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Foreword

The activities of the IFAC Technical Committee (TC) 5.2 on ‘‘Manufacturing
Modeling for Management and Control’’ (http://tc.ifac-control.org/5/2) are devo-
ted to promote the development of formal descriptive or prescriptive models of
manufacturing systems. IFAC TC 5.2 is composed of 66 members, leading sci-
entists in this domain from 23 countries. There are three working groups: ‘‘Supply
network engineering’’, ‘‘Advanced multi-criteria applications in manufacturing
and logistics’’, and ‘‘Design and modeling of flexible and reconfigurable manu-
facturing systems’’. The committee organizes recurrently its conference MIM and
co-organizes several other conferences, workshops, special sessions, special issues
of refereed journals, etc. The activities of the committee are rich and very fruitful.

The book ‘‘Applications of Multi-Criteria and Game Theory Approaches’’ is a
result of a long work of TC and scientific discussions conducted by Prof. Lyes
Benyoucef, Dr. Jean-Claude Hennet and Prof. Manoj Kumar Tiwari, Co-Chairs of
the TC working groups. It deals with the major current issues of manufacturing
management and control: How to handle the increasing complexity of logistic
networks? How to design logistic systems taking into account a great number of
possible configurations? How to search for trade-off between multiple conflicting
criteria? How to coordinate different activities in a distributed and heterogeneous
environment? Extremely interesting approaches based on multi-criteria optimi-
zation and game theory are suggested in this outstanding book.

Prof. Alexandre Dolgui
Chair of the IFAC Technical Committee 5.2
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Preface

The new competition is a major upheaval affecting every aspect of how enterprises
organize and operate. The evolution from single enterprise with a high vertical
range of activities toward enterprise networks offers new business opportunities
especially for small and medium enterprises (SMEs) that are usually more flexible
than larger companies. However, in order to make a successful commitment to an
enterprise network, expected performance and benefits have to be carefully
evaluated and balanced for a company to become a partner of the right network
and for the right tasks. All these issues have to be taken into account in order to
find an efficient, flexible, and sustainable solution.

In the area of manufacturing and logistics, supply chain networks involve
transformation processes from raw materials to finished products, through several
stages of manufacturing, assembly, distribution, and delivery to customers. They
also rely on information and monetary flows in addition to material flows. Each
stage of material transformation or distribution may involve inputs coming from
several suppliers and outputs going to several intermediate customers. Further-
more, each stage may involve information and material flows connected with some
intermediate and distant stages.

The underlying logistic networks are complex and their analysis requires a
carefully defined approach. As technological complexity has increased, logistic
networks have become more dynamic and complex to handle. Consequently, there
is a strong risk for practitioners and managers to get lost in details and spend a
large amount of effort for analyzing the logistic network without meaningful
results. Another issue coming along with the design and management of logistic
networks is the great variety of possible policies and alternatives for each of these
problems (design, management, and operations), and the need to assess complex
trade-offs between conflicting criteria such as cost, quality, delivery, flexibility,
robustness, etc. Moreover, world class supply chains typically involve different
enterprises sharing common information and logistic networks. Due to the dis-
tributed nature of the network and the decisional autonomy of heterogeneous
decision centers, organization of tasks and activities raises specific problems of
coordination and integration. Enterprises can be seen as players in a game defined
by a common goal, but separate constraints and conflicting objectives.

Multi-criteria approaches have been put to use in many segments of manu-
facturing and logistics. They have taken a prominent role to integrate people,
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information, and products in manufacturing, warehousing, and distribution of
goods and services. Decisions involving customer profiling, new product devel-
opment, retail marketing, and sales patterns can be greatly refined using innovative
multi-criteria approaches. Also, as such decisions have an impact on the overall
integrated logistic network process, it is important to link the innovative multi-
criteria-based tools to most integrated supply chain management applications.

Game theory provides a mathematical background for distributed systems and
generating solutions in cooperative, competitive, or conflicting situations. Much
effort has been recently devoted to constructing game theory models of supply
chains and using them for better design, organization, and performance. One of the
contributions of the book will be to describe those achievements in game theory
that are particularly relevant and useful in the modern manufacturing world.

This book aims to align latest practice, innovation, and case studies with academic
frameworks and theories covering the broad area of multi-criteria and game theory
applications in manufacturing and logistics. Sixteen chapters were selected after a
peer review process. They were revised in accordance with the suggestions and
recommendations from the reviewers. The book comprises two main parts. Part I
contains ten chapters (Chaps. 1–10) dedicated to ‘‘Multi-criteria Applications’’. Part II
is dedicated to ‘‘Game Theory Applications’’. It contains six chapters (Chaps. 11–16).

Chapter 1, by N. Labadie and C. Prodhon, provides a survey on multi-criteria
analysis in logistics with a focus on vehicle routing problems. The chapter high-
lights most recent key references dedicated to multi-criteria studies in transpor-
tation logistics and especially on vehicle routing problems. Moreover, it presents
some interesting research directions for future works.

Chapter 2, by X. Delorme et al., deals with the use of multi-objective
approaches in the field of assembly line design. The design of assembly lines is a
very important industrial problem that involves various difficult and intercon-
nected optimization problems. A review of the main multi-objective optimization
methods used for these problems is presented and discussed. A case study is also
described in order to highlight some interesting properties associated with such
multi-objective problems.

Chapter 3, by E. Çevikcan et al., proposes a multi-objective decision-making
approach to select the best storage policy with respect to the company’s require-
ments. After providing background information about storage policies as well as
storage assignment models, a fuzzy information approach is proposed for storage
policy selection. The approach is validated with the help of an illustrative case
study from the automotive industry.

Chapter 4, by S. Mungle et al., develops a thermodynamically inspired high
performance multi-objective evolutionary algorithm (TDHP-MOEA) incorporated
with quality function deployment (QFD) and fuzzy-analytic network process
(FANP) to resolve the product technical requirements (PTRs) selection problem in
product design. The proposed approach considers goals such as new product
development (NPD) time and cost, technological advancement, and manufactu-
rability for selection of the most suitable PTRs. A case study of software devel-
opment is presented to demonstrate the effectiveness of the proposed approach.
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Chapter 5, by F. Belmecheri-Yalaoui et al., presents two multi-objective meta-
heuristic methods based on ant colony algorithm to simultaneously optimize the
storage problem and the quayside transport problem observed during resolution of
the container terminal problem. The container terminal has to manage container
traffic at the crossroads of land, road, and railway. The results of both meta-
heuristics are compared with those obtained by a complete enumeration of the
solutions.

Chapter 6, by Y. L. Chong et al., proposes an exploratory study to predict the
most important factors that can lead to successful mobile supply chain manage-
ment adoption for manufacturing firms. The results show that some of the strongest
predictors for mobile supply chain management adoption are senior management
support, security perceptions, technology integration, financial, and technical
competence. Moreover, the study shows that firm size and environmental factors
have less predictive power than technological and organizational factors on mobile
supply chain management adoption decisions.

Chapter 7, by L. Berrah and L. Foulloy, deals with the problem of computing
performance expressions in modern industrial companies. Performance expres-
sions are the results of performance indicators and performance measurement
systems—PMSs. By revisiting previous works in this field, the authors aim to
define a unified framework for such a computation, by integrating the industrial
context data. Three parameters are considered, respectively, the declared objec-
tive, the acquired measurement, and the performance expression that results from
the comparison of the measurement to the objective.

Chapter 8, by I.U. Sari et al., proposes a multi-criteria decision-making
approach called fuzzy decision-making trial and evaluation laboratory (DEMA-
TEL) to prioritize the supply chain performance measures. The authors first
attempt to prioritize the key performance criteria of the performance measurement
system using fuzzy DEMATEL and then investigate the effect of fuzzy linguistic
scale in the prioritization of the criteria. Two different scales are tested. The results
obtained with the use of different scales are similar to each other showing that
fuzzy DEMATEL is robust to minor changes in linguistic variable scale.

Chapter 9, by R. A. Kumar et al., focuses on selecting the route in international
intermodal freight transportation network. The problem is complex and comprises
the following characteristics: (1) multi-objective: minimization of travel time and
travel cost, (2) schedules and delivery times of every service provider in each pair
of location, and (3) variable cost must be included in every location. First, they
formulate the problem into mixed integer linear programming (MILP) model.
Second, they develop two different methods, respectively, ‘NP’ (nested partition)
method and ‘MADM’ (multi attribute-decision making) method to obtain the
optimal route. To show the performances of both methods, they present several
numerical experiments and discuss the results.

Chapter 10, by N. Labadie et al., addresses the bi-objective multiple traveling
salesman problem with profits (BOMTSPP), generalizing the classical TSP with
profits (TSPP). This new problem generalizes the TSPP in two directions: a true
bi-objective treatment and the construction of multiple tours. Two criteria are
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considered: the length of the tour, like in the classical TSP, and profits which can
be collected at customers. An evolutionary algorithm based on NSGA-II, rein-
forced by a post-optimization procedure based on path-relinking (PR), is devel-
oped. To demonstrate its efficiency, rich experimental results are presented and
discussed.

Chapter 11, by D. Xu et al., presents a hybrid simulation-based framework to
address duopoly game under the scenario of product adoption process considering
multiple decision variables and detailed payoffs. In the proposed hybrid simulation
framework, system dynamics (SD) models are used for simulating the activities of
duopoly companies on production, logistics, and price determination, where agent-
based simulation (ABS) is used for modeling consumer purchasing behaviors at
the market side. To illustrate the applicability of the proposed framework, a
hypothetical case scenario involving soft-drink duopoly on Coke and Pepsi is
presented and numerical results discussed.

Chapter 12, by M. Mateo and E. H. Aghezzaf, discusses the problem of inte-
grating inventory and distribution optimization together with game theory to
effectively manage supply networks. The problem is known as the inventory
routing problem (IRP) and is an underlying optimization model for supply net-
works implementing a vendor managed inventory (VMI) strategy. The authors
concentrate on the stream of literature focusing on cooperative game theory in the
inventory routing problem. Morover, they present and discuss two applications
issued from cooperation in the wine distribution and cost allocation in the gas
distribution.

Chapter 13, by D. K. Verma et al., considers the problem of determining an
optimal set of winning suppliers in a single buyer procurement auction scenario.
The buyer wishes to procure high volumes of a homogeneous item in a staggered
way in accordance with a predefined schedule and the suppliers respond with bids
that specify volume discounts and also delivery lead times. The authors show that
the winner determination problem, which turns out to be a multi-objective opti-
mization problem, cannot be satisfactorily solved by traditional methods of multi-
objective optimization. They formulate the problem first as an integer program
with constraints capturing lead time requirements and show that the integer pro-
gram is an extended version of the multiple knapsack problem. Moreover, they
discover certain properties of this integer program and exploit the properties to
simplify it to a 0–1 mixed integer program (MIP), which can be solved more
efficiently. Next, they explore a more efficient approach to solving the problem
using a linear relaxation of the 0–1 MIP in conjunction with a greedy heuristic.
Using extensive numerical experimentation, the efficacy of the 0–1 MIP and the
proposed heuristic are demonstrated.

Chapter 14, by S. Mahjoub and J. C. Hennet, analyzes the process of forming a
coalition within a corporate network. The objective of the partner companies is to
create a multi-stage manufacturing system, which generates a chain of increased
value from raw materials to end-user market. This process is studied by cooper-
ative game theory, through the key problems of maximizing the total profit and
distributing it among the members of the coalition. To construct a pay-off policy
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that is both stable and fair, the chapter proposes to represent the productive
resources of the companies not only by their capacity, but also by the work in
progress (WIP) generated by product flows. The proposed profit sharing rule is
then constructed from the dual of the profit maximization problem. It is both
efficient and rational, with more fairness than the Owen set policy of classical
linear production games.

Chapter 15, by A. El Omri et al., deals with the coalition formation problem in
supply chains. The coalition formation problem has a profit maximizing objective,
that is, increasing the benefit or the savings a supply chain agent (player/partner)
can make by coordinating his activities with other agents. Cooperative game
theory setting is used to analyze supply chain situations where a set of independent
and freely interacting agents can benefit by working jointly. The authors consider
the hedonic settings to study the formation of stable coalition structures in
inventory games with general cost function. The goal is to focus on the problems
of (i) coalition structure generation, i.e., formation of coalition structures, such that
agents inside a coalition coordinate their activities, but agents of different coali-
tions will work independently; and (ii) worth sharing, i.e., distribution of the worth
generated by the coalition to its agents.

Chapter 16, by T.S. Chandrashekar and Y. Narahari, models the multiple units,
single item procurement network formation problem as a surplus maximizing
network flow cooperative game. The buyer has a demand for a certain number of
units. The agents in the network must coordinate themselves to meet this demand.
Each edge is owned by a rational utility maximizing agent, where each agent has a
capacity constraint on the number of units that he can process. The authors first
investigate the conditions under which the core of this game is non-empty, and
then, construct an extensive form game to implement the core whenever it is non-
empty.

We hope that you will enjoy the results of these efforts.

Lyes Benyoucef
Jean-Claude Hennet

Manoj Kumar Tiwari
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Chapter 1
A Survey on Multi-criteria Analysis
in Logistics: Focus on Vehicle Routing
Problems

N. Labadie and C. Prodhon

Abstract Vehicle routing problems play a central role in logistics. These com-
binatorial optimization problems have attracted more and more attention these last
five decades both in theory and in practice. However, main contributions are
dedicated to the single criterion optimization problems. The goal of this chapter is
to provide the recent key references dedicated to multi-criteria studies in trans-
portation logistics and especially on vehicle routing problems and to present some
interesting research directions.

Keywords Transportation � Logistics � Vehicle routing � Multi-criteria problems

1.1 Introduction

Vehicle routing problems (VRPs) are combinatorial optimization problems that
appear in relevant practical applications covering many different domains from the
distribution of goods to the delivery of services. The goal is to build one or several
vehicle routes in order to service a set of customers. This family of combinatorial
optimization problems has attracted widespread research in the past decades.
Indeed, it arrives at the top list of the more studied fields in operations research
(Laporte 2009).

Routing problems are usually solved through a single objective aiming to
minimize a cost, whereas improvements on the solution cost often have a direct
impact on other important factors. Indeed, in real-world applications, one can be
interested by optimizing simultaneously other criteria such as fleet size, work
balancing, or customer satisfaction.

N. Labadie (&) � C. Prodhon
ICD/LOSI, Université de Technologie de Troyes, 12 rue Marie Curie,
CS 42060 10004 Troyes Cedex, France
e-mail: nacima.labadie@utt.fr

L. Benyoucef et al. (eds.), Applications of Multi-Criteria and Game Theory Approaches,
Springer Series in Advanced Manufacturing, DOI: 10.1007/978-1-4471-5295-8_1,
� Springer-Verlag London 2014
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The aim of this survey is to provide an overview on routing problems for which
more than one objective function must be optimized. Boffey (1995) made a first
classification of these topics and presented several useful solution methods. Later,
Jozefowiez et al. (2008b) proposed an updated review based on objectives, then on
problems, and finally on methods. Our contribution is to refer mainly to papers
dealing with vehicle routing which have been published over the last half decade
(i.e., those appeared since the last survey from Jozefowiez et al. (2008b)) and to
classify them according to the kind of problem. A short review on other multi-
criteria problems encountered in the logistic field and involving routing decisions
such as shortest path computation or distribution network design is also presented.

This chapter is organized as follows: the classical vehicle routing problem and
an overview on multi-objective combinatorial optimization are introduced in the
Sect. 1.2. Section 1.3 provides an overview on multi-criteria studies involving the
basic vehicle routing problem as a central part. In Sect. 1.4, the principal studies
dealing with complex constraints and/or unusual criteria are given. Section 1.5 is
dedicated to recent trends on routing problems involving path, flow, or network
design in a multi-criteria environment. Section 1.6 provides a classification of the
published literature on the subject. A conclusion and some future directions for
research are drawn in Sect. 1.7.

1.2 Background

Before presenting the papers related to the review proposed here, it might be
necessary to give some settings of the problems under consideration. Thus, this
section first recalls the capacitated vehicle routing problem (CVRP) and introduces
some notions on multi-objective optimization.

1.2.1 Basic Vehicle Routing Problem

Capacitated Vehicle Routing Problem involves the routing of vehicles with
common limited capacity from a central depot to a set of customers at minimal
cost. It can be modeled by a complete graph G = (X, A) where X = {0,1,…,n} is a
set of vertices, and A = {(i, j) | Vi, j [X, i = j} is a set of arcs. Vertex 0 corre-
sponds to the depot where is based a homogeneous fleet of vehicles with a limited
capacity W. The remaining n vertices are the customers. Each customer i has a
known demand qi. Each arc (i, j) is associated to a value di,j which represents the
cost of the shortest path linking the nodes i and j. This value can be a monetary
cost, a distance, a time, etc. The aim is to build a set of routes with a minimal total
cost servicing each customer exactly once, without exceeding the vehicle capacity.
The CVRP has been proved NP-hard (Lenstra and Rinnooy Kan 1981), for an
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overview on mathematical formulations, exact and approximate methods designed
to solve this problem; see for example, Toth and Vigo (2002) and Laporte (2009).

Some other surveys dealing with more complex variants of the vehicle routing
problems have appeared recently in the literature. Hoff et al. (2010) provide an
overview dedicated to routing and fleet composition problems, where the fleet is
composed of several types of vehicles associated with different fixed and variable
costs. This last paper focuses on aspects related to industrial applications. Labadie
and Prins (2012) present also a survey summarizing the most important results on
the majority of vehicle routing variants, with an emphasis on problems occurring
in developing countries. In Baldacci et al. (2012), mathematical formulations,
relaxations, and recent exact methods developed to resolve the CVRP and the VRP
with time windows (VRPTW) are given. VRPTW is the most widely studied
variant of the CVRP and differs from this last on the fact that for each customer is
associated a time slot within which its service must start. Classification schemes as
well as exact and heuristic algorithms are given in Nagy and Salhi (2007) for the
location-routing problem. In this relatively recent category of problems, simulta-
neously to routing decisions one looks on how to locate optimally the depots from
which the customers would be serviced. Capacitated arc routing problem (CARP)
is the arc counterpart of the CVRP in the sense that focus regarding service and
resource constraints are on the links and not on the nodes of the given graph. This
routing problem is much less studied in the literature inspite of its numerous
applications such as electrical lines inspection, snow removal, garbage collection,
etc. For an extended survey on this problem, its variants, formulations, and res-
olution approaches see the paper by Wøhlk (2008).

Contrarily to the problems cited above, in routing problems with profits it is not
necessary to service all the customers. In this branch of problems, each customer
(node) is associated to a positive score or profit which is collected only if the
corresponding node is visited. Interested readers are referred to Feillet et al. (2005)
and to Vansteenwegen et al. (2011) for a survey on the different categories of
problems and the corresponding results appeared in the literature.

In covering tour problems, some locations must just be covered and not nec-
essarily visited. Such kind of problems have many applications in delivery services
such as health care to rural population in developing countries. The aim is to build
a tour visiting some centers with a minimal total length in order to guarantee
coverage of a set of customers (population). This notion of coverage is often
associated to a given distance, which is considered as a problem parameter. These
problems are by nature multi-criteria since at least they can aim to minimize the
tour length or cost, maximize the population covered, and minimize the maximal
distance to a center included in the tour.

Most published papers on problems involving routing problems concern the
single objective case. Multi-objective studies attract very less attention, although
in real-word applications several objective functions are often expressed. This
chapter targets to gather recent studies published since the last survey by
Jozefowiez et al. (2008b) on the most important vehicle routing problems
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generalizing the basic CVRP and CARP, and especially the problems cited above.
Recent developments on some other problems involving routing decisions are also
mentioned in this survey.

1.2.2 Multi-objective Optimization

In single objective optimization, the goal is to find one solution (or in special cases
multiple optimal solutions but with the same objective function value). In multi-
objective optimization, this is not sufficient since problems deal with more than
one objective function constituting a multi-dimensional objective space. The aim
is then to find the set of so-called Pareto-optimal solutions or efficient solutions. A
feasible solution x1 is called efficient if there does not exist another feasible
solution x2 such that the value of x2 is better or equal to the value of x1 for all
objective functions, with a strict inequality for at least one of the objectives.
Otherwise, x2 dominates x1.

The main goal in multi-objective optimization is to find a set of solutions that
approximates well the Pareto-optimal set (or the non-dominated vectors in the
objective space), i.e., (1) as close as possible to the Pareto-optimal front and (2) as
diverse as possible to guarantee a good set of trade-off solutions.

A first approach is to transform and solve a single objective problem through a
weighted metric method that scalarizes the set of objectives. The resulting solu-
tions are defined as the set of supported efficient ones, SE. However, a routing
problem is usually combinatorial leading to a multi-objective combinatorial
optimization (MOCO). The fact to deal with discrete variables has a strong con-
sequence on the difficulty of such problems. Although the objectives are usually
linear functions, there may exist efficient solutions, called non-supported efficient
solutions NE which are not optimal for any weighted sum of the objectives.
Finding the non-supported solutions contributes essentially to the difficulty of
MOCO problems. Thus, a two-phase method can be applied. In the first phase, SE
is found using the scalarization technique, and solving single objective problems.
The second phase consists of finding the non-supported efficient solutions by
problem-specific methods using bounds, reduced costs, etc.

Another approach is the adaptation of metaheuristic techniques. A first kind
consists of defining search directions by a local aggregation of the objectives, often
based on a weighted sum. Thus, starting from an initial solution and a given
direction, an approximation of a part of the Pareto-optimal front can be found. The
principle is repeated on several directions to retrieve completely the non-domi-
nated frontier. A second kind is based on both a population of solutions and the
notion of dominance to approximate the non-dominated frontier. It has the
advantage of searching for many efficient solutions per iteration. Finally, there
exist also specific procedures and hybrid methods.

For more details and guidelines on the development and use of the most
effective metaheuristics methodologies for MOCO see, for example, Deb et al.
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(2000), Deb (2002), Angus and Woodward (2009). The two first papers are ded-
icated to multi-criteria evolutionary algorithms and the last one deals with ant
colony systems. In Martí et al. (2011), a methodology for adapting the hybrid
metaheuristic greedy randomized adaptive search procedure (GRASP) combined
with the path relinking approach (PR) is developed for multi-criteria problems.
The most frequently used resolution approaches are based on multi-criteria evo-
lutionary algorithms which are detailed through numerous surveys such as the
papers by Coello Coello et al. (2005), Coello Coello (2009), Zhou et al. (2011).

1.3 Multi-criteria Analysis for the Basic Routing Problem

This section aims to make a census of multi-criteria studies involving the basic
routing problem, i.e., problems without extra constraints or attribute. The studies
cited here consider the CVRP defined above as a core problem but add one or more
criteria which must be optimized simultaneously in addition to a cost function.

The study by Parc and Koelling (1986) is the pioneer one dealing with multi-
objective CVRP. In this work, the classical CVRP is considered with three con-
flicting criteria: minimization of the total distance traveled; minimization of the
total deterioration of goods during transportation; and maximization of fulfillment
of emergent services and conditional dependencies of customers. This third cri-
terion is relevant for cases where some customers should be serviced urgently or
are contingent upon others. Two customers are said to be contingent when there is
a conditional dependency between them; these dependencies could be resulting
from operational, functional, or economic reasons. The problem is resolved using
heuristics that take into account the decision makers’ preferences.

Since then, many papers have been devoted to this issue. From the recent years,
we can quote Jozefowiez et al. (2009) who consider a CVRP in which the total
route length and the route imbalance are minimized concurrently. The second
criterion in this study consists in minimizing the difference between the longest
route and the shortest one. A multi-objective evolutionary algorithm using a new
mechanism, called the elitist diversification, is used in cooperation with a sharing
method and parallelization techniques to resolve the problem. In a previous study,
these authors (Jozefowiez et al. 2005) considered the same problem and resolved it
with an enhancement of the popular NSGA-II (Non-dominated Sorting Genetic
Algorithm).

The study by Chand et al. (2010) deals with a bi-criteria CVRP in which the
number of vehicles and the total cost (distance) are minimized. A genetic algo-
rithm-based approach is designed to resolve this problem; however, in this study
the authors do not look for a Pareto front but for a single solution. This one has to
be optimized for each objective so that, if we try to optimize it any further, the
other objective(s) will suffer as a result. The approach is tested using problem
instances reported in the literature, derived from publicly available Solomon’s
benchmark data for VRP. According to the authors, the results show that the GA
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approach is able to find high quality solutions but unfortunately they do not
provide comparisons with previous studies.

For the arc counterpart of the CVRP, namely the capacitated arc routing
problem (CARP), we are only aware of one study due to Lacomme et al. (2006). In
this work, in addition to the frequently used criterion which is the total cost of the
trips, a second criterion related to the makespan, as in scheduling problems, is
minimized conjointly. This second objective function consists in minimizing the
longest trip and the bi-criteria CARP is solved thanks to an efficient non-domi-
nated sorting genetic algorithm (NSGA-II).

1.4 Multi-criteria Analysis for VRP with Rich Structure

1.4.1 Vehicle Routing with Time Windows

Vehicle Routing Problem with Time Windows extends the basic CVRP by adding
time constraints on customers’ service. In this variant, to each customer i is
associated a predefined time lag [bi, ei], within the service must start. A time
window [b0, e0] is often considered for the depot’s opening hours, and traveling
times tij are defined in addition to distances di,j. Due to its academic interest and its
numerous real-life applications (such as in maintenance routing problems),
VRPTW is drawing more and more attention in the research community. Most of
the published literature deals with hard time windows. In this case, when a vehicle
arrives at customer i before bi, it has to wait and it is not allowed to service a
customer after the closing time ei. In some versions, late and/or early services are
permitted but penalty costs must be paid (soft time windows). Contrary to the
CVRP, deciding whether m routes are enough to visit all customers is an NP-
complete problem. Most authors minimize the number of vehicles required and
then the total distance performed; traveling times are just used to check time
windows. The VRPTW is NP-Hard and instances with 100 customers or more are
very hard to solve optimally. The majority of resolution methods are approxi-
mations, and evolutionary algorithms account for the greater part.

When the number of vehicles is to be minimized in priority, the best meta-
heuristics are the memetic algorithm of Nagata et al. (2010) and the arc-guided
evolutionary algorithm of Repoussis et al. (2009). Labadie et al. (2008) design an
effective memetic algorithm for total distance minimization, as in the CVRP. The
same algorithm is also able to resolve efficiently the problem where the number of
vehicles must be minimized in priority before the total distance. For a complete
overview on resolution approaches for the VRPTW, one can see the surveys of
Bräysy and Gendreau (2005a, b).

The multi-criteria version of the VRPTW is without any doubt, the most
investigated among multi-objective vehicle routing problems. Rahoual et al.
(2001) design an NSGA-based genetic algorithm for the VRPTW for minimizing
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the number of routes, the travel distance, and the penalties associated with violated
constraints.

Tan et al. (2006) and Ombuki et al. (2006) consider the VRPTW as a bi-
objective optimization problem, minimizing the number of vehicles and the total
travel distance. Both studies propose a genetic algorithm for solving the problem
and use the standard Solomon’s benchmark to assess the quality of the developed
approaches (see Solomon (1987) for more details). In the former study, a Pareto
ranking techniques is used to assign fitness to individuals, design a new crossover
operator called route-exchange crossover, and use a multi-mode mutation which
considered swapping, splitting, and merging of routes. The latter propose the
genetic operators best cost route crossover and constrained route reversal mutation,
which is an adaptation of the widely used inversion method.

In Ghoseiri and Ghannadpour (2010), the same problem as in Tan et al. (2006)
and Ombuki et al. (2006), is studied. The authors propose a goal programming
approach and a genetic algorithm in which the decision maker specifies optimistic
aspiration levels to the objectives and deviations from those aspirations are min-
imized. The method is applied to solve Solomon’s benchmark of 56 VRPTW
instances with 100 customers. The results are compared to the best known solu-
tions obtained for the single objective case or to the two previous studies cited
above and are proved to be competitive.

In the study of Wang and Li (2011), a multi-objective VRP considering time
window constraints is also investigated. The authors consider two objective
functions, the first consists in minimizing the total distance while the second
maximizes client satisfaction by fulfilling time-window requirements. A hybrid
genetic algorithm was designed to solve the problem; the numerical evaluations of
this method are driven on a military application.

Garcia-Najera and Bullinaria (2011) study the VRPTW with three criteria to
minimize: the total crossed distance, the overall traveling time, and the fleet size.
This paper proposes a multi-objective evolutionary algorithm, which incorporates
methods for measuring the similarity of solutions, to solve the problem. The
numerical results obtained on Solomon’s instances show that when the similarity
measure is used, the diversity and the quality of solutions are improved. Fur-
thermore, the algorithm achieves competitive results since it provides better Pareto
front approximations.

In Muller (2010), a VRP with soft time windows (VRPSTW) is considered.
That means violations of the time windows are allowed, but associated with
penalties. The problem studied resides in determining optimally the routes so as to
minimize simultaneously the total costs, consisting of the number of used vehicles
and the total distance, on one part and the penalties on the other part. The problem
is formulated as a bi-criteria minimization problem and heuristic methods are used
to calculate approximations of the Pareto optimal solutions. Experimental results
show that in certain cases the allowance of penalties leads to significant savings of
the total costs.

Tavakkoli-Moghaddam et al. (2005) consider the VRPSTW with a heteroge-
neous fleet of vehicles. Three criteria are to minimize: fleet cost, routes cost, and
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violation of soft time windows penalty. The authors use a simulated annealing
(SA) approach with the classical 1-Opt and 2-Opt operators for solving the
problem. More recently, Tavakkoli-Moghaddam et al. (2011) have considered
again a new variant of the VRPTW with two objective functions to optimize. The
authors call this problem a VRP with competitive time windows (VRPCTW) and
the considered criteria are the total traveling time to minimize and the total amount
of sales to maximize. In this new problem that occurs in a competitive environ-
ment, the demand of each customer is constituted of two parts, the first part does
not depend on time and should be delivered completely to the customer, the second
part is time-dependent and would be lost if the rival’s arrival time is earlier than
vehicle’s arrival time to the customer. A new mathematical model is developed for
the proposed problem and for solving it and a simulated annealing approach is
used. The small test problems are solved by the SA and the results are compared
with obtained results from Lingo software. For large-scale problems, Solomon’s
benchmark instances with additional assumption were used and SA algorithm was
able to find good solutions in reasonable time.

Norouzi et al. (2009) present also a study dealing with a routing problem under
competition. In this study, there is no time-window, but still time-dependent
constraints. More precisely, the authors propose a mathematical model for a bi-
objective open vehicle routing problem in a competitive environment (OVRPC).
This problem consists of a VRP for which the routes do not return to depot after
the last customer. In addition, it is supposed that the profit made at a customer
depends on the time on which it is visited, i.e., if a vehicle visits a customer later
than its rival, it will miss a part of its sale. Hence, in order to maximize the profit,
the company should serve customers earlier than its rival while minimizing the
total length of the routes. The authors propose a multi-objective particle swarm
optimization (MOPSO) method, a population-based approach inspired from the
behavior of natural group organisms, such as bees, fishes, and birds swarm. The
results are compared with the Lingo software using a e-constraint method on
small-sized test problems.

Gupta et al. (2010) study a multi-objective fuzzy vehicle routing problem with
time windows and capacity constraints (MOFVRP). The concept of fuzzy logic is
used to deal with uncertainty on traveling time between two stops and a genetic
algorithm is used to deal with multiple attributes: maximization of customer’s
satisfaction grade, minimization of fleet size, distance minimization, and waiting
time minimization. To demonstrate the effectiveness of the developed approach, a
case study is used. It concerns a bus collection application where students must be
picked-up and dropped from/to university in India.

Braekers et al. (2011) consider a full truckload vehicle routing problem with
time windows encountered in drayage operations. Loaded and empty container
transports are to be performed where either the origin or the destination of empty
containers must be determined. The authors show that this problem can be
transformed into an asymmetric multiple vehicle traveling salesman problem with
time windows (am-TSPTW) and a two-phase deterministic annealing algorithm is
developed for solving the problem in which the number of vehicles used is
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minimized as well as the distance traveled. The first phase of the method consists
in minimizing the fleet size and the second, the total distance for the current
number of vehicles. Deterministic simulated annealing metaheuristics are used in
both phases and the performance of global method is tested on randomly generated
instances.

1.4.2 Vehicle Routing with Several Depots

In multi-depot (MD) problems, the departure and return nodes for each vehicle
must be selected among a set of depots. The first case considers uncapacitated
depots and leads to the MDVRP. Lau et al. (2009) study a multi-objective version
with multiple products for which the aim is to minimize both the total traveling
distance and the total traveling time required for all vehicles. They propose a fuzzy
logic guided NSGA-II (FL-NSGA-II). The role of fuzzy logic is to dynamically
adjust the crossover and mutation rates after consecutive generations. They
compare their method with a classical NSGA-II, but also with a strength Pareto
evolutionary algorithm 2 (SPEA2) and a micro-genetic algorithm (MICROGA),
each time with and without the guide of fuzzy logic. The results show that FL-
NSGA-II outperformed other search methods on the tested scenarios.

The second case of MD problems occurs when depots are capacitated and/or
when the location of those is a decision variable. Location of facilities and vehicle
routing, when studied and solved commonly, constituted the location-routing
problem (LRP). Nagy and Salhi (2007) have made a survey on the subject. Since
then, some papers have been published on the mono-objective case. Prins et al.
(2007) and Duhamel et al. (2010) propose the current best efficient metaheuristics
and recently, Belenguer et al. (2011) introduced mathematical models and exact
solutions methods but they are still limited to medium-scale instances. Prodhon
(2011) also studies a periodic version. However, in the past, multi-objective ver-
sions were often discarded. Only Lin and Kwok (2006) addressed the case in
which total cost minimization and workload balance were the objectives. Addi-
tionally, in this study a version with multi-route consideration was possible during
the routing procedure. The authors applied two metaheuristics (tabu search and
simulated annealing) on real and simulated data and compared the results of two
versions: simultaneous or sequential routes assignment to vehicles. Other papers
were published for hazardous transportation, in which apart from the cost, the
location and/or a transportation risk have to be minimized to ensure a safety
perimeter for the population (List and Mirchandani 1991; Giannikos 1998; Alumur
and Kara 2007).

Nowadays, criteria to optimize in addition to the total cost are more related with
the demand to be served. Tavakkoli-Moghaddam et al. (2010) present a new
integrated mathematical model for a bi-objective version where the total cost
(setup cost of the facility, fixed and variable depot costs, and routing cost) has to
be minimized while the total demand to be served has to be maximized.
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The authors propose a multi-objective scatter search (MOSS) algorithm and val-
idate both the solution quality and diversity level on various test problems through
some comparison metrics with the elite tabu search (ETS).

In the same vein, an interesting application of multi-objective LRP concerns
logistics of relief. Rath and Gutjahr (2011) consider a problem faced after the
occurrence of a natural disaster. A supply system with intermediate warehouses
has to be established to provide affected people with relief goods. It may happen
that total supply is less than total demand. Thus, a three-objective optimization
model is proposed. The first objective minimizes the fixed costs for depots and
vehicles. The second objective minimizes operative cost (routing and warehous-
ing). The third objective maximizes the covered demand. They apply the e-con-
straint method to determine the Pareto frontier and solve the single-objective
problem by a metaheuristic technique based on an MILP formulation with a VNS
algorithm to iteratively add heuristically generated constraints. Results on gener-
ated instances and a real case are compared to those obtained from an application
of the NSGA-II metaheuristic.

Coutinho-Rodrigues et al. (2012) also study multi-objective catastrophe
responses for urban evacuation paths and location of shelters. Six objectives are
considered in an MILP model, including the minimization of total travel distance
for all of the population to shelters, the minimization of the risk on paths and at the
shelters, and the minimization of the total time required to transfer people from
shelter to a hospital. The proposed approach is tested for a simulated fire situation
in the historical city center of Coimbra, Portugal. The solutions are compared in
the objective space via several graphical techniques.

1.4.3 Routing Problems with Profit

In routing problems with profits, for each customer a positive profit (score) is
given, in addition to the elementary data defining a basic CVRP (graph G). In
some variants, a penalty can also be associated to each customer. These kinds of
problems permit to visit only a subset of customers and occur in industrial
application such as scheduling repairmen visits to the most profitable customers,
tourist travel guide systems, etc. This family of routing problems with profits is by
nature multi-objective with two opposite optimization criteria. The first objective
consists in maximizing the total profit; it hence forces to extend the tour and
collect as much profit as possible increasing therefore the traveled distance. The
second criterion, in opposition with the first one, instigates to reduce the total
traveled distance and consequently tends to visit fewer customers. In spite of the
bi-objective nature of this category of problems, the research has been mostly
focused on the mono-criterion case.

The variant where only one tour has to be determined is referred to as the trav-
eling salesman problems with profits (TSPP). Feillet et al. (2005) discuss three
generic problems derived from the TSPP, depending on how the two objectives are
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tackled. In the first one, both criteria are expressed in the objective function which
consists in minimizing the travel costs minus the collected profit. This problem is
called profitable tour problem (PTP). In the second class, the travel costs are
expressed as a constraint. The profit is maximized while the length of the tour must
not exceed a given limit. This problem is called the orienteering problem (OP). In the
third class, the total profit is expressed as a constraint and it must not be less than a
given value and the travel costs are minimized. This last variant is referred to as prize
collecting traveling salesman problem and often considers penalties on the cus-
tomers not serviced. The sum of these penalties (when defined) is then added to the
total traveled distance to obtain the objective function, which must be minimized.

The team orienteering problem (TOP) is an extension of the orienteering variant
to the case where a fixed number (great or equal to 2) of tours must be built. TOP
has been defined for the first time by Chao et al. (1996) and is, besides the
orienteering variant (OP), the more studied problems among all those cited above.
However, most published papers in the literature focus on the mono-objective
variants.

The multi-objective version of the TSPP has been considered for the first time
in Keller and Goodchild (1988). After this first study, to the best of our knowledge,
only four journal papers have been published. The first is from Riera-Ledesma and
Salazar-González (2005) who study the traveling purchaser problem, in which the
nodes represent markets of different products. The traveling purchaser must visit a
subset of markets in order to purchase the required quantity of each product while
the travel cost and the purchase cost are both minimized. In Jozefowiez et al.
(2008a), an ejection chain local search enhanced within a multi-objective evolu-
tionary algorithm is developed to generate efficient solutions to the traveling
salesman problem with profits. Bérubé et al. (2009) propose an exact e-constraint
method for the same problem and finally, Schilde et al. (2009) study a new bi-
objective variant of the orienteering problem where each customer is associated
with two different values of profit. The two objective functions considered are the
maximization of both kinds of collected profits. The authors propose an ant colony
optimization and a variable neighborhood search, hybridized both by a path re-
linking method, in order to generate Pareto optimal solutions. More recently,
Labadie et al. (2011) have designed an NSGA-II based approach to resolve the bi-
criteria version of the TOP. In this last study, the aim is to select the set of
customers to be serviced and to build a fixed number m greater than one of tours to
cover these customers, so as the total profit is maximized and overall traveled
distance is minimized.

1.4.4 Covering Tour Problems

The covering tour (CTP for covering tour problem) generalizes the traveling
salesman problem (TSP). It considers a graph G defined as in the CVRP but the set
of nodes V is constituted of two complementary subsets V1 and V2. The first (V1)
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contains the set of nodes that can be visited and contains some vertices which must
be included in the solution. The second set (V2) encloses nodes that must be
covered. In addition to these data, a covering distance L is given. The problem
aims to build a tour with a minimal length visiting a subset of nodes from V1 such
that all nodes in V2 are covered. A node v is said to be covered if and only if there
exists at least one node in the tour such that the distance separating it from v is less
than L. As for the TSP with profits, the covering tour is clearly identified by Boffey
(1995) as a multi-criteria problem.

The maximal covering tour problem is a bi-criteria variant of CTP introduced
by Current and Shilling (1994). In this problem, for each node to cover in V2 is
associated a demand and the aim is to build a tour containing exactly p nodes from
V1 (with p B | V1|), such that the total demand covered is maximal and the cost (or
length) of the tour is minimal. In this variant, a node v is said to be covered if and
only if its demand is satisfied by a node in the tour contained in the circle whose
center is v and radius is L. Such problems are encountered in mobile service
delivery systems such as health care delivery in the rural areas of developing
countries and in disaster relief supplies where the aim is to ensure the delivery of a
large amount of emergency supplies such as food, water, and medicaments to some
center points from which the supplies would be distributed to others disaster zones.
For a recent survey on covering problems see Farahani et al. (2012), a subsection is
dedicated to the problems already mentioned.

Besides the paper of Current and Shilling (1994) in which a heuristic is pro-
posed to generate an approximation of the Pareto front, another study from
Jozefowiez et al. (2007) dedicated to the bi-objective covering problem is also
available in the literature. In this last paper, the constraint requiring exactly
p nodes in the tour is relaxed and the covering distance imposed in the CTP
becomes an objective. The problem studied deals with the minimization of the tour
cost and the minimization of the cover. The cover of a solution is defined as the
maximal distance between nodes which must be covered (nodes in V2) and their
closest nodes included in the tour. The authors have proposed a two-phase
cooperative strategy that combines a multi-objective evolutionary algorithm with a
branch-and-cut algorithm initially designed to solve a single-objective covering
tour problem. The numerical tests are carried on randomly generated instances and
real data (data of the Suhum district, east region of Ghana) and the results are
compared to those obtained by a bi-objective exact method based on an e-con-
straint approach with a branch-and-cut algorithm.

More recently, Tricoire et al. (2012) have studied the bi-objective covering tour
problem with stochastic demands. The two considered criteria, both to minimize,
are the total cost (opening cost for distribution centers plus routing cost for a fleet
of vehicles) and the expected uncovered demand. The authors assume that
depending on the distance, a certain percentage of clients goes from their homes to
the nearest distribution centers. To compute solutions of the two-stage stochastic
program with recourse, a branch-and-cut technique is used within an e-constraint
algorithm. Computational results on real-world data for rural communities in
Senegal show the viability of the approach.
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Some other studies have appeared recently in the literature and are dedicated to
humanitarian logistics and disaster relief optimization where often several con-
flicting criteria are to be taken into account. In those studies, one is often faced to
the resolution of some variants of the covering tour problem. For instance, the
study from Viswanath and Peeta (2003) deals with a multi-commodity maximal
covering network design problem for identifying critical routes for earthquake
response. The problem is formulated as a two-objective (minimizing the total
travel time and maximizing the total population covered) integer programming
model that is solved with a branch-and-cut. The search for the critical routes for an
origin–destination pair is confined to a limited geographical region to reduce the
computational time.

Tzeng et al. (2007) propose a multiple objective relief-distribution model with
objectives based on the effectiveness (through the minimization of the total cost
and the total travel time) and fairness (by maximizing the minimal satisfaction
during the planning period) of the overall distribution system. Results of an
empirical study are presented.

Nolz et al. (2010) study a multi-vehicle covering tour problem that consists of
routing and placement of tanks of water to cover all beneficiaries rather than being
transported directly to them. Two objectives are targeted: the first is related to
distances between population and distribution points, and the second is related to
cost of the chosen tour.

Vitoriano et al. (2011) add another important aspect when dealing with
humanitarian problems that is the reliability of the routes. Hence, they proposed to
extend the bi-criteria approach proposed in the previous works dedicated to
humanitarian aid distribution problems, by considering a multi-criteria optimiza-
tion model based upon cost, time, equity, priority, reliability, and security. More
specifically, the problem is described through a transport network with pick-up,
delivery, or connection nodes and arcs characterized by distance, average velocity
and reliability, heterogeneous fleet of vehicles, operation elements such as the
global quantity to be distributed and the budget available. The problem is not
formulated exactly as a covering tour problem, but the proportion of satisfied
demand at a specific node is considered. A goal programming model is presented
and applied to the Haiti earthquake that happened in 2010.

1.5 Multi-criteria Path, Flow, and Network Design

In some kinds of extension to the multi-depot case, routing problems aim at finding
the paths from some origin positions to destination points. Such examples can be
found in supply chain or multi-modal transportation. First, let us consider the case
of finding the optimal transit only between two nodes of a network. In the single
objective case, this problem is referred to as the shortest path problem and has
been intensively studied in the literature. Practical applications such as routing in
railways networks often show the necessity to compute the shortest path with
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respect to several criteria such as traveling time minimization, waiting time, or
number of transit points. The interested reader on such problems can see the
survey from Skriver (2000).

In more recent researches, Raith and Ehrgott (2009) considered the bi-criteria
shortest path problem where two kinds of costs are associated with each link in the
network. The aim is to compute a path linking an origin point to a destination point
such as both overall total costs are minimal. The authors compare several strate-
gies to resolve the problem on grid, random, and road networks. They deduce that
the two-phase method is competitive with other commonly applied approaches to
solve the bi-criteria shortest path problem and that the two-phase method works
well when combined with both a ranking, a label correcting, and a label setting
approach in the second phase. However, the tests show that the label correcting
and setting approaches are preferable as they are more stable and, although very
efficient on some instances, enumerative near shortest path approach is much time-
consuming on others. In the same year, another study from Pinto et al. (2009) was
developed for the tri-criterion shortest path problem with two bottleneck objective
functions (MinMax, MaxMin for instance) and a cost function. An algorithm able
to generate a set of Pareto-optimal paths is proposed and the authors show that
bottleneck functions with finite number of values lead to algorithms with poly-
nomial complexity. Then, Pinto and Pascoal (2010) have proposed an improved
version of the algorithm appeared in the previous paper. Although both algorithms
have the same worst case complexity, the improved version is able to improve the
running time on randomly generated benchmark.

Ghoseiri and Nadjari (2010) are also involved in this issue. They present an
algorithm based on multi-objective ant colony optimization (MOACO) and pro-
pose experimental analyzes on randomly generated instances with two objective
costs to minimize. Compared with results of label correcting solutions (the most
known efficient algorithm for solving this problem) on the Pareto optimal frontiers,
the suggested algorithm produces good quality non-dominated solutions and time
saving in computation of large-scale bi-objective shortest path problems.

Reinhardt and Pisinger (2011) also focus on the multi-objective shortest path
problems and give a general framework for dominance tests. This is particularly
useful to eliminate paths in a dynamic programming framework when using
multiple objectives. The authors report results on instances based on the data of a
shipping company with several nonadditive criteria such as the time, the number of
transfers, the cost, or the probability of reaching the destination.

The studies of Mora et al. (2013) and Tezcaner and Köksalan (2011) deal with
military logistics and concern also multi-objective shortest path design. The first is
dedicated to solve a path finding problem considering two objectives: maximi-
zation of speed and safety. To solve it, three versions of MOACO algorithms,
globally identified as hCHAC and dealing with a different number of objectives
(two, four, and just one in an aggregated function) are designed. A different
parameterization set has been considered in each case. The hCHAC algorithms are
tested in several different (and increasingly realistic) scenarios, modeled in a
simulator and compared with other MOACOs. Two of them are well-known
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state-of-the-art MOACOs and the third is a novel multi-objective Greedy approach
used as a baseline. The experiments show that most of the hCHAC algorithms
outperform the other approaches, yielding at the same time very good military
behavior in the tactical sense. Within the hCHAC family, the approach considering
two objectives yields the best results overall. The second study by Tezcaner and
Köksalan (2011) addresses the route selection problem for unpiloted aircrafts
called unmanned air vehicles (UAV). The problem consists of visiting several
targets before returning to the base. Determining a good route in such a case may
mean to minimize the total distance traveled and maximizing radar detection
threat. However, contrary to classical TSP, there is not a single path between any
two consecutive nodes but multiple possible paths. Therefore, the problem turns
into a combination of an interrelated multi-objective shortest path problem and an
multi-objective traveling salesman problem (MOTSP). The authors develop an
exact interactive approach to identify the best paths and the best tour of a decision
maker under a linear utility function.

Shimamoto et al. (2010) study a problem for which paths have to be found for
various origin and destination nodes of the graph. More specifically, they analyze
an existing bus network. In this case, there is no product to ship but the model has
to consider the passengers’ behavior. To do so, it is formulated as a bi-level
optimization problem. The upper problem minimizes costs for both passengers
(total travel cost) and operators (total operational cost) while the lower problem
deals with the transit assignment. An NSGA-II is proposed to solve a study case on
demand data from Hiroshima City.

When deliveries have to be made through a supply chain, the aim might be to
design the distribution network. Cintron et al. (2010) describe a multiple criteria
mixed-integer linear program to determine the optimal configuration of the man-
ufacturing plants, distributors, and customers in a distribution network and to
design the flow of products in this system. In other words, for each customer the
model chooses the best option for receiving products based on several criteria:
profit, lead time, power, credit performance, and distributors’ reputation. The
options to supply the products are delivery from (1) the regional distribution center
(DC), (2) the manufacturing plant, (3) an independent distributor who is supplied
from the regional DC, or (4) an independent distributor who is supplied directly
from a manufacturing plant. Tests are performed on real data from a consumer
goods company and under multiple scenarios to reflect the variability in demand.

Still working on a supply chain within a three-level logistic network, Rajaba-
lipour-Cheshmehgaz et al. (2013) propose to find compromise solutions through a
customized Pareto-based multi-objective evolutionary algorithm, NSGA-II. In this
study, the levels are some potential suppliers, distributed centers, and consumers
with deterministic demands for a period of time. As in Cintron et al. (2010), some
flexibility is possible with potential direct shipments from suppliers to consumers.
This is motivated here by the option of capacitated facilities (suppliers and dis-
tributed centers). So the problems are formulated into four individual logistic

1 A Survey on Multi-criteria Analysis in Logistics 17



network models varying with the flexibility option and/or the capacitated facilities.
The main objective is to calculate the status (open or close) of facilities and
transportation links in order to minimize the response time to consumers, the
transportation cost, and the facility costs, simultaneously and without considering
prior knowledge, through the seasonal network (re)design.

Marjani et al. (2012) consider a supply chain in which distribution centers
operate as transfer points (cross-docking) to obtain a least storage all along the
system. The coordination of cross-docks is then crucial. The authors considered
multi-type and time-restricted pickups and deliveries, transshipment possibility
among cross-docks and tardiness permission for some pickups. They modeled the
distribution planning problem of the cross-docking network through a bi-objective
integer programming model minimizing total transportation and holding costs and
total tardiness. They also propose a heuristic procedure to construct an initial
solution and three frameworks based on variable neighborhood search, tabu
search, and simulated annealing, respectively.

Concerning problems dealing with transfer points, a particular case is the
multimodal transport, i.e., routes performed by at least two different means of
transport. Androutsopoulos and Zografos (2009) study the determination of non-
dominated itineraries when paths enhanced with scheduled departures have to be
made in a multimodal network with time-dependent travel times. The authors
propose to decompose the problem into elementary itinerary subproblems, solved
by a dynamic programming algorithm. Si et al. (2011) work on urban multimodal
traffic network and study environmental pollution and energy consumption for
such a system, in addition to minimizing the total travel time. The multi-criterion
system optimization problem also dealt with factors, such as travelers’ conve-
nience which influence their behaviors. A bi-level programming model is pro-
posed, in which the multi-objective optimization model is treated as the upper
level problem and a combined assignment model to manage to convenience is
processed as the lower level problem. The solution algorithms are given through a
single numerical example.

Finally, a mixed between the shortest path, the bus routing and the multi-modal
problems, is considered by Artigues et al. (2011). They propose several label
setting algorithms for computing the itinerary of an individual in urban trans-
portation networks. Mode restrictions are considered under the concept of viable
path, modeled by a non-deterministic finite state automaton (NFA). The aim is the
minimization of the travel time and of the number of modal transfers. They show
that this bi-objective problem is polynomial in both the number of arcs and nodes
of the transportation network and the number of states of the NFA. They also
propose dominance rules that allow reducing significantly both the CPU times and
the number of visited labels for all algorithms. Tests of their algorithms are per-
formed on a realistic urban network and on an expanded graph.
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1.6 Classification of the Literature

This section is dedicated to the summary of the bibliographical review on multi-
criteria routing problems. As said before, we are only aware of two published
surveys on the subject: Boffey (1995) and Jozefowiez et al. (2008b). Thus, the
papers listed here are mainly the ones which have been published over the last
half-decade.

Real-life routing problems often consist of a large number of different con-
straints and objectives; this makes difficult their classification into any specific
group of VRPs. Several academic studies listed in the previous sections have
aspects that relate them to real-life cases since they have included complex con-
straints and/or objective functions. The classification proposed here is made
through four tables (Tables 1.1, 1.2, 1.3, and 1.4), one per main group of routing
problems, giving an overview of the published papers which are presented in an
ascending chronological order.

In each table, the first column provides the authors and the publication year of
the mentioned paper, so that the interested reader can easily refer to the bibliog-
raphy section. The second column specifies the problem under consideration.
Column 3 recalls the objective functions, with minimize and maximize. Finally,
the last column indicates the approach used to solve the problem.

Table 1.1 contains the main publications on classical routing problems and their
variants, the most investigated in multi-objective optimization concerning time
constrained attributes. This group is the largest with 14 papers. Table 1.2 is
dedicated to routing problems with depots. Such kinds of problems are less
studied, but this is not surprising since the same is also observed in the mono-
objective version. Table 1.3 encloses particular routing problems in which all the
customers do not need to be visited. Finally, Table 1.4 covers some extra problems
encountered in logistics and involving routing decisions.

Across these tables, an interesting feature clearly appears. A number of the
latest papers are dedicated to relief/military contexts or are at least related to a
service to maximize; these are marked by a double asterisk (**) in front of the
author names. This feature is mainly true for routing problems with optional
services since they can be naturally closer to such concern, but also for routing
with depots. On the contrary, no reference on this kind of issue is quoted in
Table 1.1. However, in an interesting paper, Campbell et al. (2008) propose
methodologies to deal with two unusual objective functions for a TSP and a
CVRP: one that minimizes the maximum arrival time and the other that minimizes
the average arrival time. These criteria are very relevant in a disaster relief context.
Even if this is not a multi-objective optimization, the aim of the paper is mainly to
show how much impact new objective functions could have on the solutions
through approaches based on insertion and local search techniques. Results
underline the significant improvements in service to population affected by the
disaster.
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1.7 Conclusion

This work aims to survey the literature dedicated to routing problems and focusses
mainly on works which appeared after the review made by Jozefowiez et al.
(2008b). We classify the studies on main categories of routing problems clearly
identified as multi-objective ones. For some works, when it is not easy to make this
classification, we try to keep connection on the different variants presented.
Therefore, four main categories are proposed: (1) classical routing problems and
their variants concerning time constrained attributes, (2) routing problems with
depots, (3) routing problems in which all the customers do not need to be visited,
and (4) some extra problems encountered in logistics involving routing decisions.

Over the last half decade, one can observe a growing attention to multi-criteria
routing problems. This is due to their numerous real applications and there is still
much work to do toward both applications and methodologies. Considering the
current state of the literature, we recognize at least two emergent and interesting
application fields to be more explored: (1) the first concerns routing problems in
military, disaster relief and humanitarian logistics which, in our opinion, disserves

Table 1.2 Vehicle routing with several depots

Authors/year Problem studied Objective functions Used approach

Lau et al. (2009) Multi-depot
VRP (MDVRP)

Minimize total traveled
distance

Fuzzy logic guided
NSGA-II

Minimize total traveling
time

**Tavakkoli-
Moghaddam
et al. (2010)

Location-routing Minimize total cost (setup
cost of the facility,
fixed and variable
depot costs, and
routing cost) Maximize
total satisfied demand

Multi-objective scatter
searchProblem (LRP)

**Coutinho-
Rodrigues
et al. (2012)

Location of shelters
and evacuation
path design in
disaster relief
context

Minimize total traveled
distance for primary
and backup paths to
shelters, the risk on
primary paths and at
the shelters, total time
required to transfer
people from shelters to
hospitals, number of
shelters

Simulation

**Rath and
Gutjahr
(2011)

LRP Minimize the fixed costs
for depots and vehicles

e-constraint method
Matheuristic (mixed

integer program
formulation combined
to a variable
neighborhood search)

Mininimize operative cost
(routing and
warehousing)

Maximize the covered
demand
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Table 1.3 Routing with optional services (Covering tour-routing with profits)

Authors/year Problem studied Objective functions Used approach

**Viswanath
and Peeta
(2003)

Multi-commodity
maximal
covering
network
design
problem

Minimize total traveling
time

Branch-and-cut

Maximize total population
covered

Riera-Ledesma
and Juan
José Salazar-
González
(2005)

Traveling
purchaser
(salesman)
problem

Minimize travel cost Mixed integer linear
programming model
used in a cutting plane
algorithm

Minimize purchase cost

**Jozefowiez
et al. (2007)

Covering tour
problem
(CTP)

Minimize tour cost Combined evolutionary
algorithm/branch-and-
cut algorithm

Minimize the cover (the
maximal walking
distance to node in the
tour)

**Tzeng et al.
(2007)

Multiple objective
relief-
distribution
problem

Minimize total cost Fuzzy multi-objective
programmingMinimize total travel time

Maximize minimal
satisfaction

Jozefowiez et al.
(2008a)

Traveling
salesman
problem with
profits (TSPP)

Minimize tour length Hybrid ejection chain local
search/multi-objective
evolutionary algorithm

Maximize collected profits

Bérubé et al.
(2009)

TSPP Maximize collected profit e-constraint method
Minimize travel costs

Schilde et al.
(2009)

Orienteering
problem (OP)
with two kind
of profits/
nodes

Maximize both kinds of
collected profits

Hybrid ant colony system
with path relinking

Hybrid variable
neighborhood search
with path relinking
method

**Nolz et al.
(2010)

Multi-vehicle
CTP

Minimize distance between
population and
distribution points

Hybrid method based on
genetic algorithms,
variable neighborhood
search and path
relinking

Minimize total cost

Labadie et al.
(2011)

Multiple TSPP Maximize collected profit NSGA-II based
evolutionary algorithmMinimize travel costs

**Vitoriano
et al. (2011)

Humanitarian aid
distribution
problem

Different criteria in terms of
cost, time, reliability,
security, and fairness

Goal programming
approach

**Tricoire et al.
(2012)

CTP with
stochastic
demands

Minimize total cost (opening
cost of centers plus
routing cost). Minimize
the expected uncovered
demand

Combined branch-and-cut
and e-constraint
algorithm
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Table 1.4 Path, flow, and network design

Authors/year Problem studied Objective functions Approach used

Androutsopoulos
and Zografos
(2009)

Multi-modal paths
with time-
dependent travel
times

Several criteria such as the
minimization of the
total cost, time, and
transfer points

Decomposition method
enhanced with a
dynamic
programming
approach

Pinto et al. (2009) Tri-criterion
shortest Path
problem (SPP)

Minimize cost and two
bottleneck objective
functions

Pareto-based labeling
procedure

Raith and Ehrgott
(2009)

SPP with two cost
values/edges

Minimize simultaneously
both costs

Comparative study of the
different resolution
strategies

Cintron et al.
(2010)

Supply chain design Several criteria: profit, lead
time, power, credit
performance, and
distributors’ reputation

Simulation

Ghoseiri and
Nadjari
(2010)

Multi-criteria SPP Minimize two objectives
based on costs

Multi-objective ant
colony optimization

Pinto and Pascoal
(2010)

Tri-criterion SPP Minimize cost and two
bottleneck objective
functions

Improved version of their
algorithm from 2009

Shimamoto et al.
(2010)

Multiple origin–
destination SPP

Minimize costs for both
passengers (total travel
cost) and operators
(total operational cost)
in the first, while the
second deals with the
transit assignment

Bi-level optimization
NSGAII-based
approach

Artigues et al.
(2011)

Multimodal shortest
path
computation in
urban
transportation
network

Minimize travel time Label setting algorithms
Minimize number of modal

transfers

Reinhardt and
Pisinger
(2011)

Multi-criteria SPP Comparison of several
criteria such as the
minimization of the
total cost, time, and
transfer points

General framework for
dominance tests

Si et al. (2011) Urban multimodal
traffic network

Minimize traffic
congestion, air
pollution, and energy
consumption

Bi-level approach

(continued)
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more research in the next years; (2) the second research direction can be oriented
toward routing problems in logistics related to the service sector, such as for
example maintenance and bus routing problems, where a compromise has to be
made between routing costs and the quality of the service.

When examining the summary presented in this review, one can see that most
of the developed approaches are based on multi-objective genetic algorithms. The
reason that such resolution methods are often chosen is, in our opinion, due to their
proven performance on previous studies dealing with combinatorial problems and
also due to their ease of implementation. Other metaheuristics known to be effi-
cient in solving vehicle routing problems, such as tabu search or large neighbor-
hood search, must be explored in-depth to adapt them efficiently to the multi-
criteria case.
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Chapter 2
Multi-objective Approaches for Design
of Assembly Lines

X. Delorme, O. Battaïa and A. Dolgui

Abstract This chapter deals with the use of multi-objective approaches in the
field of assembly line design. The design of assembly or transfer lines is a very
important industrial problem, which involves various difficult and interconnected
optimization problems. A review of the main multi-objective optimization meth-
ods used for these problems is presented and discussed. A case study is also
described in order to highlight some interesting properties associated with such
multi-objective problems.

Keywords Assembly lines � Line balancing � Multi-objective optimization �
Design

2.1 Assembly Line Design

Assembly or transfer lines are production systems which are composed of several
workstations organized in a serial manner. Each part successively visits each
workstation by moving from one workstation to the next thanks to a linear
transportation system, for example, a conveyor belt. Serial flow lines have been
initially introduced for the production of large amounts of standardized products
(mass-production), but are now also used for the production of families of products
with low volume.

Assembly lines are intensively used in various industries (e.g., automotive or
electronics) and their properties have been described in scientific literature (Nof
et al. 1997).
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2.1.1 Main Steps of Assembly Line Design

In order to design an assembly line, several important steps (see Fig. 2.1) are
usually required:

1. Product(s) analysis: the aim of this step is to provide a complete description of
the elementary operations to execute in order to obtain the product(s).

2. Process planning: it covers the selection of processes required to obtain the final
product(s) and the definition of technological constraints. For instance, a partial
order between operations (precedence constraints) is usually defined but vari-
ous other restrictions have often to be considered. This step requires an accurate
understanding of the functional specifications of the products as well as tech-
nological conditions for the operations.

3. Line configuration: this step defines the configuration design which implies the
choice of the type of assembly line (e.g., pure serial flow line, hybrid flow shop
with parallel stations or U-line), the selection of the equipment needed to
perform the operations and the solution of a balancing problem, that is, the
allocation of operations to workstations. It is imperative to consider all the
technological constraints. At this step, a security margin often has to be con-
sidered in order to take into account failures, quality problems and also possible
slight modifications of the product.

4. Line layout and transport system design: the material handling system is
selected and the layout (placement of machines) is chosen. Products flow is
analyzed, usually via simulation, to take into account random events and var-
iability in production.

5. Detailed design and line implementation.

• Product characteristics
• Prevision ofdemand

• Product analysis
• Process planning
• Line configuration
• Line layout 

Preliminary solution:
• Line configuration and layout
• Estimated investment cost
• Estimated throughput

• Detailed design
• Possible modifications of product
• Adjustment of demand prevision

Line implementation

Reconfiguration

Production

Fig. 2.1 Assembly lines design and reconfigurations
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In addition, two other steps can eventually occur after the implementation of the
line:

• When the line is designed for the production of several products, a scheduling
problem has to be considered in order to determine the sequence of the mix of
products.

• When the demand is subject to market fluctuations either in volume or char-
acteristics of the product, the line has to undergo a reconfiguration. A recon-
figuration has many similarities with the initial design but the existing line
induces specific limitations and objectives.

Considering the complexity of the whole problem, these steps are usually
considered sequentially. If the goal of the first two steps is to provide information
on the process, the third step corresponds to a combinatorial problem whose
objective is to optimize various objectives: minimizing investment costs or future
labor costs, maximizing the production rate, minimizing idle times, and smoothing
the workload among the workstations.

2.1.2 Line Configuration

Indeed, line configuration is of utmost importance since competitiveness and
profitability depend directly on it and this problem has generated a massive
amount of scientific publications. Initial studies on this problem have mostly
focused on a simple version of the sole balancing problem (SALBP—simple
assembly line balancing problem) with only one objective to optimize (number of
workstations, production rate, or idle time) and no constraint outside of prece-
dence. Considering the equipment selection and balancing problems independently
can make sense, for example, when the equipment selection problem is trivial,
either because the resources are interchangeable (e.g., operators without specific
competence) or because a particular resource has to be used for each operation
(e.g., tools in some lines), but it can be restrictive in many cases. Similarly, most
industrial cases involve various technological constraints beside the precedence
constraints.

Thus, recent studies have tried to reduce the gap between industrial applications
and academic problems. Among the reasons explaining this gap, one of the most
important reasons is the difficulty to effectively assess the global performance of a
line configuration with a sole criterion. Some studies have considered the criterion
of profit maximization to evaluate globally the solutions obtained, but such
approaches seem more difficult to apply with increasingly shorter product runs and
the growing uncertainty on future demand.

The rest of the chapter is organized as follows. Section 2.2 presents a review of
the main multi-objective optimization approaches used for the design of assembly
lines such as aggregative and Pareto dominance-based methods. A case study
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taken from automotive industry is considered in Sect. 2.3. Conclusions and
research perspectives are discussed in Sect. 2.4.

2.2 Review of Literature in Multi-objective Assembly
Line Optimization

The need to consider multi-objectives in research on assembly line has indeed
grown progressively during the last 20 years. Obviously, considering several
usually conflicting objective functions to evaluate the quality of feasible solutions
instead of a sole one leads to more complex optimization problems.

In this section, we will discuss the main publications from literature on multi-
objective decision-making in line balancing. The methods developed in these
publications can be split into two main categories: aggregative methods and
Pareto-dominance-based methods.

2.2.1 Aggregative Methods

With aggregative methods, authors actually make the assumption that the pref-
erences of the decision-maker can be known a priori. As a consequence, they can
define a relationship between the objectives which allows aggregating them. In
assembly design, the most commonly used aggregation functions are:

• Lexicographic order, when no compensation is possible between objectives and
a priority order can be defined among them.

• Weighted sum, when compensation is fully allowed between objectives with
respect to pre-defined substitution rates (i.e., weights).

• Goal programming, when target values (i.e., goals) can be defined for each
criterion and the objective is to minimize the deviation from these targets.

2.2.1.1 Lexicographic Order

The first papers using a lexicographic order to aggregate several objective func-
tions for assembly line problems have focused on mixed-model line balancing
problems or flexible manufacturing systems. (Gökçen and Erel 1997) studied a
problem with three objectives to optimize: the number of workstations, the cycle
time, and an objective related to a soft constraint on incompatible zoning. They
proposed a preemptive goal programming model inspired from (Deckro and
Rangachari 1990) (see Sect. 2.2.1.3) for more details) but their methods actually
acts as a lexicographic approach.
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In (Sawik 1998), the author considered a line balancing problem combined with
parts routing in a flexible assembly system. A two-phase heuristic was proposed to
minimize lexicographically the cycle time and the total interstation transfer time.

Pastor et al. (2002) worked on an industrial application corresponding to a
multiproduct assembly line balancing problem with four objectives considered in
lexicographic order: overall production rate, workload smoothness, cycle time
disparity between the different product types, and uniformity of tasks in each
workstation. The problem was tackled with two tabu search algorithms which were
applied sequentially.

Özcan and Toklu (2009a, b) studied a line balancing problem for the mixed-
model two-sided assembly lines. Two performance objectives were considered
simultaneously: maximizing the weighted line efficiency and minimizing the
weighted smoothness index. They proposed tabu search and simulated annealing
algorithms, respectively.

There are also publications on single-model assembly line balancing problems
(ALBP). Baykasoğlu (2006) studied two versions of an assembly line balancing
problem: straight and U-type line. A multi-rule simulated annealing algorithm was
proposed in order to optimize a smoothness index as primary objective and the
number of workstation as secondary objective.

The balancing problem associated with U-lines was also investigated by
(Gökçen and Ağpak 2006). As in (Gökçen and Erel 1997), the proposed method
was inspired from the goal programming model of (Deckro and Rangachari 1990)
but was tuned to act as a lexicographic approach. The primary objective to min-
imize was the number of workstations, with the cycle time as secondary objective
and a tertiary objective corresponding to the minimization of the maximal number
of tasks assigned per workstation.

Özcan and Toklu (2010) considered two-sided assembly lines with sequence-
dependent setup times between tasks. Performing a task directly before another
task may influence the latter task inside the same station, because a setup for
performing the latter task may be required. Furthermore, if a task is assigned to a
station as the last one, then it may cause a setup for performing the first task
assigned to that station since the tasks are performed cyclically. A mixed integer
program (MIP) was proposed to model and solve the problem. The proposed MIP
minimizes the number of mated-stations (i.e., the line length) as the primary
objective and it minimizes the number of stations (i.e., the number of operators) as
a secondary objective for a given cycle time. A heuristic approach (2-COMSOAL/S)
for especially solving large-size problems based on COMSOAL (computer method of
sequencing operations for assembly lines) was also presented.

Fattahi et al. (2011) extended the case of two-sided lines to multimanned lines
where more than two workers can work at each workstation. A MIP was proposed
to solve the balancing problem of the multimanned assembly lines optimally. This
model minimizes the total number of workers on the line as the first objective and
the number of opened multimanned workstations as the second one. A heuristic
based on the ant colony optimization approach was developed to solve the
medium- and large-size scales of this problem.
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Pastor (2011) introduced a new type of assembly line balancing problem which
consists to not only minimize the workload of the most heavily loaded worksta-
tion, but then the workload of the second most heavily loaded workstations, then
the third, and so on. By nature, such a problem is obviously multi-objective.

Lastly, lexicographic order has also been considered in (Gupta and McGovern
2004) for a disassembly line balancing problem. An ant colony algorithm was
proposed which primary sought to minimize the number of workstations, and then
to optimize the workload smoothness and the position of hazardous parts in the
sequence.

2.2.1.2 Weighted Sum

Contrary to the lexicographic order, the weighted sum was initially used on single-
model ALBP. One of the first use of a weighted sum for assembly line balancing
was presented by (Leu et al. 1994) as an extension of their work on the use of
genetic algorithms to tackle line balancing problems with various objectives. They
illustrated their idea with two objectives, namely, workload smoothness and idle
time, and suggested to use different weights to obtain several different trade-offs.

In (Ponnambalam et al. 2000), a genetic algorithm was presented for a SALBP.
The proposed algorithm sought to optimize a weighted sum of the number of
workstations, the line efficiency and a smoothness index. Similarly,
Suwannarongsri and Puangdownreong (2009) proposed a tabu search algorithm to
optimize a weighted of the same objectives plus the idle time.

Hamta et al. (2011) formulated a flexible task time assembly line balancing
problem. Task processing time could be between lower and upper bounds asso-
ciated with each type of machine available. The machines could compress the
processing time of tasks, but this action lead to higher cost. This cost was
described in terms of task time via a linear function. A bi-objective nonlinear
integer programming model was developed which comprises two inconsistent
objective functions: minimizing the cycle time and minimizing the machine total
costs. The LP-metric was used to combine these objectives. A genetic algorithm
was developed to solve this problem.

Zacharia and Nearchou (2012) presented a fuzzy extension of the SALBP of
type 2 with fuzzy task processing times formulated by triangular fuzzy member-
ship functions. The total fuzzy cost function was formulated as the weighted-sum
of two bi-objectives fuzzy objectives: (a) minimizing the fuzzy cycle time and the
fuzzy smoothness index of the workload of the line; (b) minimizing the fuzzy
cycle time of the line and the fuzzy balance delay time of the workstations.
A multi-objective genetic algorithm was applied to solve the problem.

Purnomo et al. (2013) considered single model two-sided assembly line prob-
lem. The aim of the model was minimizing the cycle time for a given number of
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mated-workstations and balancing the workstation simultaneously. Genetic algo-
rithm and iterative first-fit rule were used to solve the problem. Based on the
experiments, the iterative first-fit rule could take the advantage of finding the best
position over many workstations and the genetic algorithm provided more flexible
task assignment and was significantly faster than the iterative first-fit rule.

By comparison with single-model problems, the use of weighted sum on mixed-
model assembly line problems is rather recent. The only exception corresponds to
the work of (Sawik 1997) which considered a weighted sum for his combined
balancing and routing problem previously to his work on lexicographic order
(Sawik 1998). The main interest of the proposed approach was the interactive
procedure with the decision-maker in order to set the value of the weights.

Kara et al. (2007) considered this approach for a combined balancing and
sequencing problem in a mixed-model U-line. One objective (workload smooth-
ness) was related to the balancing problem, but the two others (setup cost,
smoothness of parts’ usage rate) corresponded to the sequencing problem. A
simulated annealing algorithm was used in this study. The same combined prob-
lem was also studied by (Hwang and Katayama 2010) but with different objec-
tives: two associated with the balancing problem (line efficiency, workload
smoothness) and one with the sequencing problem (difference between the actual
and average workload).

Hwang and Katayama (2009), proposed an evolutionary approach to deal with
workload balancing problems in mixed-model U-shaped lines. The performance
objectives considered are the number of workstations and the variation of work-
load, simultaneously.

Simaria et al. (2009) worked on the same problem of mixed-model two-sided
assembly lines than (Özcan and Toklu 2009a) and proposed an ant colony opti-
misation algorithm, which optimizes a weighted sum of line efficiency and
smoothness index.

Kara et al. (2011) studied mixed-model assembly lines with the duplication of
common tasks for several models. Three goals relevant to MALB-CD were con-
sidered in two pre-emptive goal programming models, one with precise and the
other with fuzzy goals, namely minimizing the number of workstations, the cycle
time and the total cost required to duplicate common tasks.

Beside these works on deterministic line balancing, (McMullen and Frazier
1998) has proposed a simulated annealing using a weighted sum to deal with a
stochastic assembly line balancing problem with parallel stations. The objectives
considered in this study were the total labor and equipment cost, workload
smoothness, and a probability of lateness.

2.2.1.3 Goal Programming

Goal programming has been one of the first aggregation methods used on multi-
objective assembly line problems. Indeed (Deckro and Rangachari 1990) studied a
single-model assembly line balancing and proposed an integer linear program with
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goals to reach for the number of workstations, the cycle time and some soft
constraints. Alongside this work, (Malakooti 1991) suggested a goal programming
approach for another line balancing problem with the same first two objectives and
a third objective corresponding to operating costs instead of the soft constraints.

However, goal programming has actually generated interest in literature by
comparison with lexicographic order or weighted sum, and these publications have
merely focused on single-model ALBP. More recently, some works have con-
sidered a fuzzy extension of goal programming. (Toklu and Özcan 2008) presented
a fuzzy goal programming model for the single-model U-line balancing problem
with multiple objectives. The first fuzzy goal was the number of workstations in
the U-line. The second fuzzy goal was the cycle time. The third fuzzy goal was the
maximal number of tasks which were assigned to each workstation in the U-line. A
similar approach was used by (Cheshmehgaz et al. 2012) for an assembly line
balancing problem with specific objectives related to the ergonomics of the line
(posture diversity and accumulated risk posture).

2.2.1.4 Other Aggregative Functions

More anecdotally, some other aggregation methods have been considered for line
balancing problems. (Duta et al. 2003) studied a disassembly line balancing
problem with two objectives which were aggregated using a ratio function: the
outcomes resulting from the valorization of components were divided by the cycle
time.

A more sophisticated approach was used in (Gamberini et al. 2006) for a
stochastic assembly line reconfiguration problem. In this study, the two objectives
considered (labor and incompletion costs, task reassignment) were aggregated
using a rank function based on TOPSIS which calculated a distance measure to the
ideal and nadir values. Also using a distance measure, (Hamta et al. 2013) worked
on an assembly line balancing problem with setup times and operational times
varying according to a learning curve. They used a particle swarm optimization
algorithm hybridized with a Variable Neighborhood Search to optimize a com-
bination of cycle time, equipment cost and a smoothness index. The main pecu-
liarity of this study was to aggregate these three objectives by using a weighted
sum of the distances between the solution considered and a lower bound on each
objective.

Finally, some other works could, to some extent, also be considered as multi-
objective. For example, the works on SALBP-E deal with two objectives, cycle
time and number of workstations, and use the multiplication operator to aggregate
both objectives. Another important example of such an implicit aggregation of
several objectives comes from profit oriented methods.
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2.2.2 Pareto Dominance-based Methods

With Pareto dominance-based methods, authors suppose that the preferences of the
decision-maker are unknown. As a consequence, they try to provide a list of
interesting trade-offs between the objectives rather than a lone solution. These
trade-offs are usually defined by using the Pareto dominance.

Malakooti (1991) was one of the first to study the Pareto front of some single-
model ALBP as he tried to deduce some useful properties for a resolution. Fol-
lowing this work, Malakooti and Kumar (1996) proposed a multi-objectives
decision support system for ALBP. In their study, they considered five objectives
(number of workstations, cycle time, total cost of operations, production rate, and
buffer size) but the article actually focused more on interactions with the decision-
maker rather than on the optimization problem.

After these works, researches on Pareto-dominance based methods for single-
model ALBP have mostly focused on algorithmic methods seeking to approximate
the Pareto front. Indeed, in a study of several genetic operators for ALBP with
various objectives, Kim et al. (1996) suggested an extension to multi-objective
genetic algorithms (MOGA).

Nearchou (2008) considered two versions of the single-model ALBP with two
bi-objective: (1) minimizing the cycle time of the assembly line and the balance
delay time of the workstations; (2) minimizing the cycle time and the smoothness
index of the workload of the line. A new population heuristic was proposed to
solve the problem based on the general differential evolution method. The cost
function was represented by a weighted-sum of multiple objectives functions with
self-adapted weights. The efficiency of the algorithm MODE was compared to a
weighted sum Pareto genetic algorithm (GA), and a Pareto-niched GA. The
experimental comparisons showed a promising high quality performance for
MODE approach. For the second version of the problem, a MODE approach with a
new acceptance scheme based on the Pareto dominance concept and a new
evaluation scheme based on TOPSIS was proposed by (Nourmohammadi and
Zandieh 2011) and a particle swarm optimization algorithm was developed by
(Nearchou 2011).

Hwang et al. (2008) presented a MOGA to solve the single-model U-shaped
ALBP. The objectives considered were the number of workstations (the line
efficiency) and the variation of workload. Chutima and Olanviwatchai (2010)
extended the formulation of Hwang and Katayama (2009) by adding a third
objective of minimum work relatedness and proposed an evolutionary method with
coincidence algorithm. The same problem but with different objectives
(cycle time, variation of workload and total operators cost) was studied by
(Zhang and Gen 2011) who proposed a generalized Pareto-based scale-indepen-
dent fitness function genetic algorithm (gp-siffGA) to solve it.

Chica et al. (2010) considered time and space ALBP with the joint minimi-
zation of the number and the area of the stations given a fixed cycle time limit and
proposed a random greedy search algorithm. Other algorithms were also developed
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for the same problem: NSGA-II (Chica et al. 2011a) and ant colony optimisation
(Chica et al. 2011b). Finally, Chica et al. (2012) developed memetic versions of
these algorithms with a multi-objective local search procedure. The memetic
advanced NSGA-II showed its excellent performance, obtaining the best solutions.

Similarly, Rekiek et al. (2001) worked on a GA for a line balancing problem
with equipment selection. The fitness evaluation of the proposed algorithm was
based on the multi-objective decision analysis method Promethee II to order the
solutions of the population.

In (Bukchin and Masin 2004), the authors studied a multi-objective ALBP with
equipment selection for team oriented assembly systems. The objectives consid-
ered were the number of teams, the flowtime (which corresponded to inventory
costs) and two objectives related to team oriented assembly systems. They pro-
posed a branch-and-bound algorithm to generate the efficient set as well as some
heuristics.

Chen and Ho (2005) considered a specific case of ALBP with equipment
selection but without precedence constraints. A MOGA were proposed to obtain
potentially efficient solutions for four objectives: total flow time, workload
smoothness, cycle time, and tools cost.

Pekin and Azizoglu (2008) addressed the assembly line configuration problem
of assigning tasks and equipment to workstations where several equipment alter-
natives are possible for each task. Minimizing the total equipment cost and the
number of work stations were considered together. A branch-and-bound algorithm
with powerful reduction and bounding mechanisms was developed.

A multi-objective evolutionary algorithm was also presented in (Shin et al.
2011) with three objectives under consideration: workload smoothness, part
movements and tools changes. The approximation of Pareto front obtained by this
approach was compared with the solutions from two classic MOGA (NSGA-II and
SPEA 2).

Yoosefelahi et al. (2012) considered a robotic ALBP with the following
objectives: to minimize the cycle time, robot setup costs and robot costs. Three
versions of multi-objective evolution strategies were developed to solve this
problem.

Recently, Yang et al. (2013) addressed the reconfiguration problem for a
mixed-model assembly line with seasonal demands. The problem was to reassign
assembly tasks and operators to candidate stations under the constraint of a given
cycle time. The objectives were to minimize the number of stations, workload
variation at each station for different models, and rebalancing cost. A MOGA was
proposed to solve this problem. A non-dominated ranking method was used to
evaluate the fitness of each chromosome. A local search procedure was developed
to enhance the search ability of the proposed MOGA.

Chutima and Chimklai (2012) extended the problem of (Özcan and Toklu
2009a) by considering three objectives: (1) to minimize the number of mated-
stations, (2) to minimizing the number of workstations or operators, and (3) the
tertiary objective consisted of two conflicting sub-objectives to be optimized
simultaneously, that is, to maximize work relatedness and minimize workload
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smoothness. They developed a particle swarm optimization (PSO) algorithm with
negative knowledge (PSONK) to solve this problem. In addition, a local search
scheme (2-Opt) was embedded into PSONK (called M-PSONK) in order to
improved Pareto frontiers obtained.

Another field that has generated some publications corresponds to stochastic
ALBP. McMullen and Tarasewich (2006) studied this problem considering four
objectives: total cost, probability of lateness, number of workers, and usage rate.
They proposed a multi-objective method based on the ACO principles.

Gamberini et al. (2009) considered a stochastic assembly line reconfiguration
problem with two joint objectives, total expected completion cost of the new line
and similarity between the new and the existing line. A multiple single-pass
heuristic algorithm was developed for the purpose of finding the most complete set
of nondominated solutions representing the Pareto front of the problem. A multi-
objective genetic algorithm was also developed but showed worse results than the
heuristic algorithm.

Cakir et al. (2011) dealt with multi-objective optimization of a single-model
stochastic ALBP with parallel stations. The objectives were as follows: (1) min-
imization of the smoothness index and (2) minimization of the design cost. To
obtain Pareto-optimal solutions for the problem, an algorithm, based on simulated
annealing (SA) was developed. It implemented a multinomial probability mass
function approach, tabu list, repair algorithms and a diversification strategy.

Finally, Ding et al. (2010) extended the work of (Gupta and McGovern 2004)
on disassembly line balancing by proposing a multi-objective ACO which used an
evaluation based on the Pareto-dominance and a niching method.

2.3 Case Study of a Reconfigurable Transfer Line

2.3.1 Problem Description

In this section, we will study a multi-objective problem associated with the design
of a reconfigurable machining line (RML). As introduced by (Koren et al. 1999),
reconfigurable manufacturing systems are designed to allow easy changes in their
physical configuration to answer market fluctuations in both volume and type of
product. To achieve this goal, the main required characteristics are: modularity,
integrability, customization, convertibility and diagnosability. The use of a RML is
motivated by the increasingly shorter product runs and the need for more cus-
tomization (see Fig. 2.2).

The line under consideration is paced and serial. As for classic assembly lines,
the configuration of machining lines corresponds to the assignment of a set of
processing operations to workstations which are equipped with a set of machines
tools. The usual constraints (processing time of each operation, precedence) must
be considered, but machining lines imply several other specific constraints:

2 Multi-objective Approaches for Design of Assembly Lines 41



• Some subsets of operations must be executed on the same workstation (inclusion
constraints);

• Some subsets of operations cannot be executed on the same workstation
(exclusion constraints).

Moreover, each workstation is composed of several identical computer
numerical controller (CNC) machine-tools to facilitate a future reconfiguration of
the line. Within a workstation, each CNC machine executes the same operations
(in parallel on different units of products). A part is held at a machine with some
fixtures in a given position (part fixing and clamping), but it is possible to rotate
the part. However, even after the part rotation or displacement, some sides and
elements of the part are not accessible for machining, and the operations which
must be processed on these hidden or covered areas cannot be executed (see
Fig. 2.3). Therefore, the choice of a part position for part fixing should be also
considered in the optimization procedure because it generates specific restrictions
for the assignment of operations to workstations.

Changes frequency

Productivity

Differences between products

Dedicated lines

Flexible lines

Reconfigurable lines

Fig. 2.2 Main differences between dedicated, flexible, and reconfigurable lines

Spindle head

Tool

Rotation axe

Fig. 2.3 Processing
restrictions due to part
position
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In such a line, all the operations assigned to a station are performed sequentially
by the same spindle, and thus sequence-dependent set-up times must be consid-
ered. Set-up times are related to the rotation of the part but also change and
displacement of the tool. Finally, the sequential execution of operations, as well as
the setup times, usually implies large workload times and, as a consequence,
parallel machines can be required at some stations in order to increase the pro-
duction rate. The interest of these lines as well as the main steps of their design has
been described in (Delorme et al. 2009).

Now let’s introduce the notations used for the various data associated with this
problem:
N set of operations to be assigned;
Pi set of all predecessors (direct and indirect) of operation

i. Precedence constraints define a partial relation of
order between operations;

ES set of subsets e 2 N of operations which must be
assigned to the same workstation. ES represents the
inclusion constraints; that is, the need to carrying out
fixed groups of operations on the same workstation;

ES set of pairs of operations i; jð Þ which cannot be assigned
to the same workstation (exclusion constraints); that is,
the impossibility of carrying out certain subsets of
operations on the same workstation. All pairs i; jð Þ in ES
are defined such that i\j

A set of possible part positions for part fixing in a
machining center;

Ai subset of part positions which allow to process operation
i Ai � Að Þ

ti operational time to process operation i;
ti;j setup time needed when operation j is processed directly

after operation i. The time required for the execution of
two sequential operations i; jð Þ is thus equal to
ti þ ti;j þ tj;

TMAX maximal cycle time considered for the line;
CoS cost associated with the opening of one workstation;
CoM cost of one CNC machine;
CoMAX maximal possible investment cost for the line;
M ¼ 1; . . .;MaMAXf g set of possible numbers of machines on a workstation.

When several identical CNC machines are installed on
the same workstation, the local cycle time of the
workstation is equal to the number of parallel machines
multiplied by the line cycle time (takt time);

OpMAX maximal number of operations which can be assigned to
a workstation;

StMAX maximal number of workstations on the line
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A solution of this problem, that is, a feasible line configuration, is composed of
several decisions:

• The number of workstations and the assignment of each operation to a work-
station (balancing problem);

• The sequence of the assigned operations for each workstation (scheduling
problem);

• The part fixing position and the number of CNC machines for each workstation
(equipment problem).

Moreover, the choice of a solution among the different feasible configurations is
actually a multi-objective problem since enterprises seek to minimize investment
cost, which depends on the number of workstations and the number of CNC
machines, and to maximize the throughput, which is equivalent to minimize the
cycle time, at the same time.

The resulting optimization problem is NP-Hard since the sole balancing or
scheduling problems are already NP-Hard even with only one objective. A mixed
integer programming (MIP) formulation has been proposed for single objective
version of this problem corresponding to the minimization of the investment cost
with an upper bound on the cycle time of the line (Essafi et al. 2010), but only
small size instances could be solved (less than 20 operations). As a consequence,
several heuristics have been proposed to deal with this problem (Essafi et al. 2012;
Borisovsky et al. 2012).

2.3.2 Some Interesting Properties for a Multi-objective
Optimization

Despite the difficulty of this problem, it presents some very interesting properties
which can be used during the optimization process. In this chapter, we will focus
on three main properties and discuss how they can be used to tackle the multi-
objective version of this problem.

2.3.2.1 Given the Sequence of Operations

Let’s consider a given sequence of the operations of set N. In this case, the
remaining decisions to be made are:

• The points in the sequence of operations where there is a change of workstation,
which corresponds to a balancing problem with a strict total order on operations;

• The part fixing position and the number of CNC machines for each workstation.
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These remaining decisions correspond to a multi-objective optimization prob-
lem which can be formulated with the following MIP:

MinimizeT ð2:1Þ

Minimize CoS�
X

i2N;k2M
xi;k þ CoM�

X
i2N;k2M

k � xi;k ð2:2Þ

s.t.
X

i2N;k2M
xi;k � StMAX ð2:3Þ

X
k2M

xi;k� 1; 8i 2 Nji\jNj ð2:4Þ
X

k2M
xn;k ¼ 1 ð2:5Þ

X
j2 i;iþOpMAX�1½ �; k2M

xj;k � 1; 8i 2 Nji� jNj � OpMAXþ 1 ð2:6Þ
X

l2 i;j½ �; k2M
xl;k � 1; 8 i; jð Þ 2 ES ð2:7Þ

X
j2 mini2e if g;maxi2e if g½ �; k2M

xj;k ¼ 0; 8e 2 ES ð2:8Þ
X

j2 i;max l� ij\k2 i;l½ �Ak 6¼;f g½ �; k2M
xj;k� 1; 8i 2 N ð2:9Þ

si� k � T þMaMAX� TMAX� 1�
X

k0 2M; k0 � k
xi;k0

� �
; 8i 2 N; k 2 M

ð2:10Þ

si� ti; 8i 2 N ð2:11Þ

si� si�1 þ ti þ ti�1;i �
X

j2N; ji�OpMAX� j� i
tj �

X
k2M

xi�1;k; 8i 2 Nji [ 1

ð2:12Þ

xi;k 2 0; 1f g; 8i 2 N; k 2 M ð2:13Þ

T � 0 ð2:14Þ

In this model (2.1–2.14), the decision variables xi;k are equal to 1 if operation i
is the last operation assigned to a workstation equipped with k CNC machines, si is
the workload time accumulated on the current workstation up to operation i, and T
correspond to the cycle time of the line. Note that a solution of this model does not
contain a decision on the part fixing positions but the constraint (1.9) ensures that
there exists at least one possible part position for each workstation so the
remaining decision is trivial.

This MIP can be used to obtain new solutions by setting various upper bounds
on one of the objective and optimizing the second objective. This method
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corresponds to an e-constraint approach. By this way, we can search for solutions
in specific areas of the objectives space.

Another way to deal with this multi-objective problem is to use an aggregative
function of the objectives. Various aggregative functions can be used for this
purpose, for example, one commonly used aggregation function in line balancing
is related to the notion of efficiency as in SALBP of type E. Here, maximizing the
efficiency of the line corresponds to the minimization of the multiplication of the
cost by the cycle time, which is equivalent to the minimization of the cost per unit
of product. The corresponding optimization problem can be formulated with the
following MIP:

Minimize
X

i2N;k2M
CoS� ri þ CoM� lið Þ ð2:15Þ

s.t.

ri� T � TMAX� 1�
X

k2M
xi;k

� �
; 8i 2 N ð2:16Þ

li� k � T � TMAX� 1�
X

k0 2M; jk0 � k
xi;k0
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; 8i 2 N; k 2 M ð2:17Þ

CoS�
X
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X
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T �TMAX ð2:19Þ
X
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X
k2M
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X
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X
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46 X. Delorme et al.



si� si�1 þ ti þ ti�1;i �
X

j2N; ji�OpMAX� j� i
tj �

X
k2M

xi�1;k; 8i 2 Nji [ 1

ð2:29Þ

xi;k 2 0; 1f g; 8i 2 N; k 2 M ð2:30Þ

ri; li� 0; 8i 2 N ð2:31Þ

T � 0 ð2:32Þ

In the second model (2.15–2.32), two additional decision variables are used: ri

is equal to the cycle time of the line if operation i is the last operation assigned to a
workstation, and li is equal to the cycle time of the line multiplied by the number
of CNC machines which equip the current workstation if operation i is the last
operation assigned to a workstation. The remainder of the model is similar to the
first model (2.1–2.14), save for constraints (2.18) and (2.19) which bound the cost
of the line and its cycle time, respectively.

2.3.2.2 Given the Assignment of Operations to Workstations

Let’s now consider a given assignment of all operations to workstations. In this
case, the remaining decisions to be made are:

• The sequence of operations for each workstation;
• The number of CNC machines for each workstation.

Note that the choice of the part fixing position is trivial as soon as the
assignment of operations to workstations is set. Moreover, both decisions to be
made can be considered sequentially: whatever number of CNC machines used in
a workstation, a nonoptimal sequence of operations can only imply more setup
time and thus cannot lead to a solution with a lower cost or cycle time.

The first decision corresponds to a single machine scheduling problem with
sequence-dependent setup time and precedence constraints which has to be solved
for each workstation. As shown by (Bigras et al. 2008), this problem is equivalent
to a time-dependent traveling salesman problem for which various MIP formu-
lations and algorithms have been proposed.

When the workload of each workstation is known, the second decision can be
easily obtained with the following procedure:

1. Generate a first solution S1 by assigning one CNC machine for each
workstation;

2. Calculate the cost and the cycle time of S1. Note that the cycle time is
determined by the workstation which has the larger workload; let’s denote this
workstation as w1
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3. Set index i to 1
4. If there are MaMAX CNC machines on workstation wi go to step 9
5. Generate solution Siþ1 by adding one CNC machine on workstation wi

6. Calculate the cost and the cycle time of Siþ1. Determine the workstation which
has the larger local cycle time; let’s denote this workstation as wiþ1

7. Increment index i of 1
8. Go to step 4
9. Set index p to i

10. End

This procedure allows obtaining a set S ¼ S1; . . .; Sp

� �
of solutions which are

not dominated by each other. Moreover, any other solution with the same
assignment of operations to workstations would necessary be dominated by at least
one of the solutions of S.

2.3.2.3 Duplicating and Combining of Workstations

Finally, let’s consider a solution corresponding to a feasible RML denoted X. The
cost and the cycle time of this solution are denoted C Xð Þ and T Xð Þ, respectively.
Let’s also suppose that we would like to find a solution with a lower cycle time
than X. In this case, we can actually decide to consider a production system X 2ð Þ

composed of two identical production lines X working in parallel. The cost of this
production system would have be twice the cost of X but its cycle time would be
half those of X. Such reasoning can be generalized with any number of parallel
production line as soon as the cost of the corresponding production system don’t
exceed the upper bound:

C X lð Þ� �
¼ l� C Xð Þ

T X lð Þ� �
¼ T Xð Þ

l

; 8l 2 2; . . .;LiMAXf gj
(

l� C Xð Þ�CoMAX

where LiMAX corresponds to the maximum number of parallel lines.

As a consequence, duplication permits to generate CoMAX
C Xð Þ � 1 new solutions

from any solution X. Note that all the solutions generated by this way will have the
same efficiency.

