection-and-reconnection) moves.
All these moves modify unrooted trees, as follows. In an NNI move, an edge in the
tree is identified, and two subtrees (one on each side of the edge) are swapped. In
an SPR move, a rooted subtree of the tree is deleted from the tree, and then reat-
tached. In a TBR move, an edge in the tree is deleted, thus creating two separate
(unrooted) trees, and then the two trees are attached through the addition of an edge.
Another type of move, called p-ECR (p-edge-contract-and-refine) [217, 218], has
also been suggested. In this move, p different edges are contracted, thus creating
one or more high degree nodes; the resultant unresolved tree is then either randomly
refined, or refined optimally with respect to the criterion of interest (see, for exam-
ple, [218, 219] for results regarding maximum parsimony). By definition, an NNI
move is an SPR move, and an SPR move is a TBR move; thus, the TBR move is
the most general of these three moves. However, p-ECR moves generate different
neighborhoods than these moves, although an NNI move is a 1-ECR move. Software
that only use NNI moves (e.g., nhPhyml [204]) has the advantage of being faster,
since they will reach local optima more quickly; however, they also have a tendency
to get stuck in local optima more frequently. The TNT software for maximum par-
simony uses more complicated techniques, including sectorial-search, for exploring
tree space [38]. Theoretical evaluations of these techniques for exploring tree space
have been made [205, 206, 217, 218] that help explain the trade-offs between search
strategies.

Because local optima are a problem for heuristic searches for NP-hard problems,
randomization is often used to move out of local optima. An example of a technique
that uses randomness effectively is the parsimony ratchet [220], which was also
implemented for maximum likelihood [221]. In the parsimony ratchet, the search
alternates between heuristic searches based on the original alignment, and searches
based on stochastically modified versions of the alignment; thus, the tree found dur-
ing the search for the stochastically modified alignment is used to initiate a search
based on the original alignment, etc. This technique thus uses randomness to modify
the alignment, rather than to move to a random point in tree space; thus, randomness
is a general technique that can be used to improve heuristic searches.

6.2.3.5 DCMNJ: A Fast Converging Method with Good Empirical
Performance

In Sect. 6.2.3.3, we discussed absolute fast converging methods, which are meth-
ods that provably reconstruct the true tree with high probability from sequences
of lengths that grow only polynomially in the number of taxa. As stated, this
is a mathematical property rather than an empirical property. Here we describe
one of the early absolute fast converging methods, called DCM-neighbor joining
(DCMNJ) [222, 223].

The input to DCMNJ is a distance matrix [Dij] for a set of n species, where
the distance matrix is defined appropriately for the model (e.g., the use of the
logdet [123] distances for the GTR model). DCM-neighbor joining has two phases.

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 105

In the first phase, it computes a set X of O(n2) trees (one for each entry in the
distance matrix), and in the second phase, it selects a tree from the set X based
on a “true tree selection criterion”. To obtain a theoretical guarantee of absolute
fast convergence, both phases must have some statistical guarantees, which we now
describe in the context of the Jukes–Cantor model.

Phase 1 Property: Given JC model tree (T , θ) with branch lengths satisfying 0 <

f ≤ λ(e) ≤ g <∞ and given ε > 0, there is a polynomial p(n) (which can
depend on f , g and ε) so that given sequences of length at most p(n), then the
set X of trees produced in Phase 1 will contains the unrooted true tree T u with
probability at least 1− ε.

Phase 2 Property: Let C be the criterion used for Phase 2. Then the desired prop-
erty for Phase 2 is defined as follows. Given JC model tree (T , θ) with branch
lengths satisfying 0 < f ≤ λ(e) ≤ g <∞ and given ε > 0, there is a polyno-
mial p(n) (which can depend on f , g, and ε) so that given sequences of length
at most p(n), and given a set X of trees on taxon set S that contains the T u,
then T opt = T u with probability at least 1− ε, where T opt is the tree in X that
optimizes criterion C.

We now describe these two phases.

Phase 1 of DCMNJ For each entry q in the distance matrix [Dij], DCMNJ com-
putes a tree Tq , as follows. First, a “threshold graph” is computed based on [Dij] and
the threshold q , so that there is a vertex for every taxon, and an edge between two
vertices vi and vj if and only if Dij ≤ q . If the distance matrix is additive (mean-
ing that it equals the path distance in some edge-weighted tree [17]), the threshold
graph will be triangulated (also called “chordal”), which means that either the graph
is acyclic, or that every induced simple cycle in the graph is of size 3. Chordal graphs
have special properties, including that the set of maximal cliques can be enumerated
in polynomial time; thus, we can compute the set of (at most) n maximal cliques in
the threshold graph [224]. Otherwise, we add edges to the threshold graph (mini-
mizing the maximum “weight” of any added edge) to create a triangulated graph,
and then continue. Each maximal clique thus defines a subset of the input sequence
set, in the obvious way.

We use the “base method” (here, neighbor joining) to construct a tree on each
of these subsets, and we combine these subset trees into a tree on the entire dataset
using a particular supertree method called the Strict Consensus Merger [225] (the
first phase of SuperFine [53]). For threshold values q that are very small, the set
of neighbor joining trees will be insufficient to define the full tree (because of fail-
ure to overlap sufficiently). For very large threshold values, there will be sufficient
overlap, but the neighbor joining trees on the subsets may have errors. However,
for intermediate threshold values, given polynomial length sequences, the neighbor
joining subtrees will be correct with high probability and sufficient to define the
full tree [222]. Under these conditions, the Strict Consensus Merger will produce
the true tree (Lemma 6.2 in [222]). Hence, from polynomial length sequences, with
high probability, the first phase will produce the true tree as one of the trees in the
set of trees it produces (one for each threshold value).

106 T. Warnow

Phase 2 Each tree in the set of trees produced in Phase I is scored using the desired
“True Tree Selection” (TTS) criterion, and the tree with the best score is returned.
Examples of criteria that have been considered are the maximum likelihood (ML)
score, the maximum parsimony (MP) score, and the “short quartet support” (SQS)
score. Of these, the MP and SQS scores can be computed exactly and in polynomial
time, but the ML score can only be estimated heuristically [226]. Of these criteria,
the SQS score is guaranteed to satisfy the required property (described above), but
the use of the ML and MP scores gives somewhat more accurate trees.

To summarize, DCM-NJ uses a two-phase process, in which the first phase pro-
duces a set of trees, and the second phase selects a tree from the set. Furthermore,
each tree computed in the first phase is obtained by using a graph-theoretic tech-
nique to decompose the dataset into small overlapping subsets, neighbor joining is
used to construct trees on each subset, and then these subset trees are combined to-
gether using a supertree method. The result is a method that reconstructs the true
tree with high probability from polynomial length sequences, even though the base
method (NJ) has a sequence-length requirement that is exponential [161]. Thus,
DCM-NJ is a technique that estimates a tree on the full set of taxa and that “boosts”
the performance of NJ. A similar but simpler method [164] was designed to boost
another distance-based method called the “Buneman Tree” (named after Peter Bune-
man) to produce the DCM-Buneman method, also proven to be afc.

Figure 6.1 evaluates two variants of DCM-NJ, differing by the “true tree selec-
tion” criterion in the second phase, and compares them to neighbor joining (NJ)
and to HGT + FP, another absolute fast converging method [162]. DCMNJ + SQS
uses SQS for the true tree selection criterion, while DCMNJ +MP uses maximum
parsimony. By design, SQS has the desired theoretical property, but MP does not.
Instead, MP is used for its empirical performance, as the figure shows.

These methods are evaluated on simulated 1000-site datasets generated down
K2P model trees, each with the same branch length distribution, but with vary-
ing numbers of taxa. Thus, as the number of taxa increases, the overall amount
of evolution increases, and the dataset becomes more difficult to analyze (espe-
cially since the sequence length remains fixed at 1000 sites). As shown in Fig. 6.1,
the error rate of neighbor joining (using corrected distances to reflect the model
of evolution) begins low but increases, so that at 1600 taxa, it is above 40 %. By
contrast, DCMNJ + SQS, DCMNJ +MP and HGT + FP all have fairly low error
rates throughout the range of datasets we tested. Note also that DCMNJ +MP is
slightly more accurate than DCMNJ + SQS, even though it has no guarantees. Fi-
nally, DCMNJ + SQS, DCMNJ +MP and HGT + FP seem to have error rates that
do not increase with the numbers of taxa; this is obviously impossible, and so for
large enough numbers of taxa, the error rates will eventually increase, and this trend
cannot continue indefinitely.

The development of methods with good sequence-length requirements is an area
of active research, and newer methods with even better theoretical performance have
been developed. Because afc methods are designed to extract phylogenetic signal
from small numbers of sites, this means that performance on very large datasets
(with many taxa) might be improved using these methods, even without needing to

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 107

Fig. 6.1 The performance of DCM1NJ with different techniques used in Phase II, compared to
NJ and to another absolute fast converging method, HGT+FP [162], as a function of the number
of taxa. In this experiment we simulated evolution of sequences with 1000 sites down K2P model
trees with topologies drawn from the uniform distribution and with branch lengths drawn from a
fixed range. K2P distances were used as inputs to each method (This figure appeared in Nakhleh
et al. [223])

use huge numbers of sites. These methods are not used in practice (and DCMNJ
is not publicly distributed), and so these methods are mostly of theoretical interest
rather than practical.

Clearly there is the potential for these methods to give highly accurate trees for
very large datasets; however, the methods and theorems described here assume that
the sequences evolve without any indels, and under the General Markov model.
While the results could be extended to other identifiable models (including ones with
indels) for which statistically consistent distant estimation techniques are available,
they would still require that the true alignment be known. Thus, none of this theory
applies to more realistic conditions—sequences that evolve with indels, for which
the true alignment is not known.

6.2.3.6 Gap Treatment in Phylogeny Estimation Methods

Until now, the entire discussion about phylogeny estimation methods and their guar-
antees under Markov models of evolution has ignored the fact that sequence align-
ments often have gaps and that indels are part of sequence evolution. Instead, the
Markov models we have discussed are entirely indel-free, and the methods were

108 T. Warnow

described as though the sequences were also indel-free. Obviously, since phylogeny
estimation methods have been applied to real data, this means that modifications to
the data or to the methods have been made to enable them to be used with sequence
alignments that have gaps. The purpose of this section is to describe these modifi-
cations, and present some discussion about the pros and cons of each modification.

Given a sequence alignment containing gaps, the following approaches are the
main ones used in practice for estimating phylogenies:

1. Remove all sites in which any indel appears;
2. Assign an additional state for each dash (thus, for nucleotides, this would result

in a 5-state model);
3. Code all the gaps (contiguous segments of dashes) in the alignment, and treat the

presence or absence of a gap as a binary character (complementing the original
sequence alignment character data); and

4. Treat the gaps as missing data. In parsimony analyses, this is often treated by
finding the best nucleotide to replace the gap, but in likelihood-based analyses,
this is often treated by summing the likelihood over all possible nucleotides for
each gap.

Note that the first three approaches specifically modify the data, and that with the
exception of the first approach, all techniques change the input in such a way that
the method used to estimate a tree on the alignment must also be changed. Thus, for
approach #2, the method must be able to handle 5-state data (for DNA) or 21-state
data (for proteins). For approach #3, the method has to be able to handle binary data.
In the case of parsimony or likelihood, the challenge is whether changes from pres-
ence to absence are treated the same as from absence to presence, and also whether
the Markov assumption still makes sense. There are arguments in favor and against
each of these gap treatments, especially with respect to statistical consistency under
a stochastic model that includes indels as well as substitutions [227].

The first approach of removing all sites with gaps has the advantage of being
statistically consistent for stochastic models with indel events in which the substi-
tution process and the mechanism producing insertions and deletions are indepen-
dent. However, it removes data, and in practice, especially on datasets with many
taxa, it could result in phylogenetically uninformative sequence alignments. (A less
extreme version of removing all sites with gaps is called “masking”, whereby only
some of the sites with gaps are removed. The benefits of using masking are debated,
but some recent studies suggest that masking may not be desirable [228].)

The second and third approaches do not reduce the amount of data (which
is good) and there are many different gap-coding techniques [229–231]. Simula-
tion studies evaluating some of these methods have shown improvements in some
cases for tree estimation obtained through gap-coding over treating gaps as missing
data [232–234], but others have found differently [228, 235].

However, the use of gap-coding is controversial [232], in part because of the very
substantive challenges in creating a statistically appropriate treatment (consider the
meaning of positional homology [103]). Instead, the most frequently used option,
and the default for most software, is to treat gaps as missing data. The simulation

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 109

studies presented later in this paper are all based on analyses of data, treating gaps
as missing data.

6.2.3.7 Theoretical Guarantees for Standard Phylogeny Estimation Methods
on Alignments with Gaps

Are any of the phylogeny estimation methods we have discussed guaranteed to be
statistically consistent when treating gaps as missing data? This is one of the inter-
esting open questions in phylogenetics, for which we give a partial answer.

To address this problem, we defined “monotypic” alignments to be ones in which
each site has only one type of nucleotide (all As, all Cs, all Ts, or all Gs) and we
proved the following [236]:

Theorem When the true alignment is monotypic and gaps are treated as missing
data, then all trees are optimal for the true alignment under Jukes–Cantor maximum
likelihood. Therefore, if the model tree allows indels but not substitutions, then all
trees are optimal for Jukes–Cantor maximum likelihood, when gaps are treated as
missing data.

At first glance, this theorem might seem to be the result of monotypic align-
ments not having phylogenetic signal, but this is not the case! In fact, monotypic
alignments have sufficient signal to enable accurate trees [237, 238]. Thus, there is
phylogenetic signal in an alignment that contains gaps even for the case of mono-
typic alignments, and this signal can be used to estimate the true tree, provided that
appropriate methods are used. In other words, the indels within an alignment can
be phylogenetically informative, and indels can even be sufficient to define the tree
topology. However, gap treatments can result in loss of information, or lead to er-
roneous trees (as in the case of ML, treating gaps as missing data, when handling
monotypic alignments).

Note that this result does not imply that ML, treating gaps as missing data, is
inconsistent under models with positive probabilities of substitutions, and it seems
very likely that for most biologically realistic conditions, treating gaps as missing
data will not lead to meaningless results. Furthermore, the simulations we and others
have performed suggest that ML methods, treating gaps as missing data, do produce
reasonably accurate trees. Even so, the potential for reductions in accuracy due to
inappropriate handling of gaps is clearly present, and it raises the real possibility that
the methods that are known to be statistically consistent under standard substitution-
only models, such as GTR, may not be statistically consistent (even on the true
alignment!) when sequences evolve with both substitutions and indels.

6.2.4 Handling Fragmentary Data: Phylogenetic Placement

Multiple sequence alignment methods are generally studied in the context of full-
length sequences, and little is known about how well methods work when some

110 T. Warnow

of the sequences are very fragmentary. Furthermore, phylogenetic estimation in the
context of fragmentary sequences is unreliable, even if the alignments of the frag-
mentary sequences are accurate [184, 239].

One approach to handling fragmentary sequences is phylogenetic placement: in
the first step, an alignment and tree is estimated for the full length sequences for the
same gene (these are called the “backbone alignment” and “backbone tree” [240]);
in the second step, the fragmentary sequences are added into the backbone align-
ment to create an “extended alignment”; and finally in the third step, the frag-
ments are then placed in the tree using the extended alignment. This is called
the “phylogenetic placement problem”. The first methods for this problem were
pplacer [241] and Evolutionary Placement Algorithm (EPA) [242]; both use HM-
MALIGN [243, 244] to insert the fragments into the alignment of the full-length
sequences and then place the fragments into the tree using maximum likelihood for
this extended alignment. The initial studies showed that EPA and pplacer exhibited
little difference in accuracy or computational requirements [242]. An alternative
method, PaPaRa [118], uses a very different technique to align the sequences to
the backbone alignment: it infers ancestral state vectors in the phylogeny, and uses
these ancestral state vectors to align the fragmentary sequences to the backbone
alignment. PaPaRa can give improved accuracy over HMMER when the rate of
evolution is slow enough, but otherwise HMMER gives more accurate results [240].

New methods showing improvements over EPA and pplacer have also been de-
veloped [240, 245]. Brown and Truskowski [245] use hashing to speed up the
method, while SEPP [240] uses a divide-and-conquer technique to speed up the
method and improve the accuracy.

Phylogenetic placement can be used in metagenomic analyses [246, 247], in or-
der to estimate the taxonomic identity (what species it is, what genus, etc.) of the
short reads produced in shotgun sequencing of a metagenomic sample. When all the
reads are drawn from the same gene, then phylogenetic placement can be used to
identify the species for the read as described above: first, full-length sequences for
the gene are obtained, then an alignment is estimated for the full-length sequences,
and finally the reads are inserted into a taxonomy for the species, using the estimated
alignment and the phylogenetic placement method. However, since the reads are not
drawn from the same gene, then the metagenomic sample must first be processed so
that the reads are assigned to genes (or else left unassigned), and then each “bin”
of reads for a given gene can be analyzed as described. Thus, phylogenetic place-
ment can be used in a pipeline as a taxon identification method, but the process is
substantially more complicated.

6.3 Co-estimation Methods

Co-estimation of trees and alignments is an obvious approach for several reasons.
First, an alignment, like a tree, is a hypothesis about the evolutionary history of
the given data. To separate the two hypotheses prevents them from being mutually
informative. Thus, rather than first estimating the alignment, treating it as fixed, and

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 111

then estimating the tree, a co-estimation procedure would try to find the tree and
alignment at the same time. The challenge, of course, is how to do this.

In this section, we begin with a discussion of a co-estimation approach that seeks
the tree with the minimum total edit distance, but where indels also count towards
the total cost. We then continue with a discussion of co-estimation methods that use
likelihood calculations on trees, under stochastic models that include indels as well
as substitutions. Finally, we discuss SATCHMO-JS, SATé, and mega-phylogeny,
methods that return an alignment and a tree from unaligned sequences; these meth-
ods were discussed earlier in the section on sequence alignment methods, and here
we discuss them in the context of phylogeny estimation.

6.3.1 Treelength, or “Direct Optimization”

Probably the most commonly used approach to estimating the tree at the same time
as estimating the alignment is the “Treelength” approach, also called “Direct Opti-
mization” [248]. This is a natural extension of maximum parsimony to allow it to
handle sequences that evolve with indels and so have different lengths.

In order to understand the approach, we begin by noting that a pairwise alignment
between two sequences defines one or more edit transformations, each consisting of
operations—some substitutions and some indels—that transform the first sequence
into the second. Each indel event may be of a single letter (either a nucleotide or an
amino-acid), or could be of a string of letters. The “cost” of the pairwise alignment
is then the minimum cost of any transformation that is consistent with the align-
ment. Note that implicit in this definition is the limitation of the operations to just
substitutions and indels; therefore, no more complicated operations (such as tandem
repeats, inversions, etc.) are considered.

Similarly, each edit transformation that is based on indels and substitutions de-
fines a pairwise alignment. In fact, pairwise alignments are typically computed us-
ing dynamic programming algorithms that explicitly compute the minimum cost
edit transformation. Thus, there is a close relationship between edit transformations
based on indels and substitutions and pairwise alignments.

We now define the treelength problem, where the tree is fixed, and each leaf is
labeled by a sequence. The “length” of the tree would be computed by producing
sequences at the internal nodes, and then calculating the edit distance between se-
quences on each edge, using the best possible labeling of the internal nodes (so as
to minimize the output length). Since pairwise distances can be computed in these
conditions, the length of a tree can be defined and computed, once the sequences
at the internal nodes are provided. The treelength problem is then to find the best
sequences for the internal nodes so that the total length is minimized.

Given this, we formalize the Tree Alignment problem as follows:

Definition 3 Given a rooted tree T on n leaves which is leaf-labeled by a set S =
{s1, s2, . . . , sn} of sequences over Σ (for any fixed alphabet Σ) and an edit cost
function c(·, ·) for comparing any two sequences over Σ , find sequences to label

112 T. Warnow

the internal nodes of T so as to minimize cost(T)=∑
(v,w)∈E(T) c(lv, lw), where lx

is the sequence labeling node x in T .

Note that given sequences at the internal nodes, then for each edge e there is a
pairwise alignment of the sequences lv and lw labeling the endpoints of e whose cost
is identical to c(lv, lw). By taking the transitive closure of these pairwise alignments
we obtain a multiple sequence alignment of the entire dataset whose total cost is
cost(T). Thus, the output of the Tree Alignment problem can be either considered
to be the sequences at the internal nodes, or also the MSA that it defines on the
sequences at the leaves of the tree.

The Tree Alignment problem has a rich literature, beginning with [249–251]. The
Tree Alignment problem is NP-hard, even for simple gap penalty functions [252],
but solutions with guaranteed approximation ratios can be obtained [253–255]. This
contrasts with the maximum parsimony problem, which is polynomial time when
the tree is fixed (i.e., the optimal sequences for the internal nodes of a given tree
can be found in polynomial time using dynamic programming). Thus the treelength
problem is harder than the maximum parsimony problem.

A generalization of this problem, named after David Sankoff due to his contribu-
tions [250, 251], is as follows:

Definition 4 (The Generalized Sankoff Problem (GSP) [From Liu and War-
now [256]]) The input is a set S of unaligned sequences and a function c(x, y)

for the edit cost between two sequences x and y. The output is a tree T = (V ,E)

with leaves labeled by S and internal nodes labeled with additional sequences such
that the treelength

∑
(v,w)∈E c(lv, lw) is minimized, where lx is the sequence label-

ing vertex x.

Not surprisingly, GSP is NP-hard, since the case in which the edit distance func-
tion forbids gaps (by setting the cost for a gap to be infinite) is the NP-hard Maxi-
mum Parsimony (MP) problem [146].

6.3.1.1 POY

The standard method for “solving” the GSP problem is POY [248, 257]. Note that
in the literature discussing POY, the treelength problem is called “Direct Optimiza-
tion” (or “DO” for short). POY handles only certain types of edit distances, and in
particular, it only enables affine gap penalties. Thus, the cost of a gap of length L is
given by cost(L)= c0+ c1L, where c0 is the gap open cost and c1 is the gap extend
cost. When c0 = 0 the gap cost is said to be “simple” (a special case of affine) and
when c0 > 0 the gap cost is said to be “affine”. POY also enables different costs for
transitions and transversions. Thus, the input to POY is a set of unaligned sequences,
values for c0 and c1, and the cost of transitions and transversions.

The use of treelength optimization to find good trees (and/or alignments) is a mat-
ter of substantial controversy in phylogenetics [98, 102, 227, 248, 258–261]. Most of

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 113

the studies that have examined the accuracy of POY trees and alignments explored
performance under simple gap penalties, and found that POY did not produce trees
and alignments of comparable accuracy to maximum parsimony on the ClustalW
alignment, denoted MP(Clustal) [259, 262]. A later study examined how the gap
penalty affected the accuracy of trees and/or alignments computed by POY [263],
and evaluated POY under affine gap penalties (where the gap open cost is non-zero).
They found a particular affine gap penalty, which they called “Affine”, for which
POY produced very good results, and in fact was competitive with MP(Clustal).
This study seemed to suggest that POY, and hence the treelength optimization ap-
proach to estimating trees and alignments, could be used to find highly accurate trees
provided that the right edit distances were used. However, it was also observed that
POY was not always effective at finding the best solutions to the treelength problem,
and hence the accuracy of POY’s trees might not indicate any value in optimizing
treelength.

6.3.1.2 BeeTLe: Better TreeLength

A subsequent study [256] revisited this question, by focusing on whether finding
good solutions to treelength criteria would yield improved alignments and trees. In
order to understand the impact of the treelength criterion, they developed a new
technique for treelength optimization, called “BeeTLe” (Better TreeLength), which
is guaranteed to find solutions that are at least as good as those found by POY.
BeeTLe runs a collection of methods, including POY, to produce a set of trees on
a given input set of unaligned sequences, uses POY to compute the treelength of
each tree, and then returns the tree that had the shortest treelength. Thus, BeeTLe is
guaranteed to find trees at least as short as those found using POY, and thus enables
us to evaluate the impact of using treelength to find trees.

Here we present some results from Liu and Warnow [256], in which BeeTLe was
compared to various two-phase methods on simulated 100-taxon datasets, in which
sequences evolve with substitutions and indels. We show results for alignments esti-
mated using BeeTLe, MAFFT and ClustalW, and MP and ML trees on the MAFFT,
ClustalW, and true alignments. We present alignment error rates (SP-FN, the frac-
tion of true homologies missing from the estimated alignment) and tree topology
error rates (the missing branch rate, which is the fraction of edges in the true tree
that are not in the estimated tree). We study BeeTLe under three different treelength
criteria, each of which has unit cost for substitutions: “Simple-1”, which sets the
cost of every indel to 1; “Simple-2” (the treelength criterion studied by Ogden and
Rosenberg [259] that they found to produce more accurate trees than any other tree-
length criterion they considered), which assigns cost 2 to indels and transversions
and cost 1 to transitions; and “Affine” (the treelength criterion studied in Liu et al.
[263] that produced more accurate trees than Simple-1 or Simple-2), which sets the
cost of a gap of length L to 4+L.

In Fig. 6.2, we see that BeeTLe-Affine (BeeTLe using this affine gap penalty)
produces the most accurate trees of all BeeTLe variants. We also see that BeeTLe-
Affine improves on MP on ClustalW alignments, and matches MP on MAFFT

114 T. Warnow

Fig. 6.2 Comparing BeeTLe to MP-based analyses. We report missing branch rates on 100-taxon
model conditions for BeeTLe (under three gap penalty treatments) in comparison to maximum
parsimony on the ClustalW, MAFFT, and true alignment (TrueAln). Averages and standard error
bars are shown; n= 20 for each reported value (This figure appeared in Liu and Warnow [256])

Fig. 6.3 Comparing BeeTLe to ML-based analyses. We report missing branch rates on 100-taxon
model conditions for BeeTLe (under three gap penalty treatments) in comparison to maximum
likelihood on ClustalW, MAFFT, and the true alignment (TrueAln). Averages and standard error
bars are shown; n= 20 for each reported value (This figure appeared in Liu and Warnow [256])

alignments. It also is fairly close to MP on true alignments, except for the hard-
est 100-taxon model conditions. In Fig. 6.3, we see a comparison of BeeTLe to ML
trees computed on ClustalW, MAFFT, and the true alignment. Note how BeeTLe-
Affine often produces more accurate trees than ML(ClustalW), but (with the excep-
tion of the very easiest model conditions, where there is very little difference be-
tween methods), also produces substantially less accurate trees than ML(MAFFT)
and ML(TrueAln).

An evaluation of the alignment error on the same datasets (Fig. 6.4) shows
that BeeTLe alignments generally have very high alignment SP-FN error, and that
BeeTLe-Affine has lower SP-FN error than the other BeeTLe variants. The com-
parison to ClustalW shows that BeeTLe-Affine is less accurate on some models and
more accurate on others; however, neither ClustalW nor BeeTLe-Affine comes close
to the accuracy of MAFFT, except on the easiest 100-taxon models.

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 115

Fig. 6.4 A comparison of alignment error for BeeTLe to other methods. We show alignment
SP-FN error of BeeTLe in comparison to MAFFT and ClustalW on 100-taxon model conditions.
Averages and standard error bars are shown; n= 20 for each reported value (This figure appeared
in Liu and Warnow [256])

Fig. 6.5 Performance of
BeeTLe-Affine. We compare
the BeeTLe-Affine trees to
MP and ML trees on
ClustalW and MAFFT
alignments, and we also
compare the alignments
obtained by BeeTLe-Affine,
ClustalW, and MAFFT, on
100-taxon model conditions.
Averages and standard error
bars are shown; n= 20 for
each reported value. (This
figure appeared in Liu and
Warnow [256])

Figure 6.5 shows the direct comparison between BeeTLe-Affine and alignments
and trees estimated using ClustalW and MAFFT. Since Fig. 6.4 already gave the
comparison with respect to alignment error, we focus only on tree estimation.
Note that BeeTLe-Affine generally gives more accurate trees than MP(Clustal) and
MP(MAFFT), except on the easiest models where they are all equally accurate.

116 T. Warnow

However, when compared to ML-based trees, the best results are clearly obtained
using ML(MAFFT), with BeeTLe-Affine in second place and ML(Clustal) in last
place.

6.3.1.3 Summary Regarding the Treelength Problem

Recall that BeeTLe is guaranteed to produce solutions to treelength optimization
that are at least as good as POY, and in fact BeeTLe generally produces shorter
trees than POY, as shown in Liu and Warnow [256]. Therefore, the performance
of BeeTLe with respect to tree and alignment accuracy is a better indication of the
consequences of using treelength for estimating alignments and trees than POY. As
shown here, however, although improvements can be obtained by using this partic-
ular affine gap penalty (compared to the simple gap penalties that were examined),
the alignments and trees are not as accurate as those produced using the better align-
ment methods (e.g., MAFFT) followed by maximum likelihood.

We note that the use of affine gap penalty treatments, although more general
(and hence better) than simple gap penalties, are not necessarily sufficiently general
for alignment estimation [264–268]; therefore, better trees might be obtained by
optimizing treelength under other gap penalty treatments. In the meantime, the evi-
dence suggests that optimizing treelength using the range of gap penalty treatments
in common use (simple or affine penalties) is unlikely to yield the high quality align-
ments and trees that are needed for the best phylogenetic analyses.

6.3.2 Statistical Co-estimation Methods

Methods that co-estimate alignments and trees based upon statistical models of evo-
lution that incorporate indels have also been developed. The simplest of these mod-
els are TKF1 [269] and TKF2 [270, 271], but more complex models have also been
developed [272–278]. Many statistical methods (some which estimate trees from
fixed alignments, and some which co-estimate alignments and trees) have been de-
veloped based on these models [273, 275, 276, 279–286], but only BAli-Phy [276]
has been shown to be able to co-estimate alignments and trees on datasets with 100
sequences; the others are limited to much smaller datasets [287]. A recent tech-
nique [288] may be able to speed up calculations of likelihood under models that
include indels and substitutions, but to date, none of the co-estimation methods has
been able to run on datasets with more than about 200 sequences.

6.3.3 Other Co-estimation Methods

In addition to the statistical co-estimation methods described above, several meth-
ods are designed to return trees and alignments given unaligned sequences as in-

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 117

put. Here we discuss three of these methods, SATé, SATCHMO-JS, and mega-
phylogeny, each of which was discussed in the earlier section on alignment esti-
mation. Of these three methods, SATé and mega-phylogeny are methods that com-
pute an alignment and a maximum likelihood tree on the alignment, where mega-
phylogeny uses RAxML and SATé uses either RAxML or FastTree-2 (depending
on the user’s preference). Although mega-phylogeny has been used on empirical
datasets, to our knowledge it has not been tested on benchmark datasets, and so its
performance (in terms of alignment and/or tree accuracy) is more difficult to assess.
Therefore, we focus the rest of the discussion here on SATé and SATCHMO-JS.

6.3.3.1 SATé

SATé (“Simultaneous Alignment and Tree Estimation”) [10, 39] is a method that
was designed to estimate alignments and trees on very large datasets. SATé was
discussed earlier in the section on multiple sequence alignment; here we focus on
its performance as a method for estimating trees.

Unlike the statistical methods discussed earlier that explicitly consider Markov
models of evolution that include indels and thus can have performance guarantees
under such models, SATé has no such guarantees. Instead, the design of SATé is
guided by the empirical objective of improving the accuracy of alignment and phy-
logeny estimations on very large datasets.

The observations that led to SATé come from studies that showed that existing
nucleotide alignment methods had poor accuracy on large datasets that evolve down
trees with high rates of substitutions and indels, and that some of the most accu-
rate alignment estimation methods (e.g., MAFFT) have computational requirements
(sometimes due to memory usage) that makes them unable to be run in their most
accurate setting on datasets above a relatively small number of sequences. There-
fore, while small datasets can be aligned with the best alignment methods, larger
datasets must be aligned with less accurate methods. These observations together
guided the design of SATé, which we now describe.

SATé uses an iterative process, in which each iteration begins with the tree from
the previous iteration, and uses it (within a divide-and-conquer framework) to re-
align the sequence dataset. Then a maximum likelihood tree is estimated on the
new alignment, to produce a new tree. The first iteration begins with a fast two-
phase method (for example, FastTree-2 on a MAFFT-PartTree alignment). The first
few iterations provide the most improvement, and then the improvements level off.
The user can provide a stopping rule based upon the number of iterations, the to-
tal amount of clock time, or stopping when the maximum likelihood score fails to
improve.

Although iteration is an important aspect of SATé’s algorithm design, the divide-
and-conquer strategy used by SATé is equally important, and the strategy has
changed since its initial version. In its first version [10], SATé divided the dataset
into subsets by taking a centroid branch in the tree (which divides the dataset
roughly into two equal parts) and branching out until the desired number of subsets

118 T. Warnow

is produced (32 by default, but this value could change, based on the dataset size).
Each subset was then aligned using MAFFT in a highly accurate setting(-linsi), and
the subset alignments were merged together using Muscle. Then, an ML tree was
estimated on the resultant alignment using RAxML. SATé iterated until 24 hours
had elapsed (finishing its final iteration if it began before the 24 hour deadline).
SATé returns the tree/alignment pair with the best ML score.

This approach led to very good results, as shown in Fig. 6.6, where we compare
SATé to two-phase methods on 1000-taxon model trees. We include RAxML on
ClustalW, Muscle, Prank+GT (Prank with a RAxML(MAFFT) guide tree), and the
true alignment (TrueAln). The first two panels show the tree and alignment error
for these methods. Note that on the easiest model conditions all methods produce
the same level of accuracy as RAxML on the true alignment, although the estimated
alignments have errors. However, on the harder models the phylogenetic estima-
tions have different error rates, and SATé produces much more accurate trees and
alignments than the other methods. Furthermore, SATé comes close to RAxML on
the true alignment for all but the hardest models. The third panel gives the empir-
ical statistics for the different models, and shows that factors that lead to datasets
that are hard to align include the percent of the true alignment matrix that is gapped
(“Percent indels”) and the average p-distance4 between pairs of sequences (again,
based on the true alignment). Thus, alignments can be quite easy to estimate if the
rate of substitutions is low enough (as reflected in the average p-distance), even if
there are many indels, and it is only when the substitution rate is high enough and
there are at least a moderate number of indels that alignments become difficult to
estimate.

Recall that SATé generates a sequence of alignments and trees, and that the tree
and alignment it outputs is the pair that has the best ML score. The fourth panel
shows the results of a correlation analysis we performed to see if the ML score was
correlated with either alignment accuracy or tree accuracy. What we observed is
that tree error (measured using SP-FN) and ML score are very weakly correlated on
the easier models, but then highly correlated on the harder models, while alignment
error and ML score are highly correlated on all models. This correlation analysis
suggests that using the ML score to select an alignment might be a good idea. It
also suggests that when the conditions are such that improving the alignment would
improve the tree (which seems to be the case for harder models rather than easier
models), using the ML score to select the tree might also be a good idea. In other
words, it suggested the following optimization problem:

Definition 5 The MLGTR Tree/Alignment Search Problem: Given a set S of un-
aligned sequences, find a tree T and an alignment A of S so as to maximize likeli-
hood under GTR, treating gaps as missing data.

4The p-distance between two aligned sequences is the number of positions in which the two se-
quences differ, and then normalized to give a number between 0 and 1.

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 119

Fig. 6.6 Performance of SATé on 1000-taxon model results. X-axes have the 15 1000-taxon mod-
els roughly sorted with respect to the phylogenetic estimation error, based on missing branch rates.
The bottom two panels show true alignment (TrueAln) setwise statistics and Spearman rank corre-
lation coefficients (ρ). All data points include standard error bars. For the top two panels, models
on the x-axis followed by an asterisk indicate that SATé’s performance was significantly better
than the nearest two-phase method (paired t -tests, setwise α = 0.05, n = 40 for each test) (This
figure appeared in Liu et al. [10])

120 T. Warnow

However, the Jukes–Cantor version of this optimization problem is not a good
way of trying to optimize alignments or trees, as we now show. Recalling the defi-
nition of “monotypic” alignments (see Sect. 6.2.3.6), we proved:

Theorem (From Liu et al. [39]) If alignments are allowed to vary arbitrarily, then
for all input sets of sequences, the alignment that gives the best Jukes–Cantor ML
score (treating gaps as missing data) is monotypic, and every tree is an optimal
solution for this alignment.

Thus, optimizing the ML score while allowing the alignments to change arbitrar-
ily is not helpful. Given that we observed a correlation between the ML score and
alignment and tree accuracy generated during a SATé analysis, how does this make
sense? The explanation between these two seemingly contradictory statements is
that the set of tree/alignment pairs in which we observed the correlation is not arbi-
trary. Instead, the set of alignments computed during a SATé run is not random at
all, nor are the alignments and trees in that set explicitly modified to optimize ML.
Instead, the alignments are computed using a divide-and-conquer strategy where
MAFFT is used to align subsets and Muscle is used to merge these subset align-
ments. Thus, although allowing alignments to change arbitrarily is definitely not
desirable (and will lead to an optimal ML score but poor trees), using ML to select
among the alignments and trees produced during the SATé process may be benefi-
cial.

SATé-II Subsequent studies revealed that for some datasets, the SATé analysis
was very slow, and this turned out to be due to some subset sizes being very large—
too large, in fact, for MAFFT to comfortably analyze the dataset using its most
accurate setting (-l -insi). A careful analysis revealed that these large subsets came
about as a result of the specific decomposition we used (consider, for example, the
result of using the SATé-decomposition on a caterpillar tree). We then changed the
decomposition technique, as follows. The new decomposition keeps removing cen-
troid edges in the subtrees that are created until every subtree has no more than a
maximum number of leaves (200 by default). As a result, all the subsets are “small”,
and MAFFT -l -insi can comfortably analyze each subset. Note also that these sub-
sets are not necessarily clades in the tree! The resultant version of SATé, called
SATé-II, produces trees and alignments that are even more accurate than SATé, and
is also faster. This is the version of SATé that is in the public distribution.

6.3.3.2 SATCHMO-JS

SATCHMO-JS [78] is another co-estimation method designed for empirical perfor-
mance, and specifically for protein sequence alignment. SATCHMO stands for “Si-
multaneous Alignment and Tree Construction using Hidden Markov models”, and
SATCHMO-JS stands for “jump-start SATCHMO”. The basic approach here has
three steps. First, SATCHMO-JS computes a neighbor joining tree on a MAFFT

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 121

alignment, and uses this tree to divide the dataset into clades, each of which has a
maximum pairwise p-distance that is below some threshold. For each such subset,
a tree is computed on the alignment using the SciPhy method [289]. These subtrees
are then passed to the SATCHMO [77] method, which then completes the task of
computing an overall alignment and tree. Finally, the branch lengths on the tree are
optimized using maximum likelihood.

Thus, SATCHMO-JS is a hybrid between MAFFT and SATCHMO that com-
bines the best of the two methods—MAFFT to align closely related sequences, and
SATCHMO to align distantly related sequences. Since a tree is estimated at the same
time as the alignment is estimated, the output is both a tree and an alignment—hence
the name of the method.

As shown by Hagopian et al. [78], SATCHMO-JS produced more accurate align-
ments than MAFFT, SATCHMO, ClustalW and Muscle on several protein bench-
marks. Furthermore, although by design SATCHMO-JS is slower than MAFFT
(since it runs MAFFT to obtain its initial decomposition into subsets), it is much
faster than SATCHMO, and was able to analyze a dataset with 500 protein se-
quences of moderate length (392 aa) in about 18 minutes.

It is worth noting that the way SATCHMO determines the tree cannot be
described as finishing the alignment estimation and then computing a tree on
that alignment; this distinguishes SATCHMO-JS from SATé and mega-phylogeny,
which always return a maximum likelihood tree on the output alignment.

6.4 Tree Estimation Without Full Alignments

Because multiple sequence alignment estimation tends to be computationally inten-
sive and inaccurate on large datasets that evolve with high rates of evolution [4, 6],
estimating trees without any multiple sequence alignment step has obvious appeal.
In this section, we first discuss alignment-free estimation, and then estimation meth-
ods that use multiple sequence alignment estimation on subsets but not on the full
set of taxa.

6.4.1 Alignment-Free Estimation

Potential Benefits of Alignment-Free Estimation There are several reasons that
alignment-free estimation has been considered promising, which we briefly discuss
here (see [290, 291] for longer and more detailed discussions). First, recall that
standard multiple sequence alignments insert gaps between letters within sequences
in order to “align” them, and hence only model homologies that result from sub-
stitutions and indels. However, genome-scale evolution is very complex, involving
recombination, rearrangements, duplications, and horizontal gene transfers, none
of which is easily handled in standard multiple sequence alignments. Thus, one of

122 T. Warnow

the points in favor of alignment-free estimation methods is that they may be more
robust to these genome-scale events (rearrangements, recombination, duplications,
etc.) than alignment-based methods. Another point in favor is that alignment-free
methods are able to avoid the need to do each step of the standard analysis pipeline,
and hence can be robust (possibly) to the difficulties in identifying orthology groups,
aligning sequences, estimating gene trees, and combining gene trees and/or align-
ments. Thus, alignment-free estimation may be robust to some of the methodologi-
cal challenges inherent in the standard phylogenetic pipeline.

Alignment-free estimation also have another distinct advantage, in that they en-
able the use of all the nucleotides in the genomes, not just the ones that fall into
the regions identified for the phylogenomic analysis. Thus, alignment-free methods
have the potential to utilize more of the genomic data, and this could enable more
accurate trees.

Finally, as we shall see, alignment-free estimation is in general very fast, espe-
cially for datasets that involve many markers and/or many taxa. This is one of the
big advantages over the standard analysis pipeline.

History of Alignment-Free Estimation The first method for alignment-free phy-
logeny estimation was developed in 1986 [292], and new methods continue to be
developed [290, 291, 293–295].

Alignment-free methods are based upon computing distances (often, but not al-
ways, by computing k-mer distributions) between unaligned sequences. Once these
distances are computed, trees can be computed on the resultant distance matrix, us-
ing distance-based methods (e.g., the well-known neighbor joining [121] method,
but there are many others). Because both steps can be quite fast, these alignment-
free methods can be applied to very large genomes.

While some of the alignment-free techniques for estimating pairwise distances
are fairly heuristic, others use sophisticated statistical techniques, and some have
provable performance under Markov models of evolution. A particularly exciting
result is by Daskalakis and Roch [237], who gave a polynomial time distance-based
alignment-free method and proved that it is statistically consistent under the TFK1
model [269].

These methods have shown some promise, as some simulation studies evalu-
ating trees based on these distances have shown that these can be more accurate
than trees based on distances calculated using estimated multiple sequence align-
ments [296]. Furthermore, plausible phylogenetic trees have been estimated on bio-
logical datasets using these methods [290, 291].

Comparison to Two-Phase Methods Despite all the potential benefits of
alignment-free estimation, there has not been any comparison of alignment-free
methods to the most accurate ways of computing large trees, e.g., Bayesian or max-
imum likelihood analyses on good alignments. Instead, the only comparisons have
been to distance-based phylogeny estimation, and in some cases only to distances
computed using other alignment-free methods. Therefore, while there is distinct po-
tential for alignment-free estimation to provide improved species tree estimations,
this possibility has not been properly evaluated.

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 123

However, as noted before, alignment-free estimation does provide a distinct com-
putational advantage over the standard pipelines, and it can enable the use of all of
the genomic data. Thus, even if alignment-free estimation is not as accurate as max-
imum likelihood on alignments, the ability to use more data may offset the possible
reduction in accuracy. The question might then become whether more data analyzed
using a less accurate method is as good as less data analyzed using a more accurate
method!

6.4.2 DACTAL

DACTAL [30], which stands for “Divide-And-Conquer Trees (almost) without
ALignments”, is a method that estimates trees without requiring an alignment on
the full dataset. Unlike the methods discussed in the previous subsection, DACTAL
is not truly alignment-free. Instead, DACTAL uses an iterative divide-and-conquer
strategy, and estimates alignments and trees on small (and carefully selected) subsets
of taxa. By ensuring that the subsets have sufficient overlap, this makes it possible
to produce a tree on the full set of taxa. The key to making this work well is ensuring
that the taxon sampling in each subset is favorable to tree and alignment estimation,
the subsets are small enough that the best alignment and tree estimation methods can
be used on them, and that the overlap patterns enable a highly accurate supertree to
be estimated [297].

A DACTAL analysis can be initiated in one of several ways. The simplest way is
to obtain a starting tree for the dataset (e.g., a taxonomy for the dataset, or an esti-
mated tree obtained using a fast two-phase method). This starting tree is then used
to decompose the dataset into small overlapping subsets of sequences that are close
together in the starting tree, using the “PRD” technique [30, 298]. Alternatively, this
decomposition into small overlapping subsets of similar sequences can be obtained
using one of several BLAST-based decompositions [298].

Once this decomposition is computed, alignments and trees are computed on
each subset, and the subtrees are merged into a tree on the full set of taxa using
SuperFine [53, 299], a new supertree method that can produce more accurate trees
on large datasets than other supertree methods [54, 300]. The resultant tree is then
used to start the next iteration, which continues with a decomposition of the taxa
into small, overlapping subsets, the estimation of alignments and trees on each sub-
set, and the merger of the subset-trees into a tree on the full dataset. Finally, this
iterative process (shown in Fig. 6.7) continues for a user-defined maximum number
of iterations.

DACTAL has comparable accuracy to SATé-I (the initial implementation of
SATé as described by Liu et al. [10]), and substantially improved accuracy com-
pared to the leading two-phase methods. on datasets with 1000 or more sequences.
In addition, DACTAL is faster than SATé-I, and gives very good accuracy on large
biological datasets.

Figure 6.8 [30] shows the results for five iterations of DACTAL on three large
rRNA datasets with up to 27,643 sequences, in comparison to maximum likeli-

124 T. Warnow

Fig. 6.7 DACTAL algorithmic design. DACTAL can begin with an initial tree (bottom triangle),
or through a technique that divides the unaligned sequence dataset into overlapping subsets. Each
subsequent DACTAL iteration uses a decomposition strategy called “PRD” (padded recursive de-
composition) to divide the dataset into small, overlapping subsets, estimates trees on each sub-
set, and merges the small trees into a tree on the entire dataset (This figure appeared in Nelesen
et al. [30])

Fig. 6.8 DACTAL (based upon five iterations) compared to ML trees computed on alignments
of three large biological datasets with 6,323 to 27,643 sequences. We used FastTree-2 (FT) and
RAxML to estimate ML trees on the MAFFT-PartTree (Part) and ClustalW-Quicktree (Quick)
alignments. The starting tree for DACTAL on each dataset is FT(Part) (This figure appeared in
Nelesen et al. [30])

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 125

hood trees (computed using FastTree-2 and RAxML) on two alignments (Clustal-
Quicktree and MAFFT-PartTree). DACTAL was run using a subset decomposition
size of 200 and RAxML(MAFFT) to estimate trees on the subsets. Each of these
datasets has a reliable curated alignment based on rRNA structure [301]. The ref-
erence trees for this study were obtained by estimating maximum likelihood trees
(using RAxML with bootstrapping) on the curated alignment, and then collapsing
all branches with bootstrap support below 75 %. Note the substantial reduction in
tree error obtained using DACTAL in comparison to these two-phase methods. Fur-
thermore, other analyses show that DACTAL is highly robust to its starting tree, and
that even a single iteration produces a large improvement [30].

6.5 Lessons Learned and Future Directions

6.5.1 Basic Observations

This chapter has introduced several new methods and techniques for both alignment
and phylogeny estimation, and shown that highly accurate large-scale estimation is
beginning to be possible. However, there are several recurring themes in this chapter,
which point to the limitations of the current research, and the need for future work.
These are:

1. Only a few techniques have been developed that are capable of large-scale align-
ment or phylogeny estimation, and very few methods have been even tested on
large datasets,

2. The standard criteria used to evaluate alignment estimation methods (e.g., the
SP- and TC-scores) are not suited to predicting accuracy with respect to tree
estimation, especially for large datasets,

3. Many promising alignment estimation methods have not been formally tested
on simulated or biological benchmark datasets for their impact on phylogeny
estimation,

4. The relative performance of phylogeny estimation methods (and perhaps of
alignment estimation methods) can change with the number of taxa (e.g., com-
pare HGT+FP and NJ in Fig. 6.1), and so performance studies that only examine
small datasets are not predictive of performance on larger datasets, and

5. In general, the simulation studies used to evaluate alignment or phylogeny es-
timation methods have been based on very simple models of evolution, and so
it is not clear how well these methods will perform under more realistic condi-
tions.

These limitations are due to a number of factors, one being that many (though not
all) of the alignment estimation methods were developed for use by the structural
biologists, and hence were tested with respect to the ability to identify structural and
functional features. Since structural and functional homology may not be identical
to positional homology, this contributes to the issues raised above. Furthermore,

126 T. Warnow

the two communities—phylogenetics and structural biology—are still fairly discon-
nected, and alignment methods continue to be tested almost exclusively on struc-
tural benchmarks, typically based on protein datasets. Bridging the gaps between
the various disparate communities, including phylogenetics, structural biology, and
functional genomics, may be necessary in order to change this practice.

Many of these issues also reflect the challenges in evaluating phylogeny estima-
tion methods, especially on large datasets. For example, although we know a great
deal about the performance of methods in terms of statistical consistency under the
General Markov model and simpler models of sequence evolution, much less is
known mathematically about performance on finite data, and even less about the
performance under more complex models.

As a whole, these observations highlight the importance of benchmark datasets
(whether biological or simulated), since mathematical results are typically limited to
statistical consistency or model identifiability. However, biological datasets that are
appropriate for evaluating phylogeny estimation methods are rare, since the true tree
is rarely known. In our own studies, we have used biological datasets with curated
alignments, and used maximum likelihood bootstrap trees estimated on these cu-
rated alignments as the benchmark trees. This approach has the advantage of being
phylogenetically based, but has two disadvantages: the alignment itself (however
well curated) may not be correct, and even if it is correct, the tree estimated on the
alignment may also not be correct. Thus, more—and better—biological benchmarks
are needed.

As noted, simulation studies are a standard technique used to evaluate phyloge-
netic estimation methods, but designing good simulation studies and extracting gen-
eral principles from them is not easy. Among the many challenges, the first is that the
models available in most (but not all) simulator software are too simple, generally
no more complex than the models available in the phylogeny estimation software;
thus, data generated by most simulation software do not exhibit the properties of
biological data. Another challenge is that the relative performance of methods can
change with the model condition, and exploring the parameter space is computation-
ally infeasible. Perhaps because of this, many studies have focused on small trees,
where more thorough exploration of the parameter space is feasible. However, com-
putational challenges in analyzing large datasets also explains why few studies have
examined performance on large datasets, and relatively little is known about perfor-
mance on large datasets. All these issues add to the challenge in developing good
benchmarks, and thus of understanding phylogeny estimation methods—especially
on large datasets.

6.5.2 Future Research Directions

As noted, substantial progress towards developing methods that can estimate align-
ments and trees on very large datasets has been made. For example, we have pre-
sented new approaches for estimating alignments and trees, for co-estimating align-

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 127

ments and trees, and for phylogenetic placement, each of which has provided sub-
stantial improvements in accuracy (and in some cases scalability) over previous
methods. Here we discuss additional research questions that remain, acknowledging
that these are just a small sample of the open problems in this area.

6.5.2.1 Theoretical Performance of Phylogeny Estimation Methods
Under Long Indel Models

While much is known about the theoretical performance of phylogeny estimation
under indel-free models of evolution, much less is known about the statistical guar-
antees of methods when sequences evolve with indels; even the result by Daskalakis
and Roch [237] establishing statistical consistency under a model with indels only
allows indels of single nucleotides. Open questions here include the statistical guar-
antees (both statistical consistency and sequence-length requirements) for methods
under models with long indels given the true alignment, and when alignments must
be estimated.

6.5.2.2 Sequence-Length Requirements for Phylogeny Estimation

While much is known about the sequence-length requirements under the General
Markov model for many methods, several questions remain. For example, the best
published upper bound on the sequence-length requirement for maximum likelihood
is no better than that of neighbor joining [166], but this bound is likely to be loose,
as suggested by Roch [302]. Thus, a basic question is whether maximum likeli-
hood is an absolute fast converging method? Other questions of this sort include
the sequence-length requirements of methods to recover some fixed percentage of
the model tree bipartitions, or to estimate the model tree under more complex mod-
els than the General Markov model. Finally, from an empirical standpoint, it would
be good to have implementations of absolute fast converging methods so that these
methods can be compared to other methods, such as maximum likelihood.

6.5.2.3 Genome Rearrangements and Duplications

Genomes evolve with duplications, rearrangements (inversions, transpositions,
transversions), fissions and fusions, and alignment and phylogeny estimation in the
presence of these events is very complicated. While some work has been done on
the problem of estimating whole-genome alignments [303–311], much still needs
to be done.

The problem of estimating trees in this case is similarly challenging, and is the
subject of a chapter in this volume by Bernard Moret et al. A basic open problem
here is whether genome-scale events and sequence evolution events can be analyzed
together, since they are likely to be complementary.

128 T. Warnow

6.5.2.4 Evolutionary Networks

The objective of finding a “Tree of Life” presents a very basic challenge, since not
all evolution is tree-like (e.g., horizontal gene transfer [312–317] and hybridiza-
tion [318–320]); thus, the phrase “Tree of Life” is in a sense a misnomer, as dis-
cussed by Mindell [321].

The failure of trees to completely represent the evolutionary history is most obvi-
ous in the case of hybridization, where two species hybridize to make a new species;
clearly, this history cannot be represented by a tree, and instead requires a network
(i.e., a graph that has cycles). However, in the case of horizontal gene transfer, the
underlying species history may still be reasonably represented by a tree [45], and
edges representing the HGT events can be added to the tree to create a network.
(This is how the phylogenetic network for language evolution is obtained, where
horizontal edges represent “borrowing” between languages [322, 323].) Thus, in
the event of hybridization or horizontal gene transfer, the evolutionary history is
best represented by a network, though the specific representation (and meaning of
edges) can differ between these networks.

In the literature, the term “phylogenetic network” [324–326] has been used to
describe these graphical models, but, as Morrison points out [325], this term is used
for more than one purpose. That is, there are two types of networks that have been
proposed: one type is suited for exploratory data analysis (EDA) and another that is
suited for a hypothesis of evolutionary history. Morrison suggests that networks that
are best suited for EDA of phylogenetic data should be referred to as “Data-Display
Networks”, and that networks that are graphical representations of a reticulate evo-
lutionary history should be referred to as “Evolutionary Networks”; in accordance
with his suggestions, we will use these terms here.

This distinction is important, since a data-display network does not provide any
direct information about the evolutionary history. As Morrison says [325, p. 47],

The basic issue, of course, is the simple fact that data-display networks and evolutionary
networks can look the same. That is, they both contain reticulations even if they represent
different things. . . Many people seem to have confused the two types of network, usually
by trying to interpret a data-display network as an evolutionary network. . . The distinction
between the two types of network has frequently been noted in the literature, so it is hardly
an original point for me to make here. Interestingly, a number of authors have explicitly
noted the role of display networks in exploratory data analysis and then proceeded to treat
them as genealogies anyway. It is perhaps not surprising, then, that non-experts repeatedly
make the same mistake.

Both types of networks serve valuable purposes (as noted also by Morrison), but
the purposes are different. However, there are many more methods that produce
data-display networks than evolutionary networks, and the estimation of evolution-
ary networks is much more complicated and challenging. For examples of some of
the few evolutionary network methods, see [327–333].

Note that while the species history is not tree-like, the evolution of individual
genes may still be treelike. However, since reticulate events can result in genes
with different trees, the detection of differences, sometimes strongly supported dif-
ferences, between gene trees can indicate that some kind of reticulation may have

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 129

occurred. However, gene trees can also be incongruent under other conditions, in-
cluding cases where the species history is still treelike; a prime example of this is
incomplete lineage sorting [40, 42, 57].

Many challenges remain for estimating evolutionary histories in the case of these
events. One obvious challenge is the estimation of the underlying species tree from
either gene sequence alignments or trees, for the case where genes evolve with hor-
izontal gene transfer but without hybridization. Lapierre et al. [334] performed a
simulation study to evaluate supertree and supermatrix methods for estimating the
species tree, and found that supermatrix methods gave better results when there was
only small amounts of horizontal gene transfer, and supertree methods were better
when there were many horizontal gene transfers. A new method for estimating the
underlying species tree, and a probabilistic analysis of this method, has also been
developed by Roch and Snir [335], but has not been evaluated in simulation or on
real data. New methods, and evaluations of these methods, are clearly needed.

In addition, since there are very few methods for estimating evolutionary net-
works, more work in this area needs to be done. However, all evolutionary
networks—especially those that operate by combining estimated gene trees—need
to be able to distinguish incongruence between estimated gene trees that is due to
true reticulation (as in lateral gene transfer or hybridization), incongruence that is
due to incomplete lineage sorting or gene duplication and loss (for which a species
tree still makes sense), and incongruence due to estimation error. Recent progress
has been made in developing statistical methods for distinguishing between different
causes for incongruence, and for estimating evolutionary histories given a mixture
of different events [333, 336, 337]. While these are still in their infancy, the potential
for substantial advances in phylogenomic analysis could be very high.

6.5.2.5 Incorporating Biological Knowledge into Alignment and Phylogeny
Estimation

One of the most interesting developments in both alignment and phylogeny estima-
tion is the attempt to utilize biological knowledge, especially about structure, into
the process [102]. Although structurally based alignments may not always reflect
positional homology [100], the use of external knowledge has greatly impacted the
alignment of sets of protein sequences that are close to the twilight zone, in which
sequence similarity can be close to random while structural properties may still be
conserved. A similar effort is occurring on the phylogeny estimation side, so that the
Markov models used in phylogeny estimation (especially those involving protein
analyses) are becoming more realistic [138, 139]. For example, Liberles et al. [139]
say:

At the interface of protein structure, protein biophysics, and molecular evolution there is
a set of fundamental processes that generate protein sequences, structures and functions.
A better understanding of these processes requires both biologically realistic models that
bring structural and functional considerations into evolutionary analysis, and similarly in-
corporation of evolutionary and population genetic approaches into the analysis of protein

130 T. Warnow

structure and underlying protein biophysics. . . The potential benefits of the synergy be-
tween biophysical and evolutionary approaches can hardly be overestimated. Their inte-
gration allows us not only to incorporate structural constraints into improved evolutionary
models, but also to investigate how natural selection interacts with biophysics and thus ex-
plain how both physical and evolutionary laws have shaped the properties of extant macro-
molecules.

But, as Claus Wilke said in “Bringing Molecules Back into Molecular Evolu-
tion” [138]:

A side effect of the strong emphasis on developing sophisticated methods for sequence anal-
ysis has been that the underlying biophysical objects represented by the sequences, DNA
molecules, RNA molecules, and proteins, have taken a back-seat in much computational
molecular evolution work. The vast majority of algorithms for sequence analysis, for ex-
ample, incorporate no knowledge of biology or biochemistry besides that DNA and RNA
sequences use an alphabet of four letters, protein sequences use an alphabet of 20, and the
genetic code converts one into the other. The choice to treat DNA, RNA, and proteins sim-
ply as strings of letters was certainly reasonable in the late 20th century. Computational
power was limited and many basic aspects of sequence analysis were still relatively poorly
understood. However, in 2012 we have extremely powerful computers and a large array of
highly sophisticated algorithms that can analyze strings of letters. It is now time to bring
the molecules back into molecular evolution.

Both Wilke and Liberles et al. point out excellent work that is being done to add
more biological realism into existing models and methods, and are passionate about
the potential benefits to science that could result. However, the challenges to using
more realistic models in phylogenetic estimation are enormous. As Wilke’s article
suggests, the added complexity in these models will lead to increased computational
challenges (e.g., more parameters to estimate for maximum likelihood, or longer
MCMC runs to reach convergence for the Bayesian methods). However, there are
other challenges as well: as discussed earlier, increased model complexity can lead
to non-identifiable models, making inferences under the model less reliable and
interpretable. Furthermore, it is not always the case that adding complexity (even
if realistic) to a model will improve inferences under the model, and it may be that
phylogeny estimation under simpler, not necessarily as realistic models, may give
the most accurate results.

However, even this question depends on what one is trying to estimate. Is it just
the gene tree, or also the numerical parameters on the tree? If more than just the
topology, then which parameters? Or is the tree itself just a nuisance parameter,
and the objective something else? Indeed, it is possible that more parameter rich
and biologically realistic models may not have a substantial impact on phylogeny
estimation, but they may improve the detection of selection, the estimation of dates
at internal nodes in the tree, and the inference of protein function and structure. That
said, the prospects for improved accuracy in biological understanding through these
new approaches that integrate biological knowledge with statistical methods may be
large, and are worth investigating.

A final point about biologically realistic models: even if they turn out not to be
particularly useful for estimation, they are certainly useful for simulation! That is,
simulating under more realistic models and then estimating under simpler models

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 131

allows us to determine the robustness of the method to model violations, and to
predict performance under more realistic conditions. Therefore, the development of
improved statistical models of evolution may be important for testing methods, even
if the use of these models for inference turns out to be impractical.

6.6 Conclusions

This chapter set out to survey large-scale phylogeny and alignment estimation. As
we have seen, large-scale alignment and phylogeny estimation (whether of species
or of individual genes) is a complicated problem. Despite the multitude of meth-
ods for each step, the estimation of very large sequence alignments or gene trees is
still quite difficult, and the estimation of species phylogenies (whether trees or net-
works!), even more so. Furthermore, the challenges in large-scale estimation are not
computational feasibility (running time and memory), as inferential methods can
differ in their theoretical and empirical performance.

The estimation of very large alignments and trees, containing tens of thousands of
sequences, is now feasible; see Tables 6.1 and 6.2 for a summary of the methods that
have been demonstrated to be able to estimate alignments and trees, respectively, on
at least 25,000 sequences. Even co-estimation of alignments and trees of this size is
now feasible, as shown in Table 6.3. However, improvements in scalability of many
alignment and tree estimation methods is likely, and some of the methods not listed
in these tables may also be able to analyze datasets of this size.

However, very substantial progress has been made for large-scale estimation, and
the field seems poised to move very dramatically forward. For example, there are
new algorithmic approaches being used that have the ability to improve the perfor-
mance of base methods for alignment and phylogeny estimation, including iteration,
divide-and-conquer, probabilistic models, and the incorporation of external biolog-
ical knowledge. At the same time, there is a definite move to incorporate more bio-
logical realism and knowledge into statistical estimation methods. The combination
of these approaches is likely to be a very powerful tool towards substantial improve-
ments in accuracy and, potentially, scalability.

Acknowledgements During the time I wrote the paper, I was a Program Director at the National
Science Foundation working on the BigData program; however, the research discussed in this paper
took place over a span of many years. This research was therefore supported by U.S. National
Science Foundation, Microsoft New England, the Guggenheim Foundation, the David and Lucile
Packard Foundation, the Radcliffe Institute for Advanced Study, the Program for Evolutionary
Dynamics at Harvard, the David Bruton Jr. Centennial Professorship in Computer Sciences at
U.T. Austin, and two Faculty Research Assignments from the University of Texas at Austin.

It makes sense now to tell how some of the work in this paper came about. I was working
with Randy Linder (UT-Austin Integrative Biology) on various problems, including large-scale
alignment and phylogeny estimation. During our initial attempts to design a fast and accurate
co-estimation method, we began by trying to come up with a better solution to the Treelength
optimization problem. Our interest in treelength optimization convinced a colleague, Vijaya Ra-
machandran (UT-Austin Computer Science), to develop a fast exact median calculator [338], which

132 T. Warnow

led to an improved treelength estimator; however our subsequent studies [263] suggested that im-
proving the treelength would not lead to improved alignments and trees. This led us to look for
other approaches to obtain more accurate alignments and trees from large datasets. Our next at-
tempts considered the impact of guide trees, which gave a small benefit [109], but even iterating
in this manner also did not lead to substantial improvements. Finally, we developed SATé, the
co-estimation method described earlier. In a very real sense, therefore, much of the work in this
chapter was inspired by David Sankoff, since he introduced the treelength optimization problem.
And so, I end by thanking David Sankoff for this, as well as many other things.

References

1. Dobzhansky, T.: Nothing in biology makes sense except in the light of evolution. Am. Biol.
Teach. 35, 125–129 (1973)

2. de Chardin, P.T.: Le Phénomene Humain. Harper Perennial, New York (1959)
3. Eisen, J.A.: Phylogenomics: improving functional predictions for uncharacterized genes by

evolutionary analysis. Genome Res. 8, 163–167 (1998)
4. Wang, L.-S., Leebens-Mack, J., Wall, K., Beckmann, K., de Pamphilis, C., et al.: The im-

pact of protein multiple sequence alignment on phylogeny estimation. IEEE/ACM Trans.
Comput. Biol. Bioinform. 8, 1108–1119 (2011)

5. Simmons, M., Freudenstein, J.: The effects of increasing genetic distance on alignment of,
and tree construction from, rDNA internal transcribed spacer sequences. Mol. Phylogenet.
Evol. 26, 444–451 (2003)

6. Liu, K., Linder, C.R., Warnow, T.: Multiple sequence alignment: a major challenge to large-
scale phylogenetics. PLoS Currents: Tree of Life (2010)

7. Hall, B.G.: Comparison of the accuracies of several phylogenetic methods using protein and
DNA sequences. Mol. Evol. Biol. 22, 792–802 (2005)

8. Kumar, S., Filipski, A.: Multiple sequence alignment: in pursuit of homologous DNA posi-
tions. Genome Res. 17, 127–135 (2007)

9. Ogden, T., Rosenberg, M.: Multiple sequence alignment accuracy and phylogenetic infer-
ence. Syst. Biol. 55, 314–328 (2006)

10. Liu, K., Raghavan, S., Nelesen, S., Linder, C.R., Warnow, T.: Rapid and accurate large-
scale coestimation of sequence alignments and phylogenetic trees. Science 324, 1561–1564
(2009)

11. Morrison, D.: Multiple sequence alignment for phylogenetic purposes. Aust. Syst. Bot. 19,
479–539 (2006)

12. Graybeal, A.: Is it better to add taxa or characters to a difficult phylogenetic problem? Syst.
Biol. 47, 9–17 (1998)

13. Pollock, D., Zwickl, D., McGuire, J., Hillis, D.: Increased taxon sampling is advantageous
for phylogenetic inference. Syst. Biol. 51, 664–671 (2002)

14. Zwickl, D., Hillis, D.: Increased taxon sampling greatly reduces phylogenetic error. Syst.
Biol. 51, 588–598 (2002)

15. Hillis, D.: Inferring complex phylogenies. Nature 383, 130–131 (1996)
16. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2003)
17. Kim, J., Warnow, T.: Tutorial on phylogenetic tree estimation. Presented at the ISMB 1999

Conference (1999). Available on-line at http://www.cs.utexas.edu/users/tandy/tutorial.ps
18. Linder, C.R., Warnow, T.: An overview of phylogeny reconstruction. In: Aluru, S. (ed.)