Similarly, we can decide to design a production system composed of two
different production lines, X and Y , working in parallel. Let’s denote the pro-
duction system resulting from the combination of X and Y as X þ Yh i. The cost
and cycle time of this production system can be calculated as follow:

C X þ Yh ið Þ ¼ C Xð Þ þ C Yð Þ
T X þ Yh ið Þ ¼ T Xð Þ�T Yð Þ

T Xð ÞþT Yð Þ

(
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We can easily demonstrate that the cycle time of the combined solution is
always lower than those of each initial line, which means that the solution gen-
erated by combination neither dominates nor is dominated by any of the initial
solutions.

2.3.3 Illustration on a Didactic Example

We will now illustrate some of these properties on a didactic example. All the
numerical data of the considered case are indicated in Tables 2.1 and 2.2.

Let’s consider the sequence of operations used to present the operations in
Table 2.1, that is, 1; 2; 3; . . .; 25; 26f g. Note that this sequence is feasible since it
respects all precedence constraints and there is no incompatible operation between
any two operations in inclusions.

Using this sequence, we can use the model (2.15–2.32) to obtain a feasible
solution of maximal efficiency. Using the solver IBM ILOG CPLEX 12.4 on a
computer Intel

�
CoreTM with 2.20 Ghz CPU and 8 Go of RAM, the optimal

solution of this problem (for the given sequence) is obtained in less than 3 s. This
solution is reported in Table 2.3. It corresponds to a single line with seven
workstations and 15 CNC machines.

Knowing this solution, we can use the procedure described in Sect. 2.3.2.2 as a
local search. The first step of this procedure is to determine the optimal sequence
of operations for each workstation. Considering the very small size of the seven
corresponding sequencing problems, their solution can be obtained nearly imme-
diately. The resulting solution is reported in Table 2.4. This solution actually
weakly dominates the initial solution in the sense of Pareto since its cycle time is
lower.

We can now apply the second step of the procedure in order to obtain a set S of
solutions. All the solutions generated are presented in Table 2.5. The last three
columns in this table indicate which workstations are equipped with 1, 2, and 3
CNC machines, respectively. For each solution, the workstation which has the
largest cycle time, and thus has no idle time, is indicated in bold. Note that the first
two solutions (S1 and S2) are unfeasible since they don’t respect the maximal cycle
time (these values are in italic), so we have generated seven non-dominated
solutions.

As indicated in Sect. 2.3.2.3, we can obtain additional solutions by duplicating
the solutions of the set S. A total of 18 new solutions can indeed be generated (see

Table 2.6); however, one of these solutions Sð3Þ9

� �
is unfeasible since its cost

exceeds the maximal value (this value is in italic).
Finally, we can also combine some of these solutions. For example, combining

the lines S3 and S9 would result in a production system with an overall cycle time
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of 13.93 and a total cost of 5,500,000. Similarly, we can also combine the solutions
duplicated with a solution of set S (but not two solutions duplicated together
because the maximal number of lines in parallel would be exceeded).

Obviously, many solutions generated by these different procedures are domi-
nated but we can extract 32 non-dominated solutions. Figure 2.4 presents the
corresponding Pareto front as well as the initial solution obtained by the model

Table 2.1 Numerical data of operations for the case study

Operation Processing
time

Direct
predecessors

Incompatible
operations

Operations on the
same station

Possible part
positions

1 10 – – 3 1, 2
2 20 1 – – 1, 2
3 15 – – 1 1, 2
4 12 2 6 – 1
5 10 – – – 1, 2
6 15 4 4 – 1, 2
7 8 – – – 1, 3
8 16 – – 10,13 2, 3
9 5 – – – 2, 3
10 7 – – 8,13 2, 3
11 10 2 – – 1, 2
12 4 – – – 1, 2
13 8 – – 8,10 1, 2, 3
14 12 11 – – 1, 3
15 10 2 – – 1, 2
16 5 15 – – 1, 2
17 7 – 18 – 2, 3
18 3 16 17 21 2, 3
19 4 – – – 1, 2, 3
20 6 – – – 1, 3
21 10 6, 14 22 18 2, 3
22 8 18, 21 21 – 1, 3
23 3 – – – 1, 3
24 4 22 – – 1, 2, 3
25 3 – – – 1, 3
26 7 24 – – 1, 2
Costs Workstation CoS ¼ 50; 000

CNC machine CoM ¼ 200; 000
Bounds Cycle time TMAX ¼ 40

Investment cost CoMAX ¼ 10; 000; 000
Machines per workstation MaMAX ¼ 3
Operations per

workstation
OpMAX ¼ 10

Workstations per line StMAX ¼ 10
Parallel lines LiMAX ¼ 3
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(2.15–2.32). The procedure which has permitted to generate each solution is also
indicated and a curve represents the best efficiency value obtained. Logically, the
duplication and combination produce solutions with lower cycle time and larger
cost, but all the solutions obtained seem to adequately cover the whole Pareto
front.

Table 2.2 Setup times between operations of the case study

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 – 2 3 3 4 3 3 3 4 2 3 3 3 4 4 3 4 3 3 3 3 2 4 4 3 4
2 3 – 4 3 4 4 3 3 5 3 3 4 3 4 5 3 3 3 4 5 4 5 4 3 3 4
3 2 4 – 5 5 3 4 5 4 2 2 3 4 4 4 5 4 2 4 4 3 4 3 4 4 3
4 4 4 5 – 2 5 4 2 4 4 3 4 3 4 4 3 3 3 4 3 3 3 4 2 3 3
5 3 3 3 4 – 3 3 3 4 4 3 3 5 3 3 4 3 4 5 3 3 3 4 5 4 4
6 4 5 3 3 3 – 3 4 5 4 2 2 3 4 4 4 5 4 2 4 4 3 4 3 4 5
7 4 4 4 5 4 4 – 4 5 5 3 4 5 4 2 2 3 4 4 4 5 4 2 4 4 3
8 2 3 3 3 4 4 3 – 2 3 4 3 3 4 2 2 3 4 4 4 5 4 2 4 4 3
9 5 3 3 4 3 4 5 5 – 5 4 4 4 3 5 3 3 4 3 4 5 3 3 3 4 5
10 3 4 3 4 4 3 3 4 3 – 3 4 3 3 4 3 4 4 3 4 2 4 4 3 4 3
11 4 3 4 4 3 3 5 4 3 3 – 4 5 3 4 4 4 5 4 2 4 4 3 4 3 4
12 3 3 3 4 3 3 3 3 4 4 3 – 3 4 2 4 4 3 5 4 2 3 5 3 5 4
13 3 4 5 4 5 4 3 5 4 5 5 4 – 2 4 5 3 4 3 3 3 5 3 3 2 5
14 3 4 5 3 3 3 4 5 4 5 4 3 3 – 4 2 5 4 4 3 4 4 5 5 4 4
15 4 3 4 5 3 3 3 4 5 4 5 4 3 5 – 5 4 3 4 5 4 3 2 4 3 3
16 4 3 4 3 4 4 3 3 3 4 3 3 3 4 4 – 4 5 2 3 4 2 2 3 3 3
17 4 2 4 5 2 2 2 3 4 3 2 5 5 3 5 5 – 2 2 3 4 4 5 2 4 4
18 4 5 2 5 5 5 3 2 2 2 2 5 2 2 4 5 2 – 4 5 3 4 2 2 3 3
19 5 4 2 2 5 2 2 4 3 4 5 5 3 3 2 5 5 4 – 4 5 3 4 5 3 3
20 3 4 2 2 2 3 5 2 4 4 4 4 2 2 2 2 5 5 5 – 3 2 3 2 3 3
21 5 2 2 5 2 3 5 4 4 3 2 4 5 3 2 2 2 5 4 4 – 2 5 4 2 2
22 2 5 2 3 3 4 2 2 2 2 4 5 4 4 5 4 4 4 2 3 5 – 3 4 4 4
23 5 5 5 5 3 2 3 2 2 5 4 4 4 5 5 4 4 4 2 3 2 4 – 4 5 5
24 4 4 2 5 2 4 3 2 4 5 5 3 4 3 4 2 3 5 3 4 5 4 3 – 3 4
25 3 4 2 5 5 5 4 4 4 5 2 4 3 2 3 2 2 4 2 2 3 5 3 4 – 3
26 2 2 4 2 2 4 4 3 4 2 2 2 3 2 2 2 4 4 2 4 2 4 5 5 5 –

Table 2.3 Solution obtained with the model (2.15–2.32)

Station Sequence of operations Workload Number of CNC machines

1 1, 2, 3, 4 68 3
2 5, 6, 7 39 2
3 8, 9, 10, 11, 12, 13 67 3
4 14 12 1
5 15, 16, 17 31 2
6 18, 19, 20, 21 34 2
7 22, 23, 24, 25, 26 38 2
Cycle time: 22.67
Cost: 3,350,000
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Table 2.4 Solution obtained with optimal sequence in each workstation

Station Sequence of operations Workload Number of CNC machines

1 3, 1, 2, 4 64 3
2 5, 6, 7 39 2
3 8, 9, 12, 11, 10, 13 65 3
4 14 12 1
5 15, 16, 17 31 2
6 18, 19, 20, 21 34 2
7 22, 23, 24, 25, 26 38 2
Cycle time: 21.67
Cost: 3,350,000

Table 2.5 Set S of solutions obtained with the procedure of Sect. 2.3.2.2

Cycle
time

Cost Stations with one
CNC machine

Stations with two
CNC machines

Stations with three
CNC machines

S1 65 1,750,000 1, 2, 3, 4, 5, 6, 7 – –
S2 64 1,950,000 1, 2, 4, 5, 6, 7 3 –
S3 39 2,150,000 2, 4, 5, 6, 7 1, 3 –
S4 38 2,350,000 4, 5, 6, 7 1, 2, 3 –
S5 34 2,550,000 4, 5, 6 1, 2, 3, 7 –
S6 32.5 2,750,000 4, 5 1, 2, 3, 6, 7 –
S7 32 2,950,000 4, 5 1, 2, 6, 7 3
S8 31 3,150,000 4, 5 2, 6, 7 1, 3
S9 21.67 3,350,000 4 2, 5, 6, 7 1, 3

Table 2.6 Solutions obtained by duplication

Cycle time Cost Cycle time Cost

Sð2Þ1
32.5 3,500,000 Sð3Þ1

21.67 5,250,000

Sð2Þ2
32 3,900,000 Sð3Þ2

31.33 5,850,000

Sð2Þ3
19.5 4,300,000 Sð3Þ3

13 6,450,000

Sð2Þ4
19 4,700,000 Sð3Þ4

12.67 7,050,000

Sð2Þ5
17 5,100,000 Sð3Þ5

11.33 7,650,000

Sð2Þ6
16.25 5,500,000 Sð3Þ6

10.83 8,250,000

Sð2Þ7
16 5,900,000 Sð3Þ7

10.67 8,850,000

Sð2Þ8
15.5 6,300,000 Sð3Þ8

10.33 9,450,000

Sð2Þ9
10.83 6,700,000 Sð3Þ9

7.22 10,050,000
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2.4 Conclusion and Perspectives

In this chapter, we have explained the interest to consider multiple criteria in order
to support decision-making for the design of assembly lines, and we have pre-
sented a review of the main publications in this field.

As highlighted in this review, multi-objective optimization methods for
assembly lines have been for a long time really scarce. Authors have mainly
focused their research on different versions of the SALBP. The most known multi-
objective version of this problem (with cycle time and number of workstations to
minimize simultaneously) can be easily tackled with an e-constraint method.
However, this lack of interest is no longer true with the problems studied which
involve the most known multi-objective complex constraints and objectives. As a
result, publications on multi-objective line balancing problems have been booming
in recent years (70 % of the publications referenced in this chapter have been
published since 2006), and the number of research articles on this matter should
continue to grow. A case study illustrated this trend as there is still a need to
develop multi-objective optimization methods that can fully take advantage of the
different properties we have described.

Finally, beside the development of efficient optimization methods, the inte-
gration of the corresponding models and algorithms within multi-objective deci-
sion support systems has not yet generated many contributions, but it is clearly a
crucial question for years to come in order to allow a practical use in industry.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

0 10 20 30 40 50

C
os

t

Cycle time

Initial solution
Solutions of set S
Solutions obtained by duplication
Solutions obtained by combination
Curve of iso-efficiency

Fig. 2.4 Pareto front generated from the initial sequence

2 Multi-objective Approaches for Design of Assembly Lines 53



References
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Chapter 3
Multi-objective Assessment of Warehouse
Storage Policies in Logistics and a Fuzzy
Information Axiom Approach

E. Çevikcan, _I. U. Sarı and C. Kahraman

Abstract Determining an appropriate storage policy is a critical issue in ware-
house management. Storage policies address location assignment of stock keeping
units (SKUs) in warehouses. An effective storage policy should not only provide
the minimization of transportation and inventory costs, but also increase the level
of service available to the internal and external customers. When selecting a
storage policy, parameters cannot be frequently determined as crisp values. Fuzzy
logic is utilized in many engineering applications so as to handle imprecise data.
Moreover, information axiom, the second axiom of axiomatic design (AD), per-
forms the selection of the alternative that mostly satisfies the functional require-
ments of decision makers. This chapter provides a fuzzy information axiom basis
for storage policy selection. After providing background information about storage
policies as well as storage assignment models, a fuzzy information axiom-oriented
model is introduced. Then, the decision-making model is validated by an appli-
cation in a company from automotive industry.

Keywords Storage assignment methods � Storage policies � Fuzzy information
axiom � Warehouse � Logistics

3.1 Introduction

Warehouses are commercial buildings used for storage of goods by manufacturers,
importers, exporter, etc. Some of the warehouse functions are decreasing the
expense of transportation costs, serving as a customer service facility, protecting
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goods, providing temporary storage of goods, and serving as depots for manu-
facturing companies.

Storage policies assign items to warehouse storage locations. Items may be
assigned randomly, or similar items may be grouped in the same area of the
warehouse, or items may be assigned based on order or picking volume. The
storage policy is important to the overall system design and budgeting, and the cost
of the storage solution can be significant.

A storage assignment method is a set of rules that is used to assign stock
keeping units (SKUs) to storage locations. They make decisions about SKU
selection and space assignment but do not decide which individual storage loca-
tions a SKU should be placed in. The objective of the storage assignment is to
evenly balance the expected demand among picking zones. If the number of picks
is not balanced across zones, some zones will be idle while other zones are still
busy. If the expected demand is evenly distributed, the idle time of zones can be
reduced, which matches the lean principle of eliminating idle time (Kong and
Masel 2008).

In this study, we make use of a multi-objective decision-making approach to
select the best storage policy with respect to the companies requirements. Fuzzy
logic is used to determine the linguistic judgments of decision makers for the
company requirements. Fuzzy information axiom approach is used to decide the
storage policy which meets the company requirements ideally.

The rest of the chapter is organized as follows: storage policies in warehouses
are discussed in Sect. 3.2. In Sect. 3.3, a detailed literature review on storage
assignment methods is presented. In Sect. 3.4 mathematical programming models
for storage assignment are mentioned. In Sect. 3.5 fuzzy axiomatic design is
presented and In Sect. 3.6 fuzzy information axiom is applied to define most
suitable storage assignment method for a manufacturing firm. Finally, in Sect. 3.7
the chapter concludes with the discussion of findings and future research.

3.2 Storage Policies in Warehouses

A popular approach to reduce the amount of work associated with order picking is
to divide the warehouse into a forward area and a reserve area. The forward area is
used for efficient order picking. The reserve area holds the bulk storage and is used
for replenishing the forward area and for picking the products that are not assigned
to the forward area. The forward and reserve area may be distinct areas within the
warehouse or the forward and reserve area may be located in the same (pallet)
rack. In the latter case, the lower levels represent the forward area, the higher
levels represent the reserve area. In some facilities the reserve area is once again
subdivided into two separate areas: one for order picking and one for replenishing
(Berg and Zijm 1999).
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There are numerous ways to assign products to storage locations within the
forward and reserve storage areas. The most frequently used storage assignment
methods are random storage, closest open location storage, dedicated storage, full
turnover storage, class-based storage, duration of stay-based storage, within aisle
storage, continuous storage, and shared storage.

3.2.1 Randomized Storage Policy

The simplest storage policy is the random storage policy since it uses no infor-
mation about the unit-load. It ignores both the product characteristics to which the
unit-load belongs or the residence time characteristics of the unit-load. Since no
internal structure or partitioning of the storage locations is imposed, the random
storage policy requires the smallest possible warehouse size of all storage policies
(Goetschalekx 2012). For random storage every incoming pallet (or an amount of
similar products) is assigned a location in the warehouse that is selected randomly
from all eligible empty locations with equal probability (Petersen 1997). The
random assignment method results in a high space utilization (or low space
requirement) at the expense of increased travel distance.

3.2.2 Dedicated Storage Policy

In dedicated storage each product is assigned to a fixed location. Replenishments
of that product always occur at this same location. A disadvantage of dedicated
storage is that a location is reserved even for products that are out of stock.
Moreover, for every product sufficient space has to be reserved such that the
maximum inventory level can be stored. Thus, the space utilization of this policy is
lowest among all storage policies. An advantage is that order pickers become
familiar with product locations (Koster et al. 2007). Sometimes, dedicated storage
can be useful if products have different weights, i.e., heavy products need to be on
the bottom of the pallet and light products on top.

Storage policies based on physical similarity and functional similarity could be
defined in dedicated storage policies. In physical similarity based storage policy,
items with similar physical characteristics are grouped together in one area. For
example, large items are stored in one area, and small items are located in another.
This allows the use of similar material handling equipment and similar physical
care for each area. In functional similarity based storage policy, functionally related
items can be stored together. For example, electrically, hydraulically, and
mechanically operated items are grouped in segregated storage areas. The system is
especially convenient in manually operated storage facilities in which each ware-
house worker becomes knowledgeable in a specific functional area (Sule 1994).
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3.2.3 Popularity Based Storage Policies

Every warehouse has items that are retrieved more often than others. In this system
these fast-moving items are stored close to receiving and shipping areas, and the
slow-moving items are assigned to spaces that are farther away. This arrangement
minimizes the distance traveled by warehouse workers in picking orders (Sule
1994). Some storage policies which could be defined in popularity based storage
policies are given below:

3.2.3.1 Class-based Storage Policy

The main idea of class-based storage is to divide the available warehouse space
into a number of areas. Each item is subsequently assigned to one of the areas,
based on the item’s demand frequency. Random storage is applied within an area
(Roodbergen and Vis 2009). The advantage of this policy is that fast-moving
products can be stored close to the depot while the flexibility and high storage
space utilization of random storage are applicable (Chan and Chan 2011).

3.2.3.2 Full-turnover-based Storage Assignment Policy

The full-turnover storage policy determines storage locations for loads based on
their demand frequency. Frequently requested products get the easiest accessible
locations, usually near the input/output points. Slow-moving products are located
farther away from the input/output point. An important assumption for this rule is
that the turnover frequencies need to be known beforehand (Roodbergen and Vis
2009).

3.2.3.3 Within Aisle Storage Policy

Jarvis and McDowell (l991) presented within aisle storage. In this policy, the
highest frequency item is stocked in the first storage location of the first aisle and
the second highest one is stocked in the second storage location of the first aisle
and so on. After the first aisle is filled, the next highest frequency item is stocked in
the first location of the second aisle and so on (Pan and Wu 2012).

3.2.3.4 Across-aisle Policy

In this storage policy, the highest frequency item is assigned to the first location of
the first aisle. The next highest frequency one is assigned to the first location of the
second aisle and so on. Once the first locations of all the aisles are assigned, the
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second location of each aisle is then assigned an item. That is, the area that is close
to the front aisle contains the high frequency items and the area close to the back
aisle contains the low frequency items (Pan and Wu 2012).

3.2.3.5 Reserve Stock Separation-based Storage Policy

In this storage policy, reserve stocks are separated from working stocks. All
working stocks are kept together in a compact area from which picking is rela-
tively easy. Reserve stocks from outlying areas replenish the working stocks as the
need arises (Sule 1994). There are two types of storage methods depending on
reserve stock positions which are floating-slot method and fixed-slot method. In
floating-slot storage position method, a SKU is assigned to any vacant storage
position. For example, storage position X holds product A. In this method, a new
delivery of a product A is received at the warehouse with old product A in the
storage position (X). In the storage area, the new delivery of product A is assigned
to a second storage position (Y). When product A is required from position X, the
computer prints a withdrawal instruction for product A in position X. With the
withdrawal of product A from position X, the computer prints next withdrawal
instruction for product A from position Y. In fixed-slot method, old product A is
allocated to a predetermined number of storage positions. When these positions are
depleted of product A, then a new inventory quantity of product A is transferred
form the receiving or floating reserve area to replenish the storage positions
(Mulcahy 1994).

3.3 Literature Review

Warehouse storage decisions influence almost all key performance indicators of a
warehouse such as order picking time and cost, productivity, shipping and
inventory accuracy, and storage density (Frazelle 2002). Rouwenhorst et al.
(2000), van den Berg (1999),van den Berg and Zijm (1999), Gu et al. (2007, 2010)
provide a detailed review of warehouse design, planning, and control models. In
this section, the chapters dealing with storage assignment is considered.

Several methods exist for assigning products to storage locations in warehouses.
The summary of the reviewed studies is given in Table 3.1. In an early study,
Hausman et al. (1976) consider the problem of finding class regions for an AS/RS
using the class-based storage assignment method and the single command oper-
ating mode. The authors prove that L-shaped class regions where the boundaries of
zones accommodating the corresponding classes are square-in-time are optimal
with respect to minimizing the mean single command travel time. They also
analytically determine optimal storage class-sizes for two product classes. Another
early study of storage policy is about the cube-per-order index (COI) rule by
Heskett (1963). The COI of an item is defined as the ration of the item’s total
required space to the number of trips required to satisfy its demand per period. The
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algorithm consists of locating the items with the lowest COI to the locations with
the smallest travel time. The reciprocal of the COI is called the turnover rate of
that item. Therefore, the COI policy is frequently referred to as the turnover-based
storage policy. Goetschalckx and Ratliff (1990) introduce the duration of stay for
individual loads as an alternative to the COI. The authors study an ideal situation
and remarked that the actual implementation of their approach in real warehouses
still needs to be resolved. Rosenblatt and Eynan (1989) present a method for
establishing class boundaries for any given number of classes in a square-in-time
rack. Eynan and Rosenblatt (1994) extend this method to any rectangular rack. All
methods assume a continuous rack and the same demand function as in Hausman
et al. (1976). Graves et al. (1977) observe that L-shaped regions are not necessarily
optimal when dual commands occur, but they argued that in general they would be
no more than 3 % above the optimal. They observe that, in order to enable an
incoming load to be stored in its class region, the space requirements increase with
the number of classes.

Some attempts have been made to solve storage assignment problem optimally.
For example, van den Berg (1996) presents a polynomial time dynamic pro-
gramming algorithm that distributes products and locations among classes such
that the mean single command travel time is minimized. The algorithm allows that
the inventory level varies and determines the storage space requirements per class
by imposing a risk-level on stock overflow. Van den Berg and Sharp (1998) divide
the warehouse into a forward area and a reserve area to reduce the amount of work
associated with order picking. They integrated the separation of busy and idle
periods to forward-reserve problem in binary integer programming model so as to
minimize the expected labor time. In Lee and Elsayed (2005), the problem of the
determination of the space requirements for warehouse systems operating under a
dedicated storage policy, full turnover-based storage, is investigated. The addi-
tional space requirement is satisfied by considering a leased storage space. The
warehouse storage capacity problem is then formulated as a nonlinear program-
ming model to minimize the total cost of owned and leased storage space.

Montulet et al. (1998) deals with the problem of minimizing, over a fixed
horizon, the peak load in single command cycle dedicated storage policies. Mixed
integer programming models are presented and their solutions are compared to
turnover-based solutions, which are known to minimize the average load per day.
It is stated that turnover-based solutions may not be suitable for the peak load
criterion. In Hassini (2008), given a set of storage spaces and a set of products,
with specific space requirements and demand rates, the optimal product assign-
ment is obtained. When demand rates are known with certainty, the assignment is
found through the solution of a max–min integer program. When demand rates are
stochastic with a common law, the assignment is found by solving an integer
programming model the objective of which is a non-homogeneous partial differ-
ence equation of first order. Muppant and Adil (2008a) address the effects of
storage area reduction on order picking and storage space costs are incorporated.
A branch-and-bound algorithm is developed to solve the class-based storage
model. Muppant and Adil (2008b) utilize branch-and-bound algorithm as well as
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dynamic programming for forming classes to minimize pick-travel distance. They
analyze the relative performance of class-based and dedicated policies to dem-
onstrate that there can be significant savings in using a class-based storage policy.
Kovacs (2011) address the problem of storage assignment in a warehouse char-
acterized by multi-command picking and served by milkrun logistics. A mixed
integer programming model is proposed for finding a class-based storage policy
that minimizes the order cycle time, the average picking effort, or a linear com-
bination of these two objectives.

What is more, in recent years, increasing number of metaheuristic approaches
are proposed for storage assignment problem. Li et al. (2008) propose an improved
genetic algorithm based on Pareto optimization is designed to solve the storage
location assignment problem so as to minimize total travel time. The authors state
that the conflicting objectives such as fixed racks stability, picking/storing tasks
efficiency, and better customer service should be considered for storage assign-
ment decisions. Park and Seo (2009, 2010) handle planar storage location
assignment problem (PSLAP) in shipyards. A mathematical programming model
and GA-based (Park and Seo 2009) and dynamic PSLAP heuristic algorithms
(Park and Seo 2010) are developed for the solving procedure.

It is demonstrated that the dynamic PSLAP heuristic algorithm performs better
than the other solving procedures. Muppant and Adil (2008c) propose a simulated
annealing algorithm (SAA) developed to solve an integer programming model for
class formation and storage assignment that considers all possible product com-
binations, storage space cost, and order picking cost. The study shows that SAA
gives superior results than the benchmark dynamic programming algorithm for
class formation with COI ordering restriction. Chen et al. (2010) address the
location assignment and interleaving problem at the same time in an automated
storage/retrieval system with duration of stay based shared storage policy. Based
on the heuristics for single command operation, a two-step procedure is developed
to solve the problem. A tabu search algorithm is proposed to improve the solution
for medium- and large-sized problems.

On the other hand, simulation studies are proposed with the aim of comparing
different storage assignment policies (Chan and Chan 2011; Kulturel et al. 1999;
van den Berg and Gademann 2000; Petersen and Aase 2004). Eddy (2004) develops
a binary integer programming model for storage assignment problem with the aim
of minimizing storage cost and retrieval cost. Furthermore, the study includes a
simulation model developed for the performance analysis of storage policies.

3.4 Mathematical Programming Models for Storage
Assignment

In this section, widely known mathematical programming models are included so
as to provide an insight of optimization for storage assignment problem.
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3.4.1 Binary Integer Programming Model of Askin
and Standridge (1993)

A binary integer programming model is proposed for storage assignment problem
by Askin and Standridge (1993) with the aim of minimizing travelling cost. In this
model, first, warehouse is divided into square grids for allocating products to
space. A grid contains one or more storage locations, but all grids have the same
storage capacity. Product i; i ¼ 1; . . .;N requires a maximum of Ai grid squares for
storage. The total number of grids is M and the following equation is assumed.

XN

i¼ 1

Ai ¼ M ð3:1Þ

The warehouse will be allowed to have P shipping and receiving ports. All
storage and retrieval requests occur at a port. In fact, the number of loads per time
that must pass through each port is known for each product. wip is proportional to
the cost per period for sending product i through port p per unit distance traveled
per storage or retrieval request. Normally, wip will be trips/period. If load transport
costs vary for the products, then the wip should include a factor for cost of product
i/unit distance. Thus, the product of wip with distance/trip will give the total period
cost of moving i through port p. Distances will not be known until the assignment
of products to grid squares is finalized, but the allocation of storage space into
grids allows us to define the parameters dpj—as the distance from the center of grid
j to port p. The goal then is to find the set of Ai grids to assign to each product
i. This set is denoted as St. Note that if item i is assigned to grid j j 2 Sið Þ, the
corresponding travel cost per period due to storage of i in j is cij where

cij ¼
1
Ai

XP

p¼ 1

wip � dpj ð3:2Þ

Equation (3.2) indicates that l=Ai of product i’s flow is to grid j. This expression
implies the assumption that all grids for item i use all ports in the same proportion.
This may not be true; each port may be served by the closest grid with product
i. However, assuming equal port use across a product’s grids, we can model the
grid assignment problem as a 0–1 program. Let xij be 1 if product i is assigned to
grid j and 0 otherwise. Then,

minimize
XN

i¼ 1

XM

j¼ 1

cij � xij ð3:3Þ

subject to
XM

j¼ 1

xij ¼ Ai ð3:4Þ

3 Multi-objective Assessment of Warehouse 65



XN

i¼ 1

xij ¼ 1 for all j ð3:5Þ

xij 2 0; 1f g ð3:6Þ

The objective (3.3) accumulates costs as we assign products to grids. Con-
straints (3.4) guarantee that i is assigned to Ai grids. Constraints (3.5) ensure that
each grid is used. Otherwise, the model might naively place several products in the
same grid. The generalized assignment problem is a special case of the trans-
portation Problem and can be solved relatively easily. The transportation analogy
is that each of the N products is a source. Source i must ship Ai units. Each of the
M grid destinations is required to receive one unit.

Although the current model is computationally tractable, Francis and White
(1974) point out that one special case makes solution almost trivial. Assume that
all products use all ports in the same proportion. Such would be the case, for
instance, if all loads enter through one port and leave through another or, of course,
if there were only one port. This important factoring assumption can be stated as;

wip ¼ ci � wp ð3:7Þ

Ordinarily, ci will be the total volume of product i moving in and out of storage
per time, possibly weighted by a cost per unit distance moved for product i. Then,
wp is the proportion of loads that use port p. Note that wp must be independent of
both product and grid selected. In this special case we have

cij ¼
1
Ai

XP

p¼ 1

wip � dpj ¼
ci

Ai

XP

p¼ 1

wp � dpj ð3:8Þ

Letting

fj ¼
XP

p¼ 1

wp � dpj ð3:9Þ

We see that cij factors into the product of two terms, one based on the product
only and one based on the grid only. The total objective becomes:

XN

i¼ 1

X

j2Si

ci � fj=Ai ð3:10Þ

Each fj is matched with a ci=Ai. Now suppose that you are given two sets of
numbers and you desire to order the numbers in each set such that the vector
product is minimized. The vector product is minimized by matching small values
in the first set with large values in the second set, and vice versa. This provides a
simple solution algorithm when the factoring assumption holds. The algorithm
puts the products with the highest throughput per grid into the lowest cost grids.
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Step 1. (order grids) Compute fj, j ¼ 1; . . .;M using Eq. (3.9). Place the grids in
non-decreasing order of fj, that is, f½1� � f½2� � . . .� f½M�
Step 2. (order products) Put products in non-increasing order, that is,

c 1½ �
A 1½ �
�

c 2½ �
A 2½ �
� . . .�

c N½ �
A N½ �

ð3:11Þ

Step 3. (assign products) For i ¼ 1; . . .;N assign product [i] to the first A[i] grid
squares still available.

3.4.2 Binary Integer Programming Model
of Van den Berg and Sharp (1998)

Van den Berg and Sharp (1998) focus on operations that observe busy and idle
periods. In these operations, it is possible to reduce the number of replenishments
in busy periods, by performing replenishments in the preceding idle periods. Prior
to the picking period, the forward area is replenished in advance. Their objective is
to find an allocation of product quantities to the forward area, which minimizes the
expected labor time during the picking period. The following notation is used:

• S: set of products assigned to the forward area,
• Pi: random variable representing the number of picks for product i during the

picking period, i ¼ 1; 2; . . .;N;
• Rij: random variable representing the number of concurrent replenishments for

product i, if the forward area contains j unit-loads of product i at the beginning
of the picking period,

• i ¼ 1; 2; . . .;N j ¼ 1; 2; . . .;mi;
• Ui: random variable representing the number of unit-loads of product i that is

needed to fulfill demand during the picking period,
• The expected number of picks from the forward area and the reserve area are

given by Eqs. (3.12) and (3.13), respectively.

X

i2S

EðPiÞ ð3:12Þ

X

i 62S

EðPiÞ ð3:13Þ

Let zi denote the number of unit-loads of product i that is stored in the forward
area at the beginning of the picking period. Accordingly, the expected number of
concurrent replenishments is given by Eq. (3.14).

X

i2S

EðRiziÞ ð3:14Þ
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an expression for E(Riz) is derived.

EðRizÞ ¼
X1

k¼ zþ1

ðk � zÞ � pðU ¼ kÞ ¼
X1

k¼ zþ1

PðUi� kÞ ¼ EðUiÞ �
Xz

k¼ 1

PðUi� kÞ

ð3:15Þ

Subsequently, they formulate the forward-reserve problem as the binary integer
programming problem (B-FRP), using the following notation:

mi: number of unit-loads available of product i i : 1; 2; . . .;N
pi: E Pið Þ;
ui: E Uið Þ � P Uið Þ
uij: P Ui� jð Þ i : 1; 2; . . .;N j : 2; . . .;mi

V: available storage space in the forward area,
Tpf: average time for performing one pick from the forward area,
Tpr: average time for performing one pick from the reserve area Tpr [ Tpf

� �
;

Tcr: average time for performing one concurrent replenishment.

They define decision variables xi for i ¼ 1; . . .;N, and yij for i ¼ 1; . . .;N
j ¼ 2; . . .;mi

xi ¼ 1if product i is assigned to forward area; 0, otherwise
yij ¼ 1 if the jth unit-load of product i is replenished in advance; 0, otherwise
(B-FRP)

minimize
XN

i¼ 1

Tpf pixi þ Tprpið1� xiÞ þ Tcrðuixi �
Xmi

j¼12

uijyijÞ
( )

ð3:16Þ

subject to

XN

i¼ 1

vi xi þ
Xmi

j¼ 2

yij

 !
�V i ¼ 1; . . .;N ð3:17Þ

y12� xi i ¼ 1; . . .; N ð3:18Þ

yij� yiðj�1Þ i ¼ 1; . . .;N j ¼ 3; . . .;mi ð3:19Þ

xi 2 0; 1f g i ¼ 1; . . .;N ð3:20Þ

yij 2 0; 1f g i ¼ 1; . . .;N j ¼ 2; . . .;mi ð3:21Þ

The objective function follows from Eq. (3.12)–(3.15) after substituting pi, ui,

and uij and multiplying each term with the corresponding labor time average.
Constraint (3.17) stresses that the space occupied by the unit-loads allocated to the
forward area may not exceed the available space. The remaining set of constraints
(3.18) and (3.19) allows the jth unit-load of product i to be stored in advance, only
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if unit-loads 1; 2; . . .; j� 1ð Þ of product i are assigned to the forward area, for
i ¼ 1; 2; . . .;N.

3.4.3 Dynamic Programming Model of Van den Berg (1996)

Van den Berg (1996) presents a polynomial time dynamic programming algorithm
that partitions products and locations into classes such that the mean single
command cycle time is minimized. The algorithm works under any demand curve,
any travel time metric, any warehouse layout, and any positions of the input station
and output station. The following notation is used:

Qi: independent random variables representing the number of unit-loads present of
product i at an arbitrary epoch
Pk: set of products in class k ¼ 1; 2; . . .;K

Due to the demand and supply processes the inventory level fluctuates. We
estimate the storage space requirement such that the storage space in every class
suffices for at least a fraction 0\a\1 of the time. In other words, the probability
of a stock overflow is less than 1�a. Let Qk be a random variable representing the
inventory level of class k at an arbitrary epoch, i.e.,

Qk ¼
X

i2Pk

Qi ð3:22Þ

Now, we want to find the smallest size Sk for the class-region of class k such
that

PðQk � SkÞ� a ð3:23Þ

Let tj
in denote the travel time between the input station and location j and let tj

out

denote the travel time between the output station and location j. Every stored unit-
load is retrieved some time later, so that over a long time period half of the single
command cycles are storages and half are retrievals. Accordingly, the mean single
command cycle time to location j 2 L, equals:

1
2

2tin
j þ 2tout

j

� �
¼ tin

j þ tout
j

� �
ð3:24Þ

The single command cycle time, E(SC), is defined as

EðSCÞ ¼
XK

k¼ 1

P
i2Pk

EðDiÞ
P
i2P

EðDiÞ
�
X

j2Lk

ðtin
j þ tout

j Þ
Lkj j

ð3:25Þ

where, Lk denotes the set of storage locations of class k. The first factor represents
the probability that a request concerns class k. The second factor represents the
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mean travel time to a location in class k. In order to minimize the expected single
command cycle time, we assign the products i that constitute the largest demand

per reserved space and the locations j with the smallest tin
j þ tout

j

� �
to the first class

and we assign the products i that constitute the next largest demand per reserved

space and the locations j with the next smallest tin
j þ tout

j

� �
to the second class, and

so on. Accordingly, the locations are ranked according to nondecreasing

tin
j þ tout

j

� �
and the products are ranked according to non-increasing demand per

reserved space. We define gk(p, l) as the contribution of classes 1, 2,…,k to Eq.
(3.24), when products 1, 2,…, p and storage locations 1, 2,…, l are distributed
among these classes such that gk(p, l) is minimal. Then gk(p, l) satisfies

gkðp; lÞ ¼ min
1� p;1� j � l

fhjþ1;l
iþ1;p
þ gk�1ði; jÞg ð3:26Þ

where hjþ1;l
iþ1;p

denotes the contribution to Eq. (3.23) if the products i = 1, 2…, p and
the locations j = 1, 2,.., l form one class k. Recalling that the number of locations
required in each class is determined by Eq. (3.22), the values gk(p, l) are found by
iteratively solving the dynamic programming Eq. (3.25). Each gk(p, l) corresponds
to an optimal solution of the subproblem with k classes and the first p products and
the first l storage locations when ranked as indicated before.

3.4.4 Binary Integer Programming Models of Bartholdi
and Hackman (2008)

3.4.4.1 Model for Dead-Heading Minimization

The movement of forklifts or other unit-load equipment is useful if a pallet is being
moved; but it does not add value if the forklift is dead-heading (traveling with
empty forks). For example, a forklift will deadhead to a storage location to get a
pallet, but then travel productively in carrying that pallet to shipping. One way to
reduce labor is to store product in convenient locations so that travel with the pallet
is decreased. Another way is to reduce deadheading by careful interleaving of put-
aways and retrievals, so that after a put-away, the forklift travels directly to pick up
another pallet. For the dual-cycle protocol to be most effective, stows and retri-
evals should be paired to minimize dead-heading. For a given set of planned stows
and retrievals the problem of finding an effective pairing can be modeled as a
binary integer programming model. This can be done in an ad hoc manner simply
by assigning stows to nearby retrievals.

Assume there is a task list consisting of stows i = 1,…, m and retrievals
j = 1,…, n. Let the shortest distance between the location of stow i and the
location of retrieval j be dij. The shortest distances from each stowage location to
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all the retrieval locations must be computed, for example, by repeated use of the
Shortest Path Algorithm (Bartholdi and Hackman 2008).

Then the problem of finding the pairings of stows and retrievals to minimize
total dead-heading may be expressed mathematically in the following mathe-
matical programming model where xij ¼ 1 indicates that the forklift making stow
i should then proceed in the most direct way possible to retrieval j.

minimize
Xn

i¼ 1

Xm

j¼ 1

dij � xij ð3:27Þ

subject to

XM

j¼1

xij ¼ 1 for all i ð3:28Þ

XN

i¼1

xij ¼ 1 for all j ð3:29Þ

xij 2 0; 1f g ð3:30Þ

The first constraint requires that each stow be paired with some retrieval, and
the second constraint that every retrieval be paired with some stow. If there are
fewer stows than retrievals, then we simply add enough ‘‘dummy’’ stows to make
them equal, where each dummy stow represents travel from the shipping dock to a
retrieval location. Similarly, if there are more stows than retrievals, we add dummy
retrievals, each of which represents dead-heading to the receiving dock.

3.4.4.2 Model for Forward Pick Area Allocation

The main insight in this sub section is that once one has decided to store a product
in the forward pick area, giving it additional storage locations, beyond the mini-
mum required, conveys no benefit. It does not increase the number of picks from
the forward area, nor does it reduce the number of restocks. There is additional
savings only when one puts every pallet of the SKU in the forward area so that no
restocking is required (that is, no internal moves from bulk storage to the forward
pick area). Therefore, the only amounts to consider storing are: no pallets, the
minimum practical number of locations, or else all the pallets. This can be for-
malized as follows:

Let pi be the number of picks for less than pallet quantities, di the number of
pallets moved by such picks, and Di the number of pallets moved by full-pallet
picks. Let li be the minimum number of locations required by SKU i in the fast-
pick area and and ui be the maximum number of forward locations. (This value
might be guessed from historical records; but unless there is some confidence in
the upper bound, it is best taken as ui ¼ 1.) Suppose that, on average, it saves s
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minutes when a pick is made from the forward area rather than from bulk storage;
and that each restock of the forward area (that is, each move of a pallet from
reserve to the forward area) requires cr minutes. Then, the net benefit of allocating
x forward locations to SKU i is

net benefit ¼
0 if x ¼ 0

spi � crdi if li\x\ui

sðpi þ DiÞ if x ¼ ui

8
<

:

9
=

; ð3:31Þ

Notice that some SKUs could positively hurt efficiency if they were stored in
the forward pick area in less than their maximum amounts. For such a SKU i the
net benefit is negative if

pi

di

� �
s\cr ð3:32Þ

On the other hand, for any SKU, the net benefit of storing all of its pallets in the
forward pick area is always positive because no restocking from bulk storage is
required. The difficulty here is to know how many constitute ‘‘all’’.

Assume for now that ‘‘all’’ is quite large in relation to the size of the forward
pick area and so we take ui ¼ 1. We can write the problem of selecting SKUs for
forward storage by means of choice variable xij 2 0; 1f g.

minimize
Xn

i¼ 1

ðc1pi þ crdiÞxi þ c2pið1� xiÞ ð3:33Þ

subject to
Xn

i¼1

lixi�N ð3:34Þ

xi 2 0; 1f g ð3:35Þ

The object is to minimize total labor costs (picking plus restocking) subject to
the space constraint that only N storage locations are available in the forward pick
area. Let c1 be the average cost per pick from the forward area and let c2 be the
average cost per pick from bulk storage. We may assume c1\c2.

3.5 Fuzzy Axiomatic Design

The most important concept in AD is the existence of the design axioms. The first
design axiom is known as the independence axiom and the second axiom is known
as the information axiom (IA). They are stated as follows (Suh 1990).

Axiom 3.1 The Independence Axiom: Maintain the independence of functional
requirements
Axiom 3.2 The IA: Minimize the information content
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The independence axiom states that the independence of functional require-
ments (FRs) must always be maintained where FRs are defined as the minimum set
of independent requirements that characterizes the design goals. The IA states that
the design with the smallest information content among those satisfying the first
axiom is the best design (Suh 2001).

3.5.1 Crisp Information Axiom

Information is defined in terms of the information content, I, that is related in its
simplest form to the probability of satisfying the given FRs. Information content Ii

for a given FRi is defined as follows:

Ii ¼ log2
1
pi

� �
ð3:36Þ

where pi is the probability of achieving the functional requirement FRi and log is
either the logarithm in base 2 (with the unit of bits). This definition of information
follows the definition of Shannon (1948), although there are operational differ-
ences. Because there are n FRs, the total information content is the sum of all these
probabilities. If Ii approaches infinity, the system will never work. When all
probabilities are one, the information content is zero, and conversely, the
information required is infinite when one or more probabilities are equal to zero
(Suh 1995).

In any design situation, the probability of success is given by what designer
wishes to achieve in terms of tolerance (i.e., design range) and what the system is
capable of delivering (i.e., system range). As shown in Fig. 3.1, the overlap
between the designer-specified ‘‘design range’’ and the system capability range
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Fig. 3.1 Design range, system range, common range, and probability density function of a FR
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‘‘system range’’ is the region where the acceptable solution exists. Therefore, in
the case of uniform probability distribution function pi may be written as

pi ¼
Common range
System range

� �
ð3:37Þ

Therefore, the information content is equal to

Ii ¼ log2
System range

Common range

� �
ð3:38Þ

The probability of achieving FRi in the design range may be expressed, if FRi is
a continuous random variable, as

pi ¼
Zdru

dr1

psðFRÞ:dFR ð3:39Þ

where ps(FR) is the system pdf (probability density function) for FR. Equation
(3.38) gives the probability of success by integrating the system pdf over the entire
design range. (i.e., the lower bound of design range, dr1, to the upper bound of the
design range, dru). In Fig. 3.2, the area of the common range Acrð Þ is equal to the
probability of success P (Suh 1990).

Therefore, the information content is equal to

I ¼ log2
1

Acr

� �
ð3:40Þ

The information content in Eq. (3.40) is a kind of entropy that measures
uncertainty. There are some other measures of information in terms of uncertainty.

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

    Design Range 

Area within common
range (Acr)

System pdf 

Common Range 
System Range 

FR 

P
ro

ba
bi

lit
y

D
en

si
ty

 

Fig. 3.2 Design range, system range, common range, and probability density function of a FR

74 E. Çevikcan et al.



Prior to the theory of fuzzy sets, two principal measures of uncertainty were
recognized. One of them, proposed by Hartley (1928), is based solely on the
classical set theory. The other, introduced by Shannon (1948), is formulated in
terms of probability theory. Both of these measures pertain to some aspects of
ambiguity, as opposed to vagueness or fuzziness. Both Hartley and Shannon
introduced their measures for the purpose of measuring information in terms of
uncertainty. Therefore, these measures are often referred to as measures of
information. The measure invented by Shannon is referred to as the Shannon
Entropy.

The Shannon Entropy, which is a measure of uncertainty and information
formulated in terms of probability theory, is expressed by the function

H p xð Þ=x 2 Xð Þ ¼ �
X

x2X

p xð Þ log2 p xð Þ ð3:41Þ

where p xð Þ=x 2 Xð Þ is a probability distribution on a finite set X.
Suh’s entropy in AD does not require that the total of probabilities is equal to

1.0 while Shannon entropy does. Because of this property, Shannon entropy should
not be used as an entropy measure while evaluating independent functional
requirements in AD.

3.5.2 Fuzzy Information Axiom Approach

The multi-attribute crisp information axiom approach mentioned above can be
used for the solution of decision-making problems under certainty. This approach
cannot be used with incomplete information, since the expression of decision
variables by crisp numbers would be ill defined. For this reason, multi-attribute
fuzzy information axiom is developed in this study. At the same time, a problem
including both crisp and fuzzy objectives can be solved by integrating crisp and
fuzzy information axiom approaches. This feature is an important advantage which
cannot be found in other multi-attribute approaches. The definition and formula-
tion of the developed fuzzy approach are given in the following.

The data relevant to the objectives under incomplete information can be
expressed as fuzzy data. The fuzzy data can be linguistic terms, fuzzy sets, or
fuzzy numbers. If the fuzzy data are linguistic terms, they are transformed into
fuzzy numbers first. Then all the fuzzy numbers (or fuzzy sets) are assigned crisp
scores. The following numerical approximation systems are proposed to system-
atically convert linguistic terms to their corresponding fuzzy numbers. The system
contains five conversion scales (Figs. 3.3 and 3.4).

In the fuzzy case, we have incomplete information about the system and design
ranges. The system and design range for a certain criterion will be expressed by
using ‘over a number’, ‘around a number’, or ‘between two numbers’. Triangular
or trapezoidal fuzzy numbers can represent these kinds of expressions. We now
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have a membership function of triangular or trapezoidal fuzzy number whereas we
have a probability density function in the crisp case. So, the common area is the
intersection area of triangular or trapezoidal fuzzy numbers. The common area
between design range and system range is shown in Fig. 3.5.

Therefore, information content is equal to Eq. (3.42).

I ¼ log2
TFN of System Design

Common Area

� �
ð3:42Þ
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Fig. 3.3 The numerical
approximation system for
intangible factors

1

μ (x)

Very Low Low Medium High Very High

1α 1β 1δ 1κ 1γ 1λ 1φ 1ρ 1ν
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Fig. 3.5 The common area
of system and design ranges
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In the basis of IA method, the most important factor is the definition of FRs
which is the minimum sets of independent requirements that characterize the
design goals. The definition of FRs characterizes the type of the problem and
affects the solution of the problem. There are three types of problems; (i) Exact
value problems: When the decision maker/makers is/are interested in the alter-
natives in a specific interval [a, b], the alternatives are eliminated automatically if
the values of alternatives are out of this range. (ii) Expected value problems:

Let us assume that decision maker/makers is/are interested in the alternatives in
interval [a, b] and another alternative is interval [b, c] which is better than interval
[a, b]. However, the effect of the alternative in interval [b, c] is thought to be equal
to the effect of the alternative in interval [a, b]. The main advantage of this is that
removing inessential advantages of the alternative are omitted since it does not
have any importance for the decision maker’s aim. Otherwise, it causes the value
of the alternative to increase according to the other alternatives. (iii) Ranking
problems: IA does not give permission to rank alternatives as in the TOPSIS under
the following situations; (1) if there are more than one alternative which does not
satisfy the decision goal; (2) if there are more than one alternative satisfying the
FRs for all objectives completely. To rank the alternatives, the limits of FRs can be
chosen for benefit attributes for a ¼ 0; l að Þ ¼ 0 and for b ¼ h ¼ Xmax (maximum
upper value of the alternative in the problem), l hð Þ ¼ 1 and for cost attributes for
a ¼ b ¼ 0; l að Þ ¼ 1 and for h ¼ Xmax; l hð Þ ¼ 0. This area is named as ideal FR
(IFR) as in Fig. 3.6 (Cebi and Kahraman 2010).

3.6 Application

A company in automotive industry plans to select the best storage policy which
satisfies company’s objectives and to design its warehouse by applying the selected
storage policy. For this purpose experts determine the functional requirements for
the company. Six functional requirements are determined as follows:

Fig. 3.6 Ideal design ranges for benefit and cost attributes, respectively (Cebi and Kahraman,
2010)

3 Multi-objective Assessment of Warehouse 77



FR1: Time performance in picking load when processing an order
FR2: Response in contingencies
FR3: Area utilization
FR4: Convenience for counting
FR5: Easiness in retaining FIFO
FR6: Requirement of administration and system support

FR1, FR2, FR3, FR4, and FR5 are benefit attributes whereas FR6 is a cost
attribute.

The numerical approximation system for intangible objectives defined as in
Table 3.2 and membership functions of the linguistic variables are shown in
Fig. 3.7.

The numerical approximation system for tangible objectives is defined as in
Table 3.3 and membership functions of linguistic variables are in Fig. 3.8.

Table 3.2 Fuzzy linguistic
scal for intangible objectives

Linguistic variable Triangular fuzzy numbers

Poor (0, 0, 4)
Fair (2, 4, 6)
Good (4, 6, 8)
Very good (6, 8, 10)
Excellent (8, 10, 10)

Poor Fair Good Very good Excellent

1

0 2 4 6 8 10 x

µ(x)Fig. 3.7 The numerical
approximation system for
intangible factors

Table 3.3 Fuzzy Linguistic
scale for tangible

Linguistic variable Triangular fuzzy numbers

Very low (0, 0, 4)
Low (2, 4, 6)
Average (4, 6, 8)
High (6, 8, 10)
Very high (8, 10, 10)
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Figure 3.9 shows the design ranges for benefit and cost attributes:
Experts evaluated the storage policies with respect to the functional require-

ments. These evaluations produce the system range data for storage policies. Each
expert informs his/her own linguistic judgment and these judgments are combined
using the corresponding triangular fuzzy numbers. The judgments for each
objective are summed and their arithmetic mean is calculated. These means are
returned to the most representative linguistic terms and given in Table 3.4.

As an example using Figs. 3.7 and 3.9, the information content of time per-
formance in picking load when processing an order of random storage is calculated
as follows:

Common Area ¼ ð2:5� 2Þ � 0:25� 0:5þ ð5:5� 2:5Þ � 0:25þ ð6� 5:5Þ � 0:25
� 0:5þ ð5:5� 2:5Þ � ð0:5� 0:25Þ � 0:5

¼ 1:2�5

System area ¼ ð6� 2Þ � 1=2 ¼ 2

I ¼ Log2
System Area

Common Area

� �
¼ Log2

2
1:25

� �
¼ 0:678

Very 
Low Low Average High Very High

1

0 2 4 6 8 10 x

µ(x)Fig. 3.8 The numerical
approximation system for
tangible factors

1 1

0 010 10

Design range for benefit 
attributes

Design range for cost
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µ(x) µ(x)

x x 

Fig. 3.9 Design ranges for benefit and cost attributes

3 Multi-objective Assessment of Warehouse 79



The information contents for the functional requirements with respect to the
storage policy alternatives are given in Table 3.5. Class-based storage policy is
selected with minimum information content.

3.7 Conclusion

In this chapter, fuzzy information axiom model is provided to evaluate storage
policies. Functional requirements for storage policies have been incorporated into
the ranking and selection process According to the uncertainties influencing the
evaluation of storage policies, fuzzy numbers are used to model the problem. The
advantage of using fuzzy information axiom is the consideration of changing
expectations of decision makers for storage policies. The most appropriate storage
policy has been identified for a manufacturing firm within the application.

The inspiration for this chapter is not only to introduce background information
about storage policies and storage assignment models, but also to present decision
support to the planners in warehouses for storage policy selection via a systematic
approach. Therefore, this study is thought to contribute to industry in terms of
effectively raising decision-making capability of businesses for storage related
activities.

As a future research topic, different fuzzy decision-making methods can be
compared for storage policy selection problem. Another research direction would
be to include weight assignment for functional requirements.

Table 3.4 The system range data for storage policies

FR1 FR2 FR3 FR4 FR5 FR6

Random Fair Very good Excellent Poor Fair High
Class-based Very good Good Good Good Good Low
Reserve Good Fair Fair Fair Fair Average
Dedicated Excellent Fair Poor Excellent Very good Very low

Table 3.5 The information content for storage policies

FR1 FR2 FR3 FR4 FR5 FR6
P

Ii

Random 0.678 0.061 0 1.807 0.678 1.585 4.809
Class-based 0.061 0.263 0.263 0.263 0.263 0.263 1.376
Reserve 0.263 0.678 0.678 0.678 0.678 0.678 3.653
Dedicated 0 0.678 1.807 0 0.061 0 2.546
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Chapter 4
Multi-objective Optimization Approach
to Product-planning in Quality Function
Deployment Incorporated with
Fuzzy-ANP

S. Mungle, S. Saurav and M. K. Tiwari

Abstract Technological innovations and changing customer trends brought by
globalization has led tough competition among various industries throughout the
globe. Their assiduous efforts to develop new product is crucial for survival. To
overcome this problem and to develop a quality product that generates revenue, a
dynamical multi-objective evolutionary algorithm(DMOEA) incorporated with
quality function deployment (QFD) and fuzzy analytic network process (FANP) is
proposed. The proposed approach considers goals such as new product develop-
ment (NPD) time and cost, technological advancement, and manufacturability for
selection of the most suitable product technical requirements (PTRs). A case study
of software development is included to demonstrate the effectiveness of the pro-
posed approach and the obtained results are discussed.

Keywords Multi-objective optimization � Product planning � Quality function
deployment � Fuzzy analytic network process

4.1 Introduction

Over the last few decades, industries throughout the world have moved towards a
new style of doing business based on overseas competitive compulsion, need for
global economics, and advancements in technology. Issues such as performance,
aesthetics, delivery, quality, and cost in developing their products need to be con-
sidered. The wants (like-to-have), needs (must-have), and desires (wish-to-have)
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of their customers as completely as possible must be known to them (Ho et al.
1999). Planning becomes essential in designing and manufacturing the products
efficiently at competitive cost within a short period of time over those offered by
competitors (Chen et al. 2004). Product planning is a process to express customer
requirements to define a product’s feature.

Quality function deployment (QFD) has a significant role to play in the product
planning process. QFD, originated in Japan in the 1960s to support the product
design process for designing large ships, is a concept and mechanism for trans-
lating the ‘Voice of Customer’ (VoC) through various stages of planning, engi-
neering, and manufacturing into a final product (Akao 1990). Expeditious response
is best achieved by reducing the development time of new products and services.
QFD helps to diminish development cycle time by reducing implementation
errors, enhancing communication, and supporting concurrent engineering. QFD
has successfully evinced the reduction of development time by one-half to one-
third (Akao 1990).

However, time-honored QFD has its definite limitations and thus many modi-
fications have been proposed in QFD models. When researchers discovered that
QFD alone is incompetent, analytic hierarchy process (AHP) was incorporated to
determine the degree of importance of the customer requirements (CRs) (Lu et al.
1994; Park and Kim 1998; Armacost et al. 1994; Fukuda and Matsuura 1993).
QFD is a group decision-making process and to generalize the opinions of multiple
decision makers is a difficult assignment that needs to be tackled (Lee et al. 2009).
To overcome this situation, fuzzy AHP approach was implemented along with
QFD (Kwong and Bai 2002). In the last decades, researcher used fuzzy set theory
for the appraisal of customer needs (Kim et al. 2000; Shen et al. 2001; Chan et al.
1999). However, AHP has the limitation that the interrelationship among the CRs
and PTRs cannot be handled using this method. Therefore, ANP technique is
applied, which is a generalization of AHP along with fuzzy set theory
(Buyukozkan et al. 2004; Ertay et al. 2005; Kahraman et al. 2006). The motive
behind the use of ANP is to look after the interrelationships among the CRs and
the PTRs. On the other hand, human decision-making often contains ambiguity
and uncertainty (Einhorn and Hogarth 1986). Conventional ANPs are inadequate
to explicitly capture the importance assessment of CRs and PTRs. To overcome
this limitation, Lee et al. (2009) employed a fuzzy supermatrix approach along
with QFD on a case study of product design process of backlight unit (BLU) in a
thin film transistor liquid crystal display (TFT-LCT) industry. In addition to the
QFD-FANP analysis, they considered other objectives namely NPD time, NPD
cost, technological advancement, and manufacturability to select the most suitable
PTRs that translate the CRs into the product design. This transforms the problem
into a multi-objective optimization problem. To resolve this problem in product
planning, previously, the researcher used a goal programming approach such as
zero–one goal programming and multi-choice goal programming (Karsak et al.
2002; Lee et al. 2009).
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However, goal programming considers the human rating which may be
imprecise and erroneous. This may lead the decision makers away from the true
solution. To overcome this limitation in decision making, this chapter proposes
DMOEA along with fuzzy-ANP (FANP) and QFD to resolve product planning
problem efficiently. DMOEA yields the true solution by avoiding the generality
and predilection over the objectives. DMOEA uses a principal of minimal free
energy in thermodynamics. The main features of DMOEA are: (a) A new fitness
assignment strategy by amalgamation of Pareto dominance-relation, Gibbs
Entropy, and density estimation (b) A metropolis criterion of simulated annealing
algorithm and density estimation for selection of new individuals to maintain the
diversity of the population (Zou et al. 2008).

The rest of the chapter is organized as follows. Section 4.2 presents a brief
description of house of quality (HOQ). Section 4.3 reviews the ANP and super-
matrix approach. Section 4.4 shows steps in evaluating the product planning
framework and how we move from QFD to MOEA. Section 4.5 shows an
implementation steps of the DMOEA. Section 4.6 includes a case study of soft-
ware development to demonstrate the effectiveness of the proposed approach.
Section 4.7 includes the results and discussions. Finally, Section 4.8 concludes the
chapter.

4.2 House of Quality

HOQ is a diagram used for defining the relationship between the CRs and the
PTRs (Griffin and Hauser 1993; Hauser and Clausing 1988).The seven elements of
the HOQ are shown in Fig. 4.1 and are described as follows:

Fig. 4.1 House of quality
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1. Customer requirements (Whats?): They are also known as a voice of the cus-
tomers, customer needs, customer attributes, or demand of quality. The
inceptive steps in forming the HOQ involve clarifying and specifying the
customers’ needs. It is of utter importance to translate the desires of each
customer into some tangible values that can be turned into the PTRs. Organi-
zations may use existing data from a market research, or conduct new studies or
questionnaire to gather necessary information. In any event, the requirements,
which were elucidated and then explicitly stated, should be gratified to the best
of that organization’s ability.

2. PTRs (Hows?): The next step of the QFD process is identifying what the
customer wants and what steps must be initiated to satisfy these wants. PTRs
are attributes about the product or service, from an engineering perspective that
can be measured and benchmarked against the competition.

3. Interrelationships between CRs and PTRs: The relationship matrix is where the
team identifies the relationship between customer needs and the firm’s ability to
meet those needs, and establishes a correlation between both. The relations can
either be presented in a numbers or symbols. In this chapter, symbols have been
used to denote the relationship between the whats and hows. The symbols used
are shown in Fig. 4.2.

4. Relative importance of the CRs: The collected and organized data from the
customer usually consist of too many requisitions to deal with, simultaneously,
they must be given weightage or preference. Customers are surveyed for each
Whats using 5, 7, or 9 point scales. More detailed 1–10 and anchored scale can
also be used. The triangular fuzzy numbers used in this chapter are given in
Table 4.1.

5. Inner dependence among CRs: Practically, CRs have inner dependence among
themselves or one has an impact on another, positive or negative. These sup-
porting and conflicting requirements can be identified via correlation matrix.

6. Inner dependence among the PTRs: Just like the CRs have inner dependence
among themselves, similarly, we have to consider the inner dependence among
the PTRs. In order to serve this purpose, we use the ANP technique in this
chapter. The HOQ’s roof matrix is used to specify the various PTRs that have to
be improved collaterally. Symbols as described in Fig. 4.2 are used to compare
the dependence of one PTR on another.

7. Targets: It represents the overall preference level of the PTRs and additional
goals. The results obtained from the previous steps are used here to estimate the
final preference level of the PTRs. Additional design metrics such as a cost,
extendibility, manufacturability, etc., can also be incorporated into the analysis

Fig. 4.2 Symbols used in
HOQ
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at this step (Shillito 1994). These additional design metrics help in attaining a
better outcome for deciding the preference level of PTRs and achieve suc-
cessful improvements in the product that can help a firm in maintaining and
sustaining its position in this competitive market.

A structured communication device, the HOQ (Shillito 1994), is constructed
using the seven elements mentioned above. With its design-oriented nature, the
HOQ serves not only as an expensive resource for designers but also as a way to
epitomize and convert feedback from the customers into an information for the
engineers. Hence, the HOQ strengthens vertical and horizontal communications.
Once having identified crucial PTRs that demand change, they will be driven to the
subsequent stage, that is, the many-objective optimization approach along with
other design metrics in order to get the final suitable PTRs. Thus finally, the firm
has a product, fulfilling both CRs as well as producer requirements within a shorter
development time in its hands (Karsak et al. 2002).

4.3 ANP and Supermatrix

4.3.1 ANP

The ANP is a multi-criteria theory of measurement used to derive relative priority
scales of absolute numbers from individual judgments that also belong to funda-
mental scale of absolute numbers (Saaty 1980). Here, one has the liberty to
consider any kind of relationship without making assumptions about the inde-
pendence of higher level elements from lower level elements and about the
independence of the elements within a level in the hierarchy, a generalized form of
AHP. The AHP is a well-known engineering tool that decomposes a problem into
several levels in such a way that they form a hierarchy. The ANP can be used as an
effective tool in those cases where the interactions among the elements of a system
form a network structure (Saaty 1996).

Table 4.1 Triangular fuzzy numbers

Linguistic variables Positive triangular
fuzzy numbers

Positive reciprocal triangular
fuzzy numbers

Equally important (1, 1, 1) (1, 1, 1)
Weakly important (1, 1, 3) (1/3, 1, 1)
Moderately important (1, 3, 5) (1/5, 1/3, 1)
Important (3, 5, 7) (1/7, 1/5, 1/3)
Very important (5, 7, 9) (1/9, 1/7, 1/5)
Extremely important (7, 9, 9) (1/9, 1/9, 1/7)
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ANP gives weightage to interrelationship among the decision levels in a more
general form and that makes it worth over AHP which only considers unidirec-
tional hierarchical relationship among the decision levels. The difference in AHP
and ANP can be better figured out by the schematic diagram in Fig. 4.3. A hier-
archy has a goal or a source node and a sink node at the bottom. It is a lineal
composition from top to bottom with no response from lower levels to higher
levels but has a loop at the bottom level which signifies that each alternative in that
level depends on itself and the elements are independent of each other. Unlike a
hierarchy, a network propagates in all directions and its clusters of elements are
not organized in a specific order.

4.3.2 Supermatrix

The main three kinds of components are (i) Source component, which is not
dominated by any other component, (ii) Sink component which does not dominate
others, and (iii) the intermediate components known as transient component that
lies in the midst of the above-mentioned categories. Figure 4.4 represents the types
of components in a structure. All the interactions among the elements should be
considered while structuring out the problem. The supermatrix of system of
N clusters is denoted as follows:

Fig. 4.3 A linear hierarchy and a nonlinear network
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where Ck is the kth cluster, which has nk element denoted as ek1, ek2,…,eknk

whereas the supermatrix of hierarchy with three levels is represented as follows:

z ¼
G

CR
PTR

G CR PTR
I

W21 W22

W32 W33

2

4

3

5 ð4:2Þ

where W21 vector represents impact of the goal on CRs, W22 indicates the inter-
dependency of CRs, W32 represents the impact of CRs on PTRs, W33 represents
interdependency of PTRs, and I is the identity matrix and entries with zero signify
that the elements have no authority (Saaty 1996). This is also known as
unweighted supermatrix.

The unweighted supermatrix must be transformed first to be stochastic, that is,
each column of the matrix sums to unity (Saaty 1996). A recommended approach

Fig. 4.4 Types of components in a structure
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is to determine the relative importance of the clusters in the supermatrix with the
column cluster (block) as the controlling component (Saaty 1996). Another
common approach is to give equal weights to the blocks in the same column and to
make each column sum to unity (Lee et al. 2008). The resulted supermatrix is
known as the weighted supermatrix, which is stochastic. The weighted supermatrix
is raised to the power of 2qþ 1 to achieve a convergence on the importance
weights, where q is an arbitrarily large number (Saaty 1996). This new matrix is
called the limit supermatrix.

4.4 From QFD to MOEA

A people accountable for product planning can belong to different sections within
the firm. This is schemed to ensure that many different perspectives are incorpo-
rated from the beginning. Later on multi-objective optimization approach is
brought into the picture to consider other design metrics to finalize the PTRs. It
starts with construction of HOQ as mentioned in Fig. 4.1 and all the CRs and PTRs
are mentioned in their respective places and interrelationships between them are
evaluated through a brainstorming session conducted by the decision makers
appointed by the firms or other method applied by them. Based on the constructed
HOQ, the QFD network is constructed as shown in Fig. 4.5.

From the relationship among elements determined from the previous stage and
QFD network constructed, a questionnaire is prepared, and all the relationships
among the elements must be included. Pairwise comparison among the elements
using the linguistic terms of Table 4.1 are done by the decision team. These
linguistic variables obtained via pairwise comparison of each part of the

Fig. 4.5 QFD network
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questionnaire from each decision maker are transmuted into triangular fuzzy
numbers. For example, the following matrix (Ak) can be acquired for decision
maker k with pairwise comparison of CRs with respect to the overall objective.

Ak ¼

CR1

CR2

..

.

CRm

CR1 CR2 . . . CRm

1 a12k . . . a1mk

1=a12k 1 . . . a2mk

..

. ..
. . .

. ..
.

1=a1mk 1=a2mk . . . 1

2
6664

3
7775

ð4:3Þ

where, m represents the number of CRs. Since we cannot take our decision based
on one decision maker, a group of people is involved in the decision making to get
an aggregated view. Suppose there is a k decision maker in the panel appointed by
the firm, a total of k pairwise comparison matrixes are formed and for each
pairwise comparison between two elements, there are k triangular fuzzy numbers.
In order to get an aggregated result, geometric mean approach is employed to
obtain synthetic triangular fuzzy number.

~aij ¼ ~aij1 � ~aij2 � ~aij3 � . . . � ~aijk

� �1=k ð4:4Þ

where,

~aijk ¼ xijk; yijk; zijk

� �

Hence, fuzzy aggregated pairwise comparison matrix is generated using the
above formula.

~A¼
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..

. ..
.

1 . . . . . . . . . . . .
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. ..
.
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..

. ..
. ..

.
1=~aij 1 . . . . . .

. . . . . . . . . . . . . . . 1 . . .
1=~a1i 1=~a2j . . . . . . . . . . . . 1

2

666666666664

3

777777777775

ð4:5Þ

where ~aij ¼ xij; yij; zij

� �
:

The subsequent step is to defuzzify this matrix. Several methods have been
proposed in the literature to defuzzify a fuzzified aggregated pairwise comparison
matrix. In this chapter, Center of Gravity method is used to defuzzify the com-
parison between element i and j (Yager 1978; Klir and Yuan 1995).

aij ¼ xij þ yij þ zij

� �
=3

� �
ð4:6Þ

Therefore, the defuzzified aggregated pairwise comparison matrix formulated is:
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The next step is to compute a local priority vector for each defuzzified
aggregated pairwise comparison matrix as an estimate of relative importance
associated with the elements being compared by solving the following equation
(Saaty 1980, 1996).

A:w ¼ kmax:w ð4:8Þ

where A represents defuzzified aggregated pairwise comparison matrix, w repre-
sents an eigenvector, and kmax signifies the largest eigenvalue of A. Forming the
defuzzified aggregated pairwise comparison matrix is not enough as its consis-
tency property has to be checked by examining consistency index (CI) and con-
sistency ratio (CR) (Saaty 1980).

CI ¼ ðkmax � nÞ = n � 1ð Þ ð4:9Þ

CR ¼ CI=RI ð4:10Þ

where n is the number of items being compared in the matrix and RI is the random
index, the average CI of a randomly generated pairwise comparison matrix of
similar size (Saaty 1980).

The matrix is considered to be inconsistent if a CR value exceeds the threshold
value. In such a case, decision makers need to recheck the original values in the
specific part of the questionnaire. Then all the priority vectors are placed at the
appropriate places to form unweighted supermatrix which is then converted into
weighted supermatrix and made stochastic and finally into limit supermatrix as
discussed above. Then the final priority list of the PTRs is obtained whose value is
used to formulate the objective function for DMOEA.

4.5 Fundamentals of Multi-objective Optimization

This section briefly summarizes the fundamental concepts of multi-objective
optimization. The general multi-objective optimization problem, in a minimization
case, can be formulated as follows:
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Min f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . .; fm xð Þf g
s:t x 2 D;

ð4:11Þ

where m m� 2ð Þ is the number of objectives, x ¼ x1; x2; . . .; xnð Þ is the vector
representing the decision variables, and D is the set of feasible solutions.

A multi-objective optimization problem usually has not one unique optimal
solution, but a set of solutions known as the Pareto-optimal set. Each Pareto-
optimal solution represents a compromise between different objectives, and the
component of the corresponding vector of objectives cannot be all simultaneously
improved. Two concepts are indeed of great importance in multi-objective opti-
mization: Pareto dominance and Pareto optimality are defined as follows.

Definition 4.1 (Pareto dominance) A given vector u 2 D dominates a vector
v 2 Din the Pareto sense, if and only if u is partially less thanvðu � vÞ, i.e.,

fiðuÞ� fiðvÞ for all i 2 1; . . .;mf g
fiðuÞ\ fiðvÞ for at least one j 2 1; . . .;mf g

(

Definition 4.2 (Pareto-optimal solution) A solution u 2 D is a Pareto optimal
solution, if and only if there is no v 2 D such that v dominates u. Pareto-optimal
solutions are also called non-dominated solutions.

Definition 4.3 (Pareto-optimal set) The Pareto-optimal set is defined as

P ¼ x 2 D : x is a Pareto- optimal solution in Df g

Definition 4.4 (Pareto front) The Pareto front is defined as PF ¼ f ðxÞ : x 2 Pf g

where P is the Pareto-optimal set.

4.5.1 DMOEA for Multi-objective Optimization

The main focus of this chapter is to propose multi-objective optimization tech-
nique to determine the suitable PTRs to be considered in the design process. In
recent years, such types of problems are tackled with Multi-choice goal pro-
gramming in which goals are set and priorities to each goal are arbitrarily incurred
to optimize total weighted deviation from all goals (Lee et al. 2009). Considering
appropriate weight for each goal which reflects true weightage to the overall
deviation weight is still an unresolved problem for the decision maker. From
previous description, we can assert that the multi-choice goal programming is not
efficient to solve such kind of complex problems due to it’s incapability of
reflecting appropriate weight pertaining to each goal.
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In the last decade, many metaheuristics were proposed by the researcher to
solve the multi-objective optimization problem with two or three objective func-
tions. Metaheuristics like non-dominated sorting genetic algorithm (NSGA-II)
(Deb et al. 2002), multi-objective genetic algorithm (MOGA) (Fonseca and
Fleming 1993),, strength Pareto evolutionary algorithm-2 (SPEA-2) (Zitzler et al.
2001), and Pareto evolutionary archiving strategy (PAES) (Knowles and Corne
1999) have been widely used in the academic and industrial fields. However, these
metaheuristics have been shown to be unsuited to solve optimization problems
with more than three objectives. A large number of objectives pose new challenges
to algorithm design, visualization, and implementation (Fleming et al. 2005). In
recent years, almost all hot issues in the design of MOEAs have been related to the
handling of a large number of objectives (Koppen and Yoshida 2007; Fleming and
Purshouse 2007). In this chapter, we adapted the DMOEA approach developed by
Zou et al. (2008). The DMOEA introduces a two new features namely fitness
allocation scheme and selection criteria. The following subsections detail the fit-
ness allocation scheme and selection criterion used in the DMOEA.

4.5.1.1 Fitness Allocation Scheme

Fitness is adopted as an aggregating function that combines ranking with gibbs
entropy and density. The fitness allocation scheme is analogous to gibbs free
energy or gibbs function. In thermodynamics, the gibbs free energy is thermo-
dynamic potential that measures useful or process-initiating work obtainable from
an isothermal, isobaric thermodynamic system. The gibbs free energy is defined as

G ¼\H [ � TS ð4:12Þ

where H is enthalpy, S is entropy, and T is temperature. Minimization of G is
proportional to the minimization of H and maximization of TS. It is widely known
as the ‘‘Principle of minimal free energy.’’

Gibbs free energy equation has been predominantly used in various fields. The
minimization of the objective function (convergence toward the Pareto-optimal
set) and density estimation are included in new fitness allocation scheme as
selection criteria when two members of the population belong to the same Pareto
rank. In order to encapsulate a multi-objective optimization problem into a Gibbs
statistical framework, we combine the rank value R(i) calculated by Pareto-
dominance relation with Gibbs entropy S(i) to assign a new fitness scheme F(i) for
each individual i in the population, that is,

F ið Þ ¼ R ið Þ � TS ið Þ � d ið Þ ð4:13Þ

where R(i) is the rank of individual i which is equal to the number of solutions ni

that dominate solution i. In this way, R(i) = 0 is corresponding to a non-nominated
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individual, while high R(i) value means that i is dominated by many individuals,
and d(i) is the crowding distance which is computed by using the density esti-
mation technique described in Deb et al. (2002).

SðiÞ ¼ �pTðiÞ log pTðiÞ ð4:14Þ

where pTðiÞ ¼ 1
z exp � RðiÞ

T

� �
is analogous to the Gibbs distribution.

z ¼
PN

i¼1
exp � RðiÞ

T

� �
is called the partition function and N is the population size.

4.5.1.2 Selection Criterion

Each individual in initial population, P(t) is assigned a fitness value as per
Equation numbers (4.15–4.19), where t denotes generation index and then it is
sorted in an increasing order. The individual with high fitness value is considered
to be ‘‘worse individuals’’ and that with low fitness value is considered to be ‘‘best
individuals’’ considering the minimization of the objectives. In every generation
new individuals are generated by genetic operators. The worst individuals
W(t) formed are compared with the new individuals R(t) obtained after the genetic
operations, keeping in mind that each individual is compared once. Since DMOEA
is based on the thermodynamic principle, we seek to exploit the Metropolis cri-
terion of simulated annealing algorithm and the estimation density to guide the
select process, that is,

1. If R(Xnew) \ R(Xworse), then Xworst = Xnew

2. If R(Xnew) = R(Xworse) and cd(Xnew) [ cd(Xworse), then Xworst = Xnew

where R (Xnew) is the rank of new individual selected for comparison. R (Xworse)
is the rank of the worst individual selected randomly from W(t).

4.5.2 DMOEA Steps

1. Randomly generate the initial population P(0) and set generation index t = 0.
2. Determine the Pareto rank values {R1 (t)…RN (t)} of all individuals in P(t) as

mentioned above, where N is the population size.
3. Evaluate the fitness of each individual in P(t) according to Eqs. (4.15) to

(4.19) and sort them in an increasing order.
4. Apply genetic operator to generate new individuals C (t), randomly select m1

elements to do multi-parent crossover (Eiben et al. 1994) and m2 individuals
for mutation to form ‘n’ child.

5. Record ‘n’ individuals with highest fitness value as worst individuals W(t).
6. Combine initial population and child. E(t) = {P(t), C(t)}.
7. Determine the rank of all elements in E(t).
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8. Compare the individual of W(t) with the member of child population C(t) as
per selection criterion to form new population P(t ? 1) of size N.

9. Determine the rank of individuals in P(t ? 1) and record the individuals with
rank = 0.

10. Repeat the steps from 2 to 9 for next generation (t = t +1) until the stopping
criteria is satisfied, i.e., a fixed number of generations, or when no significant
improvement in the solution occurs.

4.6 A Case Study of Software Development

In this research, we include the case study of software development to demonstrate
the effectiveness of the proposed approach. Through the literature review and
interview with experts, we gathered all the possible CRs and PTRs. We identified
the most important CRs and PTRs and it is given in Tables 4.2 and 4.3.

The preference level of PTRs calculated by the intermediate steps is discussed
in Sect. 4.4 and is shown in Table 4.4. PTR6 has the highest preference level with
priority of 0.1235, followed by PTR11 with priority of 0.1111, then PTR4 with
priority of 0.0988, PTR17 with priority of 0.0864, and then PTR8, PTR5, PTR12,

PTR15, PTR13, PTR9, PTR3, PTR18, PTR14, PTR7, PTR16, PTR10, PTR2, PTR1

subsequently. The additional goals that are given importance are NPD Cost,
Manufacturability, NPD Time, and Technological Advances. Henceforth, many-
objective approaches are incorporated after formulation of objective functions.

The cost incurred in developing specific PTRs is known as NPD Cost. Manu-
facturability is the characteristics considered in the design cycle that focus on

Table 4.2 Customer
requirements

Serial number Customer requirements (CRs)

1 It must be simple to use
2 Easy to install
3 Easy to learn initially
4 Small disk space requirements
5 Automatically saves our data
6 No cost for bug fixing
7 The system must be adaptable
8 Easy to upgrade capabilities
9 Allows us to restart where we stopped
10 Operates with our network
11 Good price/performance
12 Looks good
13 Allows user to write and save useful macros
14 Efficiently uses memory
15 Supports the printer I need

96 S. Mungle et al.



process capabilities, machine or facility flexibility, and the overall ability to
consistently produce at the required quality level instead of product elegance.
A technological benefit that is obtained from developing specific PTRs is called
Technological Advances.

The main focus of this chapter is multi-objective optimization approach, min-
imizing NPD Cost and NPD Time as well as maximizing results of QFD-FANP,
Manufacturability, and Technological Advances. The multi-objective optimization
models maybe formulated as:

Maximize QFD-FANP:

f2ðxÞ ¼ 0:1081X1 þ 0:0405X2 þ 0:0676X3 þ 0:0135X4 þ 0:0135X5 þ 0:0270X6

þ 0:0405X7 þ 0:0135X8 þ 0:0541X9 þ 0:0135X10 þ 0:0270X11 þ 0:0135X12

þ 0:1351X13 þ 0:0541X14 þ 0:0811X15 þ 0:0541X16 þ 0:1351X17 þ 0:1081X18

ð4:15Þ

Table 4.3 Product technical requirements (PTRs)

Serial
number

Product technical requirements (PTRs) Units

1 New roles can be added without changing
in source code

Number of changes

2 Speed of user interface to fetch data from
other systems

Time

3 Layout designed according to standard of
customer

Number of deviations

4 Ease of submitting Minutes
5 Flexibility to store different kinds of code Number of types of codes that cannot be

stored
6 Efficient user interface Seconds for page to
7 Flexible architecture according to

standard of customer
Number of deviations

8 Flexible interface to other systems Number of chances to interface when
new code is added

9 Layered architecture Changes to code if database is changed to
another

10 Support to IE 9.0 and newer versions Number of differences between versions
11 Interaction time for common operations Time
12 Estimated execution time to complete

common operations
Time

13 Number of deviations from user interface
guidelines

Numbers

14 Training time Time
15 Online preliminary help Percent
16 Estimated time for novice to install Time
17 Estimated time for novice to learn Time
18 System hardware requirements Number of hardware components
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Minimize NPD Cost:

f1ðxÞ ¼ 0:0123X1 þ 0:0123X2 þ 0:0494X3 þ 0:0988X4 þ 0:0864X5 þ 0:1235X6

þ 0:0247X7 þ 0:0864X8 þ 0:0494X9 þ 0:0123X10 þ 0:1111X11 þ 0:0741X12

þ 0:0494X13 þ 0:0247X14 þ 0:0494X15 þ 0:0123X16 þ 0:0864X17 þ 0:0370X18

ð4:16Þ

Maximize Manufacturability:

f3ðxÞ ¼ 0:0865X1 þ 0:0577X2 þ 0:673X3 þ 0:0385X4 þ 0:0288X5 þ 0:0192X6

þ 0:0192X7 þ 0:0962X8 þ 0:0096X9 þ 0:0865X10 þ 0:0577X11 þ 0:0865X12

þ 0:0481X13 þ 0:0385X14 þ 0:0769X15 þ 0:0385X16 þ 0:0577X17 þ 0:865X18

ð4:17Þ

Minimize NPD Time:

f4ðxÞ ¼ 0:0857X1 þ 0:0286X2 þ 0:0476X3 þ 0:0857X4 þ 0:0190X5 þ 0:0762X6

þ 0:0857X7 þ 0:0571X8 þ 0:0571X9 þ 0:0857X10 þ 0:0952X11 þ 0:0762X12

þ 0:0381X13 þ 0:0571X14 þ 0:0286X15 þ 0:0571X16 þ 0:0095X17 þ 0:0095X18

ð4:18Þ

Table 4.4 Problem data set

Goal QFD-FANP NPD cost Manufacturability NPD time Technological advances

PTR1 0.0123 0.1081 0.0865 0.0857 0.0875
PTR2 0.0123 0.0405 0.0577 0.0286 0.0875
PTR3 0.0494 0.0676 0.0673 0.0476 0.0125
PTR4 0.0988 0.0135 0.0385 0.0857 0.0875
PTR5 0.0864 0.0135 0.0288 0.019 0.075
PTR6 0.1235 0.027 0.0192 0.0762 0.1125
PTR7 0.0247 0.0405 0.0192 0.0857 0.0875
PTR8 0.0864 0.0135 0.0962 0.0571 0.0375
PTR9 0.0494 0.0541 0.0096 0.0571 0.025
PTR10 0.0123 0.0135 0.0865 0.0857 0.0125
PTR11 0.1111 0.027 0.0577 0.0952 0.0875
PTR12 0.0741 0.0135 0.0865 0.0762 0.0875
PTR13 0.0494 0.1351 0.0481 0.0381 0.0375
PTR14 0.0247 0.0541 0.0385 0.0571 0.0625
PTR15 0.0494 0.0811 0.0769 0.0286 0.05
PTR16 0.0123 0.0541 0.0385 0.0571 0.0125
PTR17 0.0864 0.1351 0.0577 0.0095 0.0125
PTR18 0.037 0.1081 0.0865 0.0095 0.025
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Maximize Technological Advances:

f5ðxÞ ¼ 0:0875X1 þ 0:0875X2 þ 0:0125X3 þ 0:0875X4 þ 0:0750X5 þ 0:1125X6

þ 0:0875X7 þ 0:0375X8 þ 0:0250X9 þ 0:0125X10 þ 0:0875X11 þ 0:0875X12

þ 0:0375X13 þ 0:0625X14 þ 0:0500X15 þ 0:0125X16 þ 0:0125X17 þ 0:0250X18

ð4:19Þ

4.7 Results and Discussions

The main objective of this chapter is proposing an algorithm to select the
appropriate or suitable PTRs. In problem formulation, there are 18 PTRs of binary
nature leading various combinations of PTRs, where each combination represents
five different objective functions, namely maximize QFD-FANP, manufactura-
bility, technological advances, and minimize NPD cost and time. The computa-
tional complexity henceforth intensifies due to the conflicting nature among the
objectives. To arrive at an exact combination of PTRs which simultaneously
satisfies all the objectives with variant optimizing nature, becomes a meticulous
task. To resolve this problem, DMOEA has been brought into the scenario. The
DMOEA is capable to reduce the large search space by finding non-dominated
solution over successive generations. The DMOEA result is sensitive to algorithm
parameter and hence, it is required to perform repeated simulations to find a
suitable value for the parameters.

In DMOEA, temperature and number of parent for multi-parent crossover is
highly sensitive parameter and to find appropriate value of these, several simu-
lation tests were carried out at fixed number of generation and population size. The
best parameter for DMOEA selected through several simulation tests is shown in
Table 4.5. The best Pareto set obtained out of several simulations run is shown in
Fig. 4.6. Figure 4.6 shows the trade-off among five objectives, namely QFD-
FANP, manufacturability, technological advances, and NPD cost and time in
parallel coordinate plots. Every objective is covered and the structure of the set is
almost symmetric, indicating a uniformly spread distribution of solutions over the
whole Pareto front. Table 4.6 shows the optimal PTRs selection plan.

The best non-dominated solutions are found at 300 generations of population
size 200, as given in Table 4.7. Each of these solutions represents trade-offs among
the objectives, namely QFD-FANP, manufacturability, technological advances,
and NPD cost and time. This means that one objective cannot be improved without
sacrificing another objective. For practical application, the decision maker is
interested in selecting one solution that satisfies all the objectives to some extent.
Such solution is known as a best compromise solution and is determined by using
fuzzy set theory. The following subsection briefly presents the fuzzy set theory.
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4.7.1 Best Compromise Solution

Upon having the non-dominated set, the proposed approach presents a fuzzy-based
mechanism to extract a solution as the best compromise. Due to the imprecise
nature of the decision maker’s judgment, the ith objective function of a solution in
the Pareto-optimal set is represented by a membership function defined by Sakawa
et al. (1987).

Ui ¼
1; Fi�Fmin

i
Fmax

i �Fi

Fmax
i �Fmin

i
; Fmin

i \Fi\Fmax
i

0; Fi�Fmax
i

8
><

>:

9
>=

>;
ð4:20Þ

Fig. 4.6 Parallel coordinate plot

Table 4.5 Best DMOEA parameter for selection of PTRs in product planning

DMOEA parameter Parameter value

Population size 200
Number of generations 300
Temperature 35
Number of parent in multi-parent crossover 20
Probability of crossover(Pc) 0.8
Probability of mutation (Pm) 0.1
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where Fmax
i and Fmin

i are the maximum and minimum values of the ith objective
function, respectively. Subsequently, each non-dominated solution k, the nor-
malized membership function Uk is calculated as

Uk ¼
PNobj

i¼1 Uk
iPM

j¼1

PNobj

i¼1 U j
i

ð4:21Þ

where M is the number of non-dominated solutions. The best compromise solution
is the one having maximum value of Uk. As a matter of fact, arranging all solutions
in non-dominated set in descending order according to their membership function

Table 4.6 Optimal PTRs selection plan

Serial number PTRs selection plan ðX1;X2; . . .;X18Þ
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
2 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1
3 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
4 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
5 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
8 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
9 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
12 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0
15 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
16 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
17 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
18 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
19 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1
20 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
21 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
25 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0
26 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
27 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
30 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1
31 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
32 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
33 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
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will provide the decision maker with a priority list of non-dominated solutions.
This will guide the decision maker in view of the current operating conditions. The
best compromise solution with PTRs selection plan is given in Table 4.8 and the
corresponding objective values are given in Table 4.9. This PTRs selection plan
helps the decision maker to select the precise PTRs for modification in the
respective product.

In Table 4.9, PTR selection plan represents PTR2, PTR3, PTR4, PTR5, PTR6,
PTR7, PTR8, PTR11, PTR12, PTR14, PTR15, PTR17, and PTR18 is selected for

Table 4.7 Optimal PTRs selection plan representing fitness value

Serial number Fitness value

QFD-FANP NPD cost Manufacturability NPD time Technological advances

1 0.5802 0.2701 0.4038 0.3618 0.5
2 0.9012 0.7161 0.8171 0.8188 0.8
3 0.6913 0.3917 0.5288 0.5332 0.675
4 0.6419 0.4728 0.548 0.5903 0.7375
5 0.7654 0.4863 0.5576 0.676 0.7875
6 0.3086 0.1351 0.2788 0.238 0.3125
7 0.6666 0.4998 0.5864 0.5618 0.725
8 0.679 0.2836 0.4423 0.4475 0.5875
9 0.1852 0.0675 0.1827 0.1905 0.2625
10 0.2962 0.2296 0.3749 0.3523 0.4625
11 0.8025 0.5403 0.5865 0.5999 0.7625
12 0.6666 0.4728 0.548 0.5141 0.675
13 0.5185 0.1755 0.3653 0.438 0.575
14 0.7777 0.5674 0.6634 0.7046 0.825
15 0.7901 0.4863 0.5576 0.5998 0.725
16 0.5432 0.2161 0.3654 0.3427 0.3875
17 0.6419 0.4593 0.5672 0.4761 0.6375
18 0.7408 0.3647 0.4807 0.5332 0.6375
19 0.8765 0.7971 0.7884 0.7712 0.9
20 0.7654 0.5133 0.6249 0.6475 0.8125
21 0.6667 0.2431 0.3846 0.4189 0.5
22 0.3333 0.135 0.2211 0.2666 0.4
23 0.2346 0.054 0.0769 0.1714 0.2
24 0.3087 0.0946 0.1634 0.238 0.275
25 0.8271 0.6215 0.673 0.7617 0.85
26 0.716 0.4053 0.5096 0.4855 0.5375
27 0.5926 0.2296 0.2981 0.3427 0.4125
28 0.4321 0.1485 0.2596 0.3523 0.4875
29 0.5679 0.2566 0.4422 0.4666 0.625
30 0.7654 0.7836 0.7403 0.657 0.85
31 0.5679 0.2296 0.3461 0.3332 0.4125
32 0.7901 0.5269 0.6442 0.5427 0.725
33 0.8642 0.635 0.7307 0.676 0.825
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implementation, whereas PTR1, PTR9, PTR10, PTR13, and PTR16 are not
selected for further modification in product.

4.8 Conclusion

Increase in global competition entails industries to necessitate improvement in the
products to satisfy customer demands with generating revenues. In order to fulfill
this stipulated condition, product planning becomes essential. This chapter pre-
sents a step approach for product planning, comprising QFD-FANP analysis, to
provide preference level among PTRs along with additional goals such as NPD
cost, NPD time, manufacturability, and technological advances. This makes
decision making difficult due to the conflicting nature of additional goals. To
confront this tedious task multi-objective optimization technique is brought into
the picture to evaluate and select the most appropriate PTRs for product planning.
In the past, a few attempts have been made to implement the goal programming
over QFD analysis. It is important to note that there is no model that implements
multi-objective optimization approach over QFD analysis.

In this chapter, we proposed the DMOEA algorithm to resolve PTRs selection
problem in product planning. The proposed algorithm is tested over the case study
of software development. The result shows that the DMOEA is highly capable to
handle the conflicts amongst the objectives, namely FANP-QFD, NPD cost,
manufacturability, NPD time, and Technological advances.
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Chapter 5
Multi-objective Ant Colony Optimization
Method to Solve Container Terminal
Problem

F. Belmecheri-Yalaoui, F. Yalaoui and L. Amodeo

Abstract The river and maritime transport represents an attractive alternative to
land and air transport. The containerization allows the industries to save costs
thanks to the standardization of dimensions. The container terminal has to manage
container traffic at the crossroads of land road and railway. In this chapter, we
propose to optimize, simultaneously, the storage problem and the quayside
transport problem. In a space storage, we have several blocks and each one has its
storage cost. The first aim is to minimize the cost storage of containers. These
latter are loaded into vessels, the vehicles have to transport the containers from
blocks to quays (of vessels). Thus, the second aim consists to minimize the dis-
tance between the space storage and the quays. The optimization methods of
operations research in container terminal operation have become more and more
important in recent years. Objective methods are necessary to support decisions.
To solve this multi-objective problem, we develop two resolution methods based
on metaheuristic approach called ant colony algorithm. The first one is multi-
objective ant colony optimization (noted MOACO) and the second one is the
MOACO with a local search (called MOACO-LS), good promising results are
given.
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5.1 Introduction

One of the most used transportations is the river and maritime transport. It rep-
resents an attractive alternative to land and air transport. Indeed, different indus-
tries (companies) try several opportunities for reducing costs of this transport. First
adopted solution is the containerization which became widespread to river and
maritime transport of goods. This solution allows the industries to save costs
thanks to the standardization of dimensions, the security of goods, and the fast
handling operations for loading/unloading.

However, container can induce to high investment costs in storage, supply, and
maintenance of equipment’s. The seaport has to manage container traffic at the
crossroads of land road, railway. It has also a role for managing: a stock of
containers on its site, and a platform of quayside. These managements solve a set
of decision problems, and the aim is to reduce the costs of transport.

Generally, container terminals can be described as open systems of material
flow with two external interfaces (Fig. 5.1). The first ones are the quays (or
quayside) with loading and unloading of vessels (or ships). The second ones are
the landside where containers are loaded and unloaded on trucks and trains.
Containers are stored in stacks thus facilitating the decoupling of quayside and
landside operation. When containers, transported by a container vessel, are arrived
at the port, they are assigned to a berth with cranes for loading and unloading.
Containers arrived by routes (road) or railway at the terminal are handled by using
the trucks (or by train). They are transferred to the respective blocks (or stacks) in
the zone (yard). Sometimes, we can use the waterside transshipment process term
to define the movement to and from the quay. The container storage area is
ordinary composed into different blocks characterized by rows, bays, and tiers.
There are specific containers: containing dangerous goods, needing electrical
connection. Often, blocks are composed into areas for export, import, special, and
empty containers. Besides in these general functions some terminals differ also in
their operational units.

Fig. 5.1 Container terminal system (schematic side view, not true to size) Steenken et al. (2004)
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The optimization methods of operations research in container terminal opera-
tion have become more and more important in recent years. Objective methods are
necessary to support decisions. Here, some works for each problem are exposed.
For the berth allocation problem, each berth is allocated to each vessel (or ship),
the ship planning is known one year in advance. We can find the works of Li et al.
(1998). They solved a more general problem ‘‘scheduling with multiple-job-on-
one-processor pattern’’ where the aim is to minimize the makespan of the schedule
where vessels represent jobs. A heuristic approach based on mixed-integer pro-
gramming is proposed by Imai et al. (2003) to solve the berth allocation. Park and
Kim (2003) use an approach for assigning berth with quay crane capacities.

Concerning the storage allocation problem, containers are stacked in several
levels and the whole storage area is separated into blocks. The maximum number
of levels depends on the stacking equipment, either straddle carriers or gantry
cranes. Kim and Kim (1998, 1999a, 2002 and 2003) calculated the optimal amount
of storage space and optimal number of cranes for containers. The authors used the
fixed investments costs and variable operation costs. The objectives are the min-
imization of the costs of only the terminal operator and minimization of these costs
combined with the costs of the customers. Kim and Park (2003) proposed two
heuristic algorithms to outbound containers arriving at a storage yard and a sub-
gradient optimization technique. The storage space allocation problem is also
studied by Zhang et al. (2003). Their problem is decomposed into two levels. The
workload among blocks is balanced at the first level. The total number of con-
tainers associated with each vessel and allocated to each block is a result of the
second step which minimizes the total distance to transport containers between
blocks and vessels. Additional references for storage and stacking logistics are,
e.g., De Castilho and Daganzo (1993), Holguin-Veras and Jara-Diaz (1999), Kim
and Kim (1999a, b, c) and Kozan and Preston (1999).

For the transport problem, we distinguish two types of transport at a container
terminal: the quayside transport and landside transport (see Belmecheri et al.
2009). In the quayside transport, the vessels are loaded/unloaded by the containers
which are transported from storage blocks to quaysides. Transport optimization at
the quayside, not only means to reduce transport times, but also to synchronize the
transports with the loading and unloading activity of the quay cranes. Among the
aims of the transport optimization, we can find the goal to reduce the transport
times, distance, and also to synchronize the transports with the loading and
unloading activity of the quay cranes. Different modes of transport and strategies
to allocate vehicles like Automatic Guided Vehicle (AGV) to cranes occur at the
quayside. In single-cycle mode the vehicles serve only one crane. According to the
crane’s cycle they either transport discharged containers from the quay to the yard
or export containers from the yard to the crane. The objective of optimization in
any case is to minimize the lateness of container deliveries for the cranes, distance,
and the travel times of the transport vehicles. Evers and Koppers (1996) develop a
model of an AGV traffic control system. The rules for management of empty AGV
are developed by Van der Heijden et al. (2002). The authors Kim and Kim (1999c)
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minimized the total travel distance of straddle carriers in the yard. They propose a
beam search algorithm.

The remainder of the chapter is organized as follows. Section 5.2 describes the
studied problem. The process of development of the multi-objective ant colony
optimization (MOACO) algorithm is defined in Sect. 5.3. Section 5.4 is devoted to
a computational evaluation in which MOACO and MOACO with a local search,
called MOACO-LS, are compared on several instances. Section 5.5 concludes the
chapter.

5.2 Problem Description

In this study, we assume only one planning horizon. We consider during a certain
number of days, some containers of customers (industries) are received by the
container terminal (maritime port), they are placed in the storage space then they
are loaded in vessels (Fig. 5.2).

Notations

I Number of customers
i Customer index: i = {1, 2..I}
B Total number of blocks in the storage space
b Block index: b = {1, 2…B}
Q Total number of quays
q Quay index: q = {1, 2…Q}
capBb Storage capacity of block b
capQq Capacity of quay q
coi Number of containers of customer i
cb Storage cost of block b
dbq Distance from block b to quay q
dbq

inv Distance from quay q to block b
xib 2 0; 1f g xib = 1 if the containers of customer i are stored in block b.

We assume I customers, and each customer i wants to send some containers coi

by the maritime transport. The study includes a container port composed to storage
space allocation and a set of quaysides. The storage space has several storage
blocks b where b 2 1; 2. . .B½ �. For each block b, a cost of storage container is
noted cb. When the containers are assigned to blocks, they are loaded into vessels.
coi have to be transported from b to quay q q 2 1; 2. . .Q½ �ð Þ. The distance between
blocks and quays is noted dbq (reverse distance is dbq

inv).
Our objectives are:

• The minimization of the cost storage.
• The minimization of total traveled distance by vehicles between blocks storage

and vessels.

110 F. Belmecheri-Yalaoui et al.



5.3 Resolution Methods

To solve this multi-objective problem, we develop a resolution method based on
metaheuristic approach called Ant colony algorithm. First, the multi-objective ant
colony optimization is presented in Sect. 5.3.1 and then we explain, in Sect. 5.3.2,
its adaptation to tackle the problem.

5.3.1 Multi-objective Ant Colony Optimization

In general, an ant colony optimization is a technique to solve difficult combina-
torial problems. It is inspired by the behavior of ant colonies. They cooperate to
find good paths through graphs for finding the best path from nest to food. The
artificial ants seek the solutions according to a constructive procedure. The con-
struction of solutions is based on a probabilistic technique. The solutions are
guided by (artificial) pheromone trails which change in a dynamic way (at each
iteration) and a heuristic information.

Recently, this metaheuristic is extended to deal with multi-objective optimi-
zation problems. Indeed, multi-objective Ant colony optimization (MOACO) has
proved its effectiveness in several works. Gambardella et al. (1999) solved the
vehicle routing problem with time windows by multiple ant colony system
(Doerner et al. 2003). In scheduling problem, Gravel et al. (2002) proposed a
MOACO. T’kindt et al. (2002) present an ant colony optimization to solve
bi-objective flow shop scheduling problems. MOACO is even used in combina-
torial problems as the works of Dugardin et al. (2009).

Fig. 5.2 Problem description
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5.3.2 Adapted MOACO

Since the first work of Dorigo et al. (1996), several versions of ant-based algo-
rithms developed to solve combinatorial problems. Here, we use the Ant Colony
System. It is based on three main steps: the solutions encoding, the ants tours
construction, the global pheromone updates. But in this case, the number of
pheromone matrices is more than one. The multi-objective optimization takes
different criterion simultaneously. So, the number of pheromone matrices is equal
to the number of objectives to be optimized. Therefore, two pheromone matrices
are used in our works. Two colonies of ants collaborate mutually between them:
the first one is called ACO1 for storage cost optimization; the second is ACO2 for
distance traveled optimization. ACO1 communicates with ACO2 with the heuristic
information and the pheromone trails to build solutions.

5.3.2.1 Solution Encoding

Figure 5.3 is a representation of two solutions obtained by two ants. We consider 5
customers, 3 blocks, and 3 quays. In the first part, we would to find a good solution
in assigning each customer to each block. We can observe a partial solution of two
ants. For ant 1 (ant 2), the containers of customer 2 are stored in block 3 (block 1).
Then they are transported to quay 1 (quay 2). So, the ant 1 (ant 2) has found the
cost, of maritime transport for customer 2, equal to 12 (equal to 11.8).

Fig. 5.3 Example of solutions construction (2 ants, 3 customers, 3 blocks, 2 quays)
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5.3.2.2 Solution Construction for Storage Cost Optimization

The first colony called ACO1 (Ant Colony Optimization 1) affects the containers
in the space storage. Each ant is deposited randomly on a point. This point rep-
resents the demand of one customer which is a set of containers. This set is
selected to be assigned for one block of storage. The points to be visited are chosen
based on the application of the state transition rules. An ant a chooses a customer
i for storing its containers coi to block b.

P1ib ¼
ga1

i :s
b1
ibP

j g
a1
j :s

b1
jb

(
8i; j 2 X; 8b 2 B ð5:1Þ

P1ib represents the probability for choosing containers of customer i to be
assigned to block b. X denotes the customers which are not yet chosen by the
current ant. sib is the pheromone quantity deposited by ants on node (i, b) which
measures the acquired desirability between the customer i and block b. Here,
b selected by ant a is determined by Eq. (5.2). gi is the heuristic information
(visibility) of customer i. The parameters a1; b1 determine, respectively, the rel-
ative importance of pheromone trails and heuristic information to select customer i.

gi ¼ max
b2B

1= coi:cbð Þ½ � 8i 2 X ð5:2Þ

This formula allows to containers of customer i (cited coi) to be stored in the
space allocation with a minimum cost in choosing an adapted block b. Here, we
give the ACO1 procedure to optimize the cost storage with the rules and the
concepts described above.
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5.3.2.3 Solution Construction for Distance Optimization

When the containers are assigned to the storage blocks, we apply the second
colony called ACO2 (ant colony optimization 2) to optimize the distance traveled
by vehicles for transporting these containers to quays. Each demand of customer is
chosen randomly with his probability P2iq.

P2iq ¼
da2

i :t
b2
iqP

j d
a2
j :t

b2
jq

(
8i; j 2 X; 8q 2 Q ð5:3Þ

tiq is the pheromone quantity deposited by ants on node (i, q) which measures
the acquired desirability between the customer i and quay q. Equation (5.4) cal-
culates the visibility of i. It selects the quay q to receive the containers of i. The
parameters a2, b2 modulate the pheromone trails and heuristic information to
select i.

di ¼ max
q2Q

1= coi:ðdbq þ dinv
bq Þ

� �h i
8i 2 X ð5:4Þ

The desirability to select the containers of i to be brought to quay q is calculated
with Eq. (5.4).

5.3.3 The Proposed Algorithm: MOACO

The algorithm MOACO for optimizing the cost storage and distance simulta-
neously is given in Algorithm 5.3. The process is applied T and A times which are
respectively the number of iterations and ants. Each ant a constructs one solution
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Sola
1 for storing the containers of customers I in blocks B with Algorithm 5.1.

Then, this solution is evaluated with Costa
1 which is equal to

P
i=1
I P

b=1
B xibcoicb.

The second task of ant a concerns the construction of one solution Sola
2 for

transporting the containers from blocks to quays Q. Its evaluation Costa
2 is com-

puted as
P

i=1
I P

b=1
B P

q=1
Q xibcoi(dbq ? dbq

inv).
After that, we compute the complete solution Costa which is a vector with

coordinates (Costa
1, Costa

2). When the ants A have constructed the solutions at
iteration t. Each solution can update the new Pareto front F which is the set of non-
dominated solutions F = F1, F2…, Fr, ..FR. The Fr, which is initially a non-
dominated solution, is composed by coordinate x(y), where Fr.x = Costa

1

(Fr.y = Costa
2,) and the costs of a was found at an iteration before current t.

The aim is to find new non-dominated solutions obtained by colony at iteration t,
then the front is updated by Algorithm 5.4. Each non-dominated solution called
NDS of ant a is compared with solutions front Fr for r e R. When NDS is non-
dominated by at least one solution front then Pareto front is updated with NDS of a.
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5.3.4 Pheromone Update (Storage and Distance Part)

When ants have built solutions (stored and transported containers), the pheromone
update process is applied to find the best Pareto front. For the storage part, the
solutions having arcs (i, b) in the Pareto front are updated as follows:

sib ¼ 1� q1ð Þ:sib þ q1:D
1
ib ð5:5Þ

where

D1
ib ¼

Cost1
a=Fr:x if 9 i; bð Þ 2 Sol Frð Þ; 8r 2 R

0 otherwise

�
ð5:6Þ

The trail on pheromone deposited on path (i, b) will be increased if there is at
least one non-dominated solution Fr of front Pareto F. q1 (0 \ q1 \ 1) is the
evaporation rate used to explore more the search space. The same process is
applied on distance optimization part. The pheromone levels of the solution
components (i, q) existing in the Pareto front are updated by Eq. (5.7).

tiq ¼ 1� q2ð Þ:tiq þ q2:D
2
iq ð5:7Þ

where

D2
iq ¼

Cost2
a=Fr:y if 9 i; qð Þ 2 Sol Frð Þ; 8r 2 R

0 otherwise

�
ð5:8Þ
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q2 is the evaporation rate for exploring the new search space. The amount
quantity pheromone added D2

iq is calculated thanks to Eq. 5.8. If arc (i, q) is
traveled in at least one dominated solution Fr of Pareto front F then the quantity
added depends on the cost of the second part and the cost of Fr.x.

5.3.5 MOACO-LS

The second proposed approach is MOACO with a local search, called MOACO-
LS. This one is applied on non-dominated solutions found after some iteration. The
moves consist to relocate a set of containers of customer i with those of customer
j in checking the capacity of block and quay containing coi and the block and quay
having coj. The aim is to verify the behavior of MOACO when the local search is
added.

5.4 Computational Results

To analyze the solution quality of the proposed algorithms, several experiments
are conducted on generated data. The tests are applied with MOACO approach and
MOACO-LS approach. The parameters values of these approaches are determined
thanks to several experiences. To evaluate the obtained Pareto front, three com-
parison criteria are used: the number of solutions in an optimal front, the distance
proposed by Riise (2002), and the Zitlzler measure (Zitzler and Thiele 1999).

5.4.1 Input Data

To confirm if the both approaches return high quality solutions, we develop a
complete enumeration which is applied on small data. So, we generate randomly
the data of size I = 5 and I = 10. As we have said above, we consider a single
planning horizon. We assume that during one day, we receive some containers
which will be stored in the blocks then assigned to vessels devoted to one country.
For 5 customers, we assume 3 blocks and 2 quays (devoted to 1 vessel). For 10
customers, we have 5 blocks and 4 quays (2 quays per vessel). Each customer i has
a set of containers coi generated randomly in [1, 7]. Each block has its capacity and
its cost storage which are generated randomly in [4, 20] and [2.00, 4.00],
respectively. Each quay has a defined distance with each block.
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5.4.2 Evaluation Metrics

Here, we assume F1 and F2 which are the Pareto front of method 1 and method 2
respectively. To compare the quality solutions of these Pareto fronts, three criteria are
used. The first one is the number of solutions nF1 (nF2) in an optimal front F1 (F2).

The second one is the distance of Riise l calculated with Eq. 5.9, ds is a distance
between solution s belonging to front F2 and its orthogonal projection on front F1.
When ds has a negative (positive) value, it means that F2 is under (upper) F1. The
l value depends to the number of solutions nF in each front F, a normalized value is
often used (Eq. 5.10).

l ¼
XnF

s¼1

ds ð5:9Þ

l� ¼ l
nF

ð5:10Þ

The last comparison criterion is Zitzler measure: C (F1, F2), C (F2, F1). C (F1,
F2) (C (F2, F1)) represents the percentage of solutions in F1 (F2) dominated by at
least one solutions of F2 (F1). The front F1 is better than front F2 if C (F1,
F2) \ C (F2, F1).

5.4.3 Parameter Setting

To compare the two algorithms, several tests are made to evaluate the good values
of different parameters. Final values are determined as a compromise between the
quality of the final solutions and the convergence time needed. Those parameters
have been chosen based on a set of experimental tests. In each test, we tried to
determine the best value for a parameter while fixing the other ones. The value
parameters are a1 = 0.5, b1 = 0.1, q1 = 0.7, a2 = 0.7, b2 = 0.15, q2 = 0.8.

At the beginning of the algorithms, the parameters values are initiated to
sib = 1 8i 2 I and 8b 2 B, tiq = 1 8i 2 I and 8q 2 Q. Concerning the stopping
criterion, they are same for both (MOACO, MOACO-LS). For I = 5 (I = 10), the
number of iterations is T = 100 (T = 1000) and the number of ants is A = 5
(A = 10). About MOACO-LS, the Local Search (LS) is called after 10 (100)
iterations for I = 5 (I = 10). To note that the local search is applied on the non-
dominated solutions found. It means that the LS is applied 10 (100) times for I = 5
(I = 10).
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5.4.4 Analysis

To evaluate the convergence of the approaches toward optimal solutions and to
confirm if the obtained solutions are a good quality, we compare in Tables 5.1 and
5.2 the results of MOACO and MOACO-LS with those of full Enumeration
Method (EM). The instance used is I = 5 because the EM induces to an important
computing time.

In Tables 5.1 and 5.2, the results show, based on the 5 tested instances, that the
MOACO converge to optimal solution in all cases and the MOACO-LS converge
to optimal solutions in 4 instances and the 1 other is very close to optimal solu-
tions. Here, the nF1 and nF2 represent the number of solutions of fronts F1 and
F2, respectively. The distance of Riise is noted as l. Finally, C (F1, F2) and C (F2,
F1) denote the Zitzler measure. In referring to these tables, we can confirm the
advantage of developing the MOACO and MOACO-LS which are able to get
optimal solutions for several instances.

The last comparison, in Table 5.3, is between the MOACO and the MOACO-
LS algorithms on the generated instance of size 10 customers. We can see the
comparison of two Pareto fronts obtained by algorithm MOACO (noted F1) and
algorithm MOACO-LS (noted F2). The Fig. 5.4 shows the Pareto fronts obtained
by MOACO and MOACO-LS on one tested instance.

We give an example for reading the Table 5.3, in the first line (instance Pb10-1),
the number of non-dominated solutions nF1 in the MOACO Pareto front is 2
instead of 3 for the MOACO-LS Pareto front. The negative distance of Riise
l = -0.68 and l* = -0.23 indicate that MOACO-LS front is under the MOACO

Table 5.1 Comparison between EM (F1) and MOACO (F2) algorithms

Instance nF1 nF2 l l* C (F1, F2) C (F2, F1)

Pb5-1 1 1 0 0 0 0
Pb5-2 1 1 0 0 0 0
Pb5-3 1 1 0 0 0 0
Pb5-4 1 1 0 0 0 1
Pb5-5 2 2 0 0 0 0
Average 1.2 1.2 0 0 0 0.2

Table 5.2 Comparison between EM (F1) and MOACO-LS (F2) algorithms

Instance nF1 nF2 l l* C (F1, F2) C (F2, F1)

Pb5-1 1 1 0 0 0 0
Pb5-2 1 1 0 0 0 0
Pb5-3 1 1 0 0 0 0
Pb5-4 1 1 0 0 0 0
Pb5-5 2 2 0 0 0 0
Average 1.2 1.2 0 0 0 0
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front, it means that on this case the MOACO-LS is better than MOACO. In Pb10-3,
67 % of solutions obtained by MOACO are dominated by at least one solution of
those of the MOACO-LS while no solution of MOACO-LS front is dominated by
the MOACO front.

In referring to these results, we can conclude that in several generated instances,
the MOACO-LS is more interesting compared to the MOACO algorithm. The
average value of the Riise distances l is -7.97, it means that the MOACO-LS
Pareto front is under the MOACO Pareto front. Concerning the Zitzler measure,
we can see that the average C (F1, F2) is 0.32 which represents that 32 % of
solutions in the MOACO Pareto front are dominated by at least one solution from
the MOACO-LS front.

Table 5.3 Comparison between MOACO (F1) and MOACO-LS (F2) algorithms

Instance nF1 nF2 l l* C (F1, F2) C (F2, F1)

Pb10-1 2 3 -0.68 -0.23 0 0
Pb10-2 3 3 16.52 5.51 0 0.33
Pb10-3 3 4 -12.36 -3.09 0.67 0
Pb10-4 3 3 4.85 1.62 0.33 0
Pb10-5 2 3 -5.26 -1.75 0.5 0
Pb10-6 3 4 -13.9 -3.47 0.67 0.75
Pb10-7 4 2 -38.72 -19.36 0 1
Pb10-8 4 3 -7.69 -2.56 0.25 1
Pb10-9 4 3 -9.21 -3.07 0.25 0.33
Pb10-10 3 4 2.84 0.71 0.33 0.25
Pb10-11 2 3 -60.34 -20.11 0.5 0.67
Pb10-12 3 2 10.52 5.26 0.67 0
Pb10-13 2 3 -71.33 -23.78 0 0.33
Pb10-14 2 3 -8.27 -2.76 0 0.33
Pb10-15 3 2 -0.27 -0.13 0.67 0
Pb10-16 1 1 0 0 0 0
Pb10-17 2 4 17.93 4.48 1 0
Pb10-18 4 1 5.54 5.54 0.5 0
Pb10-19 3 3 0 0 0 0.33
Pb10-20 5 9 -10.1 -1.12 0.4 0.22
Pb10-21 1 1 0 0 0 0
Pb10-22 2 2 -11.73 -5.86 0 1
Pb10-23 2 1 2.81 2.81 0.5 0
Pb10-24 2 3 10.01 3.34 0 0.33
Pb10-25 2 3 -6.08 -2.03 0 0.33
Pb10-26 4 2 -3.15 -1.57 0.25 0
Pb10-27 1 1 5.13 5.13 0 0
Pb10-28 1 1 8.05 8.05 1 0
Pb10-29 5 2 12.88 6.44 0.2 0
Pb10-30 8 4 -77.14 -19.28 0.38 0.5
Average 2.8 2.77 -7.97 -2.04 0.32 0.26
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5.5 Conclusion

We have studied a multi-objective container terminal problem with an ant colony
optimization. The two objectives are the minimization of cost storage and the
minimization of distance transport. The multi-objective metaheuristics developed
are a MOACO and a MOACO-LS. The tests are applied on several instances. We
have compared the results obtained by the two approaches with a complete enu-
meration. We have noticed that the MOACO-LS is better than MOACO. In the
perspectives of this work, other methods based on the Pareto could be developed
such as a genetic algorithm.
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Chapter 6
Exploratory Study in Determining the
Importance of Key Criteria in Mobile
Supply Chain Management Adoption for
Manufacturing Firms: A Multi-criteria
Approach

A. Y. L. Chong, F. T. S. Chan and K. B. Ooi

Abstract Mobile supply chain management can help manufacturers to reduce
cost and improve supply chain performances. However, the decisions to adopt
mobile supply chain management are complex as it involved multi-criterion
decisions that need to be considered by manufacturing firms. This research aims to
predict the factors that can lead to successful mobile supply chain management
adoption. Variables from the technology-organization-environment (TOE) model
were used as predictors for this research. A non-compensatory adoption decision
process is modeled using neural network analysis. Data was collected from 192
manufacturing firms. Our results showed that some of the strongest predictors for
mobile supply chain management adoption are senior management support,
security perceptions, technology integrations, and financial and technical compe-
tence. Firm size and environmental factors on the other hand have less predictive
power than technological and organizational factors on mobile supply chain
management adoption decisions.
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6.1 Introduction

Organizations today operate in a competitive and globalized business environ-
ment. Manufacturing organizations in particular, are facing with the pressure of
time and quality-based competitions and global sourcing (Chong et al. 2009).
Many manufacturing firms have sought to stay ahead of their rivals by offshoring
their manufacturing sites. However, employing low cost strategies is not a long-
term, sustainable business model. Instead, many successful manufacturing firms
have stayed competitive by operating more efficiently through the implementation
of supply chain management. One way to improve the implementation of supply
chain management is through information systems. In the past, manufacturing
firms have relatively good success in implementing information systems in their
supply chain. Many manufacturing firms in particular, make use of Internet
technologies to implement Electronic Data Interchange (EDI) and Business to
Business (B2B) systems (Chou et al. 2004). The applications of Internet tech-
nologies help supply chain members cooperate and share information in real time
(Gunasekaran and Ngai 2004). By sharing real time information, it helps to reduce
supply chain problem such as the bullwhip effect and reduce uncertainties in the
supply chain (Yao et al. 2007). Although Web-based applications such as B2B and
EDI have help manufacturing firms to improve their supply chain management,
one growing technology that has captured the attentions of researchers and prac-
titioners are mobile technologies.

The applications of mobile technologies to supply chain have created a term
known as mobile supply chain management. In a mobile supply chain management
environment, organizations apply technologies such as radio frequency identifi-
cation (RFID), Wi-Fi, and GPS to help conduct supply chain activities (Eng 2006).
The advantage of applying mobile technologies is that firms will no longer face
physical constraints such as the arrangement of cables, and data can be transmitted
anytime, anywhere. ‘‘Internet of things’’ is a network that allows organizations to
track their products through the supply chain globally, and run multiple applica-
tions simultaneously (Ngai et al. 2008). Although mobile supply chain manage-
ment has many advantages compared to existing technologies, its implementations
in manufacturing firms are still relatively low (Wu and Subramaniam 2011). There
is currently limited study on the applications and implementations of mobile
supply chain management. The implementation decisions of mobile supply chain
management are a complicated process involving various decisions. Such views
are supported by prior studies by (Ngai et al. 2008). Organizations can adopt
mobile supply chain management via mobile devices, Wi-Fi, etc. Second, in most
technology adoption studies, researchers have often employed explanatory statis-
tical techniques such as regression analysis to understand the reasons why firms
adopt/not adopt technologies. However, the multi-criteria adoption decisions are
often very complex, and regression techniques have often oversimplified the
problems by examining the decisions in linear and compensatory models. Under
such models, researchers believe that the shortfall in one of the adoption decisions
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such as security can be compensated by improving another adoption factor such as
perceived usefulness (Chiang et al. 2006). However, in organizations, the deci-
sions involved are often non-compensatory. For example, an organization which
believes that mobile supply chain management’s security is a major obstacle in
their adoption decisions are unlikely to be compensated by factors such as the cost
of mobile supply chain management. This problem is observed by prior studies
conducted by Chiang et al. (2006) and Venkatesh and Goyal (2010). Chiang et al.
(2006) in their study on information systems adoption found that linear statistical
models are not reliable as they are unable to capture the non-compensatory
decision rules. Similarly, Venkatesh and Goyal (2010) also argued that linear
models tend to oversimplify the complexities involved in information systems
adoption decisions.

In order to bridge the gap in existing literatures, this research has several aims.
First, this research aims to predict organizations’ mobile supply chain management
adoption decisions by employing the technology-organization-environment (TOE)
model (Tornatzky and Fleisher, 1990). Second, this research aims to use neural
network to examine organization’s multi-criterion, nonlinear and non-compensa-
tory adoption decisions.

6.2 Literature Review

6.2.1 Overview of Mobile Supply Chain Management

Mobile supply chain management involves the integration of supply chain soft-
ware applications with mobile technologies (e.g., mobile smart phones, personal
digital assistants, Wi-Fi) to provide a ubiquitous, wireless supply chain environ-
ment (Eng 2006). Eng (2006) in his study on mobile supply chain management
summarized some of the main advantages of mobile supply chain management
which include the ability to report real time events, its ubiquity, and the ability to
personalize information. In a mobile supply chain environment, important infor-
mation can be broadcasted in real time without any delays, and the information are
transmitted from both inside and outside the organizations. By transmitting the
information in real time, it helps organizations to reduce response lag time, avoid
delays in processing transactions, and help ensure accurate forecast of products
demand and improve customer service (Eng 2006). The prices of products and
services can also be dynamic based on real time events (Eng 2006). Such
advantages of mobile supply chain management is summed up by Ming et al.
(2008) as the 3As features, which are Anyone, Anywhere, Anytime. The ability to
personalize information can be achieved through integrating wireless technology
with customer relationship management software. Eng (2006) suggested that it is
possible to customize and target certain supply chain information based on the
needs and circumstances of the individual customers. Another advantage of mobile
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supply chain management technologies when compared with barcode for example,
is that the supply chain members can track products without the needs for scan-
ning. With information on product location, characteristics and inventory levels
transmitted precisely, problems related to manual inventory counting, mis-picking
of goods in warehouse, and mistakes in order numbering are eliminated (Wang
et al. 2010).

Although mobile supply chain management offers many advantages, there are
still limited literatures on the factors influencing organizations’ adoption decisions.
In order to understand the important criteria involved in such decisions, a review
of previous studies are important. The next section presents the review.

6.2.2 Factors Affecting the Adoption of Mobile Supply
Chain Management

One of the most commonly applied technology adoption model is Tornatzky and
Fleischer’s TOE model. The TOE model proposed that an organization’s decisions
to adopt technologies are influenced by the technological, organizational, and
environmental factors. Technological factor is the internal and external technol-
ogies that are relevant to the organizations. Organizational factors refer to orga-
nizations’ characteristics such as their size, financial resources, organization
structure, etc. Environmental factor refers to the arena where the organizations
conduct their business such as the industry which the organizations are operating,
regulatory environments and governmental issues (Chong and Ooi 2008).

The TOE model has been applied in various information systems adoption
studies. Zhu et al. (2006) applied the TOE model to understand the assimilation of
e-business in organizations. Wu et al. (2011) similarly applied the TOE model to
predict the adoptions of RFID in organizations’ supply chains. Low et al. (2011)
used the TOE model to investigate the factors affecting the adoption of cloud
computing. Chong and Chan (2012) similarly applied the TOE model to examine
the diffusion of RFID adoptions in the health care industry. All these prior studies
supported the importance of TOE in explaining the factors affecting information
systems adoption decision. Table 6.1 summarizes previous information systems
adoption studies which have applied the TOE framework.

As shown in Table 6.1, TOE have been applied and found useful in different
types of information systems adoptions (Wang et al. 2010). However, the specific
measures specified within the three key constructs in the TOE model vary based on
the types of information technologies studied. Drawing upon previous literatures,
this study will build its base model based on TOE, and a manufacturing firm’s
perceived cost, perceived benefits, technology integrations, security perceptions,
and complexity are used to measure the technological attributes. In order
to measure organizational attributes, firm size, senior management support, tech-
nological competence, financial competence are used. In order to measure
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environmental attributes, competitive pressure, trading partner pressure, and
expectations of market trends are being used. The next section provides discus-
sions on the variables used on the three main constructs.

6.2.3 Technological Factors

Perceived cost, perceived benefits, technology integrations, security perceptions
are all used as attributes of technological factors. Before implementing mobile
supply chain management, organizations will place great considerations in the
perceived cost and the expected benefits of the technology . In particular, orga-
nizations will need to conduct return on investment calculations given that they
will need to invest in technologies such as mobile devices, RDIF tags, and the
setting up of the wireless environment. Perceived benefits is similar to relative
advantages proposed by prior studies by Chong and Ooi (2008); Chong et al.
(2009), and looked at whether mobile supply chain management can have better
advantages when compared to their existing technologies. As mobile supply chain
management is not a standalone application, and will need to be integrated to
organizations’ existing systems such as their accounting system, customer rela-
tionship management software, etc., the complexity of integrating mobile supply
chain management applications into their existing business processes will be an
important decision. As stated by Zhu et al. (2006), integration of systems involving
back office information systems and database, as well as those external integrated
with suppliers’ enterprise systems and databases are often complicated and can
influence an organization’s success or failure in adopting new supply chain
technologies. Finally, as mobile supply chain management involved the trans-
mission of wireless data, they are more exposed to security and privacy risks.
Organizations transmitted important supply chain information may have risks of
having the information eavesdropped by hackers.

6.2.4 Organizational Factors

Firm size, senior management support, technological competence, and financial
competence are the four main attributes of organizational construct used in this
study. Jeyaraj et al. (2006) in their review on variables used in IT adoption studies
found that top management support is consistently one of the most important
predictor of IT adoption decisions. Organizations size on the other hand, have
contradictory results in many IT adoption studies For example, Iacovou (1995)
found that larger firms are more likely to adopt new technologies as they have far
better technical and financial resources. However, Gibbs and Kramer (2004) and
Huang et al. (2008) found that large organizations tend to have problem in
adopting new IT systems due to their existing legacy systems which are often not
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compatible with newer technologies. Small organizations also tend to be more
flexible when it comes to implementing new IT.

6.2.5 Environmental Factors

Environmental construct in this study is measured by competitive pressure, trading
partner pressure, and expectations of market trends. Prior studies by Zhu et al.
(2006) showed that when faced by competitive pressure, organizations are very
likely to respond to the pressure by implementing new technologies. By imple-
menting newer technologies, organizations hope to be able to operate more effi-
ciently, and gain competitive advantages over their rivals. On the other hand, if
majority of the organizations are adopting a new technology, those who do not
follow suit may be left behind and play catch up to their competitors. This situ-
ation is very similar to when e-commerce first became popular. Many organiza-
tions that do not own a website or have e-commerce strategies look at their rivals
and see that this is the industrial trend, and for them to remain competitive in the
industry, they have no choice but to follow competitors in the industry to adopt e-
commerce. Lastly, mobile supply chain management is often not technology that
can be implemented by an independent organization. Instead, supply chain
members may need to ‘‘co-adopt’’ the technology. This is similar to Wal-Mart’s
request that its top 100 suppliers need to adopt RFID (Chong et al. 2009).
Therefore, it is possible that trading partner with more bargaining power will force
its partners to adopt a technology.

6.2.6 Neural Network for Predicting Mobile Supply Chain
Management Adoption

Neural network is a ‘‘massively parallel distributed processor made up of simple
processing units, which have a natural propensity for storing experimental
knowledge and making it available for use.’’(Haykin 2001) Similar to a human
brain, neural network can acquire knowledge from its environment by learning.
The knowledge acquired will be stored by the interneuron connection strengths
(Haykin 2001). Neural network is capable of applying learning process to modify
its synaptic weights in an orderly manner to achieve its design objective (Sexton
et al. 2002).

Neural network contains nodes that are distributed in hierarchical layers. Most
neural networks have an input, hidden, and output layer. Data will first go through
the input layer, and the results will be generated in the output layers (Morris et al.
2004). Each input has its own synaptic weights which are transferred to the hidden
layers consisting of several hidden neurons (Bakar and Tahir 2009). The values are
added through applied weights before being converted into an output value.

6 Exploratory Study in Determining the Importance of Key Criteria 129



The results will be passed to the neurons in the layers below, and provide a feed-
forward path to the output layer (Sexton et al. 2002). The synaptic weights are
adjusted during the repetitive training, and knowledge from the training is stored
and can be used by the neural network for predictive purposes.

This research employed neural network to examine mobile supply chain
adoption decisions due to several reasons. First, neural network can be both linear
and nonlinear. As a result, it is an ideal method to be used for examining non-
compensatory decision processes. Due to its ability to analyse nonlinear rela-
tionships, it is not necessary to assume any particular distribution for the sample
population in this research (Chiang et al. 2006). Second, neural network is also
found by prior studies to have better predictive performance, and this will be
useful for us to understand the multi-criterion decisions involved in mobile supply
chain management adoption (Chiang et al. 2006).

6.3 Methodologies

6.3.1 Data and Samples

A survey instrument was developed to test the proposed conceptual model in this
research. The survey was distributed to 1,000 manufacturing firms in Malaysia via
postage mail. The companies were selected from the Federation of Malaysian
Manufacturers (FMM) directory which includes more than 2,000 manufacturing
firms. Two weeks upon distributing the survey, phone calls and emails were made
to the company to follow up with their progress in completing the survey. We
requested that the survey to be completed by executives/managers in charge of
supply chain management or IT practices in the organization as they will have
better understanding of mobile supply chain management. Of the 1,000 surveys
distributed, only 192 were returned, yielding a response rate of 19.2 %.

6.3.2 Measurement Items

The measurements items were adopted from previous studies as well as from the
feedbacks from several IT organizations’ managers. We adopted majority of the
survey questions from previous studies.

A total of 34 questions were used to measure the independent variables.
Responses to the items were made on a five-point Likert scale format ranging from
1—strongly disagree to 5—strongly agree. Mobile supply chain management was
measured by three items using a five-point Likert scale format ranging from
1—strongly disagree to 5—strongly agree.
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Cronbach’s alpha(a) was applied to test for the reliability of the survey. The
reliability coefficients (a) for each variable were as follows: Perceived costs
(0.903), perceived benefits (0.696), complexity (0.621), technology integration
(0.723), security perceptions (0.691), senior management support (0.714), firm size
(0.694), technological competence (0.711), financial Competence (0.683), com-
petitive pressure (0.777), expectations of market trend (0.801), trading partner
pressure (0.778), and Adoption (0.737). The Cronbach’s alpha (a) values ranged
adhered to the suggested minimum value of 0.5 by Koh et al. (2007).

6.4 Neural Network Analyses

Multilayer perceptron training algorithm was applied to train the neural network in
this research. Cross-validations were applied to prevent overfitting the model. As
mentioned by Sexton et al. (2002), there is no heuristic for determining the hidden
nodes in a neural network, thus a preliminary network was examined using 1–10
hidden nodes (Morris et al. 2004; Wang and Elhag 2007).

The accuracy of the model was measured using the relative percentage error
over ten validations. Networks with two hidden nodes were found to be complex
enough to map the datasets without incurring additional errors to the neural net-
work model. The input layer consists of 12 predictors while the output layer
consists of one output variable, which is the mobile supply chain management
adoption. Table 6.2 shows the cross-validation results to determine the appropriate
hidden nodes.

A tenfold cross-validation was performed where 90 % of the data (i.e., 173)
was used to train the neural network, while the remaining 10 % (i.e., 19) was used
to measure the prediction accuracy of the trained network. Table 6.3 shows the
relative percentage error of the validations. As shown, the average cross-validated
relative percentage error for the training model is 18.72 % percent while for the
testing model it is 15.91 % Given that adoption decisions are complex in nature,
the network model which has an accuracy of around 82 % is quite reliable in

Table 6.2 Average cross
validation results with
different number of hidden
nodes

No. of hidden nodes Relative percentage error

1 10.85
2 10.32
3 10.76
4 10.98
5 11.50
6 11.87
7 12.40
8 12.87
9 13.46
10 13.67
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capturing the numeric relations between the predictors and the mobile supply
chain management adoption.

In order to determine the ranking of the predictors in terms of their importance,
sensitivity analysis was performed. Sensitivity performance was computed by
averaging the importance of the input variables in predicting the output for the ten
networks. The importance of an independent variable is a measure of how much
the network’s model-predicted value changes for different values of the inde-
pendent variable. The normalized importance values were found from dividing the
importance values by the largest importance value, expressed as a percentage.

Table 6.4 shows that all the predictors derived from the TOE model are rele-
vant in all ten networks to predict mobile supply chain management adoption.
Looking at the Table 6.4, the ranking of the predictors in terms of their importance
are senior management support, security perceptions, technological integrations,
financial and technical competence, perceived costs, complexity, trading partner
pressure, competitive pressure, expectations of market trend, firm size, and per-
ceived benefits.

Table 6.3 Full validation
results of neural network
model

Network Training Testing

1 21.23 15.45
2 18.34 15.43
3 17.45 16.23
4 22.45 17.45
5 18.87 16.32
6 16.48 15.56
7 19.34 15.35
8 18.32 16.56
9 17.87 14.32
10 16.89 16.45

Mean
Standard deviation

18.72 15.91
1.87 0.87

Table 6.4 Normalized
variable importance

Predictors Normalized importance (%)

Senior management support 92.45
Security perceptions 90.21
Technology integrations 89.33
Financial competence 88.45
Technical competence 87.21
Perceived costs 78.45
Complexity 74.32
Trading partner pressure 65.43
Competitive pressure 58.43
Expectations of market trend 55.73
Firm size 48.38
Perceived benefits 44.32
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6.5 Discussions

Based on the result, senior management support is found to be the most important
predictor of mobile supply chain management adoption in manufacturing firms.
This means what separates those manufacturers from adopting and not adopting
mobile supply chain management is the support they received from the senior
management. The second most important predictor is security perceptions. This
shows that given that mobile supply chain management involves transmission of
data in a wireless environment, this causing some concerns for manufacturing
firms in deciding to adopt mobile supply chain management.

Technology integrations are the third most important predictor in this research.
Therefore, one of the hindrances for mobile supply chain management adoption is
the compatibility between mobile supply chain management with the existing
technology and business processes. In order to facilitate smooth integrations
between mobile supply chain management with existing technologies and business
processes, it would be important for the manufacturing firms to obtain the support
from the top management. Both financial and technical competences are among
the top half of the variables that can predict the adoption of mobile supply chain
management in manufacturing firms. These two variables measure the organiza-
tion’s readiness. Therefore, when predicting mobile supply chain management
adopters/nonadopters, manufacturing firms that are more ready in terms of finan-
cial and technical resources are more likely to adopt mobile supply chain man-
agement. In general, organizational attributes are strong predictors of mobile
supply chain management adoption. The one exception of this is organization size.
This could mean that our results are unlike studies which found that larger firms
are more likely to adopt new technology. Smaller firms nowadays also have better
technological awareness, and therefore will know the importance of mobile supply
chain management. Therefore, perceived benefits are one of the worst predictor of
mobile supply chain management adoption.

Environmental factors are found to have less predictive power compared to the
technological and organizational factors. The results show that manufacturing
firms’ main decisions criteria to adopt mobile supply chain management are less
likely to be influenced by trading partner pressure, competitive pressure, and
expectations of market trend. However, this is not to say that these variables are
not important predictors. These variables are found to be relevant in all ten neural
network examinations. However, their roles in predicting mobile supply chain
management adoption are less when compared to factors related to organizational
and technological factors. This shows that manufacturing firms who adopt mobile
supply chain management are more likely to be firms that have good resources and
backed up by their senior management. Technological factors such as the per-
ception on mobile supply chain management being secure and does not have
compatibility issues will also help manufacturing firms to adopt mobile supply
chain management.
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6.6 Conclusion and Future Research

In an effort to determine the vital factors that contribute to the prediction of mobile
supply chain management adoption, data were collected from manufacturing firms
in Malaysia. Neural network was applied to the data to investigate the important
predictors. All variables derived from the TOE model were found to be significant
predictors of mobile supply chain management adoption. Neural network appli-
cation to this research was largely successful. By using the neural network
approach, practitioners and researchers are able to identify the critical variables in
the mobile supply chain management adoption model.

One improvement for future studies is to incorporate more variables to predict
the adoption of mobile supply chain management. Other variables from models
such as Diffusion of Innovation model might be used to integrate with the TOE
model. Adding additional variables might improve the predictive power of the
neural network model in this research.
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Chapter 7
A Fuzzy Handling of the Multi-criteria
Characteristic of Manufacturing
Processes

L. Berrah and L. Foulloy

Abstract This chapter deals with the performance expression problematic in an
industrial continuous improvement process. Performance expressions are the
purpose of performance indicators and performance measurement systems
(PMSs). We focus particularly on the elementary aspect of such an expression. The
elementary performance expression is the constitutive element of the PMSs, being
defined through the achievement degree of a considered objective, while other
types of expressions are involved in PMSs, with regard to the multi-criteria and
multilevel aspects of the objectives. The computation of the objective achievement
brings together the objective declaration, the acquired measurement that reflects
the reached state and the comparison of these parameters. By revisiting previous
works handled in this field, we consider that elementary performance expression is
modelled by a mathematical function that compares the objective to the mea-
surement. Conventional Taylorian ratio and difference are highlighted. The qual-
itative or quantitative characteristic of the data, the flexibility concerning the
objective declaration and the measurements errors lead us to use the fuzzy subset
theory as a unified framework for expressing performance. It also leads to new
approaches which are beyond comparison functions.
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7.1 Introduction

The major industrial control purpose is the achievement of the expected perfor-
mances. In this sense, improvement processes are continuously carried out in order
to define the right actions with regard to the objective achievement. Whatever the
nature of the improvement process, the adopted methodology is generally based on
the Deming wheel and the PDCA Plan—Do—Check—Act cycle (Deming 1982),
and involves the following generic decision steps (PDCA 9001; Berrah et al. 2011;
Monden and Ohno 2011; Womack et al. 1990):

• Identifying key areas by defining the objectives; analysing the as-is situation by
making a diagnosis,

• Planning and implementing changes, by choosing the best improvement actions
in a given context with regard to the objectives,

• Monitoring the results,
• Developing a closed-loop control system.

Making decisions implies thus a continuous check, diagnosis and action of what
takes place with regard to the operational system and the target values. One major
key in this context is the right information at the right moment, in order to evaluate
the success of each step of the considered improvement process before going on to
the next one. To be more precise, decision-making essentially needs performance
expressions for the handling of both the efficacy and the efficiency of the
improvement process (Berrah et al. 2008; Neely 2005; Neely et al. 1995). While
the notion of efficacy is based on the objective achievement, the efficiency iden-
tifies the quantity of means used. Such requirements for the performance
expression highlight, on the one hand, the multi-criteria aspect of the post-Tay-
lorian industrial performance. The industrial performance criteria to consider
hence become interrelated and concern the conventional productivity, but also
quality, delay, sustainability, employee motivation, innovation, etc. On the other
hand, looking to continuously improve the performances introduces specifications
for the evaluation tools that include not only the performance of the as-is state but
also the type of gap to fulfil for the reaching of the to-be performance (Ghalayini
et al. 1997).

The problematic of the performance expression is widely considered in the
literature. According to the performance indicator definition, their purpose is to
give pieces of information about the objective achievement. The current measures
are thus linked to the improvement actions to launch (Fortuin 1988; Bitton 1990;
Berrah et al. 2000). The so-called Performance Measurement Systems (PMSs) are
the instruments commonly used to reach this aim in a multi-criteria context
(Globerson 1985; Bitton 1990; Kaplan and Norton 1992; Bititci 1995; Neely et al.
1995; Ghalayini et al. 1997; Clivillé et al. 2007).

This chapter deals with the ‘‘elementary’’ performance expression, namely the
one provided by performance indicators. Conceptually, the performance expres-
sion handles data concerning the achievement of the objective. Two parameters
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fundamentally intervene in the expression process; on the one hand, the objective
to achieve, and on the other hand the measurement of the reached state, in
accordance with the objective. The elementary performance expression is obtained
by the comparison of the measurement with the objective. Moreover, the semantic
of the given piece of information can be different, and be either objectively related
to the physical reached state or more subjectively to the satisfaction of the deci-
sion-maker with regard to the obtained results. The nature of the considered cri-
teria as well as of the improvement to control also has its importance in the way of
expressing this performance.

In (Berrah et al. 2000), a formal handling of the elementary performance
expression has been proposed, based on a fuzzy modelling of the objective and the
measurement. In accordance with the industrial context, the objectives can be
defined with more or less flexibility. They can also be qualitatively or quantita-
tively declared. Beyond their possible qualitative aspect, measurements can
vehicle some kind of uncertainty. The fuzzy framework allowed us to homoge-
neously take into account all these characteristics. Nevertheless, the idea was to
consider that the comparison is made by a mathematical operator that corresponds
to the nature of the objective and the measure. We propose here to consider that
the specificities of the performance expression are handled first by the way the
comparison is made. Hence, we choose to extend the previous propositions on a
unified formal framework that involves the comparison operator and considers it as
the essential parameter of the expression process. Moreover, the question about the
introduction of fuzzy arguments in comparison functions is addressed once again,
with regard to the semantic of the objective on the one hand and the characteristics
of the measurement on the other hand.

The developed framework looks for the modelling of the elementary perfor-
mance expression mechanism, namely the comparison, by a mathematical oper-
ator, of an acquired measurement with a declared objective. In this sense, Sect. 7.2
revisits the essentials around the elementary performance expression. In the spirit
of applying the proposed formalism, the question of the nature of the objectives
and the measurement is handled in Sect. 7.3, with regard to a match with the
industrial requirements. A fuzzy handling of the objective and the measurements is
thus presented, essentially based on the different semantics that the membership
function concept can take. We focus in Sect. 7.4 on the way the performance can
be expressed, with regard to the formats of both the objective and the measure-
ment. Some situations, which are extracted from industrial cases, are presented in
order to illustrate the different proposed formalisms.

7.2 The Performance Expression Process

A certain ambiguity remains around the performance concept, either referring to a
kind of desired best level to reach or to the obtained results (Folan et al. 2007;
Lebas 1995). Thus, the synergy with the ‘‘objective’’ and the ‘‘measurement’’
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concepts are strong. The objective comes to quantify the performance level to
reach, by planning some adequate improvement actions. The measurement iden-
tifies the reached result, once the actions have been executed. Moreover, although
the objective can be declared in different ways, the performance measurement can
be addressed differently. For the sake of generality, we choose to talk about
‘‘performance expression’’ and consider that such an expression can be associated
to a reached state or a satisfaction level, with regard to this state. Hence, one can
say that the performance expression reflects the achievement of an expected state,
namely the objective, with regard to a physical result, which is identified to the
measurement.

Intuitively, the objective concept can be considered as the performance or the
satisfaction level to reach, according to a selected criterion or variable (Grabisch
and Labreuche 2005; Jacquet-Lagrèze and Siskos 2001), leading to a decision-
making step concerning the improvement action to launch on the considered
operative system. Objectives are declared by decision-makers, in accordance with
the strong and weak points of the system, i.e., the set of variables or criteria to be
considered for describing the given decision problem.

According to us, the human declaration of the objectives formally subscribes to
the ideas that are handled by Zadeh in Computing with Words. The author has
introduced the ‘‘precisiation’’ notion as a means for translating a human declara-
tion into a formal homogeneous one, which is based on the association of a target
value to a variable (Zadeh 1984, 1996, 2004). To be more precise, by using this
concept, the idea is to constitute the so-called universe of discourse related to the
objectives (Berrah et al. 2000), meaning the set of attributes that are required to
characterise the objective. Even if the objective concept is usually identified to its
target value, many parameters must be involved for its complete specification. For
instance, if vis a variable associated with an objective, oðvÞwill represent the target
value to reach, uðvÞthe unit in which the variable is expressed and mðvÞ the
measurement.

In addition, given the multi-criteria aspect of the performance (Ghalayini et al.
1997; Hon 2005; Dossi and Patelli 2008; Rezaei et al. 2011), performance
expressions can be directly formulated, in the case of both a mono-objective
declaration and the availability of the corresponding measurement. This is the so-
called elementary expression. Performances can also be indirectly computed, with
regard for instance to a multi-objective declaration, the non-availability of the
measurement or a predictive estimation of the reached results. Aggregated
expressions are then proposed, temporal and tendency ones also.

The kind of expression considered here is the elementary one, since only one
variable is involved and the expression process is made once the measurement is
acquired, at the end of the temporal horizon required to execute the associated
actions. Hence, from a formal point of view, the elementary performance
expression can be obtained by comparing the target value oðvÞ, to a measurement
mðvÞ. The performance expression pðvÞ describes to which extent the measurement
is close to the target (Berrah et al. 2000).

140 L. Berrah and L. Foulloy



Definition 1 Let v be a variable associated with an objective, the elementary
performance expression is given by pðvÞ ¼ f ðoðvÞ;mðvÞÞ where f : O�M ! P is
the comparison function, oðvÞ 2 O the target value and mðvÞ 2 M the measure-
ment. O, M and P represent the set of values that can be taken respectively by oðvÞ,
mðvÞ and pðvÞ.

Note that for the sake of commensurability, we consider that oðvÞ and mðvÞ are
comparable, i.e., the values respectively associated to v with regard to the fixed
objective and the way the measurement is acquired are expressed in homogeneous
unities. Moreover, without loss of generality, let us assume that O and M are
subsets of the positive real numbers.

The a priori choice of P is particularly interesting, since it vehicles the wanted
semantics for pðvÞ (Berrah et al. 2004). Two major tendencies are generally
encountered in industrial practice. The first one is related to operational perfor-
mance indicators. P in this case identifies the set of potential physical values that
can be taken by pðvÞ.

Generally, for such indicators, P is defined on the same physical universe of
discourse of mðvÞ. The second case concerns strategic or result indicators, which
have to be significant and easily interpretable and comparable. P in this case
identifies the set of satisfaction degrees (Figueira et al. 2005) that can be taken by
pðvÞ. This satisfaction set can be numerical, e.g. P ¼ 0; 1½ �, where 0 identifies a
null satisfaction and 1 a total one as well as being linguistic, e.g.
P ¼ fvery good; good; medium; bad; very badg.

The choice of the comparison function constitutes a fundamental decision
question. Many parameters are involved in this process, such as the nature of the
improvement objective, its importance with regard to the overall strategy, the
meaning handled by the comparison operation, namely some kind of precise
proportion, overall profile similarity and gap to the reference. Other parameters
can also be envisaged, such as the decision-maker sensibility and vision, the
associate performance indicator role in the control process.

Besides, the concept of comparison is widely studied in the literature and
numerous operators are proposed (Kaufmann 1976). However, from our point of
view, a typology for the performance expression operators is a difficult task, except
if we extend the one practiced in the Taylorian companies to the modern
requirements. Indeed, in the Taylorian process where only the financial variable
was considered, conventional comparison functions were the ratio and difference
between the target value and the measurement. Today, comparison operators have
to deal with constraints due, on the one hand to diversified values in the respective
sets O, M and P, and, on the other hand, to the different natures of the involved
variables.

The purpose of this work is to describe a unified framework for expressing
elementary performances, by considering pðvÞ ¼ f ðoðvÞ;mðvÞÞ. The developed
idea is to propose a consolidation of the Taylorian ratio and difference operators,
by focusing on their specificity. In this sense, we propose in the following section
to introduce the two types of comparison function—ratio and difference—on the
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base of a fundamental property, which is the invariance. According to us, this
concept deals with some kind of synonymy between quantitative pieces of
information that are provided with regard to the performance expression. To be
more precise, the invariance is highlighted when the measurement and the
objective are not similar. The comparison mechanism thus handles semantics of
something like the inadequacy degree. The invariance property translates the idea
that two identical values pðv1Þ and p v2ð Þ represents the same relation between the
corresponding o1ðvð Þ;m1 vð ÞÞ and oðv2ð Þ;m v2ð ÞÞ. Let us add that, from the mea-
surement theory point of view (Krantz et al. 1971), the invariance idea can be
associated to the ‘‘significance’’ concept. The significance is also associated to an
operator and is deployed with regard to the different scales of values—ordinal,
interval and ratio—that are used to quantify the considered variables.

7.2.1 Ratio and Difference Based Comparison Functions

A ratio formalises, from a mathematical point of view, something such as a pro-
portion between two numbers of the same nature. Let us assume that M � < and
O � <þ�, where <þ� is the set of strictly positive real numbers. Indeed, this
hypothesis is coherent with the nature of the typical variables of industrial man-
ufacturing systems which are generally related to positive values for the handling

of both the expected state and the achieved one. Hence, the ratio pðvÞ ¼
f ðoðvÞ; mðvÞÞ ¼ mðvÞ

oðvÞ becomes a means of comparison of these pieces of infor-

mation. It is obvious that if each argument of the comparison function is multiplied
by the same positive real number, the ratio is unchanged. In other words, the ratio
is invariant by scaling. This property conveys the idea that the obtained perfor-
mance expression is overall information which is not related to the scale or the
unity of the objective and the measurement. In other words, producing 90 parts for
an objective of 100 parts has the same meaning in terms of performance expression
as manufacturing 4,500 parts for an objective of 5,000 parts. More precisely, a
service rate of 90 % due to a delay concerning 100 parts with regard to an
objective of 1,000 parts has the same performance expression meaning as having a
delay of 200 parts with regard to an objective of 2,000 parts. Moreover, decision-
makers can ask themselves about the commensurability in this context between the
90 % performance expression related to the manufacturing objective and the one
related to the service rate objective. Let us remark that it is precisely this one major
problematic that is handled by the PMSs and the so-called ‘‘overall’’ performance
expressions (Clivillé et al. 2007; Grabisch 2005).

By using a ratio, the principle of the comparison consists of comparing the
objective and the measurement, not at a whole, but rather part by part. The use of
the ratio comparison operator becomes relevant when the values to compare can be
defined as a set that can be detailed into elements. For instance, in the industrial
context, ratios were initially used to identify relationships between financial data.
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Taylorian performances related to variables such as profitability, liquidity, pro-
ductivity, solvency, etc., were thus expressed through them.

The difference is another operator widely used when dealing with the elements
to compare as a whole. It is often the case of the delay criteria. The difference-
based operator formalises, from a mathematical point of view, the gap between the
entities to compare. The difference between the objective and the measurement can
be written as: pðvÞ ¼ f ðoðvÞ; mðvÞÞ ¼ oðvÞ � mðvÞ. It indicates to some extent
how far from the objective the measurement is. It is also obvious that if a same real
number is added to each argument of the comparison function, the resulting per-
formance is unchanged. In other words, the difference is invariant by translation.
This invariance property conveys the idea that only the difference between the
objective and the measurement has a sense for the decision-maker. For example,
the performance expression has the same meaning in terms of performance
expression in the cases of a stock level of 55 parts, for an objective of 50 or a stock
level of 5,005 parts for an objective of 5,000. Note that the same commensurability
problem mentioned before can be considered in the case of the difference-based
comparison.

Moreover, in particular for the difference operator, the provided results are
often associated to a local use, thus allowing only the decision-makers who are
directly concerned with the considered system to have an interpretation of what
happened and of the quality of the result. Precisely, as mentioned before,
according to the performance indicator role in the control and the decision-making
process, the associated expressed performance can be defined on different P. In
this sense, it seems important to us to describe the normalisation step, which is a
frequent industrial practice either for the direct normalised expression of the
performance or to the conversion of obtained performance expression into adapted
format.

7.2.2 Normalised Ratio and Difference Operators

In the case where the performance expression represents a satisfaction degree that
has to be compared or used in other information processing mechanisms, a nor-
malisation operation is often practiced for this issue. The idea is to consider that
the computed normalised expression takes its value in an interval ½pworst; pbest�
where pworst is the worst achieved performance expression and Pbest the best
achieved one, with regard to the objective. Transforming the result provided by the
comparison function into the considered normalised interval is called normalisa-
tion. In industrial practice, for the sake of simplicity, it is quite conventional to
choose the interval ½0; 1�.

From a formal point of view, the comparison function f previously defined is
not necessarily normalised, notably depending on the choice of P and its intrinsic
properties. In such cases, the normalisation can be done by means of a function
g : P! ½0; 1� such that pðvÞ ¼ gðf ðoðvÞ; mðvÞÞ. The properties of the function g
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depend on the choice of the decision-maker and the comparison function itself.
However, bounds properties are the minimal ones that are required. Indeed, at first
hand, when the measurement is equal to 0, the performance expression should also
be equal to 0, that is, g must be such that gðf ðx; 0ÞÞ ¼ 0 for all x 2 O. On the other
hand, when the measurement is equal to the objective target value, the objective is
fully reached and the performance expression should be equal to 1, that is, g must
be such that gðf ðx; xÞÞ ¼ 1 for all x 2 O. Monotony property is also added in
accordance with the two bounds.

Example 7.1 Let us assume that decision-makers consider that the performance

expression f ðoðvÞ; mðvÞÞ ¼ mðvÞ
oðvÞ represents their satisfaction degree with regard to

achievement of the objective. Let us also suppose that when the measurement
exceeds the objective, the satisfaction is total, implicitly meaning that the target
value of the objective corresponds to the lower desired value. It is the case, for
example, when sales exceed the objective. The following properties can represent
this case.

• The normalised performance expression should be equal to 0 when the mea-
surement is equal to 0: mðvÞ ¼ 0) p vð Þ ¼ 0. It leads to gð0Þ ¼ 0 and g is a
non-decreasing function.

• The performance expression should be equal to 1 when the measurement is
greater or equal to the objective: mðvÞ� oðvÞ , mðvÞ

oðvÞ � 1) pðvÞ ¼ 1.

The function g1 such that g1ðxÞ ¼ minð1; xÞ is a possible and quite-natural
solution which satisfies the previous properties. Such a function leads to the

normalised performance expression pðvÞ ¼ min 1; mðvÞ
oðvÞ

� �
. In the same spirit, it

would be possible to have, beyond normalisation, a smoother variation when
mðvÞ ¼ 0 and when mðvÞ ¼ o vð Þ. For example, the sine-based g2 function such

that g2ðxÞ ¼ 1þsin p
2ð2minð1;xÞ�1Þ

2 provides this smooth variation. Such a function leads to

the normalised performance expression pðvÞ ¼ 1þsin p
2ð2 minð1;mðvÞoðvÞÞ�1Þ

2 .
As an illustration of the behaviour of these normalised operators, the obtained

surfaces, when the objective and the measurement take their value in the subset
O ¼ M ¼ ½0; 10� 	 <, are respectively represented in Figs. 7.1 and 7.2.

Example 7.2 Let us give another example with the difference-based comparison
f o vð Þ; m vð Þð Þ ¼ o vð Þ � m vð Þ. The decision-maker may choose that being over
performing is not fully satisfying. Such a choice implicitly means that the target value
of the objective exactly corresponds to the desired value. It is the case, for example,
when the performance expression is related to a stock level. Being too far from the
stock level objective is sub-performing but, on the other hand, being over performing
is not fully acceptable either. The following properties can represent this case.

• The performance expression should be equal to 1 when the difference is equal to 0,
i.e., when the measurement is equal to the objective: mðvÞ ¼ oðvÞ ) pðvÞ ¼ 1. It
leads to gð0Þ ¼ 1 and g is a non-increasing function.
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• The performance expression should decrease towards 0 when the absolute value
of difference is increasing. In other words, whether the measurement is over the
stock level objective or not, the further from the objective, the lower the per-
formance expression. Formally, it leads to limjxj!1 gðxÞ ¼ 0.

Among many possibilities, let us mention the sigmoid-based function g3 such
that g3ðxÞ ¼ 1þe�kc

1þek xj j�cð Þ, where x ¼ c is the inflexion point of the sigmoid and k is a
tuning coefficient as shown in Fig. 7.3.

This function verifies the required properties and leads to the normalised per-
formance expression pðvÞ ¼ 1þe�kc

1þek o vð Þ�m vð Þj j�cð Þ. Another simpler possibility is given by the
function g4 such that g4ðxÞ ¼ 1

1þk xj j where k is a tuning coefficient. Such a function
leads to the normalised performance expression pðvÞ ¼ 1

1þk oðvÞ�mðvÞj j.
As an illustration of the behaviour of these two operators, the obtained surfaces

when the objective and the measurement take their value in the subset O ¼ M ¼
½0; 10� 	 < are respectively represented in Figs. 7.4 and 7.5.
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Considering once again the performance expression pðvÞ ¼ f ðoðvÞ;mðvÞÞ, the
purpose of the next section is to analyse, with regard to the industrial context, the
nature of the comparison operator parameters, namely the objective oðvÞ and the
measurement mðvÞ. We thus show why they can be represented in a fuzzy way.
And, in that case, the problem of the extension of the Taylorian ratio and differ-
ence operators to such data will be handled.

7.3 Fuzzy Handling of the Objective and the Measurement

In the industrial context, given the multi-criteria and multilevel aspects of the per-
formance, associating efficacy, efficiency and effectiveness requirements to the
handled improvement processes induces a compromise logic, rather than an opti-
misation one, between the numerous and diversified considered objectives. More-
over, the quantification of some of the involved variables can be delicate according
to their qualitative or subjective way of perception or measurement. The declaration
of the objectives is thus potentially characterised by some kind of nuance. Just like
the objectives, by being related to the same variables, measurements can be also
characterised by some nuances in their acquirement. Nuance in this case is due to the
nature of the variables on the one hand and to the errors that are typical of the
measurements tools on the other hand. The totality of these considerations has
previously led us to use Zadeh’s fuzzy subset theory for the handling of both the
objective and the measurement (Berrah et al. 2000). The field of fuzzy sets has been
very active since its introduction in 1965 (Zadeh 1965). This theory makes it pos-
sible to represent, from a mathematical point of view, the possibility for an element
to belong partially to several sets. Hence, the concept of gradual membership to a
class is introduced. This concept is particularly interesting for dealing with objec-
tives when their declaration is made in a natural language. A few years later, Zadeh
introduced the possibility theory and its link with fuzzy sets (Zadeh 1978). This
theory offers an alternative way to the probability theory to deal with uncertainties
(Dubois et al. 2000). If fuzzy sets are useful in the objective representation, possi-
bility distribution is an interesting tool for dealing with measurement uncertainties.
Both concepts are described in the next sections.

7.3.1 Why Can an Objective be Fuzzy?

To answer this question, one has to distinguish between the objective
declaration, i.e., the expression by a sentence of the objective, and the objective
representation, i.e., how the sentence is formally represented. The declaration step
is the result of a cognitive process, which brings together different parameters that
are more or less psychological (Grabisch and Labreuche 2005), dealing with
bounded rationality (Simon 1982). Such a declaration is performed according to
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the context, on the one hand and to the behaviour of the decision-maker on the
other hand; his sensitivity, his perception of what can be ‘‘good’’ and what cannot
be ‘‘acceptable’’.

The representation step is, from our point of view, a kind of mapping between
the reality and an adequate formalism that is able to handle in the best way this
reality. This problem has been emphasised by Zadeh. By precisiation (cf.
Sect. 7.1), the author has pointed out the fact that in natural language which is
flexible, imprecise, uncertain, possibly missing or implicit, pieces of information
are quite often used. Precisiated Natural Language has been introduced to deal
with the description of perceptions in natural language (Zadeh 1984, 2004, 2005,
2006). Among many other examples, Zadeh has explained that ‘‘Monika is young’’
can be precisiated in ‘‘Age(Monika) is Young’’ with ‘‘Young’’ being a term whose
meaning is defined by a membership function lYoung on the set of real numbers
representing the ages (Zadeh 2004). In this example, ‘‘Age’’ can be seen as a
mapping applied to the variable ‘‘Monika’’.

The objective representation has been discussed in (Berrah et al. 2000) and is
consolidated in the next subsections, by considering the major cases that are
encountered in the industrial context. According to us, the objective declaration can
be made with more or less flexibility with regard to its achievement. Moreover, this
declaration can be on the numerical universe as well as the linguistic one. From a
representation point of view, we propose to summarise the match between these
situations in the following cases. First, numerical precise and interval-based
objectives are presented with regard to a non-flexible and a flexible declaration.
Then, we address another case of flexibility when such declarations are modified by
adverbs or adjectives which are fuzzy or vague like almost, close to, short, long, etc.
Such a modifier is called a fuzzy term from now on. Similarly to the numerical case,
precise linguistic objectives are considered in a third section. Finally, the case where
such linguistic objectives are modified by a fuzzy term is briefly described.

Finally, for the sake of clarity and given that no ambiguity can be possible, we
choose in the following illustrations to characterise the objective by only its target
value oðvÞ, without considering its universe of discourse.

7.3.1.1 Fuzzy Representation of Precise Numerical or Interval-Based
Objective

Let us consider for example numerical declaration, with regard to a manufacturing
objective related to a number of produced parts. The objective declarations Pro-
duce 100 parts and Produce between 90 and 100 are precise numerical objectives
which can be respectively written, according to our notations, oðpartsÞ ¼ 100 and
oðpartsÞ ¼ 90; 100½ �. Their representations are respectively a singleton and an
interval. Since the membership function of a fuzzy set is the extension of the
characteristic function of a crisp set, their representation can be merged into the
fuzzy set as shown in Fig. 7.6.
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7.3.1.2 Fuzzy Representation of Precise Numerical Objectives
Modified by a Fuzzy Term

By considering the same manufacturing objective, let us suppose now, a slight
modification of the previous precise declaration by adding the fuzzy term about,
leading to the following declaration Produce about 100 parts. This example is
conceptually more complex since the objective is unchanged; that is
oðpartsÞ ¼ 100. A careful analysis of the semantics of the representation must be
performed. It is assumed that a decision-maker is fully sincere when declaring the
objective. Therefore, the objective is what should be reached without any uncer-
tainty. Imprecision in the target value would carry an uncertainty and would mean
that the decision-maker is not fully sincere. Therefore, the fuzzy expression about
100 parts is related to the flexibility of the satisfaction of the decision-maker. In
other words, he/she would be fully satisfied if, at the end of the action plan, the
number of parts is 100 but he/she would accept a lower value with a lower
satisfaction. Thus, it is not because the fuzzy word about is used that a fuzzy
number should represent the objective.

In such a case, the performance expression is no longer computed as the
comparison between the objective and the measurement. Bellman and Zadeh have
proposed to represent the decision-maker satisfaction by means of a membership
function called the performance function (Bellman and Zadeh, 1970). Let v be a
variable associated with an elementary objective, the performance expression is
given by pðvÞ ¼ loðvÞðmðvÞÞ where loðvÞ is the membership function associated
with the satisfaction of the decision-maker as shown in Fig. 7.7.
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parts parts

)(partsoµ )(partsoµFig. 7.6 Membership
functions of precise
numerical objectives
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p(parts)Fig. 7.7 The performance
function associated with the
objective Produce about 100
parts
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7.3.1.3 Fuzzy Representation of Precise Linguistic Objective

Linguistic declarations can be used by decision-makers in the case of an imprecise
numerical quantification of the involved variable, or in the case of a lack of a
numerical universe that is directly associated to the variable. The latter case is
typical of a subjective evaluation or manufacturing aesthetic control quality such
as, for example, the cleanliness of a ski before a silk screening operation. In such a
case, there is no direct equivalent numerical universe of discourse associated to the
variable and two solutions may be considered by the decision-makers. The first
one consists of working directly with the linguistic term which means that the
measurement itself must be also a linguistic term in order to perform the com-
parison at the linguistic level for the performance expression. The second solution
is to consider that the linguistic objective can be related to several numerical
universes of discourse on which it is possible to define an imprecise numerical
quantification. In the following, for the sake of clarity, we consider that linguistic
terms are always in a relation with one or several universes of discourse. This
assumption is made according to industrial practice that leads decision-makers to
make, in the linguistic ‘‘subjective’’ case, a translation into an ordinal numerical
scale, such that each linguistic term is associated to a type of score.

Let us illustrate the scenario of a precise linguistic declaration case with the
following example: Produce the parts with a short delivery time. The objective
declaration is the precise linguistic term short which can be written, according to
our notation, o(delivery time) = short. The objective needs to be ‘‘precisiated’’ by
defining the fuzzy meaning of the term short. The concept of fuzzy meaning has
been proposed by Zadeh to define a language as a fuzzy relation between a set of
linguistics terms and a universe of discourse. The transformation between the set
of linguistic terms and the related set of numbers can be formally defined by means
of mapping called the fuzzy meaning and the fuzzy description (also called
descriptor set by Zadeh) (Foulloy and Galichet 1995; Zadeh 1971).

The fuzzy meaning of a linguistic term takes its foundation in the relation
between the linguistic terms and the universe of discourse on which they take their
meaning. For example, the linguistic term short is linked to the universe of dis-
course of delivery time.

Let L be a set of linguistic terms and X a set of numbers. Let R be a fuzzy
relation, i.e., a fuzzy subset of the Cartesian product L� X, characterised by its
membership function lR. For any couple ðl; xÞ in L� X, the value lRðl; xÞrepre-
sents the grade of membership of ðl; xÞ to the relation R. In other words, it rep-
resents the strength of the relation between the term l and the number x. Let Z be a
set, FðZÞ denotes the set of all fuzzy subsets of Z. The fuzzy meaning of a term l is
given by the function M : L! FðXÞ defined by:

8l 2 L; 8x 2 X; lMðlÞðxÞ ¼ lRðl; xÞ ð7:1Þ

In the same manner, the fuzzy description of the number x is given by the
function D : X ! FðLÞ defined by:
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8l 2 L; 8x 2 X; lDðxÞðlÞ ¼ lRðl; xÞ ð7:2Þ

Since the fuzzy meaning and the fuzzy description are two ways of charac-
terising the relation R, we have the following equality:

8l 2 L; 8x 2 X; lDðxÞðlÞ ¼ lMðlÞðxÞ ð7:3Þ

Thus, in order to perform the numerical-to-linguistic conversion decision-
makers should be able to provide the fuzzy meaning of each term as it is repre-
sented for the term short in Fig. 7.8.

7.3.1.4 Fuzzy Representation of a Precise Linguistic Objective
Modified by a Fuzzy Term

This case is no more than a linguistic version of the one described in Sect. 7.3.1.2.
One example can be found in the declaration of the following objective, con-
cerning the cleanliness of a ski before a silkscreen printing: The ski should be very
clean. This objective is declared by the precise linguistic term clean and modified
by the fuzzy term very. Thus, this objective can be handled thanks to a fuzzy
representation. The cleanliness of a ski can be comprehended by visual analysis of
the ski with respect to different parameters such as the quality of the surface, the
number of small strokes, and so on, related to a numerical universe of discourse.
Thus, by defining linguistic terms on these universes of discourse and by aggre-
gating them, the fuzzy meaning of the term clean can be obtained. The term very is
a linguistic modifier, called by Zadeh a linguistic ‘‘hedge’’ which modifies the
fuzzy meaning by means of a function associated with the hedge (Zadeh 1973).

7.3.2 Why Can a Measurement be Fuzzy?

From a general point of view, it is conventional to accept errors in the measure-
ment process. Historically, according to the used physical sensors, one way to
model these errors is to quantify the uncertainties concerning the value of the
measurand. The ‘‘JCGM 100:2008’’ guide of the Joint Committee for Guides in
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the linguistic term short
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Metrology defines uncertainty in measurement as a parameter, associated with the
result of a measurement, that characterizes the dispersion of the values that could
reasonably be attributed to the measurand (Evaluation of measurement data,
2008). This guide recommends basing the evaluation of the uncertainty compo-
nents on probability distribution and quantifying them by variances or standard
deviations. For example, the measurement can be represented by the best esti-
mation of the measurand, generally the mean value, and by the standard deviation
r, or the standard deviation times a given number, e.g. ±3r, as the characterisation
of the uncertainty.

For example, let us assume that a sensor provides a reading which is 100 ± 5
and that the uncertainty is characterised by the interval ±3r. Assuming a Gaussian
probability distribution, it means that the value of the measurand is in the interval
[95, 105] with a probability of 0.9973. Consequently, the precise value 100 can be
used if uncertainties are not being taken into account. In this case, mðvÞ ¼ 100.

However, in the case where it is necessary to take them into account, an interval
can be used, e.g. [95, 105] instead of the precise value. It will lead the writing of
mðvÞ ¼ ½95; 105�.

Even if the probability theory is predominantly used for the handling of the
uncertainties, Zadeh introduced a fuzzy subset-based theory (Zadeh 1978) to
represent and quantify the ‘‘possibility’’ for a variable to take a value. The author
showed the links with fuzzy subsets by giving a semantic of possibility to the
membership function, providing thus homogeneity with the objective representa-
tion. A key point of the possibility theory is thus the possibility distribution. In the
case where this distribution is not directly provided by the decision-maker, one
interesting idea that emerged in the 1980s and developed after the 1990s concerns
the transformation of probability distribution into possibility distribution (see
Dubois and Prade 1983; Civanlar and Trussel 1986; Klir and Parviz 1992; Dubois
et al. 1993; Jumarie 1994, 1995) among many others, for contributions to prob-
ability-to-possibility transformations). This idea retained our interest, knowing the
extension of the use of probability distributions for the handling of uncertainties in
the industrial context.

Let us briefly recall the main ideas of the probability–possibility distribution.
Let p be a probability distribution of a random variable X associated with the
measurand and xc be a point of the measurable space. An interval I1–a = [a,
b] around xc is a confidence interval of level 1-a if Pð½a; b� ¼ 1� a, where P is
the probability measure associated with p. One can also consider that a is the risk
for the ‘‘real value’’ of the measurand to be outside the interval.

The probability-to-possibility proposed in (Dubois et al. 2004; Mauris et al.
2000a, 2000b), is such that the a-cut of the generated possibility distribution is the
interval I1-a which leads to:

8 x 2 <; pðxÞ ¼ supða 2 0; 1½ � jx 2 I1�aÞ: ð7:4Þ

This confidence interval based construction gives the optimal probability–
possibility transformation proposed by Dubois and Prade (1993). Let us remark
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that the triangular possibility distribution which is widely used in applications of
the fuzzy sets theory is the optimal probability–possibility transformation of the
uniform law (Dubois et al. 2004).

According to us, possibility distributions provide a rich means to represent the
available knowledge since it contains all the confidence intervals. A possibility
distribution can be interpreted as a fuzzy subset with a semantic of uncertainty.
Thus, we can write lmðvÞðxÞ ¼ pðxÞ. It provides a unified tool since precise values
and intervals can also be represented as shown in Fig. 7.9.

7.4 Computing the Performance Expression in the Fuzzy
Case

The way of computing the performance expression is impacted by the nature of the
objective and the measurement. This section addresses the major encountered
cases, when the objective and the measurement become fuzzy.

Let us recall that we have defined the elementary performance expression by
the function f ðoðvÞ;mðvÞÞ whose the Taylorian ratio and difference are conven-
tional examples. We will first extend the ratio and the difference to the fuzzy case,
by using the fuzzy arithmetic operators. Besides, the questions about fuzzy
objectives addressed in Sect. 7.3.2 lead to new visions of the performance
expression computation, and the comparison function goes beyond a mathematical
operator. In particular, a performance function can be obtained when a precise
numerical objective is modified by a fuzzy term. Therefore, in a second part, we
address this case when the measurement is fuzzy. A fuzzy performance is thus
expressed. We have also shown that a precise linguistic objective was leading to
the definition of its fuzzy meaning and the associated concept of fuzzy description
(see Sect. 7.3.1.3). Thus, we consider this case when the measurement is fuzzy.
The concept of fuzzy description is extended to provide an optimistic or pessi-
mistic performance expression.

100 95 105

1 1 1

)(vmµ )(vmµ )(vmµ

x x x
95 105

Fig. 7.9 Possibility distributions for the precise value 100, the interval [95, 105] and the optimal
probability–possibility transformation of the uniform law in the bounded interval [95, 105]
around the mean value 100
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7.4.1 Elementary Performance Expression by Extending
the Ratio and the Difference

We have previously assumed that both the target value and the measurement were
positive real numbers. The ratio and the difference are basic arithmetic operations
on real numbers, which can be extended to the fuzzy case. Indeed, the ratio and the
difference become respectively the division and the subtraction between two fuzzy
intervals. Arithmetic on fuzzy intervals has been widely studied since 1970
(Dubois and Prade 1983; Mizumoto and Tanaka 1976). Their definition relies on
the extension of the arithmetic operation on conventional intervals for all the a-
cuts of the fuzzy intervals.

Recently, Fortin et al. (2008) introduced a new vision of fuzzy intervals, which
provides a new definition of the fuzzy arithmetic operators. The concept is to
consider a fuzzy interval as an interval whose bounds are gradual numbers. A
gradual number is defined by an assignment function from (0,1] ? <, it can be
understood as a number by k [ (0,1] (the unit interval minus 0). Let ½x�ðkÞ; xþðkÞ�
and ½y�ðkÞ; yþðkÞ� be two positive intervals, i.e., x�ðkÞ[ 0 and y�ðkÞ[ 0 for all
k [ (0,1]. The four basic interval operations are:

• Addition: ½x�ðkÞ; xþðkÞ� þ ½y�ðkÞ; yþðkÞ� ¼ ½x�ðkÞ þ y�ðkÞ; xþðkÞ þ yþðkÞ�,
• Subtraction:
½x�ðkÞ; xþðkÞ� � ½y�ðkÞ; yþðkÞ� ¼ ½x�ðkÞ � yþðkÞ; xþðkÞ � y�ðkÞ�,

• Product: ½x�ðkÞ; xþðkÞ� � ½y�ðkÞ; yþðkÞ� ¼ ½x�ðkÞ � y�ðkÞ; xþðkÞ � yþðkÞ�,
• Division: ½x

�ðkÞ; xþðkÞ�
½y�ðkÞ; yþðkÞ� ¼

x�ðkÞ
yþðkÞ ;

xþðkÞ
y�ðkÞ

h i
.

A fuzzy interval F, defined by its membership function lF is a normalised fuzzy
subset of the real line such that:

• Its core is a closed interval ½f�; fþ�, actually the 1-cut of F,
• Its support is an open interval fx lFðxÞ[ 0j g,
• lF is non-decreasing on ð�1; f��,
• lF is non-increasing on ½fþ;þ1Þ.

Let lF� and lFþbe respectively the non-decreasing and the non-increasing part of
lF and let these functions be injective (i.e., lF� and lFþare respectively increasing
and decreasing). Then, F is a gradual interval ½f�ðkÞ; fþðkÞ� ¼ ½l�1

F�ðkÞ; l�1
FþðkÞ�.

Let us illustrate this concept with the objective and the measurement repre-
sented in Fig. 7.10.

According to the definition, the objective can be written as the gradual interval
oðvÞ ¼ ½90; 100� and the measurement mðvÞ ¼ ½70þ 10k; 10k� 90�.

Therefore, the extension of the ratio between the measurement and the objec-
tive to the fuzzy case is a gradual interval provided by the division which leads to
mðvÞ
oðvÞ ¼ ½70þ10k

100 ;
90�10k

90 �. Its transformation into a fuzzy interval is represented in
Fig. 7.11.
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7.4.2 Elementary Performance Expression Using
the Performance Function

In the case where the objective is declared with some flexibility (see Sect. 7.3.1.2),
the performance expression is given by pðvÞ ¼ loðvÞðmðvÞÞ, when the measurement
mðvÞ is a scalar value. When the measurement is a fuzzy set, the performance
expression, which is the image by the performance function, becomes itself fuzzy.
In other words, the measurement uncertainties are propagated to the performance
expression by the performance function. The computation relies on Zadeh’s
extension principle, which is recalled (Zadeh 1965).

Let h : X ! Y be a function. Let A be a fuzzy subset of X whose membership
function is lA. The image of A by the function h is a fuzzy subset of Y whose
membership function lB is given by:
8y 2 Y ; lBðyÞ ¼ supfx2X y¼hðxÞj g lAðxÞ if fx 2 X y ¼ hðxÞj g 6¼ ; and lBðyÞ ¼ 0

otherwise.
In the considered fuzzy measurement case, loðvÞ is a function from O to [0, 1].

Therefore, when mðvÞ is a scalar value then pðvÞ 2 ½0; 1�. Now if the measurement
becomes fuzzy, let lmðvÞ be its membership function, then pðvÞ becomes a fuzzy
subset of [0, 1] whose membership function will be denoted lpðvÞ. Zadeh’s
extension principle gives:

8y 2 ½0; 1�; lpðvÞðyÞ ¼ supfx2X y¼loðvÞðxÞj g lmðvÞðxÞ if fx 2 X y ¼ loðvÞðxÞ
��� g 6¼ ;

and lpðvÞðyÞ ¼ 0 otherwise.

100

1

parts

908070

)( partsoµ)( partsmµFig. 7.10 Fuzzy
measurement and objective

1

1

0.90.80.7

)(

)(

partso

partsmµFig. 7.11 The ratio-based
performance expression

7 A Fuzzy Handling of the Multi-criteria Characteristic 155



The graphical construction of the performance function is illustrated in
Fig. 7.12 where, for the sake of simplicity, the resulting membership function is
represented with a 90� anticlockwise rotation.

The task of the decision-maker is more complex since, as it can be observed, the
performance expression is no longer a number but becomes a fuzzy number which
carries the uncertainty coming from the measurement. In terms of industrial
applications, even if this approach is well-founded at the formal level, the meaning
of this fuzzy number is not so obvious and we think that it is better to require the
measurement to be a crisp scalar.

7.4.3 Elementary Performance Expression Using Fuzzy
Descriptions

When the objective is represented by the membership function which comes from
the precisiation of a linguistic term, the comparison between the objective and the
measurement is related to knowing to which extent the membership function
associated with the measurement can be described by the linguistic term. Several
comparison functions may be considered, however it is interesting to give a
conceptual framework to the choice.

In order to introduce the fuzzy case, let us first examine the crisp case and
assume that the meaning of the term and the measurement are crisp intervals,
respectively MðlÞ and A with l 2 L, the set of the linguistic terms possibly char-
acterising the objective. Let DðxÞ be the crisp description of the number x, i.e.,
DðxÞ 	 L is a subset of the linguistic terms characterising the number x. Since A is
an interval, each of its elements can be described by the function D leading to the
family of subsets fDðxÞgx2A. Therefore, it provides two bounds by taking the
supremum or the infinimum of the family which are respectively called the upper
and the lower description, and are defined as follows:

DþðAÞ ¼ [x2ADðxÞ ð7:5Þ

D�ðAÞ ¼ \x2ADðxÞ ð7:6Þ

100

1

parts

)( partsoµy

)( partspµ

1

)( partsmµ

Fig. 7.12 Performance function with a fuzzy measurement
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The upper description is an optimistic representation since it requires that only
one x in A belongs to the meaning of a term to consider that the set A is described
by this term. In other words, if the intersection between the set A and the meaning
of a term is not empty then this term described as the set A, i.e.,
A \MðlÞ 6¼ ; , l 2 DþðAÞ.

Conversely, the lower description is a pessimistic representation since it
requires that all x in A belongs to the meaning of a term to consider that the set A is
described by this term. In other words, if the set A is included in the meaning of a
term then this term describes the set A, i.e., A 	 MðlÞ , l 2 D�ðAÞ.

As explained by Foulloy and Galichet (1995), that a natural extension of this
approach to fuzzy sets leads to:

8A 	 X; 8l 2 L; lDþðAÞðlÞ ¼ sup
x2X

minðlMðlÞðxÞ; lAðxÞÞ ð7:7Þ

8A 	 X; 8l 2 L; lD�ðAÞðlÞ ¼ inf
x2X

maxðlMðlÞðxÞ; 1� lAðxÞÞ ð7:8Þ

It is interesting to note that Eqs. 7.7 and 7.8 are respectively the possibility and
the necessity of the fuzzy event, characterised by the fuzzy meaning of the lin-
guistic term l, considering the fuzzy input A as a possibility distribution. It pro-
vides a clear interpretation where the upper description gives the linguistic terms
where possibly describe the input A while the lower description gives one where
certainly describe it. Please remark also that when A is a crisp singleton, i.e.,
A ¼ fxg, we have:

8x 2 X; 8l 2 L; lDþðfxgÞðlÞ ¼ lD�ðfxgÞðlÞ ¼ lDðxÞðlÞ ð7:9Þ

Assume for example that one wants to build an optimistic comparison function
to compute the performance expression, it leads to Eq. 7.10 and is illustrated in
Fig. 7.13:

pðvÞ ¼ f ðoðvÞ;mðvÞÞ ¼ sup
x 2 O

minðlMðoðvÞÞðxÞ; lmðvÞðxÞÞ: ð7:10Þ
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Fig. 7.13 Optimistic performance expression
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7.5 Conclusion

From a general point of view, the core of the achievement of the objectives is
founded in the expression of the resulted performances. By objective, we mean the
target value associated to a physical or decisional variable; and by performance
expression the achievement degree of this target value. The objectives are declared
according to the definition of the performance concept and the induced finalities
and missions of the considered system. The performances are expressed with
regard to the reached states, which are described by the acquired measurements.

This chapter has dealt with the performance expression computation prob-
lematic in modern industrial companies. By revisiting previous works in this field,
our proposal was to define a unified framework for such a computation, by inte-
grating the industrial context data. In this sense, three parameters have been
considered, the declared objective, the acquired measurement and the performance
expression that results from the comparison of the measurement to the objective.

The conventional Taylorian performance expression operators are the ratio and
the difference, leading to numerical comparison between crisp and certain values.
The objective declaration is made by decision-makers and relies on expressions,
which are given in natural language. These expressions can be qualitative or
quantitative, precise or may convey some flexibility, some fuzziness. Just like the
objectives, the measurements being associated to the same type of variables are
also qualitative or quantitative. They are moreover acquired by physical sensors or
human operators, leading thus to more or less uncertainty in their capture. The
fuzzy sets theory proposes unified framework to address these concepts. This
approach provides a means to extend the Taylorian elementary performance
expression. If the most natural one is the extension to the fuzzy case of the ratio
and the difference, other possibilities are offered such as fuzzy performance
functions or linguistic descriptions.

Elementary performance expression is only a small part of the cases encoun-
tered in the industrial practise. More complex cases when multi-criteria infor-
mation are involved provide an important field to be investigated.

References

Bellman R, Zadeh L (1970) Decision-making in a fuzzy environment. Manage Sci 17(4):
B-141–B-164

Berrah L, Mauris G, Haurat A, Foulloy L (2000) Global vision and performance indicators for an
industrial improvement approach. Comput Ind 43(3):211–225

Berrah L, Mauris G, Vernadat F (2004) Information aggregation in industrial performance
measurement: rationales, issues and definitions. Int J Prod Res 42(20):4271–4293

Berrah L, Mauris G, Montmain J (2008) Monitoring the improvement of an overall industrial
performance based on a Choquet integral aggregation. Omega 36(3):340–351

158 L. Berrah and L. Foulloy



Berrah L, Montmain J, Mauris G, Clivillé V (2011) Optimising industrial performance
improvement within a quantitative multi-criteria aggregation framework. Int J Data Anal Tech
Strat 3(1):42–65

Bititci US (1995) Modelling of performance measurement systems in manufacturing enterprises.
Int J Prod Econ 42:137–147

Bitton M (1990) Ecograi: méthode de conception et d’implantation de systèmes de mesure de
performances pour organisations industrielles. PhD thesis, Thèse de doctorat en Automatique
de l’Université de Bordeaux I

Civanlar M, Trussel H (1986) Constructing membership functions using statistical data. Fuzzy
Sets Syst 18:1–13

Clivillé V, Berrah L, Mauris G (2007) Quantitative expression and aggregation of performance
measurements based on the Macbeth multi-criteria method. Int J Prod Econ 105(1):171–189

Deming E (1982) Quality, productivity and competitive position. The MIT Press, Cambridge
Dossi A, Patelli L (2008) The decision-influencing use of performance measurement systems in

relationships between headquarters and subsidiaries. Manage Acc Res 19:126–148
Dubois D, Prade H (1983) Unfair coins and necessity measures: towards a possibilistic

interpretation of histogram. Fuzzy Sets Syst 10:15–20
Dubois D, Sandri S, Prade H (1993) On possibility/probability transformation. In: Lowen R,

Roubens M (eds) Fuzzy logic, Kluwer Academic Press, London, pp 103–112
Dubois D, Nguyen HT, Prade H (2000) Possibility theory, probability and fuzzy sets:

misunderstandings, bridges and gaps. In: Dubois D, Prade H (eds) Fundamentals of fuzzy sets,
the handbooks of fuzzy sets series, Kluwer, Boston, pp 343–438

Dubois D, Foulloy L, Mauris G, Prade H (2004) Probability-possibility transformations,
triangular fuzzy sets, and probabilistic inequalities. Reliab Comput 10:273–297

Evaluation of measurement data—guide to the expression of uncertainty in measurement (2008)
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis: state of the art surveys.
Springer Publisher, New York

Folan P, Browne J, Jagdev H (2007) Performance: its meaning and content for today’s business
research. Comput Ind 58(7):605–620

Fortin J, Dubois D, Fargier H (2008) Gradual numbers and their application to fuzzy interval
analysis. IEEE Trans Fuzzy Syst 16(2):388–402

Fortuin L (1988) Performance indicators, why, where and how? Eur J Oper Res 34:1–9
Foulloy L, Galichet S (1995) Typology of fuzzy controllers. In: Nguyen H, Sugeno M, Tong R,

Yager R (eds) Theoretical aspects of fuzzy control, John Wiley and Sons, New York,
pp 65–90

Free PDCA Guidance http://www.iso-9001-checklist.co.uk/iso-9001-training.htm
Ghalayini AM, Noble JS, Crowe TJ (1997) An integrated dynamic performance measurement

system for improving manufacturing competitiveness. Int J Prod Econ 48(3):207–225
Globerson S (1985) Issues in developing a performance criteria system for an organisation. Int J

Prod Res 23(4):639–646
Grabisch M (2005) Une approche constructive de la décision multicritère. Traitement du Signal

22(4):321–337
Grabisch M, Labreuche C (2005) Fuzzy measures and integrals in MCDA. In: Figueira J, Greco

S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer,
Heidelberg

Hon K (2005) Performance and evaluation of manufacturing systems. Cirp Annals Manu Tec
54(2):139–154

Jacquet-Lagrèze E, Siskos Y (2001) Preference disaggregation: 20 years of MCDA experience.
Eur J Oper Res 130(2):233–245

Jumarie G (1994) Possibility probability transformation: a new result via information theory of
deterministic functions. Kybernetics 23(5):56–59

Jumarie G (1995) Further results on possibility-probability conversion via relative information
and informational invariance. Cybernet Syst 26(1):111–128

7 A Fuzzy Handling of the Multi-criteria Characteristic 159

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.iso-9001-checklist.co.uk/iso-9001-training.htm


Kaplan R, Norton D (1992) The balanced scorecard: measures that drive performances. Harvard
Business Review 70(1):71–79

Kaufmann A (1976) Introduction to the Theory of Fuzzy Subsets. Academic Press Inc
Klir G, Parviz B (1992) Probability-possibility transformations: a comparison. Int J Gen Syst

21:291–310
Krantz DH, Luce RD, Suppes P, Tversky A (1971) Foundations of measurement, additive and

polynomial representations. Academic Press, New York
Lebas M (1995) Performance measurement and performance management. Int J Prod Econ

1–3:23–35
Mauris G, Berrah L, Foulloy L, Haurat A (2000a) Fuzzy handling of measurement errors in

instrumentation. IEEE Trans Instrum Meas 49(1):89–93
Mauris G, Lasserre V, Foulloy L (2000b) Modeling of measurement data acquired from physical

sensors. IEEE Trans Instrum Meas 49(6):1201–1205
Mizumoto M, Tanaka K (1976) The four operations of arithmetic on fuzzy numbers. Syst Comput

Cont 7(5):73–81
Monden Y, Ohno T (2011) Toyota production system: an integrated approach to just-in-time, 4th

revised edn. Productivity Press, Ohno
Neely A (2005) The evolution of performance measurement research: Developments in the last

decade and a research agenda for the next. Int J Oper Prod Man 25(12):1264–1277
Neely A, Gregory M, Platts K (1995) Performance measurement system design a literature

review and research agenda. Int J Prod Econ 48:23–37
Rezaei A, Çelik T, Baalousha Y (2011) Performance measurement in a quality management

system. Scientia Iranica 18(3):742–752
Simon H (1982) Model of bounded rationality. MIT Press, Cambridge
Womack J, Jones D, Roos D (1990) The machine that changed the world: based on the

massachusetts institute of technology 5-million dollar 5-year study on the future of the
automobile. Free Press paperbacks. Rawson Associates

Zadeh L (1965) Fuzzy sets. Inform Control 8:38–353
Zadeh L (1971) Quantitative fuzzy semantics. Inform Sci 3:159–176
Zadeh L (1973) Outline of a new approach to the analysis of complex systems and decision

processes. IEEE Trans Syst Man Cybern SMC 3:28–44
Zadeh L (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28
Zadeh L (1984) Precisiation of meaning via translation into PRUF. In: Vaina L, Hintikka J (eds)

Cognitive constraints on communication. Reidel, Dordrecht, pp 373–402
Zadeh L (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 2:103–111
Zadeh L (2004) A note on web intelligence, world knowledge and fuzzy logic. Data Knowl Eng

50:291–304
Zadeh L (2005) Toward a generalized theory of uncertainty (GTU)-an outline. Inform Sci

172:1–40
Zadeh L (2006) Generalized theory of uncertainty (GTU)-principal concepts and ideas. Comput

Stat Data Anal 51:15–46

160 L. Berrah and L. Foulloy



Chapter 8
Prioritization of Supply Chain
Performance Measurement Factors
by a Fuzzy Multi-criteria Approach

I. U. Sari, S. Ugurlu and C. Kahraman

Abstract Measurement of supply chain performance is an important issue to
identify success, to understand processes, to figure out problems and where
improvements are possible as well as provide facts for decision-making. Using
classical performance measurement techniques, it may not be possible to incor-
porate judgments of decision makers comprehensively. Hence, we propose a fuzzy
multi-criteria evaluation method for this purpose in the framework of supply chain
performance measurement. Fuzzy DEMATEL is used to prioritize the perfor-
mance measurement criteria of supply chain. We also present a sensitivity analysis
using different linguistic scales.