Handbook of Computational Molecular Biology. Chapman and Hall/CRC Computer and In-
formation Science Series, vol. 9. CRC Press, Boca Raton (2005)

19. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, London (2003)
20. Hillis, D., Moritz, C., Mable, B. (eds.): Molecular Systematics. Sinauer Associates, Sunder-

land (1996)

http://www.cs.utexas.edu/users/tandy/tutorial.ps

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 133

21. Ortuno, F., Valenzuela, O., Pomares, H., Rojas, F., Florido, J., et al.: Predicting the accuracy
of multiple sequence alignment algorithms by using computational intelligent techniques.
Nucleic Acids Res. 41 (2013)

22. Whelan, S., Lin, P., Goldman, N.: Molecular phylogenetics: state-of-the-art methods for
looking into the past. Trends Genet. 17, 262–272 (2001)

23. Goldman, N., Yang, Z.: Introduction: statistical and computational challenges in molecu-
lar phylogenetics and evolution. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 363, 3889–3892
(2008)

24. Kemena, C., Notredame, C.: Upcoming challenges for multiple sequence alignment methods
in the high-throughput era. Bioinformatics 25, 2455–2465 (2009)

25. Do, C., Katoh, K.: Protein multiple sequence alignment. In: Methods in Molecular Biol-
ogy: Functional Proteomics, Methods and Protocols, vol. 484, pp. 379–413. Humana Press,
Clifton (2008)

26. Mokaddem, A., Elloumi, M.: Algorithms for the alignment of biological sequences. In: El-
loumi, M., Zomaya, A. (eds.) Algorithms in Computational Molecular Biology. Wiley, New
York (2011). doi:10.1002/9780470892107.ch12

27. Pei, J.: Multiple protein sequence alignment. Curr. Opin. Struct. Biol. 18, 382–386 (2008)
28. Sievers, F., Wilm, A., Dineen, D., Gibson, T., Karplus, K., et al.: Fast, scalable generation

of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7
(2011)

29. Katoh, K., Toh, H.: PartTree: an algorithm to build an approximate tree from a large number
of unaligned sequences. Bioinformatics 23(3), 372–374 (2007)

30. Nelesen, S., Liu, K., Wang, L.S., Linder, C.R., Warnow, T.: DACTAL: divide-and-conquer
trees (almost) without alignments. Bioinformatics 28, i274–i282 (2012)

31. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., et al.: ClustalW
and ClustalX version 2.0. Bioinformatics 23, 2947–2948 (2007)

32. Lassmann, T., Frings, O., Sonnhammer, E.: Kalign2: high-performance multiple alignment
of protein and nucleotide sequences allowing external features. Nucleic Acids Res. 37, 858–
865 (2009)

33. Neuwald, A.: Rapid detection, classification, and accurate alignment of up to a million or
more related protein sequences. Bioinformatics 25, 1869–1875 (2009)

34. Price, M.N., Dehal, P.S., Arkin, A.P.: FastTree-2—approximately maximum-likelihood trees
for large alignments. PLoS ONE 5, e9490 (2010). 10.1371/journal.pone.0009490

35. Smith, S., Beaulieu, J., Stamatakis, A., Donoghue, M.: Understanding angiosperm diversifi-
cation using small and large phylogenetic trees. Am. J. Bot. 98, 404–414 (2011)

36. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

37. Goloboff, P.A., Catalano, S.A., Mirande, J.M., Szumik, C.A., Arias, J.S., et al.: Phylogenetic
analysis of 73,060 taxa corroborates major eukaryotic groups. Cladistics 25, 211–230 (2009)

38. Goloboff, P., Farris, J., Nixon, K.: TNT, a free program for phylogenetic analysis. Cladistics
24, 774–786 (2008)

39. Liu, K., Warnow, T., Holder, M., Nelesen, S., Yu, J., et al.: SATé-II: very fast and accurate
simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst. Biol.
61, 90–106 (2011)

40. Maddison, W.: Gene trees in species trees. Syst. Biol. 46, 523–536 (1997)
41. Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of

life. Nat. Rev. Genet. 6, 361–375 (2005)
42. Edwards, S.V.: Is a new and general theory of molecular systematics emerging? Evolution

63, 1–19 (2009)
43. Dunn, C.W., Hejnol, A., Matus, D.Q., Pang, K., Browne, W.E., et al.: Broad phylogenomic

sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008)
44. Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., et al.: A phylogeny-driven

genomic encyclopedia of bacteria and archaea. Nature 462, 1056–1060 (2009)

http://dx.doi.org/10.1002/9780470892107.ch12
http://dx.doi.org/10.1371/journal.pone.0009490

134 T. Warnow

45. Eisen, J., Fraser, C.: Phylogenomics: intersection of evolution and genomics. Science 300,
1706–1707 (2003)

46. Bininda-Emonds, O. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the
Tree of Life. Kluwer Academic, Dordrecht (2004)

47. Baum, B., Ragan, M.A.: The MRP method. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic
Supertrees: Combining Information to Reveal the Tree of Life, pp. 17–34. Kluwer Academic,
Dordrecht (2004)

48. Chen, D., Eulenstein, O., Fernández-Baca, D., Sanderson, M.: Minimum-flip supertrees:
complexity and algorithms. IEEE/ACM Trans. Comput. Biol. Bioinform. 3, 165–173 (2006)

49. Bininda-Emonds, O.R.P.: The evolution of supertrees. Trends Ecol. Evol. 19, 315–322
(2004)

50. Snir, S., Rao, S.: Quartets MaxCut: a divide and conquer quartets algorithm. IEEE/ACM
Trans. Comput. Biol. Bioinform. 7, 704–718 (2010)

51. Steel, M., Rodrigo, A.: Maximum likelihood supertrees. Syst. Biol. 57, 243–250 (2008)
52. Swenson, M., Suri, R., Linder, C., Warnow, T.: An experimental study of quartets MaxCut

and other supertree methods. Algorithms Mol. Biol. 6(1), 7 (2011)
53. Swenson, M., Suri, R., Linder, C., Warnow, T.: SuperFine: fast and accurate supertree esti-

mation. Syst. Biol. 61, 214–227 (2012)
54. Nguyen, N., Mirarab, S., Warnow, T.: MRL and SuperFine+MRL: new supertree methods.

Algorithms Mol. Biol. 7(3) (2012)
55. Than, C.V., Nakhleh, L.: Species tree inference by minimizing deep coalescences. PLoS

Comput. Biol. 5 (2009)
56. Boussau, B., Szollosi, G., Duret, L., Gouy, M., Tannier, E., et al.: Genome-scale co-

estimation of species and gene trees. Genome Res. 23(2), 323–330 (2013)
57. Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the mul-

tispecies coalescent. Trends Ecol. Evol. 26, 332–340 (2009)
58. Chaudhary, R., Bansal, M.S., Wehe, A., Fernández-Baca, D., Eulenstein, O.: IGTP: a soft-

ware package for large-scale gene tree parsimony analysis. BMC Bioinform. 11, 574 (2010)
59. Larget, B., Kotha, S.K., Dewey, C.N., Ané, C.: BUCKy: gene tree/species tree reconciliation

with the Bayesian concordance analysis. Bioinformatics 26, 2910–2911 (2010)
60. Yu, Y., Warnow, T., Nakhleh, L.: Algorithms for MDC-based multi-locus phylogeny infer-

ence: beyond rooted binary gene trees on single alleles. J. Comput. Biol. 18, 1543–1559
(2011)

61. Yang, J., Warnow, T.: Fast and accurate methods for phylogenomic analyses. BMC Bioin-
form. 12(Suppl 9), S4 (2011). doi:10.1186/1471-2105-12-S9-S4

62. Liu, L., Yu, L., Edwards, S.: A maximum pseudo-likelihood approach for estimating species
trees under the coalescent model. BMC Evol. Biol. 10, 302 (2010)

63. Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation,
and loss. J. Comput. Biol. 15, 1043–1062 (2008)

64. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: Proceedings
RECOMB 2000, pp. 138–146. ACM Press, New York (2000)

65. Doyon, J.P., Chauve, C.: Branch-and-bound approach for parsimonious inference of a species
tree from a set of gene family trees. Adv. Exp. Med. Biol. 696, 287–295 (2011)

66. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30, 729–752
(2000)

67. Zhang, L.: From gene trees to species trees II: species tree inference by minimizing deep
coalescence events. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 1685–1691 (2011)

68. Arvestad, L., Berglung, A.C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and or-
thology analysis based on an integrated model for duplications and sequence evolution. In:
Bininda-Emonds, O. (ed.) Proc. RECOMB 2004, pp. 238–252 (2004)

69. Sennblad, B., Lagergren, J.: Probabilistic orthology analysis. Syst. Biol. 58, 411–424 (2009)
70. Edwards, S., Liu, L., Pearl, D.: High-resolution species trees without concatenation. Proc.

Natl. Acad. Sci. USA 104, 5936–5941 (2007)

http://dx.doi.org/10.1186/1471-2105-12-S9-S4

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 135

71. Heled, J., Drummond, A.J.: Bayesian inference of species trees from multilocus data. Mol.
Biol. Evol. 27, 570–580 (2010)

72. Roch, S.: An analytical comparison of multilocus methods under the multispecies coalescent:
the three-taxon case. In: Proc. Pacific Symposium on Biocomputing, vol. 18, pp. 297–306
(2013)

73. Kopelman, N.M., Stone, L., Gascuel, O., Rosenberg, N.A.: The behavior of admixed pop-
ulations in neighbor-joining inference of population trees. In: Proc. Pacific Symposium on
Biocomputing, vol. 18 (2013)

74. Degnan, J.H.: Evaluating variations on the STAR algorithm for relative efficiency and sample
sizes needed to reconstruct species trees. In: Proc. Pacific Symposium on Biocomputing,
vol. 18, pp. 262–272 (2013)

75. Bayzid, M., Mirarab, S., Warnow, T.: Inferring optimal species trees under gene duplication
and loss. In: Proc. Pacific Symposium on Biocomputing, vol. 18, pp. 250–261 (2013)

76. Pei, J., Grishin, N.: PROMALS: towards accurate multiple sequence alignments of distantly
related proteins. Bioinformatics 23, 802–808 (2007)

77. Edgar, R.C., Sjölander, K.: SATCHMO: sequence alignment and tree construction using
hidden Markov models. Bioinformatics 19, 1404–1411 (2003)

78. Hagopian, R., Davidson, J., Datta, R., Jarvis, G., Sjölander, K.: SATCHMO-JS: a webserver
for simultaneous protein multiple sequence alignment and phylogenetic tree construction.
Nucleic Acids Res. 38(Web Server Issue), W29–W34 (2010)

79. O’Sullivan, O., Suhre, K., Abergel, C., Higgins, D., Notredame, C.: 3DCoffee: combining
protein sequences and structure within multiple sequence alignments. J. Mol. Biol. 340, 385–
395 (2004)

80. Zhou, H., Zhou, Y.: SPEM: improving multiple sequence alignment with sequence profiles
and predicted secondary structures. Bioinformatics 21, 3615–3621 (2005)

81. Deng, X., Cheng, J.: MSACompro: protein multiple sequence alignment using predicted sec-
ondary structure, solvent accessibility, and residue-residue contacts. BMC Bioinform. 12,
472 (2011)

82. Roshan, U., Livesay, D.R.: Probalign: multiple sequence alignment using partition function
posterior probabilities. Bioinformatics 22, 2715–2721 (2006)

83. Roshan, U., Chikkagoudar, S., Livesay, D.R.: Searching for RNA homologs within large
genomic sequences using partition function posterior probabilities. BMC Bioinform. 9, 61
(2008)

84. Do, C., Mahabhashyam, M., Brudno, M., Batzoglou, S.: PROBCONS: probabilistic
consistency-based multiple sequence alignment of amino acid sequences. Software available
at http://probcons.stanford.edu/download.html (2006)

85. Nawrocki, E.P., Kolbe, D.L., Eddy, S.R.: Infernal 1.0: inference of RNA alignments. Bioin-
formatics 25, 1335–1337 (2009)

86. Nawrocki, E.P.: Structural RNA homology search and alignment using covariance models.
Ph.D. thesis, Washington University in Saint Louis, School of Medicine (2009)

87. Gardner, D., Xu, W., Miranker, D., Ozer, S., Cannonne, J., et al.: An accurate scalable
template-based alignment algorithm. In: Proc. International Conference on Bioinformatics
and Biomedicine, 2012, pp. 237–243 (2012)

88. Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space
complexity. BMC Bioinform. 5, 113 (2004)

89. Mirarab, S., Warnow, T.: FastSP: linear-time calculation of alignment accuracy. Bioinformat-
ics 27, 3250–3258 (2011)

90. Blackburne, B., Whelan, S.: Measuring the distance between multiple sequence alignments.
Bioinformatics 28, 495–502 (2012)

91. Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J., et al.: Comparison of five
methods for finding conserved sequences in multiple alignments of gene regulatory regions.
Nucleic Acids Res. 27, 3899–3910 (1999)

92. Edgar, R.: Quality measures for protein alignment benchmarks. Nucleic Acids Res. 7, 2145–
2153 (2010)

http://probcons.stanford.edu/download.html

136 T. Warnow

93. Thompson, J.D., Plewniak, F., Poch, O.: A comprehensive comparison of multiple sequence
alignment programs. Nucleic Acids Res. 27, 2682–2690 (1999)

94. Thompson, J., Plewniak, F., Poch, O.: BAliBASE: a benchmark alignments database for the
evaluation of multiple sequence alignment programs. Bioinformatics 15, 87–88 (1999)

95. Raghava, G., Searle, S.M., Audley, P.C., Barber, J.D., Barton, G.J.: Oxbench: a benchmark
for evaluation of protein multiple sequence alignment accuracy. BMC Bioinform. 4, 47
(2003)

96. Gardner, P., Wilm, A., Washietl, S.: A benchmark of multiple sequence alignment programs
upon structural RNAs. Nucleic Acids Res. 33, 2433–2439 (2005)

97. Walle, I.L.V., Wyns, L.: SABmark-a benchmark for sequence alignment that covers the entire
known fold space. Bioinformatics 21, 1267–1268 (2005)

98. Carroll, H., Beckstead, W., O’Connor, T., Ebbert, M., Clement, M., et al.: DNA reference
alignment benchmarks based on tertiary structure of encoded proteins. Bioinformatics 23,
2648–2649 (2007)

99. Blazewicz, J., Formanowicz, P., Wojciechowski, P.: Some remarks on evaluating the quality
of the multiple sequence alignment based on the BAliBASE benchmark. Int. J. Appl. Math.
Comput. Sci. 19, 675–678 (2009)

100. Iantomo, S., Gori, K., Goldman, N., Gil, M., Dessimoz, C.: Who watches the watchmen?
An appraisal of benchmarks for multiple sequence alignment. arXiv:1211.2160 [q-bio.QM]
(2012)

101. Aniba, M., Poch, O., Thompson, J.D.: Issues in bioinformatics benchmarking: the case study
of multiple sequence alignment. Nucleic Acids Res. 38, 7353–7363 (2010)

102. Morrison, D.A.: Why would phylogeneticists ignore computerized sequence alignment?
Syst. Biol. 58, 150–158 (2009)

103. Reeck, G., de Haen, C., Teller, D., Doolitte, R., Fitch, W., et al.: “Homology” in proteins and
nucleic acids: a terminology muddle and a way out of it. Cell 50, 667 (1987)

104. Galperin, M., Koonin, E.: Divergence and convergence in enzyme evolution. J. Biol. Chem.
287, 21–28 (2012)

105. Sjolander, K.: Getting started in structural phylogenomics. PLoS Comput. Biol. 6, e1000621
(2010)

106. Katoh, K., Kuma, K., Miyata, T., Toh, H.: Improvement in the accuracy of multiple sequence
alignment MAFFT. Genome Inf. 16, 22–33 (2005)

107. Do, C., Mahabhashyam, M., Brudno, M., Batzoglou, S.: PROBCONS: probabilistic
consistency-based multiple sequence alignment. Genome Res. 15, 330–340 (2005)

108. Loytynoja, A., Goldman, N.: An algorithm for progressive multiple alignment of sequences
with insertions. Proc. Natl. Acad. Sci. 102, 10557–10562 (2005)

109. Nelesen, S., Liu, K., Zhao, D., Linder, C.R., Warnow, T.: The effect of the guide tree on
multiple sequence alignments and subsequent phylogenetic analyses. In: Proc. Pacific Sym-
posium on Biocomputing, vol. 13, pp. 15–24 (2008)

110. Fletcher, W., Yang, Z.: The effect of insertions, deletions, and alignment errors on the branch-
site test of positive selection. Mol. Biol. Evol. 27, 2257–2267 (2010)

111. Penn, O., Privman, E., Landan, G., Graur, D., Pupko, T.: An alignment confidence score
capturing robustness to guide tree uncertainty. Mol. Biol. Evol. 27, 1759–1767 (2010)

112. Toth, A., Hausknecht, A., Krisai-Greilhuber, I., Papp, T., Vagvolgyi, C., et al.: Iteratively
refined guide trees help improving alignment and phylogenetic inference in the mushroom
family bolbitiaceae. PLoS ONE 8, e56143 (2013)

113. Capella-Gutiérrez, S., Gabaldón, T.: Measuring guide-tree dependency of inferred gaps for
progressive aligners. Bioinformatics 29(8), 1011–1017 (2013)

114. Preusse, E., Quast, C., Knittel, K., Fuchs, B., Ludwig, W., et al.: SILVA: a comprehensive
online resource for quality checked and aligned ribosomal RNA sequence data compatible
with ARB. Nucleic Acids Res. 35, 718–796 (2007)

115. DeSantis, T., Hugenholtz, P., Keller, K., Brodie, E., Larsen, N., et al.: NAST: a multiple
sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res.
34, W394–W399 (2006)

http://arxiv.org/abs/arXiv:1211.2160

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 137

116. Löytynoja, A., Vilella, A.J., Goldman, N.: Accurate extension of multiple sequence align-
ments using a phylogeny-aware graph algorithm. Bioinformatics 28, 1685–1691 (2012)

117. Papadopoulos, J.S., Agarwala, R.: COBALT: constraint-based alignment tool for multiple
protein sequences. Bioinformatics 23, 1073–1079 (2007)

118. Berger, S.A., Stamatakis, A.: Aligning short reads to reference alignments and trees. Bioin-
formatics 27, 2068–2075 (2011)

119. Sievers, F., Dineen, D., Wilm, A., Higgins, D.G.: Making automated multiple alignments of
very large numbers of protein sequences. Bioinformatics 29(8), 989–995 (2013)

120. Smith, S., Beaulieu, J., Donoghue, M.: Mega-phylogeny approach for comparative biology:
an alternative to supertree and supermatrix approaches. BMC Evol. Biol. 9, 37 (2009)

121. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylo-
genetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

122. Roquet, C., Thuiller, W., Lavergne, S.: Building megaphylogenies for macroecology: taking
up the challenge. Ecography 36, 013–026 (2013)

123. Steel, M.A.: Recovering a tree from the leaf colourations it generates under a Markov model.
Appl. Math. Lett. 7, 19–24 (1994)

124. Evans, S., Warnow, T.: Unidentifiable divergence times in rates-across-sites models.
IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 130–134 (2005)

125. Tavaré, S.: Some probabilistic and statistical problems in the analysis of DNA sequences. In:
Lectures on Mathematics in the Life Sciences, vol. 17, pp. 57–86 (1986)

126. Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins. In: Day-
hoff, M. (ed.) Atlas of Protein Sequence and Structure. National Biomedical Research Foun-
dation, pp. 345–352 (1978)

127. Lakner, C., Holder, M., Goldman, N., Naylor, G.: What’s in a likelihood? Simple models of
protein evolution and the contribution of structurally viable reconstructions to the likelihood.
Syst. Biol. 60, 161–174 (2011)

128. Le, S., Gascuel, O.: An improved general amino acid replacement matrix. Mol. Biol. Evol.
25, 1307–1320 (2008)

129. Whelan, S., Goldman, N.: A general empirical model of protein evolution derived from mul-
tiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699
(2001)

130. Kosiol, C., Goldman, N.: Different versions of the Dayhoff rate matrix. Mol. Biol. Evol. 22,
193–199 (2005)

131. Thorne, J.: Models of protein sequence evolution and their applications. Curr. Opin. Genet.
Dev. 10, 602–605 (2000)

132. Thorne, J., Goldman, N.: Probabilistic models for the study of protein evolution. In: Balding,
D., Bishop, M., Cannings, C. (eds.) Handbook of Statistical Genetics, pp. 209–226. Wiley,
New York (2003)

133. Adachi, J., Hasegawa, M.: Model of amino acid substitution in proteins encoded by mito-
chondrial DNA. J. Mol. Evol. 42, 459–468 (1996)

134. Goldman, N., Yang, Z.: A codon-based model of nucleotide substitution for protein-coding
DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994)

135. Scherrer, M., Meyer, A., Wilke, C.: Modeling coding-sequence evolution within the context
of residue solvent accessibility. BMC Evol. Biol. 12, 179 (2012)

136. Mayrose, I., Doron-Faigenbom, A., Bacharach, E., Pupko, T.: Towards realistic codon mod-
els: among site variability and dependency of synonymous and non-synonymous rates. Bioin-
formatics 23, i319–i327 (2007)

137. Abascal, F., Zardoya, R., Posada, D.: ProtTest: selection of best-fit models of protein evolu-
tion. Bioinformatics 21, 2104–2105 (2005)

138. Wilke, C.: Bringing molecules back into molecular evolution. PLoS Comput. Biol. 8,
e1002572 (2012)

139. Liberles, D., Teichmann, S., et al.: The inference of protein structure, protein biophysics, and
molecular evolution. Protein Sci. 21, 769–785 (2012)

138 T. Warnow

140. Lopez, P., Casane, D., Philippe, H.: Heterotachy, an important process of protein evolution.
Mol. Biol. Evol. 19, 1–7 (2002)

141. Whelan, S.: Spatial and temporal heterogeneity in nucleotide sequence evolution. Mol. Biol.
Evol. 25, 1683–1694 (2008)

142. Tuffley, C., Steel, M.: Links between maximum likelihood and maximum parsimony under
a simple model of site substitution. Bull. Math. Biol. 59, 581–607 (1997)

143. Steel, M.A.: Can we avoid ‘SIN’ in the house of ‘No Common Mechanism’? Syst. Biol. 60,
96–109 (2011)

144. Lobkovsky, A., Wolf, Y., Koonin, E.: Gene frequency distributions reject a neutral model of
genome evolution. Genome Biol. Evol. 5, 233–242 (2013)

145. Galtier, N., Gouy, M.: Inferring pattern and process: maximum-likelihood implementation of
a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol. Biol.
Evol. 15, 871–879 (1998)

146. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Adv. Appl.
Math. 3, 43–49 (1982)

147. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach.
J. Mol. Evol. 17, 368–376 (1981)

148. Allman, E.S., Ané, C., Rhodes, J.: Identifiability of a Markovian model of molecular evolu-
tion with gamma-distributed rates. Adv. Appl. Probab. 40, 229–249 (2008)

149. Allman, E.S., Rhodes, J.: Identifying evolutionary trees and substitution parameters for the
general Markov model with invariable sites. Math. Biosci. 211, 18–33 (2008)

150. Allman, E.S., Rhodes, J.A.: The identifiability of tree topology for phylogenetic models,
including covariant and mixture models. J. Comput. Biol. 13, 1101–1113 (2006)

151. Atteson, K.: The performance of neighbor-joining methods of phylogenetic reconstruction.
Algorithmica 25, 251–278 (1999)

152. Chang, J.: Full reconstruction of Markov models on evolutionary trees: identifiability and
consistency. Math. Biosci. 137, 51–73 (1996)

153. Steel, M.A.: Consistency of Bayesian inference of resolved phylogenetic trees. arXiv:
1001.2864 [q-bioPE] (2010)

154. Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively mis-
leading. Syst. Zool. 27, 401–410 (1978)

155. Chang, J.T.: Inconsistency of evolutionary tree topology reconstruction methods when sub-
stitution rates vary across characters. Math. Biosci. 134, 189–215 (1996)

156. Matsen, F., Steel, M.: Phylogenetic mixtures on a single tree can mimic a tree of another
topology. Syst. Biol. 56, 767–775 (2007)

157. Allman, E., Rhodes, J., Sullivant, S.: When do phylogenetic mixture models mimic other
phylogenetic models? Syst. Biol. 61, 1049–1059 (2012)

158. Erdos, P., Steel, M., Szekely, L., Warnow, T.: Local quartet splits of a binary tree infer all
quartet splits via one dyadic inference rule. Comput. Artif. Intell. 16, 217–227 (1997)

159. Erdos, P., Steel, M., Szekely, L., Warnow, T.: A few logs suffice to build (almost) all trees (i).
Random Struct. Algorithms 14, 153–184 (1999)

160. Erdos, P., Steel, M., Szekely, L., Warnow, T.: A few logs suffice to build (almost) all trees (ii).
Theor. Comput. Sci. 221, 77–118 (1999)

161. Lacey, M.R., Chang, J.T.: A signal-to-noise analysis of phylogeny estimation by neighbor-
joining: insufficiency of polynomial length sequences. Math. Biosci. 199, 188–215 (2006)

162. Csürős, M., Kao, M.Y.: Recovering evolutionary trees through harmonic greedy triplets.
Proc. SODA 99, 261–270 (1999)

163. Csurös, M.: Fast recovery of evolutionary trees with thousands of nodes. J. Comput. Biol. 9,
277–297 (2002)

164. Huson, D., Nettles, S., Warnow, T.: Disk-covering, a fast converging method for phylogenetic
tree reconstruction. J. Comput. Biol. 6, 369–386 (1999)

165. Steel, M.A., Székely, L.A.: Inverting random functions. Ann. Comb. 3, 103–113 (1999)
166. Steel, M.A., Székely, L.A.: Inverting random functions—II: explicit bounds for discrete max-

imum likelihood estimation, with applications. SIAM J. Discrete Math. 15, 562–575 (2002)

http://arxiv.org/abs/arXiv:1001.2864
http://arxiv.org/abs/arXiv:1001.2864

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 139

167. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary tree recon-
struction. In: SODA: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pp. 444–453 (2003)

168. Mossel, E., Roch, S.: Learning nonsingular phylogenies and hidden Markov models. In: Proc.
37th Symp. on the Theory of Computing (STOC’05), pp. 366–376 (2005)

169. Mossel, E., Roch, S.: Learning nonsingular phylogenies and hidden Markov models. Ann.
Appl. Probab. 16, 538–614 (2006)

170. Daskalakis, C., Mossel, E., Roch, S.: Optimal phylogenetic reconstruction. In: STOC’06:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 159–168
(2006)

171. Daskalakis, C., Hill, C., Jaffe, A., Mihaescu, R., Mossel, E., et al.: Maximal accurate forests
from distance matrices. In: RECOMB, pp. 281–295 (2006)

172. Mossel, E.: Distorted metrics on trees and phylogenetic forests. IEEE/ACM Trans. Comput.
Biol. Bioinform. 4, 108–116 (2007)

173. Gronau, I., Moran, S., Snir, S.: Fast and reliable reconstruction of phylogenetic trees with
very short edges. In: SODA (ACM/SIAM Symp. Disc. Alg), pp. 379–388 (2008)

174. Roch, S.: Sequence-length requirement for distance-based phylogeny reconstruction: break-
ing the polynomial barrier. In: FOCS (Foundations of Computer Science), pp. 729–738
(2008)

175. Daskalakis, C., Mossel, E., Roch, S.: Phylogenies without branch bounds: contracting the
short, pruning the deep. In: RECOMB, pp. 451–465 (2009)

176. Lin, Y., Rajan, V., Moret, B.: A metric for phylogenetic trees based on matching. IEEE/ACM
Trans. Comput. Biol. Bioinform. 9, 1014–1022 (2012)

177. Rannala, B., Huelsenbeck, J., Yang, Z., Nielsen, R.: Taxon sampling and the accuracy of
large phylogenies. Syst. Biol. 47, 702–710 (1998)

178. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–147
(1981)

179. Huelsenbeck, J., Hillis, D.: Success of phylogenetic methods in the four-taxon case. Syst.
Biol. 42, 247–265 (1993)

180. Hillis, D.: Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst. Biol. 47,
3–8 (1998)

181. Nakhleh, L., Moret, B., Roshan, U., St John, K., Sun, J., et al.: The accuracy of fast phy-
logenetic methods for large datasets. In: Proc. 7th Pacific Symposium on BioComputing,
pp. 211–222. World Scientific, Singapore (2002)

182. Zwickl, D.J., Hillis, D.M.: Increased taxon sampling greatly reduces phylogenetic error. Syst.
Biol. 51, 588–598 (2002)

183. Pollock, D.D., Zwickl, D.J., McGuire, J.A., Hillis, D.M.: Increased taxon sampling is advan-
tageous for phylogenetic inference. Syst. Biol. 51, 664–671 (2002)

184. Wiens, J.: Missing data and the design of phylogenetic analyses. J. Biomed. Inform. 39,
36–42 (2006)

185. Lemmon, A., Brown, J., Stanger-Hall, K., Lemmon, E.: The effect of ambiguous data on
phylogenetic estimates obtained by maximum-likelihood and Bayesian inference. Syst. Biol.
58, 130–145 (2009)

186. Wiens, J., Morrill, M.: Missing data in phylogenetic analysis: reconciling results from simu-
lations and empirical data. Syst. Biol. 60, 719–731 (2011)

187. Simmons, M.: Misleading results of likelihood-based phylogenetic analyses in the presence
of missing data. Cladistics 28, 208–222 (2012)

188. Moret, B., Roshan, U., Warnow, T.: Sequence-length requirements for phylogenetic meth-
ods. In: Guigo, R., Gusfield, D. (eds.) Proc. 2nd International Workshop on Algorithms in
Bioinformatics. Lecture Notes in Computer Science, vol. 2452, pp. 343–356. Springer, Berlin
(2002)

189. Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple model of
sequence data. Mol. Biol. Evol. 14, 685–695 (1997)

140 T. Warnow

190. Bruno, W.J., Socci, N.D., Halpern, A.L.: Weighted neighbor joining: a likelihood-based ap-
proach to distance-based phylogeny reconstruction. Mol. Biol. Evol. 17, 189–197 (2000)

191. Wheeler, T.: Large-scale neighbor-joining with NINJA. In: Proc. Workshop Algorithms in
Bioinformatics (WABI), vol. 5724, pp. 375–389 (2009)

192. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithm based on the
minimum-evolution principle. J. Comput. Biol. 9, 687–705 (2002)

193. Price, M., Dehal, P., Arkin, A.: FastTree: computing large minimum evolution trees with
profiles instead of a distance matrix. Mol. Biol. Evol. 7, 1641–1650 (2009)

194. Brown, D., Truszkowski, J.: Towards a practical O(n logn) phylogeny algorithm. In: Proc.
Workshop Algorithms in Bioinformatics (WABI), pp. 14–25 (2011)

195. Rice, K., Warnow, T.: Parsimony is hard to beat! In: Jiang, T., Lee, D. (eds.) Proceed-
ings, Third Annual International Conference of Computing and Combinatorics (COCOON),
pp. 124–133 (1997)

196. Hillis, D., Huelsenbeck, J., Swofford, D.: Hobgoblin of phylogenetics. Nature 369, 363–364
(1994)

197. Swofford, D.: PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), Ver-
sion 4.0. Sinauer Associates, Sunderland (1996)

198. Roch, S.: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
IEEE/ACM Trans. Comput. Biol. Bioinform. 3, 92–94 (2006)

199. Guindon, S., Gascuel, O.: A simple, fast, and accurate algorithm to estimate large phyloge-
nies by maximum likelihood. Syst. Biol. 52, 696–704 (2003)

200. Zwickl, D.: Genetic algorithm approaches for the phylogenetic analysis of large biological
sequence datasets under the maximum likelihood criterion. Ph.D. thesis, The University of
Texas at Austin (2006)

201. Liu, K., Linder, C., Warnow, T.: RAxML and FastTree: comparing two methods for large-
scale maximum likelihood phylogeny estimation PLoS ONE 6, e27731 (2012).

202. Claesson, M.J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., de Weerd, H., et al.: Composi-
tion, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl.
Acad. Sci. 108, 4586–4591 (2011)

203. McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., et al.: An improved
Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacte-
ria and archaea. ISME J. 6, 610–618 (2012)

204. Boussau, B., Guoy, M.: Efficient likelihood computations with non-reversible models of evo-
lution. Syst. Biol. 55, 756–768 (2006)

205. Whelan, S., Money, D.: The prevalence of multifurcations in tree-space and their implica-
tions for tree-search. Mol. Biol. Evol. 27, 2674–2677 (2010)

206. Whelan, S., Money, D.: Characterizing the phylogenetic tree-search problem. Syst. Biol. 61,
228–239 (2012)

207. Ronquist, F., Huelsenbeck, J.: MrBayes 3: Bayesian phylogenetic inference under mixed
models. Bioinformatics 19, 1572–1574 (2003)

208. Drummond, A., Rambaut, A.: BEAST: Bayesian evolutionary analysis by sampling trees.
BMC Evol. Biol. 7, 214 (2007)

209. Lartillot, N., Philippe, H.: A Bayesian mixture model for across-site heterogeneities in the
amino acid replacement process. Mol. Biol. Evol. 21 (2004)

210. Foster, P.: Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004)
211. Pagel, M., Meade, A.: A phylogenetic mixture model for detecting pattern heterogeneity in

gene sequence or character state data. Syst. Biol. 53, 571–581 (2004)
212. Huelsenbeck, J., Ronquist, R.: MrBayes: Bayesian inference of phylogeny. Bioinformatics

17, 754–755 (2001)
213. Ronquist, F., Deans, A.: Bayesian phylogenetics and its influence on insect systematics.

Annu. Rev. Entomol. 55, 189–206 (2010)
214. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian inference of phylogeny

and its impact on evolutionary biology. Science 294, 2310–2314 (2001)

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 141

215. Holder, M., Lewis, P.: Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev.
Genet. 4, 275–284 (2003)

216. Lewis, P., Holder, M., Holsinger, K.: Polytomies and Bayesian phylogenetic inference. Syst.
Biol. 54, 241–253 (2005)

217. Ganapathy, G., Ramachandran, V., Warnow, T.: On contract-and-refine-transformations be-
tween phylogenetic trees. In: ACM/SIAM Symposium on Discrete Algorithms (SODA’04),
pp. 893–902. SIAM Press, Philadelphia (2004)

218. Ganapathy, G., Ramachandran, V., Warnow, T.: Better hill-climbing searches for parsi-
mony. In: Proceedings of the Third International Workshop on Algorithms in Bioinformatics
(WABI), pp. 245–258 (2003)

219. Bonet, M., Steel, M., Warnow, T., Yooseph, S.: Faster algorithms for solving parsimony and
compatibility. J. Comput. Biol. 5, 409–422 (1999)

220. Nixon, K.C.: The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics
15, 407–414 (1999)

221. Vos, R.: Accelerated likelihood surface exploration: the likelihood ratchet. Syst. Biol. 52,
368–373 (2003)

222. Warnow, T., Moret, B.M.E., St John, K.: Absolute phylogeny: true trees from short se-
quences. In: Proc. 12th Ann. ACM/SIAM Symp. on Discr. Algs., SODA01, pp. 186–195.
SIAM Press, Philadelphia (2001)

223. Nakhleh, L., Roshan, U., St John, K., Sun, J., Warnow, T.: Designing fast converging phylo-
genetic methods. Bioinformatics 17, 190–198 (2001)

224. Warnow, T.: Large-scale phylogenetic reconstruction. In: Aluru, S. (ed.) Handbook of Com-
putational Molecular Biology. Chapman and Hall/CRC Computer and Information Science
Series, vol. 9. CRC Press, Boca Raton (2005)

225. Roshan, U., Moret, B., Williams, T., Warnow, T.: Rec-I-DCM3: a fast algorithmic technique
for reconstructing large phylogenetic trees. In: Proc. 3rd Computational Systems Biology
Conf. (CSB’05). Proceedings of the IEEE, pp. 98–109 (2004)

226. Steel, M.: The maximum likelihood point for a phylogenetic tree is not unique. Syst. Biol.
43, 560–564 (1994)

227. Blair, C., Murphy, R.: Recent trends in molecular phylogenetic analysis: where to next?
J. Heredity 102, 130–138 (2011)

228. Nagy, L., Kocsube, S., Csanadi, Z., Kovacs, G., Petkovits, T., et al.: Re-mind the gap! In-
sertion and deletion data reveal neglected phylogenetic potential of the nuclear ribosomal
internal transcribed spacer (its) of fungi. PLoS ONE 7, e49794 (2012).

229. Barriel, V.: Molecular phylogenies and nucleotide insertion-deletions. C. R. Acad. Sci. III 7,
693–701 (1994)

230. Young, N., Healy, J.: GapCoder automates the use of indel characters in phylogenetic analy-
sis. BMC Bioinform. 4 (2003)

231. Muller, K.: Incorporating information from length-mutational events into phylogenetic anal-
ysis. Mol. Phylogenet. Evol. 38, 667–676 (2006)

232. Ogden, T., Rosenberg, M.: How should gaps be treated in parsimony? A comparison of ap-
proaches using simulation. Mol. Phylogenet. Evol. 42, 817–826 (2007)

233. Dwivedi, B., Gadagkar, S.: Phylogenetic inference under varying proportions of indel-
induced alignment gaps. BMC Evol. Biol. 9, 211 (2009)

234. Dessimoz, C., Gil, M.: Phylogenetic assessment of alignments reveals neglected tree signal
in gaps. Genome Biol. 11, R37 (2010)

235. Yuri, T., Kimball, R.T., Harshman, J., Bowie, R.C.K., Braun, M.J., et al.: Parsimony and
model-based analyses of indel in avian nuclear genes reveal congruent and incongruent phy-
logenetic signals. Biology 2, 419–444 (2013)

236. Warnow, T.: Standard maximum likelihood analyses of alignments with gaps can be statisti-
cally inconsistent. PLoS Currents Tree of Life (2012)

237. Daskalakis, C., Roch, S.: Alignment-free phylogenetic reconstruction. In: Berger, B. (ed.)
Proc. RECOMB 2010. Lecture Notes in Computer Science, vol. 6044, pp. 123–137. Springer,
Berlin (2010). http://dx.doi.org/10.1007/978-3-642-12683-3_9

http://dx.doi.org/10.1007/978-3-642-12683-3_9

142 T. Warnow

238. Thatte, B.: Invertibility of the TKF model of sequence evolution. Math. Biosci. 200, 58–75
(2006)

239. Hartmann, S., Vision, T.: Using ESTs for phylogenomics: can one accurately infer a phylo-
genetic tree from a Gappy alignment? BMC Evol. Biol. 8, 95 (2008)

240. Mirarab, S., Nguyen, N., Warnow, T.: SEPP: SATé-enabled phylogenetic placement. In: Pa-
cific Symposium on Biocomputing, pp. 247–258 (2012)

241. Matsen, F.A., Kodner, R.B., Armbrust, E.V.: pplacer: linear time maximum-likelihood and
Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform.
11, 538 (2010)

242. Berger, S.A., Krompass, D., Stamatakis, A.: Performance, accuracy, and web server for evo-
lutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291–
302 (2011)

243. Eddy, S.: A new generation of homology search tools based on probabilistic inference.
Genome Inform. 23, 205–211 (2009)

244. Finn, R., Clements, J., Eddy, S.: HMMER web server: interactive sequence similarity search-
ing. Nucleic Acids Res. 39, W29–W37 (2011)

245. Brown, D.G., Truskowski, J.: LSHPlace: fast phylogenetic placement using locality-sensitive
hashing. In: Pacific Symposium on Biocomputing, vol. 18, pp. 310–319 (2013)

246. Stark, M., Berger, S., Stamatakis, A., von Mering, C.: MLTreeMap—accurate maximum
likelihood placement of environmental DNA sequences into taxonomic and functional refer-
ence phylogenies. BMC Genomics 11, 461 (2010)

247. Droge, J., McHardy, A.: Taxonomic binning of metagenome samples generated by next-
generation sequencing technologies. Brief. Bioinform. (2012)

248. Giribet, G.: Exploring the behavior of POY, a program for direct optimization of molecular
data. Cladistics 17, S60–S70 (2001)

249. Hartigan, J.: Minimum mutation fits to a given tree. Biometrics 29, 53–65 (1973)
250. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28, 35–42 (1975)
251. Sankoff, D., Cedergren, R.J.: Simultaneous comparison of three or more sequences related by

a tree. In: Sankoff, D., Kruskall, J.B. (eds.) Time Warps, String Edits and Macromolecules:
The Theory and Practice of Sequence Comparison, pp. 253–263. Addison Wesley, New York
(1993)

252. Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1,
337–348 (1994)

253. Wang, L., Jiang, T., Lawler, E.: Approximation algorithms for tree alignment with a given
phylogeny. Algorithmica 16, 302–315 (1996)

254. Wang, L., Gusfield, D.: Improved approximation algorithms for tree alignment. J. Algorithms
25(2), 255–273 (1997)

255. Wang, L., Jiang, T., Gusfield, D.: A more efficient approximation scheme for tree alignment.
SIAM J. Comput. 30(1), 283–299 (2000)

256. Liu, K., Warnow, T.: Treelength optimization for phylogeny estimation. PLoS ONE 7,
e33104 (2012)

257. Varón, A., Vinh, L., Bomash, I., Wheeler, W.: POY software. Documentation by Varon, A.,
Vinh, L.S., Bomash, I., Wheeler, W., Pickett, K., Temkin, I., Faivovich, J., Grant, T.,
Smith, W.L. Available for download at http://research.amnh.org/scicomp/projects/poy.php
(2007)

258. Kjer, K., Gillespie, J., Ober, K.: Opinions on multiple sequence alignment, and an empirical
comparison on repeatability and accuracy between POY and structural alignment. Syst. Biol.
56, 133–146 (2007)

259. Ogden, T.H., Rosenberg, M.: Alignment and topological accuracy of the direct optimization
approach via POY and traditional phylogenetics via ClustalW+PAUP*. Syst. Biol. 56, 182–
193 (2007)

260. Yoshizawa, K.: Direct optimization overly optimizes data. Syst. Entomol. 35, 199–206
(2010)

http://research.amnh.org/scicomp/projects/poy.php

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 143

261. Wheeler, W., Giribet, G.: Phylogenetic hypotheses and the utility of multiple sequence align-
ment. In: Rosenberg, M. (ed.) Sequence Alignment: Methods, Models, Concepts and Strate-
gies, pp. 95–104. University of California Press, Berkeley (2009)

262. Lehtonen, S.: Phylogeny estimation and alignment via POY versus clustal + PAUP*: a re-
sponse to Ogden and Rosenberg. Syst. Biol. 57, 653–657 (2008)

263. Liu, K., Nelesen, S., Raghavan, S., Linder, C., Warnow, T.: Barking up the wrong treelength:
the impact of gap penalty on alignment and tree accuracy. IEEE/ACM Trans. Comput. Biol.
Bioinform. 6, 7–21 (2009)

264. Gu, X., Li, W.H.: The size distribution of insertions and deletions in human and rodent pseu-
dogenes suggests the logarithmic gap penalty for sequence alignment. J. Mol. Evol. 40, 464–
473 (1995)

265. Altschul, S.F.: Generalized affine gap costs for protein sequence alignment. Proteins, Struct.
Funct. Genomics 32, 88–96 (1998)

266. Gill, O., Zhou, Y., Mishra, B.: Aligning sequences with non-affine gap penalty: PLAINS al-
gorithm, a practical implementation, and its biological applications in comparative genomics.
In: Proc. ICBA 2004 (2004)

267. Qian, B., Goldstein, R.: Distribution of indel lengths. Proteins 45, 102–104 (2001)
268. Chang, M., Benner, S.: Empirical analysis of protein insertions and deletions determining

parameters for the correct placement of gaps in protein sequence alignments. J. Mol. Biol.
341, 617–631 (2004)

269. Thorne, J.L., Kishino, H., Felsenstein, J.: An evolutionary model for maximum likelihood
alignment of DNA sequences. J. Mol. Evol. 33, 114–124 (1991)

270. Thorne, J.L., Kishino, H., Felsenstein, J.: Inching toward reality: an improved likelihood
model of sequence evolution. J. Mol. Evol. 34, 3–16 (1992)

271. Thorne, J.L., Kishino, H., Felsenstein, J.: Erratum, an evolutionary model for maximum like-
lihood alignment of DNA sequences. J. Mol. Evol. 34, 91–92 (1992)

272. Rivas, E.: Evolutionary models for insertions and deletions in a probabilistic modeling frame-
work. BMC Bioinform. 6, 30 (2005)

273. Rivas, E., Eddy, S.: Probabilistic phylogenetic inference with insertions and deletions. PLoS
Comput. Biol. 4, e1000172 (2008)

274. Holmes, I., Bruno, W.J.: Evolutionary HMMs: a Bayesian approach to multiple alignment.
Bioinformatics 17, 803–820 (2001)

275. Miklós, I., Lunter, G.A., Holmes, I.: A “long indel model” for evolutionary sequence align-
ment. Mol. Biol. Evol. 21, 529–540 (2004)

276. Redelings, B., Suchard, M.: Joint Bayesian estimation of alignment and phylogeny. Syst.
Biol. 54, 401–418 (2005)

277. Suchard, M.A., Redelings, B.D.: BAli-Phy: simultaneous Bayesian inference of alignment
and phylogeny. Bioinformatics 22, 2047–2048 (2006)

278. Redelings, B., Suchard, M.: Incorporating indel information into phylogeny estimation for
rapidly emerging pathogens. BMC Evol. Biol. 7, 40 (2007)

279. Fleissner, R., Metzler, D., von Haeseler, A.: Simultaneous statistical multiple alignment and
phylogeny reconstruction. Syst. Biol. 54, 548–561 (2005)

280. Novák, A., Miklós, I., Lyngso, R., Hein, J.: StatAlign: an extendable software package for
joint Bayesian estimation of alignments and evolutionary trees. Bioinformatics 24, 2403–
2404 (2008)

281. Lunter, G.A., Miklos, I., Song, Y.S., Hein, J.: An efficient algorithm for statistical multiple
alignment on arbitrary phylogenetic trees. J. Comput. Biol. 10, 869–889 (2003)

282. Lunter, G., Miklós, I., Drummond, A., Jensen, J.L., Hein, J.: Bayesian phylogenetic inference
under a statistical indel model. In: Benson, G., Page, R. (eds.) Third International Workshop
(WABI 2003). Lecture Notes in Bioinformatics vol. 2812, pp. 228–244. Springer, Berlin
(2003)

283. Lunter, G., Drummond, A., Miklós, I., Hein, J.: Statistical alignment: recent progress, new
applications, and challenges. In: Nielsen, R. (ed.) Statistical Methods in Molecular Evolution
(Statistics for Biology and Health), pp. 375–406. Springer, Berlin (2005)

144 T. Warnow

284. Metzler, D.: Statistical alignment based on fragment insertion and deletion models. Bioin-
formatics 19, 490–499 (2003)

285. Miklós, I.: Algorithm for statistical alignment of sequences derived from a Poisson sequence
length distribution. Discrete Appl. Math. 127, 79–84 (2003)

286. Arunapuram, P., Edvardsson, I., Golden, M., Anderson, J., Novak, A., et al.: StatAlign 2.0:
combining statistical alignment with RNA secondary structure prediction. Bioinformatics
29(5), 654–655 (2013)

287. Lunter, G., Miklós, I., Drummond, A., Jensen, J.L., Hein, J.: Bayesian coestimation of phy-
logeny and sequence alignment. BMC Bioinform. 6, 83 (2005)

288. Bouchard-Côté, A., Jordan, M.I.: Evolutionary inference via the Poisson indel process. Proc.
Natl. Acad. Sci. 110, 1160–1166 (2013)

289. Brown, D., Krishnamurthy, N., Sjolander, K.: Automated protein subfamily identification
and classification. PLoS Comput. Biol. 3, e160 (2007)

290. Vinga, S., Almeida, J.: Alignment-free sequence comparison—a review. Bioinformatics 19,
513–523 (2003)

291. Chan, C., Ragan, M.: Next-generation phylogenomics. Biol. Direct 8 (2013)
292. Blaisdell, B.: A measure of the similarity of sets of sequences not requiring sequence align-

ment. Proc. Natl. Acad. Sci. USA 83, 5155–5159 (1986)
293. Sims, G., Jun, S.R., Wu, G., Kim, S.H.: Alignment-free genome comparison with feature

frequency profiles (FFP) and optimal resolutions. Proc. Natl. Acad. Sci. USA 106, 2677–
2682 (2009)

294. Jun, S.R., Sims, G., Wu, G., Kim, S.H.: Whole-proteome phylogeny of prokaryotes by feature
frequency profiles: an alignment-free method with optimal feature resolution. Proc. Natl.
Acad. Sci. USA 107, 133–138 (2010)

295. Liu, X., Wan, L., Li, J., Reinert, G., Waterman, M., et al.: New powerful statistics for
alignment-free sequence comparison under a pattern transfer model. J. Theor. Biol. 284,
106–116 (2011)

296. Yang, K., Zhang, L.: Performance comparison between k-tuple distance and four model-
based distances in phylogenetic tree reconstruction. Nucleic Acids Res. 36, e33 (2008)

297. Roshan, U., Moret, B.M.E., Williams, T.L., Warnow, T.: Performance of supertree meth-
ods on various dataset decompositions. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Su-
pertrees: Combining Information to Reveal the Tree of Life, pp. 301–328. Kluwer Academic,
Dordrecht (2004)

298. Nelesen, S.: Improved methods for phylogenetics. Ph.D. thesis, The University of Texas at
Austin (2009)

299. Swenson, M.: Phylogenetic supertree methods. Ph.D. thesis, The University of Texas at
Austin (2008)

300. Neves, D., Warnow, T., Sobral, J., Pingali, K.: Parallelizing SuperFine. In: 27th Symposium
on Applied Computing (ACM-SAC) (2012)

301. Cannone, J., Subramanian, S., Schnare, M., Collett, J., D’Souza, L., et al.: The comparative
RNA web (CRW) site: an online database of comparative sequence and structure information
for ribosomal, intron and other RNAs. BMC Bioinform. 3 (2002)

302. Roch, S.: Towards extracting all phylogenetic information from matrices of evolutionary
distances. Science 327, 1376–1379 (2010)

303. Darling, A., Mau, B., Blatter, F., Perna, N.: Mauve: multiple alignment of conserved genomic
sequence with rearrangements. Genome Res. 14, 1394–1403 (2004)

304. Darling, A., Mau, B., Perna, N.: progressiveMauve: multiple genome alignment with gene
gain, loss and rearrangement. PLoS ONE 5, e11147 (2010)

305. Raphael, B., Zhi, D., Tang, H., Pevzner, P.: A novel method for multiple alignment of se-
quences with repeated and shuffled elements. Genome Res. 14, 2336–2346 (2004)

306. Dubchak, I., Poliakov, A., Kislyuk, A., Brudno, M.: Multiple whole-genome alignments
without a reference organism. Genome Res. 19, 682–689 (2009)

307. Brudno, M., Do, C., Cooper, G., Kim, M., Davydov, E., et al.: LAGAN and multi-LAGAN:
efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13, 721–
731 (2003)

6 Large-Scale Multiple Sequence Alignment and Phylogeny Estimation 145

308. Phuong, T., Do, C., Edgar, R., Batzoglou, S.: Multiple alignment of protein sequences with
repeats and rearrangements. Nucleic Acids Res. 34, 5932–5942 (2006)

309. Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., et al.: Cactus: algorithms for
genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011)

310. Angiuoli, S., Salzberg, S.: Mugsy: fast multiple alignment of closely related whole genomes.
Bioinformatics (2011). 10.1093/bioinformatics/btq665

311. Agren, J., Sundstrom, A., Hafstrom, T., Segerman, B.: Gegenees: fragmented alignment of
multiple genomes for determining phylogenomic distances and genetic signatures unique for
specified target groups. PLoS ONE 7, e39107 (2012)

312. Gogarten, J., Doolittle, W., Lawrence, J.: Prokaryotic evolution in light of gene transfer. Mol.
Biol. Evol. 19, 2226–2238 (2002)

313. Gogarten, J., Townsend, J.: Horizontal gene transfer, genome innovation and evolution. Nat.
Rev. Microbiol. 3, 679–687 (2005)

314. Bergthorsson, U., Richardson, A., Young, G., Goertzen, L., Palmer, J.: Massive horizontal
transfer of mitochondrial genes from diverse land plant donors to basal angiosperm Am-
borella. Proc. Natl. Acad. Sci. USA 101, 17,747–17,752 (2004)

315. Bergthorsson, U., Adams, K., Thomason, B., Palmer, J.: Widespread horizontal transfer of
mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)

316. Wolf, Y., Rogozin, I., Grishin, N., Koonin, E.: Genome trees and the tree of life. Trends
Genet. 18, 472–478 (2002)

317. Koonin, E., Makarova, K., Aravind, L.: Horizontal gene transfer in prokaryotes: quantifica-
tion and classification. Annu. Rev. Microbiol. 55, 709–742 (2001)

318. Linder, C., Rieseberg, L.: Reconstructing patterns of reticulate evolution in plants. Am. J.
Bot. 91, 1700–1708 (2004)

319. Sessa, E., Zimmer, E., Givnish, T.: Reticulate evolution on a global scale: a nuclear phy-
logeny for New World Dryopteris (Dryopteridaceae). Mol. Phylogenet. Evol. 64, 563–581
(2012)

320. Moody, M., Rieseberg, L.: Sorting through the chaff, nDNA gene trees for phylogenetic
inference and hybrid identification of annual sunflowers Helianthus. Mol. Phylogenet. Evol.
64, 145–155 (2012) (sect. Helianthus)

321. Mindell, D.: The tree of life: metaphor, model, and heuristic device. Syst. Biol. 62(3), 479–
489 (2013)

322. Warnow, T., Evans, S., Ringe, D., Nakhleh, L.: A stochastic model of language evolution
that incorporates homoplasy and borrowing. In: Phylogenetic Methods and the Prehistory of
Languages, pp. 75–90. Cambridge University Press, Cambridge (2006)

323. Nakhleh, L., Ringe, D.A., Warnow, T.: Perfect phylogenetic networks: a new methodol-
ogy for reconstructing the evolutionary history of natural languages. Language 81, 382–420
(2005)

324. Huson, D., Rupp, R., Scornovacca, C.: Phylogenetic Networks: Concepts, Algorithms and
Applications. Cambridge University Press, Cambridge (2010)

325. Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions, Uppsala (2011)
326. Nakhleh, L.: Evolutionary phylogenetic networks: models and issues. In: Problem Solv-

ing Handbook in Computational Biology and Bioinformatics, pp. 125–158. Springer, Berlin
(2011)

327. van Iersel, L., Kelk, S., Rupp, R., Huson, D.: Phylogenetic networks do not need to be com-
plex: using fewer reticulations to represent conflicting clusters. Bioinformatics 26, i124–i131
(2010)

328. Wu, Y.: An algorithm for constructing parsimonious hybridization networks with multiple
phylogenetic trees. In: Proc. RECOMB (2013)

329. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks.
Bioinformatics 22, 2604–2611 (2006)

330. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum
parsimony criterion: a case study. Mol. Biol. Evol. 24, 324–337 (2007)

http://dx.doi.org/10.1093/bioinformatics/btq665

146 T. Warnow

331. Nakhleh, L., Warnow, T., Linder, C.: Reconstructing reticulate evolution in species—theory
and practice. In: Proc. 8th Conf. Comput. Mol. Biol. (RECOMB’04), pp. 337–346. ACM
Press, New York (2004)

332. Nakhleh, L., Ruths, D., Wang, L.S.: RIATA-HGT: a fast and accurate heuristic for recon-
structing horizontal gene transfer. In: Proc. 11th Conf. Computing and Combinatorics (CO-
COON’05). Lecture Notes in Computer Science. Springer, Berlin (2005)

333. Yu, Y., Than, C., Degnan, J., Nakhleh, L.: Coalescent histories on phylogenetic networks
and detection of hybridization despite incomplete lineage sorting. Syst. Biol. 60, 138–149
(2011)

334. Lapierre, P., Lasek-Nesselquist, E., Gogarten, J.: The impact of HGT on phylogenomic re-
construction methods. Brief. Bioinform. (2012). 10.1093/bib/bbs050

335. Roch, S., Snir, S.: Recovering the tree-like trend of evolution despite extensive lateral genetic
transfer: a probabilistic analysis. In: Proceedings RECOMB 2012 (2012)

336. Gerard, D., Gibbs, H., Kubatko, L.: Estimating hybridization in the presence of coalescence
using phylogenetic intraspecific sampling. BMC Evol. Biol. 11, 291 (2011)

337. Yu, Y., Degnan, J., Nakhleh, L.: The probability of a gene tree topology within a phylogenetic
network with applications to hybridization detection. PLoS Genet. 8, e1002660 (2012)

338. Chowdhury, R., Ramachandran, V.: Cache-oblivious dynamic programming. In: Proc. ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 591–600 (2006)

http://dx.doi.org/10.1093/bib/bbs050

Chapter 7
Rearrangements in Phylogenetic Inference:
Compare, Model, or Encode?

Bernard M.E. Moret, Yu Lin, and Jijun Tang

Abstract We survey phylogenetic inference from rearrangement data, as viewed
through the lens of the work of our group in this area, in tribute to David Sankoff,
pioneer and mentor.

Genomic rearrangements were first used for phylogenetic analysis in the late
1920s, but it was not until the 1990s that this approach was revived, with the advent
of genome sequencing. G. Watterson et al. proposed to measure the inversion dis-
tance between two genomes, J. Palmer et al. studied the evolution of mitochondrial
and chloroplast genomes, and D. Sankoff and W. Day published the first algorith-
mic paper on phylogenetic inference from rearrangement data, giving rise to a fertile
field of mathematical, algorithmic, and biological research.

Distance measures for sequence data are simple to define, but those based on re-
arrangements proved to be complex mathematical objects. The first approaches for
phylogenetic inference from rearrangement data, due to D. Sankoff, used model-free
distances, such as synteny (colocation on a chromosome) or breakpoints (disrupted
adjacencies). The development of algorithms for distance and median computations
led to modeling approaches based on biological mechanisms. However, the multi-
plicity of such mechanisms pose serious challenges. A unifying framework, pro-
posed by S. Yancopoulos et al. and popularized by D. Sankoff, has supported ma-
jor advances, such as precise distance corrections and efficient algorithms for me-
dian estimation, thereby enabling phylogenetic inference using both distance and
maximum-parsimony methods.

B.M.E. Moret (B) · Y. Lin
Laboratory for Computational Biology and Bioinformatics, EPFL, EPFL-IC-LCBB INJ230,
Station 14, 1015 Lausanne, Switzerland
e-mail: bernard.moret@epfl.ch

Y. Lin
e-mail: yu.lin@epfl.ch

J. Tang
Department of Computer Science and Engineering, University of South Carolina, Columbia,
SC 29208, USA
e-mail: jtang@cse.sc.edu

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_7,
© Springer-Verlag London 2013

147

mailto:bernard.moret@epfl.ch
mailto:yu.lin@epfl.ch
mailto:jtang@cse.sc.edu
http://dx.doi.org/10.1007/978-1-4471-5298-9_7

148 B.M.E. Moret et al.

Likelihood-based methods outperform distance and maximum-parsimony meth-
ods, but using such methods with rearrangements has proved problematic. Thus we
have returned to an approach we first proposed 12 years ago: encoding the genome
structure into sequences and using likelihood methods on these sequences. With a
suitable a bias in the ground probabilities, we attain levels of performance compa-
rable to the best sequence-based methods. Unsurprisingly, the idea of injecting such
a bias was first proposed by D. Sankoff.

7.1 Introduction

Rearrangement data bypass multiple sequence alignment—an often troublesome
step in sequence analysis; they represent the outcome of events much rarer than
simple nucleotide mutations and thus hold the promise of high accuracy and of a
reach extending back to the very distant past; and they are more closely tied to func-
tion (and through it to evolutionary selection) than point mutations. These attractive
characteristics are mitigated by our limited understanding of the mechanisms caus-
ing large-scale structural changes in genomes.

The use of genomic rearrangements in phylogeny dates back to the early days of
genetics, with a series of papers in the 1930s from A. Sturtevant and T. Dobzhan-
sky on inversions in the genome of Drosophila pseudoobscura [21, 87]. However,
this early foray had no successor until the 1980s, when G. Watterson proposed to
build phylogenies from pairwise distances between circular genomes under inver-
sions [100], J. Palmer and various coauthors published a series of papers on the
structure and evolution of mitochondrial and chloroplast genomes in plants [37, 61],
including studies of inversions in these genomes and their use in phylogenetic in-
ference [22, 62], and D. Sankoff and W. Day published the first algorithmic paper
on phylogenetic inference from rearrangement data [17]. Many hundreds of papers
have been published since then on the use of rearrangement data in phylogenetic
inference, by biologists, mathematicians, and computer scientists. A first major con-
ference was organized by D. Sankoff and J. Nadeau in 2000 [78], followed by the
yearly RECOMB Workshop on Comparative Genomics, started by J. Lagergren,
B. Moret, and D. Sankoff.

Algorithms for phylogenetic inference (from any type of data) fall into three
main categories. Simplest are the distance-based methods, which reduce the input
data to a matrix of pairwise (evolutionary) distances. Next come the Maximum Par-
simony (MP) methods, which attempt to find a tree that minimizes the total number
of changes required to explain the data. Most complex are the probabilistic meth-
ods, either Maximum Likelihood (ML) or Bayesian, which attempt to find a tree
(or a population of trees) that maximizes the conditional or posterior probability of
observing the data.

In sequence-based phylogenetic inference, distance measures have a long history;
all are simple and all have corresponding “distance corrections,” that is, maximum-
likelihood estimators that yield an estimate of the true (as opposed to observed)
pairwise distance. Their simplicity derives in good part from the fact that they are

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 149

based on observed results (rather than proposed mechanisms) and on local models
of change. Distances based on rearrangements, however, turned out to be complex
concepts: it remains possible to define a mechanism-free distance, as D. Sankoff did
in 1992 [72, 81], but the model cannot be local, as a single rearrangement can alter
the location of almost every gene in the genome. Other distance measures based on
mechanisms, whether biological or mathematical (inversion distance, transposition
distance, DCJ distance, etc.), have proved yet harder to characterize, with work still
ongoing. The absence of localization of changes also means that the fundamental
assumption of parsimony- and likelihood-based approaches, independence between
different regions of the sequence, does not hold for rearrangement data, thus creating
enormous algorithmic difficulties.

Thus the first approaches for phylogenetic inference from rearrangement data
used simple distances [6, 74], such as the observed number of nonconserved ad-
jacencies; attempts were also made to encode observed adjacencies in order to
use sequence-based inference methods [15, 97]. The development of better algo-
rithms for distance and median computations led to a period during which most
approaches were based on documented biological mechanisms for rearrangements,
such as inversions, transpositions, translocations, etc. The ability to compute some
of these distances efficiently also led researchers to devise suitable distance correc-
tions, some of which resulted in substantial improvements in the quality of infer-
ence [54, 55]. The multiplicity of biological mechanisms posed a serious problem,
however, since there were no data to quantify their relative preponderance during
the course of evolution. Fortunately, a unifying framework was proposed by S. Yan-
copoulos et al. in 2005 [105] and popularized by D. Sankoff; since then nearly all
research on the algorithmics of rearrangements have used this model, leading to very
precise distance corrections [41] and efficient and accurate algorithms for median
estimation [101] and tree scoring [103]. The precise distance estimates overcame,
to a large extent, the weakness of distance-based methods, so that large-scale phy-
logenetic inference from high-resolution genomes became possible [69].

With sequence data, likelihood-based methods outperform distance-based and
MP methods [99]—the two classes of methods used with rearrangement data to
date. Direct use of likelihood-based methods was attempted once using a Bayesian
approach [39], but the complex mechanisms of rearrangement created insurmount-
able convergence problems. In the latest step in the evolution of methods for phylo-
genetic inference from rearrangement data, we have returned to the idea of encod-
ing the genome structure into binary sequences [45] that we first proposed a dozen
years ago [15, 97]. This time, however, we use an ML method for inference and
inject a bias in its ground probabilities to reflect our better understanding of the evo-
lution of genomic structure; and we have attained levels of performance, in terms of
both speed and accuracy, that compare favorably to the best sequence-based meth-
ods. Unsurprisingly, the idea of a bias in ground probabilities was first proposed by
D. Sankoff in 1998 [75]. Today, then, after over 15 years of research by dozens of
groups, phylogenetic inference from rearrangement data is best carried out using a
mechanism-free approach and a simple statistical bias in the one operation allowed
under the model (transitions between the 0 and the 1 state for each character), much
as D. Sankoff advocated from the beginning.

150 B.M.E. Moret et al.

What we present below is a survey of phylogenetic inference from rearrangement
data, as viewed through the lens of the work of our group in this area, in tribute to
David Sankoff, pioneer and mentor, who more than anyone is responsible for the
blossoming of research, unfolding over the last 30 years, on models and algorithms
for the evolution of genome structure through rearrangements, duplications, and
losses.

7.2 Background

7.2.1 Genome Representations

Each chromosome of the genome is represented by an ordered list of identifiers,
each identifier referring to a syntenic block or, more commonly, to a member of a
gene family. (In the following, we shall use the word “gene” in a broader sense to
denote elements of such orderings and refer to such orderings as “gene orders.”)
A gene is a stranded sequence of DNA that starts with a tail and ends with a head.
The tail of a gene a is denoted by at and its head by ah. We are interested, not in
the strand of one single gene, but in the connection of two consecutive genes in one
chromosome. Due to different strandedness, two consecutive genes b and c can be
connected by one adjacency of the following four types: {bt , ct }, {bh, ct }, {bt , ch}
and {bh, ch}. If gene d lies at one end of a linear chromosome, then we have a sin-
gleton set, {dt } or {dh}, called telomere. (These definitions use the notation codified
by Bergeron et al. [4].) Given a reference set of n genes {g1, g2, . . . , gn}, a genome
can be represented by an ordering of some multi-subset of these genes. Each gene
is given a sign to denote its orientation (strandedness). A genome can be linear or
circular. A linear genome is simply a permutation on the multi-subset, while a cir-
cular genome can be represented in the same way under the implicit assumption
that the permutation closes back on itself. A multiple-chromosome genome can be
represented in the same manner, with telomeres indicating the start and end of a
chromosome.

7.2.2 Evolutionary Events

Let G be the genome with signed ordering of g1, g2, . . . , gn. An inversion between
indices i and j (i ≤ j), produces the genome with linear ordering

g1, g2, . . . , gi−1,−gj ,−gj−1, . . . ,−gi, gj+1, . . . , gn

A transposition on genome G acts on three indices i, j, k, with i ≤ j and k /∈ [i, j],
picking up the interval gi, gi+1, . . . , gj and inserting it immediately after gk . Thus
genome G is replaced by (assume k > j):

g1, . . . , gi−1, gj+1, . . . , gk, gi, gi+1, . . . , gj , gk+1, . . . , gn

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 151

An insertion is the addition of one gene or a segment of genes, and a deletion is the
loss of same. A section of the chromosome can be duplicated, through tandem du-
plication, in which the copied section is inserted immediately after the original, or
through transposed duplication, in which the copied section is inserted somewhere
else. With multichromosomal genomes, additional operations that involve two chro-
mosomes come into play: translocation (one end segment in one chromosome is ex-
changed with one end segment in the other chromosome), fission (one chromosome
splits and becomes two), and fusion (two chromosomes combine to become one).

7.2.3 Distance Computation and Pairwise Genome Comparison

Given two genomes G and G′ on the same set of genes, a breakpoint in G is defined
as an ordered pair of genes (gi, gj) that forms an adjacency in G but not in G′. The
breakpoint distance [74] is simply the number of breakpoints in G relative to G′.

We define an edit distance as the minimum number of events required to trans-
form one genome into the other. (The breakpoint distance is not an edit distance.)
We can apply edit distances to any collection of evolutionary operations. Thus we
can consider distances under inversions, insertions, and deletions; we can also con-
sider transpositions (within the same chromosome) and translocations (across chro-
mosome), as well as duplications, whether of just one gene, a large segment of a
chromosome, or, in the extreme case, the entire genome. The range of possible evo-
lutionary events also include chromosome fusion (merging two chromosomes into
one) and fission (the reverse operation), as well as chromosome linearization (turn-
ing a circular chromosome into a linear one) and circularization (the reverse event).

When we compute edit distances, we find the minimum number of events re-
quired to transform one genome into another, yet evolution need not have proceeded
along the shortest path to the current genomes. What we would like to recover is the
true evolutionary distance, that is, the mean number of evolutionary events on the
paths to the two genomes from their last common ancestor. By computing edit dis-
tances, we may significantly underestimate the true distance—a problem that also
arises with pairwise distances between two sequences or, indeed, between any two
objects evolving through some given operation. In sequence analysis, distance cor-
rections were devised to provide maximum-likelihood estimators of the true dis-
tance given the edit distance. The same can be done, formally or empirically, for
rearrangement distances.