Keywords Supply chain � Performance measurement � Fuzzy sets � DEMATEL
method � Linguistic scale

8.1 Introduction

Globalization and the new market environment in which customer is ruling have
evolved business drastically. Product life cycles have shortened significantly,
agility has gained importance and outsourcing has become an option offering
competitive advantage. In order to survive, collaboration among companies
became inevitable. Rigid boundaries between companies have turned out to be a
countercheck for performance. The ability for collaboration is encouraged through
new techniques and technologies, which link a chain of companies working
together as a single unit in order to satisfy customer needs. The new organization,
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named as supply chain (SC), is formed to achieve higher performance in the new
era. In order to measure the performance of the SC, we need to combine a new
perspective and novel tools with the existing performance measures. The tradi-
tional performance measures such as productivity, customer satisfaction need to be
redefined in an integrated manner. On the other side, the performance factors of
flexibility and risk management are considered as the ultimate purpose of a SC
needed to respond to changes in the market environment.

Organizational performance measurement serves various purposes: (i) identi-
fying success, (ii) specifying whether customer needs are met; (iii) helping to
understand processes and confirming what is known or not known; (iv) identifying
problems, bottlenecks, waste and where improvements are possible; (v) providing
facts for decision-making; (vi) enabling and tracking improvements; and
(vii) facilitating communication and cooperation (Parker 2000). In summary, a
performance measurement system plays an important role in maintaining contin-
uous improvement and decision-making.

The new organization named as SC consists of different companies with con-
tradicting goals, technologies, and work procedures. Moreover, applications of SC
aims to integrate not only various enterprises along the value chain but also
various functions such as marketing, operations, sales, technology, procurement,
etc., within these companies. Developing an integrated performance measurement
system that would support an integrated SC development and operations is
essential. The performance measures and metrics should facilitate the integration
of various functional areas and also so-called extended enterprises or partnering
firms along the value chain (Gunasekaran and Kobu 2007). Measuring the per-
formance of the key functional activities of a SC is a multi-criteria decision
problem. Various aspects of performance of a SC include quality, flexibility, cost
(i.e., inventory turnover), customer satisfaction (i.e., responsiveness), risk (i.e., SC
uncertainty), delivery (i.e., proximity to suppliers and markets).

There is a body of literature investigating SC performance measurement sys-
tems as a multi-criteria decision-making problem. Among these studies, analytical
hierarchy method (AHP) and analytical network method have been used com-
monly. A stream of studies which employ balance scorecard is presented in order
to identify the balance between external-internal focus, long-short term using the
four dimensions of the scorecard. The multi-criteria nature of the problem has also
been handled by operations research techniques such as mixed integer program-
ming and data envelopment analysis. There have also been attempts to incorporate
the dynamic nature of the SC in performance measurement using system dynamics
and classical control theory.

In this chapter, we make use of a multi-criteria decision-making approach,
which is called fuzzy decision-making trial and evaluation laboratory (DEMA-
TEL) to prioritize the SC performance measures. We first attempt to prioritize the
key performance indicators of the performance measurement system using fuzzy
DEMATEL and then investigate the effect of fuzzy linguistic scale in the priori-
tization of the criteria.
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The rest of the chapter is organized as follows: SC types and their association
with performance measures are discussed in Sect. 8.2.1. Then, the scope of per-
formance measurement in SC is reviewed in Sect. 8.2.2. In Sect. 8.3, a literature
review on performance measurement systems in SC is presented. In Sect. 8.4,
fuzzy set theory and linguistic variables are described. In Sect. 8.5, fuzzy DEM-
ATEL method is reviewed. We applied fuzzy DEMATEL method for prioritiza-
tion of SC performance criteria in Sect. 8.6. We then investigate the effect of the
fuzzy linguistic scale on the results in Sect. 8.7. Finally, Sect. 8.7 concludes with
the discussion of findings and future research.

8.2 Supply Chain Performance Measurement

In this section, we present types of SCs and performance measures as well as the
scope of performance measurement in SCs.

8.2.1 Types of Supply Chains and Performance Measures

Designing a performance measurement system for a SC, performance measures
and metrics should be prioritized with respect to the type of SC. In the literature,
various types of SCs are identified based on the type of product manufactured. A
classification of the SCs in relation to the type of products is given in Table 8.1.

Functional products are typically manufactured in high volumes so the
emphasis is mainly on productivity together with quality, customer service, and
cost. Demand of functional products is fairly stable. Some examples of these types
of products are grocery, automobiles, etc.

However, SCs through which innovative products are manufactured, need to
adapt to a volatile market. Demand is difficult to forecast. Besides, the design of

Table 8.1 Types of supply chains in the literature

Product type Type of supply
chain

Reference

Functional products Efficient supply
chain

Fisher (1997)

Lean supply
chain

Turkett (2001)
Christopher and Towill (2000)

Innovative products Quick supply
chain

Fischer (1997); Huang and Uppal (2002); Selldin
and Olhager (2007)

Agile supply
chain

Christopher and Towill (2000)

Functional and innovative
products

Hybrid supply
chain

Naylor et al. (1999); Huang and Uppal (2002)
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the products changes quickly. Thus, performance of the SC depends mainly on
flexibility, responsiveness and risk management. Some examples of products
manufactured in quick or agile SCs are mobile phones requiring changes due to
technical developments and fashion goods requiring design changes frequently.

A recent type, hybrid SC has been introduced which is a combination of a lean
SC and agile SC. In hybrid SC, leanness which focuses on elimination of waste
through the value stream and innovativeness are combined. For example, manu-
facturers of automobiles, computers, etc., need to operate in a competitive market
where price is important as well as introduce innovative features in their products.
Another aim for hybrid SCs is to achieve flexibility together with productivity to
maintain a customer-driven approach.

Based on the focus of the SC, importance given to different performance
measures and metrics may differ. For an efficient SC, productivity improvements
for cost reduction and quality are vital. Cost reduction is achieved in connection to
the suppliers and internal process improvements. Some of the metrics related to
costs may be purchasing costs, handling costs, storage costs, supplier handling
costs, etc. Similarly, quality is another important measure which is defined with
many sub-dimensions such as conformance to the product specifications, perfor-
mance of a product, and reliability. Some metrics related to quality are defects per
million opportunities, perfect order fulfillment which calculates the error-free rate
of each stage of a purchase order.

Customer satisfaction is a multidimensional performance measure for which
measurements can vary greatly. For the performance measurement of SCs,
delivery metrics gain importance to verify customer satisfaction. Some metrics are
on time delivery, performance to promise dates or fill rate which expresses ship-
ping performance as a percentage of the total order.

For SCs of innovative products, measurement of SC risk gains importance due
to rapid change and uncertainty of markets. Risk is typically measured using the
probability of an event occurring and impact of the event on the SC, and subse-
quently the overall business. Performance measurement systems of SCs should
ensure that evaluation and redesign is made in response to market changes,
including new product launches, global sourcing, new acquisitions, credit avail-
ability, the need to protect intellectual property, and the ability to maintain asset
and shipment security.

Similarly, flexibility is vital for quick and agile SCs. Flexibility is needed to
respond to marketplace changes to gain or maintain competitive advantage. In the
literature, four types of flexibility are identified Slack (1991): (i) volume flexibility
(the ability to change the output level of products produced), (ii) delivery flexi-
bility (the ability to change planned delivery dates), (iii) mix flexibility (the ability
to change the variety of products produced), and (iv) new product flexibility (the
ability to introduce and produce new products). Some metrics used are SC
response time and production flexibility.

164 I. U. Sari et al.



8.2.2 Scope of Performance Measurement in Supply Chains

Supply chain is viewed as a new organization aiming to integrate various enter-
prises along the value chain. Since enterprises are building blocks of a SC, the
performance of each enterprise influences the performance of its SC. Performance
measurement within each enterprise is an element of the SC performance mea-
surement system. An enterprise consists of various functions related to the SC
performance. For example sourcing, production and delivery are different func-
tions of an enterprise having different performance levels. In this perspective, the
scope of the within-enterprise performance measurement may be limited to the
performance of only one of the function of an enterprise named as functional
performance. On the other side, within-enterprise performance measurement may
be extended to cross-functional measurements along many functions of the
enterprise, named as integrated performance.

From another perspective, scope of the performance measurement may be
enlarged on the boundaries of an enterprise and handled together with its suppliers
or customers. These types of measures are known as one-sided integrated measures
and depict performance across organizational boundaries as well as measuring
chain performance across supplier or customer boundaries, for example, total cost,
total lead-time, and delivery speed, SC response time (Chibba 2007). However, the
most complementary approach to performance measurement of SCs is depicted
with the performance across organizational boundaries including links both to the
suppliers and the end customers. Total chain measures are used to assess the
performance of the entire SC and provide an opportunity to minimize the total
cost. Stewart (1995) identified the following measures of delivery performance as
total chain measures: delivery-to request date, delivery-to-commit date, and order
fill lead-time.

The content of the performance measurement of SC systems is mainly related to
the five phases of the SC systems: (i) plan; (ii) source; (iii) make; (iv) deliver; and
(v) return. The Supply-Chain Operations Reference (SCOR) model developed by
the SC Council illustrated in Fig. 8.1 summarizes the processes of a SC system.

The ‘‘plan’’ processes describe the planning activities associated with operating
a SC, including information gathering customer requirements, resources, and
balancing requirements and resources to determine planned capabilities and
resource gaps. The ‘‘source’’ processes describe the ordering and receipt of goods
and services.

Fig. 8.1 SCOR model of the supply chain council
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The ‘‘make’’ processes describe the activities associated with the conversion of
materials or creation of the content for services which include not only production
and manufacturing because but also assembly, chemical processing, maintenance,
repair, overhaul, recycling, remanufacturing, and other material conversion pro-
cesses. The ‘‘deliver’’ processes describe the activities associated with the creation,
maintenance, and fulfillment of customer orders. Finally, the ‘‘return’’ processes
describe the activities associated with the reverse flow of goods back from the
customer. As is understood from the definitions of the processes of SC systems,
each phase may be related to only one function of an enterprise, cross-functional in
an enterprise or related to the suppliers or customers of an enterprise. Based on the
level of SC performance we need to assess, the focus will be the processes of
the SC in an enterprise or on the integrated performance of the whole or a part of
the SC including customers or suppliers.

8.3 Literature Review

There exists a vast literature on the performance measurement systems of SCs. In
the literature, seven different performance measurement systems have been pro-
posed: function-based measurement system, dimension-based measurement sys-
tem, SC operations reference model, SC balanced scorecard, hierarchical-based
measurement system, interface-based measurement system, and perspective-based
measurement system (Ramaa 2009). In Table 8.2, different performance mea-
surement systems have been compared with respect to the measurement aspects
and drawbacks of the system.

Performance measurement of SCs has a multidimensional nature which may be
identified with the processes of the SC, management levels, performance dimen-
sions, integration levels, or perspectives. Operations research perspective in SC
performance measurement have been recently studied in the literature using data
envelopment analysis, which is a nonparametric method in operations research to
empirically measure productive efficiency of decision-making units. Wong and
Wong (2007) developed two DEA models for the technical efficiency and the cost
efficiency of internal SC performance measurement.

Talluri et al. (2006) attempted to develop a vendor evaluation model by pre-
senting a chance-constrained data envelopment analysis approach in the presence
of multiple uncertain performance measures that allow considering variability in
vendor attributes. Supply chain performance is exposed to many uncertainties due
to the stochastic nature of demand and supply processes. Besides, SC performance
also includes many imprecise qualitative dimensions. For example, collaboration
is one of the main drivers of success in SC processes. Angerhofer and Angelides
(2006) developed a system dynamics model in order to reveal the constituents of a
collaborative SC, key parameters they influence and pinpoint areas where the
actual SC can be improved.
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Table 8.2 Comparison of supply chain performance measurement systems

Performance
measurement
system

References Measurement
aspects

Specification of
measurement

Drawback

Function
based
(FBMS)

Christopher
(1992)

Processes of the SC Measurement of
functional
processes of SC
in isolation with
company strategy

It does not provide
the top level
measures to
cover the entire
supply chain

Dimension
based
(DBMS)

Beamon
(1999)

Resources, output
and flexibility

Measurement based
on various
dimensions of
performance

Dimensions should
coincide with an
organization’s
strategic goals

Hausman
(2004)

Service, assets and
speed

Supply chain
operations
reference
model
(SCOR)

Supply chain
council

Reliability,
responsiveness,
flexibility, cost,
and asset

Measurement of
cross-functional
processes of SC
based on metrics
related to
processes and
benchmarks

An exhaustive
system requiring
dedicated
resources, a well-
defined
infrastructure,
and project-based
completion
approach

SC balanced
scorecard
(SCBS)

Kaplan and
Norton
(1992)

Customer, internal
processes,
innovation and
financial

Measurement based
on the customers,
internal business
processes,
learning and
growth and the
financial
indicators

Limited to the
balance scorecard
dimensions

Hierarchical
based
(HBMS)

Gunasekaran
et al.
(2001)

Financial and
nonfinancial
metrics at
strategic,
tactical, and
operational
levels

Measurement with
respect to
strategic, tactical,
and operational
levels of
management

Difficult to put
measures into
different levels
that reduce
conflicts among
the supply chain
partners

Interface
based
(IBMS)

Lambert and
Pohlen
(2001)

Cost, activity time,
customer
responsiveness,
and flexibility
as single or joint
dimensions

Measurement of the
stages of a SC
which forms the
total SC to
optimize the total
SC as well as
each company

Requirement of
openness and
sharing of
information
along the chain,
difficult in actual
business setting

Perspective
based
(PBMS)

Otto and
Kotzab
(2003)

System dynamics,
operations
research,
logistics,
marketing,
organization,
strategy

Measurement of the
SC in all the
possible
perspectives
based on
measures for
each perspective

There can be trade-
off between
measures of one
perspective and
other
perspectives
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In order to handle the multidimensionality of the performance, multi-criteria
decision-making methods have been employed in the literature. Bhagwat and
Sharma (2007a) make use of AHP in order to combine a hierarchical performance
measurement system and SC balance scorecard. They have defined the AHP model
with strategic, tactical and operational levels at the upper stage and the dimensions
of balance scorecard at the lower stage of AHP. Later, in 2009, Bhagwat and
Sharma (2007b) propose an integrated AHP-PGP (pre-emptive goal programming)
model to consider both quantitative and qualitative performance measures in
optimizing the overall performance of the system. Berrah and Cliville (2007)
suggests to employ a multi-criteria methodology by considering the SCOR model
break-down and then an aggregation methodology, based on the Choquet integral
operator and MACBETH framework. In this way, the overall performance is
associated to a global objective of overall SC performance whose break-down is
provided by SCOR model’s elementary objectives.

Bai and Sarkis (2012) introduce an application of neighbourhood rough-set
theory for the identification and selection of performance measures related to the
sourcing function using the elements of SCOR model. Their model allows
determining a core set of external logistics and SC performance measures to
internal performance expectations and outcomes.

In this study, we propose a fuzzy multi-criteria decision-making methodology
to apply a dimension based performance measurement. Our methodology first
prioritizes the criteria using fuzzy DEMATEL and then we investigate the effect of
linguistic variable scales. We offer a fuzzy decision-making methodology in order
to include the uncertainties of SC and the imprecision of the assessment of criteria
used in performance measurement system.

8.4 A Fuzzy Multi-criteria Approach

In this section, we present the basics of the fuzzy set theory and define linguistic
variables. Then we briefly give the steps of fuzzy DEMATEL method.

8.4.1 Fuzzy Set Theory

The fuzzy set theory is founded by Zadeh in 1965, and he defined the fuzzy set as a
class of objects with a continuum of grades of membership, which is characterized
by a membership function which assigns to each object a grade of membership
ranging between zero and one. A fuzzy set A in U characterized by a membership
function lAðxÞ which associates with each point in U a real number in interval
[0, 1], with the value of lAðxÞ at x representing ‘‘the grade of membership’’ of x in
A (Zadeh 1965).
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A formula for membership function lAðxÞ of a triangular fuzzy number (TFN) ~x
which has a shape shown in Fig. 8.2, is given in Eq. (8.1), where a, b, and
c denotes real numbers (Ross 1995):

lAðxÞ ¼ ðl;m; rÞ ¼

x� a

b� a
; a� x� b

c� x

c� b
; b� x� c

0; otherwise

ð8:1Þ

Algebraic operations for TFNs are given by (8.2)–(8.8) where all the fuzzy
numbers are positive (here it is assumed to mean a� 0; e� 0) (Chen et al. 1992):

ða; b; cÞ þ ðd; e; f Þ ffi ðaþ d; bþ e; cþ f Þ ð8:2Þ

ða; b; cÞ � ðd; e; f Þ ffi ða� f ; b� e; c� dÞ ð8:3Þ

ða; b; cÞ � ðd; e; f Þ ffi ðad; be; cf Þ ð8:4Þ

ða; b; cÞ � ðd; e; f Þ ffi a

f
;
b

e
;
c

d

� �
ð8:5Þ

k� ða; b; cÞ ffi ðka; kb; kcÞ;
ðkc; kb; kaÞ;

�
if

k� 0
8k 2 <
k� 0

ð8:6Þ

k� ða; b; cÞ ffi
k
c ;

k
b ;

k
a

� �
;

k
a ;

k
b ;

k
c

� �
;

if
k� 0

k� 0

8
<

: ; 8k 2 < ð8:7Þ

ða; b; cÞk ffi ak; bk; ck
� �

;
1
ck ;

1
bk ;

1
ak

� �
;

if
k� 0

k� 0
8k 2 <

8
<

: ð8:8Þ

8.4.2 Linguistic Variables

Linguistic variables are the variables whose values are not numbers but words or
sentences in a natural or artificial language (Zimmermann 1991). Linguistic

µ

a b c

Fig. 8.2 Membership
function of a TFN
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variables can reflect the different levels of human language. The totality of values of a
linguistic variable constitutes its term-set, which in principle could have an infinite
number of elements (Zadeh 1975). In addition to the primary terms, a linguistic value
may involve connectives such as and, or, either, neither, etc.; the negation not; and
the hedges such as very, more or less, weakly, moderately, greatly, absolutely, etc.
The hedges as well as the connectives are treated as nonlinear operators which
modify the meaning of their operands in a specified fashion (Zadeh 1975).

In this study, the linguistic variable ‘‘influence’’ is used with five linguistic
terms (Li 1999) as {Very high, High, Low, Very low, No} that are expressed in
positive triangular fuzzy numbers ðlij;mij; rijÞ as shown in Table 8.3.

8.4.3 Fuzzy DEMATEL Method

Decision-making trial and evaluation laboratory (DEMATEL) method, originated
from the Geneva Research Centre of the Battelle Memorial Institute, is an effective
method which collects group knowledge, analyzes the inter-relationships among
system factors, and visualizes this structure by cause-effect relationship diagram
(Gabus and Fontela 1972, 1973). The most important feature of DEMATEL in
multi-criteria decision-making area is its function of building the relation and
structure factors (Zhou et al. 2011). Although DEMATEL is a novel technique for
evaluating problems, the relationships of systems are generally given by crisp
values. The fact that human judgments about preferences are often unclear and
hard to estimate by exact numerical values, necessitates fuzzy logic for handling
problems characterized by vagueness and imprecision (Chang et al. 1998; Chen
and Chiou 1999). Therefore, many researchers use the fuzzy DEMATEL method
to extend the DEMATEL technique with fuzzy concept for making better deci-
sions in fuzzy environments (Jeng and Tzeng 2012; Zhou et al. 2011; Chang et al.
2011; Lin and Wu 2008; Liou et al. 2008; Tseng 2009; Wu and Lee 2007).

The steps of the fuzzy DEMATEL method which is proposed by Wu and Lee
(2007) are defined as follows:

Step 1: Identifying the decision goal and forming a committee. Decision-making is
the process of defining the decision goals, gathering relevant information,
generating the broadest possible range of alternatives, evaluating the
alternatives for advantages and disadvantages, selecting the optimal

Table 8.3 Fuzzy linguistic
scale for fuzzy DEMATEL

Linguistic terms Triangular fuzzy
numbers

Very high influence (VIH) ð0:75; 1:0; 1:0Þ
High influence (HI) ð0:5; 0:75; 1:0Þ
Low influence (LI) ð0:25; 0:5; 0:75Þ
Very low influence (VLI) ð0; 0:25; 0:5Þ
No influence (NI) ð0; 0; 0:25Þ
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alternative, and monitoring the results to ensure that the decision goals are
achieved (Hess and Siciliano 1996; Opricovic and Tzeng 2004). Thus, the
first step is to identify the decision goal. Also, it is necessary to form a
committee for gathering group knowledge for problem solving.

Step 2: Developing evaluation factors and designing the fuzzy linguistic scale. In
this step, it is necessary to establish sets of significant factors for evaluation.
However, evaluation factors have the nature of causal relationships and are
usually comprised of many complicated aspects. To gain a structural model
dividing involved factors into cause group and effect group, the DEMATEL
method must be used here. For dealing with the ambiguities of human
assessments, the linguistic variable ‘‘influence’’ is used with five linguistic
terms (Li 1999) as {Very high, High, Low, Very low, No} that are expressed
in positive triangular fuzzy numbers ðlij;mij; rijÞ as given in Table 8.3.

Step 3: Acquiring and aggregating the assessments of decision makers. To
measure the relationship between evaluation factors
C ¼ f Cij i ¼ 1; 2; . . .; ng, it is usually necessary to ask a group of
experts to make assessments in terms of influences and directions
between factors. Then, using the CFCS (Converting Fuzzy data into Crisp
Scores) method, those fuzzy assessments are defuzzified and aggregated
as a crisp value which is the zij. Hence, the initial direct-relation matrix
Z ¼ zij

� �
nxn

can be obtained using formulas (8.9)–(8.16).

Converting fuzzy data into crisp scores method

Let ~zk
ij ¼ zk

lij; z
k
mij; z

k
rij

	 

indicate the fuzzy assessment of evaluator kðk ¼

1; 2; . . .; pÞ about the degree to which the criterion i affects the criterion j. The
CFCS method includes five step algorithms described as follows:

Normalization

xk
lij ¼

ðzk
lij �minzk

lijÞ
maxzk

rij �minzk
lij

ð8:9Þ

xk
mij ¼

ðzk
mij �minzk

lijÞ
maxzk

rij �minzk
lij

ð8:10Þ

xk
rij ¼

ðzk
rij �minzk

lijÞ
maxzk

rij �minzk
lij

ð8:11Þ

Compute left ðxk
lsijÞ and right ðxk

rsijÞ normalized values:

xk
lsij ¼

xk
mij

ð1þ xk
mij � xk

lijÞ
ð8:12Þ
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xk
rsij ¼

xk
rij

ð1þ xk
rij � xk

mijÞ
ð8:13Þ

Compute total normalized crisp value:

xk
ij ¼
½xk

lsijð1� xk
lsijÞ þ ðxk

rsijÞ
2	

½1� xk
lsij þ xk

rsij	
ð8:14Þ

Compute crisp values:

zk
ij ¼ minzk

lij þ xk
ij maxzk

rij �minzk
lij

	 

ð8:15Þ

Integrate crisp values:

zij ¼
1
p
ðz1

ij þ z2
ij þ . . .þ zp

ijÞ ð8:16Þ

Step 4: Establishing and analyzing the structural model. On the base of the initial
direct-relation matrix Z ¼ zij

� �
nxn, the normalized direct-relation matrix

X ¼ xij

� �
nxn where 0� xij� 1, can be obtained through formula (8.17)

where i; j ¼ 1; 2; . . .; n

.

X ¼ 1
max

0� i� 1

Pn
j¼1 zij

Z ð8:17Þ

Then, the total-relation matrix T can be acquired by using formula (8.18).

T ¼ XðI � XÞ�1 ð8:18Þ

The causal diagram can be acquired through formulas (8.19)–(8.21).

T ¼ tij; i; j ¼ 1; 2; . . .; n ð8:19Þ

D ¼
Xn

j¼1

tij ð8:20Þ

R ¼
Xn

i¼1

tij ð8:21Þ

The causal diagram is constructed with the horizontal axis (D+R) named
‘‘Prominence’’ and the vertical axis (D-R) named ‘‘Relation.’’ The horizontal axis
‘‘Prominence’’ shows how much importance the factor has, whereas the vertical
axis ‘‘Relation’’ may divide factors into cause group and effect group. Generally,
when the (D-R) axis is plus, the factor belongs to the cause group. Otherwise, the
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factor belongs to the effect group if the (D-R) axis is minus. Hence, causal
diagrams can visualize the complicated causal relationships of factors into a visible
structural model, providing valuable insight for problem solving. Further, with the
help of a causal diagram, we may make proper decisions by recognizing the
difference between cause and effect factors.

8.5 Performance Criteria Prioritization of Suppliers
Using Fuzzy DEMATEL Method

Step 1: Identifying the decision goal and forming a committee.
Decision goal is defined as ‘‘prioritization of SC performance measurement

criteria’’. The decision group consists of one general manager one manufacturing
department manager and one logistics department manager.
Step 2: Developing evaluation factors and designing the fuzzy linguistic scale.
Performance factors of SC are defined in four groups which are customer satis-
faction, productivity, flexibility, and risk management due to the literature review
given in Sect. 8.3.

Organizations always intend to satisfy their customers. Therefore customer
satisfaction which affects all of the departments and facilities of the organizations
is one of the critical factors. On time delivery (C1) and satisfying industry regu-
lations (C2) are determined as performance criteria of customer satisfaction factor.

Productivity which is the second performance factor of suppliers is an integral part
of performance. It is defined one of the most crucial area for operational and process
management (Sink and Tuttle 1989; Hoehn 2003). Cost minimization (C3) and
quality (C4) are determined as performance criteria of customer satisfaction factor.

Flexibility is another critical performance factor for organizations if the product
type or demand could change easily. In such conditions, speed and manner of reaction
(C5) and technical capability (C6) are defined as performance criteria of flexibility.

Risk management policies of suppliers have to handle the impact of the natural
disasters. The sub criteria of risk management performance factor are defined as
security awareness (C7), physical security (C8), and geographical location (C9).
Hierarchical structure of performance factors and criteria is given in Fig. 8.3.
Step 3: Acquiring and aggregating the assessments of decision makers.

Influences and directions between evaluation factors are determined by the
group of experts to measure the relationship between them. The influence matrices
are given in Table 8.4.

Linguistic terms are expressed in positive triangular fuzzy numbers
ðlij;mij; rijÞas given in Table 8.3.
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Then, using the CFCS (method, fuzzy assessments are defuzzified and aggre-
gated as a crisp value. The initial direct-relation matrix Z ¼ zij

� �
nxn is obtained and

given in Table 8.5.
Step 4: Establishing and analyzing the structural model.

On the base of the initial direct-relation matrix, the normalized direct-relation
matrix is obtained and given in Table 8.6.

Then, the total-relation matrix is obtained and given in Table 8.7. The causal
diagram is constructed with the horizontal axis (D ? R) and the vertical axis
(D-R) and given in Fig. 8.4.

The horizontal axis shows how much importance the factor has. Quality (C4) is
the most important performance criteria in SC performance measurement systems
whereas security awareness (C7) is the least important one. The vertical axis
divides factors into cause and effect groups. We can see that technical capability
(C6), geographical location (C9), and satisfaction in industry regulations (C2) are
in the cause group and on time delivery (C1), cost minimization (C3), speed and
manner of reaction (C5), security awareness (C7), and physical security (C8) are in
the effect group. Quality (C4) is located on the vertical axis which means it has
neutral effect on the other criteria. Decision makers should focus on the cause
group criteria (C2, C6, and C9) and the neutral criterion (C4).

Goal Factors Criteria

F1:Customer Satisfaction

C7: Security awareness

C5:Speed and manner of reaction

C6: Technical capability

F4: Risk Management

F3: Flexibility

F2: Productivity

C3: Cost minimization

C8:  Physical security

C4: Quality
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C2: Satisfaction of industry regulations 

C1: On time delivery

C9: Geographical location

Fig. 8.3 Hierarchical structure of performance factors and criteria
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Table 8.4 The influence matrices

Expert 1_General manager
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 HI VLI VLI VHI NI NI NI LI
C2 LI 0 HI VHI VLI VLI HI HI VLI
C3 HI NI 0 VHI HI VHI NI LI HI
C4 LI HI HI 0 LI VHI LI HI NI
C5 VHI HI LI HI 0 HI NI LI VLI
C6 HI HI VHI VHI VHI 0 NI HI NI
C7 NI HI VLI VLI VLI VLI 0 VHI NI
C8 NI VLI LI HI VLI VLI HI 0 LI
C9 VHI NI HI VLI HI NI NI HI 0
Expert 2_Manager of manufacturing department

C1 C2 C3 C4 C5 C6 C7 C8 C9
C1 0 LI HI LI HI VLI NI NI HI
C2 HI 0 HI VHI LI LI VHI VHI VLI
C3 HI VLI 0 HI VHI VHI NI NI HI
C4 HI VHI HI 0 LI HI HI HI VLI
C5 VHI LI HI LI 0 LI NI NI NI
C6 VHI HI HI VHI VHI 0 VLI HI NI
C7 NI VLI NI LI NI NI 0 VHI VLI
C8 NI VHI LI HI LI NI HI 0 LI
C9 HI LI VHI LI LI LI LI LI 0
Expert 3_Manager of logistics department

C1 C2 C3 C4 C5 C6 C7 C8 C9
C1 0 HI HI LI HI NI VLI VLI VLI
C2 HI 0 LI HI LI LI LI HI LI
C3 LI NI 0 HI VHI HI VLI HI LI
C4 HI VHI HI 0 HI VLI HI VHI VLI
C5 VHI HI HI LI 0 VLI NI VLI LI
C6 HI VHI HI VHI VHI 0 VLI LI NI
C7 NI HI VLI LI NI NI 0 VHI NI
C8 NI LI LI LI VLI NI LI 0 VLI
C9 HI VLI VHI LI VHI VLI VLI LI 0

Table 8.5 Initial direct relation matrix

i Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9

1 0 0.66 0.58 0.41 0.82 0.11 0.11 0.11 0.50
2 0.66 0 0.66 0.89 0.41 0.41 0.74 0.82 0.34
3 0.66 0.11 0 0.82 0.89 0.89 0.11 0.42 0.66
4 0.66 0.89 0.75 0 0.59 0.66 0.66 0.82 0.18
5 0.96 0.66 0.66 0.59 0 0.50 0.04 0.26 0.26
6 0.82 0.82 0.82 0.96 0.96 0 0.18 0.66 0.04
7 0.04 0.58 0.18 0.41 0.11 0.11 0 0.96 0.11
8 0.04 0.58 0.50 0.66 0.34 0.11 0.66 0 0.41
9 0.82 0.26 0.89 0.41 0.74 0.26 0.26 0.59 0
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8.6 The Effect of the Fuzzy Linguistic Scale

There are many applications of fuzzy DEMATEL to prioritize the criteria on
different decision-making problems. Mostly, the scale given in Table 8.3 is used to
determine the linguistic variables. In this section, we will use another scale to

Table 8.6 The normalized direct-relation matrix

i Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9

1 0 0.1 0.1 0.1 0.2 0 0.02 0.02 0.1
2 0.1 0 0.1 0.2 0.1 0.1 0.14 0.16 0.06
3 0.1 0 0 0.2 0.2 0.2 0.02 0.08 0.13
4 0.1 0.2 0.1 0 0.1 0.1 0.13 0.16 0.03
5 0.2 0.1 0.1 0.1 0 0.1 0.01 0.05 0.05
6 0.2 0.2 0.2 0.2 0.2 0 0.03 0.13 0.01
7 0 0.1 0 0.1 0 0 0 0.18 0.02
8 0 0.1 0.1 0.1 0.1 0 0.13 0 0.08
9 0.2 0 0.2 0.1 0.1 0 0.05 0.11 0

Table 8.7 The total-relation matrix

i Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9

1 0.34 0.43 0.45 0.43 0.48 0.26 0.22 0.33 0.28
2 0.55 0.44 0.58 0.64 0.53 0.39 0.41 0.57 0.32
3 0.57 0.46 0.48 0.62 0.62 0.47 0.29 0.48 0.37
4 0.58 0.62 0.63 0.53 0.59 0.45 0.41 0.59 0.31
5 0.56 0.49 0.53 0.52 0.41 0.37 0.25 0.4 0.28
6 0.64 0.63 0.67 0.71 0.68 0.36 0.35 0.58 0.31
7 0.23 0.33 0.28 0.33 0.25 0.18 0.17 0.4 0.16
8 0.32 0.4 0.41 0.45 0.37 0.25 0.32 0.31 0.25
9 0.54 0.43 0.57 0.5 0.54 0.33 0.28 0.46 0.24

Fig. 8.4 The casual diagram of performance criteria
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determine the effect of the fuzzy linguistic scale on the results. Jeng and Tzeng
(2012) used the fuzzy scale which is given in Table 8.8 to determine the linguistic
variables.

Jeng and Tzeng (2012)’s fuzzy linguistic scale is applied to the same influence
matrix which is given in Table 8.4 and a scatter diagram is obtained and given in
Fig. 8.5. We see that Figs. 8.4 and 8.5 are similar with respect to the importance
rankings of the criteria as well as the grouping of cause and effect criteria.
Although the places of the criteria with respect to the others do not change, only
minor changes in the distances between a pair of criteria are observed. This shows
that the results of fuzzy DEMATEL are robust to the selected scale of linguistic
variables.

8.7 Conclusion

In this chapter, we present a review of SC performance measurement systems and
offer a multi-criteria decision-making methodology, fuzzy DEMATEL in order to
prioritize the performance measures of SC. Fuzzy DEMATEL enabled to collect
the imprecise group judgments and analyze the inter-relationships among SC

Table 8.8 Fuzzy linguistic scale for fuzzy DEMATEL

Linguistic terms Triangular fuzzy numbers

Very high influence (VIH) ð0:7; 0:9; 1:0Þ
High influence (HI) ð0:5; 0:7; 0:9Þ
Low influence (LI) ð0:3; 0:5; 0:7Þ
Very low influence (VLI) ð0:1; 0:3; 0:5Þ
No influence (NI) ð0; 0:1; 0:3Þ

Fig. 8.5 The casual diagram of performance criteria by using Jeng and Tzeng (2012)’s scale
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performance factors. We then visualize the factors in a cause-effect relationship
diagram. We found that the most important factor of SC performance is quality.
However, the structural factors which affect the other performance factors are
obtained as technical capability, geographical location, and satisfaction of industry
regulations. As a result, an enterprise should prioritize the improvement of tech-
nical capability, geographical location, and satisfaction of industry regulations
factors since the improvement acquired in technical capability, geographical
location, and satisfaction of industry regulations would also cause improvement of
the factors in the effect group.

We have employed two different scales of linguistic variables in order to
investigate whether the selected scale has a major effect on the results of fuzzy
DEMATEL methodology. The results obtained with the use of different scales
were found to be similar to each other showing that fuzzy DEMATEL is robust to
the minor changes in linguistic variable scale. Our findings suggest that DEMA-
TEL offers an effective prioritization of SC performance factors and provides a
visual understanding among interrelationships of SC performance factors. For
further research, the results of fuzzy DEMATEL may be used to together with
analytical network process (ANP) to identify the relationships among the network
structure of factors in a supplier selection problem.

References

Angerhofer BJ, Angelides MC (2006) A model and a performance measurement system for
collaborative supply chains. Dec Supp Syst 42(1):283–301

Bai C, Sarkis J (2012) Supply–chain performance–measurement system management using
neighbourhood rough sets. Int J Prod Res 50(9):2484–2500

Beamon BM (1999) Measuring supply chain performance. Int J Oper Prod Mgmt 19(3):275–292
Berrah L, Cliville V (2007) Towards an aggregation performance measurement system model in

a supply chain context. Comput Ind 58(7):709–719
Bhagwat R, Sharma MK (2007a) Performance measurement of supply chain management using

the analytical hierarchy process. Prod Plan Con 18(8):666–680
Bhagwat R, Sharma MK (2007b) Performance measurement of supply chain management: A

balanced scorecard approach. Comput Ind Eng 53(1):43–62
Chang B, Chang CW, Wu CH (2011) Fuzzy DEMATEL method for developing supplier

selection criteria. Expert Syst Appl 38(3):1850–1858
Chang YH, Yeh CH, Cheng JH (1998) Decision support for bus operations under uncertainty: A

fuzzy expert system approach. Omega 26(3):367–380
Chen LH, Chiou TW (1999) A fuzzy credit–rating approach for commercial loans: A Taiwan

case. Omega 27(4):407–419
Chen SJ, Hwang CL, Hwang FP (1992) Fuzzy multiple attribute decision making: methods and

applications. Lecture notes in economics and mathematical systems, Springer–Verlag, Berlin
Chibba A (2007) Measuring supply chain performance measures prioritizing performance

measures. Licentiate thesis, Luleå University of Technology, Sweden
Christopher M (1992) Logistics and supply chain management. Pitman Publishing, London
Christopher M, Towill D (2000) Supply chain migration from lean and functional to agile and

customized. Supply Chain Mgmt: Int J 5(4):206–213

178 I. U. Sari et al.



Fisher ML (1997) What is the right supply chain for your product?. Harvard Bus Rev March–
April Reprint number: 97205, pp 105–116

Gabus A, Fontela E (1972) World problems, an invitation to further thought within the
framework of DEMATEL. Battelle Geneva Research Centre, Switzerland

Gabus A, Fontela E (1973) Perceptions of the world problematic: communication procedure,
communicating with those bearing collective responsibility (DEMATEL report no. 1).
Battelle Geneva Research Centre, Switzerland

Gunasekaran A, Kobu, B (2007) Performance measures and metrics in logistics and supply chain
management: a review of recent literature for research and applications. Int J Prod Res 45(12):
2819-2840

Gunasekaran A, Patel C, Tittiroglu E (2001) Performance measures and metrics in a supply chain
environment. Int J Oper Prod Mgmt 2(1–2):71–87

Hausman WH (2004) Supply chain performance metrics. In: Harrison TP, Lee HL and Neale JJ
(eds) The practice of supply chain management: where theory and application converge.
Springer Science and Business, New York, pp 61–73

Hess P, Siciliano J (1996) Management: responsibility for performance. McGraw–Hill, New
York

Hoehn W (2003) Managing organizational performance: linking the balanced scored to a process
improvement technique. In: Proceedings of the 4th annual international symposium in
industrial engineering on the performance–based management. Kasetsart University, Bang-
kok, pp 1–12

Huang SH, Uppal M (2002) A product driven approach to manufacturing supply chain selection.
Supply Chain Mgmt: Int J 7(4):189–199

Jeng DJF, Tzeng GH (2012) Social influence on the use of clinical decision support systems:
revisiting the unified theory of acceptance and use of technology by the fuzzy DEMATEL
technique. Comput Ind Eng 62(3):819–828

Kaplan RS, Norton D (1992) The balanced scorecard –measures that drive performance. Harvard
Bus Rev 70:71–9

Lambert DM, Pohlen TL (2001) Supply chain metrics. Int J Logist Mgmt 12(1):1–19
Li RJ (1999) Fuzzy method in group decision making. Comput Math Appl 38(1):91–101
Lin CJ, Wu WW (2008) A causal analytical method for group decision–making under fuzzy

environment. Expert Syst Appl 34(1):205–213
Liou JJH, Yen L, Tzeng GH (2008) Building an effective safety management system for airlines.

J Air Transp Mgmt 14(1):20–26
Naylor JB, Naim MM, Berry D (1999) Leagility: integrating the lean and agile manufacturing

paradigms in the total supply chain. Int J Prod Eco 62(1–2):107–118
Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis

of VIKOR and TOPSIS. Euro J Oper Res 156(2):445–455
Otto A, Kotzab A (2003) Does supply chain management really pay? Six perspectives to measure

the performance of managing a supply chain. Euro J Oper Res 144(2):306–320
Parker C (2000) Performance measurement. Work Study 49:63–66
Ramaa A, Rangaswamy TM, Subramanya KN (2009) A review of literature on performance

measurement of supply chain network. In Proceedings of the 2nd international conference on
emerging trends in engineering and technology, ICETET–09

Ross TJ (1995) Fuzzy logic with engineering applications. McGraw-Hill, New York
Selldin E, Olhager J (2007) Linking products with supply chains testing Fischer’s model. Supply

Chain Mgmt: Int J 12(1):42–51
Sink D, Tuttle T (1989) Planning and measurement in your organization of the future. IE Press,

Norcross
Slack N (1991) The manufacturing advantage. Mercury Books, London
Stewart G (1995) Supply chain performance benchmarking study reveals keys to supply chain

excellence. Logist Inf Mgmt 8(2):38–44
Talluri S, Narasimhan R, Nair A (2006) Vendor performance with supply risk: a chance–

constrained DEA approach. Int J Prod Eco 100(2):212–222

8 Prioritization of Supply Chain Performance Measurement Factors 179



Tseng ML (2009) A causal and effect decision making model of service quality expectation using
grey–fuzzy DEMATEL approach. Expert Syst Appl 36(4):7738–7748

Turkett RL (2001) Lean manufacturing implementation–lean supply chain. Notes for the course
of ‘‘IOE, Manufacturing Strategies’’, www.engin.umich.edu/class

Wong WP, Wong KY (2007) Supply chain performance measurement system using DEA
modeling. Ind Mgmt Data Syst 107(3):361–381

Wu WW, Lee YT (2007) Developing global managers’ competencies using the fuzzy DEMATEL
method. Expert Syst Appl 32(2):499–507

Zadeh LA (1965) Fuzzy Sets Inf Con 8:338–353
Zadeh LA (1975) The concept of a linguistic variable and its application to approximate

reasoning – I. Inf Sci 8:199–249
Zhou Q, Huang W, Zhang Y (2011) Identifying critical success factors in emergency

management using a fuzzy DEMATEL method. Safety Sci 49(2):243–252
Zimmermann HJ (1991) Fuzzy set theory and its application, 2nd edn. Kluwer, Dordrecht

180 I. U. Sari et al.

http://www.engin.umich.edu/class


Chapter 9
Route Selection and Consolidation
in International Intermodal Freight
Transportation

R. A. Kumar, P. Mohapatra, W. K. Yew, L. Benyoucef
and M. K. Tiwari

Abstract This chapter focuses on selecting the route in international intermodal
freight transportation network considering the following characteristics, first and
foremost multi-objective: minimization of travel time and travel cost, later
schedules and delivery times of every service provider in each pair of location, and
lastly variable cost must be included in every location. The study aims to formulate
the problem into mixed integer linear programming (MILP) model and develop an
algorithm which encompassing all the above essential characteristics. It is NP-hard
problem; it follows the proposed algorithm (nested partitions method) that is
heuristic and multi-attribute decision-making (MADM) method. An illustrative
experiment is considered and our proposed algorithm is applied to obtain an
effective and efficient solution.

Keywords Intermodal � Mixed integer linear programming � Nested partition
method � multi-attribute decision making

9.1 Context and Motivation

In the recent years, the importance of intermodal freight transportation is increased
in global business transaction, hoping it substantially reduces logistics costs.
Intermodal freight transportation can be defined as movement of cargos from

R. A. Kumar � P. Mohapatra � M. K. Tiwari (&)
Department of Industrial Engineering and Management, Indian Institute of Technology,
Kharagpur, India
e-mail: mkt09@hotmail.com

W. K. Yew
Department of Manufacturing and Industrial Engineering, Universitiy Teknologi, Skudai,
Malaysia

L. Benyoucef
Aix-Marseille University, LSIS UMR 7296 13397 Marseille Cedex 20, France

L. Benyoucef et al. (eds.), Applications of Multi-Criteria and Game Theory Approaches,
Springer Series in Advanced Manufacturing, DOI: 10.1007/978-1-4471-5295-8_9,
� Springer-Verlag London 2014

181



origin to destination using two or more transportation modes such as air, sea, road,
and rail. Though intermodal transportation reduces the logistics cost, there are
some operational challenges such as, how an international intermodal carrier
selects best routes for shipments through the international intermodal network,
which is explained in upcoming sections.

Our concentration is only on ocean and air transportation modes. Intermodal
routing problem is complicated by following important characteristics; first it is
important to include multiple objectives such as minimization of travel time and
travel cost because customers may have different concerns, second transportation
mode schedules and delivery times of every service provider in each pair of
location must be included in the modeling of routing, and last the demand delivery
times could be treated as time window constraints. Each location may have its own
security cost, handling cost, etc., it has to be considered as variable cost.

The remainder of this chapter is organized as follows. Section 9.2 reviews the
state-of-the-art related to intermodal routing methods. Section 9.3 presents the
mixed integer linear programming (MILP) formulation of the problem under con-
sideration. Section 9.4 describes the evaluation techniques. Section 9.5 shows the
implementation of the techniques and methods. Section 9.6 concludes the chapter.

9.2 Literature Review

Recently, there are several researches to develop intermodal routing methods and
consolidation. So far, the research articles which focus on intermodal routing
(Crainic and Rousseau 1986; Min 1991; Barnhart and Ratliff 1993; Boardman
et al. 1997; Bookbinder and Fox 1998; Southworth and Peterson 2000; Chang
2008; Shi and Olafsson 2008; Tadashi et al. 2009; Çakır 2009; Leung et al. 2009;
Rafay and Charles 2010; Zhang et al. 2010; Kang et al. 2010; Hu 2011; Yang et al.
2011 and Cho et al. 2012).

Crainic and Rousseau (1986) examined the multimode, multicommodity freight
transportation problem which occurs when the same authority controls and plans
both the supply of transportation services and the routing of freight. The problem is
solved by means of an algorithm based on decomposition and column generation
principles.

Boardman et al. (1997) developed a decision support system, to find out the
least cost routes by K shortest path double sweep method. They considered only
transport cost of all the modes and they obtained a least cost routes by combining
the modes and obtained a reduced cost route.

Chang (2008) developed a mathematical model to encompass the three essential
characteristics of international intermodal routing network (multiple objectives,
schedule transportation modes and demand delivery times and transportation
economics). He proposed an algorithm based on relaxation and decomposition
technique, which can effectively and efficiently solve the problem with time
window and concave costs. He used Lagrangian multiplier to relax the problem,
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after relaxing he decomposed the problem into two, further minimization of time
including cost, later he still decomposed it to sub problem, then he used branch and
bound technique to solve those sub problems, finally he obtained an optimal
solution with both minimum cost and minimum time.

Tadashi et al. (2009) designed a multimodal freight transportation network
within the framework of bi-level programming and used heuristic approach based
on genetic local search as a solution technique. Leung et al. (2009) addresses the
problem of determining the optimal integrations and consolidations of air cargo
shipments.

Rafay and Charles (2010) developed a strategic planning for an interregional,
hub-based, intermodal logistics network operated by a logistics service provider.
Real-time study on US freight flows and solved it using tabu search meta-heuristic
model.

Kang et al. (2010) used PSO-ACO double-layer optimization algorithm. The
PSO is performed at the master level to select nodes sequence, while the ACO is
carried out at the slave level to look for optimal transportation mode and path
combination. Zhang et al. (2010) proposed a novel method, which combines
artificial immune system (AIS), chaos operator, and particle swarm optimization
(PSO).

Hu (2011) proposed an integer linear programming model to build the path
selection for container supply chain in the context of emergency relief. The
simulation study shows the promising effects of the model. Yang et al. (2011), they
proposed a model based on the principles of goal programming.

Cho et al. (2012) suggested a dynamic programming algorithm to minimize cost
and time simultaneously and they used Label setting algorithm and MADM model
to arrive at an optimal solution.

Most of the existing works varied with different characteristic based on the
objectives (Crainic and Rousseau 1986; Boardman et al. 1997; Chang 2008; Çakır
2009; Rafay and Charles 2010; Rahim and Farhad 2011; Hu 2011; Cho et al.
2012). To the most extent, Chang (2008) and Cho et al. (2012) had covered some
essential characteristics which this study is interested on. Chang formulated the
problem into two objective functions later to solve; he developed an algorithm
based on relaxation and decomposition techniques.

The objective of this research work is how to select the best routes in an
international intermodal routes network problem. For this problem, we also need to
consider the service providers available in each and every pair of nodes and the
problem becomes more complex by including customers concern to select their
best route. In this chapter, we develop an algorithm encompassing all the above
essential characteristics (multiple objectives, service provider’s time schedule,
travel time and delivery time, commodity allowed, capacity of modes, and cus-
tomers’ choice). We propose two different methods to obtain the optimal route; it
follows the proposed algorithm ‘NP’ (nested partition method) developed by
Olafsson et al. (2003) and ‘MADM’ (multi-attribute decision-making) method.

The NP method is applied to substructure original complex problem into simple
sub problem, through which we can obtain a set of feasible routes in the route
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network. Later, the set of feasible routes goes through the MADM evaluation
techniques in here we can implement the customer’s choice and obtain the best
available route in the international intermodal routing network.

9.3 Problem Description and Formulation

Considering a directed transportation network, G ðN;EÞ where set of nodes be N,
and set of links be E. The time window of node i 2 N is li; ui½ �, where the earliest
arrival time be li and the latest acceptable arrival time be ui, li� ui and ui � li\1.
Let the arrival time at node i of service provider s be denoted asAs

i , the link travel
time from node i to node j by service provider ts

ij, and the service time at node i for
service provider s be Ss

i . The departure time from node i by service provider scan
then be represented by As

i þ Ss
i . However, some service providers may have

scheduled departure time in few nodes; such time can be represented as Ds
i from

node i and service providers. If the scheduled departure time for service provider s
from node i does not exist then Ds

i is equated to zero. Consequently, the departure
time for any service provider from node ican be represented by maxfDs

i ;A
s
i þ Ss

ig.
For each service provider s in the link ði; jÞ, the cost is assumed to be a

continuous non-convex piecewise linear function of the total flow along the link. A
set R of capacity ranges is also given for each link ði; jÞ. Each range r is associated
with two types of costs in every service provider, a variable cost Csr

ij and a fixed
cost Fsr

ij which is incurred only when the total flow on link ði; jÞis within the range
r and service provider s. Consider a set V of communicating node pairs. Every pair
c 2 V is treated as a distinct commodity, and is associated with an origin node
OðcÞ and a destination node DðcÞ. Assume that dc units of flow must be sent from
OðcÞ to DðcÞ.

The following notations are used in the model.
N The set of nodes in the network
E The set of links in the network
S The set of available service providers in every link
R The set of available capacity ranges in every service provider
dc The traffic requirement for commodity c
OðcÞ The source node for communicating node pair c
DðcÞ The destination node for communicating node pair c
Csr

ij The variable cost for link (i, j), service provider s with range r

Fsr
ij The fixed cost for link (i, j), service provider s with range r

Ysr
ij

1 if service provider s is selected with range r on the link ði; jÞ:
0 otherwise

�
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The objective function of the problem can now be formulated as follows:

P1 ¼
X

ij

X

s

X

r

X

m

Fsr
ij � Ysr

ij �Mm
ij þ

X

ij

X

s

X

r

X

c

X

m

Csr
ij �Xcr

ij �Mm
ij ð9:1Þ

P2 ¼
X

ij

X

s

X

c

X

m

½maxðDs
j ; As

j þ Ss
j Þ �maxðDs

i ; As
i þ Ss

i Þ� �Mm
ij �Wc

ij ð9:2Þ

Subject to

X

j

Wc
ij �

X

j

Wc
ji ¼

dc if i ¼ OðcÞ
�dc if i ¼ DðcÞ
0 otherwise

8
<

: ð9:3Þ

Wc
ij�

X

r

Xcr
ij for all ði; jÞ 2 E; c 2 V ð9:4Þ

Xcr
ij � dcYsr

ij for all ði; jÞ 2 E; c 2 V; s 2 S; r 2 R ð9:5Þ

Xcr
ij � dcYsr

ij for all ði; jÞ 2 E; c 2 V; s 2 S; r 2 R
X

s

Ysr
ij � 1 ð9:6Þ

X

m

Mm
ij � 1 ð9:7Þ

Wij½maxðDs
i ;A

s
i þ Ss

i Þ þ ts
ij � As

j � ¼ 0 ð9:8Þ

lj�As
j � uj ð9:9Þ

As
j�1\As

j ð9:10Þ

Xcr
ij non-�negative integer for all ði; jÞ 2 E; c 2 V; r 2 R ð9:11Þ

Wc
ij non� negative integer for all ði; jÞ 2 E c 2 V ð9:12Þ

Ysr
ij 2 f0; 1g for all ði; jÞ 2 E; s 2 S; r 2 R ð9:13Þ

Mm
ij 2 f1; 2g for all ði; jÞ 2 E; m 2 f1; 2g ð9:14Þ

In the above formulation, the first objective P1 minimizes the total flow cost.
The second objective P2 minimizes the total travel time. Constraint set (9.3) is the
flow conservation equations. Constraints in set (9.4) ensure that the flow of
commodity c on link ði; jÞ does not exceed the total flow of the same commodity in
all possible ranges of link ði; jÞ. Constraint set (9.5) forces to choose service
provider s in the range r on link ði; jÞ if commodity c has flow through it. Con-
straint set (9.6) ensures at most one service provider is selected for each link.
Constraint set (9.7) ensures that mode m to be a mandatory and it must be one or
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more than one, which is related with constraint (9.14). Constraint set (9.8) ensures
the compatibility requirements between flow and time variables. Constraint set
(9.9) specifies the time window associated with each node. Constraint set (9.10)
specifies that the arrival time of predecessor node is always less than the arrival
time of current node for a service provider s. Constraint sets (9.11)–(9.14) are non-
negativity constraints.

In the Chang’s study, the two objective functions are combined into a single
objective function using weighted method and he generalized it into a cost func-
tion, later solved the same using Lagrangian relaxation and decomposition tech-
niques. Since this study’s main objective is to get the best route on customers
concern. Therefore, it follows two evaluation techniques such as (1) nested par-
tition method and (2) multi-attribute decision-making evaluation.

9.4 Evaluation Techniques

9.4.1 Nested Partition Method

The nested partitions method (NP), a relatively new optimization method that has
been found to be very effective solving discrete optimization problems. Such
discrete problems are common in many practical applications, and the NP method
is thus useful in diverse application areas. It can be applied to both operational and
planning problems and has been demonstrated to effectively solve complex
problems in both manufacturing and service industries.

NP method has been successful in solving complex problems in planning and
scheduling, logistics and transportation, supply chain design, data mining, and
health care. The NP method is best viewed as a metaheuristic framework and it has
similarities to branching methods in that like branch-and-bound it creates parti-
tions of the feasible region. However, it also has some unique features that make it
well suited for very difficult large-scale optimization problems given by Shi et al.
(1999); Shi and Olafsson (2000), (2008), and Sigurdur (2003).
Nested Partitions Framework
Step 1 Partitioning

This step partitions the current most promising region into several sub regions
and aggregates the remaining regions into the surrounding region. With an
appropriate partitioning scheme, Partition the most promising region rðkÞ into M
subregions r1 kð Þ; . . .; rM kð Þ, and aggregate the complimentary region X=r kð Þ into
one region rMþ1 kð Þ.
Step 2 Random Sampling

Randomly generate Nj sample solutions from each of the regions
rjðk); j ¼ 1; 2; . . .;M þ 1:

X j
1;X

j
2; . . .;X j

Nj
; j ¼ 1; 2; . . .;M þ 1
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Calculate the corresponding performance values:

f ðx j
1Þ; f ðx

j
2Þ; . . .; f ðx j

Nj
Þ; j ¼ 1; 2; . . .;M þ 1

Step 3 Calculation of the Promising Index
For each region, we calculate the promising index to determine the most

promising region. For each region rj; j ¼ 1; 2; . . .;M þ 1, calculate the promising
index as the best performance value within the region:

IðrjÞ ¼ min
i¼1;2;...;Nj

f ðx j
i Þ; j ¼ 1; 2; . . .;M þ 1

Step 4 Backtracking
The new most promising region is either a child of the current most promising

region or the surrounding region. If more than one region is equally promising, ties
are broken arbitrarily. When the new most promising region is the surrounding
region, backtracking is performed. The algorithm can be devised to backtrack to
either the root node or any other node along the path leading to the current
promising region.

Evaluating the partial solution by branching process on the overall solution
space, each time a partial solution is sampled and evaluated, the overall solution
space is actually branched into two parts: the small part associated with this partial
solution is evaluated and this branch will be cut off from the solution space; and
the other part is not fully explored and constitute the later promising region and
surrounding region. So, each time a partial solution is evaluated, a cut which cuts
off the partial solution is added to the overall solution space to improve the
efficiency of the algorithm.

9.4.2 Multi-attribute Decision-Making

For the second evaluation method, MADM (multi-attribute decision-making) is
used. By using MADM, many trade-off attributes with different measuring crite-
rion can be normalized in the single view of measure, so that each attribute will be
compared. MADM not only can show the evaluation values of each alternative, but
also lets us give subjective weight to the attributes, consequently helping seek an
optimal solution. The MADM method is mainly used for solving problems which
have many alternatives and attributes, thus aiming at fixing the order of preference
of attributes for many alternatives. Due to this, an easy and a convenient method,
an entropy method, is used to confirm, check, and evaluate the items. On the other
hand, MADM can perform evaluations on the basis of not only the internal weights
according to entropies, but also the weights that are directly inputted by the user.
Weights of cost and time can be adjusted by the user, which will satisfy our second
research gap in the literature survey.
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In this method, two artificial alternatives are hypothesized: ideal alternative,
negative ideal alternative Hwang (1981) and Rao (2007).

Step 1 Construct normalized decision matrix.
Step 2 Calculate the entropy value using the normalized decision matrix.
Step 3 The degree of divergence for each attribute is calculated.
Step 4 The more divergent the performance ratings, the higher are the corre-

sponding degree of divergence, thus more important the attribute.
Step 5 Finally the objective weight for each attribute is calculated.

Select the Alternative with higher weights.

9.5 An Illustrative Example

The sea and air mode transport routes where the service providers are available for
the order, which falls under the earliest final delivery date: 09/05/2011 and latest
final delivery date: 15/05/2011 are shown in Fig. 9.1.

In the above network, every arc represents the link between two locations,
every link has certain available service provider and every service provider has
different capacity ranges and based on the range of capacity the transportation cost
varies, this is taken care by the first objective function (minimization of cost), later
transportation time varies only on service providers that is taken care by the
second objective function (minimization of time). The order from customer and it
is grouped based on same origin and destination are given in Tables 9.1 and 9.2.

Let consider the following three types of commodities in our problem.

Commodity 1 Garment and Textile.
Commodity 2 Consolidation (mixed with or without garment and textile).

1 

2 

1 – Taiwan airport
2 – Tlokoeng airport

S

Ai

Busan 

Hong Kong
Los Angeles

New York

Fig. 9.1 Intermodal transportation network
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Commodity 3 Straight Loads only of other item not listed Groups 1 and 2, but
excluding cargo requiring special equipment and dangerous/haz-
ardous cargo.

Taking every group separately and selecting the best route for it in the inter-
modal network based on our solution techniques, to start with it, take group one
and get the set of feasible routes using nested partition method.

Step 0 Consider the entire solution as sub feasible region.
Step 1 With the source node as Hong Kong, obtained the next feasible region from

the sub region, shown in Fig. 9.2.
Step 2 Calculating the promising index, for each region rj; j ¼ 1; 2; . . .;M þ 1,

calculate the promising index as the best performance value within the

region: IðrjÞ ¼ mini¼1;2;...;Nj f ðx j
i Þ; j ¼ 1; 2; . . .;M þ 1. Since it had only

two regions, it is easily calculated.
Step 3 Makes another partition from the feasible region now again check the

promising index, this time, cross check it with not only the current sub
feasible region but also the past sub feasible regions, if found sub region
more promising than feasible, it has to be brought under feasible region
and further evaluated.
In the next iteration, see the predecessor in the feasible region toward the
destination, if it does not fall under feasible route and predecessor of sub
feasible region falls into feasible route, then back track to the previous
region and move the best into feasible set.

Step 4 No backtrack in this process because, the sub feasible region does not have
a better promising index.

Step 5 Set of feasible routes is saved.

Same steps are continued for minimization of time. The best service providers
cost and time in every link is shown in Fig. 9.3. The set of feasible routes from the
nested partition algorithm are given in Table 9.3.

Table 9.1 Customer orders

Order C1 of 1,000 kgs has to be shipped from Hong Kong to Los Angeles
Order C3 of 16,000 kgs from Busan to Los Angeles
Order C2 of 5,000 kgs from Hong Kong to Los Angeles
Order C2 of 3,000 kgs from Busan to New York
Order C2 of 5,000 from Busan to New York

Table 9.2 Orders grouped based on O–D and commodity

Orders Origin Destination Capacity

G1 Hong Kong Los Angeles 6,000 kgs
G2 Busan Los Angeles 16,000 kgs
G3 Busan New York 8,000 kgs
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With the above available feasible routes to select the best route as the customer
preferred, use MADM evaluation, giving the weight (0–1) for cost and time based
on the preference, the one with more preference will have a value close to 1 and
the one with minimum preference will have preference close to zero. There are
several multi-attribute decision-making methods, such as simple additive
weighting (SAW) method, weighted product method (WPM), analytic hierarchy

Hong Kong
Sub-Feasible region

Hong Kong –New 
York (sea)

Hong Kong –
Busan (air)

Hong Kong –Los 
Angeles (air)

Hong Kong –New 
York (air)

Feasible region

Hong Kong –Los 
Angeles (sea)

Hong Kong –
Busan (sea)

Hong Kong –
Taiwan (air)

Hong Kong  –
Tlokoeng   (air)

Fig. 9.2 The partition in nested partition method

1 – Taiwan airport
2 – Tlokoeng airport

S

A

(1440, 1)

(2560, 1)

(500, 4)

(1280, 2)

(3230, 2)

(1770, 2)

(1540, 2)

(1400, 1)

(1300, 1)

(1466, 20)

(3100, 1)

(1626, 12)

(1860, 2)
(2257, 31)

(1560, 3)

(2257, 38)

1 

Busan

Hong 

Kong

Los 
Angeles

2 

New 
York

Fig. 9.3 Intermodal network with cost and time
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process (AHP) , and Technique for Order Preference by Similarity to the Ideal
Solution (TOPSIS). Among these, TOPSIS is simple and gives almost near ideal
results.

The result for giving equal weight to cost and time is given in Table 9.4,
repeating the experiment by changing the weights thus, obtained different results
for different weight conditions which are given in Table 9.5. Similarly, the anal-
ysis for other two groups and their results are given in Tables 9.6 and 9.7.

Thus from the result of nested partition method, the set of feasible routes are
obtained, using our input to MADM evaluation, which gives the results, such as if
a customer needs both minimum cost and minimum time then he must take the
route of Hong Kong–(air)–Tlokoeng–(air)–Los Angeles, for group 1 orders. The
optimal cost and time is $2580, 3 days. Other weights give other routes such as for
cost weight 0.2 and time weight 0.8 Hong Kong–(sea)–Busan–(air)–Los Angeles.
The optimal cost and time is $2360, 6 days. Thus, combining nested partition
method and MADM gives us the best route in a very easy and simpler way. It also
gives the flexibility of customer’s choice to select their preferred route.

Group 2 has a capacity constraint in air mode routes; therefore, the result from
nested partition is as follows (Tables 9.6 and 9.7).

Results for group 3 are carried out as same as group 1 and its final results are as
follows, assuming that the customer’s preferences are equal weight to cost and
time (Table 9.8).

Table 9.3 Set of feasible
routes from origin to
destination

Origin–Destination Cost, time

Hong Kong–(air)–Los Angeles 3100, 1
Hong Kong–(air)–Taiwan–(air)–Los Angeles 2840, 2
Hong Kong–(air)–Tlokoeng–(air)–Los Angeles 2580, 3
Hong Kong–(air)–Busan–(air)–Los Angeles 4420, 3
Hong Kong–(sea)–Busan–(air)–Los Angeles 2360, 6
Hong Kong–(air)–Busan–(sea)–Los Angeles 4180, 13
Hong Kong–(sea)–Busan–(sea)–Los Angeles 2126, 16
Hong Kong–(sea)–Los Angeles 1466, 20

Table 9.4 Results for equal
weightage to cost and time
using MADM

Cost Time MADM evaluation
Wc = 0.5 Wt = 0.5

1,466 20 0.350183
2,126 16 0.369723
2,360 6 0.727644
2,580 3 0.806780
2,840 2 0.794504
3,100 1 0.775311
4,180 13 0.316152
4,420 3 0.619702
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Table 9.5 Result with different weight

NP results–feasible routes
(Cost, time)

MADM evaluation

Wc = 0.2, Wt = 0.8 Wc = 0.7, Wt = 0.3 Wc = 0.9, Wt = 0.1

1466, 20 0.118728 0.557017 0.829062
2126, 16 0.229325 0.54381 0.737784
2360, 6 0.736105 0.712273 0.698912
2580, 3 0.884906 0.709983 0.632323
2840, 2 0.920698 0.664258 0.550335
3100, 1 0.930763 0.622519 0.47081
4180, 13 0.364149 0.225034 0.107034
4420, 3 0.839571 0.414891 0.155716

Table 9.6 NP results for
group 2

Origin–Destination Cost, time

Busan–(sea)–Los Angeles 1626, 12
Busan–(Sea)–Hong Kong–(sea)–Los Angeles 1966, 24

Table 9.7 MADM
evaluation for group 2

Cost Time MADM evaluation
Wc = 0.5 Wt = 0.5

1,626 12 1
1,966 24 0

Table 9.8 Results for group 3

Origin–Destination Cost
Wc = 0.5

Time
Wt = 0.5

MADM
evaluation

Busan–(air)–New York 1,560 3 0.85361
Busan–(sea)–New York 2,257 31 0.42685
Busan–(sea)–Hong Kong–(sea)–New York 2,757 42 0.280343
Busan–(sea)–Hong Kong–(air)–Tlokoeng–(air)–New

York
3,340 7 0.790033

Busan–(sea)–Hong Kong–(air)–Taiwan–(air)–New
York

3,670 7 0.76225

Busan–(sea)–Hong Kong–(air)–New York 3,730 6 0.766761
Busan–(air)–Hong Kong–(sea)–New York 4,817 39 0.127221
Busan–(air)–Hong Kong–(air)–Tlokoeng–(air)–New

York
5,400 4 0.661266

Busan–(air)–Hong Kong–(air)–Taiwan–(air)–New
York

5,730 4 0.693263

Busan–(air)–Hong Kong–(air)–New York 5,790 3 0.645233
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9.6 Conclusions

This study has suggested an algorithm to find the best route in the international
intermodal freight transportation network. This international intermodal freight
routing is complicated by following essential characteristics, (1) multi-objective :
minimization of travel time and travel cost, (2) schedules and delivery times of
every service provider in each pair of location, (3) variable cost must be included
in every location. A MILP model has been presented first, since it is a NP-hard
problem, it follows the proposed algorithm that is heuristic. Based on nested
partitions method, one of the recent successful algorithms which is widely used for
large-scale optimization problems. Results of the nested partitions method are
inputted to MADM model, which evaluates the feasible solutions and gives out the
optimal solution. The feasibility our proposed algorithm is tested by applying it to
an illustrative experiment, which then effectively and efficiently solves and pro-
vides the best optimal route.

In the future work, we will include the terminal connections and link this
algorithm into a user interface. This algorithm can be used to develop a network
planning system, network optimization system, or decision support system and it
can be equipped with any third party logistics company.
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Chapter 10
An Evolutionary Algorithm with Path
Relinking for a Bi-objective Multiple
Traveling Salesman Problem with Profits

N. Labadie, J. Melechovsky and C. Prins

Abstract This chapter deals with a bi-objective multiple traveling salesman
problem with profits (BOMTSPP), generalizing the classical TSP with profits
(TSPP). The TSPP is in fact a generic name for TSP problems taking into account
the length of the tour and profits collected at customers. However, all these
problems are not really bi-objective: the two criteria are aggregated into a single
objective or one of them is replaced by a constraint. Our BOMTSPP aims at
building m cycles covering a subset of potential customers so that the total col-
lected profit is maximized and the overall traveling distance is minimized. This
new problem generalizes the TSPP in two directions: a true bi-objective treatment
and the construction of multiple tours. The proposed solution method is an
effective evolutionary algorithm, reinforced by a post-optimization procedure
based on path-relinking (PR).

Keywords Multiple traveling salesman problem � Traveling salesman problem
with profits � Multi-objective optimization � Evolutionary algorithm � Path-
relinking

10.1 Introduction

Multi-objective combinatorial optimization (MOCO) is an important research field
with a fast development over the last two decades. In many practical applications
of combinatorial optimization problems, decision makers must deal with multiple
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and often conflicting criteria. The purpose of MOCO is thus to provide a set of
nondominated solutions in a Pareto sense, rather than optimizing one objective or a
weighted sum of objectives and providing a single solution.

This chapter presents the first study on a bi-objective multiple traveling
salesman problem with profits (BOMTSPP), a generalization of the traveling
salesman with profits (TSPP). The TSPP is a generic name for a family of single-
vehicle routing problems where each customer must be visited at most once. Two
performance criteria are taken into account: the length of the tour, like in the
classical TSP, and profits which can be collected at customers. These two criteria
are obviously conflicting. Minimizing tour length leads to less customer visits and
reduces the total profit while maximizing the total profit instigates the traveler to
visit more customers and increase tour length. Traveling salesman problems with
profits are frequent in service activities. Among practical applications can be
mentioned scheduling a traveling salesman to visit the most profitable customers
(Tsiligirides 1984) or an intelligent tourist guiding system proposing to the user a
subset of the most interesting touristic sites that can be visited within a given stay,
see Schilde et al. (2009); Vansteenwegen et al. (2009a); Wang et al. (2008).

Despite the bi-objective nature of traveling salesman problems with profits,
research mostly focused on single-objective variants, found in the literature under
various names. Feillet et al. (2005) survey all these variants and propose a clas-
sification into three generic problems, depending on how the two criteria are
treated.

• Both criteria are expressed in the objective function, by minimizing the travel
costs minus the collected profit. This version is referred to as the profitable tour
problem (PTP).

• The total profit is maximized while the length of the tour is limited to a given
value lmax. This version is called the orienteering problem (OP), the selective
traveling salesman problem (STSP) or the maximum collection problem.

• Conversely, the travel costs are minimized but the collected profit must not be
less than a given constant pmin. This version is called the prize-collecting
traveling salesman (PCTSP) or the quota traveling salesman problem (QTSP).

All these traveling salesman problems with profits are NP-hard. For an
exhaustive survey on formulations and resolution methods developed for this
family of problems, see, for instance, the recent paper of Vansteenwegen et al.
(2011).

The OP is probably the most investigated variant. It was introduced by
Tsiligirides in 1984 and consists in building a tour originating at a depot-node and
visiting a subset of customers, without exceeding a given length. This length
corresponds, for instance, to the range or maximum working time of the vehicle. A
given profit is associated with each customer and is realized when the customer is
visited. The objective is to maximize the total profit collected. An extension of the
OP is its version with multiple tours, where a fixed number m [ 1 of tours has to
be built, each tour respecting the length limit lmax. This problem was formulated by
Chao et al. (1996) as the team orienteering problem (TOP).
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Almost all resolution methods developed to tackle the TOP are heuristics.
Among them we can cite a tabu search developed by Tang and Miller-Hooks
(2005), a variable neighborhood search and a tabu search proposed in Archetti
et al. (2007), an ant colony optimization method described by Ke et al. (2008) and
a memetic algorithm presented in Bouly et al. (2010).

Recently, the TOP with time windows (TOPTW) has received much attention.
Several metaheuristics are available for this problem where the service at a cus-
tomer must start in a given time window: Montemanni and Gambardella (2009)
proposed an ant colony system while Vansteenwegen et al. (2009b) developed an
iterated local search. A hybrid evolutionary local search was studied by Labadie
et al. (2010, 2011). The same authors (Labadie et al. 2012) designed a variable
neighborhood search based on linear programing. An exact approach (branch-and-
price) was presented by Boussier et al. (2007) for the TOP and a selective vehicle
routing problem with time windows (SVRPTW). The latter is in fact a multive-
hicle extension of the STSP with time windows, with additional capacity con-
straints on the routes. Tricoire et al. (2010) introduced the multiperiod orienteering
problem with multiple time windows (MuPOPTW), which generalizes the
TOPTW over a multiperiod horizon. Each customer is associated with a fixed
number of services and one specific time window for each period.

As already mentioned, the references cited up to now are not true multi-objective
approaches. A multi-objective version of the TSPP was considered for the first time
by Keller and Goodchild (1988). We are aware of only four other papers.

Riera-Ledesma and Salazar-González (2005) studied the traveling purchaser
problem, in which the nodes represent markets for different products. The traveling
purchaser must visit a subset of markets in order to purchase the required quantity
of each product while minimizing the travel cost and the purchase cost.

In Jozefowiez et al. (2008), a multi-objective evolutionary algorithm including
a local search based on ejection chains was developed to generate efficient solu-
tions to the traveling salesman problem with profits. Bérubé et al. (2009a) designed
an exact �-constraint method for the same problem and, finally, Schilde et al.
(2009) studied a new bi-objective variant of the OP, in which each customer has
two different kinds of profits. The two objective functions considered are the
maximization of both collected profits. The authors proposed an ant colony
algorithm and a variable neighborhood search, both hybridized with a path re-
linking (PR) method, in order to generate Pareto-optimal solutions.

The BOMTSPP addressed in this chapter consists in building m cycles covering
a subset of customers, to maximize the total collected profit and minimize the
overall traveling distance. This new problem generalizes the TSPP in two direc-
tions: multiple tours and a true bi-objective treatment, with the determination of a
set of nondominated solutions. We propose a multi-objective evolutionary algo-
rithm to solve it. A path-relinking scheme is applied as a post-optimization process
to obtain more nondominated solutions. The chapter is organized as follows.
Section 10.2 defines the problem. In Sect. 10.3, the components of the multi-
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objective evolutionary algorithm are detailed. The path relinking is explained in
Sect. 10.4. Numerical results are presented in Sect. 10.5 and 10.6 concludes the
chapter.

10.2 Problem Description

Our BOMTSPP is defined on a complete undirected graph G = (V, E) with a node-
set V = {0, 1, 2, …, n} and an edge-set E. Node 0 is a special node called depot
while the other vertices correspond to potential customers. A nonnegative profit pi

is associated with each customer i = 1, 2, …, n. Each edge e = [i, j] is associated
with a travel time ce. It is assumed that these times satisfy the triangle inequality. A
set of m vehicles are available at node 0 to visit the customers. The profit of each
customer can be collected at most once.

The problem consists in building m tours starting and ending at the depot 0,
such that the total profit is maximized and the total travel time is minimized. For a
given solution S, these two objective functions are denoted as f1ðSÞ ¼

P
i2V

piyi and

f2ðSÞ ¼
P
e2E

cexe. The binary variable yi is equal to 1 if and only if customer i is

visited in solution S. The integer variable xe 2 f0; 1; 2g indicates the number of
times edge e is traversed. The value 2 corresponds to a direct trip to a customer j:
in that case edge [0, j] is traversed twice.

10.3 Multi-objective Evolutionary Algorithm

Evolutionary algorithms (EA) have received considerable attention and are well
adapted to solve multi-objective optimization problems. This is due to the fact that
these are population-based approaches and also because it is relatively easy to
modify a single-objective evolutionary algorithm to find a set of nondominated
solutions in a single run. There are two issues that require a particular attention:
the evaluation of the fitness function and the diversity of the population. A survey
on multi-objective EA can be found for instance in Konak et al. (2006).

The algorithm developed to address the problem under study is based on the
nondominated sorting genetic algorithm version 2 (NSGA-II) proposed by Deb
et al. (2002). This method uses a ranking based on a nondominated sorting
algorithm for the fitness assignment and a crowding distance for maintaining the
diversity of the population. The crowding distance gives an estimation of the
population density around a solution. The advantage of using the crowding dis-
tance is that it does not require any user-defined parameter. Therefore, there is only
one single parameter to be defined for NSGA-II: the population size, denoted as
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N in the sequel. Our implementation is reinforced by a local search (hence, it can
be considered as a bi-objective memetic algorithm) and a path relinking process.

10.3.1 Solution Encoding and Initial Population

Each solution in the population is encoded as a chromosome defined by an ordered
sequence containing the customers visited, without depot copies to delimit the
trips. As some customers can be unvisited, chromosomes can have different
lengths. The ones obtained by crossovers are split to give a BOMTSPP solution,
using a procedure explained in Sect. 10.3.5. Conversely, a solution is easily
converted into a chromosome by concatenating the lists of customers of its trips:
for instance, a solution with two trips (0, 3, 7, 0) and (0, 4, 1, 5, 0) corresponds to
chromosome (3, 7, 4, 1, 5) when the occurrences of the depot-node are removed.

Two extreme solutions are first included in the initial population. The first
solution is composed of the m customers closest to the depot, each customer being
visited by a direct trip. Clearly, this first solution is minimal for the second
objective f2 (total travel time). Then, all the other customers are inserted one by
one in this solution, such that the increase in length of each insertion is minimal.
This gives the second solution of the population. As all customers are visited, all
the profits are collected and the first objective f1 (total profit) is clearly maximized.

The remaining N-2 initial solutions give priority either to the first or second
objective, converting the other into a constraint. The solutions in which we try to
maximize the total profit, like in the TOP, are called TOP solutions. The ones in
which we try to minimize travel time correspond to a multivehicle version of the
prize-collecting traveling salesman problem, they are called m-PCTSP solutions
for this reason.

10.3.1.1 Construction of TOP Initial Solutions

In the initial population, N1 ¼ ðN � 2Þ=2 TOP solutions are generated by varying
between two values lbeg and lend the upper limit lmax on the duration of each route.
The value of lbeg (resp. lend) is the maximum duration of the routes in the first (resp.
second) solution of the initial population. Starting from lbeg the duration limit for
each TOP solution is increased by a step lstep ¼ ðlend � lbegÞ=N1.

For a given lmax, the TOP solution is constructed as follows. First, m direct trips
are built with the m most profitable customers such that lmax is respected, that is,
the ones reachable in a maximum time lmax=2. Then, for each node i (customer or
depot) in the partial solution and each unvisited customer j, a ratio rij ¼ p2

i =Dij is
computed, where Dij ¼ cij þ cjk � cik is the travel time variation and k is the
successor of i in his trip. The feasible insertion which maximizes this ratio is
executed. This process is repeated until no further insertion is possible.
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10.3.1.2 Construction of the m-PCTSP Initial Solutions

The population is finally completed with N2 ¼ ðN � 2Þ=2 m-PCTSP solutions, by
varying the lower limit pmin for the total profit collected between two values pbeg

and pend. The initial value pbeg corresponds to the sum of the m smallest customer
profits while the final value pend is the sum of all customers profits. The step size
used is pstep ¼ ðpend � pbegÞ=N2.

The following heuristic is used to solve approximately the m-PCTSP for a given
value of pmin. We determine a compact subset of customers Spmin with a total profit
not smaller than pmin and build m tours covering these customers. The set Spmin is
obtained by solving a fractional knapsack problem (FKP) derived from the original
problem. The n items considered in the FKP are the customers, their weights are
the profits pi while their values gi represent a cost estimation if item i is selected.
The estimation chosen is the average travel time from node i to the other nodes in
V : gi ¼ 1=ðn� 1Þ �

P
j2Vnfig cij. Then by setting the capacity of the knapsack to

pmin, an FKP instance is entirely defined and its resolution is equivalent to finding
a subset of customers Spmin such that the sum of their cost estimations is minimized
and their total profit is at least pmin.

The optimal solution of the FKP can be easily determined by a greedy algo-
rithm (Dantzig 1957). Consider the items sorted in ascending order of utilities
gi=pi:

gi1

pi1
� gi2

pi2
� � � � � gin

pin

and:

t ¼ min j ¼ 1; 2; . . .; nj
Xj

k¼1

pik � pmin

( )

As all utilities are strictly positive, the optimal solution to FKP consists of items
1 to t in the sorted list of items.

Once the FKP solution has given the set Spmin, m direct trips are built using the
customers closest to the depot in Spmin. The remaining customers of Spmin are
progressively added to the trips using the best insertion criterion, and the resulting
solution is improved by local search.

All solutions in the initial population are improved via the local search pro-
cedure described in the next section. They are converted into chromosomes by
concatenating the lists of customers of each trip. To favor a better diversity, if
several solutions with the same cost are present in the population, only one is kept.
If less than N solutions are obtained, the population is completed by randomly
generated chromosomes. A random chromosome is obtained by setting first its
length q which is randomly chosen in the interval ½m; n�; where m is the number of
vehicles and n is the number of potential customers. The q customers to include in
the chromosome are then selected randomly.
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10.3.2 Improvement Procedures

A local search LSðkÞ based on four moves is used to improve the initial solutions
and the new solutions generated by the crossover operator.

The three first moves that we call routing moves are the well-known 2-Opt, Or-
Opt, and Exchange moves. They aim at reducing the total travel time without
increasing the maximum duration of the trips (lmax) nor changing the subset of
visited customers. The 2-opt move replaces two edges in a route by two other
edges. The Or-opt move removes a string of k consecutive customers to reinsert it
at a different location. The Exchange move exchanges two strings of k customers.
The Or-opt and Exchange moves may involve one or two trips.

The fourth and last move is called external move: a sequence of k customers is
removed from a tour and replaced by a sequence of entering customers. This move
is intended to change the subset of visited customers and, as its evaluation is more
time-consuming, it is attempted by the local search only when no routing move is
productive. The entering sequence is determined heuristically: unvisited customers
are added one by one and the customer i added at each step is the one maximizing
the ratio rij, already explained in Sect. 10.3.1.1.

We designed two variants of the local search, which differ in the implemen-
tation of the fourth move. In the variant called LS1, we try to increase the total
profit f1 like in the TOP and search for external moves maximizing the difference
between the total profit inserted and the total profit removed, while respecting the
maximum trip duration lmax. In the variant LS2, the goal is to reduce the total travel
time f2, like in the m-PCTSP, without decreasing the total profit pmin. The values of
lmax and pmin are the ones observed in the input solution.

Finally, LS1 (resp. LS2) are embedded in a variable neighborhood descent
(VND) called VND1 (resp. VND2). Starting with k ¼ 1, this VND calls LSðkÞ. In
case of improvement, k is reset to 1, otherwise it is incremented. The VND ends
when reaching a maximum string length kmax without improvement. VND1 is
applied to the TOP solutions of the initial population, VND2 to the m-PCTSP
solutions, and both procedures are called to improve new offspring solution
obtained by crossover.

10.3.3 Population Management

Nondominated sorting gives a rank qS to each individual S in the population. The
nondominated solutions form a subset F1 such that qS ¼ 1. Then the next subset Fi

is formed by solutions dominated only by subsets F1;F2; . . .;Fi�1, and so on. The
density of solutions surrounding an individual in the population is estimated by the
crowding distance metric. This distance is calculated as the surface of the rectangle
formed by the two nearest neighbors surrounding an individual. The population is
first sorted according to the rank of individuals in the ascending order and then
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each subset is sorted in descending order of crowding distance. An archive A of
nondominated solutions encountered during the search is kept aside.

The parents are selected by a binary tournament method. Two individuals are
randomly selected. The one with lower rank is preferred and, if the two solutions
have the same rank, the one with greater crowding distance is selected. This gives
the first parent. This process is repeated to get the second parent.

A:= ∅
t:= 0
Initialize Pt

Repeat

Alogorithm 10.1 General framework of our NSGA-II variant 

Find all non-dominated fronts Fi in Pt
Update the archive A of non-dominated solutions
Calculate the crowding distance
Sort each Fi of Pt in descending order of crowding distance
Reset the size of Pt to N

Repeat
Select two chromosomes with the binary tournament
Apply crossover, giving two children s1 and s2
Apply VND1 and VND2 to s1 and s2 with 
a small probability π, giving s3 and s4
Add s3 and s4 to Pt

Until the population size is doubled
t :=t+1

Until (t = MaxIter)
The general structure of the implemented evolutionary algorithm is illustrated

in Algorithm 10.1. First the population Pt of N individuals is initialized as
explained in Sect. 10.3.1. The nondominated sorting procedure then determines all
nondominated fronts Fi in Pt. The crowding distance is calculated for each
solution of the population Pt and each nondominated front Fi is sorted in
descending order of the crowding distance. The size of Pt is reset to N which
allows pruning away the solutions with the worst ranking. Finally, a new popu-
lation is generated by performing the crossover and the local search.

10.3.4 Crossover Operator

The Linear Order Crossover (LOX) is used to combine two chromosomes. First,
the length of the offspring (C1 in Fig. 10.1) is set to n (the number of potential
customers) and two crossover points are randomly selected in the first parent P1.
The customers positioned between the points in the first parent are copied into the
offspring in the same positions and these customers are deleted from the second
parent. The offspring is then completed by the remaining customers in parent P2

taken in the same order from left to right.
As mentioned before, the chromosomes are not all of the same size. For this

reason, when two parents are combined, the resulting offspring might contain
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empty spaces due to the different length of chromosomes representing the parents.
These empty spaces must be removed by a left shift of the subsequent customers,
and the length of the offspring must also be updated.

In the example of Fig. 10.1, the LOX crossover is performed on two chro-
mosomes of different sizes. The first parent P1 contains seven customers while the
second parent P2 only five customers. The cross section is defined by the sequence
(4, 1) in P1. The size of the produced offspring is 6.

The crossover operator generates two child chromosomes by altering the role of
the parents. Each chromosome is converted into a real solution by using the split
procedure explained in the next subsection. The resulting solution is further
improved, with a probability p, by VND1 and VND2 and the improved solutions
are added into the population if this does not create solutions with identical values
of the objective functions. Once the population size gets doubled, the rank and the
crowding distance are determined for each individual and the population is
resorted. Finally, the size of the population is reset to its original size N by pruning
away the N individuals with the worst ranking.

10.3.5 Split Procedure

The solution corresponding to a chromosome is evaluated by the split procedure
originally designed by Prins (2004) for decoding a solution to the vehicle routing
problem. The main advantage of the split procedure is its ability to determine an
optimal solution with respect to the order of customers given by a sequence Q. The
procedure determines the shortest path using m arcs in an acyclic auxiliary graph H
consisting of a dummy vertex 0 and Qj j customer vertices. An arc ði; jÞ in the graph
H represents a tour containing a subsequence of customers viþ1; . . .; vj. The weight
associated with the arc is the total traveling time of the tour. The shortest path in
H can be determined with the Bellman’s algorithm for directed acyclic graphs. At
most for each customer vi; i ¼ 1; . . .; n, m-1 labels are assigned. Each label Lik

represents the shortest path from v0 to vi containing exactly k arcs. The optimal
solution with respect to the sequence Q is then given by the label Lnm which
indicates the shortest path from v0 to vn of exactly m arcs.

An example is illustrated in Figs. 10.2, 10.3, 10.4. The sequence of customers Q is
depicted as the giant tour in Fig. 10.2. The shortest path from 0 to vn ¼ e (bold lines
in Fig. 10.3) has length 160 and the corresponding solution is depicted in Fig. 10.4.

P1 7 9 8 4 1 3 5 

P2 5 4 7 9 2 

C1 5 7 9 4 1 2 

Fig. 10.1 Example of LOX
crossover (nodes from P1

underlined and in boldface)
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10.4 Path Relinking

Path relinking is an evolutionary search strategy which explores the trajectories
connecting two solutions. The search starts in an initiating solution (starting
solution) and it is further guided toward a guiding solution while several inter-
mediate solutions are generated along the trajectory linking them. Each interme-
diate solution is generated by incorporating more attributes of the guiding solution.
PR usually operates on a set of high quality (elite) solutions. See, for example,
Glover et al. (2000) for more details.

Most of the research related to PR concerns single objective optimization
problems. However, some applications of PR to multi-objective optimizations

Fig. 10.2 The giant tour

Fig. 10.3 The auxiliary
graph H

Fig. 10.4 The solution for
m = 3
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problems can be found in Basseur et al. (2005); Beausoleil et al. (2008);
Jaszkiewicz and Zielniewicz (2009); and Martí et al. (2011).

10.4.1 Distance Measure

An important issue of a PR implementation is the definition of the distance
measure between two solutions. Typically, the distance is defined as the minimum
number of some basic operations required to convert one solution into another.
Our distance measure extends that proposed by Martí et al. (2005) for permutation
problems. It considers the relative position of an element rather than the absolute
position. Given two permutations P ¼ ðp1; p2; . . .; pnÞ and Q ¼ ðq1; q2; . . .; qnÞ, the
permutation distance dMðP;QÞ as defined by Martí et al. (2005) is computed as the
number of times piþ1 does not immediately follow pi in Q. In other words, it counts
the number of times a pair of consecutive elements in P is broken in Q.

Such a distance measure suits well for permutations. For the case of two
arbitrary sequences, two more operations are required: the deletion and the
insertion of an element. To illustrate the modified distance measure, we defined
PðQÞ to denote the ordered sequence obtained by considering the elements of P
which are present in Q. Similarly, QðPÞ denotes the ordered sequence of elements
in Q present in P. Furthermore, lðP;PðQÞÞ ¼ jP� PðQÞj denotes the number of
elements in P which are not present in Q and lðQ;QðPÞÞ ¼ jQ� QðPÞj denotes the
number of elements in Q not present in P. We define the distance between P and Q
as follows:

D ¼ dMðPðQÞ;QðPÞÞ þ lðP;PðQÞÞ þ lðQ;QðPÞÞ

The example in Fig. 10.5 illustrates the distance between P and Q. Both
sequences share four vertices {4, 5, 7, 9}. After removing the excessive vertices
from P {1, 3, 8} and Q {2}, we obtain three subsequences (7, 9), (4, 5), and (5, 4).
As proposed in Labadie et al. (2008), the distance is reversal-independent. A
breakpoint is counted for a pair of vertices ðu; vÞ in P only if neither ðu; vÞ nor
ðv; uÞ is found in Q. Hence, only one broken pair is counted and the total distance
between P and Q equals 5.

7 9 8 4 1 3 5 

5 4 7 9 2

7 9 4 5 

5 4 7 9 

Fig. 10.5 Example
illustrating the distance
proposed (D = 5)
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10.4.2 Generation of a Path

Given two solutions R and S with the distance DðR; SÞ, the basic operations are
applied successively starting from R such that the distance to S is reduced. Per-
forming an arbitrary operation at each step might lead to solutions of poor quality.
To avoid this, the cost of each operation is evaluated and the least-cost one is
performed. The resulting sequence is converted into a real solution with the split
procedure.

If the solution is different from those in the archive, it is recorded into a list.
Some solutions are improved with the local search procedure. The local search
alternates between both strategies (VND1 and VND2) with a frequency of b
iterations. This avoids finding the same local optima several times and reduces the
computational time.

10.4.3 PR Implementation

PR is used as a post-optimization phase. It is applied to the archive of nondomi-
nated solutions generated by NSGA-II. The purpose is to explore the trajectories
connecting two solutions in the objective space. The solutions in the archive are
first sorted in ascending order according to f1 (the profit). The initiating solution R
is firstly taken from the top of the list. The guiding solution R is selected as its
direct neighbor solution in the sorted list. For the next iterations, the guiding
solution becomes the initiating one and the process is repeated until reaching the
second extreme solution of the approximation front.

10.5 Computational Results

10.5.1 Test Instances

The computational experiments were conducted on two different data sets. The
first set consists of TOP instances proposed by Chao et al. (1996). The authors
have modified the instances generated originally by Tsiligirides (1984) for the
single tour OP. There are seven data sets in total with the number of vertices equal
to 21, 32, 33, 64, 66, 100, and 102, respectively. The starting and the ending points
are assumed to be distinct in these instances. The problems within each data set
differ in the maximal duration of the tour and in the number of tours. The first
constraint is of course neglected since we deal with a bi-objective multiple TSP
with profits. The number of tours ranges from 2 to 4.

The second dataset was proposed by Bérubé et al. (2009b) for the PCTSP. The
instances are based on TSP instances from the TSPLIB due to Reinelt (1991).
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Bérubé et al. (2009b) considered instances with n (the number of customers)
varying from 70 up to 532. The customer profits were generated in three different
ways. In the first case, the profit was set to 1 for all customers. For the second type,
pseudo-random numbers are used and the profits of the third type are determined
as a function of the travel distance between the customer and the depot. As in the
first set of instances, the number m of tours ranged from 2 to 4.

10.5.2 Analysis of Results

Computational experiments were carried out on a PC equipped with 2.9 GHz dual
core processor and 2 GB of RAM. The algorithms were coded in Delphi, a Pascal-
like programming environment.

To the best of our knowledge, there are no reference results for the bi-objective
multiple TSP with profits available in the literature. We have, therefore, adopted
two common indicators to estimate the quality of the Pareto front approximation.
The first one is the hyper-volume indicator or S metric proposed by Zitzler (1999).
This indicator measures the volume in the objective space dominated by the
potentially Pareto solutions. The second indicator is represented by the number of
generated nondominated solutions. Furthermore, the contribution of the PR is
evaluated by considering the number of solutions generated by PR, which domi-
nate solutions generated by NSGA-II.

There are few parameters of the algorithm that need to be set up. The NSGA-II
algorithm is basically controlled by the population size N, which was set to 100.
The algorithm performed at most 3000 iterations and the complete algorithm
(NSGA-II followed by PR) was terminated prematurely if a time limit of 1 h was
reached. Local search procedure was applied to a child solution with the proba-
bility p ¼ 0:2. The effectiveness of the local search procedure is strongly related to
parameter kmax denoting the maximum number of customers in the sequence
considered for a removal from the route. Larger values of kmax can deteriorate the
actual solution with a minimal chance of finding a good entering sequence, since it
is determined heuristically. It can also considerably increase the computing time.
We have performed several tests for kmax ¼ 2; 3; 4 and 5 on a subset of 10 TSPLIB
instances with profit type 3 and m ranging from 2 to 4. The best tradeoff between
the quality of the approximate Pareto front and the computational time was
achieved with kmax ¼ 3. When this parameter was set to five, the quality of the
Pareto front approximation became worse of 0.5 % on average and the compu-
tational time increased on average by 7.1 %. With kmax ¼ 4 there was a small gain
of 0.01 % in the quality of solutions while the computational times increased by
5 % on average. On the other hand, lower values of kmax lead to worse approxi-
mation of the Pareto front without any significant gain in computing times. As
mentioned before, the quality of the Pareto front approximation was measured in
terms of the hyper-volume indicator.
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Only one parameter was applied to control the PR search process. It was the
frequency b of calls to a local search procedure during the solution path explo-
ration. This value was set to 3, that is, the local search was applied to every third
generated intermediate solution.