7.2.4 Phylogenetic Reconstruction and Ancestral Genome
Estimation

Working with genome rearrangement data is computationally much harder than with
sequence data. For example, given a fixed phylogeny, the minimum number of evo-
lutionary events can be found in linear time if the leaves of the phylogeny are labeled

152 B.M.E. Moret et al.

with DNA or protein sequences, whereas such a task for rearrangement data is NP-
hard, even when the phylogeny has only three leaves [10, 63].

Methods to reconstruct phylogenies from genome rearrangement data include
distance-based methods (such as neighbor-joining [70] and minimum-evolution
[19]), maximum parsimony and likelihood methods based on encodings [15, 35,
45, 97], and optimization methods, usually based on median computations.

Distance-based methods transform the input genomes into a matrix of pairwise
distances, from which the phylogeny is then inferred. Any of the distances intro-
duced above can be used, but inference using estimates of true distances generally
outperforms inference based on edit distances [55]; similarly, any distance-based
inference method can be used, but FastME [19, 20] appears to outperform most
others.

Optimization methods to date have been based on maximum parsimony—they
seek the tree and associated ancestral data that minimizes the total number of events.
Because this minimization is hard even for a fixed tree of just three leaves, a heuris-
tic first proposed by D. Sankoff in another context [71] and then reused by him for
breakpoints (see, e.g., [73]), is widely used. The heuristic uses an iterative improve-
ment approach, based on the recomputation of medians: given three genomes, find a
single genome that minimizes the sum of the pairwise distances between itself and
each of the three given genomes.

7.3 Comparing: Distance Computations

The first pairwise distance measure used to compare two genomes was a measure
of conservation of synteny due to D. Sankoff and J. Nadeau [24, 77]. Inversion and
DCJ distances are now the two most commonly used genomic distances. Neither
inversions nor DCJ events affect the gene content of a genome: they are pure re-
arrangements. Little by little, events that do affect gene content, such as deletions,
insertions, and duplications, were included in distance computations—a necessity
with real genomes. Although various methods have been proposed to combine rear-
rangements and duplications and losses [14, 84], the problem remains poorly solved.

7.3.1 Inversion Distance

D. Sankoff [72] formulated the fundamental computational problem about inver-
sions: given two signed permutations on the same index set, what is their edit
distance under inversions? The breakthrough came in 1995, when S. Hannenhalli
and P. Pevzner provided a polynomial-time algorithm to solve this problem [32].
Their algorithm is based on the breakpoint graph (see Fig. 7.1). Assume we are
given two genomes, G1 and G2, with the same n genes and assume that G2 is the
identity. Add two extra “genes” (mathematical markers), gene 0 on the left of the

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 153

Fig. 7.1 Breakpoint graph
between genome
(−2 4 3 − 1) and the identity
genome (1 2 3 4)

genome and gene n+ 1 on the right. For each gene i in G1, the breakpoint graph
contains two vertices ih and it , connected with two (colored) undirected edges,
one for each genome. The desire edges (also called gray edges) connect ih and
(i + 1)t for all 0 ≤ i ≤ n and represent the identity genome G2; they are shown
with dashed arcs in Fig. 7.1. The reality edges (also called black edges) represent
the rearranged genome, G1; for each adjacency (i, j) in G1, a reality edge begins
at vertex ih if gene i is positive or at vertex it if i is negative, and ends at vertex
j t if j is positive or at vertex jh if j is negative. Reality edge are shown as solid
lines in Fig. 7.1. These edges form cycles of even length that alternate between
reality and desire edges; denote by c(G1,G2) the number of these cycles. Over-
lapping cycles in certain configurations create structures known as hurdles; denote
by h(G1,G2) the number of these hurdles. Finally, a very unlikely [89] configu-
ration of hurdles can form a fortress. S. Hannenhalli and P. Pevzner [32] proved
that the inversion distance between two signed permutations of n genes is given by
n− c(G1,G2)+ h(G1,G2)+ (1 if a fortress is present,0 otherwise).

D. Bader, M. Yan, and B. Moret [2] later showed that this edit distance can be
computed in linear time. Extending this distance to multichromosomal genomes can
be done through a reduction to the unichromosomal case using “capping,” a subtle
process that required several iterations before it was done right [3, 33, 38, 93]. The
various operations supported under this multichromosomal model (for which see
the next section), all of which keep the gene content intact, give rise to what we
shall call the HP-distance. The transposition distance is known to be NP-hard to
compute [8]; attempts at defining distances combining transpositions and inversions
have so far proved unsuccessful.

Moving to distances between genomes of unequal gene content has proved very
challenging. N. El-Mabrouk [25] first extended the results of S. Hannenhalli and
P. Pevzner to the computation of edit distances for inversions and deletions and
gave a heuristic for inversions, deletions, and non-duplicating insertions. The dis-
tance computation is NP-hard when duplications and inversions are present [12].
M. Marron et al. [48] gave a guaranteed approximation for edit distances under ar-
bitrary operations (including duplications and deletions).

7.3.2 DCJ Distance

S. Yancopoulos, O. Attie, and R. Friedberg [105] proposed a double-cut-and-join
(DCJ) operation that accounts for inversions, translocations, fissions, and fusions,

154 B.M.E. Moret et al.

Fig. 7.2 Adjacency graph and DCJ distance of two genomes G1 = (3,−1,−4,2,5) and
G2 = (1,2,3,4,5). The number of cycles C is 1, the number of odd paths I is 2, the DCJ dis-
tance is N − (C + I/2)= 3

yielding in a new genomic distance that can be computed in linear time. As its name
indicates, a DCJ operation makes a pair of cuts in the chromosomes and reglues the
four cut ends into two adjacencies or telomeres, giving rise to four cases:

• A pair of adjacencies {iu, jv} and {px, qy} can be replaced by the pair {iu,px}
and {jv, qy} or by the pair {iu, qy} and {jv,px}.

• An adjacency {iu, jv} and a telomere {px} can be replaced by the adjacency
{iu,px} and telomere {jv} or by the adjacency {jv,px} and telomere {iu}.

• A pair of telomeres {iu} and {jv} can be replaced by the adjacency {iu, jv}.
• An adjacency {iu, jv} can be replaced by the pair of telomeres {iu} and {jv}.
Given two genomes G1 and G2, their DCJ distance can be computed using the ad-
jacency graph AG(G1,G2). The adjacency graph has a vertex for each adjacency
and each telomere of G1 and G2 and, for each u ∈ G1 and v ∈ G2, has |u ∩ v|
edges between u and v (see Fig. 7.2). S. Yancopoulos et al. [105] and, for the mul-
tichromosomal formulation, A. Bergeron et al. [4], showed that the DCJ distance
between G1 and G2 is just dDCJ (G1,G2)= n− (C+ I/2), where C is the number
of cycles and I the number of odd paths in the adjacency graph. While there is no
single biological mechanism to mirror the DCJ operation, researchers everywhere
have adopted the DCJ model in their work because of its mathematical simplicity
and because of its observed robustness in practice.

The DCJ operator, like the operator in the multichromosomal rearrangement
model of S. Hannenhalli and P. Pevzner, preserves gene content. The DCJ model
has been extended, with mixed results, to handle insertions and deletions [14, 84],
duplications [1], and all three [82]. Inversion distances, HP distances, and DCJ dis-
tances are all implemented in the UniMoG software [34].

7.3.3 Estimating True Distances

Edit distances underestimate the true number of events, particularly so when the two
genomes are distant. Estimating the true distance through a maximum-likelihood
approach requires an evolutionary model. Since models are the subject of the next
section, we focus here on the estimators themselves. The IEBP estimator [95] (and

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 155

its improved version [94]) uses a Markov chain formulation to provide an exact
formula for the expected number of events (inversions, transpositions, and inverted
transpositions—the events in the Nadeau–Taylor model) as a function of the break-
point (edit) distance. The EDE estimator [51] uses curve-fitting to approximate the
most likely number of evolutionary events, derived by simulating known numbers
of inversions and comparing that number against the computed inversion (edit) dis-
tance. The formula thus takes an inversion (edit) distance and returns an estimate
of the true number of inversions. Although EDE was designed just for inversions,
experience shows that it works well even with a significant number of transpositions
and that its use significantly improves the accuracy of distance-based phylogenetic
reconstruction [96].

K. Swenson et al. [88] proposed a heuristic to approximate the true evolutionary
distance under inversions, duplications, insertions, and deletions for unichromoso-
mal genomes. Y. Lin and B. Moret [41] developed a true distance estimator for
the DCJ model based on the DCJ distance; later Y. Lin et al. [43] gave an esti-
mator for the true number of events in the DCJ model based directly on the lists
of gene adjacencies—a useful generalization as it can be used even for lists of ad-
jacencies that do not define a “real” genome. Given genome G, for any genome
G∗, we can divide the adjacencies and telomeres of G∗ into four sets, SA(G∗),
ST(G∗), DA(G∗) and DT(G∗), where SA(G∗) is the set of adjacencies of G∗ that
also appear in G, ST(G∗) is the set of telomeres of G∗ that also appear in G,
DA(G∗) is the set of adjacencies of G∗ that do not appear in G, and DT(G∗) is
the set of telomeres of G∗ that do not appear in G. Then we can calculate a vector
VG(G∗)= (SA∗,ST∗,DA∗,DT∗) to represent the genome G∗ in terms of G, where
SA∗, ST∗, DA∗ and DT∗ are the cardinalities of the sets SA(G∗), ST(G∗), DA(G∗)
and DT(G∗), respectively. Obviously, we have 2n = 2SA∗ + ST∗ + 2DA∗ + DT∗.
Let Gk be the genome obtained from G = G0 by applying k randomly selected
DCJ operations. The (i + 1)st DCJ operation is selected from a uniform distribu-
tion of all possible DCJ operations on the current genome Gi . We can compute
the vector VG(Gk) = (SAk,STk,DAk,DTk) to represent the genome Gk with re-
spect to G. For any integer k > 0, we can also produce the estimate Ẽ(VG(Gk))=
(S̃A

k
, S̃T

k
, D̃A

k
, D̃Tk

) for the expected vector E(VG(Gk)). We then use S̃A
k

to ap-
proximate the expected number of adjacencies present in both G and Gk and com-
pute SAF from G and GF . The estimated true number of evolutionary events is

then the integer k that minimizes the difference |SAF − S̃A
k|. This estimator is quite

robust and achieves better performance than the EDE estimator; it was later ex-
tended [43] to include gene losses and duplications.

7.4 Modeling Genomic Evolution

Models for genomic rearrangements have been studied intensely over the last 30
years by biologists, computer scientists, and mathematicians—for an overview of
the work of the latter two, see, e.g., [29, 50, 56]. We briefly review the main models
used in phylogenetic inference.

156 B.M.E. Moret et al.

7.4.1 Inversions

Of the various genomic rearrangements studied, perhaps the simplest and best doc-
umented is the inversion (also called reversal), through which a segment of a chro-
mosome is inverted in place. In 1989, D. Sankoff and M. Goldstein formalized a
probabilistic model of genomic inversions in which a chromosome is represented
as a permutation of gene indices [76]; in this framework, an inversion acts on an
interval of the permutation by reversing the order in which the indices appear within
the interval. A year later, D. Sankoff et al. [80] also proposed to apply this model to
the assessment of evolutionary relationships among a number of bacterial genomes
using genetic maps. Two years later, D. Sankoff used gene-order data from 16 mi-
tochondrial genomes from fungi and other eukaryotes to infer a species phylogeny;
the study used nearly complete genomic sequences for the organelles [81].

7.4.2 The Generalized Nadeau–Taylor Model

The generalized Nadeau–Taylor (NT) model [57] deals with inversions, transposi-
tions, and inverted transpositions; it assumes that the number of each of those three
events obeys a Poisson distribution on each edge, that the relative probabilities of
each type of event are fixed across the tree, and that events of a given type have
the same probability, regardless of the location and size of the affected region. The
model thus has two main parameters—two of the three relative probabilities of oc-
currence of the three types of events. The generalized Nadeau–Taylor model can be
extended to include insertions, deletions, or duplications in the triplet, by choosing
the relative probabilities for all events. Nevertheless, the generalized NT model re-
mains far from realistic, and many features of genome evolution are lacking in this
model, such as hot spots (a much debated feature [18, 64, 65, 79]), operons, as well
as fission and fusion events.

7.4.3 The HP model

The first model of multichromosomal rearrangements was given by S. Hannenhalli
and P. Pevzner [33]. This HP model includes inversions, translocations, fusions, and
fissions (see Fig. 7.3).

Inversion: Given a linear chromosome A = (a1 . . . aiai+1 . . . an), reverse all genes
between ai and aj yields (a1 . . . ai−1− aj . . .− aiaj+1 . . . an). Two adjacencies,
{ah

i−1, a
t
i } and {ah

j , at
j+1}, are replaced by two others, {ah

i−1, a
h
j } and {at

i , a
t
j+1}.

Translocation: Given two linear chromosomes A = (a1 . . . aiai+1 . . . an) and B =
(b1 . . . bj bj+1 . . . bm), exchange two segments between these two chromosomes.
There are two possible outcomes, (a1 . . . aibj+1 . . . bm) and (b1 . . . bj ai+1 . . . an)

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 157

Fig. 7.3 Possible rearrangements in the HP model: (a) inversion, (b) translocation, (c) fission, and
(d) fusion

or (a1 . . . ai − bj . . . − b1) and (−bn . . . − bj+1ai+1 . . . an). Two adjacencies,
{ah

i , at
i+1} and {bh

j , bt
j+1}, are replaced by {ah

i , bh
j+1} and {at

i+1, b
t
j } or {ah

i , bh
j }

and {at
i+1, b

t
j+1}.

Fission: Given a linear chromosome A= (a1 . . . aiai+1 . . . an), split A into two new
linear chromosomes, (a1 . . . ai) and (ai+1 . . . an). The adjacency {ah

i , at
i+1} is

replaced by two telomeres {ah
i } and {at

i+1}.
Fusion: Given two linear chromosomes A = (a1 . . . an) and B = (b1 . . . bm),

concatenate these two linear chromosomes into a single new chromosome
(a1 . . . anb1 . . . bm). Two telomeres, {ah

n} and {bt
1}, are replaced by one adja-

cency {ah
n, bt

1}.
In 2009, A. Bergeron et al. [5] gave an optimal linear-time algorithm to compute the
HP distance with a simple formula.

7.4.4 The DCJ Model

The HP model cannot mix linear and circular chromosomes. In such a mix, addi-
tional operations come into play: linearization and circularization, which transform
circular chromosomes into linear ones and vice versa. The DCJ operation, on the
other hand, does model such a mix and supports every simple rearrangement: in-
versions, transpositions, block exchanges, circularizations, and linearizations, all of
which act on a single chromosome, and translocations, fusions, and fissions, which
act on a pair of chromosomes. The DCJ model is less well motivated than the HP
model in terms of biology: whereas inversions and translocations are well docu-
mented, the additional rearrangements possible in the DCJ model may not corre-
spond to actual evolutionary events. For example, if the two cuts are in the same

158 B.M.E. Moret et al.

linear chromosome, one of the two nontrivial rejoinings causes a fission, excising
a portion of the original chromosome and packaging that portion as a new circular
chromosome—something usually called a “circular intermediate,” the name itself
denoting the opinion that such structures are at best ephemeral. (In the best tradition
of biology, where “anything that can happen already has,” the existence of circular
intermediates has been inferred in vertebrates [23, 31].) A simple modification to
the DCJ model (forbidding the least realistic operation) can lead genomes into the
two stable structures (single circular chromosome or multiple linear chromosomes)
found in the vast majority of prokaryotes and eukaryotes, respectively [42]. The
main argument for the DCJ model is its mathematical simplicity: it is much easier
to reason about and devise algorithms for a model with a single operation (however
multifaceted) than for one with a “zoo” of operations.

7.4.5 Models for Rearrangements, Duplications, and Losses

Gene (or segment) duplications and losses have long been studied by geneticists
and molecular biologists. A particularly spectacular version of duplication is whole
genome doubling (WGD), the duplication of the entire genome—a very rare event,
but one often viewed as responsible for much the diversity of life forms. WGD has
been of particular interest to evolutionary biologists for many years. D. Sankoff
et al. integrated WGD with rearrangements, and introduced the Genome Halving
Problem [26–28]: from the present-day doubled and rearranged genome, recover
the pre-doubling ancestral genome using a criterion of maximum parsimony. Since
the ancestral solutions are often numerous, D. Sankoff et al. proposed to take into
account external reference genomes as outgroups, to guide and narrow down the
search [92, 107].

Segmental duplications and gene losses do not affect just gene content: they can
mimic the effect of rearrangements; the most obvious example is transposition: in-
stead of moving a segment from one location to another, one can envision deleting
that segment from its original location and inserting it at its new location. N. El-
Mabrouk [25] gave an exact algorithm to compute edit distances for inversions and
losses and also a heuristic to approximate edit distances for inversions, losses, and
non-duplicating insertions. Her work was then extended and refined by M. Mar-
ron et al. [48]. In 2008, S. Yancopoulos and R. Friedberg [104] gave an algorithm
to compute edit distances under deletions, insertions, duplications, and DCJ opera-
tions, under the constraint that each deletion can only remove a single gene. These
and other approaches targeted the edit distance, not the true evolutionary distance.
K. Swenson et al. [88] gave a first heuristic to approximate the true evolutionary
distance under inversions, duplications, and losses; more recently, Y. Lin et al. [43]
gave an algorithm to estimate the true evolutionary distance under deletions, inser-
tions, duplications, and inversions. Rearrangements, duplications, and losses have
also been addressed in the framework of ancestral reconstruction [47, 60], a topic of
rapidly increasing interest.

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 159

7.4.6 Inferring Phylogenies Using Models

In phylogenetic inference, the main use of models is to guide inference phrased as
an optimization problem, using maximum parsimony or maximum likelihood cri-
teria. The first program used for phylogenetic inference from rearrangement data,
D. Sankoff’s BPAnalysis, used the breakpoint model and median-based heuris-
tics aimed at obtained a tree of maximum parsimony. The approach proposed by
D. Sankoff is based on scoring each possible tree separately. Since scoring a single
tree is NP-hard [63], the scoring procedure is a heuristic, using iterative improve-
ment, that D. Sankoff himself had proposed much earlier for multiple sequence
alignment on trees [71]. First, each internal node of the tree is initialized with some
“ancestral genome.” Then, and until no changes can be made to any internal node,
each internal node is examined in turn (according to some chosen scheduling): the
median of its immediate neighbors’ “genomes” is computed and, if better (giving a
lower parsimony score) than the current genome at the node in question, is used to
replace that genome. Computing the median of three or more genomes is itself NP-
hard [10, 63]—indeed, it is just the simplest case of parsimony scoring, for a tree of
diameter 2. Thus the overall procedure nests some unknown number of instances of
an NP-hard problem within an exponential loop: obviously such an approach cannot
scale up very far.

D. Sankoff and M. Blanchette [74] provided the first software package for
the problem, BPAnalysis, subsequently improved by our group with GRAPPA
[16, 52]. BPAnalysis handled 8 genomes of 40 genes each; GRAPPA [52] scaled
to 15 genomes and a few hundred genes and supported both breakpoint and inversion
models (with both edit and estimated true distances). Reusing the GRAPPA code for
inversion distance computation, P. Pevzner’s group produced MGR [7], which could
handle multichromosomal genomes and, rather than scoring every tree, used a con-
struction heuristic to build a single tree in incremental fashion. In doing the latter,
MGR came closer to sequence-based MP (or ML) algorithms, none of which, natu-
rally, scores every tree; but the lack of tight bounding for subtrees (an indirect conse-
quence of the complexity of rearrangement operations) meant that the construction
heuristic gave poor results—in direct comparisons, the exhaustive approach of BP-
Analysis and GRAPPA inferred better trees. Further developments of GRAPPA,
such as very tight bounds on entire trees (but not on subtrees) [91], reduced the space
to be explored by orders of magnitude, while high-performance methods [53] fur-
ther increased its speed, yet scaling such an algorithm requires an entirely different
algorithmic approach, such as the Disk-Covering Methods developed by T. Warnow
et al. [36], used with some success in combination with GRAPPA [90].

D. Sankoff [73] had shown that seeking a median that minimizes the breakpoint
distance can be transformed into a special instance of the well-studied Traveling
Salesperson Problem and thus can be solved relatively efficiently (as shown in
GRAPPA). In practice, however, computing breakpoint medians yields poor solu-
tions; a better approach is to use the inversion median [54], although exact solvers
for this problem scale poorly [11, 83, 106]. Thanks to the relative simplicity of the

160 B.M.E. Moret et al.

DCJ model, DCJ median solvers are easier to design and perform better than inver-
sion solvers, so that parsimony methods using DCJ median solvers outperform other
methods in terms of speed and accuracy [68]. Among existing DCJ median solvers,
the best to date appears to be ASMedian [102], due to W. Xu and D. Sankoff, and
our extension GASTS [103], used to produce the parsimony score of a given tree.

As the algorithmic community expended considerable energy on improving the
initialization, the computation of medians, and the exploration of the search space, it
became clear that scoring through iterative improvement was going to cause serious
problems, due to a combination of two factors. First, the number of local minima
for parsimony scoring is huge, so that the number of times a median gets improved
tends to one as the instance gets larger, with consequent poor results. Secondly, the
error accumulates quickly as the distance from the leaves increases: what works
reasonably well on very small trees of 10–20 leaves (in which most internal nodes
are within 1–2 edges of a leaf) fails more and more (and worse and worse) as the
trees became larger. Better median computation helps reduce the second problem,
as better initialization helps reduce the first: both are deployed in the GASTS scoring
software [103], but at a significant expense of computational time.

The difficulty of deriving bounds for the completion of partial trees means that
the standard approaches used in sequence-based MP and ML inference cannot be
used today with rearrangement data. There has been one attempt to use a proba-
bilistic approach, using Bayesian inference (the BADGER tool) [39], but it could not
achieve reasonable scaling and kept suffering from convergence problems since it
was not clear what steps should be used in the construction of the Markov chains.
Until new results in mathematics and algorithms are obtained to provide bounds
on partial trees, model-based inference of phylogenies under MP or ML remains
restricted to small instances.

7.5 Encodings

Distance-based methods suffer from the problem of saturation: the observed
changes may be only a small piece of the history of changes and any attempt at es-
timating the true number of changes from a large observed number of changes will
suffer from a very large variance. In good part, this problem stems from the pairwise
approach of these methods: if two leaves in the tree have the root as their last com-
mon ancestor, then the pairwise distance is an unreliable predictor of the length of
the tree path connecting these two leaves. Methods that score trees rather than pairs
can take advantage of the smaller evolutionary steps represented by tree edges: they
do not compute any pairwise distances between leaves, focusing instead on pairwise
comparisons between the endpoints of a tree edge. Unfortunately the optimization
problem for rearrangement data solved by such methods (maximum parsimony or
maximum likelihood) is NP-hard even on a fixed tree. For sequence data, however,
scoring a single tree under parsimony can be done in linear time, while fast and well
tested packages exist to compute the MP or ML tree. Thus a natural approach is to

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 161

produce sequences from the input permutations, use a sequence-based phylogenetic
inference package, then analyze the resulting tree in terms of rearrangements.

7.5.1 Parsimonious Methods

The idea of encoding the genome structure into sequences was introduced a dozen
years ago [15, 97], based on an earlier characterization approach of D. Sankoff and
M. Blanchette [74]. Two encoding methods were proposed:

• Maximum Parsimony on Binary Encodings (MPBE): each genome is translated
into a binary sequence, where each site from the binary sequence corresponds to
an adjacency present in at least one of the input genomes. Uninformative sites are
discarded.

• Maximum Parsimony on Multistate Encodings (MPME): each genome of n genes
is translated into a sequence of length 2n, where site i takes the index of the
gene immediately following gene i and site n + i takes the index of the gene
immediately following gene −i, for 1≤ i ≤ n.

Results show that an encoding based on adjacencies preserves useful phyloge-
netic information that a parsimonious search can put to good use. However, both
MPBE and MPME proved too computationally expensive compared to distance-
based methods, while MPME was ill suited for use with existing MP and ML infer-
ence packages because of its large number of character states. Moreover, accuracy
with MP inference was not significantly better than accuracy using distance-based
methods.

7.5.2 Likelihood-Based Approaches

In the last few years, likelihood-based inference packages such as RAxML [86] and
FastTree [67] have largely overcome computational limitations and allowed re-
constructions of large trees (with tens of thousands of taxa) and the use of long
sequences (to several hundred thousand characters). In 2011, F. Hu et al. [35] ap-
plied likelihood-based inference to an unusual encoding scheme, in which the same
adjacency could be translated into multiple character positions. Results on bacterial
genomes were promising, but difficult to explain, while the method appeared too
time-consuming to handle eukaryotic genomes.

In 2013, we described MLWD (ML on Whole-genome Data) [45], a new ap-
proach that encodes genomic structure into binary sequences using both gene adja-
cencies and gene content, estimates the transition parameters for the resulting binary
sequence data, and finally uses sequence-based ML reconstruction to infer the tree.
For each adjacency or telomere within the entire collection of genomes, there exists
exactly one position in the sequence, with 1 indicating presence of this adjacency in

162 B.M.E. Moret et al.

Fig. 7.4 Two toy genomes

a genome and 0 indicating absence. If the total number of distinct genes among the
input genomes is n, then the total number of distinct adjacencies and telomeres can-
not exceed

(2n+2
2

)
, but the actual number is typically far smaller—it is usually linear

in n rather than quadratic. For each gene family within the collection of genomes,
there is exactly one position, with the same meaning attributed to the Boolean val-
ues. For the two toy genomes of Fig. 7.4, the resulting binary sequences and their
derivation are shown in Table 7.1.

Since the encodings are binary sequences, the parameters of the model are sim-
ply the transition probability from presence (1) to absence (0) and that from absence
(0) to presence (1). In rearrangements, every DCJ operation will select two adjacen-
cies (or telomeres) uniformly at random, and, if adjacencies, break them to create
two new adjacencies. Each genome has n+O(1) adjacencies and telomeres (O(1)

is the number of linear chromosomes in the genome, viewed as a small constant).
Thus the transition probability from 1 to 0 under one DCJ operation at some fixed
index in the sequence is 2

n+O(1)
. Since there are up to

(2n+2
2

)
possible adjacencies

and telomeres, the transition probability from 0 to 1 is 2
2n2+O(n)

. Thus the transi-
tion from 0 to 1 is roughly 2n times less likely than that from 1 to 0. Despite the
restrictive assumption that all DCJ operations are equally likely, this result is in
line with general opinion about the probability of eventually breaking an ancestral
adjacency (high) vs. that of creating a particular adjacency along several lineages
(low)—a version of homoplasy for adjacencies. The probability of losing a gene
independently along several lineages is high, whereas the probability of gaining the
same gene independently along several lineages (the standard homoplasy) is low.
Unsurprisingly, D. Sankoff first observed and studied such a bias in transitions of
adjacencies in 1998 [75].

Figure 7.5 shows the Robinson–Foulds (RF) error rates of three different ap-
proaches, MLWD, MLWD∗ and TIBA. (The RF rate measures the difference be-
tween two trees as the ratio of the number edges present in one tree but not in
the other to the total number of edges and is the most commonly used measure of
phylogenetic accuracy.) MLWD∗, used as a control for bias, follows the same pro-

Table 7.1 The binary encodings for the two genomes of Fig. 7.4

Adjacency information Content information

{ah, ah} {at , bh} {at , ch} {bt , ct } {ah, dh} {bt , dt } a b c d

Genome 1 1 1 1 1 0 0 1 1 1 0

Genome 2 0 1 0 0 1 1 1 1 0 1

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 163

Fig. 7.5 RF error rates for different approaches for trees with 100 species, with genomes of 1,000
and 5,000 genes and tree diameters from one to four times the number of genes, under the rear-
rangement model

cedure as MLWD, but without setting the bias explicitly, while TIBA [44] is a fast
distance-based tool to reconstruct phylogenies from rearrangement data, combining
a pairwise distance estimator [41] and the FastME [19] distance-based reconstruc-
tion method. These simulations show that MLWD can reconstruct much more accu-
rate phylogenies from rearrangement data than the distance-based approach TIBA,
in line with experience in sequence-based reconstruction. MLWD also outperforms
MLWD∗, underlining the importance of estimating and setting the transition biases
before applying the sequence-based maximum-likelihood method.

Figure 7.6 (from [45]) shows the MLWD-inferred phylogeny for 68 eukaryotic
genomes from the eGOB (Eukaryotic Gene Order Browser) database [46]. The
database contains the order information of orthologous genes (identified by Or-
thoMCL [13]) of 74 different eukaryotic species; the total number of different gene
markers in eGOB is around 100,000. We selected 68 genomes with from 3k to 42k

gene markers—the remaining six genomes in the database have too few adjacencies
(fewer than 3,000). We encoded the adjacency and gene content information of all
68 genomes into 68 binary sequences of length 652,000. Inferring this phylogeny
(using RAxML and setting the bias ratio to 100) took under 3 hours on a desktop
computer, showing that MLWD can easily handle high-resolution genomic data.

As shown in Fig. 7.6, all major groups in those 68 eukaryotic genomes are cor-
rectly identified, with the exception of Amoebozoa. Those incorrect branches with
respect to Amoebozoa receive extremely low bootstrap values (0 and 2), indicat-
ing that they are very likely to be wrong. For the phylogeny of Metazoa, the tree
is well supported from existing studies [66, 85]. For the phylogeny of model fish
species (D. rerio, G. aculeatus, O. latipes, T. rubripes, and T. nigroviridis), two con-
flicting phylogenies have been published, using different choices of alignment tools
and reconstruction methods for sequence data [58]. Our result supports the second
phylogeny, which is considered as the correct one by the authors in their discussion
[58]. For the phylogeny of Fungi, our results agree with most branches for common

164 B.M.E. Moret et al.

Fig. 7.6 The inferred phylogeny of 68 eukaryotic genomes, drawn with iTOL [40]. Internal
branches are colored green, yellow, and red, to indicate, respectively, strong (bootstrap value >90),
medium (bootstrap value between 60 and 90), and weak support (bootstrap value <60)

species in recent studies [30, 98]. It is worth mentioning that among three Chytrid-
iomycota species C. cinereus, P. gramnis, and C. neoformans, our phylogeny shows
that C. cinereus and P. gramnis are more closely related, which conflicts with the

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 165

placement of C. cinereus and C. neoformans as sister taxa, but with very low sup-
port value (bootstrapping score 35) [98]. The phylogenetic placement of C. merolae,
a primitive red algae, has been the topic of a long-running debate [59]. Our result
suggests that C. merolae is closer to Alveolata than to Viridiplantae, in agreement
with a recent finding obtained by sequencing and comparing expressed sequence
tags from different genomes [9].

This approach opens the way to widespread use of whole-genome data in phy-
logenetic analysis, as it uses a fairly general model of genomic evolution (rear-
rangements plus duplications, insertions, and losses of genomic regions), is very
accurate, scales as well as sequence-based approaches, and, importantly, supports
standard bootstrapping methods. In addition, the nature of the encoding makes it
robust against typical errors in genome assembly or in the identification of genes
or syntenic blocks, as a few erroneous entries in a sequence of some hundreds of
thousands of characters have little impact on the outcome. Moreover, the encoding
can be modified to increase robustness by coding for proximity rather than just adja-
cency; such an encoding could use degrees of proximity to maintain discrimination
among local rearrangements or deliberately treat all neighbors in the same manner
to create invariance with respect to local rearrangements—a useful property when
dealing with bacterial operons.

7.6 Conclusions

The shifting emphasis on simple comparisons, model-based distance computations,
and encoding of features into sequences reflects both our increased understanding
of rearrangements and duplication in genomes and the well known superiority (un-
der most circumstances) of likelihood-based approaches in phylogenetic inference.
Starting with very simple measures (the number of breakpoints) and with attempts
at encoding the genomic structure into sequence data (in both cases because any-
thing else remained unsolved), we have moved to computing model-based edit dis-
tances, then to estimate model-based true distances, then to use these as tools in
median heuristics for a parsimonious approach. Most recently, we have returned
to encodings, not for lack of alternatives, but because our deeper understanding of
duplications and rearrangements in terms of adjacencies has led us to such a step.
Yet the encoding is at least partly motivated by the impossibility, at this time, of
using a direct approach to ML inference, of the style used for sequence data: a di-
rect approach would require some parameterized model of genomic evolution under
rearrangements and duplications and all models to date are both overly simplistic
in terms of biology and far too complex for a Bayesian or ML inference strategy.
(Even were such a model to emerge, a direct approach would remain a formidable
algorithmic challenge, because of the lack of bounding methods for partial trees.)
Thus the encoding of Y. Lin et al. is to evolutionary genomics much what binary
character encoding is to morphological evolution: a way to take very rich and com-
plex data produced through poorly understood events and to reduce them to a simple
formulation that can be handled with today’s phylogenetic inference tools.

166 B.M.E. Moret et al.

From completing with some difficulty the inference of a phylogeny for fewer
than 10 species with mitochondrial data featuring fewer than 50 common, single-
copy genes using a rather inaccurate heuristic for maximum parsimony (the original
BPAnalysis), we now have moved, thanks to this latest encoding approach, to
easy handling of datasets of hundreds of species with tens of thousands of genes,
many of them duplicated or missing in many of the species, using standard tools
from sequence-based analysis. Yet it is clearly not the final word on phylogenetic
reconstruction from rearrangement data: this area of research is little more than
15 years old and sufficient data to support it have been available for less than half
that time. Challenges range from modeling and algorithmic questions to implemen-
tation and assessment [49]. As new data accumulate at a frenetic pace and our
understanding of the genome deepens with the daily additions to the research lit-
erature, we expect further insights, better models, refined methodology, and some
breakthroughs—and, as has now been the case for nearly 30 years, these next devel-
opments are likely to be inspired by some past or forthcoming publication or remark
of David Sankoff’s.

References

1. Bader, M.: Genome rearrangements with duplications. BMC Bioinform. 11(Suppl. 1), S27
(2010)

2. Bader, D., Moret, B., Yan, M.: A fast linear-time algorithm for inversion distance with an
experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)

3. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. In: Proc. 9th Ann. Int’l
Conf. on Research in Computational Molecular Biology (RECOMB’05). Lecture Notes in
Comp. Sci., vol. 3500, pp. 615–629 (2005)

4. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proc.
6th Workshop Algs. in Bioinf. (WABI’06). Lecture Notes in Comp. Sci., vol. 4175, pp. 163–
173. Springer, Berlin (2006)

5. Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute the genomic
distance via the double cut and join distance. Theor. Comput. Sci. 410(51), 5300–5316
(2009)

6. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi, T.
(eds.) Genome Informatics, pp. 25–34. Univ. Academy Press, Tokyo (1997)

7. Bourque, G., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral
species. Genome Res. 12, 26–36 (2002)

8. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. In: Proc. 38th Int’l
Colloq. on Automata, Languages, and Programming (ICALP 2011). Lecture Notes in Comp.
Sci., vol. 6756. Springer, Berlin (2011)

9. Burki, F., et al.: Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2(8), e790
(2007)

10. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc. 3rd Int’l
Conf. Comput. Mol. Biol. (RECOMB’99), pp. 84–93. ACM Press, New York (1999)

11. Caprara, A.: On the practical solution of the reversal median problem. In: Proc. 1st Workshop
Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 238–251. Springer,
Berlin (2001)

12. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing the as-
signment of orthologous genes via genome rearrangement. In: Proc. 3rd Asia Pacific Bioinf.
Conf. (APBC’05), pp. 363–378. Imperial College Press, London (2005)

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 167

13. Chen, F., Mackey, A., Vermunt, J., Roos, D.: Assessing performance of orthology detection
strategies applied to eukaryotic genomes. PLoS ONE 2(4), e383 (2007)

14. Compeau, P.: A simplified view of DCJ-Indel distance. In: Proc. 12th Workshop Algs. in
Bioinf. (WABI’12). Lecture Notes in Comp. Sci., vol. 7534, pp. 365–377. Springer, Berlin
(2012)

15. Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman, S.: An
empirical comparison of phylogenetic methods on chloroplast gene order data in Campanu-
laceae. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics, pp. 99–122. Kluwer Aca-
demic, Dordrecht (2000)

16. Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman, S.: A new
fast heuristic for computing the breakpoint phylogeny and experimental phylogenetic analy-
ses of real and synthetic data. In: Proc. 8th Int’l Conf. on Intelligent Systems for Mol. Biol.
(ISMB’00), pp. 104–115 (2000)

17. Day, W., Sankoff, D.: The computational complexity of inferring phylogenies from chromo-
some inversion data. J. Theor. Biol. 127, 213–218 (1987)

18. Demongeot, J., et al.: Hot spots in chromosomal breakage: from description to etiology.
In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics. Computational Biology, vol. 1,
pp. 71–83. Springer, Berlin (2000)

19. Desper, R., Gascuel, O.: Fast and accurate phylogeny reconstruction algorithms based on the
minimum-evolution principle. J. Comput. Biol. 9(5), 687–705 (2002)

20. Desper, R., Gascuel, O.: Theoretical foundation of the balanced minimum evolution method
of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol. Biol.
Evol. 21(3), 587–598 (2003)

21. Dobzhansky, T., Sturtevant, A.: Inversions in the chromosomes of Drosophila pseudoob-
scura. Genetics 23(1), 28–64 (1938)

22. Downie, S.R., Palmer, J.D.: Use of chloroplast DNA rearrangements in reconstructing plant
phylogeny. In: Soltis, D., Soltis, P., Doyle, J. (eds.) Molecular Systematics of Plants, pp. 14–
35. Chapman and Hall, New York (1992)

23. Durkin, K., et al.: Serial translocation by means of circular intermediates underlies colour
sidedness in cattle. Nature 482(7383), 81–84 (2012)

24. Ehrlich, J., Sankoff, D., Nadeau, J.: Synteny conservation and chromosome rearrangements
during mammalian evolution. Genetics 147, 289–296 (1997)

25. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous
segments. In: Proc. 11th Ann. Symp. Combin. Pattern Matching (CPM’00). Lecture Notes in
Comp. Sci., vol. 1848, pp. 222–234. Springer, Berlin (2000)

26. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput.
32(3), 754–792 (2003)

27. El-Mabrouk, N., Nadeau, J., Sankoff, D.: Genome halving. In: Proc. 9th Ann. Symp. Combin.
Pattern Matching (CPM’98). Lecture Notes in Comp. Sci., pp. 235–250. Springer, Berlin
(1998)

28. El-Mabrouk, N., Bryant, D., Sankoff, D.: Reconstructing the pre-doubling genome. In: Proc.
3rd Int’l Conf. Comput. Mol. Biol. RECOMB’99, pp. 154–163. ACM Press, New York
(1999)

29. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rear-
rangements. MIT Press, Cambridge (2009)

30. Fitzpatrick, D., Logue, M., Stajich, J., Butler, G.: A fungal phylogeny based on 42 complete
genomes derived from supertree and combined gene analysis. BMC Evol. Biol. 6(1), 99
(2006)

31. Fujimura, K., Conte, M., Kocher, T.: Circular DNA intermediate in the duplication of Nile
Tilapia vasa genes. PLoS ONE 6(12), e29477 (2011)

32. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). In: Proc. 27th Ann. ACM Symp. Theory of Com-
put. (STOC’95), pp. 178–189. ACM Press, New York (1995)

168 B.M.E. Moret et al.

33. Hannenhalli, S., Pevzner, P.: Transforming mice into men (polynomial algorithm for ge-
nomic distance problems). In: Proc. 36th Ann. IEEE Symp. Foundations of Comput. Sci.
(FOCS’95), pp. 581–592. IEEE Press, Piscataway (1995)

34. Hilker, R., Sickinger, C., Pedersen, C., Stoye, J.: UniMoG—a unifying framework for ge-
nomic distance calculation and sorting based on DCJ. Bioinformatics 28(19), 2509–2511
(2012)

35. Hu, F., Gao, N., Zhang, M., Tang, J.: Maximum likelihood phylogenetic reconstruction using
gene order encodings. In: Proc. 2011 IEEE Symp. Comput. Intell. in Bioinf. & Comput. Biol.
(CIBCB’11), pp. 117–122. IEEE Press, Piscataway (2011)

36. Huson, D., Nettles, S., Warnow, T.: Disk-covering, a fast converging method for phylogenetic
tree reconstruction. J. Comput. Biol. 6(3), 369–386 (1999)

37. Jansen, R., Palmer, J.: A chloroplast DNA inversion marks an ancient evolutionary split in
the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84, 5818–5822 (1987)

38. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping.
Inf. Process. Lett. 104(1), 14–20 (2007)

39. Larget, B., Simon, D., Kadane, J.: Bayesian phylogenetic inference from animal mitochon-
drial genome arrangements. J. R. Stat. Soc. B 64(4), 681–694 (2002)

40. Letunic, I., Bork, P.: Interactive tree of life v2: online annotation and display of phylogenetic
trees made easy. Nucleic Acids Res. 39(S2), W475–W478 (2011)

41. Lin, Y., Moret, B.: Estimating true evolutionary distances under the DCJ model. In: Proc.
16th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’08). Bioinformatics, vol.
24(13), pp. i114–i122 (2008)

42. Lin, Y., Moret, B.: A new genomic evolutionary model for rearrangements, duplications, and
losses that applies across eukaryotes and prokaryotes. J. Comput. Biol. 18(9), 1055–1064
(2011)

43. Lin, Y., Rajan, V., Swenson, K., Moret, B.: Estimating true evolutionary distances under
rearrangements, duplications, and losses. In: Proc. 8th Asia Pacific Bioinf. Conf. (APBC’10).
BMC Bioinformatics, vol. 11(Suppl. 1), pp. S54 (2010)

44. Lin, Y., Rajan, V., Moret, B.: Fast and accurate phylogenetic reconstruction from high-
resolution whole-genome data and a novel robustness estimator. J. Comput. Biol. 18(9),
1130–1139 (2011)

45. Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruction from
high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proc. 18th Pacific Symp.
on Biocomputing (PSB’13), pp. 285–296. World Scientific, Singapore (2013)

46. López, M., Samuelsson, T.: eGOB: eukaryotic Gene Order Browser. Bioinformatics (2011)
47. Ma, J., Ratan, A., Raney, B., Suh, B., Miller, W., Haussler, D.: The infinite sites model of

genome evolution. Proc. Natl. Acad. Sci. USA 105(38), 14254–14261 (2008)
48. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions.

Theor. Comput. Sci. 325(3), 347–360 (2004)
49. Moret, B., Warnow, T.: Reconstructing optimal phylogenetic trees: a challenge in experimen-

tal algorithmics. In: Fleischer, R., Moret, B., Schmidt, E. (eds.) Experimental Algorithmics.
Lecture Notes in Comp. Sci., vol. 2547, pp. 163–180. Springer, Berlin (2002)

50. Moret, B., Warnow, T.: Advances in phylogeny reconstruction from gene order and content
data. In: Zimmer, E., Roalson, E. (eds.) Molecular Evolution: Producing the Biochemical
Data, Part B. Methods in Enzymology, vol. 395, pp. 673–700. Elsevier, Amsterdam (2005)

51. Moret, B., Wang, L.S., Warnow, T., Wyman, S.: New approaches for reconstructing phylo-
genies from gene-order data. In: Proc. 9th Int’l Conf. on Intelligent Systems for Mol. Biol.
(ISMB’01). Bioinformatics, vol. 17, pp. S165–S173 (2001)

52. Moret, B., Wyman, S., Bader, D., Warnow, T., Yan, M.: A new implementation and de-
tailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. on Biocomputing (PSB’01),
pp. 583–594. World Scientific, Singapore (2001)

53. Moret, B., Bader, D., Warnow, T.: High-performance algorithm engineering for computa-
tional phylogenetics. J. Supercomput. 22, 99–111 (2002)

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 169

54. Moret, B., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians
in phylogeny reconstruction from gene-order data. In: Proc. 2nd Workshop Algs. in Bioinf.
(WABI’02). Lecture Notes in Comp. Sci., vol. 2452, pp. 521–536. Springer, Berlin (2002)

55. Moret, B., Tang, J., Wang, L.S., Warnow, T.: Steps toward accurate reconstructions of phy-
logenies from gene-order data. J. Comput. Syst. Sci. 65(3), 508–525 (2002)

56. Moret, B., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-
order data. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 321–352.
Oxford Univ. Press, London (2005)

57. Nadeau, J., Taylor, B.: Lengths of chromosome segments conserved since divergence of man
and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984)

58. Negrisolo, E., Kuhl, H., Forcato, C., Vitulo, N., Reinhardt, R., Patarnello, T., Bargelloni, L.:
Different phylogenomic approaches to resolve the evolutionary relationships among model
fish species. Mol. Biol. Evol. 27(12), 2757–2774 (2010)

59. Nozaki, H., et al.: The phylogenetic position of red algae revealed by multiple nuclear genes
from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plas-
tids. J. Mol. Evol. 56(4), 485–497 (2003)

60. Ouangraoua, A., Boyer, F., McPherson, A., Tannier, E., Chauve, C.: Prediction of contiguous
regions in the amniote ancestral genome. In: Proc. 5th Int’l Symp. Bioinformatics Research
& Appls (ISBRA’09). Lecture Notes in Comp. Sci., vol. 5542, pp. 173–185. Springer, Berlin
(2009)

61. Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly
in sequence. J. Mol. Evol. 27, 87–97 (1988)

62. Palmer, J.: Chloroplast and mitochondrial genome evolution in land plants. In: Herrmann, R.
(ed.) Cell Organelles, pp. 99–133. Springer, Berlin (1992)

63. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec. Colloq.
on Comput. Complexity 71 (1998)

64. Peng, Q., Pevzner, P., Tesler, G.: The fragile breakage versus random breakage models of
chromosome evolution. PLoS Comput. Biol. 2(2), e14 (2006)

65. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint
reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100(13), 7672–7677 (2003)

66. Ponting, C.: The functional repertoires of metazoan genomes. Nat. Rev. Genet. 9(9), 689–698
(2008)

67. Price, M., Dehal, P., Arkin, A.: Fasttree: computing large minimum-evolution trees with
profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009)

68. Rajan, V., Xu, A., Lin, Y., Swenson, K., Moret, B.: Heuristics for the inversion median prob-
lem. Proc. 8th Asia Pacific Bioinf. Conf. (APBC’10). BMC Bioinform. 11(Suppl. 1), S30
(2010)

69. Rajan, V., Lin, Y., Moret, B.: TIBA: a tool for phylogeny inference from rearrangement data
with bootstrap analysis. Bioinformatics 28(24), 3324–3325 (2012)

70. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylo-
genetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

71. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28(1), 35–42 (1975)
72. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Proc.

3rd Ann. Symp. Combin. Pattern Matching (CPM’92). Lecture Notes in Comp. Sci., vol. 644,
pp. 121–135. Springer, Berlin (1992)

73. Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics.
In: Proc. 3rd Conf. Computing and Combinatorics (COCOON’97). Lecture Notes in Comp.
Sci., vol. 1276, pp. 251–264. Springer, Berlin (1997)

74. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny.
J. Comput. Biol. 5, 555–570 (1998)

75. Sankoff, D., Blanchette, M.: Phylogenetic invariants for metazoan mitochondrial genome
evolution. In: Miyano, S., Takagi, T. (eds.) Genome Informatics, pp. 22–31. Univ. Academy
Press, Tokyo (1998)

170 B.M.E. Moret et al.

76. Sankoff, D., Goldstein, M.: Probabilistic models for genome shuffling. Bull. Math. Biol. 51,
117–124 (1989)

77. Sankoff, D., Nadeau, J.: Conserved synteny as a measure of genomic distance. Discrete Appl.
Math. 71(1–3), 247–257 (1996)

78. Sankoff, D., Nadeau, J. (eds.): Comparative Genomics: Empirical and Analytical Approaches
to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families. Kluwer
Academic, Dordrecht (2000)

79. Sankoff, D., Trinh, P.: Chromosomal breakpoint re-use in genome sequence rearrangement.
In: Proc. 9th Int’l Conf. Comput. Mol. Biol. (RECOMB’05). Lecture Notes in Comp. Sci.,
vol. 3388, pp. 30–35. Springer, Berlin (2005)

80. Sankoff, D., Cedergren, R., Abel, Y.: Genomic divergence through gene rearrangement. In:
Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Methods
in Enzymology, vol. 183, pp. 428–438. Academic Press, San Diego (1990)

81. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B., Cedergren, R.: Gene order compar-
isons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad.
Sci. USA 89(14), 6575–6579 (1992)

82. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under
DCJ, insertion and deletion. BMC Bioinform. 13(Suppl 19), S13 (2012)

83. Siepel, A., Moret, B.: Finding an optimal inversion median: experimental results. In: Proc.
1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp. Sci., vol. 2149, pp. 189–
203. Springer, Berlin (2001)

84. da Silva, P.H., Braga, M.D.V., Machado, R., Dantas, S.: DCJ-indel distance with distinct op-
eration costs. In: Proc. 12th Workshop Algs. in Bioinf. (WABI’12). Lecture Notes in Comp.
Sci., vol. 7534, pp. 378–390. Springer, Berlin (2012)

85. Srivastava, M., et al.: The functional repertoires of metazoan genomes. Nature 454(7207),
955–960 (2008)

86. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

87. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of
Drosophila pseudoobscura and their use in the study of the history of the species. Proc. Natl.
Acad. Sci. USA 22, 448–450 (1936)

88. Swenson, K., Marron, M., Earnest-DeYoung, J., Moret, B.: Approximating the true evolu-
tionary distance between two genomes. ACM J. Experimental Algorithmics 12 (2008)

89. Swenson, K., Lin, Y., Rajan, V., Moret, B.: Hurdles and sorting by inversions: combinatorial,
statistical, and experimental results. J. Comput. Biol. 16(10), 1339–1351 (2009)

90. Tang, J., Moret, B.: Scaling up accurate phylogenetic reconstruction from gene-order data.
In: Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol. (ISMB’03). Bioinformatics,
vol. 19, pp. i305–i312. Oxford Univ. Press, London (2003)

91. Tang, J., Moret, B.: Linear programming for phylogenetic reconstruction based on gene rear-
rangements. In: Proc. 16th Ann. Symp. Combin. Pattern Matching (CPM’05). Lecture Notes
in Comp. Sci., vol. 3537, pp. 406–416. Springer, Berlin (2005)

92. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal genome median and halving prob-
lems. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08). Lecture Notes in Comp. Sci.,
vol. 5251, pp. 1–13. Springer, Berlin (2008)

93. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput.
Syst. Sci. 63(5), 587–609 (2002)

94. Wang, L.S.: Exact-IEBP: a new technique for estimating evolutionary distances between
whole genomes. In: Proc. 1st Workshop Algs. in Bioinf. (WABI’01). Lecture Notes in Comp.
Sci., vol. 2149, pp. 175–188. Springer, Berlin (2001)

95. Wang, L.S., Warnow, T.: Estimating true evolutionary distances between genomes. In: Proc.
33rd Ann. ACM Symp. Theory of Comput. (STOC’01), pp. 637–646. ACM Press, New York
(2001)

96. Wang, L.S., Warnow, T.: Distance-based genome rearrangement phylogeny. In: Gascuel, O.
(ed.) Mathematics of Evolution and Phylogeny, pp. 353–383. Oxford Univ. Press, London
(2005)

7 Rearrangements in Phylogenetic Inference: Compare, Model, or Encode? 171

97. Wang, L.S., Jansen, R., Moret, B., Raubeson, L., Warnow, T.: Fast phylogenetic methods for
genome rearrangement evolution: an empirical study. In: Proc. 7th Pacific Symp. on Biocom-
puting (PSB’02), pp. 524–535. World Scientific, Singapore (2002)

98. Wang, H., Xu, Z., Gao, L., Hao, B.: A fungal phylogeny based on 82 complete genomes
using the composition vector method. BMC Evol. Biol. 9(1), 195 (2009)

99. Wang, L.S., Leebens-Mack, J., Wall, P., Beckmann, K., dePamphilis, C., Warnow, T.: The im-
pact of multiple protein sequence alignment on phylogenetic estimation. IEEE/ACM Trans.
Comput. Biol. Bioinform. 8, 1108–1119 (2011)

100. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem.
J. Theor. Biol. 99(1), 1–7 (1982)

101. Xu, A., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions
to the median problem. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08). Lecture Notes
in Comp. Sci., vol. 5251, pp. 25–37. Springer, Berlin (2008)

102. Xu, A.: A fast and exact algorithm for the median of three problem—a graph decomposition
approach. J. Comput. Biol. 16(10), 1369–1381 (2009)

103. Xu, A., Moret, B.: GASTS: parsimony scoring under rearrangements. In: Proc. 11th Work-
shop Algs. in Bioinf. (WABI’11). Lecture Notes in Comp. Sci., vol. 6833, pp. 351–363.
Springer, Berlin (2011)

104. Yancopoulos, S., Friedberg, R.: Sorting genomes with insertions, deletions and duplications
by DCJ. In: Proc. 6th RECOMB Workshop Comp. Genomics (RECOMB-CG’08). Lecture
Notes in Comp. Sci., vol. 5267, pp. 170–183. Springer, Berlin (2008)

105. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

106. Zhang, M., Arndt, W., Tang, J.: A branch-and-bound method for the multichromosomal re-
versal median problem. In: Proc. 8th Workshop Algs. in Bioinf. (WABI’08), pp. 1–13 (2008)

107. Zheng, C., Zhu, Q., Adam, Z., Sankoff, D.: Guided genome halving: hardness, heuristics and
the history of the hemiascomycetes. In: Proc. 16th Int’l Conf. on Intelligent Systems for Mol.
Biol. (ISMB’08). Bioinformatics, vol. 24, pp. i96–i104 (2008)

Chapter 8
Status of Research on Insertion and Deletion
Variations in the Human Population

Liqing Zhang, Mingming Liu, and Layne T. Watson

Abstract Insertion and deletion (indel) variants comprise a major proportion of hu-
man genetic variation. However, little is known about their effect on humans. The
void of understanding is largely due to the lack of both biological data and com-
putational resources. Thanks to the progress made by many large-scale genomic
projects, a substantial amount of data is now available, enabling the prediction of
functional elements in the genome. In this work, we review the impact of indel
variants on human biology, evolution, and health, and examine the currently avail-
able computational resources for predicting the functional effects of indels and their
limitations. We then present a newly developed program for indel effect prediction
using a hidden Markov model-based framework and discuss future work for better
understanding the effects of indel variants on human biology and health.

8.1 Indel Effects on Human Biology, Health, and Evolution

Indel is the Second Most Common Type of Genetic Variation in Humans The
rapid development of sequencing technologies has made possible cataloging the
entire set of genetic variants harbored in human populations. The recent pilot study
conducted by the 1000 Genome Project Consortium has revealed that there are about
15 million single nucleotide polymorphisms (SNPs), one million short insertions
and deletions (indels), and 20,000 structural variants (SVs) harbored by the popula-
tions they studied [1]. Thus, indel ranks as the second most common type of genetic
variation in humans.

Indel Variants Have Profound Functional Impact on Human-Specific Evolution
and Adaptation Comparison of the human genome and several other closely re-
lated species’ genomes has shown that approximately 0.8 million human-specific

L. Zhang (B) ·M. Liu · L.T. Watson
Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
e-mail: lqzhang@vt.edu

L.T. Watson
Department of Mathmatics, Virginia Tech, Blacksburg, VA, USA

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_8,
© Springer-Verlag London 2013

173

mailto:lqzhang@vt.edu
http://dx.doi.org/10.1007/978-1-4471-5298-9_8

174 L. Zhang et al.

indels affect more than 7000 genes, and these genes may have contributed to hu-
man traits via changes at the RNA and protein levels [2]. In addition, indels have
been found to contribute to about 5 % of the human–chimpanzee divergence, much
higher than the 1.5 % nucleotide divergence, suggesting that indels might have
played an even bigger role than nucleotide divergence in human-chimpanzee differ-
entiation [20]. Some human-specific indels show evidence of positive selection and
might have played important roles in human adaptation both at the species level and
the subpopulation level [3]. The importance of indels to the evolution of genomes
is further supported by a study that has found an increased rate of mutations (higher
levels of SNPs) near the regions with indels [7] at both the species and population
levels.

Indels May Hold the Key to Understanding Human Diseases [17] Depending
on the locations of the indels, indels can potentially lead to frame shift and thus influ-
ence proteins by changing protein sequences, gene expression patterns (by affecting
promoter regions, introns, or UTRs), and exon splice patterns. A well-known case of
indel effects is cystic fibrosis, a genetic disease frequently caused by a 3-bp deletion
within the coding region of CFTR [5]. Although it is in-frame, the deletion leads to
abnormal protein folding and protein degradation. Indels in noncoding regions can
also cause human diseases. For example, when indels occur within the promoter re-
gion of the FMR1 gene, they can change the promoter methylation pattern and thus
the gene expression pattern of FMR1, resulting in fragile X syndrome [5]. Mill et al.
[17] have shown that about 42 % of the nearly two million indels they identified are
mapped to human genes and more than 2000 indels affect coding exons and likely
disrupt protein function and cause phenotypic changes in humans. Their analysis of
the experimental data in mice shows that 83 % of the coding indels yield abnormal
phenotypes. Moreover, the indels tend to have strong linkage disequilibrium (LD)
with the SNPs identified in genome wide association studies (GWAS). Diseases with
an indel genetic basis might have been mistakenly determined as SNP related, only
because of strong LD. In these cases, accurate indel effect prediction is the only way
to improve our understanding of these diseases.

8.2 Current Research on Indel Variants

Despite all the evidence suggesting the importance of indels, their research has
lagged behind studies of other variant types such as SNPs and SVs. From a biolog-
ical point of view, it is time consuming and difficult to experimentally characterize
the impact of indels on genes or protein function. Computationally, there are two
main problems: the lack of specialized database resources for indel curation and
function annotation, and the lack of computational methods/programs to predict the
effect of indel variants.

The Lack of Specialized Database Resources for Indel Curation and Func-
tion Annotation Currently, indel polymorphisms are loosely stored in dbSNP,
where simple annotation based mostly on location of indel variants with respect to

8 Status of Research on Insertion and Deletion Variations in the Human Population 175

genes is provided. The current dbSNP (build 135) contains 6,312,022 nonredun-
dant or reference indels, which are clustered from 7,806,204 indels submitted by
various researchers, with a major proportion generated by a few large-scale stud-
ies [1, 11, 12, 16, 19]. Indels are roughly annotated to categories including introns,
intergenic regions, UTRs, and frameshift indels. Evidently, annotation of indel vari-
ants by dbSNP is so coarse-grained and overly simplistic that it does not help re-
searchers prioritize and choose from the sea of indels the strongest candidate indels
for traits or diseases of interest. Other large data servers, such as the UCSC Genome
Browser and Ensembl, import indel annotation directly from dbSNP. Hence, there
is no dedicated computational resource and database for fine-grained annotation of
indel effect. It must be noted that indels cannot be simply taken as repeats or mini-
or microsatellites as the majority (70 %) of them are nonrepetitive [16].

The need for a database dedicated to indels is further emphasized by several
recent studies that demonstrate the far-from-completeness of our current catalog of
indel variants in humans. A 2011 study shows that more than 63 % of the nearly two
million indels identified in the 79 diverse human genomes are novel [17], compared
to the ones in dbSNP. Most recently (August 2012), sequencing and analysis of an
Indian female’s genome reveals that about 84 % of this person’s indels are unique,
i.e., not documented in any of the sequenced genome databases, in contrast to less
than 3 % of the SNPs being unique [9]. Thus compared to SNPs, the research on
cataloging indel variants is still in its infancy and intense effort is needed in order to
have a complete inventory. A specialized database devoted to indels would greatly
facilitate this task and thus take an important step towards understanding their effect
on human traits and diseases.

The Lack of Computational Methods/Programs to Predict the Effect of Indel
Variants A survey of the tools for predicting SNP variant effect shows that there
are a few dozen computer programs and web servers devoted to such a purpose
[13]. In contrast, the computational resources devoted to indel effect prediction is
very limited and nearly nonexistent. At the time of this writing, only three studies
were found that propose computational methods for predicting the functional effect
of indel variants. The first recent study proposed an evolutionary conservation-based
approach to score and predict the effect of indel variants for both coding and non-
coding regions [21]. Although the results are encouraging, there is no readily avail-
able source program. The provided online web server has several major limitations.
First, it has limited prediction power, restricted to only one indel on one sequence
per analysis. Ideally, the user should have the freedom to upload an input file for
batch analyses. Second, although the paper has predictions for both coding and non-
coding indels, the web server does not have noncoding indel prediction. Third, the
prediction score indicates the deleteriousness of an indel, but does not have any in-
formation on what functions are likely affected. Finally, the online server has bugs,
returning randomly truncated amino acid sequences in some tests. Another recent
study proposed SIFT-Indel that uses a simple decision tree approach to classify the
effect of indel variants [10]. For indel effect prediction, four features are extracted
for each indel: fraction of affected conserved DNA bases, indel location relative to

176 L. Zhang et al.

the transcript, fraction of affected conserved amino acids, and minimum distance of
the indel to the exon boundary of all the affected transcripts. Though easy to inter-
pret due to the nature of a decision tree, the predictive power of SIFT-Indel is rather
limited due to two major drawbacks. First, the method only applies to frameshift
indels, which account for a tiny proportion (∼ 0.05 %) of indel variants [18]. Sec-
ond, it can only make coarse-grained qualitative predictions, that is, an indel can be
either “gene-damaging” or “neutral”. However, a computational method or program
that can produce quantitative ranking of variant effect is much more useful for indel
filtering and prioritization than qualitative assessment [6].

The third latest study introduced an alignment-based score to predict the effect
of genetic variants, including single SNPs, indels, and multiple mutations [4]. The
corresponding program PROVEAN also uses an evolutionary conservation-based
method to evaluate the deleteriousness of variants. Though promising, the program
is only applicable to in-frame indels. However, frameshift indels are expected to be
more deleterious and thus are also an important type of indels that require function
effect prediction. To address the limitations of the current programs, the authors re-
cently developed HMMvar [15], a program using a hidden Markov model (HMM)-
based scoring method to predict the effect of indels. The following section gives an
overview of the program and some results on its application.

8.3 The Hidden Markov Model-Based Scoring Method
for Predicting Indel Effects

The HMM-based method to score the effect of indel variants incorporates hypoth-
esis testing naturally and formally into a probabilistic framework. A profile HMM
can be used to describe the probabilities of multiple sequences generated from the
HMM model, thus representing a family of proteins. Briefly, a profile HMM, named
for the characteristic output “profile” of a particular hidden Markov model, is a finite
state machine consisting of a series of nodes, each of which corresponds roughly to
a position (column) in the alignment from which it was built. Most of the previous
prediction methods are based on the principle that important amino acids will be
conserved in the protein family, and so mutations occurring at well-conserved po-
sitions tend to be deleterious to the functions of the protein. This principle can be
reflected exactly by the profile HMMs. Basically, a HMM profile is a probabilistic
description of the consensus of a multiple sequence alignment. Thus it is reason-
able to use a profile HMM to gauge how far mutations take the original sequence
away from the set of sequences represented by the HMM. The further away from
the representation, the more likely the mutation is deleterious.

Figure 8.1 shows the flowchart of profile HMM-based prediction, or the work-
flow of the HMMvar program. The pipeline consists of five steps: (1) find “seed”
proteins that are associated with indels; (2) for each seed protein, find homologous
sequences from a database; (3) do multiple sequence alignment (MSA) for each set
of homologous sequences; (4) build a profile HMM based on each MSA; (5) predict

8 Status of Research on Insertion and Deletion Variations in the Human Population 177

Fig. 8.1 An overview of profile HMM-based variant prediction

the functional effects of indels using the profile HMMs; precisely, for each mutated
protein with the indel (MT, mutant type) and corresponding seed protein i (WT,
wild type), use the ith HMM to compute the odds ratio (odds that the HMM could
have generated the WT sequence)/(odds that the HMM could have generated the
MT sequence)—this odds ratio is the HMM indel score.

178 L. Zhang et al.

Table 8.1 Numbers of
different indel types with or
without the LSDB records

Indel types LSDB NonLSDB Total

Nonsense 112 15 127

Missense 0 56 56

Frameshift 2519 1387 3906

Total 2631 1458 4089

The bit scores calculated from the HMMs are used to quantitatively evaluate the
effect of indels. Specifically, the bit score from HMMER3 [8] measures the simi-
larity of a query sequence with the set of homologous sequences used to define the
profile HMM. The HMMER3 bit score is a base 2 logarithm of a ratio of probabili-
ties (homology hypothesis over the null hypothesis),

B = log2
P(o1o2 . . . on|HMM)

P (o1o2 . . . on|NULL)
, (8.1)

where o1o2 . . . on is the observed protein sequence and “HMM” is the trained pro-
file HMM. “NULL” is the “null model”, which is a one-state HMM configured to
generate “random” sequences of the same length as the target sequence, with each
residue drawn from a background frequency distribution (in HMMER3, for pro-
teins, the frequencies of the 20 amino acids are set to the amino acid composition of
SWISS-PROT 34). Since this logarithm score has no direct statistical interpretation,
the constituent probabilities are extracted and used to define the odds ratio of the
HMM probabilities,

S = Pw/(1− Pw)

Pm/(1− Pm)
, (8.2)

where Pw(Pm) is the probability that the wild type (mutated type) protein sequence
could have been generated by the profile HMM trained on a seed protein homolo-
gous sequence set (i.e., the numerator in B). The greater S is, the more likely that the
mutation is deleterious. Usually S is expected to be greater than 1 as most mutations
tend to be deleterious. When S is less than 1, it suggests that the mutant sequence
better fits the HMM profile and the mutation may lead to amino acids that are more
compatible than the wild type proteins. Experiments were done to set a threshold
for the odds ratio, St , below which, the indel is considered as neutral, otherwise
deleterious.

To demonstrate the effectiveness of HMMvar in predicting the effect of indels,
indel variant data was obtained from dbSNP, and the indel effects scored using HM-
Mvar. There are three types of indel variants in dbSNP, nonsense, missense, and
frameshift indels. Missense indels refer to the indels that add or remove amino acids
to or from the original protein sequence. Nonsense indels refer to indels that cause
a stop codon where the indel occurs. Frameshift indels refer to indels that are not a
multiple of three base pairs, thus change the reading frame of the original protein.
Note, these categories of indels are mutually exclusive, that is, an indel can be either

8 Status of Research on Insertion and Deletion Variations in the Human Population 179

Fig. 8.2 Distributions of
HMM scores for different
types of indel variants. The
dotted line shows the HMM
score cutoff (St = 2.0) for
determining whether an indel
is deleterious or not

frameshift or in-frame, and if in-frame, it can be either missense or nonsense, but
not both. The data contains altogether 4089 indels, among which 127, 56, 3906 are
nonsense, missense, and frameshift indels, respectively (Table 8.1). These indels are
further classified into two groups, indels that have locus-specific mutation database
(LSDB) [14] annotation, which are expected to be disease associated and have more
harmful effects, and indels that do not have LSDB annotation, which are expected
to be nondisease (or unknown) associated and have less harmful effects (Table 8.1).
The indels were fed into HMMvar and the odds ratio of the HMM probabilities were
computed for each class of indels. Figure 8.2 shows the distributions of the HMM
scores for three types of indel variants, frameshift indels, nonsense indels, and mis-
sense indels. The most remarkable feature is that the score of missense indels is
much lower than the scores of the other two types, consistent with the notion that
missense mutations tend to be less deleterious than frameshift indels and nonsense
mutations. In each type of indel, the median of the nondisease associated group
is lower than the median of the disease associated group, demonstrating that the
HMM score is effective in evaluating the deleteriousness of indel mutations. Fur-
ther comparison shows that the HMM odds ratio score has comparable performance
to PROVEAN, with the added advantage of having smaller variance in the predicted
scores, a desirable property for a scoring metric.

8.4 Future Directions

As an increasing amount of sequence data shows the prevalence and dominance of
indels as the second most common type of mutation in human populations, much ef-
fort is required in order to fully understand indel effect on human biology and health.

180 L. Zhang et al.

Future research needs to focus on designing new, or improving existing, algorithms
for predicting indel effects, by a combination of methods such as evolutionary-based
approaches and sophisticated machine learning algorithms. Integration with diverse
data and analysis results promises to provide a complete picture of indel effects on
various aspects such as protein function, gene splicing, and gene expression.

References

1. 1000 Genomes Project Consortium: A map of human genome variation from population-scale
sequencing. Nature 467(7319), 1061–1073 (2010)

2. Chen, F.-C., Chen, C.-J., Li, W.-H., Chuang, T.-J.: Human-specific insertions and deletions
inferred from mammalian genome sequences. Genome Res. 17(1), 16–22 (2007)

3. Chen, C.-H., Chuang, T.-J., Liao, B.-Y., Chen, F.-C.: Scanning for the signatures of positive
selection for human-specific insertions and deletions. Genome Biol. Evol. 1, 415–419 (2009)

4. Choi, Y., Sims, G.E., Murphy, S., Miller, J.R., Chan, A.P.: Predicting the functional effect of
amino acid substitutions and indels. PLoS ONE 7(10), e46688 (2012)

5. Collins, F.S., Drumm, M.L., Cole, J.L., Lockwood, W.K., Vande Woude, G.F., Iannuzzi, M.C.:
Construction of a general human chromosome jumping library, with application to cystic fi-
brosis. Science 235(4792), 1046–1049 (1987)

6. Cooper, G.M., Shendure, J.: Needles in stacks of needles: finding disease-causal variants in a
wealth of genomic data. Nat. Rev. Genet. 12(9), 628–640 (2011)

7. De, S., Madan Babu, M.: A time-invariant principle of genome evolution. Proc. Natl. Acad.
Sci. USA 107(29), 13004–13009 (2010)

8. Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity
searching. Nucleic Acids Res. 39(Web Server issue), W29–W37 (2011)

9. Gupta, R., Ratan, A., Rajesh, C., Chen, R., Lim Kim, H., Burhans, R., Miller, W., Santhosh, S.,
Davuluri, R.V., Butte, A.J., Schuster, S.C., Seshagiri, S., Thomas, G.: Sequencing and analysis
of a South Asian–Indian personal genome. BMC Genomics 13, 440 (2012)

10. Hu, J., Ng, P.C.: Predicting the effects of frameshifting indels. Genome Biol. 13(2), R9 (2012)
11. International HapMap Consortium: The international HapMap project. Nature 426(6968),

789–796 (2003)
12. International HapMap Consortium: A haplotype map of the human genome. Nature

437(7063), 1299–1320 (2005)
13. Karchin, R.: Next generation tools for the annotation of human SNPs. Brief. Bioinform. 10(1),

35–52 (2009)
14. Kato, S., Han, S.-Y., Liu, W., Otsuka, K., Shibata, H., Kanamaru, R., Ishioka, C.: Under-

standing the function-structure and function-mutation relationships of p53 tumor suppressor
protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. USA 100(14),
8424–8429 (2003)

15. Liu, M., Watson, Layne.T., Zhang, L.: HMMvar: Predicting the functional effects of indels
and SNPs based on HMM profiles. BMC Bioinform. (under review)

16. Mills, R.E., Luttig, C.T., Larkins, C.E., Beauchamp, A., Tsui, C., Stephen Pittard, W., Devine,
S.E.: An initial map of insertion and deletion (INDEL) variation in the human genome.
Genome Res. 16(9), 1182–1190 (2006)

17. Mills, R.E., Stephen Pittard, W., Mullaney, J.M., Farooq, U., Creasy, T.H., Mahurkar, A.A.,
Kemeza, D.M., Strassler, D.S., Ponting, C.P., Webber, C., Devine, S.E.: Natural genetic vari-
ation caused by small insertions and deletions in the human genome. Genome Res. 21(6),
830–839 (2011)

18. Mullaney, J.M., Mills, R.E., Pittard, W.S., Devine, S.E.: Small insertions and deletions (IN-
DELs) in human genomes. Hum. Mol. Genet. 19, R131–R136 (2010)

8 Status of Research on Insertion and Deletion Variations in the Human Population 181

19. Siva, N.: 1000 Genomes Project. Nat. Biotechnol. 26(3), 256 (2008)
20. Wetterbom, A., Sevov, M., Cavelier, L., Bergstrom, T.F.: Comparative genomic analysis of

human and chimpanzee indicates a key role for indels in primate evolution. J. Mol. Evol.
63(5), 682–690 (2006)

21. Zia, A., Moses, A.M.: Ranking insertion, deletion and nonsense mutations based on their effect
on genetic information. BMC Bioinform. 12, 299 (2011)

Chapter 9
A Retrospective on Genomic Preprocessing
for Comparative Genomics

Binhai Zhu

Abstract In this paper, we present a survey of research on genomic preprocessing
for comparative genomics, i.e., handling genomes with gene repetitions, missing
or redundant genes, initiated by David Sankoff in 1999. The development of this
research ends with several interesting results within and beyond computational bi-
ology and bioinformatics, with possible new contributions in the future. We will
describe the history of development of this research and review the current status of
the corresponding problems. For the problem of handling missing genes (scaffold
filling), we also present some technical details which are not given in the previous
papers. Some open problems will be listed at the end for further research.

9.1 Introduction

In computational biology, we constantly need to process various biological data to
extract meaningful biological relation, like building a phylogenetic tree. Such a pro-
cess sometimes involves computing the genomic distance between two genomes,
which was first investigated as early as in 1926 [61, 62]. The problem was more for-
mally studied in 1990s and is in general polynomially solvable for signed genomes,
e.g., under the signed translocation distance [7, 37, 49, 56], under the signed re-
versal distance [3, 38, 48, 63, 64], and under the DCJ distance [69]. For unsigned
genomes, the problems are typically NP-hard, e.g., sorting by reversals [17], sort-
ing by translocations [71], sorting by DCJ operations [19], and sorting by transpo-
sitions [16]. But these problems on sort unsigned genomes do admit small-factor
(≤1.5) polynomial-time approximations, e.g., sorting by reversals [9, 28], sorting
by translocations [31, 46], sorting by DCJ operations [19, 20, 42], and sorting by
transpositions [33].

The above results are all under the assumption that each genome is given in
a form where there is no loss and duplication of genes and a genome is repre-
sented as a permutation of genes. For many genomes, due to the fast evolution/self-
reproduction process, duplicated (paralogous) genes are common. So it is useful to

B. Zhu (B)
Department of Computer Science, Montana State University, Bozeman, MT 59717-3880, USA
e-mail: bhz@cs.montana.edu

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_9,
© Springer-Verlag London 2013

183

mailto:bhz@cs.montana.edu
http://dx.doi.org/10.1007/978-1-4471-5298-9_9

184 B. Zhu

select the ancestral ortholog of a gene family on an evolutionary basis. In 1999,
David Sankoff first formulated this problem as an algorithmic problem, now known
as the Exemplar Breakpoint/Genomic Distance problem [59]. In Sect. 9.2, we will
survey the development of the follow-up research since 1999, mostly with negative
complexity results. Some of these methods and results have already been applied in
other (biological and non-biological) problems [6, 58, 67].

In some eukaryotic genomes, under many situations, like sequencing error or er-
rors due to an inappropriate design of the biological experiments, we might have
noise and redundant genes. Before eliminating these redundancies, using the given
genomes for many biological studies might introduce further errors. While this prob-
lem was known to the biologists long time ago, in 2007 David Sankoff again first
formulated this as an algorithmic problem, now known as the Maximal Strip Recov-
ery and the Complementary Maximal Strip Recovery problems [27, 70]. This again
led to a series of research on fixed-parameter tractable and approximation algo-
rithms, performed by several groups in US, Canada, Europe and China. In Sect. 9.3,
we will survey the most recent development of these researches.

Genome sequencing has been a hot research area for the last 20 years. Behind
the huge success a commonly ignored fact is that most genomes sequenced are not
really ‘sequences’; in fact, most of them are made of scaffolds, i.e., composed of
incomplete gene markers. David Sankoff and his group initiated this problem of
scaffold filling in 2010 [54]. My group and a group led by Prof. Daming Zhu at
Shandong University (China) have been following up this research. While initially
the work was done on filling scaffolds with no gene repetitions, which is a problem
polynomially solvable, recently a lot of effort has been put on filling scaffolds with
gene repetitions (which is in general NP-hard). In Sect. 9.4, we will survey the
current status of this research.

In the area of bioinformatics and computational biology, for a lot of NP-complete
problems one would typically apply three methods to handle them. One is to find an
approximation solution, with the requirement being that the approximation factor
is small (better close to one). The other is to look for an exact solution (FPT algo-
rithm) when some parameter (say, the solution size) of the problem is small. The
vast majority of practical solutions for bioinformatics and computational biology
are heuristic ones, which are possibly based on some formal methods like integer
linear programming, branch-and-bound, etc.

In this survey, we focus on the approximability and fixed-parameter tractability
results for the above three general problems related to computing genomic distance
with some preprocessing. In these problems, we are given some genomes or genetic
maps and we try to optimize some solution values by deleting some genes or gene
markers. So these problem fit naturally for approximation and/or FPT solutions.
Unfortunately, as we will review a bit later, some of these problems are very hard in
both aspects. In other words, it might be impossible to design good approximation
and/or FPT algorithms for them, unless P=NP, NP=ZPP or FPT=W[1]. On the
other hand, many problems are still open along these lines.

The paper is organized as follows. In Sect. 9.2, we first review the approxima-
bility and fixed-parameter tractability for the Exemplar Breakpoint Distance (EBD)

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 185

problem. We then review the approximability and fixed-parameter tractability for
the Exemplar Non-breaking Similarity (ENbS) problem (which is the dual of EBD).
In Sect. 9.3, we review the approximability and fixed-parameter tractability for the
Maximal Strip Recovery (MSR) problem and its complement, the Complementary
Maximal Strip Recover (CMSR) problem. In Sect. 9.4, we review the approxima-
tion results for the Scaffold Filling Problem, focusing on the One-sided Scaffold
Filling Problem with Gene Repetitions. In Sect. 9.5, we list a set of open problems
to conclude this paper.

9.2 The Exemplar Breakpoint Distance and Related Problems

As we have covered in the introduction, in the genome comparison and rearrange-
ment area, a standard problem is to compute the number (i.e., genetic distance) and
the actual sequence of genetic operations which converts a source genome to a tar-
get genome. This problem is important in evolutionary molecular biology as it gives
some useful information on genome evolution. Typical genetic distances include
edit [53], signed reversal [4, 38, 52, 57] and breakpoint [66], etc. In fact, the idea
of signed reversal and, implicitly, breakpoint, was initiated as early as in 1926 by
Sturtevant [61]. In the past years, conserved interval distance was also proposed to
measure the similarity of multiple sequences of genes [8]. Interested readers are
referred to [35] for a summary of the research performed in this area.

In genome rearrangement research, it is usually assumed that each gene ap-
pears in a genome exactly once. Under this assumption, the genome rearrange-
ment problem is in essence the problem of comparing and sorting signed permu-
tations [35, 38]. However, this assumption is very restrictive and is only justified in
several small virus genomes. For example, this assumption does not hold on eukary-
otic genomes where paralogous genes exist [55, 59]. So we have to handle this gene
duplication problem.

David Sankoff first considered the problem of computing the breakpoint distance
with duplicated genes. In [59], Sankoff proposed a way to select, from the dupli-
cated copies of genes, the common ancestor gene such that the breakpoint distance
between the reduced genomes (exemplar genomes) is minimized. The distance is
called the exemplar breakpoint distance henceforth. A general branch-and-bound
algorithm was also implemented in [59]. In [55], Nguyen, Tay and Zhang proposed
to use a divide-and-conquer method to compute the exemplar breakpoint distance
empirically.

For the theoretical part of research, it was shown that both of the problems of
computing the signed reversal and breakpoint distances between exemplar genomes
are NP-complete [14]. A few years ago, Blin and Rizzi further proved that comput-
ing the conserved interval distance between exemplar genomes is NP-complete [11];
moreover, it is NP-complete to compute the minimum conserved interval matching
(i.e., without deleting the duplicated copies of genes). Starting in 2005, we showed
much stronger inapproximability results for the exemplar breakpoint and conserved

186 B. Zhu

interval distance problems (even under a weaker model of approximation) [21, 24].
(In fact, a series of workshops were organized at University of Texas—Pan Amer-
ican between 2005 and 2008, focusing on this topic.) While various exemplar ge-
nomic distances have been researched before, in this survey we will focus on the
exemplar breakpoint distance. In fact, all the inapproximability result for exem-
plar breakpoint distance holds for any other genomic distance d(−,−) satisfying
d(G,H)= 0 implies G=H or G=−H .

9.2.1 Problem Definitions

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes where the order of the genes
corresponds to the position of them on the linear chromosome and the signs corre-
spond to which of the two DNA strands the genes are located. Here we interpret a
genome as a set of such sequences (chromosomes), though we focus mostly on sin-
gleton genomes, i.e., a single sequence, in this paper. When the input genomes con-
tain gene repetitions, Sankoff proposed a method to select an exemplar genome, by
deleting redundant copies of a gene, such that in an exemplar genome any gene ap-
pears exactly once; moreover, the resulting exemplar genomes should have a prop-
erty that a given genetic distance between them is minimized [59].

The following definitions are very much following those in [11]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that each
element is with a sign (+ or −). In general, we allow the repetition of a gene fam-
ily in any genome. Each occurrence of a gene family is called a gene, though we
will not try to distinguish a gene and a gene family if the context is clear. Given a
genome with no repetition of any gene G= g1g2 . . . gm, we say that gene gi imme-
diately precedes gj if j = i + 1. Given genomes G,H (with no gene repetition), if
gene a immediately precedes b in G and neither a immediately precedes b nor −b

immediately precedes −a in H , then they constitute a breakpoint in G. The break-
point distance is the number of breakpoints in G (symmetrically, it is the number of
breakpoints in H), denoted as bd(G,H).

The number of a gene g appearing in a genome G is called the cardinality of g

in G, written as card(g,G). A gene in G is called trivial if g has cardinality exactly 1;
otherwise, it is called non-trivial. A genome G is called r-repetitive, if all the genes
from the same gene family appear at most r times in G. For example, G = c−adc−
bdeb is 2-repetitive.

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears ex-
actly once in G′. For example, let G = −bcaadag − e, there are two exemplar
genomes: −bcadg− e and −bcdag− e.

The Exemplar Breakpoint Distance (EBD) problem is defined as follows:

Instance: Genomes G and H, each is of length O(m) and each covers n gene fam-
ilies (i.e., at least one gene from each of the n gene families appears in both G
and H); integer K .

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 187

Question: Are there two respective exemplar genomes of G and H, G and H , such
that bd(G,H)≤K?

9.2.2 Algorithmic Foundations

In the next subsection, we present some hardness results on the approximability
and fixed-parameter tractability for EBD, namely, the hardness to compute or ap-
proximate the minimum value K in the above formulation. Here we give some stan-
dard definitions regarding approximation and FPT algorithms. Given a minimization
(maximization) problem Π , let the optimal solution value of Π be OPT. We say that
an approximation algorithm A provides a performance guarantee of α for Π if for
every instance I of Π , the solution value returned by A is at most α × OPT (at
least OPT/α). Usually we say that A is a factor-α approximation for Π . For the ob-
vious reason, we are only interested in polynomial-time approximation algorithms.
Readers are referred to [29, 34] for more details regarding the definitions related to
approximation algorithms and NP-completeness.

As a well-known subject as well, an FPT algorithm for a decision problem with
parameter k is an algorithm which solves the problem in O(f (k)nc) time, where f

is any function only on k and c is some fixed constant not related to k. More details
on FPT algorithms can be found in [32].

9.2.3 Hardness Results

In [21], we presented the first set of inapproximability results for the Exemplar
Breakpoint Distance problem, given two genomes each containing only one se-
quence of genes drawn from n gene families. We showed that even if a gene ap-
pears at most three times, deciding whether the optimal exemplar breakpoint dis-
tance is zero, i.e, whether G= H , is NP-complete. It was left as an open problem
whether the result holds when each gene appears at most twice in each of the input
genomes [2, 21]. Recently, this open question was finally answered, i.e., it remains
NP-complete even when each gene appears at most two times [13, 47]. Combining
these results, we have the following inapproximability result.

Theorem 1 If both G and H are 2-repetitive genomes, then the Exemplar Break-
point Distance problem does not admit any polynomial-time approximation (regard-
less of its approximation factor), unless P=NP.

Proof If we view the Exemplar Breakpoint Distance problem as a minimization
problem, then the result in [13], with an example presented at the end of this sub-
section, implies that deciding whether OPT = 0 is NP-complete (even if the input

188 B. Zhu

genomes are 2-repetitive). Let A be any approximation algorithm for EBD with
factor α. By definition, A returns an approximation solution value APP, with

APP≤ α×OPT.

When OPT= 0, clearly APP must also satisfy APP= 0. In other words, A would
be able to solve the instance in [13] in polynomial time. This, however, contradicts
with the corresponding NP-completeness result (unless P=NP). �

Regarding the fixed-parameter intractability for EBD, we have the following the-
orem.

Theorem 2 If both G and H are 2-repetitive genomes, then the Exemplar Break-
point Distance problem does not admit any FPT algorithm, unless P=NP.

Proof Again, if we view the Exemplar Breakpoint Distance problem as a minimiza-
tion problem, then the result in [13, 47] implies that deciding whether OPT= 0 is
NP-complete (even if the input genomes are 2-repetitive). Let B be any FPT al-
gorithm for EBD which runs in O(f (k)nc) time. When OPT = k = 0, B solves
EBD in O(f (0)nc) = O(nc) time. In other words, B would be able to solve the
instance in [13] in polynomial time. This, again, contradicts with the corresponding
NP-completeness result, unless P=NP. �

On the other hand, it is necessary to point out that the reduction in [21, 24] is
much simpler than in [13, 47]. As a matter of fact, it has been applied to show the
NP-hardness of other problems in computational geometry [6], computational biol-
ogy [67] and program download [58]. We show a simple example on this reduction.

Given a 3SAT formula φ = F1 ∧ F2 ∧ F3 ∧ F4, where F1 = (x1 ∨ x2 ∨ x3),
F2 = (x1 ∨ x2 ∨ x4), F3 = (x2 ∨ x3 ∨ x4), and F4 = (x1 ∨ x3 ∨ x4), we want to
find a truth assignment for φ. For each variable xi , define Si (resp. S′i) as the list
of clauses containing xi (resp. xi) followed by clauses containing xi (resp. xi). So
S1 = F1F4F2 and S′1 = F2F1F4, etc.

Then we construct two sequence G = S1g1S2g2S3g3S4, H = S′1g1S
′
2g2S

′
3g3S

′
4,

where gj ’s are peg genes only appearing once. Each gene appears at most three
times as each clause contains three literals. The truth assignment can be set as
follows: if xi = TRUE, then keep the clauses in Si and S′i which contain xi ; if
xi = FALSE, then keep the clauses in Si and S′i which contain xi . If there are
still duplicated clauses after this, then keep one such clause and delete the remain-
ing ones arbitrarily. Regarding the above example, we can have x1 = x3 = TRUE,
x2 = x4 = FALSE. So the corresponding exemplar genomes obtained are G=H =
F4g1F3g2F1g3F2, whose breakpoint distance is zero.

In different applications, Fi ’s and gj ’s can be constructed to fit the correspond-
ing problems, for instance as geometric points [6, 67] or programs to be down-
loaded [58].

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 189

9.2.4 The Complement Problem—ENbS

We comment that the negative results in Sect. 9.2.3 hold for any genomic distance
d(−,−) satisfying that d(G,H)= 0 implies G=H or G=−H . This, of course,
implies that all the exemplar genomic distance problems (like exemplar reversal,
exemplar transposition, and exemplar conserved interval distances) do not admit any
polynomial-time approximation algorithms or any FPT algorithm, unless P=NP.

There have been two ways to handle this problem. One is to use a weak model of
approximation, which will be covered as related to open problems in Sect. 9.5. The
other, on the other hand, is to use a different similarity measure. In this case, one
would try to maximize certain similarity measure. The most notable of such mea-
sures include non-breaking similarity (or number of adjacencies) [23] and the num-
ber of common intervals [12]. (A common interval is a pair of substrings appearing
in the two genomes with the same genes, but possibly different orders. Example.
G= abced , H = deacb. (abc, acb) is a length-3 common interval.) We will focus
on the non-breaking similarity, which is really the complement of the breakpoint
distance.

For two exemplar genomes G and H over the same alphabet of size n, recall
that a breakpoint in G is a two-gene substring gigi+1 such that neither gigi+1 nor
−gi+1 − gi is a substring in H . A non-breaking point (or an adjacency) is a com-
mon two-gene substring gigi+1 that appears either as gigi+1 or as −gi+1 − gi in
G and H . The number of non-breaking points between G and H is also called the
non-breaking similarity between G and H , denoted as nbs(G,H). Clearly, we have
nbs(G,H) + bd(G,H) = n − 1. For two genomes G and H, their exemplar non-
breaking similarity enbs(G,H) is the maximum nbs(G,H), where G and H are ex-
emplar genomes derived from G and H. Again we have enbs(G,H)+ ebd(G,H)=
n− 1.

The Exemplar Non-breaking Similarity (ENbS) problem is formally defined as
follows:

Instance: Genomes G and H, each is of length O(m) and each covers n gene fam-
ilies (i.e., at least one gene from each of the n gene families appears in both G
and H); integer K .

Question: Are there two respective exemplar genomes of G and H, G and H , such
that the non-breaking similarity between them is at least K?

We have the following negative results which have been proved in [23, 26].

Theorem 3 If one of G and H is exemplar and the other is 2-repetitive, then
the Exemplar Non-breaking Similarity problem does not admit any factor-n0.5−ε

polynomial-time approximation unless NP= ZPP.

Proof We give a sketch of proof from [23, 26]. In [23, 26], it was shown that Inde-
pendent Set can be linearly reduced to ENbS; i.e., the input graph has an indepen-
dent set of size k iff the constructed ENbS instance has a non-breaking similarity
(or number of adjacencies) equal to k. As Independent Set cannot be approximated

190 B. Zhu

within a factor of |V |1−ε unless NP=ZPP [39] and as in the reduction we use
Θ(|V |2) genes (where |V | is the number of vertices in the input graph), the theorem
follows. �

In [26], a factor-O(
√

n) approximation was presented for ENbS, show that the
above inapproximability result is tight.

Theorem 4 If one of G and H is exemplar and the other is 2-repetitive, the Ex-
emplar Non-breaking Similarity problem does not admit an FPT algorithm unless
FPT=W[1].

Proof It is noted that the reduction from Independent Set to ENbS in [23, 26] is
in fact an FPT reduction. As Independent Set is W[1]-complete [32], the theorem
simply follows. �

In fact, with the lower bound results proved in [18], Independent Set (hence
ENbS) cannot be solved in O(f (k)no(k)) time even if k is bounded by an arbi-
trarily small function of n, unless ETH fails. (ETH—Exponential Time Hypothesis:
3SAT cannot be solved in subexponential time.)

In the next section, we will survey another problem initiated by David Sankoff
on computing syntenic blocks from genetic maps.

9.3 Maximal Strip Recovery and Its Complement

In a genome or physical map, the distance between two genes is exact. This is differ-
ent in a genetic map, where only the relative positions between gene markers along
chromosomes are indicated. A genetic map is usually constructed from DAGs (Di-
rected Acyclic Graphs) which represent the partial order of gene markers. We omit
the construction of genetic maps and interested readers are referred to [10, 68]. It
should be noted that in a genetic map all the gene markers are distinct.

Given two genetic maps G and H represented by a sequence of n gene mark-
ers, a strip (syntenic block) is a sequence of distinct markers of length at least two
which appear as subsequences in both of the input maps, either directly or in re-
versed and negated form. The problem Maximal Strip Recovery (MSR) is to find
two subsequences G′ and H ′ of G and H , respectively, such that the total length of
disjoint strips in G′ and H ′ is maximized An example is as follows: G= abcdefgh,
H = h−g−f cbdae and the optimal solution is G′ = cdefg and H ′ = −g−f cde,
each containing two syntenic blocks cde and fg.

The MSR problem was proposed to handle the elimination of noise and ambi-
guities in genetic maps. This is related to the well-known problem in comparative
genomics—to decompose two given genomes into syntenic blocks, i.e., segments
of chromosomes which are deemed to be homologous in the two input genomes. In
2007, a heuristic method was proposed to handle the MSR problem [27, 70]. In [25],
a factor-4 polynomial-time approximation algorithm was proposed for the problem.
This was done by applying the Maximum Weight Independent Set on 2-interval

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 191

graphs, which admit a factor-4 approximation [5]. We also proved that several close
variants of MSR, MSR-d (with d > 2 input maps), MSR-DU (with marker dupli-
cations), and MSR-WT (with markers weighted) are all NP-complete. It was left
as an open problem whether the problem can be solved in polynomial time or is
NP-complete [25].

Recently, in [65] we showed that MSR is in fact NP-complete, via a polynomial-
time reduction from One-in-Three 3SAT (which was shown to be NP-complete
in [34, 60]). We summarize the results in [25, 65] as follows.

Theorem 5 MSR is NP-complete, and it admits a factor-4 polynomial-time approx-
imation.

As an effort to solve the MSR problem practically, we tried to handle MSR by
solving its complement (CMSR) with FPT algorithms, i.e., showing that CMSR is
fixed-parameter tractable [65]. Note that CMSR is a minimization problem where
one deletes some markers such that the remaining ones in the genetic maps all
belong to some syntenic blocks. With the previous example G = abcdefgh and
H = h− g − f cbdae, the optimal CMSR solution is to delete markers a, b,h.

Let k be the minimum number of markers deleted in some optimal solution
of CMSR, the running time of known algorithms are O(3kn + n2) [43], and
O(2.36kn + n2) [15]. In [45], we proved a 18k parameterized search space for
CMSR and subsequently obtained a linear kernel of size (the actual size should
be 78k, slight better than in the conference version). Combining all these results, we
have the following theorem.

Theorem 6 Let k be the optimal number of gene markers deleted from the input
genetic maps. CMSR can be solved in O(2.36kk + n2) time; i.e., CMSR is fixed-
parameter tractable.

Note that as k is typically greater than 50 in real datasets, our FPT algorithms are
not yet practical.

At the same time, approximation algorithms are presented for CMSR in the last
couple of years. In [43], a factor-3 approximation was presented. The current best
approximation factor is 2.33 [50]. Further improvement of approximation and FPT
algorithms for CMSR remains open.

In the next section, we will survey the scaffold filling problem, again initiated by
David Sankoff. Due to the technical difficulty of handling breakpoints and adjacen-
cies in sequences (which was not completely given in [44]), this time we focus more
on the details.

9.4 Approximation for Scaffold Filling with Gene Duplications

With respect to a target singleton genome, possibly with gene repetitions, a scaf-
fold is simply an incomplete sequence. It was found that most of the sequenced

192 B. Zhu

genomes are in fact in the form of scaffolds. Muñoz et al. first formulate the prob-
lem of filling an incomplete scaffold H into H ′, using a reference genome G, such
that certain genomic distance between H ′ and G is minimized [54]. More specifi-
cally, they showed for multichromosomal genomes, this (one-sided) scaffold filling
problem under the DCJ distance is polynomially solvable. David Sankoff visited
Montana State University in early 2010 and gave a talk on this topic. We then
started to collaborate by showing that for singleton genomes without gene repe-
titions, under the breakpoint distance, even the two-sided scaffold filling problem
(i.e., both G,H are incomplete scaffolds or permutations) is polynomially solv-
able [40]. Then this result is generalized to multichromosomal genomes under the
DCJ distance [44].

When genomes contain some duplicated genes, the scenario is completely dif-
ferent. There are three general criteria (or distance) to measure the similarity of
genomes: the exemplar genomic distance [59], the minimum common string parti-
tion (MCSP) distance [30] and the maximum number of common string adjacen-
cies [2, 41, 44]. Unfortunately, as covered in Sect. 9.2, unless P=NP, there does
not exist any polynomial-time approximation (regardless of the factor) for comput-
ing the exemplar genomic distance even when each gene is allowed to repeat three
times [21, 24] or even two times [13, 47]. The MCSP problem is NP-complete even
if each gene repeats at most two times [36] and the best known approximation fac-
tor for the general problem is O(logn log∗ n) [30]. Based on the maximum number
of common string adjacencies, Jiang et al. proved that the one-sided scaffold filling
problem is also NP-complete, and designed a 1.33-approximation algorithm with a
greedy strategy [41, 44]. As some of the details on handling breakpoints/adjacencies
for sequences are missing in [44], we try to present the complete solution here. We
comment that handling breakpoints/adjacencies for permutations is much easier.

9.4.1 Preliminaries

At first, we revise some necessary definitions, which are also defined in [44], but
not in a perfect way. (Also, note that the breakpoint and adjacency definitions are
more general than in Sect. 9.2 which only handle permutations.) We assume that all
genes and genomes are unsigned, and it is straightforward to generalize the result
to signed genomes. Given a gene set Σ , a string P is called permutation if each
element in Σ appears exactly once in P . We use c(P) to denote the set of elements
in permutation P . A string A is called sequence if some genes appear more than
once in A, and c(A) denotes genes of A, which is a multi-set of elements in Σ .
For example, Σ = {a, b, c, d}, A= abcdacd , c(A)= {a, a, b, c, c, d, d}. A scaffold
is an incomplete sequence, typically obtained by some sequencing and assembling
process. A substring with m genes (in a sequence) is called an m-substring, and a
2-substring is also called a pair, as the genes are unsigned, the relative order of the
two genes of a pair does not matter, i.e., the pair xy is equal to the pair yx. Given
a scaffold A = a1a2a3 . . . an, let PA = {a1a2, a2a3, . . . , an−1an} be the set of pairs
in A.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 193

scaffold A = 〈c b c e d a b a 〉
scaffold B = 〈a b a b d c〉

PA = {cb, bc, ce, ed, da, ab, ba}
PB = {ab, ba, ab, bd, dc}

matched pairs : (ab↔ ba), (ba↔ ab)

a(A,B) = {ab, ba}
bA(A,B) = {cb, bc, ce, ed, da}
bB(A,B) = {ab, bd, dc}

bp-strings in A : c b c e d a

bp-strings in B : a b, b d c

Fig. 9.1 An example for adjacency, breakpoint and the related definitions

Definition 1 Given two scaffolds A= a1a2 . . . an and B = b1b2 . . . bm, if aiai+1 =
bjbj+1 (or aiai+1 = bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB , we say that
aiai+1 and bjbj+1 are matched to each other. In a maximum matching of pairs in
PA and PB , a matched pair is called an adjacency, and an unmatched pair is called
a breakpoint in A and B , respectively.

It follows from the definition that scaffolds A and B contain the same set of adja-
cencies but distinct breakpoints. The maximum matched pairs in B (or equally, in A)
form the adjacency set between A and B , denoted as a(A,B). We use bA(A,B) and
bB(A,B) to denote the set of breakpoints in A and B , respectively. A gene is called
a bp-gene, if it appears in a breakpoint. A maximal substring T of A (or B) is call a
bp-string, if each pair in it is a breakpoint. The leftmost and rightmost genes of a bp-
string T are call the end-genes of T , the other genes in T are called the mid-genes
of T . We illustrate the above definitions in Fig. 9.1.

Given two scaffolds A = a1a2 . . . an and B = b1b2 . . . bm, as we can see, each
gene except the four ending ones is involved in two adjacencies or two breakpoints
or one adjacency and one breakpoint. To get rid of this imbalance, we add “#” to both
ends of A and B , which fixes a small bug in [41, 44]. From now on, we assume that
A= a0a1 . . . anan+1 and B = b0b1 . . . bmbm+1, where a0 = an+1 = b0 = bm+1 = #.

For a sequence A and a multi-set of elements X, let A + X be the set of all
possible resulting sequences after filling all the elements in X into A. Now, we
define the problems we study in this paper formally.

Definition 2 Scaffold Filling to Maximize the Number of (String) Adjacencies (SF-
MNSA).

Input: Two scaffolds A and B over a gene set Σ and two multi-sets of elements X

and Y , where X = c(B)− c(A) and Y = c(A)− c(B).
Question: Find A∗ ∈A+X and B∗ ∈ B + Y such that |a(A∗,B∗)| is maximized.

The one-sided SF-MNSA problem is a special instance of the SF-MNSA problem
where one of X and Y is empty.

194 B. Zhu

Definition 3 One-sided SF-MNSA.

Input: A complete sequence G and an incomplete scaffold I over a gene set Σ ,
a multi-set X = c(G)− c(I) �= ∅ with c(I)− c(G)= ∅.

Question: Find I ∗ ∈ I +X such that |a(I ∗,G)| is maximized.

Note that while the two-sided SF-MNSA problem is more general and more diffi-
cult, the One-Sided SF-MNSA problem is more practical as a lot of genome analysis
are based on some reference genome [54].

We now list a few basic properties of this problem.

Lemma 1 Let G and I be the input of an instance of the One-sided SF-MNSA
problem, and x be any gene which appears the same times in G and I . If x does not
constitute breakpoint in G (resp. I), then it also does not constitute any breakpoint
in I (resp. G).

Proof W.L.O.G, assume that x appears q times in I and G, respectively. Also, as-
sume that there are q1 adjacencies in the form “xx”, and q2 adjacencies in the form
“xy” (y �= x) in G. In G, since each copy of x is involved in two adjacencies: one
adjacency on its left and one adjacency on its right, but the two x’s share the ad-
jacency “xx”, so the total number of adjacencies containing x is 2q − q1, then we
have 2q − q1 = q1 + q2, which implies 2q − 2q1 = q2.

In the scaffold I , there must be at least q1 “xx” adjacencies. As x appears only q

times, x has 2q neighbors where there are at least 2q1 x’s. So x has at most 2q−2q1

neighbors which are not x, which means that there are at most 2q− 2q1 (=q2) pairs
in the form “xy” (y �= x) in I . Since there are q2 “xy” (y �= x) adjacencies in G,
there must be q2 “xy” (y �= x) adjacencies in I . Therefore, there are exactly q1

adjacencies in the form “xx”, and all the q2 pairs in the form “xy” (y �= x) are
adjacencies in I , and none of them is a breakpoint. �

Lemma 2 Let G and I be the input of an instance of the One-sided SF-MNSA
problem, let bp(I) and bp(G) be the multi-set of bp-genes in I and G, respectively.
Then any gene in bp(G) appears in bp(I)∪X, and bp(I)⊆ bp(G).

Proof Assume to the contrary that there exists a gene x, x ∈ bp(G), but x /∈
bp(I) ∪ X. Since x /∈ X, x appears the same number of times in G and I ; more-
over, x /∈ bp(I), then all the pairs in I containing x are adjacencies. From Lemma 1,
all the pairs involving x in G are adjacencies, contradicting the assumption that
x ∈ bp(G). So any gene in bp(G) appears in bp(I)∪X. By a similar argument, we
can prove bp(I)⊆ bp(G). �

Each breakpoint contains two genes, from what we discussed in Lemma 2, ev-
ery breakpoint in the complete sequence G belongs to one of the three multi-sets
according to the affiliation of its two bp-genes.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 195

scaffold G = 〈#1 2 3 4 a x y b #〉
scaffold I = 〈#1 3 2 4 a b #〉

X = {x, y}
a(I,G) = {#1,23,4a, b#}

bG(I,G) = {12,34, ax, xy, yb}
BP1(G) = {ax, yb}
BP2(G) = {xy}
BP3(G) = {12,34}
bI (I,G) = {13,24, ab}

Fig. 9.2 Classification of the breakpoints

BP1(G): breakpoints with one bp-gene in X and the other bp-gene not in X.
BP2(G): breakpoints with both of the bp-genes in X.
BP3(G): breakpoints with both of the bp-genes not in X.

An example is shown in Fig. 9.2.

9.4.2 Approximation Algorithm for One-Sided SF-MNSA

In this subsection, we present a 1.33-Approximation algorithm for the one-sided
SF-MNSA problem. The goal of solving this problem is, while inserting the genes
of X into the scaffold I , to obtain as many adjacencies as possible. No matter in
what order the genes are inserted, they appears in groups in the final I ′ ∈ I +X, so
we can consider that I ′ is obtained by inserting strings (composed of genes of X)
into I .

Obviously, inserting a string of length one (i.e., a single gene) will generate at
most two adjacencies, and inserting a string of length m will generate at most m+ 1
adjacencies. Therefore, we will have two types of inserted strings.

1. Type-1: a string of k missing genes x1, x2, . . . , xk are inserted in between yiyi+1
in the scaffold I to obtain k+1 adjacencies (i.e., yix1, x1x2, . . . , xk−1xk , xkyi+1),
where yiyi+1 is a breakpoint.

In this case, x1x2 . . . xk is called a k-Type-1 string, yiyi+1 is called a dock, and
we also say that yiyi+1 docks the corresponding k-Type-1 string x1x2 . . . xk .

2. Type-2: a sequence of l missing genes z1, z2, . . . , zl are inserted in between
yjyj+1 in the scaffold I to obtain l adjacencies (i.e., yj z1 or zlyj+1, z1z2, . . . ,
zl−1zl), where yjyj+1 is a breakpoint; or a sequence of l missing genes
z1, z2, . . . , zl are inserted in between yjyj+1 in the scaffold I to obtain l + 1
adjacencies (i.e., yj z1, z1z2, . . . , zl−1zl , zlyj+1), where yjyj+1 is an adja-
cency.

196 B. Zhu

This is the basic observation for devising our algorithm. Most of our work is
devoted to searching the Type-1 strings.

Searching the 1-Type-1 Strings To identify the 1-Type-1 strings, we use a greedy
method. For each gene xi of X and each breakpoint yjyj+1 of bI (I,G), if we can
obtain two adjacencies by inserting xi in between yjyj+1, then insert xi to yjyj+1.

Algorithm 1: Greedy1(G, I)
1 Insert xi in between yj yj+1 whenever two new adjacencies are generated,

where xi ∈X and yj yj+1 ∈ bI (I,G).

Searching the 2-Type-1 Strings To identify the 2-Type-1 strings, we again use
a greedy method. For each pair of missing genes xixk if we can obtain three adja-
cencies by inserting xixk in between yjyj+1, where yjyj+1 ∈ bI (I,G), then insert
xixk in between yjyj+1.

Algorithm 2: Greedy2(G,I)
1 Insert xixk in between yj yj+1 whenever three new adjacencies are generated,

where xi, xk ∈X and yj yj+1 ∈ bI (I,G).

Inserting the Remaining Genes In this subsection, we present a polynomial-
time algorithm guaranteeing that the number of adjacencies increases by the same
number of the genes inserted. A general idea of this algorithm was mentioned
in [44], with many details missing, and we will present the details here.

Given the complete sequence G and the scaffold I , as we discussed in Sect. 9.4.1,
the breakpoints in G can be divided into three sets: BP1(G), BP2(G), and BP3(G).
In any case, the breakpoints in BP3(G) cannot be converted into adjacencies; so we
try to convert the breakpoints in BP1(G) and BP2(G) into adjacencies.

Lemma 3 If BP1(G) �= ∅, then there exists a breakpoint in I where after some gene
of X is inserted, the number of adjacencies increases by one.

Proof Let ti ti+1 be a breakpoint in G, satisfying that ti ti+1 ∈ BP1(G), ti ∈X, and,
from Lemma 2, ti+1 ∈ bp(I). Then, there exists a breakpoint ti+1sj or skti+1 in I .
Hence, if we insert ti in between that breakpoint, we will obtain a new adjacency
ti ti+1 without affecting any other adjacency. �

Thus, it is trivial to obtain one more adjacency whenever BP1(G) �= ∅.

Lemma 4 For any x ∈ X ∩ c(I), if there is an “xx” breakpoint in G then after
inserting x in between some “xy” pair in I , the number of adjacencies increases
by one.

Proof If “xy” is a breakpoint, then after inserting an ‘x’ in between it, we obtain a
new adjacency “xx”. If “xy” is an adjacency, then after inserting an ‘x’ in between
it, we have “xxy”. The adjacency “xy” still exists, and we obtain a new adjacency
“xx”. �

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 197

Lemma 5 If there is a breakpoint “xy” in BP2(G) and a breakpoint “xz” (resp.
“yz”) in I , then after inserting y (resp. x) in between “xz” (resp. “yz”) in I , the
number of adjacencies increases by one.

Proof From the definition of BP2(G), we know that x, y ∈X. Since “xy” is a break-
point in G and “xz” is a breakpoint in I , we obtain a new adjacency “xy” by insert-
ing y in between “xz”, without affecting any other adjacency. A similar argument
for inserting x in between “yz” also holds. �

Next, we show that the following case is polynomially solvable. This case satis-
fies the following conditions.

1. BP1(G)= ∅;
2. It does not contain a breakpoint like “xx” in G unless x /∈X ∩ c(I);
3. For any breakpoint of the form “xy” in BP2(G), all the pairs in I involving x or

y are adjacencies.

Let BS2(G) be the set of bp-strings in G with all breakpoints belonging to
BP2(G).

Lemma 6 In the case satisfying (1), (2) and (3), the number of times a gene appears
as an end-gene of some bp-string of BS2(G) is even.

Proof Let gene x = ti be an end-gene of some bp-string ti ti+1 . . . tj of BS2(G).
Since BP1(G) = ∅ and x will not be involved in any breakpoint of BP3(G), ti−1ti
must be an adjacency. Assume that x appears q times in G and q ′ (<q) times in I .
As there is no breakpoint in the form “xx” in G and I , we could assume that there
are q1 adjacencies in the form “xx” in G and I . Then, the total number of pairs
(adjacencies and breakpoints) involving x in G is 2(q−q1), and of which, 2(q ′−q1)

are adjacencies. So the number of breakpoints involving x in G is 2(q − q ′), which
is even. An end-gene only constitutes one breakpoint and other mid-genes each
constitutes two breakpoints. Therefore, any gene should appear at the end of some
bp-string of BS2(G) for an even number of times. �

From Lemma 6, if we denote each bp-string of BS2(G) by a vertex, and there
is an edge between two vertices iff their corresponding bp-strings have a common
end-gene, the resulting graph contains a cycle of distinct vertices. Traveling this
cycle, concatenating the bp-strings corresponding to the vertices, and deleting one
copy of the common end-gene, eventually we can obtain a string composed of genes
of X. The following lemma and corollary shows that this string can be inserted into
I entirely, generating no breakpoint at all.

Lemma 7 In the case satisfying (1), (2) and (3), for a gene x, let q1 be the number
that it appears as an end-gene, let q2 be the number that it appears in some bp-
string of BS2(G) as a mid-gene, and let r be the number that it appears in X. Then,
we have r = q1/2+ q2.

198 B. Zhu

Proof Assume that x appears q times in G, q ′ (< q) times in I , and there are p

adjacencies in the form “xx” in G and I . Then, the total number of pairs (adjacen-
cies and breakpoints) involving x in G is 2(q − p), and of which, 2(q ′ − p) are
adjacencies. So the number of breakpoints involving x in G is 2(q − q ′). Each x of
q1 end-genes contributes to one breakpoint, and each x of q2 mid-genes contributes
to two breakpoints, thus, 2(q − q ′)= q1 + 2q2. Note that (q − q ′) is exactly r ; and
following Lemma 6, q1 is even. Then, r = q1/2+ q2. �

We summarize the above ideas as the following algorithm, which ensures us to
obtain as many adjacencies as the number of missing genes inserted.

For two strings s1 and s2, if the right end-gene r(s1) of s1 is the same as the
left end-gene �(s2) of s2, we use s1 �� s2 to represent the string obtained by first
concatenating s1 with s2 and then delete one copy of r(s1) and �(s2). For example,
s1 = acbd , s2 = decb, then s1 �� s2 = abcdecb.

Theorem 7 The algorithm Insert-Whole-Strings(•) guarantees that the number of
adjacencies increased is not smaller than the number of genes inserted.

Proof At step 2, 3, 4 of the algorithm, one gene is inserted into I and each time one
more adjacency is obtained. At each round of step 6, a string of length l is inserted in
between an adjacency in I , then we obtain l+1 new adjacencies with one destroyed.
So the number of adjacencies increased is not smaller than the number of genes
inserted. �

Algorithm 3: Insert-Whole-Strings(G,I)
1 Identify the adjacencies and breakpoints in G and I .
2 If BP1(G) �= ∅,

Insert a gene of X into I according to Lemma 3.
3 If there is an “xx” breakpoint in G, x ∈X

Insert x into I according to Lemma 4.
4 If there is an “xy” breakpoint in G and an “xz” breakpoint in I , x, y ∈X,

Insert y into Y according to Lemma 5.
5 Compute the set of bp-strings BS2(G)= {s1, . . . , sp , where sj = xj,1 . . . xj,uj

and all xj,k ∈X}.
6 WHILE (BS2(G) �= ∅)

\\ Compute a string L composed of some bp-strings of BS2(G)

whose two end-genes are the same.
{
(6.1) Choose any bp-string of BS2(G), say sj . Let L= sj = xj,1 . . . xj,uj

.
(6.2) WHILE (�(L) �= r(L))

Find a bp-string si = xi,1 . . . xi,ui
(or its reversal si = xi,ui

. . . xi,1) of
BS2(G), such that r(L)= �(si) or r(L)= �(si).
Update L← L �� si or L← L �� si .

(6.3) Replace some gene identical to �(L) in I by the string L.
(6.4) Update the set BS2(G).
}

7 Return the resulting I .

We run the above algorithm on the following example.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 199

G= #daebxceaf ceb1234#, I = #daf cxb1324#, X = {a, b, c, e, e, e},
BP1(G)= ∅, BP2(G)= {ae, eb, ce, ea, ce, eb}, BP3(G)= {12,34},

then the set of breakpoint strings BS2(G) = {aeb, cea, ceb}. According to the al-
gorithm, we have L = aebecea. Gene a in I is replaced with string L to obtain
sequence I ∗ = #daebeceaf cxb1324#. The number of adjacencies is added to by 6
and no new breakpoint is generated.

9.4.3 Analysis of the Approximation Algorithm

In this subsection, we will prove that the approximation factor of our algorithm
is 4/3. Firstly, we present a lower bound of the optimal solution.

A Lower Bound Given an instance of One-sided SF-MNSA, let I ∗ ∈ I + X

be the final scaffold in the optimal solution after inserting all genes of X into I .
Compared to I , all genes belonging to X appear as substrings in I ∗. Let x1x2 . . . xl

be a string inserted in between yiyi+1 in I ∗, then either yix1 or xlyi+1 or both
are adjacencies. Since otherwise, we could delete this string from I ∗ (number of
adjacencies decreases by at most l − 1), re-insert it following the algorithm Insert-
Whole-Strings(•) (number of adjacencies increases by at least l), and obtain one
more adjacency. Thus, we have the following corollary of Theorem 7,

Corollary 1 Each substring in I ∗ composed of genes of X is either Type-1 or
Type-2.

Now, we present a lower bound for the optimal number of adjacencies.

Lemma 8 Let OPT be the number of adjacencies between G and I ∗, k0 be the
number of adjacencies between G and I , and k1 = |X|. Let bi be the number of
i-Type-1 substrings and q be the maximum length of Type-1 substrings in the opti-
mal solution between G and I ∗. Then

OPT − k0 = k1 + b1 + b2 + · · · + bq ≤ 4

3

(
k1 + 1

2
b1 + 1

4
b2

)
(9.1)

Proof Define C as the total number of genes in Type-2 substrings in I ∗. Since insert-
ing an l-Type-1 string will generate l+1 more adjacencies, and inserting a l-Type-2
string will generate l more adjacencies, we have,

OPT = k0 +
q∑

i=1

(i + 1)× bi +C.

200 B. Zhu

By the definition of Type-1 and Type-2 substrings, we have

k1 =
q∑

i=1

(i × bi)+C ≥ b1 + 2b2 + 3(b3 + b4 + · · · + bq)+C.

Thus,
q∑

i=3

bi ≤ (k1 −C − b1 − 2b2)/3.

Hence, we have

OPT − k0 = C +
q∑

i=1

i × bi + b1 + b2 + · · · + bq

= k1 + b1 + b2 + · · · + bq

≤ k1 + b1 + b2 + (k1 −C − b1 − 2b2)/3

≤ 4

3

(
k1 + 1

2
b1 + 1

4
b2

)
. �

Lemma 8 shows that if the number of Type-1 substrings computed in the approx-
imation algorithm is not smaller than (2b1 + b2)/4, then the approximation factor
is 4/3.

Description of the Main Algorithm There are three main steps in our algorithm.
Firstly, we try to search the 1-Type-1 strings; secondly, we try to search the 2-Type-1
strings; finally, we insert the remaining genes in X, guaranteeing that on average we
will obtain at least one adjacency for each inserted missing gene.

Main Algorithm
Input: Complete sequence G and incomplete scaffold I , X = c(G)− c(I).
Output: I ′ ∈ I +X

1 Call Greedy1(G,I), let the resulting incomplete scaffold be I1.
2 Call Greedy2(G,I1), let the resulting incomplete scaffold be I2.
3 Call Insert-Whole-Strings(G,I2). Let the resulting complete scaffold be I ′.
4 Return I ′.

9.4.4 Proof of the Approximation Factor

In our algorithm, we make effort to insert Type-1 substrings as much as possible.
But a Type-1 substring (say Is) inserted by our algorithm may make other Type-1
substrings in some optimal solution infeasible, we say Is destroys them. The fol-
lowing lemma shows the number of Type-1 substrings that could be destroyed by a
given Type-1 substring.

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 201

Lemma 9 A i-Type-1 substring can destroy at most i+1 Type-1 substrings in some
optimal solution.

Proof Assume that an i-Type-1 substring Is is inserted in between some breakpoint
yjyj+1 in I . Then each of the genes in Is , if not use by Is , could form a distinct
Type-1 substring in some optimal solution. Also, there may exist another Type-1
substring that could be inserted in between the breakpoint yjyj+1 in the optimal
solution. Totally, at most i + 1 Type-1 substrings in the optimal solution could be
destroyed by Is . �

We have the following lemma regarding this greedy algorithm.

Lemma 10 Let b′1, b′2 be the number of type-1 1-substrings and 2-substrings in-
serted at Step 1 and Step 2 of our greedy algorithm, respectively. Then b′1 + b′2 ≥
b1
2 + b2

4 .

Proof Let k′1, k′2 be the number of missing genes inserted at Step 1 and Step 2,
respectively. (So b′1 = k′1 and b′2 = k′2/2.) First, by Lemma 9, each of the k′1 in-
serted missing genes can destroy at most two type-1 1-substrings in some optimal
solution. Moreover, each of the k′1 inserted missing genes can destroy at most two
type-1 2-substrings in some optimal solution, this will be illustrated with an exam-
ple at the end of this paragraph. Let b′10 be the number of missing genes inserted at
Step 1 which destroy exactly one type-1 1-substring (and some type-1 m-substring,
with m ≥ 3) in some optimal solution. Let b′11 be the number of missing genes
inserted at Step 1 which destroy exactly two type-1 1-substrings in some optimal
solution. Let b′12 be the number of missing genes inserted at Step 1 which destroy
one type-1 1-substring and one type-1 2-substring in some optimal solution. Let b′13
be the number of missing genes inserted at Step 1 which destroy exactly two type-1
2-substrings in some optimal solution. Obviously,

k′1 = b′1 = b′10 + b′11 + b′12 + b′13.

Then, we show an example for a, one of the b′13 inserted missing genes that de-
stroy two type-1 2-substrings in the optimal solution (i.e., counted into b2). Let
G= . . . αaβ . . . γ abδ . . . αuvβ . . . and let I = α . . . αβ . . . γ δ . . . β . . . a We need
to insert a, b,u, v into I . Due to the greedy fashion of the algorithm, a is inserted
between α,β in I to have αaβ (destroying the possibility of inserting uv at the same
location). On the other hand, due to the insertion of a (instead of ab), ab cannot be
inserted in between γ and δ. Therefore, we destroy the optimal adjacencies 〈αuvβ〉
and 〈γ abδ〉 (with the corresponding two type-1 2-substrings: uv and ab).

Again, by Lemma 9, at Step 2, each of the inserted 2-type-1 substrings can de-
stroy at most three 2-type-1 substrings in some optimal solution.

Now, putting all together,

b1 ≤ b′10 + 2b′11 + b′12,

202 B. Zhu

and

b2 ≤ 3b′2 + b′12 + 2b′13.

Then

b1

2
+ b2

4
≤ b′10 + 2b′11 + b′12

2
+ 3b′2 + b′12 + 2b′13

4

=
(

b′10

2
+ b′11 +

3b′12

4
+ b′13

2

)
+ 3b′2

4

≤ b′1 + b′2 �

Theorem 8 There is a greedy algorithm which approximates One-sided SF-MNSA
with a factor of 1.33.

Proof Following the greedy algorithm, Theorem 7, Lemma 8, and Lemma 10, we
have the approximation solution value APP, which satisfies the following inequali-
ties:

APP− k0 = k1 + b′1 + b′2 ≥ k1 + 1

2
b1 + 1

4
b2 ≥ 3

4
(OPT − k0).

So, we have APP≥ 3
4 OPT + 1

4k0 ≥ 3
4 OPT . Hence OPT

APP ≤ 1.33, and the theorem
is proven. �

In [51], a better factor-1.25 approximation was proposed. While the overall
framework is similar, the details are quite different. The new approximation is
achieved by a combination of maximum matching, local improvement and greedy
search.

9.5 Concluding Remarks and Open Problems

The negative results on EBD and ENbS do not mean that we have absolutely no way
to tackle these problems. For instance, in [1], with integer linear programming, very
nice empirical results are obtained. Here, we try to present a different way to handle
these problems formally.

In many biological problems, the optimal solution value OPT could be zero. (Be-
sides EBD, in some minimum recombination haplotype reconstruction problems the
optimal solution value could be zero.) As implied by Theorem 1, if computing such
an optimal solution with zero solution value is NP-complete then the problem does
not admit any polynomial-time approximation (unless P=NP). However, in reality
one would be satisfied to obtain a solution with value one or two. Due to this reason,
we can relax the traditional definition of approximation to a weak approximation.
Given a minimization problem Π , let the optimal solution of Π be OPT. We say
that a weak approximation algorithm W provides a performance guarantee of α

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 203

for Π if for every instance I of Π , the solution value returned by W is at most
α× (OPT + 1).

In [21, 22, 24] we showed that EBD and the exemplar conserved interval distance
problems are both hard to approximate even under the weak approximation model.
But for the exemplar reversal distance problem, no such result is known yet.

For the exemplar common interval number problem [12], the only negative re-
sult is its NP-hardness. It would also be interesting to know whether it admits an
efficient polynomial-time approximation. We conclude this paper with a list of open
problems.

1. For the One-sided Exemplar Breakpoint Distance problem, does there exist a
factor-o(n) approximation? The only known negative result is the APX-hardness
of the problem.

2. For the exemplar common interval number problem, does there exist a good ap-
proximation?

3. For the CMSR problem, does there exist faster FPT algorithm and/or a smaller
linear kernel?

4. For the One-side SF-MNSA problem, does there exist an FPT algorithm?

Acknowledgements I would like to thank my collaborators for this series of research: Zhixiang
Chen, Richard Fowler, Bin Fu, Haitao Jiang, Minghui Jiang, Zhong Li, Guohui Lin, Nan Liu, David
Sankoff, Weitian Tong, Lusheng Wang, Boting Yang, Zhiyu Zhao, Chunfang Zheng and Daming
Zhu.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the
number of breakpoints and the number of adjacencies between two genomes with duplicate
genes. J. Comput. Biol. 15, 1093–1115 (2008)

2. Angibaud, S., Fertin, G., Rusu, I., Thevenin, A., Vialette, S.: On the approximability of com-
paring genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)

3. Bader, D., Moret, B., Yan, M.: A linear-time algorithm for computing inversion distance be-
tween signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001)

4. Bafna, V., Pevzner, P.: Sorting by reversals: genome rearrangements in plant organelles and
evolutionary history of X chromosome. Mol. Biol. Evol. 12, 239–246 (1995)

5. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.(S.), Shachnai, H., Shapira, I.: Scheduling split
intervals. SIAM J. Comput. 36, 1–15 (2006)

6. Bereg, S., Jiang, M., Wang, W., Yang, B., Zhu, B.: Simplifying 3D polygonal chains under the
discrete Fréchet distance. In: Proc. 8th Latin American Theoretical Informatics Symposium
(LATIN’08), April 7–11, 2008. LNCS, vol. 4957, pp. 630–641 (2008)

7. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. J. Comput. Biol. 13(2),
567–578 (2006)

8. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to
genome comparison. In: Proc. 9th Intl. Ann. Comput. and Combinatorics (COCOON’03).
LNCS, vol. 2697, pp. 68–79 (2003)

9. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by
reversals. In: Proceedings of the 10th Annual European Symposium on Algorithms (ESA’02),
pp. 200–210 (2002)

204 B. Zhu

10. Bertrand, D., Blanchette, M., El-Mabrouk, N.: Genetic map refinement using a comparative
genomic approach. J. Comput. Biol. 16(10), 1475–1486 (2009)

11. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes.
In: Proc. 11th Intl. Ann. Comput. and Combinatorics (COCOON’05). LNCS, vol. 3595,
pp. 22–31 (2005)

12. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplicates:
a computational complexity point of view. IEEE/ACM Trans. Comput. Biol. Bioinform. 4,
523–534 (2007)

13. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The exemplar breakpoint distance for non-trivial
genomes cannot be approximated. In: Proc. 3nd Workshop on Algorithm and Computation
(WALCOM’09). LNCS, vol. 5431, pp. 357–368 (2009)

14. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.
(eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynam-
ics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Academic,
Dordrecht (2000)

15. Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and approximability of maximal strip
recovery. Theor. Comput. Sci. 440–441, 14–28 (2012)

16. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J. Discrete Math.
26(3), 1148–1180 (2012)

17. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM J.
Discrete Math. 12, 91–110 (1999)

18. Chen, J., Huang, X., Kanj, I., Xia, G.: Linear FPT reductions and computational lower bounds.
In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC’04), pp. 212–
221 (2004)

19. Chen, X.: On sorting permutations by double-cut-and-joins. In: Proc. of the 16th International
Conf. on Computing and Combinatorics (COCOON’10), pp. 439–448 (2010)

20. Chen, X., Sun, R., Yu, J.: Approximating the double-cut-and-join distance between unsigned
genomes. BMC Bioinform. 12(Suppl. 9), S17 (2011)

21. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem.
In: Proc. 2nd Intl. Conf. on Algorithmic Aspects in Information and Management (AAIM’06).
LNCS, vol. 4041, pp. 291–302 (2006)

22. Chen, Z., Fu, B., Fowler, R., Zhu, B.: Lower bounds on the approximation of the exemplar
conserved interval distance problem of genomes. In: Proc. 12th Intl. Ann. Comput. and Com-
binatorics (COCOON’06). LNCS, vol. 4112, pp. 245–254 (2006)

23. Chen, Z., Fu, B., Yang, B., Xu, J., Zhao, Z., Zhu, B.: Non-breaking similarity of genomes with
gene repetitions. In: Proceedings of the 18th Annual Symposium on Combinatorial Pattern
Matching (CPM’07). LNCS, vol. 4580, pp. 119–130 (2007)

24. Chen, Z., Fu, B., Fowler, R., Zhu, B.: On the inapproximability of the exemplar conserved
interval distance problem of genomes. J. Comb. Optim. 15(2), 201–221 (2008)

25. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps.
J. Comb. Optim. 18, 307–318 (2009)

26. Chen, Z., Fu, B., Goebel, R., Lin, G., Tong, W., Xu, J., Yang, B., Zhao, Z., Zhu, B.: On the
approximability of the exemplar non-breakpoint similarity problem of genomes with gene
repetitions. Theor. Comput. Sci. (2013, to appear)

27. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks
from comparative maps. In: Proc. of the 7th International Workshop on Algorithms in Bioin-
formatics (WABI’07), pp. 277–288 (2007)

28. Christie, D.: A 3/2-approximation algorithm for sorting by reversals. In: Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98), pp. 244–252 (1998)

29. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT
Press, Cambridge (2001)

30. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In:
Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA’02), pp. 667–676 (2002)

9 A Retrospective on Genomic Preprocessing for Comparative Genomics 205

31. Cui, Y., Wang, L., Zhu, D., Liu, X.: A (1.5+ε)-approximation algorithm for unsigned translo-
cation distance. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(1), 56–66 (2008)

32. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Berlin (1999)
33. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions.

IEEE/ACM Trans. Comput. Biol. Bioinform. 3, 369–379 (2006)
34. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Complete-

ness. Freeman, San Francisco (1979)
35. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford

(2004)
36. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning problem: hard-

ness and approximations. In: Proc.15th Intl. Symposium on Algorithms and Computation
(ISAAC’04). LNCS, vol. 3341, pp. 473–484 (2011). Also in: Electron. J. Comb. 12, paper
R50 (2005)

37. Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between
genomes. Discrete Appl. Math. 71(1–3), 137–151 (1996)

38. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sort-
ing signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

39. Hästad, J.: Clique is hard to approximate within n1−ε . Acta Math. 182, 105–142 (1999)
40. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint distance.

In: Proc. of the 2010 International RECOMB-CG Workshop (RECOMB-CG’10). LNBI,
vol. 6398, pp. 83–92 (2010)

41. Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: maximizing the num-
ber of adjacencies. In: Proc. 22nd Annual Symposium on Combinatorial Pattern Matching
(CPM’11). LNCS, vol. 6661, pp. 55–64 (2011)

42. Jiang, H., Zhu, B., Zhu, D.: Algorithms for sorting unsigned linear genomes by the DCJ oper-
ations. Bioinformatics 27(3), 311–316 (2011)

43. Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms for the
complementary maximal strip recovery problem. J. Comb. Optim. 23(4), 493–506 (2012)

44. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and related
distances. IEEE/ACM Trans. Bioinform. Comput. Biol. 9(4), 1220–1229 (2012)

45. Jiang, H., Zhu, B.: A linear kernel for the complementary maximal strip recovery problem. In:
Proc. 23rd Annual Combinatorial Pattern Matching Symposium (CPM’12). LNCS, vol. 7354,
pp. 349–359 (2012)

46. Jiang, H., Wang, L., Zhu, B., Zhu, D.: A (1.408 + ε)-approximation algorithm for sorting
unsigned genomes by reciprocal translocations. In: RECOMB’13, poster (2013)

47. Jiang, M.: The zero exemplar distance problem. In: Proc. of the 2010 International RECOMB-
CG Workshop (RECOMB-CG’10). LNBI, vol. 6398, pp. 74–82 (2010)

48. Kaplan, H., Shamir, R., Tarjan, R.: A faster and simpler algorithm for sorting signed permu-
tations by reversals. SIAM J. Comput. 29, 880–892 (1999)

49. Li, G., Qin, X., Wang, X., Zhu, B.: A linear-time algorithm for computing translocation dis-
tance between signed genomes. In: Proc. of the 15th Annual Symposium on Combinatorial
Pattern Matching (CPM’04), pp. 323–332 (2004)

50. Lin, G., Goebel, R., Li, Z., Wang, L.: An improved approximation algorithm for the comple-
mentary maximal strip recovery problem. J. Comput. Syst. Sci. 78(3), 720–730 (2012)

51. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An improved approximation algorithm for scaffold filling
to maximize the common adjacencies. In: Proc. of the 19th Intl. Conf. on Computing and
Combinatorics (COCOON’13). LNCS, vol. 7936, pp. 397–408 (2013)

52. Makaroff, C., Palmer, J.: Mitochondrial DNA rearrangements and transcriptional alternatives
in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474–1480 (1988)

53. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theor.
Comput. Sci. 325(3), 347–360 (2004)

54. Muñoz, A., Zheng, C., Zhu, Q., Albert, V., Rounsley, S., Sankoff, D.: Scaffold filling, contig
fusion and gene order comparison. BMC Bioinform. 11, 304 (2010)

206 B. Zhu

55. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint
distance. Bioinformatics 21(10), 2171–2176 (2005)

56. Ozery-Flato, M., Shamir, R.: An O(n
3
2
√

logn) algorithm for sorting by reciprocal transloca-
tions. J. Discrete Algorithms 9(4), 344–357 (2011)

57. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in
sequence. J. Mol. Evol. 27, 87–97 (1988)

58. Peng, C., Zhou, J., Zhu, B., Zhu, H.: The program download problem: complexity and algo-
rithms. In: Proc. of the 19th Intl. Conf. on Computing and Combinatorics (COCOON’13).
LNCS, vol. 7936, pp. 688–695 (2013)

59. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–917
(1999)

60. Schaefer, T.: The complexity of satisfiability problem. In: Proceedings of the 10th ACM Sym-
posium on Theory of Computing (STOC’78), pp. 216–226 (1978)

61. Sturtevant, A.: A crossover reducer in Drosophila melanogaster due to inversion of a section
of the third chromosome. Biol. Zent.bl. 46, 697–702 (1926)

62. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila
pseudoobscura, and their use in the study of the history of the species. Proc. Natl. Acad. Sci.
USA 22, 448–450 (1936)

63. Swenson, K., Rajan, V., Lin, Y., Moret, B.: Sorting signed permutations by inversions in
O(n logn) time. J. Comput. Biol. 17(3), 489–501 (2010)

64. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Proc. of 15th Symp.
Combinatorial Pattern Matching (CPM’04), pp. 1–13 (2004)

65. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. J. Comput. Biol. 17(7), 907–
914 (2010). (Correction, 18(1) (Jan. 2011))

66. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theor.
Biol. 99, 1–7 (1982)

67. Wylie, T., Zhu, B.: Protein chain pair simplification under the discrete Frechet dis-
tance. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013). doi:167B699B-E22D-471A-8EE7-
01F51E8230D4. Special Issue of ISBRA’12

68. Yap, I., Schneider, D., Kleinberg, J., et al.: A graph-theoretic approach to comparing and
integrating genetic, physical and sequence-based maps. Genetics 165, 2235–2247 (2003)

69. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translo-
cation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)

70. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in
rearrangement analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 515–522 (2007)

71. Zhu, D., Wang, L.: On the complexity of unsigned translocation distance. Theor. Comput. Sci.
352(1–3), 322–328 (2006)

http://dx.doi.org/167B699B-E22D-471A-8EE7-01F51E8230D4
http://dx.doi.org/167B699B-E22D-471A-8EE7-01F51E8230D4

Chapter 10
The Emperor Has No Caps! A Comparison
of DCJ and Algebraic Distances

Joao Meidanis and Sophia Yancopoulos

Abstract In this chapter we investigate the DCJ and algebraic distances and how
they are found. We introduce a new graphical method to determine the permutation
cycles which embody the composition permutation for the genome transformation in
the algebraic method. This graphical method helps tie the two approaches together.
In the usual approaches, the two methods differ only in the distance component due
to the even paths in the adjacency graph of Bergeron, Mixtacki, and Stoye involv-
ing operations changing type and number of chromosomes, such as fission, fusion,
altering chromosome type from circular to linear, and vice versa. Discussing each
distance individually, we compare their underlying assumptions. Both methods re-
sort to cycles to determine the distance, but the basic DCJ uses “caps” to close paths.
Without caps the algebraic distance differs from the standard DCJ for even paths.
However, if caps and null chromosomes are added, the weighting schemes agree.
A convention which can be done in multiple ways is the method of path closure. We
discuss implementation of the original closure rule to arrive at the usual weighting
scheme for the DCJ. Instead, by a new alternative closure rule which we intro-
duce, the distance diverts to the algebraic distance. Finally, we note that although
the Bergeron, Mixtacki, and Stoye DCJ approach via the adjacency graph does away
with “fictitious” caps and nulls, vestiges of fictitious operations may remain, as the
resulting weighting scheme is equivalent to that of the basic DCJ.