Table 10.1 presents the results obtained for instances of Tsiligirides (1984) and
Chao et al. (1996). The first two columns indicate the number of nodes and the
number of tours, respectively. Columns 3–8 show results for each method. First it
is the number of nondominated solutions in the Pareto front approximation (N1 and
N2) obtained per data set. The two columns named Hyp presents the hyper-volume
indicator. In the next column are reported computational times spent by each
method. The last two columns of the table evaluate the contribution of PR to the
final Pareto front approximation. Ndom represents the number of solutions of
NSGA-II dominated by the Pareto front approximation obtained with PR. Con-
trarily, the last column shows the number of NSGA-II solutions which are not
dominated by any PR solution.

The results indicate less important contribution of PR to the set of nondominated
solutions on small instances with n� 33. However, with increasing n the impor-
tance of PR grows. For n� 64, the approximate Pareto front found by PR dominated
on average 50 % of the original potentially Pareto solutions. The hypervolume was
on average 1.5 % larger compared to the original Pareto front approximation.

Table 10.1 Results for instances of Tsiligirides (1984) and Chao et al. (1996)

n m NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

21 2 53 0.490026 2.9 52 0.490232 0.1 2 51
32 44 0.420592 2.3 46 0.421426 0.0 2 42
33 68 0.550267 3.6 66 0.550990 0.1 3 65
64 101 0.458406 8.0 110 0.459521 2.5 14 86
66 138 0.492803 9.0 145 0.496431 5.2 46 92
100 139 0.533168 17.0 159 0.542198 17.7 97 42
102 163 0.607856 19.8 193 0.615750 21.5 127 36
21 3 49 0.462316 3.2 49 0.462316 0.1 0 49
32 34 0.386566 2.2 35 0.386710 0.0 1 33
33 61 0.530064 3.8 61 0.530631 0.1 2 59
64 98 0.367018 9.9 115 0.368971 6.2 30 68
66 84 0.468067 10.5 91 0.476909 6.3 33 51
100 121 0.487929 23.4 161 0.495096 17.8 82 39
102 133 0.590125 31.1 148 0.600902 28.5 96 37
21 4 48 0.435570 3.4 49 0.436503 0.1 2 46
32 38 0.362827 2.2 39 0.362897 0.1 0 38
33 60 0.514626 4.0 60 0.514626 0.0 0 60
64 90 0.286114 11.4 108 0.287458 5.4 28 62
66 68 0.455412 12.0 82 0.461378 2.2 32 36
100 110 0.431701 28.5 136 0.438571 20.9 61 49
102 98 0.581301 38.0 129 0.592749 33.8 71 27
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NSGA-II spent on average 11.7 s per instance. PR required additional 8.0 s on
average to improve the approximate Pareto front.

Table 10.2 summarizes the results obtained with NSGA-II and PR on the
instances from TSPLIB. The summary is reported for each data set determined by

Table 10.3 Results for TSPLIB instances with profit type 1 and m = 2, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 0.513433 8.5 53 0.524366 4.6 33 22
eil76 66 0.536981 9.6 68 0.541111 7.1 32 34
pr76 63 0.531173 11.8 60 0.540684 2.7 30 33
gr96 73 0.543292 15.3 70 0.550112 15.0 41 32
rat99 72 0.454731 16.3 71 0.460443 16.8 36 36
kroA100 70 0.485131 15.7 78 0.494118 9.5 39 31
kroB100 68 0.531057 15.6 77 0.537694 14.7 33 35
kroC100 62 0.474981 17.4 76 0.485223 15.3 38 24
kroD100 84 0.487086 17.3 77 0.498714 24.8 59 25
kroE100 72 0.513106 16.9 77 0.522280 14.6 30 42
rd100 83 0.520415 16.3 82 0.530196 17.5 51 32
eil101 85 0.550000 16.3 85 0.559327 26.7 66 19
lin105 62 0.506734 18.8 65 0.525916 11.4 35 27
pr107 91 0.466601 18.9 99 0.468631 7.1 31 60
pr124 56 0.502018 21.3 61 0.518894 15.4 37 19
bier127 104 0.698802 27.8 120 0.702238 65.2 67 37
ch130 86 0.537066 30.5 97 0.547404 51.4 62 24
pr136 94 0.475978 29.0 100 0.488797 70.4 70 24
gr137 92 0.488319 36.2 90 0.500853 13.1 53 39
pr144 92 0.463620 31.7 97 0.474333 10.3 35 57
ch150 111 0.500796 46.3 115 0.511634 147.3 94 17
kroA150 79 0.484529 47.7 106 0.499392 93.5 60 19
kroB150 80 0.501698 49.3 108 0.516823 61.3 63 17

Table 10.2 Average results obtained with NSGA-II and PR on TSPLIB instances

Profit type m NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

1 2 95 0.509779 149.7 126 0.521764 519.3 66 30
3 84 0.486192 344.6 110 0.500752 563.0 58 27
4 80 0.471298 406.0 107 0.487141 405.2 56 25

2 2 127 0.535412 379.9 181 0.548695 527.7 89 38
3 103 0.508222 628.0 147 0.523268 390.0 69 34
4 96 0.489286 700.2 135 0.506264 352.4 66 30

3 2 121 0.487461 349.6 172 0.502200 461.6 86 35
3 110 0.465920 485.5 151 0.481286 336.1 77 33
4 108 0.454640 671.9 146 0.467698 273.5 69 39
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the type of the profit and the number m of tours as indicated in columns 1 and 2.
The meaning of the remaining columns is the same as in Table 10.1.

The results show that PR was able to improve significantly the approximate
Pareto front found by NSGA-II. The size of the Pareto front after PR has been
applied increased by 38 % on average. This new approximation dominated on
average almost 70 % of the original solutions and it contained only 22 % solutions
from the original front. The average hyper-volume indicator was about 3 % larger
for PR approximate Pareto fronts. NSGA-II spent on average 457.3 s while PR
required additional 425.4 s on average to improve the approximate Pareto front.
However, in the case of some difficult instances containing around 500 customers,
PR was not executed completely due to the imposed maximum time limit.

Detailed results on TSPLIB instances are presented in Tables 10.3–10.20 . The
tables follow the already described structure. The results prove that PR was able to
improve significantly the approximate Pareto front for every instance. The PR
front dominated at least 50 % of the original solutions. On the other hand, PR
spent larger amount of computing time especially on complicated instances with
more than 200 customers.

Table 10.4 Results for TSPLIB instances with profit type 1 and m = 2, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 79 0.429651 30.6 97 0.445233 25.0 35 44
u159 68 0.493109 43.9 91 0.507923 61.1 48 20
rat195 97 0.476730 87.1 134 0.482481 110.7 49 48
d198 114 0.433898 79.0 128 0.439158 53.2 82 32
kroA200 120 0.508071 80.9 150 0.520103 255.9 97 23
kroB200 111 0.513100 92.0 140 0.522891 199.0 91 20
gr202 117 0.539799 82.7 145 0.549880 463.7 99 18
ts225 108 0.476742 105.5 133 0.488587 316.3 69 39
tsp225 98 0.458618 115.6 132 0.476359 298.4 81 17
pr226 76 0.484344 72.1 116 0.514596 39.5 43 33
gr229 109 0.625532 106.1 146 0.634561 377.2 88 21
gil262 102 0.486976 170.5 143 0.504710 692.1 84 18
pr264 88 0.460526 126.5 110 0.493835 412.6 76 12
a280 120 0.468316 153.5 178 0.481301 674.2 104 16
pr299 100 0.459295 201.8 154 0.477589 499.3 83 17
lin318 84 0.511602 263.8 146 0.528098 751.2 73 11
rd400 137 0.531833 539.5 251 0.544856 3173.3 126 11
fl417 92 0.519688 431.9 202 0.544039 943.4 75 17
gr431 173 0.682739 573.1 246 0.687304 3063.9 117 56
pr439 132 0.579506 482.3 216 0.590164 2267.7 109 23
pcb442 143 0.509601 567.0 287 0.520893 3048.8 117 26
d493 145 0.452928 748.3 261 0.463315 2968.4 93 52
att532 162 0.579689 1196.4 262 0.584083 2475.3 84 78
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Table 10.5 Results for TSPLIB instances with profit type 1 and m = 3, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 47 0.497211 14.6 53 0.512243 5.2 5.2 22
eil76 65 0.510258 14.5 66 0.521174 14.3 14.3 25
pr76 54 0.500931 14.5 56 0.509794 9.8 9.8 31
gr96 63 0.526844 22.7 66 0.536999 34.7 34.7 32
rat99 58 0.423047 28.8 65 0.449138 26.9 26.9 23
kroA100 74 0.462181 22.7 74 0.472546 29.3 29.3 22
kroB100 59 0.500538 26.4 62 0.517602 25.1 25.1 24
kroC100 53 0.446529 27.1 59 0.469842 31.5 31.5 20
kroD100 56 0.464089 28.9 62 0.485809 25.0 25.0 21
kroE100 63 0.497554 24.5 71 0.511188 36.2 36.2 21
rd100 62 0.499967 28.8 69 0.516993 33.4 33.4 23
eil101 71 0.533083 25.5 81 0.544947 40.9 40.9 16
lin105 63 0.494004 28.1 69 0.507782 16.9 16.9 35
pr107 76 0.454617 28.7 80 0.460009 57.2 57.2 48
pr124 58 0.473177 36.8 65 0.499770 35.2 35.2 20
bier127 96 0.686603 50.1 101 0.692451 134.1 134.1 23
ch130 80 0.505789 45.8 84 0.519967 98.9 98.9 20
pr136 83 0.459020 49.5 94 0.473342 100.7 100.7 20
gr137 101 0.473777 56.4 93 0.480867 46.2 46.2 48
pr144 79 0.466332 57.1 86 0.476559 75.5 75.5 42
ch150 84 0.461554 92.8 88 0.480517 157.0 157.0 21
kroA150 84 0.468561 71.3 112 0.484041 141.3 141.3 14
kroB150 64 0.473354 93.2 88 0.491884 77.9 77.9 12

Table 10.6 Results for TSPLIB instances with profit type 1 and m = 3, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 63 0.420013 68.6 88 0.437593 71.5 39 24
u159 79 0.448521 81.6 89 0.465200 123.2 63 16
rat195 95 0.468409 155.2 116 0.476224 520.2 47 48
d198 106 0.384585 136.6 126 0.388780 255.6 68 38
kroA200 89 0.480370 142.6 129 0.495200 344.8 75 14
kroB200 88 0.496640 134.5 117 0.511210 393.2 73 15
gr202 103 0.500306 157.8 122 0.511093 707.4 80 23
ts225 103 0.452510 218.9 119 0.472258 380.0 62 41
tsp225 76 0.429342 243.2 119 0.448752 650.6 71 5
pr226 93 0.461349 126.9 115 0.483039 300.9 77 16
gr229 111 0.593962 170.4 129 0.605913 1129.5 87 24
gil262 80 0.438377 365.5 121 0.462575 972.5 71 9
pr264 68 0.461005 207.0 126 0.492287 719.0 60 8
a280 100 0.437073 248.0 137 0.452208 1010.7 86 14
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Table 10.6 (continued)

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr299 108 0.456121 344.6 144 0.474892 1645.7 87 21
lin318 94 0.476729 484.8 153 0.501090 1791.0 85 9
rd400 142 0.513760 883.3 229 0.524269 2780.3 111 31
fl417 91 0.517060 985.6 186 0.533898 2518.8 77 14
gr431 143 0.654343 1643.8 206 0.658298 1975.6 80 63
pr439 123 0.566013 1084.2 218 0.578491 2570.8 101 22
pcb442 95 0.494304 1619.2 159 0.502124 1980.8 44 51
d493 127 0.394810 2098.8 179 0.399964 1544.1 54 73
att532 116 0.540199 3360.5 172 0.543749 259.4 38 78

Table 10.7 Results for TSPLIB instances with profit type 1 and m = 4, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 51 0.478569 14.3 50 0.497845 3.9 21 30
eil76 65 0.493036 18.0 57 0.504700 14.1 49 16
pr76 55 0.464418 16.9 52 0.477020 7.5 26 29
gr96 57 0.489571 31.2 61 0.504286 28.2 42 15
rat99 66 0.422294 30.6 72 0.431945 29.3 28 38
kroA100 62 0.448584 31.7 70 0.468849 33.3 51 11
kroB100 67 0.495951 31.8 60 0.517195 14.2 42 25
kroC100 49 0.435106 32.9 56 0.454791 7.8 31 18
kroD100 61 0.452469 38.5 73 0.464466 8.2 32 29
kroE100 56 0.482896 30.6 65 0.502250 27.8 42 14
rd100 57 0.482026 34.6 64 0.496671 21.9 27 30
eil101 67 0.515944 32.3 75 0.527760 55.7 47 20
lin105 63 0.472399 38.8 64 0.487734 23.0 37 26
pr107 71 0.449112 24.0 74 0.457263 32.5 22 49
pr124 62 0.460955 50.3 70 0.485215 13.5 50 12
bier127 83 0.683514 59.2 101 0.689036 153.2 57 26
ch130 79 0.490538 64.9 87 0.507029 98.6 64 15
pr136 64 0.433286 61.4 85 0.459026 71.8 52 12
gr137 96 0.451451 78.4 92 0.461555 39.9 61 35
pr144 75 0.455909 56.2 93 0.463276 45.0 32 43
ch150 70 0.468051 105.1 97 0.486942 116.4 51 19
kroA150 71 0.440381 89.0 78 0.470166 98.8 63 8
kroB150 65 0.439014 108.4 82 0.462273 65.4 53 12
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Table 10.8 Results for TSPLIB instances with profit type 1 and m = 4, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 66 0.403986 86.9 75 0.428039 31.9 49 17
u159 84 0.427865 95.6 89 0.447929 97.7 72 12
rat195 87 0.458964 194.4 113 0.469608 140.9 57 30
d198 111 0.347112 185.1 135 0.350597 219.5 69 42
kroA200 79 0.453479 244.6 101 0.482110 306.2 73 6
kroB200 96 0.474426 187.6 112 0.495754 286.6 83 13
gr202 89 0.467666 225.9 122 0.478417 573.3 68 21
ts225 83 0.436877 284.9 106 0.452324 236.8 57 26
tsp225 81 0.420941 285.8 121 0.443665 435.7 73 8
pr226 86 0.455003 189.6 130 0.471670 193.7 55 31
gr229 106 0.566200 264.0 120 0.581388 1183.8 90 16
gil262 86 0.426713 443.0 133 0.449345 827.4 76 10
pr264 79 0.482519 244.5 151 0.501586 210.7 64 15
a280 89 0.430838 336.3 147 0.444677 541.3 67 22
pr299 108 0.453066 492.2 148 0.474546 380.3 84 24
lin318 80 0.487227 688.7 156 0.505811 941.1 65 15
rd400 128 0.492451 1349.2 194 0.503412 2268.7 90 38
fl417 91 0.500603 910.0 184 0.527186 1380.2 80 11
gr431 129 0.638648 1743.1 198 0.644329 1929.0 80 49
pr439 108 0.567814 1438.1 210 0.584693 2298.0 94 14
pcb442 102 0.491239 2084.8 174 0.497199 1522.7 43 59
d493 105 0.362354 2140.1 169 0.366766 1483.0 51 54
att532 110 0.528255 3482.0 142 0.530164 140.0 33 77

Table 10.9 Results for TSPLIB instances with profit type 2 and m = 2, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 87 0.529662 11.8 93 0.541972 8.0 48 39
eil76 116 0.566036 14.1 130 0.574353 14.7 66 50
pr76 82 0.552798 15.4 90 0.562782 8.9 41 41
gr96 111 0.567931 25.3 122 0.584579 32.1 70 41
rat99 103 0.493287 30.5 105 0.506116 25.2 71 32
kroA100 98 0.525447 24.3 110 0.535944 27.7 55 43
kroB100 131 0.577324 25.6 153 0.584264 25.9 68 63
kroC100 104 0.524832 27.1 114 0.538730 31.5 67 37
kroD100 108 0.531864 27.2 135 0.540026 26.7 66 42
kroE100 119 0.562304 26.4 149 0.571848 34.3 74 45
rd100 112 0.572515 27.6 133 0.588894 34.6 79 33
eil101 113 0.587490 25.1 142 0.596576 41.3 74 39
lin105 90 0.531354 31.9 118 0.544565 13.1 52 38
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Table 10.9 (continued)

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr107 163 0.488453 38.2 204 0.495715 47.7 89 74
pr124 85 0.511399 41.7 116 0.526804 30.3 53 32
bier127 174 0.702432 48.2 277 0.708070 136.0 121 53
ch130 146 0.556665 45.8 162 0.570018 98.9 127 19
pr136 135 0.522389 57.1 167 0.537154 93.1 91 44
gr137 107 0.505343 75.1 138 0.521993 27.5 67 40
pr144 96 0.433070 64.5 104 0.458057 68.1 71 25
ch150 151 0.550184 68.2 218 0.560002 181.6 115 36
kroA150 136 0.531361 67.7 168 0.546103 144.9 112 24
kroB150 97 0.557263 72.8 155 0.568996 98.3 65 32

Table 10.10 Results for TSPLIB instances with profit type 2 and m = 2, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 108 0.438800 68.2 153 0.454047 71.9 60 48
u159 90 0.504727 94.1 146 0.524511 110.7 66 24
rat195 149 0.513136 152.1 238 0.522815 523.3 124 25
d198 115 0.418673 163.2 160 0.439162 229.0 97 18
kroA200 141 0.541629 151.2 242 0.552074 336.2 102 39
kroB200 131 0.553670 149.3 214 0.566562 378.4 105 26
gr202 155 0.557050 170.6 194 0.570481 694.6 132 23
ts225 128 0.477532 175.1 164 0.492874 423.8 115 13
tsp225 113 0.484977 245.6 136 0.505101 648.2 93 20
pr226 101 0.506278 167.1 155 0.528037 260.7 62 39
gr229 188 0.644299 190.4 302 0.654309 1109.5 160 28
gil262 140 0.528733 305.7 227 0.545166 1032.3 113 27
pr264 119 0.489486 280.0 177 0.514367 646.0 102 17
a280 173 0.510852 324.4 319 0.523302 934.3 150 23
pr299 118 0.490595 647.7 199 0.512003 1342.6 101 17
lin318 149 0.537054 592.9 248 0.551685 1682.9 137 12
rd400 156 0.551602 1110.1 277 0.566078 2553.5 127 29
fl417 140 0.528257 900.3 297 0.551866 2604.1 109 31
gr431 249 0.697171 1163.8 405 0.701687 2455.6 137 112
pr439 146 0.584955 1335.6 272 0.600300 2319.4 114 32
pcb442 168 0.533965 1453.4 312 0.542034 2146.6 95 73
d493 167 0.470602 2003.6 211 0.479255 1639.3 93 74
att532 176 0.598780 2592.4 271 0.602029 1027.5 52 124
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Table 10.11 Results for TSPLIB instances with profit type 1 and m = 3, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 85 0.513391 16.5 91 0.531015 6.0 44 41
eil76 90 0.542027 20.5 104 0.553006 12.4 54 36
pr76 80 0.517400 21.6 91 0.527586 10.7 41 39
gr96 90 0.539359 37.7 105 0.552581 32.3 63 27
rat99 104 0.477733 48.8 115 0.484288 19.7 52 52
kroA100 79 0.500287 34.8 93 0.517162 23.4 62 17
kroB100 78 0.550569 35.9 113 0.566995 21.3 47 31
kroC100 78 0.495932 44.8 98 0.508140 15.0 41 37
kroD100 91 0.512451 42.6 111 0.531440 25.5 68 23
kroE100 91 0.547199 41.9 109 0.561394 33.3 57 34
rd100 91 0.545281 44.3 115 0.563923 27.3 66 25
eil101 100 0.558804 38.2 131 0.570321 37.5 78 22
lin105 75 0.513090 47.0 107 0.527944 14.6 41 34
pr107 138 0.481938 56.5 174 0.486982 34.8 74 64
pr124 89 0.485805 64.8 102 0.505958 32.5 59 30
bier127 158 0.695374 67.8 242 0.702220 204.0 123 35
ch130 120 0.540726 67.0 147 0.554025 89.3 88 32
pr136 97 0.506539 95.0 152 0.520784 64.7 63 34
gr137 94 0.468528 115.0 129 0.478331 67.1 64 30
pr144 116 0.419821 110.3 133 0.442588 117.3 84 32
ch150 98 0.522792 113.8 154 0.538173 153.1 72 26
kroA150 94 0.511375 108.3 141 0.528899 120.2 74 20
kroB150 95 0.513359 121.2 110 0.538412 142.0 80 15

Table 10.12 Results for TSPLIB instances with profit type 1 and m = 3, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 74 0.414320 110.8 114 0.431831 59.5 41 33
u159 103 0.478325 153.4 151 0.496434 137.3 68 35
rat195 112 0.476036 302.5 152 0.497755 381.8 93 19
d198 91 0.358539 259.6 163 0.382570 234.0 79 12
kroA200 102 0.508515 242.0 153 0.529265 383.7 92 10
kroB200 109 0.531025 225.2 168 0.546573 307.7 79 30
gr202 114 0.510636 323.1 160 0.522441 428.0 102 12
ts225 73 0.430202 342.8 116 0.460055 292.3 59 14
tsp225 85 0.449167 428.5 150 0.475739 541.3 71 14
pr226 76 0.474750 282.3 143 0.504124 164.9 53 23
gr229 116 0.614147 317.5 191 0.630407 922.4 104 12
gil262 89 0.493292 551.3 155 0.515675 811.5 68 21
pr264 109 0.483524 518.5 156 0.502934 545.6 103 6

(continued)

10 An Evolutionary Algorithm with Path Relinking 215



Table 10.12 (continued)

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

a280 108 0.467550 750.9 203 0.484065 911.2 96 12
pr299 95 0.467936 1141.7 201 0.487822 1245.8 70 25
lin318 121 0.508179 1298.5 212 0.525901 1847.1 108 13
rd400 158 0.547901 1540.2 261 0.560515 2064.3 127 31
fl417 118 0.535425 1411.1 285 0.547094 2199.9 100 18
gr431 192 0.668320 1866.0 299 0.673233 1738.2 101 91
pr439 118 0.537484 2465.5 171 0.548489 1169.2 73 45
pcb442 150 0.504819 2477.6 205 0.513141 1174.4 77 73
d493 92 0.404317 3600.9 92 0.404317 0.0 0 92
att532 116 0.560553 3600.8 116 0.560553 0.0 0 116

Table 10.13 Results for TSPLIB instances with profit type 1 and m = 4, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 76 0.478500 19.0 78 0.503710 7.6 49 27
eil76 99 0.524384 23.0 103 0.545408 20.0 86 13
pr76 73 0.492062 25.1 74 0.506035 8.0 47 26
gr96 70 0.512764 44.4 110 0.532737 21.6 49 21
rat99 89 0.451352 57.7 109 0.463070 23.3 52 37
kroA100 72 0.468140 41.9 103 0.495385 24.2 48 24
kroB100 82 0.541542 44.7 95 0.557907 21.4 59 23
kroC100 74 0.468278 47.9 91 0.488937 14.6 46 28
kroD100 83 0.479221 49.3 104 0.502895 33.7 67 16
kroE100 83 0.535865 47.7 107 0.552493 35.0 56 27
rd100 90 0.531184 49.3 114 0.551511 31.1 72 18
eil101 87 0.534391 44.1 89 0.551421 47.5 68 19
lin105 81 0.493667 60.7 105 0.510313 29.5 49 32
pr107 93 0.471421 66.8 121 0.476604 30.7 60 33
pr124 60 0.485479 83.0 108 0.509860 26.8 36 24
bier127 141 0.684695 83.0 216 0.693943 172.0 111 30
ch130 102 0.534579 88.4 140 0.549166 88.1 75 27
pr136 102 0.498581 120.0 127 0.517684 72.2 76 26
gr137 110 0.449393 149.0 133 0.465402 62.7 89 21
pr144 102 0.413376 139.8 126 0.430151 107.7 70 32
ch150 79 0.492262 155.1 113 0.508099 155.5 59 20
kroA150 97 0.485345 136.5 126 0.514431 166.7 85 12
kroB150 80 0.495800 160.5 121 0.512745 123.7 62 18

216 N. Labadie et al.



Table 10.14 Results for TSPLIB instances with profit type 1 and m = 4, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 73 0.419057 144.9 145 0.440446 73.7 45 28
u159 104 0.457249 212.3 121 0.471292 138.0 84 20
rat195 90 0.466692 398.0 164 0.484506 386.9 70 20
d198 106 0.328646 327.7 181 0.341457 218.3 95 11
kroA200 95 0.485035 357.2 126 0.511350 475.8 85 10
kroB200 103 0.514041 294.6 158 0.533252 384.1 87 16
gr202 115 0.466900 388.7 172 0.479794 588.0 94 21
ts225 89 0.419131 492.4 126 0.446533 396.8 71 18
tsp225 81 0.452004 594.6 135 0.477020 428.3 70 11
r226 99 0.431950 411.8 160 0.452946 454.3 76 23
gr229 121 0.585081 462.6 192 0.606669 1002.3 113 8
gil262 89 0.455622 778.0 122 0.482332 967.6 80 9
pr264 100 0.465884 602.1 143 0.497300 609.6 92 8
a280 92 0.438428 1052.3 174 0.458690 1301.7 82 10
pr299 101 0.463710 1395.5 184 0.485422 1087.7 86 15
lin318 107 0.496853 1653.9 165 0.517104 1971.8 83 24
rd400 130 0.531509 2094.3 211 0.540525 1549.1 85 45
fl417 110 0.508544 1837.8 223 0.516112 1785.9 73 37
gr431 144 0.642946 2648.1 214 0.648455 986.4 81 63
pr439 117 0.554537 3526.0 148 0.555942 78.6 24 93
pcb442 117 0.489913 3600.5 117 0.489913 0.4 0 117
d493 94 0.373546 3600.0 94 0.373546 0.0 0 94
att532 102 0.537614 3600.7 102 0.537614 0.0 0 102

Table 10.15 Results for TSPLIB instances with profit type 3 and m = 2, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 105 0.475638 13.6 102 0.480869 4.6 45 60
eil76 100 0.519498 14.8 98 0.535149 17.3 68 32
pr76 76 0.498726 15.3 81 0.511959 9.1 48 28
gr96 107 0.496912 28.6 119 0.511531 30.8 71 36
rat99 113 0.438653 30.7 132 0.450850 29.2 74 39
kroA100 135 0.486347 28.6 137 0.498655 36.4 83 52
kroB100 110 0.500006 27.6 122 0.511038 18.4 72 38
kroC100 107 0.490497 30.4 115 0.499384 10.3 61 46
kroD100 92 0.491619 29.5 113 0.509572 17.2 68 24
kroE100 128 0.503505 29.3 146 0.514200 29.1 82 46
rd100 110 0.490617 31.3 107 0.508824 25.2 80 30
eil101 114 0.549285 27.3 133 0.561360 60.7 90 24
lin105 103 0.454122 32.3 127 0.469589 29.5 77 26
pr107 132 0.390145 34.4 167 0.399622 22.1 91 41
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Table 10.15 (continued)

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr124 120 0.481675 44.0 143 0.495953 19.8 89 31
bier127 144 0.567503 41.0 229 0.576649 171.4 114 30
ch130 127 0.512501 52.8 163 0.532513 110.7 98 29
pr136 119 0.482991 66.4 139 0.500636 66.8 87 32
gr137 116 0.427082 65.4 137 0.442061 52.9 80 36
pr144 119 0.412650 59.9 143 0.426932 41.3 85 34
ch150 108 0.488781 94.6 144 0.510137 126.9 85 23
kroA150 105 0.522259 82.4 118 0.539601 105.4 77 28
kroB150 98 0.507344 91.5 137 0.527565 82.3 78 20

Table 10.16 Results for TSPLIB instances with profit type 3 and m = 2, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 128 0.398900 80.5 191 0.411503 38.3 73 55
u159 94 0.471524 90.5 149 0.490488 102.8 78 16
rat195 112 0.474745 155.5 155 0.489725 179.8 81 31
d198 118 0.369466 161.1 180 0.382628 243.5 97 21
kroA200 118 0.503387 188.3 162 0.521883 362.5 94 24
kroB200 106 0.516479 172.9 179 0.532347 301.3 83 23
gr202 138 0.517349 181.3 168 0.532859 617.9 116 22
ts225 104 0.454420 217.8 151 0.474769 303.9 76 28
tsp225 112 0.469847 231.8 191 0.489806 489.7 88 24
pr226 125 0.480364 187.4 190 0.499217 195.9 101 24
gr229 146 0.547607 181.0 224 0.562307 1266.8 134 12
gil262 115 0.469677 393.7 187 0.495426 876.7 106 9
pr264 116 0.469722 279.4 194 0.490142 175.8 98 18
a280 129 0.485949 357.4 227 0.502439 520.2 107 22
pr299 142 0.509108 483.0 253 0.523065 389.5 111 31
lin318 120 0.485770 552.2 222 0.502914 1077.6 96 24
rd400 160 0.532418 1180.3 283 0.544077 2437.6 117 43
fl417 140 0.502319 986.4 303 0.516286 1303.8 111 29
gr431 202 0.567471 989.3 326 0.573282 2682.8 88 114
pr439 135 0.546797 1075.7 248 0.564262 2660.4 113 22
pcb442 144 0.517142 1409.4 278 0.531853 2198.1 84 60
d493 127 0.448896 2917.0 187 0.453242 706.1 59 68
att532 145 0.495494 2638.2 213 0.502027 983.8 47 98
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Table 10.17 Results for TSPLIB instances with profit type 3 and m = 3, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 94 0.445320 17.0 91 0.459187 3.9 56 38
eil76 94 0.494974 19.9 81 0.510206 6.5 51 43
pr76 65 0.454883 19.1 70 0.471705 4.1 37 28
gr96 88 0.445427 39.5 93 0.477085 37.2 74 14
rat99 104 0.414694 38.9 103 0.431438 17.6 71 33
kroA100 91 0.454487 38.6 96 0.475204 27.6 58 33
kroB100 91 0.481613 34.4 110 0.496598 24.9 63 28
kroC100 107 0.472680 40.3 114 0.483300 10.0 57 50
kroD100 101 0.475104 39.9 120 0.485873 11.9 66 35
kroE100 103 0.489792 37.0 127 0.502652 17.3 76 27
rd100 123 0.473408 40.6 122 0.490907 26.2 83 40
eil101 112 0.521074 35.3 113 0.539744 61.2 91 21
lin105 102 0.420155 45.8 112 0.438620 28.8 82 20
pr107 134 0.378232 41.8 153 0.386990 15.0 85 49
pr124 108 0.461442 57.9 128 0.485221 16.9 73 35
bier127 121 0.551837 65.0 160 0.565052 162.5 96 25
ch130 84 0.499054 73.8 119 0.519613 60.3 65 19
pr136 107 0.476238 86.4 146 0.491394 42.1 78 29
gr137 109 0.404468 93.6 137 0.420398 56.3 75 34
pr144 139 0.396397 75.8 152 0.409888 36.8 74 65
ch150 109 0.482422 121.3 136 0.499401 119.2 86 23
kroA150 99 0.506405 109.0 142 0.523202 131.9 84 15
kroB150 92 0.492464 116.4 118 0.508060 39.4 63 29

Table 10.18 Results for TSPLIB instances with profit type 3 and m = 3, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 117 0.385507 101.7 150 0.397468 55.1 69 48
u159 122 0.451305 122.1 146 0.465126 78.0 86 36
rat195 127 0.472635 200.1 186 0.481950 132.6 88 39
d198 111 0.307502 205.9 141 0.327631 254.0 97 14
kroA200 137 0.500482 238.1 184 0.512678 183.4 106 31
kroB200 118 0.508705 213.5 172 0.526920 169.9 90 28
gr202 97 0.464535 268.6 146 0.484026 369.7 82 15
ts225 96 0.451576 282.1 158 0.471650 103.7 66 30
tsp225 101 0.454535 303.9 166 0.473465 232.8 82 19
pr226 136 0.460957 252.4 224 0.473276 292.9 87 49
gr229 119 0.506539 267.7 171 0.531340 483.0 112 7
gil262 112 0.451954 516.5 160 0.471737 719.9 98 14
pr264 108 0.476137 432.9 185 0.491492 297.0 87 21

(continued)
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Table 10.18 (continued)

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

a280 115 0.473043 490.8 169 0.487371 871.7 86 29
pr299 129 0.472274 711.2 198 0.493908 1302.7 111 18
lin318 125 0.470040 780.5 215 0.485324 766.6 101 24
rd400 138 0.508452 1748.0 210 0.523157 1894.1 102 36
fl417 121 0.515440 1355.1 281 0.529273 1718.4 105 16
gr431 132 0.522532 1836.4 218 0.527042 1791.1 61 71
pr439 128 0.547026 1550.7 265 0.560636 1128.1 115 13
pcb442 92 0.492013 2085.5 198 0.503944 1520.8 52 40
d493 115 0.399872 3478.6 150 0.401332 135.9 28 87
att532 101 0.446685 3602.0 101 0.446685 0.0 0 101

Table 10.19 Results for TSPLIB instances with profit type 3 and m = 4, part I

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

st70 76 0.430686 20.6 89 0.449664 5.5 35 41
eil76 86 0.466485 24.0 82 0.480635 12.0 57 29
pr76 113 0.409441 23.1 86 0.431792 9.7 73 40
gr96 102 0.444316 43.7 96 0.460763 22.6 64 38
rat99 96 0.407039 47.2 101 0.418169 23.8 65 31
kroA100 110 0.467525 44.8 130 0.472698 16.3 41 69
kroB100 100 0.474129 43.2 107 0.488517 16.8 70 30
kroC100 89 0.444637 44.3 91 0.459940 16.5 53 36
kroD100 98 0.456582 47.0 107 0.472653 15.1 72 26
kroE100 104 0.480908 46.2 114 0.491166 19.0 57 47
rd100 114 0.464951 47.5 128 0.474138 21.9 60 54
eil101 84 0.506713 43.4 107 0.523025 29.3 59 25
lin105 116 0.419691 56.4 118 0.434316 26.2 83 33
pr107 91 0.371506 45.1 124 0.381704 20.1 63 28
pr124 122 0.471328 67.9 130 0.477463 31.4 50 72
bier127 111 0.542659 83.7 164 0.556650 144.0 92 19
ch130 111 0.495598 91.7 123 0.507498 60.2 71 40
pr136 106 0.451855 103.9 137 0.470404 59.2 95 11
gr137 108 0.381051 110.4 128 0.396918 80.4 70 38
pr144 138 0.397850 86.1 161 0.407388 36.8 80 58
ch150 93 0.478111 140.8 123 0.497006 87.3 68 25
kroA150 101 0.494357 126.9 126 0.505698 29.6 59 42
kroB150 94 0.468010 148.2 109 0.490788 75.8 80 14
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10.6 Conclusion

We have presented a first study of the bi-objective multiple TSP with profits, a
generalization of the TSPP. The solution approach was based on NSGA-II algo-
rithm featured with a simple solution encoding represented by a sequence of
customers without trip delimiters. A decoding procedure was developed for
obtaining the real representation of solutions. This split procedure enables to
retrieve the optimal solution with respect to the encoding in polynomial time.

The Pareto front approximation is further improved with path relinking. The
implemented PR algorithm explores trajectories connecting two solutions which
are adjacent in the objective space. Computational results prove the ability of PR
to improve significantly the Pareto front approximation found by NSGA-II. This
concept has been seldom concerned in the multi-objective optimization research
and it seems that it can be a beneficial complement to many of the Pareto front
approximation algorithms.

Further research might be conducted toward the reduction of computing time
required by both components of the proposed algorithm. The solution approach

Table 10.20 Results for TSPLIB instances with profit type 3 and m = 4, part II

Instance NSGA-II PR Ndom Neq

N1 Hyp Time (s) N2 Hyp Time (s)

pr152 88 0.374362 123.9 130 0.391891 34.6 64 24
u159 128 0.435006 155.4 146 0.446770 82.5 100 28
rat195 111 0.457019 263.5 159 0.470328 226.1 79 32
d198 108 0.286206 252.1 164 0.299729 188.6 81 27
kroA200 122 0.494745 300.0 172 0.509883 162.8 95 27
kroB200 116 0.495731 266.4 157 0.508347 199.0 89 27
gr202 108 0.421093 328.5 145 0.443903 549.2 98 10
ts225 92 0.453527 375.9 139 0.470380 157.7 69 23
tsp225 119 0.445973 391.6 198 0.461090 275.0 81 38
pr226 111 0.438803 342.0 178 0.457603 129.4 71 40
gr229 127 0.498635 335.6 162 0.516818 439.6 112 15
gil262 133 0.458874 644.7 189 0.479200 474.1 116 17
pr264 109 0.470985 476.0 194 0.484733 296.1 84 25
a280 132 0.470783 636.9 201 0.481105 500.1 92 40
pr299 99 0.465195 956.5 229 0.479157 528.0 77 22
lin318 118 0.465885 962.6 209 0.481869 1107.4 98 20
rd400 97 0.516764 2396.7 186 0.525216 1216.1 52 45
fl417 99 0.494772 1974.6 221 0.506046 1687.1 73 26
gr431 128 0.488365 2616.8 205 0.492872 1016.2 42 86
pr439 162 0.546597 2085.4 259 0.556669 1550.6 111 51
pcb442 91 0.489556 2729.5 150 0.497674 919.1 34 57
d493 114 0.368130 3600.0 114 0.368130 0.1 0 114
att532 125 0.456692 3601.4 125 0.456692 0.0 0 125
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can be further developed in order to tackle more general problems, for example,
more objective functions or additional constraints.

References

Archetti C, Hertz A, Speranza MG (2007) Metaheuristics for the team orienteering problem.
J Heur 13(1):49–76

Basseur M, Seynhaeve F, Talbi EG (2005) Path relinking in pareto multi-objective genetic
algorithms. In: Coello Coello CA, Hernndez Aguirre A, Zitzler E (eds) Evolutionary multi-
criterion optimization. Thrid international conference, EMO 2005. Lecture notes in computer
science, vol 3410. Springer Mexico, Guanajuato, pp 120–134.

Beausoleil R, Baldoquin G, Montejo R (2008) Multi-start and path relinking methods to deal with
multi-objective knapsack problems. Ann Oper Res 157:105–133

Bérubé JF, Gendreau M, Potvin JY (2009a) An exact e-constraint method for bi-objective
combinatorial optimization problems: application to the traveling salesman problem with
profits. Eur J Oper Res 194(1):39–50

Bérubé JF, Gendreau M, Potvin JY (2009b) A branch-and-cut algorithm for the undirected prize
collecting traveling salesman problem. Networks 54:56–67

Bouly H, Dang DC, Moukrim A (2010) A memetic algorithm for the team orienteering problem.
4OR: Q J Oper Res 8(1):49–70

Boussier S, Feillet D, Gendreau M (2007) An exact algorithm for team orienteering problems.
4OR: Q J Oper Res 5(3):211–230

Chao IM, Golden BL, Wasil EA (1996) The team orienteering problem. Eur J Oper Res
88(3):464–474

Dantzig GB (1957) Discrete-variable extremum problems. Oper Res 5(2):266–288
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic

algorithm: NSGA-II. IEEE Trans Evo Comput 6(2):182–197
Feillet D, Dejax P, Gendreau M (2005) Traveling salesman problems with profits. Transp Sci

39(2):188–205
Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking. Cont

Cyber 39:653–684
Jaszkiewicz A, Zielniewicz P (2009) Pareto memetic algorithm with path relinking for bi-

objective traveling salesperson problem. Eur J Oper Res 193(3):885–890
Jozefowiez N, Glover F, Laguna M (2008) Multi-objective meta-heuristics for the traveling

salesman problem with profits. J Math Mod Alg 7(2):177–195
Ke L, Archetti C, Feng Z (2008) Ants can solve the team orienteering problem. Comput Ind Eng

54(3):648–665
Keller CP, Goodchild M (1988) The multi-objective vending problem: a generalization of the

travelling salesman problem. Environ Plan B: Plan Des 15:447–460
Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a

tutorial. Reliab Eng Syst Saf 91(9):992–1007
Labadi N, Prins C, Reghioui M (2008) Grasp with path relinking for the capacitated arc routing

problem with time windows. In Fink A and Rothlauf F (eds) Advances in computational
intelligence in transport, logistics, and supply chain management. Studies in computational
intelligence, vol 144. Springer, Berlin, pp 111–135

Labadie N, Melechovsky J, Wolfler Calvo R (2010) An effective hybrid evolutionary local search
for orienteering and team orienteering problem with time windows. In: Schaefer R et al (eds)
Lecture Notes in Computer Science, vol 6239. Springer Berlin, Heidelberg, pp 219–228

Labadie N, Melechovsky J, Wolfler Calvo R (2011) Hybridized evolutionary local search
algorithm for the team orienteering problem with time windows. J Heur 17(6):729–753

222 N. Labadie et al.
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Part II
Game Theory Applications



Chapter 11
A Hybrid Simulation-based Duopoly
Game Framework for Analysis of Supply
Chain and Marketing Activities

D. Xu, C. Meng, Q. Zhang, P. Bhardwaj and Y. J. Son

Abstract A hybrid simulation-based framework involving system dynamics (SD)
and agent-based simulation (ABS) is proposed to address duopoly game consid-
ering multiple strategic decision variables and rich payoff, which cannot be
addressed by traditional approaches involving closed-form equations. While SD
models are used to represent integrated production, logistics, and pricing deter-
mination activities of duopoly companies, ABS is used to mimic enhanced con-
sumer purchasing behavior considering advertisement, promotion effect, and
acquaintance recommendation in the consumer social network. The payoff func-
tion of the duopoly companies is assumed to be the net profit based on the total
revenue and various cost items such as raw material, production, transportation,
inventory and backorder. A unique procedure is proposed to solve and analyze the
proposed simulation-based game, where the procedural components include
strategy refinement, data sampling, gaming solving, and performance evaluation.
First, design of experiment (DOE) and estimated conformational value of infor-
mation (ECVI) techniques are employed for strategy refinement and data sam-
pling, respectively. Game solving then focuses on pure strategy equilibriums, and
performance evaluation addresses game stability, equilibrium strictness, and
robustness. A hypothetical case scenario involving soft-drink duopoly on Coke and
Pepsi is considered to illustrate and demonstrate the proposed approach. Final
results include p-values of statistical tests, confidence intervals, and simulation
steady state analysis for different pure equilibriums.
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11.1 Introduction

Duopoly games have been extensively studied in the modern history of economics,
where the market is primarily dominated by two major companies and they make
fully rational decisions to reach the goals (e.g. maximize payoff). While the most
widely used approaches to solve the duopoly game are based on Cournot model
(Cournot 2012) and Bertrand model (Bertrand 1883), several major limitations of
those models are that:

• The payoff function of each company is highly aggregated by closed-form
mathematical equations;

• Only single or limited decision variables (e.g. production quantity, product
price) are considered for mathematical tractability;

• No randomness involved in the payoff formulation.
In real practice, however, competing companies have to make and update

decisions periodically on various areas such as production, logistics and price
across the entire supply chain based on dynamically changing market conditions,
and these decisions interact with one another to achieve a high profit. Hence, a
comprehensive modeling technique is desired to mimic the realistic processes in
multiple areas mentioned above, so as to provide a highly accurate payoff as well
as to enable analysis of the trade-offs among different strategies.

In this chapter, a hybrid simulation-based framework is proposed to address
duopoly game under the scenario of product adoption process considering multiple
decision variables and detailed payoffs. In the proposed hybrid simulation
framework,

• system dynamics (SD) models are used for simulating the activities of duopoly
companies on production, logistics, and price determination;

• agent-based simulation (ABS) is used for modeling consumer purchasing
behaviors at the market side.

Figure 11.1 outlines the major components in an exemplary supply chain and
consumer market. In the SD model, an integrated production-logistics model
considering the material transformations and flows from suppliers to final cus-
tomers is constructed for each duopoly company. The price determination process,
which is also modeled in the SD simulation, represents how each company
determines the product price and adjusts it over time due to the impacts of pro-
duction and logistics. To this end, an enhanced consumer motivation function is
developed based on various factors such as the effect of advertisement, the effect
of promotion, the influences of customer acquaintance recommendation, and the
price sensitivity in the consumer social network. The consumer motivation func-
tion is then incorporated into the ABS for mimicking the consumer purchasing
behaviors, which is tightly coupled with the SD model for the duopoly companies.

Considering the game strategy for duopoly games, emphasis has been put in the
following strategic areas (Min and Zhou 2002; Hong et al. 2008; Song and Jing
2010) including production strategy (e.g. labor, raw material availability), logistics
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strategy (e.g. lead time, inventory coverage control), and marketing strategy (e.g.
price determination, advertising, promotion). The strategic areas in the literature
are coupled with the simulation model, so that any strategy changes can be
reflected in simulation variables/parameters. In the game theory literature, each of
the above strategic areas involves different decisions that are referred to as strat-
egies. The payoff function of each dominated company is defined in terms of net
profit, which is the difference between the revenue and various cost items such as
production, logistics, transportation, and backorder. In the proposed work of this
chapter, the objective for each duopoly company is assumed to maximize the net
profit via the coordination of all the considered strategies.

In games involving a large number of strategies and data samples, conducting
experiments including all the strategic decisions is computationally costly. In order
to solve and analyze the simulation-based game in this work considering limited
computational resources, a novel procedure is proposed, where the procedural
components include strategy refinement, data sampling, game solving, and per-
formance evaluation. First, design of experiments (DOE) technique used for
strategy refinement and ECVI technique used for data sampling are integrated for
exploring the strategy space in the empirical game setting. Then, game solving for
pure strategy equilibrium is applied to generate game equilibrium results, and
performance evaluation approach is employed to assess various output criteria
(e.g. equilibrium quality, stability, strictness and robustness). In the experiment
section, a case with soft-drink duopoly game is considered to illustrate and
demonstrate the framework.

Figure 11.2 depicts major components of the framework in this chapter:

• A hybrid simulation testbed of duopoly game with its profile set as inputs and
payoff matrix as outputs (the upper part of Fig. 11.2);

• A game solving and analysis (GSA) procedure including strategy refinement, data
sampling, game solving and performance evaluation (the lower part of Fig. 11.2).

The major contributions of this chapter are summarized as follows:

1. A novel simulation-based empirical game platform is proposed, which over-
comes the major drawbacks of closed-form mathematical equations in terms of
modeling comprehensiveness;

Fig. 11.1 Exemplary supply chain and consumer market

11 A Hybrid Simulation-based Duopoly Game Framework 229



2. A novel simulation-based game solving and analysis (GSA) procedure is pro-
posed, which covers major topics in the field of game theory such as strategy
refinement, data sampling, game solving, and performance evaluation.

In fact, the proposed simulation platform allows for accurate representation of
the real world scenario, and it targets to address such game problem involving
large strategy space and detailed/rich payoff function. Besides, the proposed
platform is generic so that it can be re-used and further enhanced based on user
requirements. The proposed GSA procedure is platform independent so that it can
also be applied to resolve other similar simulation-based games.

The rest of this chapter is organized as follows. In Sect. 11.2, the literature
works related to the proposed simulation-based game platform and the GSA
procedure are summarized. In Sect. 11.3, the details of different modeling aspects
(e.g. production, logistics, and marketing) that constitute the simulation-based
game platform are provided, followed by the discussions of game strategies and
payoff function. Section 11.4 discusses the motivation, objective of GSA, as well
as its detailed procedure including strategy refinement, data sampling, game
solving, and performance assessment. In Sect. 11.5, experiments are conducted
and corresponding results are presented. Finally, conclusions and future directions
are discussed in Sect. 11.6.

11.2 Background and Literature Survey

The game theoretic approach has been applied in the literature to address strategic
decision problems in supply chain and marketing activities, where the studies

Fig. 11.2 Proposed hybrid simulation framework with the GSA procedure
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mainly focused on the relationships between stakeholders within the supply chain
system. For manufacturing strategy, Zhang and Huang (2010) investigated plat-
form commonality and modularity strategies in a supply chain consisting of a
single manufacturer and multiple cooperative suppliers. They derived the optimal
ordering and pricing decisions for the two-moves dynamic game according to
Nash’s bargaining model, and developed an iterative algorithm to find the sub-
game perfect equilibrium. They found that a supply chain with cooperative sup-
pliers is more effective by using the lot-for-lot policy and more competitive by
accommodating higher product variety. For logistics/inventory control strategy,
Yu et al. (2006) studied Stackelberg game in a Vendor Managed Inventory (VMI)
supply chain consisting one manufacturer as the leader and heterogonous retailers
as followers. The research proposed a 5-step algorithm to reach the Stackelberg
equilibrium and demonstrated (1) the significant influence of market-related
parameters on manufacturer’s and retailers’ profit, (2) higher inventory cost does
not necessarily lead to lowing retailers’ profit and (3) game equilibrium benefits
the manufacturer. The pricing and marketing strategies have been studied in an
integrated manner in some literature works. Parlar and Wang (1994) studied the
discounting strategy in a game involving one supplier with multiple homogeneous
customers. They demonstrated that both seller and buyers can improve their own
profit by using a proper discounting strategy. A similar game was also studied by
Wang and Wu (2000). The difference was that the customers in this study were
heterogeneous, and a price policy was proposed, where seller offers price discount
based on the percentage increase from a buyer’s quantity before discount. The
proposed policy was demonstrated to provide benefits for venders compared with
the one based on buyer’s unit increase in order quantity. Esmaeili et al. (2009)
proposed seller-buyer supply chain models considering pricing and marketing
strategic decision variables such as price charged by seller to buyer, lot size,
buyer’s selling price, and marketing expenditure. Both cooperative and non-
cooperative relationships between the seller and buyer were modeled assuming
seller-stackelberg and buyer-stackelberg, respectively. The experiment results
showed both optimal selling price and marketing expenditure were smaller in the
cooperative game. While these works have provided guidance for addressing
strategic decision making problems via a game theoretic approach, they faced
limitations in efficiently obtaining accurate payoffs for a large strategy space under
realistic case scenarios (e.g. duopoly company competition).

Most recently, simulation-based games have been employed to analyze com-
plex interactions of players in the areas of supply chain (Collins et al. 2004),
combat (Poropudas and Virtanen 2010), financial market (Mockus 2010), sub-
contractor selection (Unsal and Taylor 2011) and pedestrian behaviors (Asano
et al. 2010). An advantage of this approach is that simulation is capable of
modeling the detailed players’ behaviors, their interactions as well as the external
environment impacts. Hence, results from simulation are comprehensive and can
be used for detailed analysis. To the best of our knowledge, although simulation-
based game has been used for solving coordination problem within specific supply
chain, a formal framework for solving integrated supply chain and its market
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competition game is needed in literature. Next several paragraphs mainly survey
the past research works that have formed a basis in this chapter in two aspects:

• SD and ABS modeling on supply chain and marketing activities, respectively;
• Approaches for empirical game analysis.

Concerning the simulation model for integrating the supply chain operations
and marketing activities, different researchers have developed scenarios with
distinct settings according to their own conveniences. To unify them under a
coherent framework, the SD model in our work employs typical scenarios avail-
able in Sterman (2000) that involve labor utilization, raw material logistics, pro-
duction process, and final production inventory control. However, necessary
modifications have been made due to the duopoly game setting, and ABS inte-
gration for consumer purchasing behavior (see Sect. 11.3 for details). The con-
sumer purchasing motivation and decision can be influenced by three factors
(Kotler and Keller 2007):

• Personal (e.g. price sensitivity and quality sensitivity);
• Social (e.g. adoption from word of mouth, follower tendency);
• Psychological (e.g. perception and susceptibility to advertisement).

ABS can not only explore how and why consumers made the decision of
purchasing certain products (North et al. 2010), but also evaluate the overall
system performance without sacrificing enough details on interdependency among
company marketing behaviors. Previous researchers (Jager et al. 1999; Adjali et al.
2005; Yoshida et al. 2007) have dealt with personal, social and psychological
factors involving ABS technique. In this chapter, based on Zhang and Zhang
(2007), an enhanced motivation function is proposed to incorporate the effects of
advertisement, promotion from company, the influences of customer acquaintance
recommendation, and price sensitivity in the consumer market. The consumer
behavior modeled in ABS is coupled with the supply chain model to generate the
market share and actual demand over time.

Previous literature works related to the simulation-based game analysis of this
chapter are summarized in the following two paragraphs. A seminal research work
in empirical game analysis is Wellman (2006), who decomposed the empirical
game-theoretic analysis into three basic steps:

1. Parameterize strategy space, which means to generate a set of candidate
strategies from all available ones that are computationally intensive and costly
ineffective to evaluate;

2. Estimate the empirical game, which is aimed to construct empirical payoff
matrix via simulation for the simplified game with the attention on the candi-
date strategies;

3. Analyze (solve) the empirical game, and assess the solution quality with respect
to the original game with full strategy sets.
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For parameterizing strategy space, several baseline approaches are available in
Wellman (2006) such as truthful revelation, myopic best response and game tree
search. These methods have been applied in auction game (Reeves 2005) and
multi-player chess game (Kiekintveld et al. 2006). For estimating the empirical
game, two approaches exist in the literature, including direct estimation and
regression. The first approach treats the observations as direct evidence for the
payoffs of each player’s strategy profile, while the idea of second method is to
apply regression to fit an estimated payoff function over the entire profile space
given the available data (Vorobeychik et al. 2007). The goal of analyzing the
empirical game is to find the pure and mixed strategy equilibrium firstly, and then
apply appropriate methods (e.g. statistical bounds) to gain insights into the original
full game. Degree of game-theoretic stability is usually used to provide an e-Nash
equilibrium under this case.

Similar to our strategy refinement problem addressed in this chapter, Jordan et al.
(2008) studied the profile selection problem with the objective of saving the
computational costs for the promising equilibrium candidates. The authors studied
different algorithms applicable to two different models: TABU best-response search
(Sureka and Wurman 2005) and minimum regret-first search (MRFS) for revealed-
payoff; expected value of information (EVI) (Walsh et al. 2003) and proposed
information gain (IG) approach for noisy-payoff models. Later on, Jordan et al.
(2010) solved a special case of the profile selection problem to determine an optimal
simulation sequence of strategy sets. The paper also clarified the differences
between the profile selection problem (Jordan et al. 2008) and strategy exploration
problem. Then, different exploration policies including random policy (RND),
improving deviation only policy (DEV), best response policy (BR), softmax policy
(ST) were discussed, followed by the experiments to compare their performances
under different scenarios. For the sampling approach, Walsh et al. (2003) referred to
the large/infinite number of strategies in the populated strategy space as heuristic
strategies, and proposed two information theoretic approaches (i.e. EVI and ECVI
approaches) to compute the additional sampling number for each experimental step.
The paper demonstrated that ECVI approach converged faster than EVI given the
same number of samples, and they both outperformed the uniform sampling
approach. As pointed out in these literature works, when dealing with a large game
strategy space, strategy exploration/refinement and data sampling are always the
dominant costs for solving and analyzing the game, which constitute the major
motivation for the development of the proposed GSA procedure in Sect. 11.4.

11.3 Hybrid Simulation-based Testbed for Duopoly Game
Modeling

In this section, two major functional components constitute the simulation test-
bed: supply chain and marketing. The supply chain operations are modeled in SD,
and marketing activities with its impact to the consumer behavior are modeled in
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ABS. The supplying process at the upstream is responsible for providing raw
materials to the manufacturer. Production at the manufacturer begins when both
raw material and labor are available. Inventories are kept along the supply chain to
satisfy the customer orders at the downstream, and backorder is considered when
the demand can’t be fulfilled. The product price is also determined in the SD
model, and it is impacted by the competitive product in the market, and produc-
tion-logistics activities of its own company. Consumer purchasing behaviors are
represented in the ABS model, which are highly related to the companies’ market
share and profit. All these modeling details are presented in the rest of this section.

11.3.1 System Dynamics for Modeling Production-Logistics
Activities Under Duopoly Game Environment

Figures 11.3 and 11.4 are the snapshots for the production and logistics modules in
the SD model, respectively, where equations from (11.1) to (11.21) represent
underlying mathematical models and Table 11.1 provides nomenclatures for
variables and parameters used in those equations. The concepts behind the SD
model developed in this chapter are based on Sterman (2000) and Venkateswaran
and Son (2007), with the enhancements and customizations made for our study.
The major customizations/enhancements include:

• Duopoly game setting for our scenario;
• Interaction with the marketing module in ABS model;
• Incorporation of historical values via exponential moving average for adjusted

production, inventory, labor, and vacancy;
• Incorporation of variations in demand, production, inventory, labor availability.

The entire production process has been aggregated into one stock in the SD
model [see Eq. (11.1)]. One assumption made when constructing these equations is
that we treat the time as discrete variable, while in the SD model the corresponding
variables change continuously. The adjusted WIP and production amounts are
calculated via exponential moving average (smoothing) as shown in Eqs. (11.2)
and (11.3). As it is an order-driven inventory control and production system, the
desired amount of WIP is calculated by multiplying the total of adjusted pro-
duction amount and customer order rate with the manufacturing cycle time plus
the variations (see Eq. (11.4)); the desired amount of production begin rate is
calculated by summing up the adjusted WIP amount, adjusted production amount,
customer order rate and the variations [see Eq. (11.5)].

In the ideal case, the actual production begin rate is equal to the desired pro-
duction begin rate; however, it is always constrained by two other factors:
workforce availability and raw material availability [see Eq. (11.6)]. The avail-
ability of raw material is determined by the upstream supplier, of which the
modeling is analogous to the logistics module of the finished goods (discussed
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later in this section). The labor changing process (e.g. vacancy creation and ful-
fillment) will be discussed in the next paragraph. The actual production begin rate
equals to the minimal one (bottleneck) of the workforce, raw material amount, and
desired production begin rate. The production cost is tightly related to the product
price, which will be discussed later in this section.

One factor that influences the production plan is the labor availability. The
labor is represented in one stock, and the labor vacancy rate is captured in another
stock. The equations for calculating these two stock values are shown in Eqs.
(11.7) and (11.8). Hiring rate, retiring rate, and layoff rate are explicitly modeled in
the SD model via Eqs. (11.9)–(11.11), respectively. These three rates are the major
variables for deciding the labor availability, and a variable called vacancy begin
rate will be increased if the SD model desires more labor. The vacancy begin rate
is computed by the adjusted amounts of labor and vacancy in total [see Eq.
(11.12)]. And the adjusted amounts of labor and vacancy are calculated via
exponential moving average (smoothing) in Eqs. (11.13) and (11.14). Finally, the

Fig. 11.3 Production module in the simulation-based game testbed (customized from Sterman
(2000))
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desired amounts of labor and vacancy are calculated in Eqs. (11.15) and (11.16),
which are similar to the calculations of desired production and inventory. The
decision variables considered in the production module are vacancy creation time
(VacCT), average time for layoff labors (LayoffT), labor fulfillment time
(LaborFT), and WIP fulfillment time (WIPFT).

The logistics part of the SD model is constituted with transportation and
inventory control components. As the transportation lead time is simply used, it is
translated into inventory fulfillment time for the ease of analysis and the following
discussions in this paragraph focus only on the inventory part. Similar to the
production process, one stock is used to aggregate the entire product inventory,
and it is calculated in Eq. (11.17). A retailer maintains an inventory of finished
goods, and fills orders as they arrive from customers. The desired shipment rate is
set to be equal to the customer demand, while the actual shipment rate depends on
the inventory level of the supply chain system. The customer order rate is cal-
culated in Eq. (11.18), in which the market share and effects of advertisement and
promotion are explicitly considered. The un-fulfilled amount of goods will be
accounted into backlog inventory, and is calculated for the backorder cost. The

Fig. 11.4 Logistics module in the simulation-based game testbed (customized from Sterman
(2000))

236 D. Xu et al.



Table 11.1 Nomenclature for system dynamics model

Notation Explanation Notation Explanation

ProdBR Production begin rate SSCov Safety stock coverage
Labor Labor amount OrderR Order rate
ALT Average labor working time per

time period
HireR Labor hiring rate

ALP Average labor productivity per
time period

RetireR Labor retire rate

DProdBR Desired production begin rate LayoffR Labor layoff rate

AWIP Adjustment amount for work-in-
process (WIP)

VacBR Vacancy begin rate

DProd Desired production DHireR Desired labor hiring rate
DWIP Desired amount of work-in-

process
LaborFT Labor fulfillment time

WIP Amount of work-in-process
product

DVac Desired amount of vacancy

WIPFT Fulfillment time for work-in-
process product

AVac Adjustment amount for vacancy

CycleT Manufacturing cycle time MSR Raw material supplying rate
ProdCR Production complete rate Vac Labor vacancies
AProd Adjustment amount for

production
VacFT Average time to fill vacancies

DInv Desired inventory level EmployT Average time of employment
Inv Actual inventory level MaxLR Maximum layoff rate
InvFT Fulfillment time for inventory VacCR Vacancy closure rate
OPT Order processing time DLabor Desired labor
InvCov Inventory coverage ALabor Adjustment number of labor
ShipR Shipment rate LayoffT Average time for layoff labors
MS Market share TOR Total order rate
MaxInvCov Capacity of inventory coverage cðPÞ Unit production cost

Price Product price MP Market expected price

PSensðCÞ Price sensitivity to cost PSensðIÞ Price sensitivity to inventory
coverage

FðCÞ Effect of inventory coverage on
price

FðIÞ Effect of cost on price

PriceCR Price changing rate MPFT Fulfillment time of market expected
price

rðWÞ Variations for desired WIP kðWÞ Exponential smoothing factor for
adjusted WIP

rðPÞ Variations for desired production
begin rate

kðPÞ Exponential smoothing factor for
adjusted production

rðOÞ Variations for order rate kðLÞ Exponential smoothing factor for
adjusted labor

rðIÞ Variations for desired inventory
level

kðVÞ Exponential smoothing factor for
adjusted vacancy

Subscripts i and t are omitted. i is player index (i = A, B), t represents simulation time
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order fulfillment ratio is then calculated based on the percentage of order being
fulfilled, which is used to decide the actual shipment rate in Eq. (11.19). Equation
(11.20) calculates the desired inventory level, which equals to the sum of minimal
order processing time and safety level of stock, multiplied by the customer order
rate. The variations are also included in Eq. (11.20). The inventory coverage
represents the time duration that the current inventory level under the current
shipment rate can cover the customer order, and is a superior measure of both
goods holding cost for the supply chain members and the capability of buyers to
receive reliable and timely deliveries. This variable is calculated in Eq. (11.21),
and also used to decide the inventory effects to the product price. The decision
variables considered in the logistics module are inventory fulfillment time (InvFT),
raw material transportation lead time (M LT), product safety stock coverage
(SSCov), and raw material inventory coverage (M InvCov).

WIPi;t ¼
Z t

0
ðProdBRi;s�ProdCRi;sÞds ð11:1Þ

AWIPi;t ¼ kðWÞðDWIPi;t �WIPi;t�1Þ
�

WIPFTi þ ð1� kðWÞÞAWIPi;t�1 ð11:2Þ

AProdi;t ¼ kðPÞðDInvi;t � Invi;t�1Þ
�

InvFTi þ ð1� kðPÞÞAProdi;t�1 ð11:3Þ

DWIPi;t ¼ ðAProdi;t þ OrderRi;tÞ � EðCycleTiÞ þ rðWÞ ð11:4Þ

DProdBRi;t ¼ AWIPi;t þ AProdi;t þ OrderRi;t þ rðPÞ ð11:5Þ

ProdBRi;t ¼ maxð0;minðLabori;t � ALPi � ALTi;MSRi;t;DProdBRi;tÞÞ ð11:6Þ

Labori;t ¼
Z t

0
ðHireRi;s � RetireRi;s � layoffRi;sÞds ð11:7Þ

Vaci;t ¼
Z t

0
ðVacBRi;s � HireRi;sÞds ð11:8Þ

HireRi;t ¼ Vaci;t

�
EðVacFTiÞ ð11:9Þ

RetireRi;t ¼ Labori;t

�
EðEmployTiÞ ð11:10Þ

LayoffRi;t ¼ minðmaxð0;�ALabori;tÞ; Labori;t

�
EðLayoffTiÞÞ ð11:11Þ

VacBRi;t ¼ maxð0;ALabori;t þ AVaci;tÞ ð11:12Þ

ALabori;t ¼ kðLÞðDLabori;t � Labori;t�1Þ
�

LaborFTi þ ð1� kðLÞÞALabori;t�1

ð11:13Þ

AVaci;t ¼ kðVÞðDVaci;t � Vaci;t�1Þ
�

VacFTi þ ð1� kðVÞÞAVaci;t�1 ð11:14Þ
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DLabori;t ¼ DProdBRi;t=ðALPi � ALTiÞ ð11:15Þ

DVaci;t ¼ maxð0;VacFTi;t � ALabori;tÞ ð11:16Þ

Invi;t ¼
Z t

0
ðProdCRi;s � ShipRi;sÞds ð11:17Þ

OrderRi;t ¼ TOR�MSi;t þ rðOÞ ð11:18Þ

ShipRi;t ¼ OrderRi;t � f ðInvi;t=DInvi;tÞ ð11:19Þ

DInvi;t ¼ ðOPTi þ SSCoviÞ � ðOrderRi;tÞ þ rðIÞ ð11:20Þ

InvCovi ¼ Invi=ShipRi ð11:21Þ

Pricei ¼ EðMPÞ � ðFðCÞi Þ � ðF
ðIÞ
i Þ ð11:22Þ

FðCÞi ¼ 1þ PSensðCÞi � ðEðcðPÞi Þ
.

EðMPÞ � 1Þ ð11:23Þ

FðIÞi ¼ ðInvCovi=MaxInvCoviÞðPSensðIÞi Þ ð11:24Þ

PriceCR ¼ ððPrice1 þ Price2Þ=2�MPÞ=MPFT ð11:25Þ

The product price is determined by Eq. (11.22) according to Sterman (2000), in
which three major parts take effects:

• Effect of production costs on price;
• Effect of inventory coverage on price;
• Impact of retailer/market expected price.

Figure 11.5a depicts the price determination module in the SD model. Inside
the price determination mechanism, the effects of duopoly company competition
(an enhancement to the original model) is incorporated into the calculation of the
retailer expected price. The effect of production costs on price captures the
retailer’s beliefs on the production costs relative to the expected product price [see
Eq. (11.23)]. Either the production cost information (PSensðCÞ ¼ 0) or the retai-
ler’s belief (PSensðCÞ ¼ 1) can be ignored depending on the values of sensitivity of
price to costs. The effect of inventory coverage on price measures how the relative
inventory coverage of supply chain members affects the product price. The sen-
sitivity of price to inventory coverage serves as the exponent of the relative
inventory coverage [see Eq. (11.24)], and its value is negative to reflect the
relationship between inventory coverage and price (lower inventory coverage
results in higher price). These two equations [Eqs. (11.23) and (11.24)] confirm to
the original model in Sterman (2000). The third part of the price determination is
related with the retailer/market expected price. For a particular type of product,
retailers and the consumer market always maintain the belief about the expected
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price, mainly relying on the past price of similar product. For the simplicity
concern, the price biddings among retailer, wholesaler and manufacturer are not
explicitly modeled; however, to reflect the price adjustment process over time, the
changing rate of market expected price is calculated by the difference of product
average price and market/retailer expected price divided by a pre-defined fixed
time length [see Eq. (11.25)]. In the price determination process, the experimental
control variables considered are price sensitivity to production cost
(PSensðCÞ 2 ½0; 1�), price sensitivity to inventory coverage (PSensðIÞ 2 ½�1; 0�),
and manufacturer expected price (Mfg Price).

11.3.2 Agent-based Simulation for Modeling Consumer
Purchasing Behavior Under Duopoly Market

Figure 11.5b is the module snapshot of the consumer purchasing behavior in ABS
model. Equations from (11.26) to (11.36) represent underlying mathematical
relationships of the module, and Table 11.2 provides nomenclatures for variables
and parameters used in those equations. For the marketing expense, it is assumed
to have two aspects: advertisement and promotion. Equations (11.26) and (11.27)
are used to calculate the spending for advertisement and promotion over a con-
sidered time period (i.e. a period for a certain marketing strategy). The amount of
marketing budget is decided according to the company’s revenue. The Chief
Marketing Officer (CMO) Council report (2010) demonstrates a direct relation
between marketing budget and revenue for various companies. Based on our case
study (i.e. soft drink duopoly), the corresponding percentage of marketing
investment is selected. An adjustment factor is introduced in these two equations
to ensure that a realistic scenario (e.g. order of magnitude) can be achieved. The
market spending rate is then derived [see Eq. (11.28)] by incorporating the
adjustment time for spending market budget into the calculation. The decision

Fig. 11.5 a Price determination module in SD model (left), b consumer purchasing behavior in
ABS model (right)
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variables considered in the marketing strategy are marketing budget (MB),
advertisement intensity (Ad), and promotion depth (Pm).

Marketing force concept in this work has been adopted from extended Lan-
chester model (Naik et al. 2005) and is depicted in Eq. (11.29). The marketing
force depends not only on the weight of advertisement intensity, promotion efforts
(e.g. frequency and depth), but also on their marketing strategy interactions that
are discussed in details in the next paragraph. The marketing force is the leading
power, which influences the consumer’s perception (e.g. sensitivity of promotion,
susceptibility of advertisement) of a particular product. In this chapter, these
relationships are captured in Eqs. (11.30)–(11.32). As the market force is
dynamically updated through the simulation run, the consumer’s perception is also
updated according to the change of market force. This assumption implies that if a
company loses most of the market, it would have to sacrifice even more to win
back the market share.

Another important feature in the ABS model is that we explicitly incorporate
the marketing interaction effects between companies. These marketing interactions
include the binding constraints on the sum of expenditures on the advertisements
and promotions, as well as the segregation of locations and communication
channels expressed in terms of expenses (Naik et al. 2005). In this work, the
mathematical formulation is based on these concepts, where the interactions for
each pair of activities are explicitly modeled. To take the strategic foresight of
manager into account, co-state dynamics in Eq. (11.33) is adopted, and the
interaction effects between companies are formulated as the co-state variables. The
values of co-state variables in the next time point are captured by the differential

Table 11.2 Nomenclature for agent-based model

Notation Explanation Notation Explanation

MB Marketing budget q Co-state parameter
Ad Advertisement intensity d Co-state factor
Pm Promotion depth CðsÞ Marketing sunk cost of the

duopoly companies
K Adjustment factor Inf Follower tendency influence
AdS Spending rate on advertisement M Customer purchasing motivation

function
PmS Promotion spending rate SensP Price sensitivity
AdjTimeMS Adjustment time for marking

budget spending
SensPm Sensitivity of consumer to

promotion
MSR Marketing spending rate SusAd Susceptibility of consumer to the

advertisement
xi; i ¼ 1; 2; 3 Weights of market force effects Ft Follower tendency
Inter Interaction effect between two

duopoly companies
s;m Price sensitivity parameters

MF Marketing force Ia; Ip; If Initial value of SusAd, SensPm,
and Ft.

F Total marketing force Mfg Price Manufacturer expected price

Subscripts i and t are omitted. i is player index (i = 1, 2), t represents simulation time
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equation given the current interaction effects. Then, the sunk cost is calculated [see
Eq. (11.34)], which incurs due to the strategic interactions between duopoly
companies. The case study presented in Sect. 11.5.1 provides more details on these
interactions in the context of a soft drink duopoly competition.

In a consumer market, consumers make the adoption decision based on various
factors from both the companies and environment, such as unit price, advertise-
ment, promotion, quality, and word-of-mouth recommendations. In our simulation
model, it is assumed that an agent (i.e. consumer) becomes an adopter of a par-
ticular product based on the motivation function incorporating effects of four
factors—price sensitivity, advertisement influence, promotion sensitivity, and
acquaintance influence. Based on the model in Zhang and Zhang (2007), we
proposed an improved formula to calculate the consumer motivation to purchase
brand i at time point t, in which the motivation value is decided by the following
three attributes of price, advertisement intensity, and agent influence exerted by
other agents (consumers). The enhancements made in this work are as follows:

• Incorporation of a social network structure to represent interactions among
agents;

• Incorporation of advertisement and promotion factors to mimic more realistic
decision making process.

In our study, a scale-free social network model called Barabasi-Albert Model
(BA model, also known as Preferential Attachment Model) (Albert and Barabasi
2002) is built to represent the social relationships of customers for the artificial
market. The BA model reflects the ‘‘rich-get-richer’’ phenomenon in societies and
the degree of nodes follows a power-law distribution, in which the probability of a
new node connecting to an existing node is proportional to the degree of it. To
incorporate the advertisement and promotion effects from marketing activities into
the consumer purchasing decision, the price sensitivity, susceptibility to adver-
tisement, promotion-sensitivity and follower tendency, have been set to associate
with price, advertisement, promotion, and recommendation influence, respectively.
The initial value of susceptibility to advertisement, promotion-sensitivity and
follower tendency are pre-set at the beginning of simulation run. The price sen-
sitivity is an exponential function of the difference between the real price of a
product and the expected average price of the product [see Eq. (11.35)]. In this
equation, s is a price parameter (s [ 1), and takes the same values for the similar
competitive types of product, m is a constant and its value is based on an agent’s
socio-economic attributes (e.g. millionaires are less price sensitive than unem-
ployed persons). The consumer purchasing motivation function is calculated in Eq.
(11.36), which decides the product selection of consumers. It is assumed that
agents will always select a product having a higher motivation value, and ran-
domly choose one if the motivation values are equal.

AdSi ¼ K �MBi � Adi ð11:26Þ

PmSi ¼ K �MBi � Pmi ð11:27Þ
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MSRi ¼ ðAdSi þ PmSiÞ=AdjTimeMS ð11:28Þ

MFi ¼ x1Adi þ x2Pmi þ x3AdiPmi þ Interi ð11:29Þ

SusAdi ¼ MFi � Ia ð11:30Þ

SensPmi ¼ MFi � Ip ð11:31Þ

Fti ¼ MFi � If ð11:32Þ

inter1

inter2

� �
¼ d1 d1d2

d2d1 d2

� �
qþ F 0

0 qþ F

� �
inter1

inter2

� �

� Price1ð1� Pm1Þ
Price2ð1� Pm2Þ

� �
ð11:33Þ

CðsÞ ¼
X2

i¼1

MBi � Interi ð11:34Þ

SensPi ¼ �sPricei�ð1�PmiÞ�ðPrice1þPrice2Þ þ m ð11:35Þ

Mi ¼ SensPi � Priceið1� PmiÞ þ SusAdi � Adi þ SensPmi � Pmi þ Fti � Infi

ð11:36Þ

11.3.3 Payoff in Simulation-based Duopoly Game

The total net profit serves as the payoff of simulation-based game, which is cal-
culated in Eq. (11.37). The cost items constituting the payoff function based on the
simulation outputs are depicted in Table 11.3. All different cost items across the
production, logistics and marketing activities are considered in the payoff function,
and the time length to calculate all the cost items is the total simulation replication
length. After the simulation run, the outputs are collected to calculate the net profit
earned for each company. A payoff matrix is then constructed based on the outputs
and is used to approximate the best response (i.e. equilibrium) of the duopoly
game, which will be discussed in Sect. 11.4.

Payoffi ¼ TRevi � ðCðPÞi þ CðRÞi þ CðIÞi þ CðBÞi þ CðTÞi þ CðMÞi þ CðSÞÞ ð11:37Þ
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11.4 Simulation-based Game Solving and Analysis

In this section, a detailed simulation-based GSA procedure proposed in this
chapter will be discussed. The intent of the proposed procedure is to make the
problem tractable by restricting the profile strategies that each company is allowed
to play without losing the generalization from the original game. Large strategy
spaces consist of continuous and multi-dimensional action sets, while the perfect
information assumption is assumed to hold to reduce the problem complexity for
analysis. Due to the symmetric property of the game, two agents are assumed to
have identical behavior possibilities, and be exposed to the same customer market.
Before discussing the details of the GSA components and procedure, notations
regarding a normal form game, simulation-based game and the equilibrium con-
cepts are introduced first.

11.4.1 Setup and Motivation of Simulation-based Game
Solving and Analysis

A normal form game can be formally expressed as C ¼ ½I; fsi;DðsiÞg; fuiðsÞg�,
where I refers to the set of players and I = {1, 2} in our study; si and DðsiÞ denotes
the pure and mixed strategy for player i (i 2 I) respectively; uiðsÞ is the payoff
function of player i when strategy profile s has been selected. An important var-
iable frequently used in analyzing normal form game is regret of a profile s 2 S,
denoted by rðsÞ, which is calculated in Eq. (11.38).

rðsÞ ¼ maxi maxs0i
uiðs0i; s�iÞ � uiðsÞ ð11:38Þ

In Eq. (11.38), s0i 2 fSi � fsigg and s-i represents for a strategy profile other
than that of player i. Next, definition regarding game solution is given as follows: a
Nash equilibrium of the normal-form game is a strategy profile s 2 S such that for
every player i 2 I, Eq. (11.39) holds.

uiðsÞ� uiðs0i; s�iÞ;8s0i 2 Si ð11:39Þ

Table 11.3 Nomenclature for game payoff components

Payoff components Descriptions

TRevi Total revenue for product i

CðPÞi
Total production cost for product i

CðRÞi
Total raw material purchasing cost for product i

CðIÞi
Total inventory cost for product i

CðBÞi
Total backlog cost for product i

CðTÞi
Total transportation cost for product i

CðMÞi
Total marketing spending for product i
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In this chapter, Nash equilibrium, equilibrium, and game solution terms are
used interchangeably. Furthermore, the symmetric game setting is also considered,
in which the following two conditions need to be satisfied:

• Si ¼ Sj for all players i; j 2 I;
• uiðsi; s�iÞ ¼ ujðsj; s�jÞ for every si ¼ sj and s�i ¼ s�j.

In addition, the terms of simulation-based game and empirical game are used
interchangeably because they essentially convey identical meanings. A simulation-
based game is defined that the player’s payoff is specified via simulation models,
and the definition of empirical game is focused on estimating the payoff matrix
using simulation outputs (Vorobeychik 2008). In the empirical game setting with a
large number of strategy profile and noisy samples involved, calculating the exact
Nash equilibrium is sometimes intractable. Another way of approximating it is
applying e-Nash equilibrium (e: tolerance), which is a profile s 2 S satisfying Eq.
(11.40) for every player i 2 I.

uiðsÞ þ e� uiðs0i; s�iÞ; 8s0i 2 Si ð11:40Þ

As the game is constructed in simulation, we differentiate two types of payoff:
the true payoff existing in a real practice duopoly and the estimated payoff obtained
from simulation outputs. When constructing an empirical payoff matrix, a simu-
lation model will be run to obtain noisy samples for each pure or mixed strategy
profile. The noisiness in the sample includes the randomness from the simulation
experiments as well as the players’ mixed strategies (Vorobeychik 2010).
Empirical game is the one, which maintains the same strategy profiles for all
players while the payoffs of them involve noise. For each specific profile of any
player in an empirical game, the payoff is an estimate value by taking arithmetic
mean of multiple data points from the noisy sample as shown in Eq. (11.41).

ûi;nðsÞ ¼
Xn

j¼1

UijðsÞ
,

n ð11:41Þ

The equation shows an estimate of payoff to player i for profile strategy s based
on n samples. From now on for the terminologies used in our discussions, readers
are suggested to refer to Table 11.4.

The academic challenge of solving such a game is that the constrained simu-
lation and experimental resource cannot afford the enormous number of strategies
and samples. According to the discussion in Sect. 11.3, the duopoly game includes
totally 12 strategic factors for each player: if every single strategic factor takes
only two levels, the total number of profiles in the entire profile set under sym-
metric game setting is (212)2/2 = 8,388,608. Assuming each simulation replication
takes 1 s and only 10 replications are taken for each individual profile, the total
time needed to complete the simulation of the entire profile set would be
2.66 years, which is unrealistic to perform in practice.
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The above computational challenge motivates development of the GSA proce-
dure in this chapter. As it is impractical to construct a comprehensive payoff matrix
and achieve the exact game equilibrium(s) by involving all strategic factors (and
their levels), targeting on the critical factors that can approximate the true equi-
librium becomes the major undertaking. As the number of profiles is reduced, the
sample size for each profile can be increased accordingly. The trade-offs between
strategy refinement and data sampling is: given a fixed amount of simulation/
experimental resources, exploring more profiles decreases the number of samples
that can be chosen, which may influence the accuracy of estimated game payoff by
the end; while more samples will restrict the span of profiles to be selected, which
may rule out the key strategies that will impact the game solution eventually. Other
than the strategy refinement and data sampling, a game solving engine/algorithm
and performance evaluation criteria are also needed to complete the GSA.

11.4.2 Components and Procedure of Simulation-based
Game Solving and Analysis

To resolve the formulated simulation-based game, four components are required:

• First of all, an approach to explore and refine the strategy space is needed. As
discussed before, some strategies are more significant to determine the game

Table 11.4 Clarification of terminologies used

Name Definition Explanation

Aggregated
strategic
factor

The factor including aggregated
information of other factors

Production factor, Logistics factor,

Detailed
strategic
factor

The factor decomposed from
aggregated strategic factor

Order lead time, safety stock coverage
decomposed from logistics factor

Strategic factor
levels

The different levels (i.e. values) that
a factor can achieve/attain

(H) for high level of production factor

Strategy Combination of different levels for a
group of strategic factors*

(H, L, L, H)*

Profile Combination of strategies chosen by
game players

{(L, L, H, H)1, (H, L, H, L)2} is one
profile for a two-player game

Solution profile Players’ profile obtained when game
reaches the equilibrium

Element(s) in the profile set

Solution payoff Players’ payoff obtained when game
reaches the equilibrium

Element(s) in the payoff matrix

True payoff The ideal payoff for the game player uðsÞ with respect to profile s
Estimated

payoff
The estimated payoff value obtained

from simulation
ûi;nðsÞ with respect to profile s by running

n simulation samples

*H high, L low; Strategic factor decision variable
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equilibrium than others. Our objective here is to explore those critical strategies
in a more detailed manner so that insights can be gained on how the key
strategic factors can impact on the game equilibrium.

• Second, a method to decide the sampling procedure is needed. As known,
sampling cost and information gain are always the trade-offs during the sam-
pling procedure. Given the sampling resource availability and capability, the
sampling procedure should be able to achieve the maximum information gain so
as to better approximate the true game payoff.

• Third, a game solving engine is needed, which will allow us to find equilib-
rium(s) for the simulation-based game under different initial game settings (e.g.
initial strategy profile, problem scenario). The game solution should include
pure, mixed or both types of equilibriums.

• Forth, evaluation criteria for assessing the performance of GSA procedure is
needed, which will capture the main features of the GSA procedure by dealing
with the game equilibrium results. The evaluation criteria should also contain
the assessments of major equilibrium properties (e.g. weakness, strictness, sta-
bility, and robustness).

We first formulate an algorithm, which depicts how these four components
mentioned above work together to solve and analyze the simulation-based game.
Then detailed contents on each component are discussed. Note that each round of
the GSA procedure run is called an iteration. The GSA procedure includes the
following major steps:

Step 1 Develop an initial game profile set by selecting strategic factor levels,
then choose an initial sample size for each profile and set g equals to 1.

Step 2 Run the simulation model based on the selected profile set and sample
size, construct the empirical payoff matrix according to the simulation
outputs.

Step 3 (Game Solving) Solve the game for pure strategy equilibrium by
improving the unilateral deviation set for each player one after the other
until no more improvements can be obtained.

Step 4 (Strategy Refinement) Employ design of experiments (DOE) technique to
decide the statistical significance of each aggregated strategic factor with
respect to the game payoff. Then, if g equals to 1, go to Step 4.1; if
g equals to 2, go to Step 4.2.

Step 4.1 Include all the detailed strategic factors, which are decomposed
from the current significant aggregated strategic factor, into the
refined profile set; eliminate the insignificant aggregated strategic
factor(s) from the refined profile set. If no more detailed strategic
factors can be included, go to Step 5 and set g equals to 2.

Step 4.2 Include more strategic factor levels into the refined profile set for
the next iteration, go to Step 5. If no more levels for each
strategic factor need to be added, terminate the GSA process and
go to Step 6.
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Step 5 (Data Sampling) Given the significant strategic factors and their levels in
the refined profile set, decide the sample size for each profile using the
enhanced ECVI sampling approach. Go to Step 2.

Step 6 (Performance Evaluation) Based on the game equilibrium results, cal-
culate values for all the evaluation criteria inside and between GSA
iterations, and summarize the results.

Steps 1 and 2 are mainly for algorithm initialization and payoff generation,
respectively. An indicator variable g is used in Step 4, which represents the
refinements of either strategic factors (g = 1) or factor levels (g = 2). Provided
that a reasonable experimental time and cost can be spent on the simulation
experiments, the trade-offs between the strategy refinement extent and data sam-
pling size always exist. Table 11.5 provides comparison results with varying
numbers of strategy refinement and sampling size given a fixed affordable
experimental time (i.e. 5 days) for the simulation run. The lower limit of the
experimental cost is bounded by ensuring a minimum degree of strategy refine-
ment and sampling size, while the upper limit is related with the total affordable
experimental cost. As shown in Table 11.5, if each experimental iteration is
selected to be 5 days, a total of four strategic factors can be selected to ensure a
reasonable number of samples (i.e. 150) in the experiments.

The strategy refinement method essentially seeks to find out in which order and
with what specific strategic factor levels to include the strategies to the simulation-
based game analysis. It is slightly different to the strategy exploration problem in
Jordan et al. (2008), with the modification of the word ‘‘refinement’’ that is tightly
related with both the game strategy and simulation modeling details. As noted
before, each strategic factor (e.g. production) involves different detailed aspects
(e.g. labor control, raw material procurement). The strategic factors that are more
significant than others should be considered with priority in the simulation testbed
and also decomposed into more detailed levels for analysis. The purpose of doing

Table 11.5 Trade-offs between strategy refinement and data sampling

Total
strategic
factors

No. of strategies
for each player
(level = 2)

No. of
profiles to
be
evaluated

Affordable
experimental
time limit (days)

Time per
simulation
replication
(seconds)

No. of samples
affordable for
each profile

1 2 3 5 20 7200
2 4 10 5 20 2160
3 8 36 5 20 600
4 16 136 5 20 158.82
5 32 528 5 20 40.90
6 64 2080 5 20 10.38
7 128 8256 5 20 2.62
8 256 32896 5 20 0.66
9 512 131328 5 20 0.16
10 1024 524800 5 20 0.04
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so is to approximate the game equilibrium without evaluating all the strategy
profiles, which is time-consuming, cost-inefficient, and even intractable. The
strategy refinement process, which starts from an aggregated level and then moves
to a more detailed level, is set as follows:

• For the initial experiment, the focus of the profile set (simulation inputs) is only
at the aggregated strategic factors (e.g. production, logistics), and multiple (e.g.
2) levels of these factors are selected for experimental study.

• Design of experiments technique is then used to identify the critical strategy
profiles by analyzing the simulation outputs. Figure 11.6 depicts the process, in
which the inputs to the experimental design is the different levels of strategic
factors and the empirical payoff matrix generated from simulation outputs, while
the outputs of the experimental design are the factors that have significant
impacts on the game payoff.

• Then, for those critical strategies, more insights on how different values of
strategic factors impact the game payoff are investigated via partitioning the
factors into detailed factors or levels depending on the requirements. Then, we
treat each strategic factor or level as the input to the simulation for the next
experiment iteration.

The above mentioned process (i.e. empirical payoff generation via game sim-
ulator, identification of significant factors via experimental design) is applied
iteratively in GSA procedure. During the iterative process, game is solved and the
immediate results are used to find the corresponding profiles for sampling. It is
noted that under different simulation scenarios, the outputs of experimental design
may be different. In addition, various experimental design techniques may be
applied as long as they provide better insights into the analysis. This work employs
a standard two-level full factorial experimental design technique as a pilot study
for strategy refinement.

Fig. 11.6 Experimental design for strategic factor refinement via simulation
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For sampling significant profiles, an approach named estimated conformational
value of information (ECVI) in Walsh et al. (2003) has been enhanced in this
chapter. The ECVI measures the degree to which further samples would reduce the
estimated error (denoted by êðxÞ) of the current equilibrium solution [see Eqs.
(11.42) and (11.43)].

êi;pðxðsÞÞ ¼ ûi;pðsÞ � uiðsÞ ð11:42Þ

ECVIðqji; s; pÞ ¼ Eqjp½êi;pðxðsÞÞ � êi;p:qðxðsÞÞ� ð11:43Þ

In Eqs. (11.42) and (11.43), s represents a strategy chosen to conduct sampling,
p and q refer to the number of data points being sampled and to be sampled,
respectively. The maximum information gain is achieved by selecting the maxi-
mum value of ECVI, which also indicates the best choice of samples. This method
has been chosen in our study as it has been approved to show significant
improvement over the uniform sampling method. While the criteria for stopping
sampling and the tradeoff between the sampling cost and information value gain
are not discussed in details in Walsh et al. (2003), our work addresses them
explicitly. The sampling cost mainly depends on the simulation replication length,
and the information value gain refers to how important more samples can help to
make an accurate decision. In this chapter, two separate items in ECVA are
classified in the GSA procedure:

• A pre-selected threshold value of affordable sampling size, which is the maxi-
mum number of samples that can afford to run for each profile based on the
experimental resource availability.

• A lower limit of ECVI gain, which is designed by user and aimed to ensure the
game solution quality.

Under the two criteria discussed above, we want to find the corresponding

sample size either satisfying the lower limit of ECVI gain (denoted by ECVIðLÞs ), or
reaching the limit of sampling capability (denoted by Ns), as shown in Eq. (11.44).

pþ q ¼ minðNs; ECVIðLÞs Þ ð11:44Þ

This enhancement provides flexibility to users, where they can select their own
threshold values depending on the experiment requirements. In our experimental
study, we have applied this approach to eliminate the twisted sample values (the
extreme low and high values), which constitute about 10 % of all data samples.

Integration of strategy refinement and data sampling discussed so far in this
section contributes to the uniqueness of the proposed GSA approach. This inte-
gration allows us to combine the advantages of both, as well as to avoid the
potential drawbacks of spending additional simulation resources for sampling all
profiles. The next step in our procedure is to input the selected game strategy
profile and sample size into the simulation-based game testbed. The simulation
outputs are then collected to construct the empirical payoff matrix. Then, we apply
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a game solving engine to calculate the pure Nash equilibrium for the duopoly
players. The game solving engine computes the equilibrium by improving the
unilateral deviation set in Eq. (11.45) for each player one after another, until no
more payoff gain can be obtained.

DiðsÞ ¼ fðs^i; s�iÞ : s
^

i 2 Sig; i ¼ 1; 2 ð11:45Þ

This is a traditional approach, but still the most effective and efficient way to
obtain the pure Nash equilibrium. As the empirical payoff matrix always involves
variations, an e-Nash equilibrium concept [see Eq. (11.40)] is used to ensure that
the potential optimum solutions are included during each experiment iteration.

As the game solution involves variations due to different reasons such as
limited simulation/experimental resources and sampling errors inherent to simu-
lation, proper criteria on assessing the GSA procedure has been developed in this
chapter. As mentioned earlier, the GSA procedure stops when no more iteration
(e.g. strategy refinements) can be established. As each experiment iteration pro-
ceeds and the simulation gains more fidelity (details), we intend to find (1) whether
the equilibrium stays unchanged or evolves to be better (e.g. strictness vs.
weakness), (2) how the modeling details can impact the game payoff, and (3) how
sensitive the equilibrium(s) are to the disturbances. The evaluation criteria
developed in this work focus on the following aspects:

• Confidence intervals of the game equilibrium(s) for examining the closeness of
estimated and true payoffs [see Eq. (11.46)];

Prðûi;nðsÞ � h \ uiðsÞ\ ûi;nðsÞ þ hÞ ¼ 1� a ð11:46Þ

• Statistical test (i.e. two-sample t test) for evaluating the differences between
solution profile and its neighboring profiles;

• Statistical test (i.e. two-sample t-test) for evaluating the differences between
solution payoffs over iterations;

• Experimental studies on the stability of the game equilibrium(s): the equilibrium
stability concepts applied here are originated from Szidarovszky and Bahill
(1998), and we define three types of stability as follows:

– Asymptotic stability with respect to game equilibrium refers to that for a given
initial game state (i.e. players’ initial profile), the player payoff for the
solution profile eventually converges to the solution payoff.

– Marginal stability with respect to game equilibrium is the one that for a given
initial game state, the player payoff for the solution profile converges to a
region containing the considered solution payoff and its tolerance.

– Instability with respect to game equilibrium refers to the players’ profile that
does not belong to the above two categories.
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11.5 Experiments and Results

11.5.1 Experimental Setup in Soft-drink Duopoly Scenario

Under the current market scanner, the soft drink industry exhibits a classic
example of duopolies involving integrated supply chain and marketing activities.
Cola wars between The Coca-Cola Company� and PepsiCo Inc� and related
literature works (Mckelvey 2006) have served as a basis for our case study. The
two companies together account for about three-quarters of the total soft drink
market share. In fact, the industry has high operational overlap since different
suppliers and manufacturers (e.g. producers and bottlers) possess similar impetus
of sales and profits along the supply chain, and in the market side a similar
customer base is shared for the duopoly companies. While the soft drink industry
as a whole enjoys positive economic profits among all of its members, the ultimate
goal for the industry should be to create a win–win situation for both the manu-
facturers as well as the customers.

As mentioned earlier, both Coca-Cola Company� and PepsiCo Inc� mainly
trade on supply chain and marketing values, and invest substantial portion of their
revenues in those areas. Modeling of the major activities in those areas has been
discussed in Sect. 11.3. Different values of the decision parameters for the pro-
posed simulation model depict the various scenarios encountered in the soft drinks
duopoly. Table 11.6 shows the strategic factor values used in the experiments of
this chapter, and the length of simulation replication run is about 3 months
(100 days). We then estimate a payoff matrix through the constructed normal-form
simulation-based game, with the emphasis on the strategies mentioned in
Table 11.6.

Table 11.7 shows the strategic factors and levels involved in each experiment
iteration.

To balance the trade-offs between strategy refinement and data sampling, 16
strategies for each player (four strategic factors) and 70 initial data samples for
each profile are selected during each experiment iteration (the total number of
profile is 16*16 = 256). As the considered game is symmetric, only the upper
triangular of the strategy matrix is used for sampling, which is equivalent to 136
([(16*16)-16]/2 ? 16 = 136) profile sets. After applying the modified ECVI data
sampling approach, samples with roughly 10 upper and 10 lower extreme values
have been eliminated for each profile. So the effective sample size in our exper-
iment is 50. As each iteration may involve different strategic factors (aggregated or

detailed), notation ðSðkÞm ; SðkÞn Þ is used to represent the profile information for player
A selecting strategy m (m ¼ 1; 2; . . .; 16) and player B selecting strategy
n (n ¼ 1; 2; . . .; 16) during kth iteration.
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11.5.2 Experimental Results

In this section, we describe the experimental results and demonstrate the effec-
tiveness of the proposed GSA procedure under the hybrid simulation framework.
For the limited space, only pure strategy equilibrium(s) are analyzed in this
section.