So now the Emperor walked under his high canopy in the midst of the procession, through
the streets of his capital; and all the people standing by, and those at the windows, cried out,
“Oh! How beautiful are our Emperor’s new clothes! What a magnificent train there is to the

J. Meidanis
Scylla Bioinformatics, Campinas, SP, Brazil
e-mail: meidanis@scylla.com.br

J. Meidanis
University of Campinas, Campinas, SP, Brazil

S. Yancopoulos (B)
The Feinstein Institute for Medical Research, Manhasset, NY, USA
e-mail: sopheetsa@aol.com

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_10,
© Springer-Verlag London 2013

207

mailto:meidanis@scylla.com.br
mailto:sopheetsa@aol.com
http://dx.doi.org/10.1007/978-1-4471-5298-9_10

208 J. Meidanis and S. Yancopoulos

mantle; and how gracefully the scarf hangs!” in short, no one would allow that he could
not see these much-admired clothes; because, in doing so, he would have declared himself
either a simpleton or unfit for his office. Certainly, none of the Emperor’s various suits had
ever made so great an impression, as these invisible ones.
(Hans Christian Andersen, The Emperor’s New Clothes, Tales)

10.1 Introduction

The early history of genome rearrangements harks back to a groundbreaking paper
analyzing rearrangement scenarios in the fruit fly by Dobzhansky and Sturtevant in
1938 [7]. The onset of whole genome sequencing technologies made such studies
truly viable. Hot in pursuit of these developments, the field really took off when
David Sankoff and collaborators ushered in a new era of computationally based gene
order comparisons [16–18]. In a prescient paper, David Sankoff made a brilliant
intuitive leap to go from using edit distance based on the sequence level, to “non-
local” large-scale genome rearrangement operations [15].

The language and ideas of permutations have frequently been inextricably linked
with genome rearrangement studies [11, 12], however, much of the actual mechanics
of permutations has taken a back seat in theoretical developments, subsumed by
a graphical formalism that contains permutations implicitly, from the breakpoint
graph introduced by Bafna and Pevzner (1993) [3] to the more recent adjacency
graph of Bergeron et al. (2006) [4].

The recent reinjection of a more explicit algebraic formalism into the parlance
of genome rearrangements has reinvigorated the discourse and challenged some
of the basic underlying assumptions. Feijao and Meidanis’s Adjacency Algebraic
Method [9], a “hybrid” approach which combines the algebraic method with that
of the adjacency formalism inherent in the use of the adjacency graph, arrives at
some refreshingly unexpected results; these include a new weighting scheme for
previously considered operations, particularly linear fissions and fusions, and the
circularization or linearization of chromosomes.

In this chapter we focus on understanding the assumptions built into the new
(adjacency) algebraic formalism, comparing with those underlying the standard DCJ
approach. We explore how fundamental differences in the two approaches ultimately
lead to differences in the distance and weighting schemes.

We begin with an introduction to permutations and genome rearrangements, fol-
lowed by a brisk tour of classical models and operations. We introduce the DCJ and
the essentials of algebraic rearrangement theory. We proceed to examine transfor-
mations involving circular genomes, fundamentally suited to the algebraic approach.

We continue by presenting the DCJ as originally conceived, using caps and nulls
to effectively “circularize” all genomes. We transition to the algebraic method via
two new approaches, a capping scheme for the algebraic method which results in
the same distance as the standard DCJ and a new closure scheme that results in
the new distance implied by the algebraic method. These differences based on the
closure scenario allows us to realize the deep dependence of the capping and closure
schemes with the resulting distance and weights of operations.

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 209

Fig. 10.1 Chapter overview. Fundamental assumptions affect distance and weighting schemes in
the standard DCJ and Algebraic methods

We move on to examine the Adjacency Algebraic Theory and how it can be ap-
plied to linear chromosomes and transformations. We discuss a decomposition of the
Adjacency Graph (AG) into components, and how these are independent and con-
tribute independently to the distance. The essential components of the Adjacency
Graph are cycles, and even and odd paths. We examine how these contribute to the
genomic distance by the Adjacency Algebraic Theory, and contrast these contribu-
tions with the corresponding contributions for the DCJ.

Having developed the essential formalism for both methods, we go on to under-
stand the consequences of the formalism on operations for different transformations
as well as on the weighting scheme. We examine issues that arise from the intro-
duction of “fictitious elements” (caps and nulls) including the possible artificial op-
erations that may result as a consequence. We compare weighting schemes to see
what consequences there are for these operations, and speculate on possible alter-
native weighting schemes as well as generalizations. We explore the implications
including the correspondence to biology and conclude with open questions.

Figure 10.1 shows an overview of the results of this chapter.

10.1.1 Permutations and the Genome Rearrangement Problem

Mathematically, a permutation is a bijective function, or a bijection, taking a set A

to itself. Bijections can be represented as directed graphs where all vertices have

210 J. Meidanis and S. Yancopoulos

Fig. 10.2 Two permutations and their product. On top, we have the textual description of the
process. Below this, we show the directed graphs representing each permutation, with σ in red, π

in black, and the product σπ in blue

indegree 1 and outdegree 1. Such graphs are collections of directed cycles that we
call permutation cycles in this text.

Permutations are functions and can be composed as such. The composition of two
permutations σ and π , where π is applied before σ , is indicated as a product and
denoted by σπ (Fig. 10.2). In general σπ �= πσ . However, when two permutations
are disjoint, that is they do not have any elements in common, they commute and
σπ = πσ . The support of a permutation π is the set of elements that it moves, that
is, π(x) �= x. Disjoint permutations are permutations with disjoint supports.

In comparative genomics, evolutionary mutational processes causing large-scale
rearrangements involve a shuffling of syntenic segments [14]. Researches have mod-
eled this shuffling using permutations in a variety of ways.

For instance, in the paper by Bafna and Pevzner on the transposition problem [3],
a genome is defined as a function π : A �→ A, where A = {1,2, . . . , n} is used to
indicate both chromosome positions in the domain of π as well as genes in the
image of π . Transpositions are also modeled as permutations by Bafna and Pevzner.
Several other rearrangement problems have been modeled via permutations, with
adaptations for signed genes and multichromosomal settings [11, 12].

Meidanis and Dias [13] also use permutations, but in a different way. For them,
a genome is a function π : G �→ G, where G is the set of genes and their reverse
complements. No chromosomal positions are explicitly involved. The function π

indicates which gene follows another gene in the genome (they restrict their study
to circular genomes, where every gene in a chromosome has a successor). Feijao

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 211

and Meidanis [9] introduced yet another way of coding a genome as a permutation,
by using the function π to indicate adjacencies between gene ends.

10.1.2 Genomes and the Chromosomal Notation

In this chapter, we deal with multichromosomal, signed genomes. We consider
genomes that are collections of strictly linear or circular chromosomes, or a com-
bination of both, made up of genes from a fixed set G. No gene repetitions are
allowed, but all genes are always used in a pairwise comparison. We will represent
linear chromosomes as lists of genes comprised in brackets, e.g., [1,2,3], and circu-
lar chromosomes as lists of genes in parentheses, e.g., (1,2,3). Gene orientation is
indicated by a sign. So, for instance, π = {[1,2], (−3,−4,5)} is a two-chromosome
genome, with one linear and one circular chromosome. When there is no risk of con-
fusion, we will drop the curly brackets, writing just π = [1,2], (−3,−4,5).

Notice that this representation is not unique. For linear chromosomes, their re-
verse complement indicates the same chromosome, e.g., [1,2] = [−2,−1]. For
circular chromosomes, apart from the reverse complement, we also arbitrarily
choose a gene to start, as there is no preferred starting point, e.g, (−3,−4,5) =
(−4,5,−3)= (5,−3,−4).

Observe that there is nothing in this notation that requires genes to be identified
by integers. We can use letters, as in [a,−c,−b, d], or even the very names used in
biology to denote genes, such as dnaA, cox1, adh, or larger, contiguous regions, e.g.,
MHC, and so on. Nevertheless, for compatibility with the majority of theoretical
papers on rearrangements, we will represent genes by integers here.

We typically denote the total number of genes in genome π by Nπ , or just N

depending on context. We will also represent a gene a by its two gene ends or
extremities, with the tail denoted at , and its head, denoted by ah, where a gene is
typically oriented from tail to the head.

10.1.3 Genome Rearrangement Operations and Models

Given two genomes of equal gene content and a set of allowed operations, the most
basic question is to find the distance between these genomes, defined as the smallest
number of allowed operations that will transform one genome into the other. In its
full generality such a scheme allows for weights assigned to the operation, and the
distance then becomes the total weight of a minimum-weight series of allowed oper-
ations that transforms one genome into the other. An example of such an operation is
a reversal where a stretch of contiguous genes in a chromosome gets inverted, and
their signs flipped. For instance, genomes π = [1,2,3,4] and σ = [1,−3,−2,4]
differ by a reversal. Transforming one genome to another by a series of reversals is
a problem that has been well studied [3, 11, 12].

212 J. Meidanis and S. Yancopoulos

Translocations involve multiple linear chromosomes and result in swapping
chromosomal ends between two chromosomes. For instance, genomes

π = {[1,−2,−3], [−4,5,6]}

and

σ = {[1,−2,5,6], [−4,−3]}

differ by a translocation. Formally, they are similar to reversals if one considers
concatenated chromosomes [19].

A transposition is defined as an operation that swaps two adjacent substrings in
a permutation. Genomes

π = (1,−2,−3,−4,5,−6)

and

σ = (1,−4,5,−2,−3,−6)

differ by a transposition. Sorting scenarios with transpositions were introduced by
Bafna and Pevzner [2]. This is more difficult than the reversal distance problem, and
there were various improvements in approximation methods for this problem.

Christie introduced block interchanges [6], which swap any two non-intersecting
substrings, a natural generalization of transpositions. Genomes

π = [1,−2,−3,−4,5,−6]
and

σ = [5,−6,−3,−4,1,−2]
differ by a block interchange.

It is reasonable for biologically realistic models of genome rearrangements to
include more than one kind of operation, however, in trying to consider generalized
reversals and transpositions together in the menu of operations, researchers were
somewhat baffled how to weight transpositions relative to reversals and translo-
cations, which occur more frequently. In an intriguing paper, Blanchette et al.
(1996) [5] allowed the weight of transpositions to vary relative to a weight of 1
for inversions in order to deduce the best weight. The authors noted there was a
trade-off between inversions and transpositions, although some transpositions do
not seem to be replaceable by inversions even with high values of the weighting
function for transpositions. Using a greedy algorithm for genome rearrangements,
they concluded that a weight just over 2 for transpositions and inverted transposi-
tions was best able to optimize the rearrangement distance score for bacterial and
mitochondrial genomes.

Recently, Bader and Ohlebusch [1], provided an algorithm for sorting by
weighted reversals, transpositions and inverted transpositions using realistic weights.

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 213

Table 10.1 Examples of
rearrangement operations Operation Example

Linear reversal [1,2,3] �→ [1,−2,3]
Circular reversal (1,2,3) �→ (1,−2,3)

Linear translocation [1,2], [3,4] �→ [1,4], [3,2]
Circular fission (1,2) �→ (1), (2)

Other operations are possible, for instance, chromosome fissions and fusions, ex-
cisions of linear or circular pieces from linear or circular chromosomes, lineariza-
tion of a circular chromosome, circularization of a linear chromosome, and so forth.
Examples of some of these appear in Table 10.1.

10.1.4 The Basic DCJ

The DCJ, or double cut and join [4, 20], is a universal operation capable of modeling
a number of genome rearrangement operations, including inversions, translocations,
fissions, fusions, and the creation and absorption of circular chromosomes. The cor-
responding DCJ distance spurred a plethora of theoretical papers, and found its way
in the implementation of several genome comparison systems. Perhaps the main rea-
sons for its success are that, on the one hand it is easily computable by both humans
(simple theory) and machines (low computational complexity), and, on the other
hand, it models most operations observed to occur in real genomes, with reasonable
weights.

The DCJ paradigm permits generalizations which allow insertions, deletions and
duplications. Here we only entertain DCJ scenarios with equal gene content.

10.1.5 Algebraic Rearrangement Theory

Meidanis and Dias [13] used permutations to represent genomes, assigning a cycle
to each chromosomal strand. The permutation formalism is particularly suited for
circular genomes as these genomes automatically contain cycles by virtue of the
circularity of their chromosomes; permutations, when drawn as directed graphs,
also result in a collection of cycles. One interesting aspect of this approach is that
the usual rearrangement operations become permutations with small support.

Recently, Feijao and Meidanis [9] studied a novel way of representing genomes
as permutations, focusing on the adjacencies between gene ends rather than trying
to model each genome strand as a permutation cycle of chromosomes. This allows
both linear as well as circular chromosomes to be modeled. They also discovered a
formula relating their adjacency algebraic representation to the chromosomal alge-
braic representation of Meidanis and Dias. By going backwards from the adjacency

214 J. Meidanis and S. Yancopoulos

Fig. 10.3 Algebraic representation of a circular genome. (a) Genome representation with adja-
cencies. (b) Algebraic chromosomal representation. (c) Algebraic adjacency representation

to the chromosomal representation, using this formula, they were able to unify both
theories, thus extending the chromosomal theory to encompass linear chromosomes
as well. The result was a new rearrangement distance between two signed, multi-
chromosomal genomes. The new distance is easy to compute and its value on ran-
dom genomes correlates well with the DCJ distance [9].

In Fig. 10.3 we see the chromosomal and adjacency representations of a genome
consisting of a single circular chromosome containing three genes.

10.1.6 Linear Chromosomes and “Fictitious” Elements (Caps)

Capping a linear chromosome is a technique that has been fruitful in many situa-
tions. For instance, in studying the unichromosomal transposition distance, Bafna
and Pevzner extend their linear genomes π with π(0)= 0 and π(n+1)= n+1 [3].
The extra elements 0 and n+ 1 connected to the extremities of the linear chromo-
some are called caps and are useful in simplifying notation and arguments, avoiding
awkward special cases. Caps have been used extensively in the multichromosomal
context as well [12], and in studies with other operations, such as reversals and
translocations.

The “basic” DCJ [20] is also heavily rooted in the use of caps. In a way, capping
a linear chromosome is a device which transforms it into a circular one. Circular
chromosomes seem to be easier to deal with particularly, as we shall see, in the
context of permutations, and this is the rationale behind the use of caps.

However, a question lingers on. Does the introduction of caps somehow affect
the genomic distance being computed? We show that the addition of caps may affect
the resulting distance. As there is some flexibility in the ways of circularizing the
genomes via caps and closure scheme, according to the choices made, one may get
different distances. We will see that the DCJ and algebraic distances are two facets
of this phenomenon.

10.2 Transformations Involving Circular Genomes

We now consider distance scenarios involving circular genomes. These are particu-
larly suited to methods involving permutations. In Fig. 10.3 we saw the chromoso-
mal representation for a circular chromosome contains complete cycles.

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 215

The goal of this section is to show that for circular genome transformations,
the DCJ distance is equivalent to the algebraic distance. Although both distances
have been covered in the literature, we offer here a self-contained treatment for
the benefit of newcomers. We begin by introducing the main graphs mentioned in
the literature, namely, the breakpoint graph, the adjacency graph, as well as the
master graph, from which the previous two can be derived. These are important for
visualizing the transformation and computing the genomic distance. We move on to
some examples of circular operations, that is, simple operations that take a circular
genome and transform it into another circular genome.

We note that even though such transformations may involve temporary states
containing linear chromosomes, these are ultimately either circularized or absorbed
into circular chromosomes so that the initial and final genomes are all circular. It
is interesting to observe that temporary linear chromosomes can result from single-
step operations such as single cuts in a circular. Operations such as single cuts or
single joins have been considered by others, including by Feijao and Meidanis [8].
This highlights the importance of the particular model used to effect the transforma-
tion.

Sections 10.2.3 and 10.2.5 show how to compute DCJ and algebraic distances,
respectively, and Sect. 10.2.6 contains a proof of the main result.

10.2.1 The Master, Breakpoint and Adjacency Graphs

The master graph, introduced by Friedberg, Darling, and Yancopoulos in 2008 [10],
is a graph that specifies both genomes, and also connects between them. The initial
genome, which we call π , is usually represented at the top (but as the diagram is
completely symmetric it could also be done the other way, and be on the bottom).
The gene extremities in this genome are linked by adjacencies which we color black
here. These are undirected edges. The target genome which we call σ , is at the bot-
tom and its gene extremities are linked by adjacencies that are colored red and are
also undirected. Finally we use “green edges” to link corresponding gene ends in
the two genomes. These are the “bridges” between the initial and target genomes.
The red and black edges run horizontally, while the green edges connect the two
genomes vertically. An example is shown in Fig. 10.4 in the next section. It is inter-
esting to note that the master graph is in some sense the “precursor” graph for other
important graphs. To see this:

• contract along the green edges and curve the black edges in the master graph to
get the breakpoint graph for the inverse transformation

• for the forward transformation breakpoint graph, contract along the green edges;
curve the red edges in the master graph, and invert the whole thing vertically

• to get the adjacency graph for the transformation, contract both red and black
edges in the master graph to become vertices.

In their paper on polynomially sorting by reversals, Hannenhalli and Pevzner define
a breakpoint graph slightly differently from the one defined here [11]. The reason

216 J. Meidanis and S. Yancopoulos

Fig. 10.4 Inversion in circular. (a) Master graph (MG), (b) & (c) Breakpoint Graphs (BPG) for
inverse and forward transformation, (d) Adjacency Graph (AG)

is that the HP graph is for a linear problem and uses caps, while the master graph
described above has no caps. However, we will see in Sect. 10.3, which treats linear
chromosomes, there is a capped version of the master graph, for which the previous
bulleted items above still apply. The next section shows examples of these graphs.

10.2.2 Examples of Transformations in Circular Genomes

In this section we consider two examples of transformations in circular genomes.
First we consider an internal inversion and then a case of a fission.

10.2.2.1 An Inversion in a Circular from π = (1,2,3) to σ = (1,−2,3)

We construct the master graph and the other graphs as described in Sect. 10.2.1.
The master graph MG(π ,σ) is shown in Fig. 10.4(a). Below it is the breakpoint

graph (BPG) for the inverse transformation. Note it is the inverse transformation as
the genome at the bottom is the target genome, with adjacencies in red. The genome
at top, is the current or initial genome. The BPG for the forward transition is shown
in Fig. 10.4(c) arrived at by inverting the MG so the target genome is at the bottom.
Its adjacencies are represented by black lines. As previously, the green and red lines
are then curved and colored red; these “desire lines” connect gene ends in the target
genome. The corresponding adjacency graph (AG), is shown in Fig. 10.4(d). As
before, we arrive at the AG by contracting red and black edges in the master graph.

Essentially, forward and inverse BPGs are contained in the MG. With practice,
we can see them directly. The forward transformation BPG is up side down! The AG
can also be visualized by mentally performing the procedure in the previous section.

10.2.2.2 Circular Fission from π = (1,2,3) to σ = (1), (2,3)

We show the master, breakpoint, genome, and adjacency graphs for the circular
fission in Fig. 10.5(a)–(d). Comparing these diagrams with those for the inversion,

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 217

Fig. 10.5 The (a) MG, (b) BPG, (c) Genome Graph, and (d) AG for a circular fission

we see they are topologically similar in their adjacency graphs and both contain one
2-cycle and one 1-cycle.

A word about cycle notation: in a departure from the usual convention in the
genome rearrangement literature, we call a cycle in the adjacency graph containing
j adjacencies in only one genome a j-cycle. Usually it is called a 2j-cycle. In the
AG, 2-cycles look like bow ties.

10.2.3 How to Compute the DCJ Distance from the Master Graph

For circular genomes, computing the DCJ distance from the master graph is a simple
matter. All we have to do is compute

dDCJ(π,σ)=N −C,

where N =Nπ =Nσ is the number of adjacencies (as well as the number of genes)
per genome, and C is the number of cycles in the master graph. To see this, we note
the master graph (or equivalently, the BPG or AG) for a transformation involving
only circular genomes consists completely of cycles and each cycle can be resolved
independently.

To resolve a k-cycle such as at the top of Fig. 10.6 by DCJs, we perform one DCJ
at a time. A single DCJ can increase or decrease the cycle count by one, or in the
case of an “improper” rejoining keep the cycle count unchanged [20]. If we perform
two cuts (in “consecutive” adjacencies) we can rejoin so that a target adjacency is
achieved. This forms a 1-cycle consisting of the target adjacency, and a remaining
cycle with one less adjacency. Proceeding until the remaining cycle is a 2-cycle,
the final 2-cycle is resolved by a single DCJ, transforming it into two 1-cycles.
As there are k adjacencies, the final graph has k 1-cycles. Each subsequent DCJ
produces a new 1-cycle except the last, which produces two. Since a single DCJ can
at most augment the total number of cycles by one, we see that it takes a minimum

218 J. Meidanis and S. Yancopoulos

Fig. 10.6 Resolving a
k-cycle by DCJs takes k− 1
DCJs

of k − 1 DCJs to resolve a k-cycle. A non-minimal path can take more steps by
performing DCJs which decrease rather than increase the number of cycles. If the
graph is composed of cycles with sizes (counted as the number of adjacencies in
each cycle) k1, k2, . . ., to find the total distance, we sum on cycles:

dDCJ(π,σ)=
∑

j

(kj − 1)=N −C (10.1)

since the total number of adjacencies N is equal to the adjacencies summed over all
cycles, N =∑

j kj , and similarly, the total number of cycles is just C =∑
j 1.

10.2.4 Finding the Permutation Cycles from the Master Graph

The algebraic (permutation) approach is essentially more symbolic whereas genome
rearrangement approaches from HP [11, 12], to the DCJ resort to graphical repre-
sentations. The master graph offers an excellent way to connect the DCJ approach
with the Algebraic Adjacency Method. In Fig. 10.7, which revisits the inversion in
a circular, we see that we can go directly from the adjacencies in the master graph
in (a) to the 2-cycles in the algebraic adjacency representation in (b). Hence, the
top and bottom of the master graph represent the initial and target genome in terms
of their adjacencies, and equivalently their 2-cycle algebraic adjacency representa-
tion.

To see how to arrive at the product permutation σπ from the initial to the target
genome, consider the red path in Fig. 10.7(d), where we trace going from a gene
end in π (e.g., 1h, which connects to 2t in π) to the connecting gene end in σ (i.e.,
2t connects to 3t in σ). Hence, the product permutation, where π is performed first
and then σ , results in a transition from 1h to 3t , shown in the σπ table in (d) and
also outlined in the red 3-step path in (a), leading to the blue line. Superimposing
all these blue lines on the master graph ((a) and (c)), will ultimately trace out the
product permutation cycles (Fig. 10.7(e)).

To find the product permutation cycles for transformations involving arbitrary
circular genomes, we generalize the procedure performed above. We proceed as
follows to generate the σπ permutation cycles:

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 219

Fig. 10.7 From master graph to permutation cycles

1. construct the master graph (MG) of σ and π

2. for the blue lines, at each extremity in π walk three steps starting on a black line
3. dissolve red and black “adjacency” lines connecting gene ends in adjacencies
4. contract along “green” lines; the blue lines trace the permutation cycles.

10.2.5 Computing the Algebraic Distance for Circular Genomes

An important concept introduced within the algebraic theory is the norm of a per-
mutation, which measures the “complexity” of this permutation and equals n− p,
where n is the number of vertices and p the number of permutation cycles in the
corresponding directed graph. We note the DCJ distance is of the same form.

In order for dDCJ and dalg to coincide, the algebraic distance is defined to be
the norm of the composition permutation divided by two or they would differ by a
factor of two. For circular genomes, the master graph for the transformation resolves
completely into cycles which double in the permutation representation.

To visualize the cycle doubling from the master graph to the permutation cy-
cles, it is helpful to look at Fig. 10.8(b), where the 2-cycle from the previous ex-
ample (also shown here in Fig. 10.8(a)) is “opened up”. Adding blue lines as in
Fig. 10.8(c) one blue line emanates from each gene end in π and bypasses three
“BGR” (black-green-red) segments, ending at a gene end in σ . Traversing the next
green line returns us to π and after N traversals alternating between blue and green
lines, we return to our starting point.

220 J. Meidanis and S. Yancopoulos

Fig. 10.8 Cycle doubling from master graph to permutation cycles

As the red and black adjacency lines are dissolved, separating gene ends in adja-
cencies, and the green lines contracted, the number of permutation cycles are double
those in the master graph. The number of gene ends (2N) is twice the number of
genes (N). Hence the norm of the composition permutation is 2N − 2C and the
corresponding distance is half, or N −C which agrees with the DCJ distance.

10.2.6 Comparing Methods for Circular Chromosomes and Proof

We have seen that for circular genomes the following formula can be used to com-
pute the DCJ distance:

dDCJ(π,σ)=N −C, (10.2)

where N =Nπ =Nσ is the number of adjacencies per genome, and C is the number
of cycles in the master graph.

On the other hand, we can compute the algebraic distance directly from the per-
mutation cycles by taking the norm (the difference between the number of vertices
and the number of cycles) and dividing by 2, which is equivalent to

dalg(π,σ)= n− p

2
= 2N − p

2
=N − p

2
, (10.3)

where n is the number of gene ends (double the number of genes, which, in circular
genomes agrees with the number of adjacencies per genome, or N), and p is the

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 221

number of permutation cycles in the σπ . We saw in the examples in previous sec-
tions that p = 2C, because each master graph cycle gives rise to two permutation
cycles. As a result, the DCJ and algebraic distances agree.

Specifically, for the inversion of a circular (Fig. 10.4) and the circular fusion
(Fig. 10.5), both cases consisted of one 2-cycle and one 1-cycle in their adjacency
graphs. We recall that our cycle nomenclature labels a j -cycle by the number j of
adjacencies in only one of the genomes.

Now, 1-cycles do not contribute to the distance. To see this, note that in the DCJ
formulation, the distance contribution for N = 1 and C = 1 is 0. In the algebraic
formulation, we saw (Fig. 10.8) that the 1-cycle doubles into two cycles in the per-
mutation σπ , where the notation for the cycles is based on the number of gene ends
in the adjacency graph, which is n= 2N = 2 for a 1-cycle. In the permutation σπ ,
the two cycles each become n/2-cycles, or 1-cycles, for which the algebraic distance
is (n− p)/2= (2− 2)/2= 0. As for the 2-cycle, it contributes N −C = 2− 1= 1
in the DCJ formulation and (n − p)/2 = (4 − 2)/2, which also equals 1, in the
algebraic formulation. Hence the two distances agree.

In this section, we go on to prove that the agreement between the two distances
(algebraic and DCJ) is a general result, as far as circular genomes are involved. This
cannot be considered a new result, because it is implied by formulas for the distances
given by Feijao and Meidanis [9], but since our approach here significantly differs
from previous treatments, and one of our goals here is to view the algebraic theory
in graphical terms, we developed the proof below.

Theorem 1 If π and σ are circular genomes with the same genes, then

dDCJ(π,σ)= dalg(π,σ).

Proof In view of formulas (10.2) and (10.3), it suffices to prove that the “cycle
doubling” occurs in general. To see that this is actually the case, reason as follows.
Every cycle in the master graph will have a number of edges that are a multiple of 4.
This is because the edges alternate between green and adjacency edges, and, more-
over, the adjacency edges alternate between red and black edges. In other words,
starting from any gene end in π , for instance, and following the direction of the
only black edge incident to it, we necessarily traverse four edges of colors black,
green, red, and green again before we have the chance of closing the cycle. So the
minimal cycle has four edges. If the cycle does not close after the first four edges,
this means we reached a new, free gene end in π , and must traverse a new 4-edge
walk (black, green, red, green) before being able to close.

Let’s now see what happens with each such cycle as we compute the permuta-
tion cycles. Each permutation cycle is formed by blue edges, and each blue edge is
the result of traversing a black-green-red walk in the master graph, that is, we are
effectively walking over a master graph cycle. Moreover, in the end the green edges
get contracted, and the net result of this can be seen to yield a blue line traversing
each consecutive black-red segment of the corresponding breakpoint graph cycle.

It follows that each edge in a permutation cycle corresponds to four consecutive
edges in the corresponding master cycle. In a master cycle with 4k edges, this will

222 J. Meidanis and S. Yancopoulos

result in a permutation cycle with k edges. However, this permutation cycle involves
only half of the π gene ends in the master cycle, because the adjacency partner
of each gene end in the permutation cycle is missing from this cycle, since it is
reachable in just one step, which is not a multiple of 4. The missing gene ends will
be in another k cycle. It follows that each cycle in the master graph gives rise to two
permutation cycles, that is,

p = 2C,

and therefore dDCJ(π,σ)= dalg(π,σ). �

10.3 General Transformations Using “Fictitious” Elements

Having seen that for circular genome transformations the DCJ and algebraic dis-
tances turn out the same, we move on to the general case of multichromosomal
genomes with no restrictions on chromosome types: circular, linear, or a mixture.

We review the original construction by Yancopoulos et al. which effectively
transforms the general case into the circular case [20] by the addition of caps, and,
where needed, null chromosomes to restore the balance in number of chromosomes
between genomes. We call this procedure the original closure rule and the trans-
formed graph the augmented master graph. Once this is done, the DCJ distance can
be computed as in the circular case by using the augmented master graph.

Using the approach in the previous section, the augmented graph can also be used
to derive permutation cycles, and thereby the algebraic distance. We find, perhaps
not surprisingly, this coincides with the DCJ distance. We also investigate a new
closure rule that keeps the caps but closes the paths into cycles without resorting
to null chromosomes. Perhaps surprisingly, this alternative closure rule results in
exactly the algebraic distance.

A final subsection summarizes these observations and contains proofs of results.

10.3.1 Examples of Transformations with Linear Chromosomes

In this section we consider examples of transformations with linear chromosomes.
In examining their master graphs we observe that in addition to cycles they also con-
tain paths. Paths occur in the event of linear chromosomes, as there are vertices in
the adjacency graph corresponding to “telomeric” gene ends, gene ends at the ends
of chromosome without partners. We investigate how to close such paths to form
cycles, so that we will be able to compute the distance as previously, by subtracting
the number of cycles from the number of adjacencies.

10.3.1.1 Linearization

Consider the transformation from a genome with a circular chromosome, π = (1), to
that of a linear chromosome σ = [1]. This operation is the linearization of a circular

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 223

Fig. 10.9 Linearization. (a) Master Graph, (b) Adjacency Graph, (c) Augmented Master Graph
with caps and null

chromosome. The master graph for this pair of genomes is shown in Fig. 10.9(a).
Contracting red and black edges we arrive at the adjacency graph in Fig. 10.9(b).

As a result of the linear chromosome in the transformation, the master graph and
adjacency graph have a path. To circularize this path, we add caps to the telomeres
(unpaired extremities) in σ = [1]. This results in a disequilibrium of adjacencies
in the two genomes π and σ . To restore the balance, we add a null chromosome
(c1, c2), containing the same caps added in σ , to π , and close the path by adding
connecting green lines to the null. The resulting augmented master graph can be
seen in Fig. 10.9(c).

10.3.1.2 Fission of a Linear Genome

Consider the transformation from a genome of a linear chromosome π = [1,2] fis-
sioning into two chromosomes σ = {[1], [2]}. The master graph for this pair of
genomes is shown in Fig. 10.10(a). Contracting red and black edges we arrive at
the adjacency graph, shown in Fig. 10.10(b).

Here again we have paths. To close them, we start by adding caps to each telom-
ere. There are two in π and four in σ . After adding these caps there is a resulting
imbalance of adjacencies in the two genomes. We compensate for that by adding a
null chromosome, (c2, c3), to π . Connecting corresponding gene ends with green
edges we arrive at the augmented master graph in Fig. 10.10(c).

10.3.2 The Original Closure Rule, Completing Paths with Caps
and Nulls

To understand the DCJ approach for general transformations including all kinds
of chromosomes, we note that, with linear chromosomes present, the master graph
contains paths in addition to cycles. The idea behind the method is to convert cases

224 J. Meidanis and S. Yancopoulos

Fig. 10.10 Fission in a linear. (a) Master Graph (b) Adjacency Graph (c) Augmented Master
Graph

containing paths to the circular case by augmenting the master graph to circularize
paths into cycles.

Linear chromosomes have unpaired gene ends at their ends called telomeres. We
augment the master graph by attaching new, “dummy” gene ends called caps to the
telomeres. Effectively we cap the ends of paths with these fictitious elements.

Once we have capped the paths,we note there are two kinds of paths in their
master (or equivalently their adjacency) graphs, those with both capped ends in the
same genome, are called even paths, and those with their caps in opposite genomes,
are called odd paths.

To close paths into cycles in the master (or adjacency graph), we add green lines,
with two different approaches for odd and even paths. The original closure rules
from Yancopoulos et al. [20] are:

1. For odd paths join the caps at the ends of the paths directly by a green edge.
2. For even paths create a null chromosome containing two caps in the genome

opposite the genome with the two caps. Draw green edges linking each of the
caps in the first genome to the caps of the null chromosome in the other genome.

We notice that, this method generates null chromosomes. The total number of
adjacencies is augmented by counting nulls as a single adjacency and single caps as
half. The total number of adjacencies is balanced since adjacencies containing actual
gene ends are balanced in both genomes in cycles as well as in paths (where telom-
eres count as half an adjacency), odd paths have one cap in each of the genomes,
and even paths, have two caps in one of the genomes balanced by a null in the other.

Denoting the augmented number of adjacencies in either genome by N ′, and the
total number of cycles including paths closed by the closure rule by C′, the DCJ

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 225

Fig. 10.11 A sample adjacency graph for a general transformation, that is, a transformation in-
volving linear chromosomes. Here the top genome is [1,2,3,4], [5,6,7,8,9], and the bottom
genome is [−1,−7,5,9,−8,−6], [2,−3,4]

distance can be computed as follows:

dDCJ =N ′ −C′.

10.3.3 Understanding the DCJ Distance for General
Transformations

Having extended the formalism of closed cycles to the general case including linear
chromosomes by our system of capping and the original closure rules, we now wish
to make contact with the Bergeron et al. [4] distance formula. Accordingly we will
focus on the adjacency graph, keeping in mind it can be derived from the master
graph simply by compressing adjacencies. We cap and close paths using the original
closure rule. Our goal is to reconsider the path formulation of Bergeron et al. in light
of caps, nulls and path closure. For illustrative purposes, consider the adjacency
graph in Fig. 10.11 containing paths and cycles.

Using the capping and closure formalism just developed, we know how to com-
plete paths to transform them into cycles. We take note of some general principles:

• In general, the Adjacency Graph (AG) contains cycles and (even and odd) paths.
• A component-wise decomposition of the AG resolves it into these components.
• Each component makes an independent contribution to the DCJ distance.

We now consider how each individual component contributes to the total distance
arrived at in the previous subsection.

10.3.3.1 Distance Contribution from Cycles

From Sect. 10.2.3 we know the distance contribution of an individual cycle con-
taining k adjacencies is just k − 1. Hence, if there are C cycles in the entire graph,
involving a total of Ncycle genes, there are also Ncycle adjacencies, and the total
contribution from cycles to the DCJ distance is

Ncycle −C.

226 J. Meidanis and S. Yancopoulos

Fig. 10.12 Uncapped and capped even paths and their corresponding DCJ distances (called dYAF
in the picture)

10.3.3.2 Distance Contribution from (Closed) Even Paths

At the top of Fig. 10.12 we see a succession of even paths whose telomeric ends
start and end in the top genome. Below these are listed the corresponding number
of uncapped adjacencies belonging to each path, culminating in a general even path,
represented by a “squiggly W”, which does not have its adjacencies explicitly enu-
merated. For such a path involving k genes, there are k adjacencies, as there are
k − 1 “legitimate” adjacencies containing two gene ends, and two telomeric ends
counting half an adjacency each.

Below the illustration of the uncapped even paths is a corresponding row with
the paths closed by the original closure rule of Sect. 10.3.2 having caps attached in
the top genome and a null chromosome in the bottom genome. The caps count as
half an adjacency just as the telomeric ends. The two caps in the null chromosome
count also as 1, so the amended adjacency total for either genome for each of these
closed paths is one more than the previous uncapped version.

The path becomes a (k + 1)-cycle. Using the DCJ formula for cycles, a closed
general even path involving k genes contributes with

k+ 1− 1= k

to the DCJ distance. The same holds if the even path starts and ends in the bottom
genome.

If we consider all even paths, involving Neven genes altogether, their contribution
to the DCJ distance is, therefore, Neven.

10.3.3.3 Distance Contributions from (Closed) Odd Paths

Applying the capping and original closure rules for the odd paths we note that, once
capped, an odd path involving k adjacencies becomes a closed (k + 1/2)-cycle,
as shown in Fig. 10.13, since the additional cap adds 1/2 to the adjacency count.
(The final count will still be an integer because odd paths occur in pairs.) Using

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 227

Fig. 10.13 Uncapped and capped odd paths and their corresponding DCJ distances (called dYAF
in the picture)

the distance rule for closed cycles which is the number of adjacencies minus 1, this
leads to a DCJ distance contribution from this odd path of

k− 1/2.

Adding over all odd paths, a total contribution of Nodd− I/2 follows, where I is
the number of odd paths.

10.3.3.4 Adding All Contributions from Cycles, Even and Odd Paths

To make contact with the Bergeron et al. [4] formulation of the DCJ distance, we add
all contributions from all components to the distance for a general transformation
keeping in mind that each cycle, odd and even path contributes according to what
was previously found. Summing on all components we arrive at

dDCJ(π,σ) = contribution from cycles+ even paths+ odd paths

= (Ncycle −C)+Neven + (Nodd − I/2)

= N −C − I/2,

because the total number of genes N is equal to Ncycle +Neven +Nodd, the number
of cycles is C, and the total number of odd paths is I .

10.3.4 Algebraic Distance for Permutation Cycles Using Caps
and Nulls

In the previous section we observed that a general transformation contains cycles,
and even and odd paths in the Adjacency Graph (AG) as first discussed by Berg-
eron, Mixtacki and Stoye [4] who introduced the AG. We went on to discuss how
each of these components contributes to the DCJ distance, noting that the paths can

228 J. Meidanis and S. Yancopoulos

be circularized by the addition of caps (for odd paths) and both caps and null chro-
mosomes (for even paths). This circularization procedure using the original closure
rules is achieved by the use of “fictitious” elements, but it is still possible to use
the formalism for permutations as we did for pure circular genomes. Just as in the
strictly circular case, since we have circularized all paths, all cycles will double
when we go to the permutation cycles for the composition permutation. In addition,
the vertices in the permutations will be twice the number of adjacencies. Hence
since the algebraic distance is half of the norm for the permutation cycles, we find
that the algebraic distance using capped genomes with nulls is the same as the DCJ
distance.

10.3.5 Alternative Closure Scheme Bypassing Nulls

Instead of the “original closure rule” we can use an alternative closure scheme which
includes caps and closes odd paths in the same way, but, by avoiding nulls, closes
even paths by connecting the two cap-ends directly. Unlike the old closure rule, the
number of chromosomes is no longer the same in both genomes.

With the new rule we use the number of adjacencies after capping averaged over
both genomes, remembering that caps contribute 1/2 an adjacency, as do telomeres.
With the new rule, to average the number of adjacencies, we see that when two caps
are added to genome π they get “averaged”, so there is a resulting contribution of
1/2 to the total number of adjacencies. The same happens when two caps are added
to σ .

With the new closure rule, we introduce a new means of computing a distance,
which we will call dnew. Since cycles and odd paths do not change their contribu-
tions to the total distance, the only difference might possibly come from the even
paths. In fact, the new contribution from even paths differs from the DCJ contribu-
tion in −1/2 for each even path.

Summing over paths, we arrive at the new closure distance:

dnew(π,σ)=N −C − I/2−E/2=N −C − P/2,

where E is the number of even paths and P = I + E is the total number of paths.
But this is a know alternative formula for the algebraic distance [9]. We conclude
that the new closure rule yields, in fact, the algebraic distance.

10.3.6 DCJ vs. Algebraic Distances for Capped Genomes

As we saw, there are ways of conceiving and computing the algebraic distance based
on a graphical approach, using either the master graph or the adjacency graph. How-
ever, there is also a way of computing the DCJ distance using the algebraic ap-
proach: using capped genomes and the original closing rule. Indeed, let us recall for

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 229

Fig. 10.14 The augmented master graph for genomes π = [1,2] and σ = {[1], [2]}. Caps and nulls
were named with subscripts t and h to resemble gene ends. With this, the figure looks exactly like
the master graph of π ′ = {(1,2,−c), (n)} and σ ′ = (1, n,2,−c)

a moment the result of the original closure rule on the pair π = [1,2], σ = {[1], [2]}.
Figure 10.14 is just the same as Fig. 10.10(c), except that we named the caps with
subscripts t and h so that they become more like gene ends.

Doing this, we are able to write the chromosomal expression of the resulting
genomes. If we add arrows going from xt to the corresponding xh for all entities x,
be these genes or dummies, and follow the cycles formed by these arrow plus adja-
cencies, we end up with two circular genomes, namely, π ′ = {(1,2,−c), (n)} on top
and σ ′ = (1, n,2,−c) in the bottom. We can then compute the algebraic distance
between these two genomes, and the result, will be the same as the DCJ distance
between these genomes. It turns out that, given a black box that computes algebraic
distances, we are able to use it to compute the DCJ distance: just feed it with the
capped versions of the genomes, augmented by the original closure rule. This is
what the following result states.

Theorem 2 Let π and σ be multichromosomal genomes over the same gene set,
and let π ′ and σ ′ be their capped versions, augmented with the original closure
rules. Then

dDCJ(π,σ) = dalg
(
π ′, σ ′

)
.

Proof By definition, we know that

dDCJ(π,σ)= dDCJ
(
π ′, σ ′

)
,

since both pairs share the same master graph. Notice that the master graph of π ′ and
σ ′ does not have to be augmented, because it already consists of cycles only. This
means that π ′ and σ ′ are circular genomes. But for circular genomes, we know that
equality holds between the DCJ and algebraic distances:

dDCJ
(
π ′, σ ′

)= dalg
(
π ′, σ ′

)
,

because of Theorem 1. The result then follows from these two equalities. �

The consequence of this result is that properties of the algebraic distance can
be, in principle, applied to the DCJ distance via this correspondence. However, one

230 J. Meidanis and S. Yancopoulos

Fig. 10.15 Linearization permutation cycles (PC) . (a) Blue lines in MG; (b) capped PC, (c) un-
capped PC

possible difficulty here is the fact that π ′ does not depend solely on π , as the notation
seems to imply. It also depends on σ .

10.4 Genome Permutations by the Adjacency Algebraic Theory

In this section we will apply algebraic rearrangement theory in its more recent,
adjacency-based formulation to understand the algebraic distance formula and to
see how differences with the DCJ distance can arise.

We start by revisiting two examples from the previous section, the linearization
example from Fig. 10.9 and the linear fission example from Fig. 10.10. We note they
both involve a single cut, which involves the breaking (or cutting) of exactly one ad-
jacency. The master graphs for the two examples are very similar in terms of their
both having a 2-cycle except that the master graph (Fig. 10.10(c)) for the linear fis-
sion is flanked by two 1-cycles. Since these are identity transformations, they do not
contribute to the distance, and so we focus on the 2-cycle as in Fig. 10.9(c). We use
the procedure in Sect. 10.2.4 to draw the “blue lines” (Fig. 10.15(a)) and then derive
the permutation cycles for the capped (Fig. 10.15(b)) and uncapped (Fig. 10.15(c))
master graphs.

To arrive at the uncapped permutation cycles, we can start from the capped master
graph and “identify” the caps, as a device to reconnect the path/cycle without them.
We imagine starting at a gene end such as (1h) in the capped master graph and
move along on an outgoing blue line; when we arrive at a cap (i.e. (c1)) we “jump”
immediately to the “identified” cap, (i.e. (c2)) and continue along the outgoing blue
lines onto gene end (1h), completing the cycle.

Having found the permutation cycles, we note that the 2-cycle in the capped
master graph resulted in two 2-cycles in the capped permutation cycles, and only a
single 2-cycle in the uncapped case. To derive the permutation cycles for uncapped
genomes in a general way, we move on to using the breakpoint graph, although we
could do it with other graphs. The virtue of the breakpoint graph here is that its lines
end on vertices representing gene ends just like the permutation cycles.

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 231

10.4.1 Component-Wise Decomposition of the Adjacency Graph

As mentioned in Sect. 10.1, permutations can be represented by directed graphs that
are composed of one or more cycles. Every permutation can be written in an es-
sentially unique way as a product of disjoint cycles, apart from the order in which
the cycles are multiplied (recall that disjoint cycles commute). This is called the
cycle decomposition of a permutation. The transformation of a genome π to an-
other genome σ over the same genes is a permutation, and the master graph (MG),
adjacency graph (AG), or the breakpoint graph (BPG) of π and σ can graphically
represent the components of this transformation. The permutation that transforms
π into σ is σπ in the adjacency algebraic theory—and σπ−1 in the chromosomal
algebraic theory, which we will not delve into here.

We discussed the separation of the adjacency graph for a general transformation
into its connected components in Sect. 10.3.3, and saw they can be identified visu-
ally. As pointed out by Bergeron et al. [4] these components are essentially cycles
and paths in the AG. The same holds true for the breakpoint graph, which will be
our main graphical tool in this section. Since separate components have no elements
in common, their distance contributions can be resolved separately. We have seen in
the section on transformation of circular chromosomes, Sect. 10.2, that every cycle
in the MG (and hence in the breakpoint graph) generates two cycles in the permu-
tation σπ . We will show that paths generate a single cycle in σπ with the same
vertices.

10.4.2 The Breakpoint Graph and Permutation Cycles

We are interested in looking at the connected components of the breakpoint graph
between genomes π and σ to see how they contribute to the algebraic distance. In
terms of components, the master, adjacency, and breakpoint graphs are very much
alike: cycles in one graph will correspond to cycles in the other two, perhaps with a
different size, but always even. More specifically, a cycle with 4k edges in the MG
will correspond to a cycle with 2k edges in the AG, and to a cycle with 2k edges in
the BPG. And a path in one graph will always be a path in the other two, again with
a difference in size, but not, in general, of the same parity. Specifically, a path with
2k + 1 edges in the MG will correspond to a path with k + 1 edges in the AG, and
to a path with k edges in the BPG.

10.4.3 The Algebraic Distance for Paths

To understand more generally how permutation cycles result from paths in the
breakpoint graph, we take a look at some generic paths. Instead of going from the
construction just described for the previous example in Fig. 10.15, where we found
the permutation cycle by starting from the capped master graph and then identified

232 J. Meidanis and S. Yancopoulos

Fig. 10.16 A path in the breakpoint graph that begins and ends with a black edge. The breakpoint
graph is drawn in zig-zag mode, much like the adjacency graph, to better illustrate the permuta-
tion cycle (in blue), obtained in general by starting first in π (black edges) then σ (red edges).
A possible pair of genomes that generates such a breakpoint graph is π = {(1), (2), (3), (4), (5)}
and σ = [1,2,3,4,5]

caps, we try to find a more direct root by starting with a path in the breakpoint graph
and proceeding to add the blue lines to it, as depicted in Fig. 10.16.

To find the permutation cycles associated with a path we compute σπ , that is,
apply π first and then σ . We indicate the permutation arrows in blue in Fig. 10.16.
They were obtained, from each gene end, following a black edge and then a red edge.
If there is no black edge incident to a certain gene end, just follow the red edge to
get to the image under σπ . And if, after following a black edge, there is no red edge
to continue, just take the result of the first step as the final result. Performing this
procedure for every gene end we get the blue arrows indicated in the figure. Notice
that they involve all gene ends in the path, “enclosing” the path like a cloud.

Similar results are obtained with any path, not unlike what we have seen already.
Paths of any size, starting with either black or red edges, and finishing with either
black or red edges, all result in an enclosing blue cycle involving all the gene ends
in the path.

We note that this procedure mimics that of Sect. 10.2.4, in tracing out the “blue
lines” by walking three steps starting at every vertex, which is a gene end in π .
In this method, the “three steps” reduce to two, which are the black and red edges
of the breakpoint graph since, in the breakpoint graph, the “green lines” have been
contracted out of the picture and are represented by vertex-gene ends.

To see more explicitly how this procedure connects to specific gene ends, we re-
turn to the more elaborate approach using the master graph and follow this protocol
for all three types of components in the MG, AG, or BPG, that is, for even and odd
paths as well as for cycles.

10.4.3.1 Even Paths

Let us consider the telomeres and adjacencies of a general even path in the AG
starting and ending in σ :

(e1)︸︷︷︸
σ

, (e1, e2)︸ ︷︷ ︸
π

, (e2, e3)︸ ︷︷ ︸
σ

, . . . , (en−1, en)︸ ︷︷ ︸
π

, (en)︸︷︷︸
σ

,

where n is an even integer.

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 233

Fig. 10.17 An even path (n is an even integer). (a) Master Graph with caps and blue lines; π is
on top. (b) Breakpoint Graph and permutation lines with caps. c Breakpoint Graph and a single
permutation n-cycle without caps

Drawing the master graph with caps (Fig. 10.17(a)), we use the procedure in
Sect. 10.2.4 for constructing the “blue lines”. Contracting the green lines we ar-
rive at the “breakpoint graph” alternating between black and red edges, enveloped
by the permutation lines (Fig. 10.17(b)). By identifying the caps at the ends (and
eliminating them) we find that the permutation cycles of an even path involving
n gene ends (n being therefore an even integer) is a single permutation n-cycle
(Fig. 10.17(c)).

The entire construction works just as well if the even path starts and ends in π .
Hence, a general “even path” in the MG, AG or BP, (starting and ending in ei-
ther π or σ), with k adjacencies in one genome in the AG, and n = 2k vertices
in the BPG, corresponds to an n-path in the AG and an n-cycle in the permuta-
tion σπ . The corresponding contribution to the algebraic distance from the even
path is

(n− 1)

2
= n

2
− 1

2
.

10.4.3.2 Odds Paths

Similarly, let us consider the telomeres and adjacencies of a general odd path starting
in σ and ending in π .

234 J. Meidanis and S. Yancopoulos

Fig. 10.18 An odd path (n is odd). (a) capped MG and blue lines (π on top). (b) capped BPG.
(c) BPG and n-cycle, no caps

(e1)︸︷︷︸
σ

, (e1, e2)︸ ︷︷ ︸
π

, (e2, e3)︸ ︷︷ ︸
σ

, . . . , (en−1, en)︸ ︷︷ ︸
σ

, (en)︸︷︷︸
π

,

where n is an odd integer.
Using a similar construction as for the general even path, we draw the capped

master graph (Fig. 10.18(a)) and add blue lines as previously. In Fig. 10.18(b) we
show the breakpoint graph containing alternating black and red lines and show the
permutation lines with caps. In Fig. 10.18(c) we “absorb” the caps into their adja-
cency partner. What results is a permutation cycle with n edges, as each of the n

vertices has an incoming and outgoing blue permutation line.
Even though this path starts in σ and ends in π , the odd path could “start” in π

instead. Hence, for a general “odd path” in the MG, AG or BPG, with n gene ends,
and n vertices in the BP, the contribution to the algebraic distance is

(n− 1)

2
= n

2
− 1

2
.

10.4.4 The Algebraic Distance for Cycles

We already discussed the algebraic distance for cycles in the section on circular
transformations Sect. 10.2. To put our current treatment on par with that for paths,
we will also treat cycles using the general framework of the previous sections. Con-

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 235

Fig. 10.19 A general cycle (n is even). (a) MG with blue lines (π on top). (b) BPG showing an
MG cycle becomes 2 permutation cycles

sider a cycle containing n edges (corresponding to n “gene ends”) in the adjacency
graph of the transformation from π to σ corresponding to a master graph cycle
component pictured in Fig. 10.19(a).

(e1, e2)︸ ︷︷ ︸
π

, (e2, e3)︸ ︷︷ ︸
σ

, . . . , (en−1, en)︸ ︷︷ ︸
π

, (en, e1)︸ ︷︷ ︸
σ

,

where n is necessarily even.
As we saw in Sect. 10.2.4, when following the procedure illustrated in Fig. 10.8

to find the composition permutation cycles from the master graph for circular
genomes, there is a doubling of cycles which occurs in going from the master graph
(MG) to the permutation cycles (PCs). At the same time, the number of vertices in
the BPG (equivalent to the number of red and black edges in the AG), is halved in
a PC. This is easy to see in Fig. 10.19(b), where it is clear that the splitting of the
cycle segregates even and odd numbered adjacencies into two different permutation
cycles. We note that n = 2k is even, where k is the number of adjacencies in the
cycle in either genome in the AG, and the permutation cycles each contain n/2 ver-
tices. To find the contribution to the algebraic distance of a cycle in the AG (BPG, or
MG) we find the norm of the corresponding permutation and divide by two. Hence,
the contribution is

2
(n

2 − 1)

2
= n

2
− 1.

10.4.5 Total Algebraic Distance in the Adjacency Graph

As we discussed, the adjacencies of the master graph can be segregated separately
into connected components which contribute independently to the distance. We just

236 J. Meidanis and S. Yancopoulos

saw how both even and odd paths in the adjacency graph (and also the master graph
and breakpoint graph) turn into single cycles in the permutation σπ , whereas cycles
in the adjacency graph double in number while halving their vertex counts.

Since we know how to compute the contribution of each individual component,
it remains to tally all contributions from components in the adjacency graph. Col-
lecting these, we sum distance contributions over all cycles and even and odd paths.
The ith cycle contributes n

cycle
i /2− 1 to the distance, where n

cycle
i is the number of

gene ends in the ith cycle. As for the paths, as we found, each path (even or odd)
contributes n

path
j /2− 1/2, where n

path
j is the number of gene ends in the j th path.

Summing over all components we get

dalg(π,σ) = cycle contribution + path contribution

= ncycles

2
−C + npaths

2
− P

2

= N −C − P

2

where ncycles = ∑
n

cycle
i and C = ∑

i 1 are summed over cycles, and npaths =∑
n

path
j , is summed over paths. Notice that ncycles+ npath = 2N , because each gene

corresponds to two gene ends. Since both even and odd cycles have the same formal
contribution in this approach, we do not have to separate them in the sum over paths.

10.4.6 DCJ Distance vs. Algebraic Distance

The difference between the DCJ distance and the (Adjacency) Algebraic distance
boils down to the difference in the distance for even paths. For the DCJ distance the
contribution from even and odd paths is asymmetric, whereas, as we just saw, for
the algebraic method both contribute in the same way. Since both formulas can be
stated simply in terms of the number of adjacencies and the number of odd and even
paths, we can easily compute the difference. The distance dDCJ = N − C − I/2,
where, as we recall, I is the number of odd paths, while dalg =N −C−P/2 where
P = I + E is the sum over the number of odd and even paths. The difference, is
therefore just E/2 which is just half the number of even paths!

Since we can say even paths occur whenever the number of chromosomes
changes, or the type of chromosome changes, either from linear to circular or vice
versa, these transformations may occur relatively rarely in genome transformations,
in which case the two distances will appear to be nearly the same. We next re-
examine some previous examples to compare similarities and differences between
methods.

So, for example, operations considered in Sect. 10.2 which dealt with circular
transformations were operations such as (internal) inversions, and the creation and
absorption of circular chromosomes (from other circular chromosomes) have only
cycles in their adjacency graph, and, as we have seen, cycles are treated in the same
way by both methods.

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 237

Fig. 10.20 Component-wise summary of DCJ vs. algebraic distances

We also know that differences can arise with the use of caps, and in the section in-
volving such general transformations which include caps (Sect. 10.3), we discussed
two transformations in particular where this may be the case, in particular, that of a
linearization involving a circular transforming to a linear chromosome, and a linear
fission of a single linear chromosome. Not only did these transformations involve
caps, with the DCJ approach, but their “bare” uncapped master graphs contained
even paths, signaling there is likely to be a discrepancy. In fact, since both trans-
formations contain exactly one even path, we know there is a difference: the DCJ
distance is 1 for both the linearization and the linear fission, whereas the algebraic
approach yields a distance of 1/2.

Even though these are rather simple examples, there is more that can be gleaned
from them. Not only can we compare the forward transformations, but the inverse
transformations as well. And so we can also deduce that for the DCJ, a circulariza-
tion of a linear chromosome, or a fusion of two linear chromosomes into one also
costs a single DCJ, whereas the algebraic method yields again, a distance of 1/2
for each. Finally, even if there are more “bystander” genes which are not actually
involved in the transformation, these operations will still cost the same.

We conclude by summarizing the similarities and differences of the two methods
for cycles, and odd and even paths in Fig. 10.20. This table shows the different
contributions of each kind of component, with emphasis on cases where DCJ and
algebraic distances differ, namely, the even paths. We examine these differences and
the implications in further detail in the next section.

10.5 Weights, Operations, and Biology

In this section we discuss the biological implications of the two approaches particu-
larly by looking at the DCJ and algebraic formulations as methods which minimize
the number of weighted operations needed to transform one genome into the other.

238 J. Meidanis and S. Yancopoulos

Table 10.2 A complete list of DCJ operations

Operation Example

Linear translocation (incl. fission/fusion) [1,2], [3,4] �→ [1,4], [3,2]
Linear reversal [1,2,3] �→ [1,−2,3]
Creation of circular from linear (including circularization) [1,2,3] �→ [1,3], (2)

Absorption of circular by linear (incl. linearization) Inverse of previous

Circular reversal (1,2,3) �→ (1,−2,3)

Circular fission/fusion (1,2) �→ (1), (2)

10.5.1 The Relative Weights of Operations

Part of the challenge of modeling genome rearrangements is to find a successful
strategy for dealing with the relative weights of operations. One of the original
dilemmas for the DCJ was the relative weight of a transposition or a block inter-
change to an inversion. Our examination of the underpinnings of the DCJ and alge-
braic methods, has brought to light an interesting challenge: the relative weight of
operations such as fissions, fusions, linearizations or circularizations vs. inversion.
In comparing these methods we saw that ultimately, the determination of this rela-
tive weight comes down to the underlying assumptions in the method. If caps are
used, the ratio is 1 and when they are not it depends on the method.

10.5.2 Comparing Weights for DCJ vs. Algebraic Method

Yancopoulos and others [20] describe a complete list of operations characterized as
DCJ. Table 10.2 shows the list adapted from their 2005 paper. We use “circular”
in places where they use “circular intermediate” because here we study the general
case, where the start and target genomes can have both types of chromosomes, linear
and circular. Therefore, we do not necessarily think of circular chromosomes as
intermediate. Each of these operations has a weight of 1 DCJ.

The same operations are available in the algebraic approach, but the weights
are different. Table 10.3 shows the same operations with weights in both the DCJ
scheme and the algebraic scheme. Notice that we have to split some operation
classes because not all members have the same algebraic weight. In general, opera-
tions involving null chromosomes are weighted half a DCJ in the algebraic scheme.

10.5.3 Fact or Artifact: Fictitious Objects and Dummy Elements

We have discussed how it is possible to use caps and nulls and other such “fictitious”
objects in order to close paths in the adjacency graph so as to use the formalism de-
veloped for cycles. We have shown how it is possible to arrive at the transformation

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 239

Table 10.3 A comparison of weights in the DCJ and algebraic schemes. Operations described as
‘proper’ may not involve null chromosomes

Operation DCJ weight Algebraic weight Example

Linear translocation, proper 1 1 [1,2], [3] �→ [1], [3,2]
Linear fission/fusion 1 1/2 [1,2] �→ [1], [2]
Linear reversal 1 1 [1,2,3] �→ [1,−2,3]
Creation of circular from linear, proper 1 1 [1,2,3] �→ [1,3], (2)

Circularization of linear 1 1/2 [1] �→ (1)

Absorption of circular by linear, proper 1 1 [1,2], (3) �→ [1,3,2]
Linearization of circular 1 1/2 (1) �→ [1]
Circular Reversal 1 1 (1,2,3) �→ (1,−2,3)

Circular fission/fusion 1 1 (1,2) �→ (1), (2)

distance, using capped versions of genomes. As caps and nulls are not “real” it
may be thought that somehow these should not “count” or “weigh in”. Hence, some
might think that the algebraic method, which does not use them, may seem more le-
gitimate. Others may argue that, though these dummy elements are strictly a device,
they aid in simplifying the distance equations.

10.5.4 Fictitious Operations and the “Basic” DCJ

We have made no bones about discussing the artificiality of caps; having given them
the “power” of appearances, it remains to discuss the consequences in terms of the
kinds of operations that result in the “basic” DCJ.

Ultimately, the double cut and join is a series of four more “elemental” indi-
vidual cut and join operations, two of each. When the “single” DCJ operation is
performed between two “real” adjacencies, then two “actual cuts” and two “actual
joins” happen between “real” gene ends.

With the use of caps in the “basic” DCJ, concomitant fictitious operations can
arise, which have no ultimate “reality”. These fictitious operations involve any type
of cut or join involving a cap. There are two possible adjacencies involving caps
in the basic DCJ schema: either an adjacency between two caps which is a null
chromosome, or an adjacency between a cap and single gene end, also known as a
telomere. We define a fictitious operation as any operation involving either a cut or
a join in an adjacency containing at least one cap.

To understand this in the context of an example, consider the case of the lineariza-
tion example discussed in Sect. 10.3 using the capped master graph. Just as with any
DCJ, there are essentially two cuts and two joins, but now, some of these involve
caps. The null chromosome contains an adjacency which is severed as well as the
adjacency between the two gene ends in the circular chromosome (1t and 1h). So
one of the cuts performed in this DCJ is fictitious, and the other is real. After these

240 J. Meidanis and S. Yancopoulos

Fig. 10.21 Linearization in BPG representation. (a) MG with blue lines. (b) BPG with capped PC.
(c) uncapped PC

adjacencies are broken, the gene ends are reconnected with caps, and both of these
operations are fictitious. The total operation gets a DCJ “weight” of 1.

One might be tempted to infer that each individual cut and join is 1/4, after all,
there are four operations and the whole operation has a unit weight. If we do this,
then in the linearization example the only “real” operation is the cut between 1t and
1h; the remaining three operations (the cut of the null chromosome and the joining
of the two caps) are fictitious, so the “true cost” of this operation should only be 1/4!

In fact, Feijao and Meidanis [8] considered such a possible scheme with their
“SCJ” operation such that any single cut or single join is weighted as little as 1/4.

10.5.5 Fictitious Operations and the Algebraic Approach

What about fictitious operations for examples like these? First let us start with the
algebraic distance for these examples. As we know and saw in Fig. 10.15(c), or here
in Fig. 10.21, the permutation cycles for linearization consist of a single 2-cycle,
the norm of which is n− 1 = 2− 1 = 1; dividing by two, the distance is 1/2. We
have reached the irreducible quantum operation in the algebraic approach in a single
fission/fusion/linearization. As we can see from Fig. 10.21(c), the only “step down”
from here which is a PC “cloud” surrounding a single breakpoint, or adjacency, is
a single n = 1-cycle with a single gene end. But this last has no distance or cost.
Hence, in the algebraic schema there is no “step down” below this operation which
has a cost. The lowest we can go is to a cost of 1/2 which straddles between the
DCJ and the SCJ. This leaves us with more questions than answers. Had the cost of
the operation been 1/4 of a full DCJ we might not be as perplexed, since it would
seem the “fictitious” operations no longer “weigh in”.

10.5.6 Does the BMS- DCJ Do Away with Fictitious Operations?

The beautiful formalism developed by Bergeron et al. [4] in their approach to the
DCJ, including the adjacency graph and the idea of odd and even paths, seems to

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 241

liberate the DCJ from the clumsy use of caps and nulls. The beauty of the new
approach was welcomed by many because of its elegant formulation, ease of calcu-
lation, and also because at least for some who may have been bothered by them, it
seemed to do away with caps, and the issues that come with them; after all, caps are
not only a bother, but they are an artificial construction.

Interestingly, even though the DCJ approach as formulated by Bergeron et al. [4]
does not appear to have caps and nulls explicitly, nevertheless, their version of the
distance agrees in value with that of the “basic” DCJ distance computed with the
use of caps and nulls. The weighting scheme of Bergeron et al. is also identical to
that of the DCJ with caps and nulls.

The fact that the algebraic distance agrees with the DCJ distance (BMS [4] or
YAF [20]) when caps and nulls are used, but differs when they are not, begs the
question: does the BMS approach somehow retain vestiges of fictitious operations?

10.5.7 Biological Interpretation

The difference in weights between the DCJ and algebraic schemes poses interesting
questions. For instance, is it biologically meaningful to give less weight to opera-
tions involving null chromosomes? On the one hand, this may make sense because
apparently less “modification effort” is needed to effect, say, a linear fission than
a linear translocation: in the first case, a single “cut” occurs, while in the second,
there are actually two cuts and two rejoins. On the other hand, the creation of a new
chromosome is no easy task biologically. A chromosome is not just genes. It needs,
to begin with, a duplication apparatus, which includes a centromere or at least an
origin of replication. Simplified genome modeling does not take these into account.

We must remember that a mutation has to be accepted by the environment to
survive as such. Therefore, a lasting rearrangement must be “easy” with respect to
modification effort, but also “stable” in terms of genome structure, and these two
components should contribute to its weight.

To further illustrate this discussion, consider the following scenario: π = [1,2]
and σ = [2,1]. This is a linear transposition, and the DCJ distance between these
two genomes is 2. However, the algebraic distance is just 1! How come? Because
the algebraic method finds a shorter path of going from π to σ : linear fission of π ,
giving [1], [2], which is the same as [2], [1], and then linear fusion of these two chro-
mosomes yielding σ . Since a linear fission or fusion is worth 1/2, the total comes
to 1. Notice that this is only possible because the two blocks being interchanged
comprise the entire chromosome.

One could argue that the algebraic path is way out of scope, since it involves both
the creation and the destruction of a chromosome, which are supposedly expensive
biological operations. However, one could also argue that this argument holds only
if you assume that these two changes occurred separated by millions of years of
evolution. What if they occurred in the same cell division?

It is hard to say what is correct or not in modeling biological processes. It may
be the case that in some situations one approach is more suitable, while in other

242 J. Meidanis and S. Yancopoulos

situations the opposite is true. Experimental use of the distances will help us to shed
more light into this issue.

10.5.8 Implications and Concluding Remarks

The fact that the algebraic method leads to a different weighting scheme than the
standard DCJ not only lends a new approach to calculating the genomic distance,
but offers the possibility of addressing issues having to do with the use of “dummy”
elements such as caps and nulls. It is intriguing that we have found that by use
of these elements in the algebraic approach, the distance agrees with the standard
DCJ, but bypassing their use we arrive at a different distance and weighting scheme
for the operations, primarily those involving even paths in the adjacency graph, and
ultimately fissions and fusions in the transformation

By comparing the two formulations we have come to realize the consequences
involving the assumptions behind the two methods. Ultimately we feel that neither
method is “superior” in that either weighting scheme may be considered valuable
under some circumstances and the possible use of either of these two methods in-
creases the number of available options in analyzing genome transformations.

Acknowledgements We would like to thank Richard Friedberg for a long, inspiring conversation
over dinner at an Indian restaurant in New York, on February 24th, 2013. We thank Pedro Feijao
and Marilia Braga for shorter, but also inspiring, conversations. S.Y. thanks Nick Chiorazzi for
his tolerance and support, David Sankoff for introducing Joao to me, and Judith Ficksman for her
heartfelt encouragement. Finally, we thank our reviewer for meticulous and insightful comments.

References

1. Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and inverted transpo-
sitions. J. Comput. Biol. 14, 615–636 (2007)

2. Bafna, V., Pevzner, P.: Sorting by transpositions. SIAM J. Discrete Math. 224–240 (1998)
3. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. In: Proceedings of

the 34th Annual IEEE Symposium on Foundations of Computer Science, vol. 46, pp. 148–157.
IEEE Press, New York (1993)

4. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Moret, B.
(ed.) Algorithms in Bioinformatics Proceedings of WABI 2006 (2006)

5. Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric analysis of genome rearrangement.
Gene 172, 11–17 (1996)

6. Christie, D.: Sorting permutations by block interchanges. Inf. Process. Lett. 60, 165–169
(1996)

7. Dobzhansky, T., Sturtevant, A.H.: Inversions in the chromosomes of Drosophila pseudoob-
scura. Genetics 23, 28–64 (1984)

8. Feijao, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrange-
ment problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011).
doi:10.1109/TCBB.2011.34.

http://dx.doi.org/10.1109/TCBB.2011.34.

10 The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances 243

9. Feijao, P., Meidanis, J.: Extending the algebraic formalism for genome rearrangements to
include linear chromosomes. IEEE/ACM Trans. Comput. Biol. Bioinform. 99(PrePrints), 1
(2012). doi:10.1109/TCBB.2012.161

10. Friedberg, R., Darling, A.E., Yancopoulos, S.: Genome rearrangement by the double cut and
join operation. In: Keith, J.M. (ed.) Bioinformatics, Methods in Molecular Biology, vol. 452,
pp. 385–416. Humana Press, Clifton (2008)

11. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). J. ACM 46(1), 1–27 (1999). Previously appeared
at Proc. of the 27th Annual Symposium on the Theory of Computing (STOC 95), Las Vegas,
Nevada, pp. 178–189 (1995)

12. Hannenhalli, S., Pevzner, P.A.: Transforming mice into men (polynomial algorithm for ge-
nomic distance problem). In: Proc. of the 36 Annual Symposium on Foundations of Computer
Science (FOCS 95), Milwaukee, Wisconsin, pp. 581–592 (1995)

13. Meidanis, J., Dias, Z.: An alternative algebraic formalism for genome rearrangements. In:
Sankoff, D., Nadeau, J. (eds.) Comparative Genomics, pp. 213–223. Kluwer Academic, Dor-
drecht (2000)

14. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of
man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984)

15. Sankoff, D.: Edit distance for genome comparison based on non-local operations. In: Com-
binatorial Pattern Matching, Third Annual Symposium. Lecture Notes in Computer Science,
vol. 644, pp. 121–135. Springer, Berlin (1992)

16. Sankoff, D., Goldstein, M.: Probabilistic models for genome shuffling. Bull. Math. Biol. 51,
117–124 (1989)

17. Sankoff, D., Cedergren, R., Abel, Y.: Genome divergence through gene rearrangement. Meth-
ods Enzymol. 183, 428–438 (1990)

18. Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Gene, C.R.: Order comparisons
for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci.
USA 89, 6575–6579 (1992)

19. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput.
Syst. Sci. 65, 587–609 (2002)

20. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translo-
cation, in version and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

http://dx.doi.org/10.1109/TCBB.2012.161

Part III
Promising Directions

Chapter 11
Fractionation, Rearrangement, Consolidation,
Reconstruction

David Sankoff and Chunfang Zheng

Abstract The reconstruction of ancestral gene orders based on models of chromo-
somal rearrangement mechanisms is complicated when some of the input genomes
have undergone whole genome duplications followed by fractionation, the massive
loss of some or most of the duplicate genes. We describe a reconstruction proto-
col that uses maximum weight matching in two phases to overcome the fragmented
nature of results based on gene adjacency only. We review consolidation methods
for recovering synteny patterns from fractionated genomes, and show how to inte-
grate these into the reconstruction protocol. The procedure is applied to reconstruct
the common ancestral gene order of grape and poplar. Simulation of the evolution
of comparable genomes reveals the narrow ranges within which the rearrangement
and fractionation parameters must be set in order to emulate statistical attributes of
the extant genomes.

11.1 Introduction

All methods of reconstructing the details of ancestral gene order from a number
of extant genomes are based on common gene adjacencies in these genomes, e.g.,
[1–4], though they all build on these fundamental data in different ways. As evo-
lution progresses rearrangement events, notably inversion and reciprocal translo-
cation, successively disrupt gene adjacencies in individual genomes. In addition,
more local events such as gene transposition from one site to another, gene dele-
tion and gene duplication also disrupt some adjacencies and establish others. To
the extent that many common adjacencies remain unperturbed by these processes in
two or more of the extant genomes, they may contain enough evolutionary signal
to allow reconstruction of significant portions of the ancestral order. As evolution
continues, rearrangement can eventually degrade this signal so that only relatively
short fragments—“contigs”—of the ancestral order can be inferred. Reconstruction
methods need to transcend their dependence on gene adjacencies if longer range
gene orders are required.

D. Sankoff (B) · C. Zheng
University of Ottawa, Ottawa, ON, Canada
e-mail: sankoff@uottawa.ca

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_11,
© Springer-Verlag London 2013

247

mailto:sankoff@uottawa.ca
http://dx.doi.org/10.1007/978-1-4471-5298-9_11

248 D. Sankoff and C. Zheng

A complication arises if one or more of the extant genomes derive from whole
genome duplication (WGD) events that occurred since their common ancestor. The
duplication itself does not add any new adjacencies or remove any; the pre-existing
adjacencies simply continue, but with multiplicity two. What complicates things
after WGD is duplicate gene loss on a massive scale, deleting one or the other, but
not both, of most duplicate gene pairs, a process called fractionation [5]. The loss of
an individual gene y from context . . . xyz . . . will generally destroy two adjacencies
xy and yz and create a new one xz. This is true whether the loss of the gene is
a physical deletion of part of the chromosome or by pseudogenization. Even if xy

and yz still exist in the homeologous region of the genome, the adjacency xz is an
innovation.

WGD and fractionation are particularly prevalent in flowering plants [6], where
the slow (tens or hundreds of millions of years) cycle of the two processes also in-
volves the constant excision of excess non-coding DNA, a characteristic of genome
dynamics that distinguishes these organisms from other evolutionary domains, such
as the mammals.

It is misleading to compare fractionated genomes with non-WGD relatives in
terms of rearrangements only, because these yield systematically exaggerated re-
sults: the algorithms are forced to account for the missing and the new adjacencies
as if they were breakpoints of (non-existent) inversions and translocations. And al-
though there have long been methods for incorporating gene loss into genome rear-
rangement algorithms [7], these are not designed for the specific scenario of WGD
followed by fractionation.

In this paper, we first detail our scaffolding approach [4] to overcoming the “short
contigs” limitations of adjacency-based reconstruction (Sect. 11.2). After an expla-
nation of the notion of excess adjacencies in Sect. 11.3, we briefly review WGD
and fractionation (Sect. 11.4). In Sect. 11.5 we then present an improved consol-
idation interval strategy [8, 9] for accounting for fractionation in a descendant of
a WGD event. We can then reconstruct an ancestral gene order for the pre-WGD
genome from two or more of its direct descendants, where the genes in these de-
scendant genomes are replaced by consolidated intervals. Finally, the genes inside
these intervals are sorted.

We illustrate in Sect. 11.6 using the two plant genomes, from poplar (a WGD
descendant) and grapevine (no recent WGD history), to reconstruct their common
“rosid” ancestor, with and without taking into account fractionation. We find that
the consolidation step removes virtually all the artifactual rearrangements inferred
when fractionation is ignored.

From this reconstruction, we can calculate the total amount of rearrangement
from the ancestor to the two extant genomes, how much this would be inflated by
ignoring fractionation history, the distribution of sizes of consolidation intervals, and
the fractionation bias—to what extent are genes deleted in an asymmetric manner
from the two copies of the genome emerging from WGD.

In Sect. 11.7, we set up a simulation of the gene order evolution of poplar and
grapevine from the ancestral rosid, with the same numbers of genes and chromo-
somes, and the same number of single-copy genes (= number of gene losses) in the

11 Fractionation, Rearrangement, Consolidation, Reconstruction 249

simulated poplar genome. We experimented with parameters reflecting the numbers
of rearrangement operations, what proportion of these are short inversions, how
many genes are deleted at a time, and how probable a deletion is to affect one or the
other of the original two copies of the poplar genome. We determined the unique set
of evolutionary parameter values producing the observed values in our analysis of
the real plant genomes.

11.2 Reconstruction

Our reconstruction method requires preprocessing annotated genomic data by a syn-
tenic block detection program such as SynMap in the CoGe platform [10, 11] to
identify likely orthologous genes in all pairs of the genomes under study, as well as
paralogs in self-comparison of each descendant of recent WGD. We then process the
combined set of all these orthologies and paralogies with the OMG! procedure [12]
to produce homology sets containing at most N paralogous versions of each gene
in each 2N -ploid, including at most one gene in each diploid. We also impose some
more or less stringent condition such as at least two genes from different genomes
in each set. These homology sets represent candidate genes for the reconstructed
ancestral genome. The use of stringent criteria in SynMap and OMG! ensure that
each set can be mirrored by only one gene in the eventual reconstruction. Though
this lends confidence to the reconstruction of the particular gene and its position in
the gene order, it does exclude the possibility of assigning additional genes, even in
a tentative way.

Once we have the set of relevant genes and all the homology relations we recon-
struct the ancestral order using Maximum Weight Matching (MWM) [13] at two
levels. First we identify all the gene adjacencies (considering only the genes within
the data set as constructed) in all the genomes and subgenomes, each homology
set determining two vertices of a graph G1, corresponding to the 5’ and 3’ ends
of the genes involved. We weight each adjacency—an edge in G1—according to
how many times homologs of the two genes involved are adjacent, with that partic-
ular 5’–3’ orientation, in the data, possibly taking into account phylogenetic or data
quality considerations, depending on the particular biological problem being ana-
lyzed. The MWM then chooses an optimal subset of adjacencies. This gives a set of
ancestral “contigs”. A small number of these may be circular; we linearize each of
these by discarding their lowest weight adjacency—this has a minuscule effect on
the total weight of the matching.

For the second application of MWM, we use the contigs as vertices in a graph G2.
Each contig has a mean position (as measured in gene order position) on a chromo-
some in one or more of the input genomes or subgenomes. These positions order
the contigs on chromosomes. The few ambiguous contigs, i.e., containing large pro-
portions of genes originating in two or more chromosomes in the same genome or
subgenome are discarded. In addition, to ensure a level of syntenic robustness, if a

250 D. Sankoff and C. Zheng

contig does not have a minimum number of genes in at least one genome, we dis-
card it. Thresholds are set so that losing these small contigs plus the ambiguous ones
satisfies a trade-off between accuracy and gene inclusiveness.

Two successive contigs on a chromosome are considered adjacent, and are joined
by an edge in G2 for the purposes of the second MWM. The orientation of a contig
on a chromosome is determined by whether the genes it contains are in largely in-
creasing or decreasing gene order on the subgenome in question. The weights may
be the same as in the first MWM, or may be different. The output from this algo-
rithm is a set of “scaffolds”, namely a series of contigs alternating with gaps, each
corresponding to a chromosome or a fragment of a chromosome in the ancestral
genome.

Linearizing circular scaffolds turns out to be a quantitatively more important
problem than with contigs, Nevertheless, we have found that shifting the adjacency
criterion in mid-analysis from gene adjacency to contig proximity is an effective
way of transcending the short contig limitation of ancestral reconstruction [4].

Though the principle of MWM has been used for ancestral genome reconstruc-
tion in a variety of theoretical contexts [14–16], it is also well suited to practical
problem of scaling up from the gene adjacency-based problem of constructing con-
tigs to the contig-based problem of constructing scaffolds. And as we shall see, since
we are using statistics on gene adjacencies in evaluating reconstructions, an MWM
approach feeds naturally into this step.

11.3 Excess Adjacencies as a Measure of Rearrangement

Independent rearrangements (inversions and reciprocal translocations) in newly di-
verging sister species with n genes tends to increase the total number of different
adjacencies in the two genomes linearly at an initial rate of 2r , where r is the to-
tal number of rearrangements in the two genomes (r/2 in each). At the same time,
the number of adjacencies in common decreases at the same rate. If one of the
genomes undergoes WGD soon after speciation or as part of speciation, the total
number of different adjacencies in the two genomes still increases at a rate of 2r .
(The number of common adjacencies only decreases at a rate of r since rearrange-
ment changes in the WGD descendant only affects one of the two identical adja-
cencies, leaving the other intact, so that only rearrangements in the other genome
decreases the number of common adjacencies.) In either case—whether or not one
of the genomes is a WGD descendant—the total number of different adjacencies in
the two genomes, in excess of n, is an accurate measure of the degree of evolutionary
divergence [8].

The advantage of this way of measuring evolutionary divergence over edit dis-
tances based on a repertoire of rearrangement operations, and over breakpoint dis-
tances, is that it applies equally well to comparing genomes with one or more WGD
in their recent history as to those with no such history, and that it requires no special
extension, constraint or modification wherever it is applied.

11 Fractionation, Rearrangement, Consolidation, Reconstruction 251

Fig. 11.1 Fractionation leading to different adjacencies in WGD descendant and unaffected
genome. The adjacencies between genes 1 and 3, 3 and 5, 5 and 7 as well as 4 and 6 in the
WGD descendant are caused by fractionation. The adjacency between 1 and 8 in the unaffected
genome is caused by a reversal rearrangement, and the adjacency between genes 6 and 9 in the
WGD descendant is caused by deletion of 7 and a rearrangement. Only two of the adjacencies are
caused by rearrangement, but ignoring fractionation would lead to the inference of at least three
more rearrangements to account for the different sets of adjacencies in the two genomes

11.4 Whole Genome Duplication and Fractionation

During fractionation, gene adjacency disruption follows from the random choice of
which of the two copies is deleted, i.e., which copy of a chromosome retains the re-
maining single copy of the gene. This was first made explicit by Wolfe and Shields
[17] in their original demonstration of “reciprocal gene loss” following the ancient
WGD of Saccharomyces cerevisiae: “. . . this is the result of random deletion of in-
dividual duplicated genes from one or other chromosome subsequent to the initial
duplication of the whole region.” The pattern was further detailed later by the com-
parison of the S. cerevisiae gene order with that of related diploid yeasts [18, 19],
where it was called“interleaving”, while Freeling [5] coined the term “fractionation”
in the context of plant genomics. Gordon et al. [20] and more recently, Ouangraoua
et al. [21], have termed it “double synteny”.

The phylogenomic extent of fractionation and the formal treatment of the dele-
tion process have been the subject of numerous papers [22–26].

When a run of adjacent duplicate pairs lose a subset of their redundant genes
from one chromosome and another, disjoint, subset from the other copy, as in
Fig. 11.1, inference of the rearrangement distances between the WGD descendant
and an unduplicated sister genome necessarily suggests that there are rearrangement
breakpoints where adjacency no longer exists between the two subsets of single-
copy survivors. This exaggerates the inferred number of reciprocal translocations
and artificially inflates the overall amount of chromosomal rearrangement inferred
between the two sister genomes.

We can correct this through the identification and isolation of “fractionation in-
tervals”, regions in both the WGD descendant and its unduplicated sister genome
that have become partly or entirely single-copy in the former and may or may not

252 D. Sankoff and C. Zheng

have been rearranged internally, but have (so far) been unaffected in both genomes
by rearrangements exchanging genes from within the interval and genes external to
the interval. The statistical properties of the intervals bear on current topics of inter-
est in plant evolutionary genomics, whether duplicated genes are silenced or deleted
one by one or through the deletion of longer stretches of DNA [22–24] and whether
a fractionation regions tends to lose genes largely from one of the homeologous
chromosomal segments or equally from the two [27].

11.5 Consolidation

Ideas about combining the information from the two fractionated regions in recon-
structing ancestral genomes may be found in [5] for plants, in [20] for yeast and,
more formally, in [21] for ancient vertebrates.

We have been developing a series of consolidation algorithms to identify and
handle all instances of fractionation in a WGD descendant. The first of these [8]
focuses on detecting and accounting for pairs of regions of single-copy genes in
the WGD descendant that contain no genes in common (since the genes concerned
are single-copy) but whose combined (or consolidated [5]) gene content is exactly
the same as some contiguous region in a related genome unaffected by the WGD.
A recent improvement in collaboration with Katharina Jahn and Jakub Kováč has
linear run time, allows duplicate genes to be shared by the two intervals in the WGD
descendant, and also extends the analysis to whole genome triplication and higher
polyploidies [9]. Current work by Jahn solves the more difficult problem of com-
paring two fractionated sister genomes while dispensing with any necessity of ref-
erencing an unduplicated genome.

In the WGD case, once the pairs of regions or intervals are identified, together
with the corresponding interval in the unduplicated genome, all three regions are
replaced by a new, labeled, virtual gene.

The two genomes, thus altered by the creation of virtual genes replacing frac-
tionated regions, are then examined for excess adjacencies and compared with the
corresponding quantity in the untreated genome.

When one of the two intervals in the WGD descendant is empty because of com-
pletely biased fractionation, the corresponding virtual gene is still replaced in the
appropriate context, deduced by examining the contexts of the other copy of the
virtual gene in the WGD descendent and in the unaffected sister genome.

The consolidation algorithm treats the fractionation intervals as identical units,
two in the WGD descendant and one in the unaffected genome. In this way it ac-
counts for rearrangements which includes a whole interval in its scope, but also
rearrangements which disrupt an interval, in that a fractionation involving such an
interval will generally be automatically counted as two intervals, resulting in two
virtual units instead of one. What the consolidation algorithm does not account for,
however, are rearrangements occurring completely within one of the fractionation
intervals.

11 Fractionation, Rearrangement, Consolidation, Reconstruction 253

Fig. 11.2 Evolutionary scheme for simulating the production of excess adjacencies in a WGD de-
scendant and an unaffected sister genome, by rearrangement and fractionation in the former, and re-
arrangement only in the latter. Ancestor contained 24,000 genes, divided among 20 chromosomes.
Simulations carried out with number of random rearrangements (10 % reciprocal translocations,
90 % inversions) r = 0,600,1800,3000,4200 and random deletions d = 0,3000, . . . ,21,000

Fig. 11.3 Simulated effect of
fractionation on increasing
number of excess adjacencies
before consolidation (dashed
lines) and after (solid lines)
for two genomes, one having
undergone a WGD and one
unaffected, diverging by
various amounts of
rearrangement

To correct for this, within each fractionation region, we first consider all the
adjacencies in the three component intervals. We find an order for all the genes in the
interval in the reconstructed ancestor genome, such that the following condition is
satisfied. The induced sub-order determined by the subset of the genes from each of
the three intervals in the extant genomes, two in the WGD descendant and one in the
unaffected genome, has a minimum number of excess adjacencies when compared
with the extant order, summed over all three intervals. We add the number of these
interval-internal adjacencies to the set of adjacencies produced by the consolidation
algorithm.

Figure 11.2 shows a scheme for simulating fractionation process following a
WGD event. Figure 11.3, adapted from [8], shows how the consolidation algorithm
wipes out almost all the bias caused by fractionation.

254 D. Sankoff and C. Zheng

Table 11.1 Statistics on the reconstruction of the common ancestor of grape and poplar, before
and after taking into account consolidation of the fractionation intervals. Of note is the decrease in
the percentage of excess adjacencies (in boldface), representing artifactual rearrangements when
fractionation is not taken into account

Genes in comparison Grape Poplar Ancestor

Single copies 12,494 4,282 8,631

In syntenic pairs 0 2× 8212= 16,424 0

Total 12,494 20,706 8,631

Adjacency statistics Before fractionation analysis

Adjacencies 12,475 20,676 8,588

Distinct (a) 12,475 16,165 8,588 (b)

Distinct overall (c) 19,446

Excess (c–a) 6,971 (55.9 %) 3,281 (20.3 %)

With ancestor (d) 9,390 11,094 total

Excess (d–b) 802 (9.3 %) 2,506 (29.2 %) 3,308 (38.5 %)

Virtual genes After fractionation analysis and consolidation

Fractionation intervals 2,462 1,888

Single copies 10,674 0 8143a

In syntenic pairs 0 2× 10,674b = 21,348 0

Total 10,674 21,348 8143

Adjacency statistics After consolidation

Adjacencies 10,655 21,318 8,107

Distinct (a) 10,655 13,309 8,107 (b)

Distinct overall (c) 15,278

Excess (c–a) 4,623 (43.4 %) 1,969 (14.8 %)

With ancestor (d) 9,079 9,844 total

Excess (d–b) 972 (12.0 %) 1,737 (21.4 %) 2,709 (33.4 %)

aCounting genes within virtual genes: 9502
bIncludes duplicate genes (not in a fractionation interval) and two copies of virtual genes even if
only one gene-containing interval was found in poplar

11.6 Grape and Poplar

We applied our method to the genome of poplar (Populus trichocarpa) [28], which
descends from a WGD event some 70 million years ago, and grape (Vitis vinifera)
[29], which has undergone no WGD since the two genomes diverged some 130
million years ago.

As can be seen in Table 11.1, we discovered that a good proportion, over 25 %,
of the apparent rearrangement in the poplar lineage, is actually attributable to frac-

11 Fractionation, Rearrangement, Consolidation, Reconstruction 255

tionation. This is remarkable since only about 20 % of the poplar genome is made
up of single-copy regions.

Another advantage of consolidation is that it resolves a major part of the “short
contigs” problem of the MWM approach. The first stage of the MWM in the re-
construction before consolidation produced 2598 contigs with 12,494 genes. But
once we applied the consolidation algorithm only 967 contigs were produced by the
MWM, lengthening the average contig size by a factor of 2.6.

The benefits were less striking but still non-negligible in the second stage MWM,
itself designed to overcome the problem of short contigs. Here, instead of 43 scaf-
folds in the reconstruction before consolidation, seven additional “joins” appeared,
for a reduction to 36 scaffolds in the consolidated data.

11.7 Simulations

In our complex model of genome divergence through rearrangement, WGD and
fractionation can only be validated by seeing how many aspects of the simulated
output genomes match those of the real genome, with a minimum of model parame-
ters. The number of genes in the two genomes, and the number of single-copy genes
are fixed quantities, determined by the real genomes. Rearrangement can be carried
out by a mixture of (1 − θ)ρ short inversions, where the number of genes in the
scope of the inversion is geometrically distributed with mean μ, plus θρ unbounded
rearrangements whose endpoints are chosen randomly on chromosomes. In each
deletion event the number of contiguous genes lost is geometrically distributed with
mean λ. Finally, we introduce a parameter π for fractionation bias, the probabil-
ity that a deletion takes place in a specified “subgenome”, one of the two original
copies of the duplicated ancestral genome created by the WGD event. There are
thus five parameters that must be set for each simulation, ρ, θ , μ, λ, π plus the
given structure of the ancestral genome, determined in our case, by the number of
homologs in the poplar and grape genomes, and the number of single-copy genes in
poplar. To find the appropriate values of the parameters to simulate the data, we can
observe the total number of adjacencies between the output genomes, both before
consolidation (R1) and after consolidation (R2). We can measure the average size
L of the fractionation intervals (or, equivalently, the number of intervals N , since
the product of the two quantities is fixed). And we can also indirectly observe the
fractionation bias P , which is the deviation from an even split of the deleted genes
of from the two copes of the fractionation interval in poplar or its simulation. More
specifically we can measure P(1),P (2), . . . in pairs of poplar fractionation intervals
totaling 1,2, . . . genes, respectively. We term this “indirect” since we do not have
access in the real poplar genome to the identity of genes in terms of their origin in
one of the other “subgenomes” produced by the WGD event. We simply measure
how many more genes there are in the larger fractionation interval compared to its
counterpart, a value that is larger, on the average than the “true” bias.

We carried out a cyclical search, one parameter at a time, to find settings (Ta-
ble 11.2) that gave the same average R1, R2 and N over 50 simulations as the values

256 D. Sankoff and C. Zheng

Table 11.2 Best parameter
values Parameters ρ θ μ λ π

Best values 1570 0.05 2.47 1.32 0.70

Table 11.3 Simulation
statistics compared to real
genomes. In each case the
standard deviation over 50
samples was less than 1 %
of the mean of the variable

Real genomes 50 simulations

Before After Before After

Consolidation Consolidation

Total adjacencies (R) 19,538 15,363 19,563 15,298

Fractionation intervals (N) 2,462 2,458

Fig. 11.4 Size of
poplar/grape fractionation
regions compared to
simulations with parameters
set so that reconstruction
statistics match

calculated from grape and poplar (Table 11.3). We adjusted π so that the plot of the
average simulated P(i) resembled that from the real genomes.

Examining the consolidated regions detected by our algorithm, there are a num-
ber of regions much longer than those in the simulations (Fig. 11.4), suggesting
a non-independence of deletion events affecting neighboring genes, and clear ten-
dency for genes to be deleted in one of the two homeologs, as would be predicted
by the recent theory of subgenome dominance [27].

In Fig. 11.5, a high value (p = 0.85) for the fractionation bias fits the data
from poplar well only for long single-copy intervals, which are relatively rare (see
Fig. 11.4), but a lower value (p = 0.70) fits the more numerous short intervals bet-
ter. This is strong evidence that the selection of the various deletion sites does not
proceed entirely independently, but rather that there are some regions of the genome
that are particularly prone to becoming single-copy.

There are more parameters (five) to set in the simulations than quantities to ob-
serve (four) (though P is a vector, we can only observe its trend with any accuracy,

11 Fractionation, Rearrangement, Consolidation, Reconstruction 257

Fig. 11.5 Discrepancy in
pairs of poplar intervals in the
number of genes, compared
with simulations with
fractionation bias
p = 0.55,0.70,0.85.
Deletion event size
geometrically distributed with
mean 1.3. Jagged nature of
graphs due not to statistical
fluctuation but to
measurement of discrepancy
from an “even” split, which is
necessarily calculated slightly
differently for even and odd
totals of genes in the
fractionation intervals

not the individual P(i)), so there is inherently some non-uniqueness associated with
the best choice of parameters, as suggested in Fig. 11.6. Nevertheless, the parame-
ters can only take on values in a very restricted region. For example, outside a narrow
range ρ produces too few or too many adjacencies, no matter what the settings are
for the other parameters. And given ρ, the number of intervals N is sensitive to both
parameters μ and λ.

11.8 Conclusions

The most important result from this work is that consolidation has the effect of
greatly increasing the length of ancestral contigs output from the first MWM stage.
The scaffolding approach already compensates for the short contigs problem, but
combining the two strategies yields even longer scaffolds.

We have shown that we can closely simulate the gene order evolution of a WGD
descendant and an unaffected sister genome, lending some confidence to our recon-
struction of their common ancestor. We do detect, however, a significant number of
long single-copy intervals, with highly biased fractionation, in the poplar genome,
lying well outside the scope of our simulations. Whether there are biological con-
nections among the genes in these intervals, and whether there are genes with no
detected homologies in grape that are also present as single copies in these inter-
vals, are questions for further study.

Further work will also involve improvements in parameter estimation as well as
the identification of other measurable properties of evolutionary scenarios, restoring
the balance between the number of parameters and the number quantities observed,
in order to dispel problems of non-uniqueness.

This work has been undertaken as part of a project to formally analyze aspects of
WGD fractionation, especially in the context of angiosperm evolution. Other direc-
tions include allowing duplicates in pairs of fractionation intervals, treating ploidies

258 D. Sankoff and C. Zheng

Fig. 11.6 Non-independent effects of simulation parameters on reconstruction characteristics.
Top: Difference between real and simulated genomes (sum of R1 and R2 absolute differences) as
a function of ρ and λ, showing the dependence of minimizing values of the parameters. Left: Dif-
ference between real and simulated genomes as a function of ρ and π , showing the dependence of
minimizing values of the parameters. Right: Difference between real and simulated genomes (num-
ber of virtual genes) as a function of λ and μ, showing the independence of minimizing values of
these particular parameters

of higher degree than WGD, dispensing with the necessity of an unaffected sister
genome, as well as a probabilistic model of the distribution of fractionation interval
sizes.

Acknowledgements We thank Katharina Jahn for many valuable comments and suggestions
during the work reported here, and Vic Albert and Eric Lyons for guidance to current trends in an-
giosperm genomics. Research supported in part by grants from the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). DS holds the Canada Research Chair in Mathematical
Genomics.

References

1. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous
regions of ancestral genomes and its application to mammalian genomes. PLoS Comput. Biol.
4, 11 (2008)

11 Fractionation, Rearrangement, Consolidation, Reconstruction 259

2. Alekseyev, M.A., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions.
Genome Res. 19, 943–957 (2009)

3. Gagnon, Y., Blanchette, M., El-Mabrouk, M.: A flexible ancestral genome reconstruction
method based on gapped adjacencies. BMC Bioinform. 13(S19), S4 (2012)

4. Zheng, C., Chen, E., Albert, V.A., Lyons, E., Sankoff, D.: Ancient eudicot hexaploidy meets
ancestral eurosid gene order. BMC Genomics 14 (2013, in press)

5. Langham, R.J., Walsh, J., Dunn, M., Ko, C., Goff, S.A., Freeling, M.: Genomic duplication,
fractionation and the origin of regulatory novelty. Genetics 166, 935–945 (2004)

6. Soltis, D.E., Albert, V.A., Leebens-Mack, J., Bell, C.D., Paterson, A.H., Zheng, C., Sankoff,
D., dePamphilis, CW, Wall, P.K., Soltis, P.S.: Polyploidy and angiosperm diversification. Am.
J. Bot. 96, 336–348 (2009)

7. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous
segments. In: Giancarlo, R., Sankoff, D. (eds.) Combinatorial Pattern Matching (CPM 2000),
Proceedings of the 11th Annual Symposium. Lecture Notes in Computer Science, vol. 1848,
pp. 222–234 (2000)

8. Sankoff, D., Zheng, C.: Fractionation, rearrangement and subgenome dominance. Bioinfor-
matics 28, 402–408 (2012)

9. Jahn, K., Zheng, C., Kováč, J., Sankoff, D.: A consolidation algorithm for genomes fraction-
ated after higher order polyploidization. BMC Bioinform. 13(S19), S8 (2012)

10. Lyons, E., Freeling, M.: How to usefully compare homologous plant genes and chromosomes
as DNA sequences. Plant J. 53, 661–673 (2008). http://genomevolution.org/CoGe/

11. Lyons, E., Pedersen, B., Kane, J., Alam, M., Ming, R., Tang, H., Wang, X., Bowers, J., Pater-
son, A., Lisch, D., Freeling, M.: Finding and comparing syntenic regions among Arabidopsis
and the outgroups papaya, poplar and grape: CoGe with rosids. Plant Physiol. 148, 1772–1781
(2008)

12. Zheng, C., Swenson, K., Lyons, E., Sankoff, D.: OMG! Orthologs in multiple genomes—
competing graph-theoretical formulations. In: Przytycka, T.M., Sagot, M.-F. (eds.) Algorithms
in Bioinformatics, Proceedings of the 11th International Workshop. Lecture Notes in Com-
puter Science, vol. 6833, pp. 364–375 (2011)

13. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Comput. Surv.
18, 23–38 (1986)

14. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under
different genomic distances. BMC Bioinform. 10, 120 (2009)

15. Warren, R., Sankoff, D.: Genome aliquoting revisited. J. Comput. Biol. 18, 1065–1075 (2011)
16. Manuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral

multichromosomal genomes. BMC Bioinform. 13(S19), S11 (2012)
17. Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the entire yeast

genome. Nature 387, 708–713 (1997)
18. Dietrich, F.S., Voegeli, S., Brachat, S., Lerch, A., Gates, K., Steiner, S., Mohr, C., Pöhlmann,

R., Luedi, P., Choi, S., Wing, R.A., Flavier, A., Gaffney, T.D., Philippsen, P.: The Ashbya
gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science
304, 304–307 (2004)

19. Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome
duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004)

20. Gordon, J.L., Byrne, K.P., Wolfe, K.H.: Additions, losses, and rearrangements on the evolu-
tionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome.
PLoS Genet. 5, e1000485 (2009)

21. Ouangraoua, A., Tannier, E., Chauve, C.: Reconstructing the architecture of the ancestral am-
niote genome. Bioinformatics 27, 2664–2671 (2011)

22. Byrnes, J.K., Morris, G.P., Li, W.-H.: Reorganization of adjacent gene relationships in yeast
genomes by whole-genome duplication and gene deletion. Mol. Biol. Evol. 23, 1136–1143
(2006)

23. van Hoek, M.J., Hogeweg, P.: The role of mutational dynamics in genome shrinkage. Mol.
Biol. Evol. 24, 2485–2494 (2007)

http://genomevolution.org/CoGe/

260 D. Sankoff and C. Zheng

24. Sankoff, D., Zheng, C., Zhu, Q.: The collapse of gene complement following whole genome
duplication. BMC Genomics 11, 313 (2010)

25. Wang, B., Zheng, C., Sankoff, D.: Fractionation statistics. BMC Bioinform. 12(S9), S5 (2011)
26. Sankoff, D., Zheng, C., Wang, B.: A model for biased fractionation after whole genome du-

plication. BMC Genomics 13(S1), S8 (2012)
27. Schnable, J., Springer, N., Freeling, M.: Differentiation of the maize subgenomes by genome

dominance and both ancient and ongoing gene loss. Proc. Natl. Acad. Sci. USA 108, 4069–
4074 (2011)

28. Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N.,
Ralph, S., Rombauts, S., Salamov, A. et al.: The genome of Black Cottonwood, Populus tri-
chocarpa (Torr. & Gray). Science 313, 1596–1604 (2006)

29. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N.,
Aubourg, S., Vitulo, N., Jubin, C., et al.: The grapevine genome sequence suggests ancestral
hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007)

Chapter 12
Error Detection and Correction of Gene Trees

Manuel Lafond, Krister M. Swenson, and Nadia El-Mabrouk

Abstract Reconstructing the phylogeny of a gene family and reconciling the ob-
tained gene tree with the species tree reveals the history of duplications, losses, and
other events that have shaped the gene family, with important implications towards
the functional specificity of genes. However, evolutionary histories inferred by rec-
onciliation are strongly dependent upon the accuracy of the trees, and few misplaced
leaves will lead to a completely different history. Furthermore, sequence data alone
often lack the information to confidently support a gene tree topology. We outline
a number of criteria that can be used to detect erroneous gene trees. Analysing En-
sembl gene trees of the fish genomes Stickleback, Medaka, Tetraodon, and Zebrafish
reveals a significant number of erroneous gene trees. Finally, some potential direc-
tions for error correction of gene trees are explored.

12.1 Introduction

Duplication followed by modification is a major mechanism driving evolution. Con-
sequently, genes cannot be seen as independent entities, but rather as entities re-
lated through duplication and speciation events. Grouping genes into families of
homologs (i.e. copies originating from a single ancestral gene) and reconstructing
the phylogeny of each gene family is requisite for a variety of annotation, evolu-
tionary, and functional studies. By reconciling such a gene tree with a species tree,
one can infer the history of duplications, losses and other events that have shaped
the gene family. Such a history reveals the orthology (evolution of the ancestral

M. Lafond (B) · K.M. Swenson · N. El-Mabrouk
Département d’Informatique et de Recherche Opérationnelle (DIRO), Université de Montréal,
CP 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
e-mail: lafonman@iro.umontreal.ca

N. El-Mabrouk
e-mail: mabrouk@iro.umontreal.ca

K.M. Swenson
McGill University, Montreal, QC, Canada
e-mail: swensonk@iro.umontreal.ca

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_12,
© Springer-Verlag London 2013

261

mailto:lafonman@iro.umontreal.ca
mailto:mabrouk@iro.umontreal.ca
mailto:swensonk@iro.umontreal.ca
http://dx.doi.org/10.1007/978-1-4471-5298-9_12

262 M. Lafond et al.

copy by speciation) and paralogy (evolution by duplication) relationship between
genes, with important implications towards the functional relationship between gene
copies. However, uncertainty on gene trees is a serious limitation to reconciliation,
as well as to other applications. In particular, it has been reported that a few mis-
placed leaves can lead to a completely different history, possibly with significantly
more duplications and losses [30]. Thus, a great deal of effort has been put into
finding accurate gene trees.

Gene Tree Inference Inferring phylogenies from sequence similarity is a field
with a very long history that gave rise to a variety of distance, maximum parsimony,
maximum likelihood or Bayesian methods, and a variety of software (PHYLIP
[20, 21], NJ [47], PAUP [54], PhyML [28], MrBayes [44], RAxML [51]). However,
due to various limitations such as insufficient differentiation, alignment ambiguity,
or differing rates of evolution among gene copies, sequences alone do not always
support a single gene tree topology with high confidence.

Recently, several approaches have been developed to incorporate other genomic
information in the construction of gene trees. For example, the SYNERGY algo-
rithm [60] uses a “synteny similarity score” accounting for the position of genes in
the chromosome. Different ways of integrating species tree information have also
been considered. For example, the TreeBeST program from TreeFam [32, 45] (used
for constructing the Ensembl Compara gene trees) uses a likelihood factor reflecting
the number of duplications and losses inferred by reconciliation, the goal being to
minimize inconsistency with the species tree. Another example is GIGA [57], a sim-
ple and fast algorithm using a UPGMA like distance-based approach to construct
trees. In addition to the distance criterion, it relies on rules reflecting the species
tree constraints (choose topologies in agreement with the species tree), as well as
observations on lineage-specific evolution rates. This simple algorithm performs
surprisingly well, leading to the conclusion that other constraints are strong enough
to compensate for weak or misleading signals in gene sequences.

Other more sophisticated “species tree aware” methods have been developed,
such as GSR [1, 2] and Spimap [43] adopting a Bayesian approach, or PhylDog [3]
using a probabilistic model for simultaneously coestimating gene trees and the
species tree. These models tend to be computationally intensive.

Gene Tree Correction A complementary approach for producing “error-free”
gene trees is to develop appropriate evaluation and correction tools, based on vari-
ous genomic constraints, that can be applied subsequent to gene tree reconstruction.
TreeFix [62] offers an additional framework to unify the sequence and genomic
approaches, by suggesting a step following gene tree correction that performs sta-
tistical evaluation of a corrected tree, choosing it as a viable alternative only if it is
statistically equivalent to the original one. The strategies that have been considered
for gene tree correction are based on reconciliation, and can be grouped into three
different classes:

I. Explore the space of gene trees obtained from the original one by performing
some edit operations such as NNI [13, 25], SPR, or TBR [10] and select the tree

12 Error Detection and Correction of Gene Trees 263

having the minimum reconciliation cost. The “soft parsimony” algorithm [8]
extends this approach for reconciliation with an uncertain species tree.

II. Collapse weakly supported internal branches [4], which leads to a non-binary
gene tree, and then select the resolution minimizing the reconciliation cost
[9, 36, 41].

III. Identify potentially misplaced leaves and remove them from the gene tree.
In [12], vertices of a gene tree G labeled as Non-Apparent-Duplication (NAD)
vertices, were flagged as potentially resulting from the misplacement of leaves
in the gene tree. A duplication vertex x of G (according to the reconciliation
with a given species tree) is a NAD if genes from the same species do not appear
as a descendant of each of x’s children. The reason for doubting NADs is that
each one of these vertices reflects a phylogenetic incongruence with the species
tree that is not due to the presence of duplicated genes in a single genome.
Avoidance of NADs is one of the principles behind the GIGA algorithm [57].
We presented algorithmic results for removing, from a given gene tree, the min-
imum number of leaves or leaf-labels (species) leading to a tree without a NAD
vertex, under conditions of a known or an unknown species tree [16, 52]. All
known formulations of this version of the problem are NP-hard [14, 15].

Error Detection Known methods for correcting gene trees all rely on errors de-
tected through reconciliation with the species tree. Similarly, in the field of gene
tree reconstruction, most integrated methods rely on the species tree information,
although other criteria have been suggested such as gene order [60] and variability
of evolutionary rates [57]. In this paper, we follow up on this effort by exploring
these two directions.

In Sect. 12.3, we show how gene order may be inconsistent with a gene tree,
and state two error detection criteria based on gene order. To show the utility of
these criteria, we consider the Ensembl [23] gene trees for four fish genomes (Stick-
leback, Medaka, Tetraodon, Zebrafish) with human and mouse as outgroups. We
observe that more than 31 % of all trees exhibit at least one gene order contradic-
tion. In Sect. 12.4, we show how the presence of negative and positive selection
may be misleading for gene tree reconstruction, and suggest methodology for de-
tecting natural selection bias in a gene tree. Using the non-synonymous (dN) versus
synonymous (dS) substitution ratio dN/dS as a criterion for detecting natural se-
lection, a clear selective pressure is observed on Ensembl gene trees as compared
to random trees. Finally, in Sect. 12.5 we give some avenues for developing a co-
herent tool for correcting gene trees, taking advantage of all available sequence and
genomic information.

12.2 Genomes, Trees, and Gene Family Histories

We begin by introducing the necessary notations and background concepts. Al-
though some of our experimental results could be explained without such formal-
ities, we find it important to be precise. Indeed, many of the terms introduced in
Sect. 12.2.5 have been used in multiple ways under diverse circumstances, some-

264 M. Lafond et al.

times leading to confusion. Many concepts are also presented in a general way, in
the hopes of illuminating the potential for related work.

12.2.1 Genomes

Although our methods may be extended to arbitrary genomes, for simplicity of pre-
sentation we only consider single chromosomal genomes, represented as strings
of, possibly signed, genes. Let A = a1a2 . . . an be a string representing a genome.
For any i, j such that 1 ≤ i ≤ j ≤ n, A[i, j] = aiai+1 . . . aj is a substring of A.
A string obtained from a substring of A by removing a subset of genes (possibly
empty), is called a subsequence of A. For 1≤ i1 < i2 < · · ·< ip ≤ n, we denote by
A[i1, i2, . . . , ip] the subsequence A[i1]A[i2] . . .A[ip] of A.

12.2.2 Trees

A phylogeny is a rooted binary tree, uniquely leaf-labeled by some set. A species
tree S is a phylogeny over a set of species Σ , which represents the evolution-
ary relationships between these species. Similarly, we can consider the evolution-
ary relationships amongst a family of homologous genes Γ that appear in the
genomes of Σ . A gene tree G for Γ is a phylogeny accompanied by a function
s : Γ →Σ indicating the species where each gene is found. We will make no dif-
ference between a node and its associated gene. The tree G from Fig. 12.1 is a
gene tree for Γ = {Z1,M1,M2, S2} on species set Σ = {Z,M,S}. In this case,
s(M1)= s(M2)=M .

Given a tree T and a node x of T , we denote by Tx the subtree of T rooted at x

(i.e. the tree comprises x and all its descendants), and by L(Tx) the set of leaves
of Tx . The species set of x, denoted S(Tx), is the subset of Σ defined by the labels
of the leaves of Tx (if T is a gene tree then S(Tx)= {s(�) : � ∈ L(Tx)}). If there is no
ambiguity about the tree in question, we write S(Tx) as S(x). The lowest common
ancestor (LCA) of leaves x and y in a tree T , written lcaT (x, y), is the common
ancestor of x and y that is farthest from the root. Finally, for any internal node x of
a rooted binary tree T , we denote by x� and xr the two children (left and right) of x

in T .

12.2.3 Histories

As a set of modern species evolves from a single ancestral species, some of the
gene content of those species is modified through duplication within the genome,
and then loss. Traditionally, reconciliation between gene trees and species trees has
been used to reconstruct such histories. The basis for such methodology has been
a formal definition of what a reconciliation is, without a definition of the actual
history that is the ultimate objective. Indeed, for a family of genes related through

12 Error Detection and Correction of Gene Trees 265

F
ig

.1
2.

1
G

is
th

e
ge

ne
tr

ee
fo

rt
he

ge
ne

fa
m

ily
“O

L
A

.1
15

55
”

fr
om

E
ns

em
bl

(E
N

SO
R

L
G

00
00

00
13

55
8)

,e
xt

en
de

d
w

ith
a

lo
ss

le
af

ac
co

rd
in

g
to

a
re

co
nc

ili
at

io
n

w
ith

sp
ec

ie
s

tr
ee

S
.
H

is
th

e
du

pl
ic

at
io

n-
lo

ss
hi

st
or

y
co

rr
es

po
nd

in
g

to
G

.R
ec

on
ci

lia
tio

n
of

G
w

ith
th

e
sp

ec
ie

s
tr

ee
S

gi
ve

s
on

e
du

pl
ic

at
io

n
an

d
on

e
lo

ss
(a

s
m

ar
ke

d
in

G
an

d
H

,d
up

lic
at

io
n

by
a

sq
ua

re
,a

nd
lo

ss
es

by
tw

o
do

tt
ed

li
ne

s)

266 M. Lafond et al.

duplications and speciations, there exists some true history—the actual duplications
and speciations that occurred in the past. So as not to put the cart in front of the
horse, we now define what we mean by a duplication/loss/speciation-history (dls-
history). We then define a reconciliation in terms of dls-histories. This perspective
facilitates the reasoning used in Sect. 12.3; knowing that there is one true history of
speciation/loss/duplication for a family of genes, we establish conditions that true
gene trees must possess.

A duplication of size k + 1 on genome A is an operation that copies a sub-
strings A[i, i + k] to a location j of A outside the interval [i, i + k] (i.e. pre-
ceding i or following i + k). A Loss of size k is an operation that removes a
substring of size k from A. Given a set of genes Γ from a set of genomes Σ ,
a duplication/loss/speciation-history H for Γ is a rooted tree “embedded” in the
species tree S of Σ , which reflects the evolution of the set from a single ancestral
copy through duplication, loss and speciation events. In other words, each inter-
nal node x of H represents the evolution of the set L(Hx) from an ancestral gene
copy xA, and corresponds to either a speciation or gene duplication event. The leaves
correspond to either the genes in question, or to losses, where each of the latter loss
leaves map to a single node of S. If a loss leaf � maps to a node x of S, we say that
Sx is the label of �.

Definition 1 (dls-history) Let Γ be a set of genes from a set of genomes Σ , and
let S be the true phylogeny for Σ . A duplication/loss/speciation-history H for Γ

consistent with S (or simply a dls-history if unambiguous) is a rooted binary tree
such that:

• each leaf is uniquely labeled by an element of Γ , or it is a loss leaf labeled by a
subtree of S;

• each internal node is labeled as a duplication or speciation; and
• H is consistent with S: Consider the tree H̄ obtained from H by replacing each

loss leaf by the subtree that labels it, and by replacing all other leaves by the
species to which the attached gene belongs. Then, for every internal node x of
H̄ such that |S(x)| ≥ 2, there exists a vertex u of S such that S(x)= S(u) and:
S(xr)= S(x�) if x is a duplication, or S(xr)= S(ur) and S(x�)= S(u�) if x is
a speciation node.

The gene tree in agreement with H is the tree obtained from H by removing
loss leaves and the resulting internal nodes having one child. Consider the trees
from Fig. 12.1. The solid lines of G denote the gene tree corresponding to the his-
tory H .

As true histories are unknown, gene trees are usually inferred from sequence
data, and histories subsequently inferred from reconciliation with the species tree
(see the next section). In this paper, we will distinguish between the true gene tree,
which is the tree in agreement with the true dls-history of the gene family, and the
gene tree, which is a tree obtained from the observed gene sequences (e.g. a multiple
alignment of the sequences, the observed gene positions, or any other footprint of
evolution observed in the extant species).

12 Error Detection and Correction of Gene Trees 267

12.2.4 Reconciliation

Given an inferred gene tree G for a set Γ of genes from genomes Σ , and given a
species tree S for Σ , the problem is to recover a dls-history for Γ consistent with S,
such that G is in agreement with the history. Such a history is called a reconciliation.
Informally, a reconciliation R of G and S is a dls-history of Γ obtained by inserting
loss leaves in G. Let an extension of G be a tree obtained from G by a sequence
of loss insertions, where a loss insertion denotes the insertion of a new loss leaf
labeled by a subtree of S, by means of bisecting an existing edge of G with a new
edge. A rigorous definition of reconciliation follows.

Definition 2 (Reconciliation) A reconciliation R of gene tree G and species tree S

is an extension of G that is a dls-history consistent with S.

The parsimony criteria used to choose among the large set of possible reconcilia-
tions are usually the number of duplications (duplication cost), the number of losses
(loss cost) or the sum of the two (mutation cost). Many algorithms have been devel-
oped for computing the most parsimonious reconciliation, the most efficient ones
with running time proportional to the size of the gene tree [12, 19, 27, 67].

12.2.5 Perspectives on Homology

There have been many uses of the word homology and the related concepts, the
confusion due to the many possible measures of similarity between genes. Indeed,
evolutionary, sequence, functional, or positional constraints give rise to definitions
that are unfortunately not equivalent [35]. In this paper we adopt the original defini-
tions recommended by Fitch [22], corresponding to the evolutionary concepts.

Definition 3 (Homology) Two genes are homologous if and only if they are the
leaves of a dls-history H . A gene family is a set of homologous genes.

Although many genes share a common origin [56], and thus share the same dls-
history, the definition of homology given by Fitch does not include a necessary limit
on the evolutionary closeness between two homologous genes. To our knowledge,
this is an unfortunate and unstated ambiguity that we must live with for the time
being.

The remainder of the definitions describe a hierarchy of homologous genes, im-
plied by the dls-history H .

Definition 4 (Orthology) Genes a and b are orthologous if lcaH (a, b) is a specia-
tion node.

As duplications may arise following a speciation event, the orthology relation-
ship is not transitive. This property is inherent to the evolutionary definition of or-

268 M. Lafond et al.

thology, which is not a definition about the functional relationship between genes,
nor the positional or direct descendant relationship. In this perspective, Fitch [22]
introduced the following notion of functional orthologs or isorthologs, for a given
function (in case of hemoglobin sequences for example, the function is the ability
of being the adult transporter of oxygen).

Definition 5 (Isorthology) Two orthologous genes that have retained the same func-
tion F of their LCA in H are called isorthologous for function F .

Isorthology relation is transitive. Therefore it makes sense to speak of sets of
isorthologs, or isorthogroups. Two genes are in the same isorthogroup if and only if
they are isorthologous. Finally, we introduce the notion of paralogy.

Definition 6 (Paralogy) Genes a and b are paralogous if lcaH (a, b) is a duplication
node.

Consider the histories from Fig. 12.2(a). Any two genes denoted by the same
letter are homologous. The history for homologous gene family c serves as a good
example. The gene from C1 is orthologous with all occurrences of c in C3 and C4,
while it is paralogous to the gene in C2. Further, the last occurrences of c in C4 is
paralogous to the second occurrence of the gene in C3.

12.3 Gene Order Inconsistency

In this section we explore how information on gene order can be used to discover
erroneous gene trees. The general idea is the following: look at the regions (for-
mally defined below) surrounding the genes of interest. If they are similar (in terms
of gene order), assuming that this cannot happen by chance, we can deduce that
they are homologous, i.e. they descend, through a duplication or speciation event,
from a common ancestral region. Such property on homology for regions leads to
properties on underlying genes: homologous genes in the two regions are either
all pairwise orthologous or all pairwise paralogous. These properties can then be
checked against gene trees, and used as criteria for correcting them.

In Sect. 12.3.1 we formally define homology on regions. This perspective allows
us to establish in Sects. 12.3.2 and 12.3.3 properties that sets of true gene trees must
possess when genes belong to similar regions, given that the following hypothesis
about convergent evolution is assumed:

Hypothesis NoConvergentEvol: Similar regions are homologous.

In the last 15 years many methods have been developed for the classification of
similar syntenic regions that have undergone gene order mutation [5–7, 31]. Hober-
man and Durand [33] give a nice treatment of the competing interests surrounding a
good definition of gene order similarity. David Sankoff has been ever present in the

12 Error Detection and Correction of Gene Trees 269

F
ig

.1
2.

2
G

en
e

tr
ee

s
fo

r
tw

o
di

ff
er

en
ta

nc
es

tr
al

re
gi

on
s.

D
up

lic
at

io
ns

ar
e

de
no

te
d

by
sq

ua
re

no
de

s,
sp

ec
ia

tio
ns

by
ci

rc
le

s,
an

d
lo

ss
es

by
da

sh
ed

ed
ge

s.
N

ex
tt

o
ea

ch
C

i
is

a
de

sc
ri

pt
io

n
of

a
su

bs
tr

in
g

of
a

ge
no

m
e.

E
ac

h
re

gi
on

C
i

is
de

fin
ed

as
th

e
ge

ne
s

la
be

lin
g

th
e

le
av

es
of

a
ge

ne
tr

ee
.F

or
ex

am
pl

e
C

5
=

a
b
a
b

(d
oe

s
no

t
in

cl
ud

e
ge

ne
c
)

270 M. Lafond et al.

discussion [18, 34, 48, 63, 65, 66]. Whatever the definition, the underlying idea is
to maximize the probability that similar regions are indeed homologous.

Our study in Sect. 12.3.4 limits regions to the immediate left and right neighbors
of the genes in question; the regions of two homologous genes are similar if they
are directly surrounded by homologous genes. Under this definition, the substrings
aba of region C5 and aba of region C6 from Fig. 12.2 are similar, as do abc of C4
and cba of C3.

12.3.1 Region Homology

Homology on a set of genes is a property of the true history for that set, independent
of any similarity measure amongst them. Homology of a set of regions should also
be defined in a manner that is independent of any particular similarity measure on
those regions. To accomplish this we leverage the duplication/loss/speciation histo-
ries for the genes contained in the regions of interest.

A region of a genome A is simply a subsequence of A. An ancestral region is
a region occurring in some ancestral genome, while a modern region is a region
occurring in some modern genome.

Definition 7 (Region homology) Let Ck and C� be two modern regions defined
on a gene set Γ , subdivided into the gene families {Γ1,Γ2, . . . ,Γm}. Let H =
{H1,H2, . . . ,Hm} be the dls-histories corresponding to Γis, and let ai be the root
of Hi . Then Ck and C� are homologous if and only if the ais all belong to a region
CA = a1a2 . . . am of an ancestral genome A, and they are either all speciation nodes
or all duplication nodes. We call CA the LCA region for Ck and C�.

The case where the roots of the dls-histories are speciations corresponds to the
divergence of CA through a speciation event, while the latter case corresponds to
the divergence through a duplication event that has duplicated the entire ancestral
region CA.

Notice that the definition of region homology supports the possibility of rear-
rangements occurring during the evolution of regions; in Fig. 12.2(a) genes a and x

have been inverted in the branch from the ancestral genome to Species 1, yet re-
gions C1 and C3 are homologous. Local duplications of sub-regions (in tandem or
not) are also supported. In Fig. 12.2(a) for example, a duplication of gene c occurs in
the branch leading to Species 2 and 3, yet regions C1 and C3 are homologous. Inser-
tion and deletion of genes are supported as well. For example, gene c in Species 4,
which is not present in Species 5, does not prevent regions C5 and C6 from being
homologous. Moreover, the ancestral region CA may contain genes that have lost in
the dls-histories leading to modern regions.

Notice, however, that, in contrast to the homology relationship on genes, the ho-
mology relationship on regions is not transitive. Consequently, we are unable to
generalize the notion of gene families to the notion of homologous region fami-
lies.

12 Error Detection and Correction of Gene Trees 271

12.3.2 Homology Contradiction

Our definition of homologous regions, along with Hypothesis NoConvergentEvol,
provides us with a tool for testing the validity of gene trees. Remember that for a
pair of homologous regions, the roots of the genes trees that comprise the genes
contained in the two regions must all be the same type of node; they must all be
speciation nodes, or they must all be duplication nodes. Thus, for a pair of similar
regions—assumed from Hypothesis NoConvergentEvol to be a pair of homologous
regions—and an inferred set of gene trees—implying a set of homology relation-
ships between genes of the regions—we can confirm that indeed the gene trees have
such roots. If they do not, we say that the forest of gene trees exhibits a homology
contradiction.

12.3.3 Region Overlapping

In this subsection, we define the notion of a region surrounding a gene in a strict way
ensuring a single region assignment for each gene, and a fixed length for all regions.
Formally, for a given set of parameters 0 < l1 < · · · < lp and 0 < r1 < · · · < rq ,
the region Cx surrounding the gene at position x in genome A is the subsequence
A[x − lp, . . . , x − l1, x, x + r1, . . . , x + rq]. In Sect. 12.3.4, the underlying param-
eters are p = q = 1, and l1 = r1 = 1. Now two regions Ck and C� are similar if an
only if, for any i, Ck[i] and C�[i] belong to the same gene family. This definition of
similarity ensures transitivity, which allows to define a similarity family as a family
of pairwise similar regions.

A stronger statement on no convergent evolution is also required:

Hypothesis StrongNoConvergentEvol: Two similar regions are homologous. In ad-
dition their similarity is inherited from their LCA region and preserved during the
course of evolution.

Stated formally, let Ck and C� be two similar regions surrounding two homolo-
gous genes xk and x� belonging to a gene family Γ , and let G be the true gene tree
for Γ . Then the regions surrounding ancestral genes corresponding to the nodes on
the path between xk and x� in G are similar to Ck and C�.

Take a gene tree G such that each gene (leaf of G) is assigned to a region, and
that regions are grouped into similarity families E = {F1,F2, . . . ,Fp}.

Let V (G) be the set of internal nodes of G. Consider the region labeling function
�G : V (G)→ 2E (where 2E is the power set of E) that labels the nodes of G with
homologous families as follows:

1. for all x ∈ V (G), initialize �G(x) to ∅;
2. for each family Fi , include Fi in the label of any node on a path from a pair of

leaves with label Fi .

The following lemma provides a second criterion for error detection in gene
trees.

272 M. Lafond et al.

Fig. 12.3 The gene tree of the “RAB27” gene family (ENSGACG00000003336) for the Stick-
leback (S), Medaka (M) and Tetraodon (T) species, exhibiting a region overlapping. The T1, S1
genes are in similarity family F1, while M2, S2 are in another similarity family F2. The internal
nodes are annotated by their łG labeling; all nodes on the dotted path are labeled by F1, and those
on the dashed path by F2

Lemma 1 If G is the true gene tree for some set of genes and Hypothesis Strong-
NoConvergentEvol holds, then for each node x of G, |�G(x)| ≤ 1.

Proof Let x be an internal node of G with surrounding region Cx , and suppose
�G(x) contains at least two elements Fi,Fj of E . From the definition of �G, it fol-
lows that x is on the path between some genes �i and ri with regions C�

i and Cr
i ,

both belonging to Fi . In the same manner, x is on the path between genes �j and rj
with region C�

j and Cr
j belonging to Fj . We see that x has at least one descendant

that is �i or ri , and at least another descendant that is �j or rj . Suppose without loss
of generality that �i and �j are descendants of x. By Hypothesis StrongNoConver-
gentEvol, C�

i and C�
j are both similar to Cx , and since similarity is transitive, C�

i is

similar to C�
j . It follows that Fi = Fj . �

A gene tree with an internal node possessing multiple labels is said to exhibit a
region overlap. Notice that for such a node, Lemma 1 holds whether it is a speciation
or a duplication. Figure 12.3 shows a gene tree with multiple region overlaps, which
are all duplications. Consider the overlapping occurring at the root of G, which we
denote by r . It might be tempting to explain this scenario by stating that since r is a
duplication, one copy of the ancestral gene belonged to the ancestral region similar
to F1, and the other to the ancestral region similar to F2, and thus both regions
could have propagated to their respective descendants. However, r refers to a single
ancestral gene, which may have belonged to one of the two ancestral regions, but
not to both, as we assume each gene is assigned a single region.

12.3.4 Results

We wanted to see the impact of using homology contradiction and Lemma 1 to re-
veal errors in gene trees. To this end, we considered the four fish genomes Gasteros-

12 Error Detection and Correction of Gene Trees 273

teus aculeatus (Stickleback), Oryzias latipes (Medaka), Tetraodon nigroviridis, and
Danio rerio (Zebrafish) with human and mouse as outgroups. We used the Ensembl
Genome Browser to collect all available gene trees, and filtered each tree to preserve
only genes from the taxa of interest. We then reconciled the trees with the known
species trees, and identified duplication and speciation nodes. Genes appearing in
the same gene tree in the database are considered to be part of the same homologous
gene family.

In this section, a region surrounding a gene is defined as the substring containing
the gene and both its left and right adjacencies. Two regions are similar if they con-
tain homologous genes in the same order or inverted order. More precisely, regions
Ck = x1a1y1 and C� = x2a2y2 (or C� = y2a2x2) are similar if x1 and x2 appear in
the same Ensembl gene tree, a1 and a2 appear in the same gene tree, and y1 and y2
appear in the same gene tree. We avoid tandem duplications by requiring the three
trees to be different.

In Sect. 12.3.2 we defined the homology contradiction property for a forest of
gene trees. Here, we identify problematic forests of gene trees using that property.
Let Ck = x1a1y1 and C� = x2a2y2 be two similar regions and Gx , Ga , and Gy

be the gene trees containing the pairs of homologs (x1, x2), (a1, a2) and (y1, y2),
respectively. Then, according to our definition, the forest {Gx,Ga,Gy} exhibits a
homology contradiction iff the set {lcaGx (x1, x2), lcaGa (a1, a2), lcaGy (y1, y2)} con-
tains at least one duplication node and at least one speciation node.

In this section we will focus on the gene tree of the central gene. We say that
Ga exhibits a paralogy contradiction iff lcaGa (a1, a2) is a duplication node, and
both lcaGx (x1, x2) and lcaGy (y1, y2) are speciation nodes. Conversely, we say that
Ga exhibits an orthology contradiction iff lcaGa (a1, a2) is a speciation node, and
both lcaGx (x1, x2) and lcaGy (y1, y2) are duplication nodes. Note that this notion of
contradiction is extremely conservative; if only a single neighbor disagrees with the
central gene, then we do not report it.

Results are summarized in Table 12.1. Among the 6241 trees in Ensembl, 6118 of
them have at least one pair of genes in the same context. More than 31 % of the 6241
trees exhibited at least one contradiction, the most frequent contradiction type being
paralogy contradiction. These numbers show that a very conservative application of
our methods uncovers a significant number of inconsistencies between gene order
and gene tree topology.

It is conceivable that a significant number of missing genes in the gene trees
could lead to a false homology contradiction. Also, poor detection of homology
relationships in Ensembl could yield false region overlaps. For example, two over-
lapping regions could have the form Ck = a1b1c1 and C� = x2b2c2. But if x2 should
in fact be in the same homologous gene family as a1, the overlap would no longer
exist. This is what happens in the example of Fig. 12.3. The F1 region consists
of “ASH1L” “RPS27” “KCNN3” genes, while the F2 region is made of “RAB13”
“RPS27” “KCNN3” genes. In fact, every single overlapping regions we found had
this form. Thus region overlaps in Ensembl gene trees might not occur because of
wrong topologies, but rather because of missing homologies. In any case, detection
of overlaps can identify possible improvements on the known relationship between
some pairs of genes.

274 M. Lafond et al.

Table 12.1 Results obtained for Ensembl gene trees. Reported numbers are not mutually exclu-
sive, in the sense that a given tree may exhibit more than one type of contradiction, and thus be
included in more than one list. In brackets are the actual numbers of trees

Number of trees 6241

Region overlap 3.4 % (210)

Paralogy contradiction 22.5 % (1407)

Orthology contradiction 10.8 % (677)

At least one contradiction 31.3 % (1959)

To get an idea of how the numbers can change, we reran the test suite for a more
general notion of similarity: Ck and C� are similar if b1 and b2 are homologous, and
if there exists a pair of neighbors c1 and c2 that are homologous. Note that under
this definition, there are fewer region sets so region overlaps are harder to find. The
new definition finds 71 (2.38 %) gene trees with overlaps.

Yet our region overlaps and homology contradictions tend to agree with mech-
anisms already in place for error detection in Ensembl gene trees. Based on the
structure of the tree, some duplication nodes, corresponding to NAD nodes [12], are
labeled as “dubious” in the Ensembl trees. As paralogy and orthology contradictions
are inferred according to duplication nodes (one duplication node involved in a par-
alogy contradiction and two in an orthology contradiction), we were interested to
see to which extent our results correlated with Ensembl observations about dubious
duplications. We found that 77.4 % of duplications involved in observed paralogy
contradictions are labeled as dubious, while 90.2 % of duplications involved in or-
thology contradictions are dubious. These number are significantly high considering
that the fraction of dubious duplications among the total number of duplications in
our trees is only 36 %. These observations validate the fact that gene order incon-
sistencies are likely to reveal errors in gene trees.

12.4 Positive and Negative Selection Bias

Classical phylogenetic methods, such as those using parsimony, distance or maxi-
mum likelihood models, are typically based upon the assumption of stochastic, neu-
tral, and site-independent processes. However, as few mutations may cause struc-
tural modification to protein coding genes with deleterious functional consequences,
isorthologous gene copies in multiple species are commonly subject to negative (pu-
rifying) selection pressure, leading to sequence stability inside isorthogroups. On the
other hand, positive selection, responsible for the creation of new function, is also
known to play a major role in the evolution of gene families. Under natural (positive
and negative) selection, a gene tree best reflecting the sequence similarity of gene
copies is more likely to reflect functional constraints rather than evolutionary and
ancestral relationships between gene copies. In particular, negative selection may
result in isorthologous genes being grouped into a subtree of the gene tree, leading
to erroneous ancestral inference for the isorthogroup.

12 Error Detection and Correction of Gene Trees 275

This grouping driven by function has been reported for different gene fami-
lies, such as GLP-1 [49] and opsin proteins [55]. An interesting study based on
simulations is also reported in [38]. In this study, DNA sequences encoding a
protein folding, with a predefined active site for the binding of a ligand, have
been generated. An A ligand initially bound stably at the beginning of the simu-
lation, while a B ligand did not. The proteins were evolved under constant pop-
ulation size and mutation rate. In every generation the individuals were picked
randomly, provided they folded stably and binded to a peptide. Moreover, to
simulate positive selection, a selective advantage of 5 % was given to individu-
als binding the new ligand B. Phylogenetic trees for simulated sequences were
then inferred using distance, parsimony and likelihood methods. Every gener-
ated tree exhibited a clustering by function rather than by ancestry (two mono-
phyletic groups, one for proteins binding to the ligand A and the other for pro-
teins binding to the ligand B). In the same paper, other results obtained on
multiple sequence alignments of Chordate genes also confirmed previous stud-
ies on the loss of the evolutionary signal due to negative and positive selection
[29, 46, 58].

12.4.1 Detecting Functional Bias

In the presence of negative and positive selection (i.e. confusion of the neutral phy-
logenetic signal), some studies have recommended different criteria for gene (site)
selection when reconstructing phylogenies. In particular, the filtering of fast evolv-
ing genes has been suggested to reduce the effect of positive selection [29]. On the
other hand, filtering slow evolving sites has been suggested to reduce the effect of
negative selection. However, as noticed in [38], these models for data filtering have
limitations as evolution speed does not always correlate with selection type.

Instead of an a priori selection of appropriate sites, we can alternatively a pos-
teriori detect gene trees reflecting a bias due to negative or positive selection.
Classical methods for evaluating selective pressures acting on homologous amino
acid sequences are based on computing the ratio dN/dS of the number of non-
synonymous (dN) versus synonymous (dS) nucleotide substitutions per site of
a pairwise alignment [39]. Synonymous substitutions are those that do not re-
sult in change of amino acid (for instance most changes at the third codon posi-
tion), while non-synonymous substitutions are those altering the amino acid (for in-
stance changes at the second codon position). Under negative (purifying) selection,
most non-synonymous changes are eliminated, leading to an excess of synonymous
changes. On the other hand, positive selection leads to an excess of non-synonymous
substitutions. In general, negative selection is inferred if dN/dS < 1 and positive
selection is inferred if dN/dS > 1. We suggest the use of the synonymous/non-
synonymous substitution rate measure for detecting gene trees reflecting a selection
bias, formalized as trees reflecting the isolocalization property which is defined be-
low.

276 M. Lafond et al.

12.4.2 Formalizing the Functional Bias

Under the hypothesis that after a duplication, exactly one of the two gene copies
preserve the parental function, the isolocalization property was introduced in [53],
to characterize gene trees biased towards a grouping of isorthologous genes. Here,
we define a less constraining version of this property by asking for at least one
isorthogroup to appear as a monophyletic group (an isolated subtree). Notice that
results obtained in [53] (stated below and summarized in Sect. 12.5) about the effect
on reconciliation remain valid for this new definition.

Definition 8 (Isolocalization) Let G be a gene tree for a gene family Γ . Let I =
{a1, a2, . . . , an} ⊆ Γ be a maximal isorthogroup of Γ , meaning that no other gene
of Γ is isorthologous to an ai . A gene tree G respects the isolocalization property
for I if and only if there exists an x such that L(Gx)= I .

We say that G respects the isolocalization property if G respects the isolocaliza-
tion property for at least one maximal isorthogroup of Γ .

We showed in [53] that isolocalization confounds reconciliation, in the sense
that some histories (those with a duplication node descending from a speciation
node) can never be recovered through the reconciliation of a gene tree respecting
the isolocalization property. Following this observation, we proposed general ideas
for inferring true histories. Although presented as tools for correcting reconciliation,
they can alternatively be seen as tools for correcting gene trees, i.e. removing the
functional constraints exhibited by isorthogroups. An overview of the related open
problems is given in Sect. 12.5.