Figure 11.7 depicts the percentage of game equilibriums computed for all five
iterations, in which the horizontal axis represents the solution percentage and the
vertical axis represents the payoff tolerance. As it is a duopoly game, it is highly
believed that the solution profile has the symmetric strategy for the two players (i.e.

ðSðkÞn1 ; S
ðkÞ
n2 Þ with n1 ¼ n2). That’s the reason why we only draw the symmetric

strategy in Fig. 11.7, and notify other potential solution strategies as ‘‘Others’’. In
Fig. 11.7, we observed that as the payoff tolerance increases within each iteration,
the empirical game tends to involve more equilibriums than the case under zero
tolerance. As the tolerance value is highly related with the sample size of each

Table 11.7 Strategic factors used over GSA iteration in experiments

Iteration Strategic factors Strategic
factor levels*

Iteration Strategic factors Strategic
factor levels*

1st Manufacturing L/H 2nd Advertising intensity L/H
1st Logistics L/H 3rd Raw material

inventory
coverage

L/ML/MH/H

Product safety stock
coverage

1st Pricing L/H 3rd Raw material
transportation lead
time

L/ML/MH/H

Inventory fulfillment
time

1st Marketing L/H 4th Raw material
inventory
coverage

L/ML/MH/H

Product safety stock
coverage

2nd Raw material
inventory
coverage

L/H 4th Promotion depth L/ML/MH/H

Product safety stock
coverage

2nd Raw material
transportation lead
time

L/H 5th Raw material
inventory
coverage

L/ML/MH/H

Inventory fulfillment
time

Product safety stock
coverage

2nd Promotion depth L/H 5th Advertising intensity L/ML/MH/H

*L: low, ML: medium low, MH: medium high, H: high
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profile, it is difficult to reduce the tolerance by sampling more data (sampling cost is
limited). However, the suspected solution profile with its neighborhood strategies,
which only involves roughly 8–12 data points, can be extracted out and sampled
with more data points. Another observation from Table 11.8, which conforms to
our intuition, is when the sample size enlarges from 50 to 500, the half width of
confidence interval for each potential solution payoff reduced. As the iteration
proceeds (from iteration 1 through 5), the half width of confidence interval (CI) also
decreases, which indicates the estimated equilibrium is closer to the true equilib-
rium. However, under the sample size of 500, the decreasing trend of the CI values
is not as salient as that for the case with the sample size 50 or under.

Fig. 11.7 Evolution of game equilibriums over GSA iterations
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To evaluate the game equilibrium robustness (weakness vs. strictness), a group
of 10 samples close to the estimated Nash equilibrium (its neighborhood that have
the similar payoff values with it) have been selected in each iteration. Two sample
t-tests (hypothesis testing H0 : l1 ¼ l2, H1 : l1\l2) are then performed on each
pair of selected data samples, followed by the two-tailed p-value calculation.
Figure 11.8 organizes the calculated p-values into the box-plot, in which a reduced
trend of major portion (25–75 %) and the median of data are observed over
iterations for both player A (left) and B (right). In other words, initially (iteration 1
or 2) the game equilibrium is not significantly different from its neighborhood
values; while after several iterations, the game equilibriums are almost all sig-
nificantly different from their neighborhood values (iteration 5). From the results
of box-plots, a conclusion can be made: the game equilibrium(s) evolves from
weak to strict during iterations of the GSA procedure.

Another statistical test involves the equilibrium comparisons over different
iterations. As there seems an increasing trend of equilibrium payoff over iterations,
this test helps to identify the significant differences between each pair of equi-
librium payoffs. The one-sided hypothesis testing is constructed with H0 : l1 ¼ l2,
H1 : l1\l2; and the comparisons are performed between iterations. Figure 11.9
shows the comparison results in a bar chart, where the horizontal axis numbers

Table 11.8 Comparisons of solution profiles and payoffs over GSA iterations

Iteration ES1
* ES2

* Payoff for player 1 Payoff for player 2

Sample
size = 500

Sample
size = 50

Sample
size = 500

Sample
size = 50

Mean HW Mean HW Mean HW Mean HW

1st 8 8 23967 449 23333 1257 23922 467 23265 1184
2nd 14 14 24438 450 23952 1129 24452 461 24401 1073
3rd 4 4 24854 422 25829 924 24845 441 24539 822
4th 16 16 25428 408 23778 915 25505 415 25671 841
5th 16 16 26178 397 26964 729 26305 408 28235 866

*ESi: Equilibrium for player i

Fig. 11.8 Box-plots for the p-values of two sample t-test on solution profile with its neighbor
profiles over GSA iterations: player A (left); player B (right)
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(1 through 7) correspond to comparison groups of (1 vs. 2), (2 vs. 3), (3 vs. 4),
(4 vs. 5), (3 vs. 5), (2 vs. 5), and (1 vs. 5), respectively. The one-tailed p-values of
all comparisons are listed at the bottom of Fig. 11.9. From the figure, it is observed
that every iteration improves the game equilibrium payoff with different extents,
while the equilibrium result of the last iteration (5) is significantly larger than those
of all the previous iterations.

Lastly, experiment results on game stability issues are provided in Table 11.9.
To ensure the steady state, each player was deciding its strategies repeatedly for an
extremely large amount of times (e.g. 2000 times/steps in our study). From
Table 11.9, a decreasing trend of instable area is observed through iterations 1 to 5
(from 26.17 to 14.84 %). Considering the stability set from iterations 1 to 5, the
asymptotic stability area increases from 2.34 to 69.53 %, and the marginal stability
area decreases from 71.48 to 15.63 % (iteration 4 is an abnormal case and needs
further investigation). A larger stable area brings a greater portion of points that
can eventually converge to the game equilibrium or its acceptable tolerance
region. So, the players or game analyst will have an increased confidence to
believe that the calculated equilibrium could be achieved.

In addition to the game-theoretic analysis, the proposed simulation framework
can be used to help the company managers gain useful insights through comparative
analysis. For example, Fig. 11.10 summarizes the simulation state comparisons

Fig. 11.9 p-values for comparisons of solution payoffs between iterations

Table 11.9 Comparisons of profile stability under tolerance e ¼ 1500

Iteration Ratio of AS* profiles (%) Ratio of MS* profiles (%) Ratio of instable profiles (%)

1st 2.34 71.48 26.17
2nd 14.84 57.81 27.34
3rd 21.09 58.20 20.70
4th 10.55 76.56 12.89
5th 69.53 15.63 14.84

*AS: Asymptotic Stable, MS: Marginal Stable
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Fig. 11.10 Simulation steady state comparisons of game equilibrium on player A (dotted) and
player B (solid) for different aspects between iterations 1 (left) and 5 (right)
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between equilibriums of iterations 1 and 5. Note that the horizontal axis in all figures
is the simulation run length. It is observed that the warm-up period takes roughly
40–50 days, so the simulation replication length has been set as 100 days (hori-
zontal axis) to reach the system steady state. In addition, the random noises and
disturbances are intentionally created to test how both players perform. As observed
in Fig. 11.10, although the averages of all the outputs are mostly identical, the
simulation steady state of game equilibrium in iteration 5 (right figures in
Fig. 11.10) in general is more stable and involves less variations than the one in
iteration 1 (left figures in Fig. 11.10) given the same amount of noises and distur-
bances. The weak dominance in iteration 1 is more sensitive and may change
between the two players over time depending on the disturbances. The changing
trend tends to last long, and the changing amount tends to accumulate high before
company takes appropriate actions to compensate. Under the strict equilibrium, the
dominance is shared by the two players and is not quite sensitive to the disturbances.

11.5.3 Summary of Experiments

In summary, given the duopoly case study scenario discussed in Sect. 11.5.1, as
the iteration proceeds in our experiments, the following experimental results have
been found:

1. The estimated solution payoff can reach the true solution payoff closer, which
enhances the accuracy of equilibrium results.

2. The game solution has moved from a weak to a strict equilibrium, which
improves the quality of game equilibrium.

3. The estimated payoffs for both players increase, which provides a better win–
win situation for the game.

4. The asymptotic and marginal stable profiles with respect to the game equilib-
rium are found to increase, which enhances the game stability.

11.6 Conclusions and Future Directions

In this chapter, we proposed a novel hybrid simulation model which integrates
ABS for consumer market activities and SD model for duopoly companies’ supply
chain operations. Based on the proposed model, we developed a novel GSA
procedure, which involves various components such as strategy refinement, data
sampling, game solving, and performance evaluation to resolve the simulation-
based empirical game. Then, experiments are conducted, where soft drink duopoly
scenarios are considered involving different decision variables and experimental
iterations. Experiment results have successfully demonstrated:
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• Effectiveness of proposed simulation framework in terms of integrating supply
chain operations, marketing activities, and estimating the player strategic
movement;

• Effectiveness of proposed GSA procedure in terms of achieving reduced esti-
mated errors, improvement, robustness, and stability for game equilibriums.

Future researches will focus on the following aspects. A variety of simulation
scenarios are in the list to further test the scalability issues of the proposed sim-
ulation testbed with the GSA procedure. A mathematical proof for the effective-
ness and convergence of the proposed GSA procedure will enhance the
practicability and help to adapt the approach depending on distinct conditions.
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Chapter 12
Integrating Vendor Managed Inventory
and Cooperative Game Theory
to Effectively Manage Supply Networks

M. Mateo and E. H. Aghezzaf

Abstract This chapter discusses the issue of integrating inventory and distribution
optimization together with game theory to effectively manage supply networks.
Inventory and distribution simultaneously optimization is a challenging problem
aiming at coordinating decisions related to inventory management with those
related to transportation scheduling. This problem is known as the inventory
routing problem (IRP) and is an underlying optimization model for supply net-
works implementing a vendor managed inventory (VMI) strategy. Game theory,
and in particular cooperative games, involves several decision-makers willing to
coordinate their strategies and share the payoff. In particular, coalitions of deci-
sion-makers can make binding agreements about joint strategies, pool their indi-
vidual payoffs, and redistribute the total in some specified way. In a supply and
distribution context, the manager of a franchising business must decide how much
inventory to carry. Naturally, the manager of each sales-points wishes to carry an
as low as possible amount of inventory and at the same time have enough
inventory to cover all demand and not miss any potential sale. One possibility to
achieve these two contrasting goals is to allow cooperation among the sales-points
and trade the product at some fair price. Sales-points with an excess inventory may
want to sell that surplus to other sales-points in the same cluster or coalition, facing
a larger than expected demand. The game consists in determining clusters of sales-
points which are willing to cooperate, a fair trade-price, and inventory quantities to
be carried by each sales-points to minimize the total costs and maximize the total
sales. In other models, the total cost of transportation between a depot and a set of
customers must be divided among them and the game considers the synergies in
the determination of the individual costs.
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Keywords Supply chain optimization � Distribution systems � Vendor managed
inventory � Game theory � Inventory routing problem

12.1 Introduction

Supply chain management is concerned with efficient and effective integration of
suppliers, manufacturers, warehouses, and retailers, so that an improved global
performance of the supply network can be achieved. In this chapter, we discuss
some questions related to the integration of inventory management and distribution
together with cooperative game theory. This challenging issue aims at coordi-
nating decisions related to inventory management with those related to transpor-
tation scheduling while allowing cooperation among the various nodes of the
supply network. Vendor managed inventory (VMI) is one of the effective strate-
gies used to coordinate inventory and distribution. The inventory routing problem
(IRP) is an underlying optimization model for the VMI. It involves the integration
and coordination of the inventory management and the vehicle routing functions in
the supply network. The IRP involves the distribution of some product from a
given facility to a set of sales-points, warehouses, stores, etc., over a given
planning horizon. We assume throughout this chapter that each sales-point uses or
consumes the product at some given rate, which may or may not be constant. Each
sales point can maintain a limited amount of inventory of the product, called here
local inventory. A fleet of vehicles of same or different capacities are available for
the distribution of the product. A typical main objective is the minimization of the
total distribution cost during the planning horizon without causing a stockout at
none of the sales points.

Game theory can be viewed as an interactive multi-agent decision-making
approach. It deals with situations where decision-makers with different competing
goals try to take into account others’ actions in deciding on the optimal course of
action. Game theory is divided into two branches, non-cooperative and cooperative
games. In this integrated inventory and distribution management context, we
consider cooperative games. We assume that some of the involved decision-
makers are willing to cooperate and redistribute the resulting total profit or part of
it among them. In a franchising business, for example, managers of the involved
sales points must decide how much local inventory to carry. In this typical context,
each manager wishes to carry an as low as possible amount of local inventory and
is, at the same time, reluctant to miss any potential sale. Therefore, a possible
strategy to achieve this goal is to introduce cooperation among similar sales-
points. They can trade the product among them at some fair price. Thus, a sales
point with an excess inventory may want to sell that surplus to other sales points,
in the same cluster, experiencing a larger than expected demand. The game con-
sists in determining clusters of sales points which are willing to cooperate, a fair
trade-price, and inventory quantities to be carried by each sales points so that the
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total cost is minimized and the total sales is maximized. The solution approach
consists of developing an inventory and routing planning which allows each sales
point to be optimally replenished and at the same time building clusters of sales
points willing to cooperate to assure that a smaller possible amount of potential
demand is lost.

12.2 Integrated Supply Chain and Related Optimization
Problems

Over the past decades, supply chain management (SCM) has been an area of
constant progress. A basic idea behind the concept of supply chain or network is a
system of facilities and activities that work together, in an effective way, to
acquire, produce, and distribute goods to final customers or users. SCM is then
basically a set of approaches utilized to efficiently integrate suppliers, manufac-
turers, warehouses, and retailers, so that merchandise is produced and distributed
in the right quantities, to the right locations, and at the right time, while mini-
mizing the system-wide total cost (or maximizing total profit) and satisfying
service level requirements (see Shen 2007; Simchi-Levi et al. 2000). The overall
goal of SCM is to integrate organizational units and coordinate flows of material,
information, and money so that the competitiveness of the supply chain is
improved (Stadtler and Kilger 2005). Such integration of material and information
flows at various stages of the supply chain becomes more and more conspicuous in
the implemented managerial strategies. This integration perspective shifts tradi-
tional relationships among the various supply network components from loosely
linked independent production units toward a more managerially coordinated
network of collaborating production units, to improve the overall efficiency and
assure continuous improvement (Bowersox et al. 2002).

The supply chain provides thus a framework within which logistics strategies
are to be developed and executed. Logistics includes all activities related to the
movement of material and information between the various units of a supply chain.
Logistics can essentially be viewed as a planning approach that seeks to create a
single global plan for the flow of product and information throughout a supply
network (Christopher 1998). SCM then builds upon this global planning approach
and seeks to achieve the coordinations between these logistical processes. An
important goal in logistics and SCM is to eliminate or reduce to its minimal level
the inventory at and between suppliers and customers, through information sharing
on demands and current on-hand stock levels for example. A possible strategy to
achieve this goal, for example, is allowing the supplier to take responsibility for
the replenishment of the customers’ inventory instead of waiting for the customers
to place orders. Thus, on the basis of information related to their sales, their current
inventory levels, details of any other marketing activities, and so on, the supplier
replenishes their inventory accordingly. This is the well-known concept of
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‘‘Vendor Managed Inventory’’ (VMI) (for more details on VMI see for example
Christopher 1998; Waller et al. 1999). VMI is an agreement between a vendor and
his customers according to which customers agree to the fact that the vendor
decides the timing and size of the deliveries. Compared with the traditional
nonintegrated inventory replenishments and distribution plans, overall inventory,
and distribution performances throughout the supply chain are by far superior
when VMI is implemented. VMI is thus a win–win partnership for both the
vendors or suppliers and their customers. The advantage to the customers is that
the risk of stockouts reduces drastically, while they do not have to make great
efforts on inventory management. As a consequence, this decreases significantly
their inventory related costs. On the other hand, vendors can realize significant
savings on distribution-related costs by being able to better plan and schedule
product deliveries, as a result of a direct access to detailed information on actual
product usage by their customers.

Under the VMI policy, the complex task of developing a distribution plan,
which guaranties that the customers are never in stockout while minimizing at the
same time the total inventory costs and realize potential savings in distribution
costs, arises. Thus, decisions of both inventory management and transportation
scheduling are to be integrated. Since the integrated distribution plan consists of
controlling inventory and developing optimal routes for the transporters, this
problem is known as ‘‘Inventory Routing Problem’’ (IRP) in the literature. The IRP
is one of the challenging optimization problems in the design and management of
supply and distribution networks. It also provides a very good starting point for
investigating the integration of different components in logistical and supply
networks, for instance technology and planning integration, internal integration,
material and service supplier integration, which are traditionally dealt with sepa-
rately. Such integrations are expected to lead to some important improvements in
logistics and SCM.

In general, the main objective in the IRP is to design vehicle routes and
determine delivery quantities that minimize transportation costs while controlling
inventory costs. Dror and Ball (1987) defined this problem in the following way:
‘‘the IRP is a distribution problem in which each customer maintains a local
inventory of a product such as heating oil or methane and consumes a certain
amount of that product each day. Given a central supplier, the objective is to
minimize the annual delivery costs while attempting to insure that no customer
runs out of the commodity at any time’’. Clearly for an IRP, the practitioners have
to make decisions simultaneously on the following three aspects: the time and
frequency of replenishment, the quantity to be delivered to each customer, and the
delivery routes. The first two problems are related to inventory control, whereas
the last one corresponds to routing and distribution. As a consequence, the IRP can
be seen as an extension of the well-known vehicle routing problem (VRP). Often
the context of the VRP is that of using a fleet of vehicles, with limited capacity, to
deliver goods located at a central depot to customers who have placed orders for
such goods. The objective is usually to minimize the cost of distributing the goods,
while satisfying all possible side-constraints that are imposed on the problem.
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One can see that the IRP differs from traditional vehicle routing problem because it
is based on customers’ usage of the product rather than customers’ orders
(Campbell et al. 1998; Tempelmeier 2011). Recently, a thorough research has been
conducted in the inventory routing problem. Many variants of the IRP can be
found in the literature, ranging from deterministic to stochastic models. In this
chapter, the IRP is studied as an underlying optimization model for the VMI
policy. In particular, the case when customer-demand rates are assumed to be
known and relatively stable and the developed distribution plan can be executed on
a periodic basis. This problem is called the cyclic inventory routing problem
(CIRP). To gain a better understanding of the general CIRP, the subsequent section
provides a review and an introduction to this model, and discusses a column
generation-based heuristic which can be used to solve the problem.

12.3 The Inventory Routing Problem

The Inventory Routing Problem (IRP) is typically concerned with the repeated
distribution of a single product (SKU, i.e., stock-keeping unit), from a single
facility to a set of customers over a given planning horizon, that can possibly be
infinite. The customers consume the product at a given rate and have the capability
to maintain a local inventory of it. A fleet of vehicles of same or different trans-
portation capacities is available for the distribution of the product. The objective is
to minimize the total distribution and inventory costs during the whole planning
horizon without causing any stockout at none of the customers.

As already mentioned, the IRP can be seen as an underlying optimization model
for the VMI strategy involving integration and coordination of the inventory
management and vehicle routing components in a logistical chain. Over the past
decades, various models for IRP have been proposed and studied by different
researchers. Noticeably, the IRP defined above is deterministic due to the fact that
the customers’ consumption rates are assumed to be known and relatively stable.
However, if we consider the issue of coordinating inventory control and trans-
portation scheduling from a practical point of view, stochastic models might better
describe many real-life cases. Actually, the literature of IRPs tends to classify the
IRP models according to four key characteristics, as introduced below (see for
example Shen 2007):

• length of the planning horizon, which may be either finite or infinite;
• demands, which can be either deterministic or stochastic;
• fleet size, i.e., the number of available vehicles, which is either limited or

unlimited;
• number of customers visited on a vehicle trip, which some models limit to be

one whereas others allow multiple customers on a single route.

Both Kleywegt et al. (2002) and Adelman (2004) offer an excellent classifi-
cation of the IRP models using the above four categories. More recently,
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Andersson et al. (2010) carried out a detailed description and a comprehensive
classification of the IRP models. Beyond the listed above four characteristics that
are usually used to study similarities and differences between different IRP models,
the authors also have introduced extra dimensions to reflect the focus on industrial
aspects, such as the topology of the problem, in which three modes may be
discussed: one-to-one, one-to-many, and many-to-many. In particular, they clas-
sified the regular IRP models in the literature according to the length of the
planning horizon into instant, finite, and infinite planning horizon problems.

The cyclic inventory routing problem (CIRP) belongs to the class of infinite
planning horizon IRP. For this class of problems the appropriate objective function
to be minimized is the long-run average distribution and inventory management
costs. In brief, this particular IRP considers a special case, in which a single
distribution center, supplying a single product, serves a set of customers imple-
menting economic order quantity-like policies to manage their inventories. Each
customer is served by an assigned vehicle in a cyclic manner and in such a way
that at no moment a stockout should occur at the customer. Demand rates at the
customers are assumed to be stable and their averages are known to the supplier.
The objective is to minimize total fleet operating, inventory holding, and distri-
bution costs over a determined planning horizon. In this section, we review the
model for this CIRP, proposed in Aghezzaf et al. (2006), as well as the model for
its resulting subproblem when using a column generation-based approach to solve
the CIRP. This model is a variant of the general IRP problem, where distribution is
planned, in a cyclical way, from multiple distribution centers, denoted by rk

(k = 1,…, p) to a set of sales points S (i = 1,…, n). Each sales point i in S has a
demand rate di, given in units per unit of time. A fleet of homogeneous vehicles
V having capacity j are used to supply these sales points.

12.3.1 The Mixed Integer Formulation of the Problem

In case of a single depot r, the natural mixed integer formulation of the problem
proposed in Aghezzaf et al. (2006) is based on the following assumptions:

1. The time necessary for loading and unloading a vehicle is relatively small
compared with travel times, and it is therefore neglected.

2. Inventory capacity at the sales points is assumed to be large enough, so cor-
responding capacity constraints can be omitted from the model.

3. The travel costs are assumed to be proportional to the travel times, so we only
use a parameter d that indicates the cost per hour of travel.

Let tij (in hours) denote the duration of the trip from sales point i 2 Sþ ¼
S [ rf g to sales point j [ S+. Also, let ui and gi denote, respectively, the inventory
fixed ordering and holding costs at sales point i. The fixed operating and main-
tenance costs of vehicle v [ V (in Euro per hour) is denoted by wv. The solution of
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the problem consists of replenishing sales points assigned to each vehicle
v [ V during related cycle time.

The model variables are:

• xv
ij: A binary variable assuming 1 if the sales point j is served by the vehicle

v immediately after the sales point i; and 0 otherwise.
• yv: A binary variable assuming 1 if the vehicle v is used; and 0 otherwise.
• zv

ij: The sum of demand rates (units per hour) of remaining sales points in a tour
covered by vehicle v when it travels to a sales point j immediately after it has
served sales point i. This quantity equals zero when the trip (i, j) is not on any
tour made by vehicle v.

• Tv: The cycle time (in hours) of the multi-tour made by vehicle v. It must be
strictly positive to avoid division by zero in the objective function.

The initial nonlinear mixed integer formulation of the IRP:
IRPIP: Minimize
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The constraints (12.1) make sure that each sales point is served by one and only
one vehicle. Constraints (12.2) assure that a vehicle assigned to serve a sales point
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will serve this point in and will leave to a next sales point. The constraints (12.3)
indicate that the cycle time of a vehicle should be greater than or equal to the total
time it has to travel. It includes the duration of all tours made by the vehicle. The
constraints (12.4) assure that the cumulated demand rates, per hour, of the
remaining sales points in the tour carried by the vehicle v [ V serving the sales
point j [ S is reduced by the demand rate dj when the vehicle leaves this sales
point. Constraints (12.5) make sure that a vehicle can only leave the distribution
depot r to make a voyage if it is being used. The constraints (12.6), which are
nonlinear, are vehicle capacity restrictions. Constraints (12.7), finally, assure that
zv

ij cannot carry any cumulated demand rates unless xv
ij equals 1.

12.3.2 Possible Solution Approaches

In the following, we summarize the approximation algorithm which was proposed
to solve this model (see Aghezzaf et al. 2006). The obtained solution forms the
basis for the clustering of the sales points. Cooperation is then brought in each
cluster to minimize the costs related to inventory and allow for an efficient
management of the total inventory at the cluster’s level. The approximation
algorithm is a column generation framework in which the subproblem generating
the vehicle multi-tours is solved heuristically. More specifically, the subproblem is
solved using a heuristic which extends the savings-based heuristic used to solve
the vehicle routing problem.

A multi-tour v is defined by the binary matrix Xv, the matrix Zv, and the
parameter Tv such that xij

v = 1 if multi-tour v contains a trip that visits the sales
point j immediately after it has visited the sales point i. The cost rate of the multi-
tour v can be computed as follows:

Kv ¼ wv þ 1
Tv
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Let PV be the collection of all possible multi-tours described by (Xv, Zv, Tv)
satisfying the required restrictions, then IRP can be reformulated as follows (called
as IRPMG):

IRPMG : Minimize
X

v2PV

Kv wv ð12:8Þ

Subject to:

X

v2PV

X

i2Sþ
xv

i;j

 !
wv ¼ 1; for all j 2 S

wv 2 0; 1f g; for all v 2 PV

ð12:9Þ
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This new problem seeks the best combination of multi-tours (wv = 1 if the
multi-tour v is selected, and 0 otherwise) which covers the sales points while
minimizing the total cost. This problem IRPMG is the master problem in the
column generation process. As the number of possible columns is typically huge,
an efficient procedure of generating columns is necessary to determine the set of
suitable multi-tours to consider in the problem IRPMG so that it reaches a near
optimal solution as fast as possible. This multi-tour generation, called procedure
P1, is summarized below:

1. Initially, a list of multi-tours PV is created with the |S| ‘basic’ multi-tours, i.e.,
those visiting one and only one sales point.

2. The linear programming relaxation of problem IRPMG is solved.
3. From the solution of the LP-relaxation of problem IRPMG, dual prices kj for

each j [ S, associated with constraints (12.9), are generated.
4. An attempt to determine a new feasible multi-tour with a negative reduced cost

is launched. If such a multi-tour is found, it is added to the list PV and the
process returns to step 2. If there is no such multi-tour, the LP optimal solution
is reached and the process moves to step 5.

5. Problem IRPMG is solved (PV is the set of all feasible multi-tours which are
generated) to provide the final solution.

To determine the feasible multi-tour with the least reduced cost, a multi-tour-
generator subproblem IRPSP must be solved. This can be done with an extended
savings-based heuristics (for more details see Aghezzaf et al. 2006, or Raa and
Aghezzaf 2009). Below we provide some information of this subproblem known
as single vehicle cyclic inventory routing problem (SV-CIRP).

Another approximate model for the IRP is a multi-period inventory routing
problem (MP-IRP) where the customers are assumed to consume the product at
deterministic and constant rates. The MP-IRP considered here is concerned with a
distribution system using a fleet of vehicles to distribute a product from a single
depot to a set of customers having deterministic and constant demands. The dis-
tribution policy is executed over a given finite horizon, for example on a set of
consecutive periods (or days). The objective is then to determine the quantities to
be delivered to the customers, the delivery time, and to design the vehicle delivery
routes, so that the total distribution and inventory costs are minimized. Here also,
the resulting distribution plan must prevent stockouts from occurring at all cus-
tomers during the given planning horizon.

A possible solution approach for this problem is the use of Lagrangian relax-
ation. Lagrangian relaxation was developed in the early 1970s with pioneering
work of Held and Karp (1970, 1971) on the traveling salesman problem. It is now
one of the most prevalent techniques for generating lower bounds to use in
algorithms to solve combinatorial optimization problems. Lagrangian relaxation
involves attributing Lagrangian multipliers to some of the constraints in the for-
mulation of the problem and relaxing these constraints into the objective function,
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and then solving the resulting subproblems to determine a lower bound on the
optimal solution to the original problem.

In a possible implementation of Lagrangian relaxation for the MP-IRP, the
delivered load constraints can be assumed to be the complicating constraints.
Along the same lines as in Zhong and Aghezzaf (2012), the relaxed problem
decomposes into an inventory allocation subproblem and a vehicle routing sub-
problem. These subproblems involve fewer variables and constraints, respectively,
and they can be solved more efficiently than the original problem. The structure of
this Lagrangian relaxation approach is shown in Fig. 12.1. A thorough discussion
of this approach can be found in Zhong and Aghezzaf (2012).

12.4 Game Theory and Supply Chains

Borm et al. (2001) surveyed the research conducted on cooperative games asso-
ciated with several operations research problems involving various decision-
makers. These decision-makers, also considered as cooperating players, face
together a common optimization problem for which they seek a solution that
minimizes some total joint cost. Afterwards, once the solution for this cost opti-
mization problem is obtained, the decision-makers face an additional supple-
mentary problem related to the allocation of the resulting total cost. This allocation
consists of determining how to distribute this joint total cost among the involved
individual players. The problems tackled are classified according to their nature.
Routing and inventory are among the treated problems. However, they are not
considered simultaneously as is the case in this chapter.

Game theory can also be adapted to the distribution problems within the context
of the supply chains. The usual design of an inventory system is hierarchical,
because the transportation flows connect an element in an echelon with another in
the next echelon of the supply chain. In a three-echelon supply chain, flows can
stream from manufacturers to wholesalers and then from wholesalers to retailers.
The flows between elements of the same echelon provide more flexibility to the
supply chain or network. The members in the same echelon of the supply chain can
pool their inventories in order to achieve a good balance or trade-off between low
inventory levels and good service levels. An obvious alternative to avoid losing
sales opportunities is to hold an important amount of stock to cover demand peaks,
however this comes with an overstocking cost. Nevertheless, these overstocking
costs can be overcome through the use of game theory.

The cooperation mechanisms can be developed at different levels, according to
the targeted coverage of the demand peaks. If a demand increase is experienced
only in few contained sales points of some area, the cooperation between the sales
points in that same area can take place. However, if the demand increase is
experienced in a large geographic area, all the sales points will experience the
same demand increase and the cooperation will become difficult if not possible. In
this case, an alternative would be to define the cooperation game rather at the level
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Fig. 12.1 Overview of the Lagrangian relaxation approach
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and between distribution warehouses. Therefore, the cooperation that is intended
for solving local inventory management problems can be extended to similar
situations considering elements of the same level in the supply chain.

Mateo et al. (2012) integrated game theory and a distribution problem to
maximize the sales opportunities of the company under variables demand rates.
The basic idea is the creation of cooperating cells. A typical cooperating cell
includes sales points which are located within some delimited geographic area and
are willing to cooperate. Thus, different groups of sales points will be created over
the territory and the cooperation within each group of sales points can be seen as a
local cooperative game. In fact, this leads to a practical and realistic solution.
When a sales point has not enough stock available, extra inventory of the closest
sales points could be used as a solution to ensure as shorter as possible stockout
duration. In a franchising company, this fact is very coherent with the franchising
culture, which aims at establishing some cooperation between its franchisee sales
points. Arshinder et al. (2008) showed that when a franchising company takes the
responsibility for managing inventory of its sales points, several advantages are
observed. In particular, inventory levels decrease and response times to demand
decrease.

Cooperative game theory also studies games in which selfish players collabo-
rate to increase their benefits. Özener (2008) considered the cooperative game
consisting in a replenishment cost allocation problem of the VMI. As VMI
replenishment is collaboration between a supplier and its customers, the problem is
how allocate the distribution costs incurred by the supplier among its customers.
The simplest methods ignore relations between the customers, due to their loca-
tions, usage rates, and storage capacities. As a result, the price charged to a
customer for distribution is not representing the actual cost of that customer’s
service. Although the customers do not form coalitions in this VMI problem, the
mechanism to compute the cost-to-serve for each customer is equivalent to a cost
allocation method for the Inventory Routing Game (IRG). The customers represent
the players and the optimal objective function value of the IRP is the characteristic
function value of the game. Cost allocation in routing and distribution problems
has rarely been present in the literature. Up to Özener (2008), no published work
had addressed the issue of allocating cost of an IRP. Nevertheless, there are closely
related analyses on the traveling salesman game (TSG) and the vehicle routing
game (VRG).

The TSG considers the problem of allocating the cost of a round trip among the
cities visited. Depending on the game, a home city may not be included in the set
of players. The VRG considers the problem of allocating the cost of optimal
vehicle routes among the customers served. Cost allocation methods studied in the
literature for these related problems, such as TSG and VRG, do not have to deal
with the time or inventory components of the problem and hence cannot be applied
directly to IRG.

The benefits of collaborative decision-making in a supply chain have also been
extensively studied. Lau et al. (2008) argued that a better coordination of supply
chains (distribution can be considered a part of the chain) is achieved with an
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appropriate choice of inventory management policies. The higher the level of
information sharing, the more efficient the supply chain performs. Zhang and
Zhang (2007) used a simulated supply chain to quantify the profit generated by
sharing information on demand. Wu and Cheng (2008) defined three levels of
information sharing to implement VMI and improve efficiency in logistics chains.
Southard and Swenseth (2008) examined the effectiveness of VMI in various non-
traditional contexts, and found that sufficient economic benefits could be achieved
with the use of a technology-enabled VMI.

In an inventory system, lateral transshipments are stock movements between
locations of the same echelon (Paterson et al. 2011). The transshipments can be
held periodically at predetermined times to proactively redistribute stock or to
reactively meet the unsatisfied demand from the stock on hand. Several models for
different systems have been considered. Hu et al. (2005) developed a model for
several stocking locations, which can be used to approximate ordering policies.
They conclude that transshipments are effective to reduce inventories if the
transshipment cost is smaller than the holding and stockout costs. The model
assumes that transshipments are free and instantaneous. Kukreja and Schmidt
(2005) extends this model for compound Poisson demand processes and (s,
S) replenishment policies, for which they propose a simulation-based method. The
most common works are based on the optimal transshipment policy between a
supplier and a set of retailers. For instance, Minner and Silver (2005) show an
application where an (s, q) policy is used for replenishing stock. Whenever the
inventory reaches or falls below the reorder point s, a batch of size q is ordered
from the depot or the supplier.

Transshipments are used in the literature in response to stockouts in one-for-one
replenishment policies (Grahovac and Chakravarty 2001), continuous review
replenishment policies (Minner et al. 2003; Kukreja and Schmidt 2005) and
periodic review replenishment policies (Zhao et al. 2006; Archibald et al. 2010).
Models of retail networks with periodic replenishment often assume simultaneous
replenishment of all locations (Cao and Silver 2005; Herer et al. 2006; Archibald
et al. 2009). However, in Zhao et al. (2006) a location has no information about the
inventory level at other locations in the network.

Concerning to the proactive lateral transshipments, Paterson et al. (2011) dif-
fered two cases: the standalone redistribution, without replenishments, and the
redistribution combined with replenishments. In the standalone redistribution,
Banerjee et al. (2003) and Burton and Banerjee (2005) compared the performance
of a proactive redistribution policy and a simple reactive transshipment method.
The supply at each location is leveled with a redistribution policy called trans-
shipment inventory equalization (TIE). On the other side, in a reactive policy
called transshipment based on availability (TBA) transshipment is done in case of
shortages and prevents a stockout. Both studies underline how the overall objec-
tives can influence the suitability of transshipment policies. They assume that
replenishment orders are placed according to a periodic base-stock policy, where
the period is set equal to 20 days and the order-up-to level is equal to the average
demand during lead time plus review period.
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If redistribution is combined with replenishments, the optimal period for
redistribution is difficult to determine. For instance, Tagaras and Vlachos (2002)
demonstrated that the redistribution benefits have a great influence on the per-
formance of the policy when demand is highly variable. They specially focus on
the sensitivity of the policy based on the variability within the demand distribution.
They consider non-negligible transshipment times in a two location system. The
redistribution point using simulation is optimized and they conclude that pre-
ventive transshipments are generally beneficial.

About the reactive lateral transshipments, Paterson et al. (2011) considered
centralized and decentralized systems. In a two echelon centralized system several
ways can be performed to satisfy stockouts through emergency stock movements.
One of them is the lateral transshipments, but sometimes emergency shipments
from the central warehouse are also valid. Wee and Dada (2005) worked on this
problem with several combinations of transshipments and proposed a method for
deciding which emergency stock movement is optimal under a set of
circumstances.

In a decentralized system, each stocking point operates to meet its own goals.
Slikker et al. (2005) studied when independent vendors benefit by cooperating as a
grand coalition. They modeled the problem as a general newsvendor situation with
N retailers. It is shown that retailers’ cooperation may always achieve a higher
profit, using a game theoretic approach, as no retailer has an incentive to leave the
grand coalition. In this study, transshipment costs are not included.

Rudi et al. (2001) considered how cooperation can be established in a news-
vendor type model with a manufacturer and two retailers. Transshipment prices are
determined in advance by an accepted authority, for example by the manufacturer.
Rudi et al. (2001) showed that there exists a Nash equilibrium for the ordering
quantities, and that the joint profit is generally not maximized at this equilibrium.
Hu et al. (2007) focused on dealing with linear transshipment costs. An extension
of this model to N retailers, where the price is based on the dual of the trans-
shipment problem, is worked by Anupindi et al. (2001). It is shown that this rule is
always in the core of the corresponding transshipment game. Game theory can be
adapted to this distribution problem in order to maximize the sales opportunities of
the company under varying demand rates and to increase its revenues (Chan and
Lee 2005; Ghiani et al. 2004). When a subset of players, which is called a coalition
of players, use a mechanism to work together in order to reduce their costs, the
problem turns into an IRG.

Özener (2008) defines the IRG as a cooperative game where the supplier has to
serve the n customers that are the players in the game. The set of all the customers
N is the grand coalition of the game and any subset S , N of the customer
becomes a coalition. The characteristic function c(S) is the optimal average
transportation cost of the IRP with a given set of customers S, also members of a
cooperative cell, over the planning horizon and c(N) is the total cost of the grand
coalition. He assumes that the number of trucks to serve any subset of the cus-
tomers is enough. The cost allocations for the IRG represent the cost-to-serve
values for the customers.
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As mentioned above, Slikker et al. (2005) deal with the problem of a general
supplier situation with m retailers and analyze the benefit of independent vendors
from cooperating. Using a game theoretic approach, it is shown that if retailers
cooperate they can achieve a higher profit. No retailer has an incentive to leave the
coalition. They clearly illustrate that centralized ordering and transshipments can
also be positive for decentralized systems. In a similar way, Hu et al. (2007)
consider a model with one manufacturer and two retailers. They establish some
conditions derived for the existence of transshipment costs which induce retailers
to make jointly optimal decisions, i.e., cooperation.

Two fundamental concepts in cooperative games are the nucleolus and the
Shapley value. According to Schmeidler (1969), nucleolus is the value that lexi-
cographically maximizes the minimal gain, the difference between the standalone
cost of a subset and its coalition cost, over all the subsets of the collaboration. If
the core is non-empty, the nucleolus is included in the core. Nucleolus may still
exist when the core is empty when a cooperation cost is balanced and the cost
assigned to each player is less than or equal to their standalone costs. Another
well-known cost allocation method is the Shapley value, which is defined for each
player as the weighted average of the player’s marginal contribution to each subset
of the collaboration (Shapley 1953).

In IRG, TSG, and VRG, computing the characteristic function value for a given
coalition requires solving an NP-Hard problem and calculating generic cost allo-
cations such as the Shapley value is impractical since it requires considering
explicitly an exponential number of subsets. Due to the decisions on the delivery
volume and the fact that IRP is a multi-period problem, there exist practically an
infinite number of feasible distribution patterns and so computing the exact
characteristic function value is very challenging even for small instances of the
problem.

Finally, Granot and Sosic (2003) showed that even if retailers can decide how
much to share, it may happen that no residual inventory is distributed and no
additional profit is reached.

12.5 Applications

In this section, we present and discuss two applications using collected data,
similar to case studies, such as that of Gaur and Fisher (2004) which considers a
periodic IRP at a supermarket chain. We will concentrate on the stream of liter-
ature focusing on cooperative game theory in the IRP problem.
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12.5.1 Case Study 1: Cooperation in the Wine Distribution

12.5.1.1 General Description

The case discussed in (Mateo et al. 2012) is that of a leading retailer of wine and
liquor. Its business model is based on franchising with more than a thousand stores
scattered all over the country. These specific stores represent approximately 30 %
of the sales. This percentage is subdivided as follows: 14 % is distributed through
the sector of retail chains, 10 % is distributed to independent groceries, and the
rest is distributed to independent sales points specialized in wine products. When
the work was done, the company sold as much as 3.5–4.2 % of the total amount of
wine sold in UK. The study analyses the distribution of a single product from the
local warehouse of the company to each one of the franchised stores. The special
product is distributed to some 116 sales points scattered over some 49 cities. For
the distribution of the product a fleet of exclusive vehicles is used. The fleet is
composed of three vehicle categories: vans of 1.5 tons, trucks of 3 tons, and trucks
of up to 10 tons.

A van of 1.5 tons is usually used to serve sales points with low demand. A truck
of 3 tons has a capacity of 4 pallets and is used for sales points at short-distances,
with limited load and frequent trips, from the distribution center. Trucks of up
to 10 tons compose the largest category in the fleet, with capacity from 6 to 12
pallets. To assign a cost to intermediate trucks (between 3 and 10 tons), a 5 % on
the fix cost and a 10 % on the variable cost is discounted. The standard pallet used
throughout the paper is the British pallet (1.2 9 1 m). The 1.2 m side is used for
the vehicle width (allowing a maximum of two pallets). The capacity in pallets of a
truck is determined by its length. This capacity is given by 2 pallets multiplied by
the length of the truck in meters). The largest vehicle carries 12 pallets.

12.5.1.2 Theoretic Base

The main parameter is the inventory (in the first application presented will be the
number of bottles) required by a ‘cooperative cell’ to solve possible stockout
problems of its m sales points G = {1,…, m}. Let us denote by f the total number
of required bottles. The set of service providers, the sales points in the cooperative
cell, are the n players in the ‘cooperative game’ and is denoted by N = {1,…, n}.
The offer of services of the players (offer profile OPi by each i [ N) is the number
of bottles that each sales point i [ N is willing to hand over. This value depends on
the dimension of the sales point and the forecasted demand. Therefore, there is a
cooperative game problem on the demand, which is denoted by X = (N, G, OP, f),
for each group of sales points in N. For this collaborative game, the core may be
empty. In a stable behavior, the cost of the cluster should be less than or equal to
the cost of an individual behavior.

278 M. Mateo and E. H. Aghezzaf



In order to give to the sales points an incentive to cooperate, the agents come to
an agreement that bottles for a collective usage will be sold at higher price in such
way that a third part of the total benefit is for the sales point which is handing over
the bottle. The profit for each possible coalition is computed sequentially. First, the
sales points are considered as isolated (m = n = 1), with a nil profit as no bottle
can be handed over if the sales point is alone. Then, the coalitions of two sales
points are considered (m = n = 2), then coalitions of three sales points, and so on.

The procedure that applies the principles of the game theory runs as follows:

1. The total number of bottles which can be supplied by all sales points in the cell
is computed.

2. The number of bottles that can be distributed (lower value between the supply
and demand) is determined.

3. If the total supply is larger than demand, the demand will be distributed.
Otherwise, if the total demand is larger than the supply, the number of bottles is
limited to the supplied amount. The Shapley values are considered to be split
among the members of the cooperative cell.

Thanks to the existence of the cooperative cell, an additional number of bottles
can be sold and generate an extra common profit (Wong et al. 2009). In this case,
once heard the opinion of the managers, this extra profit is split by the franchising
company in three parts: two-third for the sales points that receives the tranship-
ment and one-third for the supplier sales point (Vinyes 2007). Obviously, other
distributions could be taken into account, but they were not tested.

In addition, there is an additional term that is subtracted to this profit. If a seller
has a single bottle at the end of a period, he will have a greater fear to put it for
cooperation, as he might be losing two-third of the profit in case the possibility of
selling this bottle appeared. On the other hand, if a sales point has a larger number
of bottles at the end of the same period, the fear to put some or all of them at the
community’s disposal is smaller as he may think that it might be difficult to sell all
these bottles. So, due to this factor, the coalition with sales points assignors and
only one bottle in stock will give a low global profit. The value 2.2 in the function
expresses this fear and is empirically defined, i.e., from a practical point of view.
After testing several values, it shows the practical limit between cooperation and
no cooperation. Therefore, the profit function (per period) for coalition N has the
following pattern:

t Nð Þ ¼ 1�
X

i2N

1
2:2þ Exchangei

� �" #
profit Nð Þ

where profit (N) is the benefit of the total interchanged bottles for coalition N.
Known this coalition profit, the Shapley value of all included sales points is

determined. These values indicate the percentage or weight that each sales point
has into the global coalition profit and, therefore, they will be the first to give or
receive bottles. The Shapley value is an approach to fairly allocate the gain
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obtained by cooperation among several sales points, being ui (v) the value for
sales point i. The amount that each sales point gets is given by Shapley (1953):

ui tð Þ ¼
X

S�N� if g

Sj j! Nj j � Sj j � 1ð Þ!
Nj j! t S [ if gð Þ � t Sð Þ½ �

In that analysis only small groups of sales points are considered. This means
coalition of up to four sales points (m = n = 4; 2 B |N| B 4). The profit is
computed for any possible cooperation of four sales points taken from one up to a
single group of four, and the one that maximizes the extra profit is selected.

12.5.1.3 Results of the Cooperative Game

First, the tour design minimizes the distribution cost. The tours are designed using
a multi-tour heuristic for the IRP. The objective is to minimize the distribution
costs with shorter cycles going through the distribution center and serving the
client more frequently. The stock at each sales point is controlled by taking into
account the forecasted demand and the frequency of the planned visits. A normal
distribution is considered for the demand at each shop. The deviation as high as the
clients’ requirements are not exactly known. Therefore, a demand per time period
is simulated at each shop. Since demands are assumed to follow a normal distri-
bution with a constant average, theoretically after some time all sales points in a
cell would have handed over and received the same number of bottles. In order to
communicate each one’s demands and offers, the time period is decided among the
members of the cooperative cell. The study establishes it in twice a day or 4 h, i.e.,
half labor day.

In the tour design, it was assumed that the demand of sales points is the same
and is constant. If it were assumed to be variable, the distribution problem would
vary because the tours would differ each time, which sometimes is considered an
inconvenience.

The model used for the problem is simplified assuming that it would provide a
valid solution in mid and long term. Table 12.1 shows an example of such a
simulation. The demand at each sales point is generated from a normal distribution
with a mean of five bottles and a standard deviation of 2.5. Once determined, the
generated values for the demand and a forecasted stock for each sales point, a
bottle excess or shortage is defined for each sales point (Table 12.1), and the
Shapley values are generated (Table 12.2). This value gives some indication about
the potential extra profit that the sales point contributes for any coalition in which
it participates.

In the simulation for a subset of 116 sales points, the additional bottles represent
11 % of higher sales with respect to the quantity without any cooperation. If the
results are extrapolated to the whole set of sales points and the number of days per
year, the following results are obtained:
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• Year sales with cells in the company: 3,825,158.05 €
• Year sales without cells in the company: 3,422,399.43 €
• Extra profit per year: 402,758.62 €.

Clearly, the cooperation between subsets of sales points helps achieve the sales
objectives fixed by the company. Therefore, its implementation is recommended.

In order to determine the ideal routes or tours, the algorithm can be used for
different kinds of vehicles and their capacities. Thus, known the routes, it is
necessary to decide how many vehicles will be used to supply each sales point
with the desired frequency. Taking into account these values, the global cost of the
distribution on the geographical zone is calculated.

In the paper, only one product is considered. For all sales points, the demand of
bottles each 4 h is about 575. The van, the smallest mean of transport, can
transport 1,800 bottles. Therefore, the solution is made of tours which can be
obtained by some TSP heuristic. All vehicles of the company can supply the
demand of the sales points using less than 50 % of their capacity. As the capacity
is not an active constraint, the cheapest transportation mean, the van, is considered.
If several products were simultaneously considered, the demand would increase
and the capacity of vehicles would become critical.

The provided solution has a cycle time of approximately 74 real hours, which
are over nine working days. This fact means that to supply the sales points each
4 h a fleet of 19 vehicles are necessary. If the cost of a cycle is 480.45 €, the
annual cost is 356,000 €.

Table 12.1 Example of cooperative cell formed by 4 sales points; offers are greater than needs
(Mateo et al. 2012)

Sales-point Demand Stock Need Offer

S1 2 4 0 4
S2 4 2 0 2
S3 7 -1 1 0
S4 5 1 0 1
Total 18 6 1 7

Table 12.2 Shapley values and extra flows in a cooperative cell with offers greater than needs
(Mateo et al. 2012)

Sales point Shapley value Potential profit (n) Potential profit (o) Extra flow

S1 0.1081 0 0.1621 -1
S2 0.0697 0 0.1045 0
S3 0.6036 0.9055 0 +1
S4 0.0573 0 0.0859 0
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12.5.2 Case Study 2: Cost Allocation in the Gas Distribution

12.5.2.1 General Description

Özener (2008) describes another real situation in the context of a large industrial
gas company that operates a VMI resupply policy. The company replenishes the
tanks at customer locations under the company’s control and uses a homogenous
fleet of trucks. The customers and trucks are assigned to a facility; trucks and
storage tanks contain only one type of product. He seeks to integrate cooperative
game theory methods with optimization techniques and develops mechanisms to
create stable collaborations. Some earlier works were devoted to collaborative
approaches focused on procurement, but he takes the practical facts of the situation
into consideration to develop collaborative solutions, ensuring that these mecha-
nisms are viable in that environment. The optimization techniques are useful to the
difficult evaluation of synergies in transportation and distribution systems.

The inventory holding costs are ignored because these costs, at the production
facilities, and the customer sites are assumed by the company. Therefore, he seeks
a feasible distribution plan and is less worried about the cost. The consumption
rates of customers are assumed to be deterministic and stationary over time.
Briefly, the problem is to minimize the total cost of transportation of a single
product from a single depot to a set of customers with deterministic and stationary
demand over a planning horizon, with the possibility to be infinite. The objective is
to design a mechanism capable of computing a cost-to-serve for each customer
that properly accounts for the synergies among customers. Synergies are defined as
the interactions among the customers in one of the routes created in the IRP.

A way that allocates the total distribution costs among its customers is hard to
identify. The main issue in the work is the discussion about the methods developed
for the supplier to calculate a cost-to-serve for each one. The simplest allocation
methods that distribute the costs proportional to customer distance to the depot,
storage capacity and consumption rate do not take into account the synergies
between the customers and do not represent the true cost-to-serve. The obtained
costs in a set of customers may indicate that an IRP solution is not the best if the
internal relations between customers are considered. Additionally, the solution
may lead to identify the low cost or high profit customers or show in which areas
new clients would help to improve the company results.

In this chapter, several cost allocation mechanisms are proposed to be used in the
context of the IRG. Özener (2008) classifies the cost allocation methods into three
groups: Proportional methods, Per-route based methods and Duality based methods.

Proportional methods are generally easy to compute due to the fact that they do
not take into account the effect of the synergies among the customers. In fact, they
are the most commonly used methods in practice due to their simplicity. On the
other hand, the methods in the other two groups consider the effect of customer
synergies in some way; they provide more accurate cost-to-serve values, but the
computation is though harder.
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Another key aspect in the search of the solution is stability, as is a very restrictive
condition. If a cost allocation is stable, the allocated cost to a subset of customers
cannot be greater than the standalone cost of that subset. In fact, for most practical
problems stable and budget balanced allocations do not exist. If the stability con-
dition is not satisfied, the percentage deviation of the allocated cost of the subset
from its standalone cost, the instability value of the subset, can be calculated.

• Proportional Method. This method provides a fast cost allocation taking into
account some important factors such as customer distance to the depot; storage
capacity and consumption rate. But it ignores other factors such as the synergies
among the customers. The distance to the depot is the most relevant factor since
the cost to be allocated is the total transportation cost of the problem. Therefore,
the cost-to-serve value of a customer should be positively correlated to the
customer’s distance to the depot. Storage capacity and consumption rate are also
significant. The allocated cost of a customer should be negatively correlated to
the delivery period.
The distances to other customers would reflect the geographical synergies
between the customers. However, the estimation is difficult because in advance
the customers actually grouped together on a route are not known; the synergies
among customers will depend on the different storage capacities and con-
sumption rates of the customers and the truck capacity for the route.
The procedure, called PCAM (Proportional Cost Allocation Method), is very
simple and efficient. Given an IRP instance, it provides in a very short time a
balanced allocation even for very large instances of the problem. Briefly, this
method allocates the total cost proportionally to the individual costs of the
customers.

• A Per-route-Based Cost Allocation Method. This method is expected to perform
better than the above proportional cost allocation method, since the cost allo-
cation is based on the optimal routes that actually compose the total cost. It
considers the synergies among the customers on a particular route, which will be
called intra-route synergies. If the cost of each route is completely allocated
among the served customers, the cost allocation will be balanced.
The per-route-based cost allocations can be calculated quite efficiently, espe-
cially when the number of customers in the delivery routes is very limited. For
instance, if every route has at most 4 customers, the general IRG is reduced to
several small games with 4 customers. In this case, even if the number of routes
is high, the computational effort required will be relatively low because a
4-player game is not computationally difficult to solve.
Özener (2008) adapts to the IRG the ‘‘moat packing’’ cost allocation method
proposed by Faigle et al. (1998) for the TSG. He argues that it can be easily
modified to include the delivery volume information. Faigle et al. (1998) take
into account the Held-Karp relaxation of the TSP to obtain cost allocations from
moat packing using the duality in linear programming. It is considered a TSG
with a cost matrix satisfying the triangular inequality.
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The moat packing is introduced in the following way. The group of cities (also a
city) is surrounded by nonintersecting moats in a TSP instance. If a vehicle has
to reach the cities outside of a particular moat, it is obliged to cross twice the
moat. The customers outside any given moat are equally responsible for the
vehicle to cross over that moat. As the number of maximum moat packings
gives a lower bound on the optimal cost of the TSP, each one of the moat
packings can be used to allocate the cost among the cities visited.
A linear program is solved to determine the moat packing with maximum width.
It prevents from the intersection of two moats. After the moat packing with
maximum total width is known, the allocated cost is determined by distributing
arbitrarily twice the width of any moat among the cities outside of the moat. For
the IRG, the values for the customers may be different because they also reflect
the influence on the execution of a route by the delivery volumes.
The ideal delivery volume to a customer is computed. This value is the mini-
mum of the truck capacity and the storage capacity at the customer location.
Therefore, if both customers would be at the same location, a customer that
receives the ideal delivery volume should be allocated a higher cost than a
customer that receives the residual amount in the vehicle. To allocate the cost, a
ratio per customer of the actual volume delivered to a location by the route and
the ideal delivery volume is computed.
The procedure is called MPCAM (Moat Packing Cost Allocation Method) and is
composed of five steps. The first one identifies the set of optimal delivery routes.
And for each route, the following steps are executed: the ratio is calculated, the
dual is solved to obtain the optimal nested moat packing and the associated
values using the procedure discussed above; the allocated cost of a customer
along the route is computed… Finally, in the last step, once given the allocated
cost of each customer for every delivery route, the final cost allocation of
customers is obtained by adding up the cost allocations from individual routes.
This method requires that the optimal cost and the optimal delivery routes of the
IRP are known.

• Duality Based Cost Allocation Methods. Özener (2008) developed three dif-
ferent models that yield upper and lower bounds and an approximation to the
optimal objective function value of the IRP. For several games based on
combinatorial optimization problems, the relationship between its core, and the
dual of the LP-relaxation of an Integer Program formulation of the problem is
established. But instead of using just one LP-relaxation, he considers four dif-
ferent Linear Programs: the LP-relaxation of the mixed integer programming
model (MIP-LP); the pattern selection LP model (PSLP); the LP-relaxation of
the set partitioning model (SPM-LP); and the LP-relaxation of the set covering
model (SCM-LP). Although none of the dual problems corresponding to these
linear programs (DMIP-LP, DPSLP, DSPM-LP, DSCM-LP, respectively) will
provide exactly the desired cost allocation, their solutions are modified to
construct a cost allocation for the IRG. These duality-based methods are com-
putationally efficient, since they only require that an LP is solved and possibly
performing a scaling up operation to obtain a balanced cost allocation.
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Generic cost allocation methods are not explored because any approach that
computes the actual cost allocations obtained by the nucleolus or the Shapley
value has an exponential number of coalitions and therefore is expected to have an
exponential running time. For each coalition a NP-hard problem must be solved to
compute exactly the nucleolus or the Shapley values.

12.5.2.2 Some Results

The experiments to evaluate the performance of the methods are based on random
instances (Özener 2008). 50 different instances with 25 and 50 customers are
generated, whose customers are located over a 1,000 * 1,000 square. The results
are discussed in terms of computational efficiency on the stability of the generated
allocations. Nevertheless, in Özener et al. (2013) three new instances with 26, 70,
and 80 customers, respectively, are added. For these last instances, they prefer to
analyze customers for which the cost allocations of the two methods differ
significantly.

Going deep into the random instances, there are two types of customers with
high or low storage capacities. Let Q the capacity of the vehicle and let Si the finite
storage capacity for the facility of customer i. The ratio Q/Si for customer i falls
within [0.5, 0.75] for high storage capacity customers or [1.25, 1.5] for those with
low capacity. Similarly, the ratio of the consumption rate respect to the storage
capacity is either within [0.5, 0.75] or [1.25, 1.5] if the customer belongs to the
group with relatively low or high consumption rate. The planning horizon in all the
instances is 100 periods and each period may include several subperiods.

Besides, there are clusters of customers. Specifically, in the instances with 25
customers, there are 3 clusters, and in the instances with 50 customers, there are 4
clusters. In both cases, 45 % of the customer locations fall within the clusters.

Song and Savelsbergh (2007) indicate that for distribution systems, such as in
industrial gas distribution, it is common to have a few customers along a delivery
route. For real-life size problems, this observation is used to limit the number of
feasible patterns. Using this practical principle, Özener (2008) limits the number of
stops along a route to at most 4 customers; then, automatically the number of
feasible patterns is reduced.

The solution quality is evaluated with the maximum percentage instability of a
cost allocation method. To calculate the exact percentage instability of a method, it
is necessary to calculate the characteristic function values for all coalitions of the
collaboration, which requires solving an IRP for each coalition. For this reason, he
tests the stability of coalitions of size only up to 4 customers. Even with this
simplification, this task requires evaluating 251,175 coalitions for the instances
with 50 customers.

Different objective functions are used, but the best results are achieved with the
approximation of the IRP optimal result by the set covering model (SCM-LP). The
results of instability values for the different methods are shown in the Tables 12.3
and 12.4.
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12.6 Conclusions

Cooperative game theory plays an important role in the redistribution of costs or
profit in many real situations, such as those using VMI and related or similar
policies. In this typically situations, a reduction in the total cost or an increase in
the total profit can be achieved through cooperation. The case of IRP is a good
example in this sense. VMI allows a significant reduction of the total distribution
cost; however, the issue of allocating this benefit needs to be resolved. A ‘‘linear’’
allocation of these benefits to the players might not be fair and might lead to
situations where some players become reluctant to cooperate. Game theory solves
this sensitive issue, and so, it is admitted to the practice. The two cases discussed
in the last section of this chapter provide a good motivation to such implemen-
tations where game theory is integrated with current operations management and
supply chain optimization problems.
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Chapter 13
Winner Determination in Multi-unit
Procurement Auctions with Volume
Discount Bids and Lead Time Constraints

D. K. Verma, N. Hemachandra, Y. Narahari and J. D. Tew

Abstract In this chapter, we consider the problem of determining an optimal set
of winning suppliers in a procurement auction where the buyer wishes to procure
high volumes of a homogeneous item in a staggered way in accordance with a
predefined schedule and the suppliers respond with bids that specify volume dis-
counts and also delivery lead times. We show that the winner determination
problem, which turns out to be a multi-objective optimization problem, cannot be
satisfactorily solved by traditional methods of multi-objective optimization. We
formulate the problem first as an integer program with constraints capturing lead
time requirements and show that the integer program is an extended version of the
multiple knapsack problems. We discover certain properties of this integer pro-
gram and exploit the properties to simplify it to a 0–1 mixed integer program
(MIP), which can be solved more efficiently. We next explore a more efficient
approach to solving the problem using a linear relaxation of the 0–1 MIP in
conjunction with a greedy heuristic. Using extensive numerical experimentation,
we show the efficacy of the 0–1 MIP and the proposed heuristic.
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13.1 Introduction

Procurement is an important activity in supply chains arising in large manufac-
turing firms, retail chains, etc. Auction-based mechanisms are extremely relevant
in modern day electronic procurement systems since they enable a promising way
of automating negotiations with suppliers and achieving the ideal goals of pro-
curement efficiency and cost minimization (Chandrashekar et al. 2007). Firms that
need to procure a high volume of a homogeneous item, would like to minimize the
total cost of procuring the required number of units. In such procurement sce-
narios, the suppliers (also called vendors) would compete with one another by
offering volume discounts. Economies of scale render such discounts possible. In
such cases, procurement auctions with volume discount bids (Chandrashekar et al.
2007; Hohner et al. 2003) become relevant. In addition to cost of procurement and
availability of volume discounts, there could be several other allocation constraints
(see for example Sandholm 2007). One such important allocation constraint is the
lead time to procure a batch of an item as required by a production schedule.
Determining the winning suppliers in a procurement auction with volume dis-
counts, taking into account lead time constraints offers many conceptual and
computational challenges and also has practical relevance. This aspect has not
been addressed in the literature and this chapter attempts to fill this research gap.

13.1.1 Motivating Example

There is a single buyer (or firm) who wants to purchase a certain number of
homogeneous items from n suppliers (vendors), the set of suppliers being
N = {1, 2,…,n}. In any practical auction as discussed in Hohner et al (2003) and
Eso et al. (2001) when the transaction volume is large the suppliers provide volume
discounts in which the unit price decreases as we procure more number of units
from that supplier. Such auctions are called volume discount auctions or supply
curve auctions. In such an auction, the suppliers specify their bids as marginal
decreasing piecewise linear price curves to capture volume discounts as shown in
Fig. 13.1. In the bid depicted in Fig. 13.1, the supplier in question specifies that the
minimum number of units he is willing to supply is 5 and for supplying up to 10
units, the per unit price charged is $100. If the number to be supplied ranges from 11
to 20, then for the additional items beyond 10, the supplier would charge a dis-
counted rate of $80 per unit. If the number to be supplied ranges from 21 to 30, then
the discounted rate is $70 per unit for units from 21 to 30. Finally, the supplier
charges accounted rate of $40 units beyond 30, but he cannot supply beyond 45
units. Thus, if this supplier is required to supply 35 items, then the cost to the buyer
would be 10 9 100 ? 10 9 80 ? 10 9 70 ? 5 9 40. If the volume discount bids
(also called as supply curves in the literature), are of the above type, then there are a
number of approaches suggested in the literature (see Sect. 13.2 for a survey of the
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relevant literature) for determining the set of winning suppliers and the numbers of
units to be procured from the winning suppliers, so as to minimize the total cost of
procurement.

In this chapter, we are interested in taking into account an important additional
practical consideration that arises in real-world procurement scenarios. Typically,
the buyer would like the units to arrive at the manufacturing or assembling facility
according to some production schedule that is already worked out based on a
number of practical and technical considerations. For example, the buyer may like
to procure a total of 100 units by the first week, a cumulative total of 250 units by
the second week, a cumulative total of 450 units by the third week, and so on.
Table 13.1 shows a typical requirement from the buyer.

In response to this requirement from the buyer, the suppliers would be required to
specify lead times in addition to volume discounts in their bids. In other words, a
volume discount bid of the type shown in Fig. 13.1 will have to be enhanced with
information about the lead times or delivery dates. Figure 13.2 shows such an
enhanced bid. Here, the supplier does not supply less than 5 units. The unit price for
supplying 5–10 units is 100 and these will be supplied earliest by the 5th day, and so
on. We call such bids as Volume Discount Lead Time (VDLT) bids in this chapter.
Accordingly, multi-unit procurement auctions with VDLT bids will be called VDLT
auctions in this chapter. In principle and in practice, a supplier may submit several

Fig. 13.1 A volume discount
bid

Table 13.1 Quantities
required by the buyer

Interval
(k)

Due date
(Dk) (days)

Quantity (Qk)
required by the
due date Dk

1 7 100
2 14 250
3 21 450
4 30 600
5 40 1,000
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VDLT bids (trading off cost with lead time) in response to a buying requirement
announced by the buyer. In this chapter, without loss of generality, we assume that
each supplier submits exactly one VDLT bid. The case in which a supplier submits
multiple VDLT bids could be immediately handled by replacing that supplier with as
many virtual suppliers as the number of bids submitted by the supplier.

13.1.2 Contributions and Outline of the Chapter

The problem of optimal winner determination in procurement auctions with vol-
ume discount bids have been extensively studied in the literature. The next section
will provide a review of the relevant literature there. However, to the best of our
knowledge, procurement auctions with VDLT bids have been studied only spar-
sely (for example, see Kim et al. 2008). This chapter addresses this problem
comprehensively and offers the following contributions:

• We bring out the limitations of traditional methods of multi-objective optimi-
zation in solving the winner determination problem of VDLT auctions.

• We model the winner determination in VDLT auctions as a multiple knapsack
problem and formulate an integer program (IP). We derive an equivalent 0–1
mixed integer program (MIP), which is easier to solve, by exploiting certain
nice properties of the IP.

• We propose a way to solve the above 0–1 MIP by first solving the LP relaxation
of 0–1 MIP to get most of the solutions and then using a greedy heuristic to
generate the remaining solution.

• We undertake extensive numerical experimentation to show the efficacy of the
0–1 MIP and also the heuristic.

The rest of the chapter is organized as follows. Section 13.2 is devoted to
reviewing some preliminaries and all the relevant work. Section 13.3 defines the
winner determination precisely, models it as a multiple knapsack problem, and

Fig. 13.2 A volume discount
bid with lead time constraints
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derives an integer program. Certain properties of the solutions of this integer
program are brought out, leading to an equivalent 0–1 MIP formulation.
Section 13.4 describes an LP relaxation and a greedy heuristic to solve the 0–1
MIP. The numerical results are detailed in Sect. 13.5. Section 13.6 concludes the
chapter and provides several directions for future work.

13.2 Background and Relevant Work

13.2.1 Multi-unit Auctions with Volume Discount Bids

In a procurement context where a single buyer and multiple sellers who wish to
exploit scale economies are present, a volume discount auction is appropriate.
Here suppliers provide bids as a function of the quantity that is being purchased
(Davenport and Kalagnanam 2001; Hohner et al. 2003). The winner determination
problem for this type of auction mechanism is to select a set of winning bids,
where for each bid we select a price and quantity so that the total demand of the
buyer is satisfied at minimum cost.

Kameshwaran and Narahari (2009) show that single item, single attribute,
multi-unit procurement with volume discount bids leads to a piecewise linear
knapsack problem. In this work, the authors have developed several algorithms
(exact, heuristic-based, and fully polynomial time approximation schemes) for
solving such knapsack problems. Goossens et al. (2007) present several exact
algorithms for procurement problems with quantity discounts.

Kothari et al. (2003) consider single-item, single attribute, multi-unit procure-
ment auctions where the bidders use marginal-decreasing, piecewise constant
functions to bid for goods. The objective is to minimize the cost to the buyer. It is
shown that the winner determination problem is a generalization of the classical 0/
1 knapsack problem, and hence NP-hard. The authors also provide a fully poly-
nomial time approximation scheme for the generalized knapsack problem. Dang
and Jennings (2003) consider multi-unit auctions where the bids are piecewise
linear curves. Algorithms are provided for solving the winner determination
problem but these algorithms have exponential complexity in the number of bids.

Kumar and Iyengar (2006) consider a problem of optimal multi-unit procure-
ment and characterize the optimal auction when the bids specify only the capacity
(i.e., maximum number that can be supplied) and per unit cost. They also devise a
one-shot get-your-bid procurement auction for the model they devise. Their work
does not take into account volume discount bids. The recent work of Gautam et al.
(2009) outlines an optimal auction in the presence of volume discount bids in a
preliminary way.

None of the papers above treat the case of procurement auctions where, in
addition to volume discounts, there are critical lead time constraints to be taken
into account in determining the winning suppliers. The paper by Kim et al. (2008)
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addresses this issue, albeit in a limited way. This chapter addresses this gap
comprehensively by developing formulations and efficient algorithms for deter-
mining winners in a multi-unit procurement auction with volume discount bids and
lead time constraints. Specifically, in this chapter we look at winner determination
problem when there are lead time constraints in addition to volume discounts. We
leave for future work the game theoretic issues when there are both volume
discounts and lead time constraints.

13.2.2 Multi-attribute Auctions

Multi-attribute auctions relate to items that can be differentiated on several non-price
attributes such as quality, delivery date, etc. Optimization problems for real appli-
cations often have to consider many objectives and thus we have to deal with a multi-
objective (MO) optimization problem (Cohon 1978; Bichler and Kalagnanam 2001;
Kameshwaran et al. 2006). If the objectives are conflicting, then the problem is to
find the best possible design which still satisfies the opposing objectives. An optimal
design problem must then be solved, with multiple objectives and constraints taken
into consideration. Just as the concept of optimality plays an important role in the
solution of single objective problems, the concept of non-inferiority or Pareto-
optimality will serve a similar purpose for multi-objective problems. A feasible
solution to a multi-objective programming problem is non-inferior if there exists no
other feasible solution that will yield an improvement in one objective without
causing degradation in at least one other objective. Some of the most popular non-
inferior set generating techniques are the weighted method, the constraint method,
the non-inferior set estimation method, and the Q-constraint technique.

In order to evaluate different offers for an item with different attribute levels we
need to appeal to multi-attribute utility theory to provide a trade-off across these
different attributes. A game theoretical model for multi-attribute auction is studied
in (Bichler 2000) considering cost and quality. Multi-criteria procurement auction
discussed in (Bellosta et al. 2004) requires the buyer to specify the aspiration point
that expresses his desired values on the attributes and a minimum value. A tech-
nique for solving LP with multiple objectives using the model of zero-sum games
with mixed strategies is presented in Belenson and Kapur (1973). Different
approaches to solve multi-criteria programming is presented in Cohon (1978) like
goal programming, constraint method, non-inferior set estimation method, and the
multi-objective simplex method. A user interactive linear additive approach is
presented in Zionts and Wallenius (1976), where, based on the feedback from user
the weighting function of objective is changed. This type of approach is called
interactive goal programming. An intuitive Q-constraint method is discussed in
Haimes (1973), which converts the multi-objective to single-objective by con-
sidering other objectives to constraints. Integer linear programming with multiple
objectives is discussed in Zionts (1977). To solve multiple objective integer pro-
gram, Klamroth et al. (2004) use the Lagrangian duality theory.
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13.2.3 Multi-objective Optimization

The process of simultaneously optimizing a collection of objective functions is an
important focus within the field of engineering. The process is called multi-
objective optimization. For a detailed review of multi-objective optimization, the
reader is referred to Chap. 5 of Ravindran (2008). The general multi-objective
optimization problem is formulated in Marler and Arora (2004) as follows:

Find x ¼ x1; x2; . . .; xn½ �T

To minimize F xð Þ ¼ F1 xð Þ;F2 xð Þ; . . .;Fk xð Þ½ �T
Subject to gj xð Þ� 0 j ¼ 1; 2; . . .;m
where we try to find a n dimensional vector x so as to minimize objective

F(x) which is composed of k different objectives, subjected to m inequality con-
straints. The feasible design space X is defined as the set X ¼ xjgj xð Þ� 0;

�

j ¼ 1; . . .;mg. The feasible criteria space Z is defined as the set fFðxÞjx 2 Xg. The
decision space is defined in terms of decision variables whereas the criteria space
is defined in terms of objective functions. Next, we discuss some of the multi-
objective optimization technique like weighted method, constraint method, and
e-constraint method. Game theoretic (Belenson and Kapur 1973) and Lagrangian
duality (Klamroth et al. 2004) have also been used for multi-objective
optimization.

13.2.3.1 Weighted Method

Weighting the objectives to obtain non-inferior solutions is a traditional multi-
objective solution technique. If someone were willing to articulate the value
judgment of how much one objective is quantitatively important as compared to
others, then the multi-objective problem could be reduced to a single-objective
problem. The specification of wi, which is called the weight on objective i, is
equivalent to the identification of a desirable trade-off between different objec-
tives, i = 1,…, k. The above given multi-objective problem can now be formu-
lated as:

Find x ¼ x1; x2; . . .; xn½ �T
To minimize F xð Þ ¼ w1F1 xð Þ þ . . .þ wkFk xð Þ
Subject to gj xð Þ� 0 j ¼ 1; 2; . . .;m
Notice that the new objective is really valued and any two feasible points are

comparable now. The solution would be the best compromise solution for the
person who articulated the values of weights. For more details about the weighted
method, the reader is referred to Chap. 5 of Ravindran (2008); Ravindran et al.
(2010) and to the paper by Buyukozkan and Bilsel (2009).
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13.2.3.2 Constraint Method

The constraint method (Cohon 1978) is perhaps the most intuitively appealing
solution technique. It optimizes one objective while all of the others are con-
strained to some value. Suppose that instead of articulating a weight on lead time,
the buyer stated a constraint, e.g., at least Q1 number of units should be supplied in
the first week, Q2 in the second week, and so on. This type of constraint will
restrict the feasible region that translates to a space above some horizontal line in
the objective space. Proceeding in this manner, we can generate non-inferior
solutions by solving a series of single-objective problems. The bounds that are
placed on the constrained objectives, i.e., the Qi’s, are considered as parameters to
the solution process. Given a multi-objective problem with k objectives as above,
the constrained problem is:

Find x ¼ x1; x2; . . .; xn½ �T
Minimize Fh xð Þ
Subject to gj xð Þ� 0 j ¼ 1; 2; . . .;m

Fp xð Þ� Lp; p ¼ 1; 2; . . .; h� 1; hþ 1; . . .; k

Here the hth objective is arbitrarily chosen for minimization. This formulation
is a single-objective problem, so it can be solved by conventional methods, e.g.,
the simplex method in the case of linear programs. The optimal solution to this
problem is a non-inferior solution to the original multi-objective problem if there
exists any feasible solution for the multi-objective problem.

13.2.3.3 e-Constraint Method

In this technique (Haimes 1973; Yokoyama et al. 1988) the original problem with
k objectives is divided into k independent subproblems, each of which has
respective objective function, Fi xð Þ. Let us denote by e0

i the optimal value of ith
subproblem. Now select one of the objective functions arbitrarily, say F1 xð Þ, out of
the k functions, and designate this as objective function and the remaining k-1
objective functions will be treated as inequality constraints. Then, we can for-
mulate the following optimization problem:

Minimize F1 xð Þ
Subject to Fi xð Þ� ei; 8i ¼ 2; . . .; k
where ei ¼ e0

i þ ei; 8i ¼ 2; . . .; k
If the solution to above problem is feasible, then ei is decreased to tighten the

constraint. This is repeated till the solution become infeasible and the minimum
objective value is stored. Now the whole algorithm is iterated over the objective
functions.
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13.3 Volume Discount Auction with Lead Time
Constraints

The inclusion of lead time in the volume discount auction gives the problem the
form of multi-objective optimization problem. The buyer simultaneously wants to
minimize the total cost of procurement as well as ensure that the time required for
the supply of items satisfies the lead time requirement. The supply curves are
specified by price and lead time schedules: decreasing step functions for each
supplier. The step function corresponding to the supplier i is defined by a partition

of function’s domain into mi intervals with corresponding unit price p j
i ; j ¼

1; 2; . . .;mi and lead time constraints d j
i ¼ 1; 2; . . .;mi. There are no gaps between

the intervals and thus they can be represented by the set of mi ? 1 breakpoints as

well. The quantity q j
i represents the cumulative number of units the supplier i can

deliver before d j
i . The business constraints imposed by the buyer like lower and

upper limit on total amount of units purchased from supplier i can be easily
incorporated a priori before formulating the model by introducing these break-
points into the appropriate supply curve and trimming away the curve left to the
lower bound and discarding the breakpoints right to the upper bound. As already
said, for the sake of simplicity we assume that the lead time specified in an interval
corresponds to the whole of that quantity range. This assumption is not too strong
since, if the supplier gives different lead times for single step we can consider it as
two different steps with same price per unit item. The auction we consider can be
described as follows.

• There is a set of suppliers N = {1, 2,…,n}.
• The suppliers submit bids, B = {B1, B2,…, Bn}. The bid quoted by supplier

i ¼ 1; . . .; n is a list, Bi ¼ q1
i ; p

1
i ; d

1
i

� �
; q2

i ; p
2
i ; d

2
i

� �
; . . .; qmi

i ; p
mi
i ; d

mi
ið Þ

� �
where

q0
i \q1

i \q2
i \. . .\qmi

i ; p
1
i [ p2

1 [ . . . [ pmi
i and d1

i � d2
i � . . .� dmi

i .

• Here the supplier i’s valuation for the quantity range qj�1
i ; q j

i

� �
is p j

i for each

unit, and he can supply the lot earliest by d j
i th time.

The problem of the buyer is to minimize the total cost of procurement as well as
ensure that the required number of items is supplied within the lead times specified
by the buyer.

First we wish to make the observation that the above auction is not equivalent a
combinatorial auction problem (Kalagnanam and Parkes 2003); in fact, it turns out
to be more general than a combinatorial auction. However, a very special case
turns out to be the same as a combinatorial auction. We provide two examples to
clarify these observations.

Example 13.1 Let us say the buyer wishes to procure 100 units by the 7th day and
250 units by the 14th day (which implies 150 units during the 8th to 14th days).
Assume two suppliers who submit the following bids:
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1. Supplier 1 promises to supply 50 units by the 7th day at a unit price of $ 10; 50
additional units by the 14th day with a unit price of $8.

2. Supplier 2 provides a bid which promises to supply 70 units by the 7th day at a
per unit price of $9 and 100 additional units by the 14th day at a per unit price
of $8.

Call the interval 0–7 days as item A and the interval 8–14 days as item B. Thus
we need 100 units of A and 150 units of B. Supplier 1 is prepared to supply 50
units of A at price $10 each and 50 units of B at price $8 each. Supplier 2 is willing
to supply 70 units of A at unit price $9 and 100 units of B at unit price $8. Thus the
above problem becomes a multi-unit, multi-item auction for which there are
efficient algorithms for winner determination.

Example 13.2 Let us say the buyer wishes to procure 100 units by the 7th day and
250 units by the 14th day (which implies 150 units during the 8th to 14th days).
Assume two suppliers who submit the following bids:

1. Supplier 1 promises to supply 50 units by the 5th day at a unit price of $10; 50
additional units by the 10th day with a unit price of $8; and 50 additional units
by the 14th day with a unit price of $7.

2. Supplier 2 provides a bid which promises to supply 70 units by the 7th day at a
per unit price of $9; 50 additional units by the 10th day at a per unit price of $8;
and 50 additional units by the 14th day at a per unit price of $6.

It is clear that a combinatorial auction cannot model the above situation because
the demand intervals (specified by the buyer) and the supply intervals (specified by
the suppliers) need not be the same. In fact, different suppliers may specify dif-
ferent supply intervals.

13.3.1 Limitations of Traditional Multi-objective
Optimization Methods

In our problem of supply curve auction with lead time constraints, the two
objectives are minimizing the cost of procurement and minimizing the lead time.
We can state the objective of the auction mechanism using the weighted method
given is Sect. 13.2.3.1 as follows:

Minimize W1 Total Costf g þW2 Total Lead Timef g½ �

This is equivalent to:

Minimize Total Costf g þ w Total Lead Timef g½ �

where w ¼ w1
w2

Here we weigh the two objectives and combine it to give an overall objective.
The weighting factor w1 corresponds to the cost minimization objective while w2
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corresponds to the total lead time minimization objective. In this approach, it is
quite easy to optimize the single objective problem. However, it is of serious doubt
to assign weights in homogeneous manner when there exists trade-off among the
objectives. Further, the meaning of the weighting factor is difficult to justify. The
unit of w here is cost per day but specification of w can be quite difficult, as we are
weighting the total lead time with total cost. This may be affected by the change is
distribution of per unit cost and lead time specified by the suppliers.

There are many angles from which the lead time constraint can be viewed. In
the most trivial situation, we want to minimize the final time of the arrival of the
total number of units required by the buyer. This problem can be formulated using
any of the techniques presented in Sect. 13.2.3 with the two objectives as cost
minimization and minimization of maximum lead time. The second objective can
be stated as a MiniMax formulation:

Minimize Total Costf g þ w Max Lead Timef g½ �
The weighting factor w here gives the preference of unit lead time over cost. The

advantage of this technique is that the specification of w is easy as it signifies the cost
buyer has to pay for unit time delay in supply. But this method only minimizes the
arrival of last unit, it does not take into account the arrival of other units, which may
be of significant importance to the buyer in many situation. In the case of pro-
curement by giant firms, the units are usually the raw inputs, and if the lead time is
large the firm would not be able to start its production activity until the arrival of the
last unit. These may lead to severe disadvantage to those who want to commence
their activity with the arrival of units without waiting for all the units to arrive.

To take into account the above scenario, a more realistic situation can be
thought as the buyer wants some rate of inflow of item (Bellosta et al. 2004), so
that he can also simultaneously commence his activity while the other lots keep
arriving. Let the buyer give quantity-deadline pairs as Qk;Dkð Þf g; 8k ¼
1; 2; . . .; t. We cannot use weighting method when we have to meet the inflow
requirement specified by the buyer. The other approach is to convert the lead time
objective as constraint for each time interval, where the bound parameters that are
placed corresponds to the number of units required by the buyer per time interval,
leaving the cost minimizing objective as the single objective in the problem. A
naive method to solve the optimization problem will be to solve the problem
iteratively for each time interval, adding that time interval requirement only in the
constraints, and reformulating the problem every time interval. Optimizing the cost
in each time interval leads to an optimal solution for that time interval, but may
eventually provide us a non-optimal solution for later intervals leading us to local
optima and not the global one. The other way round we can formulate the problem
as a single linear program having all the time interval constraints using constraint
method of multi-objective optimization given in Sect. 13.2.3.2 as

Minimize Total Costf g
Subject to ðQuantity Procurred t kg�Qk; 8k ¼ 1; 2; . . .; t
This approach works well only when the goal to be attained is well defined.

This treatment, however, encounters a severe difficulty in the case where there
exist trade-off relations among contradictory objectives. Since minimization of
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cost will lead to increase of lead time, the value attained by lead time if we
minimize the cost is exactly the value specified by the buyer. Thus, the constraint
method suffers from two major drawbacks:

• First, in case the buyer gives very strict deadlines, or the specified requirement
cannot be met even by procuring items from all the suppliers, the solution may
turn out to be infeasible.

• Second, if there are only a small number of suppliers with very high per unit
cost, using this technique, we would be procuring the units at an unreasonably
high cost to meet our requirement.

The e-constraint method described in Sect. 13.2.3.3 too cannot be used for inflow
requirement. The idea of traditional e-constraint method is to iteratively increase
the constraint bound by a predefined constant. The necessity to choose such a value
represents also the main drawback of this approach. For a general problem the
choice of this parameter is therefore not only difficult, it also influences the running
time of the algorithm. As per (Laumanns et al. 2004) the running time of the
original e-constraint method is determined by the product of the ratio of the range to
the minimum distance between two solutions in each objective. The e-constraint
technique yields a set of non-inferior solutions, any of which can be a candidate for
the optimal solution. As a consequence, which solution should be taken as optimal
can no longer be decided by just examining the objective functions themselves. One
conceivable resolution for this ambiguity given in Yokoyama et al. (1988) may be
to entrust a system operator with the final decision; he will choose the optimal
solution out of the candidate solutions based on his personal experience and/or
system operator policy. However, this way of decision can be quite subjective.

13.3.2 Mathematical Formulation

Having looked at various techniques for multi-objective optimization, and their
drawbacks in our stated scenario we formulate the problem in a new and efficient
way which will alleviate the problems of traditional techniques. Let the bid given
by supplier i be as shown in Fig. 13.2. Here, we have

mi ¼ 4 q0
i ¼ 5

q1
i ; p

1
i ; d

1
i

� �
¼ ð10; 100; 5Þ

q2
i ; p

2
i ; d

2
i

� �
¼ ð20; 80; 10Þ

q3
i ; p

3
i ; d

3
i

� �
¼ ð30; 70; 15Þ

q4
i ; p

4
i ; d

4
i

� �
¼ ð45; 40; 25Þ

Here, the supplier i is not willing to supply any number of units less than 5. For
the purchase of 5–10 units he will charge 100 per unit and can deliver the lot
earliest by the 5th day. He will charge the next 10 units at a unit price of 80 and
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can deliver the next 10 units earliest by the 10th day, and so on. Note that this way
of specifying the bids captures staggering of deliveries over time that may enable
the buying firm to align these deliveries with their periodic production plans. We
denote by mi the number of steps or segments in the bid of supplier i.

As the buyer has specified the inflow rate required we can state the inflow as the
constraints as in the constraint method, but along with the bound specified by the
buyer we relax the bound by e as is done in the e-constraint method. Let ek be
the number of units by which the requirement specified by the buyer for the kth
time slot cannot be met. Here, the ek are variables in contrast to be parameters to be
specified by the buyer in e-constraint technique. Recall that Qk is the number of
units the buyer wants to procure by the end of the kth time interval, the actual
quantity procured may be lower than Qk by ek. This also helps to handle the
situation which may be infeasible, i.e., if the requirement specified cannot be met
even by procuring items from all the suppliers, then the solution does not turn out
to be infeasible as in case of constraint method.

For each unit that he fails to meet the requirement, the buyer has to bear a loss
of M which is added to the objective of the formulation. There is a substantial
significance associated with the loss factor M. Even if there are enough units
available from the suppliers to procure Qk units of item in kth interval, the per
unit cost of item may be higher than M and the buyer may not be willing to buy the
unit at such high price; rather he would prefer to incur a shortage of procured units.
This brings the concept of reserve price of buyer which is usually absent in all the
traditional techniques. So, M signifies the preference relation of buyer between the
two objectives of cost minimization and lead time minimization, and helps capture
the trade-off between procurement cost and procurement lead time.

The loss factor M can be viewed as the weighting factor used in the weighted
method of multi-objective optimization. While in the weighted method the
weighting factor given by the buyer corresponds to the preference relation of the
overall objectives, the M here represents the preference of lead time per unit of
item over the cost per unit item, which gives a more intuitive preference relation
that can be specified by the buyer easily as compared to the weighting factor of
overall objectives. Thought here is an intimate relationship between the weighting
and constraint methods, the specification of preference relation in our formulation
is much easier for the buyer as compared to that of weighting method. Once the
buyer has a clear view of his reserve price, he can specify the value of M as per his
requirement. The notation used is summarized as follows.
N ¼ f1; . . .; ng Set of n suppliers
mi Number of steps in the bid of seller

p j
i

Unit price in interval j for seller i

q0
i Minimum number of units that the seller i is willing to supply

q j
i

Cumulative number of units offered by the supplier by interval j

d j
i

Lead time for interval j of seller i

xij 1 if interval j for seller i is selected, 0 otherwise
zij Number of units to be procured in interval j from seller i
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t Number of demand intervals specified by the buyer
k ¼ 1; 2; . . .; t Index for demand intervals
Dk kth demand deadline specified by the buyer
Qk Cumulative number of units required by the buyer by the end of

the interval Dk

ek e relaxation for number of units to be procured in the kth time
interval

M Loss incurred for shortage of each unit.

The IP formulation for the winner determination problem is given as follows:

• The xij decision variable indicates whether the amount of units purchased from
supplier i falls into interval j or not. So, xij are of 0–1 type.

• Decision variables zij specify the amount of units purchased from partially sold
interval j from the curve provided by supplier i. Thus, zij variables take non-
negative integer values.

• The decision variable ek specifies the number of units by which we are short of
the requirement of the buyer in the kth time interval.

Minimize

Xn

i¼1

Xmi

j¼1

zijp
j
i þ xijc

j
i

� 	
þM

Xt

k¼1

ek

Subject to

zij � q j
i � qj�1

i

� �
xij� 0 8i 2 N; 8j ¼ 1; 2; . . .;mi ð13:1Þ

Xmi

j¼1

xij� 1; 8i 2 N ð13:2Þ

X

i2ek

Xmi

j¼zikþ1

xijq
zik
i þ

Xzik

j¼1

xijq
j�1
i þ zij

� �( )
�Qk � ek 8k 2 D ð13:3Þ

where

c j
i ¼ p1

i q0
i þ

Xj�1

h¼1

ph
i qh

i � qh�1
i

� �
; 8i 2 N; 8j ¼ 2; . . .;mi

c1
i ¼ p1

i q0
i 8i 2 N

sik ¼ maxfm : dm
i �Dkg 8i 2 N; 8k ¼ 1; 2; . . .; t

sk ¼ fi : sik [ 0; i 2 Ng 8k ¼ 1; 2; . . .; t

xij ¼ f0; 1g 8i 2 N; 8j ¼ 1; 2; . . .;mi

ek 2 N 8k ¼ 1; 2; . . .; t
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The first constraint (13.1) ensures that the value of zij, the quantity purchased
from partially sold interval is positive and it is bound by the length of the interval
itself. The second constraint (13.2) ensures that at most one of the intervals is
selected as partially sold interval from each supplier. The third constraint (13.3)
ensures that the requirement of the buyer is met in each time interval. So, we haveP

i2N mi constraints of type 1, N constraints of type 2, t constraints of type 3,P
i2N mi 0�1 variables of form xij,

P
i2N mi integer variables of form zij, and

t integer variables of the form ek.

13.3.3 Relaxing the Integer Program to a Mixed
0–1 Program

The mathematical formulation of the volume discount auction with lead time
guarantees which we presented turns out to be an IP. In contrast to LP, which can
be solved efficiently, IPs are in the worst case undecidable, and in many practical
situations (those with bounded variables) are NP-hard. We present a few lemmas
which will help to relax the IP to 0–1 MIP. A 0–1 MIP is a special case of an IP
where the variables are required to be either 0 or 1 (rather than arbitrary integers)
or linear.

The winner determination problem can be formulated as a generalized Knap-
sack Problem (KP) which is a generalization of the classical 0/1 KP. In the gen-
eralized KP, we have a knapsack size Q and a set of n lists, where the ith list is of
the form,

Ai ¼ 1; q0
i

� �
p0

i ; q
1
i

� �
; p2

i ; q
2
i

� �
; . . .; pmi

i ; q
mi
ið Þ

� �

where p1
i [ p2

i [ . . . [ pmi
i , q1

i \q2
i \. . .\qmi

i and p j
i ; q

j
i and Q are all integers.

Generalized Knapsack Problem: Determine a set of integers zij such that:

• for any i, at most one zij is non-zero,

• zij 6¼ 0) zij 2 qj�1
i ; q j

i

� �
;

•
P

i
P

jzij�Q;

•
P

i
P

j zijp
j
i is minimized.

One can very clearly see the connection between the generalized KP and the
e-procurement problem. Here, each list corresponds to a bid and it represents
multiple mutually exclusive quantity intervals. One can select at most one interval
from each list and choose any quantity in that interval. Choosing a quantity in

interval qj�1
i ; q j

i

� �
has a unique cost of p j

i per unit. The goal is to procure at least

Q units of item at minimum possible cost. Here, we observe an important property
of an optimal knapsack solution.
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Let us call each pair b j
i ¼ p j

i ; q
j
i

� �
an anchor. The size of anchor is b j

i q j
i . In the

feasible solution to generalized KP, we say an element, zij associated with b j
i as

critical if zij ¼ q j
i , else it is called midrange. A very important property is stated as

a lemma in Dayama and Narahari (2007) is given below.

Lemma 13.1 There exists an optimal solution to the generalized KP with at most
one midrange element. All other elements are critical.

Now using Lemma 13.1, we will present two more lemmas which will help us
to show that the winner determination problem is actually an instance of 0–1 MIP.

Lemma 13.2 The decision variables ek which corresponds to the number of units
by which the requirement of the buyer cannot be met in time interval k, can only
take integer values.

Proof The ek can be non-zero if and only if:

1. the demand of the buyer cannot be met even by purchasing all the units possible
from capable suppliers, or

2. the per unit cost given by the capable suppliers is more than the loss which the
buyer has to bear for per unit shortage of item.

From Lemma 13.1 above, at a time only one anchor can be midrange, but since
the requirement is more than what we had procured we can increase the units
purchased from this midrange till it becomes critical. At this instant all zij variables
will be zero. Now looking at the constraint (13.3) of the IP formulation, since all
other terms are integers, ek can only take integer values. In the second case too, if
per unit cost offered by the midrange supplier is less (greater) than the loss factor
we can increase (decrease) the units purchased from that interval till it becomes
critical. Thus, all anchors will be critical and the linear variables zij will be zero.
Reasoning in a similar way, ek can take only integer values.

Lemma 13.3 The decision variables zij, which correspond to the number of units
purchased from interval j of curve supplied by supplier i, can only take integer
values.

Proof The RHS of the constraint (13.3) of the formulation, that is, the difference
of Qk and ek is an integer as both the operands are integers. In the LHS there will
be only one non-zero zij as per Lemma 13.1, the remaining part of LHS consists of
critical anchors which will take only integer values, so, the value of zij is also
restricted to integers.

Using Lemmas 13.2 and 13.3, we are assured that the values attained by zij and
ek are only integers. Thus we are left with xij decision variables which are 0–1 type,
and the other decision variables zij and ek which are relaxed to take any linear
value. Thus our problem of IP is reduced to 0–1 MIP problem which is compu-
tationally simpler than the IP.
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13.4 Linear Relaxation and a Greedy Heuristic

In the previous section, we have relaxed the IP to a 0–1 MIP problem where the
only variables xij which represent whether the quantity purchased from supplier
i lies in interval j or not is of 0–1 type. While all other variables like zij which
represent the actual number of units purchased from segment j of the SC given by
supplier i, and ek which represent the number of unit by which we fall short to meet
the requirement of buyer are linear. Yet, while this easier problem compared to IP,
it is still a hard problem. In this section, we propose a computationally efficient
way to solve the 0–1 MIP by first relaxing it to an LP and then using a heuristic to
achieve a near optimal solution.

The success of the heuristic which we present next depends on some of the
critical observations made with respect to the LP relaxation of 0–1 MIP.

• Winners with integer value of xij of LP relaxation of 0–1 MIP are also the
winners of 0–1 MIP with the same selected segment.