In the following, an isorthologous subtree of G is a speciation subtree of G with
a set of leaves corresponding a maximal isorthogroup.

12.4.3 Results

By definition, a subtree Gx rooted at node x of a gene tree G is an isorthologous
subtree if L(Gx) is a maximal isorthogroup, i.e. elements of L(Gx) are pairwise
isorthologous, and there is no gene outside L(Gx) which is isorthologous to a gene
of L(Gx). As suggested by the discussion above, this can be tested by comparing the
dN/dS ratios of pairs (Ii, Ij) of genes inside L(Gx), versus pairs (Ik,Ol), with Ik

being a gene inside L(Gx) and Ol being a gene outside L(Gx). Here, we consider
the average dN/dS ratios over all possible pairs. Namely, we define MI

x to be the
average over all (Ii, Ij) inside pairs and MO

x to be the average over all (Ik,Ol)

inside-outside pairs. For an isorthologous subtree, we expect MI
x

MO
x

to be lower than

one. For any internal node x, if MI
x

MO
x

< 1 we say x is a winner; otherwise we say that

x is a loser. Note that the root of a tree cannot be a winner, since there are no genes
outside of its leafset.

12 Error Detection and Correction of Gene Trees 277

Fig. 12.4 Distribution of
original trees scores versus
random trees scores. The
score of a tree is its number
of winner nodes over its
number of internal nodes

We wanted to see to what extent the Ensembl gene trees reflect a natural selection
bias. We considered the same six species as in Sect. 12.3.4, namely four fish species
(Stickleback, Medaka, Tetraodon, Zebrafish) with human and mouse as outgroups.
We collected all available gene trees, restricted each of them to the taxa of interest,
reconciled the trees with the known species trees, and retained the “interesting” ones
according to [53], namely those reflecting a history with a “surviving” duplication
followed by a “surviving” speciation event. More precisely, a gene tree G was re-
tained if it contained at least one duplication node x such that Gx�

and Gxr were
both speciation subtrees, each containing at least two leaves and at least five leaves
together. This yielded 815 gene trees. We refer to this set as the original set. For
each tree G in the original set, we obtained the canonical nucleotide sequences of
its genes from Ensembl, and computed every pairwise dN/dS ratio using the PAML
package [64], which implements the Nei and Gojobori method [40]. The sequences
were aligned and prepared using ClustalW2 [37] in conjunction with the BioPerl
library [50].

We expect the topology of each tree G in the original set to contain more winner
nodes than most other topologies that share the same leaf set. We tested the null
hypothesis, which states that there is no relationship between the gene trees con-
structed by Ensembl and the proportion of winner nodes they contain. Thus for each
tree G, we considered a set of random trees, obtained from G by all possible per-
mutations on its leaves. We refer to the set of random trees for all the Ensembl trees
as the random set.

Figure 12.4 depicts, for both the original and the random tree sets, the proportion
of trees by score, defined for each tree as the number of winners over the number
of internal nodes. The original trees clearly tend to contain a higher ratio of winners
than random trees. In fact, the random trees’ percentages follow a distribution that
is not far from normal, whereas the original trees favor higher scores, hinting at the
invalidity of the null hypothesis.

Our analysis also showed some interesting numbers. Among all nodes (excluding
roots and leaves), 71 % of them are winners in the original set, as compared to 50 %
in the random set. Moreover, 81 % of the original trees have a majority of winner

278 M. Lafond et al.

nodes (more than half), compared to 49 % for random trees. Say that a gene tree G is
optimal if the number of winner nodes in G is no less than the number in all random
trees for G. We find that the proportion of optimal gene trees over the original set is
45 %. Moreover, if we also count as winner nodes those having a winner ancestor
(i.e. not only those pointing to isorthogroup but also to subsets of isorthogroups),
then the proportion of optimal trees raises to 64 % of all original trees. Finally, 80 %
of the original trees have more winner nodes than at least half of their random trees.

More detailed statistical analysis are required to establish criteria for detecting
functional bias in a gene tree according to dN/dS ratios. However, this preliminary
study already reveals a possible negative selection bias in these Ensembl trees.

12.5 Gene Tree Correction

A significant obstacle to our understanding of evolution is the difficulty of infer-
ring accurate gene trees. It is now clear that methodology based solely on sequence
similarity are unable to produce a single well supported gene tree [42, 43, 59, 61].
Opposite to such a “sequence only” paradigm is the “sequence free” paradigm that
does not directly use the sequence information. An example is the polynomial-time
algorithm developed by Durand et al. [17] for inferring a gene tree minimizing the
reconciliation cost with a given species tree. Such an extreme strategy is of theo-
retical interest only, as an accurate reconstruction model should be “hybrid”, e.g.
account for both sequence and genomic information, the challenge being to find the
right balance between the two. Later in the same paper, a hybrid approach is in fact
presented.

Each one of the genomic constraints we have introduced in this paper can be
used to define, in the space of gene trees, points that best reflect the desired proper-
ties. As exploring the space of all topologies is time and space prohibitive, gene tree
correction methods explore the neighborhood of an input gene tree G, according to
a tree-distance measure, such as the Robinson–Foulds [11, 26], Nearest Neighbor
Interchange (NNI) [13, 24, 25], Subtree Prune and Regraft (SPR), or Tree Bisection
and Reconnection (TBR) [10] distances. In order to reduce the space of explored
gene trees, tree moves may be restricted to edges deemed suspect by the user, typi-
cally those with low bootstrap values [13, 17].

As in Durand et al., almost all hybrid methods that have been developed so far are
“species tree-aware” and consist in selecting, from a given neighborhood, a tree min-
imizing a reconciliation distance with a species tree. Beside reconciliation, other cri-
teria such as the number of NAD nodes [12, 16, 52] may be considered for a “species
tree-aware” hybrid method. On the other hand, a “gene order aware” method would
select, in a given neighborhood of G, the trees avoiding or minimizing gene or-
der inconsistencies (Sect. 12.3). A “negative selection aware” method would select
appropriate alternative trees, as we explain in Sect. 12.5.

A wide range of theoretical and analytical open problems are implicit in the last
paragraph. In addition to developing the right data structures and algorithms for
efficient exploration of the neighborhood of a gene tree, the challenge is to explore

12 Error Detection and Correction of Gene Trees 279

ways of combining multiple criteria in a unified framework. Do repairs to a gene
tree suggested by the diversity of constraints coincide, or do they conflict? If they
conflict, how should relative importance be distributed over the various constraints?

Another concern is the development of a unified approach that accounts for both
sequence and genomic constraints simultaneously. Indeed, a significant drawback
of the hybrid methods developed so far is the sequential manner in which the se-
quence and genomic information are considered; the corrected gene tree is not sub-
sequently evaluated according to the sequence information, and thus may over fit
the species tree. From this perspective, an interesting framework is the one used in
TreeFix [62], as well as PhylDog [3] and Spimap [43]. Taking advantage of the fact
that phylogenetic methods usually lead to a set of statistically equivalent gene trees,
TreeFix is based on a heuristic that searches, among all topologies that are statisti-
cally equivalent to the input tree, one that minimizes a user-defined reconciliation
cost. The implicit hypothesis used in TreeFix is that regions of tree space with high
sequence likelihood and low reconciliation cost overlap, which they show to be true
in practice. Such a general framework can easily be adapted to account for various
types of constraints. However, the more constraints simultaneously considered, the
more challenging the problem of attributing relative weights to each of them and
managing conflicting requirements become (see also chapter Chauve et al. in this
volume).

We conclude this section by highlighting important results obtained in [53] that
show how the selection bias, formalized as the isolocalization property, can be used
for gene tree correction.

Isorthology Respecting Histories As recalled in Sect. 12.4.2, we showed that
gene trees respecting the isolocalization property can lead to erroneous histories
through reconciliation. This observation is not surprising as a gene tree reflecting
functional constraints rather than evolutionary constraints can hardly be confidently
used to infer evolutionary scenarios. Yet there must be some information in the gene
tree and species tree relationship. For instance, we expect subtrees corresponding to
isorthogroups in a well-supported gene tree to agree with the species tree. Define
a speciation subtree of G to be a subtree such that all internal nodes (if any) are
labeled as speciations by the reconciliation. The following result comes from Corol-
lary 3 of [53], and is adapted to our new definition of the isolocalization property.

Theorem 1 Let G be a gene tree satisfying the isolocalization property for an
isorthogroup I and reflecting the true phylogeny for I (see a precise definition
in [53]). Then I appears in G as the leaf-set of a speciation subtree.

Based on Theorem 1, the following definition can be used for gene tree correc-
tion.

Definition 9 (Isorthology respecting history (IRH)) Given a gene tree G and a
species tree S, a dls-history H is an isorthology respecting history for (G,S) if
and only if each isorthogroup inferred from H is the leaf-set of a speciation subtree
of G.

280 M. Lafond et al.

Following a duplication, we assume that one of the two gene copies preserves
the ancestral function (Hypothesis 1 in [53]). Suppose that gene related by specia-
tion preserve the ancestral function. Then two isorthogroups {M1, S1, T 1,Z1} and
{M2, S2} are inferred from the history H in Fig. 12.5, and H is an isorthology re-
specting history for (G,S). Notice that H leads to the gene tree G′, which can be
seen as a correction of G.

As many IRHs are possible for a given pair (G,S), an appropriate criterion for
choosing most likely histories is required. For example the history R resulting from
the reconciliation of G with S in Fig. 12.5 is also an isorthology respecting history
for (G,S). However, while R has a mutation cost of 3 (one duplication and two
losses), the history H has a mutation cost of one (no loss). In [53] we considered
the Minimum Isorthology Respecting History Reconstruction (MIRH) Problem, which
asks for the IRH of minimum cost, and developed a linear-time algorithm for the
duplication cost. An algorithm for the mutation cost remains open.

The MIRH optimization problem as stated, is very conservative, in the sense that
nothing is trusted in the gene tree except the isorthology information. In particular, it
ignores all the information on duplication and speciation nodes of G that are above
the considered speciation subtrees. An alternative would be to account for the hier-
archy of deeper nodes in G. The notion of a Triplet Respecting History (TRH) [53]
is intended to account for such hierarchy. Efficient algorithms for inferring parsimo-
nious TRHs remain undiscovered.

Notice that Theorem 1 does not a priori give us the isorthogroups for a pair
(G,S), as the true isorthologous subtree could be part of a larger speciation sub-
tree. A restricted version of the MIRH problem considers the maximal speciation
subtrees of G as the definition of the isorthogroups. We showed in [53] that this
isorthology respecting partition of G is the one that would minimize the duplication
cost, but not necessarily the mutation cost.

An alternative approach would use some isorthogroup detection criteria, such as
the one given in Sect. 12.4.1, and correct according to the corresponding isorthol-
ogous subtrees. Such targeted reconstruction algorithms remain completely unex-
plored.

12.6 Conclusion

While gene trees have traditionally been constructed and validated using nucleotide
sequence or amino acid sequence information alone, more recently information
from the species tree has been used to both correct and validate gene trees. We
have introduced new methodology to further validate and correct gene trees through
the use of other data. Our novel use of syntenic information (homologous regions)
points to a significant number of flawed gene trees in the Ensembl database due
to homology contradiction or region overlapping. Our use of the dN/dS ratio on
gene trees points to a bias towards clustering of isorthologous genes in gene trees.
Although some potential avenues for improving gene trees are explored, our results
seem to pose more questions than they answer.

12 Error Detection and Correction of Gene Trees 281

F
ig

.1
2.

5
G

is
th

e
ge

ne
tr

ee
fo

r
th

e
ge

ne
fa

m
ily

“C
2o

rf
47

”
fr

om
E

ns
em

bl
(E

N
SG

T
00

39
00

00
00

41
45

),
ex

te
nd

ed
w

ith
lo

ss
le

av
es

ac
co

rd
in

g
to

a
re

co
nc

ili
at

io
n

w
ith

sp
ec

ie
s

tr
ee

S
.M

is
M

ed
ak

a,
S

is
St

ic
kl

eb
ac

k,
T

is
Te

tr
ao

do
n,

an
d

Z
is

Z
eb

ra
fis

h.
R

ec
on

ci
lia

tio
n

of
G

w
ith

th
e

sp
ec

ie
s

tr
ee

S
gi

ve
s

on
e

du
pl

ic
at

io
n

an
d

tw
o

lo
ss

es
(a

s
m

ar
ke

d
in

G
,d

up
lic

at
io

n
by

a
sq

ua
re

,a
nd

lo
ss

es
by

do
tt

ed
li

ne
s)

.C
on

si
de

ri
ng

th
e

la
rg

es
ts

pe
ci

at
io

n
su

bt
re

es
of

G
as

po
in

tin
g

to
th

e
is

or
th

og
ro

up
s

({M
1,

S
1,

T
1,

Z
1}

an
d
{M

2,
S

2})
,H

is
an

is
or

th
ol

og
y

re
sp

ec
tin

g
hi

st
or

y
fo

r
(G

,
S
)

le
ad

in
g

to
th

e
ge

ne
tr

ee
G
′

282 M. Lafond et al.

References

1. Akerborg, O., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree
recons. and reconciliation analysis. Proc. Natl. Acad. Sci. 106(14), 5714–5719 (2009)

2. Arvestad, L., Berglund, A.C., Lagergren, J., Sennblad, B.: Gene tree reconstruction and or-
thology analysis based on an integrated model for duplications and sequence evolution. In:
RECOMB, pp. 326–335 (2004)

3. Boussau, B., Szllosi, G.J., Duret, L., Gouy, M., Tannier, E., Daubin, V.: Genome-scale coesti-
mation of species and gene trees. Genome Res. 23, 323–330 (2013)

4. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC
Evol. Biol. 6(15) (2006)

5. Bergeron, A., Chauve, C., Gingras, Y.: Formal models of gene clusters. In: Mandoiu, I., Ze-
likovsky, A. (eds.) Bioinformatics Algorithms: Techniques and Applications. Wiley, New York
(2008). Chap. 8

6. Bergeron, A., Corteel, S., Raffinot, M.: The algorithmic of gene teams. In: Algorithms in
Bioinformatics, pp. 464–476 (2002)

7. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome
comparison. J. Comput. Biol. 13, 1340–1354 (2003)

8. Berglund-Sonnhammer, A.C., Steffansson, P., Betts, M.J., Liberles, D.A.: Optimal gene trees
from sequences and species trees using a soft interpretation of parsimony. J. Mol. Evol. 63,
240–250 (2006)

9. Chang, W.C., Eulenstein, O.: Reconciling gene trees with apparent polytomies. In: Chen, D.Z.,
Lee, D.T. (eds.) Proceedings of the 12th Conference on Computing and Combinatorics (CO-
COON). Lecture Notes in Computer Science, vol. 4112, pp. 235–244 (2006)

10. Chaudhary, R., Burleigh, J.G., Eulenstein, O.: Efficient error correction algorithms for gene
tree reconciliation based on duplication, duplication and loss, and deep coalescence. BMC
Bioinform. 13(Suppl. 10), S11 (2011)

11. Chaudhary, R., Burleigh, J.G., Fernandez-Baca, D.: Fast local search for unrooted Robinson–
Foulds supertrees. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1004–1012 (2012)

12. Chauve, C., El-Mabrouk, N.: New perspectives on gene family evolution: losses in reconcili-
ation and a link with supertrees. In: RECOMB 2009. LNCS, vol. 5541, pp. 46–58. Springer,
Berlin (2009)

13. Chen, K., Durand, D., Farach-Colton, M.: Notung: dating gene duplications using gene family
trees. J. Comput. Biol. 7, 429–447 (2000)

14. Dondi, R., El-Mabrouk, N.: Minimum leaf removal for reconciliation: complexity and algo-
rithms. In: CPM. Lecture Notes in Computer Science, vol. 7354, pp. 399–412. Springer, Berlin
(2012)

15. Dondi, R., El-Mabrouk, N., Swenson, K.M.: Gene tree correction for reconciliation and
species tree inference: complexity and algorithms. J. Discrete Algorithms (2013). doi:10.1016/
j.jda.2013.06.001

16. Doroftei, A., El-Mabrouk, N.: Removing noise from gene trees. In: WABI. LNBI/LNBI,
vol. 6833, pp. 76–91 (2011)

17. Durand, D., Haldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to
gene tree reconstruction. J. Comput. Biol. 13, 320–335 (2006)

18. Durand, D., Sankoff, D.: Tests for gene clustering. J. Comput. Biol. 10(3–4), 453–482 (2003)
19. Eulenstein, O., Mirkin, B., Vingron, M.: Duplication-based measures of difference between

gene and species trees. J. Comput. Biol. 5, 135–148 (1998)
20. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach.

J. Mol. Evol. 17, 368–376 (1981)
21. Felsenstein, J.: PHYLIP(phylogeny inference package). Version 3.6 distributed by the author,

Seattle (WA): Department of Genome Sciences, University of Washington (2005)
22. Fitch, W.M.: Homology: a personal view on some of the problems. Trends Genet. 16(5), 227–

231 (2000)

http://dx.doi.org/10.1016/j.jda.2013.06.001
http://dx.doi.org/10.1016/j.jda.2013.06.001

12 Error Detection and Correction of Gene Trees 283

23. Flicek, P., Amode, M.R., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D., Clapham, P.,
Coates, G., Fairley, S., Fitzgerald, S., Gil, L., Gordon, L., Hendrix, M., Hourlier, T., John-
son, N., Khri, A.K., Keefe, D., Keenan, S., Kinsella, R., Komorowska, M., Koscielny, G.,
Kulesha, E., Larsson, P., Longden, I., McLaren, W., Muffato, M., Overduin, B., Pignatelli, M.,
Pritchard, B., Riat, H.S., Ritchie, G.R., Ruffier, M., Schuster, M., Sobral, D., Tang, Y.A.,
Taylor, K., Trevanion, S., Vandrovcova, J., White, S., Wilson, M., Wilder, S.P., Aken, B.L.,
Birney, E., Cunningham, F., Dunham, I., Durbin, R., Fernndez-Suarez, X.M., Harrow, J., Her-
rero, J., Hubbard, T.J., Parker, A., Proctor, G., Spudich, G., Vogel, J., Yates, A., Zadissa, A.,
Searle, S.M.: Ensembl 2012. Nucleic Acids Res. 40(Database Issue), D84–D90 (2012)

24. Gorecki, P., Eulenstein, O.: Algorithms: simultaneous error-correction and rooting for gene
tree reconciliation and the gene duplication problem. BMC Bioinform. 13(Suppl. 10), S14
(2011)

25. Gorecki, P., Eulenstein, O.: A linear-time algorithm for error-corrected reconciliation of un-
rooted gene trees. In: ISBRA. LNBI, vol. 6674, pp. 148–159. Springer, Berlin (2011)

26. Gorecki, P., Eulenstein, O.: A Robinson–Foulds measure to compare unrooted trees with
rooted trees. In: Bleris, L. et al. (eds.) ISBRA. LNBI, vol. 7292, pp. 115–126 (2012)

27. Gorecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theor. Comput. Sci.
359, 378–399 (2006)

28. Guidon, S., Gascuel, O.: A simple, fast and accurate algorithm to estimate large phylogenies
by maximum likelihood. Syst. Biol. 52, 696–704 (2003)

29. Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., Moreira, D.,
Muller, M., Le Guyader, H.: Early-branching or fast-evolving eukaryotes? An answer based
on slowly evolving positions. Proc. R. Soc. Lond. B, Biol. Sci. 267, 1213–1221 (2000)

30. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate
genome evolution. Genome Biol. 8(R141) (2007)

31. Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: Algorithms in Bioinformatics,
pp. 252–263 (2001)

32. Li, H., Coghlan, A., Ruan, J., Coin, L.J., Hrich, J.K., Osmotherly, L., Li, R., Liu, T., Zhang, Z.,
Bolund, L., Wong, G.K., Zheng, W., Dehal, P., Wang, J., Durbin, R.: TreeFam: a curated
database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34(D572), 580
(2006)

33. Hoberman, R., Durand, D.: The incompatible desiderata of gene cluster properties. In: Com-
parative Genomics, pp. 73–87 (2005)

34. Hoberman, R., Sankoff, D., Durand, D.: The statistical analysis of spatially clustered genes
under the maximum gap criterion. J. Comput. Biol. 12(8), 1083–1102 (2005)

35. Koonin, E.V.: Orthologs, paralogs and evolutionary genomics. Annu. Rev. Genet. 39, 309–338
(2005)

36. Lafond, M., Swenson, K.M., El-Mabrouk, N.: An optimal reconciliation algorithm for gene
trees with polytomies. In: WABI. LNCS, vol. 7534, pp. 106–122 (2012)

37. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H.,
Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.:
Clustalw and clustalx version 2. Bioinformatics 23, 2947–2948 (2007)

38. Massey, S.E., Churbanov, A., Rastogi, S., Liberles, D.A.: Characterizing positive and negative
selection and their phylogenetic effects. Gene 418, 22–26 (2008)

39. Miyata, T., Yasunaga, T.: Molecular evolution of MRNA: a method for estimating evolutionary
rates of synonymous and amino acid substitutions from homologous nucleotide sequences and
its application. J. Mol. Evol. 16(1), 23–36 (1980)

40. Nei, M., Gojobori, T.: Simple methods for estimating the number of synonymous and nonsyn-
onymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986)

41. Nguyen, T.-H., Ranwez, V., Pointet, S., Chifolleau, A.-M.A., Doyon, J.-P., Berry, V.: Rec-
onciliation and local gene tree rearrangement can be of mutual profit. Algorithms Mol. Biol.
8(12) (2013)

284 M. Lafond et al.

42. Rasmussen, M.D., Kellis, M.: Accurate gene-tree reconstruction by learning gene and species-
specific substitution rates across multiple complete geneomes. Genome Res. 17, 1932–1942
(2007)

43. Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruc-
tion. Mol. Biol. Evol. 28(1), 273–290 (2011)

44. Ronquist, F., Huelsenbeck, J.P.: MrBayes3: Bayesian phylogenetic inference under mixed
models. Bioinformatics 19, 1572–1574 (2003)

45. Ruan, J., Li, H., Chen, Z., Coghlan, A., Coin, L.J., Guo, Y., Hrich, J.K., Hu, Y., Kristiansen,
K., Li, R., Liu, T., Moses, A., Qin, J., Vang, S., Vilella, A.J., Ureta-Vidal, A., Bolund, L.,
Wang, J., Durbin, R.: TreeFam: 2008 update. Nucleic Acids Res. 36(Suppl. 1), D735–D740
(2008)

46. Ruano-Rubio, V., Fares, V.: Artifactual phylogenies caused by correlated distribution of sub-
stitution rates among sites and lineages: the good, the bad and the ugly. Syst. Biol. 56, 68–82
(2007)

47. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phyloge-
netic trees. Mol. Biol. Evol. 4, 406–425 (1987)

48. Sankoff, D., Ferretti, V., Nadeau, J.H.: Conserved segment identification. J. Comput. Biol.
4(4), 559–565 (1997)

49. Skovgaard, M., Kodra, J.T., Gram, D.X., Knudsen, S.M., Madsen, D., Liberles, D.A.: Using
evolutionary information and ancestral sequences to understand the sequence-function rela-
tionship in GLP-1 agonists. J. Mol. Biol. 363, 977–988 (2006)

50. Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G.,
Gilbert, J.G., Korf, I., Lapp, H., Lehvslaiho, H., Matsalla, C., Mungall, C.J., Osborne, B.I.,
Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E., Wilkinson, M.D., Birney, E.:
The bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1619 (2002)

51. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with
thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

52. Swenson, K.M., Doroftei, A., El-Mabrouk, N.: Gene tree correction for reconciliation and
species tree inference. Algorithms Mol. Biol. 7(31) (2012)

53. Swenson, K.M., El-Mabrouk, N.: Gene trees and species trees: irreconcilable differences.
BMC Bioinform. 13(Suppl. 19), S15 (2012)

54. Swofford, D.L.: PAUP: Phylogenetic Analysis Using Parsimony, 4th edn. Sinauer Associates,
Sunderland (2002)

55. Taylor, S.D., de la Cruz, K.D., Porter, M.L., Whiting, M.F.: Characterization of the long-
wavelength opsin from Mecoptera and Siphonaptera: does a flea see? Mol. Biol. Evol. 22,
1165–1174 (2005)

56. Theobald, D.L.: A formal test of the theory of universal common ancestry. Nature 465(7295),
219–222 (2010)

57. Thomas, P.D.: GIGA: a simple, efficient algorithm for gene tree inference in the genomic age.
BMC Bioinform. 11, 312 (2010)

58. Townsend, J.P.: Profiling phylogenetic informativeness. Syst. Biol. 56, 222–231 (2007)
59. Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: EnsemblCompara

gene trees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19,
327–335 (2009)

60. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Automatic genome-wide reconstruction of
phylogenetic gene trees. Bioinformatics 23(13), i549–i558 (2007)

61. Wong, K.M., Suchard, M.A., Huelsenbeck, J.P.: Alignment uncertainty and genomic analysis.
Science 319, 473–476 (2008)

62. Wu, Y.C., Rasmussen, M.D., Bansal, M.S., Kellis, M.: TreeFix: statistically informed gene
tree error correction using species trees. Syst. Biol. 62(1), 110–120 (2013)

63. Xu, X., Sankoff, D.: Tests for gene clusters satisfying the generalized adjacency criterion. In:
Advances in Bioinformatics and Computational Biology, pp. 152–160 (2008)

64. Yang, Z.: Paml 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–
1591 (2007)

12 Error Detection and Correction of Gene Trees 285

65. Yang, Z., Sankoff, D.: Natural parameter values for generalized gene adjacency. J. Comput.
Biol. 17(9), 1113–1128 (2010)

66. Zhu, Q., Adam, Z., Choi, V., Sankoff, D.: Generalized gene adjacencies, graph bandwidth,
and clusters in yeast evolution. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(2), 213–220
(2009)

67. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events
on a gene tree. Bioinformatics 17, 821–828 (2001)

Chapter 13
The Potential of Family-Free Genome
Comparison

Marília D.V. Braga, Cedric Chauve, Daniel Doerr, Katharina Jahn,
Jens Stoye, Annelyse Thévenin, and Roland Wittler

Abstract Many methods in computational comparative genomics require gene fam-
ily assignments as a prerequisite. While the biological concept of gene families is
well established, their computational prediction remains unreliable. This paper con-
tinues a new line of research in which family assignments are not presumed. We
study the potential of several family-free approaches in detecting conserved struc-
tures, genome rearrangements and in reconstructing ancestral gene orders.

13.1 Introduction

In more than 20 years of research in computational comparative genomics [44, 49]
a large variety of questions have been addressed. By now, strong methods are avail-
able to study the structural organization of genomes as well as to unravel their shared
and individual evolutionary histories. The structural organization of genomes does
not only give insights into species’ phylogeny, but also hints at interactions within
and between sets of genes by means of their involvement in metabolic and regulatory
networks. As such, one aims to understand cell functions. Whereas point mutations
generally affect one or a few nucleotides, large-scale mutations such as rearrange-
ments, deletions, substitutions, or insertions affect one or more genes. These mod-
ifications alter the structural organization of the genome which can cause profound

M.D.V. Braga
Inmetro, Duque de Caxias, Brazil

C. Chauve
Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada

C. Chauve
LaBRI, Université Bordeaux I, Talence, France

D. Doerr · K. Jahn · J. Stoye (B) · A. Thévenin · R. Wittler
Genome Informatics, Faculty of Technology, Bielefeld University, Bielefeld, Germany
e-mail: jens.stoye@uni-bielefeld.de

D. Doerr · K. Jahn · J. Stoye · A. Thévenin · R. Wittler
Institute for Bioinformatics, CeBiTec, Bielefeld University, Bielefeld, Germany

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_13,
© Springer-Verlag London 2013

287

mailto:jens.stoye@uni-bielefeld.de
http://dx.doi.org/10.1007/978-1-4471-5298-9_13

288 M.D.V. Braga et al.

changes in the cellular machinery. Identifying and quantifying such structural mod-
ifications is crucial in understanding the highly complex functions of organisms and
their interactions with the natural environment.

Initial approaches to study genome rearrangement considered pairwise compar-
isons with well identified one-to-one orthologous markers [44], for many of which
polynomial time algorithms for computing distances and evolutionary scenarios
could be designed [4, 6, 30, 47, 63]. Extensions considering more than two genomes
lead to hard problems [8, 13, 15, 41, 47, 61], with few exceptions [26, 54]. David
Sankoff initiated formulations and algorithms for genome rearrangement problems
with duplicated markers originating from gene families [45], quickly followed by
the outline of a general approach that would consider both gene orders and gene
family information as input to genome rearrangement problems [48]. Since then,
genome rearrangement with unequal gene content and gene families, where geno-
mes are represented by signed sequences, has been intensively explored; for reviews
see [17, 27].

Another line of research in computational genomics aims at the detection of ge-
nomic segments that are conserved across different species. The presence of such
structures often hints at functional coupling of the contained genes, or indicates
remnant ancestral gene order which is valuable information for phylogenetic re-
construction. Initial approaches in this field—like early rearrangement studies—
required the identification of one-to-one orthologous markers [5, 32, 33], but in the
following most of them were adapted to a more general genome model that allows
genomes to differ in their marker set and to have homologous markers on the same
genome [21, 31, 50].

All of the above methods, which we call family-based, require prior gene family
assignments. However, biological gene families are difficult to assess; commonly,
they are predicted computationally. In doing so, they can be either obtained from
databases [42, 55, 59] or directly computed based on the particular dataset under
consideration [36, 40, 51]. In either case, the obtained assignments are predicted by
some computational method which typically involves a clustering phase in which
genes are partitioned into groups representing the predicted families. Generally, the
results of such efforts depend on arbitrary parameters of sequence comparison, sim-
ilarity quantification and clustering. These parameters are user-controlled and in-
fluence the size and granularity of the computed gene families. In particular, when
genes within biological gene families are largely diverged, computational means
may not be able to resolve gene family assignments accurately [28]. Consequently,
errors are introduced into the primary dataset which deteriorate subsequent anal-
yses, a phenomenon that can be amplified when phylogenetic trees for the gene
families are considered [17, 39]. The quest to reduce misassignments in gene family
construction also led to the use of positional homology [10, 57, 58, 65].

Recently, in an attempt to avoid these problems, a family-free method, which
does not assume prior gene family assignment, has been proposed for computing
the adjacency score between two genomes [22]. In this approach, given the gene
similarities, the aim is to find pairwise gene assignments while maximizing the con-
served adjacency measure. In other words, next to finding the maximal number of

13 The Potential of Family-Free Genome Comparison 289

adjacent genes along different genomes, the method also infers homologies between
genes. It should be noted that these homologies are not equivalent to gene families
in the classical sense, as by design only one-to-one relationships are detected, while
a gene family in general may consist of a potentially large set of orthologous and
paralogous genes. Given the nature of the detected one-to-one relationships, they
are not unlikely to form sub-families of biological gene families. Therefore they can
be further utilized in gene family construction.

Here we go beyond this one application and explore how various problems in
computational comparative genomics could be approached in a family-free setting.
We do not necessarily provide full solutions to the proposed problems.

This paper is organized as follows. After basic definitions in Sect. 13.2, we extend
earlier results on the adjacency measure to more than two genomes and to larger
conserved structures (gene clusters) in Sect. 13.3. A more dynamic view is taken in
Sect. 13.4, where we apply the ideas to rearrangement distances, most notably the
Double Cut and Join distance. In Sect. 13.5, finally, we indicate how the family-free
approach could be further extended to the reconstruction of ancestral genomes. The
paper concludes with a discussion in Sect. 13.6.

13.2 Basic Definitions

A chromosome is a DNA molecule composed of antiparallel strands and can be read
in either of the two possible directions. Since each gene, representing an interval
along the DNA, lies in one of the two strands of the chromosome, the orientation of
the gene depends on the adopted reading direction. The representation of a gene g

in a chromosome can then be the symbol g, if it is read in direct orientation, or
the symbol g, if it is read in reverse orientation. Without loss of generality, we will
assume in this paper that each chromosome has a canonical reading direction, giving
a natural left to right order of its genes.

A genome consists of one or more chromosomes that can be either linear or cir-
cular. For ease of presentation, throughout this paper we will consider only unichro-
mosomal linear genomes. The general case can be easily inferred with minor modi-
fications.

A unichromosomal linear genome is represented as a sequence of distinct sym-
bols, flanked by telomeric ends indicated by the ◦ sign: G= (◦ g1 g2 . . . gn ◦). The
size of G with n genes and two telomeric ends is |G| = n+ 2. When we consider a
set of genomes, we will assume that all genes can be distinguished from each other,
i.e., every two genomes G �=H share only the telomeric ends.

Let A be the universe of all genes and let σ : A×A→ [0,1] be a normalized
similarity measure between all pairs of genes.

Definition 1 (Gene similarity graph) For a set of k genomes {G1, . . . ,Gk}, the
gene similarity graph is defined as an ordered weighted undirected k-partite graph
B = (G1, . . . ,Gk,E), where each gene and each telomere represents a node, and

290 M.D.V. Braga et al.

Fig. 13.1 (a) Example of a gene similarity graph for k = 2. Part (b) shows a matching in which
the weak edge with weight 0.1 between genes 4 and 8 is selected, creating a conserved adjacency
between (3̄,4) and (7̄,8). In the matching of (c) the stronger edge with edge weight 0.8 between
genes 4 and 5 is selected

the nodes are ordered following the chromosomal order. Any two genes g and h,
belonging to two distinct genomes, are connected by an edge eg,h ≡ {g,h} ∈E with
weight w(eg,h) := σ(g,h), if and only if σ(g,h) > 0. Telomeres in distinct geno-
mes are always connected with edges of weight 1.

We call a gene g ∈ G unconnected if there exists no other gene h in any of
the other genomes H �=G such that σ(g,h) > 0. An example of a gene similarity
graph for the case k = 2 is shown in Fig. 13.1(a). The k-partite gene similarity graph
features similarity relationships between genes of different genomes whereas simi-
larities between genes within the same genome are ignored. For now, if information
about paralogous relationships between genes within the same genome is desired, it
must be gained through a post-processing step incorporating the results obtained by
the methods presented herein.

13.3 Detecting Conserved Structures

Many gene order studies quantify conserved structures based on well-defined prox-
imity relations between the chromosomal locations of pairs or groups of genes. Typi-
cal proximity relations between pairs of genes are conserved adjacencies [44, 46, 60]
and generalized conserved adjacencies [62], whereas proximity relations between
groups of genes include common intervals [21, 33, 50, 56], max gap clusters (gene
teams) [5, 31], approximate common intervals [12, 34, 43], generalized adjacency
clusters [64, 67], and conserved intervals [4]. We discuss conserved adjacencies in
Sect. 13.3.1 and common intervals and some of its derivatives in Sect. 13.3.2.

Whenever one-to-one relationships between genetic markers, genes or genome
segments (identified through some proximity relation) between genomes must be
established, comparative genomics applications commonly incorporate matchings.
For example, in aligning whole genomes, one aims to find a matching between
genome segments that maximizes the similarity of the respective sequences, but also
minimizes the number of breakpoints (or other measures of structural dissimilarity)
in the final ordering of segments [19]. Similarly, recent methods in predicting co-
orthologs and gene families not only assess the sequence similarity between genes,

13 The Potential of Family-Free Genome Comparison 291

but also their position within the genome [20]. In the following we describe ap-
proaches that incorporate matchings to identify conserved adjacencies and common
intervals without the use of gene family assignments.

13.3.1 Conserved Adjacencies

Previous Work Two genes that are located next to each other in a genome are said
to be adjacent, their adjoining extremities form an adjacency. An early measure for
family-based genome similarity was to count the number of conserved adjacencies,
i.e. those adjacencies that are common to two genomes, with the restriction that
the gene content of both genomes is identical [44, 60]. Thereby, the number of
conserved adjacencies constitutes the dual measure of the number of breakpoints
between both sequences [46].

With the adoption of gene families, gene duplicates are introduced, i.e., the oc-
currence of several members of the same family in one genome [45, 48]. Gene
duplicates allow for multiple scenarios of ancestral gene order. One possibility to
resolve the consequential ambiguities consists in computing a matching between
orthologous subsets of given family members, with some predefined constraints on
the structure of the matching. This general principle, which relates also to ortholog
identification [20], was introduced by David Sankoff with the notion of exemplar
distance [45], where the main ortholog (the exemplar) of each family is kept. This
initial model was later generalized to less constrained classes of matchings where
one or more genes per family is kept, always leading to NP-hard computational
problems [2, 11, 66], although practically efficient solutions were designed, using
heuristics [29] or integer linear programming [1].

Family-Free Adjacencies Recently, a gene family-free model was introduced to
compute the number of conserved adjacencies in pairwise comparison [22]. The
computational problem being NP-hard, exact and heuristic algorithms were pre-
sented with feasible running times in practice. In this section, we advance towards a
more general model applicable for the simultaneous study of several genomes. Con-
served adjacencies obtained in this approach can further benefit ancestral genome
reconstruction, as it will be explained in Sect. 13.5.

The genome model described in Sect. 13.2 is neither restricted to one-to-one
relations between genes, nor to closed sets of gene family members. In the subse-
quent analysis, unconnected genes are omitted from the chromosomal sequences.
The remaining genes form connected components of size two or larger. Their size
is typically greater than their gene family counterparts. Further, opposing the gene
family concept, these connected components are not required to equal their transi-
tive closure.

Given k ≥ 2 genomes, we aim to find a matching between genes, analogous to
previous family-based approaches [1, 9, 45]. One way is to find all completely
connected subgraphs of size k in the gene similarity graph and then perform a k-
dimensional matching (also known as k-matching). Yet, this approach eliminates

292 M.D.V. Braga et al.

Fig. 13.2 The 7 valid types
of components of a partial
3-matching

many connected components that do not form complete cliques or spread over only
a smaller subset of genomes. Consequently, with increasing number of genomes in
the dataset, the matching size will decrease until only few fully connected genes
remain. In this work we use a partial k-matching which allows for missing genes
and edges:

Definition 2 (Partial k-matching) Given a gene similarity graph B = (G1, . . . ,

Gk,E), a partial k-matching M ⊆ E is a selection of edges such that for each
connected component C ⊆ BM := (G1, . . . ,Gk,M) no two genes in C belong to
the same genome.

Figure 13.2 depicts all valid types of components in a partial k-matching for
k = 3. The partial k-matching is closely related to the intermediate matching [1] for
k = 2. Just as in the latter, a partial k-matching can saturate an arbitrary number of
edges of the initial k-partite graph B but differs in that it is not required to saturate
at least one edge per connected component. Our motivation to reject this constraint
is discussed further below.

Biological Interpretation Relating to the underlying mechanism of gene family
evolution, a connected component in the partial k-matching represents a tentative
sub-family assignment in which two intrinsic aspects of gene family prediction are
addressed; first, the similarity measure between genes is generally not transitive;
second, genes and gene families may arise or vanish along the evolutionary process
whereas some genes that are intermittently indispensable for the organism emerge
as main orthologs. The biological interpretation of the matching is limited by the
restriction to one-to-one assignments between genes and by the fact that the match-
ing does not consider the underlying phylogeny of species and thus is unable to
differentiate between orthologs and paralogs. As such, our method is susceptible to
non-ortholog assignments in entangled events of gene deletions. Thus it is deceptive
to relate a connected component in the partial k-matching to an ortholog assignment.
Rather, under the optimization problem stated further below, it represents a tenta-
tive sub-family determined by the most parsimonious homology assignment with
respect to gene similarity and gene order.

Constructing a Partial k-Matching We assume for now that a partial k-
matching M is given. For any two genomes G and H in the gene similarity graph
we define MGH ⊆M as the set of matched edges between G and H . We call a
gene GH -saturated if it is incident to an edge in MGH . Two GH -saturated genes
are consecutive with respect to G and H if no GH -saturated gene lies between
them. Further, two pairs of consecutive GH -saturated genes (g, g′) in genome G,
with g to the left of g′, and (h,h′) in genome H , form a conserved adjacency if

13 The Potential of Family-Free Genome Comparison 293

(a) for h left of h′ in H , sgn(g)= sgn(h) and sgn(g′)= sgn(h′) or
(b) for h right of h′ in H , sgn(g) �= sgn(h) and sgn(g′) �= sgn(h′),

where the orientation of a gene (or telomere) g is determined by the following func-
tion:

sgn(g)=
⎧
⎨

⎩

1 if g is in forward direction
−1 if g is in backward direction
0 if g is a telomere

For example, the consecutive pair of genes (2,3) and (6,7) in Fig. 13.1(b) represent
a conserved adjacency. Following [22], we define a scoring scheme for adjacencies:

s
(
g,g′, h,h′

)=
{√

w(eg,h) ·w(eg′,h′) if (g, g′), (h,h′) form a cons. adjacency

0 otherwise

The convex nature of the scoring scheme rewards conserved adjacencies between
high weighted edges the most, whereas combinations of high and low weighted, or
low weighted edges are decreasingly scored. While a matching that creates many
conserved adjacencies is often more appreciated than a matching with few con-
served adjacencies, maximizing the number of conserved adjacencies is not de-
sirable at any price. For example, the matching depicted in Fig. 13.1(b) contains
an adjacency between genes (3̄,4) and (7,8) at the expense of dismissing the
stronger edge between genes (4,8), which is selected in the matching displayed
in Fig. 13.1(c). Hence we view a matching as a trade-off between two competing
properties, namely similarity and synteny. We quantify both in a matching M be-
tween genomes G = {G1, . . . ,Gk} by means of the following measures:

adj(M) =
∑

G,H∈G

∑

g left of g′ in G

h,h′ in H

s
(
g,g′, h,h′

)
, (13.1)

edg(M) =
∑

e∈M
w(e). (13.2)

Extending [22], we propose to find a partial k-matching that maximizes a linear
combination of both quantities:

Problem 1 (FF-Adjacencies) Given a gene similarity graph B = (G1, . . . ,Gk,E)

and some α ∈ [0,1], find a partial k-matching M such that the following formula is
maximized:

Fα(M)= α · adj(M)+ (1− α) · edg(M). (13.3)

Thereby α is a user-controlled parameter that can be adjusted in favor of similar-
ity or synteny.

294 M.D.V. Braga et al.

Rejection of Intermediate Matching Constraints Recall that a partial k-
matching for k = 2 differs from the intermediate matching only by omitting the con-
straint that for each connected component at least one edge must be matched. While
such restriction is reasonable in gene family studies, where family assignments act
as filter in reducing false positive associations between genes, the gene similarity
graph can include also small weakly connected components (depending on the par-
ticular similarity function) that most likely represent false positives. Substituting
the intermediate matching which was used in the initial gene family-free approach
[22] for the partial k-matching may have a crucial effect on α in solving Problem
FF-Adjacencies. While in pairwise comparison where α = 0, both matchings co-
incide, the choice of edges in the intermediate matching is increasingly limited,
when α > 0. Discarding the constraint of keeping at least one edge per connected
component allows more freedom in the choice of edges included in the matching
and thus may lower the number of false positive assignments. However, it does so
at the cost of increasing the combinatorial solution space that must be explored in
solving Problem FF-Adjacencies. That is because the constraints of the intermedi-
ate matching enable the reduction of the solution space by identifying anchors in
the gene similarity graph. Using a partial k-matching, we lack sensible constraints
of the matching that can be exploited to identify anchors beforehand. Nevertheless,
heuristic methods can be applied to establish anchors based on highly conserved
structures in the gene similarity graph that are likely preserved in optimal solutions
of Problem FF-Adjacencies. These methods will not be discussed here.

13.3.2 Common Intervals

The concept of common intervals is used to represent two or more genomic seg-
ments (usually from different genomes) that are composed of the same set of genes.
The presence of such segments in the genomes of different species suggests either
functional coupling of the involved genes, as observed in operons in prokaryotes, or
remnant ancestral gene order, often referred to as syntenic blocks, which are used
to study large-scale genome evolution. Over the past years, the common intervals
model has been generalized to increase its applicability: Starting from a model that
requires genomes to be permutations of each other [32, 33, 56], it extended to a
sequence-based model that allows multiple occurrences of the same gene and dif-
ferences in the gene composition of genomes [21, 50]. Finally it was redefined in
different ways to account for small differences in the gene content of otherwise well-
conserved segments. The most notable of the latter extensions are r-windows [23],
max-gap clusters [5, 31] and approximate common intervals [12, 34, 43].

Currently, all approaches to common interval detection require as a prerequisite
that the genes of the studied genomes are partitioned into gene families. It is evi-
dent that errors in this assignment can have a negative impact on common intervals
detection. In the classical common intervals model a single unrecognized homol-
ogy can prematurely end a conserved segment, or even cause the whole segment

13 The Potential of Family-Free Genome Comparison 295

to remain unrecognized. Approximate common intervals are to some extent robust
against errors in gene family assignment. An unrecognized homology between two
genes may be interpreted as a combined gene insertion/gene deletion. However, in
presence of a large number of erroneous gene family assignments this workaround
quickly reaches its limits. Another drawback of the current approach is that all in-
formation on alignment scores is discarded once gene families are assigned, such
that later on, it makes no difference if two genes that are each others’ counterpart in
a pair of common intervals are strong bidirectional best hits or barely made it into
the same gene family and may not even be true homologs after all.

To make better use of positional information and pairwise gene similarity scores,
we can use a partial k-matching, as introduced earlier in this section, and simply
translate each connected component into one gene family. (Strictly speaking, these
are rather sub-families, as discussed previously.) However, conserved adjacencies,
the only type of positional information currently used to obtain partial k-matchings,
are not optimal in the context of common intervals detection. Typically their defini-
tion allows for unrestricted internal rearrangements and disregards gene orientation.
The rationale behind this approach is not that conservation of gene order and orien-
tation are supposed to be meaningless, but merely that it is difficult to decide ad hoc
how much internal rearrangement in a conserved segment is plausible. In practice,
a post-processing step can be applied to screen the predicted conserved segments
for these qualities. A more integrative approach are generalized adjacency clusters
which employ a user-defined parameter to restrict internal rearrangements [67].

The above considerations suggest that for common intervals more suitable po-
sitional information for gene family assignment could be obtained if the partial k-
matching was not only based on conserved adjacencies, but the conserved neigh-
borhood of up to θ > 0 genes to the left and right of each gene. To obtain such a
matching, we introduce the notion of θ -neighbors: Two genes g and g′ in genome
G are θ -neighbors with respect to G and H if at most θ − 1 GH -saturated genes lie
between them. Two pairs of θ -neighbors (g, g′) in genome G and (h,h′) in genome
H form a θ -adjacency if the corresponding edges eg,h and eg′,h′ are part of MGH .
An initial scoring scheme for θ -adjacencies could look as follows:

sθ
(
g,g′, h,h′

)=
{√

w(eg,h) ·w(eg′,h′) if (g, g′) and (h,h′) form a θ -adjacency

0 otherwise

It can be extended by a weighting scheme that values pairs of θ -neighbors the higher
the closer they are.

While the use of positional information is most likely an advantage for gene
family assignment, the restriction of gene families to at most one gene per genome,
a consequence of the partial k-matching, is clearly not. In fact, it is not only unnec-
essary but even unwanted in common intervals detection. It prevents the detection
of duplicate occurrences of genes within a common interval, as well as multiple oc-
currences of common intervals in a genome. Both findings are certainly interesting
as they hint at segmental or whole genome duplications.

In the remainder of this section, we broach a gene family-free approach for com-
mon intervals detection that avoids the above mentioned restrictions. We first study

296 M.D.V. Braga et al.

the case of two genomes G and H . Any pair of intervals (I, J) on G and H can be
common intervals. Therefore we build for each (I, J) a maximum weighted bipar-
tite matching MI,J between the gene sets of I and J . This is equivalent to solving
Problem FF-Adjacencies with α = 0 for G1 = I and G2 = J .

An unmatched gene in I and J is either a duplicate occurrence if it is incident to
an unchosen edge within the interval pair, or an inserted gene, if there are no incident
edges or all of them point to a gene outside the interval pair. We obtain a matching
score score(MI,J)=F0(MI,J) that needs to be corrected for the number of genes
occurring in the intervals. Otherwise, the biggest score is obtained for (G,H), the
interval pair defined by the complete genomes. Simply normalizing score(MI,J)

by the length of I and J is also not advisable, as it causes the best-scoring common
intervals to be of length one, the best scoring pair of genes. Instead a trade-off be-
tween matching score and interval compactness needs to be defined. The corrected
score can then be used to decide whether an interval pair should pass for a conserved
segment or not. For k > 2 genomes, the matching score can be defined as the sum
over all pairwise matching scores which equals the score of a partial k-matching
over all genomes.

The computation of a single matching MI,J can be done in O(max{|I |, |J |}3)
time using the Hungarian Method [35]. However, already for two genomes there are
O(|G|2|H |2) interval combinations that need to be tested. One order of magnitude
is saved if the initial definition of common intervals is used that neither allows du-
plicate genes nor gene insertions/deletions. In this case, only intervals of the same
size need to be paired. For larger k, the complexity increases further, as all O(k2)

pairwise genome combinations need to be considered. With polynomials of such
high degrees in the asymptotic time complexity, it remains to be seen to what extent
matching-based approaches are feasible in practice.

13.4 Genome Rearrangements

The study of genome rearrangements leads to a better understanding of the dynamics
of genome structure over time. Typical rearrangement operations are the inversion
of a piece of a chromosome, the translocation of material between two chromo-
somes, or the fusion and fission of chromosomes. These operations are explicitly
modeling the modification of the genome over time and the methods therefore are
called rearrangement model-based [30, 44, 63], in contrast to the rearrangement
model-free methods that we discussed in the previous section, which only study and
compare static properties of the genomes.

In rearrangement model-based methods, given two genomes and a set of rear-
rangement operations, two problem variants are typically considered: (1) calculate
the minimum number of steps that are necessary to transform one genome into an-
other, the so-called genomic distance problem, and (2) find a series of operations that
perform such a transformation, the genomic sorting problem. Traditional approaches
to analyze these problems are family-based, and the vast majority of methods also

13 The Potential of Family-Free Genome Comparison 297

adopt the simplifying assumption that exactly one occurrence of each family ap-
pears in each genome, which allows the existence of several polynomially-time
computable methods, including for the popular Double Cut and Join (DCJ) rear-
rangement model [7, 63].

While the sorting problem, especially for the case of multiple genomes and their
relation along the branches of a phylogenetic tree, will be addressed briefly in the
following Sect. 13.5, here we concentrate on distance calculations in a family-free
setting. In general, similarly to the rearrangement model-free measure of conserved
adjacencies described in Sect. 13.3, the challenge is finding pairwise gene assign-
ments based on similarities while minimizing the distance. In the following we will
sketch a natural modification of existing approaches for the DCJ model. Whether
this will lead to meaningful distances and allows for efficient algorithms has yet to
be shown.

13.4.1 The Weighted Adjacency Graph

Recall that a gene is an oriented interval of a chromosome. We now represent a
gene by the two extremities of its interval, called tail and head. The tail of gene g

is denoted by gt and the head by gh. In a family-based setting composed of n gene
families, consider that each one of two genomes G and H has exactly n genes, one
occurrence of each family. A data structure that has proven to be useful in the study
of the DCJ rearrangement model in this context is the adjacency graph AG(G,H).
This graph has a vertex for each adjacency of either of the two given genomes, and
for each one of the two extremities of each gene there is an edge connecting the
two vertices, one in G and the other in H , that contains this extremity. The graph is
bipartite and a collection of paths and cycles, because each vertex has either degree
one or degree two. The DCJ rearrangement distance can easily be calculated from
this graph using the formula dDCJ = n− c − i/2, where c is the number of cycles
and i is the number of paths with an odd number of edges in AG(G,H) [7]. Since, in
the linear unichromosomal case that we consider in this paper, the adjacency graph
has exactly two paths and otherwise only cycles, i/2 is either 0 or 1. Therefore, the
similarity of two genomes G and H is closely related to the number of cycles in the
adjacency graph AG(G,H).

While the original adjacency graph clearly depends on the assignment of gene
families, we observe that based on the information in the gene similarity graph from
Sect. 13.2 we can obtain a data structure that resembles some of the properties of the
adjacency graph. This new data structure might thus be a good basis for DCJ-like
rearrangement distance calculations in a family-free setting:

Definition 3 (Weighted adjacency graph) The weighted adjacency graph
WAG(G,H) of two genomes G and H has a vertex for each adjacency in G and a
vertex for each adjacency in H . For a gene g in G and a gene h in H with similarity
σ(g,h) > 0 there is one edge connecting the vertices containing the two heads gh

298 M.D.V. Braga et al.

Fig. 13.3 Gene similarity graph (left) and the resulting weighted adjacency graph WAG(G,H)

(right) for two genomes G= (◦ 1 2 3 4 ◦) and H = (◦ 5 6 7 8 9 ◦)

and hh and one edge connecting the vertices containing the two tails gt and ht . The
weight of each of these edges is w(eg,h) := σ(g,h).

As an example, the gene similarity graph for the two genomes G= (◦ 1 2 3 4 ◦)
and H = (◦ 5 6 7 8 9 ◦) and six edges with non-zero weight, and the corresponding
weighted adjacency graph are given in Fig. 13.3.

Note that if G and H have the same number of genes and the similarity mea-
sure σ forms a perfect matching with weight 1 for all edges of the matching and
weight 0 otherwise, then the weighted adjacency graph reduces to the ordinary ad-
jacency graph.

13.4.2 The Weighted Double-Cut-and-Join Distance

As for the case of conserved adjacencies, where instead of the breakpoint distance
we calculate a matching maximizing an adjacency score in Eq. (13.3), here we first
define a similarity measure that, if needed, can easily be converted into a distance.

Again, the similarity measure is based on a matching M of the genes in G and
the genes in H . Let I(G,H ;M) be a graph derived from the weighted adjacency
graph WAG(G,H) and the matching M by first removing from WAG(G,H) each
unmatched gene, consequently merging the two vertices containing its extremities,
and second keeping only the edges representing extremities of gene pairs from M.
This graph has the shape of a standard adjacency graph and thus is a collection of
cycles and paths. We denote by C(M)≡ C(G,H ;M) the set of connected compo-
nents of I(G,H ;M).

The graph derived from the weighted adjacency graph of Fig. 13.3 and the match-
ing M= {(1,5), (2,6), (3,8), (4,9)} is given in Fig. 13.4.

Since we know that the number of DCJ operations is closely related to the num-
ber of cycles in the adjacency graph, we define a score function whose domain is
defined by gene similarities and cycles in the matching. Therefore, in analogy to
the corresponding formula for conserved adjacencies in Eq. (13.3), we propose the
following objective function:

FDCJ
α (M)= α · cyc(M)+ (1− α) · edg(M)

13 The Potential of Family-Free Genome Comparison 299

Fig. 13.4 The graph derived
from the weighted adjacency
graph of Fig. 13.3 and the
matching M= {(1,5), (2,6),

(3,8), (4,9)}

where

cyc(M)=
∑

C∈C(M)

(
1

|C|
∑

e∈C

w(e)

)

and edg(M) is the same as in Eq. (13.2). Again, α ∈ [0,1] is a parameter that
allows to balance between the two extremes, here between rearrangements (α = 1)
and gene similarities (α = 0). Nevertheless, even for α = 1 gene similarities are
not ignored since the weights w(e) also form an essential part of the cycle score
cyc(M). Note that the normalization 1/|C| in cyc(M) is designed such that many
short cycles are preferred over fewer long ones. For example, if all edges have the
same weight w, two cycles of length 2 receive the score 2w, which is twice the
score of one cycle of length 4. The cycle score of the graph shown in Fig. 13.4 is
cyc(M)= 1

1 · 1.0+ 1
2 · (1.0+ 0.7)+ 1

4 · (0.7+ 0.9+ 0.6+ 0.9)+ 1
1 · 0.6= 3.225.

It is unlikely to find an efficient algorithm to compute a matching M that max-
imizes FDCJ

α (M), but the solution of this optimization problem through integer
linear programming seems possible and will be the subject of further research.

It is also an open question how to treat genes that are not covered by M. They
can be explained as being inserted or deleted during the course of evolution. Thus,
a more general score function might consider these genes and prefer sorting scenar-
ios with a low number of insertion/deletion events, similar to existing family-based
approaches [14, 25].

Even further reaching might be approaches that do not rely on any matching, and
instead optimize an objective directly defined on the weighted adjacency graph, for
example a weighted version of maximum cycle decomposition.

13.5 Ancestral Genome Reconstruction

Studying conservation of gene order or rearrangement processes in the light of
a phylogeny—given or unknown—can provide deeper insight into evolutionary
mechanisms, gene functions, or the phylogeny itself. In this section, we will dis-
cuss how a partial k-matching can be used for ancestral genome reconstruction.

Phylogeny Aware Optimization A natural first step when reconstructing ances-
tral gene orders is to take phylogenetic information into account. Apart from an-
cestral reconstruction, this can actually be done in general to improve the construc-
tion of the partial k-matching. Given an edge-weighted phylogenetic tree, say T ,

300 M.D.V. Braga et al.

for the species under consideration where the edge weights reflect the phyloge-
netic/evolutionary distance, the lengths of the paths between all pairs of species
define an additive distance matrix DT . As additivity gives a one-to-one correspon-
dence of DT and T , including the pairwise distances into the optimization implic-
itly also includes the topology of T . These distances can be used to scale the pair-
wise scores in the objective function—close relatives receive a higher score than
more distant pairs:

Fα,T (M) = α ·
∑

G,H

(
DT

max −DT
GH

)
adj(MGH)

+ (1− α) ·
∑

G,H

(
DT

max −DT
GH

)
edg(MGH)

=
∑

G,H

(
DT

max −DT
GH

)(
α · adj(MGH)+ (1− α) · edg(MGH)

)

where

DT
max =max

G,H

{
DT

GH

}+ ε

(ε > 0, a constant to avoid nullity in the case of the two most distant genomes).

Ancestral Genes To be able to reconstruct ancestral gene orders, we first need
to define ancestral genes and the ancestral gene content of ancestral genomes. To
this end, we leave the family-free approach and rely on the assignments given by
the partial k-matching. From such assignments, gene families can be derived by
simply assigning all genes from a connected component in a partial k-matching to
one family. As mentioned in Sect. 13.3.2, strictly speaking, these are rather gene
sub-families. Recall further that the partial k-matching is defined such that within
each connected component formed by saturated edges no two genes belong to the
same genome. If all components are k-cliques, then genomes can be modeled as
signed permutations. But in general, components might cover less than k genomes,
i.e., not all genomes have the same gene content, although genomes do not have
duplicated genes, thus leading to easier problems.

Based on the gene sub-families, we can infer the ancestral gene content from
standard methods [18] or methods tailored for genome rearrangement problems
[24, 53].

Ancestral Gene Orders Similarly to the computation of genomic distances
(Sect. 13.4), the reconstruction of ancestral gene orders can be seen from two points
of view—incorporating a rearrangement model-based approach or not. Once gene
families have been defined from the partial k-matching, we have the gene orders of
the extant genomes. Thus, we can apply rearrangement model-based methods allow-
ing for unequal gene content such as [24, 48, 53]. Usually, such methods, following a
parsimony approach, would aim at minimizing the total number of operations along
the tree edges, which in most cases will lead to computationally hard optimization
problems.

13 The Potential of Family-Free Genome Comparison 301

In the rearrangement model-free approach, ancestral syntenic characters are de-
termined which induce a (partial) gene order. In our case, adjacencies qualify as
ancestral syntenic characters. The remaining questions are then (1) how to infer the
ancestral adjacencies, and (2) whether a set of adjacencies assigned to an ances-
tral node is concordant with some valid gene order, i.e., a collection of linear (and
circular) chromosomes where each gene has at most two neighbors.

For a median-of-three, the above questions can easily be answered. Following a
parsimony approach, the 0/1-assignment of an adjacency to the median boils down
to a majority vote. Further, in almost all rearrangement median models, any adja-
cency present in at least two genomes is contained in any optimal median. In the
case of signed gene orders, this selection will always ensure compatibility with a
collection of linear and circular gene orders, and the inferred partial k-matching de-
fines implicitly a set of linear or circular genome segments. Note, however, that this
median genome might not be optimal for a given rearrangement model; however, it
is a valid set of ancestral genome segments that has been inferred in a joint process,
together with putative gene sub-families.

For general trees, one could follow rearrangement model-free approaches that
try to find a most parsimonious labeling of the whole tree that is at the same time
consistent with some linear or circular gene order [52], or one could concentrate on
a single ancestral node as, e.g., done in several recent works [16, 37]. The method
by Chauve and Tannier [16] relies on the Dollo principle, where only adjacencies
conserved in pairs of genomes whose path in the species tree contain that ancestor
are deemed ancestral; other approaches can select or score adjacencies using a Fitch
principle [37].

The Dollo principle can easily be included into the optimization of the partial
k-matching by introducing a factor πA

GH that equals one if the path between G and
H contains the ancestor A and zero otherwise:

Fα,T ,A(M)=
∑

G,H

πA
GH

(
DT

max −DT
GH

)(
α adj(MGH)+ (1− α) edg(MGH)

)
.

Thus, adding this feature to the objective function allows to select a set of putative
ancestral adjacencies that can also receive a phylogenetic score as we described it
earlier. Then existing methods that select a subset of adjacencies that form a valid
genome can be used (see [38] for an example).

In this section we outlined how the family-free principle can fit quite naturally
in existing approaches to reconstruct ancestral gene orders. This preliminary study
opens several interesting research avenues. For example, it is worth to mention
that rearrangement model-free reconstruction methods can utilize larger conserved
structures than just adjacencies. Thus, e.g., common intervals could be included by
integrating the scoring for θ -adjacencies as proposed in Sect. 13.3.2. Also, progress-
ing toward a fully integrated inference process, it would be natural to incorporate
the constraints posed by the structure of an ancestral genome; with adjacencies, this
reduces to ensuring that every ancestral gene has at most two adjacent neighbor-
ing genes. However, integrating such constraints—even if only for a single internal
node of a species tree (ancestral genome)—seems to be very challenging. Finally,

302 M.D.V. Braga et al.

it would also be interesting to move on from reconstructing the states of the inter-
nal nodes of a given phylogeny (the small phylogeny problem) to reconstructing
the tree itself. It is known that using gene order data for phylogenetic reconstruc-
tions can be more accurate and robust than sequence-based methods since they are
not affected by gene-tree species-tree issues and less affected by small sequence
or alignment errors. Not relying on purely sequence-based homology assignments
could be a benefit for such reconstructions.

13.6 Discussion

In this paper we have outlined the potential of family-free methods in various aspects
of genome comparison. Gene families are generally computationally predicted and
serve as basis for a large variety of current comparative genomics studies. Since the
predicted families may not be concordant with the underlying true biological gene
families, erroneous gene family assignments can deteriorate subsequent analyses.
Most importantly, comparative genomics methods require prior gene family assign-
ments, yet the attained information about the structural organization of the genome
may in turn actually help to improve the initially required gene family assignments.
Consequently we propose the use of a gene similarity graph as underlying data
structure in genome comparison. Therein genes are associated with each other by
weighted edges according to a normalized similarity measure. In practice, sequence
similarity scores can be employed in constructing the graph.

The underlying strategy of almost all presented methods is tantalizingly simple
and boils down to obtain a one-to-one matching between orthologous genes of the
gene similarity graph by solving an optimization problem. More specifically, a linear
combination of a synteny (or rearrangement) score and a similarity score, parame-
terized by α, between saturated genes is optimized. Here, we give users the choice
in favoring one of the two quantities over the other by adjusting α in each particular
analysis. At this point, we like to acknowledge an inherent disadvantage of a one-
to-one matching, namely its inability to account for inparalogous genes. Thus, the
detection of inparalogs remains part of post-processing steps which identify unsat-
urated genes with high similarities to other genes of the same genome.

In Sect. 13.3 we studied two forms of conserved structures: adjacencies and com-
mon intervals. In the former, we generalized the problem of family-free computation
of adjacencies of [22], called FF-Adjacencies, towards the simultaneous study of
more than two genomes. Thereby we introduced the notion of a partial k-matching,
which allows to incorporate in solutions of Problem FF-Adjacencies sparsely inter-
connected genes as well as connected components that are only contained in sub-
sets of the genomes. We also discussed two possible approaches towards family-
free common intervals by introducing a scoring scheme for θ -adjacencies, which
is a co-localization measure for genes similar to adjacencies. We further outlined
a more dynamic, but also computationally more expensive approach based on per-
forming local maximum matchings. Complementing the study of conserved struc-
tures, we turned in Sect. 13.4 to model-based genome comparison by introducing

13 The Potential of Family-Free Genome Comparison 303

Fig. 13.5 Various fields of comparative genomics can be explored under the family-free model
such as conserved structure detection or reconstruction of ancestral genomes, employing different
gene similarity measures (based on alignment scores, functional similarity, etc.)

the weighted adjacency graph. On this basis we proposed a weighted DCJ dis-
tance following a similar strategy as in the previous section. We further showed
in Sect. 13.5 how the reconstruction of ancestral genomes can be performed using
the family-free principle. Thereby we studied the concept of family-free adjacencies
in a phylogeny-aware setting using existing approaches of reconstructing ancestral
gene orders.

This work presents a number of initial studies in a new field of genome compari-
son which aims at developing methods where prior gene family assignments are no
longer required. It consequently offers many directions in which these studies can
be extended (see Fig. 13.5). Most evidently, the principle of family-free genome
comparison can be applied to the numerous existing family-based studies. More in-
terestingly, the family-free principle could even be integrated into a methodology
for joint inference of gene families, conserved structures and ancestral gene orders
at the same time, extending presented work in reconstructing ancestral gene or-
ders. Even though such venture most likely involves a more complex data structure
and a potentially increased solution space, the question remains unanswered if the
stronger signal gained from harvesting more information from the genomic datasets
may reduce the computational cost in finding optimal solutions. Finally, it is worth
to mention that the family-free principle may be particularly beneficial in studying
partially sequenced (or assembled) genomes, as methods in gene family prediction
tend to be susceptible for missing genes. Here, the family-free approach can offer

304 M.D.V. Braga et al.

improvements for inferring phylogenetic distances of incomplete genomes, but also
in detecting conserved structures, which may lead to improved methods in contig
layouting.

While sequence similarity between genes is an obvious and reasonable measure
in constructing the gene similarity graph, similarity scores can also integrate addi-
tional information such as functional similarity. Such information can be obtained
from various databases, most notably, from the Gene Ontology database [3]. Family-
free genome comparisons of this kind may give further insights into the functional
organization of the genome.

Acknowledgements MDVB is funded by the Brazilian research agency CNPq grant
PROMETRO 563087/10-2. DD receives a scholarship from the CLIB Graduate Cluster Industrial
Biotechnology. KJ is funded by DFG grant ST 431/5-1. AT is a research fellow of the Alexander
von Humboldt Foundation.