• Quantities purchased from the winners with integer value of xij of LP relaxation
of 0–1 MIP are same as that in case of 0–1 MIP.

• The winner corresponding to the midrange segments of 0–1 MIP are the only
ones which are not present in the solution of LP relaxation of 0–1 MIP.

• Since for each demand interval there can be a maximum of one midrange
segment as given by Lemma 13.1, the maximum number of winners present in
the solution of 0–1 MIP which are not present in its LP relaxation is the number
of demand intervals specified by the buyer.

• Since there are t demand intervals, and in each interval there can be at most one
midrange segment, all the winners except at most t may be absent in the solution
to the LP relaxation of 0–1 MIP.

• If the average number of units supplied by a typical supplier within demand
interval k is qk, then the maximum difference in total number of units obtained
from integral solution of LP relaxation of 0–1 MIP and the original 0–1 MIP isP

t
k¼1qk.

Based on the above observations we can conclude that if the number of units to
be procured is much greater than what can be supplied by a typical supplier, then
most of the winners can be selected from the LP relaxation of the 0–1 MIP which
are also present in the optimal solution of the 0–1 MIP.

Algorithm: SelectLPRWinner
The functioning of the algorithm can be summarized as follows: SelectLPR-

Winner begins with the 0–1 MIP formulation of the bids and the demand, then it
relaxes the 0–1 MIP to a LP and solves it using any standard LP Solver. From the
solution set, all the non-integer solutions are rejected and all the integer solutions
are added to a set of winners. Now after getting the winners, as above, we reduce
the problem to select the remaining winners. We first remove the winners selected
from the LP relaxation to get the reduced supply and also reduce the demand
requirement of the buyer.
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1. Formulate the 0–1 MIP from the bids B submitted by the sellers and the
demand required ðQk;DkÞ 8k ¼ 1; 2; . . .; t.

2. Initialize the set Winners to the empty set, where each element is a tuple
(Bidder, Quantity). Let Size be the number of Winners selected so far. Initialize
Size = 0.

3. Relax the 0–1 MIP to LP by removing the integer constraint of xij, call it LPR.
4. Solve the LPR using any standard LP Solver.
5. For each segment with xij = 1, add i to Winners, i.e., set Biddersize ¼

ijxij ¼ 1
� 	

and determine the number of units purchased from i.

LPR qi ¼ qj�1
i þ zij

� �
xij



 ¼ 1
n o

Add the tuple ( Biddersize;LPR qið Þ to Winners. Increment Size by 1.

6. Determine the number of units procured for each demand interval specified by
the buyers. LPR Total Qk ¼

P
n
i¼1LPR qik where

LPR qik ¼
q j

i



J ¼ max j : d j
i �Dk

� 	� 	
: if LPR qi [ q j

i

LPR qi : if LPR qi� j
i

� �

:

7. From the original demand, determine the reduced demand set, by selecting only
those intervals whose requirements are not yet met.

Reduced D ¼ fdkjLPR Totao Qk\Qkg

Reduced Q ¼ fðQk � LPR Total QkÞjLPR Total Qk\Qkg

Let the number of intervals in reduced demand in Reduced D be t
0
.

8. Remove the bids submitted by the winner by making fq j
i ¼ 0 : LPR qi [ 0g

8j ¼ 0; 1; . . .;mi. Call the new set of bids as B0.

SelectLPRWinner solves a LP which can be done in polynomial time. After
solving the LPR it reduces the bids and demand which can also be done in some
polynomial time that depends on the size of bids and number of demand intervals.
Next we invoke the greedy heuristic SelectGreedyWinners to get the remaining
winners.
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13.4.1 A Greedy Heuristic

Now we present the heuristic SelectGreedyWinners which selects the winners with
minimum cost. For each demand interval ðReduced Qk;Reduced DkÞ it first
selects a set of feasible segments from the bids. Feasible segments are the first
segments from each bid which can meet the deadline for this demand interval as
well the minimum number of sellable units for the bid q0

i

� �
is less than the number

of units required and the price per unit p1
i

� �
in that segment is less than the loss

factor M. A winner segment in a feasible set is the segment with minimum per unit
price. If a winner segment is found with maximum number of units available in
that segment more than the requirement of the demand interval, we truncate the
bid by the requirement of that interval and move to the next interval. If a winner
segment is found but the maximum number of units available is less than the
requirement of the demand interval, it removes the selected winner segment from
the corresponding bid and reduces the requirement of the demand interval with
maximum number of units available in the winner segment and recreates the
feasible set and searches for the next winner segment. This continues till either the
requirement of the interval is met or the feasible set is empty. If the requirement is
met, we move to the next demand interval and continue the selection of winner
segments as above. If the feasible set is empty before the requirement of the
interval is met, then we cannot meet the requirement of the interval and so we add
the unsatisfied requirement to the next interval and move to next demand interval.

Heuristic: SelectGreedyWinners

ðB0;Reduced D;Reduced Q;winnersÞ

For each demand interval Reduced Dk; 8k ¼ 1; 2; . . .; t0

1. Compute qk where

qk ¼
Reduced Qk

Reduced Qk � Reduced Qk�1

: if
: if

�
k ¼ 1

k ¼ 2; . . .; t0:

2. While ðqk [ 0Þ

2.1 Select winning seller I such that q0
i � qk and d1

I \Reduced Dk and
p1

I ¼ minfp1
i g;8i ¼ N.

2.2 if winner selected with p1
I �M; add I to Winner set and reduce the

requirement qk

(a) if q1
I � qk, then q0

I ¼ 0q j
I ¼ q j

I � qk 8j ¼ 1; 2; . . .;mi and qk ¼ 0 Add the
tuple ðI; qkÞ to Winners, i.e., increment Size and k by 1. Go to Step 1.

(b) else q0
I ¼ 0q j

I ¼ qjþ1
I ; p j

I ¼ pjþ1
I and d j

I ¼ djþ1
I 8j ¼ 1; 2; . . .;mi � 1; mI ¼

mI � 1 qk ¼ qk � q1
I Add the tuple ðI; q1

I Þ to Winners, i.e., increment Size
by 1. Go to Step 2.
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2.3 If no Winner is selected Add the remaining quantity to next interval
requirement.

Reduced Qkþ1 ¼
Reduced Qkþ1 þ qk

Reduced Qkþ1

�
:
:

if
if

k ¼ 1;
k ¼ t0

. . .; t0 � 1

Increment k by 1 and go to Step 1.

3. The set Winner contains all the winners.

For each demand interval we can meet the requirement in constant number of
iteration of selecting the minimum cost winner from the feasible set, thus the
complexity of SelectGreedyWinners will also be O(t0N). So by relaxing the 0–1
MIP to an LP and solving the LP and the using the heuristic SelectGreedyWinners
we have solved the VDLT problem in polynomial time. In the next section, we will
compare the quality of the solution of 0–1 MIP and the above proposed solution.

13.5 Computational Results

In this section, we will present the results of computational experimentation car-
ried out for VDLT auctions. We carried out the experiments by randomly gen-
erating the bids for sellers and the inflow requirement for the buyer. The LP and
IP-formulated are solved using the commercial solver CPLEX from ILOG.

13.5.1 Performance of the 0–1 MIP Formulation

First we compare the performance of the 0–1 MIP formulation with that of the
constraint method (CM). We have taken 100 bids each with specification stated as:

• 1�mi� 10; 8i 2 N;
• 10� q0

i � q1
i � . . .� qmi

i \100; 8i 2 N;

• 10� d1
i � d2

i � . . .� dmi
i \100; 8i 2 N;

• 1000� p1
i � p2

i � . . .� pmi
i � 100; 8i 2 N:

Varying Lead Time in Inflow Required
In Table 13.2 we give the comparison by changing the lead time specified by

the buyer. The inflow requirement specified by the buyer can be given as

• 5� t� 10; where t is the number of intervals;
• 300�Q1�Q2� . . .�Qt� 3000;
• Dk Range specifies the range as specified in inflow required by the buyer;
• Qt is the number of units required by the last interval;
• qt is the number of units procured by the last interval;
• Procurement cost is the total cost of procurement by summing up the cost of

each unit procured;
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• Procurement time is calculated by summing up the lead time of each unit
procured as for procurement cost.

Table 13.2 shows that when the lead time requirement specified by the buyer is
small, i.e., buyer wants the items early and sellers are not capable of supplying the
units, the constraint method turns out to be inappropriate. The 0–1 MIP formu-
lation proposed by us solves the problem by selecting the winners whoever is able
to supply, even though may not able to meet the whole requirement. Similarly, in
the case where there are enough sellers who can meet the requirement of buyer but
their per unit cost is very high, the constraint method will procure the item without
considering the unreasonably high price. But in our 0–1 MIP formulation, we can
control this by varying the loss factor (M). As the loss factor is increased, the cost
is traded-off with lead time. If we specify a high value of M, the solution is the
same as what we achieve with the constraint method.

Varying Quantity Required in Inflow
In Table 13.3 we give the comparison with changing the quantity requirement

specified by the buyer. The inflow requirement specified by the buyer can be
specified as:

• 5� t� 10; where t is the number of intervals;
• 10�D1�D2� . . .�Dt� 1000;
• Qk Range specifies the range as specified in inflow required by the buyer;
• Qt is the number of units required by the last interval;
• qt is the number of units procured by the last interval;
• Procurement cost is the total cost of procurement by summing up the cost of

each unit procured;

Table 13.2 Solutions obtained with 0–1 MIP formulation and constraint method for different
lead times

Dk

range
Qt

reqd.
Loss
factor

Proposed 0–1 MIP Constraint method

qt

proc.
Proc. cost Proc.

L.T
qt

procured
Proc. cost Proc.

L.T

2–20 2,895 300 229 162,159 2,455 Infeasible
600 743 576,249 9,477
900 1,024 788,677 14,289

4–40 2,700 300 2,254 1,515,925 49,037 Infeasible
600 2,265 1,525,737 49,191
900 2,573 1,792,549 56,830

6–60 2,663 300 2,088 1,206,404 49,037 2,663 1,627,101 56,830
600 2,368 1,411,024 49,191
900 2,663 1,627,101 56,830

8–80 2,746 300 1,750 1,033,366 40,851 2,746 1,539,068 84,011
600 2,682 1,499,504 81,227
900 2,746 1,539,068 84,011
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• Procurement time is computed by summing up the lead time of each unit pro-
cured as for procurement cost.

Table 13.3 shows that when the quantity requirement specified by the buyer is
small, that is, the buyer requires lower number of units than that can be jointly
supplied by the sellers, we can achieve tradeoff between cost and lead time by
varying the loss factor (M) in 0–1 MIP formulation. This avoids procurement at a
very high cost which takes place in the constraint method. As the required
quantities in each demand interval is increased, there may be a time interval when
the requirement cannot be met even by procuring from all capable sellers. Under
such circumstances, the constraint method fails to solve the problem. The 0–1 MIP
formulation still solves the problem by procuring the maximum possible number
units which have per unit cost less than M.

Trade-off Between Cost and Lead Time
The trade-off that can be achieved with 0–1 MIP formulation is presented in

Fig. 13.3. For this, we considered a situation where the bids submitted by sellers
have the following specification.

• N ¼ 100;
• 1�mi� 10; 8i 2 N;

• 10� q0
i � q1

i � . . .� qmi
i \100; 8i 2 N;

• 10� d1
i � d2

i � . . .� dmi
i \100; 8i 2 N;

• 2000� p1
i � p2

i � . . .� pmi
i � 100; 8i 2 N:

The inflow requirement can be specified as:

½ðQ1;D1ÞðQ2;D2Þ. . .ðQt;DtÞ� ¼ ½ð1350; 24Þð1437; 25Þð2176; 27Þð2566; 66Þð2648; 87Þ�

Table 13.3 Solutions obtained by the proposed 0–1 MIP formulation and constraint method for
different demands
Qk range Qt

required
Loss
factor

Proposed 0–1 MIP Constraint method

qt
Procurement

Procurement
cost

Procurement
L.T

qt Procurement
cost

Procurement
L.T.

200–2,000 1,907 300 1,699 716,467 66,184 1,907 818,830 77,792
600 1,907 818,830 77,792
900 1,907 818,830 77,792

400–4,000 3,760 300 3,048 1,368,353 144,702 3760 1,795,571 177,055
600 3,413 1,582,272 164,406
900 3,760 1,795,571 177,055

600–6,000 5,662 300 5,189 1,386,179 181,204 Infeasible
600 5,662 3,749,702 193,481
900 5,662 3,880,266 188,418

800–8,000 7,680 300 6,456 3,907,803 262,685 Infeasible
600 6,685 4,049,117 277,043
900 7,841 4,896,479 350,124
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The loss factor M signifies the buyer willingness to procure the item. A high
value of M means that buyer is ready to procure the unit at unit price of M against
its delay. M acts as a weight factor for delay of unit over its cost. As shown in the
Fig. 13.3, as we increase M, the cost is traded off against the lead time, that is, the
total procurement cost increases while the total time lead time decreases.

13.5.2 Performance of the Greedy Heuristic

After showing the advantages of 0–1 MIP against the constraint method, here we
will compare the performance of the solution produced by the heuristic with that of
optimal solution. The specifications of bids are same as given in Sect. 13.5.1. The
demand curve can be specified as:

• 5� t� 10; where t is the number of demand intervals;
• 10�D1�D2� . . .�Dt� 100;
• 300�Q1�Q2� . . .�Qt� 3000:

Figure 13.4 shows that the procurement cost of Heuristic, where first we solve
the LPR of 0–1 MIP and then calls SelectGreedyWinners. The solution produced is
of reasonably good quality, with an error of less than 5 %. Figure 13.5 shows that
the time to solve the 0–1 MIP bears no correlation with the number of sellers, since
solving an IP greatly depends on the structure of the constraints. If we use the
heuristic (SelectGreedyWinners) after solving the LPR, we select the winners

Fig. 13.3 Effect of changing loss factor on procurement cost and total lead time
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greedily in polynomial time O(t0N).The complexity is proportional to the number
of sellers, so as the number of sellers increases the time to solve also increases
proportionally.

Fig. 13.4 Comparison of total cost of procurement using the greedy heuristic with that of 0–1
MIP formulation

Fig. 13.5 Comparison of time taken to solve WDP with heuristic and optimal 0–1 MIP
formulation
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13.6 Summary and Future Work

In this chapter, we considered the problem of determining an optimal set of
winning suppliers in a multi-unit procurement auction where the suppliers specify
volume discounts and also delivery lead times. To the best of our knowledge, this
is the first time both volume discounts and lead time constraints are considered
together in a procurement auction setting in a detailed way. We showed that the
winner determination problem, which turns out to be a multi-objective optimiza-
tion problem, cannot be satisfactorily solved by traditional methods of multi-
objective optimization. We formulated the problem first as an IP with constraints
capturing lead time requirements and showed that the IP is an extended version of
the multiple knapsack problem. We then simplified the IP to a 0–1 MIP, which is
easier to solve. We also explored a more efficient approach to solve the problem
using a linear relaxation of the 0–1 MIP, combining it with a greedy heuristic to
obtain a high quality approximate solution in a fast way. Using extensive
numerical experimentation, we showed the efficacy of the 0–1 MIP and the pro-
posed heuristic.

We would like to suggest few directions in which this research can be taken
further. The first direction is related to the approach for solving the winner
determination problem, which happens to be a 0–1 MIP. One could look at more
efficient ways of solving it by possibly exploiting the structure of the problem in
some innovative ways. Another direction to pursue here would be to improve the
heuristic. In fact, we tried a heuristic (Verma 2006), where we used the branch-
and-bound method to search all possible solutions. The solution obtained with this
heuristic was of higher quality with an error of about 1 %, but the time to solve
was correspondingly higher. Moreover, the computational time was instance
dependent as in the case of 0–1 MIP. Nevertheless, there is good scope for trying
out other heuristics.

Second, the suggested winner determination problem in this chapter is restricted
by an implicit assumption that there is a natural staggering in the requirement for
the materials, which is a reasonable assumption. If the suppliers decide to deliver
everything immediately in the first time interval itself, then the present formulation
does not handle the situation that well. It would be worthwhile having warehouse
capacity constraint to discourage early deliveries. This could be incorporated into
the model.

The third direction to pursue would be look at the game theoretic angle. In this
chapter, we have implicitly assumed that the buyer and the suppliers are honest
and do not involve in strategic play while bidding. A more realistic setting would
be to view them as rational players and use mechanism design theory to make the
procurement auction robust to strategic play by the agents involved. There are
many recent efforts in designing incentive compatible auctions in multi-unit pro-
curement setting; we have already referred to these papers in the review of liter-
ature (Sect. 13.2.1). It would be interesting to pursue design of an incentive
compatible auction in the current setting of volume discounts and lead time
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constraints. Pursuing the design of a cost minimizing auction subject to incentive
compatibility and individual rationality would be an even more challenging
direction.
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Chapter 14
A Piecewise Linear Supply Chain Game
for Manufacturing Network Formation

S. Mahjoub and J. C. Hennet

Abstract This chapter analyzes the process of forming a coalition within a
corporate network. The objective of the partner companies is to create a multistage
manufacturing system, which generates a chain of increased value from raw
materials to end-user market. This process is studied by cooperative game theory,
through the key problems of maximizing the total profit and distributing it among
the members of the coalition. To construct a pay-off policy that is both stable and
fair, the study proposes to represent the productive resources of the firms not only
by their capacity, but also by the work in progress (WIP) generated by product
flows. The proposed profit sharing rule is then constructed from the dual of the
profit maximization problem. It is both efficient and rational, with more fairness
than the Owen set policy of classical linear production games.

Keywords Corporate networks � Game theory � Manufacturing systems �
Resource utilization � Clearing functions � Linear production games � Duality

14.1 Introduction

The concept of a manufacturing network is close to the concepts of virtual
enterprise and extended enterprise. Powell and Grodal (2005) define an enterprise
network as a group of companies maintaining formal relations between them in the
form of contracts that can be rather informal or can manifest just an exchange of
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information between the different parties. Butera (1991) defines a similar concept
as a set of firms linked to each other by a production cycle. The link is neither legal
nor structural; it often takes the form of simple agreements. What these companies
have in common is a powerful drive to functional cooperation. In recent years,
companies have realized that forming networks could help them to meet the
requirements of innovation and responsiveness required by a continuously
changing environment. Pooling resources and sharing services create interdepen-
dencies. According to Paché and Bacus-Montfort (2003), a corporate network has
a reticular form with no permanent leader. Its purpose is to combine the resources
of multiple stakeholders to achieve a common goal, and even disappear as soon as
the goal is reached. A manufacturing network appears as an organizational form
that combines flexibility, competitiveness, and responsiveness. It therefore con-
stitutes a new paradigm that may emerge as the dominant mode of organization.
The effectiveness of this organizational form has been demonstrated in various
sectors, including automotive, electrical, electronics, IT, construction, banking and
insurance, aerospace, and food processing. There are many examples of alliances
in today’s economy, including in particular BMW, DaimlerChrysler, and General
Motors for hybrid propulsion systems and the Renault and Nissan alliance.

The issue of forming a manufacturing network in a set of firms connected by
information and logistic links can be modeled by the theory of cooperative games.
As noted by Williamson (1981), most companies do not have sufficient internal
resources to ensure economies of scale and reduce the uncertainty associated with
entry into new markets. For this reason, the association with other companies is
often the best solution to deal with these issues. Indeed, manufacturing networks
allow for a better reactivity of production and a better mobilization of resources to
cope with market fluctuations. The works of Cachon and Netessine (2004) and
Nagarajan and Sošić (2008) provide convincing interpretations of manufacturing
network design problems as cooperative games. Each applicant company is seen as
a player seeking to maximize its utility function, which is its expected profit. The
means to achieve this goal is the formation of a coalition of players, which
involves the sharing of production resources to maximize the expected total profit
obtained by the production and sale of finished products.

In a cooperative game, a coalition is a subset of the set of players. It is asso-
ciated with an income that can be shared among its members. A cooperative game
raises two basic problems:

• The problem of optimizing the income and determining the coalitions for which
the optimum is reached;

• The problem of distributing the income between the players who belong to the
optimal coalition.

In this context, methods of distribution of income are numerous. These methods
include the method of equal sharing, which consists of the remuneration of all
members of the coalition in an identical manner. Despite its simplicity, this method
is not as fair as it seems to be, since it does not take into account the different
resource contributions of the participants. At the other extreme, Gerchak and Gupta
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(1991) have proposed a method of sharing the total income based on the contri-
bution of each partner to the maximal total profit. Although this method allows a
fair distribution, it does not generally ensure the stability and sustainability of the
optimal coalition. The viability and performance of a coalition highly depend on the
quality of the income sharing policy. Among the properties that a policy should
possess to be fully accepted by the partners, we can mention efficiency, rationality,
and equity. Cooperative game theory offers solution concepts related to these
properties. The main concepts commonly used in the cooperative game context are
the core, the Shapley value, and the nucleolus (see e.g., Osborne and Rubinstein
1994). This study focuses on sharing policies that belong to the core of the game.
Under such a policy, the choice of the winning coalition is both efficient and
rational for all the players.

Many examples of core allocation policies can be found in the literature on
collaborative enterprise networks. Hartman et al. (2000) analyzed a supply chain
consisting of several retailers facing random demands. The proposed model
follows the single product newsvendor model. The authors supposed that retailers
can pool their stocks and centralize their order quantities. By imposing certain
conditions on the distribution function of demand, the authors showed that the core
of the stocks centralization game is not empty. Then Muller et al. (2002) relaxed
these restrictions and showed that the core of the stocks centralization game is
never empty, independently of the demand distribution. In addition, they gave a
necessary and sufficient condition for the core to be a singleton.

Hartman and Dror (2003) studied a cooperative game with several retailers
facing stochastic and dependent demands. In particular, they assumed that the
demands of different retailers are correlated and follow a normal distribution.
Their study shows that the game is subadditive with a nonempty core if storage
costs and stockout costs are identical for all the subsets of retailers. This result
remains valid when demands are independent. In contrast, the core can be empty if
storage and shortage costs are mutually different (Hartman and Dror 2005).
Similarly, Meca et al. (2004) studied a supply chain formed by several retailers.
Each retailer uses the economic order quantity policy for supply and subsequently
meets the demand assumed deterministic. In addition, each retailer undergoes a
linear storage cost and a fixed cost of supply. The authors noted that the total
supply costs can be reduced to a single cost borne by the grand coalition
of retailers. They showed that therefore the core of the retailers’ cooperative game
is not empty. In addition, they proved that the solution with proportional distri-
bution of the total profit is in the core. In a similar framework of cooperation
between retailers with centralized stocks, Slikker et al. (2005) have integrated
transportation costs in the model and show that the core of the cooperative game is
not empty.

In order to form a supply chain, enterprises should select the quantities of
end-products that they plan to sell on the market and use their means of production
in agreement with the product structure and the operation sequence of the goods to
be manufactured. Such an arrangement should be performed in the most profitable
manner for all the enterprises involved. The choice of the most efficient coalition
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of enterprises pooling their logistics and manufacturing resources is the main issue
of the Linear Supply Chain Game (LSCG) studied in Hennet and Mahjoub (2010).
The LSCG is an extension of the linear production game (LPG) studied by Shapley
and Shubik (1972). A remarkable property of the LPG is the existence of a set of
purely competitive profit sharing policies, known as the Owen set, which lies at the
core of the game (Owen 1975). These policies are constructed from a dual program
in which the optimal dual variables can be interpreted as the marginal costs of
resources. One limitation of the standard LPG formulation is the difficulty to
combine rationality and fairness in the allocation policy, due to the fact that
marginal costs of resources drop to zero when their capacity is in excess in
the coalition. There are several definitions of fairness in cooperative games. In the
context of production games, the rewards of players can be considered fair if they
are in the same proportion of their partial contribution in any coalition. This
definition can be formally stated as the ‘‘balanced contributions property’’ defined
in Myerson (1977). Then, according to this definition, the Shapley value allocation
is the only fair allocation policy. The possibility for the Shapley value allocation to
also be rational is closely related to convexity properties of the cooperative game.
Unfortunately, linear production games are not convex in general (Hennet and
Mahjoub 2011) and there are many such games in which the Shapley value
allocation is not in the core of the game.

A milder definition of fairness has been proposed in Hennet and Mahjoub
(2010). It requires that all the players who belong to the winning coalition should
receive a strictly positive payoff. A sufficient condition for this property to hold
true has then been obtained for the LSCG. One of the objectives of this chapter is
to satisfy the same milder fairness condition, but in a more systematic manner,
through a more precise and operational model of the saturation constraints on
resources in manufacturing processes. This study considers manufacturing
resources not only from the capacity viewpoint but also from their utilization
conditions, by taking into account the influence of the workload on the throughput
and introducing the cost of the work in progress (WIP) in the objective function.
The value function of the chain integrates as a positive term the anticipated
revenue to be obtained from the sale of the end-products on the market and as
negative terms manufacturing costs and holding costs of all the products and
components.

Then, the piecewise linear supply chain game (PLSCG) defined and studied in
this chapter represents the saturation constraints on resources in a detailed manner,
while preserving linearity of the model. The main reason for maintaining the
linearity property is to remain in the scope of the LPG, with the resulting possi-
bility of using the Owen set profit allocation rule as a rational profit allocation
policy. The properties of the PLSCG demonstrated in the chapter allow for an easy
computation by Linear Programming of the maximal profit achievable from the
formation of a supply chain in the network of enterprises. Then, a stable profit
allocation rule is constructed as a generalization to the PLSCG of the Owen set
concept used for LPG. A practical advantage of the proposed PLSCG allocation
policy over the classical Owen policy for the LSCG is that it improves the fairness
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of the profit allocation rule by integrating the costs of resource utilization before
reaching the capacity limits.

Section 14.2 introduces the supply chain design model obtained from the
product structure of the end-products to be sold on the market. Section 14.3 solves
the PLSCG by optimizing the expected profit of the supply chain. A stable profit
allocation policy is then constructed in Sect. 14.4. An illustrative numerical
example is provided in Sect. 14.5, and Sect. 14.6 concludes the chapter.

14.2 A Supply Network Formation Process

14.2.1 Multistage Manufacturing Models

The concept of supply network concentrates on some major features of business
organization in today’s society. It characterizes a network of autonomous pro-
duction units connected through an information and communication network and
through a logistic network. In the recent literature, such a network is sometimes
called ‘‘cloud of collaborative enterprises’’ or ‘‘cloud supply chain’’ (Lindner et al.
2010). Typically, the information network carries commercial proposals, products
orders, manufacturing, and delivery protocols. The logistic network used to
transport goods and products may be owned by enterprises that belong to the
network or by subcontractors. In any case, a supply chain can be viewed as a
multistage production and transportation system in which the different transfor-
mation stages are performed by different enterprises. Requirements planning
models (Baker 1993) can then be used to define and distribute responsibilities and
manufacturing orders among the partners. In this view, the product structure
supports the enterprise network organization, especially under an extended view of
the BOM (Bill of Materials), such as the G-BOM (Generic BOM), (Lamothe et al.
2005), integrating product families rather than simple products.

Consider a set of end-products (or families of end-products) i 2 1; . . .; gf g and a
perfectly competitive market. From the consumer’s viewpoint, these products may
be substitutable or not, and any quantity of them can be sold on the market at the
fixed market prices: pi for i 2 1; . . .; gf g. Consider now the set of all primary,
intermediate, and end products: i 2 1; . . .; g; . . .; nf g. Each production stage is
supposed to have several input products but only one output product. The BOM
technical matrix P, is defined as follows: according to a given manufacturing
recipe, production of one unit of product i requires the combination of components
l 2 1; . . .; nf g in quantities pli.

In terms of modeling, a convenient graphical tool to represent multi-product
multi-stage bills of materials is the gozinto graph proposed by Vazsonyi (1955).
This graph defines a partial order in the set of products and a total order by classes
of products that are called ‘‘levels.’’ By definition, end products have level 0 and
the level of product i, for i ¼ gþ 1; . . .; n is the maximal number of stages to
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transform product i into an end product. Accordingly, intermediate and primary
products are numbered in the increasing order of their level. Under a level-
consistent ordering of products, matrix P has a lower triangular structure (Hennet
2003).

Additionally, multistage production by several producers highly differs from
multistage production by a single producer because of the need for negotiation,
contracts, and higher coordination requirements. It also carries new possibilities in
the design stage for selecting partners, sharing resources, risks, and rewards.

Let N be the set of N enterprises who candidate to be a part of the supply chain
to be created. Each candidate enterprise is characterized by its production
resources: manufacturing plants, machines, work teams, robots, pallets, and
storage areas. The supply chain model is formulated over a reference time horizon
and in stationary conditions. Thus, lead times are not included in the model and
material supply is supposed perfectly coordinated with manufacturing processes.
Then, let X ¼ xij

� �� �
be the matrix of the quantities of product i produced

(or obtained by exchange) at firm j and y ¼ y1; . . .; ynð ÞT be the output vector
during the reference period. The components of this matrix and vector are the
variables of the design problem. For simplicity, quantities per period (or
throughputs) are supposed continuous: X 2 <n�N

þ ; y 2 <n
þ. The total product

throughput vector, denoted x ¼ x1 � � � xn½ �T is related to matrix X through
summation relations (14.1):

xi ¼
XN

j¼1

xij for i ¼ 1; . . .; n: ð14:1Þ

Equations (14.1) for i = 1,…, n are summarized in vector form:
x ¼ X1N ; 1N being the unit vector of dimension N.
The output vector can be computed from the throughput vector by the following

relation:

y ¼ I �Pð Þx; with I the n� n identity matrix: ð14:2Þ

From the structure of matrix P, matrix I �Pð Þ is regular and matrix I �Pð Þ�1

is lower triangular (with 1 s on the diagonal) and nonnegative. Then, for a
nonnegative output vector y, the global throughput vector is also nonnegative since
it is expressed as follows:

x ¼ I �Pð Þ�1y: ð14:3Þ
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14.2.2 Resource Capacity and WIP

Consider the R types of resources available in the network (r = 1,…, R). The
amount of resource r available for enterprise j is denoted as krj, and the resource
capacity matrix is defined as: K ¼ krj

� �� �
2 <R�N . A subset S of enterprises, with

S � N , can be represented by its characteristic vector eS 2 0; 1f gN such that:

eSð Þj¼ 1 if j 2 S
eSð Þj¼ 0 if j 62 S

�
ð14:4Þ

Let mri be the amount of resource r necessary to produce 1 unit of product
i. M ¼ mrið Þð Þ 2 <R�n:

The first issue addressed in this chapter is how to represent resource capacity
in a consistent manner with the resource saturation phenomena observed in
practice. Basically, a resource such as a machine or transportation equipment is
characterized by its decreasing efficiency relative to the load.

Classical capacity constraints used in aggregate production planning problems
are simple saturation functions of the ‘‘all or nothing’’ type. Such capacity
constraints are valid and will be used in our model. In particular, the capacity
constraints restricted to a coalition S �N are written as:

M I �Pð Þ�1y�KeS ð14:5Þ

But constraints (14.5) are not sufficient to describe the saturation phenomena,
because they do not represent the average workload in the system. Using the ‘‘Little
law’’ (Little 1961), systems with saturation functions completely described by (14.5)
are associated with constant lead times. However, as stressed in Karmarkar (1993),
data show a super linear increase of lead times with capacity utilization, and this
property is true at various magnitude levels and for any type of physical resources. In
queuing theory, a lead time is classically decomposed into a processing time of
constant expected value and a waiting time whose mean value increases with the
mean population (or WIP, Work In Progress). Such convex lead time variations with
the WIP are associated with concave output functions called clearing functions. This
phenomenon has been largely ignored in the production planning literature
(Asmundsson et al. 2003), probably because of the difficulty to integrate nonlinear
constraints in planning problems that are already complex, with large number of
variables. To keep our supply chain model linear, this nonlinearity will be repre-
sented by a piecewise linear function that represents the inverse clearing function
(Fig. 14.1). This function expresses the WIP as a function of the actual throughput.

For resource r located at enterprise j, the WIP is denoted wrj. The resource
throughput, denoted hrj, is given by:

hrj ¼
Xn

i¼1

mrixij ð14:6Þ
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The clearing function of Fig. 14.1 is represented by the following set of con-
straints between the resource throughput and the WIP in a particular enterprise j:

hrj� krj ð14:7Þ

wrj� a1
rjhrj ð14:8Þ

wrj� a2
rj hrj � k0

rj

� �
ð14:9Þ

Now, when considering the set of enterprises N , it can be assumed that slope
parameters a1

rj and a2
rj characterize resource r at any enterprise j 2 N . Only

capacity parameters krj and k0
rj depend on the considered firm j 2 N . Then, in a

subset of enterprises S �N , constraints related to resources of type r owned by the
enterprises in S take the following aggregated form:

hr ¼
XN

j¼1

hrj � ðeSÞj�
XN

j¼1

krj � ðeSÞj ð14:10Þ

wr � a1
r hr ð14:11Þ

wr � a2
r hr �

XN

j¼1

k0
rj � ðeSÞj

 !
ð14:12Þ

Constraint (14.10) is the standard capacity constraint included in the set of
constraints (14.5) and related to throughputs hrj computed by (14.6). Constraints
(14.11) and (14.12) express that the aggregated WIP of resource r is above the
inverse clearing function. Parameters a1

r and a2
r characterize the resource r owned

by enterprises in the network. They are both positive and satisfy for all a1
r \a2

r .
Capacity parameters krj and k0

rj satisfy 0� k0
rj\krj.

Equality in Constraint (14.11) or (14.12) will be obtained through constraint
saturation when minimizing wr in the criterion, as it will be the case when min-
imizing the holding costs.

Using models (14.10)–(14.12), for all the resources, we define the following
arrays of resource-dependent parameters:

rjw

rjk0
rjk

1
rjα

2
rjα

rjθ

Fig. 14.1 A piecewise linear
inverse clearing function
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• the two non negative vectors a1
1 � � � a1

R

� �T
, a2

1 � � � a2
R

� �T

• matrix K0 ¼ ððk0
rjÞÞof dimension R� N

• the diagonal matrices of dimension R� R A1 and A2 such that ðA1Þrr ¼ a1
r ,

ðA2Þrr ¼ a2
r :

14.3 The Piecewise Linear Supply Chain Game

14.3.1 The Profit Maximization Problem

Unit purchasing costs of primary products and manufacturing costs of intermediate
and end-products are supposed fixed and given. They are noted ci for i 2

1; . . .; nf g and in vector form c ¼ c1; . . .; cn½ �T . The unit holding cost of workload
wr of resource r is denoted hr. In vector form, h ¼ h1 � � � hR½ � T .

End-products are the goods sold on the market at fixed and given market prices:

pi for i 2 1; . . .; gf g, and p ¼ ½p1; . . .; pn�T by convention pi ¼ 0 for
i 2 gþ 1; . . .; nf g.

The profit expected from manufacturing and sale on the market of the vector
of outputs y is given by: pT y� cTxð Þ), which can be rewritten as

pT � cT I �Pð Þ�1
� �

y. Additional storage costs will be subtracted from this

expression to formulate the total expected profit of the chain.
The profit maximization problem related to the possible supply chain formed by

the enterprises in S � N can then be stated as follows:

Maximize v ¼ pT � cTðI �PÞ�1
h i

y� hT w

subject to

M I �Pð Þ�1y�KeS

A1M I �Pð Þ�1y� w� 0

A2M I �Pð Þ�1y� w�A2K0eS

y 2 <n
þ;W 2 <R

þ; eS 2 0; 1f gN

8
>>>>>>>>><

>>>>>>>>>:

ðPSÞ

In the cooperative game theory framework, each subset of enterprises S � N is
considered as a possible coalition of players, with value function v Sð Þ computed as
the optimal criterion of the profit maximization problem (PS). The set of problems
(PS) over all the possible coalitions S � N defines a cooperative game, called the
Piecewise Linear Supply Chain Game, or PLSCG.

It can be noticed that any coalition S0 such that S � S0 satisfies eS� eS0 .
Therefore, the optimal solution of (PS) is feasible for PS0ð Þ and, as a consequence,
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v S0ð Þ � v Sð Þ. The game N ; vð Þ is said to be monotonic (in the sense of Granot and
Maschler 1998) and the following property derives from monotonicity.

Property 14.1 The maximal profit v	 that can be obtained by any coalition S � N
is also obtained by the grand coalition N : v	 ¼ v Nð Þ.

According to Property 14.1, the maximum achievable profit with respect to any
coalition S � N can be directly obtained by solving problem (PN) for which
eN ¼ 1N . This property is important for two reasons. The first is that it allows for
an easy computation of the maximal possible profit value by Linear Programming.
The second is that when vector eS is given, problem (PS) only contains continuous
variable and the optimal value of its criterion is also the optimal value of the
criterion of its dual problem, without any ‘‘duality gap.’’ This property will be used
to compute a profit allocation policy for the enterprises in the network.

14.3.2 Characterization of Core Allocations

The key problem in forming a supply chain is to guarantee that it will be stable in
the sense that no set of member enterprises will prefer to separate from the others
to create a more profitable chain. In the cooperative game theory, such a stability
property is related to the rationality of the profit allocation policy. The set of
efficient and rational profit allocation policies is called the ‘‘core’’ of the game.
A profit allocation is noted as uið Þi2 1;...;Nf g. By definition, it belongs to the core of

the game (N , v) if and only if it satisfies the following properties:
Efficiency:

X

i2N
ui ¼ v	 ð14:13Þ

Rationality:
X

i2S

ui� vðSÞ 8S � N ð14:14Þ

Condition (14.14) indicates that for any subset of player S 
 N , there is no
coalition alternative in which he could obtain a strictly greater reward.

14.3.3 The Particular Case of Linear Supply Chain Games

If holding costs were neglected, problem (PS) could be reformulated, as in (Hennet
and Mahjoub 2010), to represent the game as a linear supply chain game (LSCG):
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Maximize v ¼ gT y
subject to Ay�KeS

y 2 <n
þ; eS 2 0; 1f gN

ðPs0Þ

with g ¼ pT � cTðI �PÞ�1, A ¼ MðI �PÞ�1.
Linear supply chain games are particular instances of the linear production

game (LPG), introduced by Shapley and Shubik (1972), and also studied by Owen
(1975) and Van Gellekom et al. (2000). The solution rule proposed by Owen
(1975) and called the Owen set, is constructed from the optimal solution of the
dual DN 0ð Þ of problem PN 0ð Þ. The optimal dual variables are interpreted as the
marginal costs (or shadow prices) of resources. In an Owen assignment, the payoff
of each player equals the value of his resource bundle under the unit marginal cost
of resources. Moreover, it has been shown in (Owen 1975) that this vector of
payoffs forms a subset of the core in this production game.

A similar construction can be achieved with problem (PN), with a detailed
evaluation of the cost of resources resulting from the introduction of the WIP in
the model.

14.3.4 A Profit Sharing Mechanism for the Member
Enterprises

Three types of dual variables characterize the dual (DN) of problem (PN): variables
zr associated with the first set of constraints in (PN), variables g1

r and g2
r associated

with the second and third sets of constraints in (PN). To obtain a more compact
formulation of the dual problem, the following vectors of variables are introduced:

z ¼ ðz1; . . .; zRÞT ; g1 ¼ ðg1
1; . . .; g1

RÞ
T ; g2 ¼ ðg2

1; . . .; g2
RÞ

T :

Problem (DN) is stated as follows:

Minimize u ¼ qTzþ KT
0 A2g2

subject to
ðI �PÞ�T MTðzþ A1g1 þ A2g2� p� ðI �PÞ�T c

g1 þ g2� h
z 2 <R

þ; g1 2 <R
þ; g2 2 <R

þ:

DNð Þ

The coefficient of variable zr in the objective function corresponds to the
quantity of resource r available for production if the network,

q ¼ ðq1; . . .; qRÞT with qr ¼
XN

j¼1

krj: ð14:15Þ
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By analogy to the Owen set for LPG, a profit allocation policy ðuiÞi2 1;...;Nf g

defining the profit allocation vector u ¼ u1; . . .; uN½ �T can be constructed from the
optimal solution ðz	; g	1; g	2Þof problem ðDNÞ, in the form:

uj ¼
XR

r¼1

krjz
	
r þ a2

r k0
rjg

2	
r

� �
j ¼ 1; . . .;N for ð14:16Þ

By construction,
PN

j¼1 uj ¼ u	and from the strong duality property, v	 ¼ u	.
The proposed allocation policy is efficient in the sense of (14.16).

Rationality of this policy can also be shown, as for the Owen set, from the
property that the constraints defining the dual problem of ðPSÞwith eS fixed, are the
same for any coalition S (Van Gellekom et al. 2000).

Then, from the definition of the core, the following property is derived.

Property 14.2 The feasible payoff profile ðu	i Þi2N defined by relations
(14.16)belongs to the core of the piecewise linear supply chain game.

The proposed profit allocation mechanism for the PLSCG has the same property
of coalitional stability as the Owen set for the LPG. However, it has been observed
that the Owen set solution of the LPG has the drawback of being unfair by not
rewarding some enterprises having a positive marginal contribution to the global
profit (Hennet and Mahjoub 2010).

Typically, this unfairness mainly arises from the fact that in the optimal dual
solution of the dual D0N

� �
of the LSCG problem P0N

� �
, resources in excess have

null shadow prices; z	r ¼ 0 if resource r is in excess in the optimal production plan.
Introduction of the piecewise linear resource saturation mechanism in the model
has generated an additional term g2

r related to the WIP of resource r. One of the
purposes in introducing the WIP terms in the model is to improve the fairness of
the purely competitive profit allocation policy, which is known to belong to the
core of the game. This property will be further studied in the next section and
illustrated on a numerical example.

14.4 Coalitional Stability and Fairness

There are several definitions of fairness in cooperative games. The most widely
accepted one is characterized by the ‘‘balanced contribution property’’ (Myerson
1977). This property considers all the partial contributions of each player in all
possible coalitions S � N . Because of this exhaustiveness, this approach can be
said to rely on the ‘‘absolute’’ value of the players’ contribution, measured by
the ‘‘Shapley value.’’ But fairness may also be a matter of comparison between the
payoffs of different players. It then relies on some relative measure of contribu-
tions, as described in (Fehr and Schmidt 1999). In Linear Production Games,
the competitive allocation policy defined by the Owen set (Owen 1975) is rational.
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It belongs to the core of the game. It could also be considered fair if one uses
the marginal contribution in N as a measure of fairness. However, such an allo-
cation policy can be seen as typically unfair with respect to the measures of
fairness that rely on absolute or relative contributions. The proposed PLSCG
model can be seen as an attempt to conciliate marginal and absolute contributions
by introducing the amounts of resources used in the form of WIP costs in the Owen
set allocation rule (14.16).

In supply networks, firms strive to use their resources in the most efficient
manner in order to increase the value of their output products, which are further
transformed along the chain and (or) subsequently sold on the market. In such
conditions, fair rewards should be related to the ratio between the added value
brought by the firm and the total added value of the chain. In mathematical
terms, the partial contribution of a player i to coalition S � N with j 62 S is
defined by:

DiðSÞ ¼ vðS [ if gÞ � vðSÞ ð14:17Þ

A classical characterization of fairness is the ‘‘balanced contributions property’’
defined in Myerson (1977). A profit allocation policy, denoted as ujðN ; vÞ, is said
to be fair in N if and only if it satisfies the balanced contributions property:

uj N ; vð Þ � uj N � kf g; vN� kf g
� �

¼ uk N ; vð Þ � uk N � jf g; vN� jf g
� �

8j 2 N ; 8k 2 N
ð14:18Þ

where by definition, for all S � N , ðS; vðSÞÞ is the subgame of N ; vð Þ defined by
vðTÞ ¼ vðSÞ 8T � S.

A particular allocation policy, called the Shapley value (Shapley 1953) has
been shown to be the only policy in N that possesses the balanced contributions
property. It is defined by:

ujðN ; vÞ ¼
1
N!

X

q2Q

djðSjðqÞÞ ð14:19Þ

for each j in N , where Q is the set of all N! orderings of N , and SjðqÞ is the set of
players preceding j in the ordering q.

However, the fairness property in the sense of Myerson (1977) is not a sufficient
condition for coalitional stability. The possibility for the Shapley value allocation
to also be rational is closely related to the convexity property of the cooperative
game. Unfortunately, linear production games are not convex in general (Hennet
and Mahjoub 2011) and the same restriction applies to LSCG and PLSCG, which
are particular instances or extensions of the LPG.

A valuable alternative to Myerson’s definition of fairness can be found in the
work of Fehr and Schmidt (1999). They define fairness as inequity aversion or
more precisely (and to be consistent with the standard economic approach) as self-
centered inequity aversion. Inequity can be measured by the difference between
the proposed payoff and a reference payoff, which can be the payoff of another
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player with a similar contribution. The inequity aversion is said ‘‘self-centered’’
when players are only concerned with negative differences. This approach is
consistent with many empirical observations of the importance of relative payoffs,
especially in games where players contribute equally to the global output. The
difficulty for applying this approach to LSCG is in the heterogeneous nature of the
resources owned by the firm and in their contrasted importance in the global
manufacturing process.

Another definition of fairness, which can also be seen as a minimal requirement
for fairness, has been proposed in Hennet and Mahjoub (2010). Consider the set
of winning coalitions defined by: W ¼ S � N ; vðSÞ ¼ v	f g: This definition of
fairness simply requires that all the players who belong to a winning coalition with
minimal cardinality should at least receive a strictly positive payoff.

A sufficient condition for this property to hold true for a rational allocation
policy has been obtained for the LSCG. However, there are many LSCG instances
for which a core policy cannot be fair, even when using this definition of fairness.
In particular, the following result holds for the LSCG.

Property 14.3 If the winning coalition with minimal cardinality of the LSCG is
not unique, then any core allocation policy is unfair in the sense of Hennet and
Mahjoub (2010).

Proof Consider the LSCG P0S
� �

with optimal value v	 ¼ v Nð Þ and consider the
set of winning coalitions: W ¼ S � N ; vðSÞ ¼ v	f g: Suppose that the payoff
profile ðu	i Þi2N belongs to the core of the game. If the winning coalition of the
LSCG with minimal cardinality is not unique, then, with Property 14.1,

8S 
 W with CardðSÞ\n; 9 j 2 S 9S’ 
 W such that j 62 S0:

Monotonicity of the LSCG then implies S0 [ ::jf g 2 W and thus, from the
efficiency of the allocation policy,

v	 ¼ vðS0 [ jf gÞ ¼ uj þ
P
i2S0

ui ¼ uj þ v	, which implies uj ¼ 0:

It is not difficult to construct LSCG instances for which the winning coalition
with minimal cardinality is not unique. It is the case, in particular, if 2 players own
the same resource and only this resource, which is used but not critical in any
winning coalition, then, any one of these 2 players is required but obtains a null
reward by any core payoff policy.

One of the advantages of the PLSCG formulation is to provide parameters that
may prevent resources from not being rewarded in spite of the fact that they are
used in the optimal production.

Consider a resource r used in quantity hr in the current solution of problem (PS)
and assume that resource r is not critical from the sole viewpoint of capacity

constraint (14.10), that is, hr\
PN

j¼1
krj � ðeSÞj. Then, by duality, the optimal dual

variable associated with constraint (14.10) is zr ¼ 0. However, firm j can receive a
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strictly positive reward for the use of resource in quantity hrj [ 0 provided that
parameters a2

r ; a2
r and k0

rj satisfy condition:

0\k0
rj\

a2
r�a1

r

a2
r

hrj ð14:20Þ

Under condition (14.20), constraint (14.12) is saturated at the optimal solution,
so that the optimal WIP dual variable g2

r can take a strictly positive value, gen-
erating uj [ 0 by relation (14.16).

Then, even if a resource is in excess in the optimal production scheme, it starts
getting costly as soon as the WIP starts growing.

The main conclusion of this study is that introduction of the WIP variable in the
model and in the criterion increases the fairness of the purely competitive profit
allocation policy without compromising stability, since this allocation always
belongs to the core of the game.

14.5 An Illustrative Example

Consider a product structure represented by the BOM (Bill of Materials)
of Fig. 14.2. The products involved are three final products, numbered 1, 2, 3,
two intermediate products (4, 5), and three primary products (6, 7, 8). The three
end-products (1, 2, 3) are level 0 products, the two products numbered 4, 5 are
level 1 products, and the three products 6, 7, 8 are level 2 products.

Matrix P associated with the structure of Fig. 14.2 is written as follows:

P ¼

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 0 0 0 0 0
3 0 0 1 0 0 0 0
0 0 0 2 3 0 0 0
0 0 0 1 1 0 0 0

2

66666666664

3

77777777775

The vector of unit market prices is p ¼ ½ 100 125 130 0 0 0 0 0 �T .

Unit manufacturing costs are c ¼ ½ 5 4 4 2 3 4 5 6 �T . Five resources
are necessary for the five products at the different manufacturing stages, with the
following resource requirement matrix M,

M ¼

1 0 2 0 0 1 0 0
0 0 0 2 0 1 0 1
2 2 2 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 2 2 2

2
66664

3
77775
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Four enterprises are candidate for partnership in the supply chain. The amounts
of the five resources owned by the four enterprises are represented in the following
matrix:

K ¼

0 100 100 0
100 0 0 100

0 20 20 20
200 0 100 0
200 100 0 100

2

66664

3

77775
:

Unit WIP holding costs are supposed resource dependent only and given by

vector: h ¼ ½ 0:5 1 0:5 1 0:5 �T : Saturation parameters are supposed
homogeneous for all the resources and all the enterprises, with a1

r ¼ 0:5;
a2

r ¼ 2; k0
rj ¼ krj=2. The optimal total profit is obtained from the solution of

the LP (PN): v	 ¼ 1115:7, with y	1 ¼ 28:57; y	2 ¼ y	3 ¼ 0,

w	 ¼ 85:71 200 54:29 157:14 400½ �T .
The optimal solution of the dual ðDNÞ is u	 ¼ 1115:7.

It is obtained for z	 ¼ 0 0:62 0 0 0:40½ �T , g1	 ¼ 0 0 0 0 0½ �T and
g	2 ¼ 0:5 1 0:5 1 0:5½ �T .

The profit allocation rule is then computed from expressions (14.16). The
unit resource reward vector, denoted rr, takes the value:

rr ¼ 0:50 1:62 0:50 1 0:90½ �T , and the profit shares of the four enterprises
of the supply chain are: u1 ¼ 542:86; u2 ¼ 150:44; u3 ¼ 160:00; u4 ¼ 262:41:

It is observed that all the partners of the chain obtain a strictly positive profit
share. If the member enterprises were rewarded only on the basis of the shadow
prices of their resources, the profit share of the third enterprise would have
dropped to zero. This is because only resources two and five have a strictly
positive shadow price and enterprise three does not own any quantity of these
resources.

In the proposed allocation rule, any resource r is rewarded not only on the basis
of its shadow prices, z	r , but also on its utilization cost measured through its WIP
marginal cost, g2

r .

6 7 8

3    1 2     3 1 1

4 5

1 2 1 1      2 

1 2 3

Fig. 14.2 An eight-product
structure
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14.6 Conclusions

In this study, we have analyzed a manufacturing network formation problem
through the study of a cooperative game named piecewise linear supply chain
game (PLSCG). In the setting of the game, the emerging manufacturing network
has been modeled as a coalition of partners pooling their resources and sharing the
same profit function. The multistage supply chain model has been constructed
from the multilevel structure of the manufacturing process. Each manufacturing
stage has been identified by its main output product that can either be a component
or an end-product. The main originality of the proposed resource model is to take
into account not only the capacity and cost of resources, but also the cost of the
Work in Process (WIP) generated by their use. For each resource, the WIP is
represented by a convex function of the throughput and approximated by a
piecewise linear function. The best choice of partners and the best mix of products
are then computed by Linear Programming. The optimal solution generates the
maximal expected profit for the manufacturing network. Partners of the winning
coalition are then supposed to agree on participation in the manufacturing network,
provided they receive a profit share that discourages them to break away from the
coalition. This is a well-known stability condition verified by any allocation policy
that lies in the core of a cooperative game. The difficulty to construct such a core
profit allocation policy has been solved by extending to PLSCG the classical Owen
set policy defined for linear production games (LPG). In the context of LPG, this
policy is known to be perfectly competitive and to reward the players only on the
basis of the marginal cost of their resources. However, the use of piecewise linear
clearing functions for resources and the introduction of additional variables to
represent the workloads have improved the fairness of the Owen profit allocation
policy by also rewarding resources that are not critical in the coalition.

Application of the cooperative game approach to manufacturing network for-
mation seems to be very promising since it captures the essence of the game with
rather simple models. Many cooperative models of this type can be found in the
literature, particularly the ones focusing on distribution and sales rather than
manufacturing. There are also many attempts to combine different types of games
within the same supply network; in particular cooperative games with close
partners and strategic games with distant partners often based on contracts.

References

Asmundsson JM, Rardin RL, Uzsoy R (2003) Tractable nonlinear capacity models for production
planning. Research Report, Purdue University (USA)

Baker KR (1993) Requirements planning. In: Graves SC, Rinnooy Kan AHG, Zipkin PH (eds)
Handbooks in operations research and management science Vol 4, pp 571–628. North-
Holland, Amsterdam

14 A Piecewise Linear Supply Chain Game 333



Butera F (1991) La métamorphose de l’organisation: du château au réseau. Les Editions
d’Organisation, Paris

Cachon GP, Netessine S (2004) Game theory in supply chain analysis. In: David Simchi-Levi S,
Wu D, Shen ZJ (eds) Handbook of quantitative supply chain analysis: modeling in the
eBusiness era. Kluwer Publisher, Boston

Fehr E, Schmidt KM (1999) A theory of fairness, competition, and cooperation. Q J Econ
114(3):817–868 (MIT Press)

Gerchak Y, Gupta D (1991) On apportioning costs to customers in centralized continuous review
inventory systems. J Oper Manage 10(4):546–551

Granot D, Maschler M (1998) Spanning network games. Int J Game Theor 27:467–500
Hartman BC, Dror M, Shaked M (2000) Cores of inventory centralization games. Games Econ

Behav 31:26–49
Hartman BC, Dror M (2003) Optimizing centralized inventory operations in a cooperative game

theory setting. IIE Trans Oper Eng 35(3):243–257
Hartman BC, Dror M (2005) Allocations of gains from inventory centralization in newsvendor

environments. IIE Trans Sched Logist 37(2):93–107
Hennet JC (2003) A bimodal scheme for multi-stage production and inventory control.

Automatica 39(5):793–805
Hennet JC, Mahjoub S (2010) Toward the fair sharing of profit in a supply network formation. Int

J Prod Econ 127(1):112–120
Hennet JC, Mahjoub S (2011) Coalitions of firms in manufacturing networks: stability and

optimality issues. In: Bittanti S, Cenedese A, Zampieri S (eds) Preprints 18th World IFAC
conference, Milano, Italy, pp 6419–6424

Karmarkar US (1993) Manufacturing lead times, order release and capacity loading. In: Graves
SC, Rinnooy Kan AHG, Zipkin PH (eds) Handbooks in operations research and management
science, vol 4. North-Holland, Amsterdam, pp 287–329

Lamothe J, Hadj-Hamou K, Aldanondo M (2005) Product family and supply chain design. In:
Dolgui A, Soldek J, Zaikin O (eds) Supply chain optimisation—product/process design,
facility location and flow control. Springer, New York, pp 175–190

Little JDC (1961) A proof for the queueing formula: L = kW. Oper Res 9:383–387
Lindner MA, Marquez FG, Chapman C, Clayman S, Hendriksson D (2010) Cloud Supply Chain -

A Comprehensive Framework, CloudComp 2010, 2nd International ICST Conference on
Cloud Computing, 25-28, Barcelona, Spain

Meca A, Timmer J, Garcia-Jurado I, Borm P (2004) Inventory games. Eur J Oper Res
156(1):127–139

Muller A, Scarsini M, Shaked M (2002) The newsvendor game has a non-empty core. Games
Econ Behav 38:118–126

Myerson RB (1977) Graphs and cooperation in games. Math Oper Res 2(3):225–229
Nagarajan M, Sošic G (2008) Game-theoretic analysis of cooperation among supply chain agents:

review and extensions. Eur J Oper Res 187(3):719–745
Osborne MJ, Rubinstein A (1994) A course in game theory. MIT Press, Cambridge
Owen G (1975) On the core of linear production games. Math Program 9(1):358–370
Paché G, Bacus-Montfort I (2003) Le management logistique intégré. Problèmes économiques.

2.792
Powell WW, Grodal S (2005) Networks of innovators. In: Fagerberg J, Mowery D, Nelson R

(eds) The Oxford handbook of innovation. Oxford University Press, Oxford
Shapley LS (1953) A value for n-person games. Contribution to the theory of games vol II, Kuhn

HW, Tucker AW (eds) Annals of mathematics studies 28. Princeton University Press,
Princeton

Shapley LS, Shubik M (1972) The assignment game 1: the core. Int J Game Theor 1(1):111–130
Slikker M, Fransoo J, Wouters M (2005) Cooperation between multiple news-vendors with

transshipments. Eur J Oper Res 167(2):370–380

334 S. Mahjoub and J. C. Hennet



Vaszonyi A (1955) The use of mathematics in production and inventory control. Manage Sci
1(1):70–85

Van Gellekom JRG, Potters JAM, Reijnierse JH, Engel MC, Tijs SH (2000) Characterization of
the Owen set of linear production processes. Games Econ Behav 32(1):139–156

Williamson O (1981) The modern corporation: origins, evolution, attributes. J. Econ Lit
19:1537–1568

14 A Piecewise Linear Supply Chain Game 335



Chapter 15
Stability of Hedonic Coalition Structures:
Application to a Supply Chain Game

A. Elomri, Z. Jemai, A. Ghaffari and Y. Dallery

Abstract The goal of this chapter is to provide a study of the coalition formation
problem in supply chains using Hedonic cooperative games. The goal is to focus
on the problems of (i) coalition structure generation, i.e., formation of coalition
structures, such that agents inside a coalition coordinate their activities, but agents
of different coalitions will work independently; and (ii) worth sharing, i.e., dis-
tribution of the worth generated by the coalition to its agents. We namely dem-
onstrate that when cost-based proportional rule and equal allocation rule are used
to divide the total created value, the efficient coalitions always exist and satisfy a
set of desirable properties. Further; with the general results, we go deeper into a
non-superadditive joint replenishment game with full truckload shipments for
which we provide a polynomial algorithmic solution to generate the coalitions

Keywords Coalition stability � Cooperative game theory � Hedonic games �
Supply chain management

15.1 Introduction

With advances in information technology, emergence of low-cost outsourcing
options in Brazil, Russia, India, and China (BRIC) and other countries, as well as
with the growing complexity of end products, supply chains have witnessed a
radical transformation from standalone and local supply chains to global
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networked supply chains in which numerous business entities (suppliers, trans-
porters, manufactures, etc.) belonging to several tiers interact to manufacture
highly complex products to customers around the world (Netessine 2009). These
networks can enable the creation of superior products at the lowest possible cost
while ensuring speedy delivery to the consumer. However, to realize these ben-
efits, a number of new strategies need to be considered. Among these strategies is
the formation of alliances. For instance, in spite of working in decentralized
structures where each agent is seeking to optimize his profit on his own, supply
chain agents may work in coalition structures where the agents within the same
coalition align their objectives and coordinate their activities, but agents of dif-
ferent coalitions will work independently or even compete against each other’s.
These cooperative structures often lead to significant savings. However, to realize
these savings, some new challenges need to be addressed. There are two main
challenges of the coalition formation problem:

Coalition Structure Generation: this problem concerns the partitioning of supply
chain members into disjoint coalitions, such that agents inside a coalition coor-
dinate their activities, but agents of different coalitions will work independently.

Savings Sharing: this problem concerns the distribution of the worth generated
by the coalition to its agents, such that each party feels that acting as a coalition is
worthwhile for its own sake.

As emphasized by Shenoy (1979), the above issues are closely dependent. On
the one hand, the final allocation of payoffs to the cooperating agents depends on
the coalitions that they form, and, on the other hand, the formation of coalitions
depends on the payoffs available to each agent in each of these coalitions.
Therefore, coalition formation and profit allocation should not be addressed
sequentially, as it is often the case so far in the literature, but rather simultaneously
(Elomri et al. 2012). In this study, we use the principles of hedonic cooperative
games to develop a generic procedure that deals with the above cooperative
behavior issues in general supply chain settings.

In hedonic games, the outcome of a given actor is totally determined by the
identity of the other members of his/her coalition. This class of cooperative games
is formally defined by a pair ðN;PÞ, where N ¼ ð1; 2; . . .; nÞ is the set of players,
and P ¼ � 1; � 2; . . .; � nð Þ denotes the preference profile, specifying for each
player i 2 N his/her preference relation � i, i.e., a reflexive, complete, and tran-
sitive binary relation on set Ni ¼ S � N : i 2 Sð Þ. The main idea of hedonic games
is the partitioning of a society into coalitions where each player’s payoff is
completely determined by the identity of other members of his/her coalition
(Bogomolnaia and Jackson 2002; Hajdukova 2006).

In this chapter, we consider the hedonic settings to study the formation of stable
coalition structures in inventory games with general cost function. In particular, we
consider a set of firms/retailers (players) N ¼ ð1; 2; . . .; nÞ. The firms may form
coalitions to achieve some savings. We assume that firms’ preference relations are
completely determined by the payoff (the portion of savings) that they would gain
in each coalition. Therefore, intuitively each player would prefer to join the
coalition in which he realizes the largest profit portion. However, this movement
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will be possible only if it allows the other members of the coalition to be better off.
Therefore, given a preference relation, the ideal situation is that each player joins
his most preferred coalition. In this case, there will be no reason for one or more
players to defect from their coalition. When they exist, these coalitions will be
referred to as efficient coalitions and will be the core of this study.

As mentioned above, the preference relation in this framework is not exoge-
nous, but rather depending on the profit a player can realize by joining a coalition.
Other social and economic considerations that intervene in coalition formation
process are out of the scope of this chapter. In other words, the preference relation
in our hedonic context will be fully defined by the rule used to divide the savings
among cooperating players. In this research, we assume that savings will be
allocated proportionally to the contribution of each player. This means that while
interacting, the players have the common understanding that the expected outcome
of their coalition will be shared proportionally. The use of proportional allocation,
in this framework, makes sense from both practical and theoretical perspectives.
For instance, game theoretical literature related to proportionality (e.g., Moriarity
1975; Ehud 1977; Roth 1979; Feldman 1999; Ortmann 2000 and Nagarajan et al.
2011) customs proportional allocation as a norm of distributed justice and puts it in
the heart of equity theory. Feldman (1999) writes that: ‘‘it is the standard of
business practice: Profit is typically divided in proportion to investment; and cost
is generally allocated on a pro rata basis’’.

Under proportional allocation rules, we show that efficient coalition structures
always exist in general settings. We provide an algorithm that deals with the
generation of such coalitions. Moreover, this efficient coalition structure is shown
to be (i) weakly stable in the sense of the coalition structure core and (ii) strongly
stable under a given assumption. This framework is then used to study one-
supplier multi-retailer Full truckload shipments joint replenishment game (FJR-
Game).

The rest of the chapter is organized as follows. Section 15.2 introduces the
general model and the associated hedonic game. Section 15.3 describes the for-
mation of stable efficient coalition structures when cost-based proportional allo-
cation and equal allocation are, respectively, employed. Section 15.4 is devoted to
the application of our general results to FJR-games. We conclude by summarizing
the main insights of our results and discuss some extensions in Sect. 15.5.

15.2 The Model and the Game

In this section, we first present the general joint replenishment model we deal with.
We then focus on the introduction of the associated n-person hedonic cooperative
game.
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15.2.1 The Model

In this chapter, we do not restrict ourselves to a particular supply chain configu-
ration or cost structure. We are developing a general approach that can be applied
to any joint replenishment game (JRP-game) as well as to group buying games. In
this model, we are given a set of n retailers (for convenience we will use the term
firm, player interchangeably with the term retailer), denoted by N ¼ ð1; 2; . . .; nÞ.
Retailers place orders to a single supplier to satisfy customer demands. The cost of
the optimal inventory replenishment policy of a retailer i working individually (the
minimal cost that retailer i can achieve by himself/herself) is denoted C(i). When
an alliance is to form, i.e., when a set of retailers, S, decide to cooperate and
manage their inventories together by making joint orders, the cost of the optimal
inventory replenishment policy of coalition S (the minimal cost that the retailers in
S can achieve when they operate jointly without the retailers outside coalition S) is
denoted C(S). The incentives to cooperate are not specified here and may include
benefits from economies of scale offered by the supplier or/and savings generated
by some resources’ mutualisation, etc. As mentioned above, we develop here a
general approach (the results can be applied not only for JRP-games but also to
general cooperative situations). Therefore, the cost function C is a general function
that does not need to have special properties like concavity, convexity, or
superadditivity.

To evaluate whether a coalition is profitable or not, we need to compare the
cooperative situation to the decentralized situation/the standalone situation where
each firm is working individually.

To achieve this goal, we let X be the space of the 2n - 1 possible non-empty
coalitions in N and let v a savings function defined as follows:

v : X! R

S! vðSÞ ¼
X

i2S

CðiÞ � CðSÞ ð15:1Þ

Definition 15.1 A coalition S is profitable if and only if it has a positive worth
vðSÞ� 0.

The saving function describes for each coalition of firms, S 2 X, the maximal
worth v(S) that they would divide among themselves if they were to cooperate
together and with no firm outside S. The standalone situation where each retailer
works on its own constitutes—by construction of function v—the situation of
reference. Thus, the worth of single coalition is null, i.e., i 2 N; vðiÞ ¼ 0.
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15.2.2 The Game

Most of this section is based on the papers of Bogomolnaia and Jackson (2002),
and Hajdukova (2006). Let P be the finite set of coalition structures. The n-person
cooperative game, we are concerned with may be defined by the tuple ðN; v;PÞ
where N ¼ ð1; 2; . . .; nÞ is the set of firms (the players), P ¼ ðS1; . . .; SmÞ is any
coalition structure and v the characteristic function of the game is the savings
function defined above (Eq. 15.1). We should remember that the savings of a
given coalition structure P ¼ ðS1; . . .; SmÞ is the sum of the savings of the coali-

tion’s forming it, vðPÞ ¼
Pi¼m

i¼1 vðSiÞ. In this model, we consider purely hedonic
setting that is each retailer’s payoff is completely determined by the identity of the
other members of his/her coalition. Formally, each retailer is supposed to have his/
her own preferences over coalitions to which he/she could belong. Let us denote
by R ¼ ð� 1; � 2; . . .; � nÞ the preference profile, specifying for each retailer i 2
N his/her preference relation � i, i.e., a reflexive, complete, and transitive binary
relation on set Ni ¼ fS � N : i 2 Sg. In this model, retailer’s preferences are
related to the payoff that this retailer will get in each coalition. Thus, if we denote
by uðS; iÞ the expected worth of retailer i in coalition S, S 2 Ni, asserting that
retailer i prefers coalition S to coalition T is equivalent to asserting that his/her
corresponding savings is higher in coalition S than in coalition T, i.e.,

S; T 2 Ni : S � iT , uðS; iÞ � uðT; iÞ

Strict preference relations and indifference relations of a player i are, respec-
tively, denoted by [ i and * i. Retailer i strictly prefers coalition S to coalition T,
means that his/her payoff in coalition S is strictly higher than his/her payoff in
coalition T, i.e.,

S; T 2 Ni : S [ iT , uðS; iÞ [ uðT ; iÞ

Finally, indifference relations mean that retailer i’s payoff is equal in both
coalitions S, T, i.e.,

S; T 2 Ni : S � iT , uðS; iÞ ¼ uðT ; iÞ

Formally, the game in coalition structure ðN; v;PÞ may now be defined as a
hedonic game defined by the couple ðN;RÞ. However, one can wonder how to
define the payoff allocation function uð:; :Þ. In keeping with the notions of sta-
bility, our aim in what follows is to answer simultaneously cooperative behavior
questions of alliance formation and profit allocation. In other words, we are
looking for an algorithm which, for any hedonic game ðN;RÞ, finds a stable
partition. This is equivalent to say that, given a fixed allocation rule, we are
looking for an algorithm that builds a stable coalition structure.
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15.3 Stable Hedonic Coalition Structures Generation

Given an allocation rule uð:; :Þ, or equivalently a preference profile R, our focus is
to study the outcome of the hedonic coalition formation game.

As defined above, firms’ preferences are directly related to the profit portion
that will be allocated to each firm in each coalition. Thus firm i prefers joining
coalition S than coalition T only if its payoff in coalition S [ if gð Þ is higher than its
payoff in coalition T [ if gð Þ, i.e.,

S [ if g � iT [ if g , uðS [ if g; iÞ � uðT [ if g; iÞ

However, to concretely join coalition S, it is not sufficient that firm i prefers
coalition S to T. It is necessary that all the members of coalition S agree to accept
firm i. In earlier cooperative game theory works, it was assumed that it is sufficient
that at least one member of coalition S is better off and the others are not worst off,
to guarantee the acceptance of firm i’s membership. In other cases, retailer i’s
membership will be accomplished even when the members of coalition S are not
worst off (each one of them wins at least as much as without player i). In our
context, since the firms are independent and the preference criterion is based on the
expected worth, we find it reasonable to say that the members of coalition S will
accept the membership of firm i only when this will make each one of them
‘‘strictly’’ better off. In this case, coalition S is called a feasible coalition for firm i,

and the set of all feasible coalitions for a firm i is denoted by Nf
i .

Definition 15.2 A coalition S; S 62 Ni is a feasible coalition for firm i if firm i can
join coalition S such feasible move is denoted i! S. This means that firm i prefers
coalition S; at least than staying alone and all the members of coalition S will be
strictly better off when firm i joins their coalition. Formally,

i! S,
ðS [ if gÞ � i if g
ðS [ if gÞ [ jS; 8j 2 S

(
ð15:2Þ

Since each retailer is mainly interested in his/her own profit, it is easy to expect
that he/she would like to join the coalition guarantying the maximum worth. In
other words, each retailer would like to join his/her most preferred coalition

S�;i 2 Nf
i such that 8Tf

i ; S
�;i � iT ð15:3Þ

Above, we discussed the way the ‘‘game’’ can be played from only one player’s
(retailer) point of view. Therefore, even if coalition S�;i is the most beneficial (and
feasible) coalition for retailer i this do not mean that this coalition will be formed,
because obviously coalition S�;i may not be the most preferred coalition for the
other (one or more) coalition’s members. So the ‘‘ideal’’ is to find a coalition that is
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the best (the most preferred) coalition simultaneously for all its members, such
coalition will be referred to as an efficient coalition.

Definition 15.3 A coalition S�;i is an efficient coalition only when it is the most
preferred coalition to each one of its members,

S� is efficient,2 S�; 8T 2 Nf
i ; S� � iT ð15:4Þ

Proposition 15.1 Each efficient coalition is ‘‘saturated’’ in the sense that the
adhesion of new members is not accepted.

Proof Considering an efficient coalition S� and a player j outside S�ðj 62 S�Þ, by
construction coalition S� is the most preferable coalition for all its members,
therefore, 8i 2 S�; S� � iðS� [ jf gÞ.

Another interpretation of the above proposition is that when S� is an efficient
coalition, no player outside S� can join it because this will make him/her worse off
or will make coalition S�’s members worse off. Thus, the worth of each firm inside
the efficient coalition is completely dependent on the identity of its other partners
without the implication of firms or coalitions outside this coalition.

It is easy to remark that the efficient coalitions are disjoint (by construction). In
what follows, the focus will be to address the proprieties of the efficient coalition
structure P� ¼ S�1; S

�
2; . . .; S�m

� �
referring to the partition that holds when each firm

joins its efficient coalition. However, before moving to this discussion, some
natural questions about the efficient coalitions need to be answered. For instance,
do the efficient coalitions always exist? If not, what are the conditions under which
their existence is guaranteed? And, how to build such coalitions?

The concept of efficient coalitions is defined through players’ preferences
relations. These preference relations are themselves directly related to the profit
portion expected by each player. Therefore, the existence or not of efficient coa-
litions cannot be studied separately from the allocation rule used to define the
preference relations profile. In what follows, we show that efficient coalitions exist
at least for two allocation rules; Equal allocations and Proportional allocations.
Only both of these allocations are considered over the rest of the chapter.

Definition 15.4 (Proportional allocations) The proportional allocation rule dis-
tributes the rewards proportionally to the standalone costs. A firm i, member of
coalition S will receive the worth

uPðS; iÞ ¼ CðiÞvðSÞP
j2S CðjÞ
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Definition 15.5 (Equal allocations) This allocation rule assigns an equal savings
portion to each firm. Thus, a firm i, member of coalition S will receive the worth

uEðS; iÞ ¼ vðSÞ
Sj j

Theorem 15.1 In a hedonic game ðN;RÞ where the preference profile is deter-
mined by cost-based proportional allocations or equal allocations,
uð:; :Þ 2 uPð:; :Þ;uEð:; :Þf g, efficient coalitions always exist and are expressed as
follows:

uð:; :Þ 	 uPð:; :Þ : S�;P1 ¼ arg max
S�N

vðSÞP
j2S CðjÞ

 !

uð:; :Þ 	 uEð:; :Þ : S�;E1 ¼ arg max
S�N

vðSÞ
Sj j

� �

Proof The coalition S�;P1 ¼ arg maxS�N
vðSÞP
j2S

CðjÞ

� �
always exists by nature of the

optimization problem. To show that coalition S�;P1 is an efficient coalition, we

should show that any firm in S�;P1 prefers this coalition to any other coalition. So let

us consider a firm i and a coalition T ; T 2 Ni, by construction of S�;P1 we have:

vðS�;P1 ÞP
j2S�;P1

CðjÞ �
vðTÞP

j CðjÞ , CðiÞ vðS�;P1 ÞP
j2S�;P1

CðjÞ ðiÞ
vðTÞP
j2T CðjÞ

, uPðS�;P1 ; iÞ�uPðT ; iÞ , S�;P1 � iT ; T 2 Ni

Coalition S�;P1 is then efficient. The proof is similar when we consider equal
allocations.

Now let us consider efficient coalition formation under proportional allocations.

Once coalition S�;P1 is formed, we suppose that the firms in the new system N
�

S�;P1

will react similarly, that is the efficient coalition S�;P2 will be formed.

S�;P2 ¼ arg max
S�ðN=S�;P1 Þ

vðSÞP
j2S CðjÞ

 !

Now the procedure is reapplied; a third efficient coalition S�;P3 will be formed, a
fourth and so on until assigning all retailers to their efficient coalitions. It is clear
that, by construction, the efficient coalitions are disjoint; therefore, they form a
partition of N. This partition refers to the efficient coalition structure and is

344 A. Elomri et al.



denoted by P�;P. When considering, equal allocations, the efficient coalition
structure P�;E is formed in the same way asP�;P. To summarize, both partitions are
formally defined as follows:

Definition 15.6 Efficient Coalition Structures P�;P, P�;E, refers to the partitions
that, respectively, hold when each firm joins its efficient coalition under equal
allocations and proportional allocations, i.e., P�;P ¼ S�;P1 ; S�;P2 ; . . .; S�;Pm

� �
and

P�;E ¼ S�;E1 ; S�;E2 ; . . .; S�;Em

� �
, such that:

S�;Pi ¼ arg max
S� N

�
[j¼i�1

j¼1 S�;Pji

� vðSÞP
j2S CðjÞ

 !
; S�;Pi 2 P�;P ð15:6Þ

S�;Ei ¼ arg max
S� N

�
[j¼i�1

j¼1 S�;Eji

� vðSÞP
j2S CðjÞ

 !
; S�;Ei 2 P�;E ð15:7Þ

After describing the formation of efficient coalitions, the focus in the rest of the
chapter is twofold. First, we analyze the above structures from a cooperative game
point of view and secondly, we compare both partitions.

The characterization of efficient coalitions is defined through firms’ preference
relations. Thus, it may be easy to see that at the individual level each firm will be
satisfied to be in its efficient coalition (its most preferred coalition). When
extending this analysis to a group of firms, we remark that any subset of firms
(within the same efficient coalition) feel that acting in efficient coalition is
worthwhile for its own sake and therefore will not defect to form a separate
coalition. In keeping with cooperative game theory principles, we can conclude
that any efficient coalition is core stable.

Theorem 15.2 The core of any efficient coalition is non-empty.

Proof To prove this theorem, we should show that the core of any coalition in
P�;P, or in P�;E is non-empty. Without loss of generality, let us consider, S�;P1 and

S�;E1 . Since proportional and equal allocations are imputations, proving the non-
emptiness of the core reduces to prove that any subset of firm in an efficient
coalition gains at least as much as they can get by themselves if they were to
deviate and to form their own coalition.

Let us consider efficient coalition S�;P1 . Let T be sub-coalition of S�;P1 ; T 2 S�;P1

and let us show that
P

i2T uP S�;P1 ; i
� �

� vðTÞ.

X

i2T

uPðS�;P1 ; iÞ ¼
X

i2T

CðiÞ vðS�;P1 ÞP
j2S�;P1

CðjÞ� vðTÞ
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By construction of S�;P1 we have

vðS�;P1 ÞP
j2S�;P1

CðjÞ �
vðTÞP
j2T CðjÞ

This means that sub-set T will not defect from efficient coalition S�;P1 , cost-

based allocation, uPðS�;P1 ; :Þ is then a core allocation for the game ðS�;P1 ; vÞ. Sim-

ilarly, equal allocation, uEðS�;E1 ; :Þ is a core allocation for the game ðS�;E1 ; vÞ.
At this level of our analysis, we only focus on the propriety of an efficient coalition

without the implication offirms and the other alliances outside this efficient coalition.
However, as one can expect, studying the stability of a coalition structure in general,
particularly that of partitions P�;P and P�;E, implies the study of the possible inter-
actions between coalitions, i.e., the possible moves of groups offirms that are not only
in the same coalition but also belonging to several coalitions.

When dealing with this issue, i.e., the stability of coalition structures P�;P and
P�;E, the first point to note is that both of coalition structures P�;P and P�;E are
weakly stable (this is an immediate result from Theorem 15.2).

Theorem 15.3 (Weak stability) Efficient coalition structures P�;P and P�;E are
weakly stable in the sense that the cost based proportional rule is in the core of
any coalition of P�;P and equal allocation is in the core of any coalition of P�;E:

uPðS�;Pk ; :Þ 2 CoðS�;Pk ; vÞ for all S�;Pk 2 P�;P

uPðS�;Ek ; :Þ 2 CoðS�;Ek ; vÞ for all S�;Ek 2 P�;E

The weak stability exposed above means that in the efficient coalitions no group
of firms within the same efficient coalition will have the incentive to deviate. When
extending this analysis to include the movement of group of firms that may belong
to several coalitions, we have the following results.

Theorem 15.4 (Strong stability (stability in the sense of coalition structure core))
1. Given the cost-based proportional allocation, uPð:; :Þ, efficient coalition P�;P is

a stable coalition structure.
2. Given equal allocation rule, uEð:; :Þ, efficient coalition P�;E is a stable coalition

structure.

Proof The proof of the strong stability is strictly the same for both coalitions
structures P�;P and P�;E and is, like in the above theorems, valid by construction.
Let us assume that the cost-based proportional rule is the allocation used in the
system and let us focus on the stability of P�;P. Since we know that the propor-
tional rule ensures the weak stability of P�;P, studying the strong stability is
equivalent to studying the possible moves of firms that are members of at least two
distinct coalitions. Thus, we should show that such sub-coalitions cannot be
formed.
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Let T be a group of firms members of different coalitions. That is, there exists a

set of coalitions S�;Pk ; . . .; S�;Pl

� �
� P�;P such that T � [j¼l

j¼kS�;Pk

	 

and

T \ S�;Pj 6¼ 0 8j 2 k; . . .; lf g. Without loss of generality, we suppose that

S�;Pk is the coalition having the maximum rate value
v S�;Pkð ÞP
j2S�;P

k

CðjÞ among coalitions

S�;Pk ; . . .; S�;Pl

� �
. This implies that

v S�;Pkð ÞP
j2S�;P

k

CðjÞ �
vðTÞP
j2T

CðjÞ, otherwise coalition S�;Pk is

not satisfying the criteria of efficiency and coalition T would be an efficient coa-
lition, which is not the case. With these introduced proprieties, let us look to the
sub-coalition T 0 ¼ T \ S�;Pk . These firms if they were to deviate from their coali-

tion S�;Pk to coalition T, the worth of each one of them will decrease because,

uP S�;Pk ; i
� �

¼ CðiÞ v S�;Pkð ÞP
j�;P
k

CðjÞ �uPðT ; iÞ ¼ CðiÞ vðTÞP
j2T

CðjÞ.

Consequentially, coalition T cannot be formed. As mentioned above, the proof
is the same when we consider equal allocation.

15.3.1 Complexity Analysis

In this section, our aim is to highlight the computational complexity of generating
coalition structures P�;P and P�;E. As already stipulated, the formation of coalitions
structures P�;P and P�;E implies solving the respective optimization problems (15.6
and 15.7),

S�;Pi ¼ arg max
S� N

�
[j¼i�1

j¼1 S�;Pj

� � vðSÞP
j2S

CðjÞ

� �
and

S�;Ei ¼ arg max
S� N

�
[j¼i�1

j¼1 S�;Ej

� � vðSÞ
Sj j

n o
:

To find the most efficient coalitions S�;P1 and S�;E1 , the space of all possible
coalitions is explored. However, in a system of n firms, there are (2n-1) possible
coalitions. Both problems of generating efficient coalition structures P�;P and P�;E

have an exponential complexity. Note, however, that both optimization problems
include functions in ratio forms. We advocate then the use of fractional pro-
gramming theory to tackle the solution complexity (see Sect. 15.4.3).

15.3.2 Comparisons

After discussing the main proprieties of coalition structures P�;P and P�;E from
both cooperative game theory and computational points of view, the next natural
question to be asked is how to compare these coalitions’ structures. We should
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note that with the use of cooperative game theory the quality of any coalition
structure is quite often evaluated through its stability. However, in the current
work both coalition structures fulfill the same stability properties. To compare
coalition structures P�;P and P�;E; we should include more criteria and ask other
questions, for instance: Do firms prefer one coalition structure to another? Does
one of both partitions contains more coalitions or is more profitable than the other?

As one can expect, it is impossible to answer the above questions in the current
general form of the cooperative game. To achieve our goal, we need to apply the
afore-described results to an example of supply chain game with an explicit cost
structure. This will be our focus in the rest of the chapter. We will consider both
scenarios in a one-supplier multi-retailer full truckload shipments joint replen-
ishment game (FJR-game). In the first scenario, the firms will form efficient
coalition structure P�;P whereas in the second one coalition structure P�;E will be
considered. Since the questions of stability and gains splitting are valid in the
general case, we will mainly investigate two topics: (1) The algorithmic question
of generating the efficient coalitions, and (2) the comparison of the two scenarios.

15.4 Application: One-supplier Multi-retailer
Full Truck Load Shipments Joint
Replenishment Game

15.4.1 Model Description and Notations

We consider the issue of generating the afore-studied coalition structures for the
P�;P and P�;E for the single-supplier multi-retailer full truckload shipments joint
replenishment game (FJR-Game).

This FJR-Game (Fig. 15.1a) can be stated as follows: A number of independent
retail facilities, N ¼ 1; . . .; nf g, faces known demands, Di, of a single product—
characterized by a volume (or a weight) Vi- over an infinite planning horizon.
They order goods from the same external supplier. All shipments from supplier’s
warehouse to retailers are direct full truckload shipments; all trucks have the same
capacity limit called CAP.

There are a fixed cost A, and a variable cost Gi per truck dispatched from the
supplier to retailers, and linear holding costs at the retailers’ warehouses. The cost
of holding one unit of product per unit of time at retailer i is hi. For simplification,
we let Hi ¼ hiDi

2 be the holding cost parameter of retailer i. All costs are stationary
costs; i.e., the fixed and variable transportation charges and the linear holding costs
do not change over time. Both of transportation costs and linear inventory holding
costs involved by products’ storage are supported by the retailer.
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15.4.2 One-supplier Multi-retailer Full Truck Load
Joint Replenishment Games

Each time a full truckload delivery is requested by a retailer i, a fixed ordering cost
A is charged. In addition, a retailer-dependent cost Gi, called individual cost is
supported. When a group of retailers form an alliance S, by joining their orders as a
single large order, they will pay only one ordering cost A for the full truck ship-
ment while all individual costs will be kept (see Fig. 15.1b). This means that the
delivery cost will be Aþ

P
i2S Gi. When ordering jointly, the common ordering

cycle time is denoted by TS and the corresponding frequency is denoted by NS. The
notations and parameters of the model are summarized below.

Fig. 15.1 One-supplier multi-retailer full truckload joint replenishment game with three cost
components: holding cost, fixed and variable transportation costs, (a) standalone situation,
(b) cooperative situation
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• N ¼ 1; . . .; nf g: The set of retailers;
• Di: The deterministic demand of retailer i 2 N;
• Gi: The individual ordering cost of retailer i 2 N;
• hi: The holding per unit cost per time unit of retailer i 2 N;
• Vi: The volume/weight of product i associated to retailer i 2 N;
• A: The fixed ordering cost;
• CAP: The vehicle capacity;
• Ti: The ordering cycle time of retailer i 2 N;
• Ni: The ordering frequency of retailer i 2 N;
• Qi: The order size of retailer i 2 N;
• Hi ¼ hiDi

2 : The holding cost parameter of retailer i 2 N;
• C(i): The average total cost per time unit of retailer i 2 N;
• TS: The ordering cycle time of coalition S, ; � S � N;
• NS: The ordering frequency of coalition S, ; � S � N;
• C(S): The average total cost per time unit of coalition S, ; � S � N.

When ordering alone, the replenishment strategy for a retailer i is to order a full
truck corresponding to the quantity Qi ¼ CAP

Vi
every Ti ¼ Qi

Di
¼ CAP

ViDi
unit of time. The

corresponding ordering frequency is then: Ni ¼ ViDi
CAP. Retailer i charges a total

delivery cost of ðAþ GiÞNi plus a total holding cost hiQi
2 . Consequentially, the total

average cost of retailer i equals CðiÞ ¼ ðAþ GiÞNi þ hiQi
2 . Since Ni ¼ Di

Qi
, rewriting

C(i) as a function of the frequency Ni gives :

CðiÞ ¼ ðAþ GiÞNi þ
Hi

Ni
8i 2 1; . . .; nf g ð15:8Þ

Above, we have determined the standalone optimal replenishment policy for
any firm. In what follows, we focus on the cooperative situation. Consider a non-
empty set of firms that decide to form a coalition S to manage their inventory
collectively by making joint orders. In this case, it is obvious that in this coop-
erative structure all these firms will have one common cycle time TS and a
common ordering frequency NS. Since we suppose that only full truck orders are
authorized and no shortage is allowed it is easy to check that the common ordering
frequency is the sum of the standalone ordering frequency, i.e.,

NS ¼
X

i2S

Ni; ; � S � N ð15:9Þ

As mentioned above, in the cooperative situation, only one ordering cost is
supported. Thus, coalition S charges ðAþ

P
i2S GiÞNS delivery cost. The delivered

products are stored in local warehouses where every retailer supports his/her own
holding cost; the holding cost charged by the coalition is the sum of the individual
holding costs. As a result, the average total cost of alliance S is

CðSÞ ¼ ðAþ
P

i2S GiÞNS þ
P

i2S
hiQi

2 . Expressing the order size Qi as a function of
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NS leads to: Qi ¼ Di
NS

. The total average cost of coalition S is then expressed as

follows:

CðSÞ ¼ Aþ
X

i2S

Gi

 !
NS þ

P
i2S Hi

NS
¼ Aþ

X

i2S

Gi

 !
X

i2S

Ni þ
P

i2S HiP
i2S Ni

ð15:10Þ

Now to discuss whether it is interesting or not for a given set of retailers to
cooperate, we should compare the cost in the cooperative situation, C(S) to that in
the standalone (decentralized) situation

P
i2S CðiÞ. As summarized in Table 15.1,

on the one hand the cooperative situation leads to a rise in the delivery costs due to
the increase of the individual costs charge increase, on the other hand the holding
costs in the cooperative situation are lower than the stand alone situation. Profit-
ability is then not guaranteed for all possible coalitions. To be profitable, a given
coalition should satisfy the property of proposition 15.2.

Proposition 15.2 A non-empty coalition S � N is only profitable when the indi-
vidual cost raising is balanced by the holding cost decrease.

CðSÞ

X

i2S

CðiÞ ,
X

i;j2S;i 6¼j

GiNj

X

i2S

HiDi

Ni
�
P

i2S HiDiP
i2S Ni

A direct consequence of proposition 15.2 is that the merging of two or more
coalitions into one coalition does not guarantee a total cost decrease. Conse-
quentially, the grand coalition may be non-profitable: The game is non-
superadditive.

In the rest of the chapter, the aim is to study the following games with coalition
structures: ðN; v;P�;PÞ and ðN; v;P�;EÞ. Where N is the set of firms, v is the savings
function.

v : X! R

S! vðSÞ ¼
X

i2S

CðiÞ � CðSÞ ð15:11Þ

P�;P and P�;E are the efficient coalition structures studied above (see Definition
15.6). P�;P ¼ S�;P1 ; S�;P2 ; . . .; S�;Pm

� �
such that:

Table 15.1 Standalone situation versus cooperative situation

Standalone situation Cooperative situation Variation

Delivery costs
P

i2S ðAþ GiÞNi Aþ
P

i2S Gi

� �P
i2S Ni %

Holding costs
P

i2S
Hi
Ni

P
i2S

HiP
i2S

Ni

!
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S�;Pi ¼ arg max
S� N

�
[j¼i�1

j¼1 S�;Pj

� � vðSÞP
j2S CðjÞ

( )
; S�;Pi 2 P�;P

and P�;E ¼ S�;E1 ; S�;E2 ; . . .; S�;Em

� �
such that:

S�;Ei ¼ arg max
S� N

�
[j¼i�1

j¼1 S�;Ej

� � vðSÞ
Sj j

� �
; S�;Ei 2 P�;E

The rest of the chapter is organized as follows. The first aim is to study the
optimization problems of efficient alliance formation. Particularly, we focus on
solving the following optimization problems:

S�;P1 ¼ arg maxS�N
vðSÞP
j2S

CðjÞ

� �
and S�;E1 ¼ arg maxS�N

vðSÞ
Sj j

n o

Once alliance formation problems are solved, a set of numerical tests is pro-
vided to compare both coalition structures.

15.4.3 Scenario 1: Coalition Structure P*, P

The proposal of this section is to provide an exact solution for searching for the
efficient coalition structure P�;P. As explained above, we will focus on the opti-
mization problem of generating the most efficient coalition:

S�;P1 ¼ arg max
S�N

vðSÞP
j2S CðjÞ

( )
ð15:12Þ

Proposition 15.3 Maximizing the profit ratio is equivalent to minimize the ratio of
the coalition‘s cost to its corresponding decentralized cost:

S�;P1 ¼ arg min
S�N

CðSÞP
i2S CðiÞ

� �
ð15:13Þ

Proof

S�;P1 ¼ arg max
S�N

vðSÞP
i2S CðiÞ

� �
¼ arg max

S�N
1� CðSÞP

i2S CðiÞ

� �

¼ arg min
S�N

CðSÞP
i2S CðiÞ

� �
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In what follows, for simplicity, we consider the minimization problem (15.13).

The ratio CðSÞP
i2S

CðiÞ refers to us as the cost ratio and will be denoted by CR(S).

The optimization problem (15.13) may be formulated as the following linear
program. The decisions variables Xj address the selection of one coalition from all
possible 2n-1 coalitions.

Xj ¼
1 : if coalition j is selected

0 : otherwise

(

(F.I)

min
X2n�1

j¼1

CðSÞP
i2S CðiÞ

� �
Xj ð15:14Þ

X2n�1

j¼1

Xj ¼ 1 ð15:15Þ

Xj 2 0; 1f g; 8j ¼ 1; 2; . . .; 2n � 1 ð15:16Þ

Because of its exponential complexity, the current (F.I) may be only used for
systems with a small number of firms. When dealing with a large number, the
problem becomes too complex to allow the use of exhaustive enumeration. Since
we deal with an objective function that aims at minimizing a ratio of two func-
tions, fractional programming theory may be used to reformulate the problem. To
achieve 0-1 fractional program formulation, we define the following new decision
variables:

Yi ¼
1 : if retailer i is in coalition S

0 : otherwise

(

Expressing the cost reduction ratio of one coalition S with the newly added
decision variables Yi gives the following 0–1 fractional ratio that represents the
objective function (for simplicity C(i)) will be replaced by Ci.

CRðSÞ ¼
Aþ

Pn
i¼1 Gi:Yi

� �Pn
i¼1 Ni:Yi þ

Pn

i¼1
Hi:YiPn

i¼1
Ni:YiPn

i¼1 Ci:Yi

¼ A:
Pn

i¼1 Ni:YiPn
i¼1 Ci:Yi

þ
Pn

i¼1 Gi:Yi

� � Pn
i¼1 Ni:Yi

� �
Pn

i¼1 Ci:Yi
þ

Pn
i¼1 Hi:YiPn

i¼1 Ni:Yi

� �Pn
i¼1 Ci:YiÞ

¼ A:
Pn

i¼1 Ni:YiPn
i¼1 Ci:Yi

þ
Pn

i¼1

Pn
j¼1 Ni:Gj:Yi:YjPn
i¼1 Ci:Yi

þ
Pn

i¼1 Hi:YiPn
i¼1

Pn
j¼1 Ni:Cj:Yi:Yj
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Formulation (F.I) is then equivalent to the following formulation.
(F.II)

min
A:
Pn

i¼1 Ni:YiPn
i¼1 Ci:Yi

þ
Pn

i¼1

Pn
j¼1 Ni:Gj:Yi:YjPn
i¼1 Ci:Yi

þ
Pn

i¼1 Hi:YiPn
i¼1

Pn
j¼1 Ni:Cj:Yi:Yj

ð15:17Þ

Xn

i¼1

Yi� 1 ð15:18Þ

Yi 2 0; 1f g; 8i ¼ 1; 2; . . .; n ð15:19Þ

The objective function is represented by expression (15.17). The constraint
(15.18) ensures that the selected coalition is non-empty. Binary decision variables
Yi are represented by constraints (15.19). In order to linearize the objective
function (15.17), let us define two new variables R and T such that:

T ¼ 1Pn

i¼1
Ci:Yi

and R ¼ 1Pn

i¼1

Pn

j¼1
Ni:Cj:Yi:Yj

This definition is equivalent to:Pn
i¼1 Ci:Yi:T ¼ 1 and

Pn
i¼1

Pn
j¼1 Ni:Cj:Yi:Yj:R ¼ 1

With the newly introduced variables R and T, formulation (F.II) can be
rewritten as :

(F.III)

minA:
Xn

i¼1

Ni:Yi:T þ
Xn

i¼1

Xn

j¼1

Ni:Gj:Yi:Yj:T þ
Xn

i¼1

Hi:Yi:R

Xn

i¼1

Yi� 1

Xn

i¼1

Ci:Yi:T ¼ 1

Xn

i¼1

Xn

j¼1

Ni:Cj:Yi:Yj:R ¼ 1

Yi 2 0; 1f g; 8i ¼ 1; 2; . . .; n

Next, nonlinear terms Yi.R, Yi.T, Yi.Yj.T, and Yi.Yj.R can be linearized by
introducing additional variables Tij and Rij.