References

1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the
number of breakpoints and the number of adjacencies between two genomes with duplicate
genes. J. Comput. Biol. 15(8), 1093–1115 (2008)

2. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approximability of com-
paring genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)

3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene
ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25(1),
25–29 (2000)

4. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome
comparison. J. Comput. Biol. 13(7), 1340–1354 (2006)

5. Bergeron, A., Corteel, S., Raffinot, M.: The algorithmic of gene teams. In: Proceedings of
WABI 2002. LNCS, vol. 2452, pp. 464–476 (2002)

6. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. J. Comput. Biol. 13(2),
567–578 (2006)

7. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Proceed-
ings of WABI 2006. LNBI, vol. 4175, pp. 163–173 (2006)

8. Bernt, M., Merkle, D., Middendorf, M.: Solving the preserving reversal median problem.
IEEE/ACM Trans. Comput. Biol. Bioinform. 5, 332–347 (2008)

9. Blin, G., Chauve, C., Fertin, G.: The breakpoint distance for signed sequences. In: Proceedings
of CompBioNets 2004. Texts in Algorithmics, vol. 3, pp. 3–16 (2004)

10. Blin, G., Chateau, A., Chauve, C., Gingras, Y.: Inferring positional homologs with common
intervals of sequences. In: Proceedings of RECOMB-CG 2006, pp. 24–38. Springer, Berlin
(2006)

11. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplications:
a computational complexity point of view. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(4),
523–534 (2007)

12. Böcker, S., Jahn, K., Mixtacki, J., Stoye, J.: Computation of median gene clusters. J. Comput.
Biol. 16(8), 1085–1099 (2009)

13. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ances-
tral species. Genome Res. 12(1), 26–36 (2002)

13 The Potential of Family-Free Genome Comparison 305

14. Braga, M.D.V., Willing, E., Stoye, J.: Double cut and join with insertions and deletions.
J. Comput. Biol. 18(9), 1167–1184 (2011)

15. Caprara, A.: The reversal median problem. INFORMS J. Comput. 15(1), 93–113 (2003)
16. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous

regions of ancestral genomes and its application to mammalian genomes. PLoS Comput. Biol.
4(11), e1000234 (2008)

17. Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., Tannier, E.: Duplication, rearrange-
ment and reconciliation: a follow-up 13 years later. In: Chauve, C. et al. (eds.) Models and
Algorithms for Genome Evolution. Computational Biology, vol. 19. Springer, Berlin (2013).
In this volume

18. Csurös, M.: Count: evolutionary analysis of phylogenetic profiles with parsimony and likeli-
hood. Bioinformatics 26(15), 1910–1912 (2010)

19. Darling, A.E., Mau, B., Perna, N.T.: ProgressiveMauve: multiple genome alignment with gene
gain, loss and rearrangement. PLoS ONE 5(6), e11147 (2010)

20. Dewey, C.N.: Positional orthology: putting genomic evolutionary relationships into context.
Brief. Bioinform. 12(5), 401–412 (2011)

21. Didier, G., Schmidt, T., Stoye, J., Tsur, D.: Character sets of strings. J. Discrete Algorithms
5(2), 330–340 (2007)

22. Doerr, D., Thévenin, A., Stoye, J.: Gene family assignment-free comparative genomics. BMC
Bioinform. 13(Suppl 19), S3 (2012)

23. Durand, D., Sankoff, D.: Tests for gene clustering. J. Comput. Biol. 10, 453–482 (2003)
24. Earnest-DeYoung, J.V., Lerat, E., Moret, B.M.E.: Reversing gene erosion—reconstructing an-

cestral bacterial genomes from gene-content and order data. In: Proceedings of WABI 2004.
LNCS, vol. 3240, pp. 1–13 (2004)

25. El-Mabrouk, N.: Sorting signed permutations by reversals and insertions/deletions of contigu-
ous segments. J. Discrete Algorithms 1(1), 105–122 (2001)

26. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement
problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)

27. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rear-
rangements. MIT Press, Cambridge (2009)

28. Frech, C., Chen, N.: Genome-wide comparative gene family classification. PLoS ONE 5(10),
e13409 (2010)

29. Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., Jiang, T.: MSOAR: a high-throughput or-
tholog assignment system based on genome rearrangement. J. Comput. Biol. 14(9), 1160–
1175 (2007)

30. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for
sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

31. He, X., Goldwasser, M.H.: Identifying conserved gene clusters in the presence of homology
families. J. Comput. Biol. 12(6), 638–656 (2005)

32. Heber, S., Stoye, J.: Algorithms for finding gene clusters. In: Proceedings of WABI 2001.
LNCS, vol. 2149, pp. 252–263 (2001)

33. Heber, S., Mayr, R., Stoye, J.: Common intervals of multiple permutations. Algorithmica
60(2), 175–206 (2011)

34. Jahn, K.: Efficient computation of approximate gene clusters based on reference occurrences.
J. Comput. Biol. 18(9), 1255–1274 (2011)

35. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2(1–2),
83–97 (2006)

36. Li, L., Stoeckert, C.J., Roos, D.S.: OrthoMCL: identification of ortholog groups for eukaryotic
genomes. Genome Res. 13(9), 2178–2189 (2003)

37. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: DUPCAR:
reconstructing contiguous ancestral regions with duplications. J. Comput. Biol. 15(8), 1007–
1027 (2008)

38. Manuch, J., Patterson, M., Wittler, R., Chauve, C., Tannier, E.: Linearization of ancestral
multichromosomal genomes. BMC Bioinform. 13(Suppl 19), S11 (2012)

306 M.D.V. Braga et al.

39. Milinkovitch, M.C., Helaers, R., Depiereux, E., Tzika, A.C., Gabaldon, T.: 2× genomes—
depth does matter. Genome Biol. 11, R6 (2010)

40. Ostlund, G., Schmitt, T., Forslund, K., Köstler, T., Messina, D.N., Roopra, S., Frings, O.,
Sonnhammer, E.L.L.: InParanoid 7: new algorithms and tools for eukaryotic orthology analy-
sis. Nucleic Acids Res. 38(Database issue), D196–D203 (2010)

41. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Electron. Colloq.
Comput. Complex. 71, 5 (1998)

42. Powell, S., Szklarczyk, D., Trachana, K., Roth, A., Kuhn, M., Muller, J., Arnold, R., Rat-
tei, T., Letunic, I., Doerks, T., Jensen, L.J., von Mering, C., Bork, P.: eggNOG v3.0: orthol-
ogous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res.
40(Database issue), D284–D289 (2012)

43. Rahmann, S., Klau, G.W.: Integer linear programs for discovering approximate gene clusters.
In: Proceedings of WABI 2006. LNBI, vol. 4175, pp. 298–309 (2006)

44. Sankoff, D.: Edit distances for genome comparisons based on non-local operations. In: Pro-
ceedings of CPM 1992. LNCS, vol. 644, pp. 121–135 (1992)

45. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917
(1999)

46. Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics.
In: Proceedings of COCOON 1997. LNCS, vol. 1276, pp. 251–263 (1997)

47. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny.
J. Comput. Biol. 5, 555–570 (1998)

48. Sankoff, D., El-Mabrouk, N.: Duplication, rearrangement and reconciliation. In: Sankoff, D.,
Nadeau, J.H. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene
Order Dynamics, Map Alignment and the Evolution of Gene Families. Computational Biology
Series, vol. 1, pp. 537–550. Kluwer Academic, Dordrecht (2000)

49. Sankoff, D., Cedergren, R., Abel, Y.: Genomic divergence through gene rearrangement. In:
Doolittle, R.F. (ed.) Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequences. Meth. Enzymol., vol. 183, Chap. 26, pp. 428–438. Academic Press, San Diego
(1990)

50. Schmidt, T., Stoye, J.: Quadratic time algorithms for finding common intervals in two and
more sequences. In: Proceedings of CPM 2004. LNCS, vol. 3109, pp. 347–358 (2004)

51. Shi, G., Peng, M.C., Jiang, T.: MultiMSOAR 2.0: an accurate tool to identify ortholog groups
among multiple genomes. PLoS ONE 6(6), e20892 (2011)

52. Stoye, J., Wittler, R.: A unified approach for reconstructing ancient gene clusters. IEEE/ACM
Trans. Comput. Biol. Bioinform. 6(3), 387–400 (2009)

53. Tang, J., Moret, B.M., Cui, L., Depamphilis, C.W.: Phylogenetic reconstruction from arbitrary
gene-order data. In: Proceedings of BIBE 2004, pp. 592–599. IEEE, New York (2004)

54. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under
different genomic distances. BMC Bioinform. 10, 120 (2009)

55. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V.,
Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S.,
Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A.: The COG database: an up-
dated version includes eukaryotes. BMC Bioinform. 4, 41 (2003)

56. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations.
Algorithmica 26(2), 290–309 (2000)

57. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Automatic genome-wide reconstruction of
phylogenetic gene trees. Bioinformatics 23(13), i549–i558 (2007)

58. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles
of gene duplication in fungi. Nature 449(7158), 54–61 (2007)

59. Waterhouse, R.M., Zdobnov, E.M., Tegenfeldt, F., Li, J., Kriventseva, E.V.: OrthoDB: the
hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Res. 39(Database issue),
D283–D288 (2011)

60. Watterson, G., Ewens, W.J., Hall, T., Morgan, A.: The chromosome inversion problem.
J. Theor. Biol. 99(1), 1–7 (1982)

13 The Potential of Family-Free Genome Comparison 307

61. Xu, A.W., Moret, B.M.E.: GASTS: parsimony scoring under rearrangements. In: Proceedings
of WABI 2011. LNBI, vol. 6833, pp. 351–363 (2011)

62. Xu, X., Sankoff, D.: Tests for gene clusters satisfying the generalized adjacency criterion.
In: Proceedings of BSB 2008. LNBI, vol. 5167, pp. 152–160 (2008)

63. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translo-
cation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

64. Yang, Z., Sankoff, D.: Natural parameter values for generalized gene adjacency. In: Proceed-
ings of RECOMB-CG 2009. LNBI, vol. 5817, pp. 13–23 (2009)

65. Zhang, M., Leong, H.W.: Identifying positional homologs as bidirectional best hits of se-
quence and gene context similarity. In: Proceedings of ISB 2011, pp. 117–122. IEEE, New
York (2011)

66. Zhu, B.: Approximability and fixed-parameter tractability for the exemplar genomic distance
problems. In: Proc. of Theory and Applications of Models of Computation. LNCS, vol. 5532,
pp. 71–80 (2009)

67. Zhu, Q., Adam, Z., Choi, V., Sankoff, D.: Generalized gene adjacencies, graph bandwidth,
and clusters in yeast evolution. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(2), 213–220
(2009)

Chapter 14
Genetic History of Populations:
Limits to Inference

Daniel E. Platt, Filippo Utro, Marc Pybus, and Laxmi Parida

Abstract The dispersal of the human population to all the continents of the globe
is a compelling story that can possibly be unravelled from the genetic landscape
of the current populations. Indeed, a grasp on this strengthens the understanding
of relationship between populations for anthropological as well as medical appli-
cations. While the collective genomes is believed to have captured its own “evolu-
tion”, undoubtedly, a lot is irrecoverably lost. It is important to try to estimate what
fraction of past events become unreconstructable. We used a published population
simulation algorithm which includes parameter sets that simulate modern regional
human demographics: it reflects the out-of-Africa expansion events, isolation dur-
ing the Last Glacial Period, Neolithic expansion of agriculture, and the industrial
revolution for African, African–American, European, and Asian populations. This
simulation tool was used to provide complete genetic histories unavailable in real
human population data. Next we used the minimal descriptor device which is an
algorithm-independent means to explore the (potential) recoverable genetic events
from the final extant population data. We found that, on average, around 65 % of the
total number of genetic events are recoverable, with substantial variations among
histories. We also found that increases of sequence length tended to yield dimin-
ishing returns in new information yield. Lastly, even with a substantial fraction of
events unrecoverable, and even for different population history simulations, the re-
coverable events do yield similar resolution of the whole record of demographic,
climatic, and other population events.

D.E. Platt · F. Utro · L. Parida (B)
IBM T.J. Watson Research, Yorktown Heights, New York, USA
e-mail: parida@us.ibm.com

D.E. Platt
e-mail: watplatt@us.ibm.com

F. Utro
e-mail: futro@us.ibm.com

M. Pybus
Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
e-mail: marc.pybus@upf.edu

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9_14,
© Springer-Verlag London 2013

309

mailto:parida@us.ibm.com
mailto:watplatt@us.ibm.com
mailto:futro@us.ibm.com
mailto:marc.pybus@upf.edu
http://dx.doi.org/10.1007/978-1-4471-5298-9_14

310 D.E. Platt et al.

14.1 Background

Every genetic event that is consequential to the genetic landscape of a population
is captured in a topological structure called the Ancestral Recombinations Graph
(ARG) [1]. The converse of this may not hold, that is some genetic events cap-
tured in the ARG may not contribute to resolvable events with definable times in
the history of the extant population, but nevertheless are legitimate components of
the relevant and common genetic history of the population. In a sense, the ARG is
the phylogeny of the individuals of the population. It should be noted that just as
in a phylogeny tree topology, an ARG also does not have any extraneous nodes.
Further, it is not unreasonable to assume that there exists a “true” ARG for a col-
lection of samples or a population that contains all the events in the sequence that
they emerged, and is the underlying target of efforts to reconstruct the history of
the population. Recall that the nodes of the ARG represent genetic events. Such a
“true” ARG would contain a description of all SNPs, coalescent events, and recom-
binations that contributed to that collection of samples or population. The topology
of the ARG is not necessarily a tree due to genetic exchange events such as re-
combinations, gene duplications, and so on. However, segments within a sequence
that do not contain any recombination crossovers will show well-defined phyloge-
netic trees. The relationship among these “marginal trees” as their segments were
involved in recombination events constitute the information in the complete ARG.
These events are represented as nodes with multiple incoming edges in the ARG.
The edges are usually annotated with mutations, and the lengths are representative
of the ages measured in generations. Thus the topology, together with its annota-
tion and the edge lengths, determines the genetic landscape of the extant samples.
In non-recombinant phylogenetic trees, drift-driven coalescence events represent a
loss of information, ultimately destroying all information prior to some most recent
common ancestor. Equivalent SNPs are multiple single nucleotide polymorphisms
which are found together along a single edge connecting two nodes of a phyloge-
netic tree [2]. Even though these SNPs likely accumulated along the lineage within
the population, other lineages differentiating the order that these mutations occurred
have been lost in subsequent drift and coalescence events. This has also resulted in
the loss of information bounding when each mutation emerged along an edge be-
tween two coalescence nodes in the phylogenetic tree. In ARGs, the lost information
involving recombination events results in coalescence-like branch nodes, but where
none of the segment trees that are involved in the node coalesce at that node. The
order and timing of those coalescence events are lost. This may result in ambigu-
ities in determining not only timing and order, but possibly also of topology. It is
possible to completely loose the information that two segments accumulated muta-
tions and evolved along a single chromosome’s lineage. While the population may
be subject to fairly well-defined environmental impacts (desertification, glaciation,
moistening, etc), and respond with migrations, contractions, expansions, impacts
from new technologies, etc, the genetics that emerge in these processes have a dis-
tinctly stochastic character. It is of interest to understand how much can be deduced
about the genetic response to these climatic, technological, and cultural changes.

14 Genetic History of Populations: Limits to Inference 311

To that extent, this study considers the impact of stochastic variation among graphs
representing possible genetic histories of these populations. The reader is directed
to [7] for an exposition on random graph representation of the ARG.

In this paper, we define a measure of relevant genetic “history” as the number
of nodes in the ARG1 [14]. These nodes include coalescence events, recombination
events, and instances where multiple recombination events along extant lineages lost
information due to intervening drift. These genetic events are also responsible for
the genetic diversity in a population. Since drift can rapidly diminish diversity if the
population is suddenly reduced in size, and the re-accumulation of mutations and
diversity is rate-limited by mutation rates, bottlenecks can also significantly impact
the extant number of unresolvable nodes. This feature will be visible in the numbers
of reconstructable nodes and non-reconstructable nodes, and therefore is reflected
in our history measure. glacial expansions. Then well-defined questions to ask are:

1. If the genetic history measure reflects diversity, do the demographic parameters
reflect the greater genetic diversity of Africans vs. Asian, European, and other
out-of-Africa populations?

2. Do we observe less information due to drift and coalescence in more ancient
epochs?

3. Do we obtain higher resolution with (a) increasing sample sizes? (b) increasing
sequence lengths? (c) higher or lower recombination rates?

4. What is the largest fraction, f , of the history that is estimable from a given
sample? In other words, no matter what analysis is employed, is there always
some fraction (1− f) of the common history that is impenetrable?

5. Is the information in a specific history sufficient to identify population, ecologi-
cal, and demographic transitions?

Let N be the number of nodes in an underlying, or true, ARG topology. Given
the extant samples, let a method estimate N ′ ≤N nodes. We further assume that the
lengths of the edges, as well as the interconnectivity with the labels, are estimated
correctly, so the estimated fraction of this ARG, defined as 0.0 ≤ N ′/N ≤ 1.0, is
a natural “overestimate”. Let N ′

max be the maximum of N ′
i from all possible meth-

ods i. Then f , the penetrable fraction, is N ′
max/N . However, it is impossible to

enumerate all possible estimation methods. So, we resort to the mathematical struc-
ture called the minimal descriptor [9] of an ARG: it is an essential substructure of
an ARG that preserves the genetic landscape of the extant samples, including the
topology and edge lengths of the marginal trees.

The reader is directed to [8] for an exposition on this nonredundant information
content of an ARG. The minimal descriptor is also an ARG. Let the number of
nodes in the minimal descriptor be Ñ , then N ′

max ≤ Ñ . Thus, this methodology-
independent scheme gives an upper bound on the penetrable fraction f as Ñ/N ,
and a lower bound on the impenetrable fraction as 1− Ñ/N .

In this paper, we seek to characterize the value of f in human populations. How-
ever, real genetic histories are not available for extant human populations. We there-

1A preliminary version of this work was presented at APBC 2013 [14].

312 D.E. Platt et al.

fore sought to estimate bounds through simulation. From the literature, we selected
a population simulator that has the capability of providing not only individuals from
different demographies, but also the underlying ARG. This is very suitable for our
experimental set-up. Next, we designed an algorithm to extract the minimal descrip-
tor from a given ARG. Thus we compute upper bounds on f , as discussed. Recall
that each node of the ARG has a specific age or depth associated with it. It may be
noted that the length attribute of an edge can be viewed simply as the non-negative
difference between the depths of the two incident nodes. The terminal leaf nodes are
the extant individuals. The depth of the extant individual is defined to be zero and
the value progressively increases as one traverses the ARG away from the terminal
leaf nodes. The nodes of the minimal descriptor are also the nodes of the underlying
ARG and the same age is associated with them. Let epoch d be defined as a range
of depths say [d1, d2] with d2 ≥ d1. Then the history density at d , Nd , is measured
by the number of nodes in the ARG with depth in the epoch d .

Extending this notion, the estimable density at d is measured as fd = Ñd/Nd ,
where Ñd is the number of nodes in the minimal descriptor with depth in the
epoch d . We study the demography characteristics in terms of the history density
and the estimable density. Continental populations have distinctive history density
profiles, that are invariant under different parameter settings of the simulator. Let
tARG denote the true ARG for a given data set with N nodes. Then, Ñ is the num-
ber of nodes of tARG that can be reconstructed based on extant genetic information.
Thus Ñ is an underestimate of actual nodes N for any specific history, and (N − Ñ)

measures the deficit of Ñ ’s estimate of tARG’s true historical values.
We used COSI [13], which is the only population simulator, to the best of our

knowledge, that provides the ARG as well as produces populations that match the
genetic landscape of the observed human populations. We used the bestfit model
in COSI to simulate the samples with a calibrated human demography for differ-
ent populations, proposed by Schaffner et al. [13]. This simulator generates data
matching three structured continental populations: Africans, Europeans, and Asians.
An admixed population, the Afro-Americans, can also be generated. This simula-
tor has also been used in literature as a gold standard for generating the demogra-
phies [3, 5, 10, 11]. In order to explore f and the impenetrable fraction (1− f) of
a given demography, all combinations of four different simulation parameters have
been explored: mutation rate, sequence length, sample size and recombination rate.
These are briefly described below:

Mutation rate: According to different studies Homo sapiens, as a species, has a
mutation rate around 1.5 × 10−8 per base pair per generation (bp/gen for
short) [12]. However, this value could change along the genome.

Sequence length: When simulating genetic population data, sequence length is one
of the most important factors. While it may not be computationally feasible to
simulate a whole chromosome, enough polymorphisms are required in order to
get meaningful results.

Sample size: The sample size needs to be large enough to capture important popu-
lation features.

14 Genetic History of Populations: Limits to Inference 313

Table 14.1 Parameters defining COSI execution environment

Parameters Values

Mutation Rate (bp/gen ×10−8) 0.7, 1.5, 3.0

Sequence length (Kb) 5, 10, 30, 50, 75, 100, 150, 200

Sample size 5, 10, 30, 60, 120

Recombination rate (cM/Mb) 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 15, 1.7, 1.9, 2.1, 2.3, 2.5, 2.8,
3.1, 3.5, 3.9, 4.5, 5.1

Recombination rate: The mean recombination rate along the genome in Homo sapi-
ens is around 1.3 cM/Mb [4]. However, it has been seen that it can vary widely
in a fine-scale manner when focusing on specific regions of the genome [6]. Dif-
ferent simulations are run using recombination rates matching the major portion
of the range observed in human data [13].

Based on the above we used different parameters’ values, and all possible combina-
tions of them, in order to assess their effects on f (see Table 14.1). Each population
of the COSI demography has been tested independently as well as the whole human
demography (i.e. all populations together). In total, more than 22800 simulation
replicates were generated for each population, each representing distinct histories,
and exploring combinations of different values for the four simulation parameters
described above. This includes ten replicates for each experiment. For the highest
value of sequence length used (i.e. 200 Kb), some experiments were terminated after
thirty minutes, since no substantial progress was being made towards its completion.
Therefore, the results for 200 Kb sequence length are not reported in the summary
plots.

Plots were prepared showing Summary statistics (means, medians, whisker plots
showing medians, extremes, and quartiles) across replicated simulations. Further,
a computation of the standard deviation over the ensemble of histories was prepared
to explore whether ecological and demographic events (post-glacial expansions, Ne-
olithic agricultural expansion, etc) would be expected to leave a genetic signal that
could be resolved across the demographic groups’ histories.

14.2 Method

Recall that an ARG is a phylogenetic structure that encodes mutation events and
duplication events, as well as genetic exchange events such as recombinations: this
captures the (genetic) dynamics of a population evolving over generations. From a
topological point of view, an ARG is always a directed acyclic graph where the di-
rection of the edges is toward the more recent generation. An edge is annotated with
genetic mutation events, such as single nucleotype polymorphisms. Some simula-
tors may give edges with empty labels. Recall that the length of the edge, not to be
confused with the edge label, represents the epoch defined by the age (or depth) of

314 D.E. Platt et al.

Fig. 14.1a The topology of
an ARG G with three extant
samples marked 1, 2, and 3.
The dashed horizontal lines
mark the age or depth of the
nodes which are the same in
all the four figures

the two incident nodes. A chain node has a single incoming edge and a single out-
going edge. In the ARG we define the leaf nodes as nodes with no outgoing edges,
they represent the extant unit.

Finally, given two nodes v and w, if there is an outgoing edge from v to w, then
v is referred to as parent of w and w is referred as a child of v.

In [9], a structure-preserving and samples-preserving core of an ARG G, called
the minimal descriptor ARG (mdARG) of G, was identified. Its structure-preserving
character ensures that the topology and the all the branch lengths of the marginal
trees of the minimal descriptor ARG are identical to that of G, and the samples-
preserving property asserts that the patterns of genetic variation in the samples of
the minimal descriptor ARG are exactly the same as that of G. It was also shown
that an unbounded G has a finite minimal descriptor, that continues to preserve
critical graph-theoretic properties of G. Thus this lossless and bounded structure is
well defined for all ARGs (including unbounded ARGs) and we use the same here.
However, a minimal descriptor of an ARG may not be unique. This does not affect
the estimation of f , since Nmax ≤ Ñ are the same, for all possible Ñ corresponding
the different minimal descriptors (see Sect. 14.1 for the definitions).

Identification of the reconstructable fraction is started by first computing a mini-
mal descriptor from the ARG. The input to this process is the ARG G derived from
the log files of the population simulator COSI. The sequence length is normalized
to the interval [0,1]. This ARG is preprocessed as follows.

Firstly, the number of marginal trees, M , is extracted from G, corresponding to
the M intervals [0, l1], [l1, l2], . . . , [lM−1, lM = 1.0] derived from the segments file
of COSI, where 0 < l1 < l2 < · · · < lM = 1.0. Next, each node in G is annotated
with one or more of these M intervals through their traversal of G. See Figs. 14.1a
and 14.1b.

A coalescent node is t-coalescent if it is a coalescent node in one of the M

marginal trees. Each coalescent node that is not t-coalescent is removed, following
the node-removal procedure defined in [9]. To remove node v, an edge is introduced

14 Genetic History of Populations: Limits to Inference 315

Fig. 14.1b The three
nonmixing segments are red,
green, and blue, in that order.
Each node displays the
nonmixing segments. A white
rectangle indicates the
absence of that segment in
that node. The three
embedded trees,
corresponding to each
segment, are shown in the
same color as that of the
segment. The edge labels
(mutation events) are not
shown to avoid clutter

Fig. 14.1c The same as
Fig. 14.1b with the two
marked nodes that are not
t -coalescent

from the parent, u, of v to each child w of v, while maintaining the same age of u as
well as the child w. Also the annotation of the edges is adjusted to reflect the same
flow of genetic material from u to each of w.

Based on this, we applied the following algorithm to construct mdARGs from
the COSI results in the following steps. (1) Remove the coalescent nodes that are
not t-coalescent, using the node-removal procedure. See Fig. 14.1d for an example.
Since a coalescent node could also be a recombination node, it is possible that such
a node is additionally not t-coalescent. In that case, the node continues to belong
to the minimal descriptor. (2) The last step is applied till it is no longer applicable.
(3) The chain nodes are removed.

Figure 14.2 provides an example, on a G given by COSI, of the above procedure.
In particular, given the ARG in Fig. 14.2(a), the node D is not t-coalescent node
and then it is removed producing Fig. 14.2(b). Finally, in Figs. 14.2(c)–(d) step 3 is
performed removing the nodes E and B.

316 D.E. Platt et al.

Fig. 14.1d Removing the
marked nodes to obtain a
minimal descriptor G′. At
each node the nonmixing
segment corresponding to the
embedded tree is are shown
separately in
Figs. 14.1b–14.1c

Let the resulting graph be G′, which is an mdARG. Let N be the number of
nodes in G and Ñ the number of nodes in G′. Then, f ≤ Ñ/N .

14.3 Results and Discussion

Given the genetic landscape of some extant samples, its underlying ARG provides a
plausible explanation of the observation, since it is the annotated topological struc-
ture that captures the total genetic history that is relevant to the extant samples.
Since the specific ARGs reflect specific histories, we explored multiple replicates
to characterize the ensemble of histories consistent with the population, ecological,
and demographic parameters.

COSI includes population specific parameters in its simulation of African,
African–American, European, and Asian populations. Figures 14.3a, 14.3b and
14.3c show that “history”, N , measured across specific epochs, identifies distinct

Fig. 14.2 Steps reducing ARG to resolvable nodes in a typical COSI output

14 Genetic History of Populations: Limits to Inference 317

Fig. 14.3a Nd for sequence lengths of 150,000, with time depth back to 25,000 generations, and
epoch lengths of 200 generations

differences between the COSI simulated Africans and Afro-Americans in compar-
ison with Europeans and Asians. Specifically, density Nd shows significant im-
pacts consistent with the out-of-Africa event for Europeans and Asians reflect-
ing the migration bottleneck, compared with Africans. While the Africans do not
show a founder-effect spike, the admixed Afro-American populations do reflect
the spike. Subsequent event counts also seem to reflect post-Glacial expansions
and the Neolithic Revolution for out-of-Africa populations. Climatic impacts ap-
pear also to be reflected in African populations as well given post-glacial moist-
ening and expansions. In this respect, Nd mirrors diversity and genetic depth, as
expected. The recent increase in effective population has had almost no impact on
diversity since little time to accumulate new mutations has occurred in the modern
era.

318 D.E. Platt et al.

Fig. 14.3b Ñ for sequence lengths of 150,000, with time depth back to 25,000 generations, and
epoch lengths of 200 generations

The observable density fd = Ñd/Nd shows very different histories for African
genetics compared with out-of-Africa populations. For African populations, the
recoverable density fd appears to decrease with increasing depth, suggesting in-
tervening coalescence events gradually destroy recoverable recombination events,
as expected. Interestingly, for out-of-Africa populations, the impact of the out-
of-Africa expansion genetic bottleneck appears to mark a transition where prior
information shows a highly stochastic regime such that the chances that a re-
combination survived without being impacted by coalescence is essentially ran-
dom. A similar signal appears for African populations prior to the initiation of
exponential growth among African populations, where the effective population
was also quite small. Subsequent to the out-of-Africa expansion, the small ef-
fective population sizes in isolated glacial-period populations appears to have

14 Genetic History of Populations: Limits to Inference 319

Fig. 14.3c fd for sequence lengths of 150,000, with time depth back to 25,000 generations, and
epoch lengths of 200 generations

been marked by increasing fractions of drift-driven loss of recombination event
information. Post-glacial expansions continued the process and isolation be-
tween expanding population groups. Overall, lower effective population sizes
increases the probability of drift, which appears to be associated with driving
higher fd ’s.

Figure 14.4 shows that increasing sequence length actually seems to decrease
the fraction f of determinable recombinations. This might be expected since, as
the number of segments increases, the possibility of more coalescence events de-
stroying information between segments that mark the recombinations also increases.
Further, it indicates that increasing mutation rates increases f , which suggests that
more SNPs marking edges between recombination events and coalescence events

320 D.E. Platt et al.

Fig. 14.4 Fraction f of resolvable genetic history averaged over multiple COSI history instances
as a function of (a) sequence length, (b) sample size, and (c) recombination rate

provides distinguishing features reducing losses of recombination event informa-
tion through drift. Lastly, increases in recombination rates relative to SNP mu-
tation rates provides more opportunities for drift related losses of reconstructable
events.

Figures 14.5 show, for each demography, the impacts of numbers of base pairs
(a–c), sample size (d–f), and recombination rate (g–i), given increasing mutation
rates from left to right. Variations over multiple runs have been captured, with 95 %
confidence intervals (bars), 50 % confidence intervals (boxes), and medians. As
such, these represent the range of variations among different simulated histories
given population parameters modeling demographic and environmental parameters
that impacted the different demographies.

The means plotted with their standard deviations (Figs. 14.3a–14.3c) do clearly
show distinct events revealed across histories, allowing for the possibility of drawing
conclusions about population parameters, and for comparative analysis of impacts
of ecological changes by comparing extant trends in modern populations.

We observe that the mutation rate does not influence f significantly. Hence, we
use a fixed mutation rate of 1.5 × 10−8 bp/gen in the figures. Even though the
ARG is not a tree, the density (i.e, number of nodes per epoch) of the relevant ge-
netic events decreases approximately exponentially with depth following Kingman
coalescence. Also, the shape of the profiles for the different demographies is inde-
pendent of the four classes of parameters.

With an increase in sample size averaged over an ensemble of histories, f grad-
ually increases but stabilizes around f = 0.65, suggesting that, on average for these
demographies, at least about 35 % of the relevant genetic history is impenetrable.
However, the most surprising observation comes from the experiments with differ-
ent sample lengths. It turns out that f decreases with increasing sequence length.
We observe that, on average, the reconstructable history of a segment s is actually
smaller than the sum of the reconstructable histories of the subsegments of s. This is
observed in each of the demographies in isolation, as well as when the demographies
are combined into a single universal population.

14 Genetic History of Populations: Limits to Inference 321

Fig. 14.5 For columns identified by mutation rates 0.7 × 10−8, 1.5 × 10−8, and 3 × 10−8 per
generation, plots of f vs. sequence length: (a), (b), and (c), plots of f vs. sample size: (d), (e), and
(f), and plots of f vs. recombination rates: (g), (h), and (i). f is displayed in whisker plots, showing
median, 50 % confidence interval, and extreme range= 1.5 the interquartile range. Outliers beyond
the range limit are marked individually

14.4 Conclusions and Future Directions

Reconstructability of common genetic history is a fundamental problem of signif-
icant curiosity in the study of populations. While the population evolution models
mature and the algorithms get more sophisticated, it becomes important to identify
what fraction of the common and relevant genetic history of populations continues
to be undeterminable events depends on edges lost to drift, there are no surviving
samples against which even variance or other measures would show the existence of
those events. They are entirely invisible in the extant record. However, without that
information, estimation of how many of these events have left a legacy of genetic
diversity is impossible to construct.

We present a framework that enables such an exploration. This is based on the
random topological structure, the ARG and a characteristic derived from the gen-
erating ARG, for the continental populations. This process does not directly take
into account migratory events, bottlenecks or effective population sizes, suggesting

322 D.E. Platt et al.

that these events affect the ARG in a manner that is reflected in the history and
estimability density.

We built the measure upon a method-independent structure called the minimal
descriptor. This was applied to different demographics in a simulation setting. The
most surprising observation was that the sum of the reconstructible history of each of
the chromosomal segments s1, s2, . . . , sm, is indeed larger than the reconstructible
history of the single segment composed of these segments. This appears to be a
universal property, holding in all the demographies tested. Also, irrespective of the
sample size, we observe that at least one-third of the population genetic history is
impenetrable, across all demographies.

We also note that the reconstructable history is generally sufficient to resolve the
genetic signatures of demographic, ecological, and climatic events that dominated
the history of the demographics, and they are adequate for comparison between
specific histories of different populations and demographies.

The framework also opens up possible new directions of investigation. Assume
that the characteristics of a population can be derived, say from the linkage dise-
quilibrium landscape and other characteristics of observed extant individuals. Then,
can such a generator be used to construct power analysis for study design identi-
fying minimum numbers of samples and sequence lengths required to definitively
resolve hypotheses.

14.4.1 Author’s Contributions

DP, FU, and MP carried out the experiments and the analysis. LP designed the study.
LP, DP, and FU wrote the paper.

References

1. Griffiths, R.C., Marjoram, P.: An ancestral recombinations graph. In: Donnelly, P., Tavare, S.
(eds.) Progress in Population Genetics and Human. IMA Vols in Mathematics and Its Appli-
cations, vol. 87, pp. 257–270 (1997)

2. Hammer, M.F., Zegura, S.L.: The human y chromosome haplogroup tree: nomenclature and
phylogeography of its major divisions. Annu. Rev. Anthropol. 31, 303–321 (2002)

3. Javed, A., Pybus, M., Melè, M., Utro, F., Bertranpetit, J., Calafell, F., Parida, L.: Iris: construc-
tion of arg network at genomic scales. Bioinformatics 27, 2448–2450 (2011)

4. Kong, A., Gudbjartsson, D., Sainz, J., Jonsdottir, G., Gudjonsson, S., Richardsson, B., Sig-
urdardottir, S., Barnard, J., Hallbeck, B., Masson, G., Shlien, A., Palsson, S., Frigge, M.,
Thorgeirsson, T., Gulcher, J., Stefansson, K.: A high-resolution recombination map of the
human genome. Nat. Genet. 31, 241–247 (2002)

5. Li, H., Durbin, R.: Inference of human population history from individual whole-genome
sequences. Nature 475, 493–496 (2011)

6. McVean, G., Myers, S., Hunt, S., Deloukas, P., Bentley, D., Donnelly, P.: The fine-scale struc-
ture of recombination rate variation in the human genome. Science 304, 581–584 (2004)

14 Genetic History of Populations: Limits to Inference 323

7. Parida, L.: Graph model of coalescence with recombinations. In: Heath, L., Ramakrishnan, N.
(eds.) Problem Solving Handbook in Computational Biology and Bioinformatics, pp. 85–100
(2010)

8. Parida, L.: Nonredundant representation of ancestral recombinations graphs. Methods Mol.
Biol. 856 (2012)

9. Parida, L., Palamara, P., Javed, A.: A minimal descriptor of an ancestral recombinations graph.
BMC Bioinform. 12, S6 (2011)

10. Pickrell, J., Coop, G., Novembre, J., Kudaravalli, S., Li, J., Absher, D., Srinivasan, B., Barsh,
G., Myers, R., Feldman, M., Pritchard, J.: Signals of recent positive selection in a worldwide
sample of human populations. Genome Res. 19, 826–837 (2009)

11. Sabeti, P., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne,
E., Mccarroll, S., Gaudet, R., Schaffner, S., Lander, E., Consortium, T.I.H.: Genome-wide
detection and characterization of positive selection in human populations. Nature 449, 913–
918 (2007)

12. Sachidanandam, R., Weissman, D., Schmidt, S., Kakol, J., Stein, L., Marth, G., Sherry, S.,
Mullikin, J., Mortimore, B., Willey, D., Hunt, S., Cole, C., Coggill, P., Rice, C., Ning, Z.,
Rogers, J., Bentley, D., Kwok, P., Mardis, E., Yeh, R., Schultz, B., Cook, L., Davenport,
R., Dante, M., Fulton, L., Hillier, L., Waterston, R., McPherson, J., Gilman, B., Schaffner,
S., Van Etten, W., Reich, D., Higgins, J., Daly, M., Blumenstiel, B., Baldwin, J., Stange-
Thomann, N., Zody, M., Linton, L., Lander, E., Altshuler, D., International SNP Map Working
Group: A map of human genome sequence variation containing 1.42 million single nucleotide
polymorphisms. Nature 409, 928–933 (2001)

13. Schaffner, S., Foo, C., Gabriel, S., Reich, D., Daly, M., Altshuler, D.: Calibrating a coalescent
simulation of human genome sequence variation. Genome Res. 15, 1576–1583 (2005)

14. Utro, F., Pybus, M., Parida, L.: Sum of parts is greater than the whole: inference of common
genetic history of populations. BMC Genomics 14, S10 (2013)

Index

A
Adjacency, 19–23, 25, 52, 55, 64–66, 68,

72–76, 78, 150, 151, 153, 154, 157,
161–163, 165, 189, 192–200, 207–209,
213–228, 230–232, 234–236, 238–240,
242, 247–251, 254, 288–291, 293, 295,
297–299, 301, 303

Algebra, 11, 79
Algebraic, vi, 64, 76, 207–209, 213–215,

218–222, 227–231, 233–242
Algorithm, vii, 3–9, 11–14, 25, 26, 30, 32,

35–41, 49, 52, 53, 55, 56, 58, 64, 75,
92, 94, 110, 111, 117, 130, 147–150,
152, 157–160, 180, 184, 185, 187–192,
195, 196, 198–203, 212, 248, 250, 252,
253, 255, 256, 262, 263, 267, 278, 280,
288, 291, 297, 299, 309, 312, 315, 321

Alignment, v, 4, 5, 7, 29, 33, 36, 50, 56,
85–95, 102–104, 107–123, 125–127,
129, 131, 148, 159, 163, 176, 262, 266,
275, 295, 302, 303

Ancestor, v, 29, 30, 32, 40–42, 51, 90, 151,
160, 185, 248, 253, 254, 257, 264, 278,
301, 310

Ancestral genome, 29, 41, 42, 48, 52, 55, 56,
151, 158, 159, 249, 250, 252, 255, 270,
289, 291, 299–301, 303

Animal, 49
Approximation, 6, 112, 153, 183–192, 195,

199, 200, 202, 203, 212

B
Bacteria, 133, 140, 156, 212
Bayesian, 25, 26, 97, 98, 103, 122, 130, 148,

149, 160, 165, 262
Bias, v, 148, 149, 162, 163, 248, 253,

255–257, 263, 274–280

Bioinformatics, 3, 63, 183, 184
Blast, v, vii, 3, 6, 7, 14, 123
Branch-and-bound, 184, 185
Breakage, 167, 169
Breakpoint, 38, 39, 42, 52, 53, 58, 64, 72, 76,

78, 79, 147, 151–153, 155, 159, 165,
184–189, 191–199, 201, 203, 208, 215,
216, 230–234, 236, 240, 248, 250, 251,
290, 291, 298

C
Chromosome, 42, 47–49, 54, 56, 65, 67–77,

79, 80, 147, 150, 151, 154, 156–158,
162, 186, 190, 207–216, 220, 222–226,
228, 231, 236–241, 248–251, 253, 255,
262, 289, 296, 297, 301, 310, 312

Circular, 42, 49, 55, 65, 67–73, 75–77, 148,
150, 151, 157, 158, 207, 208, 210, 211,
213–222, 224, 228, 229, 231, 234–239,
249, 250, 289, 301

Coalescent, 24, 25, 310, 314, 315
Comparative genomics, vi, vii, 50, 148, 183,

190, 210, 287, 289, 290, 302, 303
Contig, 249, 250, 255, 304
Convergence, 25, 99, 103, 105, 130, 149, 160
Correction, 42, 50, 56, 57, 147–149, 151, 261,

262, 278–280
Counting, 9, 42, 224, 226
Cycle, 55, 65, 66, 72, 75–78, 80, 105, 128,

153, 154, 197, 207, 209, 210, 213, 214,
217–238, 240, 248, 297–299

D
DCJ, v, vi, 63, 64, 66–68, 70–72, 74–76,

78–80, 149, 152–155, 157, 158, 160,
162, 183, 192, 207–209, 213–215,
217–230, 236–242, 297, 298,
303

C. Chauve et al. (eds.), Models and Algorithms for Genome Evolution,
Computational Biology 19, DOI 10.1007/978-1-4471-5298-9,
© Springer-Verlag London 2013

325

http://dx.doi.org/10.1007/978-1-4471-5298-9

326 Index

Deletion, v, vi, 5, 10, 33, 47, 48, 51, 54, 108,
151–156, 158, 173, 174, 213, 247–249,
251–253, 255–257, 270, 287, 292, 295,
296, 299

Differential equation, 22, 24
Disease, 174, 175, 179
Distance, v, vi, viii, 31–33, 35, 37, 39–42, 52,

53, 63–66, 69, 72–80, 87, 93, 96–98,
100–107, 111–113, 118, 121, 122,
147–149, 151–155, 157–161, 163, 165,
176, 183–190, 192, 203, 207–209,
211–215, 217–222, 225–231, 233–237,
239–242, 250, 251, 262, 274, 275, 278,
288, 289, 291, 296–298, 300, 303,
304

Divergence, 19, 174, 250, 255, 270
DNA, 5, 33, 49, 64, 66, 68, 71, 87–89, 95–97,

99, 108, 130, 150, 152, 175, 186, 248,
252, 275, 289

Double-Cut-and-Join, 63, 66, 298
Duplication, vi, 42, 47–58, 88, 89, 121, 122,

127, 129, 150–156, 158, 165, 183, 185,
191, 213, 241, 247, 248, 251, 261–264,
266–268, 270–274, 276, 277, 280, 295,
310, 313

Dynamic programming, vii, 8, 12, 13, 29, 33,
35, 42, 43, 111, 112

E
Ecological, 320
Enumerate, 75, 105, 226, 311
Equation, 22–24, 72–74, 77–80, 239
Error, vi, 23, 26, 56, 57, 86, 89–91, 105, 106,

113–115, 118, 119, 125, 129, 160, 162,
163, 165, 184, 261–263, 271, 272, 274,
288, 294, 295, 302

Eukaryote, 42, 55, 156, 158
Evaluation, 86, 89, 90, 94, 99, 104, 114, 129,

262
Evolution, v, vii, viii, 29, 30, 32, 33, 40–42,

47–55, 58, 69, 85, 86, 90, 91, 93,
95–97, 99, 100, 103, 106, 107, 110,
116, 117, 121, 122, 125–131, 147–152,
155, 156, 165, 173, 174, 183, 185, 241,
247, 248, 257, 261, 262, 266, 268, 270,
271, 274, 275, 278, 292, 294, 299, 309,
321

Exemplar, 48, 50, 52, 53, 184–190, 192, 203,
291

Exon, 174, 176

F
Family, 18, 41, 42, 49–53, 55, 56, 74, 76, 89,

92–94, 97, 150, 162, 176, 184, 186,

261, 263, 264, 266–268, 271–273, 276,
287–289, 291, 292, 294–297, 299–304

Fission, 48, 67, 68, 71, 74–76, 127, 151, 153,
156–158, 207, 208, 213, 216, 217, 223,
224, 230, 237–242, 296

Function, 3, 6, 8, 9, 11, 13, 14, 24, 30–40, 42,
56, 85, 89, 90, 92, 93, 99, 107, 111,
112, 129, 130, 148, 155, 174–176, 180,
187, 190, 209–212, 258, 264, 268, 271,
274–276, 280, 287, 288, 293, 294,
298–301, 320

Fusion, 48, 68, 71, 73–76, 127, 151, 153, 156,
157, 207, 208, 213, 221, 237–242, 296

G
Gain, 23, 32, 35, 38–42, 47, 48, 55
Gap, 86, 92, 107–109, 112–114, 116, 118, 120,

121, 126, 250, 290, 294
Gene, v–vii, 18, 21, 25, 32, 41, 42, 47–58, 64,

65, 67, 68, 70, 86, 88, 89, 92, 93, 97,
110, 121, 122, 128–131, 149–156, 158,
161–163, 174, 176, 180, 183–200, 208,
210, 211, 213, 215, 216, 218–224, 226,
229, 230, 232–236, 239, 240, 247–252,
254, 257, 261–264, 266–268, 270–280,
287–304, 310

Gene cluster, 54, 289
Gene order, vi, vii, 42, 47–55, 68, 150, 163,

208, 247–251, 257, 263, 268, 273, 274,
278, 287, 288, 290–292, 294, 295,
299–303

Gene tree, vi, 25, 47–58, 86, 88, 89, 122,
128–131, 261–264, 266–268, 271–280

Genome, v–viii, 5, 29, 40–43, 47–56, 63–80,
88, 121, 122, 127, 147–156, 158, 159,
161–166, 173–175, 183–192, 194,
207–226, 228–233, 235–239, 241, 242,
247–258, 261, 263, 264, 266, 267,
270–273, 287–304, 309, 312, 313

Geography, 17, 18, 25, 26
Graph, vi, 18–23, 25, 26, 52, 53, 55, 57,

64–66, 72–76, 78, 105, 106, 128,
152–154, 189–191, 197, 207–210, 213,
215–225, 227–240, 242, 249, 257,
289–294, 297–299, 302–304, 310, 311,
313, 314, 316

H
Hardness, 54, 187, 188, 203
Heuristic, vii, 3, 4, 6, 14, 40, 53, 54, 101, 104,

122, 152, 153, 155, 158, 159, 166, 184,
190, 279, 291, 294

History, 3, 17, 23, 26, 30, 42, 51, 54, 58, 86,
88, 110, 122, 128, 129, 148, 160, 183,

Index 327

208, 248, 250, 261, 262, 264, 266–268,
270, 277, 279, 280, 309–312, 316,
320–322

Homolog, 42
Human, v–vii, 5, 29, 71, 173–175, 179, 263,

273, 277, 309, 311–313

I
Indel, 107, 108, 111, 113, 127, 173–180
Insertion, v, vi, 5, 10, 33, 47–49, 85, 108,

151–156, 158, 165, 173, 201, 213, 267,
270, 287, 295, 296, 299

Interval, 39, 57, 150, 156, 185, 186, 189, 190,
203, 248, 252–255, 258, 266, 289,
294–297, 314, 321

Intron, 42
Inversion, 48, 54, 67–69, 71, 73, 79, 111, 127,

147–160, 212, 213, 216, 218, 221, 236,
238, 247–250, 253, 255, 296

L
Likelihood, v, 26, 30, 33, 43, 52, 56, 87, 88,

90, 92, 93, 95, 97, 98, 101–104, 106,
108–111, 114, 116–118, 121–123,
125–127, 130, 148, 149, 151, 152, 154,
159–161, 163, 165, 262, 274, 275, 279

Linear, 13, 32, 33, 37–39, 42, 49, 52, 55, 64,
65, 68–72, 74–76, 79, 80, 150, 151,
153, 154, 156–158, 160, 162, 184, 186,
191, 202, 203, 207–209, 211–216,
222–225, 230, 236–239, 241, 252, 280,
289, 291, 293, 297, 299, 301, 302

Loss, 22, 39–42, 49, 88, 89, 129, 151, 247,
248, 251, 264, 266, 267, 270, 272, 275,
280, 289, 319

M
Mammal, 29, 56, 248
Markov chain, 22, 155, 160
Markov model, 85, 86, 92, 95–98, 101, 107,

117, 120, 122, 126, 127, 129, 173, 176
Matching, 3, 11, 52, 53, 55, 185, 193, 202,

247, 249, 290–296, 298–302, 312, 313
MCMC, 97, 98, 103, 130
Median, 52, 53, 131, 147, 149, 152, 159, 160,

165, 179, 301, 313, 320, 321
Method, v, vi, 4, 7, 14, 18, 20, 24–27, 29, 30,

33, 36, 38, 42, 47–50, 52–58, 63,
85–95, 97–123, 125–131, 147–149,
152, 159–161, 163, 165, 174–176, 180,
184–186, 190, 196, 207–209, 212, 214,
218, 220, 223, 224, 232, 236–239, 241,
242, 247–249, 254, 262–264, 268,

273–275, 277–279, 287–290, 292, 294,
296, 297, 300–304, 311, 313, 322

Model, vii, viii, 17–26, 32, 41, 43, 47–50,
53–55, 58, 64–66, 69, 71, 76, 80, 85,
86, 91–93, 95–109, 111, 114–122,
125–131, 147, 149, 150, 153–160, 162,
163, 165, 166, 173, 176, 178, 186, 189,
203, 208, 211–213, 215, 247, 255, 258,
262, 274, 275, 278, 288, 291, 294, 296,
297, 300–303, 312, 321

N
Neighbor joining, 93, 98, 100, 101, 103–106,

120, 122, 127
NJ, 93, 100, 106, 107, 125, 262
NP-complete, 184, 185, 187, 188, 191, 192,

202

O
Ohnolog, 51, 53
Open problem, 14, 25, 48, 127, 183, 185, 187,

189, 191, 202, 203, 276, 278
Ortholog, 52, 184, 291, 292

P
Paralog, 249, 292
Parsimony, 29–43, 52, 55, 87, 97, 98, 101, 103,

104, 106, 108, 111–114, 147–149, 152,
158–161, 166, 262, 263, 267, 274, 275,
300, 301

Path, vii, 12, 30, 55, 65, 66, 72, 75, 76, 78–80,
96, 105, 151, 154, 160, 207, 209, 218,
222–228, 230–234, 236–238, 240–242,
271, 272, 297, 298, 300, 301

Pattern, 3, 18, 19, 42, 98, 123, 174, 247, 251,
314

Permutation, 42, 49, 50, 52, 53, 55, 76, 150,
152, 153, 156, 161, 183, 185, 192,
207–214, 218–222, 227, 228, 230–236,
240, 277, 294, 300

Phylogeny, v, vi, 17, 18, 29–32, 39, 41, 47, 54,
85–91, 93–98, 100–102, 107–111, 117,
121, 122, 125–127, 129–131, 148, 151,
152, 156, 163, 164, 166, 261, 264, 266,
279, 287, 292, 299, 302, 303, 310

Plant, vi, 148, 248, 249, 251, 252
Polynomial, 21, 42, 96, 99, 101, 105, 106, 112,

122, 152, 183, 187–192, 196, 202, 203,
278, 288, 296

Population, vi, 18–23, 25, 26, 32, 36, 89, 129,
148, 173, 174, 179, 275, 309–314,
316–322

Prefix, 5, 8, 9, 13, 34

328 Index

Probability, 5, 8, 11, 21, 22, 24–26, 56, 96, 98,
99, 101, 103–106, 148, 156, 162, 176,
178, 255, 270, 319

Prokaryote, 158, 294
Protein, vii, 6, 7, 33, 49, 85, 89–92, 94, 95, 97,

108, 120, 121, 126, 129, 130, 152, 173,
174, 176–178, 180, 274, 275

R
Random, 5, 6, 8, 11, 18–23, 25, 95, 96, 99,

103, 104, 120, 129, 162, 178, 214, 251,
253, 263, 277, 278, 311, 318, 321

Rearrangement, v, vi, 42, 47–50, 52–55, 58,
63–66, 68, 69, 71, 76, 77, 79, 80, 121,
122, 127, 147–152, 154–163, 165, 166,
185, 186, 208–214, 217, 218, 230, 238,
241, 247–255, 270, 287–289, 295–297,
299–302

Reconciliation, 47, 49–51, 53, 54, 56, 57,
261–264, 266, 267, 276, 278–280

RNA, 29, 33, 36, 87–89, 130, 173

S
Sankoff, v–viii, 3, 17–24, 26, 27, 29, 30, 32,

33, 35–38, 40–43, 47–50, 52–55, 58,
63, 79, 112, 131, 147–150, 152, 156,
158–162, 166, 183–186, 190–192, 208,
242, 247, 268, 288, 291

Scaffold, 183–185, 191–196, 199, 200
Sequence, vii, 3–5, 7, 9, 10, 21, 25, 26, 29, 32,

33, 36, 41–43, 49, 52, 54, 56, 57, 65,
66, 85–89, 91–113, 116–118, 120–124,
126, 127, 129–131, 147–152, 156,
159–163, 165, 166, 174–179, 184–188,
190–196, 199, 200, 208, 261–263,
266–268, 274, 275, 277–280, 288–291,
294, 302, 304, 309–314, 317–322

Similarity, 7, 22, 23, 25, 89, 129, 178, 185,
189, 190, 192, 236, 237, 262, 267, 268,
270–272, 274, 278, 288–295, 297, 298,
302–304

Simulation, 100, 101, 103, 108, 122, 125, 126,
129, 130, 247, 248, 255, 256, 258, 275,
309, 312, 313, 316, 322

Single-Cut-and-Join, 42, 78
SNP, 174, 175, 320
Splicing, 42, 180
String, 3–14, 49, 50, 52, 53, 55, 111, 130, 192,

193, 195–200, 264
Substitution, 5, 10, 47, 49, 90, 95–97, 99, 108,

109, 111, 113, 116–118, 121, 263, 275,
287

Suffix, 4, 5, 8, 9, 12, 13
Synteny, 47, 48, 50, 53–58, 147, 152, 247, 251,

262, 293, 302

T
Template, 86, 87, 92–95
Transposition, 42, 48, 77, 78, 127, 149–151,

153, 155–158, 183, 189, 210, 212, 214,
238, 241, 247

Tree, vi, vii, 4, 5, 12, 13, 17, 19, 21, 25, 26,
29–33, 35, 39, 40, 42, 47–58, 85–118,
120–131, 148, 149, 152, 156, 159–163,
165, 175, 176, 183, 261–264, 266–268,
271–280, 288, 297, 299–302, 310, 311,
314–316, 320

V
Validation, 255, 274, 280

W
Whole genome duplication, 247, 248, 251, 295

	Models and Algorithms for Genome Evolution
	Foreword
	Models and Algorithms for Genome Evolution-Preface
	References

	Contents
	Contributors

	Part I: Emergence of Standard Algorithms
	Chapter 1: What's Behind Blast
	1.1 The Meeting
	1.2 Filters and Neighborhoods
	1.3 Version 0.1
	1.4 BLAST
	1.5 Doubling Extension of logs n Seeds
	1.6 Neighborhood Size
	1.7 Generating Condensed Neighborhoods
	1.8 Total Running Time
	1.9 Final Remarks and Open Problems
	References

	Chapter 2: Forty Years of Model-Based Phylogeography
	2.1 Introduction
	2.2 Modeling Geography
	2.2.1 Background
	2.2.2 A Joint Model for Phylogeny and Geography
	2.2.3 Properties of Splitting

	2.3 Modeling Genetics
	2.3.1 The Model
	2.3.2 Dynamic Similarity
	2.3.3 Multiway Similarities

	2.4 Alternative Methods for Analysis
	2.4.1 The Structured Coalescent
	2.4.2 Stochastic Diffusion Methods
	2.4.3 Approximate Bayesian Computation

	2.5 Future Work
	References

	Chapter 3: How to Infer Ancestral Genome Features by Parsimony: Dynamic Programming over an Evolutionary Tree
	3.1 Introduction
	3.2 Ancestral Reconstruction by Parsimony
	3.2.1 Parsimony Labeling
	General Parsimony Labeling Problem

	3.2.2 A Quick Tour of Parsimony Variants
	3.2.2.1 Directed Evolution
	3.2.2.2 Numerical Labels
	3.2.2.3 Molecular Sequences

	3.2.3 The Sankoff-Rousseau Technique
	3.2.3.1 Few Possible Labels
	3.2.3.2 Molecular Sequences
	3.2.3.3 Squared Parsimony
	3.2.3.4 Wagner (Linear) Parsimony
	3.2.3.5 Multiple Reconstructions

	3.3 Applications and Extensions
	3.3.1 Algorithmic Extensions
	Tree-Additive Cost Functions
	Parsimony on a Phylogenetic Network
	Gain and Loss Edges

	3.3.2 Applications
	Phylogenetic Footprinting
	Gene Family Evolution
	Splice Sites and Intron Length
	Gene Order

	3.4 Conclusion
	References

	Chapter 4: Duplication, Rearrangement and Reconciliation: A Follow-Up 13 Years Later
	4.1 Introduction
	4.2 Duplication, Rearrangement and Reconciliation
	Evolution of Species and Genes
	Reconciliation
	Gene Order and Genome Rearrangements
	Reconciliations and Rearrangements

	4.3 Gene Tree Reconciliations Inform Synteny Evolution
	4.3.1 Evolution of Gene Clusters with Global Models
	4.3.2 Evolution of Whole Genome with Adjacency Models

	4.4 Synteny Informs Gene Family Evolution
	Synteny as a Control
	Synteny as an Input Data for Gene Trees

	4.5 Towards and Integrated Model
	References

	Chapter 5: The Genesis of the DCJ Formula
	5.1 Introduction
	5.2 Rearrangement Operations and the Adjacency Graph
	5.3 An Illustrated Guide to the Double-Cut-and-Join Operation
	The Basic DCJ Operation
	A DCJ Within a Single Linear Chromosome
	A DCJ Between Two Linear Chromosomes
	Single Breaks and Lost Pieces

	5.4 Deriving the DCJ Formula
	The Simplest Circular Chromosomes
	Equality with One Circular Chromosome
	Equality with One Linear Chromosome
	Fusion/Fission of Linear Chromosomes
	A Simple Formula

	5.5 Proving the DCJ Formula
	5.6 Algebraic, Single-Cut and Breakpoint Distance Formulas
	5.6.1 The Algebraic Distance
	5.6.2 The Single-Cut-or-Join Distance
	5.6.3 The Single-Cut-and-Join Distance
	5.6.4 The Breakpoint Distance

	5.7 Conclusion
	References

	Part II: New Lights on Current Paradigms
	Chapter 6: Large-Scale Multiple Sequence Alignment and Phylogeny Estimation
	6.1 Introduction
	6.2 Two-Phase Alignment and Phylogeny Estimation
	6.2.1 Standard Phylogenomic Analysis Pipelines
	6.2.2 Multiple Sequence Alignment
	Introduction
	MSA Evaluation Criteria
	Benchmark Datasets
	Relative Performance of MSA Methods
	Progressive Aligners, and the Impact of Guide Trees
	Template-Based Methods
	Methods that Use Divide-and-Conquer on the Taxon Set
	Very Large-Scale Alignment

	6.2.3 Tree Estimation
	6.2.3.1 Stochastic Models of Sequence Evolution
	Protein Models
	More General Site Evolution Models

	6.2.3.2 Phylogeny Estimation Methods
	6.2.3.3 Statistical Performance Criteria
	Identiﬁability
	Statistical Consistency
	Sequence-Length Requirement

	6.2.3.4 Empirical Performance
	Distance-Based Methods
	Maximum Parsimony
	Maximum Likelihood
	Bayesian MCMC Methods
	Comparisons Between Methods
	Heuristics for Exploring Tree Space

	6.2.3.5 DCMNJ: A Fast Converging Method with Good Empirical Performance
	Phase 1 of DCMNJ
	Phase 2

	6.2.3.6 Gap Treatment in Phylogeny Estimation Methods
	6.2.3.7 Theoretical Guarantees for Standard Phylogeny Estimation Methods on Alignments with Gaps

	6.2.4 Handling Fragmentary Data: Phylogenetic Placement

	6.3 Co-estimation Methods
	6.3.1 Treelength, or "Direct Optimization"
	6.3.1.1 POY
	6.3.1.2 BeeTLe: Better TreeLength
	6.3.1.3 Summary Regarding the Treelength Problem

	6.3.2 Statistical Co-estimation Methods
	6.3.3 Other Co-estimation Methods
	6.3.3.1 SATé
	SATé-II

	6.3.3.2 SATCHMO-JS

	6.4 Tree Estimation Without Full Alignments
	6.4.1 Alignment-Free Estimation
	Potential Beneﬁts of Alignment-Free Estimation
	History of Alignment-Free Estimation
	Comparison to Two-Phase Methods

	6.4.2 DACTAL

	6.5 Lessons Learned and Future Directions
	6.5.1 Basic Observations
	6.5.2 Future Research Directions
	6.5.2.1 Theoretical Performance of Phylogeny Estimation Methods Under Long Indel Models
	6.5.2.2 Sequence-Length Requirements for Phylogeny Estimation
	6.5.2.3 Genome Rearrangements and Duplications
	6.5.2.4 Evolutionary Networks
	6.5.2.5 Incorporating Biological Knowledge into Alignment and Phylogeny Estimation

	6.6 Conclusions
	References

	Chapter 7: Rearrangements in Phylogenetic Inference: Compare, Model, or Encode?
	7.1 Introduction
	7.2 Background
	7.2.1 Genome Representations
	7.2.2 Evolutionary Events
	7.2.3 Distance Computation and Pairwise Genome Comparison
	7.2.4 Phylogenetic Reconstruction and Ancestral Genome Estimation

	7.3 Comparing: Distance Computations
	7.3.1 Inversion Distance
	7.3.2 DCJ Distance
	7.3.3 Estimating True Distances

	7.4 Modeling Genomic Evolution
	7.4.1 Inversions
	7.4.2 The Generalized Nadeau-Taylor Model
	7.4.3 The HP model
	7.4.4 The DCJ Model
	7.4.5 Models for Rearrangements, Duplications, and Losses
	7.4.6 Inferring Phylogenies Using Models

	7.5 Encodings
	7.5.1 Parsimonious Methods
	7.5.2 Likelihood-Based Approaches

	7.6 Conclusions
	References

	Chapter 8: Status of Research on Insertion and Deletion Variations in the Human Population
	8.1 Indel Effects on Human Biology, Health, and Evolution
	Indel is the Second Most Common Type of Genetic Variation in Humans
	Indel Variants Have Profound Functional Impact on Human-Speciﬁc Evolution and Adaptation
	Indels May Hold the Key to Understanding Human Diseases [16]

	8.2 Current Research on Indel Variants
	The Lack of Specialized Database Resources for Indel Curation and Function Annotation
	The Lack of Computational Methods/Programs to Predict the Effect of Indel Variants

	8.3 The Hidden Markov Model-Based Scoring Method for Predicting Indel Effects
	8.4 Future Directions
	References

	Chapter 9: A Retrospective on Genomic Preprocessing for Comparative Genomics
	9.1 Introduction
	9.2 The Exemplar Breakpoint Distance and Related Problems
	9.2.1 Problem Deﬁnitions
	9.2.2 Algorithmic Foundations
	9.2.3 Hardness Results
	9.2.4 The Complement Problem-ENbS

	9.3 Maximal Strip Recovery and Its Complement
	9.4 Approximation for Scaffold Filling with Gene Duplications
	9.4.1 Preliminaries
	9.4.2 Approximation Algorithm for One-Sided SF-MNSA
	Searching the 1-Type-1 Strings
	Searching the 2-Type-1 Strings
	Inserting the Remaining Genes

	9.4.3 Analysis of the Approximation Algorithm
	A Lower Bound
	Description of the Main Algorithm

	9.4.4 Proof of the Approximation Factor

	9.5 Concluding Remarks and Open Problems
	References

	Chapter 10: The Emperor Has No Caps! A Comparison of DCJ and Algebraic Distances
	10.1 Introduction
	10.1.1 Permutations and the Genome Rearrangement Problem
	10.1.2 Genomes and the Chromosomal Notation
	10.1.3 Genome Rearrangement Operations and Models
	10.1.4 The Basic DCJ
	10.1.5 Algebraic Rearrangement Theory
	10.1.6 Linear Chromosomes and "Fictitious" Elements (Caps)

	10.2 Transformations Involving Circular Genomes
	10.2.1 The Master, Breakpoint and Adjacency Graphs
	10.2.2 Examples of Transformations in Circular Genomes
	10.2.2.1 An Inversion in a Circular from pi= (1, 2, 3) to sigma= (1, -2, 3)
	10.2.2.2 Circular Fission from pi= (1, 2, 3) to sigma= (1), (2, 3)

	10.2.3 How to Compute the DCJ Distance from the Master Graph
	10.2.4 Finding the Permutation Cycles from the Master Graph
	10.2.5 Computing the Algebraic Distance for Circular Genomes
	10.2.6 Comparing Methods for Circular Chromosomes and Proof

	10.3 General Transformations Using "Fictitious" Elements
	10.3.1 Examples of Transformations with Linear Chromosomes
	10.3.1.1 Linearization
	10.3.1.2 Fission of a Linear Genome

	10.3.2 The Original Closure Rule, Completing Paths with Caps and Nulls
	10.3.3 Understanding the DCJ Distance for General Transformations
	10.3.3.1 Distance Contribution from Cycles
	10.3.3.2 Distance Contribution from (Closed) Even Paths
	10.3.3.3 Distance Contributions from (Closed) Odd Paths
	10.3.3.4 Adding All Contributions from Cycles, Even and Odd Paths

	10.3.4 Algebraic Distance for Permutation Cycles Using Caps and Nulls
	10.3.5 Alternative Closure Scheme Bypassing Nulls
	10.3.6 DCJ vs. Algebraic Distances for Capped Genomes

	10.4 Genome Permutations by the Adjacency Algebraic Theory
	10.4.1 Component-Wise Decomposition of the Adjacency Graph
	10.4.2 The Breakpoint Graph and Permutation Cycles
	10.4.3 The Algebraic Distance for Paths
	10.4.3.1 Even Paths
	10.4.3.2 Odds Paths

	10.4.4 The Algebraic Distance for Cycles
	10.4.5 Total Algebraic Distance in the Adjacency Graph
	10.4.6 DCJ Distance vs. Algebraic Distance

	10.5 Weights, Operations, and Biology
	10.5.1 The Relative Weights of Operations
	10.5.2 Comparing Weights for DCJ vs. Algebraic Method
	10.5.3 Fact or Artifact: Fictitious Objects and Dummy Elements
	10.5.4 Fictitious Operations and the "Basic" DCJ
	10.5.5 Fictitious Operations and the Algebraic Approach
	10.5.6 Does the BMS- DCJ Do Away with Fictitious Operations?
	10.5.7 Biological Interpretation
	10.5.8 Implications and Concluding Remarks

	References

	Part III: Promising Directions
	Chapter 11: Fractionation, Rearrangement, Consolidation, Reconstruction
	11.1 Introduction
	11.2 Reconstruction
	11.3 Excess Adjacencies as a Measure of Rearrangement
	11.4 Whole Genome Duplication and Fractionation
	11.5 Consolidation
	11.6 Grape and Poplar
	11.7 Simulations
	11.8 Conclusions
	References

	Chapter 12: Error Detection and Correction of Gene Trees
	12.1 Introduction
	Gene Tree Inference
	Gene Tree Correction
	Error Detection

	12.2 Genomes, Trees, and Gene Family Histories
	12.2.1 Genomes
	12.2.2 Trees
	12.2.3 Histories
	12.2.4 Reconciliation
	12.2.5 Perspectives on Homology

	12.3 Gene Order Inconsistency
	12.3.1 Region Homology
	12.3.2 Homology Contradiction
	12.3.3 Region Overlapping
	12.3.4 Results

	12.4 Positive and Negative Selection Bias
	12.4.1 Detecting Functional Bias
	12.4.2 Formalizing the Functional Bias
	12.4.3 Results

	12.5 Gene Tree Correction
	Isorthology Respecting Histories

	12.6 Conclusion
	References

	Chapter 13: The Potential of Family-Free Genome Comparison
	13.1 Introduction
	13.2 Basic Deﬁnitions
	13.3 Detecting Conserved Structures
	13.3.1 Conserved Adjacencies
	Previous Work
	Family-Free Adjacencies
	Biological Interpretation
	Constructing a Partial k-Matching
	Rejection of Intermediate Matching Constraints

	13.3.2 Common Intervals

	13.4 Genome Rearrangements
	13.4.1 The Weighted Adjacency Graph
	13.4.2 The Weighted Double-Cut-and-Join Distance

	13.5 Ancestral Genome Reconstruction
	Phylogeny Aware Optimization
	Ancestral Genes
	Ancestral Gene Orders

	13.6 Discussion
	References

	Chapter 14: Genetic History of Populations: Limits to Inference
	14.1 Background
	14.2 Method
	14.3 Results and Discussion
	14.4 Conclusions and Future Directions
	14.4.1 Author's Contributions

	References

	Index