(F.IV)

minA:
Xn

i¼1

Ni:Tii þ
Xn

i¼1

Xn

j¼1

Ni:Gj:Tij þ
Xn

i¼1

Xn

j¼1
Hi:Rii

Xn

i¼1

Yi� 1
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Xn

i¼1

Ci:Tii ¼ 1
Xn

i¼1

Xn

j¼1

Ni:Cj:Rij ¼ 1T � Tij
ð2� Yi � YjÞ;

8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nTij
 T ;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nTij
 Yi;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nTij
 Yj;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nTij� 0;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nR� Rij
ð2� Yi � YjÞ;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nRij
 T ;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nRij
 Yi;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nRij
 Yj;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nRij� 0;
8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; nYi 2 0; 1f g; 8i ¼ 1; 2; . . .; n

As summarized in Table 15.2, the total number of variables in model (F.IV) is
(2 n2 ? n ? 2).

Proposition 15.4 The exponentially complex optimization (F.I) problem is
equivalent to the polynomial complex optimization problem (F.IV).

15.4.4 Scenario 2: Coalition Structure P*, E

In this section, we aim at studying the second scenario where the efficient coalition
structure P*,E is to form. Similarly to the previous section, the focus will be on the
following optimization problem:

S�;E1 ¼ arg max
S�N

vðSÞ
Sj j

� �
ð15:20Þ

The optimization problem (15.20) may be formulated as the following linear
program. The decisions variables Xj address the selection of one coalition from all
possible (2n-1) coalitions.

Xj ¼
1 : if coalition j is selected

0 : otherwise

(

Table 15.2 Model (F.IV)’s complexity

Variables Constraints

Binary
n

Continuous
2n2 ? 2

‘‘=’’
2

C/B
8n2 ? 1

C 0
2.n2

Total 2 n2 ? n ? 2 10.n2 ? 3
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FE.I:

max
X2n�1

j¼1

vðSjÞ
Sj

 

 !
:Xj ð15:21Þ

X2n�1

j¼1

Xj ¼ 1 ð15:22Þ

Xj 2 0; 1f g; 8j ¼ 1; 2; . . .; 2n � 1 ð15:23Þ

We use the same technique in the previous section to reformulate the problem
into 0-1 fractional program that we linearize in a second time. To achieve the 0-1
fractional program, we define the following new decision variables:

Yi ¼
1 : if retailer i is in coalition S

0 : otherwise

(

Expressing the objective function (15.21) with the newly added decision
variables Yi gives the following result:

vðSÞ
Sj j ¼

Pn
i¼1

Hi
Ni

	 

:Yi

Pn
i¼1 Yi

�
Pn

i¼1 Hi:YiPn
i¼1

Pn
j¼1 Ni:Yi:Yj

�
Pn

i¼1

Pn
j¼1;j6¼i Ni:Gj:Yi:YjPn

i¼1 Yi

Rewriting the problem (FE.I) with the new form of the objective function gives:
(FE.II):

max

Pn
i¼1

Hi
Ni

	 

:Yi

Pn
i¼1 Yi

�
Pn

i¼1 Hi:YiPn
i¼1

Pn
j¼1 Ni:Yi:Yj

�
Pn

i¼1

Pn
j¼1;j6¼i Ni:Gj:Yi:YjPn

i¼1 Yi
ð15:24Þ

Xn

i¼1

Yi� 1 ð15:25Þ

Yi 2 0; 1f g; 8i ¼ 1; 2; . . .; n ð15:26Þ

The objective function is represented by equation (15.24). The constraint
(15.25) ensures that the selected coalition is non-empty. The binary decision
variables Yi are represented by constraints (15.26). In order to linearize the
objective function (15.24), we define two new variables R and T such that:

T ¼ 1Pn

i¼1
Yi

and R ¼ 1Pn

i¼1

Pn

j¼1
Ni:Yi:Yj

This definition is equivalent to:Pn
i¼1 Yi:T ¼ 1 and

Pn
i¼1

Pn
j¼1 Ni:Yi:Yj:R ¼ 1

With the newly introduced variables R and T, formulation (FE.II) can be
rewritten as:
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FE.III:

max
Xn

i¼1

Hi

Ni

� �
:T :Yi �

Xn

i¼1

Hi:Yi:R�
Xn

i¼1

Xn

j¼1;j 6¼i

Ni:Gj:T:Yi:Yj

Xn

i¼1

Yi� 1

Xn

i¼1

Yi:T ¼ 1

Xn

i¼1

Xn

j¼1

Ni:Yi:Yj:R ¼ 1

Yi 2 0; 1f g; 8i ¼ 1; 2; . . .; n

Next, nonlinear terms Yi.R, Yi.T, Yi.Yj.T, and Yi.Yj.R can be linearized by
introducing additional variables Tij and Rij. The resulting linear mixed-integer
program is as follows:

FE.IV:

max
Xn

i¼1

Hi

Ni

� �
:Tii �

Xn

i¼1

Hi:Rii �
Xn

i¼1

Xn

j¼1;j6¼i

Ni:Gj:Tij

Xn

i¼1

Yi� 1

Xn

i¼1

Tii ¼ 1

Xn

i¼1

Xn

j¼1

Ni:Rij ¼ 1

T � Tij
ð2� Yi � YjÞ; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Tij
 T ; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Tij
 Yi; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Tij
 Yj; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Tij� 0; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

R� Rij
ð2� Yi � YjÞ; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Rij
 T ; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Rij
 Yi; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Rij
 Yj; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Rij� 0; 8i ¼ 1; 2; . . .; n; 8j ¼ 1; 2; . . .; n

Yi 2 0; 1f g; 8i ¼ 1; 2; . . .; n
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As summarized in Table 15.3, the total number of variables in model (FE.IV) is
(2 n2 ? n ? 2).

Proposition 15.5 The exponentially complex optimization (FE.I) problem is
equivalent to the polynomial complex optimization problem (FE.IV).

15.4.5 Numerical Results and Comparisons

The focus of this section is to compare efficient coalition structures P�;P and P�;E.
Using a set of numerical tests, we will discuss whether partition P�;P or P�;E differs
by more coalitions or by a higher global profit rate.

The game’s parameters are generated randomly. For instance, we use uniform
distributions U[100; 500], U[0; 100], and U[1; 10] to respectively generate
demand rates, Di, individual costs Gi and holding costs hi. In these numerical
studies, the ordering cost A and the truck capacity CAP were set, respectively, to
100 and 200. We consider the simple case of identical products’ volume and set
this parameter to Vi = 1. The number of firms in the cooperative game was varied
in {5, 10, 15} and for each value of n we deal with 10 instances. All computational
experiments were performed on a PC with Intel Core 2 CPU of 3 Ghz and RAM of
0.99 GB. All instances were solved using ILOG OPL Development Studio 5.2
solver with default parameters.

As mentioned above, the comparison between both coalition structures P�;P and
P�;E will be done according to two criteria: the global profit ratio

pðPÞ ¼ vðPÞP
i2N

CðiÞ ;P 2 P�;P;P�;Ef g
� �

and the number of coalitions in each coali-

tion structure Pj j;P 2 P�;P;P�;Ef gð Þ. The resulting numerical results are reported
in Table 15.4. We should note that D P�;P � P�;Eð Þð Þ refers to the difference
between both coalition structure’s criteria. That is, Dp ¼ p P�;Pð Þ � p P�;Eð Þð Þ and
D Pj j ¼ P�;Pj j � P�;Ej j
� �

.
When analyzing the above numerical results, the first point to note is that

coalition structures P�;P and P�;E are closely similar in terms of their global profit
rate and number of coalitions. Consequentially, neither P�;P nor P�;E is a strictly
dominating coalition structure. The analysis above does not take the individual
preferences of firms into account. To determine whether firms prefer one coalition
structure to the other one, we should compare firms’ worth in both structures.

Table 15.3 Model (FE.IV)’s complexity

Variables Constraints

Binary
n

Continuous
2n2 ? 2

‘‘=’’
2

C/B
8n2 ? 1

C 0
2.n2

Total 2 n2 ? n ? 2 10.n2 ? 3
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In the efficient coalition structure P�;P, the savings are attributed proportionally
to the standalone cost of each firm. As a result, the value attributed to firm
i member of coalition S�;Pk is:

uP S�;Pk ; i
� �

¼ CðiÞ vðS�;Pk ÞP
j2S�;Pk

CðjÞ

 !
; S�;Pk 2 P�;P

The cost-based proportional rule has the interesting property that the firms within
the same coalition get the same profit ratio. For instance, the profit rate of a firm i in
coalition S�;Pk (the ratio of its allocated value to its standalone cost) is as follows:

p S�;Pk ; i
� �

¼
u S�;Pk ; i
� �

CðiÞ ¼
v S�;Pk

� �
P

j2S�;Pk
CðjÞ

 !

Unlike P�;P, the savings in the efficient coalition structure P�;E are equally
divided. It results that the firms within the same coalition gains the same portion of
savings (in term of amount).

uE S�;Ek ; i
� �

¼ CðiÞ
v S�;Ek

� �

S�;Ek

 

 !
; S�;Ek 2 P�;E

In this case, the profit rate of a firm i member of coalition S�;Ek is as follows:

p S�;Ek ; i
� �

¼
v S�;Ek

� �

CðiÞ S�;Ek

 

 !

To discuss whether it is better for firms forming an efficient coalition to have
the same portion of savings or to have the same profit ratio, we consider in the
following a 10-firm cooperative game and we compare the value allocated to each
firm in both partitions P�;P and P�;E. The firms’ parameters are reported in
Table 15.5.

Table 15.4 Computing results for P�;P versus P�;E

Problem size P�;P P�;E DðP�;P � P�;EÞ

P�;Pj j pðP�;PÞ (%) P�;Ej j pðP�;EÞ (%) D Pj j Dp (%)

n = 5 Max 3 39,56 3 40,75 0 -1,19
Mean 2,3 28,57 2,6 28,56 -0,3 0,01
Min 2 15,29 2 17,99 0 -2,7

n = 10 Max 5 39,74 6 37,94 -1 1,8
Mean 4,7 29,85 5 29,4 -0,3 0,45
Min 4 19,45 4 21,9 0 -2,45

n = 15 Max 10 46,67 9 48,25 1 -1,58
Mean 8 26,57 8 26,69 0 -0,12
Min 5 13,17 6 16,11 -1 -2,94
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Table 15.5 Firms’ parameters

Firm {i} Di Gi hi

{1} 534 91 7
{2} 105 90 1
{3} 496 28 8
{4} 355 28 6
{5} 242 7 10
{6} 232 83 9
{7} 533 9 7
{8} 187 52 2
{9} 274 40 3
{10} 287 50 6

Table 15.6 Formation of coalition structures P�;P and P�;E in a 10-firm cooperative game

Coalition structure P�;P

S�;Pk
Firms’ outcome

{i} C(i) uPðS�;Pk ; iÞ pðS�;Pk ; iÞ (%)

{4,5,7} {4} 827,2 393,08 47,52
{5} 1129,5 536,73 47,52
{7} 990,49 470,68 47,52

{3,6,10} {3} 1117,4 350,08 31,33
{6} 1112,3 348,48 31,33
{10} 815,25 255,41 31,33

{8,9} {8} 342,12 54,1 15,81
{9} 491,8 77,8 15,81

{1} {1} 1210 0 0
{2} {2} 199,75 0 0

Coalition structure P�;E

S�;Ek
Firms’ outcome

{i} C(i) uEðS�;Ek ; iÞ pðS�;Ek ; iÞ (%)

{3,5,7} {3} 1117,4 508,71 45,52
{5} 1129,5 508,71 45
{7} 990,49 508,71 51,4

{4,6,10} {4} 827,2 311,5 37,65
{6} 1112,3 311,5 28
{10} 815,25 311,5 38,2

{1,9} {1} 1210 102 8,42
{9} 491,8 102 20,74

{2,8} {2} 199,75 12,25 6,13
{8} 342,12 12,25 3,58
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The outcome of the game is summarized in Table 15.6. Efficient coalition
structure is P�;P ¼ ff4; 5; 7g; f3; 6; 10g; f8; 9g; 1; 2g and efficient coalition struc-
ture is P�;E ¼ ff3; 5; 7g; f4; 6; 10g; f1; 9g; f2; 8gg. In both partitions, coalitions
are ranked by their order of formation (efficiency). We reported in Table 15.6, the
worth of each firm: we reported the allocated savings portion (in one case the
proportional rule is used while in the second case equal allocation is used) as well
as the corresponding profit rate. In order to compare firms’ created values, we
present in Fig. 15.2 the profit rate profile in both coalition structures P�;P and P�;E.

When observing the profit rate diagram below, we remark that neither P�;P nor
P�;E is strictly better for all the firms. For instance, when moving from one scenario
to the other some firms become better off, however, some others become worse off.

To conclude, as discussed above, both coalitions structures P�;Pand P�;E seem to
have the same proprieties. However, we need to be careful when interpreting these
results. For instance, despite the apparent ‘‘fairness’’ in coalition structureP�;E, the
portions of savings are completely independent of the contributions of the coop-
erating firms. As a result, equal allocation may lead to a situation where those who
contribute more are not paid more. This would create ‘‘unsatisfied’’ firms and may
thus constitute a motivation for the disbanding of the coalition structure.

15.5 Conclusion and Extensions

In this chapter, we discuss the issue of generating stable coalition structures in
games with general cost function. We base our analysis on the principles of
hedonic cooperative games. In this theory, the outcome of a given actor is totally
determined by the identity of the other members of his/her coalition. Moreover, the

Fig. 15.2 Firms’ profit profile in partition P�;P and P�;E
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formal representation of such games is based on the so called preference profile
that specifies for each actor his/her preferences among the coalitions he/she wants
to belong to. In this work, we assume that firms’ preference relations are linked to
the portion of savings that they would gain in each potential coalition. Therefore,
each firm would like to join the coalition offering the highest profit portion. Such
coalitions, when they exist, are called efficient. Our first contribution was to show
that when cost-based proportional rule and equal allocation rule are used to divide
the total created value, the efficient coalitions always exist and satisfy a set of
desirable properties. For instance, both of efficient coalition structures generated
respectively with proportional allocation and equal allocation are stable in the
sense of coalition structure core. Further, we stress the exponential complexity of
generating such efficient coalition structures.

Our second contribution is to apply the results developed for general models to
some concrete joint replenishment games. To achieve this goal, we consider a non-
superadditive joint replenishment game with full truckload shipments. Since the
questions of forming the efficient coalitions as well as the question of profit
allocation are valid in the general case, in the studied FJR-game, we mainly
provide a polynomial algorithmic solution to generate the coalitions. Then, using a
set of numerical results, we compare both coalition structures. We show that in
these games no partition dominates the other. Nevertheless, it’s worth noticing that
equal savings allocation may lead to ‘‘unsatisfied’’ firms, because such allocation
ignores firms’ contributions.

Finally, future research on this topic could be aimed at answering the question
of whether there exist some other allocation rules that guarantee the existence of
efficient coalition structures. We think that the allocations based on marginal
contributions such as shapley value and marginal contribution-based proportional
allocation do not fulfill this property. We believe that it will be a very interesting
contribution to show whether the cost-based proportional allocation and equal
allocation are the unique rules that guarantee the existence of efficient coalitions.
Another interesting extension of this work is to analyze the issue of considering
coalition structures with mixed allocation rules, i.e., the firms express their pref-
erence relations according to different allocation rules. We should note that in this
model as well as in the theory of games itself, a coalition structure is always
assumed to apply the same allocation rule. Even though it will be a difficult
problem from the theoretical point of view, we believe that investigating such
research direction will provide relevant methods to understand real-world coop-
erative structures.
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Chapter 16
Procurement Network Formation:
A Cooperative Game Theoretic Approach

T. S. Chandrashekar and Y. Narahari

Abstract In this chapter, we model the multiple unit single item procurement
network formation problem as a surplus maximizing network flow cooperative
game. Here, each edge is owned by a rational utility maximizing agent. Also, each
agent has a capacity constraint on the number of units that he can process. That is,
each edge can be assumed to have a capacity constraint on the flow that it can
admit. The buyer has a demand for a certain number of units. The agents in the
network must coordinate themselves to meet this demand. The buyer also has a
specified valuation per unit of the item. The surplus which is the difference
between the value generated and the minimum cost flow in the network, is to be
divided among the agents that help provide the flow. We first investigate the
conditions under which the core of this game is non-empty. We then construct an
extensive-form game to implement the core whenever it is non-empty.

Keywords Procurement � Cooperative game � Coordination � Network formation

16.1 Introduction and Motivation

The popular focus of electronic commerce over the last decade has been on
developing technologies that facilitate bilateral exchange between two entities
such as between a business and a customer (B2C) or between two businesses
(B2B). However, complex economic activity often involves inter-relationships at
several levels of production, often referred to as supply chains or procurement
networks. While a great deal of commercial effort has been devoted to developing
technology to maintain pre-existing relationships in the supply chain, precious
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little has been done to achieve the often expressed vision of virtual organizations
where business relationships are dynamically formed and dissolved. This generally
requires automated support for a bottom-up assembly of exchange relationships
involving complex production and service activities that take place through sup-
plier selection and contracting decisions.

Whether one subscribes to this vision of virtual organizations or not, several
business trends already provide evidence that we are moving in this direction. For
some examples, we refer the reader to Walsh and Wellman (2003). Comple-
menting these business trends is the increasing tendency by the procurement
divisions within organizations to directly get involved in making decisions related
to the supplier’s supplier in order to plan capacities, monitor incoming quality, and
decide prices. For instance, in one of the leading global automotive suppliers that
we have worked with, not only do the Original Equipment Manufacturers’ (OEMs)
explicitly indicate the raw material supplier from whom items need to be sourced
but also negotiate raw material prices on behalf of the supplier. This practice of
proactively engaging in the formation of the procurement network has been widely
adopted by the supplier too. We illustrate the procurement network formation
problem, through a stylized example from the automotive industry in the following
section.

16.1.1 Procurement Network Formation: What?

Automotive procurement networks typically span many tiers. We consider here the
supply chain for an automotive stamping. An automotive assembler, hereafter
called the buyer, is interested in procuring stampings for assembly in a automobile.
The buyer values the item at a certain price. That is, he associates a maximum
value which he is willing to pay to procure the stamping. The stamping undergoes
many processes before it can be delivered to the car assembler for assembly in a
car. Starting from the master coil, it undergoes cold rolling, pickling, slitting, and
stamping before it can be assembled onto the car. We assume that all these
manufacturing operations are organized linearly and precedence constraints apply
to the way in which the operations can be carried out. This linear supply chain for
automotive stampings is shown in Fig. 16.1.

Now, a wide variety of suppliers with varying capabilities may be available in
the market to meet the requirements of the assembler. That is, there may be
suppliers who are only capable of doing cold rolling while there may be others
who can do cold rolling, pickling, and slitting. There may still be others who can
deliver the finished stamping by carrying out all the operations. In addition,
between each of these manufacturing processes, the item may also have to be
transported from one supplier location to another. Each of these suppliers incurs
costs to carry out the processing at the various stages of value addition. It is safe to
assume that these costs are unique to the particular firm and these costs may be
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commonly known or may be privately held information. For the purpose of this
chapter and the analysis therein, we make the following assumptions:

• Buyer has complete information about the suppliers’ costs.
• Each supplier has complete information about the buyers’ valuation and other

suppliers’ costs.

Note that these assumptions are not too strong because in practice automotive
buyers tend to have a handle on every element of the cost involved in the pro-
duction of most of the components that go into an automobile. The negotiations
between the buyer and supplier are therefore centered on agreeing to the terms of
quality, delivery, and cost reductions due to process improvements.

Given all these different options in which the stamping can be procured, the
buyer has to now decide what is the best (least cost) combination of suppliers he
needs to put together to carry out the various operations. This can be done by
constructing what we call a procurement feasibility graph which is shown in
Fig. 16.2.

In this graph, each edge represents one of the value adding operations which
could either be a processing operation or a transportation operation. An edge is
assumed to be owned by a supplier, hereafter called an agent. The fact that each
agent incurs a certain cost of processing is captured as the cost of allowing a unit
amount of flow on the edge owned by him. Also, the processing capacity of the
supplier for a particular operation is indicated by an upper bound on the flow that
is possible along the edge representing that supplier’s operation. In Fig. 16.2, we
capture this information as a 3-tuple beside every edge in the graph. Further, we
assume that there are two special nodes in the graph called the origin node and
terminal node that represent the starting point and ending point for all value adding
operations.

A path from the origin node to the terminal node in the graph indicates one
possible way of procuring one unit of the stamping. The cost of this procurement is

Fig. 16.1 A linear supply
chain for automotive
stampings
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obtained by summing the costs of the individual edges in that path. More gener-
ally, a flow of f units along a path costs f times the cost of that path. A buyer is then
naturally interested in finding a minimum cost way of procuring the stampings to
meet his demand or in other words finding a flow through the network that meets
his demand and also maximizes the surplus between his valuation of the flow and
the cost of maintaining that flow. So, we are essentially interested in a surplus
maximizing flow problem which we call as the single item, multi-unit procurement
network formation (MPNF) problem.

16.1.2 Procurement Network Formation: How?

The problem of procurement network formation has been variously addressed by
researchers under the topic of supply chain formation and hence we use these
terms interchangeably in the review of literature. Literature on this topic can be
classified into two broad areas—the first where we assume that agents in the net-
work do not act strategically when reporting privately held information and the
second where they do act strategically to further their own payoffs. For the first
category of problems that are modeled as optimization problems, we point the
reader to the survey paper by Erenguc et al. (1999) and for some more recent work
to the papers by Garg et al. (2004) and Viswanadham and Goankar (2003). Also
see the paper by Biswas and Narahari (2004) for a software implementation of a
decision support workbench for supply chains. In this chapter, however, we focus

Fig. 16.2 A procurement feasibility graph
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on the second class of problems. Here we assume that agents act strategically.
Broadly, the methodological approaches in addressing this problem has followed
two tracks: the first uses techniques based on competitive equilibrium analysis
such as in Walsh and Wellman (1999, 2003); Erenguc et al. (1999); Viswanadham
and Goankar (2003); Garg et al. (2004); Biswas and Narahari (2004) and the
second makes use of auction technology as in Walsh et al. (2000); Collins and Gini
(2001); Collins (2002); Fan et al. (2003); Jiong and Sadeh (2004); Babaioff and
Nisan (2004); Babaioff and Walsh(2005); Garg (2006).

16.1.2.1 Competitive Equilibrium Models

In the competitive equilibrium approach adopted in Walsh and Wellman (1999,
2003); Erenguc et al. (1999); Viswanadham and Goankar (2003); Garg et al.
(2004); Biswas and Narahari (2004), the supply chain formation problem is
addressed from the perspective of a third party market maker. This market maker
is interested in constructing the supply chains of multiple end customers given the
fact that they could potentially share some common suppliers. They construct a
network of possible supply chain configurations and use a price directed search for
a feasible supply chain configuration, i.e., one that maintains material balance and
profitability. The price directed search leads to what is essentially an approximate
competitive equilibrium which is in line with standard results in competitive
equilibrium theory for indivisible goods. They describe two distributed protocols
called (Simultaneous Ascending (M ? 1)st Price with Simple Bidding (SAMP-
SB) and SAMP-SB with decommitment (SAMP-SB-D) to find the equilibrium
prices along with the supply configuration. To do this, they run a series of
simultaneous two-sided auctions for each of the goods to be produced/consumed in
the supply chain. The competitive equilibrium that they reach allows them to
guarantee that no single active agent in the formed network will find it beneficial to
move away from the recommended solution.

This equilibrium-based approach is predicated on the assumption that there are
a large number of agents who are a part of the network and hence the scope for
strategic behavior by the agents is limited. While it may be true that a large
number of suppliers will need to be coordinated along the supply chain, in many
real cases, we find that there are a limited number if not just one supplier for
particular value adding activities. This leaves ample scope for strategic behavior
and hence cannot be assumed away.

16.1.2.2 Concurrent Auction Models

Babaioff and Nisan (2004) consider a linear supply chain where a commodity
market exists for each of the goods—both final and intermediate, that can be
traded. The supply chain formation protocols that are discussed essentially build
on double auction (DA) rules where buyers and sellers submit asks and bids
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simultaneously. The protocol as such governs the construction of supply and
demand curves at each of the markets (supply, intermediate, and final). In each
market, after the supply and demand curves are constructed, a double auction rule
is invoked to finalize the traded quantities and the prices. The characteristics of
the supply chain formation protocol are obtained from the characteristics of the
underlying double auction rule that is used in market making. If the DA rule is
strategy-proof, efficient, and individually rational but not budget balanced, then so
is the supply chain formation protocol. This happens when the DA payment rule is
modeled after the Vickrey–Clarke–Groves (VCG) payment rule. With such a rule,
the market maker subsidizes the formation of the supply chain. If, however, the
DA rule is strategy-proof, budget balanced, and individually rational but is not ex-
post efficient, then these characteristics are reflected in the supply chain formation
protocol too. This is achieved by using a Trade Reduction (TR) rule (first pointed
out by McAfee (1992) or a variant of it. The authors present two randomized DA
rules which are essentially randomizations between the VCG rule and the TR rule.
With these rules, the supply chain formation protocol is able to achieve ex-post
individual rationality and strategy-proofness along with budget balance and suffers
from only a slight loss of efficiency. This idea is further extended in Babaioff and
Walsh (2005) to more general supply chain structures where two or more goods
may be used for making a single good.

16.1.2.3 Combinatorial Auction Models

Another approach to modeling the supply chain formation problem has been to use
combinatorial auction/exchange technology. By using combinatorial auction/
exchange technology, some of the problems related to uncoordinated actions
across the supply chain are avoided; specifically situations where intermediaries
are allotted input materials but are not allotted contracts for outputs are avoided
(deadlocks). In Walsh et al. (2000), they model the supply chain formation
problem assuming single-minded supply chain agents (buyers and sellers). Here
single minded refers to the fact that the agents are interested in exactly one
particular bundle of goods alone. The agents submit bids for bundles of goods to a
central auction/exchange. The auction/exchange then solves a combinatorial
optimization problem and indicates the allocations. Without invoking Vickrey
payment rules, it is quite evident that the agents would resort to strategic bidding.
However, the analysis of bidding behavior to obtain closed-form solutions cor-
responding to Bayesian-Nash equilibrium turns out to be difficult. So, it is assumed
that agents will bid so as to garner a share of the expected surplus. This is done by
choosing an averaged bid based on Monte Carlo simulations of the costs of other
producers, its own costs, and the valuations of buyers. Experimental results on a
variety of networks show that when the surplus is large then the combinatorial
auction/exchange technology for supply chain formation outperforms the SAMP-
SB protocols. In addition, it has the added advantage of not selecting deadlocked
networks.
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Fan et al. (2003) model the supply chain formation problem as a multi-com-
modity flow problem. Standard linear programming techniques such as LP
decomposition are the usually used techniques to solve such problems. However,
since the cost functions are under the control of agents who solve the decomposed
problems, the authors argue that a more natural way to solve the problem is to use
a combinatorial auction-based protocol. Here the supply chain agents bid for
bundles of goods that they are interested in. The combinatorial auction is con-
structed to minimize the cost of forming the supply chain while meeting the
demands of the customer. The authors make the following key assumptions in their
approach to the problem:

• All customer orders are expected to be serviced. In reality, at any given instance,
a supply chain wishes to pick the set of orders to be serviced and the required
network of supply partners so that the surplus of the supply chain is maximized.

• The resources are considered to be divisible. This enables them to compute
prices for individual goods.

• The number of agents is assumed to be very large. This allows them to argue
that since the benefits that the agents may expect to get by indulging in strategic
bidding is very small, there is very little incentive for them to actually do so and
hence they would be better off reporting their true valuations to the auction
mechanism. However, most supply chain formation problems in reality need to
be addressed within a context where there are only a limited number of agents
available for each of the goods that need to be acquired or transformed through
the supply chain.

16.1.2.4 Summary of Extant Literature

To summarize the current state of the art and the emerging needs in procurement
network formation, we have identified the following key issues:

• In all the literature that we have seen to date, the approach is to solve the pro-
curement network formation problem from the perspective of a third-party market
maker. In our view, it would be beneficial to view supply chain formation from the
perspective of the buyer/assembler since he is the one who orchestrates the pro-
curement network. Also, this is in line with the current trends in the business
environment where companies are moving away from third-party market makers
such as COVISINT to setting up their own electronic trading sites.

• Second, most of the literature has focused on using auction-based protocols for
dynamic supply chain formation. While this focus has been fruitful in advancing
the state of the art for some areas of applications within business-to-business
transactions, practitioners have been reluctant to embrace purely auction-based
methods across the board.
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• In addition, supply chain practitioners and researchers have long argued that a
supply chain that is created is sustained when it is able to create a surplus value
and the surplus is shared with the supply chain partners. These two points when
taken together imply that models for procurement network formation should
explicitly include the aspect of surplus sharing.

• In facilitating such a trade, the assumption that agents will bid truthfully because
of competitive forces as is assumed in Walsh et al. (2000); Walsh and Wellman
(2003); Fan et al. (2003) may be unrealistic to expect since at many levels in the
procurement network, we are faced with monopolistic or oligopolistic situations
where the agents can gain from indulging in strategic behavior. So, models for
procurement network formation must explicitly take into account the possibility
of strategic action by suitably engineering the incentives to promote truthful
behavior.

Motivated by these gaps in current research and insights into the domain, we
believe that the procurement network formation problem may be explicitly ana-
lyzed as a surplus sharing network formation problem where we provide for
strategic behavior by the agents who own parts of the network. Problems in surplus
sharing and cost sharing are replete with ideas from cooperative game theory. We
examine next how cooperative game theory is an apt tool to model and solve the
procurement network formation problem.

16.1.3 Procurement Network Formation: Our Approach

We have seen from the discussion in the previous section, that auction-based
protocols have been widely used to address the dynamic formation of procurement
networks. However, there is overwhelming reluctance on the part of buyers to
embrace auctions even for settling procurement contracts in the context of trading
relationships between agents in adjacent echelons in the supply chain. Both
anecdotal evidence and articles in the academic literature seem to overwhelmingly
indicate that contractual relationships between agents in a procurement network
are characterized by buyers and sellers often bargaining and negotiating over
prices, quantities, delivery schedules, and several other attributes. We refer the
reader to a recent article by Bajari et al. (2003) that empirically compares the use
of auctions versus negotiations in procurement.

Bargaining and negotiation are well-researched topics within the domain of
cooperative game theory which, in several recent survey articles and handbook
chapters by Bajari et al. (2003); Cachon and Netessine (2004); Wu (2004); Leng
and Parlar (2005); Nagarajan and Sosic (2008), has been identified as an important
tool in the supply chain researchers toolkit. While non-cooperative game theoretic
models have been extensively employed to model the interaction between agents
in a supply chain (see Cachon and Netessine 2004), the use of cooperative game
theory in the field of supply chain management has, however, been much less
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prevalent. These approaches, though different in their theoretical content and the
methodology used in their analysis, are really two different ways of looking at the
same problem. To quote the words of Aumann (1987): the game is one ideal and
the cooperative and non-cooperative approaches are two shadows.

The non-cooperative theory of games is strategy oriented, i.e., it studies what
one may expect the agents to do in a given interdependent decision-making sce-
nario and the nitty gritty details of the actions that they take to maximize their
utility. Cooperative game theory on the other hand takes a different tack. It directly
looks at the set of all possible outcomes, studies what agents can achieve, what
coalitions will form, how the coalitions that do form divide the spoils of an
outcome, and whether the coalitions and outcomes are stable and robust. Thus, one
may say that the non-cooperative game theory is a micro approach in that it
focuses on the precise details of how things happen in a game theoretic scenario
whereas cooperative game theory is a macro approach in that it is concerned with
what will happen.

Cooperative game theory has two central themes. The first theme is that of
feasible outcomes and the second is that of stability.

• Feasible outcomes represent the set of all possible outcomes that agents may
realize with or without the consideration of incentive compatibility constraints.
Once this set is identified, then one moves to how agents actually end up with an
outcome from this feasible set. Cooperative game theory offers several recipes,
known as solution concepts, for this process. The core and the Shapley value are
two prominent examples of these solution concepts.

• Stability manifests itself when agents have to decide on allocations of (surplus)
value from the set of feasible outcomes. If this is independent of the negotiation
process, some or all agents can pursue options such as joining together as a
coalition and agreeing upon a joint course of action. Two questions immediately
arise: (1) How will agents in an alliance divide the gains that accrue from their
joint action? (2) What are the stable coalitions or outcomes that will emerge in a
particular scenario? Once again, cooperative game theory offers answers to
these questions through its solution concepts.

These two central themes of cooperative game theory have their perfect analogs
in the context of procurement network formation. In procurement network for-
mation, we are interested in constructing the feasible set of outcomes and picking
the best from among them. In addition, as argued by management scientists,
supply chains remain stable only when each of the agents gets a fair share of the
surplus that the supply chain generates. So, we are interested in finding a fair way
of dividing the gains that accrue when agents come together to create surplus
value. In doing so, we are interested in finding a stable coalition of partners.
Clearly then, cooperative game theory provides us with an apt toolkit to study the
procurement network formation problem.
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16.1.4 Contributions and Outline of the Chapter

In this chapter, we focus on the multiple unit, single item procurement network
formation problem when the agents who own edges in the procurement feasibility
graph are completely aware of (1) each other’s costs and (2) the maximum demand
of the buyer and his valuation. Our specific contributions are as follows:

• We model the multiple unit, single item procurement network formation
problem as a cooperative game with complete information.

• We investigate the conditions under which the core of the MPNF game is non-
empty. For this, we first provide illustrative examples of procurement networks
to develop intuition and then formalize through analytical results (a) the effect of
edge ownership structure on the non-emptiness of the core, (b) the effect of the
buyer’s valuation on the non-emptiness of the core of a special case of the
MPNF game, and (c) the effect of the demanded quantity on the non-emptiness
of the core.

• We then develop an extensive-form game to implement the core in sub-game
perfect Nash equilibrium, whenever the core is non-empty.

The sequence in which we progress in this chapter is as follows:
In Sect. 16.2, we develop a cooperative game model of the MPNF problem; in

Sect. 16.3, we start our investigation of the core as a solution concept for the
MPNF game by presenting simple examples to develop intuition about the con-
ditions under which the core of the MPNF game is non-empty. Following this, in
Sect. 16.4, we formalize the above intuition. In Sect. 16.5, we address the issue of
implementing the core. For this we develop an extensive-form game for the MPNF
problem. We then show analytically that the core of the MPNF game in coalitional
function form corresponds to the sub-game perfect Nash equilibria of the exten-
sive-form game. Following this, in Sect. 16.6, we present an example to demon-
strate the non-cooperative implementation of the core through the extensive-form
game developed in Sect. 16.5.

16.2 The Model

As indicated earlier, the feasible network for forming the multiple unit, single item
procurement network may be captured as a directed graph. We call this the pro-
curement feasibility graph G ¼ V ;Eð Þ, with V as the set of vertices, two special
nodes V0 (origin vertex) and Vt (terminal vertex), and E � V � V as the set of
edges. With each of the edges e 2 E, we associate the numbers cðeÞ, lðeÞ, and uðeÞ
to represent the cost, the lower bound on the capacity of the edge, and the upper
bound on the capacity of the edge, respectively. Now, assume that each of the
edges is owned by an agent i where i belongs to a finite set of agents
N ¼ f1; . . .; ng. We define w : E ! N such that wðeÞ ¼ i implies that agent i owns
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edge e. We let I(j) and O(j) represent the set of all incoming and outgoing edges at
vertex j 2 V . Note that we allow an agent to own multiple edges.

Let S � N be a coalition of agents. We let ES represent the set of edges owned
by agents in S. We also designate FS as the flow in the network between the two
special nodes v0 and vt using only the edges ES that are owned by agents in S. The
flow on any edge e 2 ES is designated as f(e). For any flow FS, we denote the set of
owners of the edges that facilitate the flow FS as w FSð Þ. We assume that if multiple
units of the item are available to the buyer by using the flow FS, then it costs c FSð Þ
and the buyer is willing to compensate the edge owners with a value bFS where
b is the value that the buyer attaches to a single unit of the item. The surplus from
such a transaction is bFS - c FSð Þ. The maximum demanded quantity of the buyer
is dvt . The problem now is to (a) maximize the surplus as given by the optimization
problem below and (b) divide the surplus among the agents in a fair way. These
two questions essentially constitute the multiple unit, single item procurement
network formation problem. We denote this as lb ¼ N;G;w; b; dvtð Þ which in turn
induces a cooperative game that can be represented in the characteristic function
form as N; vlb

� �
where N is the set of agents and vlb is the characteristic function

given by solving the optimization problem specified by Eqs. (16.1)–(16.5) for
every S � N. We are now interested in finding solutions to this game.

vlbðSÞ ¼ max bxvt �
X

e2ES

cðeÞf ðeÞ
" #

ð16:1Þ

subject to:
X

e2IðjÞ\ES

f ðeÞ �
X

e2OðjÞ\ES

f ðeÞ ¼ 0; 8j 2 Nnfv0; vtg ð16:2Þ

X

e2IðvtÞ\ES

f ðeÞ ¼ xvt ð16:3Þ

X

e2OðvÞ0Þ\ES

f ðeÞ ¼ xvt ð16:4Þ

0� xvt � dvt ; and lðeÞ� f ðeÞ� uðeÞ; 8e 2 ES ð16:5Þ

16.3 The Core of the MPNF Game: Key Issues

The core as a solution concept for cooperative games occupies a central place. The
notion of the core as consisting of those allocations of the surplus such that they
are immune to recontracting among the agents in a cooperative scenario is espe-
cially attractive from the perspective of coalitional stability when forming pro-
curement networks. In a practical sense, it signifies that no subset of agents will

16 Procurement Network Formation 375



find it profitable to withdraw from a coalition when the surplus is divided among
members of the coalition in a way that it is in the core of the game. However, we
know that the core is not always non-empty (see Myerson 1991). Therefore,
investigating the non-emptiness of the core of the MPNF game is an important step
in addressing the procurement network formation problem.

Formally, it means that we make allocations of the surplus to agents such that
they obey Eq. (16.6) where x is an allocation vector and C vlb

� �
the allocations in

the core.

C vlb

� �
¼ x 2 <nj

X

t2S

xt� vlb
ðSÞ; 8S � N

X

t2N

xt ¼ vlb
ðNÞ

( )
ð16:6Þ

The key questions that we need to address regarding the core of the MPNF
game are:

1. Does the MPNF game always have a non-empty core?
2. If not, is it at least non-empty under some conditions that can be characterized?

The concept of the core is derived axiomatically and hence does not provide
any explicit ideas on the interactions between individual agents or coalitions of
agents that yield the final outcomes. If we believe that agents play strategically
(non-cooperatively), then the process through which the allocations of the surplus
that are in the core of the game emerge is not clear. So, we need to formulate a
non-cooperative framework that supports the outcomes that are in the core of the
MPNF game. That is, very simply, we need to address the following question: Can
we develop an extensive-form game that implements the core outcomes? We
address each of these questions in the sections that follow.

First, we would like to know if the MPNF game always has a non-empty core.
The short answer to this question is NO! The MPNF scenario is specified by the
tuple lb ¼ N;G;w; b; dvtð Þ. Given the procurement feasibility graph G and the set
of agents N who own edges in G, there are three other parameters of the problem:
(a) the ownership structure given by w : E! N, (b) the valuation of the buyer
b for each unit of the item, and (c) the maximum demanded quantity dvt of the
buyer. We would like to investigate if each of these parameters has any influence
on the emptiness or the non-emptiness of the core of the MPNF game. We develop
our intuition about this influence by examining some simple examples of pro-
curement networks.

16.3.1 Effect of Ownership Structure on the Core
of the MPNF Game

Consider the procurement scenarios given by the procurement feasibility graphs in
Figs. 16.3 and 16.4. In both these scenarios, we have three agents—1, 2, and 3 who
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own edges in the feasibility graphs. The ownership is indicated by the differently
hatched line styles on the edges. A tuple (c, [l, u]) indicated alongside an edge
gives us the cost c per unit amount of flow along the edge, a lower bound l, and an
upper bound u on the edge capacity. The numbers alongside the labels b and dvt

near the terminal node t indicate the valuation of the buyer for each unit of the item
and the maximum demanded quantity, respectively.

From this basic data, it is possible to calculate the maximum surplus vlb
ðSÞ, that

any coalition S � N ¼ f1; 2; 3g can generate on its own, by solving the optimi-
zation problem specified by Eqs. (16.1)–(16.5). This generates the characteristic
function values for the MPNF game N; vlb

� �
which is indicated in Tables 16.1 and

16.2, respectively.

Fig. 16.3 Procurement graph with an empty core

Fig. 16.4 Procurement graph with a non-empty core
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From an inspection of Table 16.1 corresponding to the Fig. 16.3, it is clear that
the core of the MPNF game in this case in empty. That is, there is no allocation of
surplus that allows the formation of a stable network with no opportunities for
recontracting. Observe that this is because each pair of agents can generate by
itself the surplus that the grand coalition (of all agents) can generate.

Now, consider Fig. 16.4 and the corresponding characteristic function values in
Table 16.2. Observe that there is a change in the ownership structure of the edges
in the graph and hence a corresponding change in the characteristic function. From
an inspection of the characteristic function values it is clear that this feasibility
graph admits an allocation that is in the core of the corresponding MPNF game.
From the discussion of these two procurement graphs, we can conjecture that the
non-emptiness of the core of the MPNF game depends on the ownership structure
of the edges in the network.

16.3.2 Effect of Buyer’s Valuation on the Core of the MPNF
Game

To study this, consider the procurement graphs shown in Figs. 16.5 and 16.6. Here,
we have only two agents—1 and 2 who own edges in the feasibility graph. The
ownership structure and the basic data of the problem are indicated in the figures
as before. As before, we can develop the characteristic function values by solving

Table 16.1 Characteristic
function for the feasible
procurement graph in
Fig. 16.3

S Surplus maximum
flow FS by S for dvt ¼ 2

CS vlb
ðSÞ

{1} 0 – 0
{2} 0 – 0
{3} 0 – 0
{1, 2} 2 8 2
{2, 3} 2 8 2
{1, 3} 2 8 2
{1, 2, 3} 2 8 2

Table 16.2 Characteristic
function for the feasible
procurement graph in
Fig. 16.4

S Surplus maximum flow
FS by S for dvt ¼ 2

CS vlb
ðSÞ

{1} 0 – 0
{2} 0 – 0
{3} 0 – 0
{1, 2} 0 – 0
{2, 3} 1 5 0
{1, 3} 0 0 0
{1, 2, 3} 2 6 4
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the optimization problem given in Eqs. (16.1)–(16.5). The only difference between
the two feasibility graphs is the valuation of the buyer for each unit of the item.

From an inspection of the characteristic function values in Table 16.3 corre-
sponding to the feasibility graph in Fig. 16.5, it is clear that the core is non-empty.
This is because there can be no allocation of the surplus that the coalition of both
the agents can generate which is better than what each of the agents can generate
on their own.

Now consider the procurement feasibility graph in Fig. 16.6 and the corre-
sponding characteristic function values in Table 16.4. It is clear in this case that
the feasibility graph admits an allocation that is in the core of the MPNF game.

Fig. 16.5 Procurement graph with an empty core

Fig. 16.6 Procurement graph with a non-empty core

16 Procurement Network Formation 379



From this discussion, we can conjecture that the core of the MPNF game may also
depend on the valuation that the buyer attaches to each unit of the item.

16.3.3 Effect of the Maximum Demanded Quantity
on the Core of the MPNF Game

We now try to develop intuition about the relationship between the maximum
demanded quantity by the buyer and the non-emptiness of the core of the MPNF
game. There are two things to check here:

• First is to see if we can transform a network with an empty core into one with a
non-empty core by perturbing the maximum demand.

• Second, we need to check if we can transform a network with a non-empty core
into one with an empty core by perturbing the maximum demand.

16.3.3.1 Effect of Perturbing Demand on a Feasibility Graph
with an Empty Core

To study this effect, consider first the procurement feasibility graphs in Figs. 16.3
and 16.5 and the corresponding characteristic function values in Tables 16.1 and
16.3. Recall that the core of these feasibility graphs was empty.

We now perturb the demand upwards for both these graphs to dvt ¼ 3 and
dvt ¼ 4, respectively. The new procurement feasibility graphs with the perturbed
demands are shown in Figs. 16.7 and 16.8 and the corresponding characteristic
functions in Tables 16.5 and 16.6.

From an inspection of the characteristic function values in Tables 16.5 and
16.6, we observe that the feasibility graphs now admit allocations that are in the
core of the game. From these examples, we conjecture that by perturbing the

Table 16.3 Characteristic
function for the feasible
procurement graph in
Fig. 16.5

S Surplus maximum flow
FS by S for dvt ¼ 2

CS vlb
ðSÞ

{1} 2 6 6
{2} 2 8 4
{1, 2} 2 4 8

Table 16.4 Characteristic
function for the feasible
procurement graph in
Fig. 16.6

S Surplus maximum flow
FS by S for dvt ¼ 2

CS vlb
ðSÞ

{1} 2 6 4
{2} 2 8 2
{1, 2} 2 4 6
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Fig. 16.7 Procurement graph admitting a non-empty

Fig. 16.8 Procurement graph admitting a non-empty core when demand is perturbed

Table 16.5 Characteristic
function for the feasible
procurement graph in
Fig. 16.7

S Surplus maximum flow
FS by S for dvt ¼ 2

CS vlb
ðSÞ

{1} 0 – 0
{2} 0 – 0
{3} 0 – 0
{1, 2} 2 8 2
{2, 3} 2 8 2
{1, 3} 2 8 2
{1, 2, 3} 3 12 3
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maximum demand of networks which previously did not admit a core allocation,
we can obtain a procurement feasibility graph with a non-empty core.

16.3.3.2 Effect of Perturbing Demand on a Feasibility Graph
with a Non-empty Core

To study this effect, consider the procurement feasibility graphs in Figs. 16.4 and
16.6. Recall that these graphs have non-empty cores. We now perturb the demand.
The procurement feasibility graphs with the perturbed demands are shown in
Figs. 16.9 and 16.10. The characteristic function values for these graphs are given
in Tables 16.7 and 16.8.

By an inspection of the characteristic functions for both these graphs, we
observe that the demanded quantity does not seem to affect the non-emptiness of
the core. Hence, it is difficult to make any precise conjecture of this action.

16.3.4 Summary of the Intuition

Through the examples in the previous sections, we have developed an intuition
about the relationship between the non-emptiness of the core of the MPNF

Table 16.6 Characteristic
function for the feasible
procurement graph in
Fig. 16.8

S Surplus maximum flow
FS by S for dvt ¼ 2

CS vlb
ðSÞ

{1} 2 6 6
{2} 2 8 4
{1, 2} 4 14 10

Fig. 16.9 Procurement graph with a non-empty core
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problem lðbÞ ¼ G;N;w; b; dvtð Þ and (a) the ownership structure w bð Þ the valuation
b of the buyer, and (c) the maximum demanded quantity dvt of the buyer. With the
help of this intuition, we have conjectured the following:

• First, the structure of the network and the associated ownership structure seem
to play an important part in determining non-emptiness of the core.

• Second, the buyer’s valuation of the item, which in turn determines the surplus
generated also seems to play a crucial role in determining the non-emptiness of
the core.

• Finally, for any given procurement graph, there is a demanded quantity d 2
½0;1� such that for all dvt � d the MPNF game generated by it seems to have a
non-empty core.

Fig. 16.10 Procurement graph with a non-empty core

Table 16.7 Characteristic
function for the feasible
procurement graph in
Fig. 16.9

S Surplus maximum flow
FSby S for dvt ¼ 1; 3; 4

CS vlb
ðSÞ

{1} 0, 0, 0 – 0
{2} 0, 0, 0 – 0
{3} 0, 0, 0 – 0
{1, 2} 0, 0, 0 0 0
{2, 3} 0, 0, 0 0 0
{1, 3} 0, 0, 0 0 0
{1, 2, 3} 1, 2, 3 3, 6, 6 1, 2, 2

Table 16.8 Characteristic
function for the feasible
procurement graph in
Fig. 16.9

S Surplus maximum flow
FS by S for dvt ¼ 1; 3; 4

CS vlb
ðSÞ

{1} 1, 2, 2 3, 6, 6 2, 4, 4
{2} 1, 2, 2 4, 8, 8 1, 2, 2
{1, 2} 1, 2, 4 2, 4, 10 3, 6, 6
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We now examine these conjectures with an attempt to formalize the conditions
under which non-emptiness of the core of the MPNF game can be ensured.

16.4 Conditions for Non-emptiness of the Core of MPNF
Games

Before we move to examining formally the conditions for the non-emptiness of the
core of the MPNF games, we first show that the MPNF game is a monotonic game.

Definition 16.1 A transferable utility (TU) game (N, v) is said to be monotonic if
vðSÞ� vðTÞ for all S; T � N S � T .

Proposition 16.1 The characteristic function of the MPNF game is monotonically
non-decreasing, i.e., vlbðSÞ� vlbðTÞ; 8S; T � N; S � T

Proof We know that the characteristic function of the MPNF game is given by
Eqs. (16.1)–(16.5).

vlbðSÞ ¼ max bxvt �
X

e2ES

cðeÞf ðeÞ
" #

ð16:7Þ

subject to
X

e2IðjÞ\ES

f ðeÞ �
X

e2OðjÞ\ES

f ðeÞ ¼ 0; 8j 2 Nnfv0; vtg ð16:8Þ

X

e2IðvtÞ\ES

f ðeÞ ¼ xvt ð16:9Þ

X

e2OðvtÞ\ES

f ðeÞ ¼ xvt ð16:10Þ

0� xvt � dvt ; and lðeÞ� f ðeÞ� uðeÞ; 8e 2 ES ð16:11Þ

Let S, T be two coalitions of agents from N such that S � T � N. Clearly since
the above characteristic function is derived from a maximization problem, a larger
subset of agents means that there are no less number of edges through which flow
can occur and hence there exist a larger set of options for maximizing the surplus.
Therefore, vlbðSÞ� vlbðTÞ; 8S; T � N; S � T and the lemma holds.

In the rest of this section, we focus our attention on formalizing the conditions
for the non-emptiness of the core of the MPNF game. To ease the discussion that
follows, we introduce below some definitions.
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Definition 16.2 Let lðbÞ ¼ G;N;w; b; dvtð Þ be a MPNF situation where G is a
directed acyclic graph whose edges are owned by agents in N as indicated by the
ownership function w : E ! N, b is the buyer’s valuation of a single unit of the
item, and dvt is the maximum quantity demanded by the buyer. A flow FS in
G using only edges owned by agents in S is said to be a profitable flow in lb if
vlbðNÞ[ 0.

Definition 16.3 Let lb be an MPNF situation as before. We associate with lb the
MPNF game ðN; lbÞ, then say that lb and ðN; lbÞ are non-trivial if lb has
profitable flows or equivalently, if vlbðNÞ[ 0.

Definition 16.4 For any MPNF situation lðbÞ ¼ G;N;w; b; dvtð Þ and its associ-
ated game ðN; lbÞ, an agent i 2 N is called an f-veto agent (flow veto) if he owns
at least one edge in every surplus maximizing flow in G.

16.4.1 Effect of Ownership Structure on the Non-emptiness
of the Core

In this section, we focus on formalizing the intuition arising out of the discussion
based on the procurement feasibility graphs in Figs. 16.3 and 16.4. There we saw
that the ownership structure in the procurement feasibility graph played an
important role in determining the non-emptiness of the core of the MPNF game.
To formalize this relationship, we proceed by first showing that for any allocation
of the surplus to be in the core of the MPNF game, it must be the case that positive
allocations of surplus are only made to agents who are a part of the set of f-veto
agents. With this result in hand, we then show that the set of f-veto agents must be
non-empty and that these agents must own some critical edges in the feasibility
graph if the core is to be non-empty.

Lemma 16.1 Let N; vlb

� �
be a non-trivial procurement network formation game

with a set of f-veto agents vf . Let x be an imputation of N; vlb

� �
such that xi [ 0 for

some agent i 2 NnVf . Then x 62 CðvlbÞ.

Proof Since i 2 NnVf , vlbðNÞ ¼ vlbðNnfigÞ. Then, taking into account the fact
that x is an imputation of ðN; vlbÞ and that xt [ 0;

vlbðNnfigÞ ¼ vlbðNÞ ¼
X

j2N

xf [
X

j2Nnftg
xf

That is, the surplus value allocated to agents in N\{i} is less than the surplus
value that these agents can generate by themselves thereby violating the condition
of the core. Hence x 62 C vlb

� �
.
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Because of Lemma 16.1, we understand that the surplus is always divided
among the members of the f-veto set vf and a non f-veto agent never gets a positive
share of the surplus. With this we can redefine the MPNF game to reflect the fact
that only f-veto agents get a share of the surplus. That is the game N; vlb

� �
can be

written as the game vf ; v̂lb

� �
where the characteristic function v̂lb Tð Þ is the value

that any subset T � Vf can generate in conjunction with agents who are not in the
f-veto set. That is,

v̂lbðTÞ ¼ vlbðT [ ðNnVf ÞÞ ð16:12Þ

With this definition of a new game involving only the agents in the f-veto set,
we now state and prove the main theorem characterizing the effect of the edge
ownership structure on the non-emptiness of the core of the MPNF game.

Theorem 16.1 Let N; vlb

� �
be a non-trivial procurement network formation game

with a set of f-veto agents vf . Then, N; vlb

� �
is balanced if and only if the following

two conditions hold:

1. vf is non-empty and ðvf ; v̂lbÞ is balanced.
2. Every profitable flow in the procurement network formation scenario lb ¼

G;N;w; b; dvtð Þ with which N; vlb

� �
is associated contains an edge owned by an

f-veto agent.

Proof We first show the necessity part of the theorem. Suppose that N; vlb

� �
is

balanced. We now need to show that conditions (1) and (2) of the theorem hold.

Now, from the theorem due to Bondereva (1963) and Shapley (1967), we know
that the core of a transferable utility (TU) cooperative game is non-empty if and
only if it is balanced. So, because of the assumption of balancedness of the MPNF
game N; vlb

� �
which is a TU game, we can say that it has a non-empty core, i.e.,

C vlb

� �
6¼ 0.

Now, consider an imputation x of the surplus value such that it is in the core of
the game N; vlb

� �
. That is x 2 C vlb

� �
. Then from Lemma 16.1, vf has to be a non-

empty set and xi ¼ 0 for all i 2 NnVf . Now, denote by x̂ the restriction of x to the
set vf . Clearly, x̂ is an imputation of vf ; v̂lb

� �
. Let T 	 Vf . Since x 2 CðvlbÞ, we

have:
X

t2T

x̂t ¼
X

t2T[ðNnVf Þ
xt� vðT [ NnVf

� �
Þ ¼ v̂ðTÞ:

Hence, x̂ 2 C v̂lb

� �
, so vf ; v̂lb

� �
is balanced and condition (1) of the theorem

holds.
Now, suppose that there exists a profitable flow F such that wðFÞ \ Vf ¼ ;.

Then,
P

t2NnVf
xt� vlbðNnVf Þ[ 0. This contradicts Lemma 16.1 and hence there
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cannot exist a profitable flow where the flow is provided only by agents who are
not a part of the set of f-veto agents vf . Hence, condition (2) of the theorem holds.
This proves the necessity part of the theorem.

We now show the sufficiency part of the theorem. Suppose that the MPNF game
N; vlb

� �
satisfies conditions 1 and 2. We now need to show that the core of this

game is non-empty.
Consider an imputation x̂ 2 C v̂lb

� �
. We now define x 2 <n in the following

way: xi ¼ x̂i if i 2 Vf , else xi ¼ 0 for all i 2 NnVf . It should be noted that the x we
have constructed is now an imputation of N; vlb

� �
. Also we know that the game

N; vlb

� �
is monotonic from Proposition 16.1. Now consider any coalition of agents

S 	 N. There are two cases to consider here: either (a) S \ Vf 6¼ ; or (b)
S \ Vf ¼ ;.

Case (a): For every S 	 N with S \ Vf 6¼ ;, since x̂ 2 C v̂lb

� �
, we have:

X

i2S

xi ¼
X

i2S\Vf

x̂i� v̂lb S \ Vf

� �
� vlbðSÞ

The above equation is nothing but the core condition for all coalitions S 	 N
where S \ Vf 6¼ ;.

Case (b): Now consider all coalitions S 	 N where S \ Vf 6¼ ;. Since ðN; vlbÞ
satisfies condition (2) in the statement of theorem, we can infer that for all coa-
litions S with S \ Vf 6¼ ; we must have vlbðSÞ ¼ 0. It is easy to see that any
allocation of the surplus of the MPNF game will always satisfy the core condition
for all those coalitions S where S \ Vf 6¼ ;.

With this we have shown that for all coalitions S 	 N, we haveP
i2S xi� vlbðSÞ; 8S � N. This is nothing but the condition for the non-empti-

ness of the core of the MPNF game ðN; vlbÞ. So, sufficiency is proved. So the
theorem holds.

16.4.1.1 Implications of Theorem 16.1 for Procurement Network
Formation

The investigation of the relationship between the ownership structure and the non-
emptiness of the core of the MPNF game has two implications: (i) it has design
implications for procurement networks and (ii) it can also provide diagnostic
support to identify potential sources of instability in the network.

First, from a procurement network design point of view, given the MPNF
scenario lb ¼ ðG;N;w; b; dvtÞ, the agents who have the maximum bargaining
power in the feasibility graph can be marked out. Also, notice that the statement of
the theorem says that the non-emptiness of the set of f-veto agents is the criterion
for the core to be non-empty. Now assume that the buyer was himself included in
the feasibility graph as an agent who owns a dummy edge from the terminal node
vt to another dummy node, say vd and the feasibility graph now includes both the
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dummy edge and the node. It is easy to see that in this case, the set of f-veto agents
is always non-empty and minimally includes the buying agent. By carrying out an
analysis on this new graph, the buyer can see with which other suppliers in the
network he will have to share the bargaining power. Such an analysis, often the
subject of supplier footprint optimization within large global supply chains, can
help the buyer to map out a strategy for supplier development so that the bar-
gaining power of agents can be limited while simultaneously ensuring the stability
of the network.

Second, from a diagnostic point of view, it provides support to the suppliers
also. Recall that the result tells us that only f-veto agents get a positive share of the
surplus. So, suppliers need to ensure that they are a part of the f-veto set if they
hope to garner a share of the surplus. An analysis of the network will tell them how
much they need to improve their cost competitiveness in order to be in the f-veto
set. Also, it provides them with insight into what complementary capabilities or
additional capabilities they need to acquire by buying out edges in the network that
would make them a f-veto agent.

16.4.2 Effect of Buyer’s Valuation on the Non-emptiness
of the Core

In this section, we focus on formalizing the intuition arising out of the discussion
based on the procurement feasibility graphs in Figs. 16.5 and 16.6. There we saw
that the buyer’s valuation of each unit of the item influences the characteristic
function values of the MPNF scenario which in turn determines whether the core
of the MPNF game is non-empty or not. We now formalize this intuition for a
special case of the MPNF game where the maximum demanded quantity is unity.

To do this we proceed by first showing through Lemma 16.2 that if the special
case of the MPNF scenario lb ¼ G;N;w; b; dvt ¼ 1ð Þ induces a game N; vlb

� �

whose core is non-empty, then for every other MPNF scenario where the buyer’s
valuation b of the item is lower, the induced game N; vlb

� �
continues to have a

non-empty core. We then show through Theorem 16.2 that either the core of the
MPNF game is always non-empty or there exists a threshold value of the buyer’s
valuation below which the core is always non-empty.

Lemma 16.2 Let lb ¼ G;N;w; b; dvt ¼ 1ð Þ be a procurement network formation
scenario and the associated cooperative game be N; vlb

� �
. If N; vlb

� �
is balanced,

then N; vlb

� �
is balanced for all b̂ 2 ½0; b� where lb̂ ¼ G;N;w; b̂; dvt ¼ 1

� �
.

Proof Let x ¼ ðx1; x2; . . .; xnÞ be an imputation of ðN; vlbÞ. Then x is an element of
the core of the game if and only if

P
i2S xi� vlbðSÞ for every S � N that has a

profitable flow in lb. Now, consider some x ¼ ðx1; x2; . . .; xnÞ 2 CðN; vlbÞ and any

b̂� b. The corresponding procurement network formation scenario lb induces the
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cooperative game ðN; vlbÞ. There are two cases to consider for the newly induced
game. Either (a) vlbðNÞ ¼ 0 or (b) vlbðNÞ[ 0

Case (a): When vlbðNÞ ¼ 0.
If vlbðNÞ ¼ 0, then because the MPNF game is monotonic, it is clearly the case

that there is no subset of agents who can create a positive surplus. That is
vlbðSÞ ¼ 0, 8S � N. Then for any balanced vector h ¼ ðhðSÞÞS2LðNÞ; where

LðNÞ ¼ fSjS � N; S 6¼ ;Þ, it is clear that
P

S�N hðSÞ vldðSÞ ¼ 0 ¼ vldðNÞ ¼ 0.
This is nothing but the condition for balancedness of the game ðN; vlbÞ (refer the
Theorem 16.1). Hence the lemma holds in this case.

Case (b): When vlbðNÞ[ 0.
For this note that the difference in surplus that the grand coalition makes when

the buyer’s valuation is b and b̂ is exactly equal to the difference in the valuation
itself. This is given by the following equation:

vlbðNÞ � vldðNÞ ¼ b� b̂� 0 ð16:13Þ

We have already picked x ¼ ðxiÞi2N as an imputation of the surplus that is in the
core of the game ðN; vlbÞ. Now we choose an imputation x̂ of ðN; vldÞ such that the
following condition holds:

xi � x̂� 0; 8i 2 N ð16:14Þ

From Eqs. 16.13 and 16.14, we can deduce the following relation:
X

i2S

xi �
X

i2S

x̂i� b� b̂ ð16:15Þ

)
X

i2S
x̂i�

X
i2S

xi þ b̂� b

)
X

i2S
x̂i�

X
i2S

xi þ bþ b̂

)
X

i2S
x̂i� b� cðFsÞ � bþ b̂

)
X

i2S
x̂i� b̂� cðFsÞ

)
X

i2S
x̂i� vldðSÞ

The first and second inequalities following inequality 16.15 is simply a rear-
rangement of terms; the third inequality follows from the core condition for the
original game N; vlb

� �
where

P
i2S xi� vlbðSÞ� b� cðFsÞ, and the last inequality

follows from the rearrangement of terms in the previous inequality and substitution
for the core condition. So starting from an imputation which is in the core of the
original game, we have shown that it is possible to construct an imputation which
is in the core of the new game whose budget is bounded by the budget of the
original game for which the core is non-empty. And by Theorem due to Bondereva
(1963), we know that the core of a cooperative game is non-empty if and only if it
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is balanced. Since the new game has a non-empty core, we can infer that it is also
balanced and the lemma holds for this case also.

So, the Lemma holds.
We can now state and prove the main theorem characterizing the effect of the

buyer’s valuation on the non-emptiness of the core of the MPNF game where the
maximum demanded quantity by the buyer is unity.

Theorem 16.2 Let lb ¼ G;N;w; b; dvt ¼ 1ð Þ be a procurement network forma-
tion scenario. Then either the cooperative game N; vlb

� �
associated with the

scenario is balanced for all b 2 ½0;1� or there exists B 2 ½0;1� such that ðN; vlbÞ
is balanced if and only if b B B.

Proof Suppose that there exists ~b 2 ½0;1� such thatðN; vl~bÞ is not balanced. Now

consider the set of real numbers given by:

R ¼ fb 2 ð0;þ1Þj CðvldÞ 6¼ ;; 8 d 2 ½0; b�g ð16:16Þ

Clearly R 6¼ ;, because 0 2 R. Also, ~b is an upper bound of R. Hence the
supremum B 2 ½0;1� of R should exist.

Now, because of Lemma 16.2, to prove the theorem, we only need to prove that
B [ R. Equivalently, we need to show that the core of the MPNF game ðN; vlBÞ
with valuation B is non-empty, i.e., CðvlBÞ 6¼ ;

If we are able to show this, then because of Lemma 16.2, we can make the
claim that for every b�B, the core of the game N; vlb

� �
is non-empty. We now

proceed to show this.
Now consider for each t 2 N; bt 2 R such that B� bt� 1=t and xt 2 C vlbt

� �
.

Under these conditions, it is clear that the sequence of surplus allocation fxtgi2N ,
where xt ¼ ðxt

iÞi2N , has a convergent subsequence. Without loss of generality, we
can identify this subsequence with fxtgi2N . We denote the limit of fxtgi2N by �x.

Now, for all t 2 ðNÞ we have chosen xt 2 C N; vlt
b

� �� �
. This means xt

i� vlbt ðiÞ
and

P
i2N xt

i ¼ vlbt ðNÞ. Because of this, we have �xi� vlBðiÞ and
P

i2N �xi ¼ vlBðNÞ.
Hence �x is an imputation of ðN; vlbt Þ.

Now, for each t 2 ðNÞ, since we have chosen xt 2 CðvlbtÞ, for every S 	 N we
have

P
i2S xt

i ¼ vlbt ðSÞ. Taking limits as t goes to infinity, we obtain
X

i2S

�xi� vlBðSÞ; 8 S 	 N

The above inequality is nothing but the condition for the non-emptiness of the
core. So, we have �x 2 CðvlBÞ.

This means that we have on hand a valuation B 2 ½0;1� such that the induced
game N; vlB

� �
has a non-empty core. And from Lemma 2 we know that for every

b \ B, the induced game N; vlB

� �
has a non-empty core and hence the theorem holds.
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16.4.2.1 Implications of Theorem 16.2 for Procurement Network
Formation

From a managerial perspective, Theorem 16.2 suggests that if the buyer desires the
formation of a stable procurement network in the sense that recontracting is pre-
cluded, then the budget that he announces will have to be carefully chosen. A very
low budget may mean that there is no profitable flow in the network and hence a
transaction does not occur and a high budget will tend to engage the suppliers in
protracted negotiations which do not seem to terminate in any agreement precisely
because the core is empty.

16.4.3 Effect of Demanded Quantity on the Non-emptiness
of the Set of f-veto Agents

In this section, we focus on formalizing the intuition arising out of the discussion
based on the procurement feasibility graphs that we considered in Figs. 16.7 and 16.8
and in Figs. 16.9 and 16.10. We observed there that given a feasibility graph, the
demanded quantity seemed to play a part in determining the non-emptiness of the
core. From Lemma 16.1 and Theorem 16.1, we understand that the existence of a non-
empty set of f-veto agents is crucial to the non-emptiness of the core of the MPNF
game. In this section, we formally show the relationship between the demanded
quantity and the non-emptiness of the core through its relationship with the non-
emptiness of the set of f-veto agents. We capture this relationship in Theorem 16.3.

Theorem 16.3 Let lb ¼ ðG;N;w; b; dvtÞ be a MPNF scenario. Then there exists
D 2 ð0;1Þsuch that the set of f-veto agents is non-empty for all dvt �D.

Proof Recall that the set of f-veto agents Vf are those agents that own an edge in
every surplus maximizing flow in the network. Because of this, we can infer that
there are at least two coalitions of agents S1; S2 � N; S1 \ S2 ¼ ; who can provide
a surplus maximizing flow for a given procurement scenario lb ¼ ðG;N;w; b; dvtÞ
when the set Vf is empty. That is we have:

vlbðNÞ ¼ vlbðS1Þ ¼ vlbðS2Þ ð16:17Þ

It is clear that the limiting constraint in this surplus maximization problem is
the maximum demanded quantity dvt . Set dvt ( 2 
 dvt . Now, S1 [ S2 is a surplus
maximizing coalition for the procurement scenario lb ¼ G;N;w; b; 2 
 dvtð Þ. Now,
either S1 [ S2 yields a f-veto set of agents in which case we are done or we repeat
the procedure until such a set is found. And this is guaranteed since there are only
a finite set of agents. So, by this procedure we are guaranteed to find a number
D 2 ð0;1Þ such that dvt ¼ D induces a set of f-veto agents.
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16.4.3.1 Implication of Theorem 16.3 for Procurement Network
Formation

Recall from Theorem 16.1 that one of the conditions for the core to be non-empty
is that the set of f-veto agents should be non-empty. Theorem 16.3 is essentially a
link to the non-emptiness of the core through the set of f-veto agents. From a
managerial perspective, the theorem suggests that if the buyer desires the for-
mation of a stable procurement network, then the maximum demand that he
specifies will have to be carefully chosen if the set of f-veto agents is to be non-
empty.

16.5 An Extensive-Form Game to Implement the Core
of the MPNF Game

In general, the core as a solution concept only points out that an allocation in the
core is immune to recontracting either by the grand coalition of all agents or sub-
coalitions of agents. It takes an exogenous view of the cooperative scenario and
points out that agents when given sufficient time and message space for negotia-
tions are likely to converge to one of the allocations in the core that are themselves
indicated axiomatically. From an implementation viewpoint, however, this can be
cumbersome. That is, in actual practice, in a MPNF scenario, we do not normally
have the advantage of a central agency or a social planner who can point out to the
agents the strategies they must adopt to obtain payoffs that are in the core of the
game. We must have a way to allow agents to non-cooperatively achieve the
desired outcome.

As we know the core can essentially be viewed as a social choice correspon-
dence from the space of characteristic function values to the space of allocations.
That is, the core C of a cooperative game (N, v) is a social choice correspondence
given by:

C : <jLðNÞj ! <N where LðNÞ ¼ fSjS � N; S 6¼ ;g

Implementation theory provides us with a body of ideas to implement such
social choice correspondences.

We point the reader to Maskin (1985) and Moore (1992) for a comprehensive
survey of this field. The idea here is to construct detailed rules of bargaining in an
extensive-form game and show that the set of non-cooperative equilibria of this
game, possibly Nash equilibria or some refinement thereof, coincide with the
outcomes of the social choice correspondence. In this section, we draw from these
ideas, and in particular from the mechanism of Serrano and Vohra (1997) to design
a non-cooperative game such that the outcomes corresponding to the equilibrium
strategies of each of the agents of such a game correspond to the outcomes in the
core of the MPNF game whenever it is non-empty.
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16.5.1 Preliminaries

We shall now construct an extensive-form game such that for every scenario in the
class of MPNF games, the sub-game perfect Nash equilibrium outcomes coincide
with the core allocations. To do that, we first need some additional notation
regarding (a) the outcomes that are achievable by any sub-coalition of agents and
(b) the notion of permutations and their composition.

For this part of the discussion, we treat each of the edges in the network as
individual resources that are owned by agents. Since there are |E| edges, we

designate each agent i’s initial endowment of resources as r0
i 2 ½0; 1�

jEj and the
final allocation of resources after the formation of the procurement network as

ri 2 ½0; 1�jEj.
We know from the earlier discussion in this chapter that the surplus achievable

by coalition S is given by vlbðSÞ. If S can provide a profitable flow through the
network then vlbðSÞ[ 0. We let ðxiÞi2S be an allocation of the surplus such thatP

i2S xi ¼ vlbðSÞ. We now define an outcome achievable by a coalition S as a
vector ðri; xiÞi2S that indicates a reassignment of resources that follows from
solving the optimization problem specified in Eqs. (16.1)–(16.5) and an allocation
of the surplus vlbðSÞ if the coalition is able to find a profitable flow through the
network using only the edges owned by the agents in the coalition S. We define XS

as the set of outcomes achievable by the coalition S � N and let X ¼ [S�NXS.
Formally, we have:

XS ¼ ðri; xiÞi2Sj
X

i2S

ri�
X

i2S

r0
i
; and

X

i2S

xi� vlbðSÞ
( )

ð16:18Þ

An important idea, first introduced by Thomson in (Thomson 2005) to imple-
ment solutions to problems of fair division, that we use to define the extensive-
form game, to implement the core of the MPNF game is the notion of permuta-
tions. We let

Q
denote the set of all permutations of N, i.e., one-to-one functions

from N to N. Given p ¼ ðpiÞi2N where pi 2
Q

for every i 2 N, we define pðpÞ to
be the composition of all permutations ðpiÞ.

That is pðpÞ ¼ p1ðp2ð. . .ðpið. . .pNÞ. . .ÞÞÞ and pðpÞj is the jth agent in the
sequence pðpÞ. Notice that from the way in which the composition of permutations
is defined, given any p�i ¼ ðp1; p2; . . .; pi�1; piþ1; . . .; pNÞ and p̂ 2 P; pi 2 P there
exists �p 2 P such that pð�p; p�iÞ ¼ p̂. This means that any agent i 2 N can make a
unilateral change in pi 2

Q
so that when the composition is computed he ends up

as the first agent in the computed order.
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16.5.2 Description of the Extensive-Form Game

The extensive-form game or mechanism that we construct is essentially a two
stage game with agents moving simultaneously in Stage 0 and moving sequentially
in Stage 1. Our aim for Stage 0 is twofold: First, we would like to have a status quo
allocation that agents will revert to in case of disagreement in Stage 1; second we
seek an ordering of agents so that they may move sequentially in Stage 1. In Stage
1, we allow agents to make sequential moves, such as proposing, accepting, or
rejecting offers. These moves are based on an ordering of agents computed at the
end of Stage 0. The game ends after each of the agents has made at most one move
in Stage 1. The leaf nodes of the game tree indicate whether an agreement has been
reached and if so a split of the surplus. We now present the details of the exten-
sive-form game C to implement the core of the MPNF game.

To construct the extensive-form game, we follow the game structure provided
in Mas-Collel et al. (1995). The extensive-form game C to implement the core of
the MPNF game ðN; vlbÞconsists of the following building blocks:

1. A finite set of agents N, a finite set of nodes N, and a finite set of actions A.
2. The set of agents N ¼ f1; 2; . . .; ng corresponds to the set of agents who own

edges in the MPNF scenario lb ¼ ðG;N;w; b; dvtÞ
3. A function pr: N ! fN [ ;g specifying a single immediate predecessor

pr(k) of each nodek 2 N. It is non-empty for all k 2 N except for one node
which is designated as the initial node k0. The immediate successor nodes of
k are then suðkÞ ¼ pr�1ðkÞ and the set of all predecessors and successors can
be found by iterating pr(k) and su(k). To have a tree structure, we require that
these sets be disjoint, i.e., a predecessor of a node cannot also be a successor
of the node. The set of leaf nodes of the tree is L ¼ fk 2 NjsuðkÞ ¼ ;g. All
other nodes N\L are called decision nodes. These decision nodes may be
divided into two sets N0 and N1 which contain the decision nodes in Stage 0
and Stage 1 of the game, respectively.

4. The action set A consists of two sets A0 for Stage 0 and A1 for Stage 1. So,
A ¼ A0 [ A1.

• In Stage 0, every agent chooses simultaneously an action a0
i ¼ ðxi; piÞ from

the action set A0 ¼ fðxi; piÞjxi 2 X; pi 2 Pg. Here, xi is an indication of an
outcome that agent i would like to see emerge as the status quo outcome at the

end of Stage 0. The outcome xi 2 X is a tuple ðr j
i ; x

j
i Þj2N that specifies a

reassignment of the edges ððr j
i Þj2NÞ and an allocation of surplus ððx j

i Þj2NÞ
among the members of the coalition N. In other words, ððx j

i Þj2NÞ indicates
how agent i would like to split the surplus among the set of all participating
agents in the MPNF game. The second part of the action a0

i specifies a choice
of permutation pi 2 P that agent i would like to have implemented in the next
stage of the game. Let ao ¼ ða0

i Þi2N be the profile of Stage 0 messages where
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a0
i 2 A0. Now denote 1ða0Þ ¼ pðpÞ1; 2ða0Þ ¼ pðpÞ2; . . .; nða0Þ ¼ pðpÞn as the

first, second,… and the last agent as decided by the order pðpÞ. If for any i and
j such that i 6¼ j, we have xi 6¼ xj then we penalize agent N(a0) by an amount
ei. For all practical purposes, we may treat this as a penalty levied on some
caution deposit that the agents make before the start of the game. If all things
go well, then this caution deposit is given back to the agents along with any of
the surplus that they may be entitled to at the end of the game. If, however,
xi ¼ xj ¼ x
for all i; j 2 N, then x
 we designate as the status quo allocation
and move to the next stage of the game.

• In Stage 1, agents choose sequentially an action a1
i from the action set A1. The

sequence of agents is determined by the composition pðpÞ of all the permu-
tations p ¼ ðpiÞi2N submitted by agents in Stage 0. The action that an agent
i can take in this stage is one of the following:

– Make an offer ðS;xiÞ to coalition S to implement an outcome xi 2 XS. The

outcome xi is a tuple ðf j
i Þj2S indicating a reassignment of the edges ðf j

i ; x
j
i Þj2S so

that the procurement network is formed and a division ðx j
i Þj2S of the surplus

vlbðSÞ.
– Accept an offer ðS;xiÞ made by a preceding agent i in stage 1.
– Reject an offer ðS;xiÞ made by a preceding agent i in stage 1.

So, the elements of the action set A1 are as follows:
A1 = {make offer, accept offer, reject offer ðS;xiÞjS 	 N and xi 2 XS}.
The first agent 1(a0) in the sequence determined by pðpÞmakes an
offerðS;xiÞ2 A1. The other members of S then respond sequentially in the order
2(a0),…, k(a0) where j(a0) is the jth agent in S as determined by the
sequencepðpÞ. They either accept it or reject it. If all members of S accept the

offer, then they receive the allocations ðx j
i Þj2S as offered by agent i = 1(a0) and

all other agents not in S receive no allocations of the surplus. If even one of the
members of S rejects the offer, then the status quo offer from Stage 0 is
implemented.

5. A function a : Nnfk0g !A gives the action that leads to any non-initial node
k from its immediate predecessor node pr(k) and satisfies the property that if

k̂ 6¼ �k 2 suðkÞand k̂ 6¼ �k, then aðk̂Þ 6¼ að�kÞ. The set of actions available at
decision node k is aðkÞ ¼ a 2 A : a ¼ aðkÞ; for some �k 2 suðkÞ

� �
.

6. A collection of information sets H, and a function H : N ! Hassigning each
decision node to an information set HðkÞ 2 H. Thus the information sets
H make a partition of the set of nodes N. We require that all decision nodes
assigned to a single information set have the same actions available at every one

of those nodes. That is, aðkÞ ¼ aðk̂Þ if HðkÞ ¼ Hðk̂Þ. We can therefore write the
actions available at information set H as AðHÞ ¼ a 2 A : a 2 aðkÞ for k 2 Hf g.

7. A function I : H ! N, assigning each information set in H to the agent who
moves at the decision nodes in that set. We can denote the collection of agent
i’s information sets by Hi ¼ H 2 H : i ¼ IðHÞf g.
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8. A strategy for an agent i is a function si : Hi ! A such that siðHÞ 2 AðHÞ for
all H 2 Hi. We now denote

• the set of all possible strategies for an agent i by Si.
• the strategy profile for the coalition of all agents in N as s = (s1, s2,…, sn).
• the set of all possible strategy profiles of all agents in N as S ¼ Xi2NSi.

9. A function g : S� N ! X where S, N, and X are the set of strategy profiles,
set of nodes in the game tree, and the set of outcomes, respectively. Note that
each of the leaf nodes L corresponds to an outcome from the set. So, for a
strategy profile s 2 S, we let g(s, k) denote the outcome corresponding to
s starting at node k.

10. Finally, we define a collection of payoff functions u = {u1 (�), u2 (�),…, un (�)}
that agents have for each of the outcomes. That is ui : X! < and u : X! <n.
We know that an outcome x 2 X is given by the tuple x ¼ ðri; xiÞi2N . We let
the utility that agent i has for an outcome x 2 Xbe given by uiðxÞ ¼ xi.

So, for the MPNF game in characteristic function form ðN; vlbðÞÞ, we have
specified the extensive-form game C by the tuple:

x̂i 6¼ xi C ¼ ðN;A;N; prð:Þ; að:Þ;H;Hð:Þ; Ið:Þ; uÞ ð16:19Þ

We know that a profile of strategies s = (s1, s2,…, sn) in an n-player extensive-
form game is a sub-game perfect Nash equilibrium (SPNE) if it induces a Nash
equilibrium in every sub-game. So, in the extensive-form game C that we have
defined above for the MPNF game in characteristic function form, the SPNE of C
is a strategy profile s
 2 S such that for all k 2 NnL and for all i 2 N, we have:

ui g s
i ; s


�i; k

� �� �
� ui g s
i ; s



�i; k

� �� �
; 8si 2 Si ð16:20Þ

We let SPNE (C) denote the set of all allocations corresponding to the sub-
game perfect Nash equilibria of the extensive-form game C. An extensive-form
game C is said to implement in sub-game perfect Nash equilibrium the core of a
MPNF game if we have the following (with some abuse of notation):

SPNEðCÞ ¼ CððN; vlbÞÞ ð16:21Þ

16.5.3 Analysis of the Extensive-Form Game

The analysis of the mechanism essentially involves verifying if the extensive-form
game C constructed above makes the agents in the game pick equilibrium strat-
egies whose payoffs correspond to the core allocations of the corresponding game
specified in its characteristic function form. We do this by proving Theorem 16.4
below.
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Theorem 16.4 The extensive form mechanism C implements in sub-game perfect
Nash equilibrium the core of the class of MPNF games.

Proof To prove this theorem, we essentially need to show two things:

a. First, we need to show that any outcome, and hence an allocation of the surplus,
that is in the core of the MPNF game corresponds to the outcome of a strategy
profile that is an SPNE of the extensive-form game C.

b. Second, that an outcome corresponding to a strategy profile that is an SPNE of
the extensive-form game C corresponds to an outcome, and hence an allocation
of the surplus, that is in the core of the MPNF game.

Part (a): We proceed by first showing that if there is a surplus allocation vector
x 2 CððN; vlbÞÞ then there is an outcome x 2 SPNEðCÞ such that the payoff u ¼
ðuiÞi2N corresponding to the outcome x is equal to x.

Consider a strategy profile s = (s1, s2,…, sn) such that:

i. In Stage 0, every agent i chooses an action s0
i ¼ ðx; p0Þ where the outcome x is

chosen such that uðxÞ ¼ x and p0 is the identity permutation.
ii. In Stage 1, every agent i chooses, at every node that he has to make an offer, an

action ðS;xiÞ ¼ ðN;xÞ. The outcome x is chosen such that uðxÞ ¼ x.
iii. At every node of Stage 1 where an agent has to respond to a status quo

outcome ~x and an offer ðS; x̂Þ, he accepts the offer only if uiðx̂Þ[ uið~xÞ.

Consider any decision node in Stage 1 of the game where an agent has to
respond to a proposal vis-a-vis a status quo outcome. If his action is such that it
satisfies condition (iii) above, it is clear that it corresponds to a sub-game perfect
Nash equilibrium starting at any of the nodes at which the agent has to respond to
an offer.

Because, the payoff x corresponding to the status quo outcome x is in the core
of the MPNF game, no agent can object to the outcome x and propose an alter-
native outcome at any node in Stage 1 where the agent has to make a proposal vis-
a-vis the status quo outcome. This implies that actions taken in accordance to
condition (ii) above correspond to a sub-game perfect Nash equilibrium action for
any agent starting at any node where he has to make a proposal vis-a-vis the status
quo outcome.

Now, since the payoff x corresponding to the outcome xs in the core of the
game, no agent i can gain by choosing an outcome x̂ 6¼ x which gives him a
payoff x̂i 6¼ xi. This means that the strategy profile s = (s1, s2,…, sn) chosen as
above leads us to an equilibrium path where

• the status quo at the end of Stage 0 is the outcome xwhose payoff is uðxÞ ¼ x,
• the first agent in the sequence computed at the end of Stage 0 proposes an

alternative that includes the grand coalition and the outcomex,
• and all other agents reject it in favor of the status quo outcome at all nodes in

Stage 1 where they have to respond to a proposal made in Stage 1.
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This means that if we are given any allocation that is in the core of the MPNF
game, we can always find in the extensive-form game C a sub-game perfect Nash
equilibrium strategy profile s = (s1, s2,…, sn) whose outcome gives the same
payoff. This proves Part (a).

Part (b): We now need to show that if C has a sub-game perfect Nash equi-
librium strategy profile s = (s1, s2,…, sn), then its outcome g(s, k0) has a utility
profile u(g(s, k0)) that corresponds to an allocation in the core of the MPNF game,
i.e., uðgð�s; k0ÞÞ ¼ x 2 CððN; vlbÞÞ.The proof is by contradiction. But before that
we need to establish Lemmas (16.3)–(16.5) below.

Consider a strategy profile s = (s1, s2,…, sn) that is a sub-game perfect Nash
equilibrium of the game C. The actions a0

i ¼ ðx0
i ; piÞ that each of the agents i take

in Stage 0 of the game correspond to a status quo outcome whose allocation of
payoffs is ðx0

i Þi2N . And we also let gðs; k0Þ ¼ x whose payoffs correspond to
uðgðs; k0ÞÞ ¼ uðxÞ ¼ ðxiÞi2N .

Lemma 16.3 For the given sub-game perfect Nash equilibrium strategy profile s,
the outcomes and hence the resulting payoff allocations announced by each of the
agents in Stage 0 are the same. That is, x0

i ¼ x0 for all i 2 N so that x0
i ¼ x0.

We prove this lemma by contradiction. Suppose that the claim is not true. Then
according to the rules of the extensive-form game, agent j who is the last in the
sequence computed by pðpÞ suffers a penalty ej. However, this agent can easily
avoid this penalty by changing his action a0

j ¼ ðx0
j ; pjÞ to âo

j ¼ ðx0
j ; p̂jÞ so that

j 6¼ pðp̂j; p�jÞn, i.e., agent j is not the last in the computed sequence.
This means that the agent j stands to gain by changing his action in Stage 0

from a0
j to âo

j which contradicts the hypothesis that the strategy profile s = (s1,

s2,…, sn) where the action a0
j chosen in Stage 0 by agent j is a SPNE. So, the claim

holds.

Lemma 16.4 The utility that each agent has for the final outcome is at least as
great as the utility that they receive from the status-quo outcome. That is,
uðxÞ� uðx0Þ implying x� x0.

We prove this lemma again by contradiction. Suppose that there is an agent
i who gets less utility/payoff from the final outcome as compared to the status quo
outcome. Then, in Stage 0 of the game, the agent can change his announcement of
the permutation pi to p̂i so that he becomes the first agent in the sequence com-
puted at the end of Stage 0. We know that this is possible from our earlier
discussion on the notion of permutations. Now that he is the first agent in the
sequence computed, he can propose the status quo outcome and irrespective of
how other agents respond, the status quo outcome can be ensured as the final
outcome. This is a contradiction since we started off with the assumption that S is
an SPNE strategy profile. Hence, the claim holds.

Lemma 16.5 Let k be any node of any sub-game in which a player has to respond
to the status-quo outcome x0 having a payoff x0 and a Stage 1 offer ðS; x̂Þ having a
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payoff x̂ made by agent i. Suppose that ujðx̂Þ[ ujðx0Þ for all j 6¼ i; j 2 S. Then
gðs; kÞ ¼ x̂ in the extensive form game C.

This is a straight forward consequence of the sub-game perfectness of the
strategy s. An agent who is responding to a proposal must accept it if it gives him
more utility or payoff when compared to the utility that he gets from a status quo
outcome.

Now, to complete the proof, assume that the payoff corresponding to the out-
come of the SPNE strategy profile is not in the core of the MPNF game, i.e., we
assume that uðgðs; k0ÞÞ ¼ ðxiÞi2N 62 CðvlbÞ.

Because the payoff is not in the core of the MPNF, there will be a coalition of
agents S who can find an outcome xS whose payoff allocation ð�yjÞj2S is better than
what they would receive from the outcome of the SPNE strategy profile s and
hence there would be an objection ðS;xSÞ. That is, for all agents j 2 S we have
ð�yjÞj2S�ðxjÞj2S. From claim 2, we know that x� x0. So, we have:

ð�yjÞj2S�ðxjÞj2S�ðx0
j Þj2S ð16:22Þ

This immediately implies that any agent j 2 S can unilaterally change his
announcement of the permutation from pj to p̂j when he chooses his action in
Stage 0 of the game so that he becomes the first agent in the sequence for stage 1.
He can then choose an action which proposes ðS;xSÞ which is sure to be accepted
by all agents in S. But this would mean that the original strategy profile is not in
equilibrium which is a contradiction. Hence, the payoff that corresponds to a
strategy profile which is SPNE must be in the core of the MPNF game. This proves
Part (b). This completes the proof.

16.6 An Example

We now present an example to demonstrate the non-cooperative implementation
of the core of the MPNF game. To do this, we will reconsider the example in
Fig. 16.4. The characteristic function for this procurement feasibility graph is
given in Table 16.2.

The core of this MPNF game is the set of allocations x = (x1, x2, x3) such that
the following conditions hold:

1. x1 þ x2 þ x3 ¼ 4
2. xi þ xj� 0; 8j 2 f1; 2; 3g; i 6¼ j
3. xi 8j 2 f1; 2; 3g

It is easy to verify that x ¼ 4
3

�
; 4

3 ;
4
3

�
is one such allocation vector which is in the

core of the MPNF game defined by the characteristic function in Table 16.2. We
will now see how this allocation corresponds to the sub-game perfect Nash
equilibrium of the extensive-form game C defined in Sect. 16.5.
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In C, we have two stages. In Stage 0, every agent i picks an outcome xi and a
permutation of the agents 1, 2, 3. The outcome xi is the status quo outcome that
agent i would like to see emerge at the end of Stage 0 and the permutation is the
order in which he would like the game to continue in Stage 1.

We let xi be the outcome where agent iði 2 f1; 2; 3gÞ allows two units of flow
in the edges (s, b), (b, c), and (c, t) owned by him. The surplus that is generated in
this case is 4. In outcome xi, we divide this surplus equally among the agents 1, 2,
and 3. That is, we let x ¼ 4

3

�
; 4

3 ;
4
3

�
. Consider now the actions that each of the agents

takes in Stage 0 of the game C.

i. In Stage 0, every agent i chooses an action s0
i ¼ ðx; p0Þ where the outcome x is

as defined above and p0 is the identity permutation.
ii. In Stage 1, every agent i chooses, at every node that he has to make an offer, an

action ðS;xSÞ ¼ ðN;xÞ with the outcome x being as defined above.
iii. At every node of Stage 1 where an agent has to respond to a status quo

outcome ~x and an offer ðS; x̂Þ, he accepts the offer only if uiðx̂Þ[ uið~xÞ.

These actions constitute one strategy profile for the agents 1, 2, and 3. We now
need to verify if this strategy profile is an equilibrium strategy profile in which
case we can say that the core outcome x which gives each of the agents a payoff of
1 1

3 is achieved non-cooperatively. To do this, we will check if the actions specified
for the agents in each of the stages are a best response.

Since the permutation chosen at the end of Stage 0 is the identity permutation,
the sequence of play in

Stage 1 of the game is 1, 2, and 3. Since agent 3 is the last in the sequence, the
action that he takes is clearly a sub-game perfect Nash equilibrium starting at the
node where he has to either accept or reject the proposal vis-a-vis the status quo.
Similarly for agent 2 it is a sub-game perfect Nash equilibrium strategy to reject
the proposal given that he knows that it is sub-game perfect for agent 3 to also
reject at his decision node. Now, for agent 1 at his decision node in Stage 1, it is
clear that if he proposes any outcome which gives any of the agents 2 and 3 less
utility than what they would get from the status quo outcome, then it would be
rejected. And, if he proposes an outcome which gives agents 2 and 3 a utility
payoff that is greater than what they receive from the status quo outcome, then it
can come only at the cost of less utility for agent 1. So, the action for agent 1 at his
decision node in Stage 1 is sub-game perfect.

Now, in Stage 0, if the agents do not agree upon a status quo outcome then the
game ends and each of them gets zero payoff. Compared to this, if they each specify
the same status quo outcome x then they go to Stage 1 of the game and from the
discussion above, we know that the specified actions at the decision nodes in this
stage of the game constitute a sub-game perfect Nash equilibrium. So, the agents do
not have an incentive to deviate from the specified actions in Stage 0 of the game.
This means that the strategy profile outlined above is a Nash equilibrium strategy
profile. So, we can conclude that the outcome x which gives each of the agents a
payoff 4

3 can be implemented non-cooperatively through the extensive-form game C.

400 T. S. Chandrashekar and Y. Narahari



16.7 Conclusion

We conclude by first reiterating the contributions that we have made in this chapter
and then pointing out the further course of investigation.

1. We have formulated the multiple unit single item procurement network for-
mation (MPNF) problem as a cooperative game.

2. We have investigated the conditions for the non-emptiness of the core of the
MPNF game.

3. We then provided an extensive-form game to implement the core of the MPNF
game and showed that the sub-game perfect Nash equilibria of the extensive-
form game coincide with the allocations in the core of the MPNF game
whenever it is non-empty.

The investigation of the procurement network formation problem for the single
item, multiple unit case in this chapter lays the foundation for extending the
problem and the analysis in several directions.

First, in this chapter, we have assumed that the buyer just reveals his valuation
to the agents in the network and thereafter the agents need to coordinate their
actions to generate and share the surplus. Often, the buyer too is interested in
bargaining with the suppliers so that he may also get a share of the surplus. In this
case, the problem turns out to be a market game whose core is always non-empty
and could have a large number of elements (Myerson 1991). In such a case, it is
more useful to seek a single valued solution concept since it is not clear which one
of the many possible solutions agents will settle upon. The Shapley value is one
such solution concept that is widely accepted.

Second, in this chapter, we have assumed that agents have complete informa-
tion about the cost structure of each of the agents who own edges in the network. It
is obvious that there are several situations when this assumption may hold in only
a limited way or not at all. For instance, agents are likely to have complete
information about adjacent edges in the network but may have no information
about other edges. The question now is whether we can devise a strategy-proof
scheme where we do not have to make high incentive payments in order to get a
complete picture of the state of the network before we select a flow and make
allocations of surplus. In other instances, edges may be completely uninformed
about the cost structures of other edges. The question then is to develop and
analyze an appropriate cooperative model which describes this situation.
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